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Abstract

There has been substantial calculational progress in the last few years in maximally

supersymmetric theories, revealing unexpected simplicity, new structures and sym-

metries. In this thesis, after reviewing some of the recent advances in N = 4 super

Yang-Mills and N = 8 supergravity, we present calculations of perturbative scat-

tering amplitudes and polygonal lightlike Wilson loops that lead to interesting new

results.

In N = 8 supergravity, we use supersymmetric generalised unitarity to calculate

supercoefficients of box functions in the expansion of scattering amplitudes at one

loop. Recent advances have presented tree-level amplitudes in N = 8 supergravity

in terms of sums of terms containing squares of colour-ordered Yang-Mills superam-

plitudes. We develop the consequences of these results for the structure of one-loop

supercoefficients, recasting them as sums of squares of N = 4 Yang-Mills expres-

sions with certain coefficients inherited from the tree-level superamplitudes. This

provides new expressions for all one-loop box coefficients in N = 8 supergravity,

which we check against known results in a number of cases.

In N = 4 super Yang-Mills, we focus our attention on one of the many remark-

able features of MHV scattering amplitudes, their conjectured duality to lightlike

polygon Wilson loops, which is expected to hold to all orders in perturbation the-

ory. This duality is usually expressed in terms of purely four-dimensional quantities

obtained by appropriate subtraction of the infrared and ultraviolet divergences from

amplitudes and Wilson loops respectively. By explicit calculation, we demonstrate

the completely unanticipated fact that the equality continues to hold at two loops

through O(ε) in dimensional regularisation for both the four-particle amplitude and

the (parity-even part of the) five-particle amplitude.
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Chapter 1

Introduction

In this thesis we take a journey through maximal supersymmetry, with N = 4 super

Yang-Mills (SYM) and N = 8 supergravity (SUGRA) being our two major desti-

nations. We probe these theories by studying two central objects in quantum field

theory, namely scattering amplitudes and Wilson loops. We do so in the framework

of perturbation theory, where we also take a journey through the first three orders,

from tree level to one and finally two loops.

Scattering amplitudes are windows to the theory giving us access to valuable

information on its structure. They are the most direct channel for extracting pre-

dictions as they form a bridge between the formulation of the theory and the ex-

periment. Amplitudes calculated in theory are directly related to cross-sections

measured in experiment. At weak coupling, and when calculating the full ampli-

tude analytically is an impossible task, we resort to perturbation theory, where one

expands the amplitude in powers of the coupling constant and calculates the result

order by order in this expansion. This way, one can obtain the answer to some

degree of accuracy, and also catch a glimpse of the full amplitude, its properties and

its symmetries.

Gauge theories are quantum field theories that have been extensively used to

describe the elementary particles and their interactions. Non-abelian gauge theories

or Yang-Mills (YM) theories form the backbone of the Standard Model, the theo-

retical model that unifies three out of the four fundamental forces in nature, the

electromagnetic, the weak and the strong. The most complicated part of this model

is Quantum Chromodynamics (QCD), the component gauge theory that describes

the strong interactions, with gauge group SU(3). The background of the Large

Hadron Collider at CERN is dominated by QCD processes. It remains a challenge

to deliver high precision theoretical predictions for such processes.

1
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Maximally supersymmetric Yang-Mills (MSYM) or N = 4 super-Yang-Mills

(SYM) is an extension of Yang-Mills in a space with the maximum amount of su-

persymmetry for a theory without gravity. The extra symmetries, i.e. the super-

symmetries, are restricting the form of the solutions which are simpler than those

in pure Yang-Mills. The beta function vanishes identically for all values of the cou-

pling constant giving us a conformal field theory that is ultraviolet finite [1, 2, 3, 4].

MSYM is an excellent laboratory for developing techniques that can be further ap-

plied to their non-supersymmetric cousin where things are more complicated, while

the solution of the former is always part of the solution of the latter theory for any

given process.

In a conformal field theory, due to scale invariance a scattering process cannot

really be defined. While strictly speaking this fact is true, we are able to get around

it in practice by regulating the theory in the infrared, and using dimensional reg-

ularization with D = 4 − 2ε, with ε < 0, and more specifically a version of it that

preserves all the supersymmetries [5, 6]. Finally, the broken conformal invariance is

recovered by performing a Laurent expansion around ε = 0, up to and including the

O(ε0) terms.

MSYM is very elegant and attractive even from a purely theoretical point of view,

as hidden symmetries and interesting structures have emerged over the past few

years. A specific class of amplitudes, called Maximally Helicity Violating (MHV),

appear to be dual to a Wilson loop on a polygonal contour made out of lightlike

segments living in a dual momentum space [7, 8, 9, 10, 11, 12, 13, 14]. Both objects

involved in the duality, share a conformal symmetry acting in the dual momentum

space, termed ‘dual conformal symmetry’.

Moreover, the study of N = 4 super-Yang-Mills gives us clues for String Theory

and vice versa. Within the proposed weak-strong AdS/CFT duality [15, 16], four-

dimensionalN = 4 super-Yang-Mills is dual to type IIB superstring theory in AdS5×
S5. The mysterious MHV/Wilson loop duality first emerged in [17], where Alday and

Maldacena argued using AdS/CFT that the prescription for computing scattering

amplitudes at strong coupling was mechanically identical to that for computing the

expectation value of a Wilson loop over the closed contour obtained by gluing the

momenta of the scattering particles back-to-back to form a polygon with lightlike

edges.

After the discovery of the duality at strong coupling, great progress was made on

the weak side of the AdS/CFT correspondence. It was originally suggested in [7, 8]

that MHV amplitudes and Wilson loops might be equal to each other order by order
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in perturbation theory. This bold suggestion was confirmed by explicit calculations

at one loop for four particles in [7] and for any number of particles in [8], and at

two loops for four and five particles in [9, 10].

Pure Pure
Yang-Mills Gravity

String
Theory

N = 4 super N = 8
Yang-Mills supergravity

Maximal Supersymmetry

Figure 1.1: Maximally supersymmetric theories and related theories. Scattering am-
plitudes in N = 4 super Yang-Mills and N = 8 supergravity are directly related
to those in their non-supersymmetric versions. The relatively old KLT relations
derived from String theory, and recently discovered relations within quantum field
theory, express amplitudes in (super)gravity in terms of those in (super) Yang-Mills.
Calculations on the exciting MHV amplitude/Wilson loop duality on both sides of
AdS/CFT duality, i.e. in N = 4 super Yang-Mills and string heory, are the latest
example of the interplay between quantum field theory and string theory.

There has been enormous progress in developing efficient techniques for calcu-

lating scattering amplitudes in pure and super Yang-Mills over the last two decades.

Powerful new methods make use of the analytic properties of amplitudes to give us

shortcuts to the final answer that is usually much simpler than any intermediate

expression in Feynman diagram calculations. These techniques recycle information

recursively to build more complicated amplitudes from simpler ones, even across

the various orders of perturbation theory; as only on-shell quantities are used, no

explicit Feynman diagram calculation needs to be performed. At tree level, on-shell

recursion relations [18, 19], that rely on shifts of momenta of external particles in

complex directions, have been widely used to calculate amplitudes in Yang-Mills

and gravity, and very recently extended to superamplitudes in super Yang-Mills and

supergravity. At loop level, generalised unitarity [20, 21] allows us to build one-loop
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amplitudes in maximal supersymmetry from tree-level amplitudes without the need

of performing any loop integration.

Turning our attention to the forth force in nature, recent advances have indi-

cated that scattering amplitudes in a gravity theory based on the Einstein-Hilbert

action are much simpler than what one would infer from the Feynman diagram ex-

pansion, very much like in Yang-Mills theory. In [22, 23], on-shell recursion relations

were written down for graviton amplitudes at tree level, and a remarkably benign

ultraviolet behaviour of the scattering amplitudes under certain large deformations

along complex directions in momentum space was observed. This behaviour, not

apparent from a simple analysis based on Feynman diagram considerations [22, 23]

similar to those discussed in [19] for Yang-Mills amplitudes, was later re-examined

and explained in [24, 25, 26].

Adding the maximum amount of supersymmetry to gravity we obtain N = 8 su-

pergravity (SUGRA). Recent computations show that unexpected cancellations take

place in scattering amplitudes. The theory appears to have even better behaviour

in the ultraviolet than pure gravity, suggesting that it could be even ultraviolet

finite [27, 28, 29, 30]. If cancellations persist to all orders in perturbation theory,

then N = 8 supergravity will be the first consistent theory of quantum gravity, and

the old idea of supersymmetry will be the new way to quantise gravity. Throughout

this thesis we discuss many results that manifest the simplicity of supergravity.

At the quantum level, the unexpected cancellations occuring in maximal su-

pergravity starting at one loop led to the conjecture [31, 32, 33, 34] and later

proof [26, 35] of the “no-triangle hypothesis”. According to this property, all one-

loop amplitudes in N = 8 supergravity can be written as sums of box functions

times rational coefficients, similarly to one-loop amplitudes in N = 4 super Yang-

Mills (SYM). Interesting connections were established in [29] and [35, 36] between

one-loop cancellations, and the large-z behaviour observed in [22, 23, 24, 25, 26],

as well as the presence of summations over different orderings of the external par-

ticles typical of unordered theories such as gravity (and QED). There is therefore

growing evidence of the remarkable similarities between the two maximally super-

symmetric theories, N = 4 super Yang-Mills and N = 8 supergravity, culminating

in the conjecture that the N = 8 theory could be ultraviolet finite, just like its

non-gravitational maximally supersymmetric counterpart. This is supported both

by multi-loop perturbative calculations [29, 27, 28, 37], and string theory and M-

theory considerations [38, 39, 40, 41].

In a recent paper [42], Elvang and Freedman were able to recast n-graviton MHV
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amplitudes at tree level in a suggestive form in terms of sums of squares of n-gluon

Maximally Helicity Violating (MHV) amplitudes. An analytical proof for all n of the

agreement of their expression to that for the infinite sequence of MHV amplitudes

conjectured from recursion relations in [22] was also presented, as well as numerical

checks showing agreement with the Berends-Giele-Kuijf formula [43]. A direct proof

of the formula of [42] was later given in [44]. In a related development at tree level,

the authors of [45] used supersymmetric recursion relations [46, 26] of the BCFW

type [18, 19], and the explicit solution found in the N = 4 case in [47], to recast

amplitudes in N = 8 supergravity in a new simplified form which involves sums of

N = 4 amplitudes. More specifically, this sum involves squares of the SYM tree

amplitudes times certain gravity “dressing factors”.

Turning to loop amplitudes, it has been shown recently in [48] that four-dimensional

generalised unitarity [20, 21] may be efficiently applied to calculate the supercoeffi-

cients of one-loop superamplitudes in N = 4 SYM. One of the advantages of the use

of superamplitudes is that it makes it particularly efficient to perform the sums over

internal helicities [49, 50, 26, 48, 51, 52, 53, 54], which are converted into fermionic

integrals. Furthermore, according to the no-triangle property of maximal supergrav-

ity [31, 32, 33, 34, 35, 26], one-loop amplitudes in the N = 8 theory are expressed

in terms of box functions only, therefore the coefficients of one-loop amplitudes can

be calculated by using quadruple cuts. It is therefore natural to investigate how the

new expressions for generic tree-level N = 8 supergravity amplitudes found in [45]

can be used together with supersymmetric quadruple cuts [48] in order to derive new

formulae for one-loop amplitudes in N = 8 supergravity. This is our main objective

in [55], the results of which we present in detail in Chapter 3 of this thesis.

The structure of the relations between the tree-level amplitudes in the two max-

imally supersymmetric theories have very interesting consequences for the results

we derive for the one-loop box supercoefficients. When the expressions for tree-level

amplitudes are inserted into quadruple cuts, they give rise to new general formulae

for the supercoefficients that are written as sums of squares of the result of the cor-

responding N = 4 SYM calculation (apart from the four-mass case, this will be the

square of an N = 4 coefficient), multiplied by certain dressing factors. The one-loop

supercoefficients therefore inherit the intriguing structure exhibited by the relations

at tree level.

Specifically, we calculate supercoefficients for MHV amplitudes, next-to-MHV

(NMHV) and next-to-next-to-MHV (N2MHV) superamplitudes, and we show in a

number of cases how these new expressions match known formulae. In particu-
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lar, we show how our results agree with the expressions for the infinite sequence of

MHV amplitudes obtained in [31] using unitarity, with the five-point NMHV am-

plitude [31], and with the six-point graviton NMHV amplitudes coefficients derived

in [32, 33]. In the MHV case, we propose a correspondence between the “half-soft”

functions introduced in [31] and particular sums of dressing factors, which we check

numerically up to 12 external legs. In [31, 32, 33], the tree-level amplitudes entering

the cut had been generated using KLT relations [56]. In our approach, we use in-

stead the solution of the supersymmetric recursion relation expressing the tree-level

amplitudes in supergravity in terms of squares of those in SYM [45]. Our results

support the conjecture that all one-loop amplitude coefficients in N = 8 supergrav-

ity may be written in terms of N = 4 Yang-Mills expressions times known dressing

factors.

Returning to the topic of the MHV amplitude/Wilson loop duality in N = 4, we

focus our attention to the class of MHV amplitudes. Already for a few years prior to

the discover of this duality, planar MHV amplitudes in SYM had come under close

scrutiny following the discovery of the ABDK relation [57], which expresses the four-

point two-loop amplitude as a certain quadratic polynomial in the corresponding

one-loop amplitude, a relation which was later checked to hold also for the five-

point two-loop amplitude [58, 59]. The all-loop generalization of the ABDK relation,

known as the BDS ansatz after the authors of [59], expresses an appropriately defined

infrared finite part of the all-loop amplitude in terms of the exponential of the

one-loop amplitude. This proposal has also been completely verified for the three-

loop four-point amplitude [59], and partially explored for the three-loop five-point

amplitude [60].

However, it was shown in [61] that the ABDK/BDS ansatz is incompatible with

strong coupling results in the limit of a very large number of particles, and indeed

it was found in [62] that starting from six particles and two loops the ansatz is

incomplete and the amplitude is given by the ABDK/BDS expression plus a nonzero

‘remainder function’ (an analytic expression for which was obtained in [63, 64, 65,

66]). The breakdown of the ABDK/BDS ansatz beginning at six particles can be

understood on the basis of dual conformal symmetry [67, 68], which completely

determines the form of the four- and five-particle amplitudes but allows for an

arbitrary function of conformal cross-ratios beginning at n = 6 [10, 12]. While dual

conformal invariance of SYM scattering amplitudes remains a conjecture beyond

one loop, it is necessary if the equality between amplitudes and Wilson loops is to

hold in general since the symmetry translates to the manifest ordinary conformal
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invariance of the corresponding Wilson loops.

Of course dual conformal symmetry alone does not imply the amplitude/Wilson

loop equality since they could differ by an arbitrary function of cross-ratios, but

miraculously precise agreement was found in [62, 12] between the two sides for

n = 6 particles at two loops. Evidently some magical aspect of SYM theory is at

work beyond the already remarkable dual conformal symmetry.

This series of developments has opened up a number of interesting directions for

further work. In our paper [14], the results of which we present in Chapter 4, we

turn our attention to a question which might have seemed unlikely to yield an inter-

esting answer: does the amplitude/Wilson loop equality hold beyond O(ε0) in the

dimensional regularization parameter ε? This question is motivated largely by the

observation [8] that at one loop, the four-particle amplitude is actually equal to the

lightlike four-edged Wilson loop to all orders in ε after absorbing an ε-dependent nor-

malization factor. Furthermore, the parity-even part of the five-particle amplitude

is equal to the corresponding Wilson loop to all orders in ε, again after absorbing

the same normalisation factor. For n > 5 the Wilson loop calculation reproduces

only the all orders in ε two-mass easy box functions, while the corresponding n-

point amplitude contains additional parity-odd (as well as parity-even) terms which

vanish as ε → 0. To our pleasant surprise we find a positive answer to this ques-

tion at two loops: agreement between the n = 4 and the parity-even part of the

n = 5 amplitude and the corresponding Wilson loop continues to hold at O(ε) up

to an additive constant which can be absorbed into various structure functions. To

reach this answer, we perform precision tests of the duality, by means of numeric

algorithms based on the Mellin-Barnes method, and powered by cluster computing.

Outline

This thesis is organised as follows.

Chapter 2 is devoted to tree-level scattering amplitudes in pure and maximally

supersymmetric Yang-Mills and gravity. This chapter serves as an introduction to

the technology needed in order to define and calculate amplitudes, and superam-

plitudes in the case of supersymmetric theories. After a short review of the colour

decomposition in Yang-Mills, in Section 2.2 we present the kinematic variables with

main focus on the spinor-helicity formalism. In Section 2.3, we introduce fermionic

variables, that allow us to define superamplitudes. In Section 2.3, we present the

seeds of our recursive methods, the three-point superamplitudes. Section 2.5 is de-
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voted to on-shell recursion at tree-level, where we also familiarise ourselves with the

use of all the technology with an explicit example. We conclude this chapter with

a topic that has been the starting point for the research discussed in Chapter 3:

we present expressions for supergravity tree amplitudes in terms of those in super

Yang-Mills.

Chapter 3 is devoted to one-loop superamplitudes, where we present our results

for supergravity one-loop coefficients as they appeared in [55]. In Section 3.1, we

review the expansion of one-loop amplitudes in a basis of scalar integrals, and in

Section 3.2 we present generalised unitarity, a method for calculating the coefficients

in this basis in terms of tree superamplitudes. In the next section, we briefly dis-

cuss the behaviour of amplitudes in the infrared, while in Section 3.4 we present a

discussion that combines three of the main themes of this thesis, namely tree-level

recursion relations, generalised unitarity and the infrared behaviour of one-loop am-

plitudes. In section 3.5 we present supercoefficients in super Yang-Mills [48], the

calculation of which motivated our work, and the expressions of which we use to

check our formulae for gravity amplitudes against older results.

The remaining of Chapter 3, contains our calculations and results for the one-loop

supergravity supercoefficients [55]. In Section 3.6.1, we study MHV superamplitudes

at one loop, deriving a straightforward general expression for the supercoefficients

in the n-point case. We propose a conjecture which enables an immediate corre-

spondence to be made with the known general formula for these amplitudes, and

test this explicitly, in Section 3.6.2, for the so-called two-mass easy coefficients with

up to n = 22 external legs. Section 3.6.3 turns to consider NMHV amplitudes. We

derive general expressions for the three-mass and two-mass easy box coefficients,

and the related two-mass hard and one-mass coefficients. Similarly to the SYM case

considered in [48], all the supercoefficients can be written in terms of the three-mass

coefficients, which we are able to recast as sums of squares of the corresponding SYM

three-mass coefficients, times certain bosonic dressing factors. In Section 3.6.4 we

study an explicit example, the six-point NMHV case. In Section 3.6.5 we describe

how this approach applies in general to NpMHV amplitude coefficients.

Chapter 4 is dedicated to the MHV amplitude/polygonal lightlike Wilson loop

duality. The main goal of that chapter is to present our results for this duality at

O(ε) as they appeared in [14]. We start with some background material on MHV

amplitudes. After reviewing the ABDK/BDS ansatz, we present the formulation of

the duality in Section 4.2. In the next section we discuss expressions for the MHV

amplitude that will be needed later on in order to make the comparison with the
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corresponding Wilson loops. In Section 4.5, we introduce the reader to Wilson loop

calculations by discussing the one-loop case as an explicit example. In Section 4.6,

we discuss dual conformal symmetry, a symmetry defined in dual momentum space

that restricts the form of both amplitudes and Wilson loops. In Section 4.7, we

present in detail all the integrals making up the two-loop Wilson loop. Sections 4.9

and 4.10 are devoted to the Mellin-Barnes method and its implementation in a

computer algorithm. Finally, a presentation and analysis of our results can be found

in Section 4.11. We compare amplitude and Wilson loops, showing the agreement

between these two quantities up to and including O(ε) terms.

In Chapter 5 we conclude this thesis and discuss open questions.

In Appendix A, we list all the scalar box integrals expanded in the dimensional

regularisation parameter ε through O(ε0). In Appendix B, we present two different

forms for the finite part of a the two-mass easy box functions, the only ingredients

required for defining the one-loop MHV amplitude.



Chapter 2

Superamplitudes at tree level

We start our journey in maximal supersymmetry by studying perturbative scattering

amplitudes, which are the main predictions one can extract from a theory and also

the most common objects used to probe the theory and test its properties.

The first major destination we want to reach by the end of this chapter is to

discuss tree-level superamplitudes in maximal supergravity and relate them to those

in maximal super Yang-Mills. Our first destination is Yang-Mills, a theory of great

importance, familiar to us from the Standard Model. From there we easily move

on to its maximally supersymmetric extension, namely N = 4 super Yang-Mills,

where we study supersymmetric scattering amplitudes. We are able then to easily

hop from one maximally supersymmetric theory to the other and land on N = 8

supergravity. In addition, we take short trips to pure gravity to present older results

for graviton amplitudes.

Apart from our journey through the four theories, we also start our journey

through the first orders in perturbation theory and study their structure at tree

level. Before doing so, we present the machinery we will need in the study of

amplitudes, including the spinor-helicity formalism. Studying explicit examples we

have the chance to see this machinery in action and familiarise ourselves with the use

spinors and anticommuting superspace coordinates. Starting from superamplitudes

of three particles, we discuss powerful recursion relations that allow us to build all

tree-level superamplitudes in both maximally supersymmetric theories. Finally, we

present relations that express tree-level superamplitudes in N = 8 supergravity as

a sum of squares of amplitudes in N = 4 SYM. These relations motivated our work

that is presented in Chapter 3.

10
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2.1 Scattering amplitudes

In quantum field theory, the basic object calculated is the scattering amplitude of

on-shell particles. For example, a scattering amplitude of n gluons in Yang-Mills

theory with gauge group SU(N), is a function of the following form

An = An(p1, h1, a1; p2, h2, a2; . . . ; pn, hn, an), (2.1)

where pi, hi and ai are the momentum, the helicity and the colour of the ith par-

ticle respectively. As a convention we choose to label all momenta when they are

considered outgoing, while they satisfy total momentum conservation
∑

i pi = 0.

In non-abelian gauge theory, external states carry colour, which increases the

complexity of any calculation. The n-particle scattering amplitude An is in general

a sum of terms that consist of a colour part and a kinematic part. The former is a

combination of the generators ta of the gauge group, while the latter is a function of

the on-shell momenta satisfying p2
i = 0. The amplitudes depend also on the helicities

of the external particles, but for the moment we can see each helicity configuration

as labelling a different amplitude. Expanding in the space of the different colour

structures that can appear in an amplitude, one obtains [69]

A({pi, hi, ai}) = 2n/2gn−2
∑

σ∈Sn/Zn

tr [taσ(1) . . . taσ(n) ]An(σ(1h1 , . . . , nhn)) +O(
1

N2
),

(2.2)

where we are summing over all non-cyclic permutations of the indices {1, 2, . . . , n}
of the external particles and subleading terms in the number of colours N contain

multi-traces of the generators ta of the gauge group. Here, the generators ta are

in the fundamental representation of SU(N) and they are normalised according to

tr(tatb) = 1
2
δab, and g is the coupling constant of the theory. In the planar limit N →

∞ while keeping λ = g2N fixed, only the leading contribution survives, allowing us

to strip off the colour part and reduce the problem to calculating the colour ordered

partial amplitude An, that depends only on the momenta and the helicities of the

external particles. We usually refer to this object as the amplitude, although it

is not the full scattering amplitude. We study amplitudes at weak coupling and

perform a perturbative expansion in the coupling constant g, or equivalently, the

’t Hooft coupling a = g2N/(8π2). The leading term in this expansion is the tree-

level contribution to the amplitude. The first subleading term gives us the one-loop

correction, while terms with higher powers of the coupling constant give us multi-
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loop corrections.

The standard textbook recipe for obtaining an amplitude in perturbation theory

is an expansion in terms of Feynman diagrams. The colour-ordering is a very con-

venient property, as An(1h1 , 2h2 , . . . , nhn) is a gauge-invariant object that contains

only the planar Feynman diagrams where the external legs are cyclically ordered ac-

cording to the ordering of the arguments of An. The Feynman rules for non-abelian

gauge theory can be found in any quantum field theory textbook like [70, 71]. Due

to the colour-ordering, these rules reduce to a simpler set of colour-ordered Feynman

rules [69, 72] that contain only the terms that contribute to the colour structure with

the right ordering. In what follows, we avoid any explicit Feynman diagram calcu-

lation. The number of Feynman diagrams one would have to calculate proliferates

as the number of external particles or the order of perturbation increase, making

such a calculation very inefficient. We resort to powerful techniques that make use

of the analytic properties of amplitudes to give us shortcuts to the final answer that

is much simpler than any intermediate expression in a Feynman diagram calcula-

tion. One other important characteristic of this technology, that makes it even more

efficient, is that it recycles information recursively to build more complicated am-

plitudes from simpler ones. However, if one wants to understand these techniques

and grasp their analytic essence, some Feynman diagram intuition is essential.

Scattering amplitudes can be directly translated to cross-sections that one mea-

sures in experiments. In order to obtain the total cross section for a given process

with specific particle content, one just needs to square the corresponding scattering

amplitudes and sum over all possible helicity configurations.

2.2 Kinematic variables

In the spinor-helicity formalism [73, 74, 75, 76, 77], which is currently the bread

and butter of any amplitude calculation, one expresses kinematic objects in terms

of spinors rather than momenta. The former are more fundamental than the latter

and they lead to more compact expressions.

The complexified Lorentz group in four dimensions is locally isomorphic to

SO(3, 1,C) ∼= Sl(2,C)× Sl(2,C). (2.3)

Due to this fact, a momentum four-vector pµi can be written as a bispinor pαα̇i ;

the former is obtained obtained from latter by means of the Hermitian 2× 2 Pauli
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matrices σµ, µ = 0, 1, 2, 3,

piαα̇ = piµσ
µ
αα̇, (2.4)

where σ0 = 1 and the index µ lives in a space with signature + − −−. The

antisymmetric tensors εαβ and εα̇β̇ (with ε12 = ε1̇2̇ = 1) act as metrics in the two

distinct spinor spaces, and the masslessness of the momenta

pαα̇pαα̇ = εαβεα̇β̇p
αα̇pββ̇ = det(pαα̇) = 0, (2.5)

allows us to factorise the momentum bispinor into two spinors. One proceeds by

associating to each particle a pair of commuting Weyl spinors λα and λ̃α̇, of posi-

tive and negative chirality respectively. These are complex-valued two-component

objects, i.e. α, α̇ = 1, 2. More specifically, the momentum of the ith particle in the

bispinor form piαα̇ can be written as the product of the two corresponding spinors

piαα̇ = λiαλ̃iα̇. (2.6)

From (2.4), it follows that the reality of pµi translates to the Hermiticy of pαα̇i . This

fact forces the two spinors to be complex conjugate to each other, i.e. λ
α̇

i = ±λ̃α̇i .

However, as we are often working with complex momenta, one relaxes this constraint

and takes the two spinors to be independent.

Lorentz invariant quantities written in spinor space must be functions of con-

tractions of spinors only. To simplify the notation, we define the following objects

for the inner products of positive and negative chirality spinors respectively

〈ij〉 ≡ λαi λjα = εαβλ
α
i λ

β
j , (2.7)

[ij] ≡ λ̃α̇i λ̃jα̇ = εα̇β̇λ̃
α̇
i λ̃

β̇
j . (2.8)

By definition, these products are antisymmetric in their two arguments, i.e. 〈ji〉 =

−〈ij〉 and [ji] = −[ij], while they vanish if the two spinors are proportional, i.e.

λαj = cλαi or λ̃α̇j = cλ̃α̇i , with c ∈ C.

As spinors are two-dimensional objects, we can span the whole space using any

two spinors λi and λj, with 〈ij〉 6= 0. We can then express a third spinor λk in this

basis

λk = c1λi + c2λj. (2.9)

Contracting both sides with either λi or λj we can solve for the complex coefficients
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c1 and c2 to obtain

λk =
〈kj〉λi + 〈ik〉λj

〈ij〉
. (2.10)

Contracting with a fourth spinor λl we obtain the following identity

〈ij〉〈kl〉 = 〈ik〉〈jl〉+ 〈il〉〈kj〉, (2.11)

which is known as the Schouten identity. An identical expansion to (2.10) exists

for the λ̃ spinors, leading to an identical Schouten identity to (2.11) with the only

difference that the spinor inner products are changed to 〈• •〉 → [• •].
Kinematic invariants written in terms of spinor inner products take the form

sij = (pi + pj)
2 = 2pipj = 〈ij〉[ji]. (2.12)

In Yang-Mills planar amplitudes, due to the colour-ordering, one encounters two-

particle channels of the form si(i+1) only, where it is understood that in an n-particle

process n+ 1 ≡ 1.

We can also construct Lorentz invariant quantities by contracting the two indices

of a momentum bispinor Pαα̇ with two spinors, one of each kind,

〈i|P |j] ≡ λαi P
α̇

α λ̃jα̇. (2.13)

Note that P here is not necessarily lightlike, and therefore it cannot always be

factorised into a product of spinors. If it is a sum of massless momenta, then the

object in (2.13) can be written as

〈i|
∑
r∈R

pr|j] =
∑
r∈R

〈ir〉[rj], (2.14)

where R is a set of indices of external massless momenta. Making use of momentum

conservation ∑
r∈{1,2,...,n}

pr = 0, (2.15)

we can write down identities of the following form

〈i|
∑
r∈R

pr|j] = −〈i|
∑

r∈{1,2,...,n}\R

pr |j], (2.16)

where the summation on the right-hand side is performed over the complement of
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the set of indices R relatively to the set of all indices {1, 2, . . . , n}.
Similarly, we can contract more momenta to build Lorentz invariant objects

like 〈i|PQ|j〉. We give the following alternative notation for spinors and massless

momenta bispinors

λαi = 〈iα|, λiα= |iα〉, (2.17)

λ̃α̇i = [iα̇|, λ̃iα̇ = |iα̇], (2.18)

p α̇
iα = |iα〉[iα̇|, (2.19)

that allows us to fully understand the structure of any Lorentz invariant object we

might write down.

The spinor-helicity formalism also allows us to define wavefunctions of particles

in terms of spinors. For fermions with momentum pαα̇ = λαλ̃α̇ we define

ψ(−)
α = λα, ψ

(+)
α̇ = λ̃α̇. (2.20)

One can easily show that these are solutions of the Dirac equation. For a gluon with

momentum pαα̇ = λαλ̃α̇ we define the polarisation vectors

ε
(−)
αα̇ =

λα µ̃α̇

[λ̃ µ̃]
, ε

(+)
αα̇ =

µαλ̃α̇
〈µ λ〉

, (2.21)

where we have used a reference lightlike momentum q with the decomposition qαα̇ =

µαµ̃α̇. One can easily show that the polarisation vectors (2.21) are perpendicular to

the momenta p and q, while the freedom in choosing q reflects the freedom of gauge

transformations.

Amplitudes written in spinor space are functions of the 2n spinors and the n

helicities hi. As total momentum conservation must be satisfied, they are actually

defined on the surface given by the following equation

n∑
i=1

pαα̇i =
n∑
i=1

λαi λ̃
α̇
i = 0, (2.22)

where no summation is performed over the index i.

Amplitudes satisfy n auxiliary conditions [78], that for a given particle i they

take the form

− 1

2

(
λαi

∂

∂λαi
− λ̃α̇i

∂

∂λ̃α̇i

)
A({λ, λ̃, hi}) = hi A({λ, λ̃, hi}), (2.23)
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where hi is the helicity of the ith particle. It turns out that the absolute value

of the total helicity |htot| in an amplitude, with htot =
∑n

i=1 hi, is a measure of

its simplicity. In theories without gravity, the helicities hi can take the values

±1 for gluons, ±1/2 for fermions and 0 for scalar fields. Superamplitudes with

|htot| = n, n − 2 vanish, while the simplest non-vanishing amplitudes are the ones

with htot = n − 4 and htot = −n + 4, called Maximally Helicity Violating (MHV)

and anti-MHV (or MHV) respectively.

MHV

+ +

r− s−

+ +

Figure 2.1: The simplest non-vanishing amplitude corresponding to the MHV pro-
cess.

At tree-level, for a process of n gluons, the MHV amplitude is given by the

Parke-Taylor formula [79]

AMHV
n (1+, 2+, . . . , r−, . . . , s−, . . . , n+) = ign−2 〈r s〉4

〈1 2〉〈2 3〉 . . . 〈(n− 1) n〉〈n 1〉
, (2.24)

where r and s are the labels of two negative helicity gluons. Note that (2.24) is a

holomorphic function, i.e. it depends only on the positive chirality spinors λi. This

result demonstrates, on one hand, the simplicity of the MHV amplitudes, and on

the other hand, the power of the spinor-helicity formalism in producing compact

expressions.

The formula (2.24) for the MHV amplitude was conjectured by Parke and Tay-

lor and was later proven by Berends and Giele using their off-shell recursive tech-

nique [80]. In this method one uses off-shell gluonic currents as building blocks and

a recursion formula based on the colour-ordered Feynman rules. Especially for the

MHV case, one can guess the form of the gluonic current for arbitrary number of

gluons and then prove it by induction.

The MHV amplitude has the same form as the MHV given in (2.24), with the

only difference that it is an antiholomorphic function: it depends on the negative
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chirality spinors λ̃i only. Therefore, to obtain the expression for the MHV amplitude,

we have to modify (2.24) by changing the spinors of one type to the other λi → λ̃i, or,

essentially, change the inner products of the one type to the other, i.e. 〈• •〉 → [••].
The next class of nonvanishing amplitudes in order of complexity are the next-

to-MHV (NMHV) and NMHV with total helicities htot = n − 6 and htot = −n + 6

respectively. The general amplitude with total helicity htot = n− 4− 2m or htot =

−n+ 4 + 2m is called NmMHV or NmMHV respectively.

p1x2 x1

p2 xn+1 ≡ x1

x3 xn+1

p3 pn

x4 xn

Figure 2.2: A construction demonstrating the definition of the dual space and the
dual momenta xi. Due to momentum conservation, xn+1 ≡ x1.

At this point, we make a construction in order to introduce the notion of dual

momenta xi. These coordinates are present in our notation for several results, while

the main object of Chapter 4, namely the lightlike polygonal Wilson loop, is defined

in this dual momentum space. We define dual coordinates xi [17, 67] according to

the following equation

pi = xi − xi+1. (2.25)

As shown in Figure 2.2, starting from an arbitrary point xn+1, each lightlike vector

pi takes us from the point xi+1 to the point xi, to finally end up to the point x1.

From (2.25) it follows that

0 =
n∑
i=1

pi = x1 − xn+1, (2.26)

which vanishes due to momentum conservation. Therefore, the starting and ending

points are identical, i.e. x1 ≡ xn+1.

The ambiguity on the selection of the starting point x1 in the dual space is

irrelevant, as all functions of the particle momenta pi will be functions of differences
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of dual coordinates

xij ≡ xi − xj = pi + . . .+ pj−1, (2.27)

where it is understood that

xij ≡ xi − xj = pi + . . .+ pn + p1 + . . .+ pj−1, if i > j. (2.28)

In Yang-Mills, due to colour ordering, the momenta invariants that one encounters

are always squares of these differences x2
ij, containing consecutive momenta. Finally,

in this notation, momentum conservation is simply xij + xji = 0.

Planar scattering amplitudes in N = 4 super Yang-Mills possess a superconfor-

mal symmetry in this dual x space [68, 46]. This surprising novel symmetry, termed

‘dual superconformal symmetry’, is exact at tree level but broken by quantum cor-

rections [10]. Dual conformal symmetry was first observed in the context of the

duality between MHV scattering amplitudes and Wilson loops [17, 7, 8], as Wilson

loops also demonstrate this symmetry. We will return to discuss the MHV/Wilson

loop duality in more detail in Chapter 4.

The graviton MHV amplitude, i.e. the amplitude with total helicity htot =

2(n−4), was presented by Berends, Giele and Kuijf in [43]. The four-point amplitude

is given by

Mtree
4 (1−, 2−, 3+, 4+) = 〈12〉8 [12]

〈34〉N(4)
, (2.29)

where we define

N(n) ≡
n−1∏
i=1

n∏
j=i+1

〈ij〉. (2.30)

For n > 4 the graviton MHV amplitudes is given by the BGK formula

Mtree
n (1−, 2−, 3+, . . . , n+) =

〈12〉8
∑

P(2,3,...,n−2)

[12][n− 2 n− 1]

〈1 n− 1〉N(n)

(
n−3∏
i=1

n−1∏
j=i+2

〈ij〉

)
n−3∏
l=3

[l|xl+1,n|n〉, (2.31)

where the sum runs over all permutations of the labels in the set {2, . . . , n − 2}.
The BGK formula was obtained from the KLT relations that we briefly discuss in

Section 2.6. It was conjectured in [43] more than two decades ago, where the authors

numerically verified its correctness for n ≤ 11, while it has been proven only very

recently by the authors of [81].

As gravity amplitudes are not colour-ordered, if one removes the factor 〈12〉8
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containing the helicity information, we are left with a fully symmetric quantity

MMHV
n (1+, 2+, . . . , i−, . . . , j−, . . . , n+)

MMHV
n (1+, 2+, . . . , a−, . . . , b−, . . . , n+)

=
〈ij〉8

〈ab〉8
. (2.32)

However, we note that in the BGK formula (2.31) only part of this symmetry is

manifest, namely the symmetry under permutations of the n−3 labels {2, . . . , n−2}.

2.3 On-shell superspace

In maximal supersymmetric theories, the large number of species of external states

leads to a proliferation of possible scattering amplitudes. It is extremely convenient

to use the supersymmetric formalism of [82], where one also associates to each

particle an anticommuting variable ηAi , where A = 1, . . . ,N is an SU(N ) index.

As we demonstrate in what follows, these extra variables are a very useful tool

in bookkeeping all external states and amplitudes, packaged together into single

objects, namely superwavefunctions and superamplitudes respectively.

In N = 4 SYM, all on-shell states can be assembled into a single superwavefunc-

tion

Φ(p, η) = G+(p) + ηAΓA(p) +
1

2
ηAηBSAB(p) +

1

3!
ηAηBηCεABCDΓ

D
(p)

+
1

4!
ηAηBηCηDεABCDG

−(p), (2.33)

where, starting from the gluon G+ with helicity +1 in the first term, each subsequent

term contains a state with 1/2 helicity less than the one in the previous term, up

to the term containing the gluon G− with helicity −1. The component states are

purely kinematic functions, with no dependence on the η variable. As the helicity

of the superwavefunction Φ and, therefore, the total helicity of each term on the

right-hand side of (2.33) must be +1, it becomes natural to assign helicity +1/2

to the variables ηA. As discussed in [48], an alternative supermultiplet Φ can be

defined, expanded in terms of the variables ηA = (ηA)∗. For real momenta, Φ and Φ

are complex conjugate to each other, while for complex momenta, they are related

via a Grassmann Fourier transform. The discussion we just made generalises to

N = 8 supergravity, with the only difference that the ηA variables have now eight

components and the supermultiplet contains also fields with helicities ±2 and ±3/2.

In the rest of this section we continue the discussion refering to both theories by

treating the number of supersymmetries as a free parameter that can take the values
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N = 4, 8 for super Yang Mills and supergravity respectively.

Having defined a superwavefunction, it is straightforward to define a superam-

plitude An({λi, λ̃i, ηi}) as the scattering amplitude of superwavefunctions, where

the symbol A refers to a superamplitude in either super Yang-Mills or supergrav-

ity. This is a function of the spinors λi and λ̃i and the Grassmann variables ηi of

the external particles, while there is no reference to helicities because this object

contains all amplitudes for all helicity configurations one can write down for all the

particle species in the supermultiplet. We can expand the superamplitude in the

η’s, and keeping in mind the expansion of the supermultiplet (2.33), the various

amplitudes will be the coefficients of the corresponding powers of η’s. For example,

in N = 4 super Yang-Mills, the superamplitude expansion will contain terms like

the following

(η1)4(η2)4An(G−G−G+ . . . G+), (2.34)

1

3!
(η1)4ηA2 η

B
2 η

C
2 η

E
3 εABCDAn(G−Γ

D

2 Γ3EG
+ . . . G+ . . . G+), (2.35)

where (η)4 = 1
4!
ηAηBηCηDεABCD. The coefficient of the term (2.34) is the MHV all-

gluon amplitude with gluons 1 and 2 of negative helicity. The coefficient of the term

(2.35) is the MHV amplitude with two fermions and n− 2 gluons, where particle 1

is a gluon of negative helicity, particles 2 and 3 are an antifermion and a fermion

respectively, and all the remaining particles are gluons of positive helicity.

The Poincaré supersymmetry algebra generators satisfy

{qAα , qBα̇} = δAB pαα̇, (2.36)

and can be realised as

qAα =
n∑
i=1

λiαη
A
i , qAα̇ =

n∑
i=1

λ̃iα̇
∂

∂ηAi
, pαα̇ =

n∑
i=1

λiαλ̃iα̇. (2.37)

Each term in the sums of (2.37) is the single particle generator for the corresponding

symmetry.

To show how we arrive at (2.37) we focus for the moment on the generators of one

particle. Writing down the momentum operator as the product of the corresponding

spinors, the algebra (2.36) for one particle reads

{qAα , qBα̇} = δAB pαα̇ = δAB λαλ̃α̇. (2.38)
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We use λα and a second spinor ξα to decompose the two-component spinor qAα into

qAα = λαq
A
‖ + ξαq

A
⊥, (2.39)

where 〈λξ〉 6= 0. A similar decomposition applies to qAα̇. Substituting these decom-

positions in (2.38), and contracting with either or both λα and λ̃α̇, we can easily

show that the projections qA⊥ and q⊥A anticommute with each other and with the

rest of the generators, and, therefore, they play no role; we will set them to zero.

Substituting the parallel projections into (2.38), we obtain

{qA‖ , q‖B} = δAB, (2.40)

which is an algebra that can be realised in terms of Grassmann variables ηA, satis-

fying {ηA, ηB} = 0, and arrive at

qA‖ = ηA, q‖A =
∂

∂ηA
. (2.41)

The superamplitude An(λ, λ̃, η) must be invariant under the supersymmetry

transformations in (2.37). In a similar fashion to total momentum conservation

(2.22) confining amplitudes to a surface in spinor space, total supermomentum con-

servation constrains superamplitudes to a surface in superspace defined by the equa-

tion

qAα =
n∑
i=1

ηAi λiα = 0. (2.42)

A generic n-point superamplitude in maximal supersymmetry can be written as [82]
1

An(λ, λ̃, η) = i(2π)4δ(4)(p)δ(2N )(q)Pn(λ, λ̃, η). (2.43)

The bosonic delta function (2π)4δ(4)(p) ensures momentum conservation in the four

distinct directions. The fermionic delta function δ(2N )(q) ensures supermomentum

conservation in 2N directions since q carries two indices A = 1, 2, . . . ,N and α =

1, 2. In what follows, we will often omit the bosonic delta function. Expression

(2.43) makes explicit the q-supersymmetry, while acting with the q-supersymmetry

1The three-point anti-MHV amplitude has a different form given in (2.66)



CHAPTER 2. SUPERAMPLITUDES AT TREE LEVEL 22

generator we obtain the constraint

0 = qAα̇

(
δ(2N )(q) Pn(λ, λ̃, η)

)
=

(
n∑
i=1

λ̃iα̇
∂

∂ηAi
δ(2N )(

n∑
i=1

ηAi λiα)

)
Pn + δ(2N )(q)

(
n∑
i=1

λ̃iα̇
∂

∂ηAi
Pn

)
. (2.44)

The first term on the right-hand side of (2.44) is proportional to
∑n

i=1 λiαλ̃iα̇, which

vanishes due to the bosonic delta function present in (2.43). The second term on

the right-hand side of (2.44), constrains the dependence of Pn on the superspace

variables η

δ(2N )(q) qAα̇ Pn(λ, λ̃, η). (2.45)

As we will see shortly, in the simple case of MHV superamplitudes, the only η-

dependence is through the fermionic delta function, and the constraint q Pn = 0 is

automatic, as Pn does not depend on any of the η’s.

As a convention, we choose to label both momenta and supermomenta in an am-

plitude when all particles are considered outgoing. In the techniques that we discuss

in the following sections, i.e. tree-level recursion relations and generalised unitarity

at loop level, graphs contain intermediate propagators. As these propagators are

attached to two amplitudes, for the corresponding particle we will have momentum

p and q on one side and −p and −q on the other. In terms of spinors, changing

the sign of momentum is equivalent to changing the sign of either spinor λ or λ̃.

As a convention, we choose to change the sign of λ which results also to a change

of sign for supermomentum q, without having to change the corresponding η. To

summarise, in our conventions, the operation {p, q} → {−p,−q} written in terms

of the superspace variables is {λ, λ̃, η} → {−λ, λ̃, η}.
The supersymmetric amplitude can be expanded in powers of the n×N super-

space coordinates ηAi , and the coefficient of each term in this expansion corresponds

to a particular scattering amplitude with specific external states. In particular, and

as a direct consequence of the expansion (2.33), the coefficient of the term contain-

ing mi powers of ηAi corresponds to a scattering process where the ith particle has

helicity hi = N /4−mi/2. The function Pn in (2.43) is of the form

Pn = P(0)
n + P(N )

n + P(2N )
n + . . .P((n−4)N )

n , (2.46)

where P(Nk)
n is an SU(N ) invariant homogenous polynomial in the η variables of

degree Nk. Each term appearing on the right-hand side of (2.46) contains all the
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amplitudes of a specific class, starting from the MHV ones contained in P(0)
n , all

the way to the MHV contained in the last term P((n−4)N )
n . Note that to get the

full amplitude we need to include the fermionic delta function appearing in (2.43),

which raises the degree of the term P(Nk)
n to N (k + 2).

We now have a closer look to the fermionic delta function δ(2N )(q). In the same

fashion that led us to (2.10) and the Schouten identities, we can decompose the

spinor qAα in the basis of two linearly independent spinors λiα and λja

qAα =
〈iqA〉λjα − 〈jqA〉λiα

〈ij〉
, (2.47)

where 〈iqA〉 = λαi q
A
α . As a result, the fermionic delta function factorises as follows

δ(2N )(qAα ) = 〈ij〉N δ(N )

(
〈iqA〉λjα
〈ij〉

)
δ(N )

(
−〈jqA〉λiα
〈ij〉

)
, (2.48)

leading to the following useful relation

δ(2N )(qAα ) = 〈ij〉N δ(N )

(
ηAi +

1

〈ij〉
∑
s 6=i,j

〈is〉ηαs

)
δ(N )

(
ηAj −

1

〈ij〉
∑
s 6=i,j

〈js〉ηαs

)
.

(2.49)

Because of the nature of the Grassmann integration obeying the rules∫
dηA = 0,

∫
dηAηA = 1, (2.50)

where no summation over A is implied in the last equation, the following relation

holds

δ(N )

(∑
i

ciη
A
i

)
=

N∏
A=1

(∑
i

ciη
A
i

)
. (2.51)

On the left-hand side of (2.51), we have a Grassmann delta function whose argument

is a sum of η variables with coefficients ci that are bosonic quantities. On the right-

hand side of the same equation, we have rewritten the Grassmann delta function

as a product of the components of its argument for A = 1, . . . ,N . Finally, one can

easily show that the following useful identity holds

δ(2N )

(∑
i∈I

ηAi λiα

)
=

1

N 2

N∏
A=1

∑
i,j∈I,i 6=j

ηAi η
A
j 〈ij〉. (2.52)

More than twenty years ago, Nair wrote down the following expression for the
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MHV superamplitude in N = 4 SYM [82]

AMHV
n =

δ(8)(
∑n

i=1 ηiλi)

〈12〉〈23〉 · · · 〈n1〉
. (2.53)

One can verify that this formula reproduces the Parke-Taylor formula (2.24). For

the all-gluon MHV three-point amplitude with negative helicity gluons i and j, one

needs to expand the fermionic delta function according to (2.49) and (2.51), and

read off the coefficient of (ηi)
4(ηj)

4 which is 〈ij〉4, giving us exactly the numerator

we are missing in order to get the right result.

The generalisation of the auxiliary condition 2.23 to superamplitudes reads

− 1

2

(
λαi

∂

∂λαi
− λ̃α̇i

∂

∂λ̃α̇i
− ηAi

∂

∂ηAi

)
A({λ, λ̃, ηi}) = s A({λ, λ̃, ηi}), (2.54)

where s = 1 for N = 4 super-Yang-Mills and s = 2 for N = 8 supergravity.

2.4 Three-point superamplitudes

MHV

λ1, η1

λ2, η2

λ3, η3

MHV

λ̃1, η1

λ̃2, η2

λ̃3, η3

Figure 2.3: The three-point MHV and MHV amplitudes can be defined for complex
momenta in Minkowski space or real momenta in a spacetime with signature (+ +
−−). The MHV amplitude is a holomorphic function, i.e. it does not depend on
the λ̃’s, while it corresponds to kinematics where λ̃1 ∝ λ̃2 ∝ λ̃3 and all [ij]’s vanish.
The MHV is an anti-holomorphic function.

The three-point amplitudes are the most fundamental objects upon which we

build our recursion, to obtain first all tree amplitudes and then build one-loop su-

percoefficients. At three points, due to momentum conservation p1 + p2 + p3 = 0

and the masslessness of the momenta p2
1 = p2

2 = p3
1 = 0, we are led to the following
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awkward situation

0 = p2
i = (pj + pk)

2 = 2pj · pk, (2.55)

where the set of indices {i, j, k} = {1, 2, 3}, leading to

〈12〉[21] = 〈23〉[32] = 〈31〉[13] = 0. (2.56)

For real momenta in Minkowski space, the fact that λ
α̇

i = ±λ̃α̇i , (2.56) forces all

spinor products of either type to vanish

〈12〉 = [12] = 〈23〉 = [23] = 〈31〉 = [31] = 0, (2.57)

which prohibit the existence of the three-point amplitude. However, we can still

define these amplitudes if we relax the condition between the λ’s and λ̃’s, which will

take us either to complex momenta in Minkowski or to a spacetime with signature

(+ +−−). This gives us the freedom to set either

[12] = [23] = [31] = 0, or (2.58)

〈12〉 = 〈23〉= 〈31〉 = 0, (2.59)

allowing us to define three-particle amplitudes. Note that these two sets of solutions

do not mix. For example, if we set [12] = 0, i.e. λ̃1 and λ̃2 are proportional, then

contracting the momentum conservation condition (2.22) with λ̃1 we get

〈12〉λ̃2 + 〈13〉λ̃3 = 0, (2.60)

which means that all three λ̃’s are proportional and [23] = [31] = 0. The choice

between the solutions (2.58) and (2.59) is actually a choice between the MHV and

MVH amplitudes.

In the MHV case, the general three-point amplitude of particles with spin |s| has

the form

AMHV(1−|s|, 2−|s|, 3+|s|) = 〈12〉a〈23〉b〈31〉c. (2.61)

The three auxiliary conditions (2.23) for i = 1, 2, 3, give us

a+ b = +2|s|, b+ c = −2|s|, c+ a = +2|s|, (2.62)
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fixing completely the form of the amplitude to the following

AMHV(1−|s|, 2−|s|, 3+|s|) =

(
〈12〉3

〈23〉〈31〉

)|s|
. (2.63)

Similarly, for the anti-MHV three-point amplitude one finds

AMHV(1+|s|, 2+|s|, 3−|s|) =

(
[12]3

[23][31]

)|s|
. (2.64)

In N = 4 SYM, the three-point MHV superamplitude is [82]

AMHV
3 (1, 2, 3) =

δ(8)
(∑3

i=1 ηiλi
)

〈12〉〈23〉〈31〉
. (2.65)

This is a holomorphic function of the spinor variables, i.e. it depends only on the λ’s

and not on the λ̃’s. The presence of the spinor inner products 〈ij〉 in the denominator

requires the choice of the solution (2.58).

The anti-MHV three-point superamplitude is given by [26, 46]

AMHV
3 (1, 2, 3) =

δ(4)(η1[23] + η2[31] + η3[12])

[12][23][31]
. (2.66)

This is an anti-holomorphic function, i.e. it does not depend on the λ’s. Note in

(2.66) the presence of an unusual fermionic delta function that is of degree 4 in

the superspace variables ηAi . This agrees with the general rule that n-point MHV

amplitudes in SYM have degree 4n−8, which in the case n = 3 prohibits the presence

of the usual δ(8)(
∑3

i=1 ηiλi) of degree 8. This time, the presence of the spinor inner

products [ij] in the denominator of (2.66) requires the choice of the solution (2.59).

It is easy to show that the amplitude (2.66) is invariant under all supersymme-

tries. Indeed, we can use the fermionic delta function to solve for

η1 =
−ηA2 [31]− ηA3 [12]

[23]
λ1. (2.67)

The q-supersymmetry operator becomes

3∑
i=1

ηAi λiα = ηA2
λ1α[13] + λ2α[23]

[23]
− ηA3

λ1α[12] + λ3α[32]

[23]
= 0, (2.68)
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which vanishes due to momentum conservation (2.22) resulting to

λ1α[13] + λ2α[23] = −λ3α[33] = 0, (2.69)

λ1α[12] + λ3α[32] = −λ2α[22] = 0. (2.70)

Therefore, we have proven that (2.66) is invariant under q-supersymmetry. To check

the invariance under the q-supersymmetry, all we have to do is act the corresponding

operator to the argument of the fermionic delta function in (2.66), to obtain

n∑
i=1

λ̃i
∂

∂ηi

(
η1[23] + η2[31] + η3[12]

)
= λ̃1[23] + λ̃2[31] + λ̃3[12] = 0, (2.71)

which vanishes due to the antiholomorphic version of (2.10) that one obtains by

sending λ→ λ̃ and 〈• •〉 → [• •].
If, for example, one wants to reproduce the result for the all-gluon anti-MHV

three-point amplitude with gluon 1 being the negative helicity one, one needs to

expand the fermionic delta function in (2.66) according to (2.51) and read off the

coefficient of (η1)4 which gives

A(1−, 2+, 3+) =
[23]4

[12][23][31]
, (2.72)

which agrees with (2.64) after setting |s| = 1 and cyclically rotating the labels

i→ i+ 1.

At three-points, since the two superamplitudes (2.65) and (2.66) are defined for

different kinematics, given in (2.58) and (2.59) respectively, one cannot combine

them into a single amplitude.

In N = 8 supergravity, the three-point amplitudes are given by [26]

MMHV
3 (1, 2, 3) = [AMHV

3 (1, 2, 3)]2 =
δ(16)

(∑3
i=1 ηiλi

)
(〈12〉〈23〉〈31〉)2

, (2.73)

MMHV
3 (1, 2, 3) = [AMHV

3 (1, 2, 3)]2 =
δ(8)(η1[23] + η2[31] + η3[12])

([12][23][31])2
, (2.74)

which are the squares of the corresponding superamplitudes in N = 4 SYM. In

squaring the corresponding MSYM expressions (2.65) and (2.66), it is understood

that the square of the fermionic delta function in MSYM gives us the the corre-
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sponding fermionic delta function in supergravity [45][
δ(8)

(
n∑
i=1

ηiλi

)]2

= δ(16)

(
n∑
i=1

ηiλi

)
, (2.75)

where the ηi’s on the left-hand side are the four-component superspace variables of

SYM and those on the right-hand side are the eight-component superspace variables

of supergravity. Note that the three-point MHV and MHV superamplitudes in

supergravity, given in (2.73) and (2.74), are of degree 16 and 8 respectively in the

superspace variables ηAi .

Equation (2.75) works because we can break SU(8) in N = 8 superagravity into

SU(4)a × SU(4)b by taking η1, . . . , η4 for SU(4)a and η5, . . . , η8 for SU(4)b. This

means that every d8η integral can be rewritten as a product of two N = 4 super

Yang-Mills integrals and the SU(8) symmetry of our answers is restored by adopting

the convention (2.75).

p1 p2

l
MHV MHV

p1 p2

l
MHV MHV

Figure 2.4: A pair of adjacent three-point amplitudes both of MHV or MHV type
would imply (p1 + p2)2 = 0 and, therefore, these configurations do not exist for
general kinematics.

When discussing one-loop amplitudes and the generalised unitarity method, we

encounter pairs of three-point tree-level amplitudes glued together via an on-shell

propagator with momentum l, as depicted in Figure 2.4. If these amplitudes are both

of MHV type or both of MHV type, then we have λ̃1 ∝ λ̃l1 ∝ λ̃2 or λ1 ∝ λl1 ∝ λ2

respectively, which means that [12] = 0 or 〈12〉 = 0. In both cases, this means that

(p1 + p2)2 = 〈12〉[21] = 0 which is not true for general kinematics. Therefore, any

pair of adjacent three-point superamplitudes should be an MHV-MHV pair.

2.5 Tree-level recursion relations

We now move on to present a supersymmetric generalisation [46, 26] of the BCFW

recursion relations [18, 19], that allow us to calculate any tree-level superamplitude
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in a recursive fashion. To seed the recursion process we need only the three-point

amplitudes discussed in the previous section. In what follows, we present these

relations in maximally supersymmetric theories, together with some extra ‘bonus

relations’ special to supergravity. As an example, that also allows us to familiarise

ourselves with the use of spinors, we derive the five-point MHV superamplitude.

2.5.1 Derivation

We will set up the formalism by reviewing the derivation of this technology, giv-

ing the reader more insight into the ingredients of the method, rather than just

presenting a set of prescribed rules.

A(z)

pi+1, ηi+1 pj−1, ηj−1

pi(z), ηi(z) pj(z), ηj

pi−1, ηi−1 pj+1, ηj+1

Figure 2.5: In the deformed superamplitude A(z), the momenta of particles i and
j are shifted in opposite directions. To satisfy supermomentum conservation, the
superspace variable ηi is given a z-dependence as well.

The first ingredient of our method is the two-particle shifts [19]. We consider

a complex variable z labelling a family of deformed superamplitudes A(z). The

deformation affects only two of the external particles, that we label i and j. The

spinor variables of these particles are shifted according to [19]

λ̃i → λ̃i(z) = λ̃i + zλ̃j, λj → λj(z) = λj − zλi, (2.76)

while λi, λ̃j and both spinors of all the remaining particles remain unchanged. We

denote this pair of shifts by [ij〉. The deformation (2.76) is chosen in such a way

so that they momenta pi and pj are shifted by the same quantity but in opposite

directions

pi(z) = λiλ̃i(z) = pi + zλiλ̃j, pj(z) = λj(z)λ̃j = pj − zλiλ̃j. (2.77)

Particles i and j are still on-shell, since their momenta are written down as prod-
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ucts of spinors, but for general values of z these momenta are complex, as the reality

condition λ
α̇

= ±λ̃α̇ is spoiled. Moreover, since pi(z) + pj(z) = pi + pj, total mo-

mentum conservation is preserved, and therefore, as far as momenta are concerned,

the superamplitude A(z) is a well defined object.

z

C∞

Figure 2.6: The contour of integration for the integral (2.80) on the complex z-plane
is a circle at infinity, encircling all the poles of the function A(z).

As far as supermomentum is concerned, the shifts in spinors introduce a shift

in qAα by an amount of −zηjλi. In order to preserve supermomentum conservation

(2.42), we introduce a shift to the superspace variable

ηi → ηi(z) = ηi + zηj, (2.78)

which translates to the following shift for the supermomentum of the particle i

qi → qi(z) = qi + zηjλi. (2.79)

We then consider the contour integral

C∞ =
1

2πi

∮
C
dz
A(z)

z
, (2.80)

where C is a circle at infinity on the complex z-plane shown in Figure 2.6. At

tree-level, the superamplitude A is a rational function of the spinor variables and a

polynomial in the superspace variabels ηAi . Therefore, the deformed superamplitude

A(z) is a rational function of the variable z containing only poles and no branch

cuts on the complex z-plane. The integrand in (2.80) contains all the poles of A(z)

plus the pole at z = 0, simply due to the fact that we have divided by z. Moreover,

assuming that A(z)→ 0 as z →∞, the contour integral C∞ = 0. We return to this
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point and discuss the large-z behaviour of amplitudes at infinity in more detail in

Section 2.5.2. It follows from Cauchy’s theorem that the vanishing integral (2.80)

will be equal to the residues of the integrand at all its poles, giving us the following

result

A(0) = −
∑
zP

Res

[
A(z)

z

]
, (2.81)

where zP are the poles of the shifted superamplitude A(z) only, as the residue at

the pole z = 0 is giving us the term A(0) appearing on the left-hand side. Note that

A(0) is the unshifted physical superamplitude we want to calculate.

The next key ingredient we are going to add to our method, is the well-studied

factorisation of amplitudes on multi-particle or collinear poles, see for example the

reviews [69, 72]. This means that near each pole, i.e. the points in momentum

space where the momentum P of an intermediate propagator in Feynman diagrams

becomes massless, the amplitude factorises into two on-shell subamplitudes times a

Feynman propagator corresponding to P

A(z)→ Atree
L (z)

i

P 2(z)
Atree
R (z). (2.82)

In Yang-Mills, the momenta P one has to consider are always made up of consecutive

external momenta due to colour-ordering, while in gravity it is the sum of any subset

of all the external momenta.

Now back to constructing our recursion relations, the poles we have to consider

are found by considering all diagrams having the form of the one appearing in Fig-

ure 2.7, where the labels of the external momenta on this figure are specific to

Yang-Mills as they are colour-ordered. The two z-dependent momenta are always

on opposite sides, and we have to consider all possible ways of distributing the re-

maining external legs to the left and right subamplitude AL and AR respectively.

The momentum of the internal on-shell propagator is the sum of the external mo-

menta on either side, with a factor of ±1 depending on our convention for the flow

of internal momentum on the graph. In super Yang-Mills, it is convenient to chose

the shifted legs i and j to be adjacent, i.e. j = i± 1, as this reduces the number of

diagrams one has to consider.

The location of the pole zP , is found by setting the internal propagator 1/P 2(z)

on shell. The condition P 2(z) = 0 gives us

(P + zλiλ̃j)
2 = P 2 + 2z〈i|P |j] = 0 (2.83)
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AL(zp) AR(zp)

pr, ηr pr+1, ηr+1

pi(zp) pj(zp)

ηi(zp) ηj

ps+1, ηs+1
ps, ηs

P̂

ηP

Figure 2.7: Recursive diagram in super Yang-Mills. The shifted momenta are always
on opposite sides, while we consider all choices of r and s with i ≤ r ≤ j − 1 and
j ≤ s ≤ i − 1, keeping in mind the cyclicity condition i ± n ≡ i with 1 ≤ i ≤ n.
The subamplitudes are evaluated at the value z = zP of the corresponding pole. In
supergravity, one is not restricted by colour-ordering and has to consider all ways
of distributing the unshifted legs to the two subamplitudes. We also associate a
superspace variable ηP to the internal propagator that we integrate over.

where P is the sum of momenta P =
∑r

m=s+1 pm. From (2.83) we can see that A(z)

has only single poles in z and the location of the pole for each contributing diagram

is given by

zP = − P 2

2〈i|P |j]
. (2.84)

Using the factorisation property (2.82), the contribution of a specific diagram be-

comes

Atree
L (z)

−i/(2〈i|P |j])
z − P 2/(2〈i|P |j])

Atree
R (z), (2.85)

and the residue of A(z) on the pole zP is given by

Res A(z)
∣∣∣
z=zP

= Atree
L (zP )

i

−2〈i|P |j]
Atree
R (zP ). (2.86)

As a last step, we need to insert the residues (2.86) into (2.81) and divide by the

values (2.84) of the corresponding poles zP .

The final form of the supersymmetric recursion relations reads

Atree =
∑
zP

∫
dNηP̂ A

tree
L (zP )

i

P 2
Atree
R (zP ). (2.87)

The superamplitude A has been expressed as a sum over the poles zP of products

of superamplitude AL(zP ) and AR(zP ), evaluated on the values of the poles, times

a propagator i/P 2. We are also integrating over the superspace variables ηAi , which
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is equivalent to considering all possible helicity configurations for the intermediate

leg.

The relations we have just presented are recursive because they express an n-

point superamplitude in terms of products of lower-point superamplitudes, i.e. su-

peramplitudes with less than n external legs. They enable us to build any tree-level

superamplitude starting from the three-point ones that we presented in the previous

section.

In (2.46) we decomposed a generic superamplitude into different contributions

carrying different powers of the η’s. Each subamplitude on the right-hand side of

(2.87) also admits an expansion according to (2.46), while the Grassmann integration

over dNηP , which is equivalent to a differentiation, lowers the total degree of each

term by N . Therefore, the combined degrees of the subamplitudes reduced by an

amount of N should equal the degree of the superamplitude we are calculating.

When writing down the diagrams for the recursion, one has to consider all possible

combinations of subamplitudes satisfying this condition. All these points are made

clearer in the explicit example presented in the Section 2.5.3.

2.5.2 Large-z behaviour and bonus relations

In this section, we would like to expand on the behaviour of superamplitudes as

the complex parameter z → ∞ and discuss one of its implications in supergravity.

The vanishing of the shifted amplitude in this limit is a necessary condition for

the existence of recursion relations of the BCFW type. In maximal supersymmetry

all superamplitudes vanish at infinite complex momentum defined in the naturally

supersymmetric way given in (2.77) and (2.79) and for infinite z [26, 46]. More

specifically, in N = 4 super Yang-Mills superamplitudes vanish as

A(z) ∝ 1

z
while z →∞, (2.88)

and in N = 8 supergravity they vanish as

M(z) ∝ 1

z2
while z →∞. (2.89)

In the original BCFW setup [19], where one deals with helicity amplitudes rather

superamplitudes, the nonsupersymmetric version of the relations is almost identical

to what we have described in the previous section, with the only difference that

there are no superspace variables and therefore we do not consider the shift in ηi
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given in (2.78). Moreover, amplitudes do not in general vanish under any choice of

shifted legs. Amplitudes with shifted leg j of negative helicity (we shift the positive

chirality spinor λj for this leg) do vanish at infinity [19, 22, 23, 24, 25], as it can

be shown by simply inspecting how the ingredients of tree-level Feynman diagrams

scale with z, i.e. how polarisation vectors and internal propagators behave at infinite

z. This allows us to write down recursion relations for helicity amplitudes in pure

gravity and pure Yang-Mills for specific choices of shifted legs.

In the supersymmetric version of the recursion relations, the authors of [26]

proved the vanishing of any superamplitude by means of a q-supersymmetry trans-

lation. One can translate all the η’s in a way that two of them can be set to zero.

Choosing these two η’s to be the ones of the shifted legs, the resulting amplitude is

the one with shifted legs of negative helicity and this is known to vanish at infinite

z.

Supergravity has better large-z behaviour than super Yang-Mills, which is a

manifestation of the simplicity and the cancellations that take place in gravity. Due

to the 1/z2 falloff of supergravity amplitudes we are able to consider the following

contour integral, in addition to the one in (2.80)

C ′∞ =
1

2πi

∮
C
dzM(z) = 0, (2.90)

where the contour of integration is the same with the one in (2.80), i.e. a circle at

infinity on the complex z-plane, as shown in Figure 2.6. In the same fashion we

derived the recursion relations, using Cauchy’s theorem on the integral (2.90) we

obtain relations that involve the diagrams that appear on the recursion relations

(2.87). More specifically, calling DzP the diagram corresponding to the pole zP

DzP =

∫
dNηP̂ ML(zP )

i

P 2
MR(zP ), (2.91)

(2.90) leads us to the ‘bonus relations’ [26, 44]∑
zP

zP DzP = 0. (2.92)

In [44], the bonus relations have been used to relate formulas for the MHV

amplitude with (n − 2)! terms, related to the BGK formula (2.31), to formulas

with (n − 2)! terms, typically obtained from recursion relations, like the following
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expression presented in [22]

MMHV
n =

1

2

∑
P(3,...,n)

[1n]

〈1n〉〈12〉2
[34]

〈23〉〈24〉〈34〉〈35〉〈45〉

n−1∏
s=5

〈2|x3,s|s]
〈s s+ 1〉〈2 s+ 1〉

, (2.93)

where we have promoted the presented helicity amplitude to a superamplitude by

removing the factor of 〈ij〉8 containing the helicity information for the negative

helicity gluons i and j. This formula is valid for n ≥ 5, where for n = 5 the product

is equal to one.

2.5.3 Example

As an example we will calculate the MHV part of the five-point tree-level superam-

plitude in super Yang-Mills, using recursion relations. We choose to shift the two

adjacent legs i = 1 and j = 2, i.e. a [12〉 shift, and the shifts for the spinors given

in (2.76) become

ˆ̃λ1 ≡ λ̃1(z) = λ̃1 + zλ̃2, λ̂2 ≡ λ2(z) = λ2 − zλ1, (2.94)

where from now on hatted quantities are shifted or z-dependent quantities. The

Grassmann variable η1 is the only superspace coordinate acquiring a z-dependence

η̂1 = η1 + zη2. (2.95)

Using the prescription given in Figure 2.7, we draw the two contributing diagrams

appearing in Figure 2.8. Since we are looking at the MHV contribution, the total

degree of each diagram in the η’s should be (n − 2) N = 12, which means that,

before performing the superspace integration, the product of subamplitudes should

have degree 16. In both diagrams, the four-point subamplitudes can only be of MHV

type carrying degree 8 in the η’s, which forces the three-point subamplitudes to have

degree 8 and be of MHV type as well. The first diagram vanishes, as the chosen

shifts (2.94) result to 〈P̂2〉 = 〈2̂3〉 = 〈3P̂ 〉 = 0, making the three-point subamplitude

to vanish.

We now focus on the second diagram in Figure 2.8, which is the only contribution
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1̂ 2̂

5

4 3

MHV MHV
P̂

1̂ 2̂

3

5 4

MHV MHV
P̂

Figure 2.8: Recursive diagrams for the MHV contribution to the five-point superam-
plitude in N = 4 super Yang-Mills. Power counting arguments force both subampli-
tudes to be of MHV type. The first diagram vanishes for the chosen shifts.

to our recursion. The two subamplitudes are

AL =
δ(4)(p̂1 + P̂ + p5) δ(8)(η̂1λ1 + ηP̂λP̂ + η5λ5)

〈1P̂ 〉〈P̂5〉〈51〉
, (2.96)

AR =
δ(4)(p̂2 + p3 + p4 − P̂ ) δ(8)(η2λ̂2 + η3λ3 + η4λ4 − ηP̂λP̂ )

〈2̂3〉〈34〉〈4P̂ 〉〈P̂ 2̂〉
. (2.97)

The bosonic delta functions impose momentum conservation on the two subam-

plitudes and their product combines in the final result into an overall momen-

tum conservation delta function δ(4)(
∑5

i=1 pi). The product of the two fermionic

delta functions gives us the overall supermomentum conservation delta function

δ(8)(
∑5

i=1 ηiλi). Using the momentum conservation on the right subamplitude we

can easily show the following identities

〈2̂3〉[34] = 〈2̂|3|4] = 〈2̂|P̂ |4] = 〈2̂P̂ 〉[P̂4], (2.98)

〈34〉[34] = (p3 + p4)2 = (p̂2 − P̂ )2 = −〈2̂P̂ 〉[P̂2], (2.99)

[34]〈4P̂ 〉 = [3|4|P̂ 〉 = [3|2̂|P̂ 〉 = [32]〈2̂P̂ 〉. (2.100)

Using the results of solving these equations for 〈2̂3〉, 〈34〉 and 〈4P̂ 〉, the denominator
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of AR becomes

〈2̂3〉〈34〉〈4P̂ 〉〈P̂ 2̂〉 =
[P̂4][P̂2][23][34]〈2̂P̂ 〉4

[34]4
. (2.101)

Next we combine terms on the denominators of AL and AR and use momentum

conservation for AL to obtain the following identities

〈1P̂ 〉[P̂4] = 〈1|P̂ |4] = −〈1|5|4] = −〈15〉[54], (2.102)

〈5P̂ 〉[P̂4] = 〈5|P̂ |2] = −〈5|1|2] = −〈51〉[12]. (2.103)

The recursion relation (2.87), in our case gives

AMHV
5 =

∫
d4ηP̂ AL

i

P15

AR

=

(∫
d4ηP̂ δ

(8)(η1λ1 + zPη2λ1 + ηP̂λP̂ + η5λ5)

× δ(8)(η2λ̂2 + η3λ3 + η4λ4 − ηP̂λP̂ )

)
× δ(4)

(
5∑
i=1

pi

)
i [34]4(∏5

i=1[i i+ 1]
)
〈15〉4〈2̂P̂ 〉4

. (2.104)

If we wish to extract amplitudes for specific helicity configurations from the result

(2.104), all we need to do is use the identity (2.52) to expand the two fermionic delta

functions in terms of the η’s, perform the Grassmann integration and extract the

coefficient of the corresponding term. For example, for the split-helicity gluonic

MHV amplitude with gluons 3 and 4 of positive helicity, we need to extract the

coefficient of the (η1)4(η5)4(η2)4. As far as the integration over ηP̂ is concerned, only

terms having exactly (ηP̂ )4 powers of this superspace coordinate survive. Therefore,

the coefficient in question, is the coefficient in the expansion of the integrand of the

term (η1)4(η2)4(η5)4(ηP̂ )4. Since the second fermionic delta function can only give

us the (η2)4(ηP̂ )4 part, the first fermionic delta function has to give us the (η1)4(η5)4

part. Therefore, we pick up a factor of 〈15〉4 and 〈2̂P̂ 〉4 from the expansion of each

fermionic delta function according to (2.52), and the final result reads

A(1−g , 2
−
g , 3

+
g , 4

+
g , 5

−
g ) = i

[34]4

[12][23][34][45][51]
. (2.105)

Similarly, in the case of the all-gluon MHV amplitude with gluons 2 and 4 of positive

helicity we need to extract the coefficient of the term (η1)4(η3)4(η5)4(ηP̂ )4 in the

integrand, giving us a factor 〈15〉4〈3P̂ 〉4. Using momentum conservation on the
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right subamplitude we get ([43]〈3P̂ 〉)4 = ([42]〈2P̂ 〉)2 and we arrive to the following

result

A(1−g , 2
+
g , 3

−
g , 4

+
g , 5

−
g ) = i

[24]4

[12][23][34][45][51]
. (2.106)

Both results (2.105) and (2.106) agree with the Parke-Taylor formula. Finally, we

consider the following example involving fermions A(1−g , 2
−
g , 3

+
f , 4

+
g , 5

−
f ). Following a

similar reasoning as in the previous examples, the four powers of η1 can only come

from the first fermionic delta function in (2.104), while the four powers of η2 can

only come from the second one, as in the first one η1 and η2 are both multiplied

by λ1. Continuing our reasoning, the single power of η3 and the three powers of

η5 can come from the second and the first fermionic delta functions respectively.

Finally, the powers of ηP̂ are fixed to be one from the first and three from the

second delta function. Therefore, we get a factor of 〈51〉3〈P̂1〉〈P̂ 2̂〉3〈2̂3〉, while

momentum conservation on the right subamplitude gives 〈2̂3〉 = −[54]〈43〉/[52],

and manipulation 〈1P̂ 〉/〈2P̂ 〉 after multiplying both numerator and denominator

with [P̂2] gives us 〈1P̂ 〉/〈2P̂ 〉 = −〈15〉[52]/(〈34〉[43]). The final result reads

A(1−g , 2
−
g , 3

+
f , 4

+
g , 5

−
f ) = i

[34]3[45]

[12][23][34][45][51]
, (2.107)

which agrees with the result given in [49]. Note that in the example we presented

there has been no need to explicitly calculate the location of the pole zP , as us-

ing momentum conservation we eliminate any z-dependent quantities by expressing

them in terms of z-independent quantities.

2.6 Supergravity trees from SYM

Supergravity amplitudes can be expressed in terms of amplitudes in super Yang-

Mills, and more specifically the former can be written down as a sum over products

of the latter. All the results that we present in the current chapter support the

ubiquitous pattern that gravity is the product of two copies of Yang-Mills. The

first manifestation of this pattern is the three-point tree superamplitudes (2.73) and

(2.74).

The three-point amplitudes has been discovered in the last few years, but more

than two decades ago, Kawai, Lewellen and Tye wrote down the KLT relations [56]

(see also [83] for a review) that express graviton tree amplitudes Mn as a sum of

products of tree gluon amplitudes AnA
′
n, where the momenta in A

′
n are permuted
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compared to the ones An. The KLT relations for four and five particles read

M4(1, 2, 3, 4) = −s12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2.108)

M4(1, 2, 3, 4) = s23s45A5(1, 2, 3, 4, 5)A5(1, 3, 2, 5, 4)

+ s24s35A5(1, 2, 4, 3, 5)A5(1, 4, 2, 5, 3). (2.109)

A formula for general number of particles n exists, see for example Appendix A

of [31]. The KLT relations were obtained from string theory relations between open

and closed string amplitudes. Closed strings contain gravity and open strings contain

gauge theories, while in the infinite tension limit, relations in string theory reduce to

relations for the corresponding field theories. From a field theoretic point of view, the

KLT relations are very surprising since the Lagrangian of Yang-Mills theory appears

to be much simpler than the Einstein-Hilbert Lagrangian. The former contains only

three- and four-point interactions only, while the latter contains complicated n-point

two-derivative vertices.

In a recent paper [42], the n-point tree-level MHV supergravity amplitude has

been expressed in terms of super Yang-Mills MHV tree amplitudes and certain ‘dress-

ing factors’ GMHV. This result as given in [45] reads

MMHV
n =

∑
P(2,...,n−1)

[
AMHV(1, . . . , n)

]2

GMHV(1, . . . , n), (2.110)

where we sum over the permutations P(2, . . . , n − 1) of all the external legs apart

from 1 and n, and the dressing factors are given by

GMHV = x2
13

n−3∏
s=2

〈s|xs,s+2xs+2,n|n〉
〈sn〉

, (2.111)

for n ≥ 4. For n = 4 the product in the above formula is understood to be equal

to one. Note that the dressing factors do not depend on the superspace variables

ηi. This, together with the fact that two external legs do not participate in the

permutations in the sum appearing in (2.110), will allow us in Section 3.6 to derive

similar expressions at loop-level between supercoefficients in the two theories. An

analytic proof of the agreement of formula (2.110) to the one given in (2.93) for all

n was also presented in the same paper [45], as well as numerical checks showing

agreement with the BGK formula (2.31). A direct proof of the formula (2.110) was

later given in [44].

In a related development at tree level, the authors of [45] used supersymmetric
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recursion to recast amplitudes of NmMHV type in N = 8 supergravity in a new

simplified form involving squares of MHV amplitudes in N = 4 super Yang-Mills.

Specifically, according to [45] a generic supergravity amplitude can be written as

M(1, 2, . . . , n) =
∑

P(2,...,n−1)

M(1, 2, . . . , n), (2.112)

where the ordered subamplitudes M(1, 2, . . . , n) are [45]

M(1, 2, . . . , n) =
[
AMHV(1, 2, . . . , n)

]2∑
α

[
Rα(λi, λ̃i, ηi)

]2

Gα(λi, λ̃i). (2.113)

Here, AMHV is the MHV superamplitude in SYM given in (2.53), Rα are certain

dual superconformal invariant quantities [47], extending those introduced in [48, 68]

for the NMHV superamplitudes. Gα are certain gravity ‘dressing factors’, which are

independent of the superspace variables ηi. The summation in (2.113) over the index

α denotes a summation over an appropriately chosen set of indices in each NmMHV

case. These relations differ from the KLT relations in that they relate supergravity

amplitudes to squares of super Yang-Mills ones rather than products of them with

permuted arguments. The fact that, in (2.112), two external legs do not participate

in the permutations in the sum is very important in the construction we make in

Section 3.6.

In the NMHV case the supergravity amplitude can be written as [45]

MNMHV(1, 2, . . . , n) =∑
P(2,...,n−1)

([
AMHV(1, 2, . . . , n)

]2 n−3∑
i=2

n−1∑
j=i+2

R2
n;ijG

NMHV
n;ij

)
. (2.114)

where the dual superconformal invariants Rr;st are given by [47, 48]

Rr;st =
〈s− 1s〉〈t− 1t〉 δ(4) (Ξr;st)

x2
st〈r|xrtxts|s− 1〉〈r|xrtxts|s〉〈r|xrsxst|t− 1〉〈r|xrsxst|t〉

, (2.115)

and we define

Ξr;st = 〈r|

[
xrsxst

r−1∑
k=t

|k〉ηk + xrtxts

r−1∑
k=s

|k〉ηk

]
. (2.116)

The explicit expressions for the dressing factors GNMHV
n;ij are given in [45]. From the

definition (2.115) of Rn;ij one notices that it does not depend on either η1 or ηn.

This property simplifies drastically our calculation of supergravity supercoefficients
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in Section 3.6 and is partially responsible for being able to write down the N = 8

supercoefficients ass sums of squares of N = 4 ones.

Lastly, the N2MHV supergravity amplitude can be written as [45]

MN2MHV(1, 2, . . . , n) =
∑

P(2,3,...,n−1)

([
AMHV(1, . . . , n)

]2
×

∑
2≤a,b≤n−1

R2
n;ab

[ ∑
a≤c,d<b

(
Rba
n;ab;cd

)2
H

(1)
n;ab;cd +

∑
b≤c,d<n

(
Rab
n;cd

)2
H

(2)
n;ab;cd

])
.

(2.117)

Explicit formulae for the H and R functions are given in [45]. For our purposes

we will only need to know the fact that the H functions are independent of the

superspace variables ηi and the R functions do not depend on either η1 or ηn. The

latter can be seen from the fact that these extremal values are never taken by the

subscripts in the R’s, and their explicit form given in (2.14) of [45].

In Chapter 3, we make use of these relations at tree level to derive similar rela-

tions at one-loop level.



Chapter 3

One-loop supercoefficients

We continue our journey through maximal supersymmetry, while we move on, in

perturbation theory, to loop level. One-loop superamplitudes can be expanded in a

basis of known scalar integral, containing only the ones having the shape of a box.

All the coefficients in this basis can be determined via a manifestly supersymmetric

extension of the generalised unitarity method. This method is extremely efficient

as it enables us to construct full one-loop superamplitudes by using ingredients

solely from the tree-level land. Final destination of this chapter is to present our

results that appeared in [55], that relate supercoefficients in the two maximally su-

persymmetric theories. We discover new relations that express one-loop coefficients

in supergravity in terms of squares of coefficients in super Yang-Mills, similarly to

the relations we discussed at tree level in section 2.6. Finally, we will take short

trips to pure gravity to check that our results reproduce older results.

3.1 One-loop expansion

In maximally supersymmetric theories, four-dimensional one-loop scattering ampli-

tudes can be expanded in a known basis of scalar box integrals I with rational

coefficients [84, 85, 31, 32, 33, 34, 35, 26]

A1-loop =
∑
P({Ki})

C(K1, K2, K3, K4) I(K1, K2, K3, K4). (3.1)

The momenta Ki, with i = 1, . . . , 4, are sums of external momenta, while we are

summing over all possible ways of distributing these momenta to four clusters, one

for each corner of the box. The general scalar box integral, depicted in Figure 3.1,

contains four internal propagators and it is given by the following dimensionally

42
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K2 K3

l

K1 K4

Figure 3.1: The scalar box integral I(K1, K2, K3, K4).

regularised integral

I(K1, K2, K3, K4) = −i(4π)2−ε
∫

d4−2εl

(2π)4−2ε

1

l2(l −K1)2(l −K1 −K2)2(l +K4)2
.

(3.2)

Scattering amplitudes in four-dimensional theories with less supersymmetry are ex-

pandable in a larger basis containing also scalar integrals with less internal propa-

gators, namely triangle and bubble scalar integrals together with a purely rational

term. Maximal supersymmetry simplifies drastically the structure of amplitudes

that acquire the no-triangle property, i.e. they contain boxes only. This has been

shown in [84] in the SYM case, and in [86] for supergravity, while in [26] a proof

identical for both maximally supersymmetric theories was presented.

When considering the expansion (3.1) in N = 4 SYM, because of the colour-

ordering, every cluster must contain consecutive momenta only, while this constraint

is not present in supergravity amplitudes. The momenta K can be massless or

massive; they are massless when they contain exactly one external momentum. The

box integrals are classified according to the number of massive corners. For the class

of 2m integrals, i.e. the ones with two massive corners, we distinguish two different

cases depending on whether the massive corners are adjacent or not, giving us the

two-mass hard and two-mass easy boxes respectively. The amplitude expanded in

the basis of the different classes of scalar box integrals is

A1-loop =
∑(

C1mI1m + C2meI2me + C2mhI2mh + C3mI3m + C4mI4m
)
. (3.3)

In the special case of four-particle scattering, the amplitude is expanded in terms of

zero-mass integrals I0m where all four momenta K are massless.
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The scalar box integrals are purely kinematic objects, i.e. they depend only on

the momenta of the external particles. Therefore, any helicity information of the

external states that must be present in the amplitude, is encoded in the coefficients

C. Similarly, when we deal with superamplitudes, the same expansion (3.3) holds

and any dependence on the superspace variables η is carried by the same objects C,
that we call supercoefficients. These objects, are rational functions of the spinors λi

and λ̃i and polynomials in the superspace variables ηi.

An alternative basis of scalar box functions F can be defined, which is related

to the I’s via

F (K1, K2, K3, K4) = −
2
√
R(K1, K2, K3, K4)

rΓ

I(K1, K2, K3, K4), (3.4)

where the constant rΓ is given by

rΓ =
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (3.5)

The kinematic function R is given by

R(K1, K2, K3, K4) = (x2
13x

2
24)2 − 2x2

13x
2
24x

2
12x

2
34

− 2x2
13x

2
24x

2
23x

2
41 + (x2

12x
2
34 − x2

23x
2
41)2, (3.6)

where the x’s are defined in a similar way to (2.27)-(2.28) but with the pi’s replaced

by the momenta Ki. We can expand the one-loop amplitude to this alternative basis

A1-loop =
∑
P({Ki})

C̃(K1, K2, K3, K4) F (K1, K2, K3, K4). (3.7)

The supercoefficients C̃ are mapped one-to-one to the corresponding C’s.

3.2 Generalised unitarity

The problem of calculating one-loop amplitudes is reduced to calculating the co-

efficients C. The generalised unitarity method [21] is the most efficient way for

calculating these unknown objects at one-loop level, as it recycles information from

tree level. The analytic properties of scattering amplitudes lie in the heart of this

method as well. At loop level, when amplitudes are seen as functions of the Mandel-

stam kinematic invariants, they also develop branch cuts apart from poles. Matching
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the analytic properties on both sides of (3.3), i.e. using the known analytic proper-

ties of the scalar box integrals and the expected analytic properties, from Feynman

diagram intuition, of the full one-loop amplitude, one can uniquely define the coef-

ficients. More specifically, the analytic property one uses is the leading singularity,

which in the case of box functions, is found by ‘cutting’ or putting on-shell all in-

ternal propagators as shown in Figure 3.2. As scattering amplitudes in maximal

K2 K3

l3

l2

l4

l1

K1 K4

Figure 3.2: Quadruple cut on the scalar box integral I(K1, K2, K3, K4). The fact
that the four internal propagators li are put on-shell, combined with momentum
conservation on the four corners of the box, freezes the li’s on two disconnected
solutions S±.

supersymmetry are cut-reconstructible [84, 85, 31, 32, 33, 34, 35, 26], we can evalu-

ate the cuts in four dimensions. The two ingredients for finding the solutions of the

cuts are the masslessness of all internal propagators and momentum conservation

on each of the four corners of the box

S± : l2i = 0, li+1 = li −Ki, (i = 1, 2, 3, 4). (3.8)

Solving these constraints localises the loop integration to a discrete sum over the

two solutions S±. The explicit solutions can be found in [21, 87]; we discuss some

of them in what follows, see e.g. (3.22)-(3.24). However, in a lot of cases we do

not need these solution, as we can use momentum conservation to eliminate any

dependence on the li’s from our results.

For our purposes, we present the supersymmetric extension of the quadruple

unitarity cut method [48], presented and applied within N = 4 super Yang-Mills.

It turns out that all the details of this method carry over directly to N = 8 su-

pergravity, and that is the main subject of our work that appeared in [55] and we

present in Section 3.6. In order to calculate the supercoefficient C(K1, K2, K3, K4)
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one needs to consider the diagram shown in Figure 3.3. One draws four tree-level

amplitudes, with one cluster of momenta Ki attached to each one of them, while they

are connected by four intermediate propagators with momenta li. As the momenta

Atree Atree

Atree Atree

K2 K3

K1 K4

l3

l2

l4

l1

Figure 3.3: Quadruple cut diagram for the supercoefficient C(K1, K2, K3, K4).

of the cut propagators are on-shell, the four tree-level amplitudes are well-defined,

although, in general, the solutions to the cuts give complex values to the momenta

li.

In N = 4 super Yang-Mills, the coefficients are given by

CN=4(K1, K2, K3, K4) =

1

2

∑
S±

∫ ( 4∏
i=1

d4ηli

)
Atree(−l1, K1, l2)Atree(−l2, K2, l3)

× Atree(−l3, K3, l4)Atree(−l4, K4, l1), (3.9)

where Atree are tree-level superamplitudes and we are averaging over the two so-

lutions S± for the cut. We are integrating over the four superspace variables ηli
corresponding to the intermediate propagators, which is essentially equivalent to a

sum over all possible spin configurations for the internal legs, something one has to

do when using the original nonsupersymmetric generalised unitarity method. Note

that the tree amplitudes in (3.9) do not contain the bosonic momentum conservation

delta function, although momentum conservation is still present in the solutions of

the cuts. Due to colour-ordering, one needs to preserve the ordering in the clusters

Ki when attached to the tree amplitudes.
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Similarly, the supercoefficients in N = 8 supergravity are given by

CN=8(K1, K2, K3, K4) =

1

2

∑
S±

∫ ( 4∏
i=1

d8ηli

)
Mtree(−l1, K1, l2)Mtree(−l2, K2, l3)

×Mtree(−l3, K3, l4)Mtree(−l4, K4, l1), (3.10)

where we are averaging over the same two solutions of the cut equations as in N = 4

SYM, but now we integrate over the eight superspace variables ηA, A = 1, . . . , 8 and

the integrand contains supergravity tree-level amplitudes.

What we have achieved is to be able to calculate one-loop quantities without

having to perform any loop momentum integration. The Grassmann integration

replaces the sum over internal helicity states and it is very easy to perform.

The decomposition (2.46) carries over to the supercoefficients as well and it is

convenient to consider each class of them separately, as they carry different powers of

ηAi variables. In a similar fashion to the discussion for the supersymmetric recursion

relations, when one looks at a term with a specific degree in the η’s on the left-

hand side of (3.9) or (3.10), one needs to consider all possible contribution on the

right-hand side matching this degree. This time, the four integrations over the ηli ’s

lower the degree of the product of the four amplitudes by an amount of 4N . We

will return and expand on this point with specific examples.

3.3 Infrared behaviour

The integral (3.2) are infrared (IR) divergent if at least one of the Ki’s is null,

which forces us to work in slightly more than four dimensions by an amount of

−2ε where the infinitesimal IR expansion parameter ε < 0. One then proceeds by

expanding in ε through O(ε0) order, which separates the desired finite part from the

divergent part. The latter is the one that contains all the poles in ε and cancels when

combined with other amplitudes in final infrared-safe quantities like cross-sections.

The explicit expressions for the expanded scalar box integrals [88, 89, 90] through

O(ε0) can be found in Appendix A. The infrared divergent parts of the scalar box
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functions are

F 1m(p, q, r, P )
∣∣
IR

= − 1

ε2
[
(−s)−ε + (−t)−ε − (−P 2)−ε

]
, (3.11)

F 2me(p, P, q,Q)
∣∣
IR

= − 1

ε2
[
(−s)−ε + (−t)−ε − (−P 2)−ε − (−Q2)−ε

]
, (3.12)

F 2mh(p, q, P,Q)
∣∣
IR

= − 1

ε2

[
1

2
(−s)−ε + (−t)−ε − 1

2
(−P 2)−ε − 1

2
(−Q2)−ε

]
, (3.13)

F 3m(p, P,R,Q)
∣∣
IR

= − 1

ε2

[
1

2
(−s)−ε +

1

2
(−t)−ε − 1

2
(−P 2)−ε − 1

2
(−Q2)−ε

]
, (3.14)

where lowercase momenta are massless and uppercase momenta are massive, and s

is the square of the first two argument momenta, while t is the square of the sum of

the second and the third. The four-mass box is infrared finite.

At one-loop level, amplitudes exhibit a well studied and understood universal

behaviour at the infrared, where the leading IR divergent part is always proportional

to the tree amplitude. In planar N = 4 super Yang-Mills this part is given by

A1-loop
∣∣
IR

= − 1

ε2

n∑
i=1

(−si,i+1)−ε Atree. (3.15)

In N = 8 supergravity the leading IR divergent part at one-loop is given by

M1-loop
∣∣
IR

= − 1

ε2

∑
i,j

(−sij)1−εMtree. (3.16)

One proceeds by expanding (−sij)1−ε = −sij + O(ε), and due to momentum con-

servation, the 1/ε2 pole cancels in supergravity, leading to a softer IR behaviour.

This is another manifestation of the better behaviour of supergravity as compared

to super Yang-Mills.

The infrared part has been in many cases a blessing rather than a curse, as it

constraints the form of amplitudes and it has been used for consistency checks on

results.

From (3.11)-(3.14) we can see that each box function, and for specific momenta

clusters as its arguments, has a unique infrared footprint. If we keep the infrared

part of (3.3) we get

A1-loop
∣∣
IR

=
∑(

C̃1m F 1m
∣∣
IR

+ C̃2me F 2me
∣∣
IR

+ C̃2mh F 2mh
∣∣
IR

+ C̃3m F 3m
∣∣
IR

)
,

(3.17)

where the coefficients C̃ are finite quantities. As discussed in [26], plugging (3.15)
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or (3.16) and (3.11)-(3.14) into (3.17), we can obtain linear equations between the

coefficients, reducing the number of them that actually need to be calculated. One

just needs to match the coefficients of each power of each momentum invariant

(−sij)−ε on either side of the equation.

3.4 From IR equations to BCFW

In what follows we present a discussion combining three of the main themes of this

thesis up to now, namely tree-level recursion relations, generalised unitarity and the

infrared behaviour of one-loop amplitudes.

In N = 4 super Yang-Mills, the infrared equation corresponding to the two-

particle channel s12 = x2
13, i.e. the equation obtained from collecting the terms

− 1
ε2

(−(p1 + p2)2)−ε, reads

Atree = C̃1m(p1, p2, p3, x41) + C̃1m(pn, p1, p2, x3n)− C̃2me(pn, x13, p3, x4n)

− 1

2
C̃2mh(pn−1, pn, x13, x3,n−1)− 1

2
C̃2mh(p3, p4, x41, x13)

− 1

2

n−2∑
i=5

C̃3m(pn, x13, x3i, xin)− 1

2

n−1∑
i=6

C̃3m(p3, x4i, xi1, x13), (3.18)

where xij is defined in (2.27)-(2.28). Note that we do not consider the coefficient

C2me(p3, x4n, pn, x13) since, due to the symmetry of the 2me box, it is identical to the

one appearing in (3.18). Moving on to multi-particle channels, the infrared equation

from the terms − 1
ε2

(−x2
14)−ε reads

0 = −C̃1m(p1, p2, p3, x41) + C̃2me(p1, x24, p4, x51)

+ C̃2me(pn, p13, p3, x4n)− C̃2me(pn, p14, p4, x5n) + . . . (3.19)

where the left-hand side of this equation vanishes, as there are no terms correspond-

ing to multi-particle channels in (3.15), and the ellipses represent the 2mh and 3m

coefficients. The coefficient C̃1m(p1, p2, p3, x41) is present due to momentum conser-

vation x2
14 = x2

41. Note that some of the terms appearing in (3.18) and (3.19) are the

same but with different signs. Similarly, one can write down an infrared equation

for any channel xij, which we denote by [xij]. As it was shown in [26], if we sum the

following subset of the infrared equations labeled by j, and for a specific choice of
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the index i,
n+(i−2)∑
j=i+1

[xij], (3.20)

numerous cancellations take place giving us the equation

Atree =
1

2

n+(i−1)∑
j=i+3

C̃1m/2mh(pi, pi+1, xi+2,j, xji), (3.21)

where, depending on the value of the index j and the number of massive momenta,

the coefficients appearing are either of one-mass or two-mass hard type only. These

equations were first presented in [91].

Each of the coefficients C̃ appearing in (3.21), or equivalently, each supercoeffi-

cient C can be computed by means of the generalised unitarity method. The general

diagram for the coefficient C1m/2mh(pi, pi+1, xi+2,j, xji) is given in Figure 3.4, con-

taining at least two three-point amplitudes, i.e. the ones on top. In the case of the

one-mass coefficient, one of the amplitudes at the bottom is a three-point one as

well. As we have discussed in Section 2.4, the two top three-point amplitudes should

Atree
3 Atree

3

Atree Atree

i i+ 1

i− 1 i+ 2

j j − 1

l1

p̂i ≡ l4 l2 ≡ p̂i+1

l3

Figure 3.4: The generic quadruple cut for the supercoefficients C(i, i+ 1, xi+2,j, xj,i),
of one-mass or two-mass easy type, in MSYM. The contribution of either solution
S± to the cut is identical (up to a kinematic factor taking us from the one basis of
integrals to the other) to the super BCFW diagram shown within the frame.

be a pair of MHV-MHV amplitudes. The two solutions for l1 = l corresponding to

the two possible configurations are

l = zλiλ̃i+1, l = zλi+1λ̃i, (3.22)
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with z being a parameter to be determined. From momentum conservation we have

− l2 = ki+1 − l, l4 = ki + l, (3.23)

and

l3 = kj + kj+1 + . . .+ ki + l, (3.24)

while we determine z from the condition l23 = 0. We see a lot of features of the

tree-level recursion relations emerging. The shift in the momenta is given by l, with

the momenta of legs i and i+ 1 shifted to l4 and −l2 respectively, while the location

of the pole z is exactly the one we encounter in tree-level recursion. Finally the two

different solutions (3.22) correspond to the two different ways for shifting legs i and

i+ 1, i.e. shifts [(i+ 1)i〉 and [i(i+ 1)〉.
From (3.9) we have

CN=4(i, i+ 1, xi+2,j, xji) =

1

2

∑
S±

∫ ( 4∏
i=1

d4ηli

)
Atree

3 (−l4, i, l1)Atree
3 (−l1, i+ 1, l2)

× Atree(−l2, xi+2,j, l3)Atree(−l3, xji, l4). (3.25)

It turns out that one can substitute the two top three-point amplitudes and

perform three out of the four Grassmann integrations in (3.25), arriving to an equa-

tion that is the sum of the two BCFW recursion relations for shifts [(i + 1)i〉 and

[i(i + 1)〉 (see Appendix A of [26] for a more detailed discussion). The Grassmann

integrations generate appropriate Jacobians that combine to give the BCFW rela-

tion (2.87), while they also fix ηl2 = ηi + zηi+1, corresponding to the value of the

shifted superspace variable needed in our BCFW prescription.

We now consider the first of the two solutions (3.22), i.e. l = zλiλ̃i+1, and sketch

the calculation. From (3.23) we get

l2 = (zλi − λi+1)λ̃i+1, l4 = λi(λi + zλ̃i+1). (3.26)

This means that we can make the following choice for the spinors of three of the l’s

λl1 = λi, λ̃l1 = zλ̃i+1,

λl2 = zλi − λi+1, λ̃l2 = λ̃i+1, (3.27)

λl4 = λi, λ̃l4 = λ̃i + zλ̃i+1,
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where any different normalisation of the spinors, i.e. (λ, λ̃)→ (tλ, t−1λ̃) with t ∈ C∗,
would have been irrelevant in the final answer.

Since all λ’s in Atree
3 (−l4, i, l1) are proportional, this amplitude has to be of the

MHV type, and (2.53) gives us

Atree
3 (−l4, i, l1) = i

δ(4)(ηi[l1l4] + ηl1 [l4i] + ηl4 [il1])

[il1][l1l4][l4i]

= i
(z[i i+ 1])4 δ(4)(ηi + ηl1 − ηl4)

−z3[i i+ 1]3
, (3.28)

where we have pulled a common bosonic factor out of the fermionic delta function

raised to the degree of the latter.

On the other hand, all λ̃’s in Atree
3 (−l1, i + 1, l2) are proportional, which means

that this amplitude is of the MHV type, and (2.65) gives us

Atree
3 (−l1, i+ 1, l2) = i

δ(8)
(
λi(zηl2 − ηl1) + λi+1(ηi+1 − ηl2)

)
〈(−l1) i+ 1〉〈i+ 1 l2〉〈l2(−l1)〉

= i
〈i i+ 1〉4 δ(4)(zηl2 − ηl1)δ(4)(ηi+1 − ηl2)

z〈i i+ 1〉3
, (3.29)

where, because of the fact that the spinors λi and λi+1 are independent, we are

allowed to factorise the fermionic delta function in the same spirit with the discussion

in (2.47)-(2.49).

Note that when multiplying the results (3.28) and (3.29) for the two three-

point amplitude all factors of z cancel out. Moreover, one can easily perform the

Grassmann integrations over ηl4 , ηl1 and ηl2 , and from the arguments of the delta

functions one can easily read the following values for these superspace variables

ηl2 = ηi+1, ηl1 = zηl2 , ηl4 = ηi + ηl1 = ηi + zηi+1. (3.30)

From (3.25) onwards we have been calculating the coefficients C. Returning to

(3.21), we need to convert our results into the coefficients C̃ (see Section 3.1). For

this purporse, in both the one-mass and two-mass hard boxes, the kinematic factor

we need to divide by, given in (3.6), is simply√
R(i, i+ 1, xi+2,j, xji) = x2

i,i+2x
2
i+1,j. (3.31)

The factor x2
i,i+2 = 〈ii+1〉[i+1i] cancels the factor we are left with after multiplying

the two three-point amplitudes, while the factor x2
i+1,j gives us the propagator that
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appears in the BCFW recursion relation (2.87). The final expression reads

Atree =

n+(i−1)∑
j=i+3

∫
d4ηl3A

tree(−λl2 , λ̃l2 , ηl2 ; {i+ 2, . . . , j − 1}; l3, ηl3)

× 1

x2
i+1,j

Atree(−l3, ηl3 ; {j, . . . , i− 1};λl4 , λ̃l4 , ηl4), (3.32)

where the shifted variables for legs l2 and l4 are given in (3.27) and (3.30). This is

exactly the recursion relations we have presented in Section 2.5, with the shifted legs

being i and i+ 1, which are replaced in (3.32) by l4 and l2. In a similar fashion, we

calculate the contribution to the supercoefficients coming from the second solution

in (3.22), which corresponds to the BCFW recursion relation with the roles of the

shifted legs i and i+ 1 exchanged.

3.5 Supercoefficients in MSYM

Before discussing our results for the one-loop supergravity superamplitudes, we

present some expressions for supercoefficients in N = 4 super Yang-Mills [48], the

derivation of which motivated our work. More specifically, we discuss supercoeffi-

cients at MHV and NMHV level that we are going to use later on, in order to verify

that our results reproduce older results.

The MHV part contains one-mass and two-mass easy scalar box integrals only.

Without loss of generality we will consider the coefficient CN=4(1, P, s,Q), where

in the one-mass case, one of the P , Q is massless, while in the exceptional case of

four-point amplitudes both of them are massless. According to the quadruple cut

prescription, we need to draw the diagram depicted in Figure 3.6, where we have

distributed the four clusters of momenta to the four tree-level amplitudes. Since

we are calculating the MHV contribution to the supercoefficient, or equivalently

the supercoefficient of the MHV contribution to the one-loop amplitude, we need

to consider all configurations with total degree in the Grassmann variables equal

to 8. The Grassmann integration is reducing the total degree of the product of

the four tree amplitudes by 16, which means that the later should be equal to 24.

Since any non-three-point amplitude in MSYM has degree of at least 8, the two

amplitudes attached to the clusters P and Q are fixed to the minimum degree of 8

each, corresponding to the MHV case, which leaves us with a maximum total degree

of 8 for the two three-point amplitudes. This forces the three-point amplitudes to
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AMHV AMHV

AMHV AMHV

P
s

1

Q

l3

l2

l4

l1

Figure 3.5: The quadruple cut diagram determining the MHV part of the super-
coefficient CN=4(1, P, s,Q). Simple power counting arguments for the Grassmann
variables η force the tree-level amplitudes attached to massive corners to be of the
MHV type, and the three-point ones to be of the anti-MHV type.

be of the anti-MHV kind with a degree of 4 each.

Following a similar power counting argument we can show that we cannot con-

struct any three-mass or four-mass configurations contributing to the MHV part, as

there would be at least three non-three-point tree-level amplitudes exhausting all

powers of η’s we have available. Finally, in the case of the two-mass hard configura-

tion, due to the fact that the three-point amplitudes are adjacent, and as we have

explained in Section 2.4, one of them has to be MHV and the other MHV resulting

to coefficients with minimum degree of 12, i.e. of at least NMHV type.

The generalised unitarity prescription (3.9) gives us the following initial expres-

sion for the supercoefficient we wish to calculate

CN=4(1, P, s,Q) =
1

2

[∫ ( 4∏
i=1

d4ηli

)
× AMHV

3 (−l1, 1, l2)AMHV(−l2, 2, . . . , s− 1, l3)

× AMHV
3 (−l3, s, l4)AMHV(−l4, s+ 1, . . . , n, l1)

]
S+

, (3.33)

where due to the presence of the three-point amplitudes, only one solutions con-

tributes to the cut, which we call S+. Using the results (2.65) and (2.53) for the
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three-point anti-MHV and general MHV amplitudes respectively, we obtain

CN=4(1, P, s,Q) =
1

2

[∫ ( 4∏
i=1

d4ηli

)
(3.34)

× δ(4)(η1[l2l1] + ηl2 [l11] + ηl1 [1l2])

[1l2][l2l1][l11]

δ(8)(λl2ηl2 +
∑s−1

2 λiηi − λl3ηl3)
〈l22〉 · · · 〈s− 1 l3〉〈l3l2〉

× δ(4)(ηl3 [sl4] + ηs[l4l3] + ηl4 [l3s])

[l3s][sl4][l4l3]

δ(8)(λl4ηl4 +
∑n

s+1 λiηi − λl1ηl1)
〈l4 s+ 1〉 · · · 〈nl1〉〈l1l4〉

]
S+

.

It is straightforward to compute the four Grassmann integrals with the help of (2.49)

to obtain [48]

CN=4(1, P, s,Q) =
1

2
(P 2Q2 − st) δ

(8)(
∑n

i=1 ηiλi)

〈12〉〈23〉 · · · 〈n1〉
. (3.35)

Incidentally, we notice that in order to arrive at (3.35) it is not necessary to know

the explicit solutions to the cut equations, but only that the holomorphic spinors

at the three-point anti-MHV corners are proportional, i.e. λl1 ∝ λl2 ∝ λ1 and

λl3 ∝ λl4 ∝ λs.

In the NMHV case, all coefficients appear up to three-mass. The three-mass

NMHV coefficient is given by [68]

CN=4
3m (r, P,Q,R) =

δ(8)
(∑n

i=1 ηiλi
)
Rr;st∏n

j=1〈jj + 1〉
∆r,r+1,s,t, (3.36)

where the dual superconformal invariants Rr;st are given in (2.115) and

∆r,r+1,s,t =
1

2

(
x2
rsx

2
r+1t − x2

rtx
2
r+1s

)
. (3.37)

3.6 Supercoefficients in supergravity

We now move on to supergravity to present some of the main results of this thesis.

We use supersymmetric generalised unitarity to express the one-loop supergravity

supercoefficients in terms of gravity tree amplitudes. However, instead of substitut-

ing the final expressions for the tree amplitudes, we use the relations presented in

Section 2.6 to express them in terms of tree amplitudes in MSYM, and then identify

and reconstruct MSYM supercoefficients within our expressions. In several cases,

we recast the N = 8 supercoefficient as a sum of permuted squares of N = 4 super-
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coefficients times one-loop dressing factors, leading to new relations between these

quantities in the two theories at one-loop level.

3.6.1 MHV case

We start by discussing the simplest case, namely the MHV case. The general di-

agram for this case appears in Figure 3.6, where using similar arguments to the

N = 4 case, only 2me and 1m integrals are allowed, the corners attached to massive

clusters are of MHV type and the three-point amplitudes are of MHV type. Again

MMHV MMHV
3

MMHV
3

MMHV

P
s

1

Q

l3

l2

l4

l1

Figure 3.6: The quadruple cut diagram determining the MHV part of the superco-
efficient CN=4(1, P, s,Q). Similar arguments to the N = 4 case force the tree-level
amplitudes attached to massive corners to be of the MHV type, and the three-point
ones to be of the anti-MHV type.

only one solution contributes and the cuts are identical to the ones in MSYM.

The generalised unitarity prescription (3.10) for the supergravity supercoeffi-

cients gives us

CN=8(1, P, s,Q) =
1

2

[∫ ( 4∏
i=1

d8ηli

)
×MMHV

3 (−l1, 1, l2)MMHV(−l2, 2, . . . , s− 1, l3)

× MMHV
3 (−l3, s, l4)MMHV(−l4, s+ 1, . . . , n, l1)

]
S+

. (3.38)

The solution to the cut is very easy to determine, as the two anti-MHV three-

point superamplitudes simplify the kinematics. Firstly, for n > 4, they allow only
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one out of the two solutions to contribute. Secondly, they fix all the λ’s in each of

these two amplitudes to be parallel, so that the loop momenta become

l1 = λ1λ̃l1 , l2 = λ1λ̃l2 , l3 = λsλ̃l3 , l4 = λsλ̃l4 , (3.39)

while the spinors λ̃li , remain to be determined. This is accomplished by writing

down the momentum conservation conditions on the two massive corners l2 = P + l3

and l4 = Q+ l1 and contracting each one of them with either λ1 or λs. The resulting

values are

λ̃l1 = −〈s|Q
〈s1〉

, λ̃l2 =
〈s|P
〈s1〉

, λ̃l3 = −〈1|P
〈1s〉

, λ̃l4 =
〈1|Q
〈1s〉

, (3.40)

and plugging them into (3.39) we obtain the cut momenta

l1 = −|1〉〈s|Q
〈s1〉

, l2 = |1〉〈s|P
〈s1〉

, l3 = −|s〉〈1|P
〈1s〉

, l4 = |s〉〈1|Q
〈1s〉

. (3.41)

Returning to (3.38), we make use of the equations (2.66) and (2.110) to express

the tree-level superamplitudes in supergravity in terms of those in SYM. For reasons

that will soon become apparent, when considering the MHV amplitudes and the

permutations in (2.110), we choose not to permute the legs corresponding to internal

propagators, i.e. we choose these legs to be legs 1 and n. From (3.38) we arrive at

CN=8(1, P, s,Q) =
1

2

[∫ ( 4∏
i=1

d8ηli

)
(3.42)

×
[
AMHV

3 (−l1, 1, l2)
]2 ∑
P(P )

([
AMHV(−l2, P, l3)

]2
GMHV(−l2, P, l3)

)

×
[
AMHV

3 (−l3, s, l4)
]2 ∑
P(Q)

([
AMHV(−l4, Q, l1)

]2
GMHV(−l4, Q, l1)

)
S+

,

where P and Q denote the sets {2, . . . , s − 1} and {s+1,. . . ,n} respectively. The

dressing factors are independent of the superspace variables and therefore we can

pull them out of the Grassmann integrations. Moreover, since the two sums in (3.42)

are over permutations of external legs only, we can chose to perform the summations
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after the integrations, arriving at

CN=8(1, P, s,Q) =∑
P(P )

∑
P(Q)

( [
1

2

∫ ( 4∏
i=1

d4ηli

)
AMHV

3 (−l1, 1, l2)AMHV(−l2, P, l3)

× AMHV
3 (−l3, s, l4)AMHV(−l4, Q, l1)

]2

S+

× 2
[
GMHV(−l4, Q, l1)GMHV(−l2, P, l3)

]
S+

)
, (3.43)

where it is understood that the square of the integration measure over the four ηA’s

in N = 4 gives us the integration measure over the eight ηA’s in N = 8. In (3.43),

one immediately recognises the MSYM coefficient, and we can recast this equation

to

CN=8(1, P, s,Q) =∑
P(P )

∑
P(Q)

[
CN=4(1, P, s,Q)

]2
2
[
GMHV(−l2, P, l3)GMHV(−l4, Q, l1)

]
S+
, (3.44)

where the dressing factors GMHV are evaluated on the cut given in (3.41).

We consider the dressing factor from MMHV(−l4, s + 1, . . . , n, l1), and from

(2.111) we have

GMHV(−l4, s+ 1, . . . , n, l1) = s−l4,s+1

n−2∏
r=s+1

〈r|(r + 1)
∑n

r+2 i|l1〉
〈rl1〉

. (3.45)

From (3.41), the cut momenta l1 and l4 are

l1 =
1

〈1s〉

n∑
i=s+1

〈si〉|1〉|i], l4 =
1

〈s1〉

n∑
i=s+1

〈i1〉|s〉|i]. (3.46)

Inserting this solution into GMHV(−l4, s+1, . . . , n, l1), and denoting the correspond-

ing quantity G′(s, {s+ 1, . . . , n}, 1), we find

G′(s, {s+ 1, . . . , n}, 1) =

1

〈1s〉

(
n∑

i=s+2

〈i1〉〈s+ 1 s〉[s+ 1 i]

)
n−2∏
r=s+1

〈r|(r + 1)
∑n

r+2 i|1〉
〈r1〉

. (3.47)
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Due to the symmetry of the 2me box and the cut solution, one can easily find the

dressing factor G′(1, {2, . . . , s − 1}, s) corresponding to GMHV(−l2, 2, . . . , s − 1, l3)

by just relabelling the last result.

Having inserted the solutions in (3.44) and defined G′ we arrive at

CN=8(1, P, s,Q) =
∑
P(P )

∑
P(Q)

(
CN=4(1, P, s,Q)

)2
G′(1, {P}, s)G′(s, {Q}, 1). (3.48)

This expression gives a new form of the one-loop two-mass easy box integral coeffi-

cients in the supergravity MHV superamplitudes in terms of the ones in MSYM for

any number of external legs. The MHV supercoefficients in N = 4 SYM are given

in (3.35). As we have already discussed in (2.75) for the three-point amplitudes,

the square of the N = 4 fermionic delta function contained in the MSYM coeffi-

cient on the right hand side of (3.48) gives us the N = 8 fermionic delta function

that is present in the supergravity supercoefficient on the left-hand side of the same

equation.

3.6.2 MHV examples and consistency checks

Next, we would like to compare our result (3.44) to previously known expressions

for the MHV coefficients, and more specifically to the infinite sequence of graviton

MHV amplitudes presented in [31]. The result of that paper for the two-mass easy

coefficients written in terms of the “half-soft” functions h(a, {P}, b) is

CN=8(1, P, s,Q) =
1

2

(
P 2Q2 − st

)2
h(1, {P}, s) h(s, {Q}, 1), (3.49)

where we have supersymmetrised the MHV amplitude with negative helicity gluons i

and j by removing a factor of 〈ij〉8 and the usual fermionic delta function is implied.

A factor of (−1)n in the result for the 2me coefficients as they appear in [31] is due

to different conventions in the definition of the scalar box integrals. The first three
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half-soft functions are given by

h(a, {1}, b) =
1

〈a1〉2〈1b〉2
,

h(a, {1, 2}, b) =
[12]

〈12〉〈a1〉〈1b〉〈a2〉〈2b〉
, (3.50)

h(a, {1, 2, 3}, b) =
[12][23]

〈12〉〈23〉〈a1〉〈1b〉〈a3〉〈3b〉
+

[23][31]

〈23〉〈31〉〈a2〉〈2b〉〈a1〉〈1b〉

+
[31][12]

〈31〉〈12〉〈a3〉〈3b〉〈a2〉〈2b〉
.

There also exists a recursive form for the h functions given in [31] as well as the

following explicit formula for the general half-soft function

h(a, {1, 2, . . . , n}, b) =
[12]

〈12〉
〈a|K1,2|3]〈a|K1,3|4] · · · 〈a|K1,n−1|n]

〈23〉〈34〉 · · · 〈n− 1n〉 〈a1〉〈a2〉 · · · 〈an〉 〈1b〉〈nb〉
+ P(2, 3, . . . , n), (3.51)

where Ki,j = pi + pi+1 + . . .+ kj, and we are summing over all permutations of the

indices {2, 3, . . . , n}.
Now we want to show that the two expressions (3.48) and (3.49) for the one-loop

MHV amplitude coefficients are equivalent. More specifically we want to match the

latter to the bosonic part of the former. We consider a massive tree sub-amplitude

in the loop diagram under consideration, for example that containing the set of

momenta Q = {s+ 1, . . . , n}. We now make the following conjecture relating the h

functions in (3.49) to the dressing factors G′ of (3.48)

∑
P(s+1,...,n)

G′(s, {s+ 1, . . . , n}, 1)(
〈ss+ 1〉〈s+ 1s+ 2〉 · · · 〈n− 1n〉〈n1〉

)2 = h(s, {s+ 1, . . . , n}, 1). (3.52)

If this relation is true, it follows directly that our formula (3.48) is identical to (3.49).

Let us first see how the equality (3.52) works in some simple cases. For the case

where Q is a single momentum, the result is immediate since G′(a, b, c) = 1 and

h(a, {b}, c) = 1/(〈ab〉〈bc〉)2.

The next check we perform is for the case when Q contains two momenta, for

example we consider the the dressing factor G′(3, {4, 5}, 1) contained in the 1m

coefficient CN=8(1, 2, 3, 4 + 5). From (3.47) we find

G′(3, {4, 5}, 1) =
〈51〉〈43〉[45]

〈13〉
, (3.53)
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while the left-hand side of the conjecture (3.52) becomes

∑
P(4,5)

G′(3, {4, 5}, 1)(
〈34〉〈45〉〈51〉

)2 =
[45]

〈31〉〈45〉2
〈34〉〈51〉+ 〈35〉〈14〉
〈34〉〈35〉〈51〉〈14〉

=
[45]

〈45〉
1

〈34〉〈34〉〈14〉〈15〉
, (3.54)

where in the last equation we have just used the Schouten identity (2.11). The result

in (3.54) is precisely h(3, {4, 5}, 1).

For the next case we consider the dressing factor G′(3, {4, 5, 6}, 1) and (3.47)

gives us

G′(3, {4, 5, 6}, 1) =
〈43〉〈61〉[56]

〈13〉〈41〉
(〈51〉[45] + 〈61〉[46]). (3.55)

Inserting this into the left-hand side of (3.52) we find

∑
P(4,5,6)

G′(3, {4, 5, 6}, 1)(
〈34〉〈45〉〈56〉〈61〉

)2 =
1

〈13〉
∑
P(4,5,6)

[56](〈51〉[45] + 〈61〉[46])

〈14〉〈34〉〈45〉2〈16〉〈56〉2
. (3.56)

Adding the terms from the permutations (456) and (465) it is straightforward to

obtain the first term of h(3, {4, 5, 6}, 1) as given in the last formula in (3.50); the

cyclically rotated terms are obtained in the same way.

We have checked numerically that our conjecture (3.52) holds for up to 12 legs,

i.e. for n up to s+ 10. Note that an identical argument applies to the other massive

corner with external legs P = {2, . . . , s − 1} in the 2me box diagram. Therefore,

this numerical check shows that the two expressions (3.48) and (3.49) for the 2me

coefficients are equivalent for up to 22 external legs, whereas for the 1m diagrams,

the equivalence is up to 13 legs.

Numeric checks

Finally, we want to give some more details on how one proceeds in checking numer-

ically that two expressions are equivalent. This is done by using a mathematical

package software like MATHEMATICA. One first needs to break all kinematic object

down to the simplest possible entities, i.e. spinor inner products 〈ij〉 and [ij]. One

does so by using the various identities we discussed in Section 2.2. Then, since

〈ij〉 = λ1
iλ

2
j − λ2

iλ
1
j , [ij] = λ̃1̇

i λ̃
2̇
j − λ̃2̇

i λ̃
1̇
j , (3.57)
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our expressions become functions of the 4n spinor components λαi and λ̃α̇i . Momen-

tum conservation (2.22) gives( ∑n
i=1 λ

1
i λ̃

1̇
i

∑n
i=1 λ

1
i λ̃

2̇
i∑n

i=1 λ
2
i λ̃

1̇
i

∑n
i=1 λ

2
i λ̃

2̇
i

)
=

(
0 0

0 0

)
, (3.58)

reducing the number of independent components by four. We choose to give random

values to all components apart from the ones of λ̃n−1 and λ̃n. We use (3.58) to solve

for the four components of these two unknown spinors. More specifically, we chose

to give random complex rational values to the 4n − 4 spinor components. Since,

coefficients and tree-level amplitudes are rational functions of spinors, the results we

will obtain will be rational numbers as well. These random objects have the form

RandInt(−r, r)
RandInt(1, r)

+ i
RandInt(−r, r)
RandInt(1, r)

, (3.59)

where RandInt(i, j) is a random integer in the range [i, j] and r is a positive integer

parameter controlling the number of choices for these random integers. For the

specific choice of the unknown spinors to solve for, (3.58) gives us a system of linear

equations in the components of λ̃n−1 and λ̃n resulting to values for them that are

also complex rational numbers.

Plugging these numeric values, that satisfy momentum conservation, into our

two expressions gives us two numbers that should match. Instead of comparing the

two values, it is wiser to consider their ratio because one can detect possible factors

between the two expressions. If the two expressions match, up to a factor, one gets

the same, usually simple answer, in different random kinematic points.

When checking our conjecture and as the number of legs grew bigger, we encoun-

tered computer memory limitations due to the fact that big analytic expressions were

generated before substituting the numeric values. This issue was solved by substi-

tuting the numeric values in every term in the sums and products the moment they

are generated rather than at the very end. Schematically, and for random values R
for the spinors, we would compute∑

P

∏
x

[
fx({λαi , λ̃α̇i })

]
R
, (3.60)

rather than [∑
P

∏
x

fx({λαi , λ̃α̇i })

]
R

. (3.61)
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This has allowed us to overcome any memory limitations, and verify our conjecture

(3.52) up to the number of legs allowed by computer time.

3.6.3 Next-to-MHV case

We now move on to consider NHMV superamplitudes. in N = 8 supergravity. In

this case, the three-mass and two-mass hard box functions also appear, in addition

to the two-mass easy and one-mass ones. One can see this, using similar power

counting arguments for the η’s with the one we used in the MHV case. The relevant

quadruple cut diagrams are the same as those appearing in [48] in the N = 4

SYM case. In the following, we will give general expressions for the different box

coefficients.

Three-mass coefficients

We begin by considering three-mass coefficients. In this case, there is one quadruple

cut diagram, shown in Figure 3.7, containing three MHV amplitudes, and one anti-

MHV, with each MHV amplitude containing more than three legs in general. For

MMHV MMHV

MMHV
3

MMHV

s− 1 s

r + 1 t− 1

t

r r − 1

l3

l2

l4

l1

Figure 3.7: The quadruple cut diagram determining the three-mass supercoefficient
CN=8(r, P,Q,R) in the NMHV amplitude in N = 8 supergravity. There is a single
three-point anti-MHV amplitude participating in the cut. The remaining three su-
peramplitudes are of the MHV type. We also define P :=

∑s−1
l=r+1 pl, Q :=

∑t−1
l=s pl,

and R :=
∑r−1

l=t pl.
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the specific diagram, the quadruple cut formula (3.10) yields

CN=8
3m (r, P,Q,R) =

1

2

∑
S±

∫ 4∏
i=1

d8ηli

×MMHV
3 (−l1, r, l2)MMHV(−l2, r + 1, . . . , s− 1, l3) (3.62)

×MMHV(−l3, s, . . . , t− 1, l4)MMHV(−l4, t, · · · , r − 1, l1).

The three-point anti-MHV amplitude is given in (2.74) and it is just the square of

the corresponding SYM amplitude. The MHV superamplitudes may be written in

terms of squares of super Yang-Mills amplitudes times dressing factors using (2.110)

and (2.111). What is important in what follows is that in the sum over permutations

in (2.110) there are always two missing legs. In applying this formula to write down

explicitly the MHV superamplitudes entering the cut diagram in (3.62), we will

arrange these two missing legs to be precisely the loop legs.

Since the dressing factors are independent of the superspace variables η, the

fermionic integrations in (3.62) can then be done similarly to those for the SYM

case in [48]. Moreover, the presence of the three-point amplitude allows only one of

the two solutions S± to contribute, we call this S+, and (3.62) becomes

CN=8
3m (r, P,Q,R) =

∑
P(P )

∑
P(Q)

∑
P(R)

(
CN=4

3m (r, P,Q,R)
)2

(3.63)

× 2
[
GMHV(−l2, P, l3)GMHV(−l3, Q, l4)GMHV(−l4, R, l1),

]
S+

where the corresponding super Yang-Mills supercoefficients CN=4
3m (r, P,Q,R) are

given in (3.36), and the dressing factors GMHV in (2.111).

We have thus managed to express each three-mass coefficient as a sum of squares

of SYM coefficients, weighted with bosonic dressing factors and summed over the

appropriate permutations.

The product of the three tree-level dressing factors in (3.63) can in principle be

further simplified by inserting the explicit solution to the cut expression. The generic

solution to the cut (when the four corners are massive) has been worked out in [21].

One can however find rather simple expressions in terms of spinor variables when at

least one of the four amplitudes participating in the quadruple cut is a three-point

amplitude. For the three-mass configuration, the quadruple cut solutions have been

presented in [92, 87] in a compact form. For the specific case in Figure 3.7, where
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the three-point amplitude is anti-MHV, the solution is [92, 87]

l1 =
|r〉〈r|PQR|
〈r|PR|r〉

, l2 =
|r〉〈r|RQP |
〈r|PR|r〉

,

l3 =
|QR|r〉〈r|P |
〈r|PR|r〉

, l4 =
|QP |r〉〈r|R|
〈r|PR|r〉

, (3.64)

whereas the dressing factors given in (2.111), read

GMHV(−l2, {P}, l3) = s−l2r+1

s−3∏
k=r+1

〈k|xk,k+2 xk+2,l3|l3〉
〈kl3〉

,

GMHV(−l3, {Q}, l4) = s−l3s

t−3∏
k=s

〈k|xk,k+2 xk+2,l4|l4〉
〈kl4〉

, (3.65)

GMHV(−l4, {R}, l1) = s−l4t

r−3∏
k=s

〈k|xk,k+2 xk+2,l1|l1〉
〈kl1〉

. (3.66)

Two-mass hard coefficients

We now turn to the two-mass hard coefficients. There are two quadruple cut dia-

grams contributing here. These are shown in Figure 3.8, where the two adjacent

three-point amplitudes are MHV and anti-MHV (or vice versa). Similarly to the

MMHV
3 MMHV

MMHV
3

MMHV

i+ 1 i+ 2

r − 1

r

i i− 1

l3

l2

l4

l1

MMHV
3 MMHV

MMHV
3

MMHV

i+ 1
i+ 2

r − 1

r

i i− 1

l3

l2

l4

l1

Figure 3.8: The two quadruple cut diagrams determining the two-mass hard super-
coefficient CN=8(i, j, P,Q) in the NMHV amplitudes in N = 8 supergravity. The
three-point amplitudes are a pair of MHV and anti-MHV, while the remaining two
amplitudes are of MHV type.

N = 4 case discussed in [48], these two diagrams can be regarded as special cases

of the three-mass diagrams in Figure 3.7. The result for the first diagram is simply



CHAPTER 3. ONE-LOOP SUPERCOEFFICIENTS 66

given by CN=8
3m (i, i+1, P,Q), whereas for the second one is CN=8

3m (i+1, i, Q, P ), where

P := {pi+2, . . . , pr−1} and Q := {pr, . . . , pi−1}. The two-mass hard coefficients are

then equal to

CN=8
2mh (i, i+ 1, P,Q) = CN=8

3m (i, i+ 1, P,Q) + CN=8
3m (i+ 1, i, Q, P ). (3.67)

We will present in Section 3.6.4 some numerical checks of (3.67) for the case of

six-point NMHV superamplitudes, finding agreement with the results of [32, 33].

Two-mass easy coefficients

We now move on to consider the two-mass easy coefficients, and as a particular case

of these, the one-mass coefficients. In the two-mass easy case there are two diagrams,

as in the SYM case considered in [48], related to each other by a simple exchange of

labels. Each cut diagram has two anti-MHV amplitudes, one NMHV amplitude and

one MHV amplitude, as depicted in Figure 3.9. An additional quadruple cut can

NMHV MMHV
3

MMHV
3

MMHV

s− 1 s

r + 1

s+ 1

r r − 1

l3

l2

l4

l1

MMHV MMHV
3

MMHV
3

NMHV

s− 1 s

r + 1

s+ 1

r r − 1

l3

l2

l4

l1

Figure 3.9: The two quadruple cut diagrams determining the two-mass easy super-
coefficient CN=8(r, P, s,Q) in the NMHV amplitudes in N = 8 supergravity. The
three-point amplitudes have the anti-MHV helicity configuration, whereas on the
two massive corners we have an MHV and an NMHV amplitude. We also define
P :=

∑s−1
l=r+1 pl, and Q :=

∑r−1
l=s+1 pl.

actually be constructed by replacing one of the two three-point anti-MHV amplitude

with a three-point MHV one, and compensating this by replacing further the NMHV

amplitude by an MHV one. It can easily be shown [48] that this particular quadruple

cut would lead to constraints on the external kinematics, and hence can be ignored.

We consider the first diagram, and from (3.10), the result for this quadruple cut
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is

CN=8
2me (r, P, s,Q)

∣∣∣
1

=
1

2

∑
S±

∫ 4∏
i=1

d8ηli (3.68)

× MMHV
3 (−l1, r, l2)MNMHV(−l2, r + 1, . . . , s− 1, l3)

× MMHV
3 (−l3, s, l4)MMHV(−l4, s+ 1, . . . , r − 1, l1).

Here we may use the expression for NMHV tree amplitudes given in (2.114).

In writing explicitly the amplitude MNMHV(−l2, pr+1, . . . , ps−1, l3) in (3.68) using

(2.114), we will pick the loop legs −l2 and l3 to be 1 and n appearing in the latter

formula. Two important consequences of this are that, firstly, the sum over per-

mutations in (2.114) will not involve the cut-loop legs −l2 and l3; and, secondly,

that the supermomenta ηl2λl2 and ηl3λl3 of the cut legs will appear only through

the overall supermomentum conservation delta functions. Therefore, the fermionic

integrations over ηl2 and ηl3 will proceed as in the case of the supergravity MHV

superamplitude discussed previously.

We now proceed with the calculation. Inserting (2.114) into (3.68), as well as

the expressions for the three-point anti-MHV amplitude (2.74) and for the MHV

amplitude in (2.110), we find

CN=8 (NMHV)
2me (r, P, s,Q) =

1

2

∑
S±

∫ 4∏
i=1

d8ηli

[
AMHV

3 (−l1, r, l2)
]2 [

AMHV
3 (−l3, s, l4)

]2

×
∑
P(P )

([
AMHV(−l2, {P}, l3)

]2 s−3∑
i=r+1

s−1∑
j=i+2

(Rl3;ij)
2GNMHV

l3;ij

)
×
∑
P(Q)

[
AMHV(−l4, {Q}, l1)

]2
GMHV(−l4, {Q}, l1) + r ↔ s, (3.69)

where the first (r ↔ s) term corresponds to the cut diagram on the left (right) of

Figure 3.9. By {P}, {Q}, we mean the ordered sets of momenta {pr+1, . . . , ps−1},
and {ps+1, . . . , pr−1}. The explicit expressions for the dressing factors GNMHV are

given in [45].

Next we observe that only one of the two cut solutions contributes, namely the
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solution we have calculated in (3.41). We can then recast (3.69) to

CN=8 (NMHV)
2me (r, P, s,Q) = 2

∑
P({P})

∑
P({Q})

[
CN=4 (MHV)

2me (r, P, s,Q)
]2

(3.70)

×

[(
s−3∑
i=r+1

s−1∑
j=i+2

(Rl3;ij)
2GNMHV

l3;ij

)
GMHV(−l4, Q, l1)

]
S+

+ r ↔ s.

The dual superconformal invariant R-functions appearing in (3.69) are given in

(2.115), and in this case they read

Rl3,ij =
〈i− 1i〉〈j − 1j〉δ(4)(Ξl3;ij)

x2
ij〈l3|xr+1,ixij|j〉〈l3|xr+1,ixij|j − 1〉〈l3|xr+1,jxji|i〉〈l3|xr+1,jxji|i− 1〉

,

(3.71)

where

Ξl3;ij = −〈l3|

(
xr+1,ixij

s−1∑
m=j

|m〉ηm + xr+1,jxji

s−1∑
m=i

|m〉ηm

)
. (3.72)

A few comments are in order here. Firstly, we need to insert the cut solutions into

the previous expressions. These are obtained from (3.41) by just replacing 1 → r.

Furthermore, when the minimum value of i, i.e. i = r + 1 is attained in the sum

appearing in (3.70), the corresponding spinor for i−1 is actually |i−1〉 ≡ |−l2〉, since

the R-function comes from the NMHV amplitude with legs (−l2, r+ 1, . . . , s−1, l3).

However, the expression for R in (3.71) is invariant under rescalings of |i−1〉. Hence,

since |l2〉 ∝ |r〉 because of the cut condition, we conclude that we can set |i−1〉 → |r〉
when the minimum value in the sum over i in (3.70) is attained.

Furthermore, we notice that |l3〉 ∝ |s〉 because of the cut condition. By ex-

panding the fermionic delta function δ(4)(Ξl3;ij) we see that this will contribute four

powers of 〈l3|. Inspecting (3.71), we conclude that Rl3,ij will eventually be invariant

under rescalings of 〈l3| as well. We can then replace 〈l3| → 〈s| inside the expression

for Rl3;ij or, equivalently, Rl3;ij → Rs;ij and Ξl3;ij → Ξs;ij, so that the explicit loop

solutions are not present in these quantities.

Taking into account the previous remarks, we arrive at

CN=8 (NMHV)
2me (r, P, s,Q) = 2

∑
P(P )

∑
P(Q)

[
CN=4 (MHV)

2me (r, P, s,Q)
]2

(3.73)

×

[(
s−3∑
i=r+1

s−1∑
j=i+2

(Rs;ij)
2GNMHV

l3;ij

)
GMHV(−l4, Q, l1)

]
S+

+ r ↔ s.
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The general expressions for the MHV dressing factors are given in (2.111), from

which one can obtain GMHV(−l4, Q, l1).

One-mass coefficients

Finally we consider one-mass coefficients. As explained in [48] in the Yang-Mills

case, the two relevant diagrams are special cases of other diagrams. In the first of

them, the three three-point corners are MHV-MHV-MHV and the fourth corner is

MHV, which is a special case of the NMHV two-mass easy coefficient. In the second

diagram, the three three-point corners are MHV-MHV-MHV and the fourth corner

is NMHV, which is a special case of the NMHV three-mass coefficient. Therefore,

one finds

CN=8
1m (s+ 2, P, s, s+ 1) = CN=8

2me (s+ 2, P, s, s+ 1) + CN=8
3m (s+ 1, s+ 2, P, s). (3.74)

3.6.4 NMHV examples and consistency checks

In this section we will consider (3.67) in the case of six-point NMHV superampli-

tudes, and perform some numerical checks comparing our results to those derived

in [32, 33] for six-point NMHV graviton scattering amplitudes. Specifically, we will

compare our results to the following coefficients [32, 33]

CN=8
2mh (1+, 2−, {3−, 4−}, {5+, 6+}) (3.75)

=
1

2

s34s56s
2
12(x2

25)8

[23][34][24][43]〈56〉〈61〉〈65〉〈51〉[2|x25|5〉[2|x25|6〉[3|x25|1〉[4|x25|1〉
,

and

CN=8
2mh (3+, 4−, {5+, 6+}, {1−, 2−}) (3.76)

=
1

2

([3|x14|4〉)8s12s56(s34)2

〈45〉〈46〉〈56〉〈65〉[12][13][21][23][1|x14|4〉[2|x14|4〉[3|x14|5〉[3|x14|6〉

+
1

2

〈12〉6[56]6s12s56s
2
34

〈13〉〈23〉[45][46][4|x14|1〉[4|x14|2〉[5|x14|3〉[6|x14|3〉
. (3.77)

At six points, (3.67) is

CN=8
2mh (i, i+ 1, P,Q) = CN=8

3m (i, i+ 1, P,Q) + CN=8
3m (i+ 1, P,Q, i), (3.78)

where P = pi+2 + pi+3 and Q = pi+4 + pi+5. The three-mass supercoefficients given
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in (3.63) become in this case

CN=8
3m (i, i+ 1, P,Q) =

∑
P(P )

∑
P(Q)

(
CN=4

3m (i, i+ 1, P,Q)
)2

(3.79)

× 2
〈i+ 2|P Q|i〉〈i|i+ 1|i+ 2]

〈i|(i+ 1)Q|i〉
〈i+ 4|P (i+ 1)|i〉〈i|Q|i+ 4]

〈i|(i+ 1)Q|i〉
,

and

CN=8
3m (i+ 1, P,Q, i) =

∑
P(P )

∑
P(Q)

(
CN=4

3m (i+ 1, P,Q, i)
)2

(3.80)

× 2
〈(i+ 2) (i+ 1)〉〈i+ 1|i QP |i+ 2]

〈i+ 1|P i|i+ 1〉
〈i+ 4|Q i|i+ 1〉〈i+ 1|P |i+ 4]

〈i+ 1|P i|i+ 1〉
,

where dressing factors involving one external leg are equal to one, and the general

expression for the N = 4 three-mass supercoefficient entering (3.79) and (3.80) is

given in (3.36). Thus, we arrive at

CN=8
2mh (i, i+ 1, P,Q)

=
∑
P(P )

∑
P(Q)

(δ(8) (
∑n

i=1 ηiλi)Ri;i+2 i+4∏n
j=1〈jj + 1〉

∆i,i+1,i+2,i+4

)2

× 2
〈i+ 2|P Q|i〉〈i|i+ 1|i+ 2]

〈i|(i+ 1)Q|i〉
〈i+ 4|P (i+ 1)|i〉〈i|Q|i+ 4]

〈i|(i+ 1)Q|i〉
(3.81)

+

(
δ(8) (

∑n
i=1 ηiλi)Ri+1;i+4 i∏n
j=1〈jj + 1〉

∆i+1,i+2,i+4,i

)2

× 2
〈(i+ 2)(i+ 1)〉〈i+ 1|i QP |i+ 2]

〈i+ 1|P i|i+ 1〉
〈i+ 4|Q i|i+ 1〉〈i+ 1|P |i+ 4]

〈i+ 1|P i|i+ 1〉

]
.

In order to be able to extract the coefficients for graviton amplitudes, we need to

analyse the η-dependence of the R-functions in (3.81). The dependence on the su-

permomenta of the external particles is contained in the product [δ(4)(Ξr;st)δ
(8)(q)]2.

Since we are going to compare to NMHV graviton amplitudes, we will only need the

coefficients of terms of the form (ηi)
8(ηj)

8(ηk)
8.

Consider now the helicity assignment for the coefficient in (3.75). In (3.81),

we encounter the quantities Ξi;i+2 i+4 and Ξi+1;i+4 i+6. We consider the expressions

δ(8)(Ξ1;35)δ(16)(q) and δ(8)(Ξ2;51)δ(16)(q). From (2.116), we have, setting i = 1,

Ξ1;35 = 〈1|(5 + 6) 4|3〉η3 + 〈1|(5 + 6) 4|4〉η4 + 〈34〉[34]〈15〉η5 + 〈34〉[34]〈16〉η6, (3.82)
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and

Ξ2;51 = 〈21〉〈56〉 ([61]η5 + [15]η6 + [56]η1). (3.83)

In the expansion of

δ(8)(Ξ1;35) δ(16)(
6∑
i=1

ηiλi), (3.84)

we need to pick the coefficient of (η2)8(η3)8(η4)8, which is

(〈1|5 + 6|3 + 4|2〉〈43〉)8, (3.85)

and in the expansion of

δ(8)([61]η5 + [15]η6 + [51]η1) δ(16)(
6∑
i=1

ηiλi), (3.86)

the coefficient of (η2)8(η3)8(η4)8 vanishes. In performing the sum in (3.81) one will

also need to include permutations of the above quantities.

Now we turn to the coefficient in (3.77) and compare to (3.81). In considering

the latter for the specific helicity assignment, we encounter the quantities Ξ3;51 and

Ξ4;13. These can be simply obtained by permuting indices in the expressions for

Ξ1;35 and Ξ2;51 given above. The corresponding coefficients for (η1)8(η2)8(η4)8 are

(〈12〉〈34〉s56)8, (3.87)

from Ξ3;51, and

〈4|1 + 2|3]8, (3.88)

from Ξ4;13.

Finally, we compare (3.75) and (3.77) to the expansions of the supercoefficients

CN=8
2mh (1, 2, {3, 4}, {5, 6}) and CN=8

2mh (3, 4, {5, 6}, {1, 2}) which one derives from (3.81).

Summing over the appropriate permutations, we get

CN=8
2mh (1+, 2−, {3−, 4−}, {5+, 6+}) =

〈34〉3[56]〈1|(5 + 6) (3 + 4)|2〉6(s12s234)2

2〈12〉6〈56〉2〈1|5 + 6|2]2(s34)2

×
[

1

〈16〉[23]〈5|3 + 4|2]〈1|5 + 6|4]
+

1

〈51〉[23]〈6|3 + 4|2]〈1|5 + 6|4]

+
1

〈61〉[24]〈5|3 + 4|2]〈1|5 + 6|3]
+

1

〈15〉[24]〈6|3 + 4|2]〈1|5 + 6|3]

]
, (3.89)



CHAPTER 3. ONE-LOOP SUPERCOEFFICIENTS 72

and

CN=8
2mh (3+, 4−, {5+, 6+}, {1−, 2−}) = − 〈34〉4[34]2(s456)2

2〈3|(1 + 2) (5 + 6)|4〉2

×
[
〈12〉6[12]〈56〉[56]6

〈3|1 + 2|4]2

×
(

1

〈23〉[45]〈1|5 + 6|4]〈3|1 + 2|6]
− 1

〈13〉[45]〈2|5 + 6|4]〈3|1 + 2|6]

− 1

〈23〉[46]〈1|5 + 6|4]〈3|1 + 2|5]
+

1

〈13〉[46]〈2|5 + 6|4]〈3|1 + 2|5]

)
+
〈12〉[56]〈4|1 + 2|3]6

〈56〉2[12]2

×
(

1

〈45〉[23]〈4|5 + 6|1]〈6|1 + 2|3]
− 1

〈45〉[13]〈4|5 + 6|2]〈6|1 + 2|3]

− 1

〈46〉[23]〈4|5 + 6|1]〈5|1 + 2|3]
+

1

〈46〉[13]〈4|5 + 6|2]〈5|1 + 2|3]

)]
. (3.90)

We have checked numerically that (3.89) and (3.90) agree with (3.75) and (3.77),

respectively. In Section 5.1 of [55], we consider one extra example, the five-point

NMHV superamplitude and verify that it reproduces known results.

3.6.5 General case

Let us now consider going beyond NMHV. For the N2MHV amplitudes we seek

degree 16 contribtuions for N = 4 SYM, or degree 32 contributions for N = 8

supergravity. In the quadruple cuts for the case we encounter the following possi-

bilities for the four tree amplitudes entering into the quadruple cuts: one can have

four MHV amplitudes, leading to four-mass, three-mass and two-mass coefficients,

or two MHV amplitudes, one anti-MHV amplitude and one NMHV amplitude, lead-

ing to three-mass and two-mass hard coefficients, or two NMHV and two anti-MHV

amplitudes leading to two-mass easy coefficients, or finally one can have one MHV

amplitude, two anti-MHV amplitudes and one N2MHV amplitude, leading to the

two-mass easy and one-mass coefficients.

Four-mass coefficients

For the four-mass coefficients, the obvious quadruple cut diagram, represented in

Figure 3.10, has four MHV tree-level superamplitudes, and is given by
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AMHV AMHV

AMHV AMHV

Q R

P S

l3

l2

l4

l1

Figure 3.10: A quadruple cut diagram determining the four-mass supercoefficient in
an N2MHV amplitude. The four tree-level superamplitudes entering the cut are of
the MHV type.

CN=8
4m (P,Q,R, S) =

1

2

∑
S±

∫ 4∏
i=1

d8ηliMMHV(−l1, P, l2)MMHV(−l2, Q, l3)

×MMHV(−l3, R, l4)MMHV(−l4, S, l1). (3.91)

Using (2.110) this is equal to

CN=8
4m (P,Q,R, S)

=
1

2

∑
S±

∫ 4∏
i=1

d8ηli
∑
P(P )

∑
P(Q)

∑
P(R)

∑
P(S)

(3.92)

×
[
AMHV(−l1, P, l2)

]2
GMHV(−l1, P, l2)

[
AMHV(−l2, Q, l3)

]2
GMHV(−l2, Q, l3)

×
[
AMHV(−l3, R, l4)

]2
GMHV(−l3, R, l4)

[
AMHV(−l4, S, l1)

]2
GMHV(−l4, S, l1).

Since the dressing factors GMHV are independent of the superspace variables η, the

superspace integrals will only act on the square of the product of the four tree

MHV superamplitudes in the expression above. This is the same calculation as (the

square of) the corresponding N = 4 Yang-Mills four-mass coefficient, and hence one
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deduces that

CN=8
4m (P,Q,R, S) =

1

2

∑
S±

∑
P(P )

∑
P(Q)

∑
P(R)

∑
P(S)

(
P4m
n;1

)2

×GMHV(−l1, P, l2)GMHV(−l2, Q, l3)

×GMHV(−l3, R, l4)GMHV(−l4, S, l1), (3.93)

where P4m
n;1 is the coefficient function given in equation (5.11) of [48]. This depends

on the external momenta and in addition on the loop variables li, the solutions for

which must be substituted.

A comment is in order here. We observe that, in contradistinction with the

coefficients considered so far, because of the presence in (3.93) of a sum over the

two solutions, we cannot recast immediately the right-hand side of this equation in

terms of squares of N = 4 supercoefficients; this appears to be a general feature of

four-mass box coefficients.

Three-mass and two-mass hard coefficients

For the three-mass case, we have two possibilities. The first one corresponds to a

special case of a four-mass coefficient, where one of the four tree superamplitudes

in Figure 3.10 is a three-point MHV amplitude. In addition, there are three new

diagrams, represented in Figure 3.11. We focus our attention for instance on the

second diagram in Figure 3.11. This gives

CN=8
3m (r, P,Q,R)

∣∣
2

=
1

2

∑
S±

∫ 4∏
i=1

d8ηliMMHV
3 (−l1, r, l2)MMHV(−l2, P, l3)

× MNMHV(−l3, Q, l4)MMHV(−l4, R, l1) , (3.94)

where P =
∑s−1

i=r+1 pi, Q =
∑t−1

i=s pi and R =
∑r−1

i=t pi.

Because of the presence of a three-point anti-MHV amplitude, only one of the two

cut solutions contributes, and therefore one can then drop the sum over solutions

in (3.94). The explicit expressions (2.110) and (2.114) may be inserted into this
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R
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Figure 3.11: Quadruple cut diagrams contributing to the three-mass supercoefficient
in an N2MHV amplitude. Additional quadruple cut diagrams contributing to this
coefficient are obtained as special cases of the four-mass quadruple cut diagram in
Figure 3.10.

relation, yielding

CN=8
3m (r, P,Q,R)

∣∣
2

=
1

2

∫ 4∏
i=1

d8ηli
∑

P(P,Q,R)

[AMHV
3 (−l1, r, l2)]2

× [AMHV(−l2, P, l3)]2 GMHV(−l2, P, l3)

× [AMHV(−l3, Q, l4)]2
(∑∑

R2(−l3, Q, l4)GNMHV(−l3, Q, l4)
)

× [AMHV(−l4, R, l1)]2 GMHV(−l4, R, l1), (3.95)

where we indicate the NMHV summation schematically for simplicity. Again, the

key point, as noted in the discussion of NMHV amplitudes earlier, is that the

fermionic variables corresponding to the loop momenta do not appear in the dress-

ing factors or the R-functions. Hence one can perform these superspace integrations
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ignoring these functions - and this corresponds to performing the same steps as in

the corresponding N = 4 Yang-Mills case, with the difference that the result is

squared. Thus we obtain

CN=8
3m (r, P,Q,R)

∣∣
2

= 2
∑
P(P )

∑
P(Q)

∑
P(R)

(
CN=4

3m (r, P,Q,R)
∣∣
2

)2
GMHV(−l2, P, l3)

×
(∑∑

R2(−l3, Q, l4)GNMHV(−l3, Q, l4)
)
GMHV(−l4, R, l1),

(3.96)

where by CN=4
3m (r, P,Q,R)

∣∣
2

we mean the result of the same quadruple cut diagram

evaluated for N = 4 SYM. The two-mass hard discussion goes along similar lines.

Two-mass easy coefficients

Finally, we consider the two-mass easy case. There are four types of diagrams

possible here. A first non-vanishing contribution is obtained as a special case of the

four-mass quadruple cut (see Figure 3.10), when two opposite corners of the diagram

are three-point MHV amplitudes.

A second possibility is a special case of the three-mass contributions consid-

ered earlier in Figure 3.11, where the MHV amplitude opposite to the anti-MHV

three-point amplitude is also a three-point amplitude. This particular quadruple

cut diagram will in general vanish as it would entail constraints on the external

kinematics (this is not specific to the particular amplitudes considered here, but is a

general feature of two-mass easy quadruple cuts where the two opposite three-point

amplitudes cannot be one MHV and one anti-MHV).

The third contribution comes from diagrams with two anti-MHV amplitudes at

opposite corners and two NMHV amplitudes at the other two corners (see the third

diagram on Figure 3.12). This gives

CN=8
2me (1, P, s,Q)

∣∣
3

=
1

2

∑
S±

∫ 4∏
i=1

d8ηliMMHV
3 (−l1, 1, l2)MNMHV(−l2, P, l3)

×MMHV
3 (−l3, s, l4)MNMHV(−l4, Q, l1), (3.97)

where P =
∑s−1

i=2 pi and Q =
∑n

i=s+1 pi. Now we insert the expressions for the
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Figure 3.12: Quadruple cut diagrams contributing to the two-mass easy coefficients
of an N2MHV superamplitude.

anti-MHV amplitudes and the NMHV amplitudes, obtaining

CN=8
2me (1, P, s,Q)

∣∣
3

=
1

2

∑
S±

∑
P(P )

∑
P(Q)

∫ 4∏
i=1

d8ηli (3.98)

×
(
AMHV

3 (−l1, 1, l2) AMHV(−l2, P, l3)AMHV
3 (−l3, s, l4) AMHV(−l4, Q, l1)

)2

×
(∑∑

R2GNMHV
)

(−l2, P, l3)
(∑∑

R2GNMHV
)

(−l4, Q, l1),

using a shorthand notation as previously. Only one solution to the loop momenta

conditions contributes, and one may perform the η integrals directly. This is the

same calculation as for the MHV two-mass easy case, and thus we find the result

CN=8
2me (1, P, s,Q)

∣∣
3

=
1

2

∑
P(P )

∑
P(Q)

(
CN=4

2me (1, P, s,Q)
)2
(∑∑

R2GNMHV
)

(−l2, P, l3)

×
(∑∑

R2GNMHV
)

(−l4, Q, l1), (3.99)
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where the solutions for the loop momenta need to be inserted into the terms con-

taining the dressing functions R and G.

Lastly, we consider two-mass easy cases for the first two diagrams in Figure 3.12,

where a new ingredient is the presence of a tree-level N2MHV amplitude. This

amplitude is expressed in terms of MHV tree SYM amplitudes in (2.117), we write

this equation in the short-hand form

MN2MHV(1, . . . , n) =
∑

P(2,...,n−1)

[AMHV(1, . . . , n)]2
∑∑

R2R2H(1, . . . , n). (3.100)

As we have already discussed, the H functions are independent of the superspace

variables η, and the R functions do not depend on η1 or ηn. Now we may write the

quadruple cut for the two-mass easy diagrams as

CN=8
2me (r, P, s,Q)

∣∣
4

=
1

2

∑
S±

∫ 4∏
i=1

d8ηliMMHV
3 (−l1, r, l2)MN2MHV(−l2, P, l3)

×MMHV
3 (−l3, s, l4)MMHV(−l4, Q, l1). (3.101)

As for the corresponding NMHV and MHV two-mass coefficients, only one of the

two solutions to the cut condition contributes, given explicitly in (3.41). Taking this

into account, we get

CN=8
2me (r, P, s,Q)

∣∣
4

=
1

2

∫ 4∏
i=1

d8ηli
∑
P(P )

∑
P(Q)

[AMHV(−l1, r, l2)]2 [AMHV
3 (−l2, P, l3)]2

×
∑∑

R2R2H(−l2, P, l3) [AMHV(−l3, s, l4)]2

× [AMHV(−l4, Q, l1)]2 GMHV(−l4, Q, l1). (3.102)

We may perform the loop superspace integrals and the final answer is

CN=8
2me (r, P, s,Q)

∣∣
4

= 2
∑
P(P )

∑
P(Q)

(CN=4
2me (r, P, s,Q)

∣∣
4
)2 GMHV(−l4, Q, l1)

×
∑∑

R2R2H(−l2, P, l3), (3.103)

where the loop momenta are replaced by the cut solution in (3.41). For the one-

mass case, the only contribution comes from the special case of the last two-mass

easy case discussed immediately above - that where Q contains only one external

momentum.
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Having given some details of how the calculation proceeds for the N2MHV case,

one can see how the general case will work. One can see from [45] that the generalised

R-functions and dressing factors which arise in any quadruple cut do not depend

upon the η variables corresponding to the loop momenta; hence one may perform the

superspace integrals with these functions as spectators. This calculation is however

precisely the same as the corresponding N = 4 Yang-Mills case, except that the

coefficient is squared in the result. The outcome is that the N = 8 supergravity

coefficient is given by a sum of the squares of the result of the corresponding N = 4

Yang-Mills calculation, factored into sums and products of R-functions and dressing

factors. There is also in general a sum over solutions of the cut equation, which need

to be inserted into these expressions. Thus we see how this approach yields N = 8

supergravity coefficients in terms of squares of the results of N = 4 Yang-Mills

calculations.



Chapter 4

Wilson Loops

We now stay within N = 4 super Yang-Mills and focus our attention on the MHV

amplitudes. These amplitudes demonstrate an intriguingly simple iterative structure

at any loop. In addition, a fascinating new duality relates them to specific Wilson

loops over polygonal contours defined in dual momentum space. In this chapter,

we make a step further in perturbation theory and present calculation up to two

loops. Moreover, within dimensional regularisation, we travel beyond the finite

terms in the expansion in ε and perform precision tests of the duality at O(ε). Using

computer algorithms that take advantage of the Mellin-Barnes method, we probe

both amplitudes and Wilson loops at various kinematic points. We discover that

the duality persists at O(ε) for four and five points, and it has a surprisingly simple

form.

4.1 The ABDK/BDS ansatz

We have already demonstrated the simplicity of MHV amplitudes in N = 4 super

Yang-Mills at tree level and one-loop level, while this remarkable simple structure

persists at higher loop orders. Supersymmetric Ward identities [93, 94, 69, 72],

dictate that, at any loop order L, the MHV amplitude can be expressed as the

tree-level amplitude, times a scalar, helicity-blind function M(L)
n

A(L)
n = Atree

n M(L)
n . (4.1)

At one loop, the function M(1)
n , expanded in the basis of scalar box functions,

80
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contains two-mass-easy boxes F 2me only, with all the coefficients being equal to one

M(1)
n =

∑
p,q

F 2me(p, P, q,Q). (4.2)

The scalar box functions F are related to the scalar box integrals I via (3.4). In

(A.6) we give the expansion of I2me in ε through O(ε).

In [57], ABDK discovered an intriguing iterative structure in the two-loop ex-

pansion of the four-point MHV amplitude. This relation can be written as

M(2)
4 (ε)− 1

2

(
M(1)

4 (ε)
)2

= f (2)(ε)M(1)
4 (2ε) + C(2) +O(ε), (4.3)

where

f (2)(ε) = −ζ2 − ζ3ε− ζ4ε
2, (4.4)

and

C(2) = −1

2
ζ2

2 . (4.5)

The ABDK relation (4.3) is built upon the known exponentiation of infrared

divergences [95, 96], which guarantees that the singular terms must agree on both

sides of (4.3), as well as on the known behavior of amplitudes under collinear limits

[97, 98]. The highly nontrivial content of the ABDK relation is that (4.3) holds

exactly as written at O(ε0), while ABDK observed that the O(ε) terms do not

satisfy the same iteration relation [57].

Scattering amplitudes with more than four gluons normalised by the tree ampli-

tude may contain odd powers of the Levi-Civita tensor contracted with the external

momenta. These terms flip sign under a parity transformation, which exchanges λ’s

with λ̃’s and reverses all helicities. We refer to them as parity-odd terms, and to

the remaining terms as parity-even.

In [57], it was conjectured that (4.3) should hold for two-loop amplitudes with an

arbitrary number of external particles, with the same quantities (4.4) and (4.5) for

any n. For five-points, this conjecture was confirmed first in [58] for the parity-even

part of the two-loop amplitude, and later in [59] for the complete amplitude. Notice

that for the iteration to be satisfied, parity-odd terms that enter on the left-hand

side of the relation (4.3) must cancel up to and including O(ε0) terms, since the

right-hand side is parity even up to this order in ε. So far, this has been checked

and confirmed at two loops for five and six particles [59, 99]. This is also crucial for

the duality with Wilson loops, that is the main subject of this Chapter, which by
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construction cannot produce parity-odd terms at two loops.

It has been found that starting from six particles and two loops, the ABDK/BDS

ansatz (4.3) needs to be modified by allowing the presence of a remainder function

Rn [62, 12],

M(2)
n (ε)− 1

2

(
M(1)

n (ε)
)2

= f (2)(ε)M(1)
n (2ε) + C(2) +Rn + En(ε), (4.6)

where Rn is ε-independent and En(ε) vanishes as ε→ 0. We parameterize the latter

as

En(ε) = ε En +O(ε2). (4.7)

Ultimate goal of this Chapter is to discuss in detail En for n = 4, 5 and present

a remarkable relation to the same quantity calculated from the Wilson loop, as it

appeared in [14]. Hitherto this relation was only expected to hold for the finite parts

of the remainder Rn.

4.2 The MHV/Wilson loop duality

In a parallel development to the ABDK/BDS ansatz, Alday and Maldacena ad-

dressed the problem of calculating scattering amplitudes at strong coupling inN = 4

super Yang-Mills using the AdS/CFT correspondence [15, 16]. Their remarkable re-

sult showed that the planar amplitude at strong coupling is calculated by a Wilson

loop whose contour Cn is the n-edged polygon obtained by joining the lightlike mo-

menta of the particles following the order induced by the colour structure of the

planar amplitude. At strong coupling the calculation amounts to finding the min-

imal area of a surface ending on the contour Cn embedded at the boundary of a

T-dual AdS5 space [17]. Shortly after, it was realised that the very same Wilson

loop evaluated at weak coupling reproduces all one-loop MHV amplitudes in N = 4

super Yang-Mills [7, 8]. The conjectured relation between MHV amplitudes and Wil-

son loops found further strong support by explicit two loop calculations at four [9],

five [10] and six points [62, 12, 99]. In particular, the absence of a non-trivial re-

mainder function in the four- and five-point case was later explained in [10] from the

Wilson loop perspective, where it was realised that the BDS ansatz is a solution to

the anomalous Ward identity for the Wilson loop associated to the dual conformal

symmetry [67].

A Wilson loop is the following non-trivial function of the gauge field Aµ defined
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on a closed contour C in coordinate space

W [C] = Tr P exp

[
ig

∮
C
dxµAµ

]
, (4.8)

where Aµ(x) = Aaµ(x)ta and ta are the SU(N) generators in the fundamental repre-

sentation normalised as tr
(
tatb
)

= 1
2
δab. The operator P imposes path ordering of

the generators ta. Wilson loops are special because they give us a gauge invariant

quantity for any loop C we can write down in coordinate space.

Calculating the expectation value of a Wilson loop at weak coupling, we can

resort to perturbation theory, and expand the exponential in (4.8) in powers of the

coupling constant g. For example, the first two terms in this expansion are

〈0|W [C]|0〉 = 1 +
1

2
(ig)2CFCA

∮
C

dxµ
∮
C

dyν〈0|Aµ(x)Aν(y)|0〉+O(g4), (4.9)

where CF = (N2 − 1)/(2N) is the Casimir of the fundamental representation of

SU(N) and CA = N is the adjoint Casimir. The O(g1) term vanishes as it involves

the expectation value of a single field. The expectation value 〈0|Aµ(x)Aν(y)|0〉 can

also be expanded in g and at zeroth order it gives us the free gluon propagator

Gµν(x− y). In the expansion (4.9), we refer to the g(2L) term as the L-loop contri-

bution to the Wilson loop.

As mentioned earlier, motivated by a calculation at strong coupling within String

Theory, it has been observed that, on the weak coupling side, the n-point planar

MHV amplitudes in N = 4 super Yang-Mills are equal to specific Wilson loops over

a polygonal contour Cn with n lightlike sides, defined in dual momentum space. This

duality at weak coupling is the main topic of this Chapter. More specifically, the

helicity blind factorMn we introduced in (4.1) defined in momentum space, appears

to be dual to a Wilson loop living in dual momentum space, and over a polygonal

contour constructed by connecting the dual coordinates xi, i = 1, . . . , n. The co-

ordinates xi are defined via (2.25) and the contour is the one shown in figure 2.2

after identifying xn+1 ≡ x1. A sketch of the duality is given in Figure 4.1. The

exact formulation of the MHV/Wilson loop duality involves the logarithms of the

two quantities

lnMn = ln 〈W [C]〉+O(1/N2). (4.10)

In (4.9) we expanded the Wilson loop in terms of the the coupling constant

g. Alternatively, we can expand in powers of the ‘t Hooft coupling constant a =
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Mn

p4 p3

p2

pn p1

↔ 〈W [C]〉

p2

p3 p1

p4 pn

Figure 4.1: The MHV amplitude/Wilson loop duality relates the logarithm of the
helicity-blind function Mn of the MHV amplitudes (see (4.1)) to the logarithm of
the expectation value of the Wilson loop 〈W [C]〉 over a specific polygonal contour Cn
made out the momenta of the external particles.

g2N/(8π2) as follows

〈W [C]〉 = 1 +
∞∑
l=1

alW (l)
n , (4.11)

where W
(l)
n is the l-loop contribution to the expectation value of the n-sided polyg-

onal Wilson loop. The non-Abelian exponentiation theorem [100, 101] guarantees

that we can write the Wilson loop in an exponentiated form

〈W [C]〉 = exp
∞∑
l=1

alw(l)
n , (4.12)

where w
(l)
n is the l-loop contribution to the logarithm of the n-sided polygonal Wilson

loop.

The w
(l)
n are obtained from subsets of Feynman diagrams [100, 101] contributing

to the W
(l)
n , and, in addition, the colour weights assigned to the diagrams in w

(l)
n are,

in general, different from the colour weights of corresponding diagrams in W
(l)
n . The

general rule for finding the surviving diagrams and their coefficients, is to keep only

parts with “maximal non-abelian colour factor”. At two-loops this factor is equal to

the Casimirs of the fundamental and the adjoint representations CFCA [102]. For

example, the ladder diagram, appearing on the left in Figure 4.2, has colour factor

tr[tatatbtb] = dFC
2
F , and therefore does not contribute to the logarithm of the Wilson

loop. The right diagram in Figure 4.2, corresponding to the cross diagram, has

colour factor tr[tatbtatb] = dFCF (CF − 1/2CA) where dF is equal to the dimension

of the representation, and therefore this diagram survives with a modified colour

factor −1/2dFCFCA, corresponding to its maximally non-abelian part. For a recent
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algorithm for computing the colour factor associated with any given diagram in the

exponent we refer the reader to [103].

ta

tb

ta

tb

Figure 4.2: Non-abelian exponentiation dictates that only maximally non-abelian
parts of diagrams survive in the logarithm of the Wilson loop. For example, at two
loops, the ladder diagram (left diagram) does not appear at all, while the cross dia-
gram (right diagram) appears with a modified factor corresponding to its maximally
non-abelian part.

Expanding the exponential in (4.11) we get

exp
∞∑
l=1

alw(l)
n = 1 +

(
aw(1)

n + a2w(2)
n +O(a3)

)
+

1

2

(
aw(1)

n +O(a2)
)2

= 1 + aw(1)
n + a2

[
w(2)
n +

1

2
(w(1)

n )2

]
+O(a3), (4.13)

and equating the coefficients of each power of a between (4.12) and (4.13) we get

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2
(W (1)

n )2. (4.14)

Polygonal Wilson loops suffer from UV divergences due to the presence of the

cusps, that are regulated by working in D = 4− 2εUV, where εUV > 0. The ultravi-

olet εUV we use in Wilson loops is related to the infrared dimensional regularisation

parameter ε that we encounter in amplitude calculations, via εUV = −ε. To facilitate

the comparison with the corresponding quantities for amplitudes, in the following

discussion about Wilson loops we express the results in terms of the infrared pa-

rameter ε.
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4.3 The Wilson loop remainder function

As discussed in more detail in Section 4.5, the one-loop Wilson loop w
(1)
n times the

tree-level MHV amplitude is equal to the one-loop MHV amplitude, first calculated

in [84] using the unitarity-based approach [85], up to a regularization-dependent

factor. This implies that non-trivial remainder functions can only appear at two

and higher loops. At two loops, which is our main focus in [14] and the current

Chapter, and in a similar fashion to (4.6), we define the remainder function RWL
n

for an n-sided Wilson loop as

w(2)
n (ε) = f

(2)
WL(ε)w(1)

n (2ε) + C
(2)
WL +RWL

n + EWL
n (ε), (4.15)

where

f
(2)
WL(ε) = f

(2)
0 + f

(2)
1,WLε+ f

(2)
2,WLε

2. (4.16)

Note that f
(2)
0 = −ζ2, which is the same as on the amplitude side, while f

(2)
1,WL =

G
(2)
ik = 7ζ3 [104]. We expect a remainder function at every loop order l and the

corresponding equations would be

w(l)
n (ε) = f

(l)
WL(ε)w(1)

n (lε) + C
(l)
WL +R(l)

n,WL + E
(l)
n,WL(ε). (4.17)

Similarly to the amplitude case, the remainder RWL
n is an ε-independent function,

while we parametrise the ε-dependent quantity EWL
n as

EWL
n (ε) = ε EWL

n +O(ε2). (4.18)

In [105], the four- and five-edged Wilson loops were cast in the form (4.15) and

the natural requirements

RWL
4 = RWL

5 = 0, (4.19)

allowed for a complete determination of the coefficients f
(2)
2,WL and C

(2)
WL. The O(ε0)

and O(ε) coefficients of f
(2)
WL(ε) had been determined earlier in [9], while the two

conditions (4.19) give us the remaining two unknowns, leading to the values [105]

f
(2)
WL(ε) = −ζ2 + 7ζ3 ε− 5ζ4 ε

2, (4.20)

and

C
(2)
WL = −1

2
ζ2

2 . (4.21)
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As noticed in [105], there is an intriguing agreement between the constant C
(2)
WL and

the corresponding value (4.5) of the same quantity on the amplitude side.

What has been observed so far is a duality between Wilson loops and ampli-

tudes up to finite terms. In turn this can be reinterpreted as an equality of the

corresponding remainder functions

Rn = RWL
n . (4.22)

A consequence of the precise determination of the constants f
(2)
2,WL and C

(2)
WL is that

no additional constant term is allowed on the right hand side of (4.22). For the

same reason, the Wilson loop remainder function must then have the same collinear

limits as its amplitude counterpart, i.e.

RWL
n → RWL

n−1, (4.23)

with no extra constant on the right hand side of (4.23). An alternative interpretation

of the duality in terms of certain ratios of amplitudes and Wilson loops has been

given recently in [106].

Our main result in [14] and the current Chapter is that for n = 4, 5 the relation

between amplitudes and Wilson loops continues to hold for terms of O(ε1). In

particular we find

E (2)
4 = E (2)

4,WL − 3ζ5, (4.24)

E (2)
5 = E (2)

5,WL −
5

2
ζ5. (4.25)

Note that these results have been obtained (semi-)numerically with typical errors of

10−8 at n = 4 and 10−4 for n = 5. Details of the calculations are presented in the

remaining of this Chapter. More precisely E (2)
4 is known analytically [107], while the

analytic evaluation of E (2)
4,WL is discussed in appendix A of [14]. At five points all

results are numerical and furthermore on the amplitude side we only considered the

parity-even terms. It is an interesting open question whether the parity-odd terms

cancel at O(ε) as they do at O(ε0) [59].

4.4 MHV amplitudes

In this section we review results for the MHV amplitudes at one and two loops.

These are necessary ingredients in making the comparison with the Wilson loop.
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4.4.1 One-loop four- and five-point case

We begin by presenting the one-loop MHV amplitudes, for which analytic results

exist to all orders in ε. Following in this Chapter the conventions of [57], the four-

point amplitude is given by [108]

M(1)
4 = −1

2
stI

(1)
4 , (4.26)

where s = (p1 + p2)2, t = (p2 + p3)2 are the usual Mandelstam variables and I
(1)
4 is

the massless scalar box integral, depicted in Figure 4.3, and given by

I
(1)
4 =

eεγ

iπD/2

∫
dDp

1

p2(p− p1)2(p− p1 − p2)2(p+ p4)2
, (4.27)

which we have written out in order to emphasize the normalization convention (fol-

lowed throughout this Chapter) that each loop momentum integral carries an overall

factor of eεγ/iπD/2. The integral may be evaluated explicitly (see for example [90]) in

I
(1)
4 =

p2 p3

p1 p4

Figure 4.3: The massless scalar box integral I
(1)
4 .

terms of the ordinary hypergeometric function 2F1, leading to the exact expression

M(1)
4 = −e

εγ

ε2
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

[
(−s)−ε2F1(1,−ε, 1− ε, 1 + s/t) + (s↔ t)

]
,

(4.28)

valid to all orders in ε. We will always be studying the amplitude/Wilson loop

duality in the fully Euclidean regime where all momentum invariants such as s and

t take negative values. The formula (4.28) applies in this regime as long as we are

careful to navigate branch cuts according to the rule

(−z)−ε 2F1(−ε,−ε, 1− ε, 1 + z) := lim
ε→0

Re

[
2F1(−ε,−ε, 1− ε, 1 + z + iε)

(−z + iε)ε

]
, (4.29)
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when z > 0.

Five-point loop amplitudes M(L)
5 contain both parity-even and parity-odd con-

tributions after dividing by the tree amplitude as in (4.1).

The parity-even part of the one-loop five-point amplitude is given by [109]

M(1)
5+ = −1

4

∑
cyclic

s34s45I
(1)
5 , (4.30)

where the sum runs over the five cyclic permutations of the external momenta pi,

and the integral I
(1)
5 is depicted in Figure 4.4. This integral can also be explicitly

I
(1)
5 =

p3 p4

p2

p5
p1

Figure 4.4: The one-loop scalar box integral I
(1)
5 encountered at five points.

evaluated (see for example [90]), leading to the all-orders in ε result

M(1)
5+ = −e

εγ

ε2
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

1

2

×
∑
cyclic

[(
−s12 − s45

s34s45

)ε
2F1(−ε,−ε, 1− ε, 1− s34

s12 − s45

)

+

(
−s12 − s34

s34s45

)ε
2F1(−ε,−ε, 1− ε, 1− s45

s12 − s34

) (4.31)

−
(
−(s12 − s34)(s12 − s45)

s12s34s45

)ε
2F1(−ε,−ε, 1− ε, 1− s34s45

(s12 − s34)(s12 − s45)
)

]
,

again keeping in mind (4.29).

4.4.2 Two-loop four- and five-point case

The two-loop four-point amplitude is given by [110]

M(2)
4 =

1

4
s2tI

(2)
4 + (s↔ t), (4.32)
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where the double box integral I
(2)
4 is depicted in Figure 4.5, and it may be evaluated

analytically through O(ε2) using results from [107] (no all-orders in ε expression for

the double box integral is known), from which we find

E4 = 5 Li5(−x)− 4LLi4(−x) +
1

2
(3L2 + π2) Li3(−x)− L

3
(L2 + π2) Li2(−x) (4.33)

− 1

24
(L2 + π2)2 log(1 + x) +

2

45
π4L− 39

2
ζ5 +

23

12
π2ζ3,

where x = t/s and L = log x. In order to be able to present the amplitude re-

mainder (4.33) in this form, we have pulled out a factor of (st)−Lε/2 from each loop

amplitude M(L)
4 . This renders the amplitudes, and hence the ABDK remainder

I
(2)
4 =

p2 p3

p1 p4

Figure 4.5: Double box integral I
(2)
4 at four points.

E4(ε), dimensionless functions of the single variable x. We perform this step in the

four-point case only, where we are able to present analytic results for the amplitude

and Wilson loop remainders.

The parity-even part of the two-loop five-point amplitude involves the two inte-

grals shown in Figure 4.6, in terms of which the former is written as [111, 58, 59]

M(2)
5+ =

1

8

∑
cyclic

(
s34s

2
45I

(2)a + (pi → p6−i)
)

+ s12s34s45I
(2)d. (4.34)

To evaluate this amplitude to O(ε) we resort to a numerical calculation using Mellin-

Barnes parameterizations of the integrals (which may be found for example in [58]),

which we then expand through O(ε), simplify, and numerically integrate with the

help of the MB, MBresolve, and barnesroutines programs [112, 113]. In this manner

we have determined the O(ε) contribution E (2)
5 to the five-point ABDK relation

numerically at a variety of kinematic points. The results are displayed in Tables 4.2

and 4.4. We present the Mellin-Barnes method in Section 4.9, while in Section 4.10

we discuss its implementation for the Wilson loop integrals.
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I
(2)a
5 =

p3 p4

p2

p5
p1

I
(2)d
5 = (q − p1)

2×

p2

p3

p4

q
p1

p5

Figure 4.6: Integrals appearing in the amplitude M(2)
5+. Note that I

(2)d
5 contains the

indicated scalar numerator factor involving q, one of the loop momenta.

4.5 Wilson loops at one loop

As a warmup we will present the calculation of the one-loop polygonal lightlike

Wilson loop. This was found in [8] for any number of edges and to all orders in

the dimensional regularisation parameter ε. Our goal is to calculate the g2 term

in the expansion (4.9) of the Wilson loop evaluated on the lightlike contour shown

on the right-hand side of Figure 4.1. The general diagram involves a single gluon

propagator with its two endpoints running on the contour Cn in a way preserving

their ordering, as shown on Figure 4.7. We use a real parameter τ to parametrise

the points xµ(τ) of the contour Cn. We rewrite the the Wilson loop (4.8) as

W [C] = Tr P exp

[
ig

∮
C
dτ Aµ(xµ(τ)) ẋµ(τ)

]
. (4.35)

Employing Feynman gauge and working in D = 4 − 2εUV dimensions, where the

ultraviolet dimensional regularisation parameter εUV > 0, the gluon propagator in
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p2

p3 p1

p4 pn

x3 x2

x4 x1

x5 xn

Figure 4.7: General diagram contributing to the one-loop correction to the expecta-
tion value of the Wilson loop. The endpoints of the gluon propagator run on the
lightlike polygonal contour in a way preserving their ordering.

dual momentum space is

Gµν(z) = −π
2−D

2

4π2
Γ

(
D

2
− 1

)
gµν

(−z2 + iε)
D
2
−1

= −π
εUV

4π2
Γ (1− εUV)

gµν

(−z2 + iε)1−εUV
. (4.36)

We distinguish three different classes of diagrams. The first class is the one where

both endpoints of the propagator are attached to the the same lightlike segment pi

as shown in figure 4.8. Using parameters τ1, τ2 ∈ [0, 1] we rewrite the positions of

pi
τ1 pi

xi xi+1

τ2 pi

Figure 4.8: Diagrams where the gluon propagator is attached to a single lightlike
segment give a vanishing contribution to the one-loop Wilson loop.

the endpoints with respect to the cusp xi+1, and the double integral for this diagram

gives

D1(pi) = −Γ(1− εUV)

4π2−εUV

∫ 1

0

dτ1

∫ 1

0

dτ2
p2
i

[−p2
i (τ2 − τ1)2]

1−εUV
= 0, (4.37)

which vanishes because p2
i = 0 and εUV > 0.
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The second class of diagrams is the ones where the gluon propagator is stretching

between two adjacent segments pi and pi+1, as depicted in Figure 4.9. This diagram

xi

pi
τ1 pi

pi+1

xi+1

xi+2

τ2 pi+1

Figure 4.9: Cusp diagram contributing to the one-loop Wilson loop. Diagrams of
this kind are ultraviolet divergent in dual momentum space, while they match the
infrared divergent parts of the amplitude in momentum space.

is a function of the only momentum invariant si,i+1 = 2pi · pi+1. We are again

reparametrising the integral into a double integral over τ1, τ2 ∈ [0, 1] as follows

D2(si,i+1) = −Γ(1− εUV)

4π2−εUV

∫ 1

0

dτ1

∫ 1

0

dτ2
pi · pi+1(

− [piτ1 + pi+1τ2]2
)1−εUV

= −Γ(1− εUV)

4π2−εUV

1

2

[
−(−si,i+1)εUV

ε2UV

]
. (4.38)

The last class consists of diagrams where the gluon propagator stretches be-

tween non-adjacent lightlike segments pi and pj separated by segments with total

momentum P , as depicted in Figure 4.10. The integral for this diagram is given by

xi+1

pi
xi

τ1 pi

Q P

τ2 pj

xj
pj

xj+1

Figure 4.10: Diagrams where the gluon propagator stretches between non-adjacent
lightlike segments give finite contributions to the Wilson loop.
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D3(s, t, u) = −Γ(1− εUV)

4π2−εUV

∫ 1

0

dτ1

∫ 1

0

dτ2
pi · pj(

− [pi(1− τ1) + P + pjτ2]2
)1−εUV

, (4.39)

which should be a function of the invariants s = (pi + P )2, t = (P + q)2 and

u = (pi + pj)
2 = 2pi · pj. Due to momentum conservation pi + P + pj + Q = 0 and

s+ t+u = P 2 +Q2. This integral is finite in four dimensions and its contribution to

the Wilson loop can be found to all orders in ε and is (up to an ε-dependent factor)

precisely equal to the finite part of a two-mass easy or one-mass box function [8].

The general one-loop MHV amplitude is made out of two-mass-easy box func-

tions according to (4.2). The relation between the Wilson loop diagram and the

corresponding 2me box function is [8]

F 2me(p, P, q,Q)
∣∣∣
finite

= eεγ
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
×Fε(s, t, P 2, Q2), (4.40)

where

Fε(s, t, P 2, Q2) =

∫ 1

0

dτ1 dτ2
u/2

{− [P 2 + (s− P 2)τ1 + (t− P 2)τ2 + uτ1τ2]− iε}1+ε ,

(4.41)

and s = (p + P )2, t = (P + q)2 and u = P 2 + Q2 − s − t. In Appendix B, we

present two different forms for the function Fε. Notice that we have included an

infinitesimal negative imaginary part −iε in the denominator which dictates the

analytic properties of the integral. This has the opposite sign to the one expected

from a propagator term in a Wilson loop in configuration space. On the other

hand it has the correct sign for the present application, namely for the duality with

amplitudes [114]. One simple way to deal with this is simply to add an identical

positive imaginary part to all kinematic invariants

s→ s+ iε, t→ t+ iε, P 2 → P 2 + iε, Q2 → Q2 + iε. (4.42)

The general n-point one loop amplitude is given by the sum over precisely these

two-mass easy and one-mass box functions (in the case P or Q is massless) [84] to

(ε0). Thus the Wilson loop is equal to the amplitude at one loop for any n up to

finite order in ε only (and up to a kinematic independent factor).

However, at four and five points a much stronger statement can be made. The

four-point amplitude and the parity-even part of the five-point amplitude are both

given by the sum over zero- and one-mass boxes to all orders in ε. Thus the Wilson

loop correctly reproduces these one-loop amplitudes to all orders in ε. Using the
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results in appendix B of [14] we find that the four-point Wilson loop (in a form

which is manifestly real in the Euclidean regime s, t < 0) is given by

W
(1)
4 = Γ(1 + ε)eεγ

{
− 1

ε2
[
(−s)−ε + (−t)−ε

]
+ Fε(s, t, 0, 0) + Fε(t, s, 0, 0)

}
= Γ(1 + ε)eεγ

{
− 1

ε2
[
(−s)−ε + (−t)−ε

]
(4.43)

+
1

ε2

( u
st

)ε [( t
s

)ε
2F1(ε, ε; 1 + ε;−t/s)

+
(s
t

)ε
2F1(ε, ε; 1 + ε;−s/t)− 2πε cot(επ)

]}
.

The generic form of the function Fε is given in (B.1) or equivalently in (B.4).

For the five-point amplitude we display a new form which has a simple analytic

continuation in all kinematical regimes. It is given in terms of 3F2 hypergeometric

functions and is derived in detail in Appendix B of [14]

W
(1)
5 =

5∑
i=1

Γ(1 + ε)eεγ
[
− 1

2ε2
(−si,i+1)−ε + Fε(si,i+1, si+1,i+2, si+3,i+4, 0)

]

=
5∑
i=1

Γ(1 + ε)eεγ
{
− 1

2ε2
(−si,i+1)−ε (4.44)

− 1

2

(
si+3,i+4 − si,i+1 − si+1,i+2

si,i+1si+1,i+2

)ε
×
[
si+3,i+4−si,i+1

si+1,i+2
3F2

(
1, 1, 1 + ε; 2, 2;

si+3,i+4−si,i+1

si+1,i+2

)
+

si+3,i+4−si+1,i+2

si,i+1
3F2

(
1, 1, 1 + ε; 2, 2;

si+3,i+4−si+1,i+2

si,i+1

)
+
H−ε
ε

− (si+3,i+4−si,i+1)(si+3,i+4−si+1,i+2)

si,i+1si+1,i+2

× 3F2

(
1, 1, 1 + ε; 2, 2;

(si+3,i+4−si,i+1)(si+3,i+4−si+1,i+2)

si,i+1si+1,i+2

)]}
,

where Hn is the nth-harmonic number. Using hypergeometric identities one can show

that (up to the prefactor) the four- and five-sided Wilson loops, (4.43) and (4.44),

are equal to the four-point and the (parity-even part of the) five-point amplitudes

of (4.28) and (4.31).

The precise relation between the Wilson loop and the amplitude is

W
(1)
4 =

Γ(1− 2ε)

Γ2(1− ε)
M(1)

4 , W
(1)
5 =

Γ(1− 2ε)

Γ2(1− ε)
M(1)

5+, (4.45)

where M(1)
4 is the one-loop four-point amplitude and M(1)

5+ is the parity-even part
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of the five-point amplitude.

4.6 Dual conformal symmetry

Having demonstrated the duality between MHV amplitudes and polygonal lightlike

Wilson loops at one-loop, we move on to discuss the ‘dual conformal symmetry’, a

symmetry shared by the two objects appearing on the duality. This is a symmetry

under the conformal group acting in the dual momentum space x defined in (2.25). A

lightlike Wilson loop is manifestly invariant under dual conformal transformations in

four dimensions, as the conformal group maps null vectors to null vectors. However,

due to the presence of ultraviolet divergences, we are forced to perform dimensional

regularisation and work in D = 4− 2εUV dimensions and the invariance is broken.

The amplitude and the Wilson loop contain divergences in the infrared and

ultraviolet respectively. We write

lnMn = ln Zn + ln Fn +O(ε), (4.46)

lnWn = ln Z(WL)
n + ln F (WL)

n +O(εUV), (4.47)

where the Z terms contain all the poles in the dimensional regulators ε ≡ εIR and

εUV, and the F terms contain the finite parts as ε → 0. The original content of

the conjectured MHV amplitude/Wilson loop duality was the matching of the finite

parts

ln Fn = lnF (WL)
n + const. (4.48)

In the following sections we will present results suggesting that the duality holds

even beyond the finite terms, i.e. at O(ε).

Returning to the topic of dual conformal symmetry, the generators of the SO(2, 4)

conformal transformations are: rotations Mµν , dilatations D, translations Pµ and

conformal boosts Kµ. These transformations act on fundamental (gauge, gaugino,

scalars) fields φI(x) with conformal weight dφ and Lorentz indices I, while their

generators are [10]

MµνφI = (xµ∂ν − xν∂µ)φI + (mµν) J
I φJ ,

DφI = x · ∂ φI + dφ φI , (4.49)

PµφI = ∂µ φI , (4.50)

KµφI =
(
2xµx · ∂ − x2∂µ

)
φI + 2xµ dφ φI + 2xν(m

µν) J
I φJ ,
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where mµν is the generator of spin rotations, e.g., mµν = 0 for a scalar field and

(mµν) ρ
λ = gνρδµλ − gµρδνλ for a gauge field.

In dimensionally regularised N = 4 super Yang-Mills, the Wilson loop 〈Wn〉 is

given by the following functional integral

〈Wn〉 =

∫
DADλDφ eiSε[A, λ, φ] Tr

[
Pexp

(
i

∮
Cn
dx · A(x)

)]
, (4.51)

where the integration goes over gauge fields A, gauginos λ, and scalars φ. The action

is given by

Sε =
1

g2µ2ε

∫
dDx L(x), (4.52)

and the Lagrangian is schematically

L = Tr

[
−1

2
F 2
µν

]
+ gaugino + scalars + gauge fixing + ghosts. (4.53)

In (4.52), µ is the normalisation scale and all fields are redefined in a way such

that the coupling constant g is not present inside the Lagrangian L(x). This way,

the canonical dimension of the gauge fields Aµ(x) is preserved, and therefore, the

conformal invariance of the path-ordered exponential entering the functional integral

in (4.51) is also preserved. However, since we are working in D rather than four

dimensions, due to the presence of the integration measure
∫
dDx in (4.52), the

action Sε is not invariant under dilatations and conformal boosts, which yields an

anomaly in the the Ward identities. The conformal Ward identities can be derived

following standard methods [115, 116, 117, 118, 119].

The action has a non-vanishing variation under dilatations [10]

δDSε = − 2ε

g2µ2ε

∫
dDx L(x). (4.54)

As a result, the action of the dilatations generator on 〈Wn〉, as defined in (4.51),

yields an anomalous term given by

D 〈Wn〉 =
n∑
i=1

(xi · ∂i) 〈Wn〉 = − 2iε

g2µ2ε

∫
dDx 〈L(x)Wn〉. (4.55)

Similarly, the anomalous term in the action of the special conformal generator is

Kν〈Wn〉 =
n∑
i=1

(2xνi xi · ∂i − x2
i∂

ν
i )〈Wn〉 = − 4iε

g2µ2ε

∫
dDx xν 〈L(x)Wn〉. (4.56)
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In terms of the logarithm of the Wilson loop, (4.55) and (4.56) give

D ln 〈Wn〉 = − 2iε

g2µ2ε

∫
dDx

〈L(x)Wn〉
〈Wn〉

(4.57)

Kν ln 〈Wn〉 = − 4iε

g2µ2ε

∫
dDx xν

〈L(x)Wn〉
〈Wn〉

. (4.58)

These anomalies formally vanish as ε→ 0, but when inserted in loops, they survive

because of divergent terms with powers of 1/ε.

In the limit ε→ 0, the special conformal Ward identity takes the form [9]

n∑
i=1

(
2xνi xi · ∂i − x2

i∂
ν
i

)
ln Fn =

1

2
Γcusp(a)

n∑
i=1

ln
x2
i,i+2

x2
i−1,i+1

xνi,i+1, (4.59)

where Γ
(l)
cusp are the expansion coefficients of the cusp anomalous dimension

Γcusp(a) =
∑
l≥1

al Γ(l)
cusp = 2a− π2

3
a2 +O(a3). (4.60)

The conformal Ward identity (4.59) restricts the form of finite part of the Wilson

loop Wn. For n = 4, 5, (4.59) has a unique solution up to an additive constant [10]

lnF4 =
1

4
Γcusp(a)ln2

(
x2

13

x2
24

)
+ const, (4.61)

lnF5 = −1

8
Γcusp(a)

5∑
i=1

ln

(
x2
i,i+2

x2
i,i+3

)
ln

(
x2
i+1,i+3

x2
i+2,i+4

)
+ const. (4.62)

This can be easily verified by making use of the identity Kµx2
ij = 2(xµi +xµj )x2

ij. The

solutions (4.61) and (4.62) give exactly the form of the BDS ansatz [107] for the

helicity-blind part Mn of the MHV amplitude, discussed in Section 4.1.

At four and five points, one cannot build any conformal invariants out of the

xi’s that are lightlike separated x2
i,i+1 = 0, and as a result, the form of F4 and F5

are fixed up to an additive constant. For n > 5 one can build conformal cross-ratios

that have the form
x2
ijx

2
kl

x2
ikx

2
jl

. (4.63)

For example, at six points there are three cross-ratios

u1 =
x2

13x
2
46

x2
14x

2
36

, u2 =
x2

24x
2
15

x2
25x

2
14

, u3 =
x2

35x
2
26

x2
36x

2
25

. (4.64)
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The general solution of the Ward identity for n > 5 will contain an arbitrary function

of the conformal cross-ratios.

Superamplitudes are invariant under a superconformal symmetry acting in dual

momentum space termed ‘dual superconformal symmetry’ [68]. This symmetry has

been explained from the string theory point of view [120, 121] using a T-duality of

the superstring theory on AdS5×S5 which involves a bosonic T-duality [17] together

with a new fermionic T-duality. The T-duality exchanges the original with the dual

superconformal symmetries.

In order study the dual superconformal symmetry, we express any amplitude

in terms of the dual momenta xi introduced in (2.25) and their supersymmetric

partners θAαi defined in a similar fashion

ηAi λ
α
i = θAαi − θAαi+1. (4.65)

Special conformal transformations can be obtained by an inversion followed by a

translation, and a further inversion. Combining inversions with supersymmetry

transformations, one generates all the superconformal transformations. At tree level,

the dual supersymmetries are either manifest or they are related to ordinary special

superconformal symmetries [68], and therefore it suffices to show invariance under

dual inversions. Under inversions, the dual coordinates transform as follows [68]

xi,αβ̇ →
xi,βα̇
x2
i

, θAαi →
(
x−1
i

)α̇β
θAi,β. (4.66)

It is easy to show that the MHV superamplitude transforms covariantly under in-

versions

AMHV(1, 2, . . . , n)→ AMHV(1, 2, . . . , n)
n∏
k=1

x2
k. (4.67)

Using supersymmetric BCFW recursion it has been shown that all tree-level super-

amplitudes transform in the same fashion [46].

4.7 Wilson loops at two loops

In this section, we present all the integrals making up the logarithm of the n-sided

Wilson loop at two loops [105], in a form appropriate for numeric evaluation in

MATHEMATICA using the package MB [112]. Notice that all the integrands are rewritten

as functions of the momentum invariants only, i.e. squares of sums of consecutive

momenta. Moreover, via appropriate changes of variables, all integrations are to be
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performed on the interval [0, 1]. For each of these functions, we list all symmetries

under permutations of its arguments. Using these symmetries, allows us to reduce

the actual number of diagrams that need to be evaluated.

We remind the reader that, in order to regularise the UV divergences of Wilson

loops, we work in D = 4−2εUV dimensions, where εUV > 0. The following diagrams

are written in terms of the ultraviolet regularisation parameter εUV. To facilitate the

comparison between Wilson loops and scattering amplitudes, the numeric results we

present later on have been expressed in terms of the infrared regularisation parameter

ε < 0 used in scattering amplitudes. The two parameters are related simply by

εUV = −ε.
The complete two-loop contribution to the logarithm of the n-sided polygonal

Wilson loop is given by [105]

w(2)
n = C

{ ∑
1≤i<j<k≤n

[
fH(pi, pj, pk;Qjk, Qki, Qij) + fC(pi, pj, pk;Qjk, Qki, Qij)

+ fC(pj, pk, pi;Qki, Qij, Qjk) + fC(pk, pi, pj;Qij, Qjk, Qki)

]

+
∑

1≤i<j≤n

[
fX(pi, pj;Qji, Qij) + fY (pi, pj;Qji, Qij) + fY (pj, pi;Qij, Qji)

]

+
∑

1≤i<k<j<l≤n

(−1/2)fP (pi, pj;Qji, Qij)fP (pk, pl;Qlk, Qkl)

}
. (4.68)

This expression involves five different classes of diagrams that we denote by fH ,fC ,fX ,fY

and fP , and we present in detail in the following sections. The summations are such

that, for each diagram, and preserving the ordering of the external momenta, each

non-equivalent permutation of the arguments appears only once.

4.7.1 Hard diagram

The first integral corresponds to the hard diagram fH(p1, p2, p3;Q1, Q2, Q3) that

contains three gluon propagators, that meet at a three-point vertex, and they are

attached to three different lightlike segments. These segments correspond to the

momenta p1, p2 and p3 and are separated by three sums of momenta Q1, Q2 and Q3,

as shown in Figure 4.11. Depending on the number of lightlike segments between

each pair of p’s, the corresponding Q can be zero, massless or even massive. The

integral for the hard diagram in its general form is given in Appendix B of [105].
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p1

Q2 Q3

p3 p2

Q1

Figure 4.11: The hard diagram fH(p1, p2, p3;Q1, Q2, Q3).

We rewrite it as

fH(p1, p2, p3;Q1, Q2, Q3)

=
1

8

Γ(2− 2εUV)

Γ(1− εUV)2

∫ 1

0

(
3∏
i=1

dτi)

∫ 1

0

(
3∏
i=1

dαi) δ(1−
3∑
i=1

αi)(α1α2α3)−εUV
N

D2−2εUV
.

(4.69)

The numerator and denominator, written as functions of the momentum invariants,

are given by

D = −α1α2

[
(p1 +Q3 + p2)2(1− τ1)τ2 + (p1 +Q3)2(1− τ1)(1− τ2)

+(Q3 + p2)2τ1τ2 +Q2
3τ1(1− τ2)

]
+ cyclic(1, 2, 3), (4.70)

and

N = 2 [2(p1p2)(p3Q3)− (p2p3)(p1Q3)− (p1p3)(p2Q3)]α1α2

+ 2(p1p2)(p3p1) [α1α2(1− τ1) + α3α1τ1] + cyclic(1, 2, 3), (4.71)

where

2pipi+1 = −(pi +Qi+2)2 +Q2
i+2 − (Qi+2 + pi+1)2 + (Qi + pi+2 +Qi+1)2,

2piQi = −(pi +Qi+2 + pi+1)2 + (Qi+2 + pi+1)2

− (pi+2 +Qi+1 + pi)
2 + (pi+2 +Qi+1)2,

2piQj = (pi +Qj)
2 −Q2

j , (4.72)
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and in (4.70) and (4.71), we are summing over cyclic permutations of the set of

indices {1, 2, 3}. We get rid of the delta function in (4.69) by setting α1 → 1 − ζ,

α2 → ζρ and α3 → ζ(1− ρ), while we pick up a Jacobian of ζ. Finally, we are left

with an integral over the τi’s, ζ and ρ in the interval [0, 1].

The hard diagram is symmetric under cyclic permutations of its arguments and

reflections

fH(p1, p2, p3;Q1, Q2, Q3) = fH(p3, p1, p2;Q3, Q1, Q2), (4.73)

fH(p1, p2, p3;Q1, Q2, Q3) = fH(p3, p2, p1;Q3, Q2, Q1). (4.74)

4.7.2 Curtain diagram

The next diagram we encounter is the curtain diagram fC(p1, p2, p3;Q1, Q2, Q3),

where two gluon propagators stretch between two pairs of lightlike segments that

share one side, as shown in Figure 4.12. As three lightlike sides in this diagram, the

p1

Q2 Q3

p3 p2

Q1

Figure 4.12: The curtain diagram fC(p1, p2, p3;Q1, Q2, Q3).

labelling is identical to the hard diagram case. However, the curtain diagram is less

symmetric and the first of the arguments, namely p1 labels the common side. The

integrations for the two endpoints on the common side are such that the ordering

of these endpoints is preserved. This integral is given in Appendix C of [105]. After

trading σ1 for ρ via σ1 → τ1ρ, we convert this integral to one where all integrations

are in the interval [0, 1]. We have

fC(p1, p2, p3;Q1, Q2, Q3) = −1

2

∫ 1

0

(
3∏
1

dτi

)∫ 1

0

dρ τ1 N
1

(D1)1−εUV

1

(D2)1−εUV
,

(4.75)
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where the factor τ1 is just the Jacobian from the change of variables. The numerator

written in terms of momenta invariants is

N =
1

4

(
− (p1 +Q3)2 +Q2

3 − (Q3 + p2)2 + (Q1 + p3 +Q2)2
)

×
(
− (p3 +Q2)2 +Q2

2 − (Q2 + p1)2 + (Q3 + p2 +Q1)2
)
, (4.76)

while the two terms appearing on the denominator are

D1 = −(p1 +Q3 + p2)2(1− τ1)τ2 − (p1 +Q3 + p2)2τ1(1− ρ)τ2

− (p1 +Q3)2(1− τ1)(1− τ2)− (p1 +Q3)2τ1(1− ρ)(1− τ2)

− (Q3 + p2)2τ1ρτ2 −Q2
3τ1ρ(1− τ2), (4.77)

D2 = −(p3 +Q2 + p1)2τ1τ3 − (Q2 + p1)2τ1(1− τ3)

− (p3 +Q2)2(1− τ1)τ3 −Q2
2(1− τ1)(1− τ3). (4.78)

The curtain diagram is symmetric under a simultaneous exchange of labels 2↔ 3

on both the p’s and the Q’s

fC(p1, p2, p3;Q1, Q2, Q3) = fC(p1, p3, p2;Q1, Q3, Q2). (4.79)

4.7.3 Cross diagram

In the cross diagram fX(p1, p2;Q1, Q2), two lightlike segments are involved and two

gluon propagators strech between them as shown in Figure 4.13. The two segments

p1

Q1 Q2

p2

Figure 4.13: The cross diagram fX(p1, p2;Q1, Q2).

correspond to the momenta p1 and p2 and they are separated by the sum of momenta
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Q1 and Q2 that can be zero, massless or massive. Similarly to the curtain diagram

case, the endpoints on both segments are ordered. The integral for this diagram is

given in Appendix D of [105]. We perform the changes of variables τ1 → σ1ρ1 and

σ2 → τ2ρ2, generating the Jacobian σ1τ2, and arriving at the following expression

for cross integral

fX(p1, p2;Q1, Q2) = −1

2

∫ 1

0

dσ1

∫ 1

0

dτ2

∫ 1

0

dρ1dρ2 σ1τ2 N
1

(D1)1−εUV

1

(D2)1−εUV
.

(4.80)

The numerator written in terms of momenta invariants is

N =
1

4

(
− (Q1 + p1)2 +Q2

1 − (p1 +Q2)2 +Q2
2

)2

, (4.81)

while the two terms appearing on the denominator are

D1 = −(Q1 + p1)2(1− σ1)τ2ρ2 − (p1 +Q2)2σ1(1− τ2)− (p1 +Q2)2σ1τ2(1− ρ2)

−Q2
1σ1τ2ρ2 −Q2

2(1− σ1)(1− τ2)−Q2
2(1− σ1)τ2(1− ρ2), (4.82)

D2 = −(Q1 + p1)2(1− σ1)τ2 − (Q1 + p1)2σ1(1− ρ1)τ2 − (p1 +Q2)2σ1ρ1(1− τ2)

−Q2
1σ1ρ1τ2 −Q2

2(1− σ1)(1− τ2)−Q2
2σ1(1− ρ1)(1− τ2). (4.83)

The cross diagram is symmetric under the exchange of p1 ↔ p2 or Q1 ↔ Q2

fX(p1, p2;Q1, Q2) = fX(p2, p1;Q1, Q2), (4.84)

fX(p1, p2;Q1, Q2) = fX(p1, p2;Q2, Q1). (4.85)

4.7.4 Y and self-energy diagram

The next diagram we encounter is the Y diagram, which is similar to the hard

diagram presented in Section 4.7.1, with the only difference that two propagators

are attached to the same segment as shown in the first diagram of Figure 4.14. Part

of this integral is exactly cancelled by half of the second diagram on Figure 4.14,

which corresponds to the one-loop self-energy correction to the gluon propagator

(see Appendix E of [105]). What we are left with is what we will refer to as the

Y diagram fY (p1, p2;Q1, Q2). The other half of the self-energy diagram cancels the

corresponding term in the upside-down Y diagram fY (p2, p1;Q2, Q1). The integral
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p1

Q1 Q2

p2

+ 1
2 ×

p1

Q1 Q2

p2

Figure 4.14: The Y diagram and half self-energy diagram packaged together into
fY (p1, p2;Q1, Q2).

for the curtain diagram contains two terms and it reads

fY (p1, p2;Q1, Q2) =
1

8εUV

Γ(1− 2εUV)

Γ(1− εUV)2

∫ 1

0

dσ

∫ 1

0

dτ1

∫ 1

0

dτ2

× (−σ−εUV)(1− σ)−εUV N
(

1

(D1)1−2εUV
+

1

(D2)1−2εUV

)
.

(4.86)

The common numerator written in terms of the momenta invariants is

N =
1

2

(
− (Q1 + p1)2 +Q2

1 − (p1 +Q2)2 +Q2
2

)
, (4.87)

while the two denominator terms are

D1 = −(Q1 + p1)2στ1(1− τ2)− (p2 +Q1)2(1− σ)τ2 − (p2 +Q1)2σ(1− τ1)τ2

−Q2
1(1− σ)(1− τ2)−Q2

1σ](1− τ1)(1− τ2)−Q2
2στ1τ2, (4.88)

D2 = −(p1 +Q2)2στ1(1− τ2)− (Q2 + p2)2(1− σ)τ2 − (Q2 + p2)2σ(1− τ1)τ2

−Q2
2(1− σ])(1− τ2)−Q2

2σ(1− τ1)(1− τ2)−Q2
1στ1τ2. (4.89)

As there are two propagators attached to the segment p1, while only one to the

segment p2, the Y diagram is not symmetric under p1 ↔ p2, but only under Q1 ↔ Q2

fY (p1, p2;Q1, Q2) = fY (p1, p2;Q2, Q1). (4.90)
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4.7.5 Factorised cross diagram

Finally, the factorised cross diagram involves four different lightlike segments, that

are connected in pairs by two gluon propagators as shown in Figure 4.15. The

pi pk

pl pj

Figure 4.15: The factorised cross diagram.

first propagator stretches between the segments pi and pj that are separated by the

sum of momenta Qij and Qji, while the second one stretches between pk and pl

separated by Qkl and Qlk. This contribution is given by −1/2 times the product of

two one-loop diagrams

− 1

2
fP (pi, pj;Qji, Qij)fP (pk, pl;Qlk, Qkl). (4.91)

The one-loop integral fP is given by

fP (p, q;P,Q) =

∫ 1

0

dτ1dτ2
N

D1−εUV
. (4.92)

The numerator and denominator in the integrand of (4.92), written in terms of

momenta invariants, are given by

N =
1

2

(
P 2 +Q2 − (p+ P )2 − (P + q)2,

)
, (4.93)

and

D = −P 2(1− τ1)(1− τ2)− (p+P )2τ1(1− τ2)− (P + q)2τ2(1− τ1)−Q2τ1τ2. (4.94)
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Similarly to the cross diagram, fP is symmetric under the exchange of p1 ↔ p2 or

Q1 ↔ Q2

fP (p1, p2;Q1, Q2) = fP (p2, p1;Q1, Q2),

fP (p1, p2;Q1, Q2) = fP (p1, p2;Q2, Q1). (4.95)

4.8 Four- and five-sided Wilson loop at O(ε)

The computation of the four-point two-loop Wilson loop up to (ε0) was first per-

formed in [9]. In appendix A of [14] we give expressions for all the contributing

diagrams to all orders in ε in all cases except for the hard diagram, which we give

up to and including terms of O(ε). Summing up the contributions from all these

diagrams we obtain the result for the two-loop four-point Wilson loop to O(ε). This

is displayed in (4.96).

Our final result for the four-point Wilson loop at two loops expanded up to and

including terms of O(ε) is

w
(2)
4 = C ×

[
(−s)−2ε + (−t)−2ε

]
×
[w2

ε2
+
w1

ε
+ w0 + w−1ε+O(ε2)

]
, (4.96)

where

w2 =
π2

48
, (4.97)

w1 = −7ζ3

8
, (4.98)

w0 = −π
2

48

(
log2 x+ π2

)
+

π4

144
= −π

2

48

(
log2 x+

2

3
π2

)
, (4.99)

w−1 = − 1

1440

[
− 46π4 log x− 10π2 log3 x+ 75π4 log(1 + x) + 90π2 log2 x log(1 + x)

+ 15 log4 x log(1 + x) + 240π2 log xLi2(−x) + 120 log3 xLi2(−x)

− 300π2Li3(−x)− 540 log2 xLi3(−x) + 1440 log xLi4(−x)

− 1800Li5(−x)− 1560π2ζ3 − 1260 log2 x ζ3 + 5940ζ5

]
, (4.100)

and

C := 2 [Γ(1 + ε)eγε]2 = 2

(
1 + ζ2ε

2 − 2

3
ζ3ε

3

)
+O(ε4). (4.101)

We recall that x = t/s.

We would like to point out the simplicity of our result (4.96). Specifically, (4.97)-
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(4.100) are expressed only in terms of standard polylogarithms. Harmonic polyloga-

rithms and Nielsen polylogarithms are present in the expressions of separate Wilson

loop diagrams, as can be seen in appendix A of [14], but cancel after summing all

contributions.

Using the result (4.96) and the one-loop expression for the Wilson loop, one can

work out the expression for the remainder function at O(ε), as defined in (4.15) and

(4.18). Our result is

E (2)
4,WL =

1

360

[
16π4 log x− 15π4 log(1 + x)− 30π2 log2 x log(1 + x)

− 15 log4 x log(1 + x)− 120π2 log xLi2(−x)− 120 log3(x)Li2(−x)

+ 180π2Li3(−x) + 540 log2 xLi3(−x)− 1440 log(x)Li4(−x)

+ 1800Li5(−x) + 690π2ζ3 − 5940ζ5

]
. (4.102)

Remarkably, (4.102) does not contain any harmonic polylogarithms. We will com-

pare the Wilson loop remainder (4.102) to the corresponding amplitude remainder

(4.33) in Section 4.11.1. Similarly to what was done for the amplitude remainder

(4.33), in arriving at (4.102) we have pulled out a factor of (st)−ε/2 per loop in order

to obtain a result which depends only on the ratio x := t/s.

The five-point two-loop Wilson loop was calculated up to O(ε0) in [10]. In order

to obtain results at one order higher in ε we have proceeded by using numerical

methods. In particular we have used Mellin-Barnes techniques to evaluate and

expand all the two-loop integrals, as described in more detail in Sections 4.9 and 4.10.

4.9 Mellin-Barnes method

At the heart of the Mellin-Barnes (MB) method lies the Mellin-Barnes represen-

tation, which allows us to replace a sum of two terms raised to some power by

the product of these terms raised to some powers. One achieves this factorisation

at the cost of introducing a Mellin integration over a complex parameter z. More

specifically, the MB representation reads

1

(X + Y )λ
=

1

2πi

1

Γ(λ)

∫ +i∞

−i∞
dz

Xz

Y λ+z
Γ(−z)Γ(λ+ z), (4.103)

where the contour of integration is such that the Γ(· · · + z) poles are to the left of

the contour and the Γ(· · · − z) poles are to the right. A possible contour in the
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case λ = −1/2− i/2 is shown in Figure 4.16. By applying the same formula several

C Im z

z
2

1

−λ− 2

−λ− 1

−λ

−2 −1 0 1 2
Re z

−2

−1

Figure 4.16: Possible integration contour for the Mellin integration in (4.103) for
λ = −1/2− i/2.

times, we can easily generalise (4.103) to the case with m terms in the denominator

1

(
∑m

s=1Xs)λ
=

1

(2πi)m−1

1

Γ(λ)

(
m−1∏
s=1

∫ +i∞

−i∞
dzs

) ∏m−1
s=1 Xzs

s Γ(−zs)

X
λ+

∑m−1
s=1 zs

m Γ(λ+
∑m−1

s=1 zs)
,

(4.104)

which introduces (m− 1) MB integration variables zs.

Integrals for Feynman diagrams (see for example all the integrals for the two-loop

Wilson loop presented in detail in Section 4.7) involve integrations over parameters

τi. One proceeds by obtaining an MB representation for the integrand of each

Feynman integral using (4.104). This introduces Mellin integrations over Mellin

parameters zs on top of those over the τi’s. As one can see from (4.104), we achieve

the factorisation of the integrand into a product of all the terms, that originally

appeared in the sum on its denominator, raised to powers involving the parameters

zs and the dimensional regularisation parameter ε.

We first perform the integrations over the τi’s, that can be easily done by means

of the simple substitution∫ 1

0

dτ τα(1− τ)β =
Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
. (4.105)
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At this point, we are left with an integrand that is an analytic function con-

taining powers of the momentum invariants (−sij)f({zs},ε) and Gamma functions

Γ(g({zs}, ε)), where f and g are linear combinations of the zs’s and ε.

The next step is to pick the appropriate contours of integration. One resolves

any singularities in ε by means of shifting contours and taking residues, so that the

integrand can be Laurent expanded in the dimensional regularisation parameter ε,

giving us one integral at each order in ε, up to the desired order.

The very last step is to perform the Mellin integrations over the parameters zs.

In some cases, one can perform some of them explicitly, by means of the first and

the second Barnes lemma and their corollaries. The first Barnes lemma reads

1

2πi

∫ +i∞

−i∞
dz Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 − z)Γ(λ4 − z)

=
Γ(λ1 + λ3)Γ(λ1 + λ4)Γ(λ2 + λ3)Γ(λ2 + λ4)

Γ(λ1 + λ2 + λ3 + λ4)
, (4.106)

while the second Barnes lemma reads

1

2πi

∫ +i∞

−i∞
dz

Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 + z)Γ(λ4 − z)Γ(λ5 − z)

Γ(λ6 + z)
(4.107)

=
Γ(λ1 + λ4)Γ(λ2 + λ4)Γ(λ3 + λ4)Γ(λ1 + λ5)Γ(λ2 + λ5)Γ(λ3 + λ5)

Γ(λ1 + λ2 + λ4 + λ5)Γ(λ1 + λ2 + λ4 + λ5)Γ(λ2 + λ3 + λ4 + λ5)
.

A list of corollaries of the two Barnes lemmas can be found in Appendix D of [122].

If at this point there are still Mellin integrations left to be performed, one resorts

to numeric integration to obtain numeric results at specific kinematic points as we

describe in more detail in the following section.

For a more extensive discussion of the Mellin-Barnes method with examples we

refer the reader to [122].

4.10 Implementation of Mellin-Barnes method

The two-loop four and five-point Wilson loops and five-point amplitude have been

numerically evaluated by means of the Mellin-Barnes (MB) method using the MB

package [112] in MATHEMATICA.

In the Wilson loop case, we have constructed a completely automated computer

algorithm, that, for specific n, calculates all the needed diagrams according to (4.68),

carrying out all the necessary operations to finally give us specific values for the

complete Wilson loop at specific kinematic points. All the integrals for the different
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Diagram n = 4 n = 5 n = 6
fH 3 6 8
fC 2 6 7
fX 4 8 10
fY 2 4 5

fP fP 2 4 6

Table 4.1: Maximum number of Mellin integrations encountered in each class of
diagrams in the n-sided two-loop Wilson loop for n = 4, 5, 6.

diagrams have been coded in a generic form as presented in Sections 4.7.1 – 4.7.5.

In Table 4.1, we list the maximum number of Mellin integrations one encounters in

each class of diagrams for n = 4, 5, 6; this number is equal to m − 1, where m is

the number of non-vanishing terms in the denominator of each integral. Whether a

term vanishes or not depends on whether the arguments Qi’s are zero, massless or

massive.

In the first steps of our algorithm, and for a given n, we obtain MB represen-

tations for all the integrals needed via (4.104) and then perform the Feynman inte-

grations via the substitution (4.105). Then, we use various MATHEMATICA packages

to perform a series of operations in an automated way to finally obtain a numerical

expression at specific kinematic points.

We will briefly summarise these steps followed, while for more details we refer the

reader to the references documenting these packages and references therein. Using

the MBresolve package [113], we pick appropriate contours and resolve the singular-

ity structure of the integrand in ε. The latter involves taking residues and shifting

contours, and is essential in order to be able to Laurent expand the integrand in

ε. Using the barnesroutines package [112, 113], we apply the Barnes lemmas,

which in general generate more integrals but decrease their dimensionality, lead-

ing to higher precision results. Finally, using the MB package [112] we numerically

integrate at specific Euclidean kinematic points to obtain a numerical expression.

While all manipulations of the integrals and the expansion in ε are performed in

MATHEMATICA, the actual numerical integration for each term is performed using the

CUBA routines [123] for multidimensional numerical integration in FORTRAN.

The high number of diagrams, and number of integrals for each diagram, makes

the task of running the FORTRAN integrations ideal for parallel computing. In or-

der to obtain high precision results in a reasonable amount of time, the task of

evaluating the FORTRAN files, was shifted, at an early stage of the project, from a

single computer, to a cluster of computers with 32 CPU units in Brown University,
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and finally to the Queen Mary, University of London High Throughput Computing

Facility, a cluster of 1.5K CPU units.

Within the MB package, integrations of dimensionality up to four are by default

performed using the deterministic CUBA routine Cuhre, that samples over an optimal

grid of points depending on the way the integrand varies. For higher dimensional

integrals, the CUBA routine Vegas is used, that performs Monte-Carlo integration

over a random sample of points. Vegas gives faster results but we have noticed

that this routine fails to deliver high precision results for the specific integrals we

want to calculate. For this reason, and since parallel computing gives us enough

computer power, or equivalently, enough computer time, we have used the Cuhre

routine for all the integrals, involving up to 8 Mellin integrations in the case of the

cross diagram for n = 5.

In Sections 4.7.1 – 4.7.5, we have also listed the symmetries of each diagram.

Using these symmetries, and given a result for a diagram d for kinematics K, all the

equivalent diagrams Eq(d) will give the same result for the same kinematics K. We

can rotate the labels of the momenta in all these diagrams sending i− > i+r (where

r = 1, . . . , n− 1), to obtain more diagrams Rot(d, r) with the same result, but this

time the diagrams are evaluated at the kinematic point Rot(Kin, r), obtained by

applying the same rotation to the kinematics K. If the kinematics are symmetric

under this rotation Rot(K, r) = K, for example the kinematics (s12 ← −1, s23 ←
−1, s34 ← −1, s45 ← −1, s51 ← −1) in the n = 5 case, multiple diagrams that need

to be evaluated will be found to be equivalent, reducing the number of them that

actually needs to be calculated. Moreover, when parallely processing the FORTRAN

files, we have discovered that several files were identical. We have implemented an

algorithm that identifies and groups identical files, so that only a single one of them

is run from each group, saving a considerable amount of computer time.

We have chosen to evaluate the two loop Wilson loop at different kinematic points

as it appears in (4.68) without the prefactor C. For each diagram, the CUBA routines

give us its numeric value, together with its estimated error. It is straightforward to

find the total error, as the complete Wilson loop is just a sum of diagrams. If, for

example, we chose to evaluate up to O(ε0), we will obtain a numeric result that has

the form

x =
x−2 ± δx−2

ε2
+
x−1 ± δx−1

ε
+ (x0 ± δx0) +O(ε0). (4.108)

We can easily normalise this result at the very end with any factor C. The mean
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value of the normalised result is found by multiplying by the expansion of this factor

C = C0 + C1 ε+ C2 ε
2 +O(ε3), (4.109)

and collecting the terms for each power. However, the new error is less trivial to

find and it is given by

δ(C x) =
C0 δx−2

ε2
+

√
(C0 δx−1)2 + (C1 δx−2)2

ε

+
√

(C0 δx0)2 + (C1 δx−1)2 + (C2 δx−2)2. (4.110)

4.11 Results: comparison of the remainder func-

tions at O(ε)

In this section we present the results of the comparison of the amplitude and Wilson

loop remainder functions at O(ε).

4.11.1 Four-point amplitude and Wilson loop remainders

The remainder functions for the four-point amplitude and Wilson loops are given in

(4.33) and (4.102) respectively. From these relations, it follows that the difference

of remainders is the following constant x-independent term

E (2)
4 = E (2)

4,WL − 3ζ5, (4.111)

as anticipated in (4.24).

We would like to stress that this is a highly nontrivial result since there is no

reason a priori to expect that the four-point remainder on the amplitude and Wilson

loop side, (4.33) and (4.102) respectively, agree (up to a constant shift). For example,

anomalous dual conformal invariance is known to determine the form of the four-

and five-point Wilson loop only up to O(ε0) terms [10], but does not constrain terms

which vanish as ε → 0. The expressions we derived for the amplitude and Wilson

loop four-point remainders at O(ε) are also pleasingly simple, in that they only

contain standard polylogarithms.
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# (s12, s23, s34, s45, s51) E (2)
5 E (2)

5,WL

1 (−1,−1,−1,−1,−1) −8.4655± 0.0049 −5.87034± 0.00044
2 (−1,−1,−2,−1,−1) −8.2350± 0.0024 −5.64560± 0.00063
3 (−1,−2,−2,−1,−1) −7.7697± 0.0026 −5.17647± 0.00076
4 (−1,−2,−3,−4,−5) −6.2304± 0.0031 −3.6409± 0.0011
5 (−1,−1,−3,−1,−1) −8.2525± 0.0027 −5.65919± 0.00097
6 (−1,−2,−1,−2,−1) −8.1417± 0.0023 −5.54972± 0.00058
7 (−1,−3,−3,−1,−1) −7.6677± 0.0034 −5.0784± 0.0013
8 (−1,−2,−3,−2,−1) −6.8995± 0.0029 −4.31395± 0.00093
9 (−1,−3,−2,−5,−4) −6.9977± 0.0031 −4.40806± 0.00099
10 (−1,−3,−1,−3,−1) −8.2759± 0.0025 −5.69086± 0.00085
11 (−1,−4,−8,−16,−32) −8.7745± 0.0078 −6.1825± 0.0051
12 (−1,−8,−4,−32,−16) −11.9855± 0.0080 −9.3855± 0.0051
13 (−1,−10,−100,−10,−1) −2.914± 0.022 −0.300± 0.010
14 (−1,−100,−10,−100,−1) −3.237± 0.011 −0.6648± 0.0028
15 (−1,−1,−100,−1,−1) −12.686± 0.014 −10.108± 0.010
16 (−1,−100,−1,−100,−1) −14.7067± 0.0077 −12.1136± 0.0071
17 (−1,−100,−100,−1,−1) −182.32± 0.11 −179.722± 0.039
18 (−1,−100,−10,−100,−10) −6.3102± 0.0062 −3.7281± 0.0013
19

(
−1,−1

4
,−1

9
,− 1

16
,− 1

25

)
−19.0031± 0.0077 −16.4136± 0.0021

20
(
−1,−1

9
,−1

4
,− 1

25
,− 1

16

)
−15.1839± 0.0046 −12.5995± 0.0016

21
(
−1,−1,−1

4
,−1,−1

)
−9.7628± 0.0028 −7.17588± 0.00079

22
(
−1,−1

4
,−1

4
,−1,−1

)
−9.5072± 0.0036 −6.9186± 0.0014

23
(
−1,−1

4
,−1,−1

4
,−1

)
−12.6308± 0.0031 −10.04241± 0.00083

24
(
−1,−1

4
,−1

9
,−1

4
,−1

)
−11.0200± 0.0056 −8.4281± 0.0030

25
(
−1,−1

9
,−1

4
,−1

9
,−1

)
−19.1966± 0.0070 −16.6095± 0.0043

Table 4.2: Values of the O(ε) five-point remainder for the amplitudes (E (2)
5 ) and

Wilson loop (E (2)
5,WL) at different kinematic points.

4.11.2 Five-point amplitude and Wilson loop remainders

We have numerically evaluated both the five-point two-loop amplitude and Wilson

loop up to O(ε) at 25 Euclidean kinematic points, i.e. points in the subspace of the

kinematic invariants with all sij < 0. The choice of these points and the values of

the remainder functions E (2)
5 , E (2)

5,WL at (ε) together with the errors reported by the

CUBA numerical integration library [123] appear in Table 4.2, while in Figures 4.17

we plot both remainders for all kinematic points. From these figures, it is apparent

that the two remainders vary in a way such that the distance between them is

constant.

We have calculated the difference between the amplitude and Wilson loop re-
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Figure 4.17: Remainder functions at O(ε) for the amplitude (circle) and the Wilson
loop (square). The exact values together with their errors appear in Table 4.2. In
the bottom Figure we have eliminated the point corresponding to kinematics 17 and
zoomed in an area showing all the remaining points.

mainders, see Table 4.3 and Figure 4.3. Remarkably, this difference also appears to

be constant within our numerical precision as in the four-point case, and hence we

conjecture that

E (2)
5 = E (2)

5,WL −
5

2
ζ5. (4.112)
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It is also intriguing that the constant difference is fit very well by a simple rational

multiple of ζ5, rather than a linear combination of ζ5 and ζ2ζ3 as would have been

allowed more generally by transcendentality.

A number is transcendental when it is not algebraic. An algebraic number is

a complex number that is a root of a polynomial with rational coefficients. We

assign transcendentality 2 to dilogarithms Li2 and transcendentality 1 to log’s and

π’s. Finally, zeta functions ζx have transcendentality equal to x. Products of these

functions have transcendentality equal to the sum of the corresponding transcen-

dentalities. Each term in the expansion of scattering amplitudes and Wilson loops

in N = 4 super Yang-Mills has a fixed uniform degree of transcendentality (see for

example the terms in the expansion (4.96), appearing in (4.97)-(4.100)).
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Figure 4.18: Difference of the remainder functions E (2)
5 − E

(2)
5,WL. The exact values

together with their errors appear in Table 4.3.

In the last column of Table 4.3 we give the distance of our results for the differ-

ence of remainders from the conjectured value in units of their standard deviation,

while these values are plotted in Figure 4.19. We notice that all numerical results

are within three standard deviations away from the conjectured value. From the

histogram in Figure 4.20, we can see that these distances are normally distributed

as expected.

For kinematic points 1, 4, 6 and 12 we have evaluated the remainder functions

with even higher precision, and found agreement with the conjecture to 4 digits.

These results are collected in Tables 4.4 and 4.5. A remark is in order here. By
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# (s12, s23, s34, s45, s51) E (2)
5 − E

(2)
5,WL |E (2)

5 − E
(2)
5,WL + 5

2
ζ5|/σ

1 (−1,−1,−1,−1,−1) −2.5951± 0.0049 0.564
2 (−1,−1,−2,−1,−1) −2.5894± 0.0025 1.2
3 (−1,−2,−2,−1,−1) −2.5932± 0.0027 0.32
4 (−1,−2,−3,−4,−5) −2.5895± 0.0033 0.853
5 (−1,−1,−3,−1,−1) −2.5933± 0.0028 0.35
6 (−1,−2,−1,−2,−1) −2.5920± 0.0024 0.120
7 (−1,−3,−3,−1,−1) −2.5893± 0.0036 0.82
8 (−1,−2,−3,−2,−1) −2.5856± 0.0030 2.2
9 (−1,−3,−2,−5,−4) −2.5897± 0.0032 0.82
10 (−1,−3,−1,−3,−1) −2.5851± 0.0026 2.8
11 (−1,−4,−8,−16,−32) −2.5920± 0.0093 0.034
12 (−1,−8,−4,−32,−16) −2.6000± 0.0095 0.808
13 (−1,−10,−100,−10,−1) −2.614± 0.024 0.89
14 (−1,−100,−10,−100,−1) −2.572± 0.011 1.9
15 (−1,−1,−100,−1,−1) −2.578± 0.017 0.80
16 (−1,−100,−1,−100,−1) −2.593± 0.010 0.071
17 (−1,−100,−100,−1,−1) −2.60± 0.11 0.039
18 (−1,−100,−10,−100,−10) −2.5820± 0.0063 1.6
19

(
−1,−1

4
,−1

9
,− 1

16
,− 1

25

)
−2.5894± 0.0080 0.36

20
(
−1,−1

9
,−1

4
,− 1

25
,− 1

16

)
−2.5844± 0.0049 1.6

21
(
−1,−1,−1

4
,−1,−1

)
−2.5869± 0.0029 1.9

22
(
−1,−1

4
,−1

4
,−1,−1

)
−2.5886± 0.0038 0.96

23
(
−1,−1

4
,−1,−1

4
,−1

)
−2.5884± 0.0032 1.2

24
(
−1,−1

4
,−1

9
,−1

4
,−1

)
−2.5919± 0.0064 0.064

25
(
−1,−1

9
,−1

4
,−1

9
,−1

)
−2.5870± 0.0082 0.65

Table 4.3: Difference of the five-point amplitude and Wilson loop two-loop remain-
der functions at O(ε), and its distance from −5

2
ζ5 ∼ −2.592319 in units of σ, the

standard deviation reported by the CUBA numerical integration package [123].
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Figure 4.19: Distance of the difference of the five-point amplitude and Wilson loop
two-loop remainder functions at O(ε), from −5

2
ζ5 ∼ −2.592319 in units of σ, the

standard deviation reported by the CUBA numerical integration package [123]. The
exact values are given in the last column of Table 4.3.
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Figure 4.20: A histogram for the 25 distances of our results from the conjectured
value −5
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ζ5 (see Figure 4.20), compatible with a normal distribution.
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# (s12, s23, s34, s45, s51) E (2)
5 E (2)

5,WL

1 (−1,−1,−1,−1,−1) −8.463173± 0.000047 −5.8705280± 0.0000068
4 (−1,−2,−3,−4,−5) −6.234809± 0.000032 −3.642125± 0.000018
6 (−1,−2,−1,−2,−1) −8.142702± 0.000023 −5.5500050± 0.0000092
12 (−1,−8,−4,−32,−16) −11.991985± 0.000089 −9.398659± 0.000084

Table 4.4: High precision values of the O(ε) five-point remainders for amplitudes

(E (2)
5 ) and Wilson loops (E (2)

5,WL).

# (s12, s23, s34, s45, s51) E (2)
5 − E

(2)
5,WL |E (2)

5 − E
(2)
5,WL + 5

2
ζ5|/σ

1 (−1,−1,−1,−1,−1) −2.592645± 0.000048 6.8
4 (−1,−2,−3,−4,−5) −2.592697± 0.000036 10
6 (−1,−2,−1,−2,−1) −2.592697± 0.000025 15
12 (−1,−8,−4,−32,−16) −2.59333± 0.00012 8.3

Table 4.5: High precision values of the difference of the five-point amplitude and
Wilson loop two-loop remainder functions at O(ε), and its distance from −5

2
ζ5 ∼

−2.592319 in units of σ, the standard deviation reported by the CUBA numerical
integration package [123].

increasing the precision, the mean value of the difference of remainders approaches

the conjectured value, but we notice that in units of σ it drifts away from it, hinting

at a potential underestimate of the errors. To test our error estimates we used the

remainder functions R5 at O(ε0), that are known to vanish. Our analysis confirmed

that, as we increase the desired precision, the actual precision of the mean value

does increase, but on the other hand reported errors tend to become increasingly

underestimated.



Chapter 5

Conclusions

In this thesis we have studied maximally supersymmetric theories via the study of

perturbative scattering amplitudes, which provide a direct channel for the extraction

of valuable information in any quantum field theory. We have demonstrated the

simplicity of amplitudes inN = 4 super Yang-Mills andN = 8 supergravity, and the

efficiency of on-shell methods in delivering their values by exploiting their analytic

properties. We have studied relations between amplitudes in the two maximally

supersymmetric theories, and the fascinating MHV amplitude/polygonal Wilson

loop duality within maximal super Yang-Mills.

More specifically, inN = 8 supergravity, we have shown in a number of cases how

generalised unitarity can be used in order to generate new expressions for one-loop

supercoefficients, and indicated how this applies in general. In particular, using

recent results for tree amplitudes [42, 45], the one-loop supercoefficients take an

intriguing form involving sums of squares of N = 4 Yang-Mills one-loop expressions,

times dressing factors. It seems likely that this structure will apply to all one-loop

supercoefficients inN = 8 supergravity. It is certainly of interest to take this further,

proving more general results in detail, deriving algorithms which produce the loop

dressing factors, and simplifying the expressions obtained when the solutions to the

quadruple cut conditions for the loop momenta are inserted. For the MHV case,

it was easy to eliminate the loop momenta from the expressions we derived, and

thus find a direct correspondence with known results. It may be that a similar

outcome can be attained for non-MHV cases. The loop momenta solutions are

known explicitly, however the dressing factors entering non-MHV amplitudes are

more complex.

It is intriguing that both tree-level superamplitudes and one-loop coefficients

can be written in terms of squares of dual superconformal invariant quantities times
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bosonic dressing factors. It would be interesting to understand what possible deeper

reasons may underly these regularities. In this context, we note that in [68] it was

shown that the dual superconformal invariant R-functions appearing in the NMHV

amplitudes in N = 4 SYM have a coplanar twistor-space localisation. It would be

interesting if one could relate the simplicity of the tree-level and one-loop results

in N = 8 supergravity to simple twistor-space localisation properties. Interesting

new ideas have been put forward recently [124, 125, 126] which in particular make

a connection between on-shell recursion relations and twistor space [124, 125, 126,

127, 128].

In N = 4 super Yang-Mills, we have studied for the first time the mysterious

MHV amplitude/polygonal lightlike Wilson loop duality at two loops beyond the

finite order in the dimensional regularisation parameter ε. We discover that, at four

and five points, the duality persists at O(ε): the remainder on the amplitude and

Wilson loop side, agree up to a constant shift, that we determine. It would be

very interesting to continue exploring this miraculous agreement and to understand

the reason behind it. Dual conformal invariance cannot help in this regard since

the symmetry is explicitly broken in dimensional regularisation, so it cannot say

anything about terms of higher order in ε. Already starting from O(ε0) there must

be some mechanism beyond dual conformal invariance at work. At five-points, it is

an interesting open question whether the parity-odd terms cancel at O(ε) as they

do at O(ε0) [59].



Appendix A

Scalar box integrals

In this appendix we list all the scalar box integrals expanded in the dimensional

regularisation parameter ε through O(ε0) [85].

The zero-mass box integral appears only in four-point amplitudes with massless

particles and it is defined as follows

I0m(p1, p2, p3, p4) =

p2 p3

p1 p4

. (A.1)

Through O(ε0) this function is

I0m(p1, p2, p3, p4) =
rΓ

st

{
2

ε2
[
(−s)−ε + (−t)−ε

]
− ln2

(
−s
−t

)
− π2

}
, (A.2)

where s = (p1 + p2)2 and t = (p2 + p3)2 are the usual Mandelstam variables, and the

constant rΓ is given in (3.5).

The one-mass scalar box contains a single massive corner and three massless

corners, and it is defined in the following way

I1m(p, q, r, P ) =

q r

p P

, (A.3)
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while its expansion through O(ε0) is given by

I1m(p, q, r, P ) = −2 rΓ

st

{
− 1

ε2
[
(−s)−ε + (−t)−ε − (−P 2)−ε

]
(A.4)

+Li2

(
1− P 2

s

)
+ Li2

(
1− P 2

t

)
+

1

2
ln2
(s
t

)
+
π2

6

}
,

where s = (p+ q)2 and t = (q + r)2.

The two-mass easy scalar box integral contains two non-adjacent massive corners

as the one defined below

I2me(p, P, q,Q) =

P q

p Q

. (A.5)

Its expansion up to finite terms is given by

I2me(p, P, q,Q) =
−2 rΓ

st− P 2Q2

×
{
− 1

ε2
[
(−s)−ε + (−t)−ε − (−P 2)−ε − (−Q2)−ε

]
+ Li2

(
1− P 2

s

)
+ Li2

(
1− P 2

t

)
+ Li2

(
1− Q2

s

)
+Li2

(
1− Q2

t

)
− Li2

(
1− P 2Q2

st

)
+

1

2
ln2
(s
t

)}
, (A.6)

where s = (p+ P )2 and t = (P + q)2.

The two-mass hard scalar box contains two adjacent massive corners as the one

defined below

I2mh(p, q, P,Q) =

q P

p Q

. (A.7)
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Its expansion up to finite terms is given by

I2mh(p, q, P,Q) = −2 rΓ

st

{
− 1

ε2
[
(−s)−ε + (−t)−ε − (−P 2)−ε − (−Q2)−ε

]
− 1

2ε2
(−P 2)−ε(−Q2)−ε

(−s)−ε
+

1

2
ln2
(s
t

)
(A.8)

+Li2

(
1− P 2

t

)
+ Li2

(
1− Q2

t

)}
,

where s = (p+ q)2 and t = (q + P )2.

The three-mass scalar box contains a single massless corner. Defining this inte-

gral in the following way

I3m(p, P,Q,R) =

P Q

p R

, (A.9)

its expansion up to O(ε0) reads

I3m(p, P,Q,R) =
−2 rΓ

st− P 2R2
(A.10)

×
{
− 1

ε2
[
(−s)−ε + (−t)−ε − (−P 2)−ε − (−Q2)−ε − (−R2)−ε

]
− 1

2ε2
(−P 2)−ε(−Q2)−ε

(−t)−ε
− 1

2ε2
(−Q2)−ε(−R2)−ε

(−s)−ε
+

1

2
ln2
(s
t

)
+Li2

(
1− P 2

s

)
+ Li2

(
1− R2

t

)
+ Li2

(
1− P 2R2

st

)}
,

where s = (p+ P )2 and t = (Q+R)2.

Finally, the four-mass scalar box integral contains four massive corners

I4m(P,Q,R, S) =

Q R

P S

. (A.11)
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This is the only box function that is finite, and at O(ε0) it is given by

I4m(P,Q,R, S) =
−rΓ

stρ

{
−Li2

(
1

2
(1− λ1 + λ2 + ρ)

)
+ Li2

(
1

2
(1− λ1 + λ2 − ρ)

)
− Li2

(
1

2λ1

(1− λ1 − λ2 − ρ)

)
+ Li2

(
1

2λ1

(1− λ1 − λ2 + ρ)

)
−1

2
ln

(
λ1

λ2
2

)
ln

(
1 + λ1 − λ2 + ρ

1 + λ1 − λ2 − ρ

)}
, (A.12)

The function ρ is given by

ρ =
√

1− 2λ1 − 2λ2 + λ2
1 − 2λ1λ2 + λ2

2, (A.13)

where

λ1 =
P 2R2

st
, λ2 =

Q2S2

st
, (A.14)

while s = (P +Q)2 and t = (Q+R)2.



Appendix B

The finite part of the two-mass

easy box function

We present two different forms for the finite part of the two mass easy box function,

and more precisely the function Fε, defined in (4.41). For more details we refer the

reader to Appendix B of [14]. The first form is manifestly finite and it reads

Fε(s, t, P 2, Q2) =
(−a)ε

2
(B.1)

×
[
(−aP 2)3F2(1, 1, 1 + ε; 2, 2; 1− aP 2) + (1− aQ2)3F2(1, 1, 1 + ε; 2, 2; 1− aQ2)

−(1− as)3F2(1, 1, 1 + ε; 2, 2; 1− as)− (1− at)3F2(1, 1, 1 + ε; 2, 2; 1− at)] ,

where a = u/(P 2Q2− st). Furthermore, since 3F2(1, 1, 1 + ε; 2, 2;x) = Li2(x)/x, this

form directly leads to the expression derived in [129, 50] for the finite two-mass easy

box function,

Fε=0(s, t, P 2, Q2) =
1

2

[
Li2(1− aP 2) + Li2(1− aQ2)− Li2(1− as)− Li2(1− at)

]
.

(B.2)

We also notice that the simple expansion

x× 3F2(1, 1, 1 + ε; 2, 2;x) =
∞∑
n=1

εnS1n+1(x), (B.3)

gives a correspondingly simple expansion for the Wilson loop diagram in terms of

Nielsen polylogarithms.

The more familiar looking second form for the two-mass easy box function is (see
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(A.13) of [130])

Fε(s, t, P 2, Q2) = − 1

2ε2

×
[(

a

1− aP 2

)ε
2F1

(
ε, ε; 1 + ε; 1

(1−aP 2)

)
+

(
a

1− aQ2

)ε
2F1

(
ε, ε; 1 + ε; 1

(1−aQ2)

)
−
(

a

1− as

)ε
2F1

(
ε, ε; 1 + ε; 1

(1−as)

)
−
(

a

1− at

)ε
2F1

(
ε, ε; 1 + ε; 1

(1−at)

)
+ε(−a)ε

(
log(1− aP 2) + log(1− aQ2)− log(1− as)− log(1− at)

))]
. (B.4)

This second form was derived in [130, 8] except for the last line which is an additional

correction term needed to obtain the correct analytic continuation in all regimes.

The identity
(1− aP 2)(1− aQ2)

(1− as)(1− at)
= 1, (B.5)

implies that if all the arguments of the logs are positive then this additional term

vanishes, but for example if we have 1−aP 2, 1−aQ2 > 0 and 1−as, 1−at < 0 then

the additional term gives (taking care of the appropriate analytic continuation in

(4.42)) sgn(a)2πi(−a)ε/ε. This becomes important when considering this expression

at four and five points in the Euclidean regime.
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