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Summary

This thesis consists of two parts. In the first part we investigate the worldvolume
supersymmetry algebra of multiple membrane theories. We begin with a descrip-
tion of M-theory branes and their intersections from the perspective of spacetime
and worldvolume supersymmetry algebras. We then provide an overview of the
recent work on multiple M2-branes focusing on the Bagger-Lambert theory and
its relation to the Nambu-Poisson Mb5-brane and the ABJM theory. The world-
volume supersymmetry algebras of these theories are explicitly calculated and the

charges interpreted in terms of spacetime intersections of M-branes.

The second part of the thesis looks at 113) corrections to the supersymmetry
transformations of the Bagger-Lambert theory. We begin with a review of the
dNS duality transformation which allows a gauge field to be dualised to a scalar
field in 241 dimensions. Applying this duality to o/? terms of the non-abelian
D2-brane theory gives rise to the li corrections of the Lorentzian Bagger-Lambert
theory. We then apply this duality transformation to the a/? corrections of the
D2-brane supersymmetry transformations. For the ‘abelian’ Bagger-Lambert the-
ory we are able to uniquely determine the lﬁ corrections to the supersymmetry
transformations of the scalar and fermion fields. Generalising to the ‘non-abelian’
Bagger-Lambert theory we are able to determine the li correction to the super-
symmetry transformation of the fermion field. Along the way make a number of
observations relating to the implementation of the dNS duality transformation at

the level of supersymmetry transformations.
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CHAPTER 1
INTRODUCTION

M-theory is a non-perturbative description of string theory. It offers a way of relat-
ing the five superstring theories and eleven-dimensional supergravity through an
intricate web of dualities. In a sense it represents the ultimate goal of unification:
the ability to have a unique theory capable of describing all physical phenomena.
Furthermore it highlights the significance of the reductionist mindset in the devel-
opment of physics, from both a theoretical and ontological perspective: theoretical
in the sense that the history of physics is the history of one theoretical framework
being subsumed by another; ontological because the theory is based on the idea
that there exists ‘fundamental’ objects in nature. In M-theory, these fundamental

objects are the M2-brane and the Mb-brane.

The existence of such objects is implied by the presence of a three-form gauge
field in 11-dimensional supergravity, which is the low energy limit of M-theory.
The M2-brane couples electrically to the three-form whereas the M5-brane couples
magnetically. This is analogous to the situation in four-dimensional Maxwell the-
ory where a charged point particle couples to a one-form gauge field. The coupling
of p-dimensional objects to (p+1)-form gauge fields appears naturally in string
theory where the Ramond-Ramond fields of type II string theory are sourced by
extended objects called D-branes. What is truly remarkable is that fundamental
strings and D-branes can be obtained from the M-branes by considering certain
compactifications. For example, wrapping one of the transverse directions of the
M2-brane worldvolume around a circle and taking the radius to zero gives rise
to the type ITA fundamental string. The circle radius is related to the type I1TA
string coupling in such a way that small radius corresponds to weak coupling.

Turning this around, one sees that at strong coupling the ITA theory grows an
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extra dimension. When the extra dimension is large, one is outside the regime of

perturbative string theory, and new techniques are required.

A complete understanding of the fundamental degrees of freedom of this eleven-
dimensional theory is likely to involve an understanding of the M-branes and how
they interact with one-another. However this task is made difficult by the fact
that M-theory contains no natural dimensionless parameter with which to define a
perturbative expansion. Instead, one must rely on intuition gained from D-brane
physics, duality relations and supersymmetry to probe the theory. Often this
can involve asking questions about how string theory and D-brane phenomena
are uplifted to M-theory, and then interpreting the result. For example, in string
theory it is well known that fundamental strings end on D-branes. Dimensionally
uplifting this result implies that an M2-brane can end on an M5-brane. From
the supergravity perspective, the M2-brane and Mb-brane appear as solitonic
solutions of the supergravity field equations preserving half the supersymmetry of
the vacuum, whereas the M2-M5 intersection appears as a quarter supersymmetric

spacetime configuration.

The existence of the M2-brane and M5-brane can also be seen at the level
of the M-theory superalgebra, which is a modification of the 11-dimensional su-
pertranslation algebra to include 2-form and 5-form central charges. The spatial
components of these charges couple to the M2-brane and Mb-brane worldvol-
umes. However it also possible to consider the time components of the 2-form and
5-form central charges. In this case it can be shown that these charges couple to
the M-KK-monopole (uplift of D6-brane) and M9-brane (boundary of spacetime
in Horava-Witten heterotic string theory). The M2-brane, M5-brane, M9-brane,
M-KK and M-wave are collectively known as ‘M-theory objects’. These states all

preserve half the supersymmetry of the vacuum.

States which preserve a fraction of the supersymmetry of the vacuum are
called BPS states. Such states play a vital role in string theory as they offer
the possibility of extrapolating information from weak to strong coupling (and
therefore the possibility of testing proposed duality relations). The reason this
extrapolation is possible is related to the idea of a BPS bound. The concept



CHAPTER 1. INTRODUCTION

of a BPS bound and its saturation can be illustrated by looking at extended
supersymmetry algebras. The central charges appearing in such algebras can
be thought of as electric and magnetic charges which couple to the gauge fields
belonging to the supergravity multiplet. The structure of the algebra implies that
the mass of a state preserving some fraction of supersymmetry is bounded from
below by the magnitude of the central charges. States in which the mass is equal
to the charge are said to saturate the BPS bound. In this case, zeroes appearing in
the superalgebra lead to a shortening of the supermultiplet. Since the dimension
of a multiplet cannot change by varying any parameters in the theory, it is possible

to follow BPS states from weak coupling to strong coupling with precise control.

Studying the superalgebra of a theory can provide valuable information about
the types of BPS objects which exist in the theory, as well as their interactions.
It is a remarkable feature of intersecting brane configurations that the intersec-
tion appears as a half supersymmetric soliton solution of the worldvolume theory
of one of the constituent branes [4, 5|. For example, the fact that an M2-brane
can end on an Mb-brane can be seen from the worldvolume perspective of the
Mb5-brane where the boundary of the M2-brane appears as a soliton of the M5-
brane worldvolume theory. Likewise, the M5-M5 intersection can be described
as a 3-brane vortex on the worldvolume of one of the M5-branes. Astonishingly,
the spacetime interpretation is already implicit at the level of the worldvolume
supersymmetry algebra [6]. In the case of the Mb5-brane, the worldvolume su-
peralgebra includes a worldvolume 1-form charge carried by the self-dual string
soliton living on the M5-brane (corresponding to the M2-M5 intersection) as well
as a worldvolume 3-form charge carried by the 3-brane soliton (corresponding to

an M5-M5 intersection).

Although the worldvolume theories of a single M2-brane and Mb-brane are
quite well understood, it is only recently that effort has been directed toward a

Lagrangian description of the worldvolume theory for multiple M2-branes. This

IThe only way this could fail is if another representation becomes degenerate with the BPS
multiplet so that they can pair up to produce the degrees of freedom necessary to fill out a long
representation.

10



CHAPTER 1. INTRODUCTION

work began with the efforts of Bagger and Lambert? [8, 9] who proposed a the-
ory based on a novel algebraic structure called a Lie 3-algebra. Their original
motivation was to write down a theory capable of reproducing the Basu-Harvey
equation [10] as a BPS equation of the theory. The Basu-Harvey equation has a
‘fuzzy funnel’ solution in which the worldvolume of the multiple M2-branes opens
up into an Mb5-brane. This is the M-theory analogue of the Nahm equation [11],
which is a BPS equation of the non-abelian D1-brane theory describing multiple
D1-branes opening into a D3-brane in type IIB string theory [12]. In the case of
IIB string theory, the charge representing the energy bound of the D1-D3 con-
figuration appears in the superalgebra of the coincident D1-brane theory. In a
similar way, the charge corresponding to the M2-M5 configuration should appear
in the worldvolume superalgebra of the multiple M2-brane theory. In the first
part of this thesis we investigate the worldvolume superalgebra of the recently
proposed M2-brane theories of Bagger and Lambert. We explicitly calculate the
central charges and provide interpretations in terms of spacetime intersections of
the M2-brane with other M-theory objects. In particular, we identify the central
charge corresponding to the energy bound of the M2-M5 configuration.

Remarkably, it is possible to make contact with the worldvolume description
of a single M5-brane (in a three-form background) by defining Bagger-Lambert
theory with an infinite dimensional Lie 3-algebra based on the Nambu-Poisson
bracket [13, 14]. This can be seen by rewriting the Bagger-Lambert field theory
on the three-dimensional worldvolume M as a field theory on a six-dimensional
manifold M x N where N is an ‘internal’ three-manifold with Nambu-Poisson
structure. In this case, the ‘non-abelian’ gauge symmetry of the original Bagger-
Lambert theory is promoted to an infinite-dimensional local symmetry of volume
preserving diffeomorphisms of the manifold A/. The bosonic content of this model
includes a self-dual gauge field on M x N, as well as five scalar fields parame-
terising directions transverse to the six-dimensional worldvolume (the expected
field content of an M5-brane). In the second part of this thesis we investigate

the worldvolume superalgebra of the Nambu-Poisson M5-brane. Given the inter-

2See also Gustavsson [7].

11
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pretation of the Nambu-Poisson model as a description of an M5-brane in 3-form
background, one might expect to find central charges corresponding to M5-M2
and M5-Mb5 intersections in the presence of background flux. Indeed we will see
that the central charges appearing in the superalgebra may be interpreted as en-
ergy bounds of Mb5-brane worldvolume solitons in the presence of a background

three-form gauge field.

The M2-brane Lagrangian proposed by Bagger and Lambert can be thought of
as the leading order term in an [, expansion of a (not yet determined) non-linear
multiple M2-brane theory. This is analogous to the situation in string theory
where super Yang-Mills theory represents the leading order terms of the non-
abelian Born-Infeld action, which describes the dynamics of coincident D-branes.
Ultimately one is interested in determining the full non-linear theory, of which the
leading order terms are those of the Bagger-Lambert Lagrangian. Toward this end
it is worth considering non-linear corrections to 3-algebra theories. In the third
and final part of this thesis we investigate li corrections to the supersymmetry
transformations of the Bagger-Lambert theory. For the ‘abelian’ Bagger-Lambert
theory we are able to uniquely determine the lg corrections to the supersymmetry
transformations of the scalar and fermion fields. Generalising to the ‘non-abelian’
Bagger-Lambert theory we are able to determine the lg correction to the super-

symmetry transformation of the fermion field.

The thesis is structured as follows: In Chapter 2 we provide an overview of
branes and their interactions with an emphasis on the role played by superalgebras.
This includes a review of the D1-D3 system in type IIB string theory and a
discussion of the Basu-Harvey equation. In Chapter 3 we review the Bagger-
Lambert theory and its relation to the ABJM theory of multiple membranes.
In Chapter 4 we calculate the worldvolume superalgebra of the N' = 6 Bagger-
Lambert theory, as reported in [1]. For a particular choice of three-algebra we
derive the superalgebra of the ABJM theory. We interpret the associated central
charges in terms of BPS brane configurations. In particular we find the charge
corresponding to the energy bound of the BPS fuzzy-funnel configuration of the

ABJM theory. In Chapter 5 we investigate the worldvolume superalgebra of the

12
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Nambu-Poisson M5-brane theory as reported in [2]. We derive the central charges
corresponding to Mb5-brane solitons in 3-form backgrounds. We also show that the
double dimensional reduction of the superalgebra gives rise to the Poisson bracket
terms of a non-commutative D4-brane superalgebra. We provide interpretations of
the D4-brane charges in terms of spacetime intersections. In Chapter 6 we focus
on li corrections to the supersymmetry transformations of the N/ = 8 Bagger-
Lambert theory as reported in [3]. We begin with a review of the dNS duality
transformation which relates a gauge field and scalar field in (2+1) dimensions
[15-17]. We apply this duality transformation to the a’? corrections of the non-
abelian D2-brane supersymmetry transformations. Along the way make a number
of observations relating to the implementation of the dNS duality transformation
at the level of supersymmetry transformations. Finally, in Chapter 7 we offer
some concluding remarks and discuss directions for future research. An Appendix
summarises conventions and provides calculational details pertaining to results

presented in the thesis.

13



CHAPTER 2

BRANES AND THEIR
INTERACTIONS

In this chapter we provide a brief overview of M-theory branes and their inter-
actions.! A large portion of this thesis will be concerned with extended super-
symmetry algebras. Therefore it seems natural to introduce M-branes from the
perspective of the M-theory superalgebra. We will begin with a review of the
role played by supersymmetry algebras in providing information about M-theory
objects and their spacetime intersections. In particular we will see that M-brane
intersections are encoded in the p-form charges of the respective worldvolume

supersymmetry algebras.

The quest for a Lagrangian description of the worldvolume theory of coincident
M2-branes in M-theory has been a problem of longstanding interest. This has been
partly motivated by the fact that theories of coincident D-branes have provided
interesting ideas about symmetry enhancement and ‘dual’ descriptions in string
theory. Omne example of a system exhibiting dual descriptions is the type IIB
configuration in which N coincident D1-branes end on a D3-brane. From the
D3-brane perspective, the endpoint of the D1-branes appear as a BPS monopole
on the D3-brane worldvolume [4, 5, 19]. From the perspective of the multiple
D1-brane theory, the configuration gives rise to a ‘fuzzy funnel’ soliton, which is a
fuzzy 2-sphere whose radius grows without bound as the D3-brane is reached [12].
These two descriptions of the same physical state provide a stringy realisation of
the Nahm construction [11]. This leads one to hope that the multiple M2-brane

worldvolume theory admits a fuzzy-funnel solution that satisfies a ‘generalised’

IFor an alternative review see [18].

14
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Nahm equation.

In the second half of this chapter will focus on non-abelian D-brane inter-
sections using the example of the D1-D3 system. In particular we will see how
the BPS equation of the D1-brane worldvolume theory corresponds to the Nahm
equation describing the D1-brane growing into a D3 brane. Furthermore we will
see that the charge corresponding to the energy bound of this configuration ap-
pears in the D1-brane supersymmetry algebra. Using the intuition gained from
the D1-D3 system, Basu and Harvey proposed a ‘generalised” Nahm equation ca-
pabale of describing multiple M2-branes ending on an M5-brane [10]. In the last
part of this chapter we will briefly review their work and derive an energy bound
corresponding to the M2-Mb configuration. In Chapter 4 we will see how this
energy bound appears as a charge in the worldvolume supersymmetry algebra of
the M2-brane.

2.1 M-theory Superalgebra and M-theory Objects

A remarkable amount of information is contained within spacetime and worldvol-
ume supersymmetry algebras. We begin by studying the 11-dimensional super-
poincare algebra. The existence of 2-brane and 5-brane solutions in 11-dimensional
supergravity [20] motivates the inclusion of additional ‘charges’ in the algebra.
Furthermore these additional charges imply the existence of other half-supersymmetric

objects in M-theory. This subsection is based on the work presented in [21].

2.1.1 11-dimensional superpoincare algebra

Let us begin by considering the 11-dimensional superpoincare algebra. FEleven
dimensions is the maximum dimension in which one can expect to find an inter-
acting supersymmetric field theory [22]. Translation invariance implies that P

and () commute leaving the anicommutator

{Qa, Qs} = (CTY)ap Py (2.1.1)

15
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where M = 0,...10 is a spacetime Lorentz index and () is a 32-component Ma-
jorana spinor. Now consider a state |S) which preserves some fraction, a, of the
supersymmetry of the vacuum. In other words this state will be annihilated by
some combination of supersymmetry charges. The expectation value of {Qn, Qs}
acting on |.S) will be a real symmetric matrix with 32« zero eigenvalues. A matrix

with zero eigenvalues has a vanishing determinant. This implies
0 = det(I".P) = (P?)' (2.1.2)
which follows from the fact that

[det(I'.P)]? = det(I'™ Py )det(I'N Py)
= det(I"MTN Py Py)
= det(P?.I3,)
= (P?)*? (2.1.3)

So for the particular algebra (2.1.1) we see that states preserving a fraction of the
supersymmetry of the vacuum have null momenta. To determine the fraction of

supersymmetry preserved by these massless states we can pick a frame in which
1
Py = 5(—1;11,0,...0). (2.1.4)

Furthermore if we choose a Majorana representation then C' = T and (2.1.1)

becomes

{Qa, Qp} = %(1 F Lo1)ag- (2.1.5)

It then follows that eigenspinors of {Q,., @z} with zero eigenvalue satisfy
Lore = €. (2.1.6)

The fact that T'g; is traceless and (I'p;)? = 1 implies that the space of solutions

is 16-dimensional and therefore a = % In other words there exists a massless

state which preserves half the supersymmetry of the vacuum. There are no other

16
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possibilities allowed by the supersymmetry algebra (2.1.1). This state is identified

as a gravitational wave, or in M-theory parlance, an M-wave.

As it stands, the 11-dimensional superpoincare algebra (2.1.1) would seem to
suggest that 11-dimensional supergravity admits only one type of state which
preserves a nonzero fraction of the supersymmetry of the vacuum (other than
the vacuum itself). However it is well known that an analysis of the eleven-
dimensional supergravity equations of motion reveals the existence a membrane
solution [23, 24] as well as a five-brane solution [25], both of which preserve half
the supersymmetry of the vacuum. With the advent of M-theory, these states
have since been identified as the M2-brane and M5-brane. If the 11-dimensional
superpoincare algebra is meant to encode information about 11-dimensional su-
pergravity, which is the low energy limit of M-theory, then it appears as if we
have a slight problem, because the algebra (2.1.1) only admits one type of state,
the M-wave state. So how do we solve this problem? The answer is to modify the

supersymmetry algebra [26-30] such that
1 1
{Qu. Qs} = (CFM)aﬁPM+§(CFMN)MZMNJFE(CFMNPQR)QBYMNPQR. (2.1.7)

The spatial components of the two form charge ZM¥ relate to the M2-brane
whereas the spatial components of the 5-form charge YMNPQE relate to the M5-

ZMN

brane. Let us quickly see how this works for the M2-brane. can be expressed

as an integral over the two-cycle occupied by the M2-brane in spacetime
ZMN — Qz/dXM AdXN (2.1.8)

with @, the unit of charge carried by a single membrane.? We see that for an

M2-brane lying in the (12) plane Z;5 is non-zero. In the case of a static membrane,

2The charge Q- is analogous to the string winding number in string theory; it vanishes unless
the two-cycle is non-contractible. The case of an infinite planar membrane can be dealt with
by considering it as a limit of one wrapped on a large torus. In this case T and the charge Q)5
remain finite even though P® and components of ZMY may be infinite.

17
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choosing a suitable Majorana basis in which C' = I'’ results in
{Q,Q} = P*+ T2, (2.1.9)

In the Majorana representation, the supercharge () is real and so the left-hand side
of (2.1.9) is manifestly positive. The sign of the charge Z;5 depends on whether
it is an M2-brane or anti-M2-brane. Therefore it must be true that P° > 0. For
PY =0 we have the vacuum. For P > 0 we derive the bound P° > |Z}5| which is
equivalent to the statement

For the case in which the bound is saturated and T; = )2 the algebra can be

written as

{Q.Q} = P'LFT"7. (2.1.11)

It then follows that spinors € satisfying
"% = +¢ (2.1.12)

are eigenspinors of {Q, @} with zero eigenvalue. Again, since (I'"?)? = 1 and
%12 is traceless, the dimension of the zero-eigenvalue eigenspace of {Q, Q} is 16.
Thus we can conclude that a membrane saturating the bound (2.1.10) preserves
half the supersymmetry of the vacuum, as expected. A similar analysis shows
that for a static five-brane in the (12345) plane with non-zero g5 = Yj2345/P° the

anticommutator of supercharges takes the form
{Q,Q} = P[1 +T"%%gg]. (2.1.13)

Identifying |gs5| as the ratio of the fivebrane’s charge @5 to its tension Ts we see
that positivity implies that T5 > (J5. When the five-brane saturates this bound
it preserves half the supersymmetry of the vacuum. Note that with the central
charges of the M2-brane and M5-brane there is no room for any additional charges
in the superalgebra (2.1.7). We can see this from the fact that {Q,Q} is a real

symmetric 32 X 32 matrix with 528 entries. This is the same as the total number

18
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of components of the momenta and two central charges (11 + 55 + 462).

We have seen that the spatial components of the charges appearing in (2.1.7)
correspond to the M2-brane and Mb-brane. Furthermore we see that each state
corresponds to a spinor constraint of the form I'e = € where I" a product of gamma
matrices. The number of gamma matrices appearing in the product is related to
the dimension of the worldvolume of the object. Based on this intuition, one may
ask what the time components of the charges correspond to. The time components

of the 2-form charge leads to a spinor constraint of the form
[O123456789 ¢ — ¢ (2.1.14)

suggesting a 9-brane. This may be associated with a boundary of eleven-dimensional
spacetime [31, 32|, as in the Horava-Witten construction of the heterotic string
[33]. This is often referred to as the M-9-brane. The time component of the 5-form

charge has a spinor constraint of the form
[0123456¢ — ¢ (2.1.15)

suggesting a six dimensional object. This has an M-theory interpretation [34] as
a Kaluza-Klein monopole [35, 36]. We shall refer to this as the M-KK-monopole.
The M9-brane and M-KK monopole can also be shown to preserve half the su-
persymmetry of the vacuum. Thus by a simple consideration of the extended
11-dimensional superpoincare algebra we have seen that there are in fact 5 ba-
sic half-supersymmetric M-theory objects: The M-wave, M2-brane, M5-brane,
M-KK-monopole and M9-brane.

2.1.2  Intersecting M-branes

Each of the basic half supersymmetric objects of M-theory are associated with a
constraint of the form I'e = € for some traceless product of gamma matrices T
Given two such products we have two such objects with these properties, calling

them I" and I respectively. Let ¢ and ¢’ be the respective charge/tension ratios.
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Then when P* =0
{Q,Q} = P[1+ql' +¢T'| (2.1.16)

Positivity imposes a bound on ¢ and ¢’. The structure of the bound depends on

whether ', TV commute or anticommute. For {I",T"} =0

T>\22+ 72 (2.1.17)

where Z and Z’ are the charges of the two branes. This corresponds to a ‘bound
state’ which still preserves half the supersymmetry of the vacaum. When [I', V] =
0 the gamma matrices may be simultaneously diagonalised and positivity implies
the bound

T>\Z|+|Z'. (2.1.18)

When this bound is saturated one can define the projectors P = 1/2(1 —I') and
P'=1/2(1 —T") and rewrite (2.1.16) as

{Q,Q} =2P°[qP +¢'P'| (2.1.19)

Since [P, P'] = 0, a zero eigenvalue eigenspinor of {@Q, @} must be annihilated by

both of them and therefore must satisfy the joint condition
Fe=¢ Me=¢ (2.1.20)

which implies that the dimension of the zero eigenvalue eigenspace of {Q, Q} is 8.
In other words the configuration is quarter-supersymmetric. The simplest example
of a quarter-supersymmeric configuration is when two M2-branes orthogonally
intersect over a point [37]. This configuration can be written as (0|M2, M2) where
the first entry indicates the dimension of the subspace over which the intersection
occurs. We will adopt this notation for the remainder of the thesis. This particular
configuration may be realised by picking, for example, I' = I'g;2 and I = T'gaq,

corresponding to two M2-branes aligned along the (12) and (34) spatial planes
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respectively.?> Most other quarter-supersymmetric configurations can be obtained
from this one from duality transformations. For example, compactifying on the
M-theory circle in a direction transverse to both the M2-branes will give rise to
two D2-branes intersecting on a point in ten dimensions. Performing a T-duality
along the (56) directions will result in two D4-branes intersecting over a 2-plane.
Decompactifying the M-theory circle then leads to an M5-M5 intersection over a

3-plane, which is known to be a quarter-supersymmetric state [43-45]:
(0|M2, M2) — (0|D2, D2) — (2| D4, D4) — (3| M5, M5). (2.1.21)

Alternatively, one could begin by compactifying along one of the transverse direc-
tions of one of the M2-branes. This will result in a fundamental string intersecting
a D2-brane in ten dimensions. T-dualising in the (45) directions maps this to a
fundamental string intersecting a D4-brane. Decompactifying then gives rise to

an M2-M5 intersection in eleven dimensions:
(0|M2,M2) — (1|F1,D2) — (1|F1, D4) — (1|M2, M5). (2.1.22)

In the next section we will discover that these quarter-supersymmetric spacetime
configurations are encoded in the worldvolume supersymmetry algebras of the

M2-brane and Mb-brane. To this we now turn.

2.1.3  Worldvolume superalgebra’s

A wonderful aspect of worldvolume theories of branes is that BPS-saturated states,
some of which correspond to half-supersymmetric classical solutions of the theory,
can be interpreted from the spacetime perspective as intersections with other
branes. The most obvious example of this is an electric charge on a Type II
D-brane, which can be interpreted as the endpoint of a fundamental Type II
string [46]. The M-theory analogue of this is the self-dual string soliton of the

Mb5-brane worldvolume theory which can be interpreted as the boundary of an

3Discussions relating to various intersecting brane configurations and projection rules can be
found in [38-42].
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M2-brane [47, 48]. It is also possible to find vortices on the M2 brane or M5
brane, which acquire an interpretation as 0-brane or 3-brane intersections with a
second M2-brane or M5-brane [43-45]. In all these cases, the half-supersymmetric
solutions of the worldvolume field theory of a single D-brane or M-brane have
been found [4, 5, 37, 49]. A remarkable feature of these worldvolume solitons is
that they suggest their own spacetime interpretation. This arises from the fact
that the world-volume scalars determine the spacetime embedding. Furthermore,
in [6], it was shown that that the spacetime interpretation of intersections is
already implicit in the central charge structure of the worldvolume supersymmetry

algebra.

Mb5-brane worldvolume superalgebra

The first point to appreciate is that a worldvolume p-brane soliton is associated
with a p-form charge in the worldvolume supersymmetry algebra. As an example
let us consider the M5-brane worldvolume supersymmetry algebra. Studies of the
worldvolume theory of the M5-brane reveal that there exist half-supersymmetric
soliton solutions which describe the self-dual string and the 3-brane vortex. The
existence of these solitons should be reflected by the existence of 1-form and 3-
form charges in the worldvolume superymmetry algebra of the Mb5-brane. Indeed,
in [49], the M5-brane worldvolume supersymmetry algebra was shown to take the

form

{Qia Qé} = QIJ<Fm)a6Pm + (Fm)aﬁYrﬁJ + (anp)a,ﬁzil{mp

= Q" Pag) + Vo) + Zpag (2.1.23)

Here o, = 1,...,4 is an index of SU(4) = Spin(5,1) and I = 1,...,4 is an
index of Sp(2), with Q7 its invariant antisymmetric tensor. Lowercase Roman
indices m,n = 0,...5 refer to worldvolume cordinates of the M5-brane. Thus
we see that Y!7 is a worldvolume one-form and Z#;{w is a worldvolume three-

form. In this sense one can think of the original use of the terminology ‘p-form

charge’ as characterising p-directions in the worldvolume along which the soliton
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is aligned. The representations of the R-symmetry group (in this case Sp(2))
encode all information regarding the possible interpretations of the solitons as
intersections of the M5-brane with other M-theory objects. For example, the self
dual string charge transforms in the irreducible 5 of Sp(2) which can be viewed as
a vector in the space transverse to the Mb5-brane worldvolume. It can be naturally
interpreted as defining the direction in which the M2-brane ‘leaves’ the M5-brane
wordvolume. In other words, viewing the string charge as a vector of Sp(2) leads
to the spacetime interpretation (1|M2, M5). In a similar way, the 3-brane vortex
charge, which transforms in the irreducible 10 of Sp(2), can be thought of as
defining a 2-form in space transverse to the Mb5-brane. This 2-form is naturally
interpreted as defining a 2-plane along which a second Mb-brane is aligned. This

corresponds to the spacetime picture (3|M5, M5).

Each of the worldvolume charges is expressible as an integral over the subspace
wy defined by directions transverse to the p-brane soliton on the worldvolume of
the brane. The g-form which is integrated over w, can be thought of as being
defined by the representation of the R-symmetry group describing rotational in-
variance in directions transverse to the brane. So for example, from the perspective
of the transverse space, the charge corresponding to the spacetime configuration
(3| M5, M5) should be expressible as the integral of a 2-form. The integral should
be taken over the susbspace of the 5-dimensional worldspace transverse to the
soliton on the Mb5-brane worldvolume. This is a two-dimensional space and so
we should integrate a two-form over this space. The two-form should include two
scalar fields, consistent with its interpretation as a 2-form in the transverse space.
A natural choice is

Z = /dX ANdY (2.1.24)

where X and Y represent two scalar fields of the M5-brane worldvolume theory.
What about the self-dual string charge? As we have seen, the string charge defines
a 5-vector of Sp(2) which can be viewed as a 1-form in the 5-space transverse to the
Mb5-brane worldvolume in spacetime. This tells us that the corresponding integral
charge should contain one scalar field. Furthermore we know that the integral

should be taken over the subspace of the 5-dimensional worldspace transverse
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to the soliton, which in this case is 4-dimensional. This implies that we should

integrate a 4-form. A natural choice is
Y = /dX NH (2.1.25)

where X is a worldvolume scalar and H is the self-dual three-form field strength
associated with the 2-form gauge field living on the M5-brane worldvolume. Note
that Y is not given simply by an integral of H over a 3-sphere surrounding the
string in the Mb-brane, as one might naively expect. It includes dependence on
one scalar field, as required by its identification with the magnitude of a 1-form

in the transverse space to the Mb-brane.

Note that the 5 representation of Sp(2) could equally have been interpreted
as a transverse 4-form in the transverse 5-space. In this case the 4-form can be
seen as parameterising the directions in which an object with at least four spa-
tial coordinates leaves the M5-brane wordvolume, with one coincident coordinate
parameterised by the original 1-form of the 1-brane soliton. Thus we have the nat-
ural interpretation of this being the intersection of two Mb-branes over a string
(1|M5, M5), which is a known quarter-supersymmetric spacetime configuration
[50]. In a similar way, the 10 of Sp(2) can be thought of as defining a transverse
3-form which may be interpreted as the intersection of the Mb5-brane with a 6-
dimensional object over a 3-brane. This six dimensional object we interpret as
the M-KK monopole and therefore (3| M5, K K) is another spacetime intersection
allowed by the algebra [39].4

It is possible to verify that (2.1.24) and (2.1.25) are the correct expressions for
the worldvolume charges by explicitly constructing the supersymmetry generators
as Noether charges and determining their algebra directly [26, 31]. Alternatively,

one can show that the p-volume tensions of worldvolume p-brane solitons are

41t is possible to view the time component of the 1-form charge as the spatial components
of a dual 5-form [49]. This leads to the spacetime intersections (5|M5, KK) and (5|M5, M9)
(see [39, 51, 52]). Note that the 3-form is self-dual and therefore the time component provides
no new information. One can also consider the Sp(2) 5-vector P which can be interpreted as a
O-form or 5-form in the transverse space leading to spacetime interpretations (1|M5, MW) and
(1|M5, K K) respectively.
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bounded from below by expressions that are precisely of this form [53]. Both
these approaches have been investigated in the literature and both confirm the

results outlined above.

M2-brane worldvolume superalgebra

For the case of the M2-brane the worldvolume supersymmetry algebra is given by
the maximal central extension of the 3-dimensional N' = 8 super-Poincare algebra

[6]. The anticommutator of supersymmetry charges is given by
{Qfxa Q%} = (Sijp(aﬁ) + W((;Jg)) + 504,8X[ij]7 <5ZJW(U) = O)a (2126)

where Q' are the eight Majorana spinor supercharges (i = 1, ...,8) and P is the
3-momentum. This supersymmetry algebra has an SO(8) automorphism group,
which we interpret as the rotation group in the transverse 8-space. W represents
a worldvolume O-form transforming in the 28 of SO(8) whereas X represents a
worldvolume 1-form transforming in the 35% of SO(8). The 28 can be interpreted
as defining either a 2-form or a 6-form in the transverse space. When defining a
2-form, the natural spacetime interpretation is the intersection of two M2-branes
over a point (0|M2, M2). The 2-form defines the 2-plane along which the second
M2-brane is aligned. When defining a 6-form, the natural spacetime interpre-

tation is an M2-brane intersecting a M-KK-monopole over a point [54], namely
(0|M2, KK).

The 1-form worldvolume charge transforms under 35" which defines a trans-
verse self-dual 4-form. From the spacetime perspective this can be viewed as an
M2-brane intersecting an M5-brane (1|M2, M5). This is consistent with the fact
that the 4-form parameterises a 4-plane transverse to the M2-brane along which
four of the spatial dimensions of the Mb5-brane are aligned. The time compo-
nent of the 1-form worldvolume charge is dual to the spatial components of a
2-form. In this case, the transverse 4-form suggests that the M2-brane is coin-
cident with two of the spatial coordinates of a 6-dimensional object. In other

words the M2-brane is ‘inside’ an M-KK-monopole intersecting over a 2-plane,
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(2|M2, KK). However the story doesn’t end here. One must also consider con-
figurations in which only the worldvolume 3-vector P is non-zero. Since P is a
singlet of SO(8) it may be interpreted as representing either a 0-form or 8-form in
the transverse space. Since P is a vector from the worldvolume perspective, the
corresponding spacetime intersections will be over a one-dimensional string. The
obvious interpretation of the transverse O-form is the intersection of M2-brane
with an M-wave, (1|M2, MW) [39]. The 8-form describes the intersection of the
M2-brane with a nine-dimensional object which we interpret as being the M9-
brane, (1|M2, M9). This exhausts all possible quarter-supersymmetric spacetime

configurations involving the M2-brane.

As with the M5-brane, one might wonder whether its possible to express the
0-form and 1-form worldvolume charges as integrals over the subspaces transverse
to the worldvolume solitons on the M2-brane. Let us begin by considering the
spacetime configuration (0|M2, M2). The worldvolume soliton is zero dimensional
meaning that the subspace over which we must integrate is two-dimensional. This
implies that we must integrate a 2-form. Furthermore, the 2-form should include
two scalar fields which parameterise the 2-plane of the second M2-brane. Thus

we are naturally led to an expression of the form
W= /dX A dY (2.1.27)

where X and Y are two scalar fields of the M2-brane worldvolume theory. Note
that this has exactly the same form as the charge corresponding to (3|M5, M5).
This is to be expected from the equivalence under spacetime duality of the in-
tersecting brane configurations associated with the M2-brane vortex and the M5-

brane 3-brane (recall (2.1.21)).

What about the spacetime configuration (1|M2,M5)? From the perspec-
tive of the M2-brane, the subspace transverse to the 1-brane soliton is clearly
1-dimensional. Thus we expect the corresponding charge to be expressed as the
integral of a 1-form. Furthermore, the integral charge should contain four scalar
fields consistent with its interpretation as a transverse 4-form. However a problem

arises when trying to construct this type of charge from the worldvolume theory
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of a single M2-brane. This is related to the fact that the worldvolme theory of
a single M2-brane contains no soliton solution of its equations of motion which
allows for a spacetime interpretation corresponding to an M2-M5 intersection. In-
stead, if one wishes to uncover knowledge of the fact that a single M2-brane can
end on an Mb-brane, one must investigate the boundary theory of the M2-brane.

For the case of a single membrane this has been investigated in [44, 47, 48] .

The situation is different if one considers the possibility of multiple M2-branes.
This is related to the fact that in string theory, given an intersection between D-
branes with different dimensions, the description of the system using the worldvol-
ume of lower dimensionality is usually based on a non-abelian worldvolume theory.
Using the intuition gained from the multiple D1-D3 system, Basu and Harvey were
able to construct an equation capable of describing multiple M2-branes growing
into an Mb5-brane. The energy bound corresponding to this configuration should
appear in the worldvolume supersymmetry algebra of the M2-brane as a central
charge with the properties outlined above. In Chapter 4 we will see that this is
indeed the case. In order to pave the way we will now review the D1-D3 system
(including the D1-brane supersymmetry algebra), as well as the work of Basu
and Harvey. This provides an opportunity to outline the approach that will be
adopted in Chapters 4 and 5.

2.2 Non-abelian D-brane phenomena and the Basu-Harvey

equation

A single Dp-brane contains a U(1) gauge field living on its worldvolume which
couples to the endpoint of a fundamental string. Scalar fields on the worldvolume
describe transverse displacements of the brane. One can think of the scalars as the
Goldstone bosons associated with spontaneously broken translation symmetry in
the transverse directions. When N Dp-branes coincide, the worldvolume theory is
promoted to a U(N) gauge theory [55]. This is due to new massless states arising
as a result of stretched strings between the Dp-branes achieving vanishing length.

Thus while the number of light degrees of freedom is proportional to N for N
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widely separated D-branes, this number grows like N? for N coincident D-branes.
In this case the transverse coordinates described by the worldvolume scalars are
also promoted to N x N matrices since they are T-dual to the nonabelian gauge

fields and so inherit their behaviour.

The matrix-valued scalar fields provide a natural framework in which to study
non-commutative geometry. Detailed studies of nonabelian worldvolume theories
reveal that noncommutative geometries appear dynamically in many physical situ-
ations. For example, one finds that D-branes of one dimension metamorphose into
D-branes of a higher dimension through noncommutative configurations [53, 56—
60]. The prototype example is the nonabelian D1-brane theory in which the Nahm

equation appears as a BPS equation of the theory. We will now review this system.

2.2.1 Review of the D1-D3 system

An interesting aspect of the abelian Born-Infeld action is that it supports solitonic
configurations describing lower-dimensional branes protruding from the original
D-brane. For example, in the case of a D3 brane, one finds spike solutions, known
as ‘bions’, corresponding to fundamental strings and/or D1-branes extending out
of the D3-brane [4, 5, 19]. Importantly, in these configurations both the world-
volume gauge fields and transverse scalar fields are excited. The gauge field can
be thought of as coupling to the point charge arising from the end-point of the
attached string. The scalar field describes the deformation of the D3-brane ge-
ometry caused by attaching the strings. We can see this explicitly by considering
the low energy dynamics of a single D3-brane in Minkowski space. This system

can be described by the Born-Infeld action [61],

S— 71, / A0\ —det (1, + N0, X0, X' + AE,) (2.2.1)

where A\ = 27’ = 27l2. Note that a static gauge choice has been made such that
o denotes the worldvolume coordinates of the D3 brane with ¢ = 0,...3 and
X* denotes the scalar fields describing transverse fluctuations of the brane with

i =4,...,9 . F, describes the U(1) field strength living on the worldvolume
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of the D3-brane. D1-branes appear as BPS magnetic monopoles of the D3-brane
worldvolume theory. Thus we choose a configuration of fields (consistent with the
equations of motion) in which only one of the scalar fields X = X? is excited
along with the magnetic field B* = %5“1"3ch where a = 1,...3 represents the
spatial coordinates of the D3-brane. For static configurations, the energy of the

system is

E=—L= Tg/d?’a\/vﬁx T B2+ (1+£MB.VX)?

> T3/d3a(1 + \B.VX). (2.2.2)

The first term in this lower bound is simply the energy of the D3-brane. The
second term can be written as a total derivative B.VX = 6(§X ) by using the
Bianchi identity V.B = 0. This term is therefore topological and only depends
on the boundary values of the fields. Thus the last line in (2.2.2) provides a true
minimum of the energy for a given set of boundary conditions. We see that the
lower bound is achieved when

VX =+B. (2.2.3)

This coincides with the BPS condition for magnetic monopoles [4, 5, 19]. Further-
more, using the Bianchi identity, (2.2.3) implies that V2X = 0 and therefore the
functions describing the monopole on the D3-brane worldvolume are harmonic in
form. The simplest solution, which corresponds to the bion spike, can be expressed
as

X(r) = % B(f) = :FQ—j;gf (2.2.4)
where 2 = (61)2+(0?)?+(03)? and N is an integer resulting from the quantisation

of magnetic charge. The energy of this configuration is easily calculated to be
E = Tg/d3a 1 NTl/ d(AX) (2.2.5)
0

where T} = (27l,)*Ts. The physical distance in the transverse direction is repre-
sented by AX. Therefore this expression can be thought of as the energy of a BPS

configuration consisting of N semi-infinite D1-branes ending on an orthogonal
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D3-brane.

In order to describe the D1-D3 intersection from the perspective of the world-
volume theory of the D1-brane requires knowledge of the non-abelian D1-brane
worldvolume theory. A particular soliton solution of this theory describes a fuzzy
2-sphere whose radius grows without bound into the D3-brane worldvolume. The
low energy dynamics of N D1-branes in a flat background is well described by the
non-abelian Born-Infeld action [62, 63]. However, if one is only interested in the
leading nontrivial terms in a weak field expansion, the result is exactly describable
in terms of super Yang-Mills theory with U(N) gauge group, dimensionally re-
duced to 1+1 dimensions. Therefore, for a configuration in which all gauge fields

and fermions have been set to zero, it is sufficient (for our purpose) to consider

L— —TIAQTr(%ﬁﬂXia“Xi + i[xi, X7 (2.2.6)

where we have assumed static gauge such that the worldvolume coordinates are

9 = 5. For the case in

identified with those of spacetime as ¢° = t and ¢! = x
which only three of the scalar fields are non-zero it is possible to write the energy

of this system as
2 . insvi 4 iy wiliyi i
E=T)\ [ dx Tr(Eé?SX 0° X" + Z[X , XX X))

1 1 . 1 o
= Tl/\2 / df)?g |:§TI‘(8$XZ — §€ijk[XJ, Xk])2 + §eijk85XZ [Xj, Xk]

S Ti\?

/ dz? %9, X[ X7, XF). (2.2.7)

We see see that the minimum energy condition

) 1 :
85Xl - §Eijk[X]7 Xk] (228)

can be identified as the Nahm equation [11, 56]. The desired solution to this

equation is given by '
. ot

X'(s)=x— 2.2.9

() = 5 (2.2.9)

where the o are an N x N representation of the SU(2) algebra [af, af] = 2ie¥*at.
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The Casimir C for this algebra is defined by Y (a’)? = C1ly where 1y is the
N x N identity matrix. If we focus on the irreducible N x N representation for
which C' = N? — 1 then this noncommutative scalar field configuration describes

a fuzzy two-sphere with physical radius

s) = M\/Tr[Xi(s)2/N = N:lz V1—-1/N2, (2.2.10)

Hence the solution describes a fuzzy funnel in which the D1-brane expands to cover
the X123 hyperplane at s = 0.5 This geometry can be compared to the D3-brane
solution after re-labelling s — AX and R — r. We see that both descriptions yield
the same geometry in the limit of large N, up to 1/N? corrections. The energy

can be calculated from the boundary term appearing in (2.2.7) and is found to be

F

which matches the result arising from the D3-brane analysis (2.2.5) in the large N

E = NTl/ ds + T3/47TR2dR (2.2.11)
0

limit. It is possible to show that this configuration preserves half the supersym-
mery of the D1-brane worldvolume theory. The linearised supersymmetry vari-
ation of the D1-brane theory is simply the dimensional reduction of the fermion
variation appearing in ten-dimensional super Yang-Mills. Demanding that this

variation vanishes requires
(29, X" + TY[ X", X7])e = 0. (2.2.12)

We see that if the scalar fields satisfy the Nahm equation (2.2.8) then the super-

symmetry constraint (2.2.12) is satisfied provided the spinor € satisfies
1% = e, (2.2.13)

This constraint tells us that solutions satisfying the Nahm equation preserve half

5Note that more general configurations involving more than three scalar fields describe D1-
branes expanding into intersecting D3-branes. Supersymmetry dictates that the intersecting
D3-branes must lie on a calibrated 3-surface of spacetime. See for example [64-71].
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the supersymmetry of the D1-brane worldvolume theory. The BPS energy bound
corresponding to the ‘fuzzy funnel’ configuration should appear in the extended
worldvolume supersymmetry algebra of the D1-brane theory. The structure of
the charge should allow for a spacetime interpretation as the energy bound corre-
sponding to the D1-D3 configuration. In the next section we will show how this

works.

2.2.2  Dl-brane superalgebra

A neat way of deriving the worldvolume supersymmetry algebra of the multiple
D1-brane theory is to consider the 10-dimensional supersymmetry algebra of super
Yang-Mills theory and then dimensionally reduce the result to 141 dimensions®.
This is an illustrative exercise as we will see explicitly how the charge correspond-
ing to the Nahm configuration arises in the supersymmetry algebra. Furthermore
it provides us with an opportunity to outline the method of deriving a superal-
gebra. This methodology will be put to use in Chapters 4 and 5. We begin by

considering ten dimensional super Yang-Mills theory defined by the Lagrangian
1 ' _
£ = —Te(Fun, M) + %Tr(¢, T D)) (2.2.14)
and supersymmetry transformations

§Apr = i€l y)
5 = TMN Fy ne (2.2.15)

where M, N are ten dimensional Lorentz indices and v is a complex Majorana-
Weyl spinor. Varying the Lagrangian with respect to these supersymmetry trans-

formations one finds

5L = Onp(—ieFNPTpt)p — %EFNPFMFNPw) = Oy VM (2.2.16)

6Parts of this section are influenced by the lecture notes ‘Electromagnetic Duality for Chil-
dren’ by J. M. Figueroa-O‘Farrill.
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In order to calculate the superalgebra of this theory we need to first determine the
supersymmetry charge, which is the spatial integral of the time-like component
of the supersymmetry current. The supersymmetry current is the Noether cur-
rent associated with global supersymmetry transformations. Noethers theorem
asserts that corresponding to every global symmetry there exists a corresponding
conserved current. Consider an infinitesimal transformation that takes a ten-

dimensional field ® to ® 4+ 0P and changes the Lagrangian by a total derivative
6L = L(®+60) — L(P) = Iy VM. (2.2.17)

For a Lagrangian of the form L£(®,dy,®) it is possible to write the variation of
the action as

oL oL
— 10 =5 = 1)
08 /d x(aq)é —i—a(an))aMé )

= [ (5 (o) o oo (o))

(2.2.18)

The terms in square brackets represent the Euler-Lagrange equations. When
these equations are satisfied (i.e when the equations of motion are satisfied) we

can always define a conserved current

oL
M _ _yM)\ _
O JM = Oy (—a(a @)&b 1% ) 0. (2.2.19)

Therefore, applying this to super Yang-Mills theory, the Noether supersymmetry

current takes the form

oL
-TM _ SA — M
eJ DO V
- %gFNPrNPrW (2.2.20)

where in the first line, summation over A is implied, where A represents all
the fields in the super Yang-Mills Lagrangian (2.2.14) and we have substituted
(2.2.16). The supersymmetry algebra can be derived by varying the supersym-
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metry current. This follows from the fact that the supercharge is the generator
of supersymmetry transformations and the infinitesimal variation of an anticom-

muting field is given by d® «x {@Q, ®}. Therefore we have

eQ,Q} x / §J°. (2.2.21)

space

Ignoring fermion terms, one finds that

—idJM = —ieI‘NPFMFQRFNpFQR
— g[—irNPQRMFNPFQ R+ 2FMN Tt 4 %FNPFNPFM]
= 26[éaNP@RMSTUVWFNPFQRFSTUVW + (FMNFEyp + %FQRFQRCSIAJ ).
(2.2.22)
Defining
TMN — FMPFPN 4 ;lnMNFPQFPQ
7MNPQRS _ é cMNPQRSTUVW Fro Fyw (2_2.23)

we recognise T' as the bosonic part of the improved energy-momentum tensor of
the super Yang-Mills theory. The momentum, as usual, is given by the spatial

integral of T°M

PM:/ M, (2.2.24)
space

On the other hand it is possible to define the topological charge
space

With these definitions the 10-dimensional super Yang-Mills supersymmetry alge-

bra takes the compact form

= 2
{Q, Q} = QPMFM —+ EZMNPQRFMNPQR. (2226)
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In order to write down the supersymmetry algebra in 1+1 dimensions we need
to dimensionally reduce both the momenta and topological charge. In order to
perform the dimensional reduction we split the ten dimensional indices into world-
volume and transverse indices such that F),, is the field strength on the D1-brane,
F, = D,X" and Fj; = [ X', X/], where X" represent the transverse coordinates.
We assume a configuration in which only three of the scalar fields are active and
label them X with a = 2, 3,4. Performing the reduction one finds charges in 141

dimensions of the form

T ¢ E.0, X" (2.2.27)

1
ZOMNPQR e éeabcasXa[Xb7 XC] (2228)

The first term represents an electric charge corresponding to the endpoint of a
fundamental string. The second term we identify as the charge corresponding to
the fuzzy 2-sphere soliton associated with the Nahm equation which we found
in the D1-brane worldvolume theory. The form of this charge could have been
motivated along the lines considered in Chapter 2. The D1 brane intersects the
D3-brane on a point. This may be expressed as (0|D1,D3). Thus from the
worldvolume perspective this corresponds to a zero-form central charge. However
the integral expression representing this charge should be expressible as an integral
over the subspace transverse to the soliton on the worldvolume of the D1-brane.
In this case the subspace is 1-dimensional indicating that a one-form should be
integrated. Furthermore, the zero-form charge can be interpreted as a 3-form in
the transverse space. The integral charge should reflect this fact and contain three
scalar fields. Based on this line of reasoning we see that the charge had to have

the form given in (2.2.28).

Now that we have seen how to describe the D1-D3 system from the worldvol-
ume and superalgbera perspective, the question arises whether it is possible to
extend this analysis to the M2-M5 system in M-theory. Indeed, if one investigates
the worldvolume theory of a single M5-brane it is possible to find a self-dual string
soliton solution which is interpreted as the boundary of an M2-brane. Further-

more, the charge corresponding to the self-dual string has been found explicitly in
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the Mb5-brane superalgebra. Using the intuition gained from the D1-brane system,
one expects the multiple M2-brane worldvolume theory to contain a BPS equation
which describes multiple M2-branes ending on an M5-brane. The cross section of
this solution should describe a fuzzy 3-sphere. In the next section we will review
the work of Basu and Harvey who proposed a ‘generalised” Nahm equation as a

candidate for the BPS equation of a multiple M2-brane theory.

2.2.3 The Basu-Harvey equation

In the previous section we found that the D1-D3 system exhibits dual descrip-
tions: The D1-brane appears as a spike on the worldvolume of the D3-brane and
is described by a monopole equation. From the D1-brane perspective we found
that the Nahm equation describes a fuzzy 2-sphere with a radius that grows as
one approaches the D3-brane. Importantly, there was a region in which the two
descriptions overlap. It is reasonable to expect a similar picture in M-theory re-
garding the M2-M5 system. From the perspective of the Mb-brane, the M2-brane
boundary appears as the self-dual string soliton. In order to see this explicitly
from the Mb5-brane perspective one can look for half-BPS solutions. The simplest
approach is to look for solutions to d¢) = 0 where 1 is the worldvolume fermion
living on the Mb5-brane. Explicitly, for a single M5-brane the worldvolume fermion

variation takes the form [72-75]

1
6y =TrT10, X e + EPWMHIW (2.2.29)
where =0, ...,5 is a worldvolume coordinate and I = 6, ... 10 labels transverse

directions to the brane. As outlined at the beginning of this chapter, half-BPS
solutions correspond to certain constraints on the supersymmetry parameters of
the theory. Thus one expects the constraint corresponding to the string on the
Mb-brane to be of the form

%% = ¢ (2.2.30)

where TV, T'' are Mb-brane worldvolume gamma matrices and I'® is a gamma

matrix in the transverse space. This represents a configuration in which the
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M2-brane is aligned along the (16) spatial plane with the (1) direction being
coincident with the M5-brane. Since we are looking for a string solution we
consider the situation where the M5-brane worldvolume fields only depend on the

radial coordinate tangent to the Mb5-brane which we label R, where
R =X+ X; + X7 + X2 (2.2.31)
Setting 01 = 0 and using the spinor constraint (2.2.30) one arrives at
H = xds(R) (2.2.32)

where s(R) parameterises the direction along which the M2-brane ‘leaves’ the M5-
brane, H is the 3-form worldvolume field strength and % denotes Hodge duality
along the four wordvolume coordinates transverse to the string. The Bianchi

identity allows us to write (2.2.32) as
d+ds(R) =0 (2.2.33)

which implies that s(R) is harmonic suggesting a solution of the form

Q

(2.2.34)
where Q refers to the self-dual string charge. We now want to consider the M2-M5
system from the perspective of the M2-brane. Recall that in the D1-brane system,
the Nahm equation involved three active scalar fields which represented directions
transverse to the D1-brane worldvolume which ended up forming the worldvol-
ume of the D3-brane. In this case, solutions to the Nahm equation described a
fuzzy 2-sphere with a radius that grew as one approached the D3-brane. Follow-
ing a similar line of reasoning, in order to describe the M2-brane growing into
the Mb5-brane from the M2 perspective will require a generalised Nahm equation
involving 4 scalar fields. The equation should describe a fuzzy 3-sphere whose ra-
dius diverges to fill out the remaining worldvolume coordinates of the Mb5-brane.

Furthermore, the radial profile should match that of the self-dual string (2.2.34).
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Based on these requirements, Basu and Harvey proposed the following equation
to describe membranes ending on an M5-brane”
axt M3

1 .
ds 64_7r€ijkz@[Ga X, XM X =0 (2:2.35)

where 4,7,k = 3,4,5,6 and G is a fixed matrix with the property G?> = 1. The
4-bracket is defined by

(XL X7 X3 XY = ) sign(o) X0 X7@) X B xoW), (2.2.36)
perms(o)

A solution to (2.2.35) was found in [10] and takes the form

Vor 1
=G (2.2.37)
MY? s

X'(s) =
From this it is possible to define the physical radius as

Tr(X7)?2

2.2.38
(1) (22.38)
which implies
N
s(R) ~ I (2.2.39)

which matches (2.2.34) when N is identified with the number of membranes.
Looking at (2.2.35) we see that it’s possible to use a Bogomol'nyi argument to

write the energy of this configuration as

[ . 1 . . 1 .
E=T, / d*oTr [ (0, X" + R G, X7, X% X')% + ({0,X7, ﬁ[a, X7, Xk Xl]})Q}
(2.2.40)
2 -1 7 1 17kl j k 11\ 2 1 17kl 7 ] k l
=T, | d?cTr 5(&5)( —561 (X7, X* X)) +§eﬂ 0. X[X7, X%, X1
1 o
> 3 / 2o, XX X*, X1 (2.2.41)

"The generalisation of this equation describing M2-branes ending on intersecting M5-branes
was considered in [71].
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where we have made use of the Basu-Harvey equation and the fact that G? = 1.
The Nambu 3-bracket [X?, X7, X*] is defined as

(XL X% X = ) sign(o) X X7C) xo®), (2.2.42)

perms(o)

We see from (2.2.41) that when the Basu-Harvey equation is satisfied, the energy
is bounded by a term involving four scalar fields and a single derivative. We recall
from the beginning of this chapter that the M2-brane 1-form charge transforms
in the 35" of SO(8) and can be interpreted as a 4-form in the transverse space.
Given this, plus the fact that the subspace transverse to the worldvolume 1-brane
soliton on the M2-brane is 1-dimensional, we argued that the charge should be
a 1-form containing 4 scalar fields. We see that the energy bound appearing in
(2.2.41) is exactly of this form. The question now arises whether it is possible to
‘derive’ this charge from a multiple M2-brane Lagrangian theory. In other words,
is it possible to write down a supersymmetric worldvolume theory of multiple
M2-branes which reproduces (2.2.41) for a configuration in which all fermions and
gauge fields have been set to zero, and only half the scalar fields are active. Given
such a supersymmetric worldvolume theory of the M2-brane, it should be possible
to explicitly calculate the worldvolume supersymmetry algebra by looking at the
anticommutator of supercharges. This is the task we will undertake in Chapter 4.
In the next chapter we will review some recent work on Lagrangian descriptions
of multiple M2-branes. In particular we will focus on the work of Bagger and
Lambert who proposed a description of multiple M2-branes based on a novel

algebraic structure called a 3-algebra.
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BAGGER-LAMBERT THEORY

There exist a number of interesting problems relating to the dynamics of multiple
M2-branes. Firstly, there is no dilaton in the theory to enable a weak coupling
limit.! Secondly it is known that the degrees of freedom of N coincident M2-
branes scales like N*/2? as compared to N? for N coincident D-branes [77-79].
Thirdly, for a long time it was believed that a Lagrangian description of multiple
M2-branes was not possible [80]. There is however a way of defining an M2-
brane Lagrangian which is correct by definition and possesses manifest NV = 8

supersymmetry (although not manifest conformal symmetry), namely

_ 1
lim Q_»CSYM' (301)

gy M —>00 gYM

One can think of this as the infra-red limit of Yang-Mills theory on D2-branes.
The question is whether this conformal IR fixed point has an explicit Lagrangian
description where all of the symmetries of the theory are manifest. Furthermore,
we know that the Basu Harvey equation should correspond to the BPS equation
of a multiple M2-brane theory in much the same way that the Nahm equation
is the BPS equation of the non-abelian D1-brane theory. This in fact was the
original motivation that led Bagger and Lambert to propose a supersymmetric
Lagrangian theory for multiple M2-branes in which the scalar fields take values
in an algebra that admits a totally antisymmetric tri-linear product. It was con-
jectured that this model could be made maximally supersymmetric by including

a non-propagating gauge field. The correpsonding supersymmetry algebra was

Interestingly the coupling between the string world sheet Euler character and the dilaton in
string theory can be shown to arise from a careful treatment of the M2-brane partition function
measure [76].
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shown to close onto equations of motion. These were ‘integrated’ to arrive at a
Lagrangian expression. The theory is consistent with all the symmetries expected
from multiple M2-branes: in other words a conformal and gauge invariant action
with 16 supersymmetries. The theory has an SO(8) R-symmetry that acts on the
eight transverse scalars, a nonpropagating gauge field, and no free parameters,

modulo a rescaling of the structure constants.

In this chapter we will review the N' = 8 Bagger-Lambert-Gustavsson theory.
We will see how the construction of an M2-brane theory with the correct symme-
tries naturally leads to a 3-algebra structure. In the second part of this chapter
we will review the N = 6 Bagger-Lambert theory and its relation to the ABJM
theory. In the final part of this chapter we will review the ‘novel Higgs mechanism’
which relates the M2-brane theory to D2-branes. This will provide us with the
material necessary to calculate and interpret the worldvolume supersymmetry al-
gebras of these theories in Chapter 5. The content of this chapter is largely based
on the following papers [7-9, 81-83]. When the content of the chapter refers to

material not contained in these papers, explicit reference will be made in the text.

3.1 N =8 Bagger-Lambert Theory

3.1.1 Constructing the theory

A theory describing multiple M2-branes should have 8 scalar fields X7, param-
eterising directions transverse to the worldvolume, as well as their fermionic su-
perpartners, the Goldstinos, which correspond to broken supersymmetries. The
fermionic field ¥ is a Majorana spinor in 10 4+ 1 dimensions and as a result ¥
has 16 real fermionic components, equivalent to 8 bosonic degrees of freedom.
Preserved supersymmetries should be reflected in the projection constraint of the

supersymmetry parameters €. Thus we have

e = ghie (3.1.1)
Ay = — e g (3.1.2)
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where the first constraint corresponds to the preserved supersymmetries and the
second to the broken supersymmetries. In order to construct a membrane theory
involving these scalar and fermion fields, one can begin by assuming that they live
in some vector space A. This is familiar from D-brane physics where we know that
the worldvolume scalar fields are valued in a Lie 2-algebra. In 2+1 dimensions a
scalar field has mass dimension 1/2 whereas a fermion has mass dimension 1. A
little thought reveals that the supersymmetry transformations (to leading order

in [,) must be of the form

§XT = ielq (3.1.3)
6 = 0, X' T e + k[ X', X7 XK|TH e, (3.1.4)

where 4 = 0, 1, 2 are the M2-brane worldvolume coordinates and I, J, K = 3,...10
label the eight scalar fields which define directions transverse to the brane. The
triple product [ X7, X7, X¥] is antisymmetric and linear in each of the fields. We
note that the scalar variation (3.1.3) has the expected form for a supersymmetric
theory. As for the fermion, the first term in the variation is the leading order
free field term for a single M2-brane [23]. Symmetry pretty much dictates what
else you can add to v in addition to the free-field term. The M2-brane theory is
known to be superconformal. The mass dimension of the scalar implies that the
potential in 241 dimensions must be sextic [80] and therefore whatever additional
term appears in d1 should be cubic in scalar fields (due to the relation between
91 and V). Furthermore, we know that ¢) and € have opposite chirality and the
supersymmetry transformation should respect this. This limits the gamma matrix
structure of the second term to be either I'! or I'//%. The fact that di) = 0 should
give rise to a BPS equation with a solution that displayed the correct divergence
to reproduce the profile of the self-dual string soliton on the M5-brane limits
this choice to I''/%. The next thing to do is check the closure of the proposed
supersymmetry transformations. The scalar fields close onto translations plus a
term that looks like

X el e [ X7, X5, X (3.1.5)
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which can be viewed as a local version of the global symmetry transformation
0X =la,b, X|, (3.1.6)

where a,b € A. It proves convenient to introduce a basis for the algebra A
involving the generators T* where a = 1,... N where N is the dimension of A.

The structure constants are defined by
[T, T°,T°) = o, (3.1.7)

which immediately implies f%¢, = f [abfl]. In this case, the symmetry transforma-

tion (3.1.5) can be expressed generally as
5Xd = fabchach = AbaXb (318)

In order to promote this global symmetry to a local symmetry a covariant deriva-
tive is defined such that 6(D,X) = 6(D,)X + D,(0X). A natural choice is

(DuX)o = 0,X, — AL X, (3.1.9)

na

with fl#ba = f® A,ca. One can think of fluba as living in the space of linear
maps from A to itself. The field strength can be calculated in the normal way
by considering the commutator of covariant derivatives ([D,, D,]X), = F ' o Xb-
As a result of the gauging, Bagger and Lambert (and independently Gustavsson)
showed that the full set of supersymmetry transformations, including gauge field,

take the form

6X! =ierly,
1
6o = D, XTHT e — 6be X XK fhed PIIK,

SAL = iel I X g f®,. (3.1.10)

where the factor of 1/6 appearing in the fermion variation is fixed by closure of

the algebra. We note that the form of the gauge-field transformation is essentially
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determined by dimensional analysis. In [9] it was shown that this algebra closes

on-shell provided that the structure constants satisfy the ‘fundamental identity’
fefgdfabcg _ fefzzgfbcgd+ fefz;fcagd+ fefcgfabgd. (3.1.11)

This identity ensures that the gauge symmetry acts as a derivation
X, Y, Z]) =[0X,Y, Z] + [X,8Y, Z] + [ X,Y,0Z]. (3.1.12)

This is analogous to the Jacobi identity in ordinary Lie algebra where the Jacobi

identity arises from demanding that the transformation §X = [a, X] acts as a

2

derivation.” It is possible to construct an invariant Lagrangian by defining a

trace-form on the algebra A which acts as a bi-linear map Tr : A x A — C that

satisfies
Tr(A, B) = Tr(B, A), Tr(A.B,C) = Tr(A, B.C). (3.1.13)
The second of these relations implies
Tr([A, B,C], D) = —Tr(A, [B,C, D]) (3.1.14)
The trace form provides a notion of metric
h® = Tr (T, T?) (3.1.15)

which can be used to raise indices. The relation (3.1.14) on the trace-form together

with antisymmetry of the triple-product implies

fabcd _ f[abcd]‘ (3116)

ZNote that if one takes the fields X! to be valued in the Lie algebra U(N) (as with the D2-
brane theory) then the [X!, X7/, X*] would be given by a double commutator [ X, X7/ XK] =
F[[XT, X7], X¥] £ cyclic and this would vanish by the Jacobi identity.
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The fermion variation appearing in (3.1.10) closes onto the fermion equation of
motion. The super-variation of this then gives the bosonic equations of motion.

These equations of motion can be obtained from the following Lagrangian

1 - »n
£ = =5 (DX ) (DIX]) + S0 T Dy + L0l XX o

1 2
-V + 56“”A(fadeAwb8,,A>\cd + ngdagfefgbA#abAych)\ef) (3117)

where
1
V= ﬁfabcdfefzxgx,;’xfxgx;ng‘. (3.1.18)

The gauge potenial has no canonical kinetic term, but only a Chern-Simons term,
and hence it has no propagating degree of freedom. In [84] it was verified that
this theory possesses OSp(8]4) superconformal symmetry and that it is parity
conserving despite the fact that it contains a Chern-Simons term. The Lagrangian
is invariant under the supersymmetry transformations (3.1.10) up to a surface
term 0L = 9,V* where

VH = _Z'gl"lwaDuXa{ _ %EFVFIFMwGDVXi . é€FMFIJK¢anXgX£{fade.

(3.1.19)

In the next chapter we will see that this surface term contributes to the supercur-
rent of the A/ = 8 Bagger-Lambert theory and therefore plays a role in defining
the superalgebra of this theory.

3.1.2 Interpreting the theory

When considering finite-dimensional representations of the three-algebra with

positive-definite metric there is essentially one unique theory® [86, 87], this is

30ne point worth mentioning is that the equations of motion for the Bagger-Lambert theory,
which arise through closure of the supersymmetry algebra, do not require that the structure
constant f be totally antisymmetric and in this case one may in fact construct infinitely many
examples [85]. However it is worth noting that without a metric, there is no gauge-invariant
trace, and so it would appear that one is unable to construct observables.
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the so-called Euclidean A4 theory in which

2
fabcd _ %Eade. (3120)

In this case the theory is simply an SU(2) x SU(2) Chern-Simons gauge theory
coupled to matter transforming in the bi-fundamental representation [88, 89]. The
Chern-Simons quantisation condition demands that k, the Chern-Simons level, is
integer valued k € Z. So what is this theory describing? An investigation of the
vacuum moduli space of the theory goes some way to answering this question (as
does the novel Higgs mechanism discussed later in this chapter). In [90, 91] it was

shown that the vacuum moduli space of this theory is

R® x R®

3.1.21
D, (3.1.21)

where Dy is the Dihedral group. Specifically for £ = 1 the moduli space is
R®/Zy x R®/Zy which describes the moduli space of an SO(4) gauge theory. This
can be thought of as the strong coupling limit of two D2-branes on an O2~ orien-
tifold, whose worldvolume theory is the maximally supersymmetric SO(4) gauge
theory. The k& = 2 moduli space describes an SO(5) gauge theory. Both these
examples would seem to suggest that the theory is describing two objects living
on R®/Z,y. Although two membranes are better than one, the dream still remains.
In the search for a theory of N M2-branes one might consider ways of generalising
the Lagrangian construction outlined above. One such possibility is to look for
theories with a reduced number of supersymmetries. In [92] Aharony, Bergman,
Jafferis and Maldacena (ABJM) constructed an infinite class of brane configura-
tions whose low energy effective Lagrangian is a Chern-Simons theory with SO(6)
R-symmetry and AN/ = 6 supersymmetry (12 supercharges) with U(N) x U(N)
gauge groups for any N and level k. * These theories were shown to describe N
M2-branes in an R®/Z; orbifold background. One advantages of this construction

is that the limit in which the number of branes, N, and the Chern-Simons level

4In [93, 94] a class of Chern-Simons Lagrangians with N/ = 4 supersymmetry (8 supercharges)
was constructed.
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k are large, with A = N/k fixed, the theory admits a dual geometric description
given by AdS4 x CP3. Motivated by the work of ABJM, Bagger and Lambert
derived the general form for a three-dimensional scale-invariant field theory with
N = 6 supersymetry, SU(4) R-symmetry and a U(1) global symmetry [82]. This
was achieved by relaxing the constraint on the structure constants. In the next
section we will review the A/ = 6 Bagger-Lambert theory and its relation to the

ABJM model.

3.2 N =6 Bagger-Lambert Theory

In the previous section we observed that when [ is real and antisymmetric in
a,b, c then, for any such triple product, one finds equations of motion that are
invariant under 16 supersymmetries and SO(8) R-symmetry. Here we follow [82]
and take the 3-algebra to be a complex vector space and only demand that the

triple product be antisymmetric in the first two indices. Thus one defines
[T, T T° = foe, 1. (3.2.1)

with @ = 1... N and fobed = —fbaed A complex notation is used in which the
SO(8) R-symmetry of the N' = 8 theory is broken to SU(4) x U(1). Next one
introduces four complex 3-algebra valued scalar fields Z2! with A = 1,2,3,4. Their
complex conjugates are written as Z,3 = (Z4)*. The fermionic super-partners are
written as 14, and their complex conjugates as ¥2 = (4,)*. Note that the act
of complex conjugation raises and lowers the A index and interchanges a < a.
When the A index is raised it means that the corresponding field transforms in the
4 of SU(4) and a lowered index field transforms in the 4. Both the fermions and
scalars are assigned a U(1) charge of 1. The supersymmetry parameters e4p are
in the 6 of SU(4). They satisfy the reality condition (e4p)* = e1? = 1e48Peqp
and therefore carry no U(1) charge. In order to construct a Lagrangian for this
theory one uses a similar approach to the AN/ = 8 theory. In other words one
writes the most general form for the supersymmetry transformations and checks

that the algebra closes. This then determines the fundamental identity as well as
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the equations of motion for the theory. A Lagrangian is then constructed which
gives rise to these equations of motion. In order to construct a Lagrangian it is
necessary to define a trace form on the 3-algebra which provides a notion of an

inner product, namely
h® = Tx(T°, T"). (3.2.2)

Gauge-invariance of the Lagrangian requires that the metric defined by (3.2.2) be

gauge invariant. In order for this to be true it can be shown [82] that the structure

constants £ must satisfy

fabEJ — f*EJa,b‘ (323)
In other words complex conjugation acts on f“b‘_ﬂ as
(fabé(i)* — f*aécd — fcd&(;‘ (324)

Given this information Bagger and Lambert were able to construct the following

Lagrangian

L=- DMZZ!DMZ;; - iQZAa7MDu¢Aa -V + »CCS
— i f A 2o ZE T + 20 f N3, ZE Z (3.2.5)

? ST — 7 o _
—capep [ NWIWEZE 7P — §5ABCDdeab¢Ac¢BdZCaZD5, (3.2.6)

T3

with the potential given by
2 _
V= ngngdD (3.2.7)

where
_ _ 1 _ _ 1 _ _
YD = fabe 7€ 7D 75 — 555 fe ZEZP Zpe + 55]_’;’ e ZEzC 75, (3.2.8)
and the Chern-Simons term Lcg is given by

1 - 2 e rocf
‘CC’S = 55'[“/)\ (fadeAucbauA)\cZa + ngCdgngfbA,u,BaAVJcA/\fe) : (329)
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The covariant derivative is defined by D,Z% = 9,75 — fl; ZA. Tt follows that

D, Z g = 0,7 sq— AZEJZAE. Supersymmetry requires that D, 2 = 8,02 — Al*fcﬂpg‘

and D, a4 — fluc 4V4c. The gauge field kinetic term is of Chern-Simons type and
thus does not lead to propagating degrees of freedom. The above Lagrangian is

invariant under the following supersymmetry transformations

621? = ZEABwBa
Vaa = V"D, ZPean — 7,25 28 Zocean + [P, 25 7 Z acecp (3.2.10)
5121,fd = —ieapuZo b [y + i€ P Z agbpa f Yy
up to a surface term (See Appendix). The supersymmetry algebra closes into a

translation plus a gauge transformation provided that the f, satisfy the follow-

ing fundamental ident ity,
efg cba ea Cb ga (387 age C
f fg rcb ff f g f*g ff b f* g fo _ 0. (3.2.]])

the fabed generate the Lie algebra G of gauge transformations. In particular if the

Lie algebra G is of the form
G = 0,0 (3.2.12)

where G, are commuting subalgebras of G, then
J=D Jwa Y (1) ()" (32.13)
A a

where the t§ span a u(/N) representation of the generators of G, and the w) are
arbitrary constants. This form of f*° allows one to rewrite the Lagrangian (3.2.5)

as

L=—Te(D"Za, D, Z*) — iTr(* 4" Dytba) — V + Lo
— T, [Ya, Z8; Z)) + 20Te (b2, [, Z5; Z4]) (3.2.14)

1 - 1 = - —
+ §€ABCDTI"(¢A, (29, 274 P)) - §5ABCDTT(ZD, [Ya,¥B; Zc)),
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where now
2 CD A~B
with
_ 1 _ 1 -
Y5P =29 27 Zp) = 503(2", 27, Ze) + 0527, 2 Zp) (3.2.16)

The equivalence of (3.2.14) and (3.2.5) can be verified by expanding the fields
ZA 4 in terms of the generators T and defining the trace form as in (3.2.2).

For example

Te(04, [Ya, Z5; Zp)) = Te(QAT?, [aaT?, ZE T Zp:T7))
= IEdAwACLZbBZBETr(TJa [Ta7 Tba TE])
= 03 aa 2P Zpef ™. (3.2.17)

In [82] it was shown that for a particular choice of triple product one is able to
recover the N' = 6 Lagrangian of ABJM written in component form [92, 95].
Given two complex vector spaces V; and V5 of dimension N; and N, respectively
one may consider the vector space A of linear maps X : V; — V5. A triple product

may be defined on A as
(X,Y;:Z] = NXZ'Y —YZTX) (3.2.18)

where T denotes the transpose conjugate and \ is an arbitrary constant. The inner

product acting on this space may be written as
Tr(X,Y) = tr(XTY). (3.2.19)

With this choice of 3-algebra, the Lagrangian (3.2.14) takes the form of the ABJM
theory Lagrangian presented in [95] for Ny = Ny. For N; # N, one obtains the
U(Ny) x U(N3) models of ABJ proposed in [96]. In the next Chapter we will
calculate the superalgebra for the N/ = 6 Bagger-Lambert theory and express

20



CHAPTER 3. BAGGER-LAMBERT THEORY

the central charges in terms of 3-brackets. We can then make use of (3.2.18) and
(3.2.19) to derive the ABJM central charges. Before doing so we will briefly review
the novel Higgs mechanism [83] which relates both the BLG and ABJM theories

to D2-brane theories.

3.3 The Novel Higgs Mechanism

We can summarise both the Bagger-Lambert and ABJM theories as being G x G
Chern-Simons matter theories where for Bagger-Lambert theory G = SU(2) and
for ABJM theory G = U(N) or SU(N). Given a theory of multiple M2-branes
one might expect that compactification in a direction transverse to the M2-brane
would result in a theory of multiple D2-branes, which to leading order in o would
be describable in terms of super Yang-Mills theory reduced to (2+1) dimensions.
In this section we will review the ‘Novel Higgs Mechanism’, first discussed in the
context of SU(2) x SU(2) Bagger-Lambert theory [83], which relates the M2-brane
and D2-brane theories.” It was later applied to ABJM theory in [97, 98]. Tt is
possible to summarise the Higgs procedure by stating that, for all G x G Chern-
Simons theories, the following holds true: If we give a VEV to one component of
the bi-fundamental scalar fields, then at energies below this VEV, the Lagrangian

becomes
L85 ooy = = LD+ 0 (3.3.1)
cSs lvev=v 2 SY M 3 v

where on the right-hand side the gauge field has become dynamical. So in other
words, giving a VEV to one of the scalars makes one of the gauge fields, the
diagonal gauge field of G x (G, into a dynamical gauge field. We note that this
is not what happens with Yang-Mills theory. If one starts with super Yang-Mills
theory and gives a VEV to one of the scalars then one simply retains super Yang-
Mills theory for the subgroup G’ of the original group G which commutes with
the VEV. Lets see how this works for the Euclidean A4 theory when £k = 1. In

this case we can write the Chern-Simons term appearing in the Bagger-Lambert

5The structure of this sub-section was inspired by discussions with Sunil Mukhi.
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Lagrangian as

£CS:Tr(AAdA+gAAAAAAA—A/\dA—;A/\A/\A)

1
=Tr(B_ANF, + EB’ ANB_NB._) (3.3.2)

where

. 1
Bi=A+A Fy=dB+ 3B, \B.. (3.3.3)

We see that (3.3.2) has the form of a B A F' type theory. Note that because
X is a bi-fundamental field, the covariant derivative contains the gauge field A

multiplying X from the right and A multiplying from the left
DX =09,X —A,X +XA,. (3.3.4)

Now if one considers giving X a VEV (X) = v then the scalar kinetic term will
become

—(DuX)? ~ —0X(B_) (B + ... (3.3.5)

which resembles a mass term for the field B_. Because B_ is non-dynamical in

(3.3.2) it can be integrated out resulting in a kinetic term for the gauge field B

1
4?2

—— (FL)w (FH™ + O(%). (3.3.6)
In other words B, has become dynamical. In this way the Chern-Simons theory
has transmuted into Yang-Mills theory. So how does one interpret (3.3.1)7 At
first sight it would appear as if the M2-brane theory has been compactified. But
this cannot be the case since all that has happened is that one of the scalars
has acquired a VEV. However looking more closely at (3.3.1) we see that this
isn’t ezactly super Yang-Mills theory because there are additional terms O(1/v3).

Thus, at best one can say

o1
Eggle—mo = vlgg) ﬁﬁSYM (337)
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CHAPTER 3. BAGGER-LAMBERT THEORY

which is by definition the theory of M2-branes as noted earlier in (3.0.1). In other
words there is one point on the moduli space, corresponding to very large v, in
which the theory is equivalent to a multiple M2-brane theory. Note that this
discussion was for level £ = 1. It is possible to extend the analysis for general k

in which case one finds
GxG e k
£CS vev=v — E»CSYM + O(ﬁ) (3.3.8)

We see now that if one takes k — oo and v — oo with v?/k = gy fixed then in
this limit the extra terms on the right-hand side disappear from the theory and the
Lagrangian for D2-branes is recovered at finite coupling. So it would seem in this
case that the theory really has been compactified. No longer have we just gone
on the moduli space because we have also varied k and as we have seen this labels
the rank of the orbifold of the moduli space. This mechanism of compactification
has been understood in terms of the deconstruction of the orbifold C*/Z; [91].
The angle of the orbifold cone is 27 /k. If you send k — oo while pulling the
branes away from the orbifold point (sending v — o) then the cone turns into
a cylinder of radius \/m Therefore the M2-branes are effectively experiencing
one compact direction transverse to their worldvolume and as a result one recovers

the D2-brane theory.®

Before closing this section let us mention that the theories we have been dis-
cussing can be thought of as having coupling constant 1/k and therefore large k
corresponds to weak coupling. As with several discussions of the leading-order
Bagger-Lambert A, and ABJM theories, the classical action is most meaningful
for large k where the theory is weakly coupled and loop corrections can be ignored.
Nevertheless, it is usually written down and studied as a function of k and one

hopes it has some significance even for small k.

6Note that the orbifold C*/Z;, has N’ = 6 supersymmetry and SU(4) R-symmetry. Therefore
this deconstruction picture strictly speaking applies to the A" = 6 models.
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CHAPTER 4
M2-BRANE SUPERALGEBRA

In this chapter we will calculate the extended worldvolume supersymmetry algebra
of the ' = 8 and N = 6 Bagger-Lambert theories and interpret the charges from
the spacetime perspective as intersections of the M2-brane with other M-theory
objects. The majority of this chapter is based on the work presented in [1]. Let us
quickly remind ourselves of the method outlined in Chapter 2 for calculating the
superalgebra of a theory: Firstly one derives the conserved supercurrent, which
is the Noether current associated with supersymmetry transformations. The su-
percharge is then defined by the spatial integral of the zeroth component of the
supercurrent. Using the fact that the supercharge is the generator of supersym-
metry transformations and that the infinitesimal variation of an anticommuting
field is given by d® o {Q, ®}, it follows that [6.J° x {Q,Q}. We will now show
how this works explicitly for the A’ =8 and N = 6 Bagger-Lambert Theories.

4.1 N = 8 Bagger-Lambert Superalgebra

The first task is to calculate the supercurrent for the N/ = 8 theory. Using the
general expression for the current derived in (2.2.19) as well as (3.1.17), (3.1.10)
and (3.1.19) the supercurrent is calculated to be

oL
e = = SA -V
“ 0(9,A)
= —iel T Ty D, X! — égr“ffrﬂzpdxgxl;’ X fabed (4.1.1)
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where A is summed over and represents all the fields appearing in the Bagger-

Lambert Lagrangian (3.1.17). From (4.1.1) we see'

1
Jt = =D, X" THy" — 6X§X,{ XJ foredr T R ey, (4.1.2)

The validity of this expression can be tested by observing whether the supercharge
generates the expected supersymmetry transformations. The supercharge is the
integral over the spatial worldvolume coordinates of the timelike component of

the supercurrent
Q= /d20J0
S / d?o (D, XTI + éXjX,;’Xf fedp IR0y ). (4.1.3)
As an example let us generate the scalar field supersymmetry transformation
X =ielQ, X

= i€[— / d*a (0, X7 (o)T"T'T (o)), X' (o))
= —ieol°T/T" / d*P(0)[06 X (o), X1 ()]
— jel’ / d?op(0)6" §(0 — o)
— jelep. (4.1.4)

We see that that this matches the transformation appearing in (3.1.10). Using the
fact that the supercharge () is the generator of supersymmetry transformations it

is possible to calculate the anticommutator of supercharges by considering

£.{Q%, Q%) = /dQUEQ{QO‘,Joﬁ(a)} = /dQU((SJOB(U)) (4.1.5)

The supersymmetry variation of the zeroth component of the supercurrent is

computed in the appendix. For the case in which fermion fields have been set to

INote that the supercurrent can be derived simply as —€J* = )?TH51),.
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zero, the superalgebra takes the form

{Q.Q} == 2P, "I + Z;TVT + Zoyype LT FFTOTO
+ Zrg IR (4.1.6)

where the charges are given by

Zry = — / APrTr(Da X D X7 e — Do XX X7 X5]) (4.1.7)
1

ZalJKL = §/d2$TT(DBXI[XJ7XK;XL]Eaﬁ) (4.1.8)
1

ZrikL = Z/d?:cTr([XM,XI,XJ][XJVI,XK,XL]) (4.1.9)

with a = 1,2 labeling the spatial coordinates of the M2-brane worldvolume. The
trace defines the inner product in terms of the 3-algebra generators. It is possible
to use the Bagger-Lambert equations of motion to re-write Z;; and Z,;jx as
two surface integrals [99]. These topological terms correspond to the charges of
(0|M2, M2) and (1|M2, M5) intersections respectively. In the next sub-section we
will see that the Basu-Harvey solution excites the one-form central charge (4.1.8),
in agreement with the interpretation of this soliton as the quarter-supersymmetric

M2-M5 intersection.?

The Z;jk1 central charge terms were first considered in [101] where the dis-
tinction was made between so-called trace elements and non-trace elements®. If
one only considers trace elements then Z;;i; vanishes as a result of the total
antisymmetry in I, J, K, L indices and the fundamental identity of the BLG the-
ory. However in [101] it was pointed out that constant background configurations
of X!’s which take values in non-trace elements should give rise to BPS brane
charges. Configurations with non-trace elements are familiar in the Matrix theory
conjecture for M-theory in the light-cone quantization. The large N limit of su-

persymmetric Yang-Mills quantum mechanics is proposed as a non-perturbative

2For details of the BPS equation and solution corresponding to the charge Z;; see [99, 100].

3In [101] trace elements are defined as elements of a linear vector space with an inner product
whereas non-trace elements are without a notion of inner-product.
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description of M-theory and M2-brane solutions are described as infinite-sized ma-
trices. For example, application of the Higgs mechanism outlined in the previous
chapter would reduce the charge Z; 1, to the form tr[ X7, X /][ X% X] where the
trace is over the matrices appearing in the commutator and the matrix is taken
to be infinite-dimensional. This term is analogous to the D4-brane charge (as well
as the charges of the DO-branes within the D4-branes) in the matrix model for
M-theory [102]. In the case of the Bagger-Lambert theory, the action reduces to
the D2-brane action rather than the DO-brane action of the matrix model and so
this charge should be interpreted as a D6-brane charge.* The M-theory uplift of
the D6-brane is the M-KK monopole so perhaps we can think of this charge as
the energy bound of the spacetime configuration (0|M2, KK). As we will see in
the next chapter, the charge Z;;k, is crucial in obtaining the M5-brane worldvol-
ume superalgebra in the context of the Nambu-Poisson Mb5-brane theory which is

based on an infinite-dimensional representation of the 3-algebra.

4.1.1 Hamiltonian Analysis and BPS equation

Let us now demonstrate that the central charge Z,; k1 corresponds to the space-
time intersection (1|M2, M5). In order to describe a stack of M2-branes ending on
an Mb5-brane it is necessary to have four non-zero scalar fields parameterising the
four spatial worldvolume coordinates of the M5-brane transverse to the self-dual
string soliton. Let us call these four scalar fields X4 with A = 3,4,5,7. Further-
more we will assume the scalars are functions of only a single spatial coordinate
of the M2-brane, o, which we will label s. The BPS condition i) = 0 in this case

takes the form

O XATAT%e + éeABCDFA[XB, XC XPIr36e = 0 (4.1.10)

1A complete classification of BPS states in Bagger-Lambert theory is carried out in [100]
including a detailed discussion of the charge Z; ;i and its relation to configurations involving
the M5-brane.
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where we used eABCPTP = _TABCT,, ... We can also see this by looking at the

Hamiltonian density corresponding to this field configuration which takes the form

1 1
H = 5Tr(0,X%,0,X7%) + S T((X4, X7, X9 [X4, X7, X))
1 1 1
— §Tr|8SXA — EEABCD (X8, X XP)|2+ EEABCDTr(ﬁsXA, (X2, X% XP))
1
> 6eABCDTr(aSXA, [(XP X XP)). (4.1.11)
Thus when
1
0, X4 = 6eABCD[XB,XC X (4.1.12)

the energy bound
1
E = 6ef“BCDTr(c‘)SXf“, (X2, XY X)) (4.1.13)

is saturated. We recognise (4.1.12) as the Basu-Harvey equation. When this
equation is satisfied we see from (4.1.10) that the field configuration is half BPS

and the preserved supesymmetries satisfy
[Ze = 3%, (4.1.14)

We see that the energy bound (4.1.13) is exactly of the form Z,; 5 appearing in
(4.1.8).

4.2 N = 6 Bagger-Lambert Superalgebra

In this section we will use the theory outlined in Chapter 3 to calculate the
superalgebra associated with the general N' = 6 Bagger-Lambert Lagrangian.
For a particular choice of 3-algebra we will determine the ABJM superalgebra.
Given the invariance of the Lagrangian (3.2.6) under the supersymmetry variations
(3.2.10), Noether’s theorem implies the existence of a conserved supercurrent J*.
The supercharge is the spatial integral over the worldvolume coordinates of the

zeroth component of the supercurrent. Since we know that the supercharge is the
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generator of supersymmetry transformations and that the infinitesimal variation

of an anticommuting field is given by 6®  {Q, ®} we can write

/ Pobdl, = e3{QL Q1) (4.2.1)

In order to make use of (4.2.1) in the form presented, we will have to re-write the

supersymmetry parameters €45 in terms of a basis of 4 x 4 gamma matrices,
eap = e (T p), (4.2.2)

with I = 1,...6. The ! are carrying a suppressed worldsheet spinor index and

represent the N = 6 SUSY generators. The gamma matrices are antisymmetric

(I z = —TL ) and satisfy the reality condition
~ 1
LD = SetPOPTG = —(Thp)" (4.2.3)

Furthermore they satisfy®
I pT7BC 4 1Y, T1BC = 261759 (4.2.4)

The 4 x 4 matrices I'! act on a different vector space to the 2 x 2 matrices ~*
which are defined as worldvolume gamma matrices. The supercurrent can be
calculated by the usual Noether method outlined in Chapter 2. For the N' = 6

Bagger-Lambert theory the supercurrent takes the compact form

Ju =& T} = Tr(00 a7, ) + Tr(69 y,, a), (4.2.5)

where J| is the component supercurrent which appears in (4.2.1). For future refer-

ence we use the basis decomposition (4.2.2) to re-write the fermion supersymmetry

®One explicit realisation in terms of Pauli matrices [103] is given by I'' = 0o ® 15,12 =

72‘02 ®03,F3 = i(fQ ®01,F4 = —01 ®02,F5 = 03 ®02,F6 = 72.].2 X o09.
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variation appearing in (3.2.10) as

6t = T gD, ZP" — Nie!

&EA — —f‘IABE_I’}/”D“ZB . NIAgI

ot = T1ABy1D, Zpel — NTAL! (4.2.6)
6pa =T gy D, 2P — NiZ.

with

Ny =T4,12% 25, Zo) = TL,12C, Z7; Z 4); (4.2.7)
NIA=TI1B (7, Zp: 7€) — TP Z0, Zp; Z4]. (4.2.8)

We have deliberately written these variations in terms of the general 3-bracket
introduced in Chapter 3. The benefit of this formalism is that one can easily
derive the ABJM superalgebra by choosing a particular representation of the 3-
bracket. Since we are only interested in bosonic backgrounds we set the fermions

to zero. The result is (see Appendix)

§J0 = — 2(5”Tﬁfy“5‘] + 2877V %7
+ 26" (Tx(D; Zp, |27, 25, Zp)) — Te(D: Z5, [ Zp, Zp; ZP))e"i~7e”!
— T Te(D, 28, D; Z¢)e"%7
— TSN Te(DoZa, (27, 24 Z)) + Te(DoZ2, [Zc, Za: Z5]))e”
+TPUDN (T D ZP [ Ze, Zp: Z4)) — Te(Di Zp, [ 274, Z5; Zc)))eie?
—TEEIDT (129, 25, Z¢), (2, Zp; Z2))€”
—TEEIDT (24, 25, Zg), [Ze, Zp: ZC))e’
+ TEEID T (24, 25, Z¢), [ 2, Zp, Z2°))E7

where we have defined

r6ouh — pl ,176P 4 1IePpy . (4.2.9)
[ A A N (4.2.10)
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In order to determine the superalgebra from this expression we need to integrate

§J%" over the spatial worldvolume coordinates, and pull off the supersymmetry

J

parameters £/, remembering that for Majorana spinors & = e/'C. We know that

[ &*0T)) = P, so we see that the first term above will give us the usual momentum
term. The other terms will form the charges of the algebra. We can write the

superalgebra as

{QL, Q5 = — 26" (Pu(4"C)ag + Zi(V'C)ag — Vi(1°C)ap)
— TN ZE (C)ap + ZE(1°C) ap) (4.2.11)
+ AR (ZRE (Y C)ap + ZAE(1°C) ap)

where «, B are spinor indices and ¢ = !, 22 are the spatial coordinates of the

worldvolume. The charges are given by

Z = / d*oTr(D Zp, (27, 27, Zp)) — Tv(D; 25, [Zp, Zp; ZP))e"  (4.2.12)
zE = / d*oTe(D; Z%,D; Zc)e" (4.2.13)
28, = / Po(Te(DyZa, (25, 2% Z6]) + Tr(DoZ4, [ Zes Za: ZF]) (4.2.14)

Zpp, = / 2o Te(D; 28,25, Zp; Z4]) — Te(Di Zp, |24, Z5; ZE))e¥  (4.2.15)

Zor = /d%Tr([ZA,ZB;ZC], (Zp, Zp; Z2°)) — (29,25, Z¢), [ ZE, Zr; Z7])

—Te([Z24, Z25; Zg), [ Zc, Zp; Z€). (4.2.16)

In order to interpret these charges we require a particular realisation of the three-
bracket. In the next section we derive the ABJM charges by defining the three-
bracket as (3.2.18).
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4.2.1 ABJM Superalgebra

In this sub-section we will use the particular form of three-bracket defined in
(3.2.18) to map the central charge terms of the N/ = 6 Bagger-Lambert theory
to the ABJM theory. This will work in the same way that the Bagger-Lambert
Lagrangian is mapped to the ABJM Lagrangian. The structure of the superalge-
bra presented in (4.2.11) remains unchanged. Only the central charge terms are
affected by the 3-bracket prescription. Firstly we define Tr(X,Y) = tr(XTY") and
then we write the 3-bracket as [X,Y; Z] = XZ'Y — Y ZTX. In order to emphasise
the change from the Bagger-Lambert to ABJM picture we will relabel our fields as
ZAT — X4 and Z4 — X 4. This matches the conventions of [104]. An enjoyable
calculation results in the following charges for the ABJM theory

Z; = / dotrD;( XPXpXPXp — XpXPXpXP) (4.2.17)

zZE = / d*otr(D; X5 D; X¢)e" (4.2.18)
ZE, = / d*otr(DeXa(XPXe XA — XAXXPB) — Do XA X XPX 4 — XaXBX0))
Zph, = / BotrD;(XPXpXAXp)e" (4.2.19)

237 =1 [ Eo(X XoXPXpXOXp - XPXpX A (XX Xp = XpXOXe)

(4.2.20)

Let us now consider each of these in turn. First we note that Z; and Zﬁgi take
the form of topological charges. One might anticipate that these charges represent
the energy bound of an M2-M5 configuration; this follows from the fact that both
charges are worldvolume one-forms and both charges contain four real scalar fields.

As discussed in Chapter 2, this is the expected form of the charge corresponding
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to (1|M2, M5) from the M2-brane perspective. In the next sub-section we will
identify Z; as the energy bound of the fuzzy-funnel configuration [103, 105, 106]
of the ABJM theory representing M2-branes growing into an M5-brane. The BPS
solution corresponding to this fuzzy-funnel bound state was first found in [103]
and subsequently studied in [105, 106]5. The charge Z& can be interpreted as
the energy bound of a vortex configuration of M2-branes intersecting M2-branes
(0|M2, M2) (see for example [111, 113-115]). This interpretation can be inferred
from the structure of the charges. For example, Z£ is a worldvolume zero-form
which includes dependence on two scalar fields. In the space transverse to the
M2-brane worldvolume this charge can be considered a two-form parameterised
by two scalars and therefore we identify this charge with the energy bound of the
spacetime configuration (0|M2, M2).

What about the Z4Z charge? This would appear to be the /' = 6 analogue of
the charge Z; i, appearing in the A/ = 8 algebra. In which case it can be thought
of as the charge of an uplifted D6-brane. However it is interesting to note another
possible interpretation of this charge due to Terashima [116]. We know that the
M2-M5 Basu-Harvey configuration can be thought of as the M-theory uplift of the
D2-D4 configuration (which is described by the Nahm equation from the D2-brane
point of view). However from the D-brane perspective there also exists a bound
state of D2-branes and D4-branes. This results from considering D4-branes with
constant magnetic field or alternatively infinitely many D2-branes with [X!, X?] =
const where X* are matrix valued scalar fields representing the positions of the D2-
branes. In [116] a classical solution was found in the ABJM theory corresponding
to a bound state of Mb5-branes and M2-branes which becomes the bound state
of D4-branes and D2-branes in the scaling limit £ — oo. From the Mb-brane
perspective this bound state corresponds to the Mb-brane with non-zero self-
dual three-form flux. In [116] it was conjectured that the charge Z#Z might
correspond to the energy bound of this state. The fact that the ABJM theory
does not possess a manifest SO(8) R-symmetry makes the interpretation of the

charges slightly tricky. In [117, 118] it was shown that, for Chern-Simons levels

6Other BPS states in the ABJM theory have been discussed in [107-113].
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k = 1,2, the N' = 6 supersymmetry of the ABJM theory is enhanced to N = 8
supersymmetry through the use of monopole operators. It should be possible
to use similar techniques to investigate the enhancement of the R-symmetry of
the charges of the ABJM theory. This would allow for direct comparison with
the N/ = 8 Bagger-Lambert superalgebra. Before investigating the BPS fuzzy-
funnel configuration in the next sub-section we note that the superalgebra may

be re-written in terms of trace, anti-symmetric and symmetric traceless parts

{QL,Q)}y = 6" Xos + 28 + 211 (4.2.21)

(1J)

where X, is a singlet, Zalﬁ‘] is symmetric traceless and Z gﬂ‘] ] antisymmetric in

I, J respectively. Explicitly we have

i
Xap = —2P,(7"C)ap — 5 Zi(7'C)ap,

3
~>(IJ EF(J 2 i EF(1J

Zys" = (U5 288 — 56" 2)(7 e + (5" 207 +267V1)(1°C)as
Zai = TN (280Cap + ZE(1°C)ap). (4.2.22)

It is interesting to observe what happens when we act with d;; on the superalgebra.

In this case TS/ = 0 since it is antisymmetric in 1,.J and so ZZ and 28
disappear from the algebra. Similarly Z C%J) = 0 since it is symmetric traceless.

This can be confirmed by using the fact that
o DRI — pL TIPF | PIBFDL o _g§BE. (4.2.23)
Thus the only term that survives is the trace part X,3. We can therefore write

51 {QL, QLY = —12P,(y"C) a5+8tr / oD (XX XpXP - XAX 1 XBXp)eij (7 C)ugs.
(4.2.24)

We see that the trace of the algebra contains a single charge, namely the one-

form central charge Z;. As already mentioned, this charge corresponds to the

energy of the BPS Fuzzy-Funnel configuration calculated in [106]. Let us show

this explicitly.
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4.2.2 Hamiltonian Analysis and Fuzzy-funnel BPS equation

The fuzzy-funnel ABJM BPS equation can be obtained by combining the kinetic
and potential terms in the Hamiltonian and rewriting the expression as a modulus
squared term plus a topological term. The squared term tells us the BPS equations
and the topological term tells us the energy bound of the BPS configuration when
the BPS equations are satisfied. In [106] the ABJM potential was written as

4 2
1% :k—ZtquAZAZB — ZBZ\Zh — WAWLZE + ZBW WA
+ [WAWWE —WBW WA — ZAZ, WP + WP Z,74) (4.2.25)

1672
+ k—gtr(’EAc€BDWBZCWD|2 + IEACEBDZBWCZD| )

where Z4 and W4 are the upper and lower two components respectively of the
4 component complex scalar X“4. The first two lines correspond to D-term po-
tential pieces whereas the last line corresponds to F-term potential pieces (from
the superspace perspective [95]). In [106] the potential and kinetic terms were
combined in two different ways, depending on whether the F-term or D-term po-
tential is used in conjunction with the kinetic term. This leads to two sets of BPS
equations. For the case in which W4 = 0 the scalar part of the Hamiltonian only

contains D-term contributions and takes the form

2
H = / da'dstr(|0, 24 + %(ZBZBZA — 7475 75)P)

+ %tras(ZAZAZBZB _ZAZ,72P ), (4.2.26)

where 22 = 5. As usual, the first line gives the BPS equation

2T

ZA
0s 7" + .

(ZP 2324 — 724 Z525) = 0, (4.2.27)

and the second line gives the energy of the system when the BPS equation is
satisfied
E = %tr / dsdz'0,(Z, 24 Zp 2P — 742,78 7). (4.2.28)
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The general procedure for finding a solution to (4.2.27) is to consider an ansatz in

which the complex scalar fields separate into an s-dependent and s-independent

74 = f(s)GA, f(s) = \/ﬁ, (4.2.29)

where, according to (4.2.27), the G* satisfy

part

G4 = GPGLGA - GAGLGE. (4.2.30)

In [105, 106] a solution to this equation was presented and interpreted as describ-
ing a fuzzy S®/Z;." The energy bound corresponding to this fuzzy-funnel con-
figuration (4.2.28) exactly matches the central charge term appearing in (4.2.24)
(when W4 = 0). Thus we see that the physical information corresponding to the
energy bound of the fuzzy funnel configuration appears in the trace expression
of the algebra (4.2.21). One might wonder about the charge Z3; appearing in
(4.2.21). Interestingly, this charge corresponds to the energy bound of the F-term
configuration considered in [106]. In other words, minimising the Hamiltonian
using the F-term potential results in an energy bound of the form Zé};% ;- 1t would
be informative to solve the correpsonding BPS equation and provide a space-time

interpretation of this charge.

In this chapter we investigated the worldvolume superalgebra of the N' = 6
and N = 8 Bagger-Lambert theories. As expected from the M2-brane perspective
we found charges corresponding to (1|M2, M5) and (0|M2, M2) intersections. It
should also be possible to see the (1|M2, M5) configuration from the M5-brane
worldvolume superalgebra (as well as the (3| M5, M5) intersection which is related
to (0| M2, M2) through spacetime duality). In the next chapter we will investigate
the superalgebra of the Nambu-Poisson M5-brane which has been proposed as a

model of an M5-brane in a background of three-form flux.

"Note that in [119, 120] the M2-M5 fuzzy funnel solution of ABJM was shown to describe a
fuzzy S? as opposed to the conjectured fuzzy S3. The solution is consistent with a spacetime
picture in which an M5-brane wraps an S®/Z;,, with the three-sphere given by the Hopf fibration
of an S'/Zj, over 5%, and identified S*/Zj, with the M-theory circle. In the k — oo limit one has
a (double) dimensional reduction and a D4-brane wrapping an S? in Type IIA string theory, as
opposed to an M5-brane wrapping the S2/Zj, in M-theory.

66



CHAPTER 5

NAMBU-POISSON M5-BRANE
SUPERALGEBRA

In this chapter we calculate the worldvolume superalgebra of the Nambu-Poisson
Mb5-brane theory as presented in [2]. We begin with a review of the Mb5-brane
model proposed in [13, 14] which is believed to describe an M5-brane in a three-
form flux background. We then investigate the superalgebra associated with the
theory. In particular we derive the central charges corresponding to Mb5-brane
solitons in 3-form backgrounds. We show that double dimensional reduction of
the superalgebra results in the Poisson bracket terms of a non-commutative D4-
brane superalgebra. We provide interpretations of the D4-brane charges in terms

of spacetime intersections.

5.1 Nambu-Poisson M5-brane Theory

In this section we provide a brief overview of the Nambu-Poisson M5-brane model
[13, 14].' For an n-dimensional manifold A, a tri-linear map {.,.,.} that maps
three functions on N to a single function on N is called a Nambu-Poisson bracket
if in addition to the fundamental identity (3.1.11) and complete antisymmetry it

satisfies the Leibniz rule

{fg,a,0} = f{g,a,0} + g{f,a,b}. (5.1.1)

'For alternative reviews see for example [121-123]. For more recent developments see [124,
125].
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One of the most important properties of the Nambu-Poisson bracket is the de-
composition theorem? which states that by a suitable choice of local coordinates
on N, the Nambu-Poisson bracket can be reduced to Jacobian form

jop OF Og Oh

(5.1.2)

where y# represents 3 coordinates out of m-coordinates on the manifold. The
basic idea of [13] was to consider the 3-manifold A/ on which Nambu-Poisson
bracket is defined as an internal manifold from the perspective of the M2-brane
worldvolume M. The generators of Bagger-Lambert theory are taken to be an

infinite dimensional basis of functions on A such that
{Xa7Xb7 XC} — Eﬂl'/,f)aﬂxa Dxba/')Xc _ fabc dXd' (513)

One then expands the 3 dimensional fields appearing in the Bagger-Lambert the-
ory in terms of the basis generators {x“(y)}. This results in 6-dimensional fields
defined on M x N. For example the scalar field takes the form X(z,y) =
>, XX(z)x*(y). The inner product may be defined as integration over the mani-

fold N

(f,9) = %/NdSyf(y)g(y)- (5.1.4)

The inner product between basis elements defines the metric

h® = (x*, x"). (5.1.5)

Of particular importance is the Bagger-Lambert gauge field which may be ex-

pressed as a bi-local field defined by

Au(z,y,y) = A (@)X (W)X (). (5.1.6)

2See for example [126].
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Taylor expanding the left hand side of this expression around Ay# = y'# — yf

results in
. 1 . .
A,y y') = au(w,y) +oxa(w, ) Ay" + Sexuw (2. y) Ay Ay + ... (5.1.7)
where
0
ban(z, y) = 9y Az, y, 9 )|y=y (5.1.8)

It turns out that this is the only component in the Taylor expansion that ever
appears in the Bagger-Lambert action. This follows from the fact that A,,, always

appears in the action in the form f*¢ Ay,. and using (5.1.3), (5.1.6) and (5.1.8)
bedaAAbc = Gm./p(apb,\papxd, Xa)- (5.1.9)

So for example the covariant derivative appearing in the Bagger-Lambert theory

(3.1.9) can be written as

Dy\X(z,y) = [h X" (z) — " Anpe X5 (2)]X"(y)
= aAXI(QJ, y) - Qﬁﬂ')’bapb,\p(xay)apXI(% y)
= X' — g{bas,v", X'} (5.1.10)

We see that the only term from the Taylor expansion that appears in the covariant
derivative is the two-form gauge field by;. In [14] this two-form gauge field is inter-
preted as the gauge potential associated with volume preserving diffeomorphisms
of N. Why volume preserving diffeomorphisms? Re-writing the Bagger-Lambert
gauge transformation in terms of Nambu-Poisson bracket one finds that it takes

the form (for scalars and fermions)
InD(z,y) = g(0ry™)0u®(z,y). (5.1.11)

This may be considered the infinitesimal transformation of the field under the

reparameterisation

Y =yt — goyt (5.1.12)
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subject to the condition 9,(dy*) = 0 which implies it is a volume preserving

diffeomorphism since

oy 0 .
—| =1+ —(oy"). d.1
det| 2y + By (6y") (5.1.13)

Thus we have the situation in which the gauge symmetry of the original Bagger-
Lambert theory is interpreted as a volume preserving diffeomorphism of the in-
ternal manifold A. It is possible to define another type of covariant derivative Dﬂ
which acts on N by observing that, for a scalar field ®, the object {X”, X? ®}

transforms covariantly under volume preserving diffeomorphisms. Thus we can

define Dﬂ as

2
~ g o R
D#(I) = E‘ENVP{X ,Xp, (I)}
2

= 0, + g(0;0°0,® — 9,0 05 ) + %e,l,,p{b", W, ) (5.1.14)
where the field * is defined through the relation
. 1 . . .
Xt = _y,u + b'u, b[“) = Eﬂl',pbp. (5115)
g

This may be interpreted as a weakened form of the static gauge condition relating
to the fact that y” space does not possess full diffeomorphism invariance but
only volume preserving diffeomorphism invariance. This implies that one cannot
completely fix the X* fields, resulting in residual degrees of freedom parameterised
by b*. The quantity X* defined above can be shown to transform as a scalar
under volume preserving diffeomorphisms. This fact allows one to construct gauge
field strengths which transform as scalars under gauge variations. We now have
two types of covariant derivative, D# and [)ﬂ which together constitute a set of
derivatives acting on the 6-dimensional space N'x M. Just as with ordinary gauge

theory the field strength arises in the commutator of covariant derivatives

[Dy, Ds]® = gPesis{Mig3, X7, },
[DMD}\](I) :gz{HAl)}'nXl)a(I)}' (5116)
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where

HA/’W = Eﬂ,',)'\D)\X).\ (5.1.17)

= H)\pp - g€pdj\apb)\dapbm;
and
dpvi v oy L1
Hisy = g {X, X7, X }—EZQ(V—U
9 19 1 U p i 19 3
= Higy + 5(0p0" 050" — 00" 0:0") + g*{b', v, b°} (5.1.18)

where V is the induced volume defined by
vV =Xt X% X% (5.1.19)

In [14], these were the only components of the field strength H;;; (i = 0,...5)
appearing in the action derived from the BLG theory. In the absence of scalar

and fermion matter fields, the non-linear chiral field action of [14] took the form

S=— / dxdy GHMHW - %HMHW + %EWPBMﬂa,,bpp +yg detBMﬂ>
(5.1.20)
where B = €”0;b,,,. This action is invariant under volume preserving diffeo-
morphisms but does not possess gauge covariance due to the last two terms (which
originate from the BLG Chern-Simons term). In [14] it was assumed that the field
strength components H,,, and H,,; are dual to H;, and H,;, respectively. In

other words

1 o 1 5
Hu,),j = éeuypﬁ,ypﬂ% pu’ Hﬂ,‘,p - —éﬁﬂppeu p?‘[“,,p. (5.1.21)
This was confirmed in [123] where it was shown that solving the field equations
associated with b,; and by, is tantamount to imposing the Hodge self-duality

condition on the non-linear field strength ;5. This allowed the authors to re-
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write the gauge-field Lagrangian in a gauge-covariant form as

1 vp | A 1w L s L
S = —/d?’xd?’y (gHuppHH P + EH,@,{H“ P— me“ Pet p'H'u,/p’Hﬂpp - @6” pr,p)
(5.1.22)
The last term in this expression can be interpreted as a coupling of the M5-brane
to the constant background Cjs field which has non-zero components Cj;,; = éeﬂf/ﬁ‘
Following [123], it is possible to re-write this as

1 1
/ d3xd3y@6“”p7{wp =3 / Hs A Cs. (5.1.23)

This action possesses full volume preserving diffeomorphism invariance. However
the Lorentz symmetry is broken by the presence of the three-form field. This

concludes the brief overview of the Nambu-Poisson M5-brane model.

5.2 Nambu-Poisson Mb5-brane superalgebra

Our plan is to take the central charges of the Bagger-Lambert M2-brane super-
algebra and re-express the 3-dimensional fields in terms of 6-dimensional fields
using the conventions outlined in the previous section. We will see that in doing
so, the M2-brane central charges will recombine to form M5-brane central charges
corresponding to solitons of the worldvolume theory. We will also look at the
Bogomoly'ni completion of the Hamiltonian and derive the BPS equations cor-
responding to the self-dual string soliton and the 3-brane vortex. To begin with
we will calculate the Nambu-Poisson BLG supercharge. This will highlight the

methodology and introduce useful notation and conventions.

5.2.1 Nambu-Poisson BLG Supercharge

We begin by deriving an expression for the supercharge of the Nambu-Poisson
BLG theory. The basic idea is to take the original BLG M2-brane supercharge
and expand the fields in terms of the basis {x“}. As we noted above, the spatial

integral of the zeroth component of the supercurrent represents the supercharge,
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and the worldvolume supercurrent takes the simple form
—&J" =Y T o), (5.2.1)

where d1), refers to the supersymmetric variation of the fermion field. Evaluating

(5.2.1) using the original BLG supersymmetry transformation one finds
1
eJt = —eTr(D, X1, TVTITH)) — 6€F”KF“Tr({XI, X7 XEY ). (5.2.2)

Here the trace defines an inner product. We wish to re-express this in terms
of the 6-dimensional covariant derivatives and field strengths introduced in the
previous section. This can be achieved by splitting the scalar field index I — (g, 1)
and making the replacements [*,*,%] — ¢*{x,*,%} and Tr — (). Using this
prescription along with the definitions presented in the previous section we can

write the supercharge as

€Q = — elI'T%(D, X" ) — el T"TT155( Dy X7, 1)
1 i _ 1
= T T AT 5 (M, 5, 1) — L igg I {(Hizs + 5), ¥)
- Eaﬂﬂkr%{){l,)@, XFY ) — EEF“F”FO({X“,X’,XJ},@D) (5.2.3)
where we have suppressed the integral over the worldvolume coordinates of the

M2-brane worldvolume. In deriving this expression we made use of the fact that
Ljop = Digsuop and  (Tiz3)? = —1 (5.2.4)
from which it follows that

The presence of I'js3 in the second and third terms of (5.2.3) means that only the
SO(1,2) xSO(3) subgroup of the full 6 dimensional Lorentz symmetry is manifest.
A similar difficulty was encountered for the fermion kinetic terms in [14]. There

it was shown that it is possible to perform a unitary transformation of the spinor

73



CHAPTER 5. NAMBU-POISSON M5-BRANE SUPERALGEBRA

variables

=eU, ¢=Uy (5.2.6)

M|

where U is the matrix

1

Performing this transformation on the supercharge, and using the fact that [['#, T'js3] =

{Fi, Fiié} ={T~ Fi?fi} = 0 results in

€Q = —er D, X", ¢) — T I'TUD X", )
1 e = 1
= TP (H, 5, 1) — T iag I ((Higs + s W)

2 2
+ %E’F"ijoFiég({Xi,Xj,Xk},w’> - %g’rﬂrijr%{xﬂ,xi,){j}, Y.

(5.2.8)

It is possible to look at the weak coupling limit in which ¢ — 0. In this limit
H — H and D — 9 and the supercharge becomes?
. . 1 <

FQ = —eT"TTY9, X" ') — Earﬂ"*romﬂpx, Y’ (5.2.9)
with @ = (u, 1). This expression agrees with the supercharge associated with an
abelian NV = (2, 0) tensor multiplet [127]. In order to calculate the Nambu-Poisson
Mb5-brane superalgbera one could in principle calculate the anticommutator of the
supercharge (5.2.8). In this chapter we will adopt a different approach. We will
make use of the M2-brane superalgebra (4.1.6) calculated in the previous chapter
and re-express the charges (4.1.9) in terms of M5-brane fields (using the method

outlined above). To this we now turn.

3Note that in deriving the weak coupling limit we have used the additional fermionic shift
symmetry introduced in [14] to eliminate the 1/g term from the fermion supersymmetry trans-
formation.
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5.2.2 Re-writing of M2-brane central charges

We begin by by splitting the scalar field index I — (f,7) and making the replace-
ments [*, %, x] — ¢*{*,*,*} and Tr — (). In what follows, for the sake of clarity,
we will suppress the angle bracket () which denotes the inner product. Making
repeated use of the conventions outlined in the previous section and the Appendix
results in the following expressions for the charges (4.1.9)

— D, X DX’ e*PT1TY = — D, XDy X'TPTV 4 %HQ 53 Mo DPDA9T 0

DPOPADIT (5.2.10)

av

+ Dy X'H

DoX{X" X7 XMIT/ET0 = — 2Do X' Dy X' T T 54 + 2D X Moy TVT'TO
2 N .. . . SR .
* %Hmro <{X XY XPYR T 4 (X XX k}FW)T]kFiQi%)

+ ¢?Do X H{ X", X7 XI\PTIT® 4 g2 Do X { X?, X7, X*YTIkTO,
(5.2.11)

- : s ~ , 1 :
Zorsx D FIT0 = — Do X H 55, Lo + 2D X' (M55 + E)Fﬁrlrm
+ 2D5XiDXXjF’B}TijF123 — 927'[5,51;{)(1), Xi; Xj}FﬁpFijFiQ?)
2

— ¢°DgX{ X", X7, X*}TPAT* + %DBXi{Xj , X*, XM

2 N
+ %HBM{XZ', X3, XFYAADURD (5.2.12)

ZrywiDPEY = — DyXPD, XTIV T 4 2 Dy XI{X*P, X*, XTI

+ ¢? D3 XX, X, XFYTATIT g5 + 207 D XT{X, XT, X7 YT 5
+ g { X", X, X7} <§{X“, X7, XY — X, XP, X”}F“”FJ’“)
+gH{ X" X' X7} (Z{X“,Xk, XM — (X, X", X’}rﬂrﬂkl)

4
+ %{X",Xﬂ',X’f}{Xi,X’,Xm}ijlm. (5.2.13)
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Although these terms look complicated we notice that many of them share the
same structure despite originating from different M2-brane charges. Importantly,
we notice that Z;sxr plays a crucial role in obtaining the Mb5-brane charges. For
example we see that the first term in (5.2.10) will combine with the first term in
(5.2.13) to give the 3-brane vortex charge. The hope is that all of these terms will
combine to form central charges of the Mb5-brane worldvolume theory. However
as it stands, many terms sharing the same structure in (5.2.10)-(5.2.13) have the
wrong relative sign to combine. It turns out that this problem can be resolved by
multiplying the central charges from the left and right by the unitary matrix U.
This is a reasonable thing to do since, as mentioned earlier, the method for calcu-
lating the M2-brane superalgebra involves calculating €5J° = €{Q, Q}e. We have
seen that when calculating spinor quantities in terms of Nambu-Poisson brackets
it is necessary to perform unitary transformations on the spinor fields to bring
them to the correct form (for example the fermion kinetic terms, fermion super-
symmetry transformation and supercharge). Therefore one might expect that the
correct expression for the Mb5-brane superalgbera would result from evaluating
é{Q',Q'}¢’. This is equivalent to multiplying the central charges in (5.2.10)-
(5.2.13) from the left and right by the unitary matrix U. We will see in the
next section that by performing this unitary transformation, all terms of similar

structure combine into M5-brane charges.

5.2.3 Nambu-Poisson BLG Superalgebra

In this section we will combine the terms appearing in the previous section into
Mb5-brane central charges and write the Bagger-Lambert Nambu-Poisson superal-
gebra. At lowest order in the coupling g we will see that the superalgebra contains
the charges (2.1.24) and (2.1.25) expected from the worldvolume superalgebra of
the M5-brane. In addition we will find higher order coupling central charges, some
of which involve the background 3-form C-field. Since the resulting expression is
long and complicated we will split the superalgebra into three parts depending

on the order of the coupling of the central charge. Having performed the unitary
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transformation described in the previous section one finds
{Q, Q}contrat < Z(9°)Tis3 + Z(9°)Tiss + Z(g") iz (5.2.14)

We will take each term separately and try to provide an interpretation of the
central charges. To begin with we look at Z(g"). Remarkably one finds the

compact expression

~ . : - ~ . ) ; 1~ . .
Z(¢°) = + D, X"DyXT*TY + 2Dy X" D; X'T°T* + gDaX’Hbch“deFl

2

My i wp | L g ;1 AT
— gDﬁX TPTT 55 + Hopw (HMP + ;6“ ATT? — éﬂaﬂ%wrpr* res

(5.2.15)

with a = («, ft) representing the spatial coordinates on the worldvolume of the M5-
brane. Note that in obtaining this result we made use of B = —%EOCBEbP}\HQ,)p

as well as

1 - ) - ) .. ~ . o
gDaXZ/Hbchade =+ DQXZH@;DFQBW + DﬂXz/HBw\Fﬂﬂl/)\

oA (5.2.16)

[ 2P

~ . o 1~ )
+ Dy X H gy TH 4 s Da XM

We see that there are three types of term in Z(g°): Charges of the form DXDX,
those of the form DXH and finally those of the form H#H. We see that the first
term Do, X?Dy X7 corresponds to the charge of the 3-brane vortex living on the M5-
brane worldvolume. When only two scalar fields are active (call them X and V') we
can identify it as the charge Z appearing in (2.1.24). The DH term corresponds to
the self-dual string charge. If we consider the situation in which only one scalar
field is active (call it Y') and assume that this scalar is a function of only four
of the spatial worldvolume coordinates of the M5 brane, namely & = (2,1,2,3),
we see that the DH term becomes ¢#777 D, XH, 5. This exactly corresponds to
the energy bound Y appearing in (2.1.25). The DH term with coefficient 2/g
appearing in (5.2.15) can be thought of as a contribution from the background
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3-form gauge field C. Making the identification Cjs3 = $€*?Cjy, o< 1/g we have
2. 1- o
—ZDsXTPTT 55 = gDﬂXl(Jpw,jrﬁwrz. (5.2.17)
g

We can think of this term as representing a C-field modification of the self-dual
string charge in the directions 123. We can provide an interpretation of the HH
term by thinking about its double dimensional reduction. This will be carried out
explicitly in the next section but for now we note that compactifying along the
3 direction of the M5-brane reduces the term %7—[ FOON 4 300 H i, appearing
in (5.2.15) to the charge of a D4-brane instanton of the form F' A F. From the

ap)\

D4-brane perspective this can be thought of as the charge of a DO-brane within
the worldvolume of the D4-brane. Thus from the M5-brane perspective it would
appear that this charge describes an M-wave intersecting an M5-brane. Note that
the factor of 1/g appearing in the HH term in (5.2.15) can be thought of as a
C-field modification of the MW-M5 charge along the 123 direction. We now turn
to the Z(g?) charges,

Z(g?) = + ¢*D, X { X", X7 XFITTF — 2D, XX X7, XFYTTIRT
2 ~ . . .. ~ . . . . .
- %DBXZ{XJ, XE XNTITME s + 292D, XX, X7, X7}
~ . . . . . . 2 . . ey -
+ ¢? Do X { XV, X", XIITOT"TY + %7—[0 SIXP X, XTI
2
voyvio v ypij Y iy HATij
— g27-£5,-,,-,{X X ’XJ}IMBPFJ — gHﬁpé\{X ’XJ’Xk}FﬁP)\F ik
1 e
— 2% (Hiss + —){ X", X', X7}DHTY, (5.2.18)
g
In the second term the label a = (0, f1). A few comments are in order. As we will
see in the next section, double dimensional reduction of the first term gives rise
to a charge gD, X*{ X7, X*}. This term bares a structural similarity to the charge
corresponding to a Nahm equation configuration in which multiple D2-branes
intersect a D4-brane (in the case where Poisson-brackets have been replaced with
matrix commutators). Thus one might expect to find a Nambu-Poisson analogue

of the Basu-Harvey energy bound in the C-field modified M5-brane superalgebra.
Indeed the charge %f)ﬁXi{Xj,Xk,Xl} appearing in (5.2.18) is reminiscent of
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the Basu-Harvey charge expressed in terms of Nambu-Poisson bracket. We will
comment further on the interpretation of these charges later in the chapter when
we consider the double-dimensional reduction of the algebra. For a discussion of
the geometry of the M5-brane in the presence of a constant C-field as well as the
derivation of the C-field modified Basu-Harvey equation as a boundary condition
of the multiple M2-brane theory see for example [128-130]. Finally we have the
Z(g*) charges which take the form

Z(g") =+ g"{ X", X7, XPHX, XP, X TE 4 g X8, XF, XTI, X, XTI D5
4 4
_ gZ{Xﬂ,Xi7Xj}{Xﬂ’Xk7Xl}Fijkl . gZ{Xi,Xj,Xk}{Xi,Xl,Xm}rjklm.

(5.2.19)

We will see that only the first and third terms survive the dimensional reduction
and give rise to a charge analogous to the D4-brane charge found in Matrix theory
(expressed in terms of Poisson brackets). The Mb5-brane analogue of this inter-
pretation requires further investigation. Most importantly in this section we have
seen that the BLG superalgebra based on Nambu-Poisson bracket contains the ex-
pected central charges corresponding to an M5-brane. Namely the 3-brane charge
and self-dual string charge, suitably modified by the presence of the background
gauge field. In the next section we will confirm the existence of these charges as

energy bounds from the Hamiltonian perspective.

5.2.4 Hamiltonian analysis and BPS equations

We would like to derive the energy bounds corresponding to M5-M2 and M5-
Mb5 intersections by looking at the Bogomoly'ni completion of the Nambu-Poisson
BLG Hamiltonian. For the original Bagger-Lambert theory the energy-momentum

tensor with fermions set to zero takes the form

1
T., =D, X'D,X"— nu,,(éDpXIDpXI + V). (5.2.20)
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The Chern-Simons term does not contribute due to the fact that it is topological in
nature and does not depend on the worldvolume metric. For static configurations

the energy density takes the form

1 1
E = §DaXfDaXf + E[Xff, X7 XK (5.2.21)

Re-writing this expression in terms of M5-brane fields one finds

R D 1
E =4 (Do X")? + (DX )2+ ZHiw + 5 (Hizs + Cis3)?

DO | —

4 4
+ gZ{X”, X0 X2 %{Xi,Xj, Xh2, (5.2.22)

In order to find the energy bound corresponding to the self-dual string soliton we
consider the situation in which there is only one active scalar field which we call
X. Furthermore we assume that this scalar is a function of only four of the spatial
worldvolume coordinates of the M5 brane, namely i = (2, 1,2, 3) In what follows

we will assume Cjs3 = 0. In this case the energy density takes the following form

1, -~ 1
E= 5(D;LX)2 + EH%‘W (5.2.23)
We can re-write this as
L7 Vovoog, 12 L jwpo
FE = §|DﬂX + geﬂ Hﬁﬁa—| + 66 DﬂXHpﬁa— (5224)
We see that the energy density is minimised when the BPS equation
~ 1 58
DﬂX + EE[L Hpﬁ& =0 (5225)
is satisfied. In this case the energy is bounded by the central charge
1
7 = :FEE#VPUD[LXH,;[)[,. (5226)

The BPS equation (5.2.25) matches the result found recently in [131], where the

author used supersymmetry arguments to derive the BPS equation corresponding
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to the self dual string soliton. Furthermore the energy bound (5.2.26) matches
the central charge found in the superalgebra of the previous section. The effect
of turning on the Cjs; field is to modify the BPS equation and energy bound
by shifting the Hjs; component of the field strength. In [14] a generalisation
of the Seiberg-Witten map was shown to relate the theory of Mb-branes based
on Nambu-Poisson bracket with the theory of an Mb5-brane in constant 3-form
background. In [131], solutions to the BPS equation (5.2.25) were found up to
first order in the coupling g. The generalised Seiberg-Witten map was then used
to match the solution with the known results derived in [132], [133]. We have
shown that the energy bound corresponding to this solution can be seen from
the Hamiltonian and superalgebra perspective. Next we will consider the 3-brane
soliton corresponding to an M5-M5 intersection. We will let the 3-brane lie in
the (0,1,2,1) plane with transverse directions in the @ = (2,3) directions. We
allow two scalars to be non-zero and label them X and Y. These scalars are
only functions of the transverse directions (2,3). In this case the energy density

(5.2.22) becomes

1 - 1 -
E = 5(DaX)2 + §(DdY)2

1 -~ . .
= §|DaX +ei DY P F ey DaXDyY (5.2.27)
Thus we see that the energy is bounded by
7 = €~deXDbY (5.2.28)

This matches the central charge of the 3-brane vortex found in the superalgebra
of the previous section. This concludes our discussion of the M5-brane central
charges. In the next section we will investigate the double dimensional reduction

of the M5-brane Nambu-Poisson superalgebra.
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5.3 Double Dimensional Reduction of Superalgebra

In this section we perform a double-dimensional reduction of the Nambu-Poisson
Mb-brane superalgebra. We then attempt to provide an interpretation of the
corresponding charges in terms of spacetime intersections involving the D4-brane.
Importantly we will see that the algebra we derive consists of only the ‘Poisson-

bracket’ terms of the full non-commutative D4-brane superalgebra.

5.3.1 Dimensional Reduction Conventions

In order to perform the double-dimensional reduction we choose the compactifi-
cation direction to be X3. Following the conventions of [14] we define the gauge

potential as
au = b, ag = bys. (5.3.1)

As a result the covariant derivatives become

where we define

Fop = Oattyy — Oy + g{aa, v},
CNLM = edﬁ.@db#fg,
D,® = 9,0 + g{a,, ®}. (5.3.3)

The Poisson bracket {x,x*} is defined as the reduction of the Nambu-Poisson

bracket
{f.9} =" f.9} (5.3.4)
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The relevant Nambu-Poisson Brackets are

4 1 - 1
(X' X? X3} = et + p (5.3.5)
; . . 1 .54 )
(X3 X% X'} = FMDBXZ (5.3.6)
. . . 1 . .
{X3 X' X7} = ~{X* X7} (5.3.7)
g

To perform the dimensional reduction it will prove easiest if we start with the
M2-brane central charges and re-write them in terms of the D4-brane variables

directly?.

5.3.2 D4-brane Superalgebra

We begin by using the conventions of the previous section to re-write the central

charges of the M2-brane theory. One finds
~ Do X DX 7T 5 4 D, X Dy XITTY 4 2F, DX TP

- Py Egs D0 4 9 fry Frg OV
+ 2D X FyDHTO.

-~ a1 - -
DoX™{XH, X1 XTI = - SFopb, jT7 4 — B gTH20e7
9

N =

+ Fop Dy XTOHTITS 4 gﬁaﬁ (X7, X9 PP
5P TR | o . 103
+ Fyp BT 4 2 sy TOY
2 - 08i2 M. Vi . 30
Ryl 4 2D, X R
+ 29Dy X { X7, XIJTOTT® — 2D XDy X T,
(5.3.8)

4This is equivalent to performing the reduction on the M5-brane superalgebra directly.
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gDﬂXI{XJ,XK,XL}FIJKLGQ’BFQO S FdBD’YXzFaﬂ’szF?) + _DIBXZFZF123F,B
g

+ 9B (X7, XIITTY 4 gD X'{ X7, XF)T3rorit
+2F, 5 Dy XTI 4 2D, X Dy X7,

1 . o e
Z{XM,XI,XJ}{XM,XK,XL}FIJKL IS ngB{Xz’XJ}Fa,BF'L] + {X17X]}F12Fz]
+ gD XH{XI, XFYT3TTk - Dy XDy X1
2
+ %{X", XOHXE XU (5.3.9)
Looking at these terms we notice that many of them share the same structure

despite originating from different M2-brane charges. Combining these terms it is

possible to write the D4-brane superalgbera as

{Q, Q}eontral = + Do X Dy XTI + D, X' Fy LTI — 2D, X* Fp TOT'T

1~ - - o y N o
4~ Fyp FoTed 1 gFab{XZ, XIT®T9 4 gD, X X7, Xk}rerihr3

W

2 y 1~ 2
+ gz{XZ,Xj}{Xk7Xl}FZJkl + —Faﬁrl2raﬁ 4 —D@XZFZF123F'8
g g

+ X X0V 4 29 Dy XX, XIIOIVT? — 2D X Dy X T
(5.3.10)

where the spatial coordinates of the brane are labeled by a = («a, &) .

5.3.3 Interpretation of charges

In [14] (see also [134]) it was argued that the Nambu-Poisson BLG theory is a the-
ory of an Mb-brane in a strong C-field background. This was motivated by the fact
that, upon double dimensional reduction, the theory shares a structural similarity
to a non-commutative D4-brane theory. It is important however to emphasise a
few points relating to this interpretation. The double dimensional reduction of
the Nambu-Poisson M5-brane only captures the Poisson bracket structure of the

non-commutative D4-brane action, but misses all the higher order terms in the
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f-expansion of the Moyal bracket. Recall that the non-commutative D4-brane
theory is described using the Moyal x product (see for example [135]). It is possi-
ble to expand the Moyal bracket in #. One finds at lowest order in # the Poisson

bracket structure,

[fsGlMoyal = [ x g — g [ =070,f0;9 + O(6°). (5.3.11)
where -
F(@)  g(z) = 2”736 53 f(z 4 €)g(x + X)|emymo- (5.3.12)

The fact that the double-dimensional reduction of the Nambu-Poisson theory only
captures the lowest order term in the Moyal-bracket means that one is not able
to identify this theory as the full non-commutative D4-brane theory. Rather it
may be viewed as a Poisson-bracket truncation of the full non-commutative field
theory.” Given these considerations, plus the fact that higher order terms in g
are considered in this paper, it is important to emphasise that the results derived
for the central charges in (5.3.10) are only valid for the Poisson-bracket D4-brane
theory.

We know that the D4-brane results from the double dimensional reduction of
the Mb-brane and therefore one would expect to see remnants of the Mb5-brane
solitons in the worldvolume superalgebra of the D4-brane. Furthermore, the M5-
brane couplings to the background 3-form should appear as couplings to the NS-
NS 2-form B-field from the D4-brane perspective. As outlined in [19], the self dual
string soliton from the M5-brane worldvolume theory can be reduced to a O-brane
or 1-brane solution on the D4-brane worldvolume depending on whether the string
is wrapped or un-wrapped around the compact dimension. In the abelian case the
BPS equation corresponding to the 0-brane BPS soliton on the D4-brane takes
the form Fp, < 0,X where X is the only active scalar field parameterising a single

direction transverse to the brane. From this one can read off the energy bound

°In a recent paper [136] the question was asked whether it is possible to deform the Nambu-
Poisson Mb-brane theory such that its double dimensional reduction gives rise to the full non-
commutative Yang-Mills theory to all orders in the non-commutativity parameter 6. They
found that there is no way to deform the Nambu-Poisson gauge symmetry such that the full
non-commutative gauge symmetry was recovered upon double-dimensional reduction.
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when the BPS equation is satisfied which is proportional to 0,X Fy,. We see
the covariant generalisation of this term appearing in the superlagebra derived
above in the form D,X‘F,,. This bound can naturally be interpreted as the
endpoint of a fundamental string on the D4-brane. Alternatively, the 1-brane
soliton resulting from the un-wrapped self-dual string has BPS equation Fj.
€apc0*X with corresponding energy bound proportional to €,,.0,X Fp.. This term
can naturally be compared with D, X F,.I'% appearing in (5.3.10). One can think
of this as the bound associated with a D2-brane intersecting a D4-brane which
appears as a l-brane soliton from the D4-brane perspective. It is worth noting
that the D4-brane worldvolume superalgebra allows scalar central charges in the
1+5 representation of the Spin(5) R-symmetry group which can be interpreted as
the transverse rotation group. As noted above, the scalars in the 5 representation
can be interpreted as the endpoints of fundamental strings on the D4-brane. The
Spin(5) singlet scalar is a magnetic charge which from the spacetime perspective
corresponds to a DO-brane intersecting a D4-brane. Because it is a singlet its
charge cannot depend on any transverse scalars. Following arguments similar to
those presented in [53], one can show that the total energy E of this configuration,
relative to the worldvolume vacuum, is subject to the bound E > |Z| where Z is
the topological charge

1 .
7 = —/ tr'F. (5.3.13)
4 D4

This corresponds to the central charge appearing in the superalgebra

1

- achdFabcd o Fachdeade

i~
o

=-F

. (5.3.14)

B ] s |

The central charge in (5.3.10) involving two covariant derivatives, D, XDy X7,
derives from the 3-brane vortex on the M5-brane worldvolume corresponding to
an M5-M5 intersection. The double dimensional reduction of the 3-brane gives
rise to a 2-brane on the D4-brane worldvolume. This may be interpreted as the
intersection of two D4-branes over a 2-brane. It is interesting to notice that

the superalgebra contains a central charge term proportional to De X*{ X7, X*}.
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This charge would appear to represent the Poisson-bracket analogue of the energy
bound associated with the Nahm equation which describes the intersection of
multiple D2-branes with a D4-brane. However it is well known that the Nahm
equation is the BPS equation associated with the non-abelian worldvolume theory
of D-branes. It therefore seems queer that any information regarding the energy
bound of such a configuration should appear in the worldvolume theory of a single
D4-brane. It is not immediately clear how to interpret this charge (or the M-
theory uplift appearing in the Nambu-Poisson M5-brane algebra). Furthermore,
the central charge proportional to { X% X7}{X* X'} seems analogous to the D4-
brane charge appearing in the matrix model for M-theory found in [102] (with

matrix commutator replaced by Poisson-bracket).

In this section we have seen that the D4-brane algebra (5.3.10) contains a
wealth of information regarding spacetime configurations of the D4-brane, includ-
ing information about intersections involving multiple DO-branes and multiple
D2-branes from the perspective of the D4-brane. We have also seen Poisson-
bracket analogues of charges that one would expect to find in the non-abelian

worldvolume superalgebra of the DO-brane and D2-brane.

5.3.4 Comments on 1/¢g terms in D4-brane theory

It is worth making a few comments regarding the interpretation of the 1/¢g terms
appearing in the superalgebra (5.3.10). In [14], the coupling of the dimension-
ally reduced theory was identified with the non-commutativity parameter of the
D4-brane theory, g = 6. Based on this identification one can think of the 1/g
terms as representing 1/6 modifications of certain central charge terms. More
precisely, any term in the algebra (5.3.10) deriving from the dimensional reduc-
tion rule (5.3.5) will contain a term of the form (Fjs+1/6) (once we have identified
g = 6). Ultimately we can think of this shift in the (12) components of the field
strength as being related to the presence of a background B-field. After all, the
non-commutative theory is meant to be an effective description of the D4-brane
in B-field background. In order to move from the non-commutative description

(without background flux) to the ‘commutative’ description involving the back-
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ground B-field it is necessary to use the Seiberg-Witten map [135]. In principle
this can be done for the central charge terms involving 1/6 appearing in (5.3.10).
It is known for example that from the perspective of the 1-brane soliton on the
D4-brane worldvolume, the presence of a background B-field causes a tilting of
the 1-brane as it extends from the D4-brane. This can be shown to result from a
shift in the field strength by the B-field. This shift leads to a change in the form
of the BPS equation and therefore the corresponding BPS energy bound (central
charge).

We end this chapter by noting that there is a slightly puzzling feature of
the D4-brane algebra appearing in (5.3.10). This is related to the fact that,
for the case studied in this chapter, it would seem the correct non-commutative
description of the D4-brane theory is the matrix model description. This might
be inferred from the fact that the Nambu-Poisson M5-brane theory is constructed
from the M2-brane action (The analogous situation in type IIA string theory
would be constructing the D4-brane from the D2-brane action and we know the
matrix theory description naturally arises in this setting). In this case, following
[137], one expects to find the combination (F' — 1/6) appearing in the action, not
(F' 4+ 1/0). This discrepancy may be related to the fact that the reduction of
the Nambu-Poisson algebra only gives the Poisson terms of the non-commutative
D4-brane theory, whereas the combination (F — 1/6) appears in the full non-
commutative theory. We hope to return to this issue in a future publication. We

would like to thank the referee of [2] for bringing this point to our attention.
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CHAPTER 6

HIGHER-ORDER
BAGGER-LAMBERT THEORY

The Bagger-Lambert Lagrangian and supersymmetry transformations presented
in Chapter 2 can be thought of as representing the leading order terms in an [,
expansion of a non-linear M2-brane theory. This is analogous to the fact that
super Yang-Mills theory represents the leading order terms of the non-abelian
Born-Infeld action, which is believed to describe the dynamics of coincident D-
branes.! Ultimately one would like to determine the full theory, of which the
leading order terms are those of the Bagger-Lambert Lagrangian. Toward this
end it is constructive to consider the next order in [, corrections to the theory.
At the level of the Lagrangian this analysis has been performed in the literature

(140, 141] using two complimentary methods.?

The first method involves a duality transformation due to de-Witt, Nicholai
and Samtleben (ANS). This duality is based on the fact that in (2+1) dimensions,
a gauge field is dual to a scalar, and it is therefore possible to replace the gauge-
field with a scalar field such that the theory possesses a manifest SO(8), rather
than SO(7) symmetry. In [146], it was shown that applying this procedure to
the D2-brane Lagrangian, it is possible to re-write the theory as a Lorentzian
Bagger-Lambert theory. This technique was then applied to the o/ terms of the
D2-brane Lagrangian in order to determine the Zg corrections to the Lorentzian

Bagger-Lambert theory®. Remarkably, all higher order Lagrangian terms were

INote that the symmetrised trace prescription of the non-abelian Born-Infeld action [138]
breaks down at sixth order and higher in the worldvolume field strength [139].

2For other discussions on non-linear corrections to Bagger-Lambert theory see [142-145].

3Lorentzian Bagger-Lambert theories are considered in [134, 147-150]. See also [151-154].
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expressible in terms of basic building blocks involving covariant derivatives, D, X’
and three-brackets [X7, X7, X®]. This led the authors of [140] to conjecture that
the higher derivative Lagrangian they had derived would also apply to the Ay
Bagger-Lambert Theory.

This conjecture was confirmed in [141] where the novel Higgs mechanism was
used to determine the A, theory Lagrangian at order lg. This involved using di-
mensional analysis to write down all possible lg corrections to the Bagger-Lambert
Lagrangian with arbitrary coefficients. The coefficients were fixed by applying the
novel Higgs mechanism to the higher order terms and matching them to the o'
terms of the D2-brane theory. It was shown that the structure of the higher order

terms in both the A, and Lorentzian theories take the same form.

Given that the ZI?; corrections to the Bagger-Lambert theory have been cal-
culated, one might ask whether these terms are maximally supersymmetric, and
if so, to determine the structure of the higher order supersymmetry transforma-
tions. In this chapter we begin the task of calculating the lz corrections to the
supersymmetry transformations of the Bagger-Lambert theory. The hope is that
closure of the higher order supersymmetry transformations would uniquely de-
termine the higher order corrections to the Bagger-Lambert equations of motion
which can then be ‘integrated’ to determine the higher order Lagrangian, which
by definition, would be supersymmetric. One could in principle write down all
possible lg corrections to the supersymmetry transformations and then try and fix
the coefficients by demanding the closure of the supersymmetry algebra. However
the plethora of possible terms at order lg would make the closure of the algebra a
mammoth task. To try and simplify the problem we will use the non-abelian D2-
brane theory as a guide. We know that dNS duality transformation allows us to
map the non-abelian D2-brane Lagrangian into the Lorentzian Bagger-Lambert
Lagrangian. Furtherore we know that the structure of this Lagrangian is the
same as the structure of the A4 theory Lagrangian. It is natural to ask whether
this methodology can tell us anything about how the higher order D2-brane super-
symmetry transformations are related to the lg corrections to the Bagger-Lambert

supersymmetry transformations.
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In the first part of this chapter we will review the dNS duality transforma-
tion [15-17] by considering how the Lorentzian Bagger-Lambert Lagrangian can
be derived from the D2-brane theory. We will then attempt to apply the dual-
ity transformation at the level of supersymmetry transformations. To simplify
the task we will begin by only considering the ‘abelian’ Bagger-Lambert theory.
We will see that the duality transformation works for the fermion variation but
fails to work for the scalar variation. Therefore in order to calculate the scalar
variation we have to use a different approach. This involves using dimensional
analysis to write the most general scalar variation with arbitrary coefficients.
Invariance of the higher order Lagrangian is then used to fix the values of the
coefficients. In the final part of this chapter we begin the task of calculating the
full ‘non-abelian’ Bagger-Lambert supersymmetry transformations at O(lg). We
are able to uniquely determine the higher order fermion variation but unable to
uniquely determine the scalar variation. As a result, this chapter represents work
in progress. The content of this chapter is based on the original work presented

in [3].

6.1 Non-abelian duality in 241 dimensions

We begin by reviewing a prescription for dualising non-abelian gauge fields in
(2+1) dimensions due to de Wit, Nicolai and Samtleben (dNS)[15-17]. We will
follow the presentation of [146]. According to the dNS prescription the Yang-
Mills gauge field A, gets replaced by two non-dynamical gauge fields A, and B,
with a B A F' type kinetic term, plus an extra scalar which ends up carrying the
dynamical degrees of freedom of the original Yang-Mills gauge field. The duality

transformation is enforced by making the replacement

1 1 1
Tr | ——5—F,F" | = Tr | =e"*B,F,» — =(D,¢ — gyuBu)* | . (6.1.1)
49y s 2 2

We wish to consider the effect of this transformation on the multiple D2-brane
theory. The low energy Lagrangian for this theory is obtained by reducing ten-
dimensional U(N) super Yang-Mills theory to (2+1) dimensions. In this case,
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making the replacement (6.1.1) in the D2-brane Lagrangian results in the dNS

transformed Lagrangian®

1 1 1 . .
L :Tr(ée“”ABuF,,A — 5(Duo = gymBL)? — 5 DuX DX
2 . .
g i villvi v [ { - i

The gauge invariant kinetic terms for the eight scalars can be shown to possess

an SO(8) invariance by renaming ¢ — X® and writing

D'X'=D,X'=09,X" —[A,, X", i=1,2...,7 (6.1.3)
D'X® =D, X® — gymB, = 9, X® — [A,, X% — gymB,. (6.1.4)

Defining the constant 8-vector
Gy = (0,...,0,9ya), I=1,2,...,8, (6.1.5)
allows one to define the covariant derivative
D'X' =D, X' — gL, B,. (6.1.6)

It is then possible write the super Yang-Mills action in a form that is SO(8)
invariant under transformations that rotate both the fields X’ and the coupling

constant vector gi,,:

1 1 5 . . B 1
L="Tr (éeﬂuABqu\ — §(D“X1>2 + %¢F#Duw + %g{/MwFIJ[XJ7¢] _ E(X]JK)2)
(6.1.7)
where the three-bracket X!/ is defined as
XIJK — g{/M[XJ’XK] —l—giM[XK,XI] —i—gffM[XI,XJ]. (618)

4This action exhibits an abelian gauge symmetry allowing one to pick a gauge in which either
D¢B,, =0or ¢ =0. In the latter case B,, becomes an auxiliary field that can be integrated out
thereby showing the equivalence of the LHS and RHS of (6.1.1). For explicit details see [146].
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This theory is only formally SO(8) invariant, as the transformations must act on
the coupling constants as well as the fields. However, one can replace the vector
of coupling constants gi.,, by a new (gauge singlet) scalar X fr provided that the
new scalar field has an equation of motion that renders it constant. Constancy of
X JIF is imposed by adding a new term to the Lagrangian involving a set of abelian

gauge fields and scalars Ci and XI:
Lo=(Cy—oX1)o,XL. (6.1.9)

As explained in [146, 150], this term has the effect of constraining the vector
X! to be an arbitrary constant which can be identified with g{,. In this way
one recovers the gauge-fixed Lorentzian models of [149, 150]. One might wonder
whether this non-abelian duality works when higher order (in o) corrections are
included in the D2-brane theory. In particular, does the 3-algebra structure sur-
vive o corrections? In [140, 141] it was shown that at O(a/?) the duality does
work and all terms in the resulting lg corrected M2-brane theory are expressible
in terms of D, X’ and X'/X building blocks. Another question one might ask
is whether this duality works at the level of supersymmetry transformations and
if so, would it be possible to derive the (’)(l;;) corrections to the Bagger-Lambert
supersymmetry transformations? The first step towards answering this question
is to consider how abelian duality in (2+1) dimensions can be implemented at the

level of supersymmetry transformations. To this we now turn.

6.2 Abelian Duality and Supersymmetry

Our ultimate objective is to determine higher order supersymmetry transforma-
tions in Bagger-Lambert theory by using the dNS procedure outlined in the previ-
ous section. As a warm-up exercise we will consider dualising abelian gauge-fields
to scalars in 241 dimensions and see how this works at the level of supersymmetry
transformations for a single D2-brane. Let us begin by considering abelian duality

at the level of the Lagrangian.
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6.2.1 Abelian Duality

Consider the following 241 dimensional action involving a Lagrange multiplier
field X
1 1
S =— / d3a(ZFWF“” + §G#MF‘“’8AX) (6.2.1)

We see that the gauge field equation of motion takes the form
F. = —€up0*X (6.2.2)
whereas the X equation of motion takes the form of the Bianchi identity
€' " = 0. (6.2.3)

If we substitute the gauge field equation of motion into (6.2.1) then we find a

kinetic term for X

1 1 1
/ d3a(Z WM+ 5e,mF“”é“X) — / d?’aE@MXa“X. (6.2.4)

Alternatively, use of the Bianchi identity in (6.2.1) results in

1 1 1
/ Po((FuF"™ + 56unF" 0 X) — / & Fu . (6.2.5)

with F' = dA. So how does this relate to the D2-brane theory? The leading order
Lagrangian for a single D2-brane can be obtained by dimensional reduction of
super Yang-Mills theory in ten dimensions. The bosonic D2-brane action can be

expressed as
1 1 . ,
S = / d3a(—ZFWFW — 5@){@6#){%). (6.2.6)

Abelian duality is implemented by making the replacement

1 1 1
— 7 Fw " = —(ZFWF’“’ + 5e,Ma#XF“) (6.2.7)
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in the action (6.2.6). Use of the gauge field equation of motion (6.2.2) then results

in
S = /dSJ(—}lFWFW — %EW,/\FNV(?/\X - %@XiaﬂXi)
= / d%(—%aﬂxaﬂx - %ayxiéﬂxi)
— [ o= jo.x10x") 629)

where in obtaining the last line we identified X = X?® as the eighth scalar field.
We see that the scalar kinetic term now has the desired SO(8) invariant form.
Note that it is possible to implement abelian duality in (2+1) dimensions at the
level of the full DBI action [155]. In this way one is able to derive a non-linear
Lagrangian for a membrane in the static gauge with the expected SO(8) symmetry.
Now that we have seen how abelian duality works at the level of the Lagrangian

let us consider applying this to the supersymmetry transformations of a single
D2-brane.

6.2.2 supersymmetry transformations

The D2-brane supersymmetry transformation can be obtained by dimensionally
reducing the supersymmetry transformations of ten dimensional super Yang-Mills.

The spinors appearing in the 10-dimensional theory are Majorana-Weyl and satisfy
rioy —y (6.2.9)

where I'19 is the ten dimensional chirality matrix. Since we are interested in
uplifting the D2-brane theory to M-theory it is desirable to look for an embedding
of SO(1,9) into SO(1,10) in which I'!® becomes the eleventh gamma matrix.
We denote the gamma matrices of SO(1,10) as '™ (M = 0,...,9,10). In eleven
dimensions the spinors will be Majorana. However we know that the presence of
the M2-brane breaks the Lorentz symmetry as SO(1,10) — SO(1,2) x SO(8) and

therefore we can have a Weyl spinor of SO(8). Let us denote the chirality matrix
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of SO(8) by I where
I = 3910 (6.2.10)

The M2-brane breaks half the supersymmetry of the vacuum. We choose conven-

tions consistent with chapter 3 in which
le =e, 'y = —1. (6.2.11)

Under dimensional reduction the (9+1) dimensional gauge field will split into
a (2+1)-dimensional gauge field A, and a scalar field X* transforming under
SO(7). As usual with dimensional reduction, the fields are independent of the
circle directions such that one can set 9; = 0. In what follows, for reasons that
will become clear shortly, we will label 4 = 0,1,2 and ¢ = 1,...7 with the ten-
dimensional chirality matrix relabeled as I'!® = TI'8. Dimensional reduction of

the ten-dimensional super Yang-Mills transformations

SAM = jeI'My)
1
5 = §FMNFMN€ (6.2.12)

results in the following D2-brane transformations

§X" = iely (6.2.13)

§A, = iel,I*y (6.2.14)
1 o

o = §F“”FWF8€ + THT0, X e (6.2.15)

We now consider the effect of applying abelian duality at the level of supersym-

metry transformations. This can be achieved by using (6.2.2) to write

1
9,X° = §EWF”A (6.2.16)

where we have relabeled the scalar appearing in (6.2.2) as X® (this will provide the
‘eighth’ scalar which will combine with the other seven to give an SO(8) invariant

supersymmetry transformation). Performing the duality transformation on the
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fermion variation involves substituting (6.2.16) into (6.2.15)

1 o
S = §eWAF’“’8AX8F86 + 70, X e
=I'*T%9, X% + "1, X"e

=T*T79,X"e. (6.2.17)

We see that this now takes the desired SO(8) form. In order to determine the
SO(8) transformation of the scalar field § X’ we need to consider (6.2.14) re-written
as

0F,, = —2iel, ®0,1). (6.2.18)

Substituting (6.2.16) into the left-hand side of this transformation allows us to

write

POX® = —iee™ T, I,
= (el T80,
= ie(n"* — T T)I®*0,4
— e[ oM (6.2.19)

where we have made use of the lowest order fermion equation of motion I'*0,,1) = 0.
This relation implies that X8 = iel'®¢) which can be combined with § X? = iel"¢)
to give

SXT =ery. (6.2.20)

In summary we see that at lowest order it is possible to re-write the D2-brane
supersymmetry transformations in an SO(8) invariant form. For the fermion vari-
ation this simply involved substituting (6.2.16) into the D2-brane expression. For
the scalar field variation it was necessary to ‘dualise’ the gauge field variation 6 F),,
to form the eighth scalar. In the next section we extend our analysis to higher

order abelian supersymmetry transformations.
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6.3 Higher Order Abelian Supersymmetry

In this section we will determine the lg corrections to the abelian M2-brane super-
symmetry transformations (excluding bi-linear and tri-linear fermion terms). We
begin by using dimensional arguments to determine the structure of the supersym-
metry transformations. We will then apply the duality transformation outlined in
the previous section to the @(a/?) D2-brane supersymmetry transformations. We
will see that this procedure uniquely determines the fermion variation but fails to

work for the scalar variation. This will motivate us to try a different approach.

6.3.1 Dimensional Analysis

Dimensional analysis tells us that the mass dimensions of the fields appearing in
the Bagger-Lambert theory are [X] = 1, [¢)] = [4,] = 1. The supersymmetry
parameter € carries mass dimension [¢] = —%. We expect the first non-trivial
corrections to the supersymmetry transformations to appear at (’)(lg). Therefore
we see that the O(lg) terms in 07) must be mass dimension 4. In a similar manner
the correction terms in 6. X must be mass dimension 3%. For the sake of simplicity
we will neglect bi-linear fermion terms in the scalar variation and tri-linear fermion
terms in the fermion variation. In terms of the basic building blocks of scalar fields
and derivatives, the only possible types of term appearing in the fermion variation
at O(li) are those involving three derivatives and three scalar fields. If we assume
that derivatives must always act on scalars (with at most one derivative) then a

little thought reveals that the higher-order fermion variation takes the form

0 =+ a LT, 110, X7 0" X7 0" X e + a1, I 0" X7 0, X 70" X e
+ aslye™ 59, X710, X79,X e, (6.3.1)
The motivation for assuming that scalars are always acted on by derivatives is
based on the form of the o/* D2-brane supersymmetry transformations (derived

in the next section) which have no free scalar terms. Let us now consider the scalar

transformation. Based on dimensional analysis and the reasons already outlined,
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the only types of term appearing in the scalar variation are those involving two
derivatives, two scalar fields and a fermion. Considering all independent index

contractions one arrives at the following expression

0X" =4 b el 0, X7 0" X7 + bylel 0, X 0" X
+ bsleEl T8, X0, X7 + bylJel T 0, X789, X . (6.3.2)

Our task in the remainder of this section is to fix the coefficients appearing in
(6.3.1) and (6.3.2). There are a number of ways that this can be achieved. In
the next section we will attempt to fix these coefficients through abelian duality.
We will see that this only works for the fermion variation. In order to determine
the scalar variation we will have to use a different approach. This will involve
checking that the higher order abelian Lagrangian derived in [141] is invariant
under (6.3.1) and (6.3.2). Not only will this allow us to determine the scalar
variation coefficients but it will also provide a test for the fermion terms derived

using the duality approach.

6.3.2 Higher Order Abelian Supersymmetry via Dualisation

In this section we will attempt to derive the higher order abelian supersymme-
try transformations using abelian duality. Our starting point will be the O(a/?)
supersymmetry transformations of the ten-dimensional super Yang-Mills theory.

These were first discovered by Bergshoeff and collaborators in [156]°

(5'¢ = 0/2(/\1FMNFPQFPQFMN€ + /\QFMNFMPFPQFQNE + AgFMNPQRFMNFpQFRsé).
5AM = Oé/z(alngFNpFNPdJ + OéQEFNFMpFP]\Qp + @3EFNPQFMNFPQ¢
+ OC4€FMNPQRFNPFQR’¢>. (633)

Note that in [156] the fermion variation also included tri-linear fermion terms
and the gauge field variation included bi-linear fermion terms which we have

not included for the sake of simplicity. We have purposely left the coefficients

®The form of these transformations was later confirmed in [157-159].
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unspecified. The hope is that these coefficients will be fixed by the requirement
that the (2+1) dimensional transformations collect into SO(8) invariant terms
under the duality transformation. Next we wish to reduce these expressions to
(2+1) dimensions. We will first focus on the fermion. Performing the dimensional

reduction one finds

MIMYN Fpo FPR Fyve — + MW F, FP Fope + 20T F,,0° X0, X e
+ 20\ 0, X Fpo FP7€ + AN THTY0, X' 0" X709, X e.
(6.3.4)

MMV Ey p FPRFgne — 4+ XNl F,  FP F, e — 201" F,,0° X0, X e
+ 20TV F,, FP7 0, X e
— 200, X7 0P X70,X e — N0, X P70, X e.

)\BFMNPQRSFMNFPQFvRS6 - _ SAgruvaijkauXiaijapXk6' (635)

Next we dualise the gauge field using (6.2.16). After a small amount of algebra

one finds

MIMN Fpg PO Fyve — + 4040, X530 X80, X e — 4N T70,X%0" X0, X e
— ANTHTYO, X0 X80, X e + AN THT0, X' 0" X709, X e.
(6.3.6)

MMV p FPR Fgnve — — 20170, X20% X80, X% — 2X,1"0" X0, X'0" X'
+ 22179, X30" X0, X e + 20,170, X°0 X %0, X e
— 20T X530, X50" X'e — 20110, X7 0P X709, X ¢
— X779, X0, X530, X e. (6.3.7)
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AgDMNFPQES [y Fog Fse — —8A\IMPTI%), X109, X789, X e, (6.3.8)

We would like to re-write these transformed expressions in terms of SO(8) objects.
The only possible SO(8) objects involving three derivatives are those contained
in (6.3.1). The hope is that the fermion supersymmetry transformation should be
expressible as a particular combination of these basic objects. More specifically,
by noting that
r.Mo,X70"X'0"X"e - T,I"0,X70" X' D" X'e + T, "0, X%0" X*0" X e
+T,I%0,X70" X7 0" X% + T,I'°0, X°0" X®0" X %€

Lo X79,X70" X" — T, I"0"X70,X70" X'e + T, I"0" X®0,X%0" X'e
+ T, 0" X79,X70" X% + I, I®0" X®0, X 0" X %€
(6.3.9)

we can write the terms in (6.3.6)-(6.3.8) as

SVabetian = + 4N T, T10,X70" X790 X e — 20,1, 0" X70,X70" X e
+ (22 — 8\ ) ([0, X7 0" X7 0" X + T',1V0, X50" X530+ X ¢)
— 8\ PTR9, X0, X70,X e — Nl e720, X 0, X0, X e. (6.3.10)

The last line in (6.3.10) can be expressed in SO(8) form by noting
e 17K 9, X10,X70,X e — "PT%9, X0, X70,X e+3e" T T80, X'0,X70,X " e.

Provided with this information we see that it’s possible to write (6.3.10) in SO(8)

form provided the coefficients are related as
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The final result for the abelian fermion variation is

0 =+ 4NDT, 10, X70" X 0" X e — 8N DT, T 0" X0, X7 0" X e

4
— 5Allgewpr”f(auxfayx"apr(e. (6.3.12)

A few comments are in order. Firstly we see that the structure of these terms
exactly matches the structure of the terms appearing in (6.3.1) with the coeffi-
cients fixed as a; = 4\, a3 = —8)\; and a3 = —4/3);. It remains to determine
A1. Most remarkably we see that the requirement of SO(8) invariance has placed
a constraint on the coefficients of the ten-dimensional supersymmetry transfor-
mations! Furthermore the ratios of the coefficients exactly matches the literature
[156, 159-161]. Thus it would appear that abelian duality does indeed work at
the level of the fermion supersymmetry transformation. So what about the scalar
variation? One would expect the higher order scalar supersymmetry transforma-
tion to work in a similar way to the lower order transformation. In other words,
one expects the (241) dimensional gauge field transformation to contribute (af-
ter dualisation) to the ‘eighth’ component of the scalar transformation §X’. In
order to see how this works we will need to determine 0F),, in (2+1) dimensions.
This can be constructed from our knowledge of JA,,. Therefore the first thing we
need to do is dimensionally reduce the ten dimensional gauge field transforma-
tion dAys appearing in (6.3.3). Performing the reduction results in a scalar field

supersymmetry transformation

6X' =+ el F,, F*" 1 + 20479, X7 0" X7
+ el , 0, X" F"P1) — anel7 9, X' 0" X 1)
— azel"P9, X' F, b — azel™ 199, X0, X7y
— 4oy @R T 9, X7 0, X 1p — Ay el TP E,, 0, X7 (6.3.13)
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and a gauge field supersymmetry transformation

0A, =+ a1l F,, " + 20, €0,0,X 07 X )
+ el F, FP + el F,, 0" X'
— el ,0° X0, X" + azel"*" F,, F o0t
+ 2030 TV F,,0, X" + azel ™10, X' F,,
— 20319179, X" 0,X7 — dayel,,, 170" X' 0P X7 . (6.3.14)

Performing the dualisation of the gauge field results in the scalar transformation

6X' = — 201", X 0" X3 + 201170, X7 O X1
+ el 9, X0, X %) — eV 9, X 0" X1
— 2030, X' 0" X3 — 203" 17 9, X" 0, X7
— 8y€l 9, XTI 0" X B9p — Aoy elF T 9, X719, X F4). (6.3.15)

Similarly for the gauge field one finds

§A, =+ (o — 20;)el 100, XB9” X® — el 10" X%9, X*®
+ 200,100, X' 0" X" — el 100, X0 X'
— 203eT7T40, X' 0, X7 — 2003€T , TI200” X80, X’
+ g€\ eDT PN XBOY XT + dae,,, el 90" X 0P X7 (6.3.16)

The hope is that, just as for the fermion, these terms will combine into SO(8)
invariant objects and in doing so fix the ratios of the coefficients. However we
immediately encounter a problem which did not exist for the fermion variation.
To see this let us focus on the first two terms appearing in (6.3.15). These are
the only two terms in (6.3.15) with the correct index structure to form the SO(8)
term el'/49, X7 9" X’ appearing in (6.3.2). However there is a relative minus sign
appearing in these two terms meaning they are unable to combine. The prob-
lem can be traced back to the ten-dimensional gauge-field transformation term

ey FypENPap. Why is this happening? After all, we know that abelian duality
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works for the D2-brane Lagrangian and we know that the D2-brane Lagrangian
derives from the ten-dimensional Yang-Mills term —FynF*Y. Indeed, upon
dimensional reduction of the ten-dimensional Yang-Mills Lagrangian and applica-
tion of (6.2.16) one is left with a term 39, X%0*X® — 10, X'9* X" which will not
combine to form an SO(8) invariant scalar kinetic term. The way this problem is
solved at Lagrangian level is by adding a Lagrange multiplier term 3e,,\0* X®F"*
which under dualisation (according to (6.2.16)) combines with 0, X%9"X® in
such a way as to change the sign of this term thereby allowing it to combine
with —%@X ‘OF X" to form the desired SO(8) invariant scalar kinetic term. This
suggests that the problem may in fact be the prescription (6.2.16). In order to
implement the duality on F? terms it may be necessary to make the replacement
;11F2 — };F2+ %Eu,,)\a”XSFV)‘. However, if this is true then it’s unclear why making
the replacement (6.2.16) works for the fermion variation. Perhaps the reason we
had no problem with the fermion is related to the fact that the ten dimensional
Yang-Mills fermion variation contains terms of order F® whereas the gauge-field
variation contains terms of order F2. The result being that the dualised fermion
variation contains terms with the same structure that derive from different ten-
dimensional terms. This allows for the coefficients to be related in such a way that
unwanted terms are eliminated. This is not true for the scalars. Furthermore, by

observing how the terms in (6.3.2) break-up into SO(7) objects

0, X70" X7 — el'p0, XP0" X® + el'ap 0, X7 0" X7
e T K0, X7 0, XK — 2e0" 449, X70,X® + el 79, X7 0, X"
740, X or X — eT®p0, X 0" X® + eI, X 0" X7
e T, X0, X7 — er* I 0,X'0, X" + el T"9, X 0, X’

we see that there are terms appearing in (6.3.15) which do not appear in (6.3.2).
Therefore, until we know how to modify the abelian duality transformation such
that the scalar fields combine into SO(8) objects, we will have to follow a different
path to determine § X!. In the next section we will use our knowledge of the higher
order abelian Lagrangian to determine both §¢ and §X! by requiring invariance

of the action.
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6.3.3 Invariance of Higher Order Lagrangian

The I3 corrected abelian M2-brane Lagrangian takes the form [140, 141]

1 |
Sprg = / & — 5awcfa/v(f + %wrﬂfw
1 1
+ Zlg(aMXIaMXJa”)(JaVXI - 58“X18MX18”XJ8VXJ)
i A v R v
+ Zlﬁ(wF“F”@;MMXIO X7 —yI*9,40, X 0" X7

1 s o =
— 1—6l13,¢1““8 Yy, 0,9 (6.3.17)
The supersymmetry transformations at lowest order are

X1 =iely.
5 = 9, X' T+ e. (6.3.18)

At higher order we will consider the transformations (6.3.1) and (6.3.2) (neglecting

bi-linear and tri-linear fermion terms). To recap, for the fermion we have

6 =+ a; 1,170, X70" X7 0" X e + aoT 10" X70,X7 0" X
+ aI" TR, X710, X70,X e (6.3.19)

and for the scalar

6XT =+ b elp0, X7 0" X7 + byel72p0, X o' X7
+ bgel ' T"1p 0, X "0, X7 + byl T %9, X709, X (6.3.20)

In the variation of the action there will be terms coming from the higher order
supersymmetry variation of the lower order Lagrangian and there will be terms
coming from the lower order supersymmetry variation of the higher order La-
grangian. These terms should cancel against each other up to a surface term.
Demanding invariance of the action will put constraints on the coefficients. Not
only will we determine §.X’ but also 6 allowing for comparison with the result

derived in the previous section using abelian duality. Let us begin by considering
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the higher order supersymmetry variation of the lower order Lagrangian. This

results in

—0,X'0M(6XT) = —ib el 0,p0" X 0¥ X710, X7 — ibel4p0,(9, X790 X7 )or X
— ibeel 9, 0" X7 0" X7 0, X — ibyel 100, (0" X709, XY 0" X
— ibgel" T 9,00, X709, X 0P X7 — ibsel ' T 40,(9, X7 0,X")or X’
— byl TR G o XT10,X7 0, X — ibel” T 540,(0,X7 0, X" )o" X"
(6.3.21)

5(%&#3,@) — %algrfauwaﬂxfa,,XJaVXJ - %algrfwau(a,,xja”XJa“Xf)

2 apel 0,10 X7 0, X 0" X — %aQEFIwGM(G“XJ&,XJﬁ”XI)

[\)

~.

— —a, '™ 0,00, X'0P X7 9,X7 + %alEFIF’“’Q/Ja#(8pX‘](9pXJ8,,XI)

N

— 5l T 9,00, X700 X0, X" + %aQEFIF‘“’waﬂ(8,,XJ8pXJ8pXI)
3i 3i
- gaggrﬂyr”f(awauxfayxj 9,X% + gaggrp”r“%au(aﬂxfayxj 0,X%)

(6.3.22)

Let us now look at the lower order supersymmetry variation of the higher-order

Lagrangian terms. We have

8 Lhigher = + €11 0,100" X790, X 0" X! — %grfa#@z)auxfa”XJaVXJ

+ iEFI(‘)Mw@“XI&,X‘JE)"XJ - %(2W)2€F18Mw8“XJ8,,XJ8”X]

- iéF““FI@Z)@MXJapX[(@V@pXJ) + %grwrf@/;auxfapx"(ayapXJ)

- iEF“Vqu/)@MXJ@"XJ(@V@pXI) + %grf@z}aﬂXJaPXJ(auapr)

= %EF”’T”KwauXI&,XJ(6“8,)XK) + igF””FUKauwaﬂXlapX‘]ayXK

+ 1 terms (6.3.23)

How will these terms cancel against each other? Firstly we observe that there are

three ‘types’ of term appearing in the above, depending on the gamma matrix
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structure. It is clear that terms involving the same gamma matrix structure
should cancel against each other (up to total derivatives). We begin by focusing
on I'"THE terms. Collecting these terms together we can write them as

2 . 3
(éag — by + i)grﬂ”r”f(amauxfapxj 9, X% — EZa;;EFpVF”Kl/J(()H(8“X18VXK3PXJ )
+ 2ibye T TE 9, X189, X7 (919, X X)) — %EF””F”K@Z)(‘?MXI@VXJ(6“8PXK)

(6.3.24)

We notice that the first line can be expressed as a total derivative and the second

line vanishes provided that

1
b4 = g, as = _ﬂ (6325)
Now let us look at the I' terms. We can write these as
1 1 '
+ i(§a1 — b — Z—l)dﬂ@“w@uXI@”XJ@VX‘] — %algrfwau(ayxjavxjaﬂxf)
1 1 '
+ i(§a2 — by + §)€F18uw8“XJ8,,XJ8”XI — %aQEFfwau(aﬂXJaVXJa"Xf)
+ %EP%@“X‘](‘?”XJ(@@VXI) — by 0" X7 0 X7 (9,0, X7)
— ibeeT "1 (0,0, X7 X 0" X7 — 2ib1el’ (0,0, X 7)o" X 9" X! (6.3.26)
The first two lines can be expressed as total derivatives provided that
1
a; = b1 + Z
1
a9 = bg — 5 (6327)
We see that the last two lines in (6.3.26) are equal to zero provided
1 1
Putting this information together we conclude
a9 = —26L1. (6329)
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This agrees with the result derived from the duality transformation method. Now
we just need to check that the remaining terms cancel against each other. Focusing

on the I''T** terms we see they can be written as

— b3 T 0,00,X 10, X 0 X + %allﬁEF‘]F"“(“)Hzpa,,XIE)”XI@pXJ
i
| 1
+ (iay — % — by) B TP(0,0,X ") X9, X7 + (

+ %zgaQ@reramapra”XfaVXJ b (L byt %aQ)lgéFJFp“@Z)(8V8pXJ)8MX18”X[
i
4

(6.3.30)

If we set b3 = 0 then it is possible to write the remaining terms as total derivatives

provided that

(6.3.31)

1 1
a; = — a9y = ——
! 8’ 2 4

which is consistent with (6.3.29). We are now in a position to write down ex-
pressions for the O(lg) corrections to the abelian supersymmetry transformations

(excluding bi-linear and tri-linear fermion terms)

X1 = ety — %zﬁgrfwauXJa#XJ + izgzrt’wﬂxfaﬂ)(u’ + %zggrwr”%auxfayxff.
1 1

6 = 0, X' THT e + gliF“FléuXI(‘?"X‘](?VXJE — ZliF“Flﬁqua”X‘]@Xle

1 17
— ﬁzgw TR, X10,X70,X e. (6.3.32)
Looking at the fermion variation we see that it is possible to fix the undetermined
overall coefficient in (6.3.12) as Ay = ;. In the next section we will consider
extending this analysis to the non-abelian Bagger-Lambert M2-brane theory.

6.4 Non-Abelian Extension

In this section we begin an investigation into the non-abelian supersymmetry
transformation of the Bagger-Lambert theory at O(I3). We will see that using the

non-abelian ANS duality transformation outlined at the beginning of the chapter
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it is possible to uniquely determine the higher order fermion variation. We begin
by using dimensional analysis to determine the types of terms that can appear in

the M2-brane supersymmetry transformations.

6.4.1 Dimensional Analysis

We can write the most general variation of the fermion field as
1
6vq = D, X TP e + 6X”Kr”Ke + D™ X" e (6.4.1)
Dimensional analysis then tells us that
2m 4+ n+4l =9 (6.4.2)

This gives rise to potentially nine types of term. However we can restrict our
attention by making use of our knowledge of the D2-brane supersymmetry trans-
formations. In other words we will only consider terms that match the D2-brane

corrections upon application of the novel Higgs mechanism. This leaves us with
1. XY,
2. (DX)X®.
3. (DX)(DX)X3.
4. (DX)(DX)(DX).
working out all independent index contractions one finds an expression of the form
5 = BT, I D, X" D" X' D' X" + a,0, ' D* X’ D, X" D" X" + aze"’T""* D, X' D, X' D, X*
+a 0T D, X7 D XEXIR 4 a5 DR D, X P DX X 4 qgT!K D, X P DR XE XTE
4 CL7F'LWFIJKLMDHXIDVXJXKLM + CLgFﬂFJD'uXKXKLMXLJM
4 GQFHFIJKLMDMXMXIJNXKLN 4 al()FHFJDuXJXKLMXKLM
4 GHFMFIJKLMDHXNXIJMXKLN + g PTTKIMNP x17Q x KLQ x MNP

4 algl-\IJMXIKNXKLNXLJM + CZMFIJMXKLNXKLNXIJM]E. (643)
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Similarly we can write the most general scalar field variation as
§X1 = iel" o, + BeD™ X >+ (6.4.4)
with
2m +n+ 4l = 6. (6.4.5)
This leads to the following possible terms
1. X6,
2. P(DX)X3.
3. ¥(DX)(DX).

After a little thought about possible index contractions one arrives at the following

expression

§X" = ild[b1el" D, X" DF X7 + byel ' D, X' D" X7 + bsel'T* D, X' D, X"
+ byl 75y D, X7 D, X* + bsel [/ 5Eyp DP XTI X TEE 4 pgel, T 5 DR X B X TEE
+ brel, 7D, XK XTE 4 pgelrr T EEMy, |, X7 XREM 4 poel T/ KLy D XK X TR
4 blOEFJl/JXJKLXIKL + bllngKLl/JXKLNXNIJ 4 bIQEF]JKLMQ/}X‘]KNXLMN],
(6.4.6)

Now that we know the types of terms that will appear in the supersymmetry
transformations we will use the non-abelian dNS duality transformation outlined
at the beginning of the chapter to try and determine their exact form. Our starting

point is the non-abelian D2-brane supersymmetry transformations.

6.4.2 D2-brane supersymmetry transformations

We begin by deriving the non-abelian D2-brane o/? supersymmetry transforma-

tions. Our starting point will be the a? ten-dimensional U(N) super Yang-Mills
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transformations (6.3.3). Because we are now considering the full non-abelian
theory we will have to keep all terms in the dimensional reduction, including com-
mutator terms. Upon dimensional reduction to (241) dimensions one finds the

following expressions

6
0X' =Y 6X(, (6.4.7)
j=1
with
% 1 -t uv
5X(1) = 2—a16F d}F/Jl/F
9y m
. 1 , , . .
5X(22) = —gy—M(OJQEFul/}DszFpM — Q3€,. €Y DI X' FP7 — 4oz4euyp€szz/1F“”D”Xj)

6 X {5 = —asel*"T XV F,; — 204eT7*T, p XTF 1
6X(y = 200el"Y D, X7 D' X7 — el D, X' D’ X7 — ezl T74p D, X' D, X7
— a3l T D, XD, X7 — doyel"*T b D, X7 D, X"
0X(s) = gvar(a2el WX YD, X7 + agel* T D, X X + agel T XY D, X*
+ azel T X7 D, X* 4 dayel Tk D X3 XA
6 X{g) = gy (@ P XTFXIF 4 apelTFp X7 X% 4 el Mp XXM 4 el M X4 X I

6
0A, = 64, (6.4.8)
i=1

with

1
0A, ) = gy—M(aléFM@prUFp” + el WF,, F"P — aze” e F,, Fy)

6 Au(2) = el F,, DY X7 + azel" T F,, Dy X7 + a3l 199D, X' F,, + azel""T*y F,, D, X"
6 A3 = —gym (el TP, XTF — g€, 0T FP XY — 146, €00 p X9 F7P)
6 A1) = gy (200eT, D, X' D" X" — el 9 D, X' DY X" — el T D, X' Dy X7

— aelTPY D, X Dy X7 + dag€p, el D" X' DP X7 )
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0 A, 5) = — g (el D, X' X 4 el D, X XI*
+ 200l ,, DM DY XT XM 4 20T, Ty X7F DV X
6A,6) = g3 0 (1 €0, XY X quyel DM X X

10
S =" die (6.4.9)
=1

with

1
01 = ——(MI"Fo FP7 Fy + AT F, F7 Fy )
YM
1 , ' |
e = g}%M <2)\1FHF]FPUFWDNXJ' + NIV E,, F*?D,X; + )\ZFVF]DpXjF’DUFa-I/)
1 g N
03 = ——— (MY Fpe FP7XY)
gy M

1 . ) ) .
Sy = gy—M(F‘“’(Q/\leXJD"XJFW — XD, XID*XIF,, — \oF,,D’ X" D, X*)

— NI D,X"F D, X;)
65 = — N IHTYE,, D" XF XM — \TVT X9 DPXIF,, — 123" PT* F,, D, X" X%
55 = gya(MI™ XTXTE,, + 3N\ TR, X1 XM
67 = ANMTPTY D, X D" X*D, X7 — \,T*TV D, X*Dr X* D, X
— MIVI"D,X'DP XD, X7 — 8\3¢"°T"*D, X'D, X’ D, X"
6s = gy (—=2MT7 D, X" DF X* X + AT D, X7 X* D, X* + M T D, X" DP X X5
+ X7 Xy D X* D, X; + 120,79 D, X' DY X7 X*)
09 = gy p T MDY XM XM D, XT 4 N X XD, XF 4 AT D, XX R XY
=+ 6)\3Fz]klmDquX]lem>
5w10 — _ggM()\lrlelek’lXU + )\21’\1lekale] + )\SFZ]k‘lmnXZ]Xlemn)
Now that we have the non-abelian D2-brane supersymmetry transformations we
can attempt to dualise the Yang-Mills gauge field to a scalar. Our method will

follow the presentation of [140] where the lg corrections to the Lorentzian Bagger-

Lambert theory were derived using the dNS duality prescription. Let us briefly re-
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view the procedure for implementing dNS duality in the higher order Lagrangian.

6.4.3 Higher order dNS duality

In [140], higher order corrections to the Lorentzian Bagger-Lambert theory were
derived by making use of the dNS duality transformation. As outlined at the
beginning of this chapter, implementing the dNS duality involves rewriting the
D2-brane Lagrangian in terms of the new fields B, and X®. To see how this works
at higher order we will derive the O(lg) bosonic terms of the Bagger-Lambert
theory. Our starting point will be the (a’)? corrections to the non-abelian D2-
brane theory. These terms derive from the F* corrections of ten dimensional super

Yang-Mills theory [138, 157, 159]

1 1 1
— __F2 - T F4 = F2 2
L= = F + STe(F' — S(F?)?)
1 1 1
— _ZFMNFMN + ETr[FMNFRSFMRWVS + 5FMNFWFRSFSM
1 1
— ZFMNFMNFRSFRS — gFMNFRSFMNFRS]. (6.4.10)

The next step is to reduce this expression to (2+1) dimensions. We then re-
write the (2+1) dimensional field strength F),, in terms of the dual field strength
F, L = € F"*. In order to implement the dNS duality we replace the dual field
strength }7’“ by an independent matrix-valued one-form field B,. The resulting

Lagrangian looks like

2 4
_ 1
£ =Tr[F,B" — %X B, B + 2N (B, B"B,B’ + -B,B,B"B")

2
+ gi—QM(QB“B,,D”XiD#X" —2B"B,D,X'D"X"' 4+ 2B"B"D, X'D, X'
+B"D'X'B,D,X' — B*"D"X'B,D, X"+ B"D,X'B"D,X")

4
+ DB B, XY X + 5B X7 B,X"Y)

12
2
+ P \(BD*X'DXT + D" X/B\D'X' + D'X'D"XTBYXY].
(6.4.11)
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We see that F only appears in the Chern-Simons term F, wB*. To show that this
expression is equivalent to the (a/)? D2-brane Lagrangian one simply integrates
out the field B, order by order using its equation of motion. In order to rewrite
the Lagrangian in an SO(8) invariant form we introduce the field X® and replace
B,, everywhere it occurs by —1/gyn(D,X® — gymB,). Recall that there is now
a shift symmetry allowing one to set X® = 0 in which case we arrive back at
(6.4.11). Performing this substitution and collecting the resulting terms into the

SO(8) invariant building blocks D, X and X'/¥ results in the compact expression

1 1=~ ~
L=+ §EMV)\BMFV>\ . §DMXIDMXI

1 - - ~ ~ - - ~ -
+ glﬁsTrBD“XID#XJ D'X'D, X" - D'X'D,X'D"X'D, X"’

4 3 5 3
— XD, XD, X DAY

+ QXIJKXIJLD/LXKDNXL . %XIJKXIJKDMXLDHXL

+ %XIJMxKLMleNxJLN . iXIJKXIJKXLMNXLMN]. (6412)

In [140] it was shown that the same approach can be used to derive the O(I3)
fermion terms. We see that it is possible to implement dNS duality at higher
order by applying the following prescription

1. Dimensionally reduce 10 dimensional expression to (2+1) dimensions.
2. Write all field strengths in terms of their duals:  F},, = —EW,\F A
3. Replace F . with the field B,,.
4. Replace B, with —gYMf)MXS.
5. Rewrite all expressions in terms of D, X! and X'/% building blocks.
In the next section we will test whether this prescription works at the level of

supersymmetry transformations. We have already performed the first task on the

list. Next we must re-write the D2-brane supersymmetry transformations (6.4.7),
(6.4.8) and (6.4.9) in terms of D, X?5.
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6.4.4 dNS transformed supersymmetry

Two Derivative

X' = — 20,el'p D" X5 D, X* + anel™ D, X D, X — 20360 D" XD, X*

+ 20,60 D, X  DF X — el D, X' D" X7 — 203" T94p D, X" D, X
— 8yl D, X® D' X — 4yl T, D, X’ D, X*
One Dsfivative
+ gy ar (203€T, DI X9 DI X 4 4oy el % Ty X8 D, X8 + el ,ip X9 D, X7
+ azel" %y D, X X% 4 agelT%) XU D, X*
+ szl T* ) XU Dy X ¥ 4 dougel, T9*ap Dl X XM
Zero DJe{ivative
+ g2 (e XX 4 el X9 XT* 1 gD X XH 4 oy eliohima) Xk X
(6.4.13)

Two Derivative
A, =+ gyr(—200e0, 0Dy X D¥ X® + agel oD X3 D, X® — anel,p D X3 D, X®
+ 2036, 8 D XE DY X8 + age eV D XE DY X7 — 203\ TV9p D, X’ D* X &

— a3l VY D" X3 D, X7 + el \IVyy D* X8 D, X7 — el T 4y D? X4 D, X*
+ asel\[*yY DX X8 D, X* 4 20 el b D, X' D" X' — el i D, X' D X*
— a3el T D, X' D, X7 — ageT TP D, XD, X7 + daye,,,éT7p DY X' DP X7)

One Derivative
7\

+ g2 0y (sel,, T DY XS XIE — 20,eT4p D, XX — 204eT, Ty DY XI XM

— el D, X' X — agel* D, X' X* — 20,4eTp XD, X® — 2004T,,, TIF4p X% D¥ X1

Zero Derivative

A\

+ g% 0 (a0 XX 4 el Tkl X0 X M) (6.4.14)
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Three Derivative

5ip = + ANT,eDY XD, X* DP X® — \T,e DY X* D, X* DM X* — AT, e D" X* D, X* ¥ X*

— ANT*TYeD, X8D"X®D, X7 + X\oT*T9e D" X®D, X8D, X7 — X\, T'T¥e D" X*D,X®D, X’
+ A\T¥TeD, XD, X8D" X® — M\ T"TeD, X’ D, X8D" X® — 4\ T ,eD, X D" X’ D" X ®

— \oT,eD, XI D" XI DY X® + \oT,e D, X D" X’ D" X® — \oT,e D" X D" X* D, X *

+ X, e DX D X D, X — \ge™*TeD, X' Dy X®D, X7 4 4\ T*TYeD, X* D" X* D, X7
— XI*"TVeD, X*DP X*D, X7 — X\oT"TeD, X' D’ XD, X7 — 8)\3¢"’T""*¢D,X'D, X’ D, X"

Two Derivative
7\

+ gyar (= Aol D7 eD? X3 DI XXM 4 AT, T X DIXI DY X + 24\, D7k PP X3 D, XX
+20T9eDP X3 D, X8 XY — 2\ T9eD, X D' X" X 4 \,T"eD, X7 X" D, X*

+ Ml eD, X' DPXFXM 4 X\oT9e X, DP X D, X; + 120" ¥ e D, X' D¥ X7 X k)
One Derivative
+ 2y (—2MT e XU X U DR XS — 6N, T e DX X XM 4 o)\ THIYeXH XM D, X7
+ AT e X X*D, X* 4 X\oTHTYe D, X* XK X 4 6A;THT M D, X X IR X I
Zero Derivative
o gg‘l/M(/\lrijeXleleij + )\QFijEXikalej + A3Fijklmn€Xinlemn5 )
(6.4.15)

6.5 SO(8) supersymmetry transformations

In the previous section we applied the dNS prescription to the non-abelian D2-
brane supersymmetry transformations. We would now like to re-write these ex-
pressions in SO(8) form. We will see that this is only possible for the fermion su-
persymmetry transformation. The scalar transformation is plagued by the same
problems we encountered in the abelian theory. We will end this section with
a discussion of how one might go about determining the scalar supersymmetry

transformation.
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6.5.1 &¢

Earlier in this chapter we were able to determine the abelian supersymmetry
transformation of the fermion by using abelian duality in (2+1) dimensions. In
the process we were able to fix the coefficients appearing in (6.3.1). Looking at
(6.4.3) we see that the first three terms are exactly the same as the terms appearing
in (6.3.1) but with partial derivatives replaced by covariant derivatives. As a result
we find that the coefficients are related in exactly the same way. Knowledge of

the relationship between Ay, Ay and A3, namely
)\2 = 4)\1; )\2 = —24>\3 (651)

allows us to re-write all the coefficients in (6.4.15) in terms of A;. Furthermore by
looking at the invariance of the higher order abelian Lagrangian we were able to
fix \y = 3% Making use of this information, as well as the SO(8) relations outlined
in the appendix, it is possible to re-write the two-derivative, one-derivative and
zero-derivative terms in (6.4.15) in an SO(8) invariant form. The final answer for
the l:i correction to the fermion supersymmetry transformation in Bagger-Lambert

theory is

1 1 1
o = li[gl“#FIDl,XJD”X"D“XI — ZFMFID“XJDVXJD”XI — ﬂe“”pF”KDuXID,,XJDpXK

+ él‘\,u,l/FIDMXJDVXKXJK[ + %FIJKDMXLDHXJX[LK o iFIJKDMXLDMXLX]JK

48
4 %F;WFIJKLMDHXIDUXJXKLM - %FuFJD‘uXKXKLMXLJM
+ %FMFIJKLMDMXMXIJNXKLN + 4—18FMFJDMXJXKLMXKLM
. %FuFIJKLMD#XNXIJMXKLN + %FIJKLMNPXIJQXKLQXMNP
4 %FIJMXIKNXKLNXLJM + ﬁFIJMXKLNXKLNXIJM]E. (652)

It is pleasing to see that the dANS duality transformation has allowed us to uniquely
determine the structure of the fermion variation. It would be nice to extend this

analysis to include tri-linear fermion terms.
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6.5.2 6X!

Given that the dNS prescription works for the fermion transformation one might
hope that it would also work for the scalar transformation. However, as we
observed for the abelian scalar transformation, this is not the case. The two-
derivative terms appearing in (6.4.13) are of the same form as the abelian scalar
terms, with covariant derivatives replacing partial derivatives. For this reason,
the non-abelian scalar transformation inherits the same problems we encountered
before. For the abelian theory we used a different approach to determine the
scalar transformation. This involved checking the invariance of the abelian La-
grangian under a proposed set of supersymmetry transformations (determined by
dimensional analysis). The same should be possible for the non-abelian theory.
The I3 corrected Bagger-Lambert Lagrangian was derived in [140, 141]. Checking
that this Lagrangian is invariant (up to surface terms) under the transformations
(6.4.3) and (6.4.6) should fix the coefficients. Not only would this determine the
scalar transformation but would also provide an independent test of the fermion

variation calculated using the dNS prescription.

Ultimately one would like to know how to modify the dNS prescription in such
a way that it is possible to derive the scalar variation. Toward this end it may
prove useful to determine the scalar transformation by an independent method
such that a comparison can be made between the known result and the dNS trans-
formed result (6.4.13). Another complication worth mentioning is related to the
gauge field transformation (6.4.14). For the lower order abelian supersymmetry
transformations we observed that the eighth component of the scalar variation
6 X1 arises after dualising 6F),,. More specifically, looking at (6.2.19) we see that
at lowest order 96 X® = ie['®9 ). In this case, since there is only one field and
one derivative on the right-hand side, it is possible to simply ‘pull off’ the deriva-
tive to determine §X®. This is no longer true at higher order and determining

5 X8 becomes a non-trivial task.
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CONCLUSIONS AND OUTLOOK

The content of this thesis is testament to the power of supersymmetry. In Chap-
ter 2 we began with a review of M-theory branes and their interactions from
the perspective of spacetime and worldvolume supersymmetry alegebras. This
was followed in Chapter 3 by a review of recent attempts to model multiple M2-
branes. In Chapter 4 we calculated the extended worldvolume superalgebra of
the N' = 6 Bagger-Lambert Theory. With a particular choice of 3-bracket we
were able to derive the ABJM superalgebra. We found that the charges Z; and
Zég , characterise the topological information corresponding to two sets of BPS
equations. In particular we were able to identify the central charge corresponding
to the half-BPS fuzzy funnel configuration of the ABJM theory. This was con-
firmed by deriving the corresponding BPS equation by completing the square of
the Hamiltonian. In order to derive the ABJM fuzzy-funnel BPS equation it was
necessary to consider a configuration in which two of the four complex scalar fields
were zero. It would be interesting to try and find solutions to generalised BPS
equations in the case where more than half the scalar fields are active. Related to
this is the question of whether its possible to write the N' = 6 Bagger-Lambert

scalar Hamiltonian as
H= /dmldsTr(ﬁsZA — g B Y T (7.0.1)
with the condition that

_ 2 _
9P cpgar” Tr(YEP, Tig) = gTr(TgD, TZh) (7.0.2)
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where T is a topological term and Y is defined in (3.2.8). If this constraint is

satisfied then we have a set of BPS equations of the form
0,724 — kg*B TGP =0 (7.0.3)

where A, B = 1,...4. It is interesting to note that the constraint (7.0.2) is
analogous to the situation encountered when considering Mb-brane calibrations
[71, 162]. In the case of the N' = 8 Bagger-Lambert theory the constraint takes

the form

1
ggleLglPQRTl"([XJ,XK,XL], [XP,XQ,XR]) = Tr([XI>XJ7XK]7 [XI, XJ,XKD-

(7.0.4)
The grsx1 are related to the calibrating forms of the cycle on which the M5-brane
wraps and are therefore completely antisymmetric in their indices. For the case in
which only half the scalar fields are activated it is possible to solve the constraint
by writing g; sk, = €r7x1- This choice corresponds to a fuzzy-funnel configuration
in which multiple M2-branes expand into a single M5-brane, and is described by
the standard Basu-Harvey equation. For the situation in which more scalars are
activated, additional constraints arise which have to be imposed alongside the
Basu-Harvey equation. It would be interesting to see whether the results of [71]
can be derived from the ABJM theory. It would also prove interesting to consider
the enhancement of the superymmetry of the algebra (for Chern-Simons levels
k = 1,2) through the use of monopole operators [117, 118]. This would then allow

for direct comparison with the A = 8 Bagger-Lambert supersymmetry algebra.

In Chapter 5 we investigated the worldvolume superalgebra of the Nambu-
Poisson M5-brane. This was achieved by re-expressing the Bagger-Lambert M2-
brane worldvolume central charges in terms of infinite dimensional generators
defined by the Nambu-Poisson bracket. This resulted in a new set of charges
expressed in terms of six-dimensional fields. These we interpreted as charges cor-
responding to worldvolume solitons of the M5-brane worldvolume theory in the
presence of a background 3-form gauge field. In particular we found that the

charges of the MbH-brane theory could be grouped according to the power of the
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coupling constant g. At O(g°) we found charges corresponding to the self-dual
string soliton which describes an M2-M5 intersection as well as a 3-brane soliton
corresponding to an M5-M5H intersection. We also found that background C-field
modifies the energy bound of the self-dual string charge by shifting the #4; com-
ponent of the field strength. Our results therefore reinforce the results presented
in [13, 14] in which the Bagger-Lambert theory based on Nambu-Poisson bracket
was interpreted as a theory describing an M5-brane in a background of 3-form
flux. Furthermore we investigated the double dimensional reduction of the M5-
brane Nambu-Poisson superalgebra. This gave rise to the Poisson bracket terms
of a non-commutative D4-brane superslagebra. We found charges corresponding
to spacetime intersections of the D4-brane with DO-branes, D2-branes and D4-
branes, as well as the endpoint of the fundamental string. We also found charges
that bare a structural similarity to Nahm-type configurations involving multiple
D2-branes ending on the D4-brane (with the matrix commutator replaced by Pois-
son bracket). Finally we found a charge reminiscent of the D4-brane charge found
in Matrix theory. It would appear that the superalgebra of the Nambu-Poisson
Mb-brane contains a large amount of information about spacetime configurations.
In this thesis we were only able to provide spacetime interpretations for some
of the Mb-brane charges. However, knowledge of the D4-brane spacetime con-
figurations may provide a hint about how to interpret the remaining Mb5-brane

charges.

In Chapter 6 we began an investigation into the li corrections to the Bagger-
Lambert supersymmetry transformations. For the abelian theory we were able
to determine the the fermion supersymmetry transformation by using an abelian
duality transformation. For the scalar transformation we had to use a different
approach in which invariance of the higher order abelian Lagrangian was used
to fix the coefficients of the transformation. For the non-abelian theory we were
able to use the dNS duality transformation to uniquely determine the fermion
supersymmetry transformation at O(lg). It would be interesting to establish the
reason why the dNS duality fails to work for the scalar supersymmetry transfor-
mation. It should be possible to uniquely determine the form of the O(li) scalar

transformation by checking the invariance of the higher order Lagrangian derived
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in [140, 141]. This would also provide an independent check on the fermion re-
sult derived using the dNS duality approach. It would also prove interesting to
extend this analysis to the AV = 6 ABJM theory. Finding such an extension is of
great interest as these theories have a clear spacetime interpretation in M-theory.
One possibility for how to derive the N' = 6 result would be to make use of
the N' = 8 result and SO(8) triality. This should work in the same way that it
works for the lowest order Bagger-Lambert theory. In [117] it was shown that the
Bagger-Lambert Lagrangian fields could be ‘triality rotated’” in such a way that
(8v,85,8¢c) — (85,8¢,8y), where 8y, 8¢, 8¢ are the vector, spinor and cospinor
representations of SO(8) respectively. After performing this transformation it is
possible to break SO(8) — SU(4) x U(1) and decompose the SO(8) spinor and
cospinor fields (and gamma matrices) in order to rewrite the original N' = 8 ex-
pression in terms of ABJM fields and so-called ‘non-ABJM’ fields. In [117] the
non-ABJM terms were shown to vanish as a result of certain algebraic constraints
(deriving from the flatness condition of the gauge field strength). It would be
interesting to see whether this analysis can be extended to higher order and if
so, whether additional algebraic constraints would be necessary to eliminate the

higher order ‘non-ABJM’ terms.
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A.1 Conventions

A.1.1 N = 6 Bagger-Lambert Theory

The supersymmetry parameters of the N' = 6 ABJM theory transform in the 6
representation of SU(4). We can write the susy parameter € 4 in terms of a basis

of 4 x 4 gamma matrices as

eap =€ (T p), (A.1.1)
with 7 = 1,...6. The gamma matrices are antisymmetric (I'}; = —TI'L,) and
satisfy the following relation

I pT7BC 4 T T1BC = 261759 (A.1.2)
where

- 1

48 — 55ABCDPICD = —(I'yp)". (A.1.3)

We note that the 4 x 4 matrices I'! act on a different vector space to the 2 x 2
matrices v# which are defined as world volume gamma matrices. These two types
of gamma matrix commute with one another. It is also important to note the

following relations

T pT0P = 2690 = —2(6565 — 6568 (A.1.4)
I pTEP = 665 (A.1.5)

Acting with eABMN

ecppg on both sides of (A.1.4) one can show that
rerrl . = —2590. (A.1.6)
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It therefore follows that

L p0eP L TIePpL o — 4590 (A.1.7)
I 0P TPl o =0 (A.1.8)

We will also need the following identity in what follows

~ ~ ~ 1 ~
FQBFAC + FIACriB — FQBFAC + _€ACDE€ABFGF[DEFJFG

4
1 .
:§ﬁﬁgJ”C:2y%g (A.1.9)
and therefore
L T7FG = 4517 (A.1.10)

Note that in obtaining the last line of (A.1.9) we made use of (A.1.2) and the

epsilon tensor identity

e"PPeapra =+ 650R06 + 050605 + 66050k

— 0565065 — 6C0R6E — 056R6E (A.1.11)
Similarly we have
- - - 1 -
IﬂgﬂC—FMQjB:ﬂﬂgﬂc—?ﬁH@PWq (A.1.12)

It is possible to derive identities involving €45 based on the relations between the
basis gamma matrices I'!. In [82] Bagger and Lambert make use of the following
identities

1
§€?D’}/VEQCD5§ = 51140’}/,/6230 — @1240’)/”6130 (Allg)
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and

_AC _AC _CE A CE A
261" €app — 265 €1pp =+ €] €appdp — € €1pEdg
_AE C | -AE c
— € eapplp + € €1ppdp
_AE C  -AE c

+€1 €2BE6D — € EIBE(SD (A114)

—CFE A -CFE A
— € €2BE6D+€2 elBEéD-

Both of these identities can be re-written in terms of identities involving the

Majorana spinors ¢/ and the gamma matrices I'!.

A.1.2 Nambu-Poisson M5-brane

In the BLG Nambu-Poisson model of the M5-brane, the worldvolume is taken to be
the product manifold M x . We assume a Minkowski metric 7, = diag(—++)
on M and a Euclidean metric d;;, = diag(+ + +) on the internal space A/. The
supersymmetry transformation parameter € and the fermion ¢ of the Bagger-
Lambert theory belong to the 8, and 8, representations of the SO(8) R-symmetry

and are 32-component spinors satisfying

DWPe = fePe, WP — — iy, (A.1.15)

We assume that g1 = —%'? and thus
€€ = — (8265 — 8257, (A.1.16)
€€’’’ = —265. (A.1.17)

The following relations on M follow from the chirality constraint (A.1.15)

Ty e = —2Ie. A.1.18

( )

e"Pl e = e, (A.1.19)
eHVPT, ) = +20"e). (A.1.20)
( )

T ip = —TH1p, A.1.21
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There is no analogue of the relations (A.1.15) on A. However we do find the

following information useful

cizg = €. (A.1.22)
€uioiEnps = 00p0ss — 0ig 05,0 (A.1.23)
€ e = 2054 (A.1.24)

Liop = Uiss€uip- (A.1.25)
(Tizs)* = —1. (A.1.26)

A.2 N =6 Bagger-Lambert Superalgebra Calculations

In this section we calculate the supersymmetric variation of J%!. Given the su-

percurrent expression (4.2.5) one finds

(a)
§J% =+ :I’r(FQBI;JACWVVOV’)D,,ZB, DPZC&?J) + Tr(f‘IABFjCVVWOWPDVZB, D,,ZC;
0)
— %r(FiBVVVODVZB, N74eT) — Tr(NADTACH 0P, DPZCE‘]5
+ Te(D'484y°D, Zp, Nie?) + Tr(N'AT4 A" D, 27 ) (A.2.1)
(©
+ ?[‘r(Né’yO, N7AeT) 4+ Tr(NT4,, NA‘Ig‘]S.

A2.1 (a) terms

The (a) terms may be written as

(a) = — Te((T, gT74¢ + TTAT L )2 Do 27, Dy Zce?)
— Tr((D gT7AC + TIACT )V Dy 28, D Ze?)
— Tr((D, gT7AC + TIACT ) D 28 Do Ze?)
— Tr((DypI74¢ + THCT )N D 25, D' Zce”) (A2.2)
—Tr((r-;BFJAC T )V D22 D; Zoe?).
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The first four terms can be further simplified by using the relation (A.1.9).

(a) = — 28" Tr(y° Dy 2%, D Zpe”) — 26" T (y°D; ZP, D' Zge”)
— 28" Tr(v' Do Z8, D; Zge”) — 26" Tr (1 D; 27, Do Z pe”) (A.2.3)
— Te((Dh LAY = DT )9y D; 27, D Zce”).

A.2.2 (b) terms

The (b) terms may be written as

(b) =—26""Tx(D'Zp, [Z7, Z7; Zp|y°v'e”) + 26" Te(D' 27, [ Zp, Zp; ZP]7°'e”)

+ Tr(Th 74 + DT )27, 275 2417, DiZoe?)
_Tr((FABFJCD+PICDFAB)[ZC’ZDa ZM9°", D ZPe7)

+ Tr((D4pT7AC — THACTI ) (2P, 28, Zp), Do Zee”)

+ Tr((M zT7AC — DT )2, Zo; ZP), Do ZBe7) (A.2.4)
— Tr((DzT7A¢ — 14T )[ZD,ZE, Z4), DoZce”)

— Tr((I FJAc_fIACFJ e, Z ] Dy ZBe”)

The terms involving Dy can be greatly simplified by using (A.1.14). After a bit

of rearrangement and relabeling we can write the (b) terms as
(b) =+ 26" Tx(D' Zp, (27, Z7; ZpleVe”) — 20" Tx(D' 27, [ Zp, Zy; Z"]ee”)

+ (DB DIZB [ Zo, Zpy Z4e~Ie”) — Te (TS D, Zp |24, Z5; Zo)enie’)
— Te(CA Dy Ze, (2P, 29, ZA)e”) — Te (DA Dy ZC Z 4, Ze; ZP)e7),

(A.2.5)

where
roouh — pl ,176P 4 TIePTd . (A.2.6)
I A s N N (A.2.7)
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and we have used the fact that in 3 dimensions v¥ o €. We have also used the

012 012€J —J

fact that 409 = —¥~012 and ~ g’.

A2.3 (c) terms

The (c) terms may be written as

(c)=—28""Tx([2%, 2B, 25, [ Zp, Z; Z7))e”!
—TEEUDT (129, 25, Z¢), (2, Zp; 2))€”

EF(1J)

—TEEUN T (24, 25, Zg), [Ze, Zp, ZC))e’
+I, I

([ZA, ZB; Zc], [ZE, ZF; ZC])&TJ.

We can make use of the fact that the potential is

(A.2.8)

2 o 1 o
V = gTr([ZC, ZP: 75, Zc, Zp; ZP)) — 5Tr([ZB, ZP: 75, Zr, Zp; ZF]) (A.2.9)

to write (c) as

(c)=— 2(5”(V — Vl)EJ
—TEEUNT (29, 28, Z¢), [ Z, Zp; Z74))€’
—TEEUNT (24, 25, Zg), [Ze, Zp:, ZC))e’
+ TEEID T (24, 25, Z0), [ Z, Zpy ZC))e7

where

2

(A.2.10)

_ _ 4 5 5 5
Vi= gTr([ZC, ZP; Zp),[Zc, Zp; Z7)) — gTr([ZC7 Z% Zc), | Zp, Z5; 27))
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A24 6J°

We can combine (a), (b) and (c) terms

§J% = — 26”T3’y“5“’ + 2617V, %7
+ 26" (Te(DiZp, (27, 27, Zp)) — Te(DiZP, [Zp, Zp; Z7])e e’
— T y(D, 28, D; Z¢)e" 07

— TN (DoZa, (27, 2% Ze)) + Te(Do 2%, [ Zo, Za; 2P)))e?

+ TP T(DIZP [ Ze, Zp; Z274)) — Te(D; Zp| 24, ZP: Zc]))e e’

—TEEUNT (29, 25, Z¢), [Zi, Zp; Z4))e’
—TERIIDT (124, 25, Z8), [ Ze, Zp: 2€))E7
+ TEEID (24, 25, Z¢), [ 2, Zr; Z2C))E7

where we have used

Too = Tr(DyZ%, Dy Zp) + Tr(D; ZP , D' Z) + V; (A.2.12)
TOZ' = TI'(D()ZB, DZZB) + TI'(DiZB, DDZB)- (A213)

A.2.5 Potential

In this appendix we show the equivalence of the Bagger-Lambert and ABJM
potential. The Bagger-Lambert potential is given by

V= gTr(TgD, T5,) (A.2.14)
where
TGP = 12C, 2P, Zg] — %52[2’3, 7P 7 + %55[22 7% Zg). (A.2.15)
We can define the inner product as

Tr(X,Y) = tr(XY) (A.2.16)
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where  denotes the transpose conjugate and tr denotes the ordinary matrix trace.

Thus
= 1 - 1 _
(Y5P) = (271, 2% 2}) - S05(2™, 271, Zj) + 5oR(2™, 2% 7)) (A7)
_ _ 1 _ 1 _
Yep =120, Zp; Z°] - 555[21;, Zp; 2] + 55}3[2]5, Zc; 7). (A.2.18)
Making use of the above information one finds that

V= gTr(TgD, TE,) (A.2.19)
= (YG°)ITEp) (A.2.20)
=2 ([zm, 2%, 24)\Ze, Z: 2°) + 2, 2% 2L 2. e ZB]) |

(A.2.21)

For the particular choice
(X,Y; Z] = MXZ'Y =Y ZX) (A.2.22)

it was shown by Bagger and Lambert that the N = 6 ABJM potential is recovered.
Inserting (A.2.22) into (A.2.21) one finds

. _ S _ _
V = Atr( — §ZETZEZCTZCZBTZB — §ZCTZEZETZBZBTZC

4 _ _ _ _ _ _
— gZDTZBZCTZDZBTZC +22P1 2291 2o 2B Zp). (A.2.23)
Comparing with
Ar? Loa B c 1 A B c
V= ogtr( = XXX PN XX - o X XXX P XX
4
— gXA)(BXCJ(AXBXC +2XAXpXBX XX () (A.2.24)

we see that the two expressions are equivalent given the redefinitions Z4t — X4

and Z, — X4, as well as A\ = 27 /k.
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A.3 Higher order SO(8) invariant objects

In this section we list SO(8) invariant combinations which give rise to terms
appearing in the dNS transformed superymmetry transformations of the previous
section. Note that we have suppressed the symmetrised trace in all the expressions

that follow.

A31

Zero Derivative

FIJMXKLNXKLNXIJM SN 9g§)/MF'LijlelXU
FIJMXIKNXKLNXLJM N g:}s/MFU (4szXlelj o XleleU>

FIJKLMNPXIJQXKLQXMNP N ngMFZ]k’lmnXl]Xlemn

One Derivative

L7 XEEMXEIMDrX T — 363 3 (T, D8 XM XM DFX® 4T, I XM XM DI X
L,/ D, XKXEEMXEIM g2 (20, VDX P XM XY — T, T DF XX X ™)
eI XM XRIM D X8 — g3, (2D TV XP XM D, X — THTEXF " X* D, X®)
FHPIJKLM _ g%M(FMFijklmD,uXmXinkl + Furijle,uX8Xinkl)
FuFIJKLMD,uXNXIJMXKLN - 3g§2/MF#Fz’jlepX8Xinkl
1

FLkalmD“XmXZ]Xkl «— 92 r FIJKLM(D,U,XMX]JNXKLN o _D/J,XNXIJMXKLN)
/ YM* p 3
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Two Derivative

75D, XEDEXEXTR — 30y y(TY D, XFDF X XY + TV D, X DF XX )
e rMp XEXKEM D Xt 5 gy T (D, X *X*D,X® +T"D,X3X"D, X"
+I*D,X"X*D, X"

rM5p XTDrXEXER — gy (T D, X DFXB X% 4 2T D, X' DF X' XY
+T%D,X’DFX3X"Y)

MRXTRD, XD XT — gy (TR XD, X DM X + 2T X ™D, X* DF X7
+TYXYD, XD X?)

F;WFIJKLMDMXIDVXJXKLM N 3gYMF,uuFijleuXiDVXijl'

Three Derivative

r.I''o,x’p'x’px" - 1,I"D,X’D"X’D"X" + T, I"D,X* D" X* D" X"
+T,I®*D, X’ D"X’D"X® +T,I'*D,X*D"X®* D" X®
r,o'op*x’'D,x'p"x" - r,I"D*X’D,X’D"X" +T,I"D*X®*D,X®*D" X"
+T,D'X’D,X’D"X® +T,D"X®D,X®*D" X*®
T 5D X'D, X' D, X" — ePT%*D, XD, X’ D,X* + 3¢""*T“ D, X" D, X’ D,X®.

A32 X

Zero Derivative

@FJKL¢XIJNXKLN N g%/M(?F]kleUXkl
EFIJKLMwXJKNXLMN N g%MglﬂzgklmwX]lem

(A.3.1)
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One Derivative

e, /M DR XT X IR — 3gy el 7Ry DF XX
el DKLy DX XTEL 5 96y 1r€0 T9p D XF XM 4 gy el TRop D X8 X I
el M5 yD, X7 X5 — gy @0, T8 D, X X + gy pel, TFp D, X5 Xk
ern I TELMy, o X X KMy 36y @D Ry D, X7 XM
el DKLy DX B XTI 5 9y el TFep DI XK X

T'wo Derivative

e'yD, X DFX7 — el D, X*D"X® + el D, X7 D" X7
er'ryD, X' D, X7 — 0
e 7%y D, X7 D, X* — 2eT" T4 D, XD, X® + el 1%y D, X7 D, X*
e’y D, X"'DFX' — ey D, X' D" X® + el D, X' D" X7
e’y D, X'D, X7 — er*T" D, X'D,X® + elVT"¢D,X'D, X’
er'5yD, X DFXE — 0 (A.3.2)

A3.3 0A,

Zero Derivative

el X XTTRXTTE 5 368, €0, x X9 XY
er, I X XM XTEM — 963 ) el T X X X!
EFMFIJKLXX[JNXKLN SN g%MEFMFZ]leXUXkl

EFMFIJKLMNXXIJKXLMN =0
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One Derivative

T’ XD, X' XK — gy (07X D, X X% + 2eI7 D, X' XV
el RN D, XTXTHE — 3gy el x D, X' X*
el D7E DY XTI XK — gy (0, T x DY X8 X% + 2T, T x DY X' X )
el TRE DY XTXIRE — 3gy el TV x D, X X

T'wo Derivative

el xD, X5 D" X — eU,xD, X®D"X® + el',xD, X' D" X"
e, I"'xD, X' D" X7 — el I""xD"X'D" X7 + el ,I'"xD, X'D"X® — el ,I'xD,X*D"X" = 0
e, xD'X* D, X* — e, xD"X'D, X" + e, xD"X*D, X*®
e, xD"X'D, X7 — e, I'"xD"X'D,X? + el , I'xD"X"'D,X® — el ,I"xD"X*D, X"
e uax D" X' D*X7 — 0
LI D" X' DX — e\ D" X' D* X7 + e[, \I'D" X' D X® — e[, \ " D" X* D X"
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