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Summary

This thesis consists of two parts. In the first part we investigate the worldvolume

supersymmetry algebra of multiple membrane theories. We begin with a descrip-

tion of M-theory branes and their intersections from the perspective of spacetime

and worldvolume supersymmetry algebras. We then provide an overview of the

recent work on multiple M2-branes focusing on the Bagger-Lambert theory and

its relation to the Nambu-Poisson M5-brane and the ABJM theory. The world-

volume supersymmetry algebras of these theories are explicitly calculated and the

charges interpreted in terms of spacetime intersections of M-branes.

The second part of the thesis looks at l3p corrections to the supersymmetry

transformations of the Bagger-Lambert theory. We begin with a review of the

dNS duality transformation which allows a gauge field to be dualised to a scalar

field in 2+1 dimensions. Applying this duality to α′2 terms of the non-abelian

D2-brane theory gives rise to the l3p corrections of the Lorentzian Bagger-Lambert

theory. We then apply this duality transformation to the α′2 corrections of the

D2-brane supersymmetry transformations. For the ‘abelian’ Bagger-Lambert the-

ory we are able to uniquely determine the l3p corrections to the supersymmetry

transformations of the scalar and fermion fields. Generalising to the ‘non-abelian’

Bagger-Lambert theory we are able to determine the l3p correction to the super-

symmetry transformation of the fermion field. Along the way make a number of

observations relating to the implementation of the dNS duality transformation at

the level of supersymmetry transformations.
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CHAPTER 1

INTRODUCTION

M-theory is a non-perturbative description of string theory. It offers a way of relat-

ing the five superstring theories and eleven-dimensional supergravity through an

intricate web of dualities. In a sense it represents the ultimate goal of unification:

the ability to have a unique theory capable of describing all physical phenomena.

Furthermore it highlights the significance of the reductionist mindset in the devel-

opment of physics, from both a theoretical and ontological perspective: theoretical

in the sense that the history of physics is the history of one theoretical framework

being subsumed by another; ontological because the theory is based on the idea

that there exists ‘fundamental’ objects in nature. In M-theory, these fundamental

objects are the M2-brane and the M5-brane.

The existence of such objects is implied by the presence of a three-form gauge

field in 11-dimensional supergravity, which is the low energy limit of M-theory.

The M2-brane couples electrically to the three-form whereas the M5-brane couples

magnetically. This is analogous to the situation in four-dimensional Maxwell the-

ory where a charged point particle couples to a one-form gauge field. The coupling

of p-dimensional objects to (p+1)-form gauge fields appears naturally in string

theory where the Ramond-Ramond fields of type II string theory are sourced by

extended objects called D-branes. What is truly remarkable is that fundamental

strings and D-branes can be obtained from the M-branes by considering certain

compactifications. For example, wrapping one of the transverse directions of the

M2-brane worldvolume around a circle and taking the radius to zero gives rise

to the type IIA fundamental string. The circle radius is related to the type IIA

string coupling in such a way that small radius corresponds to weak coupling.

Turning this around, one sees that at strong coupling the IIA theory grows an
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CHAPTER 1. INTRODUCTION

extra dimension. When the extra dimension is large, one is outside the regime of

perturbative string theory, and new techniques are required.

A complete understanding of the fundamental degrees of freedom of this eleven-

dimensional theory is likely to involve an understanding of the M-branes and how

they interact with one-another. However this task is made difficult by the fact

that M-theory contains no natural dimensionless parameter with which to define a

perturbative expansion. Instead, one must rely on intuition gained from D-brane

physics, duality relations and supersymmetry to probe the theory. Often this

can involve asking questions about how string theory and D-brane phenomena

are uplifted to M-theory, and then interpreting the result. For example, in string

theory it is well known that fundamental strings end on D-branes. Dimensionally

uplifting this result implies that an M2-brane can end on an M5-brane. From

the supergravity perspective, the M2-brane and M5-brane appear as solitonic

solutions of the supergravity field equations preserving half the supersymmetry of

the vacuum, whereas the M2-M5 intersection appears as a quarter supersymmetric

spacetime configuration.

The existence of the M2-brane and M5-brane can also be seen at the level

of the M-theory superalgebra, which is a modification of the 11-dimensional su-

pertranslation algebra to include 2-form and 5-form central charges. The spatial

components of these charges couple to the M2-brane and M5-brane worldvol-

umes. However it also possible to consider the time components of the 2-form and

5-form central charges. In this case it can be shown that these charges couple to

the M-KK-monopole (uplift of D6-brane) and M9-brane (boundary of spacetime

in Horava-Witten heterotic string theory). The M2-brane, M5-brane, M9-brane,

M-KK and M-wave are collectively known as ‘M-theory objects’. These states all

preserve half the supersymmetry of the vacuum.

States which preserve a fraction of the supersymmetry of the vacuum are

called BPS states. Such states play a vital role in string theory as they offer

the possibility of extrapolating information from weak to strong coupling (and

therefore the possibility of testing proposed duality relations). The reason this

extrapolation is possible is related to the idea of a BPS bound. The concept

9



CHAPTER 1. INTRODUCTION

of a BPS bound and its saturation can be illustrated by looking at extended

supersymmetry algebras. The central charges appearing in such algebras can

be thought of as electric and magnetic charges which couple to the gauge fields

belonging to the supergravity multiplet. The structure of the algebra implies that

the mass of a state preserving some fraction of supersymmetry is bounded from

below by the magnitude of the central charges. States in which the mass is equal

to the charge are said to saturate the BPS bound. In this case, zeroes appearing in

the superalgebra lead to a shortening of the supermultiplet. Since the dimension

of a multiplet cannot change by varying any parameters in the theory, it is possible

to follow BPS states from weak coupling to strong coupling with precise control.1

Studying the superalgebra of a theory can provide valuable information about

the types of BPS objects which exist in the theory, as well as their interactions.

It is a remarkable feature of intersecting brane configurations that the intersec-

tion appears as a half supersymmetric soliton solution of the worldvolume theory

of one of the constituent branes [4, 5]. For example, the fact that an M2-brane

can end on an M5-brane can be seen from the worldvolume perspective of the

M5-brane where the boundary of the M2-brane appears as a soliton of the M5-

brane worldvolume theory. Likewise, the M5-M5 intersection can be described

as a 3-brane vortex on the worldvolume of one of the M5-branes. Astonishingly,

the spacetime interpretation is already implicit at the level of the worldvolume

supersymmetry algebra [6]. In the case of the M5-brane, the worldvolume su-

peralgebra includes a worldvolume 1-form charge carried by the self-dual string

soliton living on the M5-brane (corresponding to the M2-M5 intersection) as well

as a worldvolume 3-form charge carried by the 3-brane soliton (corresponding to

an M5-M5 intersection).

Although the worldvolume theories of a single M2-brane and M5-brane are

quite well understood, it is only recently that effort has been directed toward a

Lagrangian description of the worldvolume theory for multiple M2-branes. This

1The only way this could fail is if another representation becomes degenerate with the BPS
multiplet so that they can pair up to produce the degrees of freedom necessary to fill out a long
representation.
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CHAPTER 1. INTRODUCTION

work began with the efforts of Bagger and Lambert2 [8, 9] who proposed a the-

ory based on a novel algebraic structure called a Lie 3-algebra. Their original

motivation was to write down a theory capable of reproducing the Basu-Harvey

equation [10] as a BPS equation of the theory. The Basu-Harvey equation has a

‘fuzzy funnel’ solution in which the worldvolume of the multiple M2-branes opens

up into an M5-brane. This is the M-theory analogue of the Nahm equation [11],

which is a BPS equation of the non-abelian D1-brane theory describing multiple

D1-branes opening into a D3-brane in type IIB string theory [12]. In the case of

IIB string theory, the charge representing the energy bound of the D1-D3 con-

figuration appears in the superalgebra of the coincident D1-brane theory. In a

similar way, the charge corresponding to the M2-M5 configuration should appear

in the worldvolume superalgebra of the multiple M2-brane theory. In the first

part of this thesis we investigate the worldvolume superalgebra of the recently

proposed M2-brane theories of Bagger and Lambert. We explicitly calculate the

central charges and provide interpretations in terms of spacetime intersections of

the M2-brane with other M-theory objects. In particular, we identify the central

charge corresponding to the energy bound of the M2-M5 configuration.

Remarkably, it is possible to make contact with the worldvolume description

of a single M5-brane (in a three-form background) by defining Bagger-Lambert

theory with an infinite dimensional Lie 3-algebra based on the Nambu-Poisson

bracket [13, 14]. This can be seen by rewriting the Bagger-Lambert field theory

on the three-dimensional worldvolume M as a field theory on a six-dimensional

manifold M× N where N is an ‘internal’ three-manifold with Nambu-Poisson

structure. In this case, the ‘non-abelian’ gauge symmetry of the original Bagger-

Lambert theory is promoted to an infinite-dimensional local symmetry of volume

preserving diffeomorphisms of the manifold N . The bosonic content of this model

includes a self-dual gauge field on M×N , as well as five scalar fields parame-

terising directions transverse to the six-dimensional worldvolume (the expected

field content of an M5-brane). In the second part of this thesis we investigate

the worldvolume superalgebra of the Nambu-Poisson M5-brane. Given the inter-

2See also Gustavsson [7].
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CHAPTER 1. INTRODUCTION

pretation of the Nambu-Poisson model as a description of an M5-brane in 3-form

background, one might expect to find central charges corresponding to M5-M2

and M5-M5 intersections in the presence of background flux. Indeed we will see

that the central charges appearing in the superalgebra may be interpreted as en-

ergy bounds of M5-brane worldvolume solitons in the presence of a background

three-form gauge field.

The M2-brane Lagrangian proposed by Bagger and Lambert can be thought of

as the leading order term in an lp expansion of a (not yet determined) non-linear

multiple M2-brane theory. This is analogous to the situation in string theory

where super Yang-Mills theory represents the leading order terms of the non-

abelian Born-Infeld action, which describes the dynamics of coincident D-branes.

Ultimately one is interested in determining the full non-linear theory, of which the

leading order terms are those of the Bagger-Lambert Lagrangian. Toward this end

it is worth considering non-linear corrections to 3-algebra theories. In the third

and final part of this thesis we investigate l3p corrections to the supersymmetry

transformations of the Bagger-Lambert theory. For the ‘abelian’ Bagger-Lambert

theory we are able to uniquely determine the l3p corrections to the supersymmetry

transformations of the scalar and fermion fields. Generalising to the ‘non-abelian’

Bagger-Lambert theory we are able to determine the l3p correction to the super-

symmetry transformation of the fermion field.

The thesis is structured as follows: In Chapter 2 we provide an overview of

branes and their interactions with an emphasis on the role played by superalgebras.

This includes a review of the D1-D3 system in type IIB string theory and a

discussion of the Basu-Harvey equation. In Chapter 3 we review the Bagger-

Lambert theory and its relation to the ABJM theory of multiple membranes.

In Chapter 4 we calculate the worldvolume superalgebra of the N = 6 Bagger-

Lambert theory, as reported in [1]. For a particular choice of three-algebra we

derive the superalgebra of the ABJM theory. We interpret the associated central

charges in terms of BPS brane configurations. In particular we find the charge

corresponding to the energy bound of the BPS fuzzy-funnel configuration of the

ABJM theory. In Chapter 5 we investigate the worldvolume superalgebra of the

12



CHAPTER 1. INTRODUCTION

Nambu-Poisson M5-brane theory as reported in [2]. We derive the central charges

corresponding to M5-brane solitons in 3-form backgrounds. We also show that the

double dimensional reduction of the superalgebra gives rise to the Poisson bracket

terms of a non-commutative D4-brane superalgebra. We provide interpretations of

the D4-brane charges in terms of spacetime intersections. In Chapter 6 we focus

on l3p corrections to the supersymmetry transformations of the N = 8 Bagger-

Lambert theory as reported in [3]. We begin with a review of the dNS duality

transformation which relates a gauge field and scalar field in (2+1) dimensions

[15–17]. We apply this duality transformation to the α′2 corrections of the non-

abelian D2-brane supersymmetry transformations. Along the way make a number

of observations relating to the implementation of the dNS duality transformation

at the level of supersymmetry transformations. Finally, in Chapter 7 we offer

some concluding remarks and discuss directions for future research. An Appendix

summarises conventions and provides calculational details pertaining to results

presented in the thesis.

13



CHAPTER 2

BRANES AND THEIR

INTERACTIONS

In this chapter we provide a brief overview of M-theory branes and their inter-

actions.1 A large portion of this thesis will be concerned with extended super-

symmetry algebras. Therefore it seems natural to introduce M-branes from the

perspective of the M-theory superalgebra. We will begin with a review of the

role played by supersymmetry algebras in providing information about M-theory

objects and their spacetime intersections. In particular we will see that M-brane

intersections are encoded in the p-form charges of the respective worldvolume

supersymmetry algebras.

The quest for a Lagrangian description of the worldvolume theory of coincident

M2-branes in M-theory has been a problem of longstanding interest. This has been

partly motivated by the fact that theories of coincident D-branes have provided

interesting ideas about symmetry enhancement and ‘dual’ descriptions in string

theory. One example of a system exhibiting dual descriptions is the type IIB

configuration in which N coincident D1-branes end on a D3-brane. From the

D3-brane perspective, the endpoint of the D1-branes appear as a BPS monopole

on the D3-brane worldvolume [4, 5, 19]. From the perspective of the multiple

D1-brane theory, the configuration gives rise to a ‘fuzzy funnel’ soliton, which is a

fuzzy 2-sphere whose radius grows without bound as the D3-brane is reached [12].

These two descriptions of the same physical state provide a stringy realisation of

the Nahm construction [11]. This leads one to hope that the multiple M2-brane

worldvolume theory admits a fuzzy-funnel solution that satisfies a ‘generalised’

1For an alternative review see [18].

14



CHAPTER 2. BRANES AND THEIR INTERACTIONS

Nahm equation.

In the second half of this chapter will focus on non-abelian D-brane inter-

sections using the example of the D1-D3 system. In particular we will see how

the BPS equation of the D1-brane worldvolume theory corresponds to the Nahm

equation describing the D1-brane growing into a D3 brane. Furthermore we will

see that the charge corresponding to the energy bound of this configuration ap-

pears in the D1-brane supersymmetry algebra. Using the intuition gained from

the D1-D3 system, Basu and Harvey proposed a ‘generalised’ Nahm equation ca-

pabale of describing multiple M2-branes ending on an M5-brane [10]. In the last

part of this chapter we will briefly review their work and derive an energy bound

corresponding to the M2-M5 configuration. In Chapter 4 we will see how this

energy bound appears as a charge in the worldvolume supersymmetry algebra of

the M2-brane.

2.1 M-theory Superalgebra and M-theory Objects

A remarkable amount of information is contained within spacetime and worldvol-

ume supersymmetry algebras. We begin by studying the 11-dimensional super-

poincare algebra. The existence of 2-brane and 5-brane solutions in 11-dimensional

supergravity [20] motivates the inclusion of additional ‘charges’ in the algebra.

Furthermore these additional charges imply the existence of other half-supersymmetric

objects in M-theory. This subsection is based on the work presented in [21].

2.1.1 11-dimensional superpoincare algebra

Let us begin by considering the 11-dimensional superpoincare algebra. Eleven

dimensions is the maximum dimension in which one can expect to find an inter-

acting supersymmetric field theory [22]. Translation invariance implies that P

and Q commute leaving the anicommutator

{Qα, Qβ} = (CΓM)αβPM (2.1.1)

15



CHAPTER 2. BRANES AND THEIR INTERACTIONS

where M = 0, . . . 10 is a spacetime Lorentz index and Q is a 32-component Ma-

jorana spinor. Now consider a state |S〉 which preserves some fraction, α, of the

supersymmetry of the vacuum. In other words this state will be annihilated by

some combination of supersymmetry charges. The expectation value of {Qα, Qβ}
acting on |S〉 will be a real symmetric matrix with 32α zero eigenvalues. A matrix

with zero eigenvalues has a vanishing determinant. This implies

0 = det(Γ.P ) = (P 2)16 (2.1.2)

which follows from the fact that

[det(Γ.P )]2 = det(ΓMPM)det(ΓNPN)

= det(ΓMΓNPMPN)

= det(P 2.I32)

= (P 2)32 (2.1.3)

So for the particular algebra (2.1.1) we see that states preserving a fraction of the

supersymmetry of the vacuum have null momenta. To determine the fraction of

supersymmetry preserved by these massless states we can pick a frame in which

PM =
1

2
(−1;±1, 0, . . . 0). (2.1.4)

Furthermore if we choose a Majorana representation then C = Γ0 and (2.1.1)

becomes

{Qα, Qβ} =
1

2
(1∓ Γ01)αβ. (2.1.5)

It then follows that eigenspinors of {Qα, Qβ} with zero eigenvalue satisfy

Γ01ε = ε. (2.1.6)

The fact that Γ01 is traceless and (Γ01)2 = 1 implies that the space of solutions

is 16-dimensional and therefore α = 1
2
. In other words there exists a massless

state which preserves half the supersymmetry of the vacuum. There are no other
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CHAPTER 2. BRANES AND THEIR INTERACTIONS

possibilities allowed by the supersymmetry algebra (2.1.1). This state is identified

as a gravitational wave, or in M-theory parlance, an M-wave.

As it stands, the 11-dimensional superpoincare algebra (2.1.1) would seem to

suggest that 11-dimensional supergravity admits only one type of state which

preserves a nonzero fraction of the supersymmetry of the vacuum (other than

the vacuum itself). However it is well known that an analysis of the eleven-

dimensional supergravity equations of motion reveals the existence a membrane

solution [23, 24] as well as a five-brane solution [25], both of which preserve half

the supersymmetry of the vacuum. With the advent of M-theory, these states

have since been identified as the M2-brane and M5-brane. If the 11-dimensional

superpoincare algebra is meant to encode information about 11-dimensional su-

pergravity, which is the low energy limit of M-theory, then it appears as if we

have a slight problem, because the algebra (2.1.1) only admits one type of state,

the M-wave state. So how do we solve this problem? The answer is to modify the

supersymmetry algebra [26–30] such that

{Qα, Qβ} = (CΓM)αβPM+
1

2
(CΓMN)αβZ

MN+
1

5!
(CΓMNPQR)αβY

MNPQR. (2.1.7)

The spatial components of the two form charge ZMN relate to the M2-brane

whereas the spatial components of the 5-form charge Y MNPQR relate to the M5-

brane. Let us quickly see how this works for the M2-brane. ZMN can be expressed

as an integral over the two-cycle occupied by the M2-brane in spacetime

ZMN = Q2

∫
dXM ∧ dXN (2.1.8)

with Q2 the unit of charge carried by a single membrane.2 We see that for an

M2-brane lying in the (12) plane Z12 is non-zero. In the case of a static membrane,

2The charge Q2 is analogous to the string winding number in string theory; it vanishes unless
the two-cycle is non-contractible. The case of an infinite planar membrane can be dealt with
by considering it as a limit of one wrapped on a large torus. In this case T2 and the charge Q2

remain finite even though P 0 and components of ZMN may be infinite.
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choosing a suitable Majorana basis in which C = Γ0 results in

{Q,Q} = P 0 + Γ012Z12. (2.1.9)

In the Majorana representation, the supercharge Q is real and so the left-hand side

of (2.1.9) is manifestly positive. The sign of the charge Z12 depends on whether

it is an M2-brane or anti-M2-brane. Therefore it must be true that P 0 ≥ 0. For

P 0 = 0 we have the vacuum. For P > 0 we derive the bound P 0 > |Z12| which is

equivalent to the statement

T2 > |Q2|. (2.1.10)

For the case in which the bound is saturated and T2 = Q2 the algebra can be

written as

{Q,Q} = P 0[1∓ Γ012]. (2.1.11)

It then follows that spinors ε satisfying

Γ012ε = ±ε (2.1.12)

are eigenspinors of {Q,Q} with zero eigenvalue. Again, since (Γ012)2 = 1 and

Γ012 is traceless, the dimension of the zero-eigenvalue eigenspace of {Q,Q} is 16.

Thus we can conclude that a membrane saturating the bound (2.1.10) preserves

half the supersymmetry of the vacuum, as expected. A similar analysis shows

that for a static five-brane in the (12345) plane with non-zero q5 = Y12345/P
0 the

anticommutator of supercharges takes the form

{Q,Q} = P 0[1 + Γ012345q5]. (2.1.13)

Identifying |q5| as the ratio of the fivebrane’s charge Q5 to its tension T5 we see

that positivity implies that T5 ≥ Q5. When the five-brane saturates this bound

it preserves half the supersymmetry of the vacuum. Note that with the central

charges of the M2-brane and M5-brane there is no room for any additional charges

in the superalgebra (2.1.7). We can see this from the fact that {Q,Q} is a real

symmetric 32× 32 matrix with 528 entries. This is the same as the total number
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of components of the momenta and two central charges (11 + 55 + 462).

We have seen that the spatial components of the charges appearing in (2.1.7)

correspond to the M2-brane and M5-brane. Furthermore we see that each state

corresponds to a spinor constraint of the form Γε = ε where Γ a product of gamma

matrices. The number of gamma matrices appearing in the product is related to

the dimension of the worldvolume of the object. Based on this intuition, one may

ask what the time components of the charges correspond to. The time components

of the 2-form charge leads to a spinor constraint of the form

Γ0123456789ε = ±ε (2.1.14)

suggesting a 9-brane. This may be associated with a boundary of eleven-dimensional

spacetime [31, 32], as in the Horava-Witten construction of the heterotic string

[33]. This is often referred to as the M-9-brane. The time component of the 5-form

charge has a spinor constraint of the form

Γ0123456ε = ±ε (2.1.15)

suggesting a six dimensional object. This has an M-theory interpretation [34] as

a Kaluza-Klein monopole [35, 36]. We shall refer to this as the M-KK-monopole.

The M9-brane and M-KK monopole can also be shown to preserve half the su-

persymmetry of the vacuum. Thus by a simple consideration of the extended

11-dimensional superpoincare algebra we have seen that there are in fact 5 ba-

sic half-supersymmetric M-theory objects: The M-wave, M2-brane, M5-brane,

M-KK-monopole and M9-brane.

2.1.2 Intersecting M-branes

Each of the basic half supersymmetric objects of M-theory are associated with a

constraint of the form Γε = ε for some traceless product of gamma matrices Γ.

Given two such products we have two such objects with these properties, calling

them Γ and Γ′ respectively. Let q and q′ be the respective charge/tension ratios.
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Then when P i = 0

{Q,Q} = P 0[1 + qΓ + q′Γ′] (2.1.16)

Positivity imposes a bound on q and q′. The structure of the bound depends on

whether Γ,Γ′ commute or anticommute. For {Γ,Γ′} = 0

T ≥
√
Z2 + Z ′2 (2.1.17)

where Z and Z ′ are the charges of the two branes. This corresponds to a ‘bound

state’ which still preserves half the supersymmetry of the vacuum. When [Γ,Γ′] =

0 the gamma matrices may be simultaneously diagonalised and positivity implies

the bound

T ≥ |Z|+ |Z ′|. (2.1.18)

When this bound is saturated one can define the projectors P = 1/2(1− Γ) and

P ′ = 1/2(1− Γ′) and rewrite (2.1.16) as

{Q,Q} = 2P 0[qP + q′P ′] (2.1.19)

Since [P ,P ′] = 0, a zero eigenvalue eigenspinor of {Q,Q} must be annihilated by

both of them and therefore must satisfy the joint condition

Γε = ε Γ′ε = ε (2.1.20)

which implies that the dimension of the zero eigenvalue eigenspace of {Q,Q} is 8.

In other words the configuration is quarter-supersymmetric. The simplest example

of a quarter-supersymmeric configuration is when two M2-branes orthogonally

intersect over a point [37]. This configuration can be written as (0|M2,M2) where

the first entry indicates the dimension of the subspace over which the intersection

occurs. We will adopt this notation for the remainder of the thesis. This particular

configuration may be realised by picking, for example, Γ = Γ012 and Γ′ = Γ034,

corresponding to two M2-branes aligned along the (12) and (34) spatial planes
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respectively.3 Most other quarter-supersymmetric configurations can be obtained

from this one from duality transformations. For example, compactifying on the

M-theory circle in a direction transverse to both the M2-branes will give rise to

two D2-branes intersecting on a point in ten dimensions. Performing a T-duality

along the (56) directions will result in two D4-branes intersecting over a 2-plane.

Decompactifying the M-theory circle then leads to an M5-M5 intersection over a

3-plane, which is known to be a quarter-supersymmetric state [43–45]:

(0|M2,M2)→ (0|D2, D2)→ (2|D4, D4)→ (3|M5,M5). (2.1.21)

Alternatively, one could begin by compactifying along one of the transverse direc-

tions of one of the M2-branes. This will result in a fundamental string intersecting

a D2-brane in ten dimensions. T-dualising in the (45) directions maps this to a

fundamental string intersecting a D4-brane. Decompactifying then gives rise to

an M2-M5 intersection in eleven dimensions:

(0|M2,M2)→ (1|F1, D2)→ (1|F1, D4)→ (1|M2,M5). (2.1.22)

In the next section we will discover that these quarter-supersymmetric spacetime

configurations are encoded in the worldvolume supersymmetry algebras of the

M2-brane and M5-brane. To this we now turn.

2.1.3 Worldvolume superalgebra’s

A wonderful aspect of worldvolume theories of branes is that BPS-saturated states,

some of which correspond to half-supersymmetric classical solutions of the theory,

can be interpreted from the spacetime perspective as intersections with other

branes. The most obvious example of this is an electric charge on a Type II

D-brane, which can be interpreted as the endpoint of a fundamental Type II

string [46]. The M-theory analogue of this is the self-dual string soliton of the

M5-brane worldvolume theory which can be interpreted as the boundary of an

3Discussions relating to various intersecting brane configurations and projection rules can be
found in [38–42].
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M2-brane [47, 48]. It is also possible to find vortices on the M2 brane or M5

brane, which acquire an interpretation as 0-brane or 3-brane intersections with a

second M2-brane or M5-brane [43–45]. In all these cases, the half-supersymmetric

solutions of the worldvolume field theory of a single D-brane or M-brane have

been found [4, 5, 37, 49]. A remarkable feature of these worldvolume solitons is

that they suggest their own spacetime interpretation. This arises from the fact

that the world-volume scalars determine the spacetime embedding. Furthermore,

in [6], it was shown that that the spacetime interpretation of intersections is

already implicit in the central charge structure of the worldvolume supersymmetry

algebra.

M5-brane worldvolume superalgebra

The first point to appreciate is that a worldvolume p-brane soliton is associated

with a p-form charge in the worldvolume supersymmetry algebra. As an example

let us consider the M5-brane worldvolume supersymmetry algebra. Studies of the

worldvolume theory of the M5-brane reveal that there exist half-supersymmetric

soliton solutions which describe the self-dual string and the 3-brane vortex. The

existence of these solitons should be reflected by the existence of 1-form and 3-

form charges in the worldvolume superymmetry algebra of the M5-brane. Indeed,

in [49], the M5-brane worldvolume supersymmetry algebra was shown to take the

form

{QI
α, Q

J
β} = ΩIJ(Γm)αβPm + (Γm)αβY

IJ
m + (Γmnp)αβZ

IJ
mnp

= ΩIJP[αβ] + Y(IJ)
(αβ) + Z [IJ ]

[αβ]. (2.1.23)

Here α, β = 1, . . . , 4 is an index of SU(4) ∼= Spin(5, 1) and I = 1, . . . , 4 is an

index of Sp(2), with ΩIJ its invariant antisymmetric tensor. Lowercase Roman

indices m,n = 0, . . . 5 refer to worldvolume cordinates of the M5-brane. Thus

we see that Y IJ
m is a worldvolume one-form and ZIJ

mnp is a worldvolume three-

form. In this sense one can think of the original use of the terminology ‘p-form

charge’ as characterising p-directions in the worldvolume along which the soliton
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is aligned. The representations of the R-symmetry group (in this case Sp(2))

encode all information regarding the possible interpretations of the solitons as

intersections of the M5-brane with other M-theory objects. For example, the self

dual string charge transforms in the irreducible 5 of Sp(2) which can be viewed as

a vector in the space transverse to the M5-brane worldvolume. It can be naturally

interpreted as defining the direction in which the M2-brane ‘leaves’ the M5-brane

wordvolume. In other words, viewing the string charge as a vector of Sp(2) leads

to the spacetime interpretation (1|M2,M5). In a similar way, the 3-brane vortex

charge, which transforms in the irreducible 10 of Sp(2), can be thought of as

defining a 2-form in space transverse to the M5-brane. This 2-form is naturally

interpreted as defining a 2-plane along which a second M5-brane is aligned. This

corresponds to the spacetime picture (3|M5,M5).

Each of the worldvolume charges is expressible as an integral over the subspace

ωq defined by directions transverse to the p-brane soliton on the worldvolume of

the brane. The q-form which is integrated over ωq can be thought of as being

defined by the representation of the R-symmetry group describing rotational in-

variance in directions transverse to the brane. So for example, from the perspective

of the transverse space, the charge corresponding to the spacetime configuration

(3|M5,M5) should be expressible as the integral of a 2-form. The integral should

be taken over the susbspace of the 5-dimensional worldspace transverse to the

soliton on the M5-brane worldvolume. This is a two-dimensional space and so

we should integrate a two-form over this space. The two-form should include two

scalar fields, consistent with its interpretation as a 2-form in the transverse space.

A natural choice is

Z =

∫
dX ∧ dY (2.1.24)

where X and Y represent two scalar fields of the M5-brane worldvolume theory.

What about the self-dual string charge? As we have seen, the string charge defines

a 5-vector of Sp(2) which can be viewed as a 1-form in the 5-space transverse to the

M5-brane worldvolume in spacetime. This tells us that the corresponding integral

charge should contain one scalar field. Furthermore we know that the integral

should be taken over the subspace of the 5-dimensional worldspace transverse
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to the soliton, which in this case is 4-dimensional. This implies that we should

integrate a 4-form. A natural choice is

Y =

∫
dX ∧H (2.1.25)

where X is a worldvolume scalar and H is the self-dual three-form field strength

associated with the 2-form gauge field living on the M5-brane worldvolume. Note

that Y is not given simply by an integral of H over a 3-sphere surrounding the

string in the M5-brane, as one might naively expect. It includes dependence on

one scalar field, as required by its identification with the magnitude of a 1-form

in the transverse space to the M5-brane.

Note that the 5 representation of Sp(2) could equally have been interpreted

as a transverse 4-form in the transverse 5-space. In this case the 4-form can be

seen as parameterising the directions in which an object with at least four spa-

tial coordinates leaves the M5-brane wordvolume, with one coincident coordinate

parameterised by the original 1-form of the 1-brane soliton. Thus we have the nat-

ural interpretation of this being the intersection of two M5-branes over a string

(1|M5,M5), which is a known quarter-supersymmetric spacetime configuration

[50]. In a similar way, the 10 of Sp(2) can be thought of as defining a transverse

3-form which may be interpreted as the intersection of the M5-brane with a 6-

dimensional object over a 3-brane. This six dimensional object we interpret as

the M-KK monopole and therefore (3|M5, KK) is another spacetime intersection

allowed by the algebra [39].4

It is possible to verify that (2.1.24) and (2.1.25) are the correct expressions for

the worldvolume charges by explicitly constructing the supersymmetry generators

as Noether charges and determining their algebra directly [26, 31]. Alternatively,

one can show that the p-volume tensions of worldvolume p-brane solitons are

4It is possible to view the time component of the 1-form charge as the spatial components
of a dual 5-form [49]. This leads to the spacetime intersections (5|M5,KK) and (5|M5,M9)
(see [39, 51, 52]). Note that the 3-form is self-dual and therefore the time component provides
no new information. One can also consider the Sp(2) 5-vector P which can be interpreted as a
0-form or 5-form in the transverse space leading to spacetime interpretations (1|M5,MW ) and
(1|M5,KK) respectively.
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bounded from below by expressions that are precisely of this form [53]. Both

these approaches have been investigated in the literature and both confirm the

results outlined above.

M2-brane worldvolume superalgebra

For the case of the M2-brane the worldvolume supersymmetry algebra is given by

the maximal central extension of the 3-dimensional N = 8 super-Poincare algebra

[6]. The anticommutator of supersymmetry charges is given by

{Qi
α, Q

j
β} = δijP(αβ) +W

(ij)
(αβ) + εαβX

[ij], (δijW
(ij) = 0), (2.1.26)

where Qi are the eight Majorana spinor supercharges (i = 1, . . . ,8) and P is the

3-momentum. This supersymmetry algebra has an SO(8) automorphism group,

which we interpret as the rotation group in the transverse 8-space. W represents

a worldvolume 0-form transforming in the 28 of SO(8) whereas X represents a

worldvolume 1-form transforming in the 35+ of SO(8). The 28 can be interpreted

as defining either a 2-form or a 6-form in the transverse space. When defining a

2-form, the natural spacetime interpretation is the intersection of two M2-branes

over a point (0|M2,M2). The 2-form defines the 2-plane along which the second

M2-brane is aligned. When defining a 6-form, the natural spacetime interpre-

tation is an M2-brane intersecting a M-KK-monopole over a point [54], namely

(0|M2, KK).

The 1-form worldvolume charge transforms under 35+ which defines a trans-

verse self-dual 4-form. From the spacetime perspective this can be viewed as an

M2-brane intersecting an M5-brane (1|M2,M5). This is consistent with the fact

that the 4-form parameterises a 4-plane transverse to the M2-brane along which

four of the spatial dimensions of the M5-brane are aligned. The time compo-

nent of the 1-form worldvolume charge is dual to the spatial components of a

2-form. In this case, the transverse 4-form suggests that the M2-brane is coin-

cident with two of the spatial coordinates of a 6-dimensional object. In other

words the M2-brane is ‘inside’ an M-KK-monopole intersecting over a 2-plane,
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(2|M2, KK). However the story doesn’t end here. One must also consider con-

figurations in which only the worldvolume 3-vector P is non-zero. Since P is a

singlet of SO(8) it may be interpreted as representing either a 0-form or 8-form in

the transverse space. Since P is a vector from the worldvolume perspective, the

corresponding spacetime intersections will be over a one-dimensional string. The

obvious interpretation of the transverse 0-form is the intersection of M2-brane

with an M-wave, (1|M2,MW ) [39]. The 8-form describes the intersection of the

M2-brane with a nine-dimensional object which we interpret as being the M9-

brane, (1|M2,M9). This exhausts all possible quarter-supersymmetric spacetime

configurations involving the M2-brane.

As with the M5-brane, one might wonder whether its possible to express the

0-form and 1-form worldvolume charges as integrals over the subspaces transverse

to the worldvolume solitons on the M2-brane. Let us begin by considering the

spacetime configuration (0|M2,M2). The worldvolume soliton is zero dimensional

meaning that the subspace over which we must integrate is two-dimensional. This

implies that we must integrate a 2-form. Furthermore, the 2-form should include

two scalar fields which parameterise the 2-plane of the second M2-brane. Thus

we are naturally led to an expression of the form

W =

∫
dX ∧ dY (2.1.27)

where X and Y are two scalar fields of the M2-brane worldvolume theory. Note

that this has exactly the same form as the charge corresponding to (3|M5,M5).

This is to be expected from the equivalence under spacetime duality of the in-

tersecting brane configurations associated with the M2-brane vortex and the M5-

brane 3-brane (recall (2.1.21)).

What about the spacetime configuration (1|M2,M5)? From the perspec-

tive of the M2-brane, the subspace transverse to the 1-brane soliton is clearly

1-dimensional. Thus we expect the corresponding charge to be expressed as the

integral of a 1-form. Furthermore, the integral charge should contain four scalar

fields consistent with its interpretation as a transverse 4-form. However a problem

arises when trying to construct this type of charge from the worldvolume theory
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of a single M2-brane. This is related to the fact that the worldvolme theory of

a single M2-brane contains no soliton solution of its equations of motion which

allows for a spacetime interpretation corresponding to an M2-M5 intersection. In-

stead, if one wishes to uncover knowledge of the fact that a single M2-brane can

end on an M5-brane, one must investigate the boundary theory of the M2-brane.

For the case of a single membrane this has been investigated in [44, 47, 48] .

The situation is different if one considers the possibility of multiple M2-branes.

This is related to the fact that in string theory, given an intersection between D-

branes with different dimensions, the description of the system using the worldvol-

ume of lower dimensionality is usually based on a non-abelian worldvolume theory.

Using the intuition gained from the multiple D1-D3 system, Basu and Harvey were

able to construct an equation capable of describing multiple M2-branes growing

into an M5-brane. The energy bound corresponding to this configuration should

appear in the worldvolume supersymmetry algebra of the M2-brane as a central

charge with the properties outlined above. In Chapter 4 we will see that this is

indeed the case. In order to pave the way we will now review the D1-D3 system

(including the D1-brane supersymmetry algebra), as well as the work of Basu

and Harvey. This provides an opportunity to outline the approach that will be

adopted in Chapters 4 and 5.

2.2 Non-abelian D-brane phenomena and the Basu-Harvey

equation

A single Dp-brane contains a U(1) gauge field living on its worldvolume which

couples to the endpoint of a fundamental string. Scalar fields on the worldvolume

describe transverse displacements of the brane. One can think of the scalars as the

Goldstone bosons associated with spontaneously broken translation symmetry in

the transverse directions. When N Dp-branes coincide, the worldvolume theory is

promoted to a U(N) gauge theory [55]. This is due to new massless states arising

as a result of stretched strings between the Dp-branes achieving vanishing length.

Thus while the number of light degrees of freedom is proportional to N for N
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widely separated D-branes, this number grows like N2 for N coincident D-branes.

In this case the transverse coordinates described by the worldvolume scalars are

also promoted to N ×N matrices since they are T-dual to the nonabelian gauge

fields and so inherit their behaviour.

The matrix-valued scalar fields provide a natural framework in which to study

non-commutative geometry. Detailed studies of nonabelian worldvolume theories

reveal that noncommutative geometries appear dynamically in many physical situ-

ations. For example, one finds that D-branes of one dimension metamorphose into

D-branes of a higher dimension through noncommutative configurations [53, 56–

60]. The prototype example is the nonabelian D1-brane theory in which the Nahm

equation appears as a BPS equation of the theory. We will now review this system.

2.2.1 Review of the D1-D3 system

An interesting aspect of the abelian Born-Infeld action is that it supports solitonic

configurations describing lower-dimensional branes protruding from the original

D-brane. For example, in the case of a D3 brane, one finds spike solutions, known

as ‘bions’, corresponding to fundamental strings and/or D1-branes extending out

of the D3-brane [4, 5, 19]. Importantly, in these configurations both the world-

volume gauge fields and transverse scalar fields are excited. The gauge field can

be thought of as coupling to the point charge arising from the end-point of the

attached string. The scalar field describes the deformation of the D3-brane ge-

ometry caused by attaching the strings. We can see this explicitly by considering

the low energy dynamics of a single D3-brane in Minkowski space. This system

can be described by the Born-Infeld action [61],

S = −T3

∫
d4σ
√
−det(ηµν + λ2∂µX i∂νX i + λFµν) (2.2.1)

where λ = 2πα′ = 2πl2s . Note that a static gauge choice has been made such that

σµ denotes the worldvolume coordinates of the D3 brane with µ = 0, . . . 3 and

X i denotes the scalar fields describing transverse fluctuations of the brane with

i = 4, . . . , 9 . Fµν describes the U(1) field strength living on the worldvolume
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of the D3-brane. D1-branes appear as BPS magnetic monopoles of the D3-brane

worldvolume theory. Thus we choose a configuration of fields (consistent with the

equations of motion) in which only one of the scalar fields X = X9 is excited

along with the magnetic field Ba = 1
2
εabcFcd where a = 1, . . . 3 represents the

spatial coordinates of the D3-brane. For static configurations, the energy of the

system is

E = −L = T3

∫
d3σ

√
λ2|~∇X ∓ ~B|2 + (1± λ2 ~B.~∇X)2

≥ T3

∫
d3σ(1± λ2 ~B.~∇X). (2.2.2)

The first term in this lower bound is simply the energy of the D3-brane. The

second term can be written as a total derivative ~B.~∇X = ~∇.( ~BX) by using the

Bianchi identity ~∇. ~B = 0. This term is therefore topological and only depends

on the boundary values of the fields. Thus the last line in (2.2.2) provides a true

minimum of the energy for a given set of boundary conditions. We see that the

lower bound is achieved when

~∇X = ± ~B. (2.2.3)

This coincides with the BPS condition for magnetic monopoles [4, 5, 19]. Further-

more, using the Bianchi identity, (2.2.3) implies that ∇2X = 0 and therefore the

functions describing the monopole on the D3-brane worldvolume are harmonic in

form. The simplest solution, which corresponds to the bion spike, can be expressed

as

X(r) =
N

2r
, ~B(~r) = ∓ N

2r3
~r (2.2.4)

where r2 = (σ1)2+(σ2)2+(σ3)2 and N is an integer resulting from the quantisation

of magnetic charge. The energy of this configuration is easily calculated to be

E = T3

∫
d3σ +NT1

∫ ∞
0

d(λX) (2.2.5)

where T1 = (2πls)
2T3. The physical distance in the transverse direction is repre-

sented by λX. Therefore this expression can be thought of as the energy of a BPS

configuration consisting of N semi-infinite D1-branes ending on an orthogonal
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D3-brane.

In order to describe the D1-D3 intersection from the perspective of the world-

volume theory of the D1-brane requires knowledge of the non-abelian D1-brane

worldvolume theory. A particular soliton solution of this theory describes a fuzzy

2-sphere whose radius grows without bound into the D3-brane worldvolume. The

low energy dynamics of N D1-branes in a flat background is well described by the

non-abelian Born-Infeld action [62, 63]. However, if one is only interested in the

leading nontrivial terms in a weak field expansion, the result is exactly describable

in terms of super Yang-Mills theory with U(N) gauge group, dimensionally re-

duced to 1+1 dimensions. Therefore, for a configuration in which all gauge fields

and fermions have been set to zero, it is sufficient (for our purpose) to consider

L = −T1λ
2Tr(

1

2
∂µX

i∂µX i +
1

4
[X i, Xj]2) (2.2.6)

where we have assumed static gauge such that the worldvolume coordinates are

identified with those of spacetime as σ0 = t and σ1 = x9 = s. For the case in

which only three of the scalar fields are non-zero it is possible to write the energy

of this system as

E = T1λ
2

∫
dx9Tr(

1

2
∂sX

i∂sX i +
1

4
[X i, Xj][X i, Xj])

= T1λ
2

∫
dx9

[
1

2
Tr(∂sX

i − 1

2
εijk[X

j, Xk])2 +
1

2
εijk∂sX

i[Xj, Xk]

]
≥ T1λ

2

2

∫
dx9εijk∂sX

i[Xj, Xk]. (2.2.7)

We see see that the minimum energy condition

∂sX
i =

1

2
εijk[X

j, Xk] (2.2.8)

can be identified as the Nahm equation [11, 56]. The desired solution to this

equation is given by

X i(s) = ±α
i

2s
(2.2.9)

where the αi are an N ×N representation of the SU(2) algebra [αi, αj] = 2iεijkαk.
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The Casimir C for this algebra is defined by
∑

(αi)2 = C1N where 1N is the

N × N identity matrix. If we focus on the irreducible N × N representation for

which C = N2 − 1 then this noncommutative scalar field configuration describes

a fuzzy two-sphere with physical radius

R(s) = λ
√

Tr[X i(s)]2/N =
Nπl2s
s

√
1− 1/N2. (2.2.10)

Hence the solution describes a fuzzy funnel in which the D1-brane expands to cover

the X1,2,3 hyperplane at s = 0.5 This geometry can be compared to the D3-brane

solution after re-labelling s→ λX and R→ r. We see that both descriptions yield

the same geometry in the limit of large N , up to 1/N2 corrections. The energy

can be calculated from the boundary term appearing in (2.2.7) and is found to be

E = NT1

∫ ∞
0

ds+
1√

1− 1
N

T3

∫
4πR2dR (2.2.11)

which matches the result arising from the D3-brane analysis (2.2.5) in the large N

limit. It is possible to show that this configuration preserves half the supersym-

mery of the D1-brane worldvolume theory. The linearised supersymmetry vari-

ation of the D1-brane theory is simply the dimensional reduction of the fermion

variation appearing in ten-dimensional super Yang-Mills. Demanding that this

variation vanishes requires

(2Γsi∂sX
i + Γij[X i, Xj])ε = 0. (2.2.12)

We see that if the scalar fields satisfy the Nahm equation (2.2.8) then the super-

symmetry constraint (2.2.12) is satisfied provided the spinor ε satisfies

Γs123ε = ±ε. (2.2.13)

This constraint tells us that solutions satisfying the Nahm equation preserve half

5Note that more general configurations involving more than three scalar fields describe D1-
branes expanding into intersecting D3-branes. Supersymmetry dictates that the intersecting
D3-branes must lie on a calibrated 3-surface of spacetime. See for example [64–71].
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the supersymmetry of the D1-brane worldvolume theory. The BPS energy bound

corresponding to the ‘fuzzy funnel’ configuration should appear in the extended

worldvolume supersymmetry algebra of the D1-brane theory. The structure of

the charge should allow for a spacetime interpretation as the energy bound corre-

sponding to the D1-D3 configuration. In the next section we will show how this

works.

2.2.2 D1-brane superalgebra

A neat way of deriving the worldvolume supersymmetry algebra of the multiple

D1-brane theory is to consider the 10-dimensional supersymmetry algebra of super

Yang-Mills theory and then dimensionally reduce the result to 1+1 dimensions6.

This is an illustrative exercise as we will see explicitly how the charge correspond-

ing to the Nahm configuration arises in the supersymmetry algebra. Furthermore

it provides us with an opportunity to outline the method of deriving a superal-

gebra. This methodology will be put to use in Chapters 4 and 5. We begin by

considering ten dimensional super Yang-Mills theory defined by the Lagrangian

L = −1

4
Tr(FMN , F

MN) +
i

2
Tr(ψ̄,ΓMDMψ) (2.2.14)

and supersymmetry transformations

δAM = iε̄ΓMψ

δψ = ΓMNFMNε (2.2.15)

where M,N are ten dimensional Lorentz indices and ψ is a complex Majorana-

Weyl spinor. Varying the Lagrangian with respect to these supersymmetry trans-

formations one finds

δL = ∂M(−iε̄FNPΓPψ −
i

4
ε̄ΓNPΓMFNPψ) = ∂MV

M (2.2.16)

6Parts of this section are influenced by the lecture notes ‘Electromagnetic Duality for Chil-
dren’ by J. M. Figueroa-O‘Farrill.
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In order to calculate the superalgebra of this theory we need to first determine the

supersymmetry charge, which is the spatial integral of the time-like component

of the supersymmetry current. The supersymmetry current is the Noether cur-

rent associated with global supersymmetry transformations. Noethers theorem

asserts that corresponding to every global symmetry there exists a corresponding

conserved current. Consider an infinitesimal transformation that takes a ten-

dimensional field Φ to Φ + δΦ and changes the Lagrangian by a total derivative

δL = L(Φ + δΦ)− L(Φ) = ∂MV
M . (2.2.17)

For a Lagrangian of the form L(Φ, ∂MΦ) it is possible to write the variation of

the action as

δS =

∫
d10x

(
∂L
∂Φ

δΦ +
∂L

∂(∂MΦ)
∂MδΦ

)
=

∫
d10x

([
∂L
∂Φ
−
(
∂M

∂L
∂(∂MΦ)

)]
δΦ + ∂M

(
∂L

∂(∂MΦ)
δΦ

))
.

(2.2.18)

The terms in square brackets represent the Euler-Lagrange equations. When

these equations are satisfied (i.e when the equations of motion are satisfied) we

can always define a conserved current

∂MJ
M = ∂M

(
∂L

∂(∂MΦ)
δΦ− V M

)
= 0. (2.2.19)

Therefore, applying this to super Yang-Mills theory, the Noether supersymmetry

current takes the form

ε̄JM =
∂L

∂(∂MΛ)
δΛ− V M

=
i

2
ε̄FNPΓNPΓMψ (2.2.20)

where in the first line, summation over Λ is implied, where Λ represents all

the fields in the super Yang-Mills Lagrangian (2.2.14) and we have substituted

(2.2.16). The supersymmetry algebra can be derived by varying the supersym-
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metry current. This follows from the fact that the supercharge is the generator

of supersymmetry transformations and the infinitesimal variation of an anticom-

muting field is given by δΦ ∝ {Q,Φ}. Therefore we have

ε̄{Q, Q̄} ∝
∫

space

δJ̄0. (2.2.21)

Ignoring fermion terms, one finds that

−iδJ̄M = −1

4
ε̄ΓNPΓMΓQRFNPFQR

= ε̄[−1

4
ΓNPQRMFNPFQR + 2FMNFNPΓP +

1

2
FNPFNPΓM ]

= 2ε̄[
1

8.5!
εNPQRMSTUVWFNPFQRΓSTUVW + (FMNFNP +

1

4
FQRFQRδ

M
P )ΓP ].

(2.2.22)

Defining

TMN = FMPF N
P +

1

4
ηMNF PQFPQ

ZMNPQRS =
1

8
εMNPQRSTUVWFTUFVW (2.2.23)

we recognise T as the bosonic part of the improved energy-momentum tensor of

the super Yang-Mills theory. The momentum, as usual, is given by the spatial

integral of T 0M

PM =

∫
space

T 0M . (2.2.24)

On the other hand it is possible to define the topological charge

ZMNPQR =

∫
space

Z0MNPQR (2.2.25)

With these definitions the 10-dimensional super Yang-Mills supersymmetry alge-

bra takes the compact form

{Q, Q̄} = 2PMΓM +
2

5!
ZMNPQRΓMNPQR. (2.2.26)
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In order to write down the supersymmetry algebra in 1+1 dimensions we need

to dimensionally reduce both the momenta and topological charge. In order to

perform the dimensional reduction we split the ten dimensional indices into world-

volume and transverse indices such that Fµν is the field strength on the D1-brane,

Fµi = DµX
i and Fij = [X i, Xj], where X i represent the transverse coordinates.

We assume a configuration in which only three of the scalar fields are active and

label them Xa with a = 2, 3, 4. Performing the reduction one finds charges in 1+1

dimensions of the form

T 0a ∈ E.∂sXa (2.2.27)

Z0MNPQR ∈ 1

2
εabc∂sX

a[Xb, Xc]. (2.2.28)

The first term represents an electric charge corresponding to the endpoint of a

fundamental string. The second term we identify as the charge corresponding to

the fuzzy 2-sphere soliton associated with the Nahm equation which we found

in the D1-brane worldvolume theory. The form of this charge could have been

motivated along the lines considered in Chapter 2. The D1 brane intersects the

D3-brane on a point. This may be expressed as (0|D1, D3). Thus from the

worldvolume perspective this corresponds to a zero-form central charge. However

the integral expression representing this charge should be expressible as an integral

over the subspace transverse to the soliton on the worldvolume of the D1-brane.

In this case the subspace is 1-dimensional indicating that a one-form should be

integrated. Furthermore, the zero-form charge can be interpreted as a 3-form in

the transverse space. The integral charge should reflect this fact and contain three

scalar fields. Based on this line of reasoning we see that the charge had to have

the form given in (2.2.28).

Now that we have seen how to describe the D1-D3 system from the worldvol-

ume and superalgbera perspective, the question arises whether it is possible to

extend this analysis to the M2-M5 system in M-theory. Indeed, if one investigates

the worldvolume theory of a single M5-brane it is possible to find a self-dual string

soliton solution which is interpreted as the boundary of an M2-brane. Further-

more, the charge corresponding to the self-dual string has been found explicitly in
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the M5-brane superalgebra. Using the intuition gained from the D1-brane system,

one expects the multiple M2-brane worldvolume theory to contain a BPS equation

which describes multiple M2-branes ending on an M5-brane. The cross section of

this solution should describe a fuzzy 3-sphere. In the next section we will review

the work of Basu and Harvey who proposed a ‘generalised’ Nahm equation as a

candidate for the BPS equation of a multiple M2-brane theory.

2.2.3 The Basu-Harvey equation

In the previous section we found that the D1-D3 system exhibits dual descrip-

tions: The D1-brane appears as a spike on the worldvolume of the D3-brane and

is described by a monopole equation. From the D1-brane perspective we found

that the Nahm equation describes a fuzzy 2-sphere with a radius that grows as

one approaches the D3-brane. Importantly, there was a region in which the two

descriptions overlap. It is reasonable to expect a similar picture in M-theory re-

garding the M2-M5 system. From the perspective of the M5-brane, the M2-brane

boundary appears as the self-dual string soliton. In order to see this explicitly

from the M5-brane perspective one can look for half-BPS solutions. The simplest

approach is to look for solutions to δψ = 0 where ψ is the worldvolume fermion

living on the M5-brane. Explicitly, for a single M5-brane the worldvolume fermion

variation takes the form [72–75]

δψ = ΓµΓI∂µX
Iε+

1

12
ΓµνλHµνλ (2.2.29)

where µ = 0, . . . , 5 is a worldvolume coordinate and I = 6, . . . 10 labels transverse

directions to the brane. As outlined at the beginning of this chapter, half-BPS

solutions correspond to certain constraints on the supersymmetry parameters of

the theory. Thus one expects the constraint corresponding to the string on the

M5-brane to be of the form

Γ016ε = ε (2.2.30)

where Γ0,Γ1 are M5-brane worldvolume gamma matrices and Γ6 is a gamma

matrix in the transverse space. This represents a configuration in which the
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M2-brane is aligned along the (16) spatial plane with the (1) direction being

coincident with the M5-brane. Since we are looking for a string solution we

consider the situation where the M5-brane worldvolume fields only depend on the

radial coordinate tangent to the M5-brane which we label R, where

R2 = X2
2 +X2

3 +X2
4 +X2

5 . (2.2.31)

Setting δψ = 0 and using the spinor constraint (2.2.30) one arrives at

H = ∗ds(R) (2.2.32)

where s(R) parameterises the direction along which the M2-brane ‘leaves’ the M5-

brane, H is the 3-form worldvolume field strength and ∗ denotes Hodge duality

along the four wordvolume coordinates transverse to the string. The Bianchi

identity allows us to write (2.2.32) as

d ∗ ds(R) = 0 (2.2.33)

which implies that s(R) is harmonic suggesting a solution of the form

s(R) ∼ Q

R2
(2.2.34)

where Q refers to the self-dual string charge. We now want to consider the M2-M5

system from the perspective of the M2-brane. Recall that in the D1-brane system,

the Nahm equation involved three active scalar fields which represented directions

transverse to the D1-brane worldvolume which ended up forming the worldvol-

ume of the D3-brane. In this case, solutions to the Nahm equation described a

fuzzy 2-sphere with a radius that grew as one approached the D3-brane. Follow-

ing a similar line of reasoning, in order to describe the M2-brane growing into

the M5-brane from the M2 perspective will require a generalised Nahm equation

involving 4 scalar fields. The equation should describe a fuzzy 3-sphere whose ra-

dius diverges to fill out the remaining worldvolume coordinates of the M5-brane.

Furthermore, the radial profile should match that of the self-dual string (2.2.34).
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Based on these requirements, Basu and Harvey proposed the following equation

to describe membranes ending on an M5-brane7

dX i

ds
+
M3

11

64π
εijkl

1

4!
[G,Xj, Xk, X l] = 0 (2.2.35)

where i, j, k = 3, 4, 5, 6 and G is a fixed matrix with the property G2 = 1. The

4-bracket is defined by

[X1, X2, X3, X4] =
∑

perms(σ)

sign(σ)Xσ(1)Xσ(2)Xσ(3)Xσ(4). (2.2.36)

A solution to (2.2.35) was found in [10] and takes the form

X i(s) =
i
√

2π

M
3/2
11

1√
s
Gi (2.2.37)

From this it is possible to define the physical radius as

R =

√
Tr(X i)2

Tr(1)
(2.2.38)

which implies

s(R) ∼ N

R2
(2.2.39)

which matches (2.2.34) when N is identified with the number of membranes.

Looking at (2.2.35) we see that it’s possible to use a Bogomol’nyi argument to

write the energy of this configuration as

E = T2

∫
d2σTr

[
(∂sX

i +
1

4!
εijkl[G,X

j, Xk, X l])2 + ({∂sX i,
1

2.4!
[G,Xj, Xk, X l]})2

] 1
2

(2.2.40)

= T2

∫
d2σTr

[
1

2
(∂sX

i − 1

3!
εijkl[Xj, Xk, X l])2 +

1

3
εijkl∂sX

i[Xj, Xk, X l]

]
≥ 1

3

∫
d2σεijkl∂sX

i[Xj, Xk, X l] (2.2.41)

7The generalisation of this equation describing M2-branes ending on intersecting M5-branes
was considered in [71].
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where we have made use of the Basu-Harvey equation and the fact that G2 = 1.

The Nambu 3-bracket [X i, Xj, Xk] is defined as

[X1, X2, X3] =
∑

perms(σ)

sign(σ)Xσ(1)Xσ(2)Xσ(3). (2.2.42)

We see from (2.2.41) that when the Basu-Harvey equation is satisfied, the energy

is bounded by a term involving four scalar fields and a single derivative. We recall

from the beginning of this chapter that the M2-brane 1-form charge transforms

in the 35+ of SO(8) and can be interpreted as a 4-form in the transverse space.

Given this, plus the fact that the subspace transverse to the worldvolume 1-brane

soliton on the M2-brane is 1-dimensional, we argued that the charge should be

a 1-form containing 4 scalar fields. We see that the energy bound appearing in

(2.2.41) is exactly of this form. The question now arises whether it is possible to

‘derive’ this charge from a multiple M2-brane Lagrangian theory. In other words,

is it possible to write down a supersymmetric worldvolume theory of multiple

M2-branes which reproduces (2.2.41) for a configuration in which all fermions and

gauge fields have been set to zero, and only half the scalar fields are active. Given

such a supersymmetric worldvolume theory of the M2-brane, it should be possible

to explicitly calculate the worldvolume supersymmetry algebra by looking at the

anticommutator of supercharges. This is the task we will undertake in Chapter 4.

In the next chapter we will review some recent work on Lagrangian descriptions

of multiple M2-branes. In particular we will focus on the work of Bagger and

Lambert who proposed a description of multiple M2-branes based on a novel

algebraic structure called a 3-algebra.
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BAGGER-LAMBERT THEORY

There exist a number of interesting problems relating to the dynamics of multiple

M2-branes. Firstly, there is no dilaton in the theory to enable a weak coupling

limit.1 Secondly it is known that the degrees of freedom of N coincident M2-

branes scales like N3/2 as compared to N2 for N coincident D-branes [77–79].

Thirdly, for a long time it was believed that a Lagrangian description of multiple

M2-branes was not possible [80]. There is however a way of defining an M2-

brane Lagrangian which is correct by definition and possesses manifest N = 8

supersymmetry (although not manifest conformal symmetry), namely

lim
gYM→∞

1

g2
YM

LSYM . (3.0.1)

One can think of this as the infra-red limit of Yang-Mills theory on D2-branes.

The question is whether this conformal IR fixed point has an explicit Lagrangian

description where all of the symmetries of the theory are manifest. Furthermore,

we know that the Basu Harvey equation should correspond to the BPS equation

of a multiple M2-brane theory in much the same way that the Nahm equation

is the BPS equation of the non-abelian D1-brane theory. This in fact was the

original motivation that led Bagger and Lambert to propose a supersymmetric

Lagrangian theory for multiple M2-branes in which the scalar fields take values

in an algebra that admits a totally antisymmetric tri-linear product. It was con-

jectured that this model could be made maximally supersymmetric by including

a non-propagating gauge field. The correpsonding supersymmetry algebra was

1Interestingly the coupling between the string world sheet Euler character and the dilaton in
string theory can be shown to arise from a careful treatment of the M2-brane partition function
measure [76].
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shown to close onto equations of motion. These were ‘integrated’ to arrive at a

Lagrangian expression. The theory is consistent with all the symmetries expected

from multiple M2-branes: in other words a conformal and gauge invariant action

with 16 supersymmetries. The theory has an SO(8) R-symmetry that acts on the

eight transverse scalars, a nonpropagating gauge field, and no free parameters,

modulo a rescaling of the structure constants.

In this chapter we will review the N = 8 Bagger-Lambert-Gustavsson theory.

We will see how the construction of an M2-brane theory with the correct symme-

tries naturally leads to a 3-algebra structure. In the second part of this chapter

we will review the N = 6 Bagger-Lambert theory and its relation to the ABJM

theory. In the final part of this chapter we will review the ‘novel Higgs mechanism’

which relates the M2-brane theory to D2-branes. This will provide us with the

material necessary to calculate and interpret the worldvolume supersymmetry al-

gebras of these theories in Chapter 5. The content of this chapter is largely based

on the following papers [7–9, 81–83]. When the content of the chapter refers to

material not contained in these papers, explicit reference will be made in the text.

3.1 N = 8 Bagger-Lambert Theory

3.1.1 Constructing the theory

A theory describing multiple M2-branes should have 8 scalar fields XI , param-

eterising directions transverse to the worldvolume, as well as their fermionic su-

perpartners, the Goldstinos, which correspond to broken supersymmetries. The

fermionic field Ψ is a Majorana spinor in 10 + 1 dimensions and as a result Ψ

has 16 real fermionic components, equivalent to 8 bosonic degrees of freedom.

Preserved supersymmetries should be reflected in the projection constraint of the

supersymmetry parameters ε. Thus we have

Γµνλε = εµνλε (3.1.1)

ΓµνλΨ = −εµνλΨ (3.1.2)
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where the first constraint corresponds to the preserved supersymmetries and the

second to the broken supersymmetries. In order to construct a membrane theory

involving these scalar and fermion fields, one can begin by assuming that they live

in some vector space A. This is familiar from D-brane physics where we know that

the worldvolume scalar fields are valued in a Lie 2-algebra. In 2+1 dimensions a

scalar field has mass dimension 1/2 whereas a fermion has mass dimension 1. A

little thought reveals that the supersymmetry transformations (to leading order

in lp) must be of the form

δXI = iε̄ΓIψ (3.1.3)

δψ = ∂µX
IΓµΓIε+ κ[XI , XJ , XK ]ΓIJKε. (3.1.4)

where µ = 0, 1, 2 are the M2-brane worldvolume coordinates and I, J,K = 3, . . . 10

label the eight scalar fields which define directions transverse to the brane. The

triple product [XI , XJ , XK ] is antisymmetric and linear in each of the fields. We

note that the scalar variation (3.1.3) has the expected form for a supersymmetric

theory. As for the fermion, the first term in the variation is the leading order

free field term for a single M2-brane [23]. Symmetry pretty much dictates what

else you can add to δψ in addition to the free-field term. The M2-brane theory is

known to be superconformal. The mass dimension of the scalar implies that the

potential in 2+1 dimensions must be sextic [80] and therefore whatever additional

term appears in δψ should be cubic in scalar fields (due to the relation between

δψ and V ). Furthermore, we know that ψ and ε have opposite chirality and the

supersymmetry transformation should respect this. This limits the gamma matrix

structure of the second term to be either ΓI or ΓIJK . The fact that δψ = 0 should

give rise to a BPS equation with a solution that displayed the correct divergence

to reproduce the profile of the self-dual string soliton on the M5-brane limits

this choice to ΓIJK . The next thing to do is check the closure of the proposed

supersymmetry transformations. The scalar fields close onto translations plus a

term that looks like

δXI ∝ iε̄2ΓJKε1[XJ , XK , XI ] (3.1.5)
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which can be viewed as a local version of the global symmetry transformation

δX = [a, b,X], (3.1.6)

where a, b ∈ A. It proves convenient to introduce a basis for the algebra A
involving the generators T a where a = 1, . . . N where N is the dimension of A.

The structure constants are defined by

[T a, T b, T c] = fabcdT
d (3.1.7)

which immediately implies fabcd = f
[abc]
d . In this case, the symmetry transforma-

tion (3.1.5) can be expressed generally as

δXd = fabcdΛabXc ≡ Λ̃b
aXb (3.1.8)

In order to promote this global symmetry to a local symmetry a covariant deriva-

tive is defined such that δ(DµX) = δ(Dµ)X +Dµ(δX). A natural choice is

(DµX)a = ∂µXa − Ã b
µ aXb (3.1.9)

with Ã b
µ a = f cdbaAµcd. One can think of Ã b

µ a as living in the space of linear

maps from A to itself. The field strength can be calculated in the normal way

by considering the commutator of covariant derivatives ([Dµ, Dν ]X)a = F̃ b
µν aXb.

As a result of the gauging, Bagger and Lambert (and independently Gustavsson)

showed that the full set of supersymmetry transformations, including gauge field,

take the form

δXI
a = iε̄ΓIψa

δψa = DµX
I
aΓµΓIε− 1

6
XI
bX

J
c X

K
d f

bcd
aΓ

IJKε

δÃ b
µ a = iε̄ΓµΓIXI

cψdf
cdb
a. (3.1.10)

where the factor of 1/6 appearing in the fermion variation is fixed by closure of

the algebra. We note that the form of the gauge-field transformation is essentially
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determined by dimensional analysis. In [9] it was shown that this algebra closes

on-shell provided that the structure constants satisfy the ‘fundamental identity’

f efgdf
abc
g = f efagf

bcg
d + f efbgf

cag
d + f efcgf

abg
d. (3.1.11)

This identity ensures that the gauge symmetry acts as a derivation

δ([X, Y, Z]) = [δX, Y, Z] + [X, δY, Z] + [X, Y, δZ]. (3.1.12)

This is analogous to the Jacobi identity in ordinary Lie algebra where the Jacobi

identity arises from demanding that the transformation δX = [a,X] acts as a

derivation.2 It is possible to construct an invariant Lagrangian by defining a

trace-form on the algebra A which acts as a bi-linear map Tr : A × A → C that

satisfies

Tr(A,B) = Tr(B,A), Tr(A.B,C) = Tr(A,B.C). (3.1.13)

The second of these relations implies

Tr([A,B,C], D) = −Tr(A, [B,C,D]) (3.1.14)

The trace form provides a notion of metric

hab = Tr(T a, T b) (3.1.15)

which can be used to raise indices. The relation (3.1.14) on the trace-form together

with antisymmetry of the triple-product implies

fabcd = f [abcd]. (3.1.16)

2Note that if one takes the fields XI to be valued in the Lie algebra U(N) (as with the D2-
brane theory) then the [XI , XJ , XK ] would be given by a double commutator [XI , XJ , XK ] =
1
3! [[X

I , XJ ], XK ]± cyclic and this would vanish by the Jacobi identity.
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The fermion variation appearing in (3.1.10) closes onto the fermion equation of

motion. The super-variation of this then gives the bosonic equations of motion.

These equations of motion can be obtained from the following Lagrangian

L = −1

2
(DµX

aI)(DµXI
a) +

i

2
ψ̄aΓµDµψa +

i

4
ψ̄bΓ

IJXI
cX

J
d ψaf

abcd

−V +
1

2
εµνλ(fabcdAµab∂νAλcd +

2

3
f cdagf

efgbAµabAνcdAλef ) (3.1.17)

where

V =
1

12
fabcdf efgdX

I
aX

J
b X

K
c X

I
eX

J
fX

K
g . (3.1.18)

The gauge potenial has no canonical kinetic term, but only a Chern-Simons term,

and hence it has no propagating degree of freedom. In [84] it was verified that

this theory possesses OSp(8|4) superconformal symmetry and that it is parity

conserving despite the fact that it contains a Chern-Simons term. The Lagrangian

is invariant under the supersymmetry transformations (3.1.10) up to a surface

term δL = ∂µV
µ where

V µ = −iε̄ΓIψaDµXI
a −

i

2
ε̄ΓνΓIΓµψaDνX

I
a −

i

12
ε̄ΓµΓIJKψaXI

bX
J
c X

K
d f

abcd.

(3.1.19)

In the next chapter we will see that this surface term contributes to the supercur-

rent of the N = 8 Bagger-Lambert theory and therefore plays a role in defining

the superalgebra of this theory.

3.1.2 Interpreting the theory

When considering finite-dimensional representations of the three-algebra with

positive-definite metric there is essentially one unique theory3 [86, 87], this is

3One point worth mentioning is that the equations of motion for the Bagger-Lambert theory,
which arise through closure of the supersymmetry algebra, do not require that the structure
constant f be totally antisymmetric and in this case one may in fact construct infinitely many
examples [85]. However it is worth noting that without a metric, there is no gauge-invariant
trace, and so it would appear that one is unable to construct observables.
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the so-called Euclidean A4 theory in which

fabcd =
2π

k
εabcd. (3.1.20)

In this case the theory is simply an SU(2) × SU(2) Chern-Simons gauge theory

coupled to matter transforming in the bi-fundamental representation [88, 89]. The

Chern-Simons quantisation condition demands that k, the Chern-Simons level, is

integer valued k ∈ Z. So what is this theory describing? An investigation of the

vacuum moduli space of the theory goes some way to answering this question (as

does the novel Higgs mechanism discussed later in this chapter). In [90, 91] it was

shown that the vacuum moduli space of this theory is

R8 × R8

D2k

(3.1.21)

where D2k is the Dihedral group. Specifically for k = 1 the moduli space is

R8/Z2×R8/Z2 which describes the moduli space of an SO(4) gauge theory. This

can be thought of as the strong coupling limit of two D2-branes on an O2− orien-

tifold, whose worldvolume theory is the maximally supersymmetric SO(4) gauge

theory. The k = 2 moduli space describes an SO(5) gauge theory. Both these

examples would seem to suggest that the theory is describing two objects living

on R8/Z2. Although two membranes are better than one, the dream still remains.

In the search for a theory of N M2-branes one might consider ways of generalising

the Lagrangian construction outlined above. One such possibility is to look for

theories with a reduced number of supersymmetries. In [92] Aharony, Bergman,

Jafferis and Maldacena (ABJM) constructed an infinite class of brane configura-

tions whose low energy effective Lagrangian is a Chern-Simons theory with SO(6)

R-symmetry and N = 6 supersymmetry (12 supercharges) with U(N) × U(N)

gauge groups for any N and level k. 4 These theories were shown to describe N

M2-branes in an R8/Zk orbifold background. One advantages of this construction

is that the limit in which the number of branes, N , and the Chern-Simons level

4In [93, 94] a class of Chern-Simons Lagrangians withN = 4 supersymmetry (8 supercharges)
was constructed.
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k are large, with λ = N/k fixed, the theory admits a dual geometric description

given by AdS4 × CP3. Motivated by the work of ABJM, Bagger and Lambert

derived the general form for a three-dimensional scale-invariant field theory with

N = 6 supersymetry, SU(4) R-symmetry and a U(1) global symmetry [82]. This

was achieved by relaxing the constraint on the structure constants. In the next

section we will review the N = 6 Bagger-Lambert theory and its relation to the

ABJM model.

3.2 N = 6 Bagger-Lambert Theory

In the previous section we observed that when fabcd is real and antisymmetric in

a, b, c then, for any such triple product, one finds equations of motion that are

invariant under 16 supersymmetries and SO(8) R-symmetry. Here we follow [82]

and take the 3-algebra to be a complex vector space and only demand that the

triple product be antisymmetric in the first two indices. Thus one defines

[T a, T b;T c̄] = fabc̄dT
d. (3.2.1)

with a = 1 . . . N and fabc̄d̄ = −f bac̄d̄. A complex notation is used in which the

SO(8) R-symmetry of the N = 8 theory is broken to SU(4) × U(1). Next one

introduces four complex 3-algebra valued scalar fields ZA
a with A = 1, 2, 3, 4. Their

complex conjugates are written as Z̄Aā = (ZA
a )∗. The fermionic super-partners are

written as ψAa and their complex conjugates as ψAā = (ψAa)
∗. Note that the act

of complex conjugation raises and lowers the A index and interchanges a ↔ ā.

When the A index is raised it means that the corresponding field transforms in the

4 of SU(4) and a lowered index field transforms in the 4̄. Both the fermions and

scalars are assigned a U(1) charge of 1. The supersymmetry parameters εAB are

in the 6 of SU(4). They satisfy the reality condition (εAB)∗ = εAB = 1
2
εABCDεCD

and therefore carry no U(1) charge. In order to construct a Lagrangian for this

theory one uses a similar approach to the N = 8 theory. In other words one

writes the most general form for the supersymmetry transformations and checks

that the algebra closes. This then determines the fundamental identity as well as
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the equations of motion for the theory. A Lagrangian is then constructed which

gives rise to these equations of motion. In order to construct a Lagrangian it is

necessary to define a trace form on the 3-algebra which provides a notion of an

inner product, namely

hāb = Tr(T ā, T b). (3.2.2)

Gauge-invariance of the Lagrangian requires that the metric defined by (3.2.2) be

gauge invariant. In order for this to be true it can be shown [82] that the structure

constants fabc̄d̄ must satisfy

fabc̄d̄ = f ∗c̄d̄ab. (3.2.3)

In other words complex conjugation acts on fabc̄d̄ as

(fabc̄d̄)∗ = f ∗āb̄cd = f cdāb̄. (3.2.4)

Given this information Bagger and Lambert were able to construct the following

Lagrangian

L =−DµZ̄a
ADµZ

A
a − iψ̄AaγµDµψAa − V + LCS

− ifabc̄d̄ψ̄Ad̄ ψAaZ
B
b Z̄Bc̄ + 2ifabc̄d̄ψ̄Ad̄ ψBaZ

B
b Z̄Ac̄ (3.2.5)

+
i

2
εABCDf

abc̄d̄ψ̄Ad̄ ψ
B
c̄ Z

C
a Z

D
b −

i

2
εABCDf cdāb̄ψ̄AcψBdZ̄CāZ̄Db̄, (3.2.6)

with the potential given by

V =
2

3
ΥCD
Bd ῩBd

CD (3.2.7)

where

ΥCD
Bd = fabc̄dZ

C
a Z

D
b Z̄Bc̄ −

1

2
δCBf

abc̄
dZ

E
a Z

D
b Z̄Ec̄ +

1

2
δDB f

abc̄
dZ

E
a Z

C
b Z̄Ec̄ (3.2.8)

and the Chern-Simons term LCS is given by

LCS =
1

2
εµνλ

(
fabc̄d̄Aµc̄b∂νAλd̄a +

2

3
facd̄gf

gef̄ b̄Aµb̄aAνd̄cAλf̄e

)
. (3.2.9)
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The covariant derivative is defined by DµZ
A
d = ∂µZ

A
d − Ã c

µ dZ
A
c . It follows that

DµZ̄Ad̄ = ∂µZ̄Ad̄−Ã∗c̄µ d̄
Z̄Ac̄. Supersymmetry requires that Dµψ

A
d̄

= ∂µψ
A
d̄
−Ã∗c̄

µ d̄
ψAc̄

and DµψAd − Ã c
µ dψAc. The gauge field kinetic term is of Chern-Simons type and

thus does not lead to propagating degrees of freedom. The above Lagrangian is

invariant under the following supersymmetry transformations

δZA
a = iε̄ABψBa

δψAa = −γµDµZ
B
a εAB − fdbc̄aZC

d Z
B
b Z̄Cc̄εAB + fdbc̄aZ

C
d Z

D
b Z̄Ac̄εCD (3.2.10)

δÃ c
µ d = −iε̄ABγµZA

a ψ
B
b̄ f

cab̄
d + iε̄ABγµZ̄Ab̄ψBaf

cab̄
d

up to a surface term (See Appendix). The supersymmetry algebra closes into a

translation plus a gauge transformation provided that the fabc̄d satisfy the follow-

ing fundamental identity,

f efḡbf
cbā
d + f feābf

cbḡ
d + f ∗ḡāf

b̄
f ceb̄d + f ∗āḡe

b̄
f cf b̄d = 0. (3.2.11)

the fabc̄d̄ generate the Lie algebra G of gauge transformations. In particular if the

Lie algebra G is of the form

G = ⊗λGλ (3.2.12)

where Gλ are commuting subalgebras of G, then

fabc̄d̄ =
∑
λ

ωλ
∑
α

(tαλ)ad̄(tαλ)bc̄, (3.2.13)

where the tαλ span a u(N) representation of the generators of Gλ and the ωλ are

arbitrary constants. This form of fabc̄d̄ allows one to rewrite the Lagrangian (3.2.5)

as

L =− Tr(DµZ̄A, DµZ
A)− iTr(ψ̄A, γµDµψA)− V + LCS

− iTr(ψ̄A, [ψA, Z
B; Z̄B]) + 2iTr(ψ̄A, [ψB, Z

B; Z̄A]) (3.2.14)

+
i

2
εABCDTr(ψ̄A, [ZC , ZD;ψB])− i

2
εABCDTr(Z̄D, [ψ̄A, ψB; Z̄C ]),
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where now

V =
2

3
Tr(ΥCD

B , ῩB
CD), (3.2.15)

with

ΥCD
B = [ZC , ZD; Z̄B]− 1

2
δCB [ZE, ZD; Z̄E] +

1

2
δDB [ZE, ZC ; Z̄E]. (3.2.16)

The equivalence of (3.2.14) and (3.2.5) can be verified by expanding the fields

ZA, ψA in terms of the generators T a and defining the trace form as in (3.2.2).

For example

Tr(ψ̄A, [ψA, Z
B; Z̄B]) = Tr(ψ̄Ad̄ T

d̄, [ψAaT
a, ZB

b T
b; Z̄Bc̄T

c̄])

= ψ̄Ad̄ ψAaZ
B
b Z̄Bc̄Tr(T d̄, [T a, T b, T c̄])

= ψ̄Ad̄ ψAaZ
B
b Z̄Bc̄f

abc̄d̄. (3.2.17)

In [82] it was shown that for a particular choice of triple product one is able to

recover the N = 6 Lagrangian of ABJM written in component form [92, 95].

Given two complex vector spaces V1 and V2 of dimension N1 and N2 respectively

one may consider the vector space A of linear maps X : V1 → V2. A triple product

may be defined on A as

[X, Y ;Z] = λ(XZ†Y − Y Z†X) (3.2.18)

where † denotes the transpose conjugate and λ is an arbitrary constant. The inner

product acting on this space may be written as

Tr(X, Y ) = tr(X†Y ). (3.2.19)

With this choice of 3-algebra, the Lagrangian (3.2.14) takes the form of the ABJM

theory Lagrangian presented in [95] for N1 = N2. For N1 6= N2 one obtains the

U(N1) × U(N2) models of ABJ proposed in [96]. In the next Chapter we will

calculate the superalgebra for the N = 6 Bagger-Lambert theory and express
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the central charges in terms of 3-brackets. We can then make use of (3.2.18) and

(3.2.19) to derive the ABJM central charges. Before doing so we will briefly review

the novel Higgs mechanism [83] which relates both the BLG and ABJM theories

to D2-brane theories.

3.3 The Novel Higgs Mechanism

We can summarise both the Bagger-Lambert and ABJM theories as being G×G
Chern-Simons matter theories where for Bagger-Lambert theory G = SU(2) and

for ABJM theory G = U(N) or SU(N). Given a theory of multiple M2-branes

one might expect that compactification in a direction transverse to the M2-brane

would result in a theory of multiple D2-branes, which to leading order in α′ would

be describable in terms of super Yang-Mills theory reduced to (2+1) dimensions.

In this section we will review the ‘Novel Higgs Mechanism’, first discussed in the

context of SU(2)×SU(2) Bagger-Lambert theory [83], which relates the M2-brane

and D2-brane theories.5 It was later applied to ABJM theory in [97, 98]. It is

possible to summarise the Higgs procedure by stating that, for all G×G Chern-

Simons theories, the following holds true: If we give a VEV to one component of

the bi-fundamental scalar fields, then at energies below this VEV, the Lagrangian

becomes

LG×GCS |vev=v =
1

v2
L(G)
SYM +O

(
1

v3

)
(3.3.1)

where on the right-hand side the gauge field has become dynamical. So in other

words, giving a VEV to one of the scalars makes one of the gauge fields, the

diagonal gauge field of G × G, into a dynamical gauge field. We note that this

is not what happens with Yang-Mills theory. If one starts with super Yang-Mills

theory and gives a VEV to one of the scalars then one simply retains super Yang-

Mills theory for the subgroup G′ of the original group G which commutes with

the VEV. Lets see how this works for the Euclidean A4 theory when k = 1. In

this case we can write the Chern-Simons term appearing in the Bagger-Lambert

5The structure of this sub-section was inspired by discussions with Sunil Mukhi.
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Lagrangian as

LCS = Tr(A ∧ dA+
2

3
A ∧ A ∧ A ∧ A− Ã ∧ dÃ− 2

3
Ã ∧ Ã ∧ Ã)

= Tr(B− ∧ F+ +
1

6
B− ∧B− ∧B−) (3.3.2)

where

B± = A± Ã F+ = dB+ +
1

2
B+ ∧B+. (3.3.3)

We see that (3.3.2) has the form of a B ∧ F type theory. Note that because

X is a bi-fundamental field, the covariant derivative contains the gauge field A

multiplying X from the right and Ã multiplying from the left

DµX = ∂µX − AµX +XÃµ. (3.3.4)

Now if one considers giving X a VEV 〈X〉 = v then the scalar kinetic term will

become

−(DµX)2 ∼ −v2(B−)µ(B−)µ + . . . (3.3.5)

which resembles a mass term for the field B−. Because B− is non-dynamical in

(3.3.2) it can be integrated out resulting in a kinetic term for the gauge field B+

− 1

4v2
(F+)µν(F

+)µν +O(
1

v3
). (3.3.6)

In other words B+ has become dynamical. In this way the Chern-Simons theory

has transmuted into Yang-Mills theory. So how does one interpret (3.3.1)? At

first sight it would appear as if the M2-brane theory has been compactified. But

this cannot be the case since all that has happened is that one of the scalars

has acquired a VEV. However looking more closely at (3.3.1) we see that this

isn’t exactly super Yang-Mills theory because there are additional terms O(1/v3).

Thus, at best one can say

LG×GCS |v→∞ = lim
v→∞

1

v2
LSYM (3.3.7)

52



CHAPTER 3. BAGGER-LAMBERT THEORY

which is by definition the theory of M2-branes as noted earlier in (3.0.1). In other

words there is one point on the moduli space, corresponding to very large v, in

which the theory is equivalent to a multiple M2-brane theory. Note that this

discussion was for level k = 1. It is possible to extend the analysis for general k

in which case one finds

LG×GCS |vev=v =
k

v2
LGSYM +O(

k

v3
). (3.3.8)

We see now that if one takes k →∞ and v →∞ with v2/k = gYM fixed then in

this limit the extra terms on the right-hand side disappear from the theory and the

Lagrangian for D2-branes is recovered at finite coupling. So it would seem in this

case that the theory really has been compactified. No longer have we just gone

on the moduli space because we have also varied k and as we have seen this labels

the rank of the orbifold of the moduli space. This mechanism of compactification

has been understood in terms of the deconstruction of the orbifold C4/Zk [91].

The angle of the orbifold cone is 2π/k. If you send k → ∞ while pulling the

branes away from the orbifold point (sending v → ∞) then the cone turns into

a cylinder of radius
√
v2/k. Therefore the M2-branes are effectively experiencing

one compact direction transverse to their worldvolume and as a result one recovers

the D2-brane theory.6

Before closing this section let us mention that the theories we have been dis-

cussing can be thought of as having coupling constant 1/k and therefore large k

corresponds to weak coupling. As with several discussions of the leading-order

Bagger-Lambert A4 and ABJM theories, the classical action is most meaningful

for large k where the theory is weakly coupled and loop corrections can be ignored.

Nevertheless, it is usually written down and studied as a function of k and one

hopes it has some significance even for small k.

6Note that the orbifold C4/Zk has N = 6 supersymmetry and SU(4) R-symmetry. Therefore
this deconstruction picture strictly speaking applies to the N = 6 models.
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CHAPTER 4

M2-BRANE SUPERALGEBRA

In this chapter we will calculate the extended worldvolume supersymmetry algebra

of the N = 8 and N = 6 Bagger-Lambert theories and interpret the charges from

the spacetime perspective as intersections of the M2-brane with other M-theory

objects. The majority of this chapter is based on the work presented in [1]. Let us

quickly remind ourselves of the method outlined in Chapter 2 for calculating the

superalgebra of a theory: Firstly one derives the conserved supercurrent, which

is the Noether current associated with supersymmetry transformations. The su-

percharge is then defined by the spatial integral of the zeroth component of the

supercurrent. Using the fact that the supercharge is the generator of supersym-

metry transformations and that the infinitesimal variation of an anticommuting

field is given by δΦ ∝ {Q,Φ}, it follows that
∫
δJ0 ∝ {Q,Q}. We will now show

how this works explicitly for the N = 8 and N = 6 Bagger-Lambert Theories.

4.1 N = 8 Bagger-Lambert Superalgebra

The first task is to calculate the supercurrent for the N = 8 theory. Using the

general expression for the current derived in (2.2.19) as well as (3.1.17), (3.1.10)

and (3.1.19) the supercurrent is calculated to be

iε̄Jµ = =
∂L

∂(∂µΛ)
δΛ− V µ

= −iε̄ΓνΓIΓµψaDνX
I
a −

i

6
ε̄ΓIJKΓµψdX

I
aX

J
b X

K
c f

abcd (4.1.1)
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where Λ is summed over and represents all the fields appearing in the Bagger-

Lambert Lagrangian (3.1.17). From (4.1.1) we see1

Jµ = −DνX
I
aΓνΓIΓµψa − 1

6
XI
aX

J
b X

K
c f

abcdΓIJKΓµψd. (4.1.2)

The validity of this expression can be tested by observing whether the supercharge

generates the expected supersymmetry transformations. The supercharge is the

integral over the spatial worldvolume coordinates of the timelike component of

the supercurrent

Q =

∫
d2σJ0

= −
∫
d2σ(DνX

I
aΓνΓIΓ0ψa +

1

6
XI
aX

J
b X

K
c f

abcdΓIJKΓ0ψd). (4.1.3)

As an example let us generate the scalar field supersymmetry transformation

δXI = iε̄[Q,XI ]

= iε̄[−
∫
d2σ(∂νX

J(σ)ΓνΓJΓ0ψ(σ)), XI(σ′)]

= −iε̄σΓ0ΓJΓ0

∫
d2ψ(σ)[∂0X

J(σ), XI(σ′)]

= iε̄ΓJ
∫
d2σψ(σ)δIJδ(σ − σ′)

= iε̄ΓIψ. (4.1.4)

We see that that this matches the transformation appearing in (3.1.10). Using the

fact that the supercharge Q is the generator of supersymmetry transformations it

is possible to calculate the anticommutator of supercharges by considering

ε̄α{Qα, Qβ} =

∫
d2σε̄α{Qα, J0β(σ)} =

∫
d2σ(δJ0β(σ)) (4.1.5)

The supersymmetry variation of the zeroth component of the supercurrent is

computed in the appendix. For the case in which fermion fields have been set to

1Note that the supercurrent can be derived simply as −ε̄Jµ = ψ̄aΓµδψa.

55



CHAPTER 4. M2-BRANE SUPERALGEBRA

zero, the superalgebra takes the form

{Q,Q} =− 2PµΓµΓ0 + ZIJΓIJΓ0 + ZαIJKLΓIJKLΓαΓ0

+ ZIJKLΓIJKL (4.1.6)

where the charges are given by

ZIJ = −
∫
d2xTr(DαX

IDβX
Jεαβ −D0X

K [XI , XJ , XK ]) (4.1.7)

ZαIJKL =
1

3

∫
d2xTr(DβX

I [XJ , XK , XL]εαβ) (4.1.8)

ZIJKL =
1

4

∫
d2xTr([XM , XI , XJ ][XM , XK , XL]) (4.1.9)

with α = 1, 2 labeling the spatial coordinates of the M2-brane worldvolume. The

trace defines the inner product in terms of the 3-algebra generators. It is possible

to use the Bagger-Lambert equations of motion to re-write ZIJ and ZαIJKL as

two surface integrals [99]. These topological terms correspond to the charges of

(0|M2,M2) and (1|M2,M5) intersections respectively. In the next sub-section we

will see that the Basu-Harvey solution excites the one-form central charge (4.1.8),

in agreement with the interpretation of this soliton as the quarter-supersymmetric

M2-M5 intersection.2

The ZIJKL central charge terms were first considered in [101] where the dis-

tinction was made between so-called trace elements and non-trace elements3. If

one only considers trace elements then ZIJKL vanishes as a result of the total

antisymmetry in I, J,K, L indices and the fundamental identity of the BLG the-

ory. However in [101] it was pointed out that constant background configurations

of XI ’s which take values in non-trace elements should give rise to BPS brane

charges. Configurations with non-trace elements are familiar in the Matrix theory

conjecture for M-theory in the light-cone quantization. The large N limit of su-

persymmetric Yang-Mills quantum mechanics is proposed as a non-perturbative

2For details of the BPS equation and solution corresponding to the charge ZIJ see [99, 100].

3In [101] trace elements are defined as elements of a linear vector space with an inner product
whereas non-trace elements are without a notion of inner-product.
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description of M-theory and M2-brane solutions are described as infinite-sized ma-

trices. For example, application of the Higgs mechanism outlined in the previous

chapter would reduce the charge ZIJKL to the form tr[XI , XJ ][XK , XL] where the

trace is over the matrices appearing in the commutator and the matrix is taken

to be infinite-dimensional. This term is analogous to the D4-brane charge (as well

as the charges of the D0-branes within the D4-branes) in the matrix model for

M-theory [102]. In the case of the Bagger-Lambert theory, the action reduces to

the D2-brane action rather than the D0-brane action of the matrix model and so

this charge should be interpreted as a D6-brane charge.4 The M-theory uplift of

the D6-brane is the M-KK monopole so perhaps we can think of this charge as

the energy bound of the spacetime configuration (0|M2, KK). As we will see in

the next chapter, the charge ZIJKL is crucial in obtaining the M5-brane worldvol-

ume superalgebra in the context of the Nambu-Poisson M5-brane theory which is

based on an infinite-dimensional representation of the 3-algebra.

4.1.1 Hamiltonian Analysis and BPS equation

Let us now demonstrate that the central charge ZαIJKL corresponds to the space-

time intersection (1|M2,M5). In order to describe a stack of M2-branes ending on

an M5-brane it is necessary to have four non-zero scalar fields parameterising the

four spatial worldvolume coordinates of the M5-brane transverse to the self-dual

string soliton. Let us call these four scalar fields XA with A = 3, 4, 5, 7. Further-

more we will assume the scalars are functions of only a single spatial coordinate

of the M2-brane, σ2 which we will label s. The BPS condition δψ = 0 in this case

takes the form

∂sX
AΓAΓ2ε+

1

6
εABCDΓA[XB, XC , XD]Γ3456ε = 0 (4.1.10)

4A complete classification of BPS states in Bagger-Lambert theory is carried out in [100]
including a detailed discussion of the charge ZIJKL and its relation to configurations involving
the M5-brane.
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where we used εABCDΓD = −ΓABCΓ3456. We can also see this by looking at the

Hamiltonian density corresponding to this field configuration which takes the form

H =
1

2
Tr(∂sX

A, ∂sX
A) +

1

12
Tr([XA, XB, XC ], [XA, XB, XC ])

=
1

2
Tr|∂sXA − 1

6
εABCD[XB, XC , XD]|2 +

1

6
εABCDTr(∂sX

A, [XB, XC , XD])

≥ 1

6
εABCDTr(∂sX

A, [XB, XC , XD]). (4.1.11)

Thus when

∂sX
A =

1

6
εABCD[XB, XC , XD] (4.1.12)

the energy bound

E =
1

6
εABCDTr(∂sX

A, [XB, XC , XD]) (4.1.13)

is saturated. We recognise (4.1.12) as the Basu-Harvey equation. When this

equation is satisfied we see from (4.1.10) that the field configuration is half BPS

and the preserved supesymmetries satisfy

Γ2ε = Γ3456ε. (4.1.14)

We see that the energy bound (4.1.13) is exactly of the form ZαIJKL appearing in

(4.1.8).

4.2 N = 6 Bagger-Lambert Superalgebra

In this section we will use the theory outlined in Chapter 3 to calculate the

superalgebra associated with the general N = 6 Bagger-Lambert Lagrangian.

For a particular choice of 3-algebra we will determine the ABJM superalgebra.

Given the invariance of the Lagrangian (3.2.6) under the supersymmetry variations

(3.2.10), Noether’s theorem implies the existence of a conserved supercurrent Jµ.

The supercharge is the spatial integral over the worldvolume coordinates of the

zeroth component of the supercurrent. Since we know that the supercharge is the
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generator of supersymmetry transformations and that the infinitesimal variation

of an anticommuting field is given by δΦ ∝ {Q,Φ} we can write∫
d2σδJ I0β = ε̄αJ{QI

α, Q
J
β} (4.2.1)

In order to make use of (4.2.1) in the form presented, we will have to re-write the

supersymmetry parameters εAB in terms of a basis of 4× 4 gamma matrices,

εAB = εI .(ΓIAB), (4.2.2)

with I = 1, . . . 6. The εI are carrying a suppressed worldsheet spinor index and

represent the N = 6 SUSY generators. The gamma matrices are antisymmetric

(ΓIAB = −ΓIBA) and satisfy the reality condition

Γ̃IAB =
1

2
εABCDΓICD = −(ΓIAB)∗. (4.2.3)

Furthermore they satisfy5

ΓIABΓ̃JBC + ΓJABΓ̃IBC = 2δIJδCA . (4.2.4)

The 4 × 4 matrices ΓI act on a different vector space to the 2 × 2 matrices γµ

which are defined as worldvolume gamma matrices. The supercurrent can be

calculated by the usual Noether method outlined in Chapter 2. For the N = 6

Bagger-Lambert theory the supercurrent takes the compact form

Jµ = ε̄IJ Iµ = Tr(δψ̄Aγµ, ψ
A) + Tr(δψ̄Aγµ, ψA), (4.2.5)

where J Iµ is the component supercurrent which appears in (4.2.1). For future refer-

ence we use the basis decomposition (4.2.2) to re-write the fermion supersymmetry

5One explicit realisation in terms of Pauli matrices [103] is given by Γ1 = σ2 ⊗ 12,Γ
2 =

−iσ2 ⊗ σ3,Γ3 = iσ2 ⊗ σ1,Γ4 = −σ1 ⊗ σ2,Γ5 = σ3 ⊗ σ2,Γ6 = −i12 ⊗ σ2.
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variation appearing in (3.2.10) as

δψA = −ΓIABγ
µDµZ

BεI −N I
Aε

I

δψ̄A = −Γ̃IAB ε̄IγµDµZ̄B −N IAεI

δψA = Γ̃IABγµDµZ̄Bε
I −N IAεI (4.2.6)

δψ̄A = ΓIAB ε̄
IγµDµZ

B −N I
Aε̄

I .

with

N I
A = ΓIAB[ZC , ZB; Z̄C ]− ΓICD[ZC , ZD; Z̄A]; (4.2.7)

N IA = Γ̃IAB[Z̄C , Z̄B;ZC ]− Γ̃ICD[Z̄C , Z̄D;ZA]. (4.2.8)

We have deliberately written these variations in terms of the general 3-bracket

introduced in Chapter 3. The benefit of this formalism is that one can easily

derive the ABJM superalgebra by choosing a particular representation of the 3-

bracket. Since we are only interested in bosonic backgrounds we set the fermions

to zero. The result is (see Appendix)

δJ0,I =− 2δIJT 0
µγ

µεJ + 2δIJV1γ
0εJ

+ 2δIJ(Tr(DiZ̄B, [Z
D, ZB; Z̄D])− Tr(DiZ

B, [Z̄D, Z̄B;ZD])εijγjεJ

− Γ
C[IJ ]
B Tr(DiZ

B, DjZ̄C)εijγ0εJ

− Γ
C[IJ ]
B (Tr(D0Z̄A, [Z

B, ZA; Z̄C ]) + Tr(D0Z
A, [Z̄C , Z̄A;ZB]))εJ

+ Γ
CD(IJ)
AB (Tr(DiZ̄B, [Z̄C , Z̄D;ZA])− Tr(DiZ̄D, [Z

A, ZB; Z̄C ]))εijγjεJ

− Γ
EF (IJ)
AB Tr([ZC , ZB; Z̄C ], [Z̄E, Z̄F ;ZA])εJ

− Γ
EF (IJ)
AB Tr([ZA, ZB; Z̄E], [Z̄C , Z̄F ;ZC ])εJ

+ Γ
EF (IJ)
AB Tr([ZA, ZB; Z̄C ], [Z̄E, Z̄F ;ZC ])εJ ,

where we have defined

Γ
CD(IJ)
AB = ΓIABΓ̃JCD + Γ̃ICDΓJAB; (4.2.9)

Γ̃
A[IJ ]
D = ΓIDEΓ̃JAE − Γ̃IAEΓJDE. (4.2.10)
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In order to determine the superalgebra from this expression we need to integrate

δJ0,I over the spatial worldvolume coordinates, and pull off the supersymmetry

parameters εJ , remembering that for Majorana spinors ε̄ = εTC. We know that∫
d2σT 0

µ = Pµ so we see that the first term above will give us the usual momentum

term. The other terms will form the charges of the algebra. We can write the

superalgebra as

{QI
α, Q

J
β} =− 2δIJ(Pµ(γµC)αβ + Zi(γiC)αβ − V1(γ0C)αβ)

− Γ
C[IJ ]
B (ZBC,0(C)αβ + ZBC (γ0C)αβ) (4.2.11)

+ Γ
EF (IJ)
AB (ZABEF,i(γiC)αβ + ZABEF (γ0C)αβ)

where α, β are spinor indices and i = x1, x2 are the spatial coordinates of the

worldvolume. The charges are given by

Zi =

∫
d2σTr(DiZ̄B, [Z

D, ZB; Z̄D])− Tr(DiZ
B, [Z̄D, Z̄B;ZD])εij (4.2.12)

ZBC =

∫
d2σTr(DiZ

B, DjZ̄C)εij (4.2.13)

ZBC,0 =

∫
d2σ(Tr(D0Z̄A, [Z

B, ZA; Z̄C ]) + Tr(D0Z
A, [Z̄C , Z̄A;ZB]) (4.2.14)

ZABEF,i =

∫
d2σTr(DiZ̄

B, [Z̄E, Z̄F ;ZA])− Tr(DiZ̄F , [Z
A, ZB; Z̄E])εij (4.2.15)

ZCEBA =

∫
d2σTr([ZA, ZB; Z̄C ], [Z̄E, Z̄F ;ZC ])− [ZC , ZB; Z̄C ], [Z̄E, Z̄F ;ZA])

− Tr([ZA, ZB; Z̄E], [Z̄C , Z̄F ;ZC ]). (4.2.16)

In order to interpret these charges we require a particular realisation of the three-

bracket. In the next section we derive the ABJM charges by defining the three-

bracket as (3.2.18).

61



CHAPTER 4. M2-BRANE SUPERALGEBRA

4.2.1 ABJM Superalgebra

In this sub-section we will use the particular form of three-bracket defined in

(3.2.18) to map the central charge terms of the N = 6 Bagger-Lambert theory

to the ABJM theory. This will work in the same way that the Bagger-Lambert

Lagrangian is mapped to the ABJM Lagrangian. The structure of the superalge-

bra presented in (4.2.11) remains unchanged. Only the central charge terms are

affected by the 3-bracket prescription. Firstly we define Tr(X, Y ) = tr(X†Y ) and

then we write the 3-bracket as [X, Y ;Z] = XZ†Y −Y Z†X. In order to emphasise

the change from the Bagger-Lambert to ABJM picture we will relabel our fields as

ZA† → XA and Z̄A → XA. This matches the conventions of [104]. An enjoyable

calculation results in the following charges for the ABJM theory

Zi =

∫
d2σtrDi(X

BXBX
DXD −XBX

BXDX
D) (4.2.17)

ZBC =

∫
d2σtr(DiX

BDjXC)εij (4.2.18)

ZBC,0 =

∫
d2σtr(D0XA(XBXCX

A −XAXCX
B)−D0X

A(XCX
BXA −XAX

BXC))

ZABEF,i =

∫
d2σtrDi(X

BXEX
AXF )εij (4.2.19)

ZABEF = 4

∫
d2σtr(XAXCX

BXFX
CXE −XBXEX

A(XCX
CXF −XFX

CXC))

(4.2.20)

Let us now consider each of these in turn. First we note that Zi and ZABEF,i take

the form of topological charges. One might anticipate that these charges represent

the energy bound of an M2-M5 configuration; this follows from the fact that both

charges are worldvolume one-forms and both charges contain four real scalar fields.

As discussed in Chapter 2, this is the expected form of the charge corresponding
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to (1|M2,M5) from the M2-brane perspective. In the next sub-section we will

identify Zi as the energy bound of the fuzzy-funnel configuration [103, 105, 106]

of the ABJM theory representing M2-branes growing into an M5-brane. The BPS

solution corresponding to this fuzzy-funnel bound state was first found in [103]

and subsequently studied in [105, 106]6. The charge ZBC can be interpreted as

the energy bound of a vortex configuration of M2-branes intersecting M2-branes

(0|M2,M2) (see for example [111, 113–115]). This interpretation can be inferred

from the structure of the charges. For example, ZBC is a worldvolume zero-form

which includes dependence on two scalar fields. In the space transverse to the

M2-brane worldvolume this charge can be considered a two-form parameterised

by two scalars and therefore we identify this charge with the energy bound of the

spacetime configuration (0|M2,M2).

What about the ZABEF charge? This would appear to be the N = 6 analogue of

the charge ZIJKL appearing in the N = 8 algebra. In which case it can be thought

of as the charge of an uplifted D6-brane. However it is interesting to note another

possible interpretation of this charge due to Terashima [116]. We know that the

M2-M5 Basu-Harvey configuration can be thought of as the M-theory uplift of the

D2-D4 configuration (which is described by the Nahm equation from the D2-brane

point of view). However from the D-brane perspective there also exists a bound

state of D2-branes and D4-branes. This results from considering D4-branes with

constant magnetic field or alternatively infinitely many D2-branes with [X1, X2] =

const where X i are matrix valued scalar fields representing the positions of the D2-

branes. In [116] a classical solution was found in the ABJM theory corresponding

to a bound state of M5-branes and M2-branes which becomes the bound state

of D4-branes and D2-branes in the scaling limit k → ∞. From the M5-brane

perspective this bound state corresponds to the M5-brane with non-zero self-

dual three-form flux. In [116] it was conjectured that the charge ZABEF might

correspond to the energy bound of this state. The fact that the ABJM theory

does not possess a manifest SO(8) R-symmetry makes the interpretation of the

charges slightly tricky. In [117, 118] it was shown that, for Chern-Simons levels

6Other BPS states in the ABJM theory have been discussed in [107–113].
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k = 1, 2, the N = 6 supersymmetry of the ABJM theory is enhanced to N = 8

supersymmetry through the use of monopole operators. It should be possible

to use similar techniques to investigate the enhancement of the R-symmetry of

the charges of the ABJM theory. This would allow for direct comparison with

the N = 8 Bagger-Lambert superalgebra. Before investigating the BPS fuzzy-

funnel configuration in the next sub-section we note that the superalgebra may

be re-written in terms of trace, anti-symmetric and symmetric traceless parts

{QI
α, Q

J
β} = δIJXαβ + Z̃

(IJ)
αβ + Z̃

[IJ ]
αβ (4.2.21)

where Xαβ is a singlet, Z̃
(IJ)
αβ is symmetric traceless and Z̃

[IJ ]
αβ antisymmetric in

I, J respectively. Explicitly we have

Xαβ = −2Pµ(γµC)αβ −
4

3
Zi(γiC)αβ,

Z̃
(IJ)
αβ = (Γ

EF (IJ)
AB ZABEF,i −

2

3
δIJZi)(γiC)αβ + (Γ

EF (IJ)
AB ZABEF + 2δIJV1)(γ0C)αβ

Z̃
[IJ ]
αβ = −Γ

C[IJ ]
B (ZBC,0Cαβ + ZBC (γ0C)αβ). (4.2.22)

It is interesting to observe what happens when we act with δIJ on the superalgebra.

In this case Γ
C[IJ ]
B = 0 since it is antisymmetric in I, J and so ZBC and ZBC,0

disappear from the algebra. Similarly Z̃
(IJ)
αβ = 0 since it is symmetric traceless.

This can be confirmed by using the fact that

δIJΓ
EF (IJ)
AB = ΓIABΓ̃IEF + Γ̃IEFΓIAB = −4δEFAB . (4.2.23)

Thus the only term that survives is the trace part Xαβ. We can therefore write

δIJ{QI
α, Q

J
β} = −12Pµ(γµC)αβ+8tr

∫
d2σDi(XAX

AXBX
B−XAXAX

BXB)εij(γ
jC)αβ.

(4.2.24)

We see that the trace of the algebra contains a single charge, namely the one-

form central charge Zi. As already mentioned, this charge corresponds to the

energy of the BPS Fuzzy-Funnel configuration calculated in [106]. Let us show

this explicitly.
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4.2.2 Hamiltonian Analysis and Fuzzy-funnel BPS equation

The fuzzy-funnel ABJM BPS equation can be obtained by combining the kinetic

and potential terms in the Hamiltonian and rewriting the expression as a modulus

squared term plus a topological term. The squared term tells us the BPS equations

and the topological term tells us the energy bound of the BPS configuration when

the BPS equations are satisfied. In [106] the ABJM potential was written as

V =
4π2

k2
tr(|ZAZAZ

B − ZBZAZ
A −WAWAZ

B + ZBWAW
A|2

+ |WAWAW
B −WBWAW

A − ZAZAW
B +WBZAZ

A|2) (4.2.25)

+
16π2

k2
tr(|εACεBDWBZ

CWD|2 + |εACεBDZBWCZ
D|2).

where ZA and WA are the upper and lower two components respectively of the

4 component complex scalar XA. The first two lines correspond to D-term po-

tential pieces whereas the last line corresponds to F-term potential pieces (from

the superspace perspective [95]). In [106] the potential and kinetic terms were

combined in two different ways, depending on whether the F-term or D-term po-

tential is used in conjunction with the kinetic term. This leads to two sets of BPS

equations. For the case in which WA = 0 the scalar part of the Hamiltonian only

contains D-term contributions and takes the form

H =

∫
dx1dstr(|∂sZA +

2π

k
(ZBZBZ

A − ZAZBZ
B)|2)

+
π

k
tr∂s(ZAZ

AZBZ
B − ZAZAZ

BZB), (4.2.26)

where x2 = s. As usual, the first line gives the BPS equation

∂sZ
A +

2π

k
(ZBZBZ

A − ZAZBZ
B) = 0, (4.2.27)

and the second line gives the energy of the system when the BPS equation is

satisfied

E =
π

k
tr

∫
dsdx1∂s(ZAZ

AZBZ
B − ZAZAZ

BZB). (4.2.28)
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The general procedure for finding a solution to (4.2.27) is to consider an ansatz in

which the complex scalar fields separate into an s-dependent and s-independent

part

ZA = f(s)GA, f(s) =

√
k

4πs
, (4.2.29)

where, according to (4.2.27), the GA satisfy

GA = GBG†BG
A −GAG†BG

B. (4.2.30)

In [105, 106] a solution to this equation was presented and interpreted as describ-

ing a fuzzy S3/Zk.
7 The energy bound corresponding to this fuzzy-funnel con-

figuration (4.2.28) exactly matches the central charge term appearing in (4.2.24)

(when WA = 0). Thus we see that the physical information corresponding to the

energy bound of the fuzzy funnel configuration appears in the trace expression

of the algebra (4.2.21). One might wonder about the charge ZABEF,i appearing in

(4.2.21). Interestingly, this charge corresponds to the energy bound of the F-term

configuration considered in [106]. In other words, minimising the Hamiltonian

using the F-term potential results in an energy bound of the form ZABEF,i. It would

be informative to solve the correpsonding BPS equation and provide a space-time

interpretation of this charge.

In this chapter we investigated the worldvolume superalgebra of the N = 6

and N = 8 Bagger-Lambert theories. As expected from the M2-brane perspective

we found charges corresponding to (1|M2,M5) and (0|M2,M2) intersections. It

should also be possible to see the (1|M2,M5) configuration from the M5-brane

worldvolume superalgebra (as well as the (3|M5,M5) intersection which is related

to (0|M2,M2) through spacetime duality). In the next chapter we will investigate

the superalgebra of the Nambu-Poisson M5-brane which has been proposed as a

model of an M5-brane in a background of three-form flux.

7Note that in [119, 120] the M2-M5 fuzzy funnel solution of ABJM was shown to describe a
fuzzy S2 as opposed to the conjectured fuzzy S3. The solution is consistent with a spacetime
picture in which an M5-brane wraps an S3/Zk, with the three-sphere given by the Hopf fibration
of an S1/Zk over S2, and identified S1/Zk with the M-theory circle. In the k →∞ limit one has
a (double) dimensional reduction and a D4-brane wrapping an S2 in Type IIA string theory, as
opposed to an M5-brane wrapping the S3/Zk in M-theory.
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CHAPTER 5

NAMBU-POISSON M5-BRANE

SUPERALGEBRA

In this chapter we calculate the worldvolume superalgebra of the Nambu-Poisson

M5-brane theory as presented in [2]. We begin with a review of the M5-brane

model proposed in [13, 14] which is believed to describe an M5-brane in a three-

form flux background. We then investigate the superalgebra associated with the

theory. In particular we derive the central charges corresponding to M5-brane

solitons in 3-form backgrounds. We show that double dimensional reduction of

the superalgebra results in the Poisson bracket terms of a non-commutative D4-

brane superalgebra. We provide interpretations of the D4-brane charges in terms

of spacetime intersections.

5.1 Nambu-Poisson M5-brane Theory

In this section we provide a brief overview of the Nambu-Poisson M5-brane model

[13, 14].1 For an n-dimensional manifold N , a tri-linear map {., ., .} that maps

three functions on N to a single function on N is called a Nambu-Poisson bracket

if in addition to the fundamental identity (3.1.11) and complete antisymmetry it

satisfies the Leibniz rule

{fg, a, b} = f{g, a, b}+ g{f, a, b}. (5.1.1)

1For alternative reviews see for example [121–123]. For more recent developments see [124,
125].
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One of the most important properties of the Nambu-Poisson bracket is the de-

composition theorem2 which states that by a suitable choice of local coordinates

on N , the Nambu-Poisson bracket can be reduced to Jacobian form

{f, g, h} = εµ̇ν̇ρ̇
∂f

∂yµ̇
∂g

∂yν̇
∂h

∂yρ̇
(5.1.2)

where yµ̇ represents 3 coordinates out of n-coordinates on the manifold. The

basic idea of [13] was to consider the 3-manifold N on which Nambu-Poisson

bracket is defined as an internal manifold from the perspective of the M2-brane

worldvolume M. The generators of Bagger-Lambert theory are taken to be an

infinite dimensional basis of functions on N such that

{χa, χb, χc} = εµ̇ν̇ρ̇∂µ̇χ
a∂ν̇χ

b∂ρ̇χ
c = fabc dχ

d. (5.1.3)

One then expands the 3 dimensional fields appearing in the Bagger-Lambert the-

ory in terms of the basis generators {χa(y)}. This results in 6-dimensional fields

defined on M × N . For example the scalar field takes the form XI(x, y) =∑
aX

I
a(x)χa(y). The inner product may be defined as integration over the mani-

fold N
〈f, g〉 =

1

g2

∫
N
d3yf(y)g(y). (5.1.4)

The inner product between basis elements defines the metric

hab = 〈χa, χb〉. (5.1.5)

Of particular importance is the Bagger-Lambert gauge field which may be ex-

pressed as a bi-local field defined by

Aµ(x, y, y′) = Aabµ (x)χa(y)χb(y′). (5.1.6)

2See for example [126].
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Taylor expanding the left hand side of this expression around ∆yµ̇ = y
′µ̇ − yµ̇

results in

Aµ(x, y, y′) = aµ(x, y) + bλµ̇(x, y)∆yµ̇ +
1

2
cλµ̇ν̇(x, y)∆yµ̇∆yν̇ + . . . (5.1.7)

where

bλµ̇(x, y) =
∂

∂y′µ̇
Aλ(x, y, y

′)|y′=y (5.1.8)

It turns out that this is the only component in the Taylor expansion that ever

appears in the Bagger-Lambert action. This follows from the fact that Aλab always

appears in the action in the form f bcdaAλbc and using (5.1.3), (5.1.6) and (5.1.8)

f bcdaAλbc = εµ̇ν̇ρ̇〈∂µ̇bλν̇∂ρ̇χd, χa〉. (5.1.9)

So for example the covariant derivative appearing in the Bagger-Lambert theory

(3.1.9) can be written as

D̃λX
I(x, y) ≡ [∂λX

Ia(x)− gf bcdaAλbcXI
d (x)]χa(y)

= ∂λX
I(x, y)− gεµ̇ν̇ρ̇∂µ̇bλν̇(x, y)∂ρ̇X

I(x, y)

= ∂λX
I − g{bλν̇ , yν̇ , XI} (5.1.10)

We see that the only term from the Taylor expansion that appears in the covariant

derivative is the two-form gauge field bλν̇ . In [14] this two-form gauge field is inter-

preted as the gauge potential associated with volume preserving diffeomorphisms

of N . Why volume preserving diffeomorphisms? Re-writing the Bagger-Lambert

gauge transformation in terms of Nambu-Poisson bracket one finds that it takes

the form (for scalars and fermions)

δΛΦ(x, y) = g(δΛy
µ̇)∂µ̇Φ(x, y). (5.1.11)

This may be considered the infinitesimal transformation of the field under the

reparameterisation

yµ̇
′
= yµ̇ − gδyµ̇ (5.1.12)
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subject to the condition ∂µ̇(δyµ̇) = 0 which implies it is a volume preserving

diffeomorphism since

det|∂y
′

∂y
| = 1 +

∂

∂yµ̇
(δyµ̇). (5.1.13)

Thus we have the situation in which the gauge symmetry of the original Bagger-

Lambert theory is interpreted as a volume preserving diffeomorphism of the in-

ternal manifold N . It is possible to define another type of covariant derivative D̃µ̇

which acts on N by observing that, for a scalar field Φ, the object {X ν̇ , X ρ̇,Φ}
transforms covariantly under volume preserving diffeomorphisms. Thus we can

define D̃µ̇ as

D̃µ̇Φ =
g2

2
εµ̇ν̇ρ̇{X ν̇ , X ρ̇,Φ}

= ∂µ̇Φ + g(∂λ̇b
λ̇∂µ̇Φ− ∂µ̇bλ̇∂λ̇Φ) +

g2

2
εµ̇ν̇ρ̇{bν̇ , bρ̇,Φ} (5.1.14)

where the field bµ̇ is defined through the relation

X µ̇ =
1

g
yµ̇ + bµ̇, bµ̇ν̇ = εµ̇ν̇ρ̇b

ρ̇. (5.1.15)

This may be interpreted as a weakened form of the static gauge condition relating

to the fact that yµ̇ space does not possess full diffeomorphism invariance but

only volume preserving diffeomorphism invariance. This implies that one cannot

completely fix the X µ̇ fields, resulting in residual degrees of freedom parameterised

by bµ̇. The quantity X µ̇ defined above can be shown to transform as a scalar

under volume preserving diffeomorphisms. This fact allows one to construct gauge

field strengths which transform as scalars under gauge variations. We now have

two types of covariant derivative, D̃µ and D̃µ̇ which together constitute a set of

derivatives acting on the 6-dimensional space N×M. Just as with ordinary gauge

theory the field strength arises in the commutator of covariant derivatives

[D̃µ̇, D̃ν̇ ]Φ = g2εν̇µ̇σ̇{H1̇2̇3̇, X
σ̇,Φ},

[D̃λ, D̃λ̇]Φ = g2{Hλν̇λ̇, X
ν̇ ,Φ}. (5.1.16)
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where

Hλµ̇ν̇ = εµ̇ν̇λ̇D̃λX
λ̇ (5.1.17)

= Hλµ̇ν̇ − gερ̇σ̇λ̇∂ρ̇bλσ̇∂ρ̇bµ̇ν̇

and

H1̇2̇3̇ = g2{X 1̇, X 2̇, X 3̇} − 1

g
=

1

g
(V − 1)

= H1̇2̇3̇ +
g

2
(∂µ̇b

µ̇∂ν̇b
ν̇ − ∂µ̇bν̇∂ν̇bµ̇) + g2{b1̇, b2̇, b3̇} (5.1.18)

where V is the induced volume defined by

V = g3{X 1̇, X 2̇, X 3̇}. (5.1.19)

In [14], these were the only components of the field strength Hµ̄ν̄ρ̄ (µ̄ = 0, . . . 5)

appearing in the action derived from the BLG theory. In the absence of scalar

and fermion matter fields, the non-linear chiral field action of [14] took the form

S = −
∫
d3xd3y

(
1

4
Hµν̇ρ̇Hµν̇ρ̇ +

1

12
Hµ̇ν̇ρ̇Hµ̇ν̇ρ̇ +

1

2
εµνρB µ̇

µ ∂νbρµ̇ + g detB µ̇
µ

)
(5.1.20)

where B µ̇
µ = εν̇ρ̇µ̇∂ν̇bµρ̇. This action is invariant under volume preserving diffeo-

morphisms but does not possess gauge covariance due to the last two terms (which

originate from the BLG Chern-Simons term). In [14] it was assumed that the field

strength components Hµνρ and Hµνρ̇ are dual to Hµ̇ν̇ρ̇ and Hµν̇ρ̇ respectively. In

other words

Hµν̇ρ̇ =
1

2
εµνρεν̇ρ̇µ̇Hνρµ̇, Hµ̇ν̇ρ̇ = −1

6
εµ̇ν̇ρ̇ε

µνρHµνρ. (5.1.21)

This was confirmed in [123] where it was shown that solving the field equations

associated with bµν̇ and bµ̇ν̇ is tantamount to imposing the Hodge self-duality

condition on the non-linear field strength Hµ̄ν̄ρ̄. This allowed the authors to re-
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write the gauge-field Lagrangian in a gauge-covariant form as

S = −
∫
d3xd3y

(
1

8
Hµν̇ρ̇Hµν̇ρ̇ +

1

12
Hµ̇ν̇ρ̇Hµ̇ν̇ρ̇ − 1

144
εµνρεµ̇ν̇ρ̇HµνρHµ̇ν̇ρ̇ −

1

12g
εµνρHµνρ

)
.

(5.1.22)

The last term in this expression can be interpreted as a coupling of the M5-brane

to the constant background C3 field which has non-zero components Cµ̇ν̇ρ̇ = 1
g
εµ̇ν̇ρ̇.

Following [123], it is possible to re-write this as∫
d3xd3y

1

12g
εµνρHµνρ =

1

2

∫
H3 ∧ C3. (5.1.23)

This action possesses full volume preserving diffeomorphism invariance. However

the Lorentz symmetry is broken by the presence of the three-form field. This

concludes the brief overview of the Nambu-Poisson M5-brane model.

5.2 Nambu-Poisson M5-brane superalgebra

Our plan is to take the central charges of the Bagger-Lambert M2-brane super-

algebra and re-express the 3-dimensional fields in terms of 6-dimensional fields

using the conventions outlined in the previous section. We will see that in doing

so, the M2-brane central charges will recombine to form M5-brane central charges

corresponding to solitons of the worldvolume theory. We will also look at the

Bogomoly’ni completion of the Hamiltonian and derive the BPS equations cor-

responding to the self-dual string soliton and the 3-brane vortex. To begin with

we will calculate the Nambu-Poisson BLG supercharge. This will highlight the

methodology and introduce useful notation and conventions.

5.2.1 Nambu-Poisson BLG Supercharge

We begin by deriving an expression for the supercharge of the Nambu-Poisson

BLG theory. The basic idea is to take the original BLG M2-brane supercharge

and expand the fields in terms of the basis {χa}. As we noted above, the spatial

integral of the zeroth component of the supercurrent represents the supercharge,
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and the worldvolume supercurrent takes the simple form

−ε̄Jµ = ψ̄aΓµδψa (5.2.1)

where δψa refers to the supersymmetric variation of the fermion field. Evaluating

(5.2.1) using the original BLG supersymmetry transformation one finds

ε̄Jµ = −ε̄Tr(DνX
I ,ΓνΓIΓµψ)− 1

6
ε̄ΓIJKΓµTr({XI , XJ , XK}, ψ). (5.2.2)

Here the trace defines an inner product. We wish to re-express this in terms

of the 6-dimensional covariant derivatives and field strengths introduced in the

previous section. This can be achieved by splitting the scalar field index I → (µ̇, i)

and making the replacements [∗, ∗, ∗] → g2{∗, ∗, ∗} and Tr → 〈〉. Using this

prescription along with the definitions presented in the previous section we can

write the supercharge as

ε̄Q =− ε̄ΓνΓiΓ0〈D̃νX
i, ψ〉 − ε̄Γν̇ΓiΓ0Γ1̇2̇3̇〈D̃ν̇X

i, ψ〉

− 1

2
ε̄ΓνΓν̇λ̇Γ0Γ1̇2̇3̇〈Hνν̇λ̇, ψ〉 − ε̄Γ1̇2̇3̇Γ0〈(H1̇2̇3̇ +

1

g
), ψ〉

− g2

6
ε̄ΓijkΓ0〈{X i, Xj, Xk}, ψ〉 − g2

2
ε̄Γµ̇ΓijΓ0〈{X µ̇, X i, Xj}, ψ〉 (5.2.3)

where we have suppressed the integral over the worldvolume coordinates of the

M2-brane worldvolume. In deriving this expression we made use of the fact that

Γµ̇ν̇ρ̇ = Γ1̇2̇3̇εµ̇ν̇ρ̇ and (Γ1̇2̇3̇)2 = −1 (5.2.4)

from which it follows that

εµ̇ν̇ρ̇Γ
µ̇ν̇ = 2Γρ̇Γ1̇2̇3̇. (5.2.5)

The presence of Γ1̇2̇3̇ in the second and third terms of (5.2.3) means that only the

SO(1,2)×SO(3) subgroup of the full 6 dimensional Lorentz symmetry is manifest.

A similar difficulty was encountered for the fermion kinetic terms in [14]. There

it was shown that it is possible to perform a unitary transformation of the spinor
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variables

ε̄ = ε̄′U, ψ = Uψ′ (5.2.6)

where U is the matrix

U =
1√
2

(1− Γ1̇2̇3̇). (5.2.7)

Performing this transformation on the supercharge, and using the fact that [Γµ̇,Γ1̇2̇3̇] =

{Γi,Γ1̇2̇3̇} = {Γµ,Γ1̇2̇3̇} = 0 results in

ε̄′Q′ =− ε̄′ΓνΓiΓ0〈D̃νX
i, ψ′〉 − ε̄′Γν̇ΓiΓ0〈D̃ν̇X

i, ψ′〉

− 1

2
ε̄′ΓνΓν̇λ̇Γ0〈Hνν̇λ̇, ψ

′〉 − ε̄′Γ1̇2̇3̇Γ0〈(H1̇2̇3̇ +
1

g
), ψ′〉

+
g2

6
ε̄′ΓijkΓ0Γ1̇2̇3̇〈{X i, Xj, Xk}, ψ′〉 − g2

2
ε̄′Γµ̇ΓijΓ0〈{X µ̇, X i, Xj}, ψ′〉.

(5.2.8)

It is possible to look at the weak coupling limit in which g → 0. In this limit

H → H and D̃ → ∂ and the supercharge becomes3

ε̄′Q′ = −ε̄′Γν̄ΓiΓ0〈∂ν̄X i, ψ′〉 − 1

12
ε̄′Γµ̄ν̄λ̄Γ0〈Hµ̄ν̄λ̄, ψ

′〉 (5.2.9)

with µ̄ = (µ, µ̇). This expression agrees with the supercharge associated with an

abelianN = (2, 0) tensor multiplet [127]. In order to calculate the Nambu-Poisson

M5-brane superalgbera one could in principle calculate the anticommutator of the

supercharge (5.2.8). In this chapter we will adopt a different approach. We will

make use of the M2-brane superalgebra (4.1.6) calculated in the previous chapter

and re-express the charges (4.1.9) in terms of M5-brane fields (using the method

outlined above). To this we now turn.

3Note that in deriving the weak coupling limit we have used the additional fermionic shift
symmetry introduced in [14] to eliminate the 1/g term from the fermion supersymmetry trans-
formation.
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5.2.2 Re-writing of M2-brane central charges

We begin by by splitting the scalar field index I → (µ̇, i) and making the replace-

ments [∗, ∗, ∗]→ g2{∗, ∗, ∗} and Tr→ 〈〉. In what follows, for the sake of clarity,

we will suppress the angle bracket 〈〉 which denotes the inner product. Making

repeated use of the conventions outlined in the previous section and the Appendix

results in the following expressions for the charges (4.1.9)

−DαX
IDβX

JεαβΓIJΓ0 =− D̃αX
iD̃βX

jΓαβΓij +
1

2
Hαρ̇λ̇Hβσ̇ω̇Γρ̇Γλ̇σ̇ω̇Γαβ

+ D̃βX
iHαν̇λ̇Γ

βαν̇λ̇ΓiΓ1̇2̇3̇. (5.2.10)

D0X
I{XI , XJ , XK}ΓJKΓ0 =− 2D̃0X

iD̃λ̇X
iΓλ̇Γ0Γ1̇2̇3̇ + 2D̃ω̇X

iH0ν̇ω̇Γν̇ΓiΓ0

+
g2

2
H0σ̇λ̇Γ

0
(
{X µ̇, X ν̇ , X ρ̇}εµ̇σ̇λ̇Γν̇ρ̇ + {X µ̇, Xj, Xk}Γµ̇σ̇λ̇ΓjkΓ1̇2̇3̇

)
+ g2D0X

i{X i, X ν̇ , Xj}Γν̇ΓjΓ0 + g2D̃0X
i{X i, Xj, Xk}ΓjkΓ0.

(5.2.11)

ZαIJKLΓIJKLΓα0 =− D̃σ̇X
iHβλ̇ω̇Γσ̇βλ̇ω̇Γi + 2D̃βX

i(H1̇2̇3̇ +
1

g
)ΓβΓiΓ1̇2̇3̇

+ 2D̃βX
iD̃λ̇X

jΓβλ̇ΓijΓ1̇2̇3̇ − g2Hβρ̇ν̇{X ν̇ , X i, Xj}Γβρ̇ΓijΓ1̇2̇3̇

− g2D̃βX
i{X µ̇, Xj, Xk}Γβµ̇Γijk +

g2

3
D̃βX

i{Xj, Xk, X l}ΓβΓijkl

+
g2

6
Hβρ̇λ̇{X

i, Xj, Xk}Γβρ̇λ̇ΓijkΓ1̇2̇3̇. (5.2.12)

ZIJKLΓIJKL =− D̃λ̇X
iDν̇X

jΓλ̇ν̇Γij + g2D̃ρ̇X
j{X µ̇, Xk, X l}Γρ̇µ̇ΓjklΓ1̇2̇3̇

+ g2D̃λ̇X
i{X i, Xj, Xk}Γλ̇ΓjkΓ1̇2̇3̇ + 2g2D̃µ̇X

i{X µ̇, X i, Xj}ΓjΓ1̇2̇3̇

+ g4{X µ̇, X i, Xj}
(

1

2
{X µ̇, X ν̇ , X ρ̇}Γν̇ρ̇Γij − {X i, Xk, X ν̇}Γµ̇ν̇Γjk

)
+ g4{X µ̇, X i, Xj}

(
1

4
{X µ̇, Xk, X l}Γijkl − {X i, Xk, X l}Γµ̇Γjkl

)
+
g4

4
{X i, Xj, Xk}{X i, X l, Xm}Γjklm. (5.2.13)

75



CHAPTER 5. NAMBU-POISSON M5-BRANE SUPERALGEBRA

Although these terms look complicated we notice that many of them share the

same structure despite originating from different M2-brane charges. Importantly,

we notice that ZIJKL plays a crucial role in obtaining the M5-brane charges. For

example we see that the first term in (5.2.10) will combine with the first term in

(5.2.13) to give the 3-brane vortex charge. The hope is that all of these terms will

combine to form central charges of the M5-brane worldvolume theory. However

as it stands, many terms sharing the same structure in (5.2.10)-(5.2.13) have the

wrong relative sign to combine. It turns out that this problem can be resolved by

multiplying the central charges from the left and right by the unitary matrix U.

This is a reasonable thing to do since, as mentioned earlier, the method for calcu-

lating the M2-brane superalgebra involves calculating ε̄δJ0 = ε̄{Q,Q}ε. We have

seen that when calculating spinor quantities in terms of Nambu-Poisson brackets

it is necessary to perform unitary transformations on the spinor fields to bring

them to the correct form (for example the fermion kinetic terms, fermion super-

symmetry transformation and supercharge). Therefore one might expect that the

correct expression for the M5-brane superalgbera would result from evaluating

ε̄′{Q′, Q′}ε′. This is equivalent to multiplying the central charges in (5.2.10)-

(5.2.13) from the left and right by the unitary matrix U . We will see in the

next section that by performing this unitary transformation, all terms of similar

structure combine into M5-brane charges.

5.2.3 Nambu-Poisson BLG Superalgebra

In this section we will combine the terms appearing in the previous section into

M5-brane central charges and write the Bagger-Lambert Nambu-Poisson superal-

gebra. At lowest order in the coupling g we will see that the superalgebra contains

the charges (2.1.24) and (2.1.25) expected from the worldvolume superalgebra of

the M5-brane. In addition we will find higher order coupling central charges, some

of which involve the background 3-form C-field. Since the resulting expression is

long and complicated we will split the superalgebra into three parts depending

on the order of the coupling of the central charge. Having performed the unitary
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transformation described in the previous section one finds

{Q,Q}central ∝ Z(g0)Γ1̇2̇3̇ + Z(g2)Γ1̇2̇3̇ + Z(g4)Γ1̇2̇3̇ (5.2.14)

We will take each term separately and try to provide an interpretation of the

central charges. To begin with we look at Z(g0). Remarkably one finds the

compact expression

Z(g0) = + D̃aX
iD̃bX

jΓabΓij + 2D̃0X
iDλ̇X

iΓ0Γλ̇ +
1

3
D̃aX

iHbcdΓ
abcdΓi

− 2

g
D̃βX

iΓβΓiΓ1̇2̇3̇ +H0µ̇ν̇(Hµ̇ν̇ρ̇ +
1

g
εµ̇ν̇ρ̇)Γ0Γρ̇ − 1

2
Hαρ̇λ̇Hβσ̇ω̇Γρ̇Γλ̇σ̇ω̇Γαβ

(5.2.15)

with a = (α, µ̇) representing the spatial coordinates on the worldvolume of the M5-

brane. Note that in obtaining this result we made use of Hαβλ̇ = −1
2
εαβεν̇ρ̇λ̇H0ν̇ρ̇

as well as

1

3
D̃aX

iHbcdΓ
abcd = + D̃αX

iHβµ̇ν̇Γ
αβµ̇ν̇ + D̃µ̇X

iHβν̇λ̇Γ
µ̇βν̇λ̇

+ D̃µ̇X
iHβγν̇Γ

µ̇βγν̇ +
1

3
D̃αX

iHν̇σ̇λ̇Γ
αν̇σ̇λ̇. (5.2.16)

We see that there are three types of term in Z(g0): Charges of the form D̃XD̃X,

those of the form D̃XH and finally those of the form HH. We see that the first

term D̃aX
iD̃bX

j corresponds to the charge of the 3-brane vortex living on the M5-

brane worldvolume. When only two scalar fields are active (call them X and Y ) we

can identify it as the charge Z appearing in (2.1.24). The D̃H term corresponds to

the self-dual string charge. If we consider the situation in which only one scalar

field is active (call it Y ) and assume that this scalar is a function of only four

of the spatial worldvolume coordinates of the M5 brane, namely µ̂ = (2, 1̇, 2̇, 3̇),

we see that the D̃H term becomes εµ̂ν̂ρ̂σ̂D̃µ̂XHν̂ρ̂σ̂. This exactly corresponds to

the energy bound Y appearing in (2.1.25). The D̃H term with coefficient 2/g

appearing in (5.2.15) can be thought of as a contribution from the background
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3-form gauge field C. Making the identification C1̇2̇3̇ = 1
6
εµ̇ν̇ρ̇Cµ̇ν̇ρ̇ ∝ 1/g we have

−2

g
D̃βX

iΓβΓiΓ1̇2̇3̇ =
1

3
D̃βX

iCµ̇ν̇ρ̇Γ
βµ̇ν̇ρ̇Γi. (5.2.17)

We can think of this term as representing a C-field modification of the self-dual

string charge in the directions 1̇2̇3̇. We can provide an interpretation of the HH
term by thinking about its double dimensional reduction. This will be carried out

explicitly in the next section but for now we note that compactifying along the

3̇ direction of the M5-brane reduces the term 1
2
Hαρ̇λ̇Hα0λ̇ +H0µ̇ν̇Hµ̇ν̇ρ̇ appearing

in (5.2.15) to the charge of a D4-brane instanton of the form F ∧ F . From the

D4-brane perspective this can be thought of as the charge of a D0-brane within

the worldvolume of the D4-brane. Thus from the M5-brane perspective it would

appear that this charge describes an M-wave intersecting an M5-brane. Note that

the factor of 1/g appearing in the HH term in (5.2.15) can be thought of as a

C-field modification of the MW-M5 charge along the 1̇2̇3̇ direction. We now turn

to the Z(g2) charges,

Z(g2) = + g2D̃aX
i{X µ̇, Xj, Xk}Γaµ̇Γijk − g2DāX

i{X i, Xj, Xk}ΓāΓjkΓ1̇2̇3̇

− g2

3
D̃βX

i{Xj, Xk, X l}ΓβΓijklΓ1̇2̇3̇ + 2g2D̃µ̇X
i{X µ̇, X i, Xj}Γj

+ g2D̃0X
i{X ν̇ , X i, Xj}Γ0Γν̇Γj +

g2

2
H0ρ̇λ̇{X

µ̇, Xj, Xk}Γµ̇ρ̇λ̇ΓjkΓ0

− g2Hβρ̇ν̇{X ν̇ , X i, Xj}Γβρ̇Γij − g2

6
Hβρ̇λ̇{X

i, Xj, Xk}Γβρ̇λ̇Γijk

− 2g2(H1̇2̇3̇ +
1

g
){X µ̇, X i, Xj}Γµ̇Γij. (5.2.18)

In the second term the label ā = (0, µ̇). A few comments are in order. As we will

see in the next section, double dimensional reduction of the first term gives rise

to a charge gD̃aX
i{Xj, Xk}. This term bares a structural similarity to the charge

corresponding to a Nahm equation configuration in which multiple D2-branes

intersect a D4-brane (in the case where Poisson-brackets have been replaced with

matrix commutators). Thus one might expect to find a Nambu-Poisson analogue

of the Basu-Harvey energy bound in the C-field modified M5-brane superalgebra.

Indeed the charge g2

3
D̃βX

i{Xj, Xk, X l} appearing in (5.2.18) is reminiscent of
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the Basu-Harvey charge expressed in terms of Nambu-Poisson bracket. We will

comment further on the interpretation of these charges later in the chapter when

we consider the double-dimensional reduction of the algebra. For a discussion of

the geometry of the M5-brane in the presence of a constant C-field as well as the

derivation of the C-field modified Basu-Harvey equation as a boundary condition

of the multiple M2-brane theory see for example [128–130]. Finally we have the

Z(g4) charges which take the form

Z(g4) = + g4{X i, Xj, X µ̇}{X i, Xk, X ν̇}Γµ̇ν̇Γjk + g4{X µ̇, X i, Xj}{X i, Xk, X l}Γµ̇ΓjklΓ1̇2̇3̇

− g4

4
{X µ̇, X i, Xj}{X µ̇, Xk, X l}Γijkl − g4

4
{X i, Xj, Xk}{X i, X l, Xm}Γjklm.

(5.2.19)

We will see that only the first and third terms survive the dimensional reduction

and give rise to a charge analogous to the D4-brane charge found in Matrix theory

(expressed in terms of Poisson brackets). The M5-brane analogue of this inter-

pretation requires further investigation. Most importantly in this section we have

seen that the BLG superalgebra based on Nambu-Poisson bracket contains the ex-

pected central charges corresponding to an M5-brane. Namely the 3-brane charge

and self-dual string charge, suitably modified by the presence of the background

gauge field. In the next section we will confirm the existence of these charges as

energy bounds from the Hamiltonian perspective.

5.2.4 Hamiltonian analysis and BPS equations

We would like to derive the energy bounds corresponding to M5-M2 and M5-

M5 intersections by looking at the Bogomoly’ni completion of the Nambu-Poisson

BLG Hamiltonian. For the original Bagger-Lambert theory the energy-momentum

tensor with fermions set to zero takes the form

Tµν = DµX
IDνX

I − ηµν(
1

2
DρX

IDρXI + V ). (5.2.20)
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The Chern-Simons term does not contribute due to the fact that it is topological in

nature and does not depend on the worldvolume metric. For static configurations

the energy density takes the form

E =
1

2
DαX

IDαX
I +

1

12
[XI , XJ , XK ]2. (5.2.21)

Re-writing this expression in terms of M5-brane fields one finds

E = +
1

2
(D̃αX

i)2 +
1

2
(D̃µ̇X

i)2 +
1

4
H2
αµ̇ν̇ +

1

2
(H1̇2̇3̇ + C1̇2̇3̇)2

+
g4

4
{X µ̇, X i, Xj}2 +

g4

12
{X i, Xj, Xk}2. (5.2.22)

In order to find the energy bound corresponding to the self-dual string soliton we

consider the situation in which there is only one active scalar field which we call

X. Furthermore we assume that this scalar is a function of only four of the spatial

worldvolume coordinates of the M5 brane, namely µ̂ = (2, 1̇, 2̇, 3̇). In what follows

we will assume C1̇2̇3̇ = 0. In this case the energy density takes the following form

E =
1

2
(D̃µ̂X)2 +

1

12
H2
µ̂ν̂ρ̂ (5.2.23)

We can re-write this as

E =
1

2
|D̃µ̂X ±

1

6
ε ν̂ρ̂σ̂µ̂ Hν̂ρ̂σ̂|2 ∓

1

6
εµ̂ν̂ρ̂σ̂D̃µ̂XHν̂ρ̂σ̂ (5.2.24)

We see that the energy density is minimised when the BPS equation

D̃µ̂X ±
1

6
ε ν̂ρ̂σ̂µ̂ Hν̂ρ̂σ̂ = 0 (5.2.25)

is satisfied. In this case the energy is bounded by the central charge

Z = ∓1

6
εµ̂ν̂ρ̂σ̂D̃µ̂XHν̂ρ̂σ̂. (5.2.26)

The BPS equation (5.2.25) matches the result found recently in [131], where the

author used supersymmetry arguments to derive the BPS equation corresponding

80



CHAPTER 5. NAMBU-POISSON M5-BRANE SUPERALGEBRA

to the self dual string soliton. Furthermore the energy bound (5.2.26) matches

the central charge found in the superalgebra of the previous section. The effect

of turning on the C1̇2̇3̇ field is to modify the BPS equation and energy bound

by shifting the H1̇2̇3̇ component of the field strength. In [14] a generalisation

of the Seiberg-Witten map was shown to relate the theory of M5-branes based

on Nambu-Poisson bracket with the theory of an M5-brane in constant 3-form

background. In [131], solutions to the BPS equation (5.2.25) were found up to

first order in the coupling g. The generalised Seiberg-Witten map was then used

to match the solution with the known results derived in [132], [133]. We have

shown that the energy bound corresponding to this solution can be seen from

the Hamiltonian and superalgebra perspective. Next we will consider the 3-brane

soliton corresponding to an M5-M5 intersection. We will let the 3-brane lie in

the (0, 1, 2, 1̇) plane with transverse directions in the ȧ = (2̇, 3̇) directions. We

allow two scalars to be non-zero and label them X and Y . These scalars are

only functions of the transverse directions (2̇, 3̇). In this case the energy density

(5.2.22) becomes

E =
1

2
(D̃ȧX)2 +

1

2
(D̃ȧY )2

=
1

2
|D̃ȧX ± εȧḃD̃ḃY |

2 ∓ εȧḃD̃ȧXD̃ḃY (5.2.27)

Thus we see that the energy is bounded by

Z = εȧḃD̃ȧXD̃ḃY. (5.2.28)

This matches the central charge of the 3-brane vortex found in the superalgebra

of the previous section. This concludes our discussion of the M5-brane central

charges. In the next section we will investigate the double dimensional reduction

of the M5-brane Nambu-Poisson superalgebra.
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5.3 Double Dimensional Reduction of Superalgebra

In this section we perform a double-dimensional reduction of the Nambu-Poisson

M5-brane superalgebra. We then attempt to provide an interpretation of the

corresponding charges in terms of spacetime intersections involving the D4-brane.

Importantly we will see that the algebra we derive consists of only the ‘Poisson-

bracket’ terms of the full non-commutative D4-brane superalgebra.

5.3.1 Dimensional Reduction Conventions

In order to perform the double-dimensional reduction we choose the compactifi-

cation direction to be X 3̇. Following the conventions of [14] we define the gauge

potential as

âµ = bµ3̇, âα̇ = bα̇3̇. (5.3.1)

As a result the covariant derivatives become

DµX
α̇ = −εα̇β̇F̂µβ̇, DµX

3̇ = −ãµ, DµX
i = D̂µX

i, (5.3.2)

where we define

F̂ab = ∂aâb − ∂bâa + g{âa, âb},

ãµ = εα̇β̇∂α̇bµβ̇,

D̂µΦ = ∂µΦ + g{âµ,Φ}. (5.3.3)

The Poisson bracket {∗, ∗} is defined as the reduction of the Nambu-Poisson

bracket

{f, g} = {y3̇, f, g}. (5.3.4)
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The relevant Nambu-Poisson Brackets are

{X 1̇, X 2̇, X 3̇} =
1

g2
F̂1̇2̇ +

1

g3
(5.3.5)

{X 3̇, X α̇, X i} =
1

g2
εα̇β̇D̂β̇X

i (5.3.6)

{X 3̇, X i, Xj} =
1

g
{X i, Xj} (5.3.7)

To perform the dimensional reduction it will prove easiest if we start with the

M2-brane central charges and re-write them in terms of the D4-brane variables

directly4.

5.3.2 D4-brane Superalgebra

We begin by using the conventions of the previous section to re-write the central

charges of the M2-brane theory. One finds

−DαX
IDβX

JεαβΓIJΓ0 →+ D̃αX
iD̃βX

jΓαβΓij + 2F̃β̇αD̃βX
iΓβ̇α̇βΓiΓ3̇

+ F̃αγ̇F̃βδ̇Γ
αγ̇βδ̇ + 2F̃0βF̃βγ̇Γ

0γ̇

+ 2D̃βX
iF̃0βΓ3̇iΓ0.

D0X
K{XK , XI , XJ}ΓIJΓ0 →+

1

2
F̃αβF̃α̇β̇Γαβα̇β̇ +

1

g
F̃αβΓ1̇2̇Γαβ

+ F̃αβD̃γ̇X
iΓαβγ̇ΓiΓ3̇ +

g

2
F̃αβ{X i, Xj}ΓαβΓij

+ F̃0β̇F̃α̇β̇Γ0β̇α̇γ̇ + 2F̃0β̇F̃β̇γ̇Γ
0γ̇

+
2

g
F̃0β̇Γ0β̇Γ1̇2̇ + 2D̃β̇X

iF̃0β̇Γ3̇iΓ0

+ 2gD̃0X
i{X i, Xj}Γ0ΓjΓ3̇ − 2D̃0X

iD̃β̇X
iΓ0β̇.

(5.3.8)

4This is equivalent to performing the reduction on the M5-brane superalgebra directly.
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1

3
D̃βX

I{XJ , XK , XL}ΓIJKLεαβΓα0 →+ F̃α̇β̇D̃γX
iΓα̇β̇γΓiΓ3̇ +

2

g
D̃βX

iΓiΓ1̇2̇3̇Γβ

+ gF̃αβ̇{X
i, Xj}Γαβ̇Γij + gD̃βX

i{Xj, Xk}Γ3̇ΓβΓijk

+ 2F̃αβ̇D̃γ̇X
iΓαβ̇γ̇ΓiΓ3̇ + 2D̃αX

iD̃β̇X
jΓαβ̇.

1

4
{XM , XI , XJ}{XM , XK , XL}ΓIJKL →+

g

2
F̃α̇β̇{X

i, Xj}Γα̇β̇Γij + {X i, Xj}Γ1̇2̇Γij

+ gD̃α̇X
i{Xj, Xk}Γ3̇Γβ̇Γijk + D̃α̇X

iD̃β̇X
jΓα̇β̇Γij

+
g2

4
{X i, Xj}{Xk, X l}Γijkl. (5.3.9)

Looking at these terms we notice that many of them share the same structure

despite originating from different M2-brane charges. Combining these terms it is

possible to write the D4-brane superalgbera as

{Q,Q}central = + D̃aX
iD̃bX

jΓabΓij + D̃aX
iF̃bcΓ

abcΓiΓ3̇ − 2D̃aX
iF̃0aΓ

0ΓiΓ3̇

+
1

4
F̃abF̃cdΓ

abcd +
g

2
F̃ab{X i, Xj}ΓabΓij + gD̃aX

i{Xj, Xk}ΓaΓijkΓ3̇

+
g2

4
{X i, Xj}{Xk, X l}Γijkl +

1

g
F̃αβΓ1̇2̇Γαβ +

2

g
D̃βX

iΓiΓ1̇2̇3̇Γβ

+ {X i, Xj}Γ1̇2̇Γij + 2gD̃0X
i{X i, Xj}Γ0ΓjΓ3̇ − 2D̃0X

iD̃β̇X
iΓ0β̇

(5.3.10)

where the spatial coordinates of the brane are labeled by a = (α, α̇) .

5.3.3 Interpretation of charges

In [14] (see also [134]) it was argued that the Nambu-Poisson BLG theory is a the-

ory of an M5-brane in a strong C-field background. This was motivated by the fact

that, upon double dimensional reduction, the theory shares a structural similarity

to a non-commutative D4-brane theory. It is important however to emphasise a

few points relating to this interpretation. The double dimensional reduction of

the Nambu-Poisson M5-brane only captures the Poisson bracket structure of the

non-commutative D4-brane action, but misses all the higher order terms in the
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θ-expansion of the Moyal bracket. Recall that the non-commutative D4-brane

theory is described using the Moyal ∗ product (see for example [135]). It is possi-

ble to expand the Moyal bracket in θ. One finds at lowest order in θ the Poisson

bracket structure,

[f, g]Moyal = f ∗ g − g ∗ f = θij∂if∂jg +O(θ3). (5.3.11)

where

f(x) ∗ g(x) = e
i
2
θij ∂

∂ξi
∂

∂χj f(x+ ξ)g(x+ χ)|ξ=χ=0. (5.3.12)

The fact that the double-dimensional reduction of the Nambu-Poisson theory only

captures the lowest order term in the Moyal-bracket means that one is not able

to identify this theory as the full non-commutative D4-brane theory. Rather it

may be viewed as a Poisson-bracket truncation of the full non-commutative field

theory.5 Given these considerations, plus the fact that higher order terms in g

are considered in this paper, it is important to emphasise that the results derived

for the central charges in (5.3.10) are only valid for the Poisson-bracket D4-brane

theory.

We know that the D4-brane results from the double dimensional reduction of

the M5-brane and therefore one would expect to see remnants of the M5-brane

solitons in the worldvolume superalgebra of the D4-brane. Furthermore, the M5-

brane couplings to the background 3-form should appear as couplings to the NS-

NS 2-form B-field from the D4-brane perspective. As outlined in [19], the self dual

string soliton from the M5-brane worldvolume theory can be reduced to a 0-brane

or 1-brane solution on the D4-brane worldvolume depending on whether the string

is wrapped or un-wrapped around the compact dimension. In the abelian case the

BPS equation corresponding to the 0-brane BPS soliton on the D4-brane takes

the form F0a ∝ ∂aX where X is the only active scalar field parameterising a single

direction transverse to the brane. From this one can read off the energy bound

5In a recent paper [136] the question was asked whether it is possible to deform the Nambu-
Poisson M5-brane theory such that its double dimensional reduction gives rise to the full non-
commutative Yang-Mills theory to all orders in the non-commutativity parameter θ. They
found that there is no way to deform the Nambu-Poisson gauge symmetry such that the full
non-commutative gauge symmetry was recovered upon double-dimensional reduction.
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when the BPS equation is satisfied which is proportional to ∂aXF0a. We see

the covariant generalisation of this term appearing in the superlagebra derived

above in the form DaX
iF0a. This bound can naturally be interpreted as the

endpoint of a fundamental string on the D4-brane. Alternatively, the 1-brane

soliton resulting from the un-wrapped self-dual string has BPS equation Fbc ∝
εabc∂

aX with corresponding energy bound proportional to εabc∂aXFbc. This term

can naturally be compared with DaX
iFbcΓ

abc appearing in (5.3.10). One can think

of this as the bound associated with a D2-brane intersecting a D4-brane which

appears as a 1-brane soliton from the D4-brane perspective. It is worth noting

that the D4-brane worldvolume superalgebra allows scalar central charges in the

1+5 representation of the Spin(5) R-symmetry group which can be interpreted as

the transverse rotation group. As noted above, the scalars in the 5 representation

can be interpreted as the endpoints of fundamental strings on the D4-brane. The

Spin(5) singlet scalar is a magnetic charge which from the spacetime perspective

corresponds to a D0-brane intersecting a D4-brane. Because it is a singlet its

charge cannot depend on any transverse scalars. Following arguments similar to

those presented in [53], one can show that the total energy E of this configuration,

relative to the worldvolume vacuum, is subject to the bound E ≥ |Z| where Z is

the topological charge

Z =
1

4

∫
D4

trFF̃ . (5.3.13)

This corresponds to the central charge appearing in the superalgebra

1

4
F̃abF̃cdΓ

abcd ∝ 1

4
F̃abF̃cdε

abcd

=
1

4
F̃ ˜̃F . (5.3.14)

The central charge in (5.3.10) involving two covariant derivatives, D̃aX
iD̃bX

j,

derives from the 3-brane vortex on the M5-brane worldvolume corresponding to

an M5-M5 intersection. The double dimensional reduction of the 3-brane gives

rise to a 2-brane on the D4-brane worldvolume. This may be interpreted as the

intersection of two D4-branes over a 2-brane. It is interesting to notice that

the superalgebra contains a central charge term proportional to D̃aX
i{Xj, Xk}.
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This charge would appear to represent the Poisson-bracket analogue of the energy

bound associated with the Nahm equation which describes the intersection of

multiple D2-branes with a D4-brane. However it is well known that the Nahm

equation is the BPS equation associated with the non-abelian worldvolume theory

of D-branes. It therefore seems queer that any information regarding the energy

bound of such a configuration should appear in the worldvolume theory of a single

D4-brane. It is not immediately clear how to interpret this charge (or the M-

theory uplift appearing in the Nambu-Poisson M5-brane algebra). Furthermore,

the central charge proportional to {X i, Xj}{Xk, X l} seems analogous to the D4-

brane charge appearing in the matrix model for M-theory found in [102] (with

matrix commutator replaced by Poisson-bracket).

In this section we have seen that the D4-brane algebra (5.3.10) contains a

wealth of information regarding spacetime configurations of the D4-brane, includ-

ing information about intersections involving multiple D0-branes and multiple

D2-branes from the perspective of the D4-brane. We have also seen Poisson-

bracket analogues of charges that one would expect to find in the non-abelian

worldvolume superalgebra of the D0-brane and D2-brane.

5.3.4 Comments on 1/g terms in D4-brane theory

It is worth making a few comments regarding the interpretation of the 1/g terms

appearing in the superalgebra (5.3.10). In [14], the coupling of the dimension-

ally reduced theory was identified with the non-commutativity parameter of the

D4-brane theory, g = θ. Based on this identification one can think of the 1/g

terms as representing 1/θ modifications of certain central charge terms. More

precisely, any term in the algebra (5.3.10) deriving from the dimensional reduc-

tion rule (5.3.5) will contain a term of the form (F1̇2̇+1/θ) (once we have identified

g = θ). Ultimately we can think of this shift in the (1̇2̇) components of the field

strength as being related to the presence of a background B-field. After all, the

non-commutative theory is meant to be an effective description of the D4-brane

in B-field background. In order to move from the non-commutative description

(without background flux) to the ‘commutative’ description involving the back-
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ground B-field it is necessary to use the Seiberg-Witten map [135]. In principle

this can be done for the central charge terms involving 1/θ appearing in (5.3.10).

It is known for example that from the perspective of the 1-brane soliton on the

D4-brane worldvolume, the presence of a background B-field causes a tilting of

the 1-brane as it extends from the D4-brane. This can be shown to result from a

shift in the field strength by the B-field. This shift leads to a change in the form

of the BPS equation and therefore the corresponding BPS energy bound (central

charge).

We end this chapter by noting that there is a slightly puzzling feature of

the D4-brane algebra appearing in (5.3.10). This is related to the fact that,

for the case studied in this chapter, it would seem the correct non-commutative

description of the D4-brane theory is the matrix model description. This might

be inferred from the fact that the Nambu-Poisson M5-brane theory is constructed

from the M2-brane action (The analogous situation in type IIA string theory

would be constructing the D4-brane from the D2-brane action and we know the

matrix theory description naturally arises in this setting). In this case, following

[137], one expects to find the combination (F − 1/θ) appearing in the action, not

(F + 1/θ). This discrepancy may be related to the fact that the reduction of

the Nambu-Poisson algebra only gives the Poisson terms of the non-commutative

D4-brane theory, whereas the combination (F − 1/θ) appears in the full non-

commutative theory. We hope to return to this issue in a future publication. We

would like to thank the referee of [2] for bringing this point to our attention.
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CHAPTER 6

HIGHER-ORDER

BAGGER-LAMBERT THEORY

The Bagger-Lambert Lagrangian and supersymmetry transformations presented

in Chapter 2 can be thought of as representing the leading order terms in an lp

expansion of a non-linear M2-brane theory. This is analogous to the fact that

super Yang-Mills theory represents the leading order terms of the non-abelian

Born-Infeld action, which is believed to describe the dynamics of coincident D-

branes.1 Ultimately one would like to determine the full theory, of which the

leading order terms are those of the Bagger-Lambert Lagrangian. Toward this

end it is constructive to consider the next order in lp corrections to the theory.

At the level of the Lagrangian this analysis has been performed in the literature

[140, 141] using two complimentary methods.2

The first method involves a duality transformation due to de-Witt, Nicholai

and Samtleben (dNS). This duality is based on the fact that in (2+1) dimensions,

a gauge field is dual to a scalar, and it is therefore possible to replace the gauge-

field with a scalar field such that the theory possesses a manifest SO(8), rather

than SO(7) symmetry. In [146], it was shown that applying this procedure to

the D2-brane Lagrangian, it is possible to re-write the theory as a Lorentzian

Bagger-Lambert theory. This technique was then applied to the α′2 terms of the

D2-brane Lagrangian in order to determine the l3p corrections to the Lorentzian

Bagger-Lambert theory3. Remarkably, all higher order Lagrangian terms were

1Note that the symmetrised trace prescription of the non-abelian Born-Infeld action [138]
breaks down at sixth order and higher in the worldvolume field strength [139].

2For other discussions on non-linear corrections to Bagger-Lambert theory see [142–145].

3Lorentzian Bagger-Lambert theories are considered in [134, 147–150]. See also [151–154].
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expressible in terms of basic building blocks involving covariant derivatives, DµX
I

and three-brackets [XI , XJ , XK ]. This led the authors of [140] to conjecture that

the higher derivative Lagrangian they had derived would also apply to the A4

Bagger-Lambert Theory.

This conjecture was confirmed in [141] where the novel Higgs mechanism was

used to determine the A4 theory Lagrangian at order l3p. This involved using di-

mensional analysis to write down all possible l3p corrections to the Bagger-Lambert

Lagrangian with arbitrary coefficients. The coefficients were fixed by applying the

novel Higgs mechanism to the higher order terms and matching them to the α′2

terms of the D2-brane theory. It was shown that the structure of the higher order

terms in both the A4 and Lorentzian theories take the same form.

Given that the l3p corrections to the Bagger-Lambert theory have been cal-

culated, one might ask whether these terms are maximally supersymmetric, and

if so, to determine the structure of the higher order supersymmetry transforma-

tions. In this chapter we begin the task of calculating the l3p corrections to the

supersymmetry transformations of the Bagger-Lambert theory. The hope is that

closure of the higher order supersymmetry transformations would uniquely de-

termine the higher order corrections to the Bagger-Lambert equations of motion

which can then be ‘integrated’ to determine the higher order Lagrangian, which

by definition, would be supersymmetric. One could in principle write down all

possible l3p corrections to the supersymmetry transformations and then try and fix

the coefficients by demanding the closure of the supersymmetry algebra. However

the plethora of possible terms at order l3p would make the closure of the algebra a

mammoth task. To try and simplify the problem we will use the non-abelian D2-

brane theory as a guide. We know that dNS duality transformation allows us to

map the non-abelian D2-brane Lagrangian into the Lorentzian Bagger-Lambert

Lagrangian. Furtherore we know that the structure of this Lagrangian is the

same as the structure of the A4 theory Lagrangian. It is natural to ask whether

this methodology can tell us anything about how the higher order D2-brane super-

symmetry transformations are related to the l3p corrections to the Bagger-Lambert

supersymmetry transformations.
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In the first part of this chapter we will review the dNS duality transforma-

tion [15–17] by considering how the Lorentzian Bagger-Lambert Lagrangian can

be derived from the D2-brane theory. We will then attempt to apply the dual-

ity transformation at the level of supersymmetry transformations. To simplify

the task we will begin by only considering the ‘abelian’ Bagger-Lambert theory.

We will see that the duality transformation works for the fermion variation but

fails to work for the scalar variation. Therefore in order to calculate the scalar

variation we have to use a different approach. This involves using dimensional

analysis to write the most general scalar variation with arbitrary coefficients.

Invariance of the higher order Lagrangian is then used to fix the values of the

coefficients. In the final part of this chapter we begin the task of calculating the

full ‘non-abelian’ Bagger-Lambert supersymmetry transformations at O(l3p). We

are able to uniquely determine the higher order fermion variation but unable to

uniquely determine the scalar variation. As a result, this chapter represents work

in progress. The content of this chapter is based on the original work presented

in [3].

6.1 Non-abelian duality in 2+1 dimensions

We begin by reviewing a prescription for dualising non-abelian gauge fields in

(2+1) dimensions due to de Wit, Nicolai and Samtleben (dNS)[15–17]. We will

follow the presentation of [146]. According to the dNS prescription the Yang-

Mills gauge field Aµ gets replaced by two non-dynamical gauge fields Aµ and Bµ

with a B ∧ F type kinetic term, plus an extra scalar which ends up carrying the

dynamical degrees of freedom of the original Yang-Mills gauge field. The duality

transformation is enforced by making the replacement

Tr

(
− 1

4g2
YM

FµνF
µν

)
→ Tr

(
1

2
εµνλBµFνλ −

1

2
(Dµφ− gYMBµ)2

)
. (6.1.1)

We wish to consider the effect of this transformation on the multiple D2-brane

theory. The low energy Lagrangian for this theory is obtained by reducing ten-

dimensional U(N) super Yang-Mills theory to (2+1) dimensions. In this case,
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making the replacement (6.1.1) in the D2-brane Lagrangian results in the dNS

transformed Lagrangian4

L =Tr(
1

2
εµνλBµFνλ −

1

2
(Dµφ− gYMBµ)2 − 1

2
DµX

iDµX i

− g2
YM

4
[X i, Xj][X i, Xj] +

i

2
ψ̄ΓµDµψ +

i

2
gYM ψ̄Γi[X

i, ψ]). (6.1.2)

The gauge invariant kinetic terms for the eight scalars can be shown to possess

an SO(8) invariance by renaming φ→ X8 and writing

D̃µX i = DµX
i = ∂µX

i − [Aµ, X
i], i = 1, 2, . . . , 7 (6.1.3)

D̃µX8 = DµX
8 − gYMBµ = ∂µX

8 − [Aµ, X
8]− gYMBµ. (6.1.4)

Defining the constant 8-vector

gIY M = (0, . . . , 0, gYM), I = 1, 2, . . . , 8, (6.1.5)

allows one to define the covariant derivative

D̃µXI = DµX
I − gIY MBµ. (6.1.6)

It is then possible write the super Yang-Mills action in a form that is SO(8)

invariant under transformations that rotate both the fields XI and the coupling

constant vector gIY M :

L = Tr

(
1

2
εµνλBµFνλ −

1

2
(D̃µX

I)2 +
i

2
ψ̄ΓµDµψ +

i

2
gIY M ψ̄ΓIJ [XJ , ψ]− 1

12
(XIJK)2

)
(6.1.7)

where the three-bracket XIJK is defined as

XIJK = gIY M [XJ , XK ] + gJYM [XK , XI ] + gKYM [XI , XJ ]. (6.1.8)

4This action exhibits an abelian gauge symmetry allowing one to pick a gauge in which either
DµBµ = 0 or φ = 0. In the latter case Bµ becomes an auxiliary field that can be integrated out
thereby showing the equivalence of the LHS and RHS of (6.1.1). For explicit details see [146].
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This theory is only formally SO(8) invariant, as the transformations must act on

the coupling constants as well as the fields. However, one can replace the vector

of coupling constants gIY M by a new (gauge singlet) scalar XI
+ provided that the

new scalar field has an equation of motion that renders it constant. Constancy of

XI
+ is imposed by adding a new term to the Lagrangian involving a set of abelian

gauge fields and scalars CI
µ and XI

−:

LC = (Cµ
I − ∂

µXI
−)∂µX

I
+. (6.1.9)

As explained in [146, 150], this term has the effect of constraining the vector

XI
+ to be an arbitrary constant which can be identified with gIY M . In this way

one recovers the gauge-fixed Lorentzian models of [149, 150]. One might wonder

whether this non-abelian duality works when higher order (in α′) corrections are

included in the D2-brane theory. In particular, does the 3-algebra structure sur-

vive α′ corrections? In [140, 141] it was shown that at O(α′2) the duality does

work and all terms in the resulting l3p corrected M2-brane theory are expressible

in terms of D̃µX
I and XIJK building blocks. Another question one might ask

is whether this duality works at the level of supersymmetry transformations and

if so, would it be possible to derive the O(l3p) corrections to the Bagger-Lambert

supersymmetry transformations? The first step towards answering this question

is to consider how abelian duality in (2+1) dimensions can be implemented at the

level of supersymmetry transformations. To this we now turn.

6.2 Abelian Duality and Supersymmetry

Our ultimate objective is to determine higher order supersymmetry transforma-

tions in Bagger-Lambert theory by using the dNS procedure outlined in the previ-

ous section. As a warm-up exercise we will consider dualising abelian gauge-fields

to scalars in 2+1 dimensions and see how this works at the level of supersymmetry

transformations for a single D2-brane. Let us begin by considering abelian duality

at the level of the Lagrangian.
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6.2.1 Abelian Duality

Consider the following 2+1 dimensional action involving a Lagrange multiplier

field X

S = −
∫
d3σ(

1

4
FµνF

µν +
1

2
εµνλF

µν∂λX) (6.2.1)

We see that the gauge field equation of motion takes the form

Fµν = −εµνλ∂λX (6.2.2)

whereas the X equation of motion takes the form of the Bianchi identity

εµνλ∂
µF νλ = 0. (6.2.3)

If we substitute the gauge field equation of motion into (6.2.1) then we find a

kinetic term for X∫
d3σ(

1

4
FµνF

µν +
1

2
εµνλF

µν∂λX)→
∫
d3σ

1

2
∂µX∂

µX. (6.2.4)

Alternatively, use of the Bianchi identity in (6.2.1) results in∫
d3σ(

1

4
FµνF

µν +
1

2
εµνλF

µν∂λX)→
∫
d3 1

4
FµνF

µν . (6.2.5)

with F = dA. So how does this relate to the D2-brane theory? The leading order

Lagrangian for a single D2-brane can be obtained by dimensional reduction of

super Yang-Mills theory in ten dimensions. The bosonic D2-brane action can be

expressed as

S =

∫
d3σ(−1

4
FµνF

µν − 1

2
∂µX

i∂µX i). (6.2.6)

Abelian duality is implemented by making the replacement

−1

4
FµνF

µν → −(
1

4
FµνF

µν +
1

2
εµνλ∂

µXF νλ) (6.2.7)
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in the action (6.2.6). Use of the gauge field equation of motion (6.2.2) then results

in

S =

∫
d3σ(−1

4
FµνF

µν − 1

2
εµνλF

µν∂λX − 1

2
∂µX

i∂µX i)

=

∫
d3σ(−1

2
∂µX∂

µX − 1

2
∂µX

i∂µX i)

=

∫
d3σ(−1

2
∂µX

I∂µXI) (6.2.8)

where in obtaining the last line we identified X = X8 as the eighth scalar field.

We see that the scalar kinetic term now has the desired SO(8) invariant form.

Note that it is possible to implement abelian duality in (2+1) dimensions at the

level of the full DBI action [155]. In this way one is able to derive a non-linear

Lagrangian for a membrane in the static gauge with the expected SO(8) symmetry.

Now that we have seen how abelian duality works at the level of the Lagrangian

let us consider applying this to the supersymmetry transformations of a single

D2-brane.

6.2.2 supersymmetry transformations

The D2-brane supersymmetry transformation can be obtained by dimensionally

reducing the supersymmetry transformations of ten dimensional super Yang-Mills.

The spinors appearing in the 10-dimensional theory are Majorana-Weyl and satisfy

Γ(10)χ = χ (6.2.9)

where Γ(10) is the ten dimensional chirality matrix. Since we are interested in

uplifting the D2-brane theory to M-theory it is desirable to look for an embedding

of SO(1, 9) into SO(1, 10) in which Γ(10) becomes the eleventh gamma matrix.

We denote the gamma matrices of SO(1, 10) as ΓM(M = 0, . . . , 9, 10). In eleven

dimensions the spinors will be Majorana. However we know that the presence of

the M2-brane breaks the Lorentz symmetry as SO(1, 10)→ SO(1, 2)×SO(8) and

therefore we can have a Weyl spinor of SO(8). Let us denote the chirality matrix
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of SO(8) by Γ where

Γ = Γ3...9(10) (6.2.10)

The M2-brane breaks half the supersymmetry of the vacuum. We choose conven-

tions consistent with chapter 3 in which

Γε = ε, Γψ = −ψ. (6.2.11)

Under dimensional reduction the (9+1) dimensional gauge field will split into

a (2+1)-dimensional gauge field Aµ and a scalar field X i transforming under

SO(7). As usual with dimensional reduction, the fields are independent of the

circle directions such that one can set ∂i = 0. In what follows, for reasons that

will become clear shortly, we will label µ = 0, 1, 2 and i = 1, . . . 7 with the ten-

dimensional chirality matrix relabeled as Γ(10) = Γ8. Dimensional reduction of

the ten-dimensional super Yang-Mills transformations

δAM = iε̄ΓMψ

δψ =
1

2
ΓMNFMNε (6.2.12)

results in the following D2-brane transformations

δX i = iε̄Γiψ (6.2.13)

δAµ = iε̄ΓµΓ8ψ (6.2.14)

δψ =
1

2
ΓµνFµνΓ

8ε+ ΓµΓi∂µX
iε (6.2.15)

We now consider the effect of applying abelian duality at the level of supersym-

metry transformations. This can be achieved by using (6.2.2) to write

∂µX
8 =

1

2
εµνλF

νλ (6.2.16)

where we have relabeled the scalar appearing in (6.2.2) as X8 (this will provide the

‘eighth’ scalar which will combine with the other seven to give an SO(8) invariant

supersymmetry transformation). Performing the duality transformation on the
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fermion variation involves substituting (6.2.16) into (6.2.15)

δψ =
1

2
εµνλΓ

µν∂λX8Γ8ε+ ΓµΓi∂µX
iε

= ΓµΓ8∂µX
8ε+ ΓµΓi∂µX

iε

= ΓµΓI∂µX
Iε. (6.2.17)

We see that this now takes the desired SO(8) form. In order to determine the

SO(8) transformation of the scalar field δXI we need to consider (6.2.14) re-written

as

δFµν = −2iε̄Γ[µΓ8∂ν]ψ. (6.2.18)

Substituting (6.2.16) into the left-hand side of this transformation allows us to

write

∂λδX8 = −iε̄εµνλΓ[µΓ8∂ν]ψ

= iε̄ΓνλΓ8∂νψ

= iε̄(ηνλ − ΓλΓν)Γ8∂νψ

= iε̄Γ8∂λψ (6.2.19)

where we have made use of the lowest order fermion equation of motion Γµ∂µψ = 0.

This relation implies that δX8 = iε̄Γ8ψ which can be combined with δX i = iε̄Γiψ

to give

δXI = ε̄ΓIψ. (6.2.20)

In summary we see that at lowest order it is possible to re-write the D2-brane

supersymmetry transformations in an SO(8) invariant form. For the fermion vari-

ation this simply involved substituting (6.2.16) into the D2-brane expression. For

the scalar field variation it was necessary to ‘dualise’ the gauge field variation δFµν

to form the eighth scalar. In the next section we extend our analysis to higher

order abelian supersymmetry transformations.
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6.3 Higher Order Abelian Supersymmetry

In this section we will determine the l3p corrections to the abelian M2-brane super-

symmetry transformations (excluding bi-linear and tri-linear fermion terms). We

begin by using dimensional arguments to determine the structure of the supersym-

metry transformations. We will then apply the duality transformation outlined in

the previous section to the O(α′2) D2-brane supersymmetry transformations. We

will see that this procedure uniquely determines the fermion variation but fails to

work for the scalar variation. This will motivate us to try a different approach.

6.3.1 Dimensional Analysis

Dimensional analysis tells us that the mass dimensions of the fields appearing in

the Bagger-Lambert theory are [X] = 1
2
, [ψ] = [Aµ] = 1. The supersymmetry

parameter ε carries mass dimension [ε] = −1
2
. We expect the first non-trivial

corrections to the supersymmetry transformations to appear at O(l3p). Therefore

we see that the O(l3p) terms in δψ must be mass dimension 4. In a similar manner

the correction terms in δX must be mass dimension 31
2
. For the sake of simplicity

we will neglect bi-linear fermion terms in the scalar variation and tri-linear fermion

terms in the fermion variation. In terms of the basic building blocks of scalar fields

and derivatives, the only possible types of term appearing in the fermion variation

at O(l3p) are those involving three derivatives and three scalar fields. If we assume

that derivatives must always act on scalars (with at most one derivative) then a

little thought reveals that the higher-order fermion variation takes the form

δψ = + a1l
3
pΓµΓI∂νX

J∂νXJ∂µXIε+ a2l
3
pΓµΓI∂µXJ∂νX

J∂νXIε

+ a3l
3
pε
µνρΓIJK∂µX

I∂νX
J∂ρX

Kε. (6.3.1)

The motivation for assuming that scalars are always acted on by derivatives is

based on the form of the α′2 D2-brane supersymmetry transformations (derived

in the next section) which have no free scalar terms. Let us now consider the scalar

transformation. Based on dimensional analysis and the reasons already outlined,
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the only types of term appearing in the scalar variation are those involving two

derivatives, two scalar fields and a fermion. Considering all independent index

contractions one arrives at the following expression

δXI = + b1l
3
p ε̄Γ

Iψ∂µX
J∂µXJ + b2l

3
p ε̄Γ

Jψ∂µX
I∂µXJ

+ b3l
3
p ε̄Γ

JΓµνψ∂µX
I∂νX

J + b4l
3
p ε̄Γ

µνΓIJKψ∂µX
J∂νX

K . (6.3.2)

Our task in the remainder of this section is to fix the coefficients appearing in

(6.3.1) and (6.3.2). There are a number of ways that this can be achieved. In

the next section we will attempt to fix these coefficients through abelian duality.

We will see that this only works for the fermion variation. In order to determine

the scalar variation we will have to use a different approach. This will involve

checking that the higher order abelian Lagrangian derived in [141] is invariant

under (6.3.1) and (6.3.2). Not only will this allow us to determine the scalar

variation coefficients but it will also provide a test for the fermion terms derived

using the duality approach.

6.3.2 Higher Order Abelian Supersymmetry via Dualisation

In this section we will attempt to derive the higher order abelian supersymme-

try transformations using abelian duality. Our starting point will be the O(α′2)

supersymmetry transformations of the ten-dimensional super Yang-Mills theory.

These were first discovered by Bergshoeff and collaborators in [156]5

δψ = α′2(λ1ΓMNFPQF
PQFMNε+ λ2ΓMNFMPF

PQFQNε+ λ3ΓMNPQRFMNFPQFRSε).

δAM = α′2(α1ε̄ΓMFNPF
NPψ + α2ε̄ΓNFMPF

PNψ + α3ε̄Γ
NPQFMNFPQψ

+ α4ε̄ΓMNPQRF
NPFQRψ). (6.3.3)

Note that in [156] the fermion variation also included tri-linear fermion terms

and the gauge field variation included bi-linear fermion terms which we have

not included for the sake of simplicity. We have purposely left the coefficients

5The form of these transformations was later confirmed in [157–159].
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unspecified. The hope is that these coefficients will be fixed by the requirement

that the (2+1) dimensional transformations collect into SO(8) invariant terms

under the duality transformation. Next we wish to reduce these expressions to

(2+1) dimensions. We will first focus on the fermion. Performing the dimensional

reduction one finds

λ1ΓMNFPQF
PQFMNε→+ λ1ΓµνFµνF

ρσFρσε+ 2λ1ΓµνFµν∂
ρX i∂ρX

iε

+ 2λ1ΓµΓi∂µX
iFρσF

ρσε+ 4λ1ΓµΓi∂µX
i∂νXj∂νX

jε.

(6.3.4)

λ2ΓMNFMPF
PQFQNε→+ λ2ΓµνFµρF

ρσFσνε− 2λ2ΓµνFµρ∂
ρX i∂νX

iε

+ 2λ2ΓµΓiFµρF
ρσ∂σX

iε

− 2λ2ΓµΓi∂µX
j∂ρXj∂ρX

iε− λ2Γij∂ρX
iF ρσ∂σX

jε.

λ3ΓMNPQRSFMNFPQFRSε→− 8λ3ΓµνρΓijk∂µX
i∂νX

j∂ρX
kε. (6.3.5)

Next we dualise the gauge field using (6.2.16). After a small amount of algebra

one finds

λ1ΓMNFPQF
PQFMNε→+ 4λ1Γµ∂µX

8∂νX8∂νX
8ε− 4λ1Γµ∂µX

8∂νX i∂νX
iε

− 4λ1ΓµΓi∂µX
i∂νX8∂νX

8ε+ 4λ1ΓµΓi∂µX
i∂νXj∂νX

jε.

(6.3.6)

λ2ΓMNFMPF
PQFQNε→− 2λ2Γµ∂νX

8∂νX8∂µX
8ε− 2λ2Γµ∂νX8∂µX

i∂νX iε

+ 2λ2Γµ∂µX
8∂νX i∂νX

iε+ 2λ2ΓµΓi∂νX
8∂νX8∂µX

iε

− 2λ2ΓµΓi∂νX8∂µX
8∂νX iε− 2λ2ΓµΓi∂µX

j∂ρXj∂ρX
iε

− λ2Γijερσλ∂ρX
i∂λX

8∂σX
jε. (6.3.7)
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λ3ΓMNPQRSFMNFPQFRSε→ −8λ3ΓµνρΓijk∂µX
i∂νX

j∂ρX
kε. (6.3.8)

We would like to re-write these transformed expressions in terms of SO(8) objects.

The only possible SO(8) objects involving three derivatives are those contained

in (6.3.1). The hope is that the fermion supersymmetry transformation should be

expressible as a particular combination of these basic objects. More specifically,

by noting that

ΓµΓI∂νX
J∂νXJ∂µXIε→ ΓµΓi∂νX

j∂νXjDµX iε+ ΓµΓi∂νX
8∂νX8∂µX iε

+ ΓµΓ8∂νX
j∂νXj∂µX8ε+ ΓµΓ8∂νX

8∂νX8∂µX8ε

ΓµΓI∂µXJ∂νX
J∂νXI → ΓµΓi∂µXj∂νX

j∂νX iε+ ΓµΓi∂µX8∂νX
8∂νX iε

+ ΓµΓ8∂µXj∂νX
j∂νX8ε+ ΓµΓ8∂µX8∂νX

8∂νX8ε

(6.3.9)

we can write the terms in (6.3.6)-(6.3.8) as

δψabelian = + 4λ1ΓµΓI∂νX
J∂νXJ∂µXIε− 2λ2ΓµΓI∂µXJ∂νX

J∂νXIε

+ (2λ2 − 8λ1)(Γµ∂νX
j∂νXj∂µX8ε+ ΓµΓj∂νX

8∂νX8∂µXjε)

− 8λ3ΓµνρΓijk∂µX
i∂νX

j∂ρX
kε− λ2Γijερσλ∂ρX

i∂λX
8∂σX

jε. (6.3.10)

The last line in (6.3.10) can be expressed in SO(8) form by noting

εµνρΓIJK∂µX
I∂νX

J∂ρX
Kε→ εµνρΓijk∂µX

i∂νX
j∂ρX

kε+3εµνρΓijΓ8∂µX
i∂νX

j∂ρX
8ε.

Provided with this information we see that it’s possible to write (6.3.10) in SO(8)

form provided the coefficients are related as

λ2 = 4λ1; λ2 = −24λ3. (6.3.11)

101



CHAPTER 6. HIGHER-ORDER BAGGER-LAMBERT THEORY

The final result for the abelian fermion variation is

δψ = + 4λ1l
3
pΓµΓI∂νX

J∂νXJ∂µXIε− 8λ1l
3
pΓµΓI∂µXJ∂νX

J∂νXIε

− 4

3
λ1l

3
pε
µνρΓIJK∂µX

I∂νX
J∂ρX

Kε. (6.3.12)

A few comments are in order. Firstly we see that the structure of these terms

exactly matches the structure of the terms appearing in (6.3.1) with the coeffi-

cients fixed as a1 = 4λ1, a2 = −8λ1 and a3 = −4/3λ1. It remains to determine

λ1. Most remarkably we see that the requirement of SO(8) invariance has placed

a constraint on the coefficients of the ten-dimensional supersymmetry transfor-

mations! Furthermore the ratios of the coefficients exactly matches the literature

[156, 159–161]. Thus it would appear that abelian duality does indeed work at

the level of the fermion supersymmetry transformation. So what about the scalar

variation? One would expect the higher order scalar supersymmetry transforma-

tion to work in a similar way to the lower order transformation. In other words,

one expects the (2+1) dimensional gauge field transformation to contribute (af-

ter dualisation) to the ‘eighth’ component of the scalar transformation δXI . In

order to see how this works we will need to determine δFµν in (2+1) dimensions.

This can be constructed from our knowledge of δAµ. Therefore the first thing we

need to do is dimensionally reduce the ten dimensional gauge field transforma-

tion δAM appearing in (6.3.3). Performing the reduction results in a scalar field

supersymmetry transformation

δX i = + α1ε̄Γ
iFµνF

µνψ + 2α1ε̄Γ
i∂µX

j∂µXj

+ α2ε̄Γµ∂ρX
iF µρψ − α2ε̄Γ

j∂ρX
i∂ρXjψ

− α3ε̄Γ
µνρ∂µX

iFνρψ − α3ε̄Γ
µνΓj∂µX

i∂νX
jψ

− 4α4ε̄Γ
ijkΓµν∂µX

j∂νX
kψ − 4α4ε̄Γ

ijΓµνρFµν∂ρX
j (6.3.13)
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and a gauge field supersymmetry transformation

δAµ = + α1ε̄ΓµFνρF
νρψ + 2α1ε̄Γµ∂ρX

i∂ρX iψ

+ α2ε̄ΓρFµνF
νρψ + α2ε̄Γ

iFµν∂
νX iψ

− α2ε̄Γρ∂
ρX i∂µX

iψ + α3ε̄Γ
νρσFµνFρσψ

+ 2α3ε̄Γ
νρΓiFµν∂ρX

i + α3ε̄Γ
ρσΓi∂µX

iFρσ

− 2α3ε̄Γ
ijΓρ∂µX

i∂ρX
j − 4α4ε̄ΓµνρΓ

ij∂νX i∂ρXj. (6.3.14)

Performing the dualisation of the gauge field results in the scalar transformation

δX i =− 2α1ε̄Γ
i∂µX

8∂µX8ψ + 2α1ε̄Γ
i∂µX

j∂µXjψ

+ α2ε̄Γ
µν∂µX

i∂νX
8ψ − α2ε̄Γ

j∂µX
i∂µXjψ

− 2α3ε̄∂µX
i∂µX8ψ − 2α3ε̄Γ

µνΓj∂µX
i∂νX

jψ

− 8α4ε̄Γ
ij∂µX

j∂µX8ψ − 4α4ε̄Γ
ijkΓµν∂µX

j∂νX
kψ. (6.3.15)

Similarly for the gauge field one finds

δAµ = + (α2 − 2α1)ε̄Γµψ∂νX
8∂νX8 − α2ε̄Γνψ∂

νX8∂µX
8

+ 2α1ε̄Γµψ∂νX
i∂νX i − α2ε̄Γνψ∂µX

i∂νX i

− 2α3ε̄Γ
ijΓσψ∂µX

i∂σX
j − 2α3ε̄ΓµΓjψ∂νX8∂νX

j

+ α2εµνλε̄Γ
jψ∂λX8∂νXj + 4α4εµνρε̄Γ

ijψ∂νX i∂ρXj. (6.3.16)

The hope is that, just as for the fermion, these terms will combine into SO(8)

invariant objects and in doing so fix the ratios of the coefficients. However we

immediately encounter a problem which did not exist for the fermion variation.

To see this let us focus on the first two terms appearing in (6.3.15). These are

the only two terms in (6.3.15) with the correct index structure to form the SO(8)

term ε̄ΓIψ∂µX
J∂µXJ appearing in (6.3.2). However there is a relative minus sign

appearing in these two terms meaning they are unable to combine. The prob-

lem can be traced back to the ten-dimensional gauge-field transformation term

ε̄ΓMFNPF
NPψ. Why is this happening? After all, we know that abelian duality
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works for the D2-brane Lagrangian and we know that the D2-brane Lagrangian

derives from the ten-dimensional Yang-Mills term −1
4
FMNF

MN . Indeed, upon

dimensional reduction of the ten-dimensional Yang-Mills Lagrangian and applica-

tion of (6.2.16) one is left with a term 1
2
∂µX

8∂µX8 − 1
2
∂µX

i∂µX i which will not

combine to form an SO(8) invariant scalar kinetic term. The way this problem is

solved at Lagrangian level is by adding a Lagrange multiplier term 1
2
εµνλ∂

µX8F νλ

which under dualisation (according to (6.2.16)) combines with 1
2
∂µX

8∂µX8 in

such a way as to change the sign of this term thereby allowing it to combine

with −1
2
∂µX

i∂µX i to form the desired SO(8) invariant scalar kinetic term. This

suggests that the problem may in fact be the prescription (6.2.16). In order to

implement the duality on F 2 terms it may be necessary to make the replacement

1
4
F 2 → 1

4
F 2+ 1

2
εµνλ∂

µX8F νλ. However, if this is true then it’s unclear why making

the replacement (6.2.16) works for the fermion variation. Perhaps the reason we

had no problem with the fermion is related to the fact that the ten dimensional

Yang-Mills fermion variation contains terms of order F 3 whereas the gauge-field

variation contains terms of order F 2. The result being that the dualised fermion

variation contains terms with the same structure that derive from different ten-

dimensional terms. This allows for the coefficients to be related in such a way that

unwanted terms are eliminated. This is not true for the scalars. Furthermore, by

observing how the terms in (6.3.2) break-up into SO(7) objects

ε̄ΓIψ∂µX
J∂µXJ → ε̄Γiψ∂µX

8∂µX8 + ε̄Γiψ∂µX
j∂µXj

ε̄ΓµνΓIJKψ∂µX
J∂νX

K → 2ε̄ΓµνΓijψ∂µX
j∂νX

8 + ε̄ΓµνΓijkψ∂µX
j∂νX

k

ε̄ΓJψ∂µX
I∂µXJ → ε̄Γ8ψ∂µX

i∂µX8 + ε̄Γjψ∂µX
i∂µXj

ε̄ΓJΓµνψ∂µX
I∂νX

J → ε̄Γ8Γµνψ∂µX
i∂νX

8 + ε̄ΓjΓµνψ∂µX
i∂νX

j

we see that there are terms appearing in (6.3.15) which do not appear in (6.3.2).

Therefore, until we know how to modify the abelian duality transformation such

that the scalar fields combine into SO(8) objects, we will have to follow a different

path to determine δXI . In the next section we will use our knowledge of the higher

order abelian Lagrangian to determine both δψ and δXI by requiring invariance

of the action.

104



CHAPTER 6. HIGHER-ORDER BAGGER-LAMBERT THEORY

6.3.3 Invariance of Higher Order Lagrangian

The l3p corrected abelian M2-brane Lagrangian takes the form [140, 141]

SBLG =

∫
d3x− 1

2
∂µX

I∂µXI +
i

2
ψ̄Γµ∂µψ

+
1

4
l3p(∂

µXI∂µX
J∂νXJ∂νX

I − 1

2
∂µXI∂µX

I∂νXJ∂νX
J)

+
i

4
l3p(ψ̄ΓµΓIJ∂νψ∂µX

I∂νXJ − ψ̄Γµ∂νψ∂µX
I∂νXI)

− 1

16
l3pψ̄Γµ∂νψψ̄Γν∂µψ (6.3.17)

The supersymmetry transformations at lowest order are

δXI = iε̄ΓIψ.

δψ = ∂µX
IΓµΓIε. (6.3.18)

At higher order we will consider the transformations (6.3.1) and (6.3.2) (neglecting

bi-linear and tri-linear fermion terms). To recap, for the fermion we have

δψ = + a1ΓµΓI∂νX
J∂νXJ∂µXIε+ a2ΓµΓI∂µXJ∂νX

J∂νXIε

+ a3ΓµνρΓIJK∂µX
I∂νX

J∂ρX
Kε (6.3.19)

and for the scalar

δXI = + b1ε̄Γ
Iψ∂µX

J∂µXJ + b2ε̄Γ
Jψ∂µX

I∂µXJ

+ b3ε̄Γ
JΓµνψ∂µX

I∂νX
J + b4ε̄Γ

µνΓIJKψ∂µX
J∂νX

K . (6.3.20)

In the variation of the action there will be terms coming from the higher order

supersymmetry variation of the lower order Lagrangian and there will be terms

coming from the lower order supersymmetry variation of the higher order La-

grangian. These terms should cancel against each other up to a surface term.

Demanding invariance of the action will put constraints on the coefficients. Not

only will we determine δXI but also δψ allowing for comparison with the result

derived in the previous section using abelian duality. Let us begin by considering
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the higher order supersymmetry variation of the lower order Lagrangian. This

results in

−∂µXI∂µ(δXI) =− ib1ε̄Γ
I∂µψ∂

µXI∂νXJ∂νX
J − ib1ε̄Γ

Iψ∂µ(∂νX
J∂νXJ)∂µXI

− ib2ε̄Γ
I∂µψ∂

µXJ∂νXJ∂νX
I − ib2ε̄Γ

Iψ∂µ(∂νXJ∂νX
I)∂µXJ

− ib3ε̄Γ
IΓµν∂ρψ∂µX

J∂νX
I∂ρXJ − ib3ε̄Γ

IΓµνψ∂ρ(∂µX
J∂νX

I)∂ρXJ

− ib4ε̄Γ
ρνΓIJK∂µψ∂

µXI∂ρX
J∂νX

K − ib4ε̄Γ
ρνΓIJKψ∂µ(∂ρX

J∂νX
K)∂µXI

(6.3.21)

δ(
i

2
ψ̄Γµ∂µψ) = +

i

2
a1ε̄Γ

I∂µψ∂
µXI∂νX

J∂νXJ − i

2
a1ε̄Γ

Iψ∂µ(∂νX
J∂νXJ∂µXI)

+
i

2
a2ε̄Γ

I∂µψ∂
µXJ∂νX

J∂νXI − i

2
a2ε̄Γ

Iψ∂µ(∂µXJ∂νX
J∂νXI)

− i

2
a1ε̄Γ

IΓµν∂µψ∂νX
I∂ρXJ∂ρX

J +
i

2
a1ε̄Γ

IΓµνψ∂µ(∂ρX
J∂ρXJ∂νX

I)

− i

2
a2ε̄Γ

IΓµν∂µψ∂νX
J∂ρXJ∂ρX

I +
i

2
a2ε̄Γ

IΓµνψ∂µ(∂νX
J∂ρXJ∂ρX

I)

− 3i

2
a3ε̄Γ

ρνΓIJK∂µψ∂µX
I∂νX

J∂ρX
K +

3i

2
a3ε̄Γ

ρνΓIJKψ∂µ(∂µXI∂νX
J∂ρX

K)

(6.3.22)

Let us now look at the lower order supersymmetry variation of the higher-order

Lagrangian terms. We have

δLhigher = + iε̄ΓI∂µψ∂
µXJ∂νX

J∂νXI − i

2
ε̄ΓI∂µψ∂µX

I∂νXJ∂νX
J

+
i

4
ε̄ΓI∂µψ∂

µXI∂νX
J∂νXJ − i

2
(2π)2ε̄ΓI∂µψ∂

µXJ∂νX
J∂νXI

− i

4
ε̄ΓµνΓIψ∂µX

J∂ρXI(∂ν∂ρX
J) +

i

4
ε̄ΓµνΓIψ∂µX

I∂ρXJ(∂ν∂ρX
J)

− i

4
ε̄ΓµνΓIψ∂µX

J∂ρXJ(∂ν∂ρX
I) +

i

4
ε̄ΓIψ∂µXJ∂ρXJ(∂µ∂ρX

I)

− i

4
ε̄ΓρνΓIJKψ∂µX

I∂νX
J(∂µ∂ρX

K) +
i

4
ε̄ΓρνΓIJK∂µψ∂

µXI∂ρXJ∂νX
K

+ ψ3terms (6.3.23)

How will these terms cancel against each other? Firstly we observe that there are

three ‘types’ of term appearing in the above, depending on the gamma matrix
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structure. It is clear that terms involving the same gamma matrix structure

should cancel against each other (up to total derivatives). We begin by focusing

on ΓνρΓIJK terms. Collecting these terms together we can write them as

(
3i

2
a3 − ib4 +

i

4
)ε̄ΓρνΓIJK∂µψ∂

µXI∂ρX
J∂νX

K − 3i

2
a3ε̄Γ

ρνΓIJKψ∂µ(∂µXI∂νX
K∂ρX

J)

+ 2ib4ε̄Γ
ρνΓIJK∂µX

I∂νX
J(∂µ∂ρX

K)ψ − i

4
ε̄ΓρνΓIJKψ∂µX

I∂νX
J(∂µ∂ρX

K)

(6.3.24)

We notice that the first line can be expressed as a total derivative and the second

line vanishes provided that

b4 =
1

8
, a3 = − 1

24
(6.3.25)

Now let us look at the ΓI terms. We can write these as

+ i(
1

2
a1 − b1 −

1

4
)ε̄ΓI∂µψ∂µX

I∂νXJ∂νX
J − i

2
a1ε̄Γ

Iψ∂µ(∂νX
J∂νXJ∂µXI)

+ i(
1

2
a2 − b2 +

1

2
)ε̄ΓI∂µψ∂

µXJ∂νX
J∂νXI − i

2
a2ε̄Γ

Iψ∂µ(∂µXJ∂νX
J∂νXI)

+
i

4
ε̄ΓIψ∂µXJ∂νXJ(∂µ∂νX

I)− ib2ε̄Γ
Iψ∂νXJ∂µXJ(∂µ∂νX

I)

− ib2ε̄Γ
Iψ(∂µ∂νX

J)∂νXI∂µXJ − 2ib1ε̄Γ
I(∂µ∂νX

J)∂νXJ∂µXI (6.3.26)

The first two lines can be expressed as total derivatives provided that

a1 = b1 +
1

4

a2 = b2 −
1

2
(6.3.27)

We see that the last two lines in (6.3.26) are equal to zero provided

b1 = −1

8
, b2 =

1

4
(6.3.28)

Putting this information together we conclude

a2 = −2a1. (6.3.29)
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This agrees with the result derived from the duality transformation method. Now

we just need to check that the remaining terms cancel against each other. Focusing

on the ΓJΓρµ terms we see they can be written as

− b3l
3
p ε̄Γ

JΓρµ∂νψ∂ρX
I∂µX

J∂νXI +
i

2
a1l

3
p ε̄Γ

JΓρµ∂µψ∂νX
I∂νXI∂ρX

J

+
i

2
l3pa2ε̄Γ

JΓρµ∂µψ∂ρX
I∂νXI∂νX

J + (
i

4
+ b3 +

i

2
a2)l3p ε̄Γ

JΓρµψ(∂ν∂ρX
J)∂µX

I∂νXI

+ (ia1 −
i

4
− b3)l3p ε̄Γ

JΓρµψ(∂ν∂ρX
I)∂νXI∂µX

J + (
i

4
+
i

2
a2)l3p ε̄Γ

JΓρµψ(∂ν∂ρX
I)∂µX

I∂νXJ

(6.3.30)

If we set b3 = 0 then it is possible to write the remaining terms as total derivatives

provided that

a1 =
1

8
, a2 = −1

4
(6.3.31)

which is consistent with (6.3.29). We are now in a position to write down ex-

pressions for the O(l3p) corrections to the abelian supersymmetry transformations

(excluding bi-linear and tri-linear fermion terms)

δXI = iε̄ΓIψ − i

8
l3p ε̄Γ

Iψ∂µX
J∂µXJ +

i

4
l3p ε̄Γ

Jψ∂µX
I∂µXJ +

i

8
l3p ε̄Γ

µνΓIJKψ∂µX
J∂νX

K .

δψ = ∂µX
IΓµΓIε+

1

8
l3pΓ

µΓI∂µX
I∂νXJ∂νX

Jε− 1

4
l3pΓ

µΓI∂µX
J∂νXJ∂νX

Iε

− 1

24
l3pΓ

µνρΓIJK∂µX
I∂νX

J∂ρX
Kε. (6.3.32)

Looking at the fermion variation we see that it is possible to fix the undetermined

overall coefficient in (6.3.12) as λ1 = 1
32

. In the next section we will consider

extending this analysis to the non-abelian Bagger-Lambert M2-brane theory.

6.4 Non-Abelian Extension

In this section we begin an investigation into the non-abelian supersymmetry

transformation of the Bagger-Lambert theory at O(l3p). We will see that using the

non-abelian dNS duality transformation outlined at the beginning of the chapter
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it is possible to uniquely determine the higher order fermion variation. We begin

by using dimensional analysis to determine the types of terms that can appear in

the M2-brane supersymmetry transformations.

6.4.1 Dimensional Analysis

We can write the most general variation of the fermion field as

δψa = DµX
I
aΓµΓIε+

1

6
XIJKΓIJKε+ l3pD

mXnψ2lε. (6.4.1)

Dimensional analysis then tells us that

2m+ n+ 4l = 9 (6.4.2)

This gives rise to potentially nine types of term. However we can restrict our

attention by making use of our knowledge of the D2-brane supersymmetry trans-

formations. In other words we will only consider terms that match the D2-brane

corrections upon application of the novel Higgs mechanism. This leaves us with

1. X9 .

2. (DX)X6.

3. (DX)(DX)X3.

4. (DX)(DX)(DX).

working out all independent index contractions one finds an expression of the form

δψ = l3p[a1ΓµΓIDνX
JDνXJDµXI + a2ΓµΓIDµXJDνX

JDνXI + a3ε
µνρΓIJKDµX

IDνX
JDρX

K

+ a4ΓµνΓIDµX
JDνX

KXJKI + a5ΓIJKDµX
LDµXJXILK + a6ΓIJKDµX

LDµXLXIJK

+ a7ΓµνΓIJKLMDµX
IDνX

JXKLM + a8ΓµΓJDµXKXKLMXLJM

+ a9ΓµΓIJKLMDµXMXIJNXKLN + a10ΓµΓJDµX
JXKLMXKLM

+ a11ΓµΓIJKLMDµXNXIJMXKLN + a12ΓIJKLMNPXIJQXKLQXMNP

+ a13ΓIJMXIKNXKLNXLJM + a14ΓIJMXKLNXKLNXIJM ]ε. (6.4.3)
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Similarly we can write the most general scalar field variation as

δXI
a = iε̄ΓIψa + l3p ε̄D

mXnψ2l+1 (6.4.4)

with

2m+ n+ 4l = 6. (6.4.5)

This leads to the following possible terms

1. ψX6.

2. ψ(DX)X3.

3. ψ(DX)(DX).

After a little thought about possible index contractions one arrives at the following

expression

δXI = il3p[b1ε̄Γ
IψDµX

JDµXJ + b2ε̄Γ
JψDµX

IDµXJ + b3ε̄Γ
JΓµνψDµX

IDνX
J

+ b4ε̄Γ
µνΓIJKψDµX

JDνX
K + b5ε̄ΓµΓJKLψDµXIXJKL + b6ε̄ΓµΓIJKψDµXLXJKL

+ b7ε̄ΓµΓJψDµX
KXIJK + b8ε̄Γ

µΓIJKLMψDµX
JXKLM + b9ε̄ΓµΓJKLψDµXKXIJL

+ b10ε̄Γ
JψXJKLXIKL + b11ε̄Γ

JKLψXKLNXNIJ + b12ε̄Γ
IJKLMψXJKNXLMN ].

(6.4.6)

Now that we know the types of terms that will appear in the supersymmetry

transformations we will use the non-abelian dNS duality transformation outlined

at the beginning of the chapter to try and determine their exact form. Our starting

point is the non-abelian D2-brane supersymmetry transformations.

6.4.2 D2-brane supersymmetry transformations

We begin by deriving the non-abelian D2-brane α′2 supersymmetry transforma-

tions. Our starting point will be the α′2 ten-dimensional U(N) super Yang-Mills
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transformations (6.3.3). Because we are now considering the full non-abelian

theory we will have to keep all terms in the dimensional reduction, including com-

mutator terms. Upon dimensional reduction to (2+1) dimensions one finds the

following expressions

δX i =
6∑
j=1

δX i
(j) (6.4.7)

with

δX i
(1) =

1

g2
YM

α1ε̄Γ
iψFµνF

µν

δX i
(2) = − 1

gYM
(α2ε̄ΓµψDρX

iF ρµ − α3εµρσ ε̄ψD
µX iF ρσ − 4α4εµνρε̄Γ

ijψF µνDρXj)

δX i
(3) = −α3ε̄Γ

ρσΓjX ijFρσ − 2α4ε̄Γ
ijkΓµνψX

jkF µν

δX i
(4) = 2α1ε̄Γ

iψDµX
jDµXj − α2ε̄Γ

jψDρX
iDρXj − α3ε̄Γ

µρΓjψDµX
iDρX

j

− α3ε̄Γ
µσΓjψDµX

iDσX
j − 4α4ε̄Γ

ijkΓµνψDµX
jDνX

k

δX i
(5) = gYM(α2ε̄ΓµψX

ijDµX
j + α3ε̄Γ

µΓjkψDµX
iXjk + α3ε̄Γ

ρΓjkψX ijDρX
k

+ α3ε̄Γ
σΓjkψX ijDσX

k + 4α4ε̄ΓµΓijklψDµXjXkl)

δX i
(6) = g2

YM(α1ε̄Γ
iψXjkXjk + α2ε̄Γ

kψX ijXjk + α3ε̄Γ
jklψX ijXkl + α4ε̄Γ

ijklmψXjkX lm)

δAµ =
6∑
i=1

δAµ(i) (6.4.8)

with

δAµ(1) =
1

gYM
(α1ε̄ΓµψFρσF

ρσ + α2ε̄ΓρψFµνF
νρ − α3ε

νρσ ε̄ψFµνFρσ)

δAµ(2) = α2ε̄Γ
jψFµνD

νXj + α3ε̄Γ
νσΓjψFµνDσX

j + α3ε̄Γ
ρσΓjψDµX

jFρσ + α3ε̄Γ
νρΓkψFµνDρX

k

δAµ(3) = −gYM(α3ε̄Γ
νΓjkψFµνX

jk − α4εµνρε̄Γ
ijψF νρX ij − α4εµνρε̄Γ

ijψX ijF νρ)

δAµ(4) = gYM(2α1ε̄ΓµψDνX
iDνX i − α2ε̄ΓνψDµX

iDνX i − α3ε̄Γ
ijΓσψDµX

iDσX
j

− α3ε̄Γ
ijΓρψDµX

iDρX
j + 4α4εµνρε̄Γ

ijψDνX iDρXj)
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δAµ(5) = −g2
YM(α2ε̄Γ

jψDµX
iX ij + α3ε̄Γ

ijkψDµX
iXjk

+ 2α4ε̄ΓµνΓ
jklψDνXjXkl + 2α4ε̄ΓµνΓ

jklψXjkDνX l)

δAµ(6) = g3
YM(α1ε̄ΓµψX

ijX ij + α4ε̄ΓµΓijklψX ijXkl)

δψ =
10∑
i=1

δψiε (6.4.9)

with

δψ1 =
1

g3
YM

(λ1ΓµνFρσF
ρσFµν + λ2ΓµνFµρF

ρσFσν)

δψ2 =
1

g2
YM

(2λ1ΓµΓjFρσF
ρσDµXj + λ2ΓµΓjFµνF

νρDρXj + λ2ΓνΓjDρXjF
ρσFσν)

δψ3 = − 1

gYM
(λ1ΓijFρσF

ρσX ij)

δψ4 =
1

gYM
(Γµν(2λ1DρX

jDρXjFµν − λ2DµX
jDσXjFσν − λ2FµρD

ρXkDνX
k)

− λ2ΓijDρX
iF ρσDσXj)

δψ5 = −λ2ΓµΓjFµνD
νXkXkj − λ2ΓνΓiX ijDρXjFρν − 12λ3ε

µνρΓijkFµνDρX
iXjk

δψ6 = gYM(λ1ΓµνX ijX ijFµν + 3λ3ΓµνΓijklFµνX
ijXkl)

δψ7 = 4λ1ΓµΓjDνX
kDνXkDµX

j − λ2ΓµΓjDµX
kDρXkDρX

j

− λ2ΓνΓiDρX
iDρXjDνX

j − 8λ3ε
µνρΓijkDµX

iDνX
jDρX

k

δψ8 = gYM(−2λ1ΓijDµX
kDµXkX ij + λ2ΓµνDµX

jXjkDνX
k + λ2ΓijDρX

iDρXkXkj

+ λ2ΓijXikD
ρXkDρXj + 12λ3ΓµνΓijklDµX

iDνXjXkl)

δψ9 = g2
YMΓµ(2λ1ΓjXklXklDµX

j + λ2ΓiX ijXjkDµX
k + λ2ΓjDµX

kXklX lj

+ 6λ3ΓijklmDµX
iXjkX lm)

δψ10 = −g3
YM(λ1ΓijXklXklX ij + λ2ΓijX ikXklX lj + λ3ΓijklmnX ijXklXmn).

Now that we have the non-abelian D2-brane supersymmetry transformations we

can attempt to dualise the Yang-Mills gauge field to a scalar. Our method will

follow the presentation of [140] where the l3p corrections to the Lorentzian Bagger-

Lambert theory were derived using the dNS duality prescription. Let us briefly re-
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view the procedure for implementing dNS duality in the higher order Lagrangian.

6.4.3 Higher order dNS duality

In [140], higher order corrections to the Lorentzian Bagger-Lambert theory were

derived by making use of the dNS duality transformation. As outlined at the

beginning of this chapter, implementing the dNS duality involves rewriting the

D2-brane Lagrangian in terms of the new fields Bµ and X8. To see how this works

at higher order we will derive the O(l3p) bosonic terms of the Bagger-Lambert

theory. Our starting point will be the (α′)2 corrections to the non-abelian D2-

brane theory. These terms derive from the F 4 corrections of ten dimensional super

Yang-Mills theory [138, 157, 159]

L = −1

4
F 2 +

1

8
STr(F 4 − 1

4
(F 2)2)

= −1

4
FMNF

MN +
1

12
Tr[FMNFRSF

MRFNS +
1

2
FMNF

NRFRSF
SM

− 1

4
FMNF

MNFRSF
RS − 1

8
FMNFRSF

MNFRS]. (6.4.10)

The next step is to reduce this expression to (2+1) dimensions. We then re-

write the (2+1) dimensional field strength Fµν in terms of the dual field strength

F̃µ = εµνλF
νλ. In order to implement the dNS duality we replace the dual field

strength F̃µ by an independent matrix-valued one-form field Bµ. The resulting

Lagrangian looks like

L =Tr[F̃µB
µ − g2

YM

2
BµB

µ +
g4
YM

4
(BµB

µBνB
ν +

1

2
BµBνB

µBν)

+
g2
YM

12
(2BµBνD

νX iDµX
i − 2BµBµDνX

iDνX i + 2BµBνDµX
iDνX

i

+BµDνX iBνDµX
i −BµDνX iBµDνX

i +BµDµX
iBνDνX

i)

+
g4
YM

12
(BµBµX

ijXij +
1

2
BµX ijBµX

ij)

+
g2
YM

6
εµνλ(B

λDµX iDνXj +DνXjBλDµX i +DµX iDνXjBλ)X ij].

(6.4.11)
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We see that F̃ only appears in the Chern-Simons term F̃µB
µ. To show that this

expression is equivalent to the (α′)2 D2-brane Lagrangian one simply integrates

out the field Bµ order by order using its equation of motion. In order to rewrite

the Lagrangian in an SO(8) invariant form we introduce the field X8 and replace

Bµ everywhere it occurs by −1/gYM(DµX
8 − gYMBµ). Recall that there is now

a shift symmetry allowing one to set X8 = 0 in which case we arrive back at

(6.4.11). Performing this substitution and collecting the resulting terms into the

SO(8) invariant building blocks D̃µX
I and XIJK results in the compact expression

L = +
1

2
εµνλB

µF νλ − 1

2
D̃µX

ID̃µXI

+
1

8
l3pSTr[2D̃µXID̃µX

JD̃νXJD̃νX
I − D̃µXID̃µX

ID̃νXJD̃νX
J

− 4

3
εµνλXIJKD̃µX

ID̃νX
JD̃λX

K

+ 2XIJKXIJLD̃µXKD̃µX
L − 1

3
XIJKXIJKD̃µXLD̃µX

L

+
1

3
XIJMXKLMXIKNXJLN − 1

24
XIJKXIJKXLMNXLMN ]. (6.4.12)

In [140] it was shown that the same approach can be used to derive the O(l3p)

fermion terms. We see that it is possible to implement dNS duality at higher

order by applying the following prescription

1. Dimensionally reduce 10 dimensional expression to (2+1) dimensions.

2. Write all field strengths in terms of their duals: Fµν = −εµνλF̃ λ.

3. Replace F̃µ with the field Bµ.

4. Replace Bµ with −gYMD̃µX
8.

5. Rewrite all expressions in terms of D̃µX
I and XIJK building blocks.

In the next section we will test whether this prescription works at the level of

supersymmetry transformations. We have already performed the first task on the

list. Next we must re-write the D2-brane supersymmetry transformations (6.4.7),

(6.4.8) and (6.4.9) in terms of D̃µX
8.
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6.4.4 dNS transformed supersymmetry

δX i =−

Two Derivative︷ ︸︸ ︷
2α1ε̄Γ

iψD̃µX8D̃µX
8 + α2ε̄Γ

µνψD̃µX
iD̃νX

8 − 2α3ε̄ψD̃
µX iD̃µX

8

+ 2α1ε̄Γ
iψD̃µX

jD̃µXj − α2ε̄Γ
jψD̃µX

iD̃µXj − 2α3ε̄Γ
µνΓjψD̃µX

iD̃νX
j

− 8α4ε̄Γ
ijψD̃µX

8D̃µXj − 4α4ε̄Γ
ijkΓµνψD̃µX

jD̃νX
k

+

One Derivative︷ ︸︸ ︷
gYM(2α3ε̄ΓµΓjX ijD̃µX8 + 4α4ε̄Γ

ijkΓµψXjkD̃µX
8 + α2ε̄ΓµψX

ijD̃µX
j

+ α3ε̄Γ
µΓjkψD̃µX

iXjk + α3ε̄Γ
ρΓjkψX ijD̃ρX

k

+ α3ε̄Γ
σΓjkψX ijD̃σX

k + 4α4ε̄ΓµΓijklψD̃µXjXkl)

+

Zero Derivative︷ ︸︸ ︷
g2
YM(α1ε̄Γ

iψXjkXjk + α2ε̄Γ
kψX ijXjk + α3ε̄Γ

jklψX ijXkl + α4ε̄Γ
ijklmψXjkX lm)

(6.4.13)

δAµ = +

Two Derivative︷ ︸︸ ︷
gYM(−2α1ε̄ΓµψD̃νX

8D̃νX8 + α2ε̄ΓµψD̃
νX8D̃νX

8 − α2ε̄ΓνψD̃
νX8D̃µX

8

+ 2α3εµνλε̄ψD̃
λX8D̃νX8 + α2εµνλε̄Γ

jψD̃λX8D̃νXj − 2α3ε̄ΓλΓ
jψDµX

jD̃λX8

− α3ε̄ΓµΓjψD̃νX8D̃νX
j + α3ε̄ΓλΓ

jψD̃λX8D̃µX
j − α3ε̄ΓµΓkψD̃ρX8D̃ρX

k

+ α3ε̄ΓλΓ
kψD̃λX8D̃µX

k + 2α1ε̄ΓµψD̃νX
iD̃νX i − α2ε̄ΓνψD̃µX

iD̃νX i

− α3ε̄Γ
ijΓσψD̃µX

iD̃σX
j − α3ε̄Γ

ijΓρψD̃µX
iD̃ρX

j + 4α4εµνρε̄Γ
ijψD̃νX iD̃ρXj)

+

One Derivative︷ ︸︸ ︷
g2
YM(α3ε̄ΓµνΓ

jkψD̃νX8Xjk − 2α4ε̄Γ
ijψD̃µX

8X ij − 2α4ε̄ΓµνΓ
jklψDνXjXkl

− α2ε̄Γ
jψD̃µX

iX ij − α3ε̄Γ
ijkψD̃µX

iXjk − 2α4ε̄Γ
ijψX ijD̃µX

8 − 2α4ε̄ΓµνΓ
jklψXjkD̃νX l)

+

Zero Derivative︷ ︸︸ ︷
g3
YM(α1ε̄ΓµψX

ijX ij + α4ε̄ΓµΓijklψX ijXkl) (6.4.14)
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δψ = +

Three Derivative︷ ︸︸ ︷
4λ1ΓµεD̃

νX8D̃νX
8D̃µX8 − λ2ΓµεD̃

νX8D̃νX
8D̃µX8 − λ2ΓµεD̃

µX8D̃νX
8D̃νX8

− 4λ1ΓµΓjεD̃νX
8D̃νX8D̃µX

j + λ2ΓµΓjεD̃νX8D̃νX
8D̃µX

j − λ2ΓµΓjεD̃νX8D̃µX
8D̃νX

j

+ λ2ΓµΓjεD̃µX
jD̃νX

8D̃νX8 − λ2ΓµΓjεD̃νX
jD̃µX

8D̃νX8 − 4λ1ΓµεD̃νX
jD̃νXjD̃µX8

− λ2ΓµεD̃νX
jD̃µXjD̃νX8 + λ2ΓµεD̃νX

jD̃νXjD̃µX8 − λ2ΓµεD̃
νX8D̃µXkD̃νX

k

+ λ2ΓµεD̃
µX8D̃νXkD̃νX

k − λ2ε
µνλΓijεD̃µX

iD̃λX
8D̃νX

j + 4λ1ΓµΓjεD̃νX
kD̃νXkD̃µX

j

− λ2ΓµΓjεD̃µX
kD̃ρXkD̃ρX

j − λ2ΓνΓiεD̃ρX
iD̃ρXjD̃νX

j − 8λ3ε
µνρΓijkεD̃µX

iD̃νX
jD̃ρX

k

+

Two Derivative︷ ︸︸ ︷
gYM(−λ2ΓµνΓ

jεD̃νX8D̃µXkXkj + λ2ΓµνΓ
iεX ijD̃µXjD̃νX8 + 24λ3ΓijkεD̃µX8D̃µX

iXjk

+ 2λ1ΓijεD̃µX8D̃µX
8X ij − 2λ1ΓijεD̃µX

kD̃µXkX ij + λ2ΓµνεD̃µX
jXjkD̃νX

k

+ λ2ΓijεD̃ρX
iD̃ρXkXkj + λ2ΓijεXikD̃

ρXkD̃ρXj + 12λ3ΓµνΓijklεD̃µX
iDνXjXkl)

+

One Derivative︷ ︸︸ ︷
g2
YM(−2λ1ΓµεX

ijX ijD̃µX8 − 6λ3ΓµΓijklεD̃µX8X ijXkl + 2λ1ΓµΓjεXklXklD̃µX
j

+ λ2ΓνΓiεX ijXjkD̃νX
k + λ2ΓµΓjεD̃µX

kXklX lj + 6λ3ΓµΓijklmεD̃µX
iXjkX lm)

−
Zero Derivative︷ ︸︸ ︷

g3
YM(λ1ΓijεXklXklX ij + λ2ΓijεX ikXklX lj + λ3ΓijklmnεX ijXklXmn) .

(6.4.15)

6.5 SO(8) supersymmetry transformations

In the previous section we applied the dNS prescription to the non-abelian D2-

brane supersymmetry transformations. We would now like to re-write these ex-

pressions in SO(8) form. We will see that this is only possible for the fermion su-

persymmetry transformation. The scalar transformation is plagued by the same

problems we encountered in the abelian theory. We will end this section with

a discussion of how one might go about determining the scalar supersymmetry

transformation.
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6.5.1 δψ

Earlier in this chapter we were able to determine the abelian supersymmetry

transformation of the fermion by using abelian duality in (2+1) dimensions. In

the process we were able to fix the coefficients appearing in (6.3.1). Looking at

(6.4.3) we see that the first three terms are exactly the same as the terms appearing

in (6.3.1) but with partial derivatives replaced by covariant derivatives. As a result

we find that the coefficients are related in exactly the same way. Knowledge of

the relationship between λ1, λ2 and λ3, namely

λ2 = 4λ1; λ2 = −24λ3 (6.5.1)

allows us to re-write all the coefficients in (6.4.15) in terms of λ1. Furthermore by

looking at the invariance of the higher order abelian Lagrangian we were able to

fix λ1 = 1
32

. Making use of this information, as well as the SO(8) relations outlined

in the appendix, it is possible to re-write the two-derivative, one-derivative and

zero-derivative terms in (6.4.15) in an SO(8) invariant form. The final answer for

the l3p correction to the fermion supersymmetry transformation in Bagger-Lambert

theory is

δψ = l3p[
1

8
ΓµΓIDνX

JDνXJDµXI − 1

4
ΓµΓIDµXJDνX

JDνXI − 1

24
εµνρΓIJKDµX

IDνX
JDρX

K

+
1

8
ΓµνΓIDµX

JDνX
KXJKI +

1

8
ΓIJKDµX

LDµXJXILK − 1

48
ΓIJKDµX

LDµXLXIJK

+
1

48
ΓµνΓIJKLMDµX

IDνX
JXKLM − 1

8
ΓµΓJDµXKXKLMXLJM

+
1

32
ΓµΓIJKLMDµXMXIJNXKLN +

1

48
ΓµΓJDµX

JXKLMXKLM

− 1

48
ΓµΓIJKLMDµXNXIJMXKLN +

1

16
ΓIJKLMNPXIJQXKLQXMNP

+
1

32
ΓIJMXIKNXKLNXLJM +

1

144
ΓIJMXKLNXKLNXIJM ]ε. (6.5.2)

It is pleasing to see that the dNS duality transformation has allowed us to uniquely

determine the structure of the fermion variation. It would be nice to extend this

analysis to include tri-linear fermion terms.
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6.5.2 δXI

Given that the dNS prescription works for the fermion transformation one might

hope that it would also work for the scalar transformation. However, as we

observed for the abelian scalar transformation, this is not the case. The two-

derivative terms appearing in (6.4.13) are of the same form as the abelian scalar

terms, with covariant derivatives replacing partial derivatives. For this reason,

the non-abelian scalar transformation inherits the same problems we encountered

before. For the abelian theory we used a different approach to determine the

scalar transformation. This involved checking the invariance of the abelian La-

grangian under a proposed set of supersymmetry transformations (determined by

dimensional analysis). The same should be possible for the non-abelian theory.

The l3p corrected Bagger-Lambert Lagrangian was derived in [140, 141]. Checking

that this Lagrangian is invariant (up to surface terms) under the transformations

(6.4.3) and (6.4.6) should fix the coefficients. Not only would this determine the

scalar transformation but would also provide an independent test of the fermion

variation calculated using the dNS prescription.

Ultimately one would like to know how to modify the dNS prescription in such

a way that it is possible to derive the scalar variation. Toward this end it may

prove useful to determine the scalar transformation by an independent method

such that a comparison can be made between the known result and the dNS trans-

formed result (6.4.13). Another complication worth mentioning is related to the

gauge field transformation (6.4.14). For the lower order abelian supersymmetry

transformations we observed that the eighth component of the scalar variation

δXI arises after dualising δFµν . More specifically, looking at (6.2.19) we see that

at lowest order ∂λδX8 = iε̄Γ8∂λψ. In this case, since there is only one field and

one derivative on the right-hand side, it is possible to simply ‘pull off’ the deriva-

tive to determine δX8. This is no longer true at higher order and determining

δX8 becomes a non-trivial task.
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CONCLUSIONS AND OUTLOOK

The content of this thesis is testament to the power of supersymmetry. In Chap-

ter 2 we began with a review of M-theory branes and their interactions from

the perspective of spacetime and worldvolume supersymmetry alegebras. This

was followed in Chapter 3 by a review of recent attempts to model multiple M2-

branes. In Chapter 4 we calculated the extended worldvolume superalgebra of

the N = 6 Bagger-Lambert Theory. With a particular choice of 3-bracket we

were able to derive the ABJM superalgebra. We found that the charges Zi and

ZABEF,i characterise the topological information corresponding to two sets of BPS

equations. In particular we were able to identify the central charge corresponding

to the half-BPS fuzzy funnel configuration of the ABJM theory. This was con-

firmed by deriving the corresponding BPS equation by completing the square of

the Hamiltonian. In order to derive the ABJM fuzzy-funnel BPS equation it was

necessary to consider a configuration in which two of the four complex scalar fields

were zero. It would be interesting to try and find solutions to generalised BPS

equations in the case where more than half the scalar fields are active. Related to

this is the question of whether its possible to write the N = 6 Bagger-Lambert

scalar Hamiltonian as

H =

∫
dx1dsTr(∂sZ

A − gABCDΥCD
B )2 + T (7.0.1)

with the condition that

gABCDg
FG

AE Tr(ΥCD
B , ῩE

FG) =
2

3
Tr(ΥCD

B , ῩB
CD) (7.0.2)
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where T is a topological term and Υ is defined in (3.2.8). If this constraint is

satisfied then we have a set of BPS equations of the form

∂sZ
A − κgABCDΥCD

B = 0 (7.0.3)

where A,B = 1, . . . 4. It is interesting to note that the constraint (7.0.2) is

analogous to the situation encountered when considering M5-brane calibrations

[71, 162]. In the case of the N = 8 Bagger-Lambert theory the constraint takes

the form

1

3!
gIJKLgIPQRTr([XJ , XK , XL], [XP , XQ, XR]) = Tr([XI , XJ , XK ], [XI , XJ , XK ]).

(7.0.4)

The gIJKL are related to the calibrating forms of the cycle on which the M5-brane

wraps and are therefore completely antisymmetric in their indices. For the case in

which only half the scalar fields are activated it is possible to solve the constraint

by writing gIJKL = εIJKL. This choice corresponds to a fuzzy-funnel configuration

in which multiple M2-branes expand into a single M5-brane, and is described by

the standard Basu-Harvey equation. For the situation in which more scalars are

activated, additional constraints arise which have to be imposed alongside the

Basu-Harvey equation. It would be interesting to see whether the results of [71]

can be derived from the ABJM theory. It would also prove interesting to consider

the enhancement of the superymmetry of the algebra (for Chern-Simons levels

k = 1, 2) through the use of monopole operators [117, 118]. This would then allow

for direct comparison with the N = 8 Bagger-Lambert supersymmetry algebra.

In Chapter 5 we investigated the worldvolume superalgebra of the Nambu-

Poisson M5-brane. This was achieved by re-expressing the Bagger-Lambert M2-

brane worldvolume central charges in terms of infinite dimensional generators

defined by the Nambu-Poisson bracket. This resulted in a new set of charges

expressed in terms of six-dimensional fields. These we interpreted as charges cor-

responding to worldvolume solitons of the M5-brane worldvolume theory in the

presence of a background 3-form gauge field. In particular we found that the

charges of the M5-brane theory could be grouped according to the power of the
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coupling constant g. At O(g0) we found charges corresponding to the self-dual

string soliton which describes an M2-M5 intersection as well as a 3-brane soliton

corresponding to an M5-M5 intersection. We also found that background C-field

modifies the energy bound of the self-dual string charge by shifting the H1̇2̇3̇ com-

ponent of the field strength. Our results therefore reinforce the results presented

in [13, 14] in which the Bagger-Lambert theory based on Nambu-Poisson bracket

was interpreted as a theory describing an M5-brane in a background of 3-form

flux. Furthermore we investigated the double dimensional reduction of the M5-

brane Nambu-Poisson superalgebra. This gave rise to the Poisson bracket terms

of a non-commutative D4-brane superslagebra. We found charges corresponding

to spacetime intersections of the D4-brane with D0-branes, D2-branes and D4-

branes, as well as the endpoint of the fundamental string. We also found charges

that bare a structural similarity to Nahm-type configurations involving multiple

D2-branes ending on the D4-brane (with the matrix commutator replaced by Pois-

son bracket). Finally we found a charge reminiscent of the D4-brane charge found

in Matrix theory. It would appear that the superalgebra of the Nambu-Poisson

M5-brane contains a large amount of information about spacetime configurations.

In this thesis we were only able to provide spacetime interpretations for some

of the M5-brane charges. However, knowledge of the D4-brane spacetime con-

figurations may provide a hint about how to interpret the remaining M5-brane

charges.

In Chapter 6 we began an investigation into the l3p corrections to the Bagger-

Lambert supersymmetry transformations. For the abelian theory we were able

to determine the the fermion supersymmetry transformation by using an abelian

duality transformation. For the scalar transformation we had to use a different

approach in which invariance of the higher order abelian Lagrangian was used

to fix the coefficients of the transformation. For the non-abelian theory we were

able to use the dNS duality transformation to uniquely determine the fermion

supersymmetry transformation at O(l3p). It would be interesting to establish the

reason why the dNS duality fails to work for the scalar supersymmetry transfor-

mation. It should be possible to uniquely determine the form of the O(l3p) scalar

transformation by checking the invariance of the higher order Lagrangian derived
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in [140, 141]. This would also provide an independent check on the fermion re-

sult derived using the dNS duality approach. It would also prove interesting to

extend this analysis to the N = 6 ABJM theory. Finding such an extension is of

great interest as these theories have a clear spacetime interpretation in M-theory.

One possibility for how to derive the N = 6 result would be to make use of

the N = 8 result and SO(8) triality. This should work in the same way that it

works for the lowest order Bagger-Lambert theory. In [117] it was shown that the

Bagger-Lambert Lagrangian fields could be ‘triality rotated’ in such a way that

(8V ,8S,8C)→ (8S,8C ,8V ), where 8V ,8S,8C are the vector, spinor and cospinor

representations of SO(8) respectively. After performing this transformation it is

possible to break SO(8) → SU(4) × U(1) and decompose the SO(8) spinor and

cospinor fields (and gamma matrices) in order to rewrite the original N = 8 ex-

pression in terms of ABJM fields and so-called ‘non-ABJM’ fields. In [117] the

non-ABJM terms were shown to vanish as a result of certain algebraic constraints

(deriving from the flatness condition of the gauge field strength). It would be

interesting to see whether this analysis can be extended to higher order and if

so, whether additional algebraic constraints would be necessary to eliminate the

higher order ‘non-ABJM’ terms.
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A.1 Conventions

A.1.1 N = 6 Bagger-Lambert Theory

The supersymmetry parameters of the N = 6 ABJM theory transform in the 6

representation of SU(4). We can write the susy parameter εAB in terms of a basis

of 4× 4 gamma matrices as

εAB = εI .(ΓIAB), (A.1.1)

with I = 1, . . . 6. The gamma matrices are antisymmetric (ΓIAB = −ΓIBA) and

satisfy the following relation

ΓIABΓ̃JBC + ΓJABΓ̃IBC = 2δIJδCA (A.1.2)

where

Γ̃IAB =
1

2
εABCDΓICD = −(ΓIAB)∗. (A.1.3)

We note that the 4 × 4 matrices ΓI act on a different vector space to the 2 × 2

matrices γµ which are defined as world volume gamma matrices. These two types

of gamma matrix commute with one another. It is also important to note the

following relations

ΓIABΓ̃ICD = −2δCDAB = −2(δCAδ
D
B − δCBδDA ) (A.1.4)

ΓIABΓ̃IBD = 6δDA . (A.1.5)

Acting with εABMNεCDPQ on both sides of (A.1.4) one can show that

Γ̃ICDΓIAB = −2δCDAB . (A.1.6)
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It therefore follows that

ΓIABΓ̃ICD + Γ̃ICDΓIAB = −4δCDAB (A.1.7)

ΓIABΓ̃ICD − Γ̃ICDΓIAB = 0 (A.1.8)

We will also need the following identity in what follows

ΓIABΓ̃AC + Γ̃IACΓJAB = ΓIABΓ̃AC +
1

4
εACDEεABFGΓIDEΓ̃JFG

=
1

2
δCBΓIFGΓ̃JFG = 2δIJδCB . (A.1.9)

and therefore

ΓIFGΓ̃JFG = 4δIJ . (A.1.10)

Note that in obtaining the last line of (A.1.9) we made use of (A.1.2) and the

epsilon tensor identity

εACDEεABFG = + δCBδ
D
F δ

E
G + δCF δ

D
Gδ

E
B + δCGδ

D
B δ

E
F

− δCBδDGδEF − δCF δDB δEG − δCGδDF δEB (A.1.11)

Similarly we have

ΓIABΓ̃AC − Γ̃IACΓJAB = 2ΓIABΓ̃AC − 1

2
δCBΓIFGΓ̃JFG. (A.1.12)

It is possible to derive identities involving εAB based on the relations between the

basis gamma matrices ΓI . In [82] Bagger and Lambert make use of the following

identities
1

2
ε̄CD1 γνε2CDδ

A
B = ε̄AC1 γνε2BC − ε̄AC2 γνε1BC (A.1.13)
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and

2ε̄AC1 ε2BD − 2ε̄AC2 ε1BD = + ε̄CE1 ε2DEδ
A
B − ε̄CE2 ε1DEδ

A
B

− ε̄AE1 ε2DEδ
C
B + ε̄AE2 ε1DEδ

C
B

+ ε̄AE1 ε2BEδ
C
D − ε̄AE2 ε1BEδ

C
D (A.1.14)

− ε̄CE1 ε2BEδ
A
D + ε̄CE2 ε1BEδ

A
D.

Both of these identities can be re-written in terms of identities involving the

Majorana spinors εI and the gamma matrices ΓI .

A.1.2 Nambu-Poisson M5-brane

In the BLG Nambu-Poisson model of the M5-brane, the worldvolume is taken to be

the product manifoldM×N . We assume a Minkowski metric ηµν = diag(−+ +)

on M and a Euclidean metric δµ̇ν̇ = diag(+ + +) on the internal space N . The

supersymmetry transformation parameter ε and the fermion ψ of the Bagger-

Lambert theory belong to the 8s and 8c representations of the SO(8) R-symmetry

and are 32-component spinors satisfying

Γµνρε = +εµνρε, Γµνρψ = −εµνρψ. (A.1.15)

We assume that ε012 = −ε012 and thus

εµνλε
µρσ = −(δρνδ

σ
λ − δ

ρ
λδ

σ
ν ). (A.1.16)

εµνλε
µνσ = −2δσλ . (A.1.17)

The following relations on M follow from the chirality constraint (A.1.15)

εµνρΓνρε = −2Γµε. (A.1.18)

εµνρΓρε = Γµνε. (A.1.19)

εµνρΓνρψ = +2Γµψ. (A.1.20)

εµνρΓρψ = −Γµνψ. (A.1.21)
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There is no analogue of the relations (A.1.15) on N . However we do find the

following information useful

ε1̇2̇3̇ = ε1̇2̇3̇. (A.1.22)

εµ̇ν̇λ̇εµ̇ρ̇σ̇ = δν̇ρ̇δλ̇σ̇ − δν̇σ̇δλ̇ρ̇. (A.1.23)

εµ̇ν̇λ̇εµ̇ν̇σ̇ = 2δλ̇σ̇. (A.1.24)

Γµ̇ν̇ρ̇ = Γ1̇2̇3̇εµ̇ν̇ρ̇. (A.1.25)

(Γ1̇2̇3̇)2 = −1. (A.1.26)

A.2 N = 6 Bagger-Lambert Superalgebra Calculations

In this section we calculate the supersymmetric variation of J0,I . Given the su-

percurrent expression (4.2.5) one finds

δJ0,I = +

(a)︷ ︸︸ ︷
Tr(ΓIABΓ̃JACγνγ0γρDνZ

B, DρZ̄Cε
J) + Tr(Γ̃IABΓJACγ

νγ0γρDνZ̄B, DρZ
C)

−

(b)︷ ︸︸ ︷
Tr(ΓIABγ

νγ0DνZ
B, NJAεJ)− Tr(N I

AΓ̃JACγ0γρ, DρZ̄Cε
J)

+ Tr(Γ̃IABγνγ0DνZ̄B, N
J
Aε

J) + Tr(N IAΓJACγ
0γρDρZ

CεJ) (A.2.1)

+

(c)︷ ︸︸ ︷
Tr(N I

Aγ
0, NJAεJ) + Tr(N IAγ0, N

J
Aε

J) .

A.2.1 (a) terms

The (a) terms may be written as

(a) =− Tr((ΓIABΓ̃JAC + Γ̃IACΓJAB)γ0D0Z
B, D0Z̄Cε

J)

− Tr((ΓIABΓ̃JAC + Γ̃IACΓJAB)γiD0Z
B, DiZ̄Cε

J)

− Tr((ΓIABΓ̃JAC + Γ̃IACΓJAB)γiDiZ
B, D0Z̄Cε

J)

− Tr((ΓIABΓ̃JAC + Γ̃IACΓJAB)γ0DiZ
B, DiZ̄Cε

J) (A.2.2)

− Tr((ΓIABΓ̃JAC − Γ̃IACΓJAB)γijγ0DiZ
B, DjZ̄Cε

J).
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The first four terms can be further simplified by using the relation (A.1.9).

(a) =− 2δIJTr(γ0D0Z
B, D0Z̄Bε

J)− 2δIJTr(γ0DiZ
B, DiZ̄Bε

J)

− 2δIJTr(γiD0Z
B, DiZ̄Bε

J)− 2δIJTr(γiDiZ
B, D0Z̄Bε

J) (A.2.3)

− Tr((ΓIABΓ̃JAC − Γ̃IACΓJAB)γijγ0DiZ
B, DjZ̄Cε

J).

A.2.2 (b) terms

The (b) terms may be written as

(b) =− 2δIJTr(DiZ̄B, [Z
D, ZB; Z̄D]γ0γiεJ) + 2δIJTr(DiZB, [Z̄D, Z̄B;ZD]γ0γiεJ)

+ Tr((ΓIDEΓ̃JAC + Γ̃IACΓJDE)[ZD, ZE; Z̄A]γ0γi, DiZ̄Cε
J)

− Tr((ΓIABΓ̃JCD + Γ̃ICDΓJAB)[Z̄C , Z̄D;ZA]γ0γi, DiZ
BεJ)

+ Tr((ΓIABΓ̃JAC − Γ̃IACΓJAB)[ZD, ZB; Z̄D], D0Z̄Cε
J)

+ Tr((ΓIABΓ̃JAC − Γ̃IACΓJAB)[Z̄D, Z̄C ;ZD], D0Z
BεJ) (A.2.4)

− Tr((ΓIABΓ̃JAC − Γ̃IACΓJAB)[ZD, ZE; Z̄A], D0Z̄Cε
J)

− Tr((ΓIABΓ̃JAC − Γ̃IACΓJAB)[Z̄C , Z̄D;ZA], D0Z
BεJ)

The terms involving D0 can be greatly simplified by using (A.1.14). After a bit

of rearrangement and relabeling we can write the (b) terms as

(b) = + 2δIJTr(DiZ̄B, [Z
D, ZB; Z̄D]εijεJ)− 2δIJTr(DiZB, [Z̄D, Z̄B;ZD]εijεJ)

+ Tr(Γ
CD(IJ)
AB DiZ̄B, [Z̄C , Z̄D;ZA]εijγjεJ)− Tr(Γ

CD(IJ)
AB DiZ̄D[ZA, ZB; Z̄C ]εijγjεJ)

− Tr(Γ̃
AE[IJ ]
DE D0Z̄C , [Z

D, ZC ; Z̄A]εJ)− Tr(Γ̃
AE[IJ ]
DE D0Z

C [Z̄A, Z̄C ;ZD]εJ),

(A.2.5)

where

Γ
CD(IJ)
AB = ΓIABΓ̃JCD + Γ̃ICDΓJAB; (A.2.6)

Γ̃
A[IJ ]
D = ΓIDEΓ̃JAE − Γ̃IAEΓJDE, (A.2.7)
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and we have used the fact that in 3 dimensions γij ∝ εij. We have also used the

fact that γ0γi = −εijγ012 and γ012εJ = εJ .

A.2.3 (c) terms

The (c) terms may be written as

(c) =− 2δIJTr([ZC , ZB; Z̄C ], [Z̄F , Z̄B;ZF ])εJ

− Γ
EF (IJ)
AB Tr([ZC , ZB; Z̄C ], [Z̄E, Z̄F ;ZA])εJ

− Γ
EF (IJ)
AB Tr([ZA, ZB; Z̄E], [Z̄C , Z̄F ;ZC ])εJ (A.2.8)

+ Γ
EF (IJ)
AB Tr([ZA, ZB; Z̄C ], [Z̄E, Z̄F ;ZC ])εJ .

We can make use of the fact that the potential is

V =
2

3
Tr([ZC , ZD; Z̄B], [Z̄C , Z̄D;ZB])− 1

3
Tr([ZB, ZD; Z̄B], [Z̄F , Z̄D;ZF ]) (A.2.9)

to write (c) as

(c) =− 2δIJ(V − V1)εJ

− Γ
EF (IJ)
AB Tr([ZC , ZB; Z̄C ], [Z̄E, Z̄F ;ZA])εJ

− Γ
EF (IJ)
AB Tr([ZA, ZB; Z̄E], [Z̄C , Z̄F ;ZC ])εJ (A.2.10)

+ Γ
EF (IJ)
AB Tr([ZA, ZB; Z̄C ], [Z̄E, Z̄F ;ZC ])εJ ,

where

V1 =
2

3
Tr([ZC , ZD; Z̄B], [Z̄C , Z̄D;ZB])− 4

3
Tr([ZC , ZB; Z̄C ], [Z̄E, Z̄B;ZE])

(A.2.11)
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A.2.4 δJ0

We can combine (a), (b) and (c) terms

δJ0,I =− 2δIJT 0
µγ

µεJ + 2δIJV1γ
0εJ

+ 2δIJ(Tr(DiZ̄B, [Z
D, ZB; Z̄D])− Tr(DiZ

B, [Z̄D, Z̄B;ZD])εijγjεJ

− Γ
C[IJ ]
B Tr(DiZ

B, DjZ̄C)εijγ0εJ

− Γ
C[IJ ]
B (Tr(D0Z̄A, [Z

B, ZA; Z̄C ]) + Tr(D0Z
A, [Z̄C , Z̄A;ZB]))εJ

+ Γ
CD(IJ)
AB (Tr(DiZ̄B, [Z̄C , Z̄D;ZA])− Tr(DiZ̄D[ZA, ZB; Z̄C ]))εijγjεJ

− Γ
EF (IJ)
AB Tr([ZC , ZB; Z̄C ], [Z̄E, Z̄F ;ZA])εJ

− Γ
EF (IJ)
AB Tr([ZA, ZB; Z̄E], [Z̄C , Z̄F ;ZC ])εJ

+ Γ
EF (IJ)
AB Tr([ZA, ZB; Z̄C ], [Z̄E, Z̄F ;ZC ])εJ ,

where we have used

T00 = Tr(D0Z
B, D0Z̄B) + Tr(DiZ

B, DiZ̄B) + V ; (A.2.12)

T0i = Tr(D0Z
B, DiZ̄B) + Tr(DiZ

B, D0Z̄B). (A.2.13)

A.2.5 Potential

In this appendix we show the equivalence of the Bagger-Lambert and ABJM

potential. The Bagger-Lambert potential is given by

V =
2

3
Tr(ΥCD

B , ῩB
CD) (A.2.14)

where

ΥCD
B = [ZC , ZD; Z̄B]− 1

2
δCB [ZE, ZD; Z̄E] +

1

2
δDB [ZE, ZC ; Z̄E]. (A.2.15)

We can define the inner product as

Tr(X, Y ) = tr(X†Y ) (A.2.16)
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where † denotes the transpose conjugate and tr denotes the ordinary matrix trace.

Thus

(ΥCD
B )† = [ZD†, ZC†; Z̄†B]− 1

2
δCB [ZE†, ZD†, Z̄†E] +

1

2
δDB [ZE†, ZC†; Z̄†E] (A.2.17)

ῩB
CD = [Z̄C , Z̄D;ZB]− 1

2
δBC [Z̄E, Z̄D;ZE] +

1

2
δBD[Z̄E, Z̄C ;ZE]. (A.2.18)

Making use of the above information one finds that

V =
2

3
Tr(ΥCD

B , ῩB
CD) (A.2.19)

=
2

3
tr((ΥCD

B )†ῩB
CD) (A.2.20)

=
2

3
tr

(
[ZD†, ZC†; Z̄†B][Z̄C , Z̄D;ZB] +

1

2
[ZE†, ZC†; Z̄†E][Z̄B, Z̄C ;ZB]

)
.

(A.2.21)

For the particular choice

[X, Y ;Z] = λ(XZ†Y − Y Z†X) (A.2.22)

it was shown by Bagger and Lambert that the N = 6 ABJM potential is recovered.

Inserting (A.2.22) into (A.2.21) one finds

V = λ2tr(− 1

3
ZE†Z̄EZ

C†Z̄CZ
B†Z̄B −

1

3
ZC†Z̄EZ

E†Z̄BZ
B†Z̄C

− 4

3
ZD†Z̄BZ

C†Z̄DZ
B†Z̄C + 2ZD†Z̄BZ

C†Z̄CZ
B†Z̄D). (A.2.23)

Comparing with

V =
4π2

k2
tr(− 1

3
XAXAX

BXBX
CXC −

1

3
XAX

AXBX
BXCX

C

− 4

3
XAX

BXCX
AXBX

C + 2XAXBX
BXAX

CXC) (A.2.24)

we see that the two expressions are equivalent given the redefinitions ZA† → XA

and Z̄A → XA, as well as λ = 2π/k.
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A.3 Higher order SO(8) invariant objects

In this section we list SO(8) invariant combinations which give rise to terms

appearing in the dNS transformed superymmetry transformations of the previous

section. Note that we have suppressed the symmetrised trace in all the expressions

that follow.

A.3.1 δψ

Zero Derivative

ΓIJMXKLNXKLNXIJM → 9g3
YMΓijXklXklX ij

ΓIJMXIKNXKLNXLJM → g3
YMΓij(4X ikXklX lj −XklXklX ij)

ΓIJKLMNPXIJQXKLQXMNP → 3g3
YMΓijklmnX ijXklXmn

One Derivative

ΓµΓJXKLMXKLMDµXJ → 3g2
YM(ΓµΓ8XklXklDµX8 + ΓµΓjXklXklDµXj)

ΓµΓJDµX
KXKLMXLJM → g2

YM(2ΓµΓjDµXkXklX lj − ΓµΓ8DµX8X lmX lm)

ΓµΓJXJKMXKLMDµX
L → g2

YM(2ΓµΓjXjkXklDµX
l − ΓµΓ8XkmXkmDµX

8)

ΓµΓIJKLM → g2
YM(ΓµΓijklmDµXmX ijXkl + ΓµΓijklDµX8X ijXkl)

ΓµΓIJKLMDµXNXIJMXKLN → 3g2
YMΓµΓijklDµX8X ijXkl

ΓµΓijklmDµXmX ijXkl ← g2
YMΓµΓIJKLM(DµXMXIJNXKLN − 1

3
DµXNXIJMXKLN)
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Two Derivative

ΓIJKDµX
LDµXLXIJK → 3gYM(ΓijDµX

kDµXkX ij + ΓijDµX
8DµX8X ij)

ΓµνΓMDµX
KXKLMDνX

L → gYMΓµν(ΓiDµX
kX ikDνX

8 + ΓiDµX
8X liDνX

l

+ Γ8DµX
kXklDνX

l)

ΓIJKDµX
IDµXLXLJK → gYM(ΓijkDµX

iDµX8Xjk + 2ΓijDµX
iDµX lX lj

+ ΓijDµX
8DµX8X ij)

ΓIJKXILKDµX
LDµXJ → gYM(ΓijkXjkDµX

8DµX i + 2ΓijX ikDµX
kDµXj

+ ΓijX ijDµX
8DµX8)

ΓµνΓIJKLMDµX
IDνX

JXKLM → 3gYMΓµνΓijklDµX
iDνX

jXkl.

Three Derivative

ΓµΓIDνX
JDνXJDµXI → ΓµΓiDνX

jDνXjDµX i + ΓµΓiDνX
8DνX8DµX i

+ ΓµΓ8DνX
jDνXjDµX8 + ΓµΓ8DνX

8DνX8DµX8

ΓµΓIDµXJDνX
JDνXI → ΓµΓiDµXjDνX

jDνX i + ΓµΓiDµX8DνX
8DνX i

+ ΓµD
µXjDνX

jDνX8 + ΓµD
µX8DνX

8DνX8

εµνρΓIJKDµX
IDνX

JDρX
K → εµνρΓijkDµX

iDνX
jDρX

k + 3εµνρΓijDµX
iDνX

jDρX
8.

A.3.2 δXi

Zero Derivative

ε̄ΓJψXIKLXJKL → 2g2
YM ε̄Γ

jψX ikXjk

ε̄ΓJKLψXIJNXKLN → g2
YM ε̄Γ

jklψX ijXkl

ε̄ΓIJKLMψXJKNXLMN → g2
YM ε̄Γ

ijklmψXjkX lm

(A.3.1)
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One Derivative

ε̄ΓµΓJKLψDµXIXJKL → 3gYM ε̄ΓµΓjkψDµX iXjk

ε̄ΓµΓIKLψDµXJXJKL → 2gYM ε̄ΓµΓijψDµXkXkj + gYM ε̄ΓµΓijkψDµX8Xjk

ε̄ΓµΓKψDµX
JXJKI → gYM ε̄ΓµΓ8ψDµX

jX ij + gYM ε̄ΓµΓkψDµX
8Xki

ε̄ΓµΓIJKLMψDµX
JXKLM → 3gYM ε̄Γ

µΓijklψDµX
jXkl

ε̄ΓµΓJKLψDµXKXIJL → 2gYM ε̄ΓµΓjkψDµXkX ij

Two Derivative

ε̄ΓIψDµX
JDµXJ → ε̄ΓiψDµX

8DµX8 + ε̄ΓiψDµX
jDµXj

ε̄ΓIΓµνψDµX
JDνX

J → 0

ε̄ΓµνΓIJKψDµX
JDνX

K → 2ε̄ΓµνΓijψDµX
jDνX

8 + ε̄ΓµνΓijkψDµX
jDνX

k

ε̄ΓJψDµX
IDµXJ → ε̄Γ8ψDµX

iDµX8 + ε̄ΓjψDµX
iDµXj

ε̄ΓJΓµνψDµX
IDνX

J → ε̄Γ8ΓµνψDµX
iDνX

8 + ε̄ΓjΓµνψDµX
iDνX

j

ε̄ΓIJKψDµX
JDµXK → 0 (A.3.2)

A.3.3 δAµ

Zero Derivative

ε̄ΓµχX
IJKXIJK → 3g2

YM ε̄ΓµχX
ijX ij

ε̄ΓµΓIJχXILMXJLM → 2g2
YM ε̄ΓµΓijχX ilXjl

ε̄ΓµΓIJKLχX
IJNXKLN → g2

YM ε̄ΓµΓijklχX ijXkl

ε̄ΓµΓIJKLMNχXIJKXLMN → 0
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One Derivative

ε̄ΓJKχDµX
IXIJK → gYM(ε̄ΓjkχDµX

8Xjk + 2ε̄ΓjχDµX
iX ij)

ε̄ΓIJKLχDµX
IXJKL → 3gYM ε̄Γ

ijkχDµX
iXjk

ε̄ΓµνΓ
JKDνXIXIJK → gYM(ε̄ΓµνΓ

jkχDνX8Xjk + 2ε̄ΓµνΓ
jχDνX iX ij)

ε̄ΓµνΓ
IJKLDνXIXJKL → 3gYM ε̄ΓµνΓ

ijkχDµX
iXjk

Two Derivative

ε̄ΓµχDνX
KDνXK → ε̄ΓµχDνX

8DνX8 + ε̄ΓµχDνX
iDνX i

ε̄ΓµΓIJχDνX
IDνXJ → ε̄ΓµΓijχDνX iDνXj + ε̄ΓµΓiχDνX

iDνX8 − ε̄ΓµΓiχDνX
8DνX i = 0

ε̄ΓνχD
νXKDµX

K → ε̄ΓνχD
νX iDµX

i + ε̄ΓνχD
νX8DµX

8

ε̄ΓνΓ
IJχDνXIDµX

J → ε̄ΓνΓ
ijχDνX iDνX

j + ε̄ΓνΓ
iχDνX iDµX

8 − ε̄ΓνΓiχDνX8DµX
i

ε̄ΓµνλχD
νXJDλXJ → 0

ε̄ΓµνλΓ
IJDνXIDλXJ → ε̄ΓµνλΓ

ijDνX iDλXj + ε̄ΓµνλΓ
iDνX iDλX8 − ε̄ΓµνλΓiDνX8DλX i
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