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Abstract

Unreplicated two level fractional factorial designs are a common type of experimental

design used in the early stages of industrial experimentation. They allow considerable

information about the effects of several factors on the response to be obtained with

a relatively small number of runs.

The aim of this thesis is to improve the guidance available to experimenters in choosing

a good design and analysing data. This is particularly important when there is

commercial pressure to minimise the size of the experiment.

A design is usually chosen based on optimality, either in terms of a variance criterion

or estimability criteria such as resolution. This is given the number of factors, number

of levels of each factor and number of runs available. A decision theory approach is

explored, which allows a more informed choice of design to be made. Prior distribu-

tions on the sizes of effects are taken into consideration, and then a design chosen

from a candidate set of designs using a utility function relevant to the objectives of

the experiment. Comparisons of the decision theoretic methods with simple rules of

thumb are made to determine when the more complex approach is necessary.

Fully Bayesian methods are rarely used in multifactor experiments. However there

is virtually always some prior knowledge about the sizes of effects and so using this

in a Bayesian data analysis seems natural. Vague and more informative priors are
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explored.

The analysis of this type of experiment can be impacted in a disastrous way in the

presence of outliers. An analysis that is robust to outliers is sought by applying differ-

ent model distributions of the data and prior assumptions on the parameters. Results

obtained are compared with those from standard analyses to assess the benefits of

the Bayesian analysis.
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Chapter 1

Introduction

1.1 Motivations for Thesis

The aim of this thesis is to improve the guidance available to experimenters in industry

in choosing a good design and in analysing data. This will be done by applying

Bayesian methods when there is prior knowledge about the sizes of effects that can

be incorporated at the analysis stage. Decision theory will be used at the design

stage and will also use prior knowledge in a formal way. This research is particularly

important in circumstances when there is commercial pressure to minimise the size

of the experiment.

In this thesis, the industrial experimentation discussed will be both in general terms,

and in reference to the non-clinical statistical work carried out at Pfizer Global R & D

which is the major motivation for this work. In this chapter, an overview of the history

of industrial experimentation will be given as well as an introduction to factorial and

fractional factorial experiments, decision theory and Bayesian methodology along

with concepts, terminology and notation which shall be used throughout the thesis.
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An outline of what will appear in each of the chapters is also given.

1.2 History of Industrial Experimentation

Experimentation forms a major part of scientific research and is a process that allows

an experimenter to discover what happens to an output or response when the set-

tings of the input variables are changed. Experimental design can be referred to as

the general body of knowledge, encompassing techniques, concepts and terms, that

an experimenter will use to carry out experiments more efficiently. This is from the

initial design stage to the implementation stage of the experiment right through to

the analysis of the data. Experimental design in the modern day can be traced back

to the notable work carried out by R. A. Fisher at Rothamsted Experimental Station

located in Hertfordshire, England where he began working in 1919. This work later

culminated in his significant publications Statistical Methods for Research Workers

(1925) and The Design of Experiments (1935) which became standard points of ref-

erence for both scientists and statisticians alike. Fisher’s work at Rothamsted was

concerned with problems in an agricultural setting and it is in that same background

that the use of the more efficient factorial designs rather than the onerous change

one factor at a time approach were first seen with practical applications. Significant

theory and applications were introduced by Fisher (1935), Yates (1937) and Finney

(1945), all contributions of which were also motivated by problems in agriculture

and biology. The benefits of being able to vary levels of factors and consider all the

possible treatment level combinations simultaneously were immediately seen and this

work was then later extended to industrial experimentation.

The nature of agricultural experimentation means that the experiments tend to be

large in scale, lengthy and have to deal with issues such as field and soil variation,
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which resulted in the development of concepts and techniques such as blocking, ran-

domisation, fractional factorial designs and the use of analysis of variance. In com-

parison, industrial experiments tend to take less time but each experimental run can

be costly, placing the need on the experiment to be much smaller in size. After apply-

ing previous techniques developed from agriculture to experiments in the industrial

setting, it was soon realised that further techniques and concepts had to be developed

to overcome the unique features of industrial experiments. Soon after World War II

G. E. P. Box and co-workers at Imperial Chemical Industries notably lead the way in

introducing experimental design methods specific to the chemical and process indus-

try and The Design and Analysis of Industrial Experiments (1960) was published as

a result. New techniques presented dealt with process modelling and optimization,

where previously focus had been placed upon treatment comparisons, the primary

objective of agricultural experiments. Sequential tests were also discussed due to

time and cost considerations mentioned previously, and lead to the introduction of

new techniques for the planning of experiments such as central composite designs

and optimal designs, the analysis of which rely greatly upon regression modelling and

graphical methods. Plackett-Burman designs (1946) were introduced as another way

of dealing with run size economic considerations. However, these saturated designs

used for screening a large number of factors are useful when only main effects are of

interest and interactions can be assumed to be negligible. Despite these developments

made, the principles of experimental design were not at first as widely used in the

Western world in comparison to Japan. Japanese industry has long recognised the

importance of experimental design methods in the efficient development of products

in industry and explains much of its success.

There has recently been a resurgence of interest in experimental design in industry

in the United States and United Kingdom over the last 20 years or so and is largely

thanks to the work from the early 1950s of the Japanese engineer, G. Taguchi, several

publications of which have gone on to be translated into English. Taguchi’s approach
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of robust parameter design was to improve a system (a product or process) in order to

make it less sensitive to ‘hard to control’ factors. Many of the designs recommended

by Taguchi call for the run size to be minimized in order to consequently minimize

the cost of the experiment. This is such as regular fractional factorial designs and the

recommended reduced-run arrays which are similar to the saturated designs developed

by Plackett and Burman.

More recently, a significant contribution to the field of experimental design has been

provided by Wu and Hamada (2000). They realised that many new methodological

developments had been made since the publication of Statistics for Experimenters

by Box, Hunter and Hunter in 1978 and wanted to introduce these developments

to a greater audience. Some of the methodologies covered include robust parameter

design, the more widespread use of the minimum aberration criterion and designs with

complex aliasing considering both a frequentist and Bayesian analysis. The analysis

strategy for designs with complex aliasing presented was based on previous research

conducted by Hamada and Wu (1992), and the Bayesian variable selection strategy

also for designs with complex aliasing presented was based upon the research of

Chipman, Hamada and Wu (1997). Their book has also been successful in presenting

experimental methodologies that originated much earlier than the publication by

Box, Hunter and Hunter (1978), which did not receive much attention in previous

publications. Some of these methodologies that have been presented in greater detail

in this book are Plackett-Burman designs, nonregular designs and the construction

of orthogonal main-effect plans through collapsing factors.
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1.3 Industrial Experiments at

Pfizer Global R & D

Pfizer are a global research-based pharmaceutical company that primarily carry out

research, development and manufacturing of drugs at a number of sites worldwide.

The types of experiments used in non-clinical research include screening experiments,

a filtering process carried out at the initial stages of an investigation where a large

number of factors that are thought to potentially have some effect on the process in

hand are investigated and the few found to be ‘active’ are then focussed on in further

experimentation. Active factors are typically considered to be those factors that have

large effects in relation to noise and so are an explanation for process variation that

occurs. Of the many factors being investigated only a few are thought to be truly

important which is described as the condition of factor sparsity (Box and Meyer,

1986a and 1986b).

Also carried out are experiments concerned with optimising a process, at the later

stages of an investigation when the few true ‘active’ factors have been identified and

the correct combination of levels of the factors are sought to optimise the process in

hand. This will typically be to optimise the yield, and thus minimise the loss and

also minimise cost, all aspects which are of importance to the company. An example

of such an experiment is in a blending process where a drug is to be manufactured

in a large scale blender which has three different variables, i.e. factors, that can be

adjusted; pre-blend speed, final blend speed and final blend time. Each setting has a

low and a high level and the amount of drug yield produced varies as a direct result of

the combination of settings used by the blender, and so it is necessary to identify the

optimum combination of factor levels in order to maximise the amount of the drug

produced.
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This thesis will focus on both the screening and optimization stages of non-clinical

pharmaceutical research. The research will focus on providing guidelines to experi-

menters regarding strategies to choose designs with respect to screening when a ‘good’

design is where maximum information is exploited in terms of true active and inactive

factors being correctly identified. Strategies will also look at how designs perform in

the context of optimization, the purpose of which is to correctly identify the optimum

combination of levels of factors, and this is taking into consideration prior knowledge

the experimenter has regarding the process. Research is also carried out into the

analysis of data from fractional factorial experiments using Bayesian methods.
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1.4 Concepts and Terminology

1.4.1 Factorial Experiments

A thorough explanation of full 2k factorial designs was given by Box and Hunter

(1961a, 1961b), detailing that all combinations of two levels for each of k variables

comprised a full 2k factorial design. The variables in question may be continuous,

thus the two levels being a low and high level of the variable (e.g. low or high tem-

perature of filtration); alternatively the variable may be qualitative, the two versions

corresponding to two types of the variable (e.g. new or old filter cloth). Two versions

of notation expressing the runs and variables comprising the experimental design were

also set out (Table 1.1). The first notation identified the variables by capital letters,

the two versions of the variable denoted by the presence or absence of the corre-

sponding lower case letter. The second notation, more commonly used throughout

the literature, sees the variables denoted by numbers and the two versions denoted

by a minus and a plus sign, or by minus and plus one. Although only the two sets of

notation were set out in this literature and Table 1.1, another common notation ex-

pressing the runs and variables is a mixture of the two where variables are denoted by

capital letters and the two versions denoted by a minus and a plus sign, or by minus

and plus one. The more common usage of these latter two notations may be due to

the ability to view the experimental design geometrically (Figure 1.1) and its natural

extension to constructing fractional factorial designs which will be looked at later.

The set of levels of all factors given for each run thus indicates the conditions under

which that particular trial must be carried out and is called the treatment combina-

tion. When using the latter notation of minus and plus signs, the list of experimental

runs is called the design matrix. However, the term design matrix is sometimes used

to denote the matrix including all treatment combinations and with the first column

as the column of all plus signs to denote the intercept. This matrix shall be denoted
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Figure 1.1: Geometric Representation of the 23 Factorial Design

by X and the derivation of this is described later in this section. In the case of a full

factorial design, where the model includes all main effects and interaction effects, X

will be a 2k × 2k matrix. Throughout this thesis I shall refer to the design matrix as

the matrix X which will represent the matrix with all treatment combinations and

has the first column of all plus signs for the intercept included, when considering a

first-order model. The runs in Table 1.1 are listed in standard order, where for each

of the k variables, the kth column has 2k−1 alternating minus and plus signs.

Table 1.1: Alternative Notations for the 23 Factorial Design

Run Number Notation 1 Notation 2

Variables ABC Variables 1 2 3

1 1 - - -

2 a + - -

3 b - + -

4 ab + + -

5 c - - +

6 ac + - +

7 bc - + +

8 abc + + +
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A method for calculating the estimates for the main effects and interaction effects

was given by Yates (1937). Yates’s algorithm, a systematic tabular method, involves

the addition and subtraction of successive pairs in a column, beginning with the

column of observations y listed in standard order. After writing down the treatment

combinations as given in notation 1 and the responses in standard order, the first

entry of the first column is derived by adding the sum of the first two responses. The

second entry is the sum of the second pair of responses, i.e. observations 3 and 4.

This is repeated until all pairs of the observation column are used and the top half

of the new column created. The lower half is then derived by taking the differences

of these pairs, the first entry in the lower half being the difference of response 2 and

response 1, the next entry the difference of response 3 and response 4 and so on.

The second new column is then derived from column 1 using the same addition and

subtraction process and the overall process is illustrated in Table 1.2 for clarity. For

a 2k design, this process of creating new columns is repeated up until there are k

columns, excluding the original column of observations y. For the final kth column,

the first entry is divided by N , the total number of observations, to obtain the grand

mean and all other entries are divided by N
2

to obtain the size of the effect for the

corresponding treatment or the data contrast. Although this algorithm provides a

relatively straightforward approach to the calculation of effects, it is not without its

drawbacks and can be prone to numerical errors.
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Table 1.2: Calculation of Effects using Yates’s Algorithm

Run Treatment Combination y Column 1 Column 2 Column 3 Effects

1 (1) 2 12 32 56 ȳ = 7.0

2 a 10 20 24 12 A = 3.0

3 b 8 14 12 4 B = 1.0

4 ac 12 10 0 -8 AC = -2.0

5 c 6 8 8 -8 C = -2.0

6 ac 8 4 -4 -12 AC = -3.0

7 bc 6 2 -4 -12 BC = -3.0

8 abc 4 -2 -4 0 ABC = 0

An alternative to Yates’s method was given by Box and Hunter and provided a longer,

but more basic method. For a 2k design, a 2k×2k matrix, X, is derived from the design

matrix (Table 1.3). Each of the k columns corresponds to the main and interaction

effects, and each of the k rows corresponds to an experimental run. The ij interaction

column of X is generated by multiplying the elements of the i and j columns of the

design matrix, and the ijk interaction similarly calculated. The first column, called

the identity and denoted I will consist of all plus signs and is used to calculate the

estimated mean. The estimate of an interaction effect, say ij, is calculated by taking

the product of the elements of the response column y and the corresponding elements

of the ij column, and then taking the sum of the resulting elements. This final value

is then divided by N
2

to give the estimated effect. It should be noted that these

methods only work for orthogonal designs. To illustrate, the 2 3 interaction effect

for the data given in Table 1.3 is

2 3 =
1

4
(2 + 10− 8− 12− 6− 8 + 6 + 4) = −3.0.
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Table 1.3: Design Matrix

Design Matrix X y

1 2 3 I 1 2 3 12 13 23 123 y

- - - + - - - + + + - 2

+ - - + + - - - - + + 10

- + - + - + - - + - + 8

+ + - + + + - + - - - 12

- - + + - - + + - - + 6

+ - + + + - + - + - - 8

- + + + - + + - - + - 6

+ + + + + + + + + + + 4

1.4.2 Fractional Factorial Experiments

The number of runs required for a full factorial 2k design increases progressively

as the size of k increases, and the cost of carrying out a complete factorial design is

usually beyond the resources of an experimenter. For example, a complete 27 factorial

design will require 128 runs and to carry out such an experiment will be both time-

consuming and extremely costly, and so very rarely would a full factorial design be

used in practice. These are a couple of reasons that to use a fractional factorial design

is of extreme benefit where only a subset or fraction of the full factorial design is used.

Consider the 27 factorial design where there are 127 degrees of freedom available and

only 7 of the 127 degrees of freedom correspond to the estimation of main effects and

21 to the estimation of two-factor interactions. Owing to certain principles, namely

the effect sparsity principle, resulting from the factor sparsity principle, and the hi-

erarchical ordering principle (Wu and Hamada, 2000), an experimenter can assume

tentatively that higher-order interactions, say greater than two-factor interactions, are

negligible, thus allowing them to obtain information on main effects and low order in-

teractions by only running a fraction of the full design. These principles respectively
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state that out of the many effects calculated due to factors and their interactions,

only a small number will be important, and that lower order effects are more likely

to be important than higher order effects. The idea of effect sparsity is particularly

important in the case of screening experiments, since it is likely that many of the

factors being investigated will have little or no effect on the response, and those that

have been identified as important will then be focussed on more carefully in further

experimentation.

Consider a half-fraction of a 24 design (Table 1.4); this is therefore denoted as a 24−1

design since it only consists of 8 runs.

Table 1.4: Half-fraction of a 24 Design

1 2 3 4

- - - -

+ - - +

- + - +

+ + - -

- - + +

+ - + -

- + + -

+ + + +

It is obvious that for factors 1, 2 and 3 the levels of the factors have just been chosen

according to standard ordering, but how have the levels of factor 4 been allocated?

Notice that the column of minus and plus signs for 4 is the product of column 1,

column 2 and column 3. Thus, 4 is assigned the column 123 and 4 is said to be

aliased with the 123 interaction. This aliasing relation is 4 = 123, called the design

generator, or I = 1234 which is called the defining relation of this 24−1 design. Since

the defining relation 1234 has word length 4, the design is said to have resolution IV,

and can also be fully defined as a 24−1
IV design.
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Resolution describes the degree to which the main effects are aliased with other

main effects and interaction effects and in the case of the resolution IV design, main

effects are not aliased with any other main effect or with any two-factor interaction.

However, two-factor interactions are aliased with one another. Aliasing implies a

confusion of effects where one is not able to distinguish the estimate of one particular

effect from another. In the 24−1 design considered, if the main effect of 4 was large,

the experimenter cannot be sure if this is due to the influence of the main effect of 4

or the three-factor interaction 123, as the design is actually estimating 4+123. The

designs of resolution III, IV and V are the most common and are as follows:

Resolution III Design Main effects are not aliased with other main effects, but

main effects are aliased with two-factor interactions. Two-factor interactions

may be aliased with each other.

Resolution IV Design Main effects are not aliased with other main effects or two-

factor interactions, but two-factor interactions are aliased with each other.

Resolution V Design Main effects and two-factor interactions are not aliased with

other main effects or two-factor interactions, but two-factor interactions are

aliased with three-factor interactions.

A main effect or two-factor interaction is clear if it is not aliased with main effects

or two-factor interactions and is strongly clear if it is not aliased with main effects,

two-factor interactions or three-factor interactions (Wu and Chen, 1992). In general,

a resolution p design has main effects aliased with (p− 1)-factor interactions and so a

design with high resolution is desirable to ensure that too many assumptions do not

need to be made regarding which interactions are negligible.

A fractional factorial design will be denoted as a 2k−p design, with k factors all at

two levels and a 2−p fraction of the full 2k factorial design. As mentioned previously,
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a design will be determined by its particular defining relation and specifically by p

defining words. The group resulting from the p defining words is called the defining

contrast subgroup and consists of the identity element I and 2p − 1 words.

Consider the 25−2 design which has design generators 4 = 12 and 5 = 13. So factors

1, 2 and 3 consist of minus and plus signs according to standard ordering and factor

4 is assigned the column of two-factor interaction 12, and 5 assigned the two-factor

interaction 13. Thus, the two defining relations for this design are I = 124 and I =

135. By multiplying the two defining words, 124 and 135 together (using the rule

that 12 = I, 22 = I, etc.), the defining contrast subgroup is obtained. For this design

the defining contrast subgroup is

I = 124 = 135 = 2345.

This method can also be used to obtain aliasing patterns, simply by multiplying each

term in the defining contrast subgroup by the main effect or interaction effect that

one is interested in.

The maximum resolution criterion (Box and Hunter, 1961a and 1961b) can be used

to discriminate between designs by choosing a design which has defining words with a

longer length. This will thus imply aliasing of higher order effects. For a 2k−p design,

let Ai denote the number of words of length i in its defining contrast subgroup. Then

the vector

W = (A3, . . . , Ak)

is called the wordlength pattern of the design (Wu and Hamada, 2000). The resolution

of a 2k−p design can be defined as the smallest r such that Ar ≥ 1, i.e. the length of

the shortest word in the defining contrast subgroup. Then the maximum resolution

criterion will choose the 2k−p design with maximum resolution.

The minimum aberration criterion (Fries and Hunter, 1980) can be used to further
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discriminate and distinguish between two designs of the same resolution. This is done

by discriminating against the design which has more aliasing as a result of the design’s

particular defining relation. The minimum aberration criterion is as follows:

For any two 2k−p designs d1 and d2, let r be the smallest integer such

that Ar(d1) 6= Ar(d2). Then d1 is said to have less aberration than d2 if

Ar(d1) < Ar(d2). If there is no design with less aberration than d1, then

d1 has minimum aberration.

An ‘optimal’ fractional factorial design will usually be chosen based on some criteria

such as maximum resolution and/or minimum aberration.

1.4.3 Analysis of Factorial Two-Level Experiments

Daniel (1959) gave a method which allowed the half-normal plot to be used to aid

in the interpretation of two-level factorial experiments. This involved plotting the

empirical cumulative distribution of the orthogonal contrasts computed from a 2k

experiment; the half-normal plot can then be used to estimate the standard devia-

tion of error and make judgements regarding the true nature of the observed effects.

However, this method did not come without its warnings - words of caution given

with the half-normal plot concerned subjective biases and “that it is not offered as

a general substitute for the analysis of variance.” This graphical method will be re-

ferred to as the Daniel plot in this chapter. A more formal procedure was suggested

by Daniel (1959), to be used alongside the somewhat subjective method of visually

inspecting half-normal plots, later modified by Zahn (1975a, 1975b) and then further

investigated and adjusted by Olguin and Fearn (1997).

Literature by Box, Hunter and Hunter (1978) and Box and Draper (1987) presented

the use of the full normal plot, a normal plot of the signed contrasts, as a preferential
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alternative to the half-normal plot. The normal plot of effects is perhaps one of the

most common methods for detecting active effects. This is due to ANOVA methods

not being easily able to use as a result of the lack of degrees of freedom available for

estimation of the variance of experimental error, which is particularly true in the case

of saturated designs. However, as highlighted with the half-normal plots, there still

remain problems associated with interpreting normal plots due to the subjectivity

involved.

Box and Meyer (1986a) provided a more formal analysis of unreplicated fractional

factorials that could be used in association with graphical analyses such as normal

probability plotting, to supplement such plots. This extended from the work of Daniel

that made use of the factor sparsity principle which Box and Meyer used much more

explicitly in their paper. A simple theoretical model takes account of the Pareto

principle, “the law of the vital few”, that the majority of the process variation is

explained by a small proportion of the variables, and is thus associated with factor

sparsity, which states that of the total number of factors being investigated, only a

small proportion of these factors will have effects that are large. A posterior probabil-

ity that each contrast is active is computed and a posterior probability plot produced,

now more popularly known as a Bayes plot. Their method can be summarized as fol-

lows. Suppose an effect βi (i = 1, . . . , v) is active with probability α, where active

effects are iid N(0, σ2
β) and inert effects βi (also known as passive or inactive) are 0.

Let T = (T1, . . . , Tv) be the vector of v estimated effects and where necessary are

standardized so that given β, they all have the same unknown variance σ2. Thus, for

an inert effect Ti = ei and for an active effect Ti = βi+ei where ei are iid N(0, σ2) error

terms. Let k2 = (σ2 +σ2
β)/σ2, and then T1, . . . , Tv are iid from the scale-contaminated

normal distribution denoted by (1− α)N(0, σ2) + αN(0, k2σ2). That is, the effect Ti

is normally distributed with zero mean and variance σ2 with probability 1 − α and

has much larger variance k2σ2 with probability α.
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Let a(r) be the event that a set of r effects out of the total v effects are active and

T(r) be the corresponding estimated effects for those r active effects. Then assuming

a priori that log σ is locally independent and uniform, the posterior probability that

T(r) comprises the active effects is

p(a(r)|T, α, k) ∝
[
αk−1

1− α

]r [
1− ϕf(r)

]−v/2
(1.1)

where ϕ = 1 − 1/k2 and f(r) = TT
(r)T(r)/T

TT, the fraction of the sum of squares

associated with T(r).

Then, the marginal probability pi that an effect i is active given T, α and k is

pi =
∑

(r): i active

p(a(r)|T, α, k), (1.2)

i.e. to compute pi for i = 1, . . . , v the probabilities in (1.1) must be computed for all

2v possible events a(r).

Box and Meyer also presented a much quicker way of computing the posterior prob-

abilities {pi}, rather than having to sum over all 2v combinations. Given the as-

sumption that T1, . . . , Tv are iid from (1 − α)N(0, σ2) + αN(0, k2σ2), then the pos-

terior probability that a single estimated effect Ti comes from the wider distribution

N(0, k2σ2), given σ, is

Pi|σ =
α 1
k

exp
{
−T 2

i

2k2σ2

}
α 1
k

exp
{
−T 2

i

2k2σ2

}
+ (1− α) exp

{
−T 2

i

2σ2

} . (1.3)

This formula is obtained by direct application of Bayes’ Theorem. To compute the

unconditional posterior probability pi that effect Ti is active, the parameter σ must

be integrated out of (1.3) over its posterior distribution p(σ|T). That is

pi =

∫ ∞
0

pi|σp(σ|T) dσ. (1.4)

The posterior distribution of σ is

p(σ|T) ∝ σ−n
v∏
j=1

[
(1− α) exp

{−T 2
j

2σ2

}
+ α

1

k
exp

{ −T 2
j

2k2σ2

}]
. (1.5)
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The product in (1.5) can then be expanded into the sum of 2v terms and substituted

into the integral (1.4), the integration being done analytically to obtain the expression

(1.2) for pi. However, the integral can be computed much more efficiently by numerical

integration rather than expanding the integrand in (1.4) to compute the probabilities

{pi}.

Lenth (1989) presented a competing technique to the Box-Meyer method for assessing

the sizes of contrasts in unreplicated fractional factorial designs. This method uses

robust estimation of the standard deviation of estimated factorial effects to define

a measure called the pseudo standard error (PSE). Let κ1, κ2, . . . , κm denote the

contrasts of interest and c1, c2, . . . , cm denote the corresponding estimates. Then

s0 = 1.5×median
j
|cj|

and the pseudo standard error of the contrasts is defined as

PSE = 1.5× median
|cj |<2.5s0

|cj|.

That is, a trimmed median attempts to remove contrasts associated with active or

non-zero effects. The PSE is then used to calculate a margin of error (ME) and a

simultaneous margin of error (SME) as follows

ME = t0.975;d × PSE

SME = tγ;d × PSE

where

γ = (1 + 0.951/m)/2.

Let m denote the number of contrasts being estimated and d denote the df which are

usually taken to be d = m/3. As stated ME is a margin of error, and this is in fact

for the estimates corresponding to the m contrasts and is with approximately 95%
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confidence. It may be the case that due to several inferences being made simultane-

ously, and with a large number of contrasts that one or two estimates associated with

inactive contrasts may exceed the ME. This would in fact lead to an incorrect con-

clusion, and so to take into account this possibility the SME is defined. The subject

of the poor approximations of the critical values for ME and SME was discussed by

Olguin and Fearn (1997). It was noted that these critical values were computed on

the basis that the ratios of contrasts to PSE are distributed approximately as t with

m/3 degrees of freedom. However, these approximations were found to be inaccu-

rate, at least in the tails of the distribution and evidence of this deficiency in Lenth’s

method is demonstrated to some extent in later results in Chapter 3. Despite this,

the competing technique of Lenth’s method has proved to be somewhat effective, is

relatively simple computationally and also has the added advantage of the results

being given in terms of the original units of measurement.

The graphical methods that have been outlined, namely the methods of Daniel (1959),

Box and Meyer (1986a) and Lenth (1989) (Figures 1.2 - 1.4) are illustrated with

tensile strength data taken from Taguchi and Wu (1980). The experiment taken from

Taguchi and Wu (1980) is a 29−5
III design. The factors investigated were Rods (A),

Period (B), Material (C), Thickness (D), Angle (E), Opening (F ), Current (G),

Method (H) and Preheating (J), and the response measured was tensile strength.

The column allocation of factors and responses are given in Table 1.5. The values

used to generate the Daniel, Bayes and Lenth Plot are displayed in Table 1.6, i.e.

estimated effects, their associated posterior probabilities, margin of error (ME) and

simultaneous margin of error (SME).

For Daniel’s plot, the half-normal score is shown on the horizontal scale and the

absolute value of the estimated effects on the vertical scale. Each point plotted is

labelled by its corresponding column number. The Bayes plot has the horizontal

scale denoting each of the columns. The bar drawn at each column is the probability
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that the column is associated with an active contrast, either as a result of a single

effect or a linear combination of effects depending upon the alias string. Lenth’s plot,

similarly to Bayes plot, has numbers 1, . . . , 15 on the horizontal scale denoting each

of the columns of the design. Reference lines are drawn on the plot at both ±ME

and ±SME and are used to decide whether a factor is active or inactive. If a bar at

any of the columns, 1, . . . , 15, extends beyond the ±SME, then it can be concluded

that contrast is clearly active. If a bar does not extend beyond ±ME, then that

particular contrast is not active. If a bar falls in between ±ME and ±SME, then

there is uncertainty surrounding the decision whether the contrast is active or not

and the experimenter must decide whether to run further experiments or use scientific

knowledge to draw the most appropriate conclusion.

In all three plots it can clearly be seen that contrasts, or columns, 14 and 15 are

clearly active, and all other factors are inactive. The active contrasts correspond to

B and −C.
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Table 1.5: Column Allocation and Results for Tensile Strength Experiment

Column Allocation Tensile Strength

Run I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 y

1 + - - + - + + - - + + - + - - + 43.7

2 + + - - - - + + - - + + + + - - 40.2

3 + - + - - + - + - + - + + - + - 42.4

4 + + + + - - - - - - - - + + + + 44.7

5 + - - + + - - + - + + - - + + - 42.4

6 + + - - + + - - - - + + - - + + 45.9

7 + - + - + - + - - + - + - + - + 42.2

8 + + + + + + + + - - - - - - - - 40.6

9 + - - + - + + - + - - + - + + - 42.4

10 + + - - - - + + + + - - - - + + 45.5

11 + - + - - + - + + - + - - + - + 43.6

12 + + + + - - - - + + + + - - - - 40.6

13 + - - + + - - + + - - + + - - + 44.0

14 + + - - + + - - + + - - + + - - 40.2

15 + - + - + - + - + - + - + - + - 42.5

16 + + + + + + + + + + + + + + + + 46.5

D H G −F A −E J B −C

Table 1.6: Estimated Effects, Their Associated Posterior Probabilities, ME and

SME.

Column Effect p

1 0.13 0.03

2 -0.15 0.03

3 0.30 0.05

4 0.15 0.03

5 0.40 0.08

6 -0.30 0.02

7 0.37 0.07

8 0.40 0.08

9 -0.05 0.02

10 0.42 0.09

11 0.13 0.03

12 0.13 0.03

13 -0.37 0.07

14 2.15 1.00

15 3.10 1.00

ME = 0.58 SME = 1.17
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Figure 1.2: Daniel’s Plot of Tensile Strength Data

Figure 1.3: Bayes Plot of Tensile Strength Data
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Figure 1.4: Lenth’s Plot of Tensile Strength Data

44



1.4.4 Decision Theory

Decision theory is a formal theory of decision making under uncertainty. A decision

problem typically consists of possible actions {ai}ai∈A i = 1, . . . ,m, possible states

{sj}sj∈S j = 1, . . . , n and possible consequences {ci,j}ci,j∈C where

ai + sj −→ ci,j.

That is, taking some course of action ai when the state of nature is sj, leads to the

consequence ci,j. The question of which is the best action to take can be answered,

according to decision theory, by measuring the ‘goodness’ of the consequences with a

utility function U(c). The best action, a∗, will be that which maximizes the expected

utility. That is,

a∗ = arg max
a
{E [U(c)|a]}.

These types of decision problems can be represented by a decision table, an example

of which is displayed in Table 1.7.

Table 1.7: General Form of a Decision Table

States

Actions s1 s2 · · · sn

a1 c1,1 c1,2 · · · c1,n

a2 c2,1 c2,2 · · · c2,n

· · · · · · ·

am cm,1 cm,2 · · · cm,n

1.4.5 Bayesian Methodology

Bayesian theory is an interpretation of probability which is determined by the degree

of belief a person has in a hypothesis and also suggests that using Bayes’ Theorem, we
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can update this degree of belief in light of new information. People who at one time

disagree about the likeliness or truth of a hypothesis may then agree after sharing

experiences of the situation. They are not coerced into agreeing with one another

but the experiment in hand forces them to agree and subjective theory provides some

explanation as to how this agreement comes about. Axioms are given to personal

degrees of belief and any person can compare and also quantify their beliefs. We

then have some consequence of the axioms where we let h denote a hypothesis, d

denote some initial data about h and e denote the result of an experiment after d is

known. We can then try to establish the confidence we will have in h given d alone

(initial or prior confidence); the confidence we would have in e if we already know

h and d but not e (likelihood of e in light of h); and the confidence in h after we

learn of e (posterior confidence). An application of Bayes’ Theorem is that it can be

proved that the posterior belief is proportional to the prior belief and the likelihood.

Variations in belief represent the influence of experience and a consequence of Bayes’

Theorem describes how we should learn from the experimental data e. As we carry out

experiments of the same kind our degree of confidence will become increasingly more

stable. Also, when we have two people who have greatly different initial confidences,

so long as they agree on what is possible and on the outcomes of the individual

experiments, Bayes’ Theorem proves that not only do their opinions become more

stable but also their differing views will coincide increasingly over time. These ideas

underpin the very core of Bayesian inference and can be more formally represented

as

p(θ|y) ∝ p(θ)p(y|θ),

where θ is an unknown parameter of interest and y is some observed data. Thus the

posterior density p(θ|y) is proportional to the prior distribution p(θ) and sampling

distribution p(y|θ).

The use of Bayesian methods in the clinical work of the pharmaceutical industry
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has only really caught on over the last 25 years, the reluctance largely due to heavy

regulations particularly when testing drugs and carrying out clinical trials on patients.

The industry has now warmed somewhat to these ideas with major world regulatory

authorities stating that Bayesian procedures can be considered when reasons for their

use are clear and also given that conclusions are seen to be robust. Despite the more

free use of Bayesian methods, they are still met with some scepticism regarding the

subjective measure of belief in comparison to the more traditional nature of frequentist

statistics based on repeated sampling. However, this does not apply so much in the

case of non-clinical work where regulatory practices have not been as stringent, and

statisticians need to justify their choice of prior perhaps only to other colleagues

working in their area or on the project, rather than to a regulatory body. This does

not mean that the use of Bayesian methods is completely unproblematic in industrial

experiments; there still remains the problem of the choice of prior which best reflects

the experimenters’ knowledge about the process in hand and the size of the parameter

estimates.
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1.5 Outline of Chapters

Multifactor designs, including fractional factorial designs, are one of the most widely

used statistical contributions to industrial experimentation. They are used in many

manufacturing and processing industries, including the pharmaceutical industry, where

they are used in both pre-clinical research and in process improvement in manufactur-

ing. They are increasingly recognised by scientists and engineers as allowing consid-

erable information about the effects of several factors on the response to be obtained

with a relatively small number of runs, which is extremely important given that a

single run can be time-consuming and costly.

An important decision for an experimenter is in choosing the design for their exper-

iment, which will greatly influence the results they obtain and consequently what

they are able to analyse as a result. However, the experimenters’ prior knowledge is

not usually exploited and used in a formal manner at the design stage. In chapter

2, literature on optimal designs is introduced and decision-theoretic ideas explored

that take into account the prior knowledge that an experimenter may have. The key

utility functions that will be used to discriminate between designs are introduced. As

mentioned, prior knowledge will be taken into consideration and designs compared on

the basis of the usual least squares model and analysis, and also looking at comparing

designs when the alternative Lenth’s method of analysis is used. This research will

involve the use of utility functions relevant to the objectives of the experiment, say

maximising the amount of yield, and the design which has the maximum utility is

chosen as the ‘best’.

The methods set out in chapter 2 are then applied in chapter 3 with a series of

examples to illustrate the concepts of the utility functions. The chapter begins with

a small example comparing two designs studying three factors at two levels with the

purpose of seeking the optimal treatment combination. A larger case is then presented

48



where a 12 and 16 run design, studying 5 factors at two levels, are compared with

the objective of finding a design which is most efficient in terms of identifying active

and inactive effects. Finally, the matter of optimization and obtaining the optimal

treatment combination is again considered with a larger example. Two designs are

compared where 5 factors are investigated at two-levels in a 16 run experiment, and

the same factors investigated at three-levels in an 18 run experiment with the purpose

of identifying which design is most effective.

An introduction to the concepts and most notable literature of Bayesian analysis

are given in chapter 4 and these ideas are then discussed in relation to the analysis

of data from fractional factorial experiments. There is virtually always some prior

knowledge about the sizes of effects and using this in a fully Bayesian data analysis

seems natural. The use of fairly vague priors are explored, as well as more informative

priors. A typical assumption made in fractional factorial experiments a priori is that

only a small number of all the effects being investigated will be truly important, which

could be considered to be an extreme form of prior knowledge and consequently leads

to the justification of the use of Bayesian analysis.

Another problem faced by experimenters is the possibility of the dataset containing

outliers. The analysis of fractional factorial experiments can be impacted severely

in the presence of an outlier, which will be considered to be an observation which is

suspected of not being generated from the mechanism which produced the majority

of observations. Outliers are an unavoidable circumstance; recording errors and tem-

porary changes in experimental conditions are just a few reasons for their occurrence.

The possibility that they may occur is always present and so an analysis that is more

robust to outliers is sought. In chapter 5 an analysis that is more robust to out-

liers is sought and a comparison of methods of analysis on some historical datasets is

made. This involves looking at both non-saturated and saturated designs, the latter

of which introduces complications such as the problem of a high level of aliasing being
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introduced. A simulation study will be conducted to test the ideas developed.

The main conclusions of the thesis are summarised in chapter 6 and further research

and additional problems that extend from this thesis are also given.
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Chapter 2

A Decision Theory Approach to

the Choice of Factorial Design

2.1 Introduction

The statistical tools available for designing experiments usually choose a design which

is optimal. This is either in terms of a variance criterion such as D-efficiency, or in

terms of estimability criteria such as resolution and aberration, given the number

of factors, the number of levels of each factor and the number of runs available.

However, in practice these are not given but are to be decided by the experimenter

and this is usually done in an informal manner by comparing what can be obtained

from various designs of different sizes and then choosing a design based on what

seems sensible. Also, the usual optimal design criteria and utility functions do not

provide the correct criteria for experimenters to answer certain questions, such as

which design will maximise yield or correctly identify active factors.

A decision-theoretic approach is explored in this chapter, which will allow a more
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informed choice of design to be made. Prior distributions on the sizes of effects will

be taken into consideration, and a design (including the number of runs, factors and

levels) can then be chosen from a candidate set of designs using a utility function

relevant to the objectives of the experiment. For example, a screening experiment to

screen factors for further experimentation, would require the need to correctly identify

the true active and inactive factors and so a utility function combining the proportion

of active and inactive factors declared correctly would be used. This differs from that

of an (usually one-off) experiment where the factors involved in the process have been

identified and the optimal treatment combination may be sought in order to optimize

the process. An example of optimizing the process may be to maximise yield or other

similar things such as to maximise purity, to minimise waste, etc. A gain function may

be considered in order to compare the yield obtained from the estimated optimum

factor level combination in comparison to standard operating conditions, and a loss

function would be considered to be the yield obtained at the true optimum factor

level combination compared to the yield obtained at the estimated optimum factor

level combination.
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2.2 Standard Optimality Criteria

The theory of the optimum design of experiments was formally discussed by Atkinson,

Donev and Tobias (2007), and the most commonly used optimality criteria described.

An optimality criterion provides a measure of how good a design is, and information-

based criteria and distance-based criteria are the two general types of criteria available.

The distance-based criteria correspond to the idea of filling the candidate space as well

as possible. The candidate points comprise a point cloud in p-dimensional Euclidean

space where p is the number of terms in the model. Information-based criteria are

related to the information matrix XTX for the design and proposed model. The

criteria of optimality set out by Atkinson et al. focussed more on the information-

based criteria.

To illustrate these information-based criteria let us first consider the general linear

model, which will be written as

y = Xβ + ε

where y = (y1, ..., yN)T is the N × 1 vector of responses, β = (β0, β1, ..., βp)
T is the

(p + 1) × 1 vector of regression coefficients, ε = (ε1, ..., εN)T is the N × 1 vector of

errors, and X is the N × (p + 1) design matrix and N is the total number of runs.

p is the number of explanatory variables for the multiple linear regression model but

not in the case of a second order polynomial model.

Then for this model, the sum of squares to be minimized is

S(β) = (y−Xβ)T(y−Xβ)

and the least squares estimator of β satisfies the p+ 1 least squares equations

XTXβ̂ = XTy.
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The matrix XTX is then the information matrix for β. The covariance matrix of the

least squares estimator for a non-singular design is

var(β̂) = σ2(XTX)−1,

and from this ∣∣(XTX)−1
∣∣ = 1/

∣∣XTX
∣∣

is called the generalized variance of β̂. Thus, the information matrix XTX, a measure

of the information from the experiment, is of importance relating to optimal design

theory. It is proportional to the inverse of the variance-covariance matrix for the

least-squares estimators of the model parameters.

The most widely accepted criteria for optimal experimental designs are now set out:

A-optimality Minimizes tr[(XTX)−1], that is the average of the variances of the

parameter estimates is minimized.

D-optimality Maximizes
∣∣XTX

∣∣, which is the same as minimizing the generalized

variance of the parameter estimates.

G-optimality This is based on the variance of prediction across the design region,

which is proportional to xT(XTX)−1x. This minimizes the maximum variance

of the predicted values, i.e. minimizes xT(XTX)−1x over all points x in the

design region.

Generally, a good design which ‘minimizes’ the variance (XTX)−1, or ‘maximizes’ the

information XTX is sought.

The standard optimality criteria do not always provide appropriate criteria with which

to discriminate between designs. As the optimality criteria are based on some func-

tions of the information matrix, the optimality of a given design is therefore model

54



dependent. Since an experimenter must specify a model for the design and the num-

ber of design points prior to the optimal design being generated, this means that the

optimal design generated will actually only be optimal for that model.

It is also worth noting that an approach adopted to compare designs of different sizes

is to scale by N , the total number of observations for the design (Anderson-Cook,

2005). Scaling by N in this way allows one to compare designs of different sizes on

an information per observation basis. However, this does impose a very specific and

often unrealistic utility function and as with all optimality criteria should be used

with both caution and judgement.

Design efficiency, as specificied by Atkinson, Donev and Tobias (2007), is a measure

of how good a design is in comparison to the optimal design. For D-optimality let

the optimum design be ξ∗D, and then the D-efficiency of any other design ξ is

EffD(ξ) =

{ ∣∣XTX(ξ)
∣∣∣∣XTX(ξ∗D)
∣∣
}1/(p+1)

.

Since optimality, and therefore also design efficiency is model dependent, it is impossi-

ble to compare designs estimating different models. Upon calculating the D-efficiency

for a particular candidate design, it is impossible to compare this measure to the D-

efficiency for a design estimating a different model. This is also true for A-efficiency,

G-efficiency, etc. and in the case of the Bayesian versions which shall be outlined

later in this section. This leads to the need for some measure which can appro-

priately discriminate between designs, even in the case where they are estimating

different models.

The optimality criteria discussed thus far have been concerned with the optimality in

the case of standard least squares. Now we will consider experimental design from a

Bayesian viewpoint. Chaloner and Verdinelli (1995) provided a comprehensive review

of the literature on Bayesian experimental design. They also noted that experimental

55



design is a situation where it is meaningful within Bayesian theory to average over the

sample space, although as the sample has not yet been observed, averaging over what

is unknown applies. Following on from Raiffa and Schlaifer (1961), Lindley (1972)

presented a decision-theoretic approach to experimental design. Lindley’s argument

suggested that the most effective way to design experiments would be to specify a

utility function to reflect the objective of the experiment. Then, one should regard

the choice of design rather as a decision problem and select a design that maximizes

the expected utility. This argument is given more formally as follows. A design ξ

is to be chosen from the design space Ξ, and some data y will be observed from a

sample space Y. Given y, the selection of ξ from Ξ and a terminal decision d from

the set of decisions, D, the action space, will be made. The unknown parameters are

θ and the parameter space Θ. A general utility function can then be defined in the

following form of U(d, θ, ξ, y).

For any design ξ, the expected utility of the best decision is given by

U(ξ) =

∫
Y

max
dεD

∫
Θ

U(d, θ, ξ, y)p(θ|y, ξ)p(y|ξ) dθ dy.

The Bayesian experimental design is then given by the design ξ∗ maximizing U(ξ):

U(ξ∗) = max
ξεΞ

∫
Y

max
dεD

∫
Θ

U(d, θ, ξ, y)p(θ|y, ξ)p(y|ξ) dθ dy.

Previously, we were considering optimality criteria with regards to least squares, that

could be used to discriminate between designs. An alternative way of discriminating

between designs in a Bayesian fashion is to consider a utility function which considers

the expected gain in Shannon information given by an experiment (Shannon, 1948)

following from Lindley (1956). It was proposed that a design should be chosen that

maximises the Kullback-Leibler distance, that is the expected gain in Shannon infor-

mation which is equivalent to maximising a distance between the posterior and prior
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distribution, ∫
log

p(θ|y, ξ)
p(θ)

p(y, θ|ξ) dθ dy.

Since the prior distribution does not depend upon the design ξ, the design actually

maximises the expected gain in Shannon information of the posterior distribution and

the following is the utility function for this;

U(ξ) =

∫
log{p(θ|y, ξ)}p(y, θ|ξ) dθ dy.

In the case when utility is based on Shannon information, then the Bayesian optimal

design ξ∗ does in fact satisfy

ξ∗ = arg max
ξεΞ
|XTX(ξ) +R|

for a linear model, and this is where R is a known k × k matrix, when θ is normally

distributed with mean θ0 and variance-covariance matrix σ2R−1. Thus, when utility is

based on Shannon information then this utility reduces to maximizing |XTX(ξ) +R|

and is known as Bayesian D-optimality. This differs from non-Bayesian D-optimality

which maximizes |XTX(ξ)|. However, when n the number of observations is large,

i.e. n→∞, or when there is little prior information about the unknown parameters

θ, then the Bayesian D-optimality does in fact reduce to the classical D-optimality.

Bayesian A-optimality maximizes −tr[A(XTX(ξ) + R)−1], where A is a symmetric

non-negative definite matrix. This is a generalization of a non-Bayesian optimality cri-

terion that minimizes tr[A(XTX)−1]. When A = I, the identity matrix, A-optimality

is recovered and the Bayesian A-optimality criterion is then a generalization of the

non-Bayesian A-optimality criterion. Similarly to its non-Bayesian counterpart, it

reduces the variances of the parameter estimates and this criterion also corresponds

to the quadratic loss utility function (Chaloner and Verdinelli, 1995).

The criterion provided by utility functions such as Shannon information, may not

always be appropriate such as in cases when comparing designs of different sizes. Due
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to the nature of this utility maximising the expected gain of a particular design, when

comparing two designs of different sizes, the design which is larger will usually have

a greater expected gain and thus be chosen as optimal. This may not always be the

case though, if the larger design is a poor choice of design. Thus, it is of interest to

know how much more information is gained from an experiment when carrying out

an extra n runs and a utility to quantify this gain in information is necessary.

As well as the Shannon utility function, or expected Kullback-Leibler distance, not

being a natural criterion to use in some cases as the larger design will typically result

in being the optimal design, it also does not relate to the questions experimenters will

want to answer. The Kullback-Leibler distance does not seem an appropriate measure

when having to choose between various designs that are estimating different models.

It also does not translate naturally to answering questions experimenters may have

concerning cost; it does not seem natural to ask “how does this Kullback-Leibler

distance relate to the cost of carrying out n extra runs?”.

Also mentioned in the previous chapter were the criteria used to choose an optimal

fractional factorial design in terms of resolution and aberration. Specifically, an opti-

mal design would have maximum resolution and/or minimum aberration. However, it

can be shown that there are situations where these criteria are not always sensible to

judge a design on their own. A downfall of the maximum resolution criterion is that

two designs may have the same resolution, but due to different wordlength patterns,

one of the designs may have more aliasing than the other. Likewise, the minimum

aberration criterion is not without its faults. Consider two designs, d1 and d2, which

have the same resolution and Ar(d1) < Ar(d2). It is possible that although d1 has

minimum aberration, d2 can have more clear interaction effects which would deem it

superior to d1, although not in terms of minimum aberration. The estimation of more

clear effects would be considered in this situation to be a more desirable property than

the length of defining words.
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Both non-Bayesian and Bayesian criteria, typically used to discriminate between and

ultimately choose an optimal design relative to the objective of the experiment, have

been presented. Some of the drawbacks of these criteria have also been illustrated.

It is therefore important to develop a utility function that incorporates the principal

goals of the experiment. A utility is sought that can identify a design with minimal

aliasing of effects. It is also important to quantify the worth of carrying out the

extra n runs and whether this extra cost and time spent is of worth in comparison to

carrying out an experiment with a smaller design. This is when designs of different

sizes are to be considered. A utility is also sought to aid with determining the optimal

design when there are several candidate designs of the same size, estimating different

models. These utilities must be relevant to the experimenter’s questions.
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2.3 Utility Functions for Optimization

2.3.1 Loss and Gain Functions

As discussed previously, a utility function appropriate for the experimenter’s objective

is necessary. In the case of industrial experimentation in the pharmaceutical industry

the principal aim is typically to first identify the key few factors having an effect on the

process in hand, and then after further focussing on these active factors, to identify

the optimal treatment combination. Optimal in this context will normally mean the

treatment combination resulting in maximum yield, or alternatively, minimising loss

of yield during manufacturing processes.

Let us consider the objective of identifying the optimal treatment combination when

a fractional factorial experiment has been carried out. A full factorial experiment

allows all effects to be estimated clearly, but due to time and cost constraints this is

almost always an impossibility to carry out. Thus, the fractional factorial experiment

will be employed in the knowledge that not all effects can be estimated and of those

that can be estimated, some may not be estimated clearly. Thus, the experimenter

wants to be sure the treatment combination that has been estimated to be optimal,

gives a response as close to the true optimal response as possible. That is, we want

to minimise the difference between the response at the true optimal treatment com-

bination, and the response at the estimated optimal treatment combination. This is

minimising the loss.

Alternatively, the experimenter may be more concerned with wanting to improve

on standard operating conditions that are already in place. So, we would want to

maximise the difference between the response at the estimated optimal treatment

combination, and the expected response at the standard operating treatment combi-
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nation currently in use. That is, maximising the gain in yield due to the knowledge

obtained from the experiment.

We can define for any treatment combination, x, a loss function that gives the loss

between the yield due to the true optimal treatment combination µxopt and the yield

due to the particular treatment combination x that we are interested in. A gain utility

function can similarly be defined as the function that gives the gain in yield between

using the treatment combination x we are interested in and the yield due to the

standard operating treatment combination currently in use, µx0 . For any treatment

combination x, these functions can then be specified more formally as:

ULoss(x) = µxopt − µx

UGain(x) = µx − µx0 .

We are interested in the loss and gain for the estimated optimal treatment combi-

nation, x̂opt. The concepts outlined for any treatment combination x can be also be

written more succinctly for the estimated optimal treatment combination with the

following utility functions:

ULoss(x̂opt) = µxopt − µx̂opt

UGain(x̂opt) = µx̂opt − µx0 .

This is where µxopt is the expected response of the optimal treatment combination,

µx̂opt the expected response for estimated optimal treatment combination, and µx0 the

expected response at standard operating conditions. In the situation where the factors

being considered are all at two levels, the objective would be to find which of the 2k

possible treatments results in the maximum response. This equates to locating the

estimated optimal treatment combination, µx̂opt , that maximizes, or nearly maximizes,
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the response. When considering loss, this is the distance between the responses at

the two points µxopt and µx̂opt , i.e. looking at µxopt − µx̂opt and when considering gain

this is µx̂opt − µx0 . However, when all factors are continuous and a first-order model

is inadequate, the quantities ULoss(x̂opt) and UGain(x̂opt) depend on the curvature of

the surface and it is therefore necessary to consider response surface methodology to

locate the optimum point on the response surface.

Both the key quantities, ULoss(x̂opt) and UGain(x̂opt) depend upon the unknown pa-

rameters β. By using subjective distributions for β, since it will most likely be the

case that the experimenter will have some prior knowledge about the unknown param-

eters, a Bayesian viewpoint can be incorporated into the decision theoretic approach.

In using Bayes’ Theorem and placing prior distributions on β a posterior distribution

can be outlined for the loss and gain utilities, namely ULoss(x̂opt)|y and UGain(x̂opt)|y.

It is not trivial to obtain these posterior distributions analytically, thus it can be

approximated by simulating from the distribution of β|y and then obtaining ULoss(x)

and UGain(x) for each realization of β.

The utilities ULoss(x̂opt) and UGain(x̂opt) will give the loss or gain in terms of units of

yield (or some other similar measure that the experimenter is considering), however

for ease of understanding it may be more natural to express the gain in terms of

‘relative gain’, which will be denoted as

Relative Gain =
µx̂opt − µx0

µxopt − µx0

where the gain µx̂opt−µx0 can be either a negative or positive value. The relative gain

utility function will express the gain, i.e. the estimated improvement on standard op-

erating conditions, in relation to the maximum gain that would have been made if the

true optimal treatment combination had been used compared to standard operating

conditions. It would be expected that an experimenter hopes the gain will be a pos-

itive quantity, since one would ideally want the response obtained at the estimated
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optimal treatment combination to improve upon the response obtained at standard

operating conditions. However, it is possible that the estimated optimal treatment

combination is in fact worse than standard operating conditions thus resulting in a

negative quantity.

It should be noted that when typically referring to a utility function, a ‘utility’ is

called as such if maximizing the function. However, in the case of the loss function

mentioned earlier we in fact want to minimize this. Therefore if referring to this

loss in terms of a utility, we should in fact state this as −ULoss(x), i.e. we want to

maximize −ULoss(x). However, where results are given in the next chapter, they are

for ULoss(x), giving a measure of the difference between the estimated value and the

desired, optimum, value. It should also be noted that although the gain, loss and

relative gain are on different scales, if a design is found to be optimum in terms of

maximizing the gain or relative gain, then this design would in fact be optimum in

terms of minimizing the loss as all quantities are equivalent.

It is in fact E(Utility) that we shall be using, since we do not know µ, the expectation

being taken over the prior. E(Utility) shall be used in the case of utility functions

for both optimization and screening.

2.3.2 Relevant Literature

The utility functions discussed in the previous section extend from the work of

Gilmour and Mead (1995). They obtained the posterior distribution of the differ-

ence between the expected response at the true optimum and the expected response

at the predicted optimum, using a Bayesian analysis. This posterior distribution was

then used to make a decision when to stop experimentation in the sequential de-

sign of response surface and fractional factorial experiments. Their method can be
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summarized as follows. Assume that the response of interest, y, is modelled by

y = Y (x) + ε,

where ε ∼ N(0, σ2) and independent. The vector x contains the levels of several

qualitative or quantitative factors of interest. Also assume that Y (x) is a linear

model

Y (x) = zTβ,

where each element in z is a function of the elements of x. The design matrix X

contains the vector zT
i for the ith run as its ith row. β is the vector of parameters of the

model. Then, the value xmax of x is the value for which the expected response Y (x) is

a maximum and the series of experiments should be stopped when the experimenter

is confident that the predicted optimal combination maximizes, or nearly maximizes,

the response. Thus, let x̂max be an estimate of xmax, where x̂max can be obtained by

the method of least squares of β. Then the quantity for assessing x̂max is

L(x̂max) = Y (xmax)− Y (x̂max).

That is, L(x̂max) is the difference between the expected response at the true optimum

and the expected response at the predicted optimum and is identical to what has

been referred to as the loss function in §2.3.1.

Gilmour and Mead then further extended this work (Gilmour and Mead, 2003) where

a Bayesian A-optimality criterion was proposed for choosing designs in the case of

sequential experimentation where each stage consists of a small number of runs and

the objective is to optimize a response.

In addition, Müller et al. (2006) presented a formal Bayesian decision-theoretic ap-

proach to clinical trial design. In this paper they proposed a Bayesian decision-

theoretic approach to a phase II dose-response finding study where they used a util-

ity function to formalize learning about the unknown dose-response curve for the
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adaptive dose allocation. The problem of computing an optimal dose for the next

patients was considered. In this case let N denote the number of currently accrued

patients and K denote the maximum number of patients who are recruited into the

trial on one day. Then the optimal doses to be assigned to the next K patients,

i = N + 1, . . . , N +K were to be computed. It was assumed that Zj, j = 1, . . . , J is

the range of allowable doses and z̃k is the dose to be determined for the future patient

N +K. Then it was shown that Uk(zj) is the expected utility of decision z̃k = Zj for

a future patient, i.e. Uk(zj) expresses how much deciding on dose Zj is worth to us

and further, the solution to the optimal dose problem was formalized as

z̃k = arg max
Zj

Uk(Zj).

Thus, the dose which in expectation maximizes the utility defined by posterior vari-

ance on the key parameters was recommended.

The approach considered in this chapter, and later applied with several case stud-

ies in the following chapter, incorporates the decision-theoretic methodology and the

concept of the posterior distribution of the difference between the optimal response

and response from the predicted optimum. These methods have primarily been ap-

plied in sequential design, particularly in factorial experiments in industrial research,

and decision theory application in clinical trials as displayed from the relevant liter-

ature indicated. However, these methods have scarcely been applied in the context

of screening and fractional factorial designs used in industrial experimentation. This

approach will now be applied in the case of screening experiments at the initial stages

of experimentation, and optimization experiments at the latter stage of the process.

65



2.3.3 Considerations Regarding Formulating Priors

So, the utility function proposed (§2.3.1) will give the loss or gain of a design, which

can be seen as a measure of the efficiency of the design, which is how well the experi-

mental design answers the questions we are interested in. Where standard optimality

criteria are dependent upon the information matrix, such as in the commonly used

D-optimality criterion, the proposed utilities will require the specification of design

matrices for the candidate designs, and also prior knowledge on the sizes of effects

to be set out. This can either be in the form of prior distributions, which would be

more commonly used, or given in the form of an actual effect size such as β1 = 10, if

an experimenter had strong prior knowledge.

After presenting some issues that are to be taken into consideration when formulating

priors in this section, the algorithm for the utility function and summary of how the

utility function operates computationally will be outlined in the next section.

Formally quantifying the prior knowledge an experimenter has about sizes of effects

can prove to be difficult in practice. Most experimenters won’t state this knowledge

in terms of prior distributions, but will instead have some idea about the range

within which they think the size of effect will lie. It is most often reasonable to

assume the size of effect can be represented by a normal distribution unless there is

strong reasoning from the experimenter that their belief in the size of effect is not

symmetrically distributed. Otherwise, the prior mean can be taken as the value lying

in the middle of this specified range and the standard deviation taken as 1
4

of the

range. This is given that the range within which the size of the effect is expected to

lie can be compared to the central 95% region of the prior distribution.

The form of the prior can also vary according to other aspects such as whether to

treat effects separately or assume some dependency between effects as is often the
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case. Usually, an experimenter will treat each effect independently, however this is not

always the case. According to the principle of factor sparsity, only a small number

of the many factors initially considered will contribute significantly to variation in

the response. Thus, if each effect is treated separately it would be possible for all

effect sizes to result in a large effect size, and therefore for all factors to be considered

as active which would not obey the ‘law of the vital few’. The lack of information

obtained would not provide the experimenter with any further insight and would

result in the experiment not being of any benefit, particularly in the case of screening

experiments where the principal aim is to screen the many factors for the important

few.

Another point to consider is the dependency between the size of an interaction effect

and the size of one of its associated parent effects. In view of the effect heredity

principle, it would seem sensible to incorporate some prior that takes into account

the implication that whether an interaction effect is active or not does depend upon

whether another effect is active.

Having formalized the prior distributions for the sizes of effects, the next step is to

then determine the candidate designs that the experimenter wishes to consider. This

may be to decide between designs which all have the same number of runs but each

individual candidate design being able to estimate different effects, or to compare the

benefits of candidate designs of different run sizes.

Given the prior information available about the unknown parameters of interest θ, the

data to be observed y, the designs to be considered ξ and the terminal decision, d, we

are wanting to calculate U(ξ). However, the integration must be done numerically and

it is not trivial to evaluate these integrals analytically in the case when the variance

is unknown and consequently a prior must be placed on this parameter. Thus, in

such cases the evaluation of integrals shall be done through simulations. It should be
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noted that the example for which the algorithm for the optimization utility function is

given in the next section is with σ2 known, and so actually in this case the integration

would be relatively straightforward.

2.3.4 Algorithm for Optimization Utility Function

For sake of clarity, let us consider two candidate designs, A and B, each with three

factors, a, b and c. We assume the general linear model

y = Xβ + ε

where the responses are distributed as follows:

yabc ∼ N(µabc, σ
2); σ2 known.

Also,

µabc = β0 + β1xa + β2xb + β3xc + β12xaxb + β13xaxc + β23xbxc + β123xaxbxc

where xa, xb, xc = −1 or +1 corresponding to either the low or high level of the factor.

A step-by-step guide of the operations of the utility function is now given:

1. Specify prior β, where

β =



β0

β1

β2

β3

β12

β13

β23

β123
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and each of the parameter effects have distributions specified as:

β0 ∼ N(µ0, σ
2
0)

β1 ∼ N(µ1, σ
2
1)

...

β123 ∼ N(µ123, σ
2
123)

Then simulate from this prior r times to obtain

β(r) =



β0(1) · · · β0(r)

β1(1) · · · β1(r)

β2(1) · · · β2(r)

β3(1) · · · β3(r)

β12(1) · · · β12(r)

β13(1) · · · β13(r)

β23(1) · · · β23(r)

β123(1) · · · β123(r)



.

2. Create the n × (p + 1) candidate design matrix Xi, where n = run size for

fractional factorial design and i = A or B.

3. Simulate a set of errors ε1, . . . , εn for each prior sample and for each candidate

design where εi ∼ N(0, σ2) to obtain

ε(r) =


ε1(1) · · · ε1(r)

...
. . .

...

εn(1) · · · εn(r)

 .
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4. Create the N × (p+1) design matrix Xfull, where N = run size for full factorial

design.

5. For each simulation j = 1, . . . , r and for each candidate design:

(a) Use column j from the prior β(r).

(b) Thus, calculate yi = Xi β(j) + ε(j) to obtain simulated responses yA(r) and

yB(r).

(c) Use simulated data yA(r) and yB(r), to fit the appropriate model to estimate

β̂A(r) and β̂B(r).

(d) Using the fitted model, predict µ̂ for all combinations, i.e. µ̂−−−, . . . , µ̂+++

and find estimated optimum x̂opt, i.e. the combination which gives maxi-

mum µ̂.

(e) Obtain true expected responses assuming β = β(r) and µ = Xfullβ. Cal-

culate µ−−−, . . . , µ+++.

(f) Find µ with true expected optimum xopt.

(g) Find µx̂opt .

(h) Find µx0 , where x0 = standard operating conditions.

(i) Hence calculate;

i. µxopt - µx̂opt

ii. µx̂opt - µx0

(j) Calculate mean over r samples to obtain ̂E(Utility).
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2.4 Utility Functions for Screening

2.4.1 Identifying Active and Inactive Effects Correctly

The algorithm mentioned in the previous section would be of benefit to an experi-

menter in the optimization stage of an investigation. At this stage the experimenter

will have narrowed down the factors they are working with and will want to pinpoint

the optimum settings of each of these factors to best meet their objective. In the non-

clinical setting of the pharmaceutical industry this could be to typically maximise the

yield or purity of a drug, or to minimize waste.

However, during the initial stages of investigation when screening experiments are

carried out, it is of primary interest to correctly determine the active factors having

an effect and driving the process in hand. We can therefore conclude that in screening

experiments it would be more serious to miss out on identifying potential active effects,

than to incorrectly identify inactive effects as active. This differs to the situation of an

optimization experiment, where it would be more serious to have identified inactive

effects as active. This would therefore lead to more factors being investigated than

are necessary in order to find the optimum treatment combination, and more settings

being changed in the process, running the risk of more time and cost being spent

than is needed. Of course, in both scenarios of screening and optimization, it would

be preferred to not commit either of these errors, however it should be taken into

consideration which of these errors would be more serious depending on whether the

experiment is for the purposes of screening or optimization.

The more serious of errors in the case of optimization, i.e. declaring that an effect

is active when actually it is not, can be thought of as a Type I error. In the case of

screening, the more serious error is to fail to declare an effect active when in fact it
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is, i.e. a Type II error. We will consider the null hypothesis to be that the absolute

value of an effect is not large enough to be considered active. Then we can define the

Type I and Type II errors as follows:

Type I error = reject the null hypothesis when the null hypothesis is true.

Type II error = fail to reject the null hypothesis when the null hypothesis

is false.

Now, given prior distributions that have been specified on effect sizes and some can-

didate designs we are considering, it would be beneficial to calculate the efficiency of

a design in terms of how well the active and inactive effects are declared correctly,

and estimate the size of the Type I and II errors. A utility function will be specified

in terms of a linear combination of the Type I and Type II errors with some weight,

γ (0 ≤ γ ≤ 1), on these errors dependent upon the experimenters’ belief of the seri-

ousness of each of the errors relative to the experiment. From a Bayesian perspective,

we would just want to minimize the posterior probabilities of these events, i.e. the

Type I and Type II errors, occurring.

The experimenter may also be interested in taking into account the cost required per

run or design. This was considered by DeGroot (1970) and Lindley (1972) where

the sampling cost, c, per observation was set out and then incorporated into a cost

function. These ideas can be encompassed into the utility function for screening where

the cost, c, per run can be considered for the number of runs, n, in the design.

Thus, given that

U1 = P (Type I error)

U2 = P (Type II error)

a quantity used to assess how well a design performs at the screening stage can be
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defined as

U = γU1 + (1− γ)U2.

As stated when discussing the loss and gain functions earlier, a utility function is one

that typically maximizes something, therefore we actually want to take −U . This is

due to γU1+(1−γ)U2 being a quantity that we want to minimize since we clearly wish

to minimize any Type I and Type II error probabilities that may occur. However,

as similarly stated in the previous section for the optimization results, the results

presented in the following chapter are for U = γU1 + (1 − γ)U2, i.e. the quantity

that we wish to minimize rather than the utility −U = −{γU1 + (1 − γ)U2} which

we would want to maximize.

If cost is to be taken into consideration then this utility, −U , is then extended to be

−cnU .

2.4.2 Decision Table for Screening Utility

Another way to express a screening utility, a quantity with which to discriminate

designs on how efficient they are at identifying active and inactive effects, is with a

decision table as set out in Table 2.1. This table illustrates the states, actions and

consequences in the case of an experiment where the three variables 1, 2 and 3 are

being investigated.
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Table 2.1: Decision Table for Screening Utility

States

Actions 0 1 · · · 1 + 2 + · · · +123

0 1 −u(c0,1) · · · −u(c0,1+2+···+123)

1 −u(c1,0) 1 · · · −u(c1,1+2+···+123)

...
...

...
. . .

...

1 + 2 + · · · + 123 −u(c1+2+···+123,0) −u(c1+2+···+123,1) · · · 1

The states represent all the possibilities of which effects are truly active, where 0

denotes no effects are active, 1 denotes that only main effect 1 is active and so on.

The actions given denote which effects the experimenter has decided to declare as

being active. Each value shown in the body of the table gives the utility u(ci,j) of

the consequence rather than the consequence itself, which was previously set out in

§1.4.4. The utility is for each action taken, given the true state for each particular

row and column.

Let us denote cbest as the best possible consequence within the decision table and cworst

as the worst possible consequence. Then the origin and unit of a utility function are

arbitrary (French, 1986) and we can set

−u(cbest) = 1

and

−u(cworst) = 0.

It can be seen that when the experimenter correctly declares all of which effects are

active, such as with c0,0, c1,1, and so on, the outcome of this decision will give a

quantity of 1 as the Type I and II errors are 0. This is an intuitive result since clearly
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if the ‘truth’ is that no effects are active and the experimenter makes the correct

declaration that no effects are active then this is an efficient decision. The other

possible consequences are where some effects have been correctly declared as active

or inactive, but the action does not totally coincide with the true state. This is such

as in the case of consequence c1,1+2+···+123 as given in the table. This is where the

experimenter has taken the action to declare effect 1 as active but the true state is

that all main effects and interactions involving variables 1, 2 and 3 are active. Then

the quantity of U associated with this consequence will have a value of 0 for U1 as

no inactive effects have been declared as active. However, the value of U2 will be

large as all effects except for 1 have failed to be declared as active. Similarly, for all

consequences ci,0, the associated quantity U will have a large value of U1, although

varying in size according to how many inactive effects have been incorrectly declared

as active, and the value of U2 will be 0 as there are no inactive effects declared as

active incorrectly.

Consider another example where the true state is that main effect 1 is active, but the

action is taken to declare all other effects, i.e. 2, 3 . . ., 123 as active, which leads to

the consequence c2+3+...+123,1. Then the quantity U that we wish to minimize, will be

worse than the situations where no effects are declared as active, or if 1 was declared

active along with the inactive effects. That is, c0,1 and c1+2+3+...+123,1 respectively.

This is because for the consequence c2+3+...+123,1, the Type I error will be large due to

2, 3 . . ., 123 being declared as active incorrectly placing a greater weight on U1 than

if only some of the inactives had been declared as active. Also, there will be some

Type II error as main effect 1 is failed to be declared as active, resulting in U2 taking

some non-zero value. Comparing this to the quantities for c0,1 and c1+2+3+...+123,1,

we see that the quantity U for c0,1 would be smaller and therefore better than for

c2+3+...+123,1. This is, since although the value U2 will be the same, the value of U1 will

be 0. Similarly, for c1+2+3+...+123,1, the value of U1 will be the same as for c2+3+...+123,1,

however this time U2 will be 0. Thus, c2+3+...+123,1 would be seen as a worse outcome
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than the other two possibilities outlined.

A Bayesian or subjective viewpoint can also be incorporated into this decision theory

approach where the experimenter can represent their belief in each of the j possible

states occurring through subjective probability distributions. The experimenter will

have to make this decision based on their knowledge of the process in hand or through

the use of historical data. Priors P (sj) are then placed on each of the j states and

represent the belief that state j will occur.

Expected utilities for the action ai can then be given by

E[u(ai)] =
n∑
j=1

u(ci,j)P (sj).

However, we are concerned with obtaining an expected utility with respect to each of

the candidate designs that are being considered. Thus, the utility we would actually

be interested in obtaining for each of the k candidate designs being considered would

be

E[U(Design k)] =
m∑
i=1

n∑
j=1

U(Design k|ci,j)u(ci,j)P (sj).

The utility U(Design k|ci,j) can be considered to be a new set of actions, where the

experimenter has taken the action to use design k given that they have declared some

set of effects as active (ai) when there is some true state sj.

2.4.3 Relevant Literature

Screening experiments investigate a large number of factors in order to identify those

few key active effects that are driving the process and having an impact on the

response of interest. Designs typically used for the purposes of screening are two-

level fractional factorials, which were discussed in detail by Box and Hunter (1961a)
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and Finney (1945). Plackett and Burman also notably introduced Plackett-Burman

designs (1946). Their paper outlined the construction of economical designs with

the run size a multiple of 4, but not a power of two. Plackett-Burman designs are

very efficient screening designs when investigating only main effects, however in this

situation the assumption that all interactions are negligible has to be made. Thus,

main effects will be confounded (i.e. confused) with the two-factor interactions. Meyer

et al. (1996) considered this problem, where they developed a method for designing a

follow-up experiment to resolve ambiguity arising as a result of confounding amongst

effects. This followed from previous work developing a Bayesian method based upon

the idea of model discrimination in order to uncover active factors, which is a key

area of exploration in this thesis.

The criteria proposed by Allen and Bernshteyn (2003) are for purposes relating to

model-identification objectives, similarly to that of Meyer et al. (1996). In their

paper, simulation optimization studies were used to evaluate the abilities of exist-

ing analysis methods to achieve model identification. The results motivated a new

class of supersaturated designs, where the probability was maximized that stepwise

regression would identify the important main effects. Marley and Woods (2010) also

used simulation studies to evaluate designs and compare model selection methods for

supersaturated experiments. Similarities can be drawn between the motivations of

their paper and this thesis (Chapters 2 and 3), in that several designs of different

sizes are studied, with the number and sizes of active effects being altered in order to

assess the performance of design and model selection methods.

Another notable paper focusing on a relatively sophisticated approach for model iden-

tification using methods based on stochastic search variable selection (SSVS) is that

of George and McCulloch (1993). Their increasingly standard assumptions were out-

lined in the paper, where the key features of a hierarchical model for variable selection

were described. That is, each component of β (where β = (β0, β1, ..., βp)
T) is modeled
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as coming from a mixture of two normal distributions with different variances, and

this approach of using a normal mixture prior was also adopted by Wu and Hamada

(2000). These assumptions are discussed in further detail in the following chapter

and are prominently used in several of the simulation studies that are featured.

The approach taken in this chapter, incorporates the model-identification objectives

similarly to that of Allen and Bernshteyn (2003) and Meyer et al. (1996), and is

applied in the context of screening experiments. Simulation studies will be imple-

mented in the following chapter with several case studies, which includes investigat-

ing a Plackett-Burman design and an unreplicated fractional factorial design. This

is where the number and sizes of active effects are varied, and the design selection

criteria outlined in the following section is then assessed.

2.4.4 Algorithm for Screening Utility Function

Let us now consider the algorithm that will be used to calculate the efficiencies of

declaring active and inactive effects correctly based on the Type I and II errors as

outlined in §2.4.1. For the sake of clarity, the two candidate designs being considered

when illustrating the algorithm will be 5 factors, each at two levels, being studied in

a 12 run design and a 16 run design. Thus, candidate design A, the 12 run design

has the following design matrix, where the columns assigned to the 5 factors are

from a Plackett-Burman design. Depending on whether only main effects are being

estimated, then the following design matrix
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XA =



+ + − + − −

+ + + − + −

+ − + + − +

+ + − + + −

+ + + − + +

+ + + + − +

+ − + + + −

+ − − + + +

+ − − − + +

+ + − − − +

+ − + − − −

+ − − − − −



will be used. In the case where both main effects and two-factor interactions are

being estimated, then the following design matrix

XA =



+ + − + − − − + − − − + + − − +

+ + + − + − + − + − − + − − + −

+ − + + − + − − + − + − + − + −

+ + − + + − − + + − − − + + − −

+ + + − + + + − + + − + + − − +

+ + + + − + + + − + + − + − + −

+ − + + + − − − − + + + − + − −

+ − − + + + + − − − − − − + + +

+ − − − + + + + − − + − − − − +

+ + − − − + − − − + + + − + − −

+ − + − − − − + + + − − − + + +

+ − − − − − + + + + + + + + + +



is used. Similarly for candidate design B, the 16 run design, has one of the following

design matrices depending on which effects are being estimated. The following design

matrix is used when only main effects are estimated,
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XB =



+ − − − − +

+ + − − − −

+ − + − − −

+ + + − − +

+ − − + − −

+ + − + − +

+ − + + − +

+ + + + − −

+ − − − + −

+ + − − + +

+ − + − + +

+ + + − + −

+ − − + + +

+ + − + + −

+ − + + + −

+ + + + + +



,

or the design matrix below is used when both main effects and two-factor interactions

are estimated,

XB =



+ − − − − + + + + − + + − + − −

+ + − − − − − − − − + + + + + +

+ − + − − − − + + + − − − + + +

+ + + − − + + − − + − − + + − −

+ − − + − − + − + + − + + − − +

+ + − + − + − + − + − + − − + −

+ − + + − + − − + − + − + − + −

+ + + + − − + + − − + − − − − +

+ − − − + − + + − + + − + − + −

+ + − − + + − − + + + − − − − +

+ − + − + + − + − − − + + − − +

+ + + − + − + − + − − + − − + −

+ − − + + + + − − − − − − + + +

+ + − + + − − + + − − − + + − −

+ − + + + − − − − + + + − + − −

+ + + + + + + + + + + + + + + +



.

This 25−1 design is a regular fraction and has the design generator 5 = 1234.
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Since it is reasonable to assume that higher order interactions than two-factor inter-

actions are negligible due to the hierarchical ordering principle, in this illustration

effects of order up to two-factor interactions will be considered.

A step-by-step outline of the algorithm is now given:

1. Specify prior β and then simulate from this prior r times to obtain β(r).

2. For each effect i and each simulation j = 1, . . . , r, declare an effect βi(j) active

if for some constant ω, |βi(j)| > ω.

3. Create a vector δ∗(j) of size p, for each simulation j = 1, . . . , r, whose entries are

1 if an effect is active and 0 otherwise.

4. From observing vector δ∗(j), set q = number of active effects, s = number of

inactive effects and p = total number of effects.

5. Create the nd × (p + 1) candidate design matrix Xi, where n = run size for

fractional factorial design, p = number of effects and d = design A or design B.

6. Simulate a set of r errors ε1, . . . , εn for each prior sample and for each candidate

design where εi ∼ N(0, σ2) to obtain

ε(r) =


ε1(1) · · · ε1(r)

...
. . .

...

εn(1) · · · εn(r)

 .

7. For each candidate design and each simulation j = 1, . . . , r:

(a) Use column j from the prior β(r) and error ε(r), denoted β(j) and ε(j).

(b) Calculate yi = Xi β(j) + ε(j) to obtain simulated responses yA(r) and yB(r).
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(c) Use simulated data yA(r) and yB(r), to fit the appropriate model to estimate

β̂A(r) and β̂B(r).

(d) By analysing β̂A(r) and β̂B(r) using some appropriate method, obtain for

each simulated dataset, a vector δ(j) of size p whose entries are 1 if an effect

is active and 0 otherwise.

(e) By comparing each entry k = 1, . . . , p of δ∗(j) and δ(j) obtain:

i.

True Positive =

 1 if δ∗(j)[k] = 1 and δ(j)[k] = 1

0 otherwise.

ii.

True Negative =

 1 if δ∗(j)[k] = 0 and δ(j)[k] = 0

0 otherwise.

iii.

False Positive =

 1 if δ∗(j)[k] = 0 and δ(j)[k] = 1

0 otherwise.

iv.

False Negative =

 1 if δ∗(j)[k] = 1 and δ(j)[k] = 0

0 otherwise.

(f) Hence calculate the probabilities for declaring effects active/inactive either

correctly or incorrectly;

i.

P (True active declared active) =

∑
ij

(True Positive)

qr
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ii.

P (True inactive declared inactive) =

∑
ij

(True Negative)

rs

iii.

U1 = P (Type I error) =

∑
ij

(False Positive)

rs

iv.

U2 = P (Type II error) =

∑
ij

(False Negative)

qr
.

(Note that True Actives = 1− U1 and True Inactives = 1− U2).

(g) Hence calculate the utility for each design;

U = γU1 + (1− γ)U2.

(h) Calculate mean over r samples to obtain Ê(U).
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2.5 Summary

This chapter has presented standard optimality criteria used to determine the effi-

ciency of designs and also highlighted circumstances where they may not be the most

appropriate criteria to use. Some utility functions have been presented which can

be used in circumstances where standard optimality criteria may be lacking, namely,

utility functions that can be used dependent on the purpose of the experiment, i.e.

optimization or screening.

In the following chapter, the utility functions set out above will be applied with some

examples to illustrate how they can be used to discriminate between designs. To begin

with, a small example is presented comparing two candidate designs of the same size

to illustrate the use of the utility function for optimization. An example is then

presented where a comparison of designs of different sizes is made, namely a 12-run

Plackett-Burman design and a 16-run design, and the utility function for screening is

demonstrated. Finally a larger and more complex example will be presented where

the utility function for optimization is again demonstrated. In this example, 5 factors

will be investigated in two different designs, with one design involving all factors at

two levels, and the other design involving all factors at three levels.
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Chapter 3

Application of Utility Functions for

Optimization and Screening

3.1 Introduction

The utility functions and methods described in Chapter 2 provide a way to obtain a

design calculated as being most ‘efficient’ in terms of providing the most information

by generating data sets and then observing the estimated and true optimum treatment

combinations.

Some of the drawbacks of standard optimality criteria for a design have been previ-

ously highlighted (§2.2). It has also been brought to attention that standard optimal-

ity criteria may not always be the most appropriate criteria to answer questions that

an experimenter may have. Thus, the candidate designs presented in this chapter are

not optimal according to any of the criteria set out in the previous chapter such as

A- or D-optimality.
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The simulation programs used were written in R and data sets from one thousand

experiments were generated from each model for each design using specified prior

distributional assumptions. The program used is given in the appendix.

One thousand experiments were found to be a sufficient number of simulations to cal-

culate the estimated utilities for optimization with a reasonable degree of confidence

and reliability. The standard errors were calculated for each of the different forms

of prior, for the mean of the estimated loss, gain and relative gain. As displayed

in Table 3.1, the 95% confidence intervals of the estimated optimization utilities are

given for prior 1 (which shall be outlined later), for each of the three different forms

of prior. The 95% confidence interval of the estimated utility is x̄± 1.96 sd√
n
, where x̄

and sd are the mean and standard deviation of the estimated utility, ̂E(Utility), and

n is the simulation size. To give an indication of the computing time, the average

time taken per n simulations for prior 1 is displayed in Table 3.2. The computing

times indicated in the table are with reference to running simulations for the opti-

mization utility function, for both designs A and B (designs A and B with regards to

the optimization utility function shall be outlined in the following section).

The same number of experiments, i.e. one thousand experiments, were also found to

be a sufficient number of simulations to calculate the estimated utilities for screening

within a reasonable degree of confidence. The 95% confidence intervals of the esti-

mated screening utilities are shown in Table 3.3. This is for prior 1 in the case of the

normal prior and prior 1(a) in the case of the normal mixture prior, looking at main

effects along with two-factor interactions. This shall be explained in more detail later

on in this chapter. In this table the utility U displayed is calculated as γU1+(1−γ)U2,

where U1 and U2 are the probabilities of Type I and Type II errors respectively. γ

is the weight of importance placed on a Type I error and consequently 1 − γ the

weight of importance on a Type II error. Where method 1 has been stated, this is

referring to the utility being calculated based upon an effect being declared active if
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it is greater than some constant ω. This constant ω is one that the experimenter will

have set out. Method 2 indicates a utility which has been calculated based upon an

effect being declared active using Lenth’s method. Table 3.4 shows the time taken to

run the simulations for the screening utility function for design A (where design A is

the 16 run design and design B is the 12 run design as outlined in §3.3). The results

in Table 3.3 and 3.4 are for when ω = σ.

Table 3.1: 95% Confidence Interval for Estimated Optimization Utilities

500 Simulations 1000 Simulations 10000 Simulations

Design A Design B Design A Design B Design A Design B

Point Prior

Mean Loss 4 ± 0 2 ± 0 4 ± 0 2 ± 0 4 ± 0 2 ± 0

Mean Gain 26 ± 0 28 ± 0 26 ± 0 28 ± 0 26 ± 0 28 ± 0

Relative Gain 0.867 ± 0 0.933 ± 0 0.867 ± 0 0.933 ± 0 0.867 ± 0 0.933 ± 0

Normal Prior

Mean Loss 4.265 ± 0.306 2.286 ± 0.143 3.994 ± 0.223 1.997 ± 0.104 4.360 ± 0.069 2.362 ± 0.031

Mean Gain 26.145 ± 0.339 28.124 ± 0.294 25.974 ± 0.239 27.971 ± 0.212 25.975 ± 0.078 27.972 ± 0.067

Relative Gain 0.864 ± 0.010 0.927 ± 0.004 0.867 ± 0.006 0.934 ± 0.004 0.860 ± 0.002 0.924 ± 0.000

Normal Mixture

Prior

Mean Loss 7.421 ± 0.817 9.318 ± 0.484 5.973 ± 0.617 7.026 ± 0.353 7.320 ± 0.184 9.030 ± 0.127

Mean Gain 5.145 ± 0.858 9.789 ± 0.408 6.093 ± 0.617 5.040 ± 0.316 5.626 ± 0.186 3.916 ± 0.092

Relative Gain 0.373 ± 0.063 0.710 ± 0.029 0.510 ± 0.041 0.426 ± 0.020 0.409 ± 0.014 0.304 ± 0.006

Table 3.2: Computing Time Per n Simulations (seconds) - Optimization Utility

n = 500 Simulations n = 1000 Simulations n = 10000 Simulations

Point Prior 2.98 4.53 10.90

Normal Prior 2.54 3.13 10.79

Normal Mixture Prior 4.29 6.32 24.84
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Table 3.3: 95% Confidence Interval for Estimated Screening Utilities

500 Simulations 1000 Simulations 10000 Simulations

Design A Design B Design A Design B Design A Design B

Normal Prior

Method 1 0.229 ± 0.008 0.391 ± 0.016 0.243 ± 0.006 0.381 ± 0.011 0.237 ± 0.002 0.384 ± 0.004

Method 2 0.571 ± 0.033 0.439 ± 0.010 0.603 ± 0.023 0.442 ± 0.007 0.597 ± 0.007 0.437 ± 0.002

Normal Mixture Prior

Method 1 0.020 ± 0.001 0.170 ± 0.013 0.015 ± 0.001 0.149 ± 0.008 0.018 ± 0.000 0.164 ± 0.003

Method 2 0.048 ± 0.002 0.392 ± 0.012 0.044 ± 0.001 0.374 ± 0.007 0.044 ± 0.000 0.387 ± 0.003

Table 3.4: Computing Time Per n Simulations (seconds) - Screening Utility

n = 500 Simulations n = 1000 Simulations n = 10000 Simulations

Normal Prior 7.61 10.76 284.79

Normal Mixture Prior 16.86 21.26 306.91
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3.2 Optimization: Comparison of 23−1 Designs

3.2.1 Introduction

Let us first consider a small example comparing two designs of the same size to

illustrate the concepts of the decision theoretic approach and utility functions that

we shall use, before a larger case is presented later on in this chapter. The criteria used

to compare the performance of the designs will be the optimization utility function,

so the mean loss, mean gain and relative gain will be looked at.

Consider a scenario where an experimenter can study three factors, all at two levels,

and there are only 4 runs available in which to study them. The full 23 factorial

design is given in Table 3.5. Thus, the decision to be made in this situation is which

candidate design (Table 3.6) should be used?

Table 3.5: Full 23 factorial design

Variable

Run 1 2 3

1 - - -

2 + - -

3 - + -

4 + + -

5 - - +

6 + - +

7 - + +

8 + + +

It should first be noted that this is, as mentioned, a small example to illustrate the

use of the utility functions before larger designs are presented. Studying three factors

in 4 runs would typically not be carried out in practice by an experimenter, the main

reason being that a 23−1 design would most likely be too small for an experimenter
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Table 3.6: Candidate Half-fractions of 23 Factorial design

Candidate Design A

Variable

Run 1 2 3

1 - - -

2 - + +

3 + - +

4 + + -

Candidate Design B

Variable

Run 1 2 3

1 - - 0

2 + - 0

3 - + 0

4 + + 0

to see anything and make any insightful inferences.

Candidate design A has the defining relation I = -123 and is the complementary

half-fraction of the design with defining relation I = 123, i.e. the two half-fractions

together make up the complete 23 factorial design. All the aliasing relations for this

design are

1 = −23,2 = −13,3 = −12.

Reasons for choosing a defining relation with a minus sign, which therefore also results

in defining contrast words with a minus sign, are considered by Gilmour (2001) in the

contribution to the discussion of the paper by Lewis and Dean (2001). It was stated

that in circumstances when experimenters are able to specify which factor level is

likely to give a higher response, therefore ensuring that all main effects are expected

to be positive, then the two-factor interactions are expected to be negative due to

limitations upon how much improvement can be made. Gilmour thus outlined that in

defining contrasts, a plus sign should be used with even-lettered words and a minus

sign with odd-lettered words. A result of doing so avoids cancellation of effects and

inflates moderate sized effects.
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The full model with all effects associated with variables 1, 2 and 3 is

µ = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β123x1x2x3,

where µ is the mean response, β0 is the average at standard operating conditions, βi

is the parameter variable i, and similarly βij and βijk are effects ij and ijk.

However, there are not enough degrees of freedom to estimate all effects and another

disadvantage of this design is that all main effects are aliased with two-factor interac-

tions. Thus, none of the effects are clear and to be able to estimate the main effects

a strong assumption that two-factor interactions are negligible will have to made. So

in fact the model that is being estimated is

µ̂ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3.

Candidate design B is constructed by allocating minuses and pluses to variables 1 and

2 by standard ordering, and variable 3 is held fixed at 0. The treatment combination

(0, 0, 0) for variables 1, 2 and 3 is assumed to be standard operating conditions.

Candidate design B has variable 3 fixed at 0, and so the main effect of variable 3

cannot be estimated nor can any of the interactions involving the variable 3. Due

to main effect 3 and its associated interactions being inestimable, this design would

typically only be chosen in cases when there is a reasonable amount of information

to suggest the size of the variable 3 effect will be small or inactive. As a result of

variable 3 being held fixed at 0, the effects that are estimated are done so clearly, i.e.

there are no aliased effects.

The model being estimated for this design is

µ̂ = β̂0 + β̂1x1 + β̂2x2 + β̂12x1x2.

As discussed previously, careful consideration needs to be taken in formulating the

priors for the sizes of effects in order to provide a correct representation. In this
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example to compare the performances of designs using the loss and gain utility criteria,

three different forms of priors will be used. From simulation of data sets, results of

the mean loss and gain are presented and also how the choice of prior affects the data

is seen.

3.2.2 Choice of Prior

The first form of prior chosen is having a known size of effect in the case where an

experimenter has very strong prior knowledge about the effects being investigated. In

practice, this is probably not very realistic but may be of interest to experimenters

at Pfizer to see what would be the result if they did in fact know exactly how certain

factors behave.

The second form of prior chosen is for all effects to be modelled by a normal distri-

bution and for all effects to be treated independently, i.e. assuming that the size of

an effect does not depend on the size of another effect. This can be shown as:

β0 ∼ N(µ0, σ
2
0)

β1 ∼ N(µ1, σ
2
1)

...

β123 ∼ N(µ123, σ
2
123)

The final choice of prior will be to represent effects by normal mixture priors, in a

similar fashion to that presented by Chipman, Hamada and Wu (1997). This approach
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is considered for the general linear model,

y = Xβ + ε.

A vector α, of length p, will be used to indicate the importance of main effects and

interaction effects. Its values will take either 0 if the effect is inactive, or 1 if the

effect is active, and is determined by some probability pi of being active. The value

of probability pi will be somewhere in the range (0, 0.5] to account for the fact that a

relatively small number of effects are expected to be active, and typically a value of

0.25 would be a sensible value to choose. Taking this value appropriately represents

the principle of effect sparsity.

So the values of α describing the main effects βi will be generated from

αi ∼ Bern(pi).

Then if αi = 0 and therefore inactive, the size of βi is small. Likewise when αi = 1

the size of βi is large. A normal mixture prior p(βi|αi) for the coefficients βi is thus

specified as follows:

βi ∼

 N(0, σ2
1i) if αi = 0

N(0, σ2
2i) if αi = 1.

(3.1)

In the case when αi = 0, i.e. βi comes from the distribution N(0, σ2
1i), the variance

σ2
1i needs to be specified such that βi is tightly centred about 0 and hence does not

have a large effect. In contrast, when αi = 1, the variance σ2
2i needs to be chosen

carefully with size much greater than σ2
1i, so that βi comes from a distribution with

high variance to allow for the possibility of it having a large effect.

Typically, the independence prior

p(α) =

p+1∏
i=1

pαii (1− pi)1−αi

will be used to imply that the activity of a variable (i.e. whether a variable is active

or inactive) does not depend upon whether another variable is active or not, i.e. that
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the variables are independent. (Note that in reference to this independence prior,

pi = P (αi = 1)). However, this may not be considered to be true in light of the effect

heredity principle and so to use the independence prior when modelling interaction

effects is not appropriate. Hierarchical priors, where prior distributions are assumed

based upon the principles of conditional independence and inheritance should be used

(Chipman, 1996). This is also discussed by Wu and Hamada (2000).

Consider the candidate designs A and B mentioned previously, and all the effects

involved from the three main effects 1, 2 and 3, to the three-factor interaction 123.

Then α = (α1, α2, α3, α12, α13, α23, α123), and according to the effect heredity principle

an interaction effect, say 12, will be active dependent upon the activity of the parent

main effects 1 and 2. The term parent refers to the factors making up the interaction,

thus the parents for the interaction 12 are the main effects 1 and 2.

This idea can be represented for the two-factor interactions ij, where they are depen-

dent upon the parent main effects i and j, by the following probabilities:

pij =



p00 if (αi, αj) = (0,0)

p01 if (αi, αj) = (0,1)

p10 if (αi, αj) = (1,0)

p11 if (αi, αj) = (1,1).

The value of pij will again be chosen to be less than 0.5 to represent the expectation

that only a few terms will be truly active. The value of p00 is usually chosen to

be small, for example 0.01, to represent the idea that an interaction effect with no

active parent effects is highly unlikely to be active. Also, p01 and p10 will be slightly

larger, say about 0.10, to represent that if one of the parent effects is active it is

more likely the interaction effect will be active. Finally, p11 will typically be chosen

to be somewhere in the same region as the probability of a main effect being active,

which is 0.25. This illustrates the idea that if both parent effects are active then the
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interaction effect is more likely to be active.

The value of αij is then generated from the distribution,

αij ∼ Bern(pij)

where the normal mixture prior p(βij|αij) for the interaction effects is specified as

follows:

βij ∼

 N(0, σ2
1ij) if αij = 0

N(0, σ2
2ij) if αij = 1.

This similarly forms the basis for how the normal mixture prior for the three-factor

interaction is set up. The idea that the three-factor interaction ijk is dependent upon

the parent main effects 1, 2 and 3 is represented by the following probabilities:

pijk =



p000 if αi + αj + αk = 0

p100 if αi + αj + αk = 1

p110 if αi + αj + αk = 2

p111 if αi + αj + αk = 3.

Probability p000 represents an interaction effect with no active parent effects. This will

typically be chosen to be very small, for example 0.001, to demonstrate the idea that

it is highly unlikely for a three-factor interaction effect to be active with no active

parent effects. The probability p100 represents the three-factor interaction effects

(1,0,0), (0,1,0) and (0,0,1), i.e. a three-factor interaction effect with one active parent

effect. The size of this probability will be larger than p000, but slightly smaller than

p01 or p10, say about 0.05. The probability p110 represents the three-factor interaction

effects (1,1,0), (1,0,1) and (0,1,1), i.e. a three-factor interaction with two active

parent effects. This will be larger than p100, say about 0.1. Finally, the probability

p111 represents the three factor interaction effect with all parent effects active. Thus,

the size of this probability will be in the same region as the probability, p, that a
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main effect is active, say about 0.25. As stated, the normal mixture prior for the

three-factor interaction is set up so that the interaction ijk is dependent upon the

parent main effects i, j and k. It would then also be appropriate to assume that the

three-factor interaction is also dependent upon the two-factor interactions. However,

in this instance we are assuming that the three-factor interaction is conditionally

independent of the two-factor interactions due to computational simplicity for the

simulation work.

The value αijk is distributed as follows;

αijk ∼ Bern(pijk).

The normal mixture prior p(βijk|αijk) for the three factor interaction effect is then

specified as:

βijk ∼

 N(0, σ2
1ijk) if αijk = 0

N(0, σ2
2ijk) if αijk = 1.

Now that the different priors that have been used to generate data have been demon-

strated, the prior distributions on the effect sizes used for the simulations are given

in the following section.

3.2.3 Prior Distributions on the Effect Sizes

The prior distributions on the effect sizes used for the simulation work are now dis-

cussed. All tables referred to in this section are given at the end of the section.

Throughout, the models used to simulate data are for

β = [β0, β1, β2, β3, β12, β13, β23, β123]T.

Given a prior distribution specified for the p parameters of interest, β, the data y
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collected from the experiment consisting of N observations which uses the design with

design matrix X, it is then assumed that

y|β ∼MVNN(Xβ, σ2I) (3.2)

where I is the N ×N identity matrix.

If prior knowledge about the parameters of interest β can be sufficiently expressed by

a prior distribution of the conjugate form, i.e. where the posterior distribution is of

the same form as the prior distribution, then the form of the posterior distribution is

more straightforward to manipulate. That is, the analysis and interpretation of results

that are following from the combination of prior information about the parameters

contained in the observed data to give a composite picture of the final judgments

about the values of the parameter, are simplified.

Thus, the model used to describe y|β which is of the multivariate normal form as

given previously, has the multivariate normal conjugate prior,

β ∼MVNp(µp,Σp).

Since the priors on the parameters of interest β are individually represented by normal

distributions, this can be extended to all p parameters of interest being represented

by the multivariate normal distribution. The case of the normal mixture prior shall

be considered later on in this section. It can be shown using Bayes’ Theorem that

the posterior distribution of β|y is

β|y ∼MVNp(µ,Σ)

where

µ = [
1

σ2
XTX + Σ−1

p ]−1[
1

σ2
XTy + Σ−1

p µp]

and

Σ = [
1

σ2
XTX + Σ−1

p ]−1.
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Values of µp and Σ are given in tables that are to follow. Where Σ is specified for the

normal prior distributions, this is assumed to be the diagonal variance matrix, i.e.

the diagonal variance entries for the variance-covariance matrix Σp, and throughout

σ2 is assumed to be known. The variance of the intercept, β0, for all normal prior

distributions shall be assumed to approach ∞. It is usual to do this since we are

not generally concerned with estimating the intercept, but more so with estimating

the main effects and interaction effects and also because the utility functions do not

depend upon β0.

When setting up the normal mixture prior, we shall consider (3.2) as part of a larger

hierarchical model as set out by George and McCulloch (1993). As mentioned in the

previous section, the key idea is that each component of β is modelled as coming

from a mixture of two normal distributions with different variances, as seen in (3.1).

Although this is similar to the normal mixture prior as set out by Mitchell and

Beauchamp (1988), in the sense of being a mixture of two normal distributions, a

distinct difference is that they in fact consider a “spike and slab” mixture. Their

approach has βi uniformly distributed between two limits except for some part of

the probability mass of βi which is concentrated at 0. This demonstrates the idea of

an effect being ‘active’ if it comes from somewhere in the uniform distribution and

‘inactive’ if it has value 0. Although there have been previous references in this thesis

to an effect being ‘inactive’, this is in the sense that an effect has a size that could

be considered to be negligible and is therefore not large enough to be considered one

of the key effects driving the process in hand. Thus, where an effect is referred to as

being ‘inactive’ it should be considered in this sense rather than an effect having a

size of 0.

The vector α, which was previously discussed, captures the importance of effects

where αi = 0 or 1, for i = 1, . . . , p. This is where p is the number of parameters being
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considered. Then the normal mixture is represented as

βi|αi ∼ (1− αi)N(0, σ2
1i) + αiN(0, σ2

2i).

The prior for βi|αi then takes the form of the multivariate normal prior where

β|α ∼ Np(0,DαRDα).

α = (α1, . . . , αp), R is the prior correlation matrix and Dα ≡ diag[a1, . . . , ap], where

ai = σ2
1i if αi = 0 and ai = σ2

2i if αi = 1. The value of σ2
1i is set to be small so

that those βi where αi = 0, will come from a distribution with low variance and be

clustered somewhere about 0. σ2
2i is chosen to be large (σ2

2i � σ2
1i), and therefore

those βi for which αi = 1 will come from the distribution with high variance and be

much more dispersed.

Typically, the prior on the residual variance σ2 takes the form of an inverse gamma

conjugate prior as follows,

σ2 ∼ IG(ν/2, νλ/2).

This is equivalent to νλ/σ2 ∼ χ2
ν . However, for the simulation work, it will be assumed

that σ2 is known and is equal to 1.

The values for µp and Σp, assuming that strong prior information is known, are given

in Table 3.7. The diagonal variance matrix entries are assumed to be 0 for this

strong prior information. This is a very unrealistic assumption to make, since it is

highly unlikely that an experimenter will know exactly the outcome of the effect sizes.

However, the scenario of assuming effect sizes are known is primarily for illustration

rather than investigatory purposes, before more interesting prior distributions are

displayed. Some points to note about the prior distributions for the strong prior

distributions, assuming known sizes of effects, are:

1. For prior 1 there are expected to be two large main effects, 1 and 2, a large
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two-factor interaction 12, a fairly small main effect 3 and all other effect sizes

small.

2. For prior 2, it is expected that all three main effects will be large and all other

effects small.

3. Priors 3 and 4 both indicate the expectation of all three main effects being large,

one large two-factor interaction, and all other effects small.

4. There are expected to be three large main effects and two large two-factor

interactions, 12 and 13, resulting from prior 5.

5. Priors 6, 7 and 12 indicate the expectation of two large main effects and one

large two-factor interaction.

6. For prior 8 it is expected that the two main effects 1 and 2 will be large and

all other effects small.

7. Priors 9, 10 and 11 all indicate the expectation of one large main effect and one

large two-factor interaction.

8. For prior 13, there are expected to be two large main effects, 2 and 3, and two

large two-factor interactions, 12 and 13.

Some further priors, which take the form of the normal distribution, are given in

Tables 3.8, 3.9 and 3.10. Each of the priors in these three tables contain useful

information about the expectation of effect sizes. The sizes of the main effects, two-

factor and three-factor interactions correspond with those set out in points 1-8 as

given previously for the strong prior information. However, the three tables do vary

according to how informative the priors are, ranging from informative priors with

low prior variances (3.8), to somewhat informative priors (3.9), and finally to non-
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informative priors with high prior variances (3.10).

Some additional, and perhaps more interesting, normal prior distributions are given

in Table 3.11. Points to note are:

1. Prior distributions 1-3 are non-directional - they express the belief that there

is no indication about the likely direction of effects. The variances differ from

high prior variances to somewhat more informative variances.

2. Priors 4 and 5 are also non-directional. Looking at prior 4 we see that all main

effects have high prior variances and all two-factor interactions have somewhat

informative variances. The three-factor interaction has an informative variance

where it is expected this interaction will be somewhere close to 0. The converse

is true for prior 5 in the case of the main effects, where this time the variances

are informative. The two-factor interactions for prior 5 are non-informative with

high prior variance and the three-factor interaction is somewhat informative.

3. Prior 6 is not highly informative but does contain some useful information.

There is expected to be one large main effect, one fairly large main effect and

one fairly small main effect. All the interaction effects are small except for that

which has large main effects.

4. The means for prior 7 are consistent with those of prior 6. However, there is

more prior information in this case about those effects which are expected to

be large and little information about other effects.

5. Prior 8 indicates the expectation of two large main effects, one with much less

certainty than the other, and one small main effect. The interaction effect which

has large parent main effects is expected to be fairly large with more certainty

than all other interaction effects, which are expected to be small.
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6. Prior 9 denotes that there is expected to be one large main effect with a high

level of certainty and two fairly large main effects but with much less cer-

tainty. All two-factor interactions are expected to be somewhat small with the

three-factor interaction much smaller. These are all with fairly uninformative

variances.

7. Prior 10 corresponds with prior 9 in the sense that there is also expected to be

one large main effect with a high level of certainty and two fairly large main

effects with much less certainty. However, there is also expected to be one fairly

large two-factor interaction, although this is not with much certainty. All other

two- and three-factor interactions are expected to be small also with a low level

of certainty.

The values set out in Table 3.12, are the probabilities of the main effects and inter-

action effects for variables 1, 2 and 3 being active. The probabilities p1, p2 and p3

represent the main effects being active and p00, p01, p10 and p11 represent the proba-

bilities for a two-factor interaction effect being active. The probability p00 is for the

interaction effects with no active parent effects, p01 and p10 for interaction effects with

one active parent effect and p11 for an interaction effect with both parents active, as

outlined in the previous section. The probabilities p000, p100, p110 and p111 similarly

represent the three-factor interaction effect 123, dependent upon whether there are

respectively no, one, two or three active parents. These probabilities are then used

to generate the vector α, to indicate the importance of main effects and interaction

effects. These are generated using the fact that the entries of the vector α come from

a Bernoulli distribution with relevant probability, depending on whether the particu-

lar entry of α is referring to a main, two-factor interaction or three-factor interaction

effect.

For each of the effects, β1,β2,β3,β12,β13,β23,β123, i.e. for all βi where i = 1, . . . , p,
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the normal components are

βi ∼

 N(0, 0.04) if αi = 0;

N(0, 4) if αi = 1.
(3.3)

Some points to note about the normal mixture priors given in Table 3.12, is that

owing to the Bernoulli distributions set out for the values αi:

1. Prior 1 indicates that there are expected to be three large main effects.

2. Priors 2, 3 and 4 indicate that there are expected to be two large main effects.

3. Priors 5, 6 and 7 indicate that there is expected to be one large main effect.

4. Prior 8 indicates that all main effects are expected to be small.

5. According to prior 9 all main effects are independent and all have an equal

probability of being active. The probability of two-factor and three-factor in-

teractions being active is smaller than for the main effects.

6. Looking at priors 10 and 11, we see that all effects are independent and have an

equal probability of being active. This probability is smaller for prior 11 than

prior 10.

The normal mixture prior is set up so that the higher order interactions are dependent

upon whether the main effects are active or not, for priors 1-8. It may be expected

that there will be a greater number of active two-factor interaction effects for prior

1 in comparison to some of the other scenarios considered. Conversely, it may be

expected that there is the smallest number of active two-factor interaction effects

for priors 5, 6 and 7. In the case of priors 9-11, we observe that the principle of

effect heredity is not taken into account. For instance, with prior 9 we note that

p00 = p01 = p10 = p11. Hence, a two-factor interaction will have the same probability
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of being active regardless of whether one or both or neither of its parent main effects

are active. This is similarly observed for priors 10 and 11 where in fact we have that

p1 = p2 = p3 = p00 = p01 = p10 = p11 = p000 = p100 = p110 = p111 in both cases.

Although we would expect that effects are likely to be active according to the effect

heredity principle, it should be noted that effect heredity is only an assumption and

so to consider the circumstance where effect heredity does not apply is a reasonable

assumption to make.

Note also that the probabilities given in Table 3.12 are much more extreme than set

out in the previous section. It was stated that typically a main effect will be active

with probability 0.25. However for the simulation work the probability has been

set at either 0.75 or 0.8 when αi = 1 for variable i. More extreme values are also

seen for the probabilities which have been set for an interaction effect to be active.

To illustrate this for one case, when a two factor interaction ij, with parent main

effects i and j have values of αi and αj both being generated to be 0, the resulting

probability of p00 would usually be set to be very small such as 0.01 to represent the

idea that an interaction effect with no active parent main effect is highly unlikely

to be active. However, in the situation of the simulation work, the probability for

p00 has been chosen to be 0.1. The reason for the probabilities being more extreme

than as typically chosen in literature is due to the size of the designs being relatively

small, where n = 4. Thus, to obtain results where some effects are being declared as

active the probabilities have been chosen to be larger than perhaps would normally

be chosen. However, it could also be argued that in practice an interaction effect

could be active even in the circumstance when neither of the parent main effects are

active, more so than the probability of p00 = 0.01 suggests and so to choose p00 to be

as small as this would not be an accurate reflection of circumstances occurring in the

real world.
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Prior Distributions on the Effect Sizes

Table 3.7: Strong Prior Information - Point Prior

Prior µp Σ

1 [0, 10, 10, 2, 8, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0]

2 [0, 10, 10, 10, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

3 [0, 10, 10, 10, 0, 8, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

4 [0, 10, 10, 10, 8, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

5 [0, 10, 10, 10, 8, 8, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

6 [0, 10, 0, 10, 0, 8, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

7 [0, 10, 10, 0, 0, 8, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0]

8 [0, 10, 10, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

9 [0, 0, 0, 10, 0, 8, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

10 [0, 0, 0, 10, 8, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

11 [0, 10, 0, 0, 0, 8, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

12 [0, 0, 10, 10, 8, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

13 [0, 0, 10, 10, 8, 8, 0, 0] [0, 0, 0, 0, 0, 0, 0 ,0]

Table 3.8: Normal Prior Distribution on Effect Sizes: Informative Prior

Prior µp Σ

1 [0, 10, 10, 2, 8, 0, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

2 [0, 10, 10, 10, 0, 0, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

3 [0, 10, 10, 10, 0, 8, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

4 [0, 10, 10, 10, 8, 0, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

5 [0, 10, 10, 10, 8, 8, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

6 [0, 10, 0, 10, 0, 8, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

7 [0, 10, 10, 0, 0, 8, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

8 [0, 10, 10, 0, 0, 0, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

9 [0, 0, 0, 10, 0, 8, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

10 [0, 0, 0, 10, 8, 0, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

11 [0, 10, 0, 0, 0, 8, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

12 [0, 0, 10, 10, 8, 0, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

13 [0, 0, 10, 10, 8, 8, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]
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Table 3.9: Normal Prior Distribution on Effect Sizes: Mildly Informative Prior

Prior µp Σ

1 [0, 10, 10, 2, 8, 0, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

2 [0, 10, 10, 10, 0, 0, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

3 [0, 10, 10, 10, 0, 8, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

4 [0, 10, 10, 10, 8, 0, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

5 [0, 10, 10, 10, 8, 8, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

6 [0, 10, 0, 10, 0, 8, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

7 [0, 10, 10, 0, 0, 8, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

8 [0, 10, 10, 0, 0, 0, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

9 [0, 0, 0, 10, 0, 8, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

10 [0, 0, 0, 10, 8, 0, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

11 [0, 10, 0, 0, 0, 8, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

12 [0, 0, 10, 10, 8, 0, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

13 [0, 0, 10, 10, 8, 8, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

Table 3.10: Normal Prior Distribution on Effect Sizes: Weakly Informative Prior

Prior µp Σ

1 [0, 10, 10, 2, 8, 0, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

2 [0, 10, 10, 10, 0, 0, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

3 [0, 10, 10, 10, 0, 8, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

4 [0, 10, 10, 10, 8, 0, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

5 [0, 10, 10, 10, 8, 8, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

6 [0, 10, 0, 10, 0, 8, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

7 [0, 10, 10, 0, 0, 8, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

8 [0, 10, 10, 0, 0, 0, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

9 [0, 0, 0, 10, 0, 8, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

10 [0, 0, 0, 10, 8, 0, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

11 [0, 10, 0, 0, 0, 8, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

12 [0, 0, 10, 10, 8, 0, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

13 [0, 0, 10, 10, 8, 8, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]
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Table 3.11: Additional Normal Prior Distributions

Prior µp Σ

1 [0, 0, 0, 0, 0, 0, 0, 0] [∞, 4, 4, 4, 4, 4, 4, 4]

2 [0, 0, 0, 0, 0, 0, 0, 0] [∞, 2, 2, 2, 2, 2, 2, 2]

3 [0, 0, 0, 0, 0, 0, 0, 0] [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25]

4 [0, 0, 0, 0, 0, 0, 0, 0] [∞, 4, 4, 4, 2, 2, 2, 0.25]

5 [0, 0, 0, 0, 0, 0, 0, 0] [∞, 0.25, 0.25, 0.25, 4, 4, 4, 2]

6 [0, 10, 6, 2, 4, 1, 1, 1] [∞, 2, 2, 2, 2, 2, 2, 2]

7 [0, 10, 6, 2, 4, 1, 1, 1] [∞, 0.25, 0.25, 2, 0.25, 2, 2, 2]

8 [0, 10, 10, 2, 4, 1, 1, 1] [∞, 0.25, 2, 2, 1, 2, 2, 2]

9 [0, 10, 4, 4, 2, 2, 2, 1] [∞, 0.25, 2, 2, 2, 2, 2, 2]

10 [0, 10, 4, 4, 4, 1, 1, 1] [∞, 0.25, 2, 2, 2, 2, 2, 2]

Table 3.12: Probabilities for Normal Mixture Prior Distribution on Effect Sizes

Prior p1 p2 p3 p00 p01 p10 p11 p000 p100 p110 p111

1 0.8 0.8 0.75 0.1 0.4 0.4 0.7 0.1 0.3 0.3 0.6

2 0.8 0.2 0.75 0.1 0.4 0.4 0.7 0.1 0.3 0.3 0.6

3 0.8 0.75 0.2 0.1 0.4 0.4 0.7 0.1 0.3 0.3 0.6

4 0.2 0.8 0.75 0.1 0.4 0.4 0.7 0.1 0.3 0.3 0.6

5 0.8 0.2 0.2 0.1 0.4 0.4 0.7 0.1 0.3 0.3 0.6

6 0.2 0.8 0.2 0.1 0.4 0.4 0.7 0.1 0.3 0.3 0.6

7 0.2 0.2 0.8 0.1 0.4 0.4 0.7 0.1 0.3 0.3 0.6

8 0.2 0.2 0.2 0.1 0.4 0.4 0.7 0.1 0.3 0.3 0.6

9 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1

10 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

11 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
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3.2.4 Results for Optimization Utility

In this section, tables are presented which display the results when applying the

optimization utility function in the case of various prior assumptions. Comments on

the results are also given.

Table 3.13: Results for Strong Prior Information - Point Prior

Design A Design B

Prior Mean Loss Mean Gain Relative Gain Mean Loss Mean Gain Relative Gain

1 4.000 26.000 0.867 2.000 28.000 0.933

2 0.000 30.000 1.000 10.000 20.000 0.667

3 0.000 38.000 1.000 18.000 20.000 0.526

4 0.000 38.000 1.000 10.000 28.000 0.737

5 0.000 46.000 1.000 18.000 28.000 0.609

6 0.000 28.000 1.000 18.000 10.000 0.357

7 8.432 19.567 0.699 8.000 20.000 0.714

8 0.000 20.000 1.000 0.000 20.000 1.000

9 7.856 10.144 0.564 18.000 0.000 0.000

10 8.064 9.936 0.552 10.000 8.000 0.444

11 8.112 9.888 0.549 8.000 10.000 0.556

12 8.320 19.680 0.703 10.000 18.000 0.643

13 16.352 19.648 0.546 18.000 18.000 0.500
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Table 3.14: Results for Normal Prior Distribution on Effect Sizes: Informative Prior

Design A Design B

Prior Mean Loss Mean Gain Relative Gain Mean Loss Mean Gain Relative Gain

1 3.994 25.974 0.867 1.997 27.971 0.934

2 0.000 29.990 1.000 10.005 19.985 0.666

3 0.020 37.975 0.999 18.003 19.992 0.526

4 0.019 37.986 1.000 10.012 27.993 0.737

5 0.036 45.935 0.999 17.986 27.984 0.609

6 0.388 28.015 0.986 18.370 10.034 0.353

7 7.977 20.044 0.715 8.007 20.013 0.714

8 0.321 20.070 0.984 0.401 19.990 0.981

9 8.595 9.823 0.532 18.258 0.159 0.009

10 8.018 10.394 0.565 10.289 8.123 0.441

11 8.564 9.862 0.533 8.380 10.046 0.545

12 7.920 20.083 0.717 10.007 17.996 0.643

13 15.908 20.093 0.559 17.989 18.012 0.500

Table 3.15: Results for Normal Prior Distribution on Effect Sizes: Mildly

Informative Prior
Design A Design B

Prior Mean Loss Mean Gain Relative Gain Mean Loss Mean Gain Relative Gain

1 5.508 25.908 0.835 3.615 27.802 0.890

2 0.046 29.824 0.998 9.855 20.015 0.677

3 3.795 34.113 0.903 17.898 20.010 0.531

4 3.830 34.189 0.902 10.094 27.926 0.741

5 16.001 30.219 0.655 18.166 28.053 0.610

6 3.232 27.772 0.900 19.968 11.037 0.357

7 11.315 16.913 0.605 8.241 19.998 0.717

8 1.980 21.201 0.915 3.154 20.027 0.869

9 10.083 11.217 0.518 19.009 2.292 0.112

10 13.318 7.853 0.381 11.129 10.042 0.481

11 9.004 12.375 0.567 9.860 11.518 0.549

12 11.679 16.366 0.594 10.115 17.931 0.646

13 22.451 13.404 0.377 17.820 18.035 0.505
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Table 3.16: Results for Normal Prior Distribution on Effect Sizes: Weakly

Informative Prior
Design A Design B

Prior Mean Loss Mean Gain Relative Gain Mean Loss Mean Gain Relative Gain

1 9.273 25.332 0.730 6.555 28.049 0.819

2 2.867 29.009 0.902 11.912 19.964 0.637

3 7.508 31.770 0.818 19.028 20.250 0.521

4 8.246 30.899 0.804 10.959 28.186 0.732

5 21.960 23.862 0.526 17.912 27.910 0.618

6 7.684 26.351 0.774 21.919 12.117 0.358

7 13.981 16.437 0.550 11.843 18.575 0.612

8 5.467 21.589 0.792 6.956 20.099 0.747

9 12.148 13.482 0.512 19.557 6.074 0.247

10 15.475 9.915 0.394 12.735 12.654 0.512

11 12.324 12.593 0.486 12.131 12.785 0.524

12 13.185 17.121 0.572 12.115 18.191 0.611

13 23.412 12.888 0.371 18.254 18.046 0.506

Table 3.17: Results for Additional Normal Prior Distributions

Design A Design B

Prior Mean Loss Mean Gain Relative Gain Mean Loss Mean Gain Relative Gain

1 9.703 6.315 0.360 10.914 5.105 0.323

2 4.666 3.429 0.406 5.345 2.749 0.344

3 0.755 0.235 0.229 0.881 0.109 0.104

4 2.815 8.488 0.711 5.168 6.135 0.527

5 10.113 -0.031 -0.132 9.890 0.192 0.014

6 7.470 18.008 0.724 5.420 20.058 0.797

7 7.860 17.414 0.707 5.278 19.996 0.805

8 7.816 21.614 0.746 5.591 23.840 0.819

9 6.064 19.233 0.768 9.577 15.720 0.629

10 7.693 17.520 0.706 7.029 18.184 0.731
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Table 3.18: Results for Normal Mixture Prior Distribution on Effect Sizes

Design A Design B

Prior Mean Loss Mean Gain Relative Gain Mean Loss Mean Gain Relative Gain

1 5.973 6.093 0.510 7.026 5.040 0.426

2 4.547 4.995 0.523 6.578 2.964 0.307

3 4.870 5.149 0.517 5.014 5.005 0.501

4 4.855 4.844 0.508 6.617 3.081 0.318

5 3.958 3.431 0.442 4.295 3.093 0.405

6 3.829 3.432 0.446 4.266 2.996 0.389

7 4.297 3.196 0.426 6.194 1.299 0.131

8 3.027 1.657 0.265 3.418 1.266 0.198

9 2.272 3.615 0.561 3.400 2.488 0.376

10 4.929 3.501 0.390 5.813 2.617 0.287

11 2.717 1.627 0.277 3.240 1.103 0.200

Strong Prior Information about Effect Sizes

Looking at the results in Table 3.13 and 3.14 it is clear to see that the estimated

utilities, i.e. mean loss, mean gain and relative gain are comparatively similar for

most of the priors when comparing the same design. Take for example the relative

gain of design A for prior 1 which is 0.867 for both the strong prior information and the

normal prior. Also, looking still at prior 1 there is only a difference of 0.001 between

the relative gains of design B when either assuming strong prior information or a

normal prior distribution. Thus, it can be seen that whether assuming strong prior

information or informative normal prior distributions on effect sizes, the conclusion is

the same for all but two cases, as to which design has the maximum relative gain. This

means that given the majority of assumptions that have been made in this example

about the effect sizes, the conclusions given strong prior information and assuming a

normal distribution on the whole concur as to which design is the ‘best’.

From the results in Table 3.13, there are some interesting points to note. Except for

111



prior 1, prior 7 and prior 11, the relative gain is greater for design A than design B,

and the relative gains for both design are equal in the case of prior 8. This implies

that given the majority of assumptions that have been considered in this particular

example about the effect sizes, i.e. those that are set out in 3.7, it would be more

sensible to estimate the three main effects rather than two main effects and a two-

factor interaction.

In the case of prior 1, where it is expected that main effects 1, 2 and the two-factor

interaction 12 are large, design B has the greater relative gain. This seems quite an

obvious result, since if an experimenter had made the assumption that in fact main

effect 3 would be small and two-factor interaction 12 would be large, there appears

to be little benefit in choosing design A. However, the difference of the relative gain

between design A and B is 0.066 and does not seem to be as large as one would expect

to reflect the greater benefit in choosing design B. For prior 7, although design B also

has the higher relative gain, this is only greater than the relative gain of design A by

an amount of 0.015, which could be considered to be a minimal difference. In this

case it is expected that main effects 1 and 2 and the two-factor interaction 13 will

be large. Thus, if one suspects these effects to be large, although design B does have

the greater relative gain, choosing a design to estimate all three main effects may

be equally beneficial. This idea is reiterated with prior 11 where main effect 1 and

two-factor interaction 13 are expected to be large. Design B has the greater relative

gain than design A but only by a difference of 0.007. It appears that with design B

having the greater relative gain for priors 7 and 11, more importance is being placed

on estimating any potentially large interaction effects involving the assumed to be

large parent main effect 1.

It is also worth pointing out that for prior 8, which expects main effects 1 and 2 to

be large and all other effects to be small, both design A and design B have a relative

gain of 1. To identify large main effects may usually be of prime importance to an
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experimenter, particularly in the case of screening experiments, however if two main

effects are expected to be large then it would also make sense to want to estimate the

interaction of these effects. Thus, when assuming strong prior knowledge that main

effects 1 and 2 are large, the utilities result in a conclusion that it would be of equal

benefit to either estimate main effect 3 or two-factor interaction 12. In this situation

the most sensible course of action would be for the experimenter to use their scientific

knowledge of the process in hand, or any knowledge from previous experimental runs

to decide if it is of more benefit to estimate a main effect or an interaction effect.

Alternatively, the experimenter may wish to choose a design based on the purpose

of the experiment and whether it is more worthwhile to correctly identify all active

main effects, or identify potential active interaction effects along with some of the

active main effects.

As mentioned, except for prior 1, prior 7 and prior 11, and prior 8 where both designs

have equal maximum relative gain, all other priors result in design A having the

greater relative gain in comparison to design B. Amongst these priors with design A

coming out as ‘best’, there are some interesting points to note about prior 6 and prior

9.

For prior 6, it is expected that main effects 1, 3 and two-factor interaction 13 are

large and design A results in a relative gain of 1 compared to 0.357 for design B.

Therefore, when main effect 3 is expected to be large it is better to go with the

design that can estimate this effect. This idea is reiterated with the case of prior 9

where main effect 3 and two-factor interaction 13 are expected to be large and the

resulting relative gain of design A is 0.564 and for design B is 0. The relative gain

of 0 indicates that it is pointless to use design B which would estimate main effects

1, 2 and two-factor interaction 12, and would entirely overlook identifying the true

active effects.
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Informative Normal Prior Distributions on Effect Sizes

As stated previously, when assuming strong prior information on the effect sizes, the

conclusions for which design has the higher relative gain for each of the priors is in

agreement with that when assuming informative normal prior distributions, except in

two cases. The two cases are prior 7 and prior 8. Looking more closely at the results

for prior 7, we see that when assuming a known size of effect, design B is declared

as the better design in terms of having a greater relative gain of 0.714. However,

when assuming an informative normal prior distribution for the same prior, design B

also has the same relative gain of 0.714, although design A in this case is declared as

better than design B by what could be considered to be a minimal amount of 0.001.

Thus, it could be concluded that in the case of prior 7 whether assuming that the

effect sizes are known or an informative normal prior distribution on the effect sizes

is assumed, both design A and B could be considered to be equally as informative.

Also, with prior 7, it is expected that main effects 1 and 2 and two-factor interaction

13 are large. If an experimenter did have strong prior knowledge that both main

effect 2 and two-factor interaction 13 may be large, then although design A has the

somewhat higher relative gain this design should be chosen with careful consideration.

Looking at the design structure of design A, due to the defining relation of design A

being I = −123, the aliased effects are:

1 = −23,2 = −13,3 = −12.

Thus, if in fact both effects 2 and 13 are large, then because these large effects

are aliased the experimenter ma not be able to conclude strongly which effect is

in fact the truly active effect, or that in fact both are. There may also be the

possibility of cancellation, that is effects may cancel each other out if they have

opposite signs. Thus, even if both effects are truly active, they may go undiscovered

by the experimenter. In these types of cases, follow-up experiments may need to be
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carried out to clearly identify the true active effects.

Despite this argument against choosing design A, although it resulted in the higher

relative gain in the case of normal priors on effect sizes, it can also be argued that

design B may also have its own drawbacks in the case of prior 7. Owing to the fact

that design B has variable 3 held fixed at 0, i.e. standard operating conditions, main

effect 3 cannot be estimated nor can any of the interactions involving variable 3. So,

if in fact the two-factor interaction 13 is truly large and therefore an active effect,

this cannot be estimated and may lead to problems such as non-active effects being

declared active or an overinflated variance.

Looking at prior 8, designs A and B are found to be equally efficient with relative gains

of 1 when assuming known sizes of effects. We also see that when placing informative

normal prior distributions on effect sizes, design A has the greater relative gain, but

this is only greater than design B by an amount of 0.003. Such a strong conclusion

that the relative gain will be 1 for both design A and B can be drawn since strong

prior knowledge about the effect sizes are assumed. Taking into consideration that the

relative gains for designs A and B when assuming informative normal priors on effect

sizes are both close to 1 (0.984 and 0.981 respectively), with a minimal difference of

0.003, it does not seem surprising that both designs have a relative gain of 1 when

strong prior knowledge is assumed.

Mildly Informative and Weakly Informative Normal Prior Distributions

on Effect Sizes

Now, we can observe the results obtained from the utility functions when assuming

mildly informative normal prior distributions on effect sizes, as displayed in Table

3.15. It can be seen that for the most part, the design which has the higher relative
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gain does correspond to that when making stronger assumptions about the effect

sizes as in Tables 3.13 and 3.14. However, the few occurrences where the conclusions

do not agree are in the cases of priors 10, 11, 12 and 13. Observing prior 10, we

see that it is expected that effects 3 and 12 are large and in this case the design

estimating the main effects 1 and 2 and the interaction effect 12 is deemed to be

more efficient as it has the higher relative gain. This contrasts with previous results

where when stronger assumptions about the sizes of the effects could be made, the

design estimating all main effects resulted in having the higher relative gain. This

leads the initial judgement to be made that if one suspects these particular effects

may be large but can only specify within a vague range as to where the effect sizes will

lie, then more benefit will be gained from choosing a design that does not estimate

variable 3 but instead estimates an interaction effect.

For prior 11, where it is that expected main effect 1 and interaction effect 13 will

be large, design A has the greater relative gain by an amount of 0.018. For priors

12 and 13 design B has the higher relative gain where similarly to prior 10, design A

had the higher relative gain when making stronger assumptions about the effect sizes.

Prior 12 expects effects 2, 3 and 12 to be large and for prior 13, the same effects are

expected to be large along with 13. Thus, in both these circumstances, when only a

fairly informative normal prior distribution can be used to model the effect sizes, it

appears more gain will be made from estimating the interaction effect 12 instead of

main effect 3. This may seem a strange result as the main effect of 3 is expected to

be large in both cases and also its associated interaction effect 13 being large in the

case of prior 13. However, since neither of the candidate designs can estimate any

interaction effects involving 3, and -2 is aliased with 13 this does lead to potential

drawbacks for both designs as mentioned previously.

Similar results were seen when weakly informative normal prior distributions were

assumed for the effect sizes, as seen in Table 3.16. Design B also had the higher
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relative gain for priors 10, 12 and 13. All other results agreed with the much more

informative priors, except in the case of prior 5. Here, effects 1, 2, 3, 12 and 13

are expected to be large and where for all other more informative priors design A

had been deemed to be more efficient, in this case design B had the greater relative

gain. This may not seem a surprising result considering in this situation there is

expected to be almost all effects active in such a small design and that there is little

information incorporated into the normal prior distribution.

Additional Normal Prior Distributions on Effect Sizes

The results in Table 3.17 are for some additional normal prior distributions. The first

three priors describe the situation where an experimenter has no prior information

about the likely size or direction of the effect, ranging from a high prior variance

(prior 1) to an informative prior variance (prior 3). Observing the first three rows of

results in Table 3.17, it is clear that if an experimenter has no indication of the likely

direction or size of effects, then making a judgement based on the relative gain of a

design it would always be best to use the design that can estimate all main effects.

This is regardless of how informative the prior variance is, since the design A, which

estimates all main effects of variables 1, 2 and 3, has the higher relative gain for all

three possible choices of variance. The worth of choosing a design, measuring this

by the size of the relative gain, increases as the variance becomes less vague. This

is observed where for the most vague distribution, design A is perceived as having

a greater relative gain of 0.037 than design B, and this increases to being 0.125 in

terms of relative gain better than design B, for the most informative distribution.

The other non-directional prior in the case of prior 4, where the prior variances

are not equal for all effects, has a similar result to priors 1-3 where design A has

a larger relative gain. This appears to be an understandable result owing to the
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prior variances which suggest the interaction effects will be somewhere close to 0 and

the main effects could be somewhat larger. This contrasts greatly with the results

obtained for prior 5. Although this prior is also non-directional like priors 1-4, high

prior variances for the two-factor interactions suggested these effects could be large

whilst low prior variances were observed for the main effects. Relative gains obtained

from the simulations are −0.132 for design A and 0.014 for design B. These results

clearly show that both designs do quite badly when making these prior assumptions

on effect sizes as both relative gains are extremely small. However, it is evident

that design A is less efficient a design than design B, since a negative gain resulted

from the simulations. This seems an obvious result, that the design estimating all

main effects and no interactions is less successful because the prior assumptions make

it clear that main effects are highly likely to be small and there is more chance of

two-factor interactions having a larger effect size.

The other results in Table 3.17, specifically priors 6-8, show that in the cases where

there is expected to be a large main effect and a fairly large interaction effect involving

that main effect, the relative gain is always larger for the design which can estimate

the interaction effect. This is even in the cases when the interaction effect is expected

to be large but with not a great deal of certainty.

Prior 9 indicates that if there is any belief of there being a fairly large main effect,

even if this is not with much certainty, and all interaction effects are believed to be

fairly small, it would be better to choose the design that will estimate all main effects.

However, looking at the final prior of Table 3.17, prior 10, we see that even if there

is expected to be a fairly large main effect, namely 3, the design which estimates

the other two variables, 1 and 2 and its associated interaction effect, has the higher

relative gain. In this case, where there is expected to be a fairly large interaction

effect, which does not involve 3, more emphasis appears to be placed on being able

to estimate this interaction effect. The greater importance put on estimating an
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interaction effect rather than a main effect, which typically would be considered to be

of more importance, may be due to one of the associated parent effects, main effect

1, being expected to be large with a greater degree of certainty. This is despite the

fact that both the main effect 3 and interaction effect 12 are considered to be fairly

large with the same amount of certainty.

Normal Mixture Prior Distributions on Effect Sizes

Now, looking at Table 3.18 which displays the results of the utilities when assuming

normal mixture prior distribution on effect sizes, we can see that design A has the

greater relative gain each time. The greatest benefit of choosing design A is seen in

the case of prior 7. This is where only variable 3 is expected to be large, and has

the greatest difference of relative gain between design A and design B of 0.295. This

makes sense since if one does not expect either the main effect of 1 or 2 to be large,

and consequently, neither its associated two-factor interaction effect 12, there would

be no benefit in choosing design B. It is also worth mentioning that the smallest gain

of carrying out design A over design B is seen in the case of prior 3. In this situation,

the hierarchical prior has been set up so that variables 1 and 2 are highly likely to be

active and due to the dependent nature of the priors, the interaction effect 12 is then

also highly likely to be active. Thus, with such a scenario where one would expect

the effects 1, 2 and 12 to be active in the experiment, it may be expected that design

B would have the greater relative gain. However, this is not the case and as with

all of the prior assumptions considered, the design that can estimate all main effects

has been deemed to be the better design. To try to come to some understanding

of why this is the case, it is of interest to calculate the probability that two-factor

interaction effect 12 is active. This is based on the prior probabilities pi and pij,

which are respectively the probabilities that factor i and two-factor interaction ij are

active. For prior 3, the probabilities were set out as p1 = 0.8, p2 = 0.75 and p3 = 0.2.
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That is, it was expected that variables 1 and 2 were likely to be active and there

was a small probability of variable 3 being active. Due to the activity of interaction

effects depending upon the activity of their parent effects, the probabilities p00, p01,

p10 and p11 were also set out. For prior 3, these were p00 = 0.1, p01 = 0.4, p10 = 0.4

and p11 = 0.7. We can then obtain the probability that β12 is active as

P (β12 is active) = p1p2p11 + p1(1− p2)p10 + (1− p1)p2p01 + (1− p1)(1− p2)p00

= (0.8)(0.75)(0.7) + (0.8)(0.25)(0.4) + (0.2)(0.75)(0.4) +

(0.2)(0.25)(0.1)

= 0.565.

The probability P (β12 is active) = 0.565 may not be considered to be that large.

Thus, this may provide some explanation for why although the variables 1 and 2

have been set up to be highly likely to be active in this case, the design which is able

to estimate variable 3 has been chosen as the better design, over the design which

can estimate two-factor interaction 12. Whilst considering this, it would be of some

value to note that as previously stated the difference in relative gain between the two

designs for prior 3 is the smallest out of all the prior assumptions that have been

made.

For the final three priors of the table, to be precise priors 9, 10 and 11, where the

effect heredity principle has not been assumed and the effects are considered to be

independent, we see that again design A has the higher relative gain. Out of these

three priors we observe that the greatest relative gain in carrying out design A as

opposed to design B is seen for prior 9. This seems fairly self-explanatory since in

this case the probabilities of the main effects being active are all equal, but more

importantly, are greater than the probability that a two- or three-factor interaction

effect is active. Thus, greater benefit would be acquired from carrying out a design

estimating main effects. Where the probabilities for the effects to be active are all

equal, as in priors 10 and 11, we see that the difference in relative gain between
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design A and B decreases as the probability of an effect being active decreases. This

is seen where the difference in relative gain between design A and B is 0.103 when

p1 = p2 = . . . = p111 = 0.4 but decreases to 0.077 in the case of prior 11 where

p1 = p2 = . . . = p111 = 0.2.

It is also of interest to note that for design A variables 1, 2 and 3, and for design B

variables 1 and 2 can be considered to be exchangeable, i.e. that the labels identifying

them are uninformative (Bernardo, 1996), and . Thus, it would be expected that the

results obtained for the priors 2 and 4, where the main effects 1 and 3 (prior 2), and

main effects 2 and 3 (prior 4), are expected to be large and interaction effects large

dependent on the parent effects, will be relatively similar. Likewise, similar results

would also be expected for priors 5 and 6 where either the main effect of 1 and 2

respectively is expected to be large, and similarly the interaction effects will be large

dependent on parent effects. Looking at the results in 3.18 it can be seen that this is

in fact the case.

3.2.5 Discussion

The use of the utility function outlined in Chapter 2, primarily for the purposes of

optimization, has been demonstrated with a small example comparing two designs

each consisting of 4 runs, where various prior assumptions about the effect sizes have

been made. As mentioned earlier on in the chapter, this example is primarily for

illustrating the rationale of the optimization utility function before a larger, and

perhaps more thought-provoking, case is presented. Thus, the results observed in

this section may appear to be relatively intuitive as a result of the small designs

considered.

As mentioned in the previous chapter, this work stems from that of Gilmour and
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Mead (1995) where they considered the estimated quantity E{Y (xmax)− Y (x̂max)},

that refers to the gain in yield or some other similar measure that an experimenter is

seeking to maximize. In their paper, they considered the question of whether or not

the next stage of experimentation is worthwhile in the case of sequential experiments.

They did this by simulating from the distribution of β|y (where β refers to the set

of parameters and y refers to the data) and obtaining L(x) for each realization of β

to obtain the posterior distribution of L(x)|y. This is where, for any x,

L(x) = Y (xmax)− Y (x).

That is, L(x) is the quantity for assessing the difference between the expected response

at the true optimum and the expected response at x.

The optimal factor combination xmax could then be estimated by the x which min-

imizes Eβ|y{L(x)}. The posterior distribution of L(x̂max)|y could then be used to

decide whether or not to stop at a particular stage of experimentation or continue and

carry out another experiment, for example deciding to stop experimentation when

Eβ|y{L(x̂max)} < ε

where the value of ε is to be decided by the experimenter. Thus, it can be seen that in

comparison to their approach of using this quantity to decide whether or not to stop

experimentation, our approach in this thesis is concerned with selecting an optimal

design from a set of candidate designs. An optimal design is chosen by identifying

that which minimizes the quantity ULoss(x̂opt), which is the difference between the

expected response at the true optimum and the expected response at the predicted

optimum, i.e. µxopt − µx̂opt , and is comparable to L(x̂max).

It cannot be claimed that this utility function should be used exclusively by an experi-

menter when making a choice as to the best design to choose in their experimentation.

However, it can be used as an aid along with the experimenters’ judgement about
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which design will potentially provide the most insight about the estimates of the ef-

fects and in locating an optimum treatment combination. The optimum treatment

combination will of course be with respect to the objectives of the experiment. Thus,

it is for the experimenter to use the principal aims of the experiment or investigation,

alongside the utility function to come to a conclusion as to what will be the ‘best’

design to most accurately exploit the greatest information. From the results obtained

from the simulation work and observations that have been made, some general con-

clusions can be drawn. Furthermore, some guidelines can then be set out with the

intention of assisting an experimenter in the circumstance where they are required

to choose a design, incorporating any prior information they may have about the

parameters that are to be estimated.

The results obtained when assuming that the prior information about the effect sizes

are described using normal mixture priors could be considered to be the most realis-

tic representation of experimentation. This is due to the fact that the effect heredity

principle, namely that an interaction effect will be active dependent upon the par-

ent main effects, which is incorporated into the hierarchical prior, would typically

be considered to accurately represent the majority of variables considered by an ex-

perimenter. A stronger justification for the use of the normal mixture prior is that

the nature of this particular prior allows an effect to come from a high variance dis-

tribution, typically with a small probability, and from a low variance distribution

otherwise, hence taking into account the principle of effect sparsity. Thus, to apply

an independence prior, and treat effects independently without carefully considering

if the effects are in fact independent, may be a perilous decision.

It is clear to see that when considering hierarchical priors, the design which would

estimate all main effects, as opposed to setting one of the variables to 0 in order for the

other variables’ main effects and their associated interaction effects to be estimated, is

deemed to be the better design in terms of having the greater relative gain. Relating
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this back to the idea of the optimization utility function, this corresponds to the

estimated improvement on standard operating conditions, in relation to the gain

that would have been made if the true optimal treatment combination had been

used compared to standard operating conditions, is always increased for the prior

assumptions made in this thesis if the design estimating all main effects is used.

This makes for a surprising result, particularly in the case where it was highly likely

that the effects 1, 2 and 12 would be active, as in the case of prior 3. In this

situation, one may have expected that the design estimating these three effects would

be more beneficial, and in actual fact the alternative candidate design had the greater

relative gain, although some explanation for this interesting result was provided by the

calculation of P (β12 is active). This adds more weight to the argument that although

there is benefit to the utility function, it should always be used in its own place and

along with sensible judgement. It should never be used blindly as a substitute for, but

in addition to, various other methods that an experimenter may use when deciding

which design to run. It should also be noted that since the designs being considered

are relatively small, only consisting of 4 runs, conclusions drawn from this simulation

work should be treated with some caution.

Results also indicate that if an experimenter has carried out no previous investigative

work on the variables being studied and therefore has no knowledge of how the factors

will behave, then it is best to carry out a design estimating all main effects. This is

assuming the experimenter has set prior means for all effects to be 0 to encompass

the idea that they have no indication about the likely direction of the effect. Then

regardless of whether the variance is vague, i.e. a high prior variance, or is informative,

i.e. a low prior variance, it appears best to go with a design that, as mentioned,

estimates all main effects.

Some interesting observations were made in the cases where an experimenter assumed

effects to be independent. This is particularly in the case where the experimenter had
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knowledge on the effect sizes and either assumed strong prior information, i.e. point

priors, or normal distribution priors on effect sizes with prior variance ranging from

low to high prior variance. It appears from results obtained that if an experimenter

is in a similar situation and has knowledge about the size of effects and strong in-

formation about the range within which this effect size will lie, then it would on the

whole always be best to carry out a design estimating all main effects, unless there is

strong belief that some interactions will be active. When the experimenter does not

have a great deal of information about the range within which the effect will lie, then

suggestions for the experimenter are not as exact or clear-cut, although it is apparent

that in this instance more care should be taken if any suspected active effects will be

aliased with one another.

It is important to note that there is an interplay between the priors and aliasing

patterns in the experiments and the resulting losses and gains observed. This therefore

means there are some constraints in the investigation and the conclusions or inferences

that have been drawn are dependent upon the beliefs about the effects of the factors

that have been chosen to be studied, and also the aliasing structure of both the

designs. An example of this is clearly seen in the priors investigated where the effects

that are believed to be large and active are in fact the effects that are aliased with

one another. This is the case for several of the priors such as for priors 4 and 5

where strong prior information and also normal prior distributions are assumed on

the effects. In these cases, the effects 3 and 12 are both expected to be large and

therefore active, and are also aliased due to the defining relation of design A being

I = −123. That is, 3 = −12 and in this case the direction of the interaction effect

does evidently matter. As a result of the prior beliefs set out where both main effect

3 and the interaction effect 12 are expected to be large, the negative direction of the

interaction effect is likely to lead to cancellation where the effects cancel each other

out owing to their opposite signs. This is also likely to occur for those other priors

where both the main effects and interaction effects that are believed to be large are
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aliased with one another. For example, when 2 = −13 such as in the priors 3, 5, 7

and 13. Therefore, it may have been more interesting to look at other combinations

of the choice of priors and aliasing structures where pitfalls such as cancellation did

not occur. It then may have been more evident whether the failure or success of the

performance of the design investigated was actually down to the beliefs about the

effects of the factors or the aliasing structure, rather than the interplay between these

two things. Thus, it should be stated that the results displayed are dependent upon

the various choices of prior distributions and experimental designs made and as such

does mean that there are limitations to the study.

Hence, an experimenter can use a utility function to assess the benefits of a design

and also compare designs in terms of loss and gain. However, as displayed due to

potential drawbacks such as the aliasing structure which results from the defining

relation chosen, and also the dependency between this and the choice of prior upon

the results, an experimenter should use the utility function side by side with their

own judgement as to what seems sensible.
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3.3 Screening: Comparison of 5 Factors in 12 and

16 Runs

3.3.1 Introduction

The algorithm outlined in §2.4.1 is to be used when an experimenter is primarily

concerned with finding those key factors driving a process and identifying the active

effects that are large in comparison to noise. The algorithm mentioned can be used to

aid an experimenter in a screening situation and assess the benefits of various designs.

The majority of the fractional factorial designs mentioned so far have been of the

form 2k−p, i.e. a power of two. However, looking at the run size of these designs

as they get larger, the run size being 4, 8, 16, 32, 64, . . . , we see that the size gets

progressively larger. These large jumps between run sizes can prove problematic in

situations where each run may be costly or time-consuming, an experiment may be

destructive or there may be limited resources available. Say, for example, there were

11 factors to be studied, then the minimum 2k−p design that could be used to study

the factors in would be a 16 run design. However, by instead studying the 11 factors

in a 12 run design then 4 runs could be saved to overcome the difficulties mentioned.

Thus, time and money could be saved.

A 12 run design, is in fact a Plackett-Burman design since its run size is a multiple

of 4 but not a power of two. Plackett-Burman designs are nongeometric and have

more complicated aliasing structures than 2k−p designs, which are geometric designs.

Geometric designs are those in which the run size is a power of two. That is, where

the run size is 4, 8, 16, 32, 64, etc. The complicated aliasing in nongeometric designs

may be a large reason for the reluctance to use them as readily as the geometric

designs, as the complex aliasing makes them much more difficult to analyse.
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Looking at the 16 run design in Table 3.19, the column for variable 5 is achieved using

the design generator 5 = 1234. It can therefore be inferred that all 5 main effects will

be aliased with 4-factor interactions, and so are strongly clear. Two-factor interactions

are aliased with three-factor interactions, and so are clear. The observation to make

here is that the aliasing structure in this case is fairly straightforward in that the

aliased terms have coefficients of 1, as can be seen by looking at the aliased terms

for this 16 run design as presented in Table 3.20. The confounding that exists in

geometric designs is complete, which means that if two effects are aliased they may

be identical numerically except for their sign. That is, one may be the negative of

another. Comparing this to the aliasing structure for the 12 run Plackett-Burman

design (Table 3.19) and we see that this is much more complex as presented again in

Table 3.20. In the case of the 12 run design we see that all the two-factor interactions

not involving 1 are partial aliases of 1 with an aliasing coefficient of 1
3

or −1
3
, and

this is similarly seen for all other effects. Two effects are said to be partially aliased

if the absolute value of their aliasing coefficient is strictly between 0 and 1 (Hamada

and Wu, 2000). Thus, Plackett-Burman designs will result in particular aliased terms

that can have fractional coefficients due to being associated with more than one data

contrast or column. The complete aliasing structure for both the 12 and 16 run design

is displayed in Table 3.20.

Owing to this partial aliasing of the Plackett-Burman designs, these designs which

were first presented by Plackett and Burman (1946), were intended to be used as

an economical and useful way of detecting large main effects, but by assuming all

interactions are negligible. However, it can be seen in the literature since then that

considerable efforts have been made to overcome this such as by Box and Meyer

(1993). By using a Bayesian method which did not assume that interactions were

negligible, but in fact allowed for their possibility, posterior probabilities were able to

be computed for a factor being active.
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Table 3.19: Design Matrix for 5 Factors in 12 and 16 Runs

12-run Plackett-Burman Design

Variable

Run 1 2 3 4 5

1 + - + - -

2 + + - + -

3 - + + - +

4 + - + + -

5 + + - + +

6 + + + - +

7 - + + + -

8 - - + + +

9 - - - + +

10 + - - - +

11 - + - - -

12 - - - - -

25−1 Design

Variable

Run 1 2 3 4 5

1 - - - - +

2 + - - - -

3 - + - - -

4 + + - - +

5 - - + - -

6 + - + - +

7 - + + - +

8 + + + - -

9 - - - + -

10 + - - + +

11 - + - + +

12 + + - + -

13 - - + + +

14 + - + + -

15 - + + + -

16 + + + + +

Table 3.20: Aliasing Structure for 5 Factors in 12 and 16 Runs

12 Run Design 16 Run Design

1 + 1
3

(-23+24+25-34-35-45) 1 + 2345

2 + 1
3

(-13+14+15-34+35-45) 2 + 1345

3 + 1
3

(-12-14-15-24+25-45) 3 + 1245

4 + 1
3

(12-13-15-23-25-35) 4 + 1235

5 + 1
3

(12-13-14+23-24-34) 5 + 1234

1
3

(-12+13-14+15+23-24-25+34-35-45) 12 + 345

1
3

(-12-13-14+15-23+24-25+34-35+45) 13 + 245

1
3

(12+13-14-15-23-24-25-34+35+45) 14 + 235

1
3

(-12-13-14-15+23+24-25-34-35-45) 15 + 234

1
3

(-12-13+14-15-23-24-25+34+35-45) 23 + 145

1
3

(-12+13+14-15-23-24+25-34-35+45) 24 + 135

25 + 134

34 + 125

35 + 124

45 + 123
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Despite this, when using Plackett-Burman designs their analysis should be carried

out carefully, especially in the case where interaction effects are to be considered.

Typically, if an experimenter wants to estimate interaction effects as well as main

effects it would usually be recommended that a geometric design of type 2k−p be

used, unless there is a strong reason for wanting to opt for a nongeometric design,

such as for economical reasons. However, it is of interest to investigate how much

benefit there is in using an extra n runs, if there is a choice of which design to use,

and if so being able to quantify this value. If for example, an experimenter wants to

carry out a screening experiment and therefore only wants to look at main effects,

is the cost of carrying out an extra n runs to use a geometric design as opposed to

a Plackett-Burman design, really worthwhile enough for the benefit of not having to

make such strong assumptions that all interactions are negligible? Also, the type of

design chosen as being more beneficial per run may also be affected by the amount

of prior knowledge that is assumed before the experiment is carried out. Thus, prior

knowledge should also be taken into consideration when looking at the choice of

design.

3.3.2 Models to be Considered

To illustrate the algorithm to aid an experimenter in a screening situation, consider

that there are 5 factors and only a maximum of 16 runs with which to investigate

them. The suggested designs are a 12 run Plackett-Burman design and a 16 run,

25−1, design (Table 3.19).

However, there may be various scenarios where an experimenter only wants to esti-

mate main effects as a preliminary experiment, or wants to estimate interactions as

well. Depending on which of the two designs are chosen, different effects will be able

to be estimated. Thus, it would be interesting to look at the following comparisons,
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where the basis of the comparison is the identification of active effects:

1. Compare a main effects model in 12 and 16 runs.

2. Compare a main effects model in 12 runs with a main effects and all 2-factor

interactions model in 16 runs.

3. Compare a main effects with some 2-factor interactions model in 12 runs with

a main effects and all 2-factor interactions model in 16 runs.

For all of these comparisons, both fixed effect sizes and prior distributions on the

effect sizes will be considered.

It is worthwhile mentioning that in 12 runs, up to a maximum of 11 contrasts can

be estimated and in the case of a 16 run design, the number of contrasts that can

be estimated increases to 15. Thus, if carrying out an experiment consisting of 12

experimental runs then an experimenter will have to either look at a main effects

only model if studying 5 factors, as outlined in scenarios 1 and 2 above. If the ex-

perimenter wants to also estimate some two-factor interactions then these shall have

to be carefully selected due to the fact that all 10 two-factor interactions cannot be

estimated because of a lack of degrees of freedom. Possible ways of selecting which

two-factor interactions it would be best to estimate could be to either consider sug-

gested interaction effects the experimenter feels may have some effect on the process

being studied, or alternatively, consider a ‘two-step’ method. The ‘two-step’ method

would consist of initially analysing all 5 factors and after obtaining estimates of their

main effects, then estimate those two-factor interactions with at least one active par-

ent effect. If a large number of main effects have been identified as active, then the

principle of strong heredity could be applied where only those interaction effects with

both active parent effects are considered. Another possibility could be to estimate all

those two-factor interactions associated with the three most important main effects,
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where ‘important’ would be considered to be the three largest main effects.

The strategy taken in this thesis concerning which two-factor interactions to estimate

along with the 5 main effects when investigating 5 factors in 12 experimental runs will

be the latter approach as outlined above. That is, to initially estimate the 5 main

effects and then identify those three main effects with the largest absolute value.

Having done this we will then estimate the three two-factor interactions associated

with those three most ‘important’ main effects. For example, if when investigating

variables 1, 2, 3, 4 and 5 it is found that the estimated sizes of the main effects are

1 = −1.375, 2 = 19.5, 3 = −0.625, 4 = 10.75 and 5 = −6.25, these results taken

from the reactor data example from Box, Hunter and Hunter (1978), then it would be

concluded that variables 2, 4 and 5 are the most ‘important’. Thus, the three two-

factor interactions associated with these variables, namely 24, 25 and 45, would then

be estimated. This approach could be considered to be based on the effect heredity

principle, which states that in order for an interaction effect to be active we would

expect at least one of its parent factors to be active.

3.3.3 Prior Distributions on Effect Sizes

The priors being considered in order to generate the simulated datasets, and hence

calculate the estimated utility which provides a measure of how well active and in-

active effects are identified as active and inactive correctly, will take two of the same

three forms of priors as set out previously in the case presented in §3.2. That is normal

prior distributions will be considered ranging from vague to informative priors, and

a mixture of normal prior distributions will also be used. Strong prior information

cannot really be assumed about the effect sizes. If we assumed this, then normal prior

distributions may be used in this case with σ2
i = 0 for the ith effect, therefore these

priors being effectively point priors. However, by definition a screening experiment
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is used to eliminate the unimportant factors of the many whose importance cannot

be ruled out at the beginning of a study. Thus, if at the preliminary stages of an

investigation an experimenter assumes a great deal of knowledge about the sizes of

the effects, this defeats the object of running a screening experiment. It therefore

seems rather unnecessary to consider point priors.

Reactor data taken from Box, Hunter and Hunter (1978) is an example typical of a

screening experiment. In this reactor example, there are 5 factors being studied, all

at 2 levels and so the full fraction consists of 32 experimental runs. Standard analyses

of the full fraction, including a normal plot and estimates of effects, found that the

effects distinguishable from noise and therefore effects that could be considered to be

active were main effects 2, 4 and 5, and two-factor interactions 24 and 45. Higher

order interactions than two-factor ones have been disregarded as with the previous

example, based on the hierarchical ordering principle. This reactor data example will

be revisited in greater length in Chapter 4, where the design used and the analyses

mentioned will be given in more detail. For now, we shall be focusing on the effect

sizes of the main effects and two-factor interactions (Table 3.21) that resulted from

this experiment and will discuss appropriate priors that could have been considered

in this case, before outlining the priors that we shall consider ourselves to generate

the simulated datasets.
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Table 3.21: Analysis of 25 Factorial Experiment: Reactor Data

Estimates of Effects

Average = 65.5

1 = -1.375 12 = 1.375

2 = 19.5 13 = 0.75

3 = -0.625 14 = 0.875

4 = 10.75 15 = 0.125

5 = -6.25 23 = 0.875

24 = 13.25

25 = 2.0

34 = 2.125

35 = 0.875

45 = -11.0

So, observing the estimates of effects we see that there are three main effects and

two two-factor interactions that are strongly considered to be active. Thus, if an

experimenter suspected this may be the case they could have set the prior variances

for these effects to be large. All prior means for effect sizes should be set at zero

since in the case of screening an experimenter will typically not know the sizes of the

effects. However they may suspect some effects will be larger than others, therefore

justifying the decision to have some large prior variances, although they may not

know in which direction this effect size will lie. Alternatively, the experimenter may

wish to be more cautious and assume equal prior variances on all effects.

Thus, the priors that we shall consider for our simulation work will be chosen with

all prior means on effect sizes to be zero. This is to correctly represent the scenario

that an experimenter does not have knowledge about which factors are important,

therefore giving validation for the need to run a screening experiment. However, the

prior variances with varying degrees of confidence will be investigated to display the

different scenarios that could occur. This could be an experimenter having some

prior belief about the range within which the effect sizes will lie or having very little

information and not knowing accurately about this range. The priors used to generate
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the simulated datasets are now set out.

In Table 3.22 are the models used to simulate data for the main effects, i.e. these are

for

β = [β0, β1, β2, β3, β4, β5]T.

As set out previously, the parameters of interest βi can be individually represented

by normal distributions, which can then be extended to the multivariate normal

distribution to represent all p parameters. Where values of µp and Σ have been given

in the tables for the normal prior distributions, µp represents the prior means for the

parameters and Σ indicates the diagonal variance entries for the variance-covariance

matrix Σp.

When all main effects and two-factor interactions are able to be estimated, as is in

the case of the 25−1 design consisting of 16 runs, then the following is to be estimated:

β = [β0, β1, β2, β3, β4, β5, β12, β13, β14, β15, β23, β24, β25, β34, β35, β45]T.

Then the models used to simulate data for these effects are given in Table 3.23.

Table 3.22: Normal Prior Distributions for Main Effects

Prior µp Σ

1 0 [∞, 0.25, 0.25, 0.25, 0.25, 0.25]

2 0 [∞, 1, 1, 1, 1, 1]

3 0 [∞, 2, 2, 2, 2, 2]

4 0 [∞, 4, 4, 4, 4, 4]

5 0 [∞,10,10,10,10,10]

6 0 [∞,0.25,0.25,0.25,2,2]

7 0 [∞,0.25,0.25,2,2,2]

8 0 [∞,0.25,0.25,0.25,4,4]

9 0 [∞,0.25,0.25,4,4,4]

10 0 [∞,0.25,0.25,10,10,10]

11 0 [∞,0.25,0.25,2,2,10]

12 0 [∞,2,2,4,4,10]
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Table 3.23: Normal Prior Distributions for Main Effects and Two-Factor

Interactions
Prior µp Σ

1 0 [∞, 0.25, 0.25, 0.25, 0.25, 0.25, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

2 0 [∞, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

3 0 [∞, 2, 2, 2, 2, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5]

4 0 [∞, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

5 0 [∞,10,10,10,10,10, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]

6 0 [∞,0.25,0.25,0.25,2,2, 0.25, 0.25, 1, 1, 0.25, 1, 1, 1, 1, 1.5]

7 0 [∞,0.25,0.25,2,2,2, 0.25, 1, 1, 1, 1, 1, 1, 1.5, 1.5, 1.5]

8 0 [∞,0.25,0.25,0.25,4,4, 0.25, 0.25, 1.5, 1.5, 0.25, 1.5, 1.5, 1.5, 1.5, 2]

9 0 [∞,0.25,0.25,4,4,4, 0.25, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2]

10 0 [∞,0.25,0.25,10,10,10, 0.25, 2, 2, 2, 2, 2, 2, 6, 6, 6]

11 0 [∞,0.25,0.25,2,2,10, 0.25, 0.25, 2, 6, 2, 2, 6, 6, 6, 6]

12 0 [∞,2,2,4,4,10, 1.5, 1.5, 1.5, 6, 2, 2, 6, 6, 6, 6]

For the normal mixture priors, firstly just looking at the case where we are estimating

main effects, the values of pi are set out in Table 3.24 where

αi ∼ Bern(pi),

i.e. pi indicates the probability of αi being 0 or 1 which denotes if an effect i is

inactive or active respectively. Depending on the outcome of αi, βi will come from

either of two normal distributions. The parameters βia and βib indicated in Table

3.25 are such that

βi = (1− αi)βia + αiβib,

where

βia ∼ N(µia, σ
2
ia)

βib ∼ N(µib, σ
2
ib).

Thus, if βi is inactive it takes the distribution denoted by βia and if it is active it then

takes the distribution denoted by βib.
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When we estimate two-factor interaction effects along with the main effects, the

probabilities that the two-factor interaction effects are active, i.e. αij = 1, are given

in Table 3.26. These probabilities have been chosen in order for the principle of effect

heredity to be observed. This is where an interaction with both parent main effects

active is more likely to be active than an interaction effect with one active parent

main effect. Likewise, an interaction effect with one active parent main effect has a

greater probability of being active than an effect with no active parent main effects.

For each of the different combinations of probabilities for an effect being active as

set out in Tables 3.24 and 3.26, several scenarios for the two possible distributions

βia and βib will be looked at. These scenarios are set out in Table 3.25. In the case

where αi = 1 and an effect is active, possible distributions will vary from having little

information about the range of the effect size, to having a large amount of information

about the range. For all cases when αi = 0, the distribution will be N(0, 0.01).

Table 3.24: Probabilities for Normal Mixture Prior Distributions on Main Effects

Prior p1 p2 p3 p4 p5

1 0.2 0.2 0.2 0.2 0.2

2 0.4 0.4 0.4 0.4 0.4

3 0.2 0.2 0.2 0.6 0.6

Table 3.25: Normal Mixture Prior Distributions for Main Effects

Prior Assumption βia βib

(a) N(0,0.01) N(0, 4)

(b) N(0,0.01) N(0,10)

(c) N(0,0.01) N(0,25)
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Table 3.26: Probabilities for Normal Mixture Prior Distributions on Two-Factor

Interactions Effects
Prior p00 p01 p10 p11

1 0.1 0.4 0.4 0.7

2 0.1 0.4 0.4 0.7

3 0.1 0.4 0.4 0.7

The distribution βib is one with a high variance to account for βi coming from it when

it is considered to be an active effect. However, what an experimenter considers to

be a high variance and consequently an active effect will depend upon the context

of the experiment and what the experimenter deems to be as such. One of the

methods proposed to declare an effect as active was to consider some constant ω

which the experimenter will have chosen. Then, an effect will be declared as active

when |βi| > ω. This method was set out in the algorithm outlined in Chapter 2

for the screening utility function where an alternative method considered for finding

active effects was Lenth’s method. The experimenter should first decide upon an

appropriate value of ω, which will then determine if an effect size is active or not.

Then the experimenter should decide upon the prior variances for the effects. If

an experimenter considers all effects to be distributed the same, the prior standard

deviations for all effects may be set to be equal to ω, i.e. ω = σ. Thus, anything

more than 1 standard deviation away from the prior mean would be considered to

be active. It may also be interesting to consider the case when ω = 1.5σ and also

ω = 2σ, although this final case may be setting the margin with which to determine

an active effect too high. In doing so, we may run the risk of true active effects not

being correctly declared as active.

The normal priors set out in Table 3.22 will be considered for the cases when ω =

σ, 1.5σ and 2σ, where σ2 is the diagonal variance entry as indicated by Σ. There are

some cases where the diagonal variance entries are not equal for all effects. This is
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seen for priors 6 - 12 and in these cases the level of ω = σ will be set to 1. Thus,

where ω = 1.5σ this will refer to ω = 1.5 in these cases and similarly ω = 2σ will

refer to ω = 2. For the normal priors set out in Table 3.23 ω = σ, 1.5σ and 2σ shall

be considered for all priors where the diagonal variance entries are equal for all main

effects as in priors 1 - 5. Again, where the variances for the main effects are not equal

(priors 6 - 12), ω = 1, 1.5 and 2. The normal mixture priors are set out in Tables 3.24,

3.25 and 3.26. As displayed in Table 3.25, the high variance distribution βib follows a

normal distribution where βib ∼ N(0, σ2). Then for all three prior assumptions where

σ2 = 4, 10 and 25, the level of ω is taken to be σ, 1.5σ and 2σ.

It should be noted that, as similarly stated for the simulation work in the previous

section where we were comparing two designs of the same size, when also looking at

comparing a 12 and a 16 run design in this section we shall assume that the residual

variance is known and is equal to 1. For all cases looked at, γ is taken to be 0.5,

therefore placing equal importance on both Type I and Type II errors.

The priors used to generate the simulated datasets have been outlined in this section.

In the following section, results obtained from the utility functions using these priors

will be presented. As stated at the beginning of the chapter, where method 1 is

indicated this refers to a utility which has been calculated based upon an effect

declared active if it is greater than some constant ω set out by the experimenter.

Method 2 refers to one where an effect has been declared active using Lenth’s method.

3.3.4 Results for Screening Utility

In this section tables are presented which display the results when applying the screen-

ing utility function in the case of various prior assumptions. Comments on the results

are also given.
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Table 3.27: Type I Errors: Normal Prior Distributions for 16 Run Design - Main

Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.196 0.013 0.091 0.019 0.042 0.025

2 0.095 0.010 0.044 0.018 0.015 0.023

3 0.062 0.015 0.024 0.021 0.011 0.027

4 0.039 0.013 0.019 0.017 0.009 0.022

5 0.020 0.014 0.010 0.017 0.003 0.023

6 0.055 0.022 0.020 0.034 0.010 0.045

7 0.072 0.017 0.036 0.024 0.017 0.033

8 0.052 0.026 0.019 0.030 0.013 0.040

9 0.056 0.022 0.026 0.026 0.020 0.036

10 0.058 0.042 0.031 0.049 0.019 0.055

11 0.060 0.029 0.027 0.034 0.020 0.042

12 0.096 0.014 0.058 0.017 0.037 0.019

Table 3.28: Type II Errors: Normal Prior Distributions for 16 Run Design - Main

Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.183 0.840 0.074 0.273 0.010 0.035

2 0.118 0.835 0.048 0.275 0.010 0.045

3 0.090 0.829 0.041 0.293 0.007 0.040

4 0.060 0.823 0.026 0.271 0.003 0.037

5 0.039 0.807 0.018 0.285 0.003 0.043

6 0.079 0.530 0.021 0.184 0.007 0.054

7 0.087 0.769 0.035 0.341 0.019 0.117

8 0.056 0.592 0.027 0.306 0.022 0.144

9 0.065 0.827 0.055 0.611 0.041 0.374

10 0.033 0.815 0.036 0.745 0.035 0.609

11 0.071 0.812 0.055 0.527 0.032 0.300

12 0.070 1.078 0.061 0.984 0.066 0.743
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Table 3.29: Type I Errors: Normal Prior Distributions for 12 Run Design - Main

Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.235 0.038 0.124 0.037 0.059 0.040

2 0.107 0.020 0.047 0.023 0.023 0.028

3 0.081 0.021 0.032 0.025 0.014 0.029

4 0.048 0.022 0.021 0.024 0.009 0.028

5 0.032 0.014 0.012 0.017 0.004 0.023

6 0.072 0.045 0.025 0.054 0.012 0.062

7 0.086 0.035 0.036 0.038 0.021 0.045

8 0.068 0.049 0.022 0.051 0.014 0.058

9 0.080 0.039 0.032 0.042 0.024 0.051

10 0.083 0.047 0.033 0.070 0.028 0.073

11 0.068 0.051 0.035 0.054 0.022 0.060

12 0.127 0.023 0.068 0.024 0.041 0.025

Table 3.30: Type II Errors: Normal Prior Distributions for 12 Run Design - Main

Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.212 0.843 0.086 0.275 0.011 0.035

2 0.123 0.839 0.053 0.275 0.010 0.045

3 0.094 0.830 0.041 0.292 0.007 0.039

4 0.065 0.824 0.027 0.272 0.005 0.037

5 0.037 0.807 0.025 0.284 0.004 0.043

6 0.083 0.537 0.034 0.188 0.010 0.054

7 0.105 0.771 0.054 0.342 0.026 0.116

8 0.075 0.605 0.040 0.318 0.025 0.151

9 0.068 0.825 0.065 0.615 0.044 0.377

10 0.057 0.871 0.038 0.747 0.039 0.610

11 0.095 0.809 0.058 0.526 0.035 0.300

12 0.072 1.075 0.063 0.981 0.066 0.739
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Table 3.31: Screening Utility Results: Normal Prior Distributions for 16 Run Design

- Main Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.190 0.427 0.083 0.146 0.026 0.030

2 0.107 0.422 0.046 0.146 0.012 0.034

3 0.076 0.422 0.032 0.157 0.009 0.033

4 0.049 0.418 0.023 0.144 0.006 0.029

5 0.030 0.411 0.014 0.151 0.003 0.033

6 0.067 0.276 0.020 0.109 0.008 0.049

7 0.080 0.393 0.035 0.183 0.018 0.075

8 0.054 0.309 0.023 0.168 0.017 0.092

9 0.061 0.424 0.041 0.318 0.031 0.205

10 0.045 0.429 0.034 0.397 0.027 0.332

11 0.065 0.420 0.041 0.281 0.026 0.171

12 0.083 0.546 0.059 0.500 0.051 0.381

Table 3.32: Screening Utility Results: Normal Prior Distributions for 12 Run Design

- Main Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.223 0.440 0.105 0.156 0.035 0.038

2 0.115 0.429 0.050 0.149 0.016 0.037

3 0.087 0.425 0.036 0.158 0.011 0.034

4 0.057 0.423 0.024 0.148 0.007 0.033

5 0.035 0.411 0.018 0.151 0.004 0.033

6 0.077 0.291 0.029 0.121 0.011 0.058

7 0.096 0.403 0.045 0.190 0.023 0.081

8 0.075 0.605 0.031 0.184 0.019 0.104

9 0.074 0.432 0.048 0.328 0.034 0.214

10 0.070 0.459 0.036 0.408 0.034 0.341

11 0.082 0.430 0.046 0.290 0.029 0.180

12 0.100 0.549 0.066 0.503 0.054 0.382
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Table 3.33: Type I Errors: Normal Prior Distributions for 16 Run Design - Main

Effects and all Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.164 0.003 0.061 0.004 0.022 0.006

2 0.075 0.003 0.026 0.006 0.009 0.009

3 0.051 0.003 0.020 0.004 0.007 0.007

4 0.031 0.002 0.009 0.005 0.004 0.007

5 0.020 0.001 0.007 0.002 0.002 0.004

6 0.066 0.004 0.027 0.008 0.012 0.013

7 0.076 0.002 0.037 0.004 0.016 0.006

8 0.068 0.002 0.027 0.005 0.014 0.011

9 0.077 0.001 0.037 0.003 0.022 0.006

10 0.080 0.001 0.041 0.002 0.028 0.005

11 0.071 0.001 0.038 0.004 0.022 0.007

12 0.109 0.000 0.058 0.001 0.034 0.002

Table 3.34: Type II Errors: Normal Prior Distributions for 16 Run Design - Main

Effects and all Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.323 1.204 0.108 0.401 0.015 0.044

2 0.214 1.213 0.081 0.446 0.012 0.054

3 0.121 1.180 0.097 0.684 0.019 0.115

4 0.115 1.170 0.049 0.473 0.007 0.051

5 0.069 1.243 0.045 0.578 0.006 0.077

6 0.147 1.113 0.130 0.773 0.045 0.224

7 0.133 1.124 0.129 1.063 0.087 0.506

8 0.122 1.046 0.114 0.961 0.073 0.560

9 0.098 1.066 0.100 1.106 0.118 0.938

10 0.062 0.971 0.071 0.986 0.084 1.001

11 0.062 0.949 0.069 0.963 0.076 0.955

12 0.060 1.029 0.077 1.085 0.088 1.172
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Table 3.35: Type I Errors: Normal Prior Distributions for 12 Run Design - Main

Effects and 3 Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.179 0.478 0.098 0.488 0.047 0.498

2 0.146 0.485 0.072 0.492 0.032 0.502

3 0.182 0.504 0.098 0.497 0.048 0.499

4 0.129 0.484 0.061 0.492 0.026 0.500

5 0.151 0.495 0.079 0.495 0.037 0.499

6 0.191 0.528 0.094 0.516 0.045 0.512

7 0.224 0.522 0.120 0.504 0.066 0.499

8 0.223 0.525 0.124 0.512 0.069 0.508

9 0.259 0.525 0.158 0.505 0.096 0.499

10 0.320 0.530 0.217 0.503 0.149 0.491

11 0.370 0.562 0.267 0.543 0.187 0.533

12 0.361 0.543 0.261 0.520 0.196 0.510

Table 3.36: Type II Errors: Normal Prior Distributions for 12 Run Design - Main

Effects and 3 Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.584 0.405 0.151 0.069 0.014 0.003

2 0.637 0.469 0.230 0.129 0.026 0.010

3 0.730 0.590 0.494 0.358 0.086 0.056

4 0.619 0.470 0.228 0.130 0.021 0.007

5 0.696 0.538 0.356 0.244 0.040 0.026

6 0.736 0.611 0.483 0.402 0.171 0.130

7 0.710 0.597 0.634 0.503 0.286 0.209

8 0.669 0.565 0.625 0.511 0.396 0.301

9 0.638 0.539 0.694 0.556 0.564 0.416

10 0.575 0.511 0.589 0.503 0.586 0.482

11 0.650 0.569 0.721 0.624 0.759 0.655

12 0.588 0.508 0.643 0.536 0.699 0.573
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Table 3.37: Screening Utility Results: Normal Prior Distributions for 16 Run Design

- Main Effects and all Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.243 0.603 0.084 0.202 0.018 0.025

2 0.145 0.608 0.054 0.226 0.010 0.032

3 0.086 0.591 0.059 0.344 0.013 0.061

4 0.073 0.586 0.029 0.239 0.005 0.029

5 0.045 0.622 0.026 0.290 0.004 0.041

6 0.106 0.558 0.078 0.391 0.029 0.119

7 0.104 0.563 0.083 0.534 0.051 0.256

8 0.095 0.524 0.071 0.483 0.044 0.286

9 0.087 0.533 0.069 0.555 0.070 0.472

10 0.071 0.486 0.056 0.494 0.056 0.503

11 0.067 0.475 0.054 0.483 0.049 0.481

12 0.085 0.515 0.068 0.543 0.061 0.587

Table 3.38: Screening Utility Results: Normal Prior Distributions for 12 Run Design

- Main Effects and 3 Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1 0.381 0.442 0.124 0.278 0.030 0.250

2 0.392 0.477 0.151 0.311 0.029 0.256

3 0.456 0.547 0.296 0.427 0.067 0.277

4 0.374 0.477 0.145 0.311 0.024 0.253

5 0.423 0.517 0.217 0.370 0.038 0.263

6 0.464 0.570 0.288 0.459 0.108 0.321

7 0.467 0.560 0.377 0.503 0.176 0.354

8 0.446 0.545 0.375 0.511 0.233 0.404

9 0.448 0.532 0.426 0.531 0.330 0.457

10 0.448 0.520 0.403 0.503 0.368 0.487

11 0.510 0.565 0.494 0.583 0.473 0.594

12 0.474 0.523 0.452 0.528 0.447 0.542

145



Table 3.39: Type I Errors: Normal Mixture Prior Distributions for 16 Run Design -

Main Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.007 0.077 0.002 0.103 0.001 0.117

1(b) 0.004 0.096 0.002 0.128 0.001 0.143

1(c) 0.002 0.127 0.001 0.156 0.000 0.167

2(a) 0.012 0.099 0.007 0.133 0.003 0.152

2(b) 0.009 0.152 0.003 0.191 0.001 0.213

2(c) 0.005 0.193 0.002 0.226 0.001 0.243

3(a) 0.010 0.100 0.005 0.139 0.002 0.156

3(b) 0.007 0.162 0.004 0.201 0.001 0.218

3(c) 0.003 0.193 0.002 0.230 0.001 0.248

Table 3.40: Type II Errors: Normal Mixture Prior Distributions for 16 Run Design -

Main Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.007 0.013 0.001 0.001 0.000 0.000

1(b) 0.005 0.011 0.002 0.002 0.000 0.000

1(c) 0.002 0.010 0.001 0.003 0.000 0.000

2(a) 0.012 0.079 0.005 0.011 0.001 0.001

2(b) 0.014 0.079 0.005 0.014 0.001 0.001

2(c) 0.007 0.079 0.004 0.015 0.000 0.001

3(a) 0.017 0.070 0.003 0.011 0.001 0.001

3(b) 0.011 0.047 0.002 0.010 0.000 0.001

3(c) 0.008 0.047 0.002 0.007 0.000 0.000
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Table 3.41: Type I Errors: Normal Mixture Prior Distributions for 12 Run Design -

Main Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.007 0.104 0.004 0.128 0.002 0.142

1(b) 0.003 0.129 0.002 0.159 0.001 0.173

1(c) 0.003 0.161 0.001 0.189 0.000 0.199

2(a) 0.016 0.126 0.007 0.156 0.002 0.175

2(b) 0.010 0.181 0.003 0.217 0.002 0.238

2(c) 0.006 0.225 0.002 0.255 0.000 0.270

3(a) 0.013 0.128 0.006 0.165 0.003 0.180

3(b) 0.009 0.193 0.003 0.229 0.001 0.245

3(c) 0.004 0.228 0.003 0.262 0.000 0.279

Table 3.42: Type II Errors: Normal Mixture Prior Distributions for 12 Run Design -

Main Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.008 0.014 0.002 0.001 0.000 0.000

1(b) 0.006 0.011 0.001 0.002 0.000 0.000

1(c) 0.002 0.010 0.001 0.003 0.000 0.000

2(a) 0.020 0.080 0.006 0.011 0.001 0.001

2(b) 0.013 0.079 0.005 0.014 0.001 0.001

2(c) 0.008 0.079 0.003 0.015 0.000 0.001

3(a) 0.021 0.072 0.004 0.011 0.001 0.001

3(b) 0.012 0.047 0.003 0.009 0.001 0.001

3(c) 0.007 0.047 0.003 0.007 0.000 0.000
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Table 3.43: Screening Utility Results: Normal Mixture Prior Distributions for 16

Run Design - Main Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.007 0.045 0.002 0.052 0.000 0.059

1(b) 0.005 0.054 0.002 0.065 0.000 0.071

1(c) 0.002 0.069 0.001 0.080 0.000 0.084

2(a) 0.012 0.089 0.006 0.072 0.002 0.077

2(b) 0.011 0.115 0.004 0.102 0.001 0.107

2(c) 0.006 0.136 0.003 0.121 0.001 0.122

3(a) 0.014 0.085 0.004 0.075 0.002 0.079

3(b) 0.009 0.104 0.003 0.105 0.001 0.110

3(c) 0.006 0.120 0.002 0.119 0.000 0.124

Table 3.44: Screening Utility Results: Normal Mixture Prior Distributions for 12

Run Design - Main Effects Only

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.007 0.059 0.003 0.065 0.001 0.071

1(b) 0.005 0.070 0.002 0.081 0.000 0.086

1(c) 0.003 0.085 0.008 0.096 0.000 0.100

2(a) 0.018 0.103 0.006 0.084 0.001 0.088

2(b) 0.011 0.130 0.004 0.115 0.001 0.119

2(c) 0.007 0.152 0.003 0.135 0.000 0.136

3(a) 0.017 0.100 0.005 0.088 0.002 0.091

3(b) 0.010 0.120 0.003 0.119 0.001 0.123

3(c) 0.005 0.138 0.003 0.135 0.000 0.140
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Table 3.45: Type I Errors: Normal Mixture Prior Distributions for 16 Run Design -

Main Effects and all Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.005 0.054 0.003 0.086 0.001 0.101

1(b) 0.003 0.096 0.002 0.129 0.001 0.146

1(c) 0.002 0.119 0.001 0.153 0.000 0.169

2(a) 0.010 0.075 0.004 0.118 0.003 0.142

2(b) 0.008 0.142 0.004 0.188 0.001 0.210

2(c) 0.003 0.200 0.002 0.247 0.001 0.268

3(a) 0.008 0.080 0.005 0.127 0.002 0.150

3(b) 0.006 0.144 0.003 0.195 0.001 0.219

3(c) 0.004 0.191 0.002 0.236 0.001 0.254

Table 3.46: Type II Errors: Normal Mixture Prior Distributions for 16 Run Design -

Main Effects and all Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.024 0.035 0.013 0.004 0.001 0.000

1(b) 0.016 0.016 0.009 0.002 0.001 0.000

1(c) 0.013 0.008 0.003 0.002 0.001 0.000

2(a) 0.058 0.162 0.023 0.030 0.004 0.004

2(b) 0.040 0.114 0.023 0.028 0.001 0.003

2(c) 0.024 0.096 0.015 0.026 0.003 0.002

3(a) 0.051 0.090 0.021 0.017 0.005 0.001

3(b) 0.051 0.054 0.018 0.013 0.003 0.002

3(c) 0.017 0.041 0.009 0.012 0.002 0.001
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Table 3.47: Type I Errors: Normal Mixture Prior Distributions for 12 Run Design -

Main Effects and 3 Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.037 0.522 0.012 0.519 0.004 0.516

1(b) 0.037 0.519 0.013 0.513 0.004 0.510

1(c) 0.036 0.495 0.011 0.489 0.005 0.488

2(a) 0.065 0.518 0.025 0.515 0.010 0.513

2(b) 0.066 0.515 0.029 0.512 0.011 0.510

2(c) 0.062 0.514 0.025 0.509 0.011 0.507

3(a) 0.056 0.521 0.021 0.518 0.008 0.516

3(b) 0.056 0.518 0.021 0.513 0.009 0.512

3(c) 0.057 0.514 0.021 0.510 0.009 0.508

Table 3.48: Type II Errors: Normal Mixture Prior Distributions for 12 Run Design -

Main Effects and 3 Two-Factor Interactions
ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.260 0.225 0.078 0.069 0.013 0.011

1(b) 0.282 0.254 0.080 0.071 0.013 0.012

1(c) 0.301 0.270 0.078 0.068 0.014 0.011

2(a) 0.478 0.399 0.186 0.154 0.029 0.026

2(b) 0.503 0.425 0.187 0.157 0.036 0.030

2(c) 0.486 0.417 0.170 0.149 0.030 0.025

3(a) 0.458 0.381 0.162 0.138 0.023 0.019

3(b) 0.435 0.380 0.142 0.121 0.024 0.020

3(c) 0.487 0.421 0.182 0.153 0.030 0.026
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Table 3.49: Screening Utility Results: Normal Mixture Prior Distributions for 16

Run Design - Main Effects and all Two-Factor Interactions

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.015 0.044 0.008 0.045 0.001 0.051

1(b) 0.010 0.056 0.006 0.066 0.001 0.073

1(c) 0.008 0.063 0.002 0.077 0.001 0.085

2(a) 0.034 0.118 0.014 0.074 0.004 0.073

2(b) 0.024 0.128 0.013 0.108 0.001 0.107

2(c) 0.014 0.148 0.008 0.137 0.002 0.135

3(a) 0.030 0.085 0.013 0.072 0.004 0.076

3(b) 0.029 0.099 0.011 0.104 0.002 0.111

3(c) 0.011 0.117 0.005 0.124 0.001 0.128

Table 3.50: Screening Utility Results: Normal Mixture Prior Distributions for 12

Run Design - Main Effects and 3 Two-Factor Interactions

ω = σ ω = 1.5σ ω = 2σ

Prior Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

1(a) 0.149 0.374 0.045 0.294 0.009 0.264

1(b) 0.160 0.386 0.046 0.292 0.008 0.261

1(c) 0.169 0.382 0.045 0.279 0.009 0.249

2(a) 0.271 0.458 0.106 0.335 0.020 0.269

2(b) 0.284 0.470 0.108 0.335 0.023 0.270

2(c) 0.274 0.466 0.098 0.329 0.020 0.266

3(a) 0.257 0.451 0.092 0.328 0.016 0.267

3(b) 0.246 0.449 0.082 0.317 0.016 0.266

3(c) 0.272 0.467 0.102 0.331 0.019 0.267

Normal Prior Distributions on Effect Sizes when Estimating Main Effects

Only

Looking at the results in Tables 3.27 - 3.32, when assuming normal prior distributions

on effect sizes and estimating main effects only there are some interesting points to

note in both the cases of the 12 and 16 run designs. The size of the Type I errors
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for both the 12 and 16 run designs (Tables 3.27 and 3.29) are less in the case of

method 2 (using Lenth’s method to declare an effect active) in comparison to method

1 (declaring an effect active when its absolute value is greater than ω) for all priors

when ω = σ. The size of the Type I errors are also generally quite low for all levels

of ω, i.e. σ, 1.5σ and 2σ. The largest Type I error is for prior 11 for the 12 run

design with a size of 0.051, and the smallest is 0.010 (prior 2 for the 16 run design),

when ω = σ. Relating this back to the definition of a Type I error in the context

of identifying active and inactive effects correctly, this translates to an inference that

when using Lenth’s method, an objective method for deciding which effects are active,

inactive effects are declared as active incorrectly very infrequently.

We have previously defined P(Type I error) in this setting as∑
ij

(False Positive)

rs

where i denotes an effect, j = 1, . . . , r denotes the jth simulation and s represents the

number of true inactives. Then with a Type I error of size 0.051 for the particular

example of prior 11 for the 12 run design, and the mean number of ‘true’ actives

per dataset for the 1000 simulations being 1.794, we can then calculate the mean

number of ‘true’ inactives as 3.206. Therefore rs = 3206 and for the same number of

simulations
∑

ij(False Positive) is approximately 164, in order that the size of the

Type I error in this particular case is 0.051. In the case of the smallest Type I error,

prior 2 for the 16 run design, the mean number of ‘true’ actives per dataset is 1.536

and therefore the mean number of ‘true’ inactives is 3.464. Then, since rs = 3464,

there are only approximately 35 inactive effects declared as active incorrectly resulting

in the proportion of 0.010 of Type I errors for this particular case. It can be seen that

of the various combinations of priors investigated, the worst case scenario for Type I

errors has only 164 inactive effects declared active incorrectly out of the total possible

3206 true inactives, and in the best case scenario only 35 out of a total possible 3464
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true inactives, are identfied as active incorrectly. Thus, it could be concluded based

on this information that Lenth’s method provides a relatively efficient method for

declaring effects as active and inactive correctly. However, looking in more detail at

the output of the simulations it can be noted that many of the entries for the vectors

δ(j) where j = 1, . . . , r are 0. It was previously outlined in the algorithm for the

screening utility function in §2.4.3 that an entry in δ(j) shall be given as 1 if the effect

associated with that entry is active and 0 otherwise. In fact, for prior 2 for the 16 run

design it can be noted that whilst the mean number of actives for the ‘true’ datasets

is 1.536, for the simulated datasets where Lenth’s method has been used to identify

active effects there is only a mean of 0.038 actives. Therefore, a more reasonable

explanation for the lack of Type I errors is actually due to almost all effects being

declared as inactive, rather than Lenth’s method being an efficient method. This

explanation is also reflected by the Type II errors which are conversely very large in

comparison. This is clear to see since almost all effects have been declared as inactive,

many truly active effects amongst these effects will also have been identified inactive

wrongly, increasing the proportion of Type II errors.

The choice of ω represents the minimum level an effect needs to be greater than for

that effect to be declared active for the ‘true’ datasets, denoted by δ∗(j). As ω increases

from σ to 1.5σ and again to 2σ, we see that the Type I errors also increase in all

cases, i.e. for both the 16 and 12 run design, methods 1 and 2 and also for all priors.

Although the Type I errors do increase, the increase from σ to 2σ is fairly minimal.

In contrast, the Type II errors and consequently the value of the screening utility

decrease as the level of ω increases from σ to 1.5σ to 2σ, for both sets of designs and

methods, except in the case of priors 10 and 12.

For the priors where the variances on the main effects are all equal, as for priors

1 - 5, it appears that the choice of ω when using method 1, has an effect on the

Type I and II errors and the screening utility. In these cases, as the size of the prior

153



variance on the main effects increase, both Type I and II errors decrease and as a

result the screening utility also decreases. It does not appear that the size of the

prior variance on the main effect has as great an effect on the Type I and II errors

when using Lenth’s method. From observing the results of the tables 3.27 - 3.32

it can be concluded that the 16 run design outperforms the 12 run design. This is

when looking at the two alternative methods for identifying active effects and also

in the case of all priors. However, although the values for the Type I and II errors

and the screening utility are minimized when using the 16 run design, it should be

noted that the values for each of the corresponding priors for the 12 run design are

only marginally worse in comparison. An example of this is seen for the first value

displayed in Table 3.31 and 3.32. It can be seen that the screening utility for the 16

run design is 0.190 in comparison to 0.223 for the 12 run design. Thus, it could be

concluded that the amount lost in efficiency relative to the benefit of saving 4 runs

may be a compromise worth making.

Normal Prior Distributions on Effect Sizes when Estimating Main Effects

and Two-Factor Interactions

The tables 3.33 - 3.38 refer to those Type I and II errors and the screening utility ob-

tained when using both a 16 and 12 run design to estimate main effects and two-factor

interactions. In the case of the 16 run design, all two-factor interactions have been

estimated as there are five main effects and 10 two-factor interactions to be assigned

to the 15 contrasts available. This would be seen to be a relatively good design in

terms of aliasing since both main effects and two-factor interactions are clear. In the

case of the 12 run design, three two-factor interactions have been estimated along

with the five main effects, these three two-factor interactions being those associated

with the three main effects that have the largest absolute value.
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For the Type I and II errors for the 16 run design (Tables 3.33 and 3.34), there

are some similarities in the results in comparison to the case of the 16 run design

when estimating main effects only as outlined in the previous subsection. The Type

I errors are again less when using Lenth’s method as opposed to the method where

one declares an effect active if it is greater than ω. The size of the Type I errors when

using method 1 to identify active effects are fairly similar to those Type I errors for

the 16 run design estimating main effects only. It is also seen that the Type I errors

when using Lenth’s method are extremely small, where the largest is 0.013 for prior

6 and when ω = 2σ, and the size of the smallest is 0.001 seen in several cases. Also,

as the size of ω increases from σ to 1.5σ to 2σ it is again seen that the Type I errors

decrease for all of the priors investigated, and similarly the Type II errors decrease as

ω increases, except in the case of priors 9 - 12. Looking at priors 1 - 5 for both Type I

and II errors it is seen that as the prior variance on the main effects increase the size

of these errors decrease. As was seen when estimating main effects only, the Type I

and II errors do not appear to be affected by the varying size of the prior variance on

the main effects when using Lenth’s method.

When looking at the Type I and II errors in the case of the 12 run design where

main effects and two-factor interactions have been estimated (Tables 3.35 and 3.36)

it appears that there are fewer patterns emerging. The Type I errors are much larger

when using Lenth’s method in comparison to method 1; however when using either

method for identifying active effects, it appears that there is little effect on the Type

I and II errors when varying the size of the prior variance on the main effects. It

appears that when the prior variances on the main effects are all equal as in priors 1

- 5 then however large the prior variance, the size of the errors are all fairly similar

given the same method and size of ω. The Type I and II errors do again tend to

decrease as the size of ω increases, except in the case of priors 9-12 for the Type II

errors.
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The results from the screening utility (Tables 3.37 and 3.38) indicate that when using

method 1, the 16 run design has the optimum utility in comparison to the 12 run

design. However, the converse is true when using method 2.

Normal Mixture Prior Distributions on Effect Sizes when Estimating Main

Effects Only

Tables 3.39 - 3.44 display the results for the 16 and 12 run designs when normal

mixture prior distributions are assumed on the effect sizes and only main effects are

estimated.

In the case of both the 16 and 12 run design it can be seen that as the prior variance on

the main effects increase, the Type I errors decrease when using method 1 but increase

when using method 2. The same pattern is true when the level of ω increases. That

is, as ω increases from σ to 1.5σ to 2σ, the Type I errors decrease when using method

1 and increase when using method 2. The Type I errors in the case of designs of

both sizes are also minimal when using method 1, particularly when ω = 2σ where

for both designs the largest Type I error is 0.003.

For both the 16 and 12 run design, the Type II errors are generally smaller when

using method 1 and for both methods the Type II errors decrease as the size of ω

increases. The Type II errors are minimal for both methods when ω = 2σ, where the

largest error is 0.001.

The screening utility indicates that method 1 is preferable for both designs as the

utility gives a smaller quantity in all cases. The 16 run design also appears to be

preferable in the majority of cases due to the lower utility when comparing the same

priors for both designs, although it should be noted that the difference between the

utilities when comparing the two designs is small.
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Normal Mixture Prior Distributions on Effect Sizes when Estimating Main

Effects and Two-Factor Interactions

Tables 3.45 - 3.50 display the results of the Type I and II errors and screening utility

for the 16 and 12 run design. This is when normal mixture prior distributions are

assumed on all main effects and two-factor interactions in the case of the 16 run design

and all main effects and those three two-factor interactions associated with the three

most important main effects for the 12 run design.

As was seen when estimating main effects only, for the 16 run design as the prior

variance on the main effects increase and the level of ω increases from σ to 1.5σ to

2σ, the Type I errors decrease when using method 1. Conversely, the Type I errors

increase when using method 2. It should also be noted that the Type I errors are

fairly similar for both the 16 run designs whether estimating main effects only or

estimating main effects and all two factor-interactions. However, in the case of the

12 run design where main effects and two-factor interactions have been estimated,

the Type I errors are larger when comparing the same priors to that when estimating

main effects only. Also, when estimating main effects and two-factor interactions for

the 12 run design, the Type I errors are of a similar value despite the prior variance

on the main effects increasing when using method 1. For example, the priors 1(a),

1(b) and 1(c) in Table 3.47 represent the scenario where all five main effects have the

probability 0.2 of being active, and the two-factor interactions have probability of 0.1,

0.4 or 0.7 of being active dependent upon whether both parent effects are not active,

one of the parent effects is active or both parent effects are active, respectively. If a

main effect or two-factor interaction is then active, its distribution is a high variance

normal distribution, either N(0, 4), N(0, 10) or N(0, 25) (respectively in the case of

1(a), 1(b) or 1(c)), and takes N(0, 0.01) otherwise. It can be seen in Table 3.47 that

even as the prior variance on the effects increase the Type I error for 1(a), 1(b) and

1(c) is 0.037, 0.037 and 0.036 respectively. A similar pattern is also seen for all other
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priors indicating that the prior variance does not appear to be having an effect on the

Type I error when using method 1. However, when using method 2, it can be seen

that the Type I error decreases as the size of the prior variance on the main effects

increases. This is in contrast to the 16 run design, or to the 12 run design when

estimating main effects only. As the level of ω increases the Type I errors decrease

when using either method.

The Type II errors for both the 16 and the 12 run designs are larger when estimat-

ing two-factor interactions in addition to the main effects, in comparison to when

estimating main effects only. For almost all cases for the 16 run design, as the prior

variance on the effects and the level of ω increase, the Type II errors decrease and

this is true for both methods of identifying active effects. For the 12 run design, as

the level of ω increases the Type II errors again decrease, although the prior variance

on the effects increasing does not appear to have an impact on the Type II error.

The values of the screening utility given in Tables 3.49 and 3.50 indicate that the

16 run design is preferable for identifying active and inactive effects correctly due to

the utilities being lower than for the 12 run design. Where the difference in utilities

between the two designs appeared to be minimal when estimating main effects only,

the difference in utilities is much greater between the 16 and 12 run design when

estimating two-factor interactions along with the main effects. It can be seen that the

utilities for the 12 run design are much greater when estimating two-factor interactions

in comparison to those utilities obtained when only estimating main effects. The

utilities for the 16 run design when estimating main effects and two-factor interactions

(Table 3.49) are fairly similar to those utilities for the 16 run design when estimating

main effects only (Table 3.43). The utilities are also generally lower when using

method 1 for both the 12 and 16 run designs.
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3.3.5 Discussion

The utility function for screening as outlined in §2.4, which assesses how well active

and inactive effects are identified correctly in a particular design, has been demon-

strated with an example comparing a 25−1 design and a 12 run Plackett-Burman

design where five variables are being investigated. Various prior assumptions about

the effect sizes were considered and two different methods were also considered to

decide whether an effect will be declared active, namely that an effect is declared

active if it is greater than some constant ω and Lenth’s method.

In many of the cases it was seen that the probability of Type I errors were much smaller

when using Lenth’s method and the Type II errors much larger, when comparing

Lenth’s method to the alternative method for identifying active and inactive effects.

Due to the Type II errors being much larger in comparison to those when using the

alternative method for declaring effects active, i.e. if |βi(j)| > ω, which we refer to as

method 1, the quantity γU1 + (1− γ)U2 is much larger when using Lenth’s method.

As we wish to minimize this quantity, it would be advisable for an experimenter to

use method 1 for the purpose of deciding which effects are active, when measuring the

performance of a design. This is in order to reduce the loss of efficiency in identifying

active and inactive effects correctly. It should be noted that the recommendation for

using this method is when an experimenter is concerned with the choice of design and

not for when the experimenter is at the analysis stage of the investigation. Although

at first sight the much smaller Type I errors when using Lenth’s method appears

to indicate that this method proves more efficient, a closer look at the simulated

datasets actually highlights that many effects are being declared as inactive, which

when comparing to the ‘true’ dataset, are effects that should have in fact been active.

This seems to occur when using Lenth’s method due to the PSE being relatively large,

and consequently the levels of ME and SME also being large. Thus, many estimated

effects are failing to exceed SME and are therefore recorded as 0, an inactive entry.
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As well as highlighting an inadequacy of Lenth’s method in this context, it also draws

attention to the utility function being used and how it is defined and whether using

solely Type I and Type II errors as a basis for deciding upon the efficiency of a design

is an appropriate measure. If the efficiency of a candidate design is being based

upon how well active and inactive effects are declared correctly, to achieve minimal

Type I errors one may seek to falsely declare all effects as inactive to minimize this

type of error. Conversely, to minimize Type II errors one may falsely declare all

effects as active. Experimenters should be aware of the impact of making such false

declarations and so treat results with caution in such situations. Also, the choice of

the weight γ must be seriously considered by the experimenter to correctly represent

the proportions of the two components U1 and U2 where a greater weight would be

placed on that component the experimenter considers to be more important. If an

experimenter feels both Type I and Type II errors are of equal importance then this

would imply that γ = 0.5. However, if an experimenter feels that Type I errors are

three times as important as Type II errors then γ = 0.75 will be used, placing a

weight of 0.75 on U1 and accordingly, (1 − γ) = 0.25 will be placed upon U2. In

deciding the weights, it is the responsibility of the experimenter to act as decision

maker and assign importance to the criteria.

A sensitivity analysis was carried out where several different prior distributions were

applied to the case where only main effects were estimated and also when both main

effects and two-factor interactions were estimated. This was done to investigate the

effect, if any, of changing the prior distribution and determine if this does have any

impact on the value of utility obtained. Also relating this to the interpretation of the

utility function, this would be to determine if changing the prior distribution has any

impact on how well a design performs in terms of active and inactive effects being

identified.

The mean of the prior distributions were fixed to zero for all cases investigated, for
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the reasons stated earlier on in a previous subsection (§3.3.3). However, the variances

of the prior distributions were changed and investigated where all variances on effects

were equal and ranged from low prior variances to high prior variances. Prior distri-

butions where the variances are not all equal were also looked at. When estimating

main effects only and assuming normal prior distributions with equal variance on all

main effects, the greatest impact of changing the variances was seen when using the

method of assigning a constant ω, and declaring an effect active if it is greater than ω.

The quantity γU1 + (1− γ)U2, which we would seek to minimize, was reduced when

a high prior variance was assumed. In comparison, when using Lenth’s method there

appeared to be little impact in changing the variance. An implication of these results

may be that when using method 1, if an experimenter believes it is appropriate to

assume high prior variances on main effects then the loss in efficiency of the design

in terms of identifying active and inactive effects correctly will be reduced.

Observing the results when the variances on the main effects are not equal, it ap-

pears that there is a slight indication that when the unequal variances all tend to

be smaller, the quantity γU1 + (1 − γ)U2 is somewhat reduced compared to when

all unequal variances are larger. These results may highlight that the low prior vari-

ances have been understated. However, if an experimenter does believe that low prior

variances do appropriately represent their beliefs about the parameters being inves-

tigated, then the loss of efficiency in correctly identifying active and inactive effects

is reduced. This inference does need to be treated with some caution though as the

value of Ê(U) (where Ê(U) = γU1 + (1−γ)U2) for the normal prior distribution with

all relatively small variances, (Σ = [∞, 0.25, 0.25, 0.25, 2, 2]) is 0.077 and when the

normal prior distribution has all much larger variances (Σ = [∞, 2, 2, 4, 4, 10]) it is

0.100. An experimenter may have to decide whether this difference is large enough

to be considered a substantial difference and therefore whether specifying low prior

variances do in fact lead to a greater efficiency in terms of identifying actives and

inactives correctly. These implications apply in the case when using both methods
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for declaring effects active and also for both the 12 and 16 run designs.

When assuming normal prior distributions on effect sizes and both main effects and all

two-factor interactions are estimated in the case of the 16 run design, and variances

on all main effects are equal and also variances on all two-factor interactions are

equal when using method 1, then similar results are seen to the estimating main

effects only case. That is, the quantity we seek to minimize is reduced when high

prior variances are assumed. Thus, the implication for an experimenter is that if they

believe it is reasonable to place high prior variances on all effects, and they consider all

main effects to be exchangeable and also two-factor interactions to be exchangeable,

then the efficiency of the design will be improved. In comparison, when assuming

normal prior distributions and estimating all main effects and only the three two-

factor interactions associated with the three largest main effects in the case of the 12

run design, differing results are observed.

There appears to be little impact in changing the prior variances on the utility when

using either method to declare effects active and may in fact lead us to reconsider the

way in which the two-factor interactions that have been estimated have been chosen.

For both the 12 and 16 run designs when assuming normal prior distributions and

prior variances on main effects and two-factor interactions are not all equal, there

appears to be little connection between changing the prior variance and the value

Ê(U). The implication of these results are that if an experimenter believes main

effects and two-factor interactions are not exchangeable, the size of the prior variance

will have little impact upon the efficiency of the design.

When assuming normal mixture prior distributions, using method 1 and estimating

only main effects for both designs, as the prior variance on the active effect is in-

creased, the active effect coming from the high variance distribution βib, the value of

Ê(U) decreases. This implies that an experimenter should place high prior variances
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such that σ2
ib � σ2

ia and also where σ2
ib is at the maximum value that the experimenter

believes it can take, on the high variance component βib when the prior distribution

for the effects takes the form of the normal mixture prior, i.e. when

βia ∼ N(µia, σ
2
ia)

βib ∼ N(µib, σ
2
ib).

This would be in order to improve the efficiency of the design in terms of correctly

identifying active and inactive effects. However, in contrast when using Lenth’s

method the converse is true for both designs in that as the prior variances on main

effects increase, Ê(U) also increases. The small prior variance leading to a loss in

γU1 +(1−γ)U2 may perhaps though be indicative of the variances being understated.

The above implications also hold true when looking at the 16 run design, assuming

normal mixture prior distributions on effects and estimating main effects and all two-

factor interactions. That is, high prior variances lead to a reduction of Ê(U) when

using method 1 and the opposite when using Lenth’s method. However, when consid-

ering the 12 run design and estimating main effects and three two-factor interactions

when placing normal mixture prior distributions on effects it appears there is little

or almost no effect at all of changing the size of the prior variance. It can be seen

that for all probabilities p1, . . . , p5 of a main effect to be active and for all probabil-

ities p00, p01, p10, p11 of a two-factor interaction being active considered, regardless of

increasing the prior variance of the high variance distribution βib, the value of Ê(U)

is approximately the same. This may imply that if experimenters believed it would

be appropriate to model parameter effects with prior normal mixture distributions,

then they can be advised that the size of the prior variance is irrelevant. However, a

more plausible explanation for the results may actually be to do with the fact that

all two-factor interactions have not been estimated. Again, attention is drawn to the

way in which the 3 two-factor interactions have been chosen, the method by which

only some of the two-factor interaction effects have been estimated when using a 12

run design as there are not enough contrasts available to estimate them all.

163



Now considering the value of ω, the level of which is set by the experimenter and

determines how large an effect has to be to be considered active, it appears that some

care should be taken in setting this value. It appears in most cases, particularly when

assuming normal mixture prior distributions, that the value of the expected utility is

greatly reduced as the value of ω is increased from the smallest level investigated, σ,

to the highest level investigated, 2σ. This may be indicative that a higher level of ω

results in a design where effects are more correctly identified as active and inactive.

However, a more credible explanation may be that the level of ω is set to such a high

level that very few effects are declared as active, thus resulting in misleading values

of Type I errors as mentioned earlier leading to incorrect inferences. Therefore, it

is important that if using this method an experimenter uses any historical data or

prior knowledge about the process being investigated to correctly set the level of ω.

This is to ensure that not too many or too few effects are declared as active and to

therefore enable the key few active factors having an impact on the process in hand

to be correctly distinguished.

The values of Ê(U) calculated as displayed in Tables 3.31, 3.32, 3.37, 3.38, 3.43,

3.44, 3.49 and 3.50 are a measure of how well active and inactive effects are correctly

identified for a particular design. To be able to draw some conclusions regarding

whether it is worthwhile for an experimenter to carry out extra runs, which would

then typically result in the experiment being more costly and time-consuming, it will

be necessary to judge the design by the worth of each particular run. That is, the

benefit of carrying out extra runs has to be weighed against the run. In the context

of this example we are comparing a 16 run design which we shall denote design 1, and

the run size as n1 = 16, and a 12 run design which we shall denote design 2 and its

run size as n2 = 12. Thus, to try to quantify whether there is any benefit of carrying

out an extra 4 runs, we shall need to judge the value of Ê(U) against n1 and n2.

In almost all cases the value of Ê(U) is in fact lower for the 16 run design than the

12 run design when comparing the same prior assumptions. However, we need some
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measure by which to compare the two quantities on the same scale. A measure which

could be of some meaning would be to look at n1Ê(U) and n2Ê(U). Although the

value of Ê(U) is lower for the 16 run design than the 12 run design when looking at

the same prior assumptions, the 12 run design actually appears to give the optimal

result when comparing n1Ê(U) and n2Ê(U) for the majority of assumptions. Since

Ê(U) is a quantity that we wish to minimize, when calculating n2Ê(U) as being less

than n1Ê(U), the implication of a smaller value is that the 12 run design can be

concluded as bring more beneficial a design when measuring the worth of the design

per run. Thus, given the majority of prior assumptions that have been made one could

suggest to an experimenter that it may be worthwhile carrying out a 12 run design as

opposed to the 16 run design. However, in this particular example this would mean

that strong assumptions would have to be made that 7 of the two-factor interactions

are negligible, an assumption that would not have to be made if carrying out a 16 run

experiment. Thus, although it appears it may be more beneficial to carry out only 12

experimental runs given the prior assumptions that we have investigated here, this

advice should be treated with caution if for some reason an experimenter has a reason

for not wanting to make this strong assumption or wanted to estimate more two-factor

interactions. It should be noted that as mentioned previously, cost considerations can

also be considered rather than looking at the worth per run in the arbitrary manner

that has been considered here. Although an approach for quantifying the benefits

of carrying out an additional number of runs and cost considerations has not been

discussed here in great detail, this is of much importance and is an area that would

be valuable to investigate further. It would also be worthwhile considering costs in

the situation where both types of mistake are made by an experimenter. That is,

both falsely declaring an inactive effect as active and also failing to declare a truly

active effect as active.

The limitations of the study should be discussed, and as was highlighted with the

research in the previous section looking at the optimization utility function, in this
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section there are again dependencies of the results upon the various choices of prior

distributions and experimental design made and the interplay between the prior beliefs

and aliasing structures of the designs considered. It may also be thought that the

probabilities chosen for an effect to be active in the case of the normal mixture priors

were quite high and potentially violate the notion of effect sparsity. Although this may

be the case and perhaps is not a wholly accurate depiction of a situation that would

occur in industry, for the purposes of this study these probabilities were considered

in order for there to be a high chance for some effects to be active in order to then be

able to illustrate whether these active effects were then correctly identified as active

using the various methods outlined.

The potential drawbacks of Lenth’s method were discussed in Chapter 1 and may

provide some explanation for the high errors seen in the results. It was observed

when using Lenth’s method that much less was declared active, even when several of

the effects were found to be truly active resulting in high Type II errors. This may

be due to the inaccuracies in the computation of Lenth’s critical values for the SME

and ME. It has been shown that the margin of error ME is very conservative for small

experiments and the inaccuracy even larger for the simultaneous margin of error SME

(Olguin and Fearn, 1997). Besides the lack of precision of the approximations, when

calculating the SME the assumption is made that the test statistics are independent

which is only approximately true, in order to obtain the critical values (Lenth, 1989).

It was also observed that although the Type II errors were approximately the same

when comparing the 16 and 12 run design in the case of a main effects only model,

when interaction effects were included in the model the Type II errors were much

lower for the 12 run design when using Lenth’s method to identify active effects.

This again potentially demonstrates some inadequacies of Lenth’s method. One may

expect that as fewer contrasts are included in the Plackett-Burman design (since only

three of the interaction effects are estimated along with all main effects) that the ME

and SME would be inaccurately approximated leading to higher Type II errors due to
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the failure of active effects being declared active. However, the 16 run design in fact

has higher errors in this case and may highlight that there is some interplay between

the choice of method in identifying significant effects, and the aliasing structure of

the experimental design. The partial aliasing involved in the Plackett-Burman design

may lead to some inaccuracies when calculating the critical values. The disadvantages

of Lenth’s method that have been highlighted lead to some question surrounding the

strategies used to identify active effects, and it may have been worthwhile to consider

some alternative such as using Bayesian methods.

There are also some limitations in the study which arise from the same value of ω that

is used in both the data generation and the analysis, and this may not be entirely

appropriate. It was also previously stated that the recommendation of using the

method, |βi(j)| > ω, for declaring effects active is when an experimenter is concerned

with the choice of design and not at the analysis stage of an investigation. However,

this statement may not be strictly true considering that the design choice is based

upon the analysis in this case.
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3.4 Optimization: Comparison of 5 Factors in a

2-level or 3-level Design

3.4.1 Introduction

The example presented in §3.2 was used to demonstrate how a utility function could

aid an experimenter in assessing the benefits of various designs. This utility measured

the gain that could be obtained in terms of using the estimated optimal treatment

combination from a particular design, in place of the standard operating conditions.

Alternatively, one could think of the benefits of a design based on the loss that would

be incurred by running it, and thus one would want to try to minimise this loss.

This loss being referred to can be considered to be a measure of what one would

obtain from the using the estimated optimal treatment combination, instead of the

true optimal treatment combination.

As mentioned previously, this example was a relatively small one, where in practice

it would be very rare for an experimenter to carry out a design consisting of 4 runs.

Thus, an example which more accurately represents problems that an experimenter

would face is presented in this section. This example will also not only be more

challenging in terms of the run size being larger, but also more complex since the two

designs being compared will involve one design with all factors at two levels, and the

other design with all factors at three levels. An experimenter may be faced with such

a situation if they wanted to investigate a number of factors, but only had enough

resources to check either main effects and interaction effects (two-level design) or

main effects and quadratic effects (three-level design) but not both.
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3.4.2 Possible 2-level and 3-level Designs to use

Consider the case where an experimenter wants to investigate 5 factors and is con-

cerned with locating the optimal treatment combination, but only has enough re-

sources for approximately 18 experimental runs. Hence, the experimenter is con-

fronted with the situation of choosing the design which will best exploit maximum

information about the factors and determine the treatment combination which pro-

duces the optimum response relative to the objectives of their investigation.

In the case where one would want to estimate main effects and two-factor interaction

effects, it would clearly make sense to consider two levels of each of the factors,

in order for these effects to be estimable. The most straightforward design to use

would appear to be one where each of the factors has runs allocated according to the

conventional standard ordering. For 5 factors to be investigated in such a design,

a standard half-fraction of a 25 design is most appropriate where all main effects

and two-factor interaction effects can be estimated clearly. However, effectively two

experimental runs are being thrown away due to the size of such a design consisting

of 16 experimental runs. If resources do allow that up to 18 experimental runs can be

carried out, the half-fraction which is in fact a 25−1
V design, could be carried out along

with the last two runs being used as centrepoints. Centrepoints are runs that are at

the centre of the design region. This would ensure that the two extra runs are not

discarded and it is also typically good practice to use centrepoints. Benefits of using

centrepoints are that repeatibility and lack of fit are able to be assessed. However, in

such a situation where an experimenter is primarily concerned with optimization, it is

not necessary to check for such things and would be sufficient to carry out a standard

half-fraction of the 25 design, although this is provided that the correct model is being

assumed. The design that would be used in this scenario is displayed in Table 3.51.

As mentioned, the first 4 factors have their runs allocated to standard ordering and

factor 5 has being assigned the column 1234 as a result of the design generator which
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is 5 = 1234.

Table 3.51: Possible design for 5 2-level Factors in 16 Runs: 25−1 Design

Variable

Run 1 2 3 4 5

1 - - - - +

2 + - - - -

3 - + - - -

4 + + - - +

5 - - + - -

6 + - + - +

7 - + + - +

8 + + + - -

9 - - - + -

10 + - - + +

11 - + - + +

12 + + - + -

13 - - + + +

14 + - + + -

15 - + + + -

16 + + + + +

In the circumstance where an experimenter wants to estimate main effects and quadratic

effects, it would be best to consider a three-level design. Tsai, Gilmour and Mead

(2000, 2004) outlined orthogonal main effects plans for three-level designs for 4, 5

and 6 factors in 18 runs. These were found to have better projection properties and

provided better parameter estimates for a range of possible models in comparison

to designs obtained from the existing L18 orthogonal array. They also introduced a

criterion (Tsai, Gilmour and Mead, 2000), denoted by Q(Γk) for a k-factor design,

which can be used to explore the projection efficiencies of the design. It was found

that designs with lower values of Q(Γk) are more likely to have efficient projections

and on average can provide better parameter estimates over a range of models than

designs with higher Q(Γk). Plans for designs for 5 factors in 18 runs were presented

by Tsai, Gilmour and Mead (2004), some of which were found to have low values of
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Q(Γ5), which therefore means these designs have better projection properties than

other designs. They were also found to be ranked higher than projected 5-factor

design from the existing L18 in terms of the Q(Γ5) criterion. Thus, a potential design

an experimenter could consider to estimate main effects and quadratic effects could

be one of these main effects plans. The best three designs according to the Q(Γk)

criterion for 5 factors in 18 runs are presented in Table 3.52.

The main effects plan for Design 3 as indicated in Table 3.52 shall be used in the

simulation work later on in this chapter to assess the benefits of a three-level design.

The standard half-fraction of a 25 design as indicated in Table 3.51 shall be used as

the main effects plan for a two-level design. These main effects plans for both two-

and three-level designs shall be used to assess whether a two- or three-level design is

better to use when resources dictate that only a maximum of 18 experimental runs

are available in which to investigate 5 factors.

3.4.3 The Nature of the Second-Order Surface

Using the least squares method to estimate the parameters in the model, the fitted

second-order model is

ŷ = β̂0 +
k∑
i=1

β̂ixi +
∑ k∑

i<j

β̂ijxixj +
k∑
i=1

β̂iix
2
i .

In this second-order model k denotes the number of variables, βi represents the linear

effect of xi, βij represents the linear-by-linear interaction effect of xi and xj and βii

represents the quadratic effect of xi. This fitted second-order model can also be

expressed as

ŷ = β̂0 + xTb + xTBx,
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Table 3.52: Designs for 5 Factors in 18 Runs

Design 1

Variable

Run 1 2 3 4 5

1 - - - - 0

2 - - 0 + 0

3 - 0 - 0 -

4 - 0 + - +

5 - + 0 0 +

6 - + + + -

7 0 - 0 0 +

8 0 - + - -

9 0 0 - + +

10 0 0 + 0 0

11 0 + - + 0

12 0 + 0 - -

13 + - - 0 -

14 + - + + +

15 + 0 0 - 0

16 + 0 0 + -

17 + + - - +

18 + + + 0 0

Design 2

Variable

Run 1 2 3 4 5

1 - - - - -

2 - - + 0 0

3 - 0 - + +

4 - 0 0 - 0

5 - + 0 + -

6 - + + 0 +

7 0 - 0 0 -

8 0 - + + +

9 0 0 - 0 0

10 0 0 + - -

11 0 + - - +

12 0 + 0 + 0

13 + - - + 0

14 + - 0 - +

15 + 0 0 0 +

16 + 0 + + -

17 + + - 0 -

18 + + + - 0

Design 3

Variable

Run 1 2 3 4 5

1 - - - - 0

2 - - 0 0 -

3 - 0 - + +

4 - 0 + + -

5 - + 0 - +

6 - + + 0 0

7 0 - + - +

8 0 - + + 0

9 0 0 - 0 +

10 0 0 0 0 0

11 0 + - - -

12 0 + 0 + -

13 + - - 0 -

14 + - 0 + +

15 + 0 0 - 0

16 + 0 + - -

17 + + - + 0

18 + + + 0 +
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i.e. in matrix form where xT = (x1, . . . , xk), bT = (β̂1, . . . , β̂k) and B is the following

k × k symmetric matrix,

B =


β̂11

1
2
β̂12 · · · 1

2
β̂1k

1
2
β̂12 β̂22 · · · 1

2
β̂2k

...
... · · · ...

1
2
β̂1k

1
2
β̂2k · · · β̂kk

 .

Then the stationary point of the quadratic surface can be obtained from

xs = −1

2
B−1b.

Due to there not being enough degrees of freedom to estimate both linear-by-linear

effects and quadratic effects of 5 factors in 18 runs, obtaining the stationary point

when estimating only linear and quadratic effects becomes

xs = −1

2


1

β̂11
0 · · · 0

0 1

β̂22
· · · 0

...
... · · · ...

0 0 · · · 1

β̂kk




β̂1

...

...

β̂k



=


−1

2
β̂1

β̂11

...

−1
2
β̂k
β̂kk

 .

Now that the location of the stationary point has been outlined, we shall consider the

nature of the stationary point. Let P be some k × k matrix. Then

PTBP = Λ,
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where the columns of P are the standardized eigenvectors of B and Λ = diag(λ1, . . . , λk)

is a diagonal matrix whose entries λi are the eigenvalues of B. The nature of the sta-

tionary point is then determined by the signs of the eigenvalues of the matrix B and

can be summarized as follows:

1. If λ1, . . . , λk are all negative, then the stationary point is a point of maximum

response.

2. If λ1, . . . , λk are all positive, then the stationary point is a point of minimum

response.

3. If λ1, . . . , λk are of mixed signs, then the stationary point is neither a maximum

nor a minimum point and is called a saddle point.

Since it is often the case in industrial experimentation that one seeks to maximize the

response, such as maximizing the yield of a drug being produced in the pharmaceutical

setting, we shall focus on the case of obtaining the point of maximum response. That

is, we wish to determine the optimal treatment combination that will produce the

maximum response and this will occur when the eigenvalues for the matrix B are all

negative and the maximum response is then at the stationary point. We can denote

the stationary point for xj as xj0. We will consider the region of experimentation to

be between the levels −1 and +1 for each factor, since we are observing the 5 factors

at the three levels {−1, 0,+1}. It then follows that the optimal level of xj, denoted

by xjopt is as follows:

xjopt =



−1
2

β̂j

β̂jj
if β̂jj < 0 and −1 ≤ x̂j0 ≤ +1

−1 if β̂jj ≥ 0 and β̂j < 0

or β̂jj < 0 and x̂j0 < −1

+1 if β̂jj ≥ 0 and β̂j > 0

or β̂jj < 0 and x̂j0 > +1.
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As it is assumed that the true optimal treatment combination is at a point of maxi-

mum response, it then follows that this optimal treatment combination is

xopt = −1

2
B−1b.

The response at this point of maximum response xopt is then

µxopt = β0 + xT
optb + xT

optBxopt

= β0 −
1

2
bTB−1b +

1

4
bTB−1BB−1b

= β0 −
1

4
bTB−1b.

It is also assumed that the response at standard operating conditions µx0 , is β0. It

then follows that the maximum gain is

µxopt − µx0 = −1

4
bTB−1b.

The response at the estimated optimal treatment combination µx̂opt is

µx̂opt = β0 + x̂T
optb + x̂T

optB̂x̂opt

= β0 −
1

2
b̂

T
B̂
−1

b +
1

4
b̂

T
B̂
−1

BB̂
−1

b̂.

Similar expressions can then be obtained for the loss, which is

µxopt − µx̂opt = −1

4
bTB−1b +

1

2
b̂

T
B̂
−1

b− 1

4
b̂

T
B̂
−1

BB̂
−1

b̂

and the gain, which is

µx̂opt − µx0 = −1

2
b̂

T
B̂
−1

b +
1

4
b̂

T
B̂
−1

BB̂
−1

b̂.

In the following section we shall set out the prior specifications for the simulation

work when applying the optimization utility function in order to determine whether

a two-level or three-level design is more efficient to use when resources dictate that

only a maximum of 18 experimental runs can be made. As we shall be looking at the

case when an experimenter wishes to maximize a response we shall set out the priors

so that the resulting eigenvalues are all negative.
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3.4.4 Prior Specification

The prior assumptions that are to be made for the linear, interaction and quadratic

effects shall now be set out. Priors for the linear, interaction and quadratic effects

shall be specified for both the two- and three-level design, although only the linear

and interaction effects shall be estimated from the two-level design and only linear

and quadratic effects shall be estimated in the case of the three-level design. The

specified priors are assumed when carrying out the simulation work, the results for

which will be given in the following section.

As in previous examples presented, the intercept shall be assumed to be distributed

normally with mean 0 and variance approaching ∞.

Normal independent priors shall be considered on the linear and interaction effects.

These shall be

βi, βij ∼ N(0, 4)

and

βi, βij ∼ N(0, 100)

to assess the impact, if any, of varying the size of the variance.

Normal independent priors shall also be considered on the quadratic effects, and the

two cases of prior assumptions which shall be looked at are:

βii ∼ N(−30, 4)

and

βii ∼ N(−30, 100).
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That is, the priors for the quadratic effects shall be assumed to be large and negative,

however we shall investigate this where the prior variance is relatively small, i.e. when

σ2 = 4 and also when the variance is much larger, i.e. when σ2 = 100.

As well as normal independent priors on the effects, hierarchical normal mixture priors

shall also be investigated for the linear and interaction effects. For both the two-level

and three-level design, hierarchical prior assumptions on the linear effects shall be

considered, which will be:

βi ∼

 N(0, 1) if αi = 0

N(0, 100) if αi = 1

where pi = 0.5. As previously outlined in this chapter, this is where αi is represented

by the Bernoulli distribution with parameter pi and determines the importance of

main effect i. When αi = 0, the main effect i is inactive, and similarly, when αi = 1

the main effect i is active.

The interaction effects βij will also be assumed to be modelled by hierarchical priors

and will be represented by:

βij ∼

 N(0, 1) if αij = 0

N(0, 100) if αij = 1

where

pij =



0.1 if (αi, αj) = (0,0)

0.25 if (αi, αj) = (0,1)

0.25 if (αi, αj) = (1,0)

0.75 if (αi, αj) = (1,1).

The priors to be investigated can be summarized in Table 3.53 which follows, where

priors 1-4 indicate normal independent prior assumptions on all effects. Priors 5 and

6 indicate hierarchical normal mixture prior on linear and interaction effects, and

normal independent priors on the quadratic effects.
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Table 3.53: Prior Distributional Assumptions

Effect

Prior Linear Interaction Quadratic

1 βi ∼ N(0, 4) βij ∼ N(0, 4) βii ∼ N(−30, 4)

2 βi ∼ N(0, 100) βij ∼ N(0, 100) βii ∼ N(−30, 100)

3 βi ∼ N(0, 100) βij ∼ N(0, 4) βii ∼ N(−30, 100)

4 βi ∼ N(0, 100) βij ∼ N(0, 100) βii ∼ N(−30, 4)

5 βi ∼ N(0, 1) if effect is inactive βij ∼ N(0, 1) if effect is inactive βii ∼ N(−30, 4)

βi ∼ N(0, 100) if effect is active βij ∼ N(0, 100) if effect is active

6 βi ∼ N(0, 1) if effect is inactive βij ∼ N(0, 1) if effect is inactive βii ∼ N(−30, 100)

βi ∼ N(0, 100) if effect is active βij ∼ N(0, 100) if effect is active

3.4.5 Results

The results when applying the optimization utility function in order to assess the

benefits of the two-level and three-level designs based upon the loss, gain and relative

gain of each of the designs are now presented. 1000 simulations were found to be a

sufficient number of simulations in order for the estimated utilities to be calculated

within a reasonable degree of confidence. Results for the mean values of the loss, gain

and relative gain are given in the following table along with the mean value of the

maximum gain, which is defined as

µxopt − µx0 ,

i.e. the gain that would have been made if the true optimal treatment combination

had been used rather than standard operating conditions.
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Table 3.54: Results for Two- and Three-Level Design

Loss Gain Maximum Gain Relative Gain

Two-Level Design:

Prior

1 0.0924 0.0801 0.1724 0.3958

2 0.0192 6.5211 6.5403 0.9860

3 0.0381 5.1791 5.2172 0.9966

4 0.0405 4.5413 4.5817 0.9814

5 0.0613 2.1225 2.1838 0.9674

6 0.0471 3.4652 3.5123 0.9786

Three-Level Design:

Prior

1 0.0351 0.1373 0.1724 0.6756

2 125.5413 -119.0010 6.5403 -17.8303

3 161.3855 -156.1683 5.2172 -13.1544

4 99.1967 -94.6150 4.5817 -23.4287

5 3.5801 -1.3963 2.1838 -2.0103

6 13.0477 -9.5355 3.5123 -17.5148

Looking at the results for the two-level design it can be seen that the mean loss is fairly

small for all priors investigated, where the smallest mean loss is in the case of prior 2

with a value of 0.0192, and the largest mean loss is in the case of prior 1 with a value of

0.0924. This indicates that regardless of the variety of prior assumptions investigated,

the loss is small when using the estimated optimal treatment combination instead of

the true optimal treatment combination. It can also be seen that the mean loss is

relatively small when comparing these with the corresponding priors for the three-

level design. The mean losses for the three-level design are much larger than those

for the two-level design, except in the case of prior 1. This is the only prior where the

loss for the two-level design is larger than that of the three-level design. However, it

should be noted that this difference of 0.0573 is much smaller than the difference in

loss between the two- and three-level design for priors 2-6. For example, the difference
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in loss between the two- and three-level design for prior 2 is a value of 125.5221.

The mean gain for the two-level design is larger and positive than the mean gain

when looking at the corresponding priors for the three-level design in all cases, with

the exception of prior 1. This implies that an improvement is to be made from

using the estimated optimal treatment combination in place of the standard operating

conditions. Due to the mean loss for all of the six priors investigated being fairly small,

the maximum gain in most cases is approximately the same as the mean gain. It can

be shown that,

(µxopt − µx̂opt) + (µx̂opt − µx0) = µxopt − µx0 .

That is, the addition of the loss and gain results in the maximum gain. A large value

for the maximum gain suggests that the response obtained at the true optimal treat-

ment combination is much greater than the response obtained at standard operating

conditions. Since the values for the maximum gain are calculated from

µxopt − µx0 = −1

4
bTB−1b,

this quantity is dependent only on b and B, and not on the design or simulated data,

thus resulting in the same maximum gain for both designs.

When looking at the results for the three-level design, it is clear to see that there is a

much greater range in values for the mean loss than was seen for the two-level design,

and for many of the priors investigated the mean loss is very large. The smallest

mean loss is seen for prior 1 with a value of 0.0351, and the largest mean loss for the

three-level design is for prior 3 with a value of 161.3855, although the mean loss for

prior 2 is also extremely large. Some interesting results are also seen for the mean

gain for the three-level design where for five out of the six priors investigated, the

mean gain is large and negative. This implies that the expected response at standard

operating conditions is greater, and therefore better, than the expected response at

the estimated optimal treatment combination.
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For prior 1, normal independent priors are placed on linear, interaction and quadratic

effects and the variance σ2, is equal to 4, the smallest variance size investigated. For

prior 2, normal independent priors are again assumed except that the variances on all

effect parameters are increased to 100. For the three-level design, the results appear to

indicate that mean loss is greatly increased when the variances on all effect parameters

are also increased. However, the converse is true for the two-level design; when the

variances on all effect parameters are increased to 100, the mean loss is subsequently

reduced. This is also reiterated in the case of priors 5 and 6, where normal mixture

priors are assumed on linear and interactions effects and normal independent priors

are assumed on the quadratic effects. When the variances on the quadratic effects are

increased from σ2 = 4, to σ2 = 100, the mean loss again decreases for the two-level

design but increases for the three-level design.

Looking at the results for prior 3 for the two-level design, the mean loss is smaller when

the quadratic effects have a large variance, and the interaction effects have a smaller

variance, and for prior 4 the mean loss increases somewhat when the interaction

effects have a large variance and the quadratic effects have a smaller variance. The

converse is true when only linear and quadratic effects can be estimated, i.e. with

the three-level design. That is, when the quadratic effects have a large variance, and

the interaction effects have a smaller variance, the mean loss is large, and is reduced

greatly when the interaction effects have a large variance and the quadratic effects

have a smaller variance.

There does appear to be some difference in the results depending on whether normal

mixture priors, or normal independent priors are assumed on the parameters, and also

the size of the variance placed on the effect parameter. For the three-level design,

when normal mixture priors are assumed on the linear and interaction effects as with

priors 5 and 6, the mean loss is much smaller and the mean gain much larger than

for most of the other priors for the three-level designs where the effects are assumed
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to come from independent normal distributions.

There appears to be a clear indication that a two-level design is more favourable

to use in terms of being able to obtain the optimal treatment combination, for the

various prior assumptions that have been investigated. This is due to the mean gain

being positive for all of these priors, and so the resulting relative gain is also positive

in all cases. This means that there is always some gain to be made from using the

estimated optimal treatment combination rather than standard operating conditions.

This is in relation to the maximum gain that would have been made if the true optimal

treatment combination had been used compared to standard operating conditions. In

contrast when looking at the three-level design, since the gain in many of the cases

is large and negative, and the maximum gain is comparatively small, the resulting

relative gain for most of the priors investigated is also fairly large and negative. This

implies that that the estimated optimal treatment combination is in fact worse than

standard operating conditions, in relation to the maximum gain that would have been

made if the true optimal treatment combination had been used compared to standard

operating conditions.

Thus, if an experimenter was to make a decision about which design to use based

upon the loss that will be incurred if the estimated optimal treatment combination

is used instead of the true optimal treatment combination, and in terms of gain to be

made from using the estimated optimal treatment combination in place of standard

operating conditions, the inference can be drawn that the two-level design should be

used. This is because the loss is reduced and the gain increased for the majority of

priors assumed in this thesis, in comparison to the loss and gain for the three-level

design.
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3.4.6 Discussion

The application of the optimization utility function has been demonstrated where

two designs of different sizes have been compared. In addition to the designs having

a different number of experimental runs, the two designs compared in this section

were also different in terms of what effects were able to be estimated. That is, for the

two-level design, linear and interaction effects have been able to be estimated whereas

in the case of the three-level design, linear and quadratic effects are estimated. This

does mean that a completely fair comparison perhaps cannot be made between the

two- and three-level designs and imposes some restrictions on the comparisons and

conclusions that can be drawn.

For many of the priors investigated for the three-level design, a large and negative

value for the gain was seen. Although this is possible, this is an unusual result as

one would expect the optimal treatment combination to result in the best response,

which in this case would be the maximum response. Thus, it would be hoped that the

expected response obtained at the estimated optimal treatment combination would be

larger, and therefore improve on the response obtained when the operating conditions

currently in place are used. However, this was not the case for many of the prior

assumptions considered. This may lead one to suspect that perhaps the maximum

response, which in this case should be at the location of the stationary point, does

not actually lie within the region of experimentation. However, checks were carried

out to confirm that the location of the maximum response was in fact between the

levels −1 and +1. If checks found that the maximum response did not actually lie

within the region of experimentation, which was not the case in this thesis, it would

be of interest to perhaps consider ridge analysis which can be performed to determine

the direction in which additional experimentation should be carried out.

In this study, the choice of experimental design and prior beliefs about the effects have
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been examined under the assumption of searching for the combination of various

factors that gives the maximum response. That is, the true surface is assumed to

have elliptical contours and the optimum point on this surface is a maximum not

a minimum. This problem was similarly considered by Curnow (1972) where the

question of whether one-variable experimentation, two-variable experimentation or

no experimentation was preferable in terms of obtaining the estimated optimum was

discussed, where the estimated optimal treatment combination was assumed to be

the maximum response. However, it may not be the case that the optimum is a

maximum. Due to errors of estimation the turning point on the fitted surface may

be a minimum or a saddle point. If this was to transpire then it would be advisable

for further experimentation to take place rather than merely locating the estimated

position of the turning point and using this as the best estimate of the position of

the maximum on the true fitted surface.

It would also be of interest to investigate further and assess whether the form of the

prior, and size of the mean and variance assumed for the effect parameters has any

influence on the gain being negative. As has been discussed with the other studies in

this thesis, there is a dependence of the results on the various prior distributions and

experimental design choices and so the results are limited to the few scenarios that

have been selected to be investigated. The size of the probabilities for an effect to be

active in the hierarchical prior set-up may also be considered to be too large and that

it violates the principle of effect sparsity. However, it was felt that these probabilities

should be large enough in order for some effects to result in being active given that

the run sizes of these designs may be considered to be fairly small. Also, there is an

argument for the case that these probabilities are a more accurate representation of

what occurs in industry and that the probabilities typically considered in literature,

such as Chipman, Hamada and Wu (1997) are not totally realistic. In their paper p00

is chosen to be small, e.g. 0.01, p01 and p10 somewhat larger, e.g. 0.10 and p11 largest,

e.g. 0.25. However, in practice there may be a greater than a one in 100 chance that
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an effect could be active even if its parent main effects are not active.

The results may have been more thought-provoking if designs had been presented

where not all important effects were able to be estimated. In this situation, all main

effects and two-factor interactions were able to be estimated when using the two-level

design and all main effects and quadratic effects in the instance of the three-level

design. Examples of perhaps more interesting circumstances to investigate would

be estimating 5 factors in less than 16 experimental runs for a two-level design so

that not all two-factor interactions can be estimated, or perhaps a fractional factorial

experiment in the case of the three-level design.

There was some indication that the form of the prior had some impact upon the loss,

gain and relative gain. Therefore, it may be of interest to investigate further, and

perhaps more informative, prior assumptions to assess whether this does give any

benefits in terms of choice of design.
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3.5 Summary

Various approaches for discriminating between a selection of candidate designs have

been presented. Methods have been outlined for choosing between designs which are

to be used in the context of optimization, when a large number of variables have been

narrowed down to the key few variables truly driving the process under consideration

and an optimum treatment combination is sought. Methods have also been set out

for the selection of designs that are to be used in a screening context at the initial

stages of experimentation where the large number of variables being investigated are

to be screened in order for further experimentation at a later stage.

Some benefits have been shown in giving experimenters a more formal manner in

which to choose the design that they shall use in experimentation. Although the

methods presented have not been directly compared to standard optimality criteria,

the methods in this thesis could be used as opposed to standard optimality design

criteria such as D-optimality or utility functions such as those making use of Shan-

non information or the Kullback-Leibler distance. These standard optimality criteria

perhaps do not translate naturally to criteria that will answer questions that an in-

dustrial experimenter may have although no claim is being made that the methods

laid out in this thesis are better than these traditional criteria or utility functions but

perhaps more appropriate in this context of industrial experimentation. On the other

hand, some words of caution should be asserted that the inferences drawn from the

results have been based on the set of priors that have been chosen and therefore relate

to the various prior assumptions that have been made about the parameters being

investigated. Also, it should be stressed that the methods presented in chapter 2 and

the applications of these that have been displayed in this chapter do set out guidelines

in choosing a design. However, in practice they should be applied more informally.

The methods are not to be used as a blind substitute for selecting a design but rather
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in conjunction with any ad hoc methods that an experimenter may already have in

place. These methods can be deemed to be helpful in providing experimenters with

guidance particularly in the situation when they may need to consult statisticians for

such assistance.
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Chapter 4

Bayesian Analysis of Fractional

Factorial Experiments

4.1 Introduction

Fully Bayesian methods are rarely used in multifactor experiments, particularly in the

case of fractional factorial designs, although a general set-up for the analysis has been

proposed by Nobile and Green (2000). Since an experimenter will typically have some

prior knowledge about the sizes of effects, to use in this a fully Bayesian data analysis

would seem a natural approach. In this chapter, the Bayesian analysis of fractional

factorial experiments will be presented where both vague and more informative priors

will be explored.

It is usually the case that several alternative probability models can reasonably fit

the same data, where the alternative models being specified are in reference to either

the prior distribution, the likelihood (sampling distribution) or both. Thus, it would

be necessary for a sensitivity analysis to be performed to assess how much the poste-
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rior inference is affected by the use of alternative reasonable models, to ensure that

prior beliefs or likelihood assumptions made do not unduly affect the results. Several

probability models will be fitted to the same problem in this chapter to gauge the

sensitivity of posterior inferences to different model assumptions and assess whether

there is variation in posterior inferences for estimands and predictive quantities of

interest. The data will be modelled assuming a normal distribution and a scaled-t

distribution. Prior distributions on the effect parameters that will be considered are

a normal distribution and a mixture of normal distributions. Alternative prior distri-

butions that will be considered for the variance are a uniform prior and more typically

used, an inverse-gamma prior. When considering the uniform distribution, the prior

is placed on log σ. That is, we work with the logarithm of the standard deviation and

assume that log σ is distributed uniformly. When assuming an inverse-gamma prior

distribution we instead place a gamma prior distribution on the precision, τ , which

is the inverse of the variance.

Before the Bayesian analyses of fractional factorial experiments are examined, the

most notable works in this area are considered and discussed in the following section.
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4.2 Literature Review

A prominent paper that introduced the use of Bayesian analysis methods in the field

of industrial experimentation was that of Box and Meyer (1986a), as outlined in

Chapter 1. They presented a formal analysis of fractional factorial designs to be used

in conjunction with the graphical analysis due to Daniel (1959), to be used most

appropriately in the circumstance of factor sparsity. Their method allowed posterior

probabilities for active effects to be calculated and made use of Box and Tiao (1968).

Box and Meyer (1993) also proposed an alternative Bayesian approach to model

identification for the analysis of data where there is a high amount of aliasing involved,

where they focussed on factors rather than specific effects. They were able to develop

a Bayesian method that more completely considered the various hypotheses of which

factors are active when analysing the results of a screening experiment. This is even

when the effects are thoroughly confounded, as is typically the case in Plackett-

Burman designs where the alias structure can be complicated. They considered the

set of possible models M0, . . . ,Mm where each model Mi has an associated vector

of parameters θi. Then the sampling distribution of data y, given the model Mi is

described by the probability density f(y|Mi, θi). The prior probability of the model

Mi is p(Mi) and the prior probability density of θi is f(θi|Mi). Then the predictive

density of y, given model Mi, is written f(y|Mi) and can be expressed as

f(y|Mi) =

∫
Ri

f(y|Mi, θi)f(θi|Mi) dθi

where Ri is the set of possible values of θi. The posterior probability of the model

Mi, given the data y is then

p(Mi|y) =
p(Mi)f(y|Mi)

m∑
h=0

p(Mh)f(y|Mh)

.

These posterior probabilities p(Mi|y) for each possible model Mi can then be used as a
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basis for model identification where those potentially likely models can be identified by

their large posterior probability. As was similarly calculated in Box and Meyer (1986a)

for the marginal probabilities pi that an effect i is active, in this case the probabilities

p(Mi|y) can be accumulated to compute the marginal posterior probabilities Pj that

factor j is active. That is

Pj =
∑

Mi: factor j active

p(Mi|y).

Therefore, the probabilities {Pj} are calculated by adding up the posterior probabil-

ities over all possible models Mi where factor j is active. Thus, a large value of Pj

will indicate that factor j is active whereas a small value of Pj or a value close to 0

will indicate that j is inactive (or passive).

Chipman, Hamada and Wu (1997) also proposed a methodology for a Bayesian ap-

proach to model selection, however focussed on effects rather than factors. Their

method also differed where in addition to marginal posteriors, joint posterior prob-

abilities were also considered, namely posterior probabilities of the models. In com-

parison to an all-subsets approach or exhaustive search as used by Box and Meyer, in

this paper it was shown that the methodology required less computation due to the

search through the model space being done stochastically. The search also focussed

on a class of reasonable models as a result of the specification of flexible hierarchical

priors. The keys aspects set out in this paper, namely the stochastic search and use

of hierarchical priors adopted those methods as set out by George and McCulloch

(1993).

The general set-up that Nobile and Green (2000) proposed in their paper provides a

framework for the approach that shall be taken in this thesis in terms of the Bayesian

analysis carried out, although there are some significant differences. They presented a

Bayesian analysis for factorial experiments using finite mixture distributions to model

the main effects and interactions. The Bayesian analysis allowed both estimation and
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an analogue of hypothesis testing in a posterior analysis using a single prior specifi-

cation. The Bayesian methods used were restricted to a two-way, ‘row-plus-column’

model with replications, possibly unequal and/or missing and allowing interactions

although they did state that the approach was intended to be extendible to more

complicated designs and experiments using covariates. Computations carried out in

the paper were done by Markov chain Monte Carlo (MCMC) methods. MCMC is a

method by which we can draw values of θ from an approximate distribution and then

correcting those draws to better approximate the target distribution, p(θ|y), i.e. the

target posterior distrbution as set out previously (§1.4.5). Samples are drawn in a

sequential manner, and the distribution of the sampled draws depend on the previous

value drawn, therefore the draws forming a Markov chain. From probability theory, a

Markov chain is defined as a sequence of random variables θ1, θ2, . . . for which for any

t, the distribution of θt given all previous θ′s depends only on the most recent value,

θt−1. At each step in the simulation the approximate distributions are improved, in

that they are converging to the target distribution. In order to achieve this and start

the chain, a starting value of θ must be specified and in the context of this thesis this

would be chosen by the experimenter. Once the chain has reached an equilibrium,

we can say that it has converged and values in the chain prior to convergence should

not be included in calculation of the target distribution summaries due to the pos-

sibility of incorrect inferences being made. Instead, the values in the chain prior to

convergence are discarded, these values being termed ‘burn-in’.

In Nobile and Green’s paper it is assumed that

yijk = θij + εijk (i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , rij)

for a two-way layout model. There are rij replicates in cell (i, j) corresponding to the

ith level of factor 1 and the jth level of factor 2. θij is the sum of the overall level µ,

the main effects αi and βj and the interaction γij so that it follows that

θij = µ+ αi + βj + γij. (4.1)
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The error terms are normally distributed εijk ∼ N(0, σij) and the overall level µ has

normal prior distribution µ ∼ N(η, σµ). The remaining terms in (4.1) are assumed to

proceed from finite mixtures of unknown numbers of normal component distributions

subject to the following classical constraints∑
i

αi = 0,
∑
j

βj = 0,
∑
i

γij = 0,
∑
j

γij = 0.

It is also considered that

αi ∼
kα∑
t=1

wαt N(µαt , σ
α
t )

independently for all i. For the number of components kα the prior is uniform on the

integers from 1 to some maximum value kαmax. The mixture weights follow a Dirichlet

distribution as follows

wα ∼ Dir(dα1 , . . . , d
α
kα)

and independent normal and inverse gamma distributions are the priors placed on

the means and variances:

µαt ∼ N(ξαt , 1/τ
α), (σαt )−1 ∼ Ga(aαt , b

α
t ).

Similarly, the other parameter effects are distributed as follows

βj ∼
kβ∑
s=1

wβsN(µβs , σ
β
s ), γij ∼

kγ∑
u=1

wγuN(µγu, σ
γ
u)

and a similar structure is assumed for the β′s and γ′s as for the α′s, where the mixture

weights follow a Dirichlet distribution and the priors for the mean and variances are

independent normal and inverse gamma distributions respectively. Rather than i

and j levels of the factors as laid out in this paper, the experiments that shall be

considered in this chapter consist of two-level factors and thus, this set up would

then be reduced to βj for the j effect parameters in this instance.
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Thus, the approach of Bayesian analysis of factorial experiments with a single prior

specification suitable for both estimation and testing and computations being done

using MCMC methods is similar to the approach that shall be taken in this thesis and

demonstrated in the subsequent sections. Nobile and Green’s approach of explicitly-

specified mixtures of normals, building on Richardson and Green (1997), and features

of the approach of George and McCulloch (1993) shall also be used in this thesis.

Another relevant work is that of Baba and Gilmour, chapter 12 of Colosimo and del

Castillo (2006). They demonstrated the applications of Bayesian methods. However,

in this case the methods were applied to data from saturated designs. Similarly to the

approach that is to be taken in this thesis, they extended the work of Box and Meyer

(1993). In extending the work of Box and Meyer, rather than just using a mixture of

two normal distributions for each effect (both having mean zero and one with a small

variance and one with a large variance) to obtain the posterior probability of each

effect of being active, Baba and Gilmour used the full prior and posterior distributions

and concentrated on estimating the effects rather than just identifying them as being

active or inactive. This approach will also be demonstrated in the following sections.

194



4.3 Methodology

As has been previously mentioned, Bayesian methods are infrequently used in indus-

try, such as in the analysis of data from fractional factorial experiments. Therefore

an experimenters’ prior knowledge fails to be explicitly exploited and this is despite

a typical assumption being made a priori that some effects will be negligible. In

the case of fractional factorial designs effects considered to be negligible will usually

be higher order interactions, and this leads to not all effects being estimated. Thus,

although Bayesian methods are not standardly applied in a formal manner, it could

be reasoned that making assumptions such as some effects are negligible does in fact

represent an extreme form of prior. This is then one reason for justifying the use of

a Bayesian analysis in the context of industrial experimentation.

An experimenter can specify their belief about the size of each effect for the param-

eters of interest β, or at least give the range within which they believe it will lie. In

doing so they can place a joint prior distribution on the set of parameters of interest

β and then upon collection of the data y, the joint posterior distribution of β|y can

be obtained by applying Bayesian methods. The procedure of obtaining the posterior

distribution via a Bayesian analysis will be illustrated theoretically in the following

section. This will be shown when assuming a conjugate prior and in both the cases

where σ2 is known and unknown.

The priors on the parameters of interest β are typically individually represented by

normal distributions which can then be extended to all p parameters of interest being

represented by the multivariate normal distribution. The normal distribution is typi-

cally used by experimenters to represent their prior beliefs about the parameter effects

due to the normal distribution being fairly flexible and various other properties. The

prior mean can take any value along the real line and the normal distribution can

closely represent the experimenters’ beliefs if they expect the prior to be symmetric
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and uni-modal about some point. Another property of the normal distribution which

makes it a reasonable choice of prior is that it is conjugate, thus the posterior distri-

bution will also be normal and therefore be of a form that is easier to manipulate.

The same properties will also apply when extending the normal distribution to the

multivariate normal distribution when dealing with p parameters of interest and as-

suming a joint prior distribution on the parameters. When carrying out a Bayesian

analysis of a dataset obtained from a typical industrial experiment, the results of

which shall be presented in a later section (§4.5), normal conjugate priors shall be

assumed for the parameters of interest as well as scaled-t prior distributions. Scaled-t

prior distributions shall also be considered to illustrate the impact, if any, on the

analysis resulting from the choice of prior distribution. It will also demonstrate that

an experimenter may not need to make typical assumptions such as assuming normal

distributions. Choosing a different prior distribution such as the scaled-t distribution

which has the property of having longer tails than that of the normal, may actually

prove to be a better choice of model if the experimenter suspects their dataset of

containing outliers, which will be investigated further in Chapter 5.

When assuming that σ2 is unknown, the choice of prior distribution for the variance

component is commonly the inverse gamma distribution. This is the conjugate of the

normal distribution (Gelman et al. 2003) and is typically used when some information

about the variance component is available. However, an experimenter may possess

little or no information about run-to-run variation and so a vague or noninformative

prior distribution will be desired. The choice of prior distribution for the variance in

this situation was discussed by Daniels (1999) and some recommendations given. In

this thesis the inverse gamma prior distribution for the variance shall be considered

in the situation where some information about σ2 is available. A uniform prior distri-

bution shall also be considered when little or no information about σ2 is to hand, and

the uniform prior distribution shall be put on log σ, defining the prior distribution

on a compact set [−A,A] for some large value of A. Taking the logarithm of σ is
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appropriate in this instance since the variance parameter must be positive, although

this does lead to an improper posterior distribution. However, defining the prior dis-

tribution on the compact set [−A,A] rather than on the range (0, A) is a possible way

of trying to overcome this problem. Alternatively, a uniform prior distribution on the

parameter σ itself can be considered although some issues also arise in this situation

where there is bias, or miscalibration when speaking in the Bayesian rather than the

classical sense, towards positive values. Further description on the specification of

a uniform prior distribution on either σ or log σ are provided in Gelman (2006) as

well as other details on non-informative and weakly-informative prior distributions

for hierarchical variance parameters.

4.3.1 Procedure for Bayesian Analysis when assuming

a Conjugate Prior

The procedure of obtaining the posterior distribution when carrying out a Bayesian

analysis shall now be set out mathematically for both cases where σ2 is known and

unknown.

σ2 known

A multivariate normal likelihood is assumed, i.e. that

y|β ∼MVNN(Xβ, σ2I).

This is where a joint prior distribution is specified for the p parameters of interest, β.

Data y are collected consisting of N observations from an experiment which uses the

design matrix X and I is the N×N identity matrix. A multivariate normal conjugate
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prior is then placed on the parameters of interest β where

β ∼MVNp(µp,Σp)

and

p(β) = (2π)−
p
2 |Σp|−

1
2 exp

{
−1

2
(β − µp)TΣ−1

p (β − µp)
}
.

Also,

p(y|β) = (2π)−
N
2 σ−N exp

{
− 1

2σ2
(y −Xβ)T(y −Xβ)

}
.

We can then obtain the posterior distribution using Bayes Theorem which implies

p(β|y) ∝ p(β)p(y|β)

∝ exp

{
−1

2
(β − µp)TΣ−1

p (β − µp)−
1

2σ2
(y −Xβ)T(y −Xβ)

}
= exp

{
−1

2

[
(β − µp)TΣ−1

p (β − µp) +
1

σ2
(y −Xβ)T(y −Xβ)

]}
= exp

{
− 1

2

[
βTΣ−1

p β − βTΣ−1
p µp − µT

p Σ−1
p β + µT

p Σ−1
p µp

+
1

σ2
yTy − 1

σ2
yTXβ − 1

σ2
βTXTy +

1

σ2
βTXTXβ

]}
= exp

{
− 1

2

[
βT(

1

σ2
XTX + Σ−1

p )β − βT(
1

σ2
XTy + Σ−1

p µp)

−(
1

σ2
yTX + µT

p Σ−1
p )β + (

1

σ2
yTy + µT

p Σ−1
p µp)

]}
.

Then only considering the terms involving β, it can be found that

p(β|y) ∝ exp

{
−1

2
(β − µ)TΣ−1(β − µ)

}
where

µ =

[
1

σ2
XTX + Σ−1

p

]−1 [
1

σ2
XTy + Σ−1

p µp

]
and

Σ =

[
1

σ2
XTX + Σ−1

p

]−1

.

Thus, the form of the posterior distribution is also multivariate normal where

β|y ∼MVNp(µ,Σ).
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σ2 unknown

A multivariate normal likelihood is again assumed, as in the case where σ2 was known.

Throughout this thesis it has generally been assumed that an experimenter will have

some prior knowledge about run-to-run variation. This will usually be based upon

past experience or due to the fact that there is not expected to be much variability

between experimental units, the smallest unit to which a treatment can be applied

(Bailey, 2008). In the pharmaceutical industry setting the units will typically be runs

of pilot-scale or full-scale equipment depending on the stage of the investigation, such

as high shear mixers and blenders. However, if an experimenter does not possess

much information about the variation in experimental units we can instead assume

that σ2 is unknown and put a prior distribution on this parameter.

Let a multivariate normal prior be placed on the parameters of interest β and an

inverse gamma prior be placed on the variance σ2. Then the multivariate normal-

inverse gamma prior distribution is conjugate to the normal likelihood and is given

by

[β, σ2] ∼ NIG(µp,A, a, b)

which can also be expressed by

β|σ2 ∼ Np(µp,Aσ
2)

and

σ2 ∼ IG(a, b).

Thus, the prior distribution for σ and β is

p(σ) ∝ (σ)−(a+1) exp

{
− ab

2σ2

}
and

p(β|σ) ∝ |A
−1| 12
σp

exp

{
− 1

2σ2
(β − µp)TA−1(β − µp)

}
.
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Then the resulting posterior is also of the form normal-inverse gamma with parameters

µ̃ = Σ̃(XTy + A−1µp)

Σ̃ = (XTX + A−1)−1

ã =
N

2
+ a

b̃ =
SS

2
+ b

SS = yTy − µTΣ̃−1µ+ µT
p A−1µp

and the marginal posterior distribution of β|y integrated over σ has p.d.f

p(β|y) ∝
{
ab+ yTy + µT

p A−1µp − µT(A−1 + XTX)µ

+(β − µ)T(A−1 + XTX)(β − µ)

}−N+a+p
2

.

That is, the marginal posterior distribution of β is a multivariate scaled-t distribution

with mean µp.

4.3.2 The Gibbs Sampler

In the previous subsection (§4.3.1), the mechanics of a Bayesian analysis were pre-

sented in order to obtain the posterior distribution. Obtaining the posterior distri-

bution often requires the integration of high-dimensional functions which can be very

difficult to achieve analytically, particularly when non-conjugate prior distributions

have been assumed.

MCMC techniques have enabled highly complicated models to be used and their cor-

responding posterior distributions to be estimated with accuracy. The WinBUGS

software (Spiegelhalter et al., 2003), which is based upon the BUGS project (Spiegel-

halter et al., 1996) that started in 1989, is the Windows version of BUGS and is

a statistical software for Bayesian analysis that uses MCMC methods. BUGS is so
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called since it is a Bayesian inference Using Gibbs Sampling. The Gibbs Sampler

is a particular Markov chain algorithm which was developed by Geman and Geman

(1984) and has its origins in image processing and it should be noted that the Gibbs

sampler is a special case of the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970). It is perhaps the rediscovery of MCMC methods in the early

1990s (Gelfand et al., 1990; Gelfand and Smith, 1990) which has lead to the spark

of interest in the use of Bayesian methods in applied statistics and has resulted in

MCMC methods and the Gibbs sampler becoming one of the principal computational

tools for carrying out a Bayesian inference.

The Gibbs sampling procedure will now be outlined. Let the parameter vector θ be

partitioned into J subvectors or components so that θ = (θ1, . . . , θJ) and θj is the jth

component of parameters. Each component contains one or more parameters and θ−j

denotes the set of all parameters not in component j. Relating this to Bayes Theorem

we have

p(θ1, . . . , θJ |y1, . . . , yN) ∝ p(θ1, . . . , θJ)p(y1, . . . , yN |θ1, . . . , θJ),

which gives the shape of the joint posterior density of all the parameters. Gibbs

sampling requires that we know the full conditional distribution of all the components

θj, given all other parameters θ−j and observed data y = (y1, . . . , yN)T. Then let the

full conditional distribution of component θj be denoted as

p(θj|θ−j,y) = p(θj|θ1, . . . , θj−1, θj+1, . . . , θJ ,y).

The Gibbs sampler cycles through each of the parameter components in turn, drawing

each one from its full conditional distribution given the most recent values of all the

other parameter components and the observed data.

The steps for the algorithm of the Gibbs sampler can be summarized as follows:

1. Start from some arbitrary point in the parameter space θ0 = (θ
(0)
1 , . . . , θ

(0)
J ).
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2. For each iteration t = 1, . . . , T

(a) Set θ = θt−1.

(b) For j = 1, . . . , J update θj by drawing θ
(t)
j from

θj ∼ p(θj|θ(t)
1 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 , . . . , θ

(t−1)
J ,y).

(c) Set θt = θ and save this as the generated set of values at the t+1 iteration

of the algorithm.

Thus, given a particular state of the chain θ(t), we generate the new parameter values

by

θ
(t)
1 from p(θ1|θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
J ,y),

θ
(t)
2 from p(θ2|θ(t)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
J ,y),

... from
...

θ
(t)
J from p(θJ |θ(t)

1 , θ
(t)
2 , . . . , θ

(t)
J ,y).

The long-run distribution of θ(T ) = (θ
(T )
1 , . . . , θ

(T )
J ) is then the true posterior p(θ1, . . . , θJ |y)

so that for a large T the value θ(T ) will approximately be a random draw from the

true posterior.

As mentioned the Gibbs sampler is a special case of the Metropolis-Hastings algo-

rithm, where the conditional candidate density for each of the parameter components

is the conditional density of that component, given all the parameters in the other

components and the observed data. Then, due to the candidates being drawn from

the correct full conditional distribution, we will always accept the draw of each pro-

posed move. Further details of the Gibbs sampler can be found in Casella and George

(1992) and its application in Smith and Roberts (1993).

WinBUGS makes great use of this algorithm in order to perform a Bayesian analysis.
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The results presented in the following section will be obtained using WinBUGS in

order to perform a Bayesian analysis. Hence, data will be analysed based upon the

Bayesian methodology that has been discussed thus far in this chapter. The data

that are to be analysed in order to achieve these results shall also be given in the

following section.
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4.4 Bayesian Analysis of Reactor Data

The Bayesian methods set out thus far shall now be illustrated with a practical

example where some reactor data, which shall be discussed in some detail in the

following subsection, shall be analysed in a Bayesian way. The model and prior

assumptions to be made shall then be set out before finally the results are presented

and discussed.

4.4.1 Reactor Data

The reactor data which are to be analysed in a Bayesian fashion are taken from Box,

Hunter and Hunter (1978). This particular experiment and the resulting dataset is

being considered due to its feature of being typical of an industrial experiment. There

are 5 factors being investigated all at two levels and these variables and the particular

settings for their low and high levels are given in Table 4.1. Due to the design being

a 25 factorial design, the design consists of 32 runs as displayed in Table 4.2.

From the standard analyses of the complete factorial arrangement, estimates of effects

and a normal plot of effects as displayed in Table 4.3 and Figure 4.1, allow us to

conclude that the only effects distinguishable from noise are the main effects 2, 4

and 5 and two-factor interactions 24 and 45. The normal plot has the notation of

the variables identified by capital letters rather than notated by numbers, where A

denotes main effect 1, B denotes main effect 2 and so on. BD and DE are the only

two-factor interaction effects that are labelled on the normal plot as they fall away

from the line and are clearly distinguishable from noise in comparison to the other

interactions. These represent 24 and 45 respectively.
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Table 4.1: Variables for 25 factorial design, reactor example

Variable - +

1 Feed Rate (litres/min) 10 15

2 Catalyst (%) 1 2

3 Agitation Rate (rpm) 100 120

4 Temperature (◦C) 140 180

5 Concentration (%) 3 6

Figure 4.1: Normal Plot for Full Factorial Design of Reactor Data
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Table 4.2: Results from 25 factorial design, reactor example

variable response (% reacted)

Run 1 2 3 4 5 y

1 - - - - - 61

∗2 + - - - - 53

∗3 - + - - - 63

4 + + - - - 61

∗5 - - + - - 53

6 + - + - - 56

7 - + + - - 54

∗8 + + + - - 61

∗9 - - - + - 69

10 + - - + - 61

11 - + - + - 94

∗12 + + - + - 93

13 - - + + - 66

∗14 + - + + - 60

∗15 - + + + - 95

16 + + + + - 98

∗17 - - - - + 56

18 + - - - + 63

19 - + - - + 70

∗20 + + - - + 65

21 - - + - + 59

∗22 + - + - + 55

∗23 - + + - + 67

24 + + + - + 65

25 - - - + + 44

∗26 + - - + + 45

∗27 - + - + + 78

28 + + - + + 77

∗29 - - + + + 49

30 + - + + + 42

31 - + + + + 81

∗32 + + + + + 82
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Table 4.3: Analysis of 25 factorial design, reactor example

estimates of effects

average = 65.5

1 = -1.375 123 = 1.50

2 = 19.5 124 = 1.375

3 = -0.625 125 = -1.875

4 = 10.75 134 = -0.75

5 = -6.25 135 = -2.50

145 = 0.625

12 = 1.375 235 = 0.125

13 = 0.75 234 = 1.125

14 = 0.875 245 = -0.250

15 = 0.125 345 = 0.125

23 = 0.875

24 = 13.25 1234 = 0.0

25 = 2.0 1245 = 0.625

34 = 2.125 2345 = -0.625

35 = 0.875 1235 = 1.5

45 = -11.0 1345 = 1.0

12345 = -0.25

As previously stated, the run size for a full 2k factorial design increases geometrically

as the number of variables k increases, and for the full 25 factorial, the following

effects can be estimated as has just been demonstrated:

Table 4.4: Analysis of 25 factorial design, reactor example

Type of Effect Number

Average 1

Main Effects 5

2-Factor Interactions 10

3-Factor Interactions 10

4-Factor Interactions 5

5-Factor Interactions 1

Although all the effects can be estimated, they will not all be of considerable size.
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Thus, higher order interactions than two-factor ones can be disregarded based on

the hierarchical ordering principle which states that lower order effects are more

likely to be important than higher order effects. In this way, information that an

experimenter wishes to gain can be obtained by carrying out an experiment where

only a fraction of the full factorial design is used. Applying this in the context of the

reactor example, only 16 runs of the original design are now used where previously

the full factorial design was considered. This half-fraction, which is a Resolution V

design, is constructed using the design generator 5 = 1234, the design for which is

presented in Table 4.5. The 16 runs which make up this design are marked with

asterisks where the full factorial design has been given in Table 4.2.

By using the design generator 5 = 1234, we assign the column that equals the prod-

uct of the columns for factors 1, 2, 3 and 4 to factor 5. As a result, the data from

such a design will not be able to distinguish the estimate of main effect 5 from the

estimate of the 4-factor interaction 1234, and we say main effect 5 is aliased with the

1234 interaction. This is a price that we pay for using a fraction of the full factorial

design. In the case of this Resolution V design, all main effects are strongly clear

(they are not aliased with any other main effects, two-factor or three-factor interac-

tions) and the two-factor interactions are clear (they are not aliased with main effects

or other two-factor interactions).

The analysis of the half-fraction produces estimates of effects and a normal plot,

displayed in Table 4.6 and Figure 4.2, that draw attention to precisely the same

effects as the analysis of the full factorial. Thus, it can be observed that although

aliasing is introduced as a result of carrying out only half of the total number of runs,

the most essential information from this experiment can still be gained, saving the

experimenter considerable efforts in terms of both time and cost.
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Table 4.5: Design for half-fraction of the full 25 factorial design, reactor example

Design response (% reacted)

Run 1 2 3 4 5 = 1234 y

17 - - - - + 56

2 + - - - - 53

3 - + - - - 63

20 + + - - + 65

5 - - + - - 53

22 + - + - + 55

23 - + + - + 67

8 + + + - - 61

9 - - - + - 69

26 + - - + + 45

27 - + - + + 78

12 + + - + - 93

29 - - + + + 49

14 + - + + - 60

15 - + + + - 95

32 + + + + + 82

Table 4.6: Analysis of a Half-fraction of the full 25 factorial design, reactor example

estimates of effects

average = 65.25

1 = -2.0 12 = 1.5

2 = 20.5 13 = 0.5

3 = 0.0 14 = -0.75

4 = 12.25 15 = 1.25

5 = -6.25 23 = 1.50

24 = 10.75

25 = 1.25

34 = 0.25

35 = 2.25

45 = -9.50
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Figure 4.2: Normal Plot for Half-fraction of Reactor Data

Now that the reactor data and the standard analyses of these data have been pre-

sented, the dataset will now be re-analysed in the following section using Bayesian

methods. The Bayesian analyses will be compared with the standard analyses to

assess whether any differing conclusions are drawn when making various prior distri-

butional assumptions on the model and parameter effects based upon prior knowledge

that is available. It will also be of interest to observe if using prior knowledge in a

fully Bayesian data analysis improves upon standard analyses and provides an exper-

imenter with any useful information or enables them to gain greater insight of the

scientific process they are investigating.

4.4.2 Prior Specification

The various likelihood model assumptions on the data and prior assumptions on the

effect parameters and variance being investigated will now be set out.
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Assumptions about how the data are modelled will be with respect to the observed

data y = [y1, . . . , yN ]T where

y = [56, 53, 63, 65, 53, 55, 67, 61, 69, 45, 78, 93, 49, 60, 95, 82]T.

That is, the observed data being considered shall be the data when a half-fraction of

the complete 25 factorial design is used. This is due to reasons set out in the previous

subsection (§4.4.1) which are that the most important information can still be gained

from carrying out only half the number of runs of the complete factorial design.

The distributions that shall be assumed about how the data are modelled will be

the normal and the scaled-t distribution. The observed data shall take the following

form,

yi = µi + εi

where

µi = β0 +
5∑
i=1

βixi +
∑ 5∑

i<j

βijxixj.

When assuming the normal distribution,

εi ∼ N(µ, σ2)

and when assuming the scaled-t distribution,

εi ∼ tν(µ, σ
2)

That is, it is the errors that are assumed to have a normal or scaled-t distribution.

The scaled-t distribution has three parameters which it is determined by, the location,

or centre µ, the scale σ, and the degrees of freedom, or shape parameter ν.

When assuming that the errors are modelled by the scaled-t distribution, we shall take

the degrees of freedom parameter ν, which determines the shape of the distribution,
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to be 4. When taking the extreme case of ν = 1, this is in fact the same as the Cauchy

distribution and thus the shape of the distribution is so long-tailed that the mean

is undefined and the variance are infinite. When looking at the opposite extreme,

i.e. when ν → ∞, then the scaled-t distribution can then be shown to tend to the

normal distribution. This gives some explanation for the choice of ν = 4. That is,

in the case when the degrees of freedom parameter is set to be extremely small, for

example at one or two, then the prior distribution will have infinite variance which

will typically not be truly representative particularly when looking at the far tails.

Conversely, when taking the degrees of freedom to be extremely large or tending to

infinity, then we will be looking at the normal distribution and we are seeking to

investigate an alternative distribution to the normal. In fact, the choice of scaled-t

distribution chosen as a robust alternative to the normal distribution, particularly

when an experimenter suspects their dataset of containing outliers, will be discussed

further in the following chapter.

Note that in the cases of the normal distribution given above, the variance has been

denoted by its standard notation of σ2. However, throughout this section for all other

distributions that are to be specified, the variance shall now be represented in terms

of the precision τ rather than being represented by its typical notation of σ2. This

is due to the fact that WinBUGS works with the precision rather than the variance.

For the normal distribution this will be represented as

εi ∼ N(µ, τ),

and for the scaled-t distribution this will be represented as

εi ∼ tν(µ, τ).

Also note that the effects being estimated from the analysis of these data are main

effects and two-factor interactions, due to the hierarchical ordering principle which
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states that lower order effects are more likely to be important than higher order

effects. The aliasing structure also means that both the main effects and two-factor

interactions are clear since none of their aliases are any other main effects or two-factor

interactions. The prior distributions that shall be assumed for the effect parameters,

i.e. the main effects and two-factor interaction effects are normal distributions and

also a mixture of normal distributions. In all cases the intercept shall be distributed

normally with a large variance that shall be assumed to approach ∞. This is to

represent the belief that we are generally not concerned with estimating the intercept

parameter.

The prior distributions that shall be placed on the residual variance shall be the

inverse gamma distribution and a uniform distribution placed on log σ. Since the

precision, τ , is the inverse of the variance then when considering an inverse gamma

distribution on the variance parameter, i.e. that

σ2 ∼ IG(a, b)

for some values a and b, then it follows that the prior distribution on the precision, τ

can be represented as

τ ∼ Gamma(a, b).

When considering the uniform prior distribution on log σ, this can be represented as

log σ ∼ Unif [−c, c]

for some value c.

A summary of the prior assumptions that shall be investigated, and also the parameter

values that shall be assumed for each of the distributions investigated are displayed in

the following table. As previously stated, where the value for the variance parameter

is stated, such as with 10−3 in the case of the normal distribution for the main effects

and two-factor interactions, this is in fact the value for the precision, τ .
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Table 4.7: Prior Distributional Assumptions

Distribution Parameter Values

Model for errors Normal N(µ, τ)

Scaled-t t4(µ, τ)

Intercept Normal N(0, 10−∞)

Main Effects and two-factor interactions Normal N(0, 10−3)

Mixture of normals N(0, τ1) if effect is inactive

N(0, τ2) if effect is active

where τ1 = 1
σ2
1

, τ2 = 1
σ2
2

and σ1 ∼ Unif (0, 1), σ2 ∼ Unif (0, 10)

p0 = 0.85 (probability effect is inactive)

p1 = 0.15 (probability effect is active)

Residual Variance Inverse gamma τ ∼ Gamma (0.001, 0.001)

τ ∼ Gamma (1, 1)

τ ∼ Gamma (5, 5)

Uniform log σ ∼ Unif [−10, 10]

4.4.3 MCMC Diagnostics

Before the summary statistics obtained when using WinBUGS to analyse the reactor

data are presented, some comments on the MCMC diagnostics are given. Using

MCMC methods, by way of an iterative simulation method posterior distributions

were computed for each of the models fitted in order to achieve the summary statistics

displayed in the following subsection (§4.4.4). As described previously, at each step

in the simulation the approximate distributions are improved so that the chain is

converging to the target distribution. Thus, before any inferences can be made based

upon these posterior estimates, it is necessary to look at MCMC diagnostics to assess

whether the computation has ‘worked’ and that the chain has in fact converged to

equilibrium.

For each of the models fitted and prior assumptions made, 20000 iterative simulations

were run for two chains, where different initial values for the two chains were used.
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The purpose of running more than one chain is to check that, given that each chain

is started at a different place, the two chains eventually converge so that both are

representative of the same target distribution. The iterations were also thinned by

only storing every 10th simulation, which proves useful when running the chain for a

long time and when there are a large number of parameters to store simulations for.

20000 simulations were found to be a sufficient number of simulations for convergence

to be reached for all parameters, assessed by looking at trace plots, autocorrelation

function plots and Brooks-Gelman-Rubin plots produced in WinBUGS. Trace plots

give the value of the parameter monitored against the iteration number and can

be assessed visually to check for convergence. Autocorrelation function plots can

be used to detect if there is correlation within values in the chain and the Brooks-

Gelman-Rubin diagnostic is a method for assessing the convergence of parallel chains.

Assuming that the chains start from widely different starting values, one would expect

that as the chains come closer into agreement the variability of the pooled chains

should be similar to the average variability of the individual chains. Selected plots

for the main effects, σ and τ , produced in WinBUGS when analysing the reactor

data assuming a normal model on the data, normal mixture distribution on effect

parameters and Gamma(1, 1) distribution on the precision are given in Figures 4.3

- 4.7. Looking at the trace plots it can be seen that the chains have converged and

are well ‘mixed’. All the autocorrelation function plots are tailing off, becoming

indistinguishable from zero very quickly for the main effects and within less than

10 lags for σ and τ . This indicates that values within the chain are not highly

correlated. The Brooks-Gelman-Rubin plots also confirm that convergence of parallel

chains is achieved. The red line displays the ratio of the variability of the pooled chains

to the average variability of the individual chains and confirms that convergence is

satisfactory since in all plots, this ratio converges to one.

Carrying out checks of the convergence and correlation by looking at these plots

for various prior assumptions made when analysing the reactor data in a Bayesian
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fashion in WinBUGS, it was found that it was suitable to run the chain for 20000

simulations, as mentioned previously. A rule-of-thumb for checking that the number

of iterations is suitable is by looking at the MC error, which is an adjusted standard

error and is obtained for each parameter monitored. A suitable number of further

iterations are required once the chain has converged, in order to obtain accurate

posterior estimates and the simulations should be run for further iterations until the

MC error is approximately no more than 5% of the sample standard deviation for all

parameters. Values for the MC error of all parameters are given in the results table

in the following subsection. A burn-in of the first 5000 simulations was also found

to be sufficient. Thus, ‘throwing away’ the first 5000 simulations ensures that any

results and inferences will only be based upon those sample draws after convergence

has been reached.
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Figure 4.3: Trace Plots for β1, . . . , β5, σ and τ
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Figure 4.4: Autocorrelation Function Plots for β1, . . . , β5
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Figure 4.5: Brooks-Gelman-Rubin Plots for β1, . . . , β5
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Figure 4.6: Autocorrelation Function Plots for σ and τ

Figure 4.7: Brooks-Gelman-Rubin Plots for σ and τ

220



4.4.4 Results

The summary statistics obtained when using WinBUGS to analyse the reactor data

are now presented. This is the analysis when estimating all main effects and two-

factor interactions when experimenting using a half-fraction (Table 4.5) of the original

25 experiment. After the tables displaying the summary statistics are presented,

comments on the results are given.

Table 4.8: Summary statistics from WinBUGS after fitting normal model to reactor

data, with normal distribution on effect parameters and Gamma(0.001, 0.001) prior

on precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.27 3.492 0.01965 58.63 65.25 71.9

β1 −0.995 3.194 0.01713 −7.261 −1.0 5.448

β2 10.12 3.143 0.01761 3.182 10.25 15.9

β3 −0.1377 3.201 0.01808 −6.499 −0.0573 6.307

β4 6.055 3.24 0.0186 −0.9433 6.125 12.27

β5 −3.102 3.236 0.01847 −9.621 −3.124 3.588

β12 0.7467 3.169 0.01645 −5.562 0.7506 7.036

β13 0.2552 3.181 0.01868 −6.205 0.2502 6.586

β14 −0.4176 3.177 0.01865 −6.97 −0.3758 5.872

β15 0.6146 3.189 0.01788 −5.897 0.6254 7.019

β23 0.75 3.204 0.01689 −5.605 0.7509 7.096

β24 5.331 3.303 0.01846 −1.285 5.375 11.57

β25 0.6041 3.223 0.01905 −6.144 0.624 7.166

β34 0.117 3.208 0.02013 −6.408 0.1254 6.649

β35 1.142 3.157 0.01617 −5.179 1.126 7.401

β45 −4.736 3.185 0.01779 −11.1 −4.749 1.772

σ 6.415 12.13 0.2476 0.0357 1.118 43.89

τ 79.26 268.7 3.955 0.000521 0.801 785.4
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Table 4.9: Summary statistics from WinBUGS after fitting normal model to reactor

data, with normal distribution on effect parameters and Gamma(1, 1) prior on

precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 0.6356 0.003984 64.19 65.25 66.31

β1 −1.003 0.6619 0.003903 −2.042 −1.002 0.03457

β2 10.25 0.6342 0.004096 9.178 10.25 11.29

β3 0.00129 0.657 0.003687 −1.057 0.002397 1.087

β4 6.122 0.6144 0.003484 5.059 6.125 7.182

β5 −3.133 0.6196 0.003368 −4.2 −3.128 −2.106

β12 0.7525 0.6234 0.003619 −0.3042 0.7533 1.827

β13 0.2535 0.629 0.003502 −0.8051 0.2557 1.301

β14 −0.3823 0.6413 0.00376 −1.478 −0.3807 0.6814

β15 0.625 0.6495 0.003875 −0.4409 0.6282 1.701

β23 0.7493 0.6313 0.003982 −0.3068 0.7497 1.819

β24 5.373 0.6247 0.003555 4.286 5.372 6.437

β25 0.6226 0.6814 0.004071 −0.4383 0.6233 1.671

β34 0.1211 0.6287 0.003626 −0.9284 0.124 1.154

β35 1.125 0.6251 0.003446 0.05736 1.125 2.187

β45 −4.744 0.638 0.003664 −5.814 −4.746 −3.67

σ 1.713 1.906 0.02265 0.518 1.205 6.086

τ 1.001 1.004 0.008064 0.0271 0.6882 3.73
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Table 4.10: Summary statistics from WinBUGS after fitting normal model to

reactor data, with normal distribution on effect parameters and Gamma(5, 5) prior

on precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 0.2807 0.001612 64.69 65.25 65.81

β1 −0.9987 0.2794 0.001557 −1.552 −0.9997 −0.4417

β2 10.25 0.2824 0.001504 9.687 10.25 10.81

β3 0.0275 0.2793 0.001712 −0.5599 0.0270 0.5533

β4 6.124 0.2791 0.001699 5.566 6.126 6.688

β5 −3.126 0.2801 0.001552 −3.683 −3.126 −2.563

β12 0.7502 0.2807 0.001702 0.1936 0.7501 1.306

β13 0.2506 0.2812 0.00148 −0.3142 0.2539 0.8052

β14 −0.3879 0.2794 0.001612 −0.9365 −0.3779 0.7124

β15 0.6263 0.2792 0.001488 0.06774 0.626 1.181

β23 0.749 0.2789 0.001424 0.1882 0.7506 1.299

β24 5.373 0.28 0.001617 4.818 5.37 5.937

β25 0.6287 0.2773 0.001655 0.07382 0.6276 1.18

β34 0.1252 0.2779 0.001618 −0.4284 0.1246 0.6777

β35 1.125 0.2783 0.001513 0.5729 1.124 1.683

β45 −4.749 0.2804 0.001521 −5.314 −4.749 −4.191

σ 1.083 0.2751 0.001596 0.7009 1.033 1.761

τ 1.001 0.446 0.002472 0.3225 0.9366 2.036
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Table 4.11: Summary statistics from WinBUGS after fitting normal model to reactor

data, with normal distribution on effect parameters and Unif[−10, 10] prior on log σ

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 2.327 0.01421 62.0 65.25 68.54

β1 −0.9987 2.067 0.01168 −4.112 −1.0 2.219

β2 10.22 2.066 0.01253 6.895 10.25 13.29

β3 0.00172 2.09 0.01118 −3.167 −0.0033 3.185

β4 6.095 2.106 0.01283 2.711 6.125 9.164

β5 −3.121 2.132 0.01345 −6.376 −3.125 0.2634

β12 0.7382 2.207 0.01292 −2.609 0.75 3.876

β13 0.2388 2.17 0.01193 −3.12 0.25 3.303

β14 −0.3574 2.155 0.01111 −3.426 −0.375 2.896

β15 0.6328 2.124 0.01276 −2.686 0.625 3.751

β23 0.7533 2.108 0.01351 −2.411 0.75 3.922

β24 5.364 2.049 0.01195 2.168 5.375 8.51

β25 0.6168 2.149 0.01147 −2.669 0.625 3.813

β34 0.1132 2.14 0.01218 −3.162 0.125 3.258

β35 1.121 2.128 0.01247 −2.125 1.125 4.342

β45 −4.728 2.114 0.0117 −8.022 −4.75 −1.354

σ 2.961 8.605 0.2409 0.0425 0.03601 29.69

τ 2001.356 6974.587 593.0403 0.001139 771.5 7482.205
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Table 4.12: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with normal distribution on effect parameters and

Gamma(0.001, 0.001) prior on precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 3.287 0.01877 58.9 65.25 71.6

β1 −0.9843 3.139 0.01755 −6.988 −0.9995 5.352

β2 10.2 3.092 0.02013 3.995 10.25 16.14

β3 −0.04449 3.06 0.0182 −6.391 −0.1019 5.838

β4 6.072 3.125 0.01773 −0.3598 6.124 12.14

β5 −3.095 3.102 0.01797 −9.014 −3.125 3.222

β12 0.7027 3.122 0.01817 −5.596 0.7494 6.841

β13 0.2593 3.081 0.01885 −5.778 0.2497 6.443

β14 −0.3894 3.026 0.0195 −6.578 −0.3751 5.609

β15 0.5829 3.04 0.01933 −5.802 0.6242 6.446

β23 0.7298 3.084 0.01672 −5.528 0.7503 7.081

β24 5.321 3.061 0.01942 −1.087 5.375 11.2

β25 0.6247 3.163 0.01744 −5.474 0.6252 6.941

β34 0.1318 3.076 0.01967 −6.046 0.1255 6.105

β35 1.08 3.072 0.01769 −5.195 1.125 7.06

β45 −4.727 3.095 0.01802 −10.75 −4.749 1.406

σ 4.749 9.386 0.2082 0.0344 0.8726 32.24

τ 88.58 294.7 4.217 0.1765 1.313 845.4

225



Table 4.13: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with normal distribution on effect parameters and Gamma(1, 1) prior

on precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.24 0.8434 0.004973 63.79 65.25 66.66

β1 −0.9985 0.7977 0.005004 −2.45 −0.9976 0.4418

β2 10.24 0.811 0.004766 8.778 10.25 11.68

β3 −0.001304 0.8173 0.00459 −1.441 −0.1238 1.463

β4 6.119 0.8364 0.004897 4.654 6.122 7.589

β5 −3.124 0.8096 0.004995 −4.565 −3.125 −1.663

β12 0.7449 0.8198 0.004598 −0.683 0.7455 2.2

β13 0.2381 0.8194 0.004672 −1.245 0.246 1.664

β14 −0.3714 0.8344 0.005078 −1.806 −0.3767 1.117

β15 0.6271 0.836 0.005213 −0.843 0.626 2.055

β23 0.7516 0.8216 0.004378 −0.7032 0.7511 2.216

β24 5.365 0.8145 0.004467 3.922 5.371 6.814

β25 0.6298 0.8154 0.004622 −0.7799 0.6256 2.051

β34 0.1284 0.8301 0.004623 −1.285 0.1228 1.572

β35 1.12 0.8736 0.005259 −0.3813 1.123 2.557

β45 −4.746 0.8255 0.004805 −6.198 −4.747 −3.259

σ 1.672 1.773 0.01915 0.5141 1.182 5.952

τ 1.019 1.011 0.007989 0.02823 0.7164 3.784
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Table 4.14: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with normal distribution on effect parameters and Gamma(5, 5) prior

on precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 0.394 0.002171 64.46 65.25 66.04

β1 −1.0 0.3928 0.002265 −1.788 −0.9979 −0.2072

β2 10.25 0.3947 0.002203 9.455 10.25 11.04

β3 −0.00166 0.396 0.00241 −0.8 −0.1010 0.7871

β4 6.125 0.3946 0.002175 5.334 6.124 6.913

β5 −3.125 0.3961 0.002144 −3.92 −3.126 −2.322

β12 0.7489 0.3932 0.002151 −0.04765 0.7519 1.534

β13 0.2541 0.3931 0.00215 −0.5319 0.2545 1.042

β14 −0.375 0.393 0.002174 −1.165 −0.3707 0.3989

β15 0.6234 0.3938 0.002211 −0.1604 0.6204 1.414

β23 0.7497 0.3947 0.002304 −0.04447 0.7523 1.536

β24 5.375 0.3941 0.002205 4.59 5.376 6.171

β25 0.6265 0.3904 0.002198 −0.1558 0.6259 1.423

β34 0.124 0.3951 0.002254 −0.6739 0.1252 0.912

β35 1.126 0.3963 0.002259 0.3346 1.126 1.915

β45 −4.749 0.3932 0.002295 −5.531 −4.752 −3.958

σ 1.084 0.2744 0.001509 0.6964 1.034 1.762

τ 0.9999 0.4485 0.002587 0.3221 0.9357 2.062
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Table 4.15: Summary statistics from WinBUGS after fitting normal model to

reactor data, with normal mixture distribution on effect parameters and

Gamma(0.001, 0.001) prior on precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 0.5298 0.003245 64.21 65.25 66.29

β1 −0.755 0.4063 0.006768 −1.219 −0.9565 0.1747

β2 10.14 0.7976 0.03183 8.846 10.25 11.04

β3 −0.00181 0.2383 0.001291 −0.533 −0.0510 0.5221

β4 6.056 0.6456 0.02105 4.836 6.122 6.99

β5 −2.966 0.697 0.01247 −3.861 −3.12 −0.3239

β12 0.566 0.3446 0.004952 −0.2464 0.7173 1.011

β13 0.1869 0.2488 0.002119 −0.4129 0.2375 0.6617

β14 −0.2833 0.2679 0.002828 −0.7468 −0.03577 0.3487

β15 0.4721 0.3144 0.004313 −0.2782 0.598 0.9263

β23 0.7456 0.4641 0.003241 −0.2871 0.7495 1.751

β24 5.314 0.5855 0.01739 4.111 5.373 6.25

β25 0.6173 0.4541 0.003682 −0.4135 0.6247 1.599

β34 0.09468 0.2428 0.00172 −0.4611 0.1179 0.599

β35 0.8481 0.4441 0.007369 −0.1644 1.047 1.319

β45 −4.693 0.5714 0.01645 −5.637 −4.748 −3.526

σ 1.265 1.729 0.05647 0.03407 0.6061 5.212

τ 91.51 290.1 3.808 0.03682 2.723 861.6
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Table 4.16: Summary statistics from WinBUGS after fitting normal model to

reactor data, with normal mixture distribution on effect parameters and

Gamma(1, 1) prior on precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 0.4373 0.002493 64.37 65.25 66.16

β1 −0.6774 0.3981 0.003744 −1.319 −0.7535 0.1275

β2 10.19 0.4425 0.002871 9.208 10.22 11.03

β3 0.002537 0.2752 0.001499 −0.5639 0.001111 0.5698

β4 6.089 0.4466 0.002931 5.14 6.103 6.95

β5 −3.046 0.5385 0.004394 −3.945 −3.097 −1.749

β12 0.508 0.3506 0.002852 −0.2052 0.5566 1.11

β13 0.1674 0.2869 0.001855 −0.4238 0.1707 0.7238

β14 −0.2544 0.2972 0.002004 −0.8286 −0.2673 0.3527

β15 0.4259 0.3275 0.002449 −0.2343 0.4611 1.019

β23 0.7462 0.4292 0.002383 −0.1621 0.7478 1.633

β24 5.344 0.4356 0.002426 4.404 5.36 6.203

β25 0.619 0.4289 0.002516 −0.2811 0.6235 1.486

β34 0.08649 0.281 0.001622 −0.4871 0.08426 0.6507

β35 0.7637 0.4261 0.003857 −0.1035 0.8528 1.422

β45 −4.722 0.4342 0.002644 −5.583 −4.737 −3.791

σ 1.503 0.8624 0.008583 0.5325 1.275 3.622

τ 0.9346 0.9402 0.007312 0.07637 0.6156 3.527

229



Table 4.17: Summary statistics from WinBUGS after fitting normal model to

reactor data, with normal mixture distribution on effect parameters and

Gamma(5, 5) prior on precision

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 0.2855 0.001559 64.68 65.25 65.81

β1 −0.8134 0.2876 0.001832 −1.333 −0.8327 −0.1642

β2 10.22 0.286 0.001562 9.65 10.22 10.79

β3 0.001718 0.2478 0.001469 −0.486 0.001089 0.5009

β4 6.108 0.2878 0.001619 5.524 6.112 6.671

β5 −3.105 0.2938 0.001577 −3.68 −3.106 −2.511

β12 0.6116 0.2722 0.001728 0.02755 0.6236 1.125

β13 0.2022 0.2507 0.001483 −0.3035 0.2034 0.6934

β14 −0.305 0.2545 0.001577 −0.8033 −0.3092 0.2057

β15 0.5074 0.2647 0.001492 −0.03352 0.5167 1.016

β23 0.7469 0.2861 0.001692 −0.1768 0.7457 1.322

β24 5.361 0.2863 0.001591 4.788 5.363 5.933

β25 0.6225 0.2858 0.001609 0.04716 0.6231 1.191

β34 0.1013 0.2497 0.001406 −0.3952 0.1005 0.5968

β35 0.9195 0.2991 0.002034 0.2304 0.9443 1.447

β45 −4.737 0.2871 0.001618 −5.305 −4.739 −4.164

σ 1.11 0.292 0.001864 0.7072 1.056 1.823

τ 0.9647 0.4452 0.002575 0.301 0.8969 1.999
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The node column heading in the tables represent the parameters that have been mon-

itored and that posterior estimates such as the mean and median have been calculated

for using WinBUGS. In all cases the intercept β0, main effects β1, . . . , β5, two-factor

interactions β12, β13, β14, β15, β23, β24, β25, β34, β35, β45, residual standard deviation σ

and precision τ have all been monitored. sd denotes the standard deviation for each

of the individual parameters and the MC error is an adjusted standard error as men-

tioned previously. Observing the values of the MC error in all tables it can be seen

that the MC error is less than, or approximately 5% of the sample standard deviation

which indicates that we can conclude that an appropriate number of iterations have

been carried out. The values given in the tables under the column headings 2.5% and

97.5% are the end-points of the 95% Bayesian credible intervals. The interpretation

of this interval differs greatly from the confidence interval considered in the classical,

or frequentist, sense. A classical 95% confidence interval is interpreted such that if

we were to draw repeatedly from the population being considered, then 95% of our

confidence intervals would contain the population parameter. This contrasts to a 95%

Bayesian credible interval which can be interpreted as after observing our data, there

is a 95% chance that the parameter will fall in the interval.

Looking at the results it can be seen that there is some impact on the posterior esti-

mated mean for σ and τ when varying the prior on the precision from non-informative,

such as in the case of Gamma(0.001, 0.001), to informative such as Gamma(5, 5). As

the prior on the precision becomes more informative, the posterior estimated mean of

σ and τ is reduced in both cases when assuming the data are modelled normally or by

a scaled-t distribution and in both cases this is when assuming normal distributions on

the effects parameters. The size of τ is extremely large when a Gamma(0.001, 0.001)

distribution is assumed. When assuming a normal mixture prior distribution on the

effect parameters it can be seen that the posterior estimate of σ is relatively small

when assuming a Gamma(0.001, 0.001) distribution, in comparison to the other mod-

els. However, it is not clear whether making the Gamma distribution on the precision
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more informative has an impact on the posterior estimate of σ, as when a Gamma(1, 1)

distribution is assumed the posterior estimate is increased to 1.503, but then reduced

again to 1.11 when placing a Gamma(5, 5) distribution on τ. Conversely, the posterior

estimate of τ is extremely large with a value of 91.51 when assuming a weakly infor-

mative prior on the precision, similarly to the other models. However, as the prior

becomes more informative with the Gamma(1, 1) distribution the posterior estimate

is reduced to 0.9346, but then again increased slightly to 0.9647 when assuming a

Gamma(5, 5) distribution. Table 4.11 displays the results when assuming a weakly

informative Uniform prior on log σ and normal distribution assumed on data and

effect parameters. Again, it can be seen that when assuming a weakly informative

prior, which could be said to be comparable to the Gamma(0.001, 0.001) distribution,

the posterior estimate of τ is extremely large with a value of 2001.356.

It should be noted that although a weakly informative prior such as the Unif[−10, 10]

distribution on log σ could be considered to be comparable to an alternative weakly

informative prior such as the Gamma(0.001, 0.001) distribution, the value of τ is

much larger when assuming the Uniform distribution and also when assuming the

Gamma(0.001, 0.001) prior, the credible intervals are wider. When keeping the dis-

tribution that the data are modelled by, and the prior distribution on the effect pa-

rameters the same, but varying the prior on the precision from a weakly informative

prior to an informative prior, the 95% Bayesian credible interval becomes narrower

for all parameters monitored. This is also reiterated by the values of the standard

deviation for each of the individual parameters which are reduced as the prior on

the precision becomes more informative. It can also be seen that when assuming a

mixture of normal distributions on the effect parameters and a Gamma(0.001, 0.001)

distribution on the precision (Table 4.15), the 95% Bayesian credible interval is much

narrower in comparison to when assuming normal distributions on effect parameters

(Table 4.8).
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We can compare Tables 4.12 - 4.14 with Tables 4.8 - 4.10 to assess the impact of using

a scaled-t distribution to model the data in place of the normal distribution which

is perhaps a more typical assumption to make. Comparing the corresponding tables

where the same prior assumptions have been made on the effect parameters and the

precision, i.e. comparing Table 4.8 with Table 4.12, and so on, we observe that similar

results are obtained for the posterior mean and median for each of the parameters,

and also for the 95% Bayesian credible interval. Although very similar, the credible

interval is slightly wider for two of the priors on the precision (Gamma(1, 1) and

Gamma(5, 5)) when assuming a scaled-t distribution on the data.

For all prior assumptions made, the corresponding Bayesian analysis indicates that

the true active main effects 2, 4 and 5, and the true active two-factor interactions 24

and 45 should be identified as active due to the large values of their parameter effects

β24, β4, β5, β24 and β45. This is also indicated by the 95% Bayesian credible intervals

where all those truly inactive effects have credible limits close to 0. By definition, this

means that 95% of the time the parameter will fall into this interval that is close to

0, and so it is highly likely these effects are inactive. The posterior estimated means

for the parameter effects correspond to those calculated using standard methods for

estimating effect sizes, but the posterior means are in fact approximately half of

those calculated using standard methods. Density plots produced in WinBUGS when

analysing the reactor data and assuming normal mixture prior distributions on the

effect parameters indicate that there is some evidence of bimodal distributions in

the case of some of the effects, and appears to occur more so in the case of inactive

effects. Density plots for some of those effects displaying a bimodal distribution are

given in Figure 4.8, namely β1, β12, β14, β15 and β35. This is when a Gamma(1, 1)

prior is placed on the precision. The density plot labelled beta[1,2] corresponds to

that of β12 and similarly for the other two-factor interactions. For all density plots

displayed, there can be seen a large peak away from 0.0, in the case of β1 this is at

approximately −0.6, and so on for the other effects, and a much smaller peak about
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0.0 in all cases. This is to be expected since the priors assumed on the effects indicate

there is some belief they follow a bimodal distribution.

Figure 4.8: Density Plots for β1, β12, β14, β15 and β35 with normal mixture

distribution on effect parameters and Gamma(1, 1) prior on precision
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4.4.5 Discussion

The results given in the previous subsection illustrate the impact of assuming differ-

ent prior assumptions upon the analysis when analysing data in a Bayesian manner.

It appears that more accurate conclusions can be drawn when assuming a more in-

formative prior on the precision. This is due to the 95% Bayesian credible interval

for each of the parameters becoming narrower as the prior on the precision becomes

more informative. However, it can be seen that when a weakly informative prior is

used in the case Gamma(0.001, 0.001) when assuming normal or scaled-t distribution

on the data and normal distribution on the effect parameters, or when a Unif[−10, 10]

distribution is placed on the precision, this results in a large value of the precision

τ . This suggests an extremely small posterior estimate for the residual variance σ2

since by definition the precision is the reciprocal of the variance. This leads to some

questions around the choice of prior on the precision and variance, as contradicting

conclusions appear to be drawn where the residual standard deviation σ is reduced as

the prior on the precision become more informative, yet the precision is also reduced

in the same instance.

Results obtained when making the assumption that the data are modelled by a longer

tailed distribution in the case of the scaled-t distribution instead of the normal dis-

tribution, illustrate that typical assumptions such as using the normal distribution to

model data do not always have to be made. This is particularly true from observing

the summary statistics, given that similar results were observed whether using the

scaled-t or normal distribution. It would also be expected that the 95% Bayesian

credible intervals would be wider for the scaled-t distribution given that it has longer

tails, and this was observed from looking at the results in two out of the three in-

stances for the prior on the precision investigated. However, for these two instances

the credible intervals were not particularly wider than for the normal distribution and

so may prove reassuring to an experimenter especially when they are seeking a robust
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analysis and wish to use a distribution with longer tails to account for extreme obser-

vations if they suspect their dataset of containing outliers. This shall be considered

in more detail, as mentioned previously, in the following chapter.

For all prior assumptions made, the true active main effects and two-factor inter-

actions would be identified as active due to their posterior means being larger in

comparison to the other effects and so corresponds to those conclusions that would

be drawn if using standard analysis such as calculating estimates of effects or using

normal plots which proves reassuring to an experimenter. However, given that a cred-

ible interval can also be obtained therefore being able to state within what interval

that parameter will lie, this appears to add additional information to that obtained

using standard analysis. This also extends further the work of Box and Meyer (1993),

where they demonstrated a method for obtaining the posterior probability of a factor

being active but did not state an interval within which a particular effect would lie.
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4.5 Summary

The ability to quantify the prior knowledge that an experimenter may have about

effect sizes and the residual variance and incorporating this into a Bayesian analysis

when analysing fractional factorial experiments has been illustrated in this chapter.

It has been shown that there is some benefit to be gained in terms of not only being

able to obtain a posterior mean for effect parameters monitored, and also for the

variance and precision, but also being able to calculate a credible interval and thus

being able to infer the 95% chance say, or any other percentage chance, that an

observed parameter will lie within that interval.

In the following chapter, this method of incorporating prior knowledge into the

Bayesian analysis of industrial fractional factorial experiments shall be extended fur-

ther to the scenario of analysing a dataset that an experimenter may suspect of

containing outliers.
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Chapter 5

Outliers in Fractional Factorial

Experiments

5.1 Introduction

The analysis of unreplicated fractional factorial experiments can be impacted in a

disastrous way in the presence of outliers. An outlier is typically considered to be an

observation for which its associated residual is significantly larger than anticipated and

from the vast majority of other observations. As defined by Daniel (1960) “an outlier

in a factorial experiment is an observation whose value is not in the pattern of values

produced by the rest of the data”. Thus we can consider this type of observation to be

suspected of not being generated from the mechanism which produced the majority

of observations.

Outliers are an unavoidable circumstance, they may occur as a result of temporary

changes in experimental conditions and perhaps be indicated by a relatively large

interaction, be due to excessive random noise, or even result from human error such
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as measurement error or recording data incorrectly. There are ways to safeguard

against anomalies or outliers that may result from mistakes such as incorrect data

entries. It is good practice to scrutinize data in order to pick up on any obvious

outliers. However, unlike fully replicated experiments where there are at least two

observations for each treatment combination which provides an additional safeguard

against outliers, when using small unreplicated fractional factorial experiments, it

becomes difficult for an experimenter to locate any bad values, or even be able to

determine the possible cause of this outlier.

Therefore, given the possibility that outliers may occur is always present and that

the analysis of a dataset containing them may be distorted as a result, an analysis

that is robust to outliers is sought to ensure that inferences based upon this analysis,

about the parameters of interest are also robust. If an experimenter suspects their

dataset of containing ‘non-genuine’ outliers such as those arising from human error,

then one would expect the analysis to be distorted a great deal. One would expect the

analysis to also be impacted upon in the case of so-called ‘genuine’ outliers, i.e. those

resulting from extreme random noise or changes in experimental conditions. In this

circumstance it may be possible to guard oneself against outliers by using longer-tailed

distributions to account for the possibility of such extreme observations. Thus, in this

chapter we intend to find whether any particular choice of prior assumptions about

how the data or effect parameters are distributed has any impact upon the analysis,

and ultimately makes the inferences more robust to outliers. This will be done by

applying different models to the data, namely the normal and scaled-t, to compare the

effect of using a longer-tailed distribution. Prior assumptions made about the effect

parameters will also be considered where a mixture of two normal distribution will

be assumed, with a high-variance and low variance component so that any extreme

observations may be treated as arising from the high-variance component rather than

being treated as an outlying observation.
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5.2 Linear Model when outliers are considered

Before the various likelihood model assumptions on the data and prior assumptions

on the effect parameters and variance being investigated are set out, the linear model

assumed when accounting for outliers shall be described.

Consider the general linear model previously set out in this thesis (§2.2), i.e.

y = Xβ + ε.

In the case when considering outliers, we shall rewrite this as

y∗ = Xβ + ε

where

y1 = y∗1 + δ

yi = y∗i ; i = 2, . . . , N.

That is, the above case assuming that observation 1, y1 is an outlier and all other

N − 1 observations are believed to be data that are generated from the ‘true’ model.

Then, given that the least squares estimator of β is

β̂ = (XTX)−1XTy,
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we can then find

E(β̂) = (XTX)−1XT

Xβ +


δ

0
...

0





= β + (XTX)−1XT


δ

0
...

0

 .

This can be generalised to more than one suspected outlier, as was outlined by Abra-

ham and Box (1978). That is, when some of the observations are suspected to have

not been generated in the same manner as the majority of observations then the

following linear model is considered,

y∗ = Xβ + δZ + ε,

where Z is an N × 1 vector whose entries are either 1 with probability α and 0 with

probability 1− α, and the amount of ‘contamination’ is described by δ.

Then if analysing a dataset suspected of containing outliers in a Bayesian manner

and assuming the above adjusted linear model, the posterior distribution is

P (β|y,Z) =

∫
P (β, δ|Z)P (y|β, δ,Z) dδ dy.
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5.3 Reactor Data Revisited

5.3.1 Design fractions to be analysed

The reactor data which has previously been introduced in this thesis and analysed

using Bayesian methodology in Chapter 4 will now be revisited. The half-fraction

consisting of 16 runs will again be analysed, however as we are now looking at the

robustness of particular model and prior assumptions to outliers, we shall adjust some

of the response values to fit the criteria of having an outlier in the dataset and assess

the impact of this. This half-fraction is a Resolution V design and as previously

stated, has all main effects and two-factor interactions clear as none are aliased with

any other main effects or two-factor interactions.

A quarter-fraction of the original 25 factorial design shall also be considered. Using

standard ordering to allocate the first three columns of the design matrix, and the

design generator 4 = 12 and 5 = 13 to allocate the final two columns, the 25−2
III

design consisting of eight runs is achieved as displayed in Table 5.1.

Table 5.1: Design for quarter-fraction of the full 25 factorial design, reactor example

Design response (% reacted)

Run 1 2 3 4 = 12 5 = 13 y

1 (25) - - - + + 44

2 (2) + - - - - 53

3 (19) - + - - + 70

4 (12) + + - + - 93

5 (13) - - + + - 66

6 (22) + - + - + 55

7 (7) - + + - - 54

8 (32) + + + + + 82

The run numbers indicated in brackets correspond to those runs of the original 25
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factorial design, i.e. the first run of the quarter-fraction which has all three variables

at the lower level is actually run 25 of the original full factorial design. This quarter-

fraction is a Resolution III design and so has no effects clear due to an even smaller

fraction than the half-fraction being used. We ignore three-factor and higher order

interactions as a result of the hierarchical ordering principle. Then the aliases for

this design when considering only main effects and two-factor interactions are given

in Table 5.2.

Table 5.2: Aliasing Structure for quarter-fraction

8 Run Design

1 = 24 = 35

2 = 14

3 = 15

4 = 12

5 = 13

23 = 45

25 = 34

Carrying out a Bayesian analysis of these eight runs and adjusting the dataset so that

it contains an observation believed not to have been generated from the mechanism

producing the majority of other observations, will be interesting given that this design

has a high level of aliasing. An experimenter may wish to assess whether the aliasing

structure of a design will have any impact upon the analysis, particularly when the

aliasing structure is such that lower order, and subsequently, more important effects

are aliased with one another and also if they suspect the dataset of containing some

extreme observations.

243



5.3.2 Prior Specification

The likelihood model distributions to be assumed on the data and the prior assump-

tions on the effect parameters and variance to be investigated shall now be outlined.

These assumptions will be made when carrying out a Bayesian analysis of the half-

fraction and quarter-fraction of the reactor data and adjusting the respective 16 run

and 8 run dataset in such a way that the experimenter may suspect one of the obser-

vations of being an outlier.

Before the dataset is adjusted however, we shall analyse the original datasets for the

half-fraction and the quarter-fraction when assuming minimal prior knowledge. The

datasets are

y = [56, 53, 63, 65, 53, 55, 67, 61, 69, 45, 78, 93, 49, 60, 95, 82]T

and

y = [44, 53, 70, 93, 66, 55, 54, 82]T

respectively. This is considering the situation where an experimenter may have little

or no prior information about the process in hand or how the factors will behave upon

the process. It is highly unlikely that an experimenter would have no knowledge at

all of the scientific process that they are intending to study but we shall look at this

situation in order to compare with the standard analyses. When we assume little

or no prior information, the prior distribution plays a minimal role in the resulting

posterior distribution and so we would expect the size of effects to correspond to

those calculated using standard methods as presented in §4.4.1. We shall use this

analysis of the 16 and 8 run dataset to compare with when we do adjust the dataset

in order to assess the impact on the analysis when there is a suspected outlier. When

we are analysing both the original half-fraction and quarter-fraction datasets and

assuming minimal prior knowledge, we shall assume that the data are modelled by a
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normal distribution, that the effect parameters are represented by independent prior

normal distributions and that the precision is represented by a mildly informative

Gamma(1, 1) distribution. This will be with the same parameter values as set out

in the previous chapter (§4.4.2). That is, we shall assume that the data takes the

following form,

yi = µi + εi

where

µi = β0 +
5∑
i=1

βixi +
∑ 5∑

i<j

βijxixj,

the errors are modelled by a normal distribution as follows,

εi ∼ N(µ, τ)

and the intercept is represented by the following prior

β0 ∼ N(0, 10−∞).

Finally, all the main effects and two-factor interactions are represented by

βi, βij ∼ N(0, 10−3)

and the prior distribution on the precision is

τ ∼ Gamma(1, 1).

Thus, in the case of analysing the 16 run dataset the resulting summary statistics

will just be those as displayed in Chapter 4 in Table 4.9. When analysing the 8 run

dataset, for both the original dataset and then when considering an outlier, only the

intercept and main effects shall be estimated due to there not being enough degrees of

freedom to estimate all two-factor interactions. Thus, the prior specifications set out

for the 8 run case shall just be the prior distributions on the intercept, main effects

and variance.
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When analysing the datasets when they are suspected of containing an outlier, the

prior assumptions to be investigated for the model on the errors will be both a normal

distribution and scaled-t distribution. This will be to assess whether using a distribu-

tion from a longer-tailed family of distributions, such as the scaled-t, has any impact

on the resulting analysis when an experimenter is concerned the dataset contains an

extreme observation. In the case of the scaled-t distribution, by varying the degrees

of freedom from small to large we can also assess sensitivity to the normal model

assumption. Taking the degrees of freedom to be small, would be tending to a much

heavier tailed distribution and in the extreme case of t1 would in fact be the Cauchy

distribution, whereas if the degrees of freedom are at the opposite extreme and much

larger, say t20, we would expect the distribution to tend towards the normal distribu-

tion. It will be of interest to assess how the analysis is impacted upon as the degrees

of freedom vary. The case where ν = 1 will not be investigated in this instance since

the assumption that is to be made in this case is that the prior distribution will

have infinite variance which is not representative of what would happen in practice

in experimentation. Also, the Cauchy distribution is not able to be implemented in

WinBUGS. Varying the prior distribution on the effect parameters will also be in-

vestigated, looking at both independent normal distributions on the parameters, and

then focusing on a mixture of normal distribution to assess whether any difference in

the analysis is found. Throughout, a mildly informative Gamma(1, 1) distribution is

to be assumed on the precision and a normal distribution used to represent the in-

tercept, β0. A summary of the prior specifications just mentioned is set out in Table

5.3.
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Table 5.3: Prior Distributional Assumptions

Distribution Parameter Values

Model for errors Normal N(µi, τ)

Scaled-t tν(µi, τ); ν = 2, 5, 10, 20, 50

Intercept Normal N(0, 10−∞)

Main Effects and two-factor interactions Normal N(0, 10−3)

Mixture of normals N(0, τ1) if effect is inactive

N(0, τ2) if effect is active

where τ1 = 1
σ2
1

, τ2 = 1
σ2
2

and σ1 ∼ Unif (0, 1), σ2 ∼ Unif (0, 10)

p0 = 0.85 (probability effect is inactive)

p1 = 0.15 (probability effect is active)

Residual Variance τ ∼ Gamma (1, 1)

As mentioned, when looking at both the half-fraction and quarter-fraction, the dataset

will be adjusted in order to fit the criterion that an experimenter would suspect the

dataset of containing an outlier. This will be achieved firstly, by changing one of

the observations in a very obvious and rudimentary way and treating one of the

observations as if it had been affected by human error and the observation was the

result of measurement error on an incorrect data entry. For example, in the case of

the 16 run dataset, the first observation is 56, however we will adjust this value to

156. Again, with the 8 run dataset the first observation 44 shall be adjusted to 144.

This rather basic way of adjusting the dataset in order to satisfy the criteria that

the dataset contains an outlier means that the adjusted observation does stand out

quite clearly from the rest just from looking at the dataset. One would hope that by

scrutinizing the dataset before any analysis methods are carried out, an experimenter

would pick up on this obvious outlier. However, we shall initially consider this scenario

for illustration purposes and in order to observe the impact, if any, on the analysis and

whether any differences are seen in the analysis depending on the prior assumptions

made.
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We shall then consider a more subtle sensitivity analysis where we shall adjust a

particular observation in the dataset by increasing or decreasing the response by

slightly greater than 3σ and assessing whether any impact is seen in the resulting

analysis. In this case we shall assume that the variance and therefore the standard

deviation σ is known. The value of 3σ is to be considered due to the empirical rule

(Wackerly et al., 2002). This states that given some population which has population

mean µ, and population standard deviation σ for a distribution that is approximately

normal, it follows that the interval with endpoints

µ± σ contains approximately 68% of the observations,

µ± 2σ contains approximately 95% of the observations,

µ± 3σ contains almost all of the observations.

Thus, it shall be of interest to note whether the analysis differs greatly when assuming

the data are normally distributed and changing an observation from y to the new

adjusted response yadj where yadj is increased or decreased by slightly more than 3σ.

This is given that assuming the distribution is approximately normal, it would be

considered that nearly all observations would lie within ±3σ of the population mean.

In the case when assuming the data are modelled by the scaled-t distribution, it will

be of interest to note whether changing the degrees of freedom from small to large

also has any impact on the analysis when adjusting a response y to y ± 3σ, given

that as the degrees of freedom approach infinity, the distribution tends to the normal

distribution.

5.3.3 Results

The summary statistics obtained when using WinBUGS to analyse a half-fraction

and quarter-fraction of the reactor data are now presented. 20000 iterations were
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run for two chains, thinning by storing only every 10th simulation and consequently

this was found to be a sufficient number of simulations in order for convergence

to be achieved. MCMC diagnostic checks such as looking at autocorrelation func-

tion, Brooks-Gelman-Rubin and trace plots also confirmed that convergence had been

reached and that the two chains were well mixed.

Results from analysis of original data

Table 5.4: Summary statistics from WinBUGS after fitting normal model to reactor

data, with normal distribution on effect parameters and Gamma(1, 1) prior on

precision for 25−1 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 65.25 0.6356 0.003984 64.19 65.25 66.31

β1 −1.003 0.6619 0.003903 −2.042 −1.002 0.03457

β2 10.25 0.6342 0.004096 9.178 10.25 11.29

β3 0.00129 0.657 0.003687 −1.057 0.002397 1.087

β4 6.122 0.6144 0.003484 5.059 6.125 7.182

β5 −3.133 0.6196 0.003368 −4.2 −3.128 −2.106

β12 0.7525 0.6234 0.003619 −0.3042 0.7533 1.827

β13 0.2535 0.629 0.003502 −0.8051 0.2557 1.301

β14 −0.3823 0.6413 0.00376 −1.478 −0.3807 0.6814

β15 0.625 0.6495 0.003875 −0.4409 0.6282 1.701

β23 0.7493 0.6313 0.003982 −0.3068 0.7497 1.819

β24 5.373 0.6247 0.003555 4.286 5.372 6.437

β25 0.6226 0.6814 0.004071 −0.4383 0.6233 1.671

β34 0.1211 0.6287 0.003626 −0.9284 0.124 1.154

β35 1.125 0.6251 0.003446 0.05736 1.125 2.187

β45 −4.744 0.638 0.003664 −5.814 −4.746 −3.67

σ 1.713 1.906 0.02265 0.518 1.205 6.086

τ 1.001 1.004 0.008064 0.0271 0.6882 3.73
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Table 5.5: Summary statistics from WinBUGS after fitting normal model to reactor

data, with normal distribution on effect parameters and Gamma(1, 1) prior on

precision for 25−2 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 64.63 4.716 0.02861 55.14 64.63 74.14

β1 6.025 4.613 0.02537 −3.443 6.067 15.19

β2 9.899 4.6 0.02658 0.528 9.959 19.07

β3 −0.3851 4.586 0.02781 −9.657 −0.3819 8.913

β4 6.469 4.647 0.02778 −2.918 6.511 15.83

β5 −1.847 4.586 0.0256 −11.04 −1.861 7.601

σ 12.19 5.498 0.03003 6.025 10.85 26.59

τ 0.01008 0.006932 0.02601 0.001416 0.008497 0.02755
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Results from analysis of data with obvious outlier

Table 5.6: Summary statistics from WinBUGS after fitting normal model to reactor

data, with normal distribution on effect parameters and Gamma(1, 1) prior on

precision for 25−1 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 71.5 0.6357 0.003985 70.44 71.5 72.56

β1 −7.25 0.6639 0.003903 −8.283 −7.251 −6.21

β2 4.003 0.63484 0.004084 2.936 4.004 5.039

β3 −6.246 0.6568 0.003674 −7.296 −6.247 −5.156

β4 −0.1258 0.615 0.003463 −1.183 −0.1243 0.943

β5 3.114 0.6199 0.003364 2.044 3.121 4.136

β12 7.0 0.6239 0.003627 5.939 7.003 8.068

β13 6.501 0.6311 0.003538 5.435 6.505 7.548

β14 5.865 0.6441 0.00381 4.759 5.869 6.921

β15 −5.622 0.6465 0.003824 −6.681 −5.621 −4.54

β23 6.997 0.6315 0.00397 5.938 6.999 8.063

β24 11.62 0.6245 0.003556 10.52 11.62 12.68

β25 −5.625 0.6804 0.004043 −6.681 −5.626 −4.574

β34 6.369 0.6286 0.003651 5.312 6.373 7.397

β35 −5.122 0.6253 0.003457 −6.188 −5.124 −4.055

β45 −10.99 0.6388 0.003677 −12.06 −10.99 −9.909

σ 1.714 1.906 0.02271 0.518 1.205 6.055

τ 1.001 1.004 0.008063 0.02734 0.6886 3.729
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Table 5.7: Summary statistics from WinBUGS after fitting scaled-t model to reactor

data, with ν = 2, normal distribution on effect parameters and Gamma(1, 1) prior

on precision for 25−1 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 71.5 1.322 0.007329 68.99 71.51 73.95

β1 −7.229 1.283 0.006677 −9.604 −7.242 −4.715

β2 3.984 1.282 0.007395 1.512 3.994 6.379

β3 −6.238 1.33 0.0075744 −8.685 −6.245 −3.742

β4 −0.1305 1.307 0.007918 −2.635 −0.1275 2.321

β5 3.111 1.3 0.007752 0.6177 3.123 5.525

β12 6.986 1.318 0.007834 4.491 6.996 9.462

β13 6.466 1.309 0.007607 3.881 6.488 8.841

β14 5.856 1.284 0.007286 3.328 5.864 8.271

β15 −5.602 1.304 0.007372 −8.042 −5.62 −3.108

β23 6.975 1.307 0.007373 4.373 6.999 9.437

β24 11.61 1.278 0.007791 9.024 11.62 13.97

β25 −5.62 1.329 0.007729 −8.088 −5.629 −3.125

β34 6.361 1.321 0.007806 3.83 6.375 8.821

β35 −5.121 1.295 0.007702 −7.562 −5.122 −2.64

β45 −10.98 1.292 0.007416 −13.44 −11.0 −8.432

σ 1.623 1.549 0.01713 0.5173 1.186 5.545

τ 1.025 1.015 0.00789 0.03258 0.7116 3.738

252



Table 5.8: Summary statistics from WinBUGS after fitting scaled-t model to reactor

data, with ν = 5, normal distribution on effect parameters and Gamma(1, 1) prior

on precision for 25−1 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 71.5 0.7671 0.004424 70.17 71.5 72.84

β1 −7.245 0.7685 0.00452 −8.557 −7.248 −5.898

β2 3.997 0.7854 0.004378 2.624 3.998 5.319

β3 −6.238 0.7735 0.00462 −7.51 −6.248 −4.881

β4 −0.1281 0.7765 0.004619 −1.479 −0.1233 1.207

β5 3.125 0.7641 0.004454 1.822 3.125 4.469

β12 6.989 0.8245 0.004962 5.624 6.997 8.334

β13 6.505 0.7624 0.004398 5.166 6.503 7.832

β14 5.868 0.7784 0.004241 4.507 5.875 7.179

β15 −5.612 0.7794 0.004126 −6.923 −5.62 −4.264

β23 6.992 0.8104 0.004474 5.592 6.997 8.323

β24 11.62 0.8002 0.004401 10.25 11.63 12.99

β25 −5.617 0.7894 0.004497 −6.973 −5.623 −4.26

β34 6.375 0.7736 0.004396 5.048 6.378 7.706

β35 −5.128 0.7702 0.004578 −6.471 −5.127 −3.781

β45 −10.99 0.7916 0.004745 −12.31 −11.0 −9.601

σ 1.68 1.839 0.01984 0.5198 1.189 5.828

τ 1.017 1.014 0.007969 0.02951 0.7068 3.703
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Table 5.9: Summary statistics from WinBUGS after fitting scaled-t model to reactor

data, with ν = 10, normal distribution on effect parameters and Gamma(1, 1) prior

on precision for 25−1 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 71.5 0.6619 0.003833 70.33 71.5 72.66

β1 −7.255 0.6563 0.004232 −8.386 −7.251 −6.148

β2 3.999 0.6679 0.003828 2.827 4.003 5.148

β3 −6.249 0.6662 0.003704 −7.379 −6.248 −5.12

β4 −0.1256 0.6821 0.004119 −1.278 −0.1281 1.059

β5 3.125 0.662 0.003913 2.027 3.121 4.271

β12 6.993 0.6649 0.003801 5.794 6.997 8.136

β13 6.503 0.6753 0.004068 5.344 6.501 7.662

β14 5.873 0.6623 0.003911 4.738 5.873 7.019

β15 −5.624 0.6602 0.003645 −6.789 −5.623 −4.495

β23 6.996 0.6829 0.003745 5.848 6.999 8.139

β24 11.62 0.6665 0.003975 10.47 11.62 12.77

β25 −5.626 0.6518 0.004004 −6.758 −5.627 −4.489

β34 6.369 0.6762 0.003411 5.221 6.374 7.506

β35 −5.11 0.6517 0.003823 −6.236 −5.119 −3.949

β45 −10.99 0.7161 0.004327 −12.14 −11.0 −9.846

σ 1.662 1.779 0.01938 0.5202 1.19 5.653

τ 1.013 1.004 0.007988 0.03133 0.706 3.696
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Table 5.10: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 20, normal distribution on effect parameters and

Gamma(1, 1) prior on precision for 25−1 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 71.51 0.6635 0.003914 70.38 71.5 72.67

β1 −7.247 0.6763 0.003731 −8.349 −7.249 −6.125

β2 3.997 0.6653 0.003725 2.882 3.999 5.117

β3 −6.246 0.6473 0.003808 −7.351 −6.253 −5.103

β4 −0.1197 0.6351 0.003708 −1.221 −0.1239 0.9746

β5 3.128 0.7023 0.003821 2.001 3.126 4.271

β12 6.994 0.652 0.004149 5.866 6.998 8.109

β13 6.495 0.652 0.003841 5.396 6.499 7.59

β14 5.868 0.6565 0.003848 4.712 5.873 6.962

β15 −5.622 0.6627 0.004088 −6.721 −5.626 −4.498

β23 6.99 0.6513 0.003387 5.875 6.996 8.095

β24 11.62 0.6748 0.003894 10.47 11.62 12.71

β25 −5.629 0.6489 0.004001 −6.736 −5.628 −4.546

β34 6.369 0.645 0.003562 5.257 6.374 7.451

β35 −5.125 0.6753 0.003696 −6.24 −5.128 −4.002

β45 −10.99 0.6698 0.003468 −12.11 −11.0 −9.853

σ 1.703 1.904 0.02102 0.5182 1.195 6.075

τ 1.01 1.003 0.007961 0.02711 0.7003 3.726
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Table 5.11: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 50, normal distribution on effect parameters and

Gamma(1, 1) prior on precision for 25−1 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 71.5 0.7144 0.003882 70.41 71.5 72.57

β1 −7.247 0.6698 0.00369 −8.324 −7.251 −6.148

β2 3.998 0.6867 0.004195 2.927 3.999 5.034

β3 −6.25 0.7241 0.004277 −7.333 −6.251 −5.156

β4 −0.1151 0.6988 0.003634 −1.182 −0.1227 0.9919

β5 3.123 0.6896 0.003897 2.022 3.123 4.196

β12 6.989 0.6927 0.00373 5.911 6.996 8.061

β13 6.486 0.7416 0.003974 5.365 6.498 7.556

β14 5.87 0.7217 0.004264 4.772 5.873 6.953

β15 −5.62 0.6653 0.003569 −6.691 −5.623 −4.542

β23 6.994 0.6676 0.003957 5.884 7.0 8.061

β24 11.62 0.6977 0.004393 10.53 11.62 12.69

β25 −5.62 0.7183 0.003946 −6.695 −5.622 −4.539

β34 6.378 0.7448 0.004002 5.277 6.379 7.487

β35 −5.127 0.6973 0.003966 −6.26 −5.126 −4.064

β45 −11.0 0.7311 0.004196 −12.05 −11.0 −9.899

σ 1.725 2.194 0.02476 0.5187 1.186 6.275

τ 1.016 1.01 0.007723 0.02543 0.7113 3.717
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Table 5.12: Summary statistics from WinBUGS after fitting normal model to

reactor data, with normal distribution on effect parameters and Gamma(1, 1) prior

on precision for 25−2 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 77.13 7.171 0.04348 62.72 77.13 91.65

β1 −6.025 6.848 0.03766 −19.69 −6.083 7.954

β2 −2.281 6.826 0.03922 −15.87 −2.308 11.67

β3 −12.3 6.836 0.04139 −25.75 −12.42 1.916

β4 18.2 6.929 0.04161 3.726 18.4 31.77

β5 10.11 6.831 0.03826 −4.09 10.22 23.66

σ 18.71 7.948 0.04288 9.416 16.82 39.26

τ 0.004163 0.002802 0.01044 0.1189 0.003536 0.01128

Table 5.13: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 2, normal distribution on effect parameters and Gamma(1, 1)

prior on precision for 25−2 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 76.7 7.553 0.06147 64.26 76.21 89.53

β1 −5.864 7.413 0.05761 −18.39 −5.381 6.421

β2 −1.379 7.301 0.05819 −14.04 −0.2779 10.33

β3 −11.72 7.32 0.0546 −24.46 −10.63 0.135

β4 17.8 7.381 0.05794 5.733 16.57 30.57

β5 9.509 7.348 0.0554 −2.334 8.399 22.28

σ 6.565 4.917 0.03259 1.465 5.231 19.32

τ 0.08458 0.1498 0.001023 0.00268 0.03654 0.4673

257



Table 5.14: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 5, normal distribution on effect parameters and Gamma(1, 1)

prior on precision for 25−2 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 77.04 7.246 0.04068 62.97 77.02 91.13

β1 −6.056 7.04 0.04 −19.47 −6.132 7.746

β2 −1.995 7.009 0.04343 −15.73 −1.979 11.77

β3 −12.09 6.991 0.04099 −25.53 −12.11 1.616

β4 18.18 6.982 0.04103 4.072 18.24 31.4

β5 9.963 6.985 0.03907 −3.674 9.956 23.39

σ 13.78 7.04 0.0394 5.159 12.22 31.73

τ 0.009805 0.01138 0.04359 0.1823 0.006698 0.03759

Table 5.15: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 10, normal distribution on effect parameters and

Gamma(1, 1) prior on precision for 25−2 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 77.09 7.198 0.04102 62.83 77.07 91.31

β1 −6.078 6.903 0.04141 −19.75 −6.135 8.039

β2 −2.176 6.83 0.0383 −15.6 −2.205 11.64

β3 −12.22 6.816 0.03874 −25.53 −12.33 1.749

β4 18.27 6.942 0.03555 3.787 18.44 31.58

β5 9.991 6.822 0.04134 −3.817 10.05 23.39

σ 16.47 7.617 0.04387 7.602 14.67 36.33

τ 0.005786 0.00449 0.01716 0.1388 0.004646 0.01731
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Table 5.16: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 20, normal distribution on effect parameters and

Gamma(1, 1) prior on precision for 25−2 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 77.05 7.215 0.04046 62.47 77.03 91.49

β1 −6.101 6.826 0.0424 −19.56 −6.195 7.791

β2 −2.268 6.895 0.04231 −16.21 −2.28 11.84

β3 −12.2 6.896 0.03907 −25.63 −12.38 2.145

β4 18.16 6.982 0.04137 3.721 18.33 31.55

β5 10.1 6.918 0.04048 −4.199 10.16 23.67

σ 17.66 7.769 0.04804 8.621 15.76 38.01

τ 0.004808 0.003393 0.01310 0.127 0.004025 0.01346

Table 5.17: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 50, normal distribution on effect parameters and

Gamma(1, 1) prior on precision for 25−2 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 77.03 7.296 0.04321 62.29 77.01 91.54

β1 −6.042 6.872 0.03963 −19.74 −6.097 8.05

β2 −2.159 6.884 0.03986 −16.08 −2.182 11.97

β3 −12.29 6.822 0.03944 −25.48 −12.42 1.829

β4 18.24 6.863 0.03844 3.994 18.41 31.56

β5 10.1 6.802 0.03775 −3.858 10.23 23.46

σ 18.27 7.915 0.04696 9.003 16.37 39.01

τ 0.004429 0.003065 0.01265 0.120 0.00373 0.01234
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Table 5.18: Summary statistics from WinBUGS after fitting normal model to

reactor data, with mixture of normal distributions on effect parameters and

Gamma(1, 1) prior on precision for 25−1 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 71.49 6.445 0.03634 58.66 71.49 84.36

β1 −0.5093 1.951 0.04756 −7.239 −0.05273 1.396

β2 0.3596 1.816 0.02642 −2.103 0.03524 5.459

β3 −0.4208 1.785 0.03884 −6.264 −0.04346 1.45

β4 −0.01606 1.591 0.008909 −3.501 −0.001923 3.315

β5 0.1929 1.468 0.01622 −1.825 0.01907 3.769

β12 0.4844 1.852 0.04536 −1.355 0.05081 6.967

β13 0.4621 1.827 0.04274 −1.389 0.04652 6.549

β14 0.4052 1.719 0.03844 −1.485 0.04288 5.93

β15 −0.3874 1.679 0.03799 −5.733 −0.03683 1.509

β23 0.6615 2.171 0.04565 −1.533 0.06742 7.367

β24 1.107 2.987 0.07355 −1.19 0.111 11.5

β25 −0.5453 2.046 0.03743 −6.648 −0.0498 1.702

β34 0.4318 1.762 0.03948 −1.429 0.04136 6.375

β35 −0.3427 1.621 0.03223 −5.228 −0.03534 1.544

β45 −0.9772 2.828 0.0648 −10.92 −0.1001 1.265

σ 25.22 5.929 0.1457 14.97 24.96 37.22

τ 0.01696 0.1794 0.004837 0.132 0.001605 0.004479

Table 5.19: Summary statistics from WinBUGS after fitting normal model to

reactor data, with mixture of normal distributions on effect parameters and

Gamma(1, 1) prior on precision for 25−2 design

Node Mean sd MC Error 2.5% Median 97.5%

β0 77.04 10.38 0.05573 56.34 77.01 97.66

β1 −0.242 1.907 0.01131 −5.453 −0.01761 2.055

β2 −0.07575 1.73 0.01099 −3.849 −0.006283 2.706

β3 −0.6794 2.677 0.01731 −9.718 −0.04969 1.63

β4 1.655 4.301 0.03229 −1.439 0.1164 15.68

β5 0.4813 2.297 0.01458 −1.723 0.03841 7.843

σ 28.35 8.075 0.04247 16.65 27.0 47.98

τ 0.001539 0.157 0.01233 0.0796 0.001371 0.003608
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Results from analysis of data with yadj > y + 3σ

Table 5.20: Summary statistics from WinBUGS after fitting normal model to

reactor data, with normal distribution on effect parameters and Gamma(1, 1) prior

on precision for 25−1 design

Node Mean Median 95% Credible Interval

β0 68.31 68.31 (67.25, 69.38)

β1 −4.064 −4.064 (−5.1, 3.025)

β2 7.189 7.191 (6.122, 8.224)

β3 −3.06 −3.06 (−4.111,−1.972)

β4 3.06 3.063 (2.001, 4.127)

β5 −0.07196 −0.0662 (−1.14, 0.951)

β12 3.814 3.815 (2.755, 4.888)

β13 3.315 3.318 (2.252, 4.361)

β14 2.679 2.681 (1.578, 3.738)

β15 −2.436 −2.434 (−3.496,−1.357)

β23 3.811 3.812 (2.753, 4.88)

β24 8.435 8.433 (7.343, 9.498)

β25 −2.439 −2.439 (−3.497,−1.391)

β34 3.182 3.186 (2.13, 4.214)

β35 −1.936 −1.937 (−3.002,−0.8729)

β45 −7.805 −7.808 (−8.873,−6.725)

σ 1.713 1.205 (0.5178, 6.069)

τ 1.001 0.6884 (0.02716, 3.73)
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Table 5.21: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 2, normal distribution on effect parameters and Gamma(1, 1)

prior on precision for 25−1 design

Node Mean Median 95% Credible Interval

β0 68.31 68.32 (65.83, 70.76)

β1 −4.048 −4.056 (−6.428,−1.438)

β2 7.165 7.18 (4.686, 9.543)

β3 −3.057 −3.059 (−5.508,−0.5996)

β4 3.051 3.058 (0.5496, 5.499)

β5 −0.07096 −0.06294 (−2.524, 2.358)

β12 3.805 3.81 (1.332, 6.301)

β13 3.284 3.302 (0.7294, 5.66)

β14 2.675 2.678 (0.1628, 5.108)

β15 −2.42 −2.435 (−4.871, 0.04949)

β23 3.793 3.814 (1.219, 6.258)

β24 8.427 8.431 (5.867, 10.79)

β25 −2.438 −2.443 (−4.92, 0.0462)

β34 3.18 3.19 (0.6606, 5.648)

β35 −1.939 −1.936 (−4.387, 0.5058)

β45 −7.797 −7.812 (−10.27,−5.268)

σ 1.621 1.185 (0.5173, 5.547)

τ 1.026 0.7118 (0.03261, 3.737)
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Table 5.22: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 5, normal distribution on effect parameters and Gamma(1, 1)

prior on precision for 25−1 design

Node Mean Median 95% Credible Interval

β0 68.32 68.31 (66.98, 69.65)

β1 −4.059 −4.061 (−5.373,−2.715)

β2 7.183 7.185 (5.808, 8.499)

β3 −3.053 −3.062 (−4.323,−1.698)

β4 3.058 3.064 (1.706, 4.389)

β5 −0.06057 −0.06212 (−1.364, 1.29)

β12 3.803 3.811 (2.445, 5.154)

β13 3.32 3.316 (1.984, 4.651)

β14 2.682 2.688 (1.325, 3.994)

β15 −2.427 −2.433 (−3.734,−1.083)

β23 3.806 3.81 (2.409, 5.137)

β24 8.438 8.439 (7.07, 9.814)

β25 −2.432 −2.436 (−3.797,−1.08)

β34 3.19 3.191 (1.865, 4.521)

β35 −1.942 −1.94 (−3.297, 0.6028)

β45 −7.802 −7.814 (−9.132,−6.414)

σ 1.679 1.189 (0.5196, 5.831)

τ 1.017 0.7069 (0.02942, 3.706)
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Table 5.23: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 10, normal distribution on effect parameters and

Gamma(1, 1) prior on precision for 25−1 design

Node Mean Median 95% Credible Interval

β0 68.31 68.31 (67.14, 69.47)

β1 −4.069 −4.064 (−5.202,−2.964)

β2 7.185 7.19 (6.012, 8.326)

β3 −3.063 −3.061 (−4.194,−1.938)

β4 3.06 3.059 (1.906, 4.239)

β5 −0.06069 −0.06541 (−1.157, 1.088)

β12 3.807 3.81 (2.609, 4.951)

β13 3.317 3.314 (2.16, 4.477)

β14 2.687 2.686 (1.555, 3.834)

β15 −2.438 −2.436 (−3.605,−1.313)

β23 3.81 3.812 (2.664, 4.952)

β24 8.436 8.436 (7.291, 9.591)

β25 −2.44 −2.439 (−3.574,−1.303)

β34 3.183 3.186 (2.041, 4.322)

β35 −1.924 −1.932 (−3.052,−0.7659)

β45 −7.809 −7.811 (−8.955,−6.663)

σ 1.661 1.19 (1.773, 5.64)

τ 1.013 0.706 (1.005, 3.696)
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Table 5.24: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 20, normal distribution on effect parameters and

Gamma(1, 1) prior on precision for 25−1 design

Node Mean Median 95% Credible Interval

β0 68.32 68.31 (67.19, 69.49)

β1 −4.061 −4.062 (−5.164,−2.939)

β2 7.183 7.186 (6.066, 8.297)

β3 −3.06 −3.066 (−4.166,−1.918)

β4 3.066 3.063 (1.964, 4.159)

β5 −0.05841 −0.06143 (−1.184, 1.089)

β12 3.808 3.811 (2.684, 4.925)

β13 3.309 3.311 (2.213, 4.407)

β14 2.681 2.686 (1.53, 3.779)

β15 −2.436 −2.439 (−3.536,−1.314)

β23 3.804 3.809 (2.691, 4.914)

β24 8.429 8.434 (7.292, 9.532)

β25 −2.443 −2.441 (−3.554,−1.363)

β34 3.183 3.187 (2.077, 4.266)

β35 −1.939 −1.941 (−3.057,−0.8163)

β45 −7.807 −7.81 (−8.922,−6.667)

σ 1.702 1.195 (0.5183, 6.067)

τ 1.01 0.7007 (0.02718, 3.723)
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Table 5.25: Summary statistics from WinBUGS after fitting scaled-t model to

reactor data, with ν = 50, normal distribution on effect parameters and

Gamma(1, 1) prior on precision for 25−1 design

Node Mean Median 95% Credible Interval

β0 68.31 68.31 (67.22, 69.39)

β1 −4.061 −4.063 (−5.138,−2.965)

β2 7.184 7.186 (6.113, 8.217)

β3 −3.064 −3.064 (−4.149,−1.972)

β4 3.071 3.064 (2.002, 4.173)

β5 −0.06302 −0.06389 (−1.162, 1.014)

β12 3.803 3.809 (2.73, 4.881)

β13 3.3 3.311 (2.183, 4.373)

β14 2.685 2.686 (1.589, 3.771)

β15 −2.434 −2.436 (−3.506,−1.355)

β23 3.808 3.813 (2.705, 4.876)

β24 8.436 8.437 (7.344, 9.505)

β25 −2.434 −2.435 (−3.511,−1.354)

β34 3.193 3.192 (2.094, 4.303)

β35 −1.941 −1.938 (−3.075,−0.8789)

β45 −7.813 −7.813 (−8.872,−6.714)

σ 1.724 1.186 (0.5187, 6.274)

τ 1.016 0.7109 (0.02542, 3.718)
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The results in Table 5.4 are the same as those given previously in Chapter 4, in Table

4.9. That is, those results when carrying out a Bayesian analysis of a half-fraction of

the reactor data assuming normal prior distributions on the model and effect param-

eters and a Gamma(1, 1) distribution on the precision. The results correspond with

those results as given by the standard analysis, which is that the true active effects

2, 4, 5, 24 and 45 have much larger posterior means in comparison to the other

effects and so would be identified as active. The 95% Bayesian credible intervals also

correctly indicate that the other effects are inactive due to the intervals being close

to 0. Table 5.5 gives the results when carrying out a Bayesian analysis with the same

prior assumptions as specified for the 16 run experiment, however this time when

analysing a quarter-fraction of the reactor data. The summary statistics indicate

some interesting results. The posterior mean and median for the intercept are very

close to the true mean as calculated from the standard analysis, however despite the

summary statistics resulting from the analysis of the original data, i.e. there are no

outliers, the posterior means and medians do differ quite greatly for some of the main

effects. It can be seen that along with main effects 2 and 4, main effect 1 also has

a large posterior estimated mean although this effect is not considered to be active

from previous analyses. Conversely, where main effect 5 has been identified as active

from previous analyses, in this case it only has a posterior mean of −1.847. It is

interesting to observe that the 95% Bayesian credible intervals have greatly increased

for all effects, even in the case of those true inactive effects. For example, the credible

interval for the parameter β3 is (−1.057, 1.087) when analysing the original data from

the 16 run experiment. However, when analysing the data from the 8 run experiment

instead, the credible interval widely increases to (−9.657, 8.913). Thus, it is not clear

which effects are truly active or inactive and demonstrates the perils of using such a

small fraction for experimentation due to the high level of aliasing involved. It should

also be noted that the value of the precision τ is very small with a value of 0.01008

which may be indicative of an overinflated variance.
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The summary statistics presented in Table 5.6 are those from the analysis when

analysing the half-fraction with one of the observations changed to an obvious outlier

and assuming normal distributions on both the model for the data and the effect

parameters. It can be seen that the posterior estimated mean for the intercept has

been greatly affected by the outlier which has increased from 65.25 in the previous

analysis, to a much greater value of 71.5. This is perhaps unsurprising as models

based upon the normal distribution are known to be particularly nonrobust to outliers,

where a single outlying observation can strongly impact on the inference. It is also

known that the population mean can also be unduly affected by an outlier and so

the posterior median may represent the data more accurately. However, it can be

seen that for these particular summary statistics the posterior median also has a

much larger value of 71.5. It is also worth noting that all the effects have relatively

large posterior means except for the main effect 4, which is actually one of the true

active effects. The 95% Bayesian credible interval has also shifted greatly, where from

the analysis of the original data the credible interval is (5.059, 7.182), in the case of

this dataset with an obvious outlier the credible interval is (−1.183, 0.943) and now

contains 0. Therefore, one may conclude incorrectly based upon this credible interval

that this parameter is actually inactive. Figure 5.1 displays the normal plot for this

data with the obvious outlier and it can clearly be seen that no effects are distinguished

as significant.
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Figure 5.1: Normal Plot for half-fraction of reactor data with obvious outlier

When replacing the normal distributional assumption for the model on the data by the

scaled-t and varying the degrees of freedom from small to large it can be seen that the

summary statistics tend to those when assuming a normal distribution on the data.

This appears to indicate that as the degrees of freedom become larger and approach

infinity, the distribution is actually tending to the normal distribution because the

posterior means, medians and credible intervals become closer to those for the normal

distribution on the data, i.e. those results displayed in Table 5.6. It also appears that

as the degrees of freedom become larger the 95% Bayesian credible intervals tend to

become narrower for the intercept and effect parameters, and the precision generally

decreases indicating that the variance becomes more inflated. For all of the various

degrees of freedom investigated, again it is seen that the posterior estimated mean

and median for the intercept is greatly affected by the outlying observation and also

that as before all effects have large posterior estimates except for main effect 4.
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When analysing the quarter-fraction with one of the observations changed to an ex-

treme value and assuming normal distributions on the data and the effect parameters

(Table 5.12) it is again seen that the posterior estimated mean and median for the

intercept has been impacted upon greatly. The 95% Bayesian credible intervals have

also shifted greatly in comparison to those from the analysis of the original data.

The results also indicate, as similarly noted for the half-fraction, that when replacing

the normal distribution model for the data with a scaled-t model and increasing the

degrees of freedom from small to large, that is looking at Tables 5.13 - 5.17, the sum-

mary statistics appear to tend towards those for the normal model on the data. As

with the analysis of the original quarter-fraction without an outlier, all the various

prior distributions investigated when analysing the quarter-fraction with an outlier

in the dataset indicate that the precision is very small.

When assuming a mixture of normal distributions on the effect parameters, and

analysing the datasets with an obvious outlier, for both the half-fraction and the

quarter-fraction (Tables 5.18 and 5.19) the posterior mean and median for the in-

tercept is still affected as with previous cases where it has increased, however now

all posterior estimates for effects are reduced greatly. This is for both main effects

and two-factor interactions in the case of the half-fraction, and all main effects for

the quarter-fraction. Also, the precision τ is reduced and the standard deviation has

increased somewhat in comparison to when assuming normal distributions on the

effect parameters. The 95% Bayesian credible intervals are also much wider for the

intercept and effect parameters.

Only the half-fraction was considered when adjusting the dataset so that an observa-

tion was increased by slightly more than 3σ. The summary statistics for the various

prior distributional assumptions made for this scenario are presented in Tables 5.20

- 5.25. For all cases the estimated posterior mean and median for the intercept has

not been unduly affected by the observation yadj, considered to be an outlier based
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upon the empirical rule. It should be noted that the mean and median are either

identical or very nearly the same when comparing the same effect parameter, for all

prior assumptions made. However, it should be noted that the effect parameters have

been affected by the adjusted value yadj as all effect parameters appear to be large or

have increased from what their true effect is, even those which are not truly active.

The only effect which is not large in all cases is the main effect 5, which is actually

one of the true active main effects. All of the credible intervals have also shifted and

none of these intervals contains the true posterior mean which clearly demonstrates

the impact of the outlier upon the analysis. It is also seen that when assuming the

data are modelled by a scaled-t distribution, when increasing the degrees of freedom

from small to large, as has been seen for previous cases, the summary statistics appear

to tend to those when assuming a normal model on the data demonstrating the sen-

sitivity and approximation of the family of t distributions to the normal distribution

as the degrees of freedom approach infinity.

5.3.4 Discussion

There have been some interesting results from carrying out a Bayesian analysis of a

fractional factorial experiment in the presence of an outlier. Before even adjusting the

dataset so that it contained what would be considered to be an extreme observation,

some surprising results were also noted.

When analysing the original quarter-fraction and estimating only the intercept and

main effects it was seen that the main effect of 1 was increased greatly and the main

effect of 5 was reduced. Some explanation for the large estimated effect of 1 could

be due to it being aliased with the true active interaction effect 24. This leads to

questions surrounding the choice of fraction chosen to be analysed, as a result of

the high level of aliasing for this quarter-fraction where main effects are aliased with
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two-factor interactions which would both typically be considered to be important by

experimenters. It is unlikely that an experimenter would choose such a fraction due

to the aliasing pattern which means no effects are clear, however the results demon-

strated do serve as a warning to experimenters in carefully choosing their fraction

and being aware of any possible aliasing which may lead to incorrect conclusions.

In this case incorrect conclusions such as main effect 1 could have been drawn even

before the added problem of outliers have even been considered. The extremely small

or underestimated value of the precision τ in the case of all analyses of the quarter-

fraction is also indicative of an overinflated variance, as mentioned previously. A

possible suggestion for the cause of this may be due to a highly fractionated design of

the original 32 run experiment being used which means that not all contrasts are in-

cluded in the 8 run design. Thus, only main effects are estimated and other contrasts

such as the two-factor interaction 23 is not estimated which is actually aliased with

the true active two-factor interaction effect 45. This may lead to some explanation

for the overinflated variance.

As mentioned, only the main effects were estimated in the case of the quarter-fraction,

however there were two additional degrees of freedom which could have been used to

estimate some of the two-factor interactions. If a strategy had been considered in

order to decide which two-factor interactions to estimate such as initially estimating

all main effects and then estimating the 2 two-factor interactions associated with

the largest main effects, then some caution should be heeded by the experimenter.

Considering the example where there were no outliers and the quarter-fraction was

analysed, the main effects 2, 4 and 1 had the largest estimated effects in that order.

Thus, an experimenter would then have decided to estimate 24 and 12, however the

true active effect 45 would not have been identified.

When an obvious outlier was included in the dataset for both the half-fraction and

the quarter-fraction it was seen that the inferences were affected. In this case it would

272



be hoped that an experimenter would be able to scrutinize the data beforehand and

pick up on any obvious outliers. However, without doing so it did appear that using

the scaled-t distribution to model the data did result in wider 95% Bayesian credible

intervals when using smaller degrees of freedom, in comparison to using the normal

distribution. This result is perhaps intuitive given that one may expect wider intervals

for a longer tailed distribution, however the intervals were not that much wider than

for the normal distribution and so may prove reassuring to an experimenter that

inferences are not overly influenced by the model assumption for the data. Despite

this, it did not appear that given the prior assumptions investigated, that in this

instance the scaled-t provided a much more robust inference in comparison to using

the more typical assumption that the data follow a normal distribution. Very different

results were seen for the summary statistics when assuming a mixture of normal

distributions on the effect parameters rather than independent normal distributions,

although these results did not appear to indicate more robust inferences. It may be

of interest therefore to investigate these distributions further and the case of more

informative priors to assess whether more robust inferences can be achieved.

The impact of not only the outliers, but also of the choice of experimental design upon

the posterior means, medians and 95% Bayesian credible intervals should be noted.

The intervals were affected greatly even in the case when the dataset did not contain

an outlier but the aliasing structure of the quarter-fraction resulted in low order, and

therefore important effects, being aliased. Although none of the truly active effects

were actually aliased with one another due to the defining contrast subgroup being

1 = 24 = 35 which means the problem of cancellation may not occur, it appears

that since main effects are aliased with two-factor interactions, all of the parameter

effects have been greatly inflated whether that particular contrast has an active effect

associated with it or not. This would lead to an experimenter being unable to conclude

which effects are truly significant and require the need for further experimentation.
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The idea of accounting for outliers in a linear model and the amount of ‘contami-

nation’ by this outlier has been previously discussed, although not at great length.

It would have been of interest to investigate this further by placing a prior on this

contamination δ, thus considering an alternative approach to that considered in this

chapter. This would be in order to use a Bayesian approach to make inferences about

the parameters in the model when the dataset is suspected of containing spurious

observations.
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5.4 Summary

In this chapter various Bayesian analyses have been presented when making a variety

of prior assumptions and in the case of different fractions of a design. It has been

shown that the type of fraction chosen can impact greatly upon the analysis, partic-

ularly when there is a high level of aliasing involved, and also when the dataset is

suspected of containing an outlier. Thus, an experimenter must carefully consider all

design fractions that could be used and although a robust inference could be sought

when carrying out a Bayesian analysis, this should not be a substitute for careful

data scrutiny checks in order to identify any potential extreme observations.
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Chapter 6

Conclusions and Further Work

6.1 Conclusions

This thesis has investigated various research avenues in using Bayesian methodology

and decision theory ideas in both the design and analysis of small multifactor in-

dustrial experiments. This thesis has specifically focused on this with regards to the

manufacturing and process improvement aspects of experimentation in the pharma-

ceutical industry.

In chapter 2 some utility function concepts were introduced and then later applied

in chapter 3 with respect to both screening and optimization. It was shown that the

choice of prior information did typically have some impact on the resulting relative

gain, when considering optimization at the later stages of experimentation, and also

on the utility which encompasses the weight of Type I and II errors when looking at

screening at the initial stages of experimentation. Despite this, it was also seen that

the type of design being investigated could also be impacted upon by other issues

such as the level of aliasing involved and so it was noted that the utility function
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ideas developed should not be used as a blind substitute for the choice of design

but perhaps more to be used in conjunction with other methods. It was noted that

the results presented do have a great dependency upon the various choices of prior

distributions and experimental designs made during the study, and also the interplay

between the aliasing structure in the experiments and the beliefs about the effects of

the factors. Therefore, there are limitations of the studies that should be taken into

consideration.

Chapter 4 presented Bayesian methodology and the application of this when analysing

fractional factorial experiments, and in chapter 5 this work was further extended

where datasets suspected of containing outliers were considered and a robust analysis

sought in order that inferences made were not affected by any outlying observations. It

was demonstrated that some benefit can be gained from incorporating prior knowledge

in the analysis, 95% Bayesian credible intervals were able to be obtained and although

the posterior estimated means were not as greatly impacted upon by the choice of

prior, it was shown that the size of the interval did change when varying the prior

assumptions made, particularly when varying the prior on the precision from a weakly

informative prior to a more informative prior. The credible intervals were also found

to be greatly impacted by the choice of experimental design, where they were seen to

shift a great deal.

In carrying out this research, some indication of which design to use has been made

when an experimenter is faced with the decision of choosing from a candidate set

and limited on resources, and so facing commercial pressure to minimize the size

of the experiment. An outline of how to set up a Bayesian analysis in the case

of fractional factorial experiments has also been presented and demonstrated that

additional information is to be gained in comparison to simply carrying out standard

analyses.
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6.2 Further Work

Some further research ideas stem from work carried out in this thesis. It would be

interesting to further look at determining which design to choose particularly in the

case of three-level designs where central composite and Box-Behnken designs could

be examined. Other design types could also be focused on such as non-regular and

mixed-level designs. In this thesis the response surface was explored and the optimal

treatment combination sought which was assumed to be a point of maximum response.

However, this is not always the case and so it would be of interest to determine the

maximum response when the stationary point is a minimum or a saddle point.

Another interesting issue for further research is concerned with extending the ideas

presented in chapter 5, where rather than merely seeking a robust analysis in the

presence of outliers, it may be of interest to be able to actually identify which obser-

vations are potential outliers. If the potential outliers could be found, then it would

be possible in some circumstances to go on and remove them. This could be investi-

gated by using a ‘Bayesian residual analysis’ where differences between the observed

and posterior values for the response variables could be analysed and some limit used

to identify which of these residuals are large and thus outliers. Also previously dis-

cussed was the concept of describing the outlier in the linear model by the amount

of ‘contamination’, and it would be of interest to further investigate this by placing a

prior on the contamination δ. Then a Bayesian approach could be adopted in order

to make inferences about the parameters in the model in the possible presence of

outlying observations.
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Appendix

The following appendices contain examples of the programs used to simulate the

results presented in Chapter 3, which were written in R and Chapter 4, which were

written in WinBUGS.

Appendix A contains the code for the optimization utility function which was written

in R. A.1, and A.2 display the code for the set up of point priors and normal prior

distributions on the parameters respectively. These are for the intercept, main effects

1, 2, 3, two-factor interactions 12, 13, 23 and the three-factor interaction 123. A.3

then gives code for the two candidate design matrices which are both half-fractions

and 4 runs in size and the full factorial 23 design matrix with all contrasts for all

effects included. Code for the algorithm to calculate the expected loss, gain and

relative gain for each of the candidate designs is presented. A.4 gives the code to

obtain the values of the loss, gain, maximum gain and relative gain for a three-level

design when assuming independent normal priors on the main, two-factor interaction

and quadratic effects.

Appendix B is again for code written in R, however this time for the screening utility

function. B.1 gives the prior specifications and code to simulate the R datasets and

determine active effects whereas B.2 contains code to evaluate the expected utility.

B.1 displays the code when estimating main effects and two-factor interactions, as-
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suming normal mixture prior distributions on these effects for both the 12 and 16

run design. Design matrices are given along with the prior specifications and code to

generate r simulated datasets. Code to fit the model and estimate the effects is also

given and then to determine which effects are active according to the two different

methods. B.2.1 gives the code in the case of the 12 run design, where the main effects

and 3 two-factor interactions are estimated. Additional code is given where initially

the main effects are estimated and then code given to find the three largest main

effects for each of the r simulations. The contrasts for the 3 two-factor interactions

associated with these three main effects are then added to the original design matrix

with main effects only. B.1.2 again gives code for the prior specification and design

matrix, but is for the 16 run design where estimating main effects and all two-factor

interactions. Finally, B.2 contains code to calculate the Type I and II errors and

subsequently the utility, for the r simulations.

Appendix C displays code written in WinBUGS in order to carry out a Bayesian

analysis of the reactor data. For each of the subsections in C, code for the model

for the data is set out, and prior assumptions for the intercept and effect parameters

given. Code to list the data is presented, and then vectors of −1′s and +1′s given for

each of the variables to determine the design matrix. Finally, initial values for each

of the two chains run is given. C.1 gives the code for this information in the case

of a normal model assumed on the data, normal prior distributions assumed on the

effect parameters and a uniform distribution assumed on log σ. C.2 gives code when

assuming that data are modelled by a scaled-t distribution and C.3 displays code for

normal mixture prior distributions on the effect parameters.
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Appendix A

Optimization Utility Function

A.1 Point Priors on Effects

##Fixed Size for Intercept and Effects##

b0<-0

b1<-10

b2<-0

b3<-0

b12<-0

b13<-8

b23<-0

b123<-0

##Intercept##

beta0<-matrix(b0,1,r)
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##Main Effects##

beta1<-matrix(b1,1,r)

beta2<-matrix(b2,1,r)

beta3<-matrix(b3,1,r)

##Two-Factor Interactions##

beta12<-matrix(b12,1,r)

beta13<-matrix(b13,1,r)

beta23<-matrix(b23,1,r)

##Three-Factor Interaction##

beta123<-matrix(b123,1,r)
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A.2 Normal Prior Distributions On Effects

##Prior Means for Parameters##

b0<-0

b1<-10

b2<-10

b3<-2

b12<-8

b13<-0

b23<-0

b123<-0

##Prior Standard Deviations for Parameters##

b0.sd<-1000

b1.sd<-2

b2.sd<-2

b3.sd<-2

b12.sd<-2

b13.sd<-2

b23.sd<-2

b123.sd<-2

##Intercept##

beta0<-rnorm(r,b0,b0.sd)

##Main Effects##

beta1<-rnorm(r,b1,b1.sd)

beta2<-rnorm(r,b2,b2.sd)
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beta3<-rnorm(r,b3,b3.sd)

##Two-Factor Interactions##

beta12<-rnorm(r,b12,b12.sd)

beta13<-rnorm(r,b13,b13.sd)

beta23<-rnorm(r,b23,b23.sd)

##Three-Factor Interaction##

beta123<-rnorm(r,b123,b123.sd)

284



A.3 Code for Expected Loss, Gain

and Relative Gain

r<-1000 # number of simulations

n<-4 # number of runs in fractional factorial design

t<-8 # number of runs in full factorial design

#########################################################

##Design Matrix 1##

X1<-matrix(c(

1, -1, -1, -1, 1, 1, 1, -1,

1, -1, 1, 1, -1, -1, 1, -1,

1, 1, -1, 1, -1, 1, -1, -1,

1, 1, 1, -1, 1, -1, -1, -1),

nrow=4,ncol=8,byrow=TRUE,dimnames=list

(c("run1","run2","run3","run4"),

c("beta0","x.1","x.2","x.3","x.12","x.13","x.23","x.123")))

##Design Matrix 2##

X2<-matrix(c(

1, -1, -1, 0, 1, 0, 0, 0,

1, -1, 1, 0, -1, 0, 0, 0,

1, 1, -1, 0, -1, 0, 0, 0,

1, 1, 1, 0, 1, 0, 0, 0),

nrow=4,ncol=8,byrow=TRUE,dimnames=list

(c("run1","run2","run3","run4"),
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c("beta0","x.1","x.2","x.3","x.12","x.13","x.23","x.123")))

##Matrix of Full Factorial Design##

X.full<-matrix(c(

1, -1, -1, -1, 1, 1, 1, -1,

1, -1, 1, 1, -1, -1, 1, -1,

1, 1, -1, 1, -1, 1, -1, -1,

1, 1, 1, -1, 1, -1, -1, -1,

1, -1, -1, 1, 1, -1, -1, 1,

1, -1, 1, -1, -1, 1, -1, 1,

1, 1, -1, -1, -1, -1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1),

nrow=8,ncol=8,byrow=TRUE,dimnames=list

(c("run1","run2","run3","run4","run5","run6","run7","run8"),

c("beta0","x.1","x.2","x.3","x.12","x.13","x.23","x.123")))

#########################################################

##Matrix of Simulated Priors##

prior.beta<-c(beta0,beta1,beta2,beta3,beta12,beta13,beta23,beta123)

beta<-matrix(prior.beta,t,r,byrow=T)

##Errors##

sim.error<-rnorm(r*n,0,1)

E<-matrix(sim.error,n,r)

##r Sets of Simulated Data Y1##

Y1<-X1%*%beta + E
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##r Sets of Simulated Data Y2##

Y2<-X2%*%beta + E

##Linear Model for Y1##

x1<-X1[,2]

x2<-X1[,3]

x3<-X1[,4]

lm(Y1~x1+x2+x3)

model1<-lm(Y1~x1+x2+x3)

coef(model1)

f1<-rbind(coef(model1),matrix(0,4,r))

##Linear Model for Y2##

x4<-X2[,2]

x5<-X2[,3]

x6<-X2[,5]

lm(Y2~x4+x5+x6)

model2<-lm(Y2~x4+x5+x6)

coef(model2)

f2<-rbind(coef(model2)[1:3,],0,coef(model2)[4],matrix(0,3,r))

##Estimates for Simulated Data for X1##

mu.hat1<-X.full%*%f1

##Estimates for Simulated Data for X2##

mu.hat2<-X.full%*%f2

##Estimates for ‘True’ Data##

mu<-X.full%*%beta
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#########################################################

##Expected Loss for X1##

Loss1 <- matrix(0,1,r)

Gain1 <- matrix(0,1,r)

Truth<-matrix(0,1,r)

for (i in 1:r){

loss1<-max(mu[,i])-mu[mu.hat1==max(mu.hat1[,i])]

gain1 <- mu[mu.hat1==max(mu.hat1[,i])]-beta[1,i]

truth<- max(mu[,i]) - beta[1,i]

Loss1[i] <- loss1

Gain1[i] <- gain1

Truth[i] <- truth

}

Loss1

Gain1

Truth

Rel.Gain1<-matrix(0,1,r)

for(i in 1:r){

Rel.Gain1[i]<-cbind(Gain1[,i]/Truth[,i])

}

Rel.Gain1

##Expected Loss for X2##

Loss2 <- matrix(0,1,r)

Gain2 <- matrix(0,1,r)

Truth <- matrix(0,1,r)
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for (i in 1:r){

loss2<-max(mu[,i])-mean(mu[mu.hat2==max(mu.hat2[,i])])

gain2 <- mean(mu[mu.hat2==max(mu.hat2[,i])])-beta[1,i]

truth<- max(mu[,i]) - beta[1,i]

Loss2[i] <- loss2

Gain2[i] <- gain2

Truth[i] <- truth

}

Loss2

Gain2

Rel.Gain2<-matrix(0,1,r)

for(i in 1:r){

Rel.Gain2[i]<-cbind(Gain2[,i]/Truth1[,i])

}

Rel.Gain2

##Expected Loss, Gain and Relative Gain##

mean(Loss1)

mean(Loss2)

mean(Gain1)

mean(Gain2)

mean(Rel.Gain1)

mean(Rel.Gain2)

289



A.4 Three-Level Design

r<-1000 # number of simulations

n1<-18 # run size

e<-11 # number of parameters to be estimated

t<-10 # number of effects to be estimated

sd<-1 # standard deviation for errors

##########################################################

##Prior Standard Deviations for Linear, Interaction##

##and Quadratic Effects##

beta.i.sd <- 2

beta.ii.sd<- 2

beta.ij.sd<- 2

##Intercept##

beta0<-rnorm(r, 0, 1000)

##Main Effects##

beta1<-rnorm(r, 0, beta.i.sd)

beta2<-rnorm(r, 0, beta.i.sd)

beta3<-rnorm(r, 0, beta.i.sd)

beta4<-rnorm(r, 0, beta.i.sd)

beta5<-rnorm(r, 0, beta.i.sd)

##Quadratic Effects ##

beta11<-rnorm(r, -30, beta.ii.sd)
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beta22<-rnorm(r, -30, beta.ii.sd)

beta33<-rnorm(r, -30, beta.ii.sd)

beta44<-rnorm(r, -30, beta.ii.sd)

beta55<-rnorm(r, -30, beta.ii.sd)

##Two-Factor Interactions##

beta12<-rnorm(r, 0, beta.ij.sd)

beta13<-rnorm(r, 0, beta.ij.sd)

beta14<-rnorm(r, 0, beta.ij.sd)

beta15<-rnorm(r, 0, beta.ij.sd)

beta23<-rnorm(r, 0, beta.ij.sd)

beta24<-rnorm(r, 0, beta.ij.sd)

beta25<-rnorm(r, 0, beta.ij.sd)

beta34<-rnorm(r, 0, beta.ij.sd)

beta35<-rnorm(r, 0, beta.ij.sd)

beta45<-rnorm(r, 0, beta.ij.sd)

##Matrix of Simulated Priors##

prior.beta <-c(beta0,beta1,beta2,beta3,beta4,beta5,

beta11,beta22,beta33,beta44,beta55,

beta12,beta13,beta14,beta15,beta23,beta24,beta25,beta34,beta35,beta45)

beta <-matrix(prior.beta,21,r,byrow=TRUE)

beta

##########################################################

#Design Matrix
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X1<-matrix(c(

1,-1,-1,-1,-1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,

1,-1,-1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0,-1, 0, 0,-1, 0, 0, 0, 0,

1,-1, 0,-1, 0,-1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,

1,-1, 0, 1,-1, 1, 1, 0, 1, 1, 1, 0,-1, 1,-1, 0, 0, 0,-1, 1,-1,

1,-1, 1, 0, 0, 1, 1, 1, 0, 0, 1,-1, 0, 0,-1, 0, 0, 1, 0, 0, 0,

1,-1, 1, 1, 1,-1, 1, 1, 1, 1, 1,-1,-1,-1, 1, 1, 1,-1, 1,-1,-1,

1, 0,-1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0,

1, 0,-1, 1,-1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,-1, 1, 1,-1,-1, 1,

1, 0, 0,-1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,-1,-1, 1,

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 1,-1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,-1, 1, 0,-1, 0, 0,

1, 0, 1, 0,-1,-1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,-1,-1, 0, 0, 1,

1, 1,-1,-1, 0,-1, 1, 1, 1, 0, 1,-1,-1, 0,-1, 1, 0,-1, 0, 1, 0,

1, 1,-1, 1, 1, 1, 1, 1, 1, 1, 1,-1, 1, 1, 1,-1,-1,-1, 1, 1, 1,

1, 1, 0, 0,-1, 0, 1, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0,

1, 1, 0, 0, 1,-1, 1, 0, 0, 1, 1, 0, 0, 1,-1, 0, 0, 0, 0, 0,-1,

1, 1, 1,-1,-1, 1, 1, 1, 1, 1, 1, 1,-1,-1, 1,-1,-1, 1, 1,-1,-1,

1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0),

nrow=18, ncol=21, byrow=TRUE,dimnames=list(c

("run1","run2","run3","run4","run5","run6","run7","run8",

"run9","run10","run11","run12","run13","run14","run15",

"run16","run17","run18"),

c("beta0","x1","x2","x3","x4","x5", "x11","x22","x33","x44",

"x55","x12","x13","x14","x15","x23","x24","x25","x34","x35",

"x45")))

X1
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##########################################################

##Errors##

sim.error<-rnorm(r*n1,0,1)

E1<-matrix(sim.error,n1,r)

E1

##r Sets of Simulated Data Y1##

Y1<-X1%*%beta + E1

Y1

##Linear Model for Y1##

x1<-X1[,2]

x2<-X1[,3]

x3<-X1[,4]

x4<-X1[,5]

x5<-X1[,6]

x11<-X1[,7]

x22<-X1[,8]

x33<-X1[,9]

x44<-X1[,10]

x55<-X1[,11]

lm(Y1~x1+x2+x3+x4+x5+x11+x22+x33+x44+x55)

model1<-lm(Y1~x1+x2+x3+x4+x5+x11+x22+x33+x44+x55)

design1coef<-matrix(print(coef(model1)),e,r)

design1coef

##########################################################
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##Matrix of Quadratic Effects##

MatrixB<- matrix(0,5,r)

for (i in 1:r){

matrixB<-design1coef[7:11,i]

MatrixB[,i]<-matrixB

}

MatrixB

##k x k symmetric matrix B##

n1<-5

c1<-5

B.hat<-array(rep(0,r*n1*c1), dim=c(n1,c1,r))

for (i in 1:r){

B.hat[,,i]<-cbind(

MatrixB[1,i], 0, 0, 0, 0,

0, MatrixB[2,i], 0, 0, 0,

0, 0, MatrixB[3,i], 0, 0,

0, 0, 0, MatrixB[4,i], 0,

0, 0, 0, 0, MatrixB[5,i])

}

B.hat

##Matrix of eigenvalues##

Lambda <- matrix(0,5,r)

for (i in 1:r){

E<-eigen(B.hat[,,i])

lambda <- E$values
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Lambda[,i]<-lambda

}

Lambda

##Check that eigenvalues are negative##

check.Lambda<-matrix(0,5,r)

for (j in 1:r){

for (i in 1:5){

CHECK.lambda<- if (Lambda[i,j]<0) 1 else 0

check.Lambda[i,j]<-CHECK.lambda

}

}

check.Lambda

sum(check.Lambda == 1)

Bhat<-array(rep(0,r*n1*c1), dim=c(n1,c1,r))

for (i in 1:r){

for (j in 1:5){

for (k in 1:5){

Bhat[j,k,i]<- cbind( if (B.hat[j,k,i]>0) -B.hat[j,k,i] else

B.hat[j,k,i])

}

}

}

Bhat

Lambda. <- matrix(0,5,r)

for (i in 1:r){
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E.<-eigen(Bhat[,,i])

lambda. <- E.$values

Lambda.[,i]<-lambda.

}

Lambda.

check.Lambda.<-matrix(0,5,r)

for (j in 1:r){

for (i in 1:5){

CHECK.lambda.<- if (Lambda.[i,j]<0) 1 else 0

check.Lambda.[i,j]<-CHECK.lambda.

}

}

check.Lambda.

sum(check.Lambda. == 1)

##Matrix b of main effects##

bhat<- matrix(0,5,r)

for (i in 1:r){

maineffects<-design1coef[2:6,i]

bhat[,i]<-maineffects

}

bhat

##To obtain location of stationary point##

x.s<-matrix(0, 5, r)

for (i in 1:r){

x.s[,i]<- -0.5*(solve(Bhat[,,i])%*%bhat[,i])
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}

x.s

##To obtain predicted response at the stationary point##

y_x.s<-matrix(0, 1, r)

for (i in 1:r){

y_x.s[,i]<- cbind(design1coef[1,i]+0.5*(t(x.s[,i])%*%bhat[,i]))

}

y_x.s

##########################################################

b1<-beta

##Matrix of Quadratic Effects##

MatrixB.1<- matrix(0,5,r)

for (i in 1:r){

matrixB.1<-beta[7:11,i]

MatrixB.1[,i]<-matrixB.1

}

MatrixB.1

##k x k symmetric matrix B##

n1<-5

c1<-5

B.1<-array(rep(0,r*n1*c1), dim=c(n1,c1,r))

for (i in 1:r){

B.1[,,i]<-cbind(

MatrixB.1[1,i],0.5*b1[12,i],0.5*b1[13,i],0.5*b1[14,i],0.5*b1[15,i],
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0.5*b1[12,i],MatrixB.1[2,i],0.5*b1[16,i],0.5*b1[17,i],0.5*b1[18,i],

0.5*b1[13,i],0.5*b1[16,i],MatrixB.1[3,i],0.5*b1[19,i],0.5*b1[20,i],

0.5*b1[14,i],0.5*b1[17,i],0.5*b1[19,i],MatrixB.1[4,i],0.5*b1[21,i],

0.5*b1[15,i],0.5*b1[18,i],0.5*b1[20,i],0.5*b1[21,i],MatrixB.1[5,i])

}

B.1

B.2<-array(rep(0,r*n1*c1), dim=c(n1,c1,r))

for (i in 1:r){

for (j in 1:5){

for (k in 1:5){

B.2[j,k,i]<- cbind( if (B.1[j,k,i]>0) -B.1[j,k,i] else B.1[j,k,i])

}

}

}

B.2

##Matrix of eigenvalues##

Lambda.1 <- matrix(0,5,r)

for (i in 1:r){

E.1<-eigen(B.2[,,i])

lambda.1 <- E.1$values

Lambda.1[,i]<-lambda.1

}

Lambda.1

##Check that eigenvalues are negative##

check.Lambda.1<-matrix(0,5,r)
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for (j in 1:r){

for (i in 1:5){

CHECK.lambda.1<- if (Lambda.1[i,j]<0) 1 else 0

check.Lambda.1[i,j]<-CHECK.lambda.1

}

}

check.Lambda.1

sum(check.Lambda.1 == 1)

Lambda.1.matrix<- matrix(0,1,r)

for (i in 1:r){

LAMBDA.1.matrix<- if (sum(check.Lambda.1[,i]) != 5) 1 else 0

Lambda.1.matrix[,i]<- LAMBDA.1.matrix

}

Lambda.1.matrix

sum(Lambda.1.matrix)

newB<-array(rep(0,r*n1*c1), dim=c(n1,c1,r))

for (i in 1:r){

for (j in 1:5){

for (k in 1:5){

newB[j,k,i]<-cbind(B.2[j,k,i])

newB[j,j,i]<- cbind(B.2[j,j,i]-10)

}

}

}

newB
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Lambda.2 <- matrix(0,5,r)

for (i in 1:r){

E.2<-eigen(newB[,,i])

lambda.2 <- E.2$values

Lambda.2[,i]<-lambda.2

}

Lambda.2

check.Lambda.2<-matrix(0,5,r)

for (j in 1:r){

for (i in 1:5){

CHECK.lambda.2<- if (Lambda.2[i,j]<0) 1 else 0

check.Lambda.2[i,j]<-CHECK.lambda.2

}

}

check.Lambda.2

sum(check.Lambda.2 == 1)

##New k x k symmetric matrix B##

B<-array(rep(0,r*n1*c1), dim=c(n1,c1,r))

for (i in 1:r){

for (j in 1:5){

for (k in 1:5){

B[j,k,i]<- cbind(if (Lambda.1.matrix[,i]==1) newB[j,k,i]

else B.2[j,k,i])

}

}

}
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B

##matrix b##

b<- matrix(0,5,r)

for (i in 1:r){

maineffects.1<-beta[2:6,i]

b[,i]<-maineffects.1

}

b

##To obtain location of stationary point##

x.s.1<-matrix(0, 5, r)

for (i in 1:r){

x.s.1[,i]<- -0.5*(solve(B[,,i])%*%b[,i])

}

x.s.1

##To obtain predicted response at the stationary point##

y_x.s.1<-matrix(0, 1, r)

for (i in 1:r){

y_x.s.1[,i]<- cbind(b1[1,i]+0.5*(t(x.s.1[,i])%*%b[,i]))

}

y_x.s.1

##########################################################

##Maximum Gain##

max.gain<-matrix(0,1,r)
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for (i in 1:r){

max.gain[i]<- cbind(-0.25*(t(b[,i]%*%solve(B[,,i])%*%b[,i])))

}

max.gain

##Gain##

gain <- matrix(0,1,r)

for (i in 1:r){

gain[i]<- cbind(-0.5*t(bhat[,i])%*%solve(Bhat[,,i])%*% b[,i]

+0.25*t(bhat[,i])%*%solve(Bhat[,,i])%*%B[,,i]%*%solve

(Bhat[,,i])%*%bhat[,i])

}

gain

##Loss##

loss <- matrix(0,1,r)

for (i in 1:r){

loss[i]<- cbind(-0.25*(t(b[,i]%*%solve(B[,,i])%*%b[,i]))

+0.5*t(bhat[,i])%*%solve(Bhat[,,i])%*%b[,i]

-0.25*t(bhat[,i])%*%solve(Bhat[,,i])%*%B[,,i]%*%solve

(Bhat[,,i])%*%bhat[,i])

}

loss

##Relative Gain##

relative.gain<-matrix(0,1,r)

for(i in 1:r){

relative.gain[i]<-cbind(gain[,i]/max.gain[,i])
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}

relative.gain

mean(max.gain)

mean(gain)

mean(loss)

mean(relative.gain)
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Appendix B

Screening Utility Function

B.1 Normal Mixture Prior Distributions

B.1.1 12 Run Design: Estimating Main Effects and

3 Two-Factor Interactions

r<-1000 # number of simulations

n1<-12 # run size

e<-16 # number of parameters

t<-15 # number of effects

sd<-1 # standard deviation for errors

omega<-sqrt(4) # declare effect active if > than omega

f<-6 # number of main effects and intercept

g<-5 # number of main effects

#########################################################
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##Design Matrix##

X1<-matrix(c(

1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1,

1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1,

1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1,

1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1,

1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1,

1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1,

1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1,

1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1,

1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1,

1, 1, -1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1,

1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1,

1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

nrow=12,ncol=16,byrow=TRUE,dimnames=list(c

("run1","run2","run3","run4","run5","run6","run7","run8",

"run9","run10","run11","run12"),

c("beta0","x.1","x.2","x.3","x.4","x.5",

"x.12","x.13","x.14","x.15","x.23","x.24",

"x.25","x.34","x.35","x.45")))

X1

X1.full<-X1[,-c(1)]

X1.full

X1.design<-X1[,-c(7,8,9,10,11,12,13,14,15,16)]

X1.design

##########################################################
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b<-sqrt(4) # prior standard deviation for active effect

a<-sqrt(0.01) # prior standard deviation for inactive effect

##Probability that main effect i is active (i = 1,...,5)##

p1<-0.2

p2<-0.2

p3<-0.2

p4<-0.2

p5<-0.2

##Probability P_{ij}: Two-factor interaction effect is active with##

##parent main effects active if i or j = 1; inactive if i or j = 0##

p11<-0.7

p10<-0.4

p01<-0.4

p00<-0.1

##Intercept##

beta0<-matrix(0,1,r)

##Simulate alpha_{i} from Bernoulli distribution:##

##1 if i = active, 0 is i = inactive##

alpha1<-rbinom(r,1,p1)

alpha2<-rbinom(r,1,p2)

alpha3<-rbinom(r,1,p3)

alpha4<-rbinom(r,1,p4)

alpha5<-rbinom(r,1,p5)
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##Prior Distributions on Main Effects##

beta1a<-rnorm(r,0,a)

beta1b<-rnorm(r,0,b)

beta1<-(1-alpha1)*beta1a + alpha1*beta1b

beta2a<-rnorm(r,0,a)

beta2b<-rnorm(r,0,b)

beta2<-(1-alpha2)*beta2a + alpha2*beta2b

beta3a<-rnorm(r,0,a)

beta3b<-rnorm(r,0,b)

beta3<-(1-alpha3)*beta3a + alpha3*beta3b

beta4a<-rnorm(r,0,a)

beta4b<-rnorm(r,0,b)

beta4<-(1-alpha4)*beta4a + alpha4*beta4b

beta5a<-rnorm(r,0,a)

beta5b<-rnorm(r,0,b)

beta5<-(1-alpha5)*beta5a + alpha5*beta5b

##Effects for Interaction 12##

alpha12.a<- matrix(0,r,1)

alpha12.b<- matrix(0,r,1)

alpha12.c<- matrix(0,r,1)

alpha12.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA12.a <- if (alpha1[i] == 1 && alpha2[i] == 1) p11 else 0

alpha12.a[i] <- ALPHA12.a

ALPHA12.b <- if (alpha1[i] == 1 && alpha2[i] == 0) p10 else 0

alpha12.b[i] <- ALPHA12.b
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ALPHA12.c <- if (alpha1[i] == 0 && alpha2[i] == 1) p01 else 0

alpha12.c[i] <- ALPHA12.c

ALPHA12.d <- if (alpha1[i] == 0 && alpha2[i] == 0) p00 else 0

alpha12.d[i] <- ALPHA12.d

}

Alpha12<-alpha12.a + alpha12.b + alpha12.c + alpha12.d

alpha12<-matrix(0,r,1)

for (i in 1:r){

ALPHA12<- rbinom(1,1,Alpha12[i,])

alpha12[i]<-ALPHA12

}

beta12a<-rnorm(r,0,a)

beta12b<-rnorm(r,0,b)

beta12<- (1-alpha12)*beta12a + alpha12*beta12b

##Effects for Interaction 13##

alpha13.a<- matrix(0,r,1)

alpha13.b<- matrix(0,r,1)

alpha13.c<- matrix(0,r,1)

alpha13.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA13.a <- if (alpha1[i] == 1 && alpha3[i] == 1) p11 else 0

alpha13.a[i] <- ALPHA13.a

ALPHA13.b <- if (alpha1[i] == 1 && alpha3[i] == 0) p10 else 0

alpha13.b[i] <- ALPHA13.b

ALPHA13.c <- if (alpha1[i] == 0 && alpha3[i] == 1) p01 else 0

alpha13.c[i] <- ALPHA13.c

ALPHA13.d <- if (alpha1[i] == 0 && alpha3[i] == 0) p00 else 0
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alpha13.d[i] <- ALPHA13.d

}

Alpha13<-alpha13.a + alpha13.b + alpha13.c + alpha13.d

alpha13<-matrix(0,r,1)

for (i in 1:r){

ALPHA13<- rbinom(1,1,Alpha13[i,])

alpha13[i]<-ALPHA13

}

beta13a<-rnorm(r,0,a)

beta13b<-rnorm(r,0,b)

beta13 <- (1-alpha13)*beta13a + alpha13*beta13b

##Effects for Interaction 14##

alpha14.a<- matrix(0,r,1)

alpha14.b<- matrix(0,r,1)

alpha14.c<- matrix(0,r,1)

alpha14.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA14.a <- if (alpha1[i] == 1 && alpha4[i] == 1) p11 else 0

alpha14.a[i] <- ALPHA14.a

ALPHA14.b <- if (alpha1[i] == 1 && alpha4[i] == 0) p10 else 0

alpha14.b[i] <- ALPHA14.b

ALPHA14.c <- if (alpha1[i] == 0 && alpha4[i] == 1) p01 else 0

alpha14.c[i] <- ALPHA14.c

ALPHA14.d <- if (alpha1[i] == 0 && alpha4[i] == 0) p00 else 0

alpha14.d[i] <- ALPHA14.d

}

Alpha14<-alpha14.a + alpha14.b + alpha14.c + alpha14.d
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alpha14<-matrix(0,r,1)

for (i in 1:r){

ALPHA14<- rbinom(1,1,Alpha14[i,])

alpha14[i]<-ALPHA14

}

beta14a<-rnorm(r,0,a)

beta14b<-rnorm(r,0,b)

beta14 <- (1-alpha14)*beta14a + alpha14*beta14b

##Effects for Interaction 15##

alpha15.a<- matrix(0,r,1)

alpha15.b<- matrix(0,r,1)

alpha15.c<- matrix(0,r,1)

alpha15.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA15.a <- if (alpha1[i] == 1 && alpha5[i] == 1) p11 else 0

alpha15.a[i] <- ALPHA15.a

ALPHA15.b <- if (alpha1[i] == 1 && alpha5[i] == 0) p10 else 0

alpha15.b[i] <- ALPHA15.b

ALPHA15.c <- if (alpha1[i] == 0 && alpha5[i] == 1) p01 else 0

alpha15.c[i] <- ALPHA15.c

ALPHA15.d <- if (alpha1[i] == 0 && alpha5[i] == 0) p00 else 0

alpha15.d[i] <- ALPHA15.d

}

Alpha15<-alpha15.a + alpha15.b + alpha15.c + alpha15.d

alpha15<-matrix(0,r,1)

for (i in 1:r){

ALPHA15<- rbinom(1,1,Alpha15[i,])
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alpha15[i]<-ALPHA15

}

beta15a<-rnorm(r,0,a)

beta15b<-rnorm(r,0,b)

beta15 <- (1-alpha15)*beta15a + alpha15*beta15b

##Effects for Interaction 23##

alpha23.a<- matrix(0,r,1)

alpha23.b<- matrix(0,r,1)

alpha23.c<- matrix(0,r,1)

alpha23.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA23.a <- if (alpha2[i] == 1 && alpha3[i] == 1) p11 else 0

alpha23.a[i] <- ALPHA23.a

ALPHA23.b <- if (alpha2[i] == 1 && alpha3[i] == 0) p10 else 0

alpha23.b[i] <- ALPHA23.b

ALPHA23.c <- if (alpha2[i] == 0 && alpha3[i] == 1) p01 else 0

alpha23.c[i] <- ALPHA23.c

ALPHA23.d <- if (alpha2[i] == 0 && alpha3[i] == 0) p00 else 0

alpha23.d[i] <- ALPHA23.d

}

Alpha23<-alpha23.a + alpha23.b + alpha23.c + alpha23.d

alpha23<-matrix(0,r,1)

for (i in 1:r){

ALPHA23<- rbinom(1,1,Alpha23[i,])

alpha23[i]<-ALPHA23

}

beta23a<-rnorm(r,0,a)
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beta23b<-rnorm(r,0,b)

beta23 <- (1-alpha23)*beta23a + alpha23*beta23b

##Effects for Interaction 24##

alpha24.a<- matrix(0,r,1)

alpha24.b<- matrix(0,r,1)

alpha24.c<- matrix(0,r,1)

alpha24.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA24.a <- if (alpha2[i] == 1 && alpha4[i] == 1) p11 else 0

alpha24.a[i] <- ALPHA24.a

ALPHA24.b <- if (alpha2[i] == 1 && alpha4[i] == 0) p10 else 0

alpha24.b[i] <- ALPHA24.b

ALPHA24.c <- if (alpha2[i] == 0 && alpha4[i] == 1) p01 else 0

alpha24.c[i] <- ALPHA24.c

ALPHA24.d <- if (alpha2[i] == 0 && alpha4[i] == 0) p00 else 0

alpha24.d[i] <- ALPHA24.d

}

Alpha24<-alpha24.a + alpha24.b + alpha24.c + alpha24.d

alpha24<-matrix(0,r,1)

for (i in 1:r){

ALPHA24<- rbinom(1,1,Alpha24[i,])

alpha24[i]<-ALPHA24

}

beta24a<-rnorm(r,0,a)

beta24b<-rnorm(r,0,b)

beta24 <- (1-alpha24)*beta24a + alpha24*beta24b
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##Effects for Interaction 25##

alpha25.a<- matrix(0,r,1)

alpha25.b<- matrix(0,r,1)

alpha25.c<- matrix(0,r,1)

alpha25.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA25.a <- if (alpha2[i] == 1 && alpha5[i] == 1) p11 else 0

alpha25.a[i] <- ALPHA25.a

ALPHA25.b <- if (alpha2[i] == 1 && alpha5[i] == 0) p10 else 0

alpha25.b[i] <- ALPHA25.b

ALPHA25.c <- if (alpha2[i] == 0 && alpha5[i] == 1) p01 else 0

alpha25.c[i] <- ALPHA25.c

ALPHA25.d <- if (alpha2[i] == 0 && alpha5[i] == 0) p00 else 0

alpha25.d[i] <- ALPHA25.d

}

Alpha25<-alpha25.a + alpha25.b + alpha25.c + alpha25.d

alpha25<-matrix(0,r,1)

for (i in 1:r){

ALPHA25<- rbinom(1,1,Alpha25[i,])

alpha25[i]<-ALPHA25

}

beta25a<-rnorm(r,0,a)

beta25b<-rnorm(r,0,b)

beta25 <- (1-alpha25)*beta25a + alpha25*beta25b

##Effects for Interaction 34##

alpha34.a<- matrix(0,r,1)

alpha34.b<- matrix(0,r,1)
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alpha34.c<- matrix(0,r,1)

alpha34.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA34.a <- if (alpha3[i] == 1 && alpha4[i] == 1) p11 else 0

alpha34.a[i] <- ALPHA34.a

ALPHA34.b <- if (alpha3[i] == 1 && alpha4[i] == 0) p10 else 0

alpha34.b[i] <- ALPHA34.b

ALPHA34.c <- if (alpha3[i] == 0 && alpha4[i] == 1) p01 else 0

alpha34.c[i] <- ALPHA34.c

ALPHA34.d <- if (alpha3[i] == 0 && alpha4[i] == 0) p00 else 0

alpha34.d[i] <- ALPHA34.d

}

Alpha34<-alpha34.a + alpha34.b + alpha34.c + alpha34.d

alpha34<-matrix(0,r,1)

for (i in 1:r){

ALPHA34<- rbinom(1,1,Alpha34[i,])

alpha34[i]<-ALPHA34

}

beta34a<-rnorm(r,0,a)

beta34b<-rnorm(r,0,b)

beta34 <- (1-alpha34)*beta34a + alpha34*beta34b

##Effects for Interaction 35##

alpha35.a<- matrix(0,r,1)

alpha35.b<- matrix(0,r,1)

alpha35.c<- matrix(0,r,1)

alpha35.d<- matrix(0,r,1)

for (i in 1:r){
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ALPHA35.a <- if (alpha3[i] == 1 && alpha5[i] == 1) p11 else 0

alpha35.a[i] <- ALPHA35.a

ALPHA35.b <- if (alpha3[i] == 1 && alpha5[i] == 0) p10 else 0

alpha35.b[i] <- ALPHA35.b

ALPHA35.c <- if (alpha3[i] == 0 && alpha5[i] == 1) p01 else 0

alpha35.c[i] <- ALPHA35.c

ALPHA35.d <- if (alpha3[i] == 0 && alpha5[i] == 0) p00 else 0

alpha35.d[i] <- ALPHA35.d

}

Alpha35<-alpha35.a + alpha35.b + alpha35.c + alpha35.d

alpha35<-matrix(0,r,1)

for (i in 1:r){

ALPHA35<- rbinom(1,1,Alpha35[i,])

alpha35[i]<-ALPHA35

}

beta35a<-rnorm(r,0,a)

beta35b<-rnorm(r,0,b)

beta35 <- (1-alpha35)*beta35a + alpha35*beta35b

##Effects for Interaction 45##

alpha45.a<- matrix(0,r,1)

alpha45.b<- matrix(0,r,1)

alpha45.c<- matrix(0,r,1)

alpha45.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA45.a <- if (alpha4[i] == 1 && alpha5[i] == 1) p11 else 0

alpha45.a[i] <- ALPHA45.a

ALPHA45.b <- if (alpha4[i] == 1 && alpha5[i] == 0) p10 else 0
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alpha45.b[i] <- ALPHA45.b

ALPHA45.c <- if (alpha4[i] == 0 && alpha5[i] == 1) p01 else 0

alpha45.c[i] <- ALPHA45.c

ALPHA45.d <- if (alpha4[i] == 0 && alpha5[i] == 0) p00 else 0

alpha45.d[i] <- ALPHA45.d

}

Alpha45<-alpha45.a + alpha45.b + alpha45.c + alpha45.d

alpha45<-matrix(0,r,1)

for (i in 1:r){

ALPHA45<- rbinom(1,1,Alpha45[i,])

alpha45[i]<-ALPHA45

}

beta45a<-rnorm(r,0,a)

beta45b<-rnorm(r,0,b)

beta45 <- (1-alpha45)*beta45a + alpha45*beta45b

##Matrix of Simulated Priors##

dummy.prior.beta <-c(beta0,beta1,beta2,beta3,beta4,beta5,

beta12,beta13,beta14,beta15,beta23,beta24,beta25,beta34,

beta35,beta45)

beta.r <-matrix(dummy.prior.beta,e,r,byrow=TRUE)

Beta.r <- beta.r[-c(1),]

##Errors##

sim.error1<-rnorm(n1*r,0,sd)

E1<-matrix(sim.error1,n1,r)

E1
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##r Sets of Simulated Data Y1##

Y1<-X1%*%beta.r + E1

##Linear Model for Y1##

x1<-X1[,2]

x2<-X1[,3]

x3<-X1[,4]

x4<-X1[,5]

x5<-X1[,6]

lm(Y1~x1+x2+x3+x4+x5)

model1<-lm(Y1~x1+x2+x3+x4+x5)

design1coef<-matrix(print(coef(model1)),f,r)

effects1<-design1coef[-c(1),]

##########################################################

##To obtain new design matrix with all main effects and three ##

##two-factor interactions associated with three largest main effects##

third<-matrix(0,1,r)

for (i in 1:r){

Third<-sort(abs(effects1[,i]))[3]

third[i]<-Third

}

third

large.effects<-matrix(0,g,r)

for (i in 1:g){

for (j in 1:r){

large.effects[i,j]<-as.numeric(abs(effects1[i,j])>=third[,j])
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}

}

large.effects

X.expand<-array(rep(0,r*n1*t), dim=c(n1,t,r))

for (i in 1:r){

X.expand[,,i]<-cbind(X1[,2:6],

X1[,7]* large.effects[1,i]*large.effects[2,i],

X1[,8]* large.effects[1,i]*large.effects[3,i],

X1[,9]* large.effects[1,i]*large.effects[4,i],

X1[,10]*large.effects[1,i]*large.effects[5,i],

X1[,11]*large.effects[2,i]*large.effects[3,i],

X1[,12]*large.effects[2,i]*large.effects[4,i],

X1[,13]*large.effects[2,i]*large.effects[5,i],

X1[,14]*large.effects[3,i]*large.effects[4,i],

X1[,15]*large.effects[3,i]*large.effects[5,i],

X1[,16]*large.effects[4,i]*large.effects[5,i])

}

X.expand

estimated.effects<-matrix(0,16,r)

estimated.effects

for (i in 1:r){

estimated.effects[,i]<-coef(lm(Y1[,i]~(X.expand[,,i])))

}

estimated.effects

new.effects<-estimated.effects[-c(1),]

new.effects

new.effects[is.na(new.effects)]<-0

new.effects
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##########################################################

D <- as.numeric(abs(Beta.r)>omega)

D

Delta.star<- matrix(D,t,r)

Delta.star

##Declaring True Active Effects##

no.actives<-matrix(0,r,1)

for (i in 1:r){

no.actives[i]<-length(Delta.star[,i][Delta.star[,i]==1])

}

no.actives

#########################################################

##Method 1: if effects > omega, then declare active##

D1<- as.numeric(abs(new.effects)>omega)

Delta1<- matrix(D1,t,r)

#########################################################

##Method 2: Lenth’s method##

Median1 <- matrix(0,1,r)

for (i in 1:r){
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med1 <- median(abs(new.effects[,i]))

Median1[i] <- med1

}

s0.1 <- 1.5*Median1

T1<- matrix(0,t,r)

for (i in 1:t){

for (j in 1:r){

t.1 <- ifelse((abs(new.effects)[i,j] < 2.5*s0.1[,j]),1,0)

T1[i,j] <- t.1

}}

N1<- T1*new.effects

PSE<-matrix(0,1,r)

for (i in 1:r){

PSE[i]<-1.5*median(abs(N1[,i]))

}

t.975.d<-2.57

t.gamma.d<- 5.22

ME1<-t.975.d*PSE

SME1<- t.gamma.d * PSE

ME<-matrix(ME1,1,r)

SME<-matrix(SME1,1,r)

D1.lenth<-matrix(0,t,r)

for (i in 1:t){

for (j in 1:r){

D1.lenth[i,j]<- as.numeric(abs(new.effects[i,j])>ME1[,j])

}

}

Delta.1.lenth<- matrix(D1.lenth,t,r)
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B.1.2 16 Run Design: Estimating Main Effects and

all Two-Factor Interactions

r<-1000 # number of simulations

n1<-16 # run size

e<-16 # number of parameters

t<-15 # number of effects

sd<-1 # standard deviation for errors

omega <- sqrt(10) # declare effect active if > than omega

##########################################################

##Design Matrix 1##

X1<-matrix(c(

1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1,

1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1,

1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1,

1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1,

1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1,

1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1,

1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1,

1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1,

1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1,

1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1,

1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1,
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1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1,

1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1,

1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1,

1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

nrow=16,ncol=16,byrow=TRUE,dimnames=list

(c("run1","run2","run3","run4","run5","run6","run7","run8",

"run9","run10","run11","run12","run13","run14","run15","run16"),

c("beta0","x.1","x.2","x.3","x.4","x.5","x.12", "x.13", "x.14",

"x.15", "x.23", "x.24", "x.25", "x.34", "x.35", "x.45")))

X1

##########################################################

b<-sqrt(10) # prior standard deviation for active effect

a<-sqrt(0.01) # prior standard deviation for inactive effect

##Probability p_{i} that main effect i is active (i = 1,...,5)##

p1<-0.2

p2<-0.2

p3<-0.2

p4<-0.6

p5<-0.6

##Probability p_{ij}: Two-factor interaction effect is active with##

##parent main effects active if i or j = 1; inactive if i or j = 0##

p11<-0.7

p10<-0.4
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p01<-0.4

p00<-0.1

#########################################################

##Intercept##

beta0<-matrix(0,1,r)

##Simulate alpha_{i} from Bernoulli distribution:##

##1 if i = active, 0 is i = inactive##

alpha1<-rbinom(r,1,p1)

alpha2<-rbinom(r,1,p2)

alpha3<-rbinom(r,1,p3)

alpha4<-rbinom(r,1,p4)

alpha5<-rbinom(r,1,p5)

##Prior Distributions on Main Effects##

beta1a<-rnorm(r,0,a)

beta1b<-rnorm(r,0,b)

beta1<-(1-alpha1)*beta1a + alpha1*beta1b

beta2a<-rnorm(r,0,a)

beta2b<-rnorm(r,0,b)

beta2<- (1-alpha2)*beta2a + alpha2*beta2b

beta3a<-rnorm(r,0,a)

beta3b<-rnorm(r,0,b)

beta3<- (1-alpha3)*beta3a + alpha3*beta3b

beta4a<-rnorm(r,0,a)

beta4b<-rnorm(r,0,b)
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beta4<- (1-alpha4)*beta4a + alpha4*beta4b

beta5a<-rnorm(r,0,a)

beta5b<-rnorm(r,0,b)

beta5<- (1-alpha5)*beta5a + alpha5*beta5b

##Effects for Interaction 12##

alpha12.a<- matrix(0,r,1)

alpha12.b<- matrix(0,r,1)

alpha12.c<- matrix(0,r,1)

alpha12.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA12.a <- if (alpha1[i] == 1 && alpha2[i] == 1) p11 else 0

alpha12.a[i] <- ALPHA12.a

ALPHA12.b <- if (alpha1[i] == 1 && alpha2[i] == 0) p10 else 0

alpha12.b[i] <- ALPHA12.b

ALPHA12.c <- if (alpha1[i] == 0 && alpha2[i] == 1) p01 else 0

alpha12.c[i] <- ALPHA12.c

ALPHA12.d <- if (alpha1[i] == 0 && alpha2[i] == 0) p00 else 0

alpha12.d[i] <- ALPHA12.d

}

Alpha12<-alpha12.a + alpha12.b + alpha12.c + alpha12.d

alpha12<-matrix(0,r,1)

for (i in 1:r){

ALPHA12<- rbinom(1,1,Alpha12[i,])

alpha12[i]<-ALPHA12

}

beta12a<-rnorm(r,0,a)

beta12b<-rnorm(r,0,b)
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beta12<- (1-alpha12)*beta12a + alpha12*beta12b

##Effects for Interaction 13##

alpha13.a<- matrix(0,r,1)

alpha13.b<- matrix(0,r,1)

alpha13.c<- matrix(0,r,1)

alpha13.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA13.a <- if (alpha1[i] == 1 && alpha3[i] == 1) p11 else 0

alpha13.a[i] <- ALPHA13.a

ALPHA13.b <- if (alpha1[i] == 1 && alpha3[i] == 0) p10 else 0

alpha13.b[i] <- ALPHA13.b

ALPHA13.c <- if (alpha1[i] == 0 && alpha3[i] == 1) p01 else 0

alpha13.c[i] <- ALPHA13.c

ALPHA13.d <- if (alpha1[i] == 0 && alpha3[i] == 0) p00 else 0

alpha13.d[i] <- ALPHA13.d

}

Alpha13<-alpha13.a + alpha13.b + alpha13.c + alpha13.d

alpha13<-matrix(0,r,1)

for (i in 1:r){

ALPHA13<- rbinom(1,1,Alpha13[i,])

alpha13[i]<-ALPHA13

}

beta13a<-rnorm(r,0,a)

beta13b<-rnorm(r,0,b)

beta13 <- (1-alpha13)*beta13a + alpha13*beta13b

##Effects for Interaction 14##
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alpha14.a<- matrix(0,r,1)

alpha14.b<- matrix(0,r,1)

alpha14.c<- matrix(0,r,1)

alpha14.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA14.a <- if (alpha1[i] == 1 && alpha4[i] == 1) p11 else 0

alpha14.a[i] <- ALPHA14.a

ALPHA14.b <- if (alpha1[i] == 1 && alpha4[i] == 0) p10 else 0

alpha14.b[i] <- ALPHA14.b

ALPHA14.c <- if (alpha1[i] == 0 && alpha4[i] == 1) p01 else 0

alpha14.c[i] <- ALPHA14.c

ALPHA14.d <- if (alpha1[i] == 0 && alpha4[i] == 0) p00 else 0

alpha14.d[i] <- ALPHA14.d

}

Alpha14<-alpha14.a + alpha14.b + alpha14.c + alpha14.d

alpha14<-matrix(0,r,1)

for (i in 1:r){

ALPHA14<- rbinom(1,1,Alpha14[i,])

alpha14[i]<-ALPHA14

}

beta14a<-rnorm(r,0,a)

beta14b<-rnorm(r,0,b)

beta14 <- (1-alpha14)*beta14a + alpha14*beta14b

##Effects for Interaction 15##

alpha15.a<- matrix(0,r,1)

alpha15.b<- matrix(0,r,1)

alpha15.c<- matrix(0,r,1)
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alpha15.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA15.a <- if (alpha1[i] == 1 && alpha5[i] == 1) p11 else 0

alpha15.a[i] <- ALPHA15.a

ALPHA15.b <- if (alpha1[i] == 1 && alpha5[i] == 0) p10 else 0

alpha15.b[i] <- ALPHA15.b

ALPHA15.c <- if (alpha1[i] == 0 && alpha5[i] == 1) p01 else 0

alpha15.c[i] <- ALPHA15.c

ALPHA15.d <- if (alpha1[i] == 0 && alpha5[i] == 0) p00 else 0

alpha15.d[i] <- ALPHA15.d

}

Alpha15<-alpha15.a + alpha15.b + alpha15.c + alpha15.d

alpha15<-matrix(0,r,1)

for (i in 1:r){

ALPHA15<- rbinom(1,1,Alpha15[i,])

alpha15[i]<-ALPHA15

}

beta15a<-rnorm(r,0,a)

beta15b<-rnorm(r,0,b)

beta15 <- (1-alpha15)*beta15a + alpha15*beta15b

##Effects for Interaction 23##

alpha23.a<- matrix(0,r,1)

alpha23.b<- matrix(0,r,1)

alpha23.c<- matrix(0,r,1)

alpha23.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA23.a <- if (alpha2[i] == 1 && alpha3[i] == 1) p11 else 0
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alpha23.a[i] <- ALPHA23.a

ALPHA23.b <- if (alpha2[i] == 1 && alpha3[i] == 0) p10 else 0

alpha23.b[i] <- ALPHA23.b

ALPHA23.c <- if (alpha2[i] == 0 && alpha3[i] == 1) p01 else 0

alpha23.c[i] <- ALPHA23.c

ALPHA23.d <- if (alpha2[i] == 0 && alpha3[i] == 0) p00 else 0

alpha23.d[i] <- ALPHA23.d

}

Alpha23<-alpha23.a + alpha23.b + alpha23.c + alpha23.d

alpha23<-matrix(0,r,1)

for (i in 1:r){

ALPHA23<- rbinom(1,1,Alpha23[i,])

alpha23[i]<-ALPHA23

}

beta23a<-rnorm(r,0,a)

beta23b<-rnorm(r,0,b)

beta23 <- (1-alpha23)*beta23a + alpha23*beta23b

##Effects for Interaction 24##

alpha24.a<- matrix(0,r,1)

alpha24.b<- matrix(0,r,1)

alpha24.c<- matrix(0,r,1)

alpha24.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA24.a <- if (alpha2[i] == 1 && alpha4[i] == 1) p11 else 0

alpha24.a[i] <- ALPHA24.a

ALPHA24.b <- if (alpha2[i] == 1 && alpha4[i] == 0) p10 else 0

alpha24.b[i] <- ALPHA24.b
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ALPHA24.c <- if (alpha2[i] == 0 && alpha4[i] == 1) p01 else 0

alpha24.c[i] <- ALPHA24.c

ALPHA24.d <- if (alpha2[i] == 0 && alpha4[i] == 0) p00 else 0

alpha24.d[i] <- ALPHA24.d

}

Alpha24<-alpha24.a + alpha24.b + alpha24.c + alpha24.d

alpha24<-matrix(0,r,1)

for (i in 1:r){

ALPHA24<- rbinom(1,1,Alpha24[i,])

alpha24[i]<-ALPHA24

}

beta24a<-rnorm(r,0,a)

beta24b<-rnorm(r,0,b)

beta24 <- (1-alpha24)*beta24a + alpha24*beta24b

##Effects for Interaction 25##

alpha25.a<- matrix(0,r,1)

alpha25.b<- matrix(0,r,1)

alpha25.c<- matrix(0,r,1)

alpha25.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA25.a <- if (alpha2[i] == 1 && alpha5[i] == 1) p11 else 0

alpha25.a[i] <- ALPHA25.a

ALPHA25.b <- if (alpha2[i] == 1 && alpha5[i] == 0) p10 else 0

alpha25.b[i] <- ALPHA25.b

ALPHA25.c <- if (alpha2[i] == 0 && alpha5[i] == 1) p01 else 0

alpha25.c[i] <- ALPHA25.c

ALPHA25.d <- if (alpha2[i] == 0 && alpha5[i] == 0) p00 else 0
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alpha25.d[i] <- ALPHA25.d

}

Alpha25<-alpha25.a + alpha25.b + alpha25.c + alpha25.d

alpha25<-matrix(0,r,1)

for (i in 1:r){

ALPHA25<- rbinom(1,1,Alpha25[i,])

alpha25[i]<-ALPHA25

}

beta25a<-rnorm(r,0,a)

beta25b<-rnorm(r,0,b)

beta25 <- (1-alpha25)*beta25a + alpha25*beta25b

##Effects for Interaction 34##

alpha34.a<- matrix(0,r,1)

alpha34.b<- matrix(0,r,1)

alpha34.c<- matrix(0,r,1)

alpha34.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA34.a <- if (alpha3[i] == 1 && alpha4[i] == 1) p11 else 0

alpha34.a[i] <- ALPHA34.a

ALPHA34.b <- if (alpha3[i] == 1 && alpha4[i] == 0) p10 else 0

alpha34.b[i] <- ALPHA34.b

ALPHA34.c <- if (alpha3[i] == 0 && alpha4[i] == 1) p01 else 0

alpha34.c[i] <- ALPHA34.c

ALPHA34.d <- if (alpha3[i] == 0 && alpha4[i] == 0) p00 else 0

alpha34.d[i] <- ALPHA34.d

}

Alpha34<-alpha34.a + alpha34.b + alpha34.c + alpha34.d
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alpha34<-matrix(0,r,1)

for (i in 1:r){

ALPHA34<- rbinom(1,1,Alpha34[i,])

alpha34[i]<-ALPHA34

}

beta34a<-rnorm(r,0,a)

beta34b<-rnorm(r,0,b)

beta34 <- (1-alpha34)*beta34a + alpha34*beta34b

##Effects for Interaction 35##

alpha35.a<- matrix(0,r,1)

alpha35.b<- matrix(0,r,1)

alpha35.c<- matrix(0,r,1)

alpha35.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA35.a <- if (alpha3[i] == 1 && alpha5[i] == 1) p11 else 0

alpha35.a[i] <- ALPHA35.a

ALPHA35.b <- if (alpha3[i] == 1 && alpha5[i] == 0) p10 else 0

alpha35.b[i] <- ALPHA35.b

ALPHA35.c <- if (alpha3[i] == 0 && alpha5[i] == 1) p01 else 0

alpha35.c[i] <- ALPHA35.c

ALPHA35.d <- if (alpha3[i] == 0 && alpha5[i] == 0) p00 else 0

alpha35.d[i] <- ALPHA35.d

}

Alpha35<-alpha35.a + alpha35.b + alpha35.c + alpha35.d

alpha35<-matrix(0,r,1)

for (i in 1:r){

ALPHA35<- rbinom(1,1,Alpha35[i,])

331



alpha35[i]<-ALPHA35

}

beta35a<-rnorm(r,0,a)

beta35b<-rnorm(r,0,b)

beta35 <- (1-alpha35)*beta35a + alpha35*beta35b

##Effects for Interaction 45##

alpha45.a<- matrix(0,r,1)

alpha45.b<- matrix(0,r,1)

alpha45.c<- matrix(0,r,1)

alpha45.d<- matrix(0,r,1)

for (i in 1:r){

ALPHA45.a <- if (alpha4[i] == 1 && alpha5[i] == 1) p11 else 0

alpha45.a[i] <- ALPHA45.a

ALPHA45.b <- if (alpha4[i] == 1 && alpha5[i] == 0) p10 else 0

alpha45.b[i] <- ALPHA45.b

ALPHA45.c <- if (alpha4[i] == 0 && alpha5[i] == 1) p01 else 0

alpha45.c[i] <- ALPHA45.c

ALPHA45.d <- if (alpha4[i] == 0 && alpha5[i] == 0) p00 else 0

alpha45.d[i] <- ALPHA45.d

}

Alpha45<-alpha45.a + alpha45.b + alpha45.c + alpha45.d

alpha45<-matrix(0,r,1)

for (i in 1:r){

ALPHA45<- rbinom(1,1,Alpha45[i,])

alpha45[i]<-ALPHA45

}

beta45a<-rnorm(r,0,a)
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beta45b<-rnorm(r,0,b)

beta45 <- (1-alpha45)*beta45a + alpha45*beta45b

##Matrix of Simulated Priors##

prior.beta<-c(beta0,beta1,beta2,beta3,beta4,beta5,beta12,

beta13,beta14,beta15,beta23,beta24,beta25,beta34,beta35,beta45)

beta.r<-matrix(prior.beta,e,r,byrow=T)

Beta.r <- beta.r[-c(1),]

##Errors##

sim.error1<-rnorm(n1*r,0,sd)

E1<-matrix(sim.error1,n1,r)

##r Sets of Simulated Data Y1##

Y1<-X1%*%beta.r + E1

##Linear Model for Y##

x1<-X1[,2]

x2<-X1[,3]

x3<-X1[,4]

x4<-X1[,5]

x5<-X1[,6]

x12<-X1[,7]

x13<-X1[,8]

x14<-X1[,9]

x15<-X1[,10]

x23<-X1[,11]

x24<-X1[,12]
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x25<-X1[,13]

x34<-X1[,14]

x35<-X1[,15]

x45<-X1[,16]

lm(Y1~x1+x2+x3+x4+x5+x12+x13+x14+x15+x23+x24+x25+x34+x35+x45)

model1<-lm(Y1~x1+x2+x3+x4+x5+x12+x13+x14+x15+x23+x24+x25+x34+x35+x45)

design1coef<-matrix(print(coef(model1)),e,r)

effects1<-design1coef[-c(1),]

##########################################################

D <- as.numeric(abs(Beta.r)>omega)

D

Delta.star<- matrix(D,e-1,r)

Delta.star

##Declaring True Active Effects##

no.actives<-matrix(0,r,1)

for (i in 1:r){

no.actives[i]<-length(Delta.star[,i][Delta.star[,i]==1])

}

no.actives

##########################################################

##Method 1: if effects > omega, then declare active##

##Design 1##
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D1 <- as.numeric(abs(effects1)>omega)

Delta1<- matrix(D1,e-1,r)

##########################################################

##Method 2: Lenth’s method##

Median1 <- matrix(0,1,r)

for (i in 1:r){

med1 <- median(abs(effects1[,i]))

Median1[i] <- med1

}

s0.1 <- 1.5*Median1

T1<- matrix(0,e-1,r)

for (i in 1:e-1){

for (j in 1:r){

t.1 <- ifelse((abs(effects1)[i,j] < 2.5*s0.1[,j]),1,0)

T1[i,j] <- t.1

}}

N1<- T1*effects1

PSE<-matrix(0,1,r)

for (i in 1:r){

PSE[i]<- 1.5 * median(abs(N1[,i]))

}

t.975.d<-2.57

t.gamma.d<- 5.22

ME1<-t.975.d*PSE

SME1<- t.gamma.d * PSE
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ME<-matrix(ME1,1,r)

SME<-matrix(SME1,1,r)

Delta.1.lenth<-matrix(0,t,r)

for (i in 1:t){

for (j in 1:r){

Delta.1.lenth[i,j]<-as.numeric(abs(effects1[i,j])>SME[,j])

}

}
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B.2 Code for Expected Utility

##Utilities using Method 1##

actives.decl.active1<-matrix(0,t,r)

actives.decl.inactive1<-matrix(0,t,r)

inactives.decl.active1<-matrix(0,t,r)

inactives.decl.inactive1<-matrix(0,t,r)

for (j in 1:r)

{

correct1 <- as.numeric(Delta.star[,j]==Delta1[,j])

actives.decl.active1[,j] <- Delta.star[,j]*correct1

actives.decl.inactive1[,j] <- Delta.star[,j]*(1-correct1)

inactives.decl.active1[,j] <- (1-Delta.star[,j])*(1-correct1)

inactives.decl.inactive1[,j] <- (1-Delta.star[,j])*correct1

}

actives.decl.active1

actives.decl.inactive1

inactives.decl.active1

inactives.decl.inactive1

true.pos1 <- ifelse(no.actives>0, sum(actives.decl.active1)/

(no.actives*r), 0)

type2.error1<-ifelse(no.actives>0, sum(actives.decl.inactive1)/

(no.actives*r), 0)

type1.error1<-ifelse(t-no.actives>0, sum(inactives.decl.active1)/

((t-no.actives)*r), 0)

true.neg1<-ifelse(t-no.actives>0, sum(inactives.decl.inactive1)/

((t-no.actives)*r), 0)
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true.pos1

type2.error1

type1.error1

true.neg1

u2.1.1<-type2.error1

u1.1.1<-type1.error1

gamma<-0.5

U.1.1<-gamma*u1.1.1 + (1-gamma)*u2.1.1

U.1.1

#########################################################

##Utilities using Method 2##

l1.1<-matrix(0,t,r)

l2.1<-matrix(0,t,r)

l3.1<-matrix(0,t,r)

l4.1<-matrix(0,t,r)

for (j in 1:r)

{

correct3 <- as.numeric(Delta.star[,j]==Delta.1.lenth[,j])

l1.1[,j] <- Delta.star[,j]*correct3

l2.1[,j] <- Delta.star[,j]*(1-correct3)

l3.1[,j] <- (1-Delta.star[,j])*(1-correct3)

l4.1[,j] <- (1-Delta.star[,j])*correct3

}

l1.1

l2.1
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l3.1

l4.1

true.pos3<-ifelse(no.actives>0, sum(l1.1)/(no.actives*r), 0)

type2.error3<-ifelse(no.actives>0, sum(l2.1)/(no.actives*r), 0)

type1.error3<-ifelse(t-no.actives>0, sum(l3.1)/((t-no.actives)*r), 0)

true.neg3<-ifelse(t-no.actives>0, sum(l4.1)/((t-no.actives)*r), 0)

true.pos3

type2.error3

type1.error3

true.neg3

u2.1.2<-type2.error3

u1.1.2<-type1.error3

gamma<-0.5

U.1.2<-gamma*u1.1.2 + (1-gamma)*u2.1.2

U.1.2

#########################################################

##Type I and II errors##

mean(u1.1.1) # type1 error - Design 1 method 1

mean(u1.1.2) # type1.error - Design 1 method 2

mean(u2.1.1) # type2 error - Design 1 method 1

mean(u2.1.2) # type2.error - Design 1 method 2

##Expected Utilities##
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mean(U.1.1) # design 1 method 1

mean(U.1.2) # design 1 method 2

340



Appendix C

WinBUGS Code for Bayesian

Analysis

C.1 Normal Model on Data,

Normal Prior Distribution on Effect

Parameters and Uniform Prior on Log σ

model

{

for( i in 1 : N ) {

y[i] ~ dnorm(mu[i],tau) # model for data

mu[i]<- beta0 + beta[1]*x1[i] + beta[2]*x2[i] + beta[3]*x3[i]

+ beta[4]*x4[i] + beta[5]*x5[i] + betaint[1,2]*x1[i]*x2[i]

+ betaint[1,3]*x1[i]*x3[i] + betaint[1,4]*x1[i]*x4[i]
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+ betaint[1,5]*x1[i]*x5[i] + betaint[2,3]*x2[i]*x3[i]

+ betaint[2,4]*x2[i]*x4[i] + betaint[2,5]*x2[i]*x5[i]

+ betaint[3,4]*x3[i]*x4[i] + betaint[3,5]*x3[i]*x5[i]

+ betaint[4,5]*x4[i]*x5[i]

}

beta0 ~ dnorm(0.0,0.000001) # prior distribution for intercept

for (j in 1:5) {

beta[j] ~ dnorm(0.0,0.001) # prior distribution for main effects

}

for (j in 1:4){

for (k in (j+1):5){

betaint[j,k] ~ dnorm(0.0,0.001) # prior distribution for

} # two-factor interactions

}

log.sigma ~ dunif(-10, 10) # prior for log sigma

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1/sigma.sq

}

##Data##

list(y = c(56, 53, 63, 65, 53, 55, 67, 61, 69, 45, 78, 93,

49, 60, 95, 82),

x1 = c(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1),

x2 = c(-1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1),

x3 = c(-1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1),

x4 = c(-1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1),
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x5 = c( 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1),

N = 16)

##Initial values for chain 1##

list(beta0 = 0, beta=c(0, 0, 0, 0, 0) , log.sigma = 1)

betaint=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

##Initial values for chain 2##

list(beta0 = 0, beta=c(0, 0, 0, 0, 0) , log.sigma = 0.1)

betaint=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

C.2 Scaled-t Model on Data,

Normal Prior Distribution on Effect

Parameters and Gamma Prior on Precision

model

{

for( i in 1 : N ) {

y[i] ~ dt(mu[i], tau, d) # model for data

mu[i]<- beta0 + beta[1]*x1[i] + beta[2]*x2[i] + beta[3]*x3[i]

+ beta[4]*x4[i] + beta[5]*x5[i] + betaint[1,2]*x1[i]*x2[i]

+ betaint[1,3]*x1[i]*x3[i] + betaint[1,4]*x1[i]*x4[i]

+ betaint[1,5]*x1[i]*x5[i] + betaint[2,3]*x2[i]*x3[i]

+ betaint[2,4]*x2[i]*x4[i] + betaint[2,5]*x2[i]*x5[i]

+ betaint[3,4]*x3[i]*x4[i] + betaint[3,5]*x3[i]*x5[i]
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+ betaint[4,5]*x4[i]*x5[i]

}

beta0 ~ dnorm(0.0,0.000001) # prior distribution for intercept

for (j in 1:5) {

beta[j] ~ dnorm(0.0,0.001) # prior distribution for main effects

}

for (j in 1:4){

for (k in (j+1):5){

betaint[j,k] ~ dnorm(0.0,0.001) # prior distribution for

} # two-factor interactions

}

tau ~ dgamma(0.001,0.001) # prior on precision

sigma<- 1/sqrt(tau)

d <- 4 # degrees of freedom

}

##Data##

list(y = c(56, 53, 63, 65, 53, 55, 67, 61, 69, 45, 78, 93,

49, 60, 95, 82),

x1 = c(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1),

x2 = c(-1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1),

x3 = c(-1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1),

x4 = c(-1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1),

x5 = c( 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1),

N = 16)

##Initial values for chain 1##
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list(beta0 = 0, beta=c(0, 0, 0, 0, 0) , tau = 0)

betaint=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

##Initial values for chain 2##

list(beta0 = 0, beta=c(0, 0, 0, 0, 0) , tau =1)

betaint=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

C.3 Normal Model on Data,

Normal Mixture Prior Distribution on

Effect Parameters and

Gamma Prior on Precision

model

{

for (i in 1:N) {

y[i] ~ dnorm(mu[i], tau) # model for data

mu[i]<- beta0 + beta[1]*x1[i] + beta[2]*x2[i] + beta[3]*x3[i]

+ beta[4]*x4[i] + beta[5]*x5[i] + betaint[1,2]*x1[i]*x2[i]

+ betaint[1,3]*x1[i]*x3[i] + betaint[1,4]*x1[i]*x4[i]

+ betaint[1,5]*x1[i]*x5[i] + betaint[2,3]*x2[i]*x3[i]

+ betaint[2,4]*x2[i]*x4[i] + betaint[2,5]*x2[i]*x5[i]

+ betaint[3,4]*x3[i]*x4[i] + betaint[3,5]*x3[i]*x5[i]

+ betaint[4,5]*x4[i]*x5[i]

}

beta0 ~ dnorm(0.0,0.0001) # prior for intercept
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for (j in 1:15){

beta[j] ~ dnorm(0, prec[j]) # prior distribution for main effects

prec[j] <- T[j]*(tau2 - tau1) + tau1

u[j] ~ dcat(P[]) # indicator variable:

# 1 if effect inactive

# 2 if effect active

T[j] <- u[j] - 1

}

for (j in 1:4){

for (k in (j+1):5){

betaint[j,k] ~ dnorm(0.0,prec[j]) # prior distribution for

} # two-factor interactions

}

P[1] <-0.85 # probability effect inactive

P[2] <-0.15 # probability effect active

tau1<- 1/(sigma1*sigma1) # precision for inactive effect

tau2<- 1/(sigma2*sigma2) # precision for active effect

sigma1 ~ dunif(0, 1) # standard deviation for inactive effect

sigma2 ~ dunif(0, 10) # standard deviation for active effect

tau ~ dgamma(1, 1) # prior on precision

sigma<- 1/sqrt(tau)

}

##Data##

list(y = c(56, 53, 63, 65, 53, 55, 67, 61, 69, 45, 78, 93,

49, 60, 95, 82),
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x1 = c(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1),

x2 = c(-1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1),

x3 = c(-1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1),

x4 = c(-1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1),

x5 = c( 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1),

N = 16)

##Initial values for chain 1##

list(beta0 = 0, beta=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0), tau = 0)

##Initial values for chain 2##

list(beta0 = 0, beta=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0), tau = 1)
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