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Abstract 

 

Extracellular oxygen concentrations affect cellular metabolism and influence tissue 

function. Detection methods for these extracellular oxygen concentrations currently have 

poor spatial resolution and are frequently invasive. Fluorescence Lifetime Imaging 

Microscopy (FLIM) offers a non-invasive method for quantifying local oxygen 

concentrations. However, existing FLIM methods also show limited spatial resolution >1 

µm and low time-resolved accuracy and precision, due to widefield time-gate. 

This study describes a new optimised approach using FLIM to quantity 

extracellular oxygen concentration with high accuracy (±7 µmol/kg) and spatial resolution 

(≅ 0.3 µm). An oxygen sensitive fluorescent dye, tris(2,2′-bipyridyl)ruthenium(II) chloride 

hexahydrate [Ru(bipy)3]
+2, was excited with a multi-photon laser and fluorescence lifetime 

was measured using time-correlated single photon counting (TCSPC). The system was fully 

calibrated with optimised techniques developed for avoiding artefacts associated with 

photon pile-up and phototoxicity, whilst maximising spatial and temporal resolution. An 

extended imaging protocol (1800 sec) showed no phototoxic effects on cells at dye 

concentrations of <0.4 mM. Extracellular spatial oxygen gradients were identified around 

isolated chondrocytes, seeded in three-dimensional agarose gel. The technique was 

validated by regulating oxygen cellular consumption and thus confirming that the oxygen 

gradient was governed by cellular consumption. The technique identified a subpopulation 

of cells exhibiting statistically significant spatial oxygen gradients at the cell perihery. The 

subpopulation was shown to be significantly larger in cell diameter correlating with what 

that expected from chondrocytes in the deep zone. This technique provides an exciting 

opportunity to non-invasively quantify pericellular spatial oxygen gradients from within 

three-dimensional cellular constructs without prior manipulation of the cells. Thus by 

examining cellular metabolisms it will advance our understanding of the optimal cellular 

environment for tissue engineering and regenerative medicine. 
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Introduction 1  

The maintenance of normal physiological homeostasis in animal tissue is 

dependent on the delivery of key nutrients and metabolites to the resident cells. Oxygen is 

required for the efficient generation of adenosine-5'-triphosphate (ATP) via aerobic 

respiration and for many other cellular processes. The delivery of oxygen to tissues in-vivo is 

achieved primarily via the cardiovascular system and through diffusion across short tissue 

distances to cells. Some tissues such as articular cartilage are avascular and rely on 

diffusional delivery of oxygen over distances of up to several millimeters. Alterations in the 

local oxygen environment can have profound effects on cellular activity, potentially 

affecting cell viability, metabolic activity and differentiation state. As such, alterations in 

the effective provision of oxygen to tissue plays a role in a variety of pathological 

conditions including reperfusion injury, ischemic heart disease and various types of cancer. 

The appropriate provision of oxygen is also critical for the ex-vivo development of neo-tissue 

for a variety of cell-based tissue engineering therapies. 

In cell based therapies oxygen plays an important role for the growth of cells in 

culture and influences their expansion and differentiation [151]. For example, in cartilage 

based tissue engineering, changes in oxygen levels have profound effects on chondrocytes 

affecting phenotype, gene expression, morphology and response and production of 

cytokines [93]. A major hindrance to the development of three-dimensional cell-based 

regenerative therapies stems from the delivery and monitoring of oxygen. Due to the 

restricted size of cell culture constructs (<5 mm dia.) current detection methods use either 

global consumption rates to define the oxygen usage [126], single point spatial information 

using non-invasive phosphorescence [104] or invasive probes [51]. Essentially the main 

drawback of these techniques is the global nature of the measurement and the limited 

spatial resolution. There is currently a lack of suitable oxygen detection method that can 

accurately quantify low oxygen concentration and provide non-invasive measurements at 

high spatial resolution (<500 nm) with anatomical registration. 

Accordingly, this thesis will focus on the development of an appropriate oxygen 

detection system that will be applied in a cellular based tissue engineering context of 
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anatomical relevance. This chapter provides a greater depth of detail from the above 

discussion emphasizing the importance of oxygen in cell biology and cell-based therapies. 

Current oxygen detection technologies will be further reviewed and the selection narrowed 

based on a set of specified criteria for further investigation. Chondrocytes will be used as 

the chosen cell model for these tests and detail of their morphology, functionality and 

structural environment will be reviewed. 

1.1 Oxygen in biosynthesis 

Cell and animal development, maintenance of normal tissue and repair response to 

tissue injury, rely on the cohesive co-ordination of physiological processes [288], which 

operates via a highly complex series of pathway signals between extracellular and 

intracellular compartments in diverse environments [288]. Regulation of this homeostasis 

requires energy derived from high energy carrying electron molecules i.e. Nicotinamide 

adenine dinucleotide (NAD), Flavin adenine dinucleotide (FAD), and most importantly 

ATP [5]. The efficient and effective production of ATP is maintained via aerobic 

respiration involving oxygen as the final receptor of the electron transport chain. Aerobic 

respiration is achieved with dimolecular oxygen being converted in a step-wise process 

through a set of reactive oxygen species (ROS) and finally released as water [5].  

The purpose of dioxygen is to facilitate three functions: complete the production of 

ATP in aerobic respiration, to aid the biosynthesis of various molecules in metabolic 

pathways and conversion of lipid soluble molecules into water soluble form [138]. 

Conversion of dioxygen into radicals also provides a host of activation energies with 

constructive and destructive consequential outcomes for cells [138]. Further discussion will 

focus on two main biochemical pathways involved in the utilising oxygen for energy 

production and the implication of oxygen radicals within the cellular environment. 

1.1.1 Production of energy 

Eukaryotic cells use molecular dioxygen (O2) for a wide variety of cellular 

processes, most notably respiration. At the final stage of a systematic controlled network of 

pathways aerobic respiration produces cellular energy or ATP via oxygen involvement at 

the final receptor. The sequence of events that lead to the production of ATP relies on the 

presence of oxygen or food molecules i.e. sugars, fatty acids and amino acids. Figure 1 

displays a summary of respiration and by-product production.  
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Figure 1 – Flow diagram identifying the main requirements for most living organisms to create energy that 

allow cellular respiration and the waste products produced. Adapted from Alberts [5]. 

 

ATPs importance stems from its high energy bond at its phosphate. This creates an 

active carrier that can supply energy for transport pumps, molecular motors or synthesis of 

protein, nucleic acid and macromoleculs. Over or under production of ATP can trigger a 

cascade of events. For example, a Na+- K (sodium-potassium) pump located in the cell 

membrane is driven by ATP. Its purpose is to maintain osmotic balance by ensuring that 

the intra and extracellular sodium levels are counterbalanced otherwise the cell will shrink 

or expand [5]. Osmotic stress can regulate gene expression through biochemical pathways 

triggering chromosome condensation in the nucleus and leading to reduced production of 

ribonucleic acid (RNA) and therefore protein production [81]. This effect of ion 

concentration has been shown to affect proteoglycan production in chondrocytes [297], 

used in the initial stage of extracellular matrix development, leading to deficient tissue 

structure and impeding function [120]. This establishes the vital importance ATP control 

and production has on influencing the function of a cell, and alludes to the key role oxygen 

plays in the quantity of ATP produced. 

There are two forms of energy systems that operate in a cell, one involves the use of 

oxygen, aerobic, and the other does not, anaerobic [160]. The major difference between the 

aerobic and anaerobic energy system is the quantity of ATP produced, where completion of 

the full aerobic pathway produces 32 ATP/glucose whereas anaerobic processes produce 2 

ATP/glucose [6]. There are two major metabolic pathways involved in the production of 

ATP termed, glycolysis and oxidative phosphorylation, as depicted by Figure 2.  
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Figure 2 – A schematic diagram of a cell cytoplasm and mitochondria displays the main cellular biosynthesis 

pathways involved in respiration and production of energy. Aerobic: Glucose enters the cytoplasm and is 
converted through glycolysis to pyruvate, enzymes convert it to Acetyl CoA where it enters the citric acid 

cycle and produces NADH, two high energy electron (2e+) stimulate oxidative phosphorylation through the 
electron transport chain, driving hydride ions (H+) into the mitochondrial membrane. To stabilise pH level 

hydride ions are sequestered back, creating ATP through the process. Anaerobic: Glucose enters cytoplasm 

and is converted through glycolysis to pyruvate and then transformed to lactate with the addition of a 
hydride ion. Not drawn to scale. 

1.1.1.1 Glycolysis 

In the cell cytoplasm glucose is metabolised into pyruvate through glycolysis. 

Briefly, the mechanism is initiated with two ATP hydrolysis converting glucose into 

fructose 1,6-bisphosphate, which is split into two glyceraldehyde 3-phosphates. The 

aldehyde groups are oxidised and phosphorylated into pyruvate producing four ATP and 

two NADH molecules in the process, replacing the two ATP used in the initial stages [5].  

A lack of available oxygen will typically reduce oxidative phosphorylation and 

trigger the cell to producing ATP anaerobically under these conditions. The redundant 

pyruvate created at the end of the glycolysis pathway does not enter the mitochondria, but 

instead stays within the cytosol. As oxidative phosphorylation is not being utilised the H+ 

ions are not being regulated so in order to maintain the increasing pH levels, H+ are added 

to pyruvate [190]. This reduces pyruvate to lactate [16-18] and counteracts the effect of 

acidosis [255]. 
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1.1.1.2 Citric acid cycle 

If oxygen is available pyruvate then enters the mitochondrial matrix and is 

oxidatively decarboxylated by the pyruvate dehydodrgenase complexes to yield acetyl 

coenzyme A (acetyl CoA) [160], releasing carbon dioxide (CO2) in the process. Acetyl CoA 

enters the citric acid cycle (Kreb Cycle) where the primary function is to oxidise acetyl 

groups. In the process high energy electrons in the form of hydride ions (proton, H+), are 

channelled to high energy carrier molecules NAD+ and FAD to form NADH and FADH2 

that are used in oxidative phosphorylation [5]. 

1.1.1.3 Oxidative phosphorylation 

At the inner mitochondrial membrane the high energy electrons delivered from the 

citric acid cycle pass through the electron transport chain. The electron transport chain is 

integrated into the inner mitochondrial membrane and consists of three protein complexes 

I, III, and IV and two mobile carrier molecules [160] coenzyme Q/ubiqinane (UQ) and 

cytochrome c (Cyt c). Complex II is part of the citric acid cycle, but is assigned to the 

respiratory chain. In combination with complex I it accepts electrons from NADH or 

FADH where UQ passes the electrons on to complex III and Cyt c  passes it to complex IV 

[160]. In complex IV (cytochrome c oxidase) dioxygen is bound to two paramagnetic metal 

ions and reduced in a two-electron step process to peroxide [138]. A further two electrons 

and four H+ join in another two step process finally producing two H2O molecules [5]. 

Complex V is not part of the electron transport chain, but is considered to be part of the 

respiratory chain for synthesising/hydrolysing ATP [160]. 

Each complex acts as an electron-transport driven H+ pump [5] effectively pumping 

H+ into the inter membrane space with each electron triggered complex and establishing a 

proton gradient across the mitochondrial membrane [160]. This drives the chemiosmotic 

mechanism of H+ flowing back through the ATP synthase complex, catalyzing the 

synthesis of ATP from ADP and Pi (in Figure 3) completing the aerobic energy production 

process. 
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Figure 3 – Schematic representation of oxidative phosphorylation process involving the electron transport 

and respiratory chain. Complexes I (NADH dehydrogenase) and II (succinate dehydrogenase) receive 
electrons from either NADH or FADH2. Electrons are then carried between complexes by the carrier 

molecules coenzyme Q/ubiquinone (UQ) and cytochrome c (CYC). ATP synthesis by Complex V (ATP 

synthase) is driven by the proton gradient, and occurs in the mitochondrial matrix. The red box highlight 
where oxygen is utilised. Adapted from Fonseca [59]. 

1.1.2 Oxygen and reactive oxygen species 

1.1.2.1 Oxygen processing in cellular environment 

As discussed in section 1.1.1.3 cytochrome oxidase uses two metal ions to bind 

oxygen in place during the addition of electrons. If oxygen only obtained one extra electron 

and was not bound it would form superoxide (O2
-) and become dangerously reactive 

rapidly taking up additional electrons wherever possible [5]. The addition of further 

electrons and protons (H+) allows the superoxide conversion to hydrogen peroxide, water + 

hydroxyl radical and eventually water. This form of biological oxidation is thought to 

account for 90% of the dioxygen consumed in the biosphere [138]. Even though these 

radicals are used in the signalling pathways O2
- cannot pass through the cell membrane, 

whereas H2O2 can. The use of hydrogen peroxide is as an oxidant rather than a radical and 

can be found in human fluids and exhaled breath, although it can also be toxic [247]. 

So far only the gaining of electrons has been discussed, but through chemical or 

photochemical stimulation the electron spin in triplet ground state oxygen can undergo 

conversion to the singlet ground state, as depicted in Figure 4. Triplet oxygen will only 

react with other radicals, where as singlet oxygen will react rapidly with all electron rich 

compounds [299]. These variations of triplet oxygen are known as reactive oxygen species 

(ROS). 
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The generation of ROS has polarised implications, aiding communication in 

normal cell signalling pathways that can regulate cellular proliferation [288] and the 

destructive effects of oxidative stress, which can promote tissue degradation and damage 

[247]. Further discussion will focus on the importance of oxygen driving signals and the 

impact of oxygen toxicity. 

 

Figure 4 – Flow diagram describing the conversion of triplet dioxygen into either singlet dioxygen or radical 
oxygen by electron spin change or gaining an electron, respectively. 

1.1.2.2 Oxygen signalling 

There are two general mechanisms that can be used to describe the concept behind 

oxygen and ROS signalling: alteration in intracellular redox state and oxidative 

modification of proteins [288]. These actions can be used to maintain the cytosol in a 

strongly ‘reduced’ condition in comparison to the extracellular matrix or to critical amino 

acid residues that affect protein structure and function. The effect of these actions can be 

seen in multiple pathways within the cell, triggering signals from cell surface receptors to 

the nucleus [288]. 
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Figure 5 – Diagrammatic example of cellular events that can be triggered from one event leading to an array 
of intracellular signals being stimulated by oxygen and oxygen related species. Adapted from Thannickal et 

al. [288]. 

The example in Figure 5 displays receptors located at the cell membrane that trigger 

a variety of intracellular signals. The involvement of ROS is not identified in this diagram 

as the majority of the time the actual mechanistic pathway are unknown [288], but its 

influence is key at different stages. For example, the induced ROS production in neuronal 

cells by glutamates have been shown to be mutually exclusive on the changes in 

intracellular ion concentrations [263].  There are certain cytokines in non-phagocytic cells, 

that can stimulate oxidant production and appear to intersect with a host of intracellular 

pathways involved in growth, cell division, transformation, apoptosis, and senescence [83]. 

Also, a number of ligands that bind to the G protein-coupled receptors have been 

shown to generate ROS in different cell systems. Some of these ligands mediate cellular 

hypertrophy in vascular smooth muscle [253] and in cardiac myocyte [173]. The 

mechanism behind them is still largely unknown, but it is known that the stimulation of the 

G protein-RAS extends from the plasma membrane to the mitochondria leading to an 

increase in ROS generation [316].  
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ROS are also involved in a protective role killing invading pathogens stimulated by 

bacteria in leukocytes, but the inability to distinguish between host and pathogen leads to a 

loss of structural integrity and function of the surrounding connective tissue. ROS have 

been shown to depolymerise hyaluronan resulting in a loss of viscosity, but the presence of 

sulphate on glycosaminoglycan (GAG) is thought to protect the molecule [214]. 

The use of dioxygen in the signalling pathways also has implications with regards 

to oxygen consumption and has been shown to induce reduction of oxygen levels at the cell 

surface [123]. So far the discussion on the signalling and protective roles oxygen and 

oxygen related species facilitate have dominated, but their interactions with the 

surrounding environment have highlighted the possible detrimental effects ROS can induce 

and this requires further discussion. 

1.1.2.3 Oxidative damage 

It is clear that very low levels of ROS can stimulate a host of cellular functions like 

cell division whereas high levels ROS can induce oxidative stress resulting in oxidative 

damage and eventually leading to growth arrest, apoptosis or necrosis [98]. Oxidative stress 

is a mechanism of oxygen toxicity and can result from increased exposure to oxidising 

gases or from a lowered protection against oxidants, but can occur simultaneously without 

one relying on the other [247]. The first level of prevention and defence are antioxidants 

and cell repaired system, respectively. These act to remove or restore damaged cellular 

components and failure to do so leads to oxidative aging and tissue damage involving 

proteins, lipids, carbohydrates and nucleic acid [247].  

An abundance of oxygen provides the opportunity for ROS to develop. Elevated 

levels of oxygen (530 mmHg) have been shown to produce changes in hamster testicular 

tissue structure.  Long term exposure at these levels resembled the tissue damaged observed 

in ionizing radiation and/or the effects of vitamin E deficiency. Similar levels of exposure, 

in rabbits, also lead to induced visual cell death [71]. The connection between hyperoxia 

and generation of ROS can be easily linked and causes a catalogue of disturbances in 

cellular metabolism, where lactate production is increased, mitochondrial morphology is 

altered, and intracellular ATP is depleted [190].  

In cartilage ROS plays a crucial role in the regulation of chondrocyte activity 

involving cellular activation, proliferation, and matrix remodelling. When antioxidant 

concentration is reduced or the production of ROS exceeds the capable antioxidant levels 

“oxidative stress” leads to structural and functional cartilage damage culminating in cell 

death and matrix degradation [119]. 
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Even though oxidative damage has been shown to have serious implications to 

cellular viability in other arenas it has been applied advantageously. In the field of cancer 

therapeutics, oxidative damage has been used extensively with radiotherapy. Essentially 

radiotherapy detaches electrons from atoms or molecules creating an abundance of free 

electrons. When cells are surrounded by oxygen it provides an ideal opportunity for ROS 

generation [38]. Tumor cells become resistant to radiotherapy at oxygen levels less than 10 

mmHg. The presence of oxygen is required to create DNA double strand breaks through 

ROS generation. The potential difference in biological behaviour between acute and 

chronic hypoxia techniques using non-invasive imaging are required to determine the 

oxygen levels [38].  

This same principle is utilised in photodynamic therapy where photo-excitation of 

endogenous or exogenous fluorophores generate singlet oxygen by inducing a change in the 

electron spin of the triple state dioxygen [189]. As this stimulus can be applied 

intracellularly it creates an extremely specific and targeted technique for cell death in 

treatment of cancerous cells. 

 

In summary, oxygen concentrations are essentially linked to energy production of 

ATP, but knowledge of these levels can also provide an insight to the potential signalling 

and toxicity. The link between oxygen utilisation in the signalling pathway leading to 

effective cell consumption suggests that the monitoring of extracellular consumption would 

be more informative, rather than the general approach to attempt to monitor intracellular 

consumption [68, 71]. 

Although the importance of oxygen and oxygen related species has been identified, 

the specific role and mechanism by which they work is not fully understood. Only within 

the past decade has it been understood that ROS are not only involved in toxic effects on 

cells and tissue, but are used in signalling pathways to drive cellular function, e.g. 

proliferation, differentiation, and actin cytoskeleton regulation [288]. For these reasons the 

role of oxygen and oxygen related species in cell biology is important in diagnostic and 

therapeutic arenas, including tissue engineering.  

1.2 Oxygen in regenerative therapies 

The cellular functions discussed above are vital to the success of regenerative 3D 

cell based therapies where expansion, dedifferentiation and protein production are critical 

for efficacy. Cell-based therapies are designed to utilise the cell’s biochemical mechanisms 

to perform functions that cannot be replicated by surgical interventions or drug deliveries 
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[232]. It also takes advantage of the cells own ability for cell production and tissue 

replacement. Cell-based therapies can be applied through two methods, a readily available 

self proficient surplus of cells as found in blood transfusion of bone marrow 

transplantation. The other method requires significant manipulation of cells in vitro and is 

generally described as cell and tissue engineering [232]. 

1.2.1 Tissue Engineering 

Tissue engineering aims to facilitate the replacement of damaged or defective tissue 

by substituting donor cells from amplified autologous, allogenic, xenogenic, or syngenic 

sources [232]. These are typically implanted via a 3D matrix into a variety of tissues such 

as cartilage, bone, skin, liver, muscle or breast [58]. Cell culture is required for the 

expansion and structural growth, respectively attained by monolayer or three-dimensional 

construct. The optimal substrate selection for growth, signalling and function are cell and 

tissue dependent, i.e. harder based scaffolds are more suitable for bone, but not liver or 

breast [58]. Further discussions regarding suitable methods of culture and structural 

material properties will be examined in section 1.7. 

In vivo cellular processes are naturally in balance due to the microenvironment 

communication between metabolic processes and cellular or tissue dynamics. The 

supporting factors of tissue engineering must deliver uniform nutrient, oxygen and growth 

factors. Concentrations must be homogenously distributed to approximately 100 µm, 

within the vicinity of the cell less than this and non-uniformity is expected, which maybe 

sub-optimal [232]. To resurface sections of cartilage damage it would require an engineered 

tissue to be grown >5 cm in thickness. Current laboratory techniques are restricted to 

approximately 5 mm for tissue engineered cellular constructs [286]. To optimally up-scale 

for cell- and tissue-culture there are several design challenges: 

• Provision of tissue/cellular oxygenation [149] 

• Delivery and removal of important macromolecules and waste [61] 

• Managing the perfusion at physiological rates within a microenvironment [232] 

All these issues are important aspects of cell culture, but the focus will be oxygen. 

The delivery of oxygen is restricted by the solubility and the physiological rate of fluid flow 

governed by the rate of cellular consumption [232]. If optimal oxygen levels are not 

maintained in 3D structures gradients can develop where low local concentrations will 

slow metabolic rates and signalling. In skeletal muscle tissue engineering, the major 

limiting factor is that myoblasts are unable to proliferate and differentiate further than 150 

µm from the nutrient source and oxygen supply [159]. Elevated local oxygen levels will 
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increase ROS and oxidative stress causing tissue or cellular damage that eventually leads to 

apotosis, or necrosis as has been shown in chondrocytes [120]. If sufficient supply cannot 

be maintained or waste products removed from around the cells, the development of tissue 

will slow or fail completely [35, 36]. Therefore parameters such oxygen concentration and 

pH must be carefully monitored and controlled [61]. 

Identification of oxygen consumption rates provides an estimate of the ideal 

requirements for the cells, but establishing this relationship is complex. The optimum level 

of oxygen delivery is consumption dependent based on the specific uptake rates of different 

cell types. For example, in bone-marrow this can vary between 0.7 fmol/cell/h for 

lymphocytes to 14.4 fmol/cell/h for megakaryocytes [53]. It has even been shown that 

within the same cell types there are differences in oxygen consumption rates based on the 

original location of the cells from the native cartilage tissue, as shown in Table 1. 

Subpopulations have also been noted in cancer cells where current research in clinical 

oncology is focusing on detecting these subpopulations to determine the effects on 

prognosis and response to radiotherapy [38] 

Table 1 – Selection of cell types with subpopulations exhibiting different oxygen consumption rates [127] 

 

Table 1 presents the different oxygen consumption rates, but to observe and 

determine these rates requires the cellular subpopulation to be separately extracted prior to 

culture [127]. Adding to the complexity it is established that the effective diffusion [298] 

and the diffusion coefficient [133] of macromolecules and oxygen in three-dimensional 

supporting structures are influenced by the type of material [176]. It has been shown that 

the effective diffusion in scaffold materials can also vary greatly [176], e.g. diffusion in the 

small intestine and urinary bladder submucosa was found to vary between 2.43x10-6 to 

6.61x10-6 cm2/s compared with a commercially available synthetic polyethylene based 

vascular graft, Darcon™ reported to be 46.67 x10-6 cm2/s [298]. There are even differences 

between synthetic materials like agarose and aliginate; the diffusion coefficients of oxygen 

at the same temperature (30°C) and concentration (2% (w/v)) is 2.6 x10-5 cm2/s and 2x10-5 

Cell type 
Location 

dependence 

Maximum oxygen 

consumption rates 

(fmol/cell/h) 

Studies 

Superfical 3.2 Bovine 
chondrocytes 

Deep 6.6 

Heywood et al. 
[127] 

Prehypertrophic 37.4 Avian growth 

plate cartilage 
Hypertrophic 93.6 

Haselgrove et al. 

[117] 

Annulus fibrousus 6 Porcine 
intervetebral disk 

Nucleus pulposis 11.5 
Huang et al. [115] 
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cm2/s, respectively, which is about 10% and 30% less than that in pure water [133]. These 

differences can be due to pore sizes [242] and material charge density/electrical 

conductivity [103]. 

 Therefore the ability to determine, spatially, concentration changes is an important 

factor in the assessment of optimal oxygen delivery. This is also time for treating and 

diagnosing diseases involving avascular tissue, like cancer radiotherapy treatment [39] or 

the onset of rheumatoid or osteoarthritis cartilage [102]. The general problems of 

determining these values derive from the capability of monitoring oxygen concentration in 

situ. Measurement of the media surrounding the cells provides a simple and effective means 

of extracting the global oxygen concentration over time providing a method of determining 

the consumption rate. As discussed previously, oxygen concentrations are required to be 

homogenously dissipated at spatial resolutions >100 µm. Therefore, monitoring or 

measuring techniques should provide the ability to acquire oxygen concentrations at spatial 

resolutions of <100 µm. In monolayer culture this is easily resolved as cells lay on a 

flattened surface and are approximately 10-100 µm in diameter and therefore depth is not 

an issue. The measurement becomes complex when cells are seeded in a three-dimensional 

matrix requiring a non-invasive technique to avoid penetrating the substrate and damaging 

the cells or tissue. Further investigation will now focus on the available detection methods 

for oxygen concentrations in three-dimensional structures. 

1.3 Oxygen detection techniques 

A variety of instruments exist that are capable of detecting oxygen in gas, liquid, 

and tissue samples. These vary in size from small microelectrodes to large magnetic 

resonant scanners both capable of in-vivo or in-vitro investigation. The decision of method 

and technique rests with its suitability for the intended application. Certain instrumentation 

is developed for the sole purpose of measuring oxygen, while others are adapted to extract 

the same relevant information. Some techniques designed to measure oxygen may 

therefore not be necessarily suitable for the intended application of three-dimensional cell 

based investigation.  

1.3.1 Detection methods 

Mass spectroscopy requires samples to be vaporised (>300ºC) prior to irradiating 

them with an ionizing beam. This separates and sorts the charged particles according to 

mass-to-charge ratio and has been used to monitor patients oxygen levels during surgical 



1 •  Introduction  14 

 

 

operations to maintain optimal anaesthesia [220]. This technique can only be applied to gas 

and liquid samples and provides no spatial resolution.  

Other methods use the number of detected protons to determine the concentration. 

Nuclear magnetic resonance (NMR) does this by applying an external magnetic field to the 

sample, that aligns the nuclei spins, whilst a separate radio-frequency pulse sends the nuclei 

spins out of alignment. The rate of recovery to the original alignment relates to the 

environment and the produced peak describes the number of protons and therefore the 

concentration. Unfortunately this does not provide spatial registration or resolution [157]. 

Another method that uses the same principle, but instead the recovery time is used to 

produce image contrast between different tissues is called blood oxygen limited diffusion 

magnetic resonance imaging (BOLD MRI). This method has been used to provide 

qualitative data that differentiates between oxygenated and deoxygenated blood, but it can 

only be used on haemoglobin, suffers with sensitivity issues induced by volume and flow 

and does not provide quantitative information [164]. 

Instead of using protons some methods work on measuring electrons, such as 

electron paramagnetic resonance (EPR). It is restricted to chemical species that only exhibit 

unpaired electrons, by absorbing microwaves within a magnetic field it changes the 

chemical species spin state. The wider the absorption peak the higher the concentration of 

oxygen present. Although it does provide quantitative spatially resolved measurements of 

oxygen there is no spatial registration with regards to the sample [78]. Another method that 

determines the oxygen levels based on the absorption characteristics of electrons is near-

infrared oximety (NIO). This instead uses infra red light, which passes through tissue and is 

absorbed by blood. Currently it can only be used on haemoglobin and provides no spatial 

registration or resolution [164]. A summary of these techniques is shown in Table 2. 
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Table 2 – Summary of individual oxygen detection instruments 

 

Individually these techniques do not meet the basic requirements of providing 

spatial resolution or the ability to measure oxygen concentrations without tissue restriction. 

Specifically designed and combinations of the above methods are available that do facilitate 

spatial resolution. These techniques can be categorised into two classes of method that are 

respectively invasive and non-invasive. 

1.3.2 Invasive detection 

Two techniques that embody this method are optical and electrode probes. 

Individually the probes do not provide location resolved registration of measurement, but 

can be, and indeed have been, combined with computational tomography (CT) or 

ultrasound [164] to identify positional information. The optical sensor operates via optical 

fibre light stimulation of an embedded fluorescent sensor generally contained within a silica 

gel [101, 102] or sol-gel [103, 104] matrix. Light excites the fluorophore at its specific 

wavelength and returns the measured emission to a detector. The measured intensity or 

lifetime is then converted to reflect oxygen pressure or concentration. It has been used to 

determine oxygen gradients within collagen based tissue engineered matrixes for assessing 

the release of vascular endothelial growth factor triggered by tissue hypoxia [51]. 

Unfortunately the scaffold must be penetrated by the optical probe creating an invasive 

procedure. It has also been used frequently in aquatic biology to determine oxygen depth 

gradients in sediment [154]. 

Techniques Method of Measurement Problems 

Gas chromatography/ 
Mass Spectrometer 

Sorts particles accordingly to a 
mass-to-charge ratio  

Only gas and liquid samples 
and no spatial resolution 

Nuclear Magnetic 
Resonance (NMR) 

Area under the peak describes the 

number of protons and therefore 
concentration 

No spatial registration with 

regards to sample or 
resolution 

Blood oxygen limited 
diffusion magnetic 
resonance imaging 

(BOLD MRI) 

This is used qualitatively to 
differentiate between oxygenated 

and deoxygenated blood 

Only used on haemoglobin, 
sensitivity issues from flow, 

not quantitative 

Electron Paramagentic 
Resonance (EPR) [78] 

The larger the absorption the more 
oxygen is present i.e. the line is 

broadened 

No spatial registration with 
regards to sample 

Near-Infrared 

Oximetry (NIO) 

The absorption characteristics 
define the oxygen level in 

haemoglobin. 

No spatial registration or 
resolution and only used on 

haemoglobin. 
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The second probe type consists of two different metal electrodes where one is 

polarised when oxygen contacts the surface and reduces it to water. The reduction causes 

an oxidation at the second electrode and creates a current proportional to the concentration 

of oxygen. Each reaction effectively consumes oxygen in the process, where the rate of 

electrode oxygen consumption is approximately 0.4 - 5 pmol/h [295]. This might seem 

insignificant when measuring global consumption of a population of cells, but when 

compared with the individual cellular consumption rate shown in Table 1 it will have a 

marked effect. A population of at least 50-100 cells would be required to counteract the 

consumption rates of the probe. The low level of cellular oxygen consumption highlights 

the electrode interference, which is avoided with the use of a fluorescent optical probe. 

However, electrodes have been widely used for monitoring oxygen levels [308] from 

monolayer cell culture of isolated rat alveolar type II cells [191], to providing 

transcutaneous oxygen measurement for determining blood oxygen levels [239]. 

Disadvantages include long-term instability, sterilisation problems, sensor drift, difficulty of 

adaptation to continuous monitoring, automation for high-throughput measurement, and 

susceptibility to electrical interferences when used in bioreactors [124, 126]. But the 

electrodes spatial resolution is superior to the optical probe and can be custom made to 

approximately 3 µm [106]. 

1.3.3 Non-invasive detection 

There are a variety of techniques available that can perform oxygen detection non-

invasively such as PET, combinations of previously discussed techniques such as MRI and 

EPR, and luminescence.  

1.3.3.1 Positron emission tomography 

Positron emission tomography (PET) can be used to determine oxygen 

concentrations in tissue by inhalation of oxygen [15O] [245]. It requires use of MRI or CT 

to provide an anatomical image of the physiology upon which PET measurements can be 

registered. The radioactive material 15O has a half-life of 122 sec and in the process of 

decaying it emit positrons (anti-electrons), which collide with electrons to produce gamma 

rays. Two gamma rays emit in opposite directions and are captured from sample/subject 

by the surrounding PET scanner. When oxygen is utilised in a specific area of the tissue hot 

spots are observed and can be quantified. The main problems associated with this 

technique tend to be the overestimation of blood oxygen levels, the inability to record 

measurements from within disorganised vasculature or tissue [245], and it is not a direct 

measurement of concentration, but rather the activity level of metabolism [16]. 
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1.3.3.2 Combined MRI, NMR and EPR 

As discussed previously in section 1.3.1 the MRI, NMR or EPR are individually 

not suitable for the intended application, but when combined they compensate for lack of 

suitability.  Using MRI and NMR together provides the ability for anatomical registration 

gained by the MRI scanner, while the NMR specifically measure the concentration of 

oxygen from a reporter molecule at the location defined by the size of the MRI voxel. This 

can achieve a spatial resolution of approximately 1-1.25 mm [323], oxygen detection 

accuracy of 1-3 mmHg and due to the reporter molecules slow excretion from the body, 

long term repeatable measurements of up to 40 days [157] [323]. The main issue is the 

effect of flow artefacts on sensitivity [157] and most importantly the limited number of 

MRI scanners fitted with the ability to perform fluorocarbon NMR [323]. The same lack of 

availability exists for the combined MRI and EPR systems [163], but again a spatial 

resolution of approximately 1-1.8 mm is achievable with the production of three-

dimensional maps. A reporter molecule is still required for the detection of oxygen and the 

accuracy is limited to 4-5 mmHg of oxygen [194], therefore it is not as sensitive as the MRI 

and NMR. 

1.3.3.3 Photoacoustic tomography/microscopy 

Photoacoustic tomography/microscopy (PAT/PAM) is a hybrid of visible/infrared 

laser pulses and ultrasound transducers used for excitation and for signal detection, 

respectively. The combination allows endogenous molecules or contrast agents to absorb 

light (electromagnetic waves), and undergo a rapid temperature rise that leads to an 

increase in pressure at the illuminated volume. An ultrasonic emission is generated that can 

be detected by ultrasound transducers, revealing specific physiological absorption from up 

to 3 mm in depth, used to form 3D maps [164, 174]. It has been used for blood oxygen 

mapping and in-vivo determination of the size and position of melanoma below the skin 

[229]. It has more recently been successfully applied to oxygen sensitive dyes providing a 

penetration of at least 2-3 cm [17]. The lateral and axial spatial resolution is >45 µm and 

>15 µm, respectively, and currently restricted by the size of the ultrasound transducer. It 

does provide some of the highest spatial resolution out of all the techniques discussed, but it 

is not enough to resolve at the individual cell level. 

1.3.3.4 Luminescence 

The luminescent techniques are all based on microscopes using either wide-field or 

confocal systems, providing the facility for spatial resolution and location registration. The 

principles of all the luminescent techniques are essentially the same as the optical sensor, 
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using an excitation light to stimulate a fluorophore and a detection method to capture the 

emitted light. The available systems can be divided into the two forms of measured 

emission, phosphorescent and fluorescent. Another distinction can be made from the type 

of excitation used, continuous, single-photon or two-photon. Phosphorescent measurement 

methods tend to be used with porphyrin based dyes, such as Oxyphor R2, as the emitted 

lifetimes are very long [104]. Long lifetimes hinder the collection of light and restrict the 

ability of achieving high spatial resolution. Even with the use of a confocal [320] or two-

photon [82] system the resolutions are still restricted to 1 µm. These very long lifetimes also 

provide more time for cellular interactions to influence the measurements [171]. The 

advantage of fluorescent measurement is the improvement in resolution when using a 

confocal system (<300 nm) [91] compared with a wide-field microscope [324]. Even so 

using a higher numerical aperture objective to achieve high spatial resolution restricts the 

measurement depth that can be achieved. A summary of the techniques discussed is shown 

in Table 3, with identified parameters of interest. 
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Table 3 – Comparison of available oxygen detection techniques 

  METHOD TECHNIQUES  
SPATIAL 

RESOLUTION 
ACQUISITION 

TIME 
RANGE 

IMAGING 

CAPABILITY 
ACCURACY DELIVERY PROBLEMS 

Oyxlab pO2 ™ 

Oxylite probe. 
Platium-based 
fluorophore in a 
silicone matrix  

Estimated 

>500µm (350-
700 µm tip dia.) 

<10 sec 0-60 mmHg 

No image, Single 
point, depth 

defined by length 
of probe 

0.7 mmHg; 
0.46% O2 

Penetrates 
tissue / 
construct 

No spatial registration must be 
used with other techniques, 
invasive [231]. 

O
p
ti
ca
l 
se
n
so
r 

Presens sensor 

type: PSt1 or 
TOS7 taper 

sensor excited 

fluorophore 

Tip size <50-

140 µm outer 
diameter 140-

900 µm 

<1-15 sec (gas) 

<2-30 sec 
(liquid) 

0-375 mmHg 
(0-50%O2) 
0-22 mmHg 

(0-3%O2) 

No image, Single 
point, depth 

defined by length 

of probe 

±0.4% at 
20.9% O2 
±0.05% at 

0.2% O2 

Penetrates 

tissue / 
construct 

No spatial registration must be 

used with other techniques, 
invasive. Lifetime 5 years [246]. 

IN
V
A
S
IV

E
 

E
le
ct
ro
d
e 

p
ro
b
e Unisense Oxygen  

probe Clark-type 
sensor 

Estimated 
>16µm (8-800 
µm tip dia.) 

< 0.3 sec 0-760 mmHg 

No image, Single 
point, depth 

defined by length 
of probe 

0.3µM; 
0.14% O2 

Penetrates 
tissue / 
construct 

Same as above, but aslso sensor 
consumes O2 4x10

-4-5x10-3 
nmol/ hour. Lifetime 1 year. 
[295]. 

P
E
T
 

Positron 
Emission 

Tomography 

ionizing 
radiation  

9.45 mm 6 sec / frame 0-760 mmHg Yes, 3D map Undefined 
Inhalation of 
[15O] – O2 

Overestimates bloody oxygen 
levels, cannot measure in 

disorganised vasculature or 

tissue, ionizing radiation [245]. 

Fluorocarbon  
MRI - 19F, 
FREDOM  

1-1.25 mm 
2-6.5 min / 

image 
0-120 mmHg 

Yes, long term 
repeatable 

measurements up 

to 40 days 

1-3 mmHg   
if > 5 
mmHg;    

0.7-2% O2 

Hexafluorobe
nzene (HFB) 

reporter 

molecule 

Lack of systems have this and 
can suffer from flow artefacts 
[323]. 

N
O
N
-I
N
V
A
S
IV

E
 

M
R
I 
+
 N

M
R
 

PISTOL - proton 

imaging of 
silanes for tissue 

oxygen levels  

Undefined 
3.5 min / 

image 
0-160 mmHg 

Yes, long term 

repeatable 
measurements 

3 mmHg; 

2% O2 

Hexamethyl-

disiloaxane 
(HMDSO) 

Not as sensitive as fluorocarbon 

based MRI [157]. 
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 METHOD TECHNIQUES  
SPATIAL 

RESOLUTION 

ACQUISITION 

TIME 
RANGE 

IMAGING 

CAPABILITY 
ACCURACY DELIVERY PROBLEMS 

M
R
I 
+
 

E
P
R
I EPRI with MRI 

and Overhauser 
enhanced MRI 

1-1.8 mm 
3D EPR scan 8 

min 
0-40 mmHg Yes, 3D map 

4-5 mmHg; 
2.6-3.3% O2 

Injection with 
triarylmethyl 

Not in widespread use as 
requires specialised equipment 
[163, 194]. 

P
A
M
/
P
A
T
 

Photoacoustic 

microscopy/ 
tomography  

45 µm lateral 

(x-y) 15 µm 

axial(z) 

160 min 2D 

image 8x8 mm 
Undefined 

Yes, up to 3 mm 

in depth 
Undefined 

Injection of 

fluorescent 
microspheres 

or dye 

Mircospheres (>16 µm) cannot 

pass through capillaries [322]. 

Oxygen sensivity dye untested 

with cells [17]. 

Phosphorescence 
- wide area 
illumination  

20 - 100 µm 
17 sec range / 

point 
0-60 mmHg 

No, single point; 
depth 1mm -    

800 µm 
Undefined 

Oxyphor R2 
[Pd-meso-
tetra(4-

carboxyphen
yl) porphine] 

Restricted resolution and can 
only produce single point 
registration [104, 268]. 

Phosphorescence 
- confocal  

1 µm lateral, 

2.4 µm axial 
30-50 ms / 

point 
0-159 mmHg 

Yes with 
confocal, but only 

single point O2 

measurements 

Undefined  Oxyphor R2 

Does not provide oxygen map, 
but has spatial resolution and 

registration [241, 320]. 

Phosphorescence 

- two photon  
1 µm - 2.5 µm 0.5 ms 0-159 mmHg 

Yes, fluorescence 

and anatomical 
image; depth 2.2 

mm 

±2.5 

mmHg; 
1.6% O2 

Oxyphor R2, 

Phosphoresce
nt probe PtP-

C343 

Loss of spatial resolution to 

increase number of photons 
collected, low two photon 
absorption [79, 82, 208]. 

Fluorescence - 

widefield CCD  

150 µm 

illumination, 

but CCD not 
specified 

20 sec 0-300 µM Yes, 2D map 
8 µM;    

0.8% O2 
[Ru(bipy)3]

+2 

Resolution limited by wide field 

and accuracy limited time-
gating [279, 324]. 

N
O
N
-I
N
V
A
S
IV

E
 

L
u
m
in
es
ce
n
ce
 

Fluorescence -
confocal  

Estimated 193 - 
240 nm (x100 

obj, NA 1.25) 

100-400 sec, 
256 x 256 - 512 

x 512 

<0.02 - 300 
µM 

Yes, working 
distance 180 µm 

2% O2 [Ru(bipy)3]
+2 

Depth of access restricted by 
working distance of objective 
lens [91] 
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The list in Table 3 provides a large amount of information on the discussed 

techniques and highlights the variety available. Therefore, to reduce the selection, a 

criterion based on prior discussions about oxygen in tissue engineering has been used to 

produce a list of specifications: 

• High spatial resolution (<100 µm) 

• High accuracy of oxygen concentration (<5 mmHg) 

• Non-invasive 

• Detection of oxygen in all tissues types 

• Capability of registering measurement relevant to a physical location 

• Not restricted to surface measurements 

• Capability of tissue/construct sample measurement 

 

Applying the above criteria to the techniques discussed in Table 3 and focusing on 

the spatial resolution limit and oxygen detection capability it reduces the selection of 

techniques down to the invasive probes (electrode and optical), PAM and all the 

luminescence techniques. Moving to the next set of specifications the technique must 

perform non-invasive measurements and have the ability to detect oxygen in all tissue types 

this excludes the probes and PAM techniques. This leaves only non-invasive luminescent 

methods that fulfil the required criteria. The advantage of using these methods are the 

flexibility associated with investigating of other metabolites within the same environment 

from endogenous or exogenous fluorophores. A more detailed evaluation of luminescence 

and the mechanism, process of stimulation and measurement follows. 

1.4 Oxygen detection method based on luminescence 

1.4.1 Luminescence 

Luminescence is the emission of light from any substance and occurs from 

electronically excited states [170]. The emission of ‘cold light’ (luminescence) is the 

response to an input of energy [249]. The type of energy differentiates the types of 

luminescence that is seen, but luminescence is not associated with thermal or electric 

energy like incandescent light [249], some examples are shown below: 

• Bioluminescence – results from biological process, e.g. light from glow-worms 

and other organisms like bacteria [249]. 
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• Chemiluminescence – light emitted as a result of (cold) chemical reaction [249] 

• Sonoluminescence – compressed sound wave collapse gas bubble to produce a 

picosecond flash of light [21]. 

• Triboluminscence – application of mechanical energy to a solid creates an 

emission of light, e.g. scraping a knife against a hard sugar cube produces a 

spark [328]. 

• Radioluminescence – luminous paint contains a compound which glows when 

radioactive particles interact with it [249]. 

• Photoluminescence – light produced by illuminating a compound with photons 

(electromagnetic radiation) [249]. 

The type of luminescence used in the detection methods previously discussed is 

photoluminescence and is formally divided into two categories, phosphorescence and 

fluorescence, dependent on the nature of the excited state [170]. 

1.4.2 Photoluminescence 

Photoluminescence is produced when a fluorophore is excited with a stimulating 

light sending an electron into a high energy state. Once there a decay process occurs where 

an emission of light is produced upon the high energy electron returning to ground state. In 

Figure 6 a fluorophore molecule is represented by a simplified Bohr-model, which displays 

the electron orbital shells surrounding the atom, no vibrational levels are associated with 

the atom only electron molecules. The location of electron excitation is identified by the 

Bohr-model the excitation and emission mechanism involved in photoluminescence can be 

effectively described using a simplified Jablonski diagram. 
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Figure 6 – Pictorial representation of the mechanism of excitation and emission. A: Simplified Bohr-model 
of a molecule. B: Simplified Jablonski diagram describing the molecular electronic transitions occurring 

between the valences of the atom, S0, S1, S2, Sn – singlet states, 0 – denotes ground state, 1,2,n denote 
excited states, T1 – triplet state. Adapted from Suhling [280] and Lakowsic [171]. 

The energy difference between S0 (singlet ground state) and S1 (singlet lowest 

unoccupied molecular orbit) is too large for thermal stimulation therefore light is required 

to induce fluorescence [171]. The electrons in the highest occupied molecular orbit can be 

excited by electromagnetic radiation to an unoccupied molecular orbit [75]. Internal 

conversion (IC) relaxes the electrons through the vibrational energy levels, via thermal 

dissipation, to equilibrate to the S1. Fluorescence emission occurs by the activated molecule 

electron releasing its energy between S1 and S0 [171]. Electrons can also complete an 

intersystem crossing from S1 to T1 (triplet lowest unoccupied molecular orbit). The 

difference between singlet and triplet is defined by the orientation of the electron dipole 

moments, being either anti-parallel or parallel, respectively, as shown by the blue boxes in 

Figure 6. Transitions from S1 to T1 are termed intersystem crossings (ISC) and undergo 

forbidden triplet state spin conversion [224], but transition from T1 to S0 takes 

microseconds rather than pico- or nano-seconds as in fluorescence and is thus termed 

phosphorescence [171].  

Examination of the Jablonski diagram reveals that energy of the emission is 

typically less than that of absorption, therefore fluorescence typically occurs at lower 

energies or longer wavelengths, as first observed by Stokes in 1852 [170] and referred to as 

‘Stokes shift’. 

1.4.3 Measuring photoluminescence 

Fluorescence can be measured using two methods; steady-state i.e. continuous 

illumination, or time-resolved i.e. pulsed or modulated light. Steady-state is more 
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commonly used for determining absorption or emission spectra as it ensures that all the 

fluorophore electrons are in an excited state [171]. Time-resolved measurements use fast 

detectors to record the decaying intensity over time. This measurement can provide the 

fluorophore lifetime or rotation, which can be used to describe the interaction of the 

fluorophore within its environment. 

1.4.3.1 Steady-state 

Intensity can be used to determine absorption and emission spectra of fluorophores, 

by measuring the population of electrons in the high energy state [171]. This allows 

intensity contrast to create luminescent images through population activation, but 

quantitative measurements are difficult to achieve between samples and either require some 

form of added reference dye for cellular measurements or strict environmental controls 

[171]. 

1.4.3.2 Time-resolved 

Time-resolved measurements are decays with time and can be used to determine 

lifetime (intensity) and anisotropy (polarization). Intensity decays describes the fluorophore 

interaction with the environment; rotational decay describes the shape and flexibility of 

macromolecules [171]. The rotational decay is not relevant to the information required and 

shall not be discussed further. Lifetime provides an added layer of information about the 

local environment [100] that is independent of probe concentration, autofluorescence, 

cellular volume changes, and fading due to probe photobleaching [284]. Also it is 

unaffected by equipment instabilities such as drifts in lamp intensity and inner filter effects, 

which are major limitations of intensity based sensing [20]. 

The lifetime decay extracts information about how the fluorophore is affected by 

the environment, to enable measurement of the refractive index, viscosity, pH, ion 

concentration in-situ without disturbing the cells [281]. Another advantage of lifetime over 

intensity is the ability to spectrally determine the difference between dyes with the 

overlapping or identical spectral profiles [281]. The disadvantages compared with steady-

state are associated with the complexity of analysing the data and the expense of the 

equipment [281]. Time-resolved lifetime decay measurements can traditionally be 

categorised into two main excitation methods: 

• Time-domain: Pulsed light shorter than the decay of fluorophore lifetime 

• Frequency- domain: Intensity modulated light 
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Figure 7 – Two time-resolved methods available for the detection of lifetime. A: Uses time domain to 
measure the exponentially decaying fluorophore with time after an excitation pulse. B: Frequency domain 

measures the phase shift in the frequency modulation between the excitation and fluorescence waveforms 
[280]. 

Time-domain (TD) 

TD uses pulsed excitation sources shorter than the lifetime of the fluorophore to 

stimulate electrons and a detector records the emission in set time windows to provide a 

decaying response [256]. The emission process is random and each fluorophore has the 

same probability of emitting resulting in an exponential response 
τteII −= 0  [171], as 

shown in Figure 7A. 

Frequency-domain (FD) 

The FD operates by exciting the fluorophore through an intensity modulated light 

source that can be continuous or pulsed [100]. The modulation frequency of the emitted 

emission is compared with the excitation frequency. The time-delay between the excitation 

and emission wavelength is measured as a phase shift angle φωτφ =tan  [281]. The 

difference in peak-to-peak height between the excitation and decreased emission signal also 

provide another independent measure of lifetime 
2/12 ))(1/(1 mM ωτ+= , as shown in 

Figure 7B [171]. 

TD vs FD 

The TD and FD are related by Fourier Transformation with equivalent results 

[281]. The TD provides easy visualisation of the decaying fluorophore and has a less 

complex analysis than the FD. Although FD is seen to be easier to implement for long 

lifetime dyes as the equipment is simpler because there is no need for a pulsed laser. Also 
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there is no restriction to the rate of excitation as with TD, which requires the decay to 

complete before being re-excited. However, the signal-to-noise ratio has been shown to be 

higher for TD than for FD [281] this feature suggests that TD would be more suitable to 

low level emission rates. 

1.4.3.3 Rate of Decay 

Lifetime is the product of many events occurring through the process of excitation 

and emission. The same processes are seen in both lifetime and intensity, except lifetime 

provides a higher sensitivity to the environmental changes. There are inherent components 

that combine to produce the final measurements, which consist of a list of rate parameters 

for each involved process. These describe the interaction of the light with the fluorophore 

and the cascade of pathways that can occur. These processes have been discussed in section 

1.4.2, but the mechanisms are shown in Table 4. 

Table 4 – Identifies the various forms of donor emission, associated rate constants, and the interaction with 

a quencher. Adapted from Demas [64] and O’Connor and Phillips [224]. 

The donor (D ) represents a fluorophore being excited by light (hv ) where the rate 

of absorption ( aI ) creates a singlet state excited donor ( D1* ) [224]. From here the 

methods of deactivation follow those outlined in the Jablonski diagram in Figure 6. The 

radiative rate of emission ( rk ) from the excited donor returns the donor back to ground 

state and produces an emission of light [64]. The internal conversion ( ick ),  intersystem 

crossing ( icsk ) rate constants are described as the rate constant for intramolecular excited 

state deactivation and referred to as qk  [64], as shown by Eq. 1. The combined non-

radiative rate processes is termed nrk  [280], as shown by Eq. 2, 

Eq. 1     icsicq kkk +=  

Eq. 2     [ ]Qkkkk dqnr 2++=  

Absorption 

Radiative rate of emission 

Internal conversion 
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Eq. 3     cba kkkk 2222 ++=  

where, dk is the rate of decomposition, and 2k  is the sum of all the bimolecular 

rate constants for all bimolecular excited state deactivations [64]. The bimolecular rate 

constant is quencher dependent and describes by how the quencher interacts with the 

fluorophore within that environment. Typical quenchers are oxygen, halogens, heavy metal 

ions, and a variety of organic molecules [28]. 

These non-radiative pathways reduce the probability of photon emission and the 

fluorescence quantum yield ( FΦ ) is used to describe the probability that an excited 

molecule will emit [64]. Substances with the largest quantum yields, approaching unity, 

display the brightest emission [170, 280], in terms of fluorophore fluorescence the higher 

the quantum yield the more efficient the measurement process [121]. It is the number of 

emitted photons (fluorescence) relative to the number of absorbed photons [170], and can 

be thought of as a ratio [280], as shown in Eq. 4, 

Eq. 4     
[ ]Qkkkk

k

dqr

r
F

2+++
=Φ  

Eq. 5     τrF k=Φ  

The quantum yield is related to the average time an electron remains in the excited 

state prior to returning to ground state, described as the fluorescence lifetime (τ) [280] 

[121], by equation Eq. 5. The lifetime determines the available time for the fluorophore to 

interact with or diffuse within its environment [170] and is therefore defined as the inverse 

of the sum of the rate parameters for all depopulation processes [280], as shown by Eq. 6. 

Eq. 6     
[ ]Qkkkk dqr 2

1

+++
=τ  

When a fluorophore within an environment has no quenching influences ([Q]= 0) 

the lifetime can be described  by 0τ  and is equal to Eq. 7. 

Eq. 7     

nrrdqr kkkkk +
=

++
=

11
0τ  

Substituting Eq. 7 into Eq. 6 provides Eq. 8 

Eq. 8     [ ]Qk2
0

11
+=

ττ
 

Multiplying Eq. 8 by 0τ provides the familiar form of Eq. 9 

Eq. 9     [ ]Qk20
0 1 ⋅+= τ
τ
τ

 



1 •  Introduction  28 

 

 

By substituting the Stern-Volmer quenching constant 02τkK SV =  into Eq. 9 it 

provides the well establish Stern-Volmer equation [64, 171, 224, 281]: 

Eq. 10     [ ]QKSV+= 10

τ
τ

 

The Stern-Volmer constant is used to describe the relationship of bimolecular 

quenching between fluorophore and quencher. Measurement of lifetime with and without 

quencher at increasing concentrations describes whether the type of quenching involved is 

static, dynamic or a combination of both [171]. By identifying these factors the type of 

interaction can be determined from graphical plots where deviations from linearity describe 

some form of restriction in the quenching process. Whereas no correlation would be 

described as static, a dynamic relationship would be shown as linear [171]. These 

influences are dependent on the type of chosen oxygen dye and the environment it is found 

in.  

In summary, photoluminescence was chosen as the option for oxygen detection 

and shown that there are two methods for measuring the luminescence. Steady-state 

measures the average intensity produced after continuous illumination, whereas a more 

suitable option is time-resolved. Time-resolved avoids the environmental susceptibilities 

associated with intensity measurements and time-domain provides a simple interface that 

will allow a wider variety of users to access in the future. There are a host of events that 

occur after excitation, but they are all dictated by the type of fluorophore and the 

environment it finds itself. 

1.5 Oxygen sensitive dyes 

Small molecules, like oxygen, naturally act as quenchers of fluorescence [170]. 

Some fluorophores are particularly sensitive and fall into two main categories; polycyclic 

aromatic hydrocarbons and organometallic compounds.  

1.5.1 Polycyclic aromatic hydrocarbons (PAH) 

Pyrene and pyrene derivatives are types of PAHs [11] and have been used as 

intracellular oxygen sensors [252]. Pyrenebyutic acid has been applied to rat liver cells for 

intracellular measurement of oxygen concentrations [301].  A number of factors make them 

an unsuitable option as an oxygen sensitive dye. For example the emission overlaps with 

autofluorescence within the cellular environment, poor chemical- and photo-stability, 

increased likelihood of photodamage from excitation wavelength in the UV range [143], 
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limited sensitivity in the physiological range [241], and quenching caused by reactive 

oxygen species [14, 251]  

1.5.2 Organometallic compounds 

The other main group consisting of organometallic compounds are classified into 

two categories; the metalloporphyrins group, which consists of Platinum (Pt2+), Palladium 

(Pd2+), and Zinc (Zn2+) [11] and the transition metal polypyridyl complex group that 

includes Ruthenium (Ru2+), Rhenium (Re+) Osmium (Os3+), and Iridium (Ir3+) [11]. This 

group shows strong luminescence with long lifetimes and are frequently used as probes for 

optical oxygen sensors [11]. 

1.5.2.1 Metalloporphyrins 

Porphyrins are phosphorescent and exhibit lifetimes in the order of hundreds of 

microseconds allowing for the use of cheaper technologies such as LED [11]. But they are 

susceptible to photobleaching due to inherent poor photostability [11] and can be sensitive 

to pH and temperature [143]. Platinum based hybrid matrix bound sensors have been 

developed to measure the pH and partial pressure of oxygen simultaneously, but they still 

suffer from temperature sensitivity and can be susceptible to dye leaching [260]. Platinum 

based sensors have also been embedded into polymer matrixes and used in real-time multi-

well plate measurements for  metabolic investigation [211]. These types of matrix bound 

platinum sensors have also been used to determine surface oxygen gradients from in vitro 

explants of cartilage tissue [149]. 

Palladium based sensors, like the commercially available Oxyphor R2 [74], have 

provided researchers with the ability to intravenously inject diluted solutions, along with a 

visualisation dye, and measure single point oxygen measurements along in vivo arteriole 

networks [79, 320], or the arteriolar walls of rat skeletal muscle [267] and have been used in 

comparative analysis to determine the oxygen consumption rate of chondrocyte cells in 

agarose and collagen gels [104]. All measurements have only been able to provide single 

point oxygen measurements, but have achieved them from within the tissue depth. 

1.5.2.2 Transition metal ligand complexes (MLC) 

The MLC groups contain a metal centre and one or more organic ligands. These 

MLCs display mixed singlet-triplet states and intermediate lifetimes ranging from 400 ns to 

several microseconds [11]. One of the most established complexes is ruthenium (II) and has 

been widely used as a probe for oxygen sensing, due to the high specificity and sensitivity 

to oxygen. Its popularity lies in the linear response to oxygen concentration in 
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homogeneous solution [11], the large Stokes shift creating a robust photochemical [318], 

high photostability [46, 225] and high fluorescence quantum yield [143]. The long lifetime 

and red emission (frequency) avoids interference from autofluorescence components. The 

lifetime has also been shown to be insensitive to pH, and ion concentrations [91, 324]. 

Ruthenium(II) complexes have been used extensively for the detection of oxygen and the 

quantification of oxygen concentrations in-vitro [324] and in-vivo [137, 208] and will be the 

focus of further discussion. 

1.6 Ruthenium(II) complexes 

The first example of luminescence arising from the charge transfer transition in tris-

2,2’-bipyridine-ruthenium(II) ([Ru(bipy)3]
2+) was in 1959 by Paris et al. [233]. Over the past 

50 years ruthenium(II) complexes have been extensively reviewed with continued interest 

arising from a combination of chemical stability, redox properties, excited state reactivity, 

luminescence emission and excited state lifetime [144].  The emitting- and excited-states 

can be extremely sensitive to variations in the metal, coordinating ligands and local 

environment [66]. This has lead to the development of several hundred derivatives with 

multiple applications [144]. Used initially as a method for solar energy conversion [226] 

they have been involved in a variety of research from solid-state light-emitting [85] or 

electro-luminescent [272] devices, to biological sensors [91] or molecular probes [139], but 

more consistently as a model compound to study excited-state charge transfer [171]. 

Although the photophysics is still disputed [124] to enable the efficient application of 

ruthenium(II) the luminescence properties that dictate the excitation and emission states 

require understanding [66]. As a simple example tris-2,2’-bipyridine-ruthenium(II) complex 

consists of a single ruthenium metal centre, with six surrounding nitrogens, that pair three 

sets of aromatic rings holding 10 carbons and 8 hydrogen’s, as shown in Figure 8. 
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Figure 8 – Chemical structured layout of [Ru(bipy)3]
2+ in 3D and 2D. Left: Three dimensional structural 

model of [Ru(bipy)3]
2+ [114]; Metal centre is ruthenium (green), six nitrogen (blue), 30 carbon (black), and 

24 hydrogen (white). Right: Two dimensional structure of [Ru(bipy)3]
2+ with denote orbitals, adapted from 

Damrauer [60]. 

The ruthenium metal is a d 6 orbital system [144] that splits in the presence of the 

organic polypyrindine ligands into two d 3 systems. These two systems possess σ -orbitals 

localised on the nitrogen atoms and ̟ donor- and ̟* acceptor-orbital delocalised on the 

aromatic rings as depicted in Figure 8 [144]. Other forms of ruthenium(II) complex tend to 

have either additional ligands on the bipyridyl ring or a different set of ligands added to the 

metal complex. Excitation of ruthenium(II) cations leads the electrons to initially delocalise 

from the metal, and localise on one of the 3 bipyridyl ligands. From here it relaxes back to 

the lowest excited triplet state [99]. 

1.6.1 Applications of the ruthenium(II) complex 

The symmetrical structure shown in Figure 8 has allowed for anisotropy studies 

with the addition of an extra single ligand [171]. Ruthenium(II) complexes have been 

shown to bind to DNA and to be used as a sensitive tool for probing DNA structure [188]. 

It is one of the most widely used [254] and efficient photosensitizers [217] stemming from 

its ability to generate singlet oxygen [68]. This has lead to its application in photo-induced 

cleavage of DNA [99] where it has been applied as a combination approach, with 

porphyrin, to enable photodynamic therapy [63]. It appears to induce few DNA interstrand 

crosslinks, but protein-DNA crosslinks are shown to be induced by the complexes [23]. The 

addition of peptides to ruthenium have produced a membrane permeable probe to provide 

intra-cellular measurements [221].  
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1.6.2 Ruthenium(II) use with oxygen 

Ruthenium(II) complexes have been applied in a variety of applications for the 

detection of oxygen. The main options available are to embed the dye in some form of 

permeable gel or matrix, immobilise the complex inside beads, directly coat or fuse the dye 

to a 3D tissue engineering structure, or allow the dye to be dissolved in solution. 

1.6.2.1 Embedded 

Ruthenium(II) complexes have been absorbed into silica gel and embedded with a 

silicone-rubber membrane. This has allowed the application of this method in many 

situations, including commercial systems utilising 96 multi-well plates [313]. A similar kind 

of system has also been used for long term cell culture, to continuously monitoring the 

dissolved oxygen in a perfused bioreactor without causing cellular toxicity [86]. It can also 

be sealed on to a coverslip and has been applied to in vivo situations for monitoring 

oxygenation changes in brain tissue during ischemia and reperfusion [152]. The same type 

of system has been applied to measurement of transcutaneous oxygen partial pressure 

relating to the microcirculation under the skin [277]. These types of biofilm have many 

applications, including combined imaging of bacteria and oxygen [167], in vivo 

visualisation of rat intestinal microvascular network [137] and hand-held optical sensor for 

skin [315]. 

1.6.2.2 Beads 

An alternative option to embedding ruthenium(II) complexes in silicon matrix is to 

immobilise them in beads. Lipobeads, a phospholipids-coated polystyrene particle, have 

been used as a protective vehicle for ruthenium(II) for intracellular measurements of 

macrophages [142]. This avoids interactions with cellular components although it has only 

tested this method on monolayer samples and previous methods that use similar principles 

succumb to aggregation [143]. Layer-by-layer electrostatic nanosensors have been applied 

to ruthenium(II) encapsulation [321], but no cellular tests were completed. This method 

has also been combined to produce a dual sensor using oxygen and glucose within a 

nanoengineered alginate sphere via electrostatic mediated precipitation [41]. No cellular 

tests were completed and the oxygen measurements showed a second-order Stern-Volmer 

relationship. One study tested ruthenium(II) coated nanobeads with cells and managed to 

measure cellular oxygen consumption extracellularly, but in this case the beads were 

attached to the cell surface. Huge standard deviations can be seen in the measurements 

along with dye photobleaching because intensity measurements had been used [166]. It 

maybe presumed that any cellular surface attachment would cause downstream signalling 



1 •  Introduction  33 

 

 

from the positive charge carried by ruthenium(II) as well as focused generation of ROS at 

the cell surface, likely to permeate the membrane. 

1.6.2.3 Coating 

Another option directly coats [187] or fuses [3] the ruthenium with the tissue 

engineered hydrogel scaffolds, via layer by layer technology or gelled together during the 

scaffold production process. Coating the ruthenium(II) on to the hydrogels is achieved by 

soaking and washing in repetitive cycles. The main issue described was the non-uniformity 

of dye distribution [187]. This created problems due to the intensity based measurements 

being used. The authors stated that very few dead cells were noted, but no confirmation of 

viability was provided. The process of gelling ruthenium(II) during the scaffold production 

process showed good viability, but only global concentrations changes were reported 

without any spatial information and a two-site Stern-Volmer model was required to 

described the intensity based oxygen concentrations  [3]. 

1.6.2.4 In solution 

In solution ruthenium(II) complexes have been used for intracellular measurements 

of oxygen in macrophages [91], although it was found that a reduction was seen in the 

sensitivity once the dye had penetrated the cellular membrane [143]. It has also been tested 

intracellularly on adenocarcinoma, human epithelial cells [279, 324], but recently it has 

been shown that these intracellular measurements suffer from a lack of understanding how 

the internal components influence the recorded measurements. In order to tackle this 

problem the group resorted to using EPR oximetry to characterise the correct oxygen 

concentrations in parallel with the fluorescence lifetime measurements, in the hope that 

some complex mathematical model could be used to extract the relevant information [278]. 

Ruthenium(II) in solution has also been applied to bioreactor flow chambers during the 

culture of mouse myoblasts. This technique was hoped to aid future designs of flow 

chambers by quantifying changes in oxygen concentration, based on cellular density, 

consumption and flow rate [202].  The previous specification listed in 1.3.3.4 established 

ruthenium(II) processing must be met by the required criteria of the intended application, 

as shown in Table 5. 
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Table 5 – Summary of the available methods for utilising ruthenium(II) and the requirements for the 
intended application 

 

This summary Table 5 has identified ruthenium(II) in solution as the most viable 

option. Even though ‘extracellular’ has not been ticked the dye does remains in the 

extracellular domain for several hours prior to penetrating the cell membrane. With the 

detection method and fluorophore identified it only remains for the cellular model to be 

investigated. 

1.7 Cartilage model system 

During normal activity a normal human hip or knee joint can withstand loads of up 

to 10 times the normal body weight or maintain function for up to 9 decades [57]. Once the 

joint components become damaged or degraded it is apparent that normal function will 

suffer. This is compounded by the limited self repair capacity of articular cartilage that 

defines the interest in tissue engineering intervention. Oxygen in the reparative process has 

been shown to be vital to the structure and function of the produced engineered tissue. 

Cartilage tissue is an opaque translucent tissue, which is ideal for use on 

illumination based instruments and minimises the possibility of tissue absorption. The use 

of chondrocytes for the cell model means that a transparent engineered construct can be 

used without structures for cell attachment, which is generally required for most cells.  

The following discussion will focus on the natural structure and composition of 

cartilage, chondrocytes function, oxygen delivery, chondrocyte metabolism and the 

problems associated with articular cartilage repair. These problems can be alleviated 

though tissue engineering, which will be described along with the implications of changes 

to oxygen environmental concentration and the impact on engineered tissue development. 

Ruthenium(II) 

Criteria 
Embedded 

in matrix 
Bead 

In 

scaffold 
Solution 

3D measurements  ⊗ ⊗ ⊗ 

Extracellular ⊗  ⊗  

Ability to diffuse/flow  ⊗  ⊗ 

High spatial resolution  ⊗  ⊗ 

Simple linear Stern-Volmer relationship    ⊗ 

Total 1 3 2 4 
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1.7.1 The structure of cartilage  

Diathrodial joints are enclosed within a strong fibrous capsule [57] and are 

externally supported by surrounding ligaments, tendons, and muscle [215], as shown in 

Figure 9. The synovium secretes a metabolically active lubricating liquid, termed synovial 

fluid, filling the capsule [57]. The articular cartilage is a hyaline cartilage that lines the 

subchondiral bone [9, 307]. The combination of the synovial fluid and the articular 

cartilage creates a near frictionless bearing system during locomotion [57].  

 

Figure 9 – Example of a diathrodial joint, displaying the lateral view of a knee. The anatomical 

composition identifies the location of the tendon, ligament, articular cartilage, synovial membrane and 
menisci. As it is a knee joint the patella is also featured [289]. 

The cartilage and bone interface consists of three components; cancellous bone, 

subchondral bone and articular cartilage, as shown in Figure 10 [289]. Articular cartilage 

uses a single cell type, the chondrocyte, to maintain the surrounding extracellular matrix. 

 

Figure 10 – Hyaline articular cartilage and bone interface of a normal joint. Example a  femoral head on the 
left with a zoomed in section exhibiting on the right of the cartilage bone interface: articular cartilage, 

subcondral bone, and cancellous bone [289]. 
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Articular cartilage can be described by three uncalcified superficial (10-20%), 

intermediate (40-60%) and deep (30-40%) zones and one calcified zone [43], as shown in 

Figure 11. These zones are defined by chondrocyte morphology and ECM composition 

and organisation. 

 

Figure 11 – Cross-section of articular cartilage with zones percentages and locations displayed, Left: 
Section show phenotype and morphology of chondrocytes, Right: section show orientation of collagen 

fibres. Zonal areas are identified as superficial (STZ), middle, deep, and calcified. The start of the calcified 
zone is identified by the tidemark and ends at the subchondrial and cancellous bone [43]. 

1.7.1.1 Chondrocytes 

Chondrocytes occupy only 2-10% of the total volume of articular cartilage [9, 185, 

216, 243, 294]. The cells are morphologically ellipsoidal and vary in size dependent on 

species and location within articular cartilage [185]. The cell size can vary in the human 

knee from 10-14 µm between cells from superficial and deep zones [135]. At the surface 

chondrocytes appear flattend and closely packed [243]. In the intermediate zone the cells 

are rounder [9] and occupy less matrix volume [243], but in the deep zone cells are sparsely 

distributed, form vertical columns and have a large round morphology [9]. Beyond the 

tidemark, viable large chondrocyte cells with enlarge lacuna occupy the calcified zone [227, 

276]. This zone is formed of mineralised cartilage that adjoin the subchondral bone [9, 

294]. Chondrocytes here express a hypertrophic phenotype, synthesize collagen type X and 

can calcify the ECM [243]. 
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Figure 12 – Drawing of a chondrocytes internal structure. The abbreviations are: LD lipid droplet, Gly 
glycogen granules, VAC vacuoles, ER endoplasmic reticulum, Mito mitochondria, and Nu nucleus [181].  

1.7.1.2 The ECM 

The ECM is opaque in appearance and provides a fibre-reinforced gel like structure 

in which the chondrocytes reside [216, 294]. It also functions to provide important signals 

to the cells [162] regarding the surrounding environment. The ECM is mainly composed of 

collagen type II (wet weight 15-22%), proteoglycan aggrecan (wet weight 4-7%), and water 

(wet weight 60-85%) [57, 61, 216], as shown in Figure 13. These main components provide 

tensile strength, resistance to compression and reside in the voids facilitating convection of 

essential nutrients, respectively. The minor components within the ECM only account for 

less than 5% [57], but their function is vital for the meshing of the ECM structure. These 

include: link protein, hyaluronan, biglycan, collagen type I, V, VI, IX, XI, decorin, 

fibromodulin, perlican, thrombospondin and cartilage oligomeric matrix protein [57]. 

In the superficial zone collagen fibres are thin and form tightly packed horizontal 

leaves [136] that lie parallel to the articulating surface [294]. As the collagen fibres 

transcend the organisation becomes more disorganised, oblique and the fibrils become 

larger [243, 294]. In the deep zone the collagen fibres are arranged in vertical columns 

perpendicular to the surface mimicking the chondrocyte orientation [294]. The collagen 

fibres pass the tidemark and are anchored vertically into place by the calcified zone [136], 

providing a strong anchoring system to the subcondral bone [57]. 
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Figure 13 – Chondrocyte surrounded by extracellular matrix components including aggrecan, hyaluronan, 
Type II and IX collagen [52].  

 

The zonal characteristics of the articular cartilage have been summarised in Table 

6. Sub-divisions of the ECM have also been defined on the basis of proximity to the 

chondrocyte. Immediately surrounding the cells is a pericellular matrix, followed by a 

territorial matrix and a interterritorial matrix [244].  

Table 6– Articular cartilage zonal effects on chondrocyte, phenotype and density, and ECM, orientation 

and organisation.  

 

Chondrocytes Collagen (ECM) 
Zones 

Phenotype Density Orientation Organisation 

Cartilage 

% 

Superficial 
Flattened 

ellipsoid 
High  Parallel  

Horizontal, 

thin 
10-20 

Intermediate  Rounder  Medium  Oblique  
Less organised, 

thicker  
40-60 

Deep 
Larger, 
round 

Sparse,   
Vertical 
columns 

Perpendicular 
to surface  

Vertical 
columns 

30-40 

Calcified 
Large, 

round 
- 

Perpendicular 

thick fibres 

 Vertical 

columns 
3-8 
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From Table 6 it is apparent that the articular cartilage is a highly organised 

structure whose specific role is to aid locomotion of joints by minimising friction and 

translating shear stress through to the underlying bone. However, in order to maintain this 

structure chondrocytes require sufficient nutrients and oxygen delivery. 

1.7.2 Cartilage oxygen delivery 

In mature articular cartilage the delivery of oxygen to the tissue is generally 

considered to be from arterial blood supply surrounding the synovial capsule [182]. Oxygen 

and nutrients diffuse through the synovium into the synovial fluid and to the articulating 

surface [190], as shown in Figure 14. This delivery is aided by convection, stimulated 

through joint movement [102, 210, 243, 325]. Nutrients and oxygen are required to diffuse 

through the full depth of the cartilage. The cartilage thickness can vary dependent on 

anatomical location, age, and species. With age the thickness tends to decrease [4] and in 

human knees it can be >2 mm, while in rabbit of the same joint it can be <0.5 mm [325]. 

These parameters also define the oxygen concentration at the articulating surface, which is 

also affected by disease states. The difference between normal and a variety of joint disease 

states in human can be 6.5%-9% [107] to 1%-10.3% [290], respectively. 

It is estimated that the oxygen concentration in the deep zones is likely to be <1% 

O2 [271]. However, as shown earlier in Table 1, recent studies between the subpopulation 

of chondrocyte cells have shown that the superficial cells consume oxygen at a lower rate 

than the deep cells. Only invasive methods or computationally modelled based on global 

consumption rates of chondrocytes have been used to determine the actual concentrations 

[262, 271, 325]. These low levels of oxygen in cartilage would be considered hypoxic for 

most other cells, but is referred to as normoxia for chondrocytes [101, 210].  
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Figure 14 – Schematic representation of oxygen delivery from blood supply to cartilage surface and through 

to the deep zone. 

In immature cartilage blood vessels supply nutrients direct to the deep layer, 

unhindered due to the incomplete development of the subchondral plate [199]. Once the 

tissue has reached maturity and has a fully developed calcified zone nutrient delivery is not 

supported by the subchondral vessels [55], even though a few small blood vessels do reach 

beyond the subchondral bone [136], as shown in Figure 15. It has been shown in vivo by 

Ogata et al. [228] that in adult rabbits hydrogen gas was not taken up from the subchondral 

bone into the cartilage, demonstrating that diffusion of dissolved gases, like oxygen, should 

not be able to reach cartilage from the subchondral bone. However a conflicting study, 

examining the concentration of glycosaminoglycan (GAG) in articular cartilage, used 

intravenous injection of gadolinium (Gd(DTPA)2-) and noted that the contrast agent 

appeared to penetrate both from the articulating surface and the cartilage bone interface 

[24]. The experiment was performed in vivo on adult human subjects and suggests that 

unhindered diffusion is possible from the subchondral bone. Whether the negative charge 

of Gd(DTPA)2- influences this process is unclear, but it cannot be attributed to the disease 

state as all subjects were normal volunteers. 
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Figure 15 – A pictorial representation of a proximal bone display a cut through section of articular cartilage, 
which defines the cartilage zones and shows the interface with the subchondral bone. A zoomed in section 

between the tidemark and subchondral bone show how the arteries and veins sometime reach into the 
calcified cartilage. Adapted from Imhof et al. [136]. 

Many studies assume that there is no transfer of oxygen from the subchondral bone 

suggesting that cartilage restrictions to oxygen delivery and the greater density of superficial 

cells will inevitably lead to the development of an oxygen gradient [101, 102, 119, 179, 210, 

216, 294, 307, 325] that would influence cellular metabolism. However, computational 

models have been used to explore the possibility of the cartilage being provided with up to 

50% of its supply from the subchondral bone. These models suggest that the gradient would 

be more gradual and reduce slightly across the centre of the cartilage tissue [325]. 

1.7.3 Cartilage metabolism 

It had generally been assumed that at the surface superficial cells utilised oxidative 

phosphorylation for energy and the decrease in oxygen with depth was accompanied by a 

shift in their metabolism to glycolysis [190]. However, the recent understanding that deeper 

cells consume oxygen at a higher rate than superficial cells contradicts the general 

consensus of an oxygen gradient. The importance of understanding chondrocytes 

surrounding oxygen consumption or the possibility of gradient development is now 

fundamental to creating accurate computationally models and the productive progress of 

tissue engineering.  

1.7.4 The role of oxygen in cartilage metabolism 

The oxygen gradients in constructs are determined by a number of factors 

including: cell density and distribution, diffusion/convention rate and the oxygen 

consumption rate of the cells [190]. The diffusion rate of oxygen is dependent on the 
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construct architecture and the diffusion coefficient or effective diffusivity of oxygen in the 

matrix [190] as previously outlined in section 1.2.1. 

The oxygen consumption can be affected by methods of culture and can, in turn, 

induce differences in matrix development. In monolayer, cells are exposed to a uniform 

oxygen concentration, unlike cells within a three-dimensional construct [190]. Even so 

Pettersen et al. [238] showed that oxygen gradients developed from human breast cancer 

cells across the depth of a monolayer flask (1.6 mm) using a microelectrode, which 

increased over consecutive days. Heywood et al. [130] showed that gradients developed in a 

3D alginate system impacted cellular viability and induced the development of necrotic 

areas at the centre. As cellular density increased the cellular viability at the centre of the 

construct decreased. Guaccio et al. [104] measured the oxygen concentrations non-

invasively in two 3D tissue engineered constructs, agarose and collagen. In agarose 

constructs oxygen levels reduced to zero after a depth of 1.2 cm in 24 h, but this was not 

observed in collagen based constructs. This effect was also reported by Kellner et al. [149] 

who compared, non-invasively, the development of oxygen gradients in explanted cartilage 

and 3D polymer-based constructs. They found that in the centre of the artificial construct 

oxygen levels dropped to zero, whereas the explants reached a minimum of 20 mmHg. 

The effect that oxygen concentration has on chondrocytes is varied. Chondrocytes 

seeded in monolayer and 3D systems have been examined by many researchers who have 

assessed the implications of specific oxygen environments on cellular function. For 

example, Femer et al. [80] investigated porcine chondrocytes cultured at 20% oxygen 

compared with 5% and 1% oxygen. An increase in the production of proteoglycan, 

collagen and hyaluronan was seen in the cells cultured at 5%, whereas a decrease 

production in the same components were seen when cells were cultured at 1% oxygen. The 

material properties of cartilage were also examined at 20% oxygen, with a reduced stiffness 

after 3 days. When cells were transferred to a 1% oxygen environment no change was seen, 

but at 5% oxygen the stiffness returned to the same levels reported prior to incubation at 

20%. Permeability was found to increase at 20% and return to normal at 5%. This 

suggested that diffusion would be affected, but only at 1% oxygen was the diffusion rate of 

dextran in the superficial zone lowered; no effect was seen in the other zones. Murphy et al. 

[218] also found 5% oxygen provided optimal culture conditions of chondrocytes. Oxygen 

concentration profiles are also affected by alterations in cellular metabolic rates induced by 

the addition of serum or growth factors, which can lead to lower oxygen within the tissue 

[325]. 
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1.7.5 Cartilage damage 

Chondrocytes are responsible the production and maintenance of the extracellular 

matrix (ECM) and are critical to its maintenance [9, 185, 190].  Chondrocytes experience 

changes in hydrostatic pressure from joint articulation, which aids modulation of metabolic 

activity [294] by removing waste and replenishing essential cell nutrients, oxygen and ions. 

Problems occur when joints are immobilised or have reduced loading causing static 

pressure that restricts vital cellular components and impede the rate of ECM synthesis 

[185]. With age, alterations to the cartilage metabolism also lead to degeneration of the 

articulating surface [294] with limited intrinsic capacity for repair [307]. These issues can 

accelerate through injury, such as blunt trauma or chondral fracture, as shown in Figure 16 

[294] or via disease, such as osteoarthritis [307] or rheumatoid arthritis. Treatment options 

vary from the removal of an affected tissue and replacement with donor or autologous graft 

[307], to total replacement of an entire joint in extreme circumstances [190]. 

 

Figure 16 – Posterior view of open knee joint with articular cartilage surface damage, Left: cartoon diagram 

depicting damage highlighted by red circle, Right: Real open knee surgery showing cartilage damage in red 
circle [153]. 

1.7.6 Cartilage tissue engineering 

Most cartilage repair techniques are aimed at local trauma rather than 

osteoarthritis. Few surgical protocols have yielded satisfactory results for the treatments 

and repair of blunt trauma or chondral fracture [293]. Full function is rarely restored back 

to its native normal state [293] due to the invasive surgery, donor site morbidity, and risk of 

immunogenic response or pathogenic transfer for allogenic approaches [190]. To address 

inadequate self repair of cartilage, caused by injury or disease [112], the implantation of an 

engineered tissue composed of autologous chondrocytes has proven successful. The main 

difficulty with autologous cell-based tissue engineering strategies is the small number of 

human chondrocytes that can be harvested [162, 190].  The procedure involves surgery to 
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extract healthy chondrocytes from an undamaged area with rapid cellular expansion using 

monolayer cell culture. Chondrocytes are reverted back to their rounded phenotype 

through three-dimensional cellular culture. Surgery takes place once an adequate number 

of cells has been established. A periosteal flap is sewed to the surface of the defective site 

and harvested cells are re-implanted under the flap, as shown in Figure 17. 

                   

Figure 17 - Autologous chondrocyte implantation, Left: Extraction of healthy cell for expanding in 

monolayer then transferring to bioreactors to retain phenotype and harvesting, Right: Stitching of peristeal 
flap and injection of harvested chondrocytes [153]. 

The types of cell culture techniques used for chondrocyte tissue engineering 

strategies are monolayer (2D), static three-dimensional (3D) and bioreactor cultures [185].  

1.7.6.1 Monolayer cell culture  

Monolayer culture is a basic approach for chondrocyte propagation. It is 

economical, technically simple and allows the rapid culture of large numbers of cells [185]. 

However, after being passaged [185] chondrocyte cells loose their rounded shape [190] and 

become fibroblast-like, losing their ability to secrete proteoglycans, and change collagen 

synthesis from type II to type I [185]. This loss of phenotype can result in the creation of 

inferior cartilage tissue [190]. Therefore, serial monolayer culture of chondrocytes is not 

representative of native cartilage because it lacks the cell-matrix interactions that 

chondrocytes possess in vivo [185]. This maybe overcome through transfer of cells to a 

three-dimensional system. 

1.7.6.2 3D static cell culture 

The imperative behind culturing chondrocytes in a three-dimensional system is to 

provide an environment that is a more realistic representation of native cartilage to stabilise 

phenotype for subsequent applications [185]. Three-dimensional static systems use a host of 

different material scaffolds to provide cellular structural support. The chemical nature of 
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these scaffolds is polymer-based and is derived from proteins, carbohydrates or is artificially 

generated, as listed in Table 7.  

Table 7 – Different chemical classes of matrix [134] 

 

Each material has advantages and disadvantages for cartilage tissue engineering 

applications. For example, it is known that agarose encourages cellular production of 

collagen type II, but lacks suitable mechanical properties to provide the biomechanical 

requirements for joint movement [44, 134, 185]. Other materials such as poly(ethylene 

glycol) (PEG) hydrogels have been designed to better match the mechanical properties of 

cartilage, and support viability and matrix synthesis. Static culture does not facilitate all 

aspects of cartilage requirements. External forces that naturally act on native cartilage 

require implementation, which can be achieved by using bioreactors that are also designed 

to enhance nutrient delivery. 

1.7.6.3 3D Bioreactor cell culture 

Bioreactors are designed to support the delivery of nutrients, while maintaining 

appropriate culture conditions. Bioreactors may also simulate the biofluidic or mechanical 

environment in vivo. The temperature, pH, nutrients, and oxygen levels can all be 

controlled [185] via the re-circulating fluid in an attempt to stimulate the fluid flow seen 

with joint movement in native cartilage. More advanced systems also incorporate changes 

in hydrostatic pressure or facilitate compression. This replicates the impact frequency of 

walking and provides a natural uniform mixing process of nutrients and oxygen as seen in 

joint convection [61, 286]. This type of stimulation aims to aid direction of growth for cells, 

collagen matrix and provide important signalling for tissue development [175]. This 

controlled stimulated environment for cartilage tissue engineering promotes 

chondrogenesis, ECM synthesis and tissue formation, supplying better oxygenation and 

nutrition than static culture systems [185]. 

 

 

 Chemical Nature 

 Protein-based polymers Carbohydrate-based polymers Artificial polymers 

C
o
m
p
o
si
ti
o
n
s 

Fibrin 

Collagen 
Gelatine 

Polylactic acid 
Polygycolic acid 
Hyaluronan 
Agarose 
Alginate 
Chitosan 

Dacron (polyethylene terephthalates) 
Teflon (polytetrafluoroethylene) 

Carbon fibers 

Polyesterurethane 
Polybutyric acid 

Polyethylmethacrylate 
Hydroxyapatite 
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Table 8 – Currently used cell culturing methods and the associated advantages and disadvantages 

 

A summary of the advantages and disadvantages are provided in Table 8. It 

highlights how the disadvantages of each technique are compensated by the advantages of 

the others. This shows the reliance and importance of each culturing method and why they 

must be used in combination to provide expansion (monolayer), cellular investigation (3D 

static), and bio-stimulation (3D bioreactors). 

Bioreactors show the greatest potential in replicating the native cartilage 

environment, but monitoring of biological parameters and knowledge of oxygen gradient 

development are required for optimum control of the closed loop systems. Before 

optimising bioreactor control systems a thorough understanding of oxygen spatial profile 

from chondrocyte seeded constructs must be obtained to truly model the progression of 

gradient development. This requires a simpler system to build the knowledge of 

chondrocyte oxygen consumption in a spatial context. By understanding how cellular 

consumption and gradients develop a more robust model for bioreactor cell culture can be 

established. 

As stated earlier static cell culture is an ideal option for investigating cellular 

processes due to its simplicity compared with bioreactors and it avoids the dedifferentiation 

effects seen in monolayer. To minimise the influences of the construct composition a 

neutral carbohydrate based polymer, agarose is a simple readily available technology that 

 
 Advantages Disadvantages 

M
o
n
o
la
y
er
 

- Economical  
- Technically simple [185] 
- High cellular proliferation [185] 

- Uniform delivery of oxygen and nutrients 
- De-differentiation – fibroblast-like [40, 185] 
- Loss of cell phenotype [190] 
- Loss of ability for proteoglycans secretion 
[185] 
- Collagen synthesis from type II to I [185] 
- No mechanical loading or stimuli 

3
D
 s
ta
ti
c 

- Provides simple environment for 
investigating 3D cellular development 
Round phenotype retained [185] 
- Technically simple 
- Correct matrix production [264] 
- Non-uniform nutrient and O2 [190] 

- No mechanical loading or stimuli  
- Delivery problems for O2, nutrients and 

removal of waste once matrix developed [61, 
149] 
- Lacks ability of proliferation 

C
u
lt
u
ri
n
g
 m

et
h
o
d
s 

3
D
 b
io
re
a
ct
o
r 

- Hydrostatic pressure as in cartilage [61] 
- Replicates natural uniform mixing [61, 
286] 
- Round phenotype retained [42] 
- Correct matrix production [304] 

- Control of pH, O2, temperature, 
pressure, nutrient supply, waste removal, 
biostimulation [61, 190, 192] 

- Complex setup and control system 

- Complex fluid flow and cellular interaction 
- Lacks ability of proliferation 
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has minimal diffusional constraints for oxygen, supports the synthesis of matrix 

components, and encourages deposition of collagen type II [44, 185]. Agarose gel culture 

was one of the first three-dimensional culture techniques developed [185], but poor 

biodegradability limits its use as a matrix for cartilage repair studies in vivo. However, 

agarose gel has been used in many basic in-vitro studies studying physiological activities of 

chondrocytes [134] it is therefore an ideal simplified model for investigating the 

development of chondrocytes oxygen gradients. 

In summary, cartilage is an avascular system with limited cell repair. Its simple 

opaque environment is ideal for use in a luminescence setup.  It has been shown that 

oxygen influences chondrocyte development in tissue engineering associated with cellular 

viability, maintenance and structure of the ECM. A static 3D agarose system has been 

chosen for its simplicity to be used as the cell seeded construct. 

1.8 Aims and Objectives 

The aim of the project is to detect and quantify the presence of cellular induced 

spatial oxygen concentration gradients within a 3D tissue engineered agarose construct 

using a time-resolved time-domain lifetime detection method to measure an oxygen 

sensitive ruthenium(II) complex. The objectives are to: 

• Examine available a time-resolved time-domain techniques with a selection of 

ruthenium(II) complexes in order to determine a suitable technique and 

fluorophore.  

• Combine the chosen optimised time-domain technique and characterised 

ruthenium(II) complex to assess data acquisition, phototoxicity and image 

processing.  

• Measure oxygen concentrations in a three-dimensional agarose construct 

seeded with chondrocytes using the calibrated system. 

• Confirm that the measured oxygen gradient can truly be attributed to cellular 

oxygen consumption through inhibition and upregulation of cellular 

respiration. 
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Oxygen detection 

techniques 

2  

2.1 Introduction 

The previous chapter determined time resolved time-domain fluorescence as the 

option most likely to fulfil prerequisite requirements. This chapter will be broken down into 

four parts: examination of ruthenium(II) complexes, testing of possible time-domain 

techniques, adaptation of selected time-domain technique and quantification of cytotoxicity 

induced by selected dyes on cells. By the end of this chapter a ruthenium(II) dye and 

preferred method for measuring lifetime will be chosen to take forward for future 

experiments.  

2.2 Ruthenium(II) complexes characterisation 

2.2.1 Spectral properties 

In these experiments the excitation and emission peak of the ruthenium(II) 

complexes requires determination to ensure efficient stimulation of the fluorophores. The 

excitation wavelength for [Ru(dpp)3]
2+ was indicated by commercial documentation [270] 

as 455 nm, but no information was provided on the excitation of [Ru(bipy)3]
2+ and 

[Ru(phen)3]
2+. There are discrepancies in the published literature as to the correct values to 

use. For excitation and emission of [Ru(bipy)3]
2+ water and PBS, Gerritsen et al. [91] used 

488 nm and >520 nm, respectively, while Sud et al. [279] used 460 nm and >600 nm, 

respectively. For the excitation and emission of [Ru(phen)3]
2+ in water and sol-gel, 

Dobrucki et al. [72], used an excitation of 457 nm, respectively, whilst Campbell et al. [45] 

used 488 nm and >586 nm, respectively.  
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2.2.1.1 Materials  

Tris(2,2′-bipyridyl)ruthenium(II) chloride hexahydrate, [Ru(bipy)3]
2+, tris(1,10-

phenanthroline)ruthenium(II) chloride, [Ru(phen)3]
2+, and tris(4,7-diphenyl-1,10-

phenanthronline)ruthenium(II) dicholoride, [Ru(dpp)3]
2+, were purchased from Sigma-

Aldrich (MW: 748.62 g/l, 712.59 g/l, 1169.17 g/l) (224758, 343714, 76886, Sigma-

Aldrich, UK). Stock solutions (10 g/l) were created for each dye with deionised water for 

[Ru(bipy)3]
2+ and [Ru(phen)3]

2+, whilst [Ru(dpp)3]
2+ was dissolved initially with ethanol and 

then further diluted with deionised water, in accordance with the manufacturers 

instructions [270]. 

The chemical structures of all three dyes are shown schematically in Figure 18. The 

commonality in all the dyes is the metal centred ruthenium(II) complex and the radiating 

six ligands attached to nitrogen (N). From here the dyes vary, the two main differences 

being the structures attached to the nitrogen, which come in the form of either pyridyl or 

phenanthroline. The last dye [Ru(dpp)3]
2+ has a phenyl attached to the back of 

phenathroline. 

 

Figure 18 – A schematic diagram of the chemical structures of ruthenium(II) complexes, Left: [Ru(bipy)3]
2+, 

Middle: [Ru(phen)3]
2+, Right: [Ru(dpp)3]

2+ [270]. Ru – ruthenium, N – nitrogen, Ph – phenyl, Cl – chloride, 

H2O – water. 

2.2.1.2 Method 

To determine the spectral properties, 2 µl of each dye stock solution was diluted (10 

mg/l) with phosphate buffer (pH 8) and dispensed into standard cuvettes with opposing 

polished windows. Each cuvette was, in turn, placed into a fluorimeter (SLM II, Aminco-

Bowman, USA) to acquire excitation and emission spectra. The light was directed through 

the cuvettes polished window and the transmission measured with a detector, as shown in 

Figure 19.  
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Figure 19 - Orientation of standard cuvette with opposite polished windows holding a ruthenium sample to 
obtain excitation and emission spectra on a fluorimeter. 

Each previous study used different types and methodologies with various results. 

Therefore the current study followed a three stage process repeated for each dye: First, to 

identify approximately the emission peak, the dye was excited at 455 nm (4 nm bandwidth) 

and emission intensity was recorded from 550 to 700 nm with a 1 nm bandwidth. 

Secondly, to confirm the true excitation peak the excitation range was then scanned from 

350 to 550 nm with 1 nm bandwidth, while maintaining the emission detection constant at 

the peak value with a 4 nm bandwidth. Finally, the emission spectrum was re-recorded at 

the maximum excitation peak to confirm the maximum emission peak. 

2.2.1.3 Results: Ruthenium dyes display near identical spectral peaks 

The excitation and emission spectra of ruthenium(II) complexes diluted in 

phosphate buffer (pH 8, 1:1000), are shown in Figure 20, at ambient temperature. The 

ruthenium spectrum shows a maximum peak excitation for all three dyes at 468 nm. 

Emission peaks for [Ru(bipy)3]
2+, [Ru(dpp)3]

2+, and [Ru(phen)3]
2+ were only slightly 

different, at 607 nm, 616 nm, and 592 nm, respectively. Comparing all three dyes, a series 

of almost identical minor peaks are visible in the excitation spectrum highlighting the 

commonality between these three ruthenium complexes. Although the peaks display the 

same position in wavelength the magnitudes of the normalised intensities vary.  
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Figure 20 - Excitation and emission spectra of [Ru(bipy)3]
2+, [Ru(dpp)3]

2+, and [Ru(phen)3]
2+ in aqueous 

buffer PBS. Intensities have been normalised to the maximum values. 

2.2.1.4 Discussion 

In each dye the central chemical component is the ruthenium metal. This 

commonality between the three dyes is displayed in the spectra for excitation and emission. 

The maximum peak excitation for all three is 468 nm and the difference between the peak 

emissions is <20 nm. Although the excitation peaks appear at the same wavelength the 

magnitudes of the normalised intensities vary. This can be attributed to adjoined ligands 

affecting the transitions and interactions of the electrons. The excitation spectra of the 

[Ru(dpp)3]
2+ showed a slight discrepancy with the commercial documentation, which 

stated the excitation peak was 455 nm in 0.1 M of phosphate [270]. This could be related to 

the sensitivity of the equipment, the filter bandwidths used by the company and the solvent 

effect and dye concentration. No commercial information was available for the excitation 

or emission wavelengths of [Ru(bipy)3]
2+ and [Ru(phen)3]

2+, but papers have been published 

also showing discrepancy between experimental results, as discussed in section 2.2.1. This 

confirms the need to obtain first hand spectra prior to conducting experiments to ensure 

optimum parameters are used. 

2.2.2 Self-quenching 

Self-quenching is defined by International Units for Physics and Chemistry 

(IUPAC) as the “Quenching of an excited atom or molecular entity by interaction with 
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another atom or molecular entity of the same species in the ground state.”[200]. This effect 

occurs at high dye concentrations when two identical dye molecules are in close proximity 

and due to intermolecular interaction, quench the fluorescence just as in fluorescence 

resonance energy transfer (FRET) [171]. Increasing the distance between these molecules 

by reducing the concentration, will reduce the level of interaction and therefore increase the 

intensity [327]. However, the mechanism behind self-quenching is not completely 

understood even though the process has been known since the late 19th century. It was 

proposed that as fluorescence only occurred from single molecules (monomers) it was 

aggregation of these molecules that caused the self-quenching [110]. Even though this is 

partially true it is seen as a combination of dimerisation of the dye, energy transfer to non-

fluorescent dimers, and collisional quenching interactions between dye monomers [110]. 

The self-quenching effect has previously been shown in optical probe design where 

ruthenium was embedded into silicone [154]. So as to avoid this effect it was found that 

lower concentrations (>0.2 mM) were required than would normally be possible in solution 

[183]. The effect of self-quenching has also lead others to utilise it for looking at single 

molecular protein folding [327], determine changes in cell volume [110]. A direct 

comparison of incrementing fluorophore concentrations would provide a means of 

determining maximum concentration limits due to self-quenching. 

2.2.2.1 Methods 

For each of the three ruthenium dyes, as listed in section 2.2.1.1, a doubling serial 

dilution of 1 µM – 14 mM  was created from stock solutions (10 g/l) and pipetted into a 96-

well microplate (BD Falcon™, Sigma-Aldrich, UK) at a volume of 50 µl per well. The 

fluorimeter (FLUOstar OPTIMA, BMG LABTECH, GmbH) provided 50 illumination 

cycles to each well and averaged the intensity. Excitation and emission filters were set to 

485 nm and 610±10 nm, respectively. The ‘gain adjustment’ was set to 1600. 

2.2.2.2 Results: [Ru(bipy)3]
2+ and [Ru(phen)3]

2+ experience decreased intensities at 

concentrations >7 mM 

The concentration dependence of fluorescence intensity for three ruthenium 

complexes in aqueous solution are shown in Figure 21; all measured at ambient 

temperature. [Ru(bipy)3]
2+ displays a notably higher fluorescence emission at the same 

concentration as [Ru(phen)3]
2+ and [Ru(dpp)3]

2+. A linear relationship (R2 >0.95) exists 

between increasing dye concentration and emitted intensity at concentrations 

approximately below 7, 8.5, 1.6 mM for [Ru(phen)3]
2+  [Ru(bipy)3]

2+, and [Ru(dpp)3]
2+, 

respectively. Above these concentration the linear relationship that exists with intensity 
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starts to deviate and in two of the cases begins to decrease at 7 mM for [Ru(phen)3]
2+ and 

[Ru(bipy)3]
2+.  

 

Figure 21 - Effect of concentration on fluorescence emission intensity in aqueous solution for [Ru(bipy)3]
2+, 

[Ru(dpp)3]
2+, and [Ru(phen)3]

2+ data plotted on a semi-log scale. 

2.2.2.3 Discussion 

An investigation was conducted to determine the limit where dye concentration 

induced self-quenching. It was identified that two of the dyes, [Ru(bipy)3]
2+ and 

[Ru(phen)3]
2+ intensity decreased at concentrations >7 mM. As the only changes in the 

solutions are the concentration it can therefore be attributed to self-quenching. 

2.2.3 Conclusions from section 2.2 

In conclusion, the peak excitation and emission wavelength for all dyes were 

determined as 468 nm with peak emission wavelengths of 592, 607, 616 nm for 

[Ru(phen)3]
2+, [Ru(bipy)3]

2+ and [Ru(dpp)3]
2+, respectively. 

The maximum fluorophore concentration in solution should be < 7 mM to avoid 

affects induced by self quenching. 
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2.3 Time-resolved time-domain systems 

2.3.1 Introduction 

After light excitation of a fluorophore the emission intensity decays over time. To 

determine the rate at which this occurs, i.e. the fluorescence lifetime, a variety of time 

resolved time-domain techniques can be used. There are four possible time domain 

methods that exist:  

• Time-gating 

• Time correlated single photon counting (TCSPC) 

• Streak camera 

• Upconversion 

Time-gating/pulse-sampling requires the decay to be broken down into discrete 

time intervals where the intensity is captured, as shown in Figure 22. This allows 

compartmentalisation and therefore the ability for fast decay accumulation to be dealt with 

using simple electronic equipment. To create the discrete intervals detectors are either left 

on and electrical pluses measured on a sampling oscilloscope, or the detector sections the 

decay by turning on and off during the correct time period [171]. Either way electronic 

noise is independently added to each detected pulse. The size of the gates is dependent on 

the type of decay or accuracy required, which provides the flexibility of using long lifetime 

dyes. Generally the same sized gates are used for mono-exponential decays [19]. However, 

with more complex multi-exponential decays the shorter gates are used at the beginning 

enabling the short lifetime to be deciphered from the long lifetime [90]. 

 

Figure 22 – Acquisition of fluorescence decay using time-gating technique. The gated sections that are 
recorded are shown in by the grey boxes and are position after the background fluorescence. The 

accumulated intensities in these grey boxes are used to derive the lifetime decay [36]. 
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TCSPC is in some ways similar to time gating, as photons are sequestered into time 

channels, but it is the method of registering the photons that differs. TCSPC actually 

detects each photon, by converting it to a digital count. The electronic effects from the 

equipment do not interfere with each photon detected and this ensures it has the best 

photon accuracy [27]. The arrival time of each count is then correlated to a time channel. 

Over time the photons build to produce a histogram that represents the lifetime decay, as 

shown in Figure 23. The resulting signal to noise ratio is better than that of all other 

techniques, it has a dynamic range of up to 65536, but the time range is limited to 2 µs due 

to restrictions in the electronics [27].  

 

Figure 23 – Photon collection acquisition of counts into assigned time channels. Height of the time channels 
is designated by the dynamic range and the number of time channels is assigned by the selecting an 

appropriate ADC. Adapted from Becker&Hickl [27]. 

The streak camera is a specific type of camera that can provide information about 

the photon arrival time, its position in space, and the intensity. The camera can be used to 

determine the wavelength of the arriving photons that can provide important information 

about the environment of the fluorophore [109]. This is achieved by fluorescence passing 

through a slit and being focused on to a photocathode with a lens. The light is converted 

into electrons proportional to the intensity, as shown in Figure 24. The electrons are then 

accelerated and deflected as they pass between sweep electrodes so that they arrive in 

slightly different vertical positions. As the electrons pass through a micro-channel plate 

(MCP) they are multiplied and impact a phosphor screen where they are converted back to 

light, producing an image [171]. The streak camera not only provides the arrival time of 

photons, but also the location in space and intensity. It also has the best instrument 

response function (IRF), which is of less importance in the current study as dyes are 

transistion-metal ligands that have long lifetimes. The objective is to detect small changes 

in oxygen concentration and thus sensitivity is vital photon counting streak cameras are 

available, but with a poor S/N and low dynamic range (1000), it rules out the use of a 

streak camera. 
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Figure 24 – Schematic diagram of principle operation of streak camera. On the left it shows light entering 
the slit at different intensities and being focused down to the photocathode. The converted electrons are 

accelerated through the mesh and deflected by the sweep electrodes to different locations on the micro-
channel plate (MCP) where they are multiplied upon hitting the phosphor screen to produce an image 

related to space, time and intensity [109]. 

Upconversion is similar to time gating except that a laser pulse is used to gate the 

intensity decay instead of a detector or oscilloscope. The laser beam is split and one beam is 

directed to the sample while the other path is looped to create a time delay, as shown in 

Figure 25. The emission from the sample rejoins the delayed laser beam and is directed 

through an upconversion crystal. Only when the incident photons overlap will the crystal 

produce any photons [224]. Utilising a laser with a femto- or pico-second repetition rate the 

decay is gated and intensities recorded at those intervals allowing the full decay to be 

calculated [171]. Upconversion provides the best time resolution, but needs an extremely 

complex setup requiring constant realignment for any wavelength adjustment and for 

ensuring the delay and sample beam hit the crystal at the same point. In addition this 

approach has the shortest time range of 1-2 ns [171], which restricts the choice of dye to 

short lifetime time decays. The expected sensitivity to oxygen change would be limited 

making it unsuitable at low concentrations of oxygen.  

 

Figure 25 – Schematic layout of fluorescence upconversion detection system. Output from an Ti:sapphire 

laser seeds a regenerative amplifier (RGA) this is split into two parts where one pumped an optical 
parametric generator (OPA) and was sent through to the sample and then to the crystal joined by the 

original but delayed RGA laser light. This goes onto a monochromator and is recorded on a PMT [148]. 
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Each of the four techniques has inherent advantages and disadvantages as 

summarised in Table 9. Using this summary it is possible to identify two techniques that 

would be unsuitable for the intended application, namely the streak camera and 

upconversion. The advantage of time-gating is the ability to cope with the long decays due 

to the high dynamic range. TCSPC has the best photon timing accuracy, which provides 

precise lifetime decays allowing low oxygen levels to be distinguished. 

Table 9 – Summary of the variety of time-domain techniques looking at the pros and cons. 

TECHNIQUES METHOD ADVANTAGES DISADVANTAGES 

Time-gate/ pulse 
sampling 

Intensity measured at 
discrete time points 

• Best speed in 
accumulating signal 

• Highest time range 

and dynamic range 

• Loss of signal outsite time 
gate 

• Unknown noise level of 

each data point 

Time Correlated Single 
Photon Counting 

(TCSPC) 

Each photon is 

correlated with a time 
point 

• Best photon accuracy 
• High dynamic range  

• Limited time range 2µs 

Streak Camera 
Photoelectron dispersion 

provides time, space and 
intensity  

• Best IRF 
• Poor S/N ratio 

• Low dynamic range 

Upconversion 
Similar to time gating 
but intensity decay is 
gated by laser pulse 

• Best time resolution 
• Worst complexity 

• Lowest time range 1-2ns 

 

The following experiments will investigate three ruthenium dyes [Ru(bipy)3]
2+, 

[Ru(phen)3]
2+ and [Ru(dpp)3]

2+, diluted in solution, with lifetime measured using 

instruments that facilitate time-gating, pulse sampling and TCSPC to acquire time resolved 

measurements. A comparison will be conducted between the efficiency of the dyes in 

solution and the ability of the techniques in measuring lifetime based on suitability of use 

with long lifetime dyes. The final step will determine a suitable technique for adaptation, 

with the foresight of applying it to a 3D cellular system, whilst maintaining accurately 

detected lifetimes with a stable and reliable system.  

2.3.1.1 Sample preparation 

Stock solutions of the three ruthenium dyes ([Ru(bipy)3]
2+, [Ru(phen)3]

2+ and 

[Ru(dpp)3]
2+) were diluted to concentrations of 16.1 µM with deionised filtered water for 

ambient samples in atmosphere. Low oxygen samples consisted of 16.1 µM ruthenium dye 

and 100 mM Na2SO3. Filter deionzed water with Na2SO3, but without ruthenium dye, was 

used as a control. 
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2.3.2 Time gating system 

The fluorimeter (FLUOstar OPTIMA, BMG LABTECH, GmbH) operates using a 

high-energy xenon flash lamp that excites individual wells via a liquid light guide. The 

returning emission is captured through a separate light guide and directed to a 

photomultiplier tube (PMT). Controlled filter wheels select the desired excitation and 

emission wavelengths over the spectral range of 240-740 nm. Operating the system requires 

time resolved measurement script files to be written, containing information on the 

excitation routine and gate settings, which work in conjunction with standard files that 

contain filter setting and well plate layout. 

2.3.2.1 Methods 

Stock solutions were prepared, with and without Na2SO3, as described above. 

Three replicates of each dye and each control were dispensed into the 96-well microplate 

(BD Falcon™, Sigma-Aldrich, UK) with 100 µl/well. To minimise evaporation and 

maintain low oxygen environment a plastic adhesive seal was positioned over the wells, as 

in previous studies [126]. The excitation filter was set to 485 nm and the emission to 

610±10 nm, the gain was adjusted to 2200. The intensity decay profiles were created using 

the multi-chromatics and set with an integration period of 10 µs, which was implemented 

every 10 µs over the time range 0-60 µs. 

2.3.2.2 Data analysis 

Replicate measurements were averaged and displayed as the centre point for each 

gate measurement in the time decay. The control sample (deionized water) was also 

averaged and subtracted from each ruthenium decay interval, to remove background noise. 

The form of time-gate analysis is dependent on the type of gating applied. The simplest 

method for mono-exponential decays uses two evenly sized gates as shown in Figure 26 

and performs Eq. 11 and Eq. 12 below to derive the lifetime and amplitude [19], assuming 

no noise, 
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Figure 26 – Lifetime decay analysis using time-gating with equally spaced separate gates. Abbreviations: I is 

intensity, D0 and D1 are gates 1 and 2, ∆∆∆∆t is the gate width. Adapted from Ballew et al. [19]. 
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where, ∆t is the gate width, D0 and D1 are the measured intensities of the 1st and 2nd 

gates, τ is the lifetime and A is the amplitude. This same method can be used for multiple 

gates of even widths although to calculate D0 and D1 the intervals must be combined by 

using Eq. 13 and Eq. 14, 
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where, N is the number of intervals and dj is the interval number [19]. For the 

fluorimeter measurements only the first six gates were used for calculating the lifetime and 

amplitude. 

2.3.2.3 Results 

Figure 27 shows a semi-logarithmic intensity decay with time for a time gate system 

for [Ru(bipy)3]
2+, [Ru(dpp)3]

2+ and [Ru(phen)3]
2+ at atmosphere (Atm) and lower oxygen 

(Na2SO3) in aqueous solution; at ambient temperature. The lifetimes were calculated from 

Figure 27 by combining Eq. 13 and Eq. 14 with equations Eq. 11. The measured values for 

[Ru(bipy)3]
2+, [Ru(dpp)3]

2+ and [Ru(phen)3]
2+  in Na2SO3 were 6477 ns, 6540 ns, and 6507 

ns, while in Atm it was 6429 ns, 6571 ns, and 6468 ns, respectively, as shown in Figure 27. 
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All the lifetimes are very similar at atmospheric and low oxygen conditions with the largest 

difference being 142 ns. 

The broken lines joining the data points signify the non-continuous measurement of 

data. The points on the graph describe the centre of the gating block, the bar represents the 

size of the gate (10 µs) and the decays abruptly end after 70 µs. An initial flat period is 

visible for all the dyes spanning the first 20 µs of the decay. The intensities are higher for 

[Ru(bipy)3]
2+ and [Ru(phen)3]

2+ in Na2SO3 than in atmosphere, but the intensities for 

[Ru(dpp)3]
2+ are the reverse and 6 times lower than for the other dyes. The last data point is 

missing for each lower intensity decay measurement of each dye due to the point being 

equal to zero. A mono-exponential decay should appear linear on a semi-log plot, but as 

the decay evolves past the plateau the line diverges from linearity at the same points in 

time. The measured Na2SO3 and deionised solution was the same as the blank samples 

indicating that the addition of Na2SO3 did not produce any fluorescent components (data 

not shown). 
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Figure 27 – Semi-logarithmic decays of intensity during time for ruthenium dyes (a) [Ru(bipy)3]
2+ τ = 6477 

ns and 6429 ns, (b) [Ru(dpp)3]
2+ τ = 6540 ns and 6571 ns, (c) [Ru(phen)3]

2+ τ = 6507 ns and 6468 ns, in 

solutions with Na2SO3 and in atmosphere, respectively, on a fluorimeter with time-gating. 
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2.3.2.4 Discussion 

The fluorimeter captures fluorescence after illuminating each well with a liquid 

light guide (optical fibres) and provides global measurements with no spatial resolution. 

The restriction of excitation filter meant that maximum excitations were not utilised, 

minimising efficient signal to noise. The fluorimeter used in these experiments had the 

facility to produce time-resolved measurements, but the main drawback was the in-built 

safety mechanism used to protect the PMT. It worked by blocking the excitation light 

reaching the PMT for the first 10 µs, producing a plateau effect at the start of the decay as 

seen in Figure 27.  

The fluorimeter was unable to record the initial section of the decay and therefore 

determining if any secondary short lifetime components were present or whether sample 

contamination had interfered with the results was not possible. It can be estimated that 

96.8% of an exponential decay would have completed after 5τ [19], i.e. if lifetime (τ is 1/e 

of maxium at 37%) was 1000 ns the decay would have virtually completed in 5 µs. 

However, the earliest time point recorded on the fluorimeter was 10 µs. Hence the results, 

in Figure 27, where the decay continues and abruptly stops at 70 µs, can not be associated 

with any ruthenium dye. These apparent decays are more likely associated the tail end 

excitation flash of the Xenon lamp or from capacitor discharging. The restriction in this 

technique is highlighted by the lack of response between changes in oxygen and dye type, 

depicted by the minimum lifetimes of >6 µs.  

As the decays complete a divergence from linearity was seen at the same point in 

all graphs indicating the presence of systematic error. Each gate was separately excited so 

that the intensities measured are from different excitation flashes. If the excitation power 

varies during the excitation sequence, a different intensity will be produced. If there are two 

gates and two passes of excitation then efficiency of the method is halved [284]. This effect 

was minimised by averaging multiple excitations, however at the same time it induces 

photbleaching of the fluorophore.  

The single advantage of the system was the possibility of acquiring data from 

multiple samples during one acquisition. A more appropriate system to test would have 

been the PHERAstar (BMG LABTECH GmbH) microplate reader, which is designed to 

record and display fluorescence decays, however this is still only capable of global 

measurements. Recently fluorimeters have been developed that are now capable of 

recording real-time lifetimes and monolayer cell images, but they still lack the capability of 

3D investigation into tissue or constructs. 
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2.3.3 Time-Resolved Luminescence System 

A high energy Nd:YAG solid state laser (Surelite™ I, Continuum®, USA)  was 

pumped by a optical parameteric oscillator (OPO) (Panther®, Continuum®, USA) creating 

a pulse repetition rate of 10 Hz and excitation wavelength range of 410-700 nm. Emission 

was detected with a PMT (S-20, Hamamatsu Photonics, Japan) that gave a flat response 

between 400-750 nm. A spectrometer (Triax 550, Jobin Yvon HORIBA, France & USA) 

was centred around 550 nm using 1200 grooves/mm grating, to detect the signal and 

display it on a 500 MHz oscilloscope (Waverunner-2, LT372, LeCroy, USA) in real-time. 

The detected signal was associated to the photon intensity and recorded as a voltage. The 

voltage signal was triggered when the photocurrent rise time reached a preset threshold, 

over time building a decay that can be saved and analysed.  

2.3.3.1 Methods 

Dye stock solutions, with and without Na2SO3, were prepared as described in 

section 2.3.1.1 and 2 ml of each pipetted into individual cuvettes and sealed with PTFE 

caps. Ambient samples were equilibrated in atmosphere. Cuvettes were placed on a raised 

platform, as shown in Figure 28, and the polished windows were aligned, with excitation 

light entering perpendicular to the window face and emission exiting the adjoining face to 

hit the detector, as shown in Figure 29. The excitation of the laser was set to 468 nm and a 

high pass emission filter at 570 nm for [Ru(phen)3]
2+ and 590 nm for [Ru(dpp)3]

2+ and 

[Ru(bipy)3]
2+, respectively, placed in front of the detector to block excitation laser light. 

 

Figure 28 – Sealed PTFE cuvette with ruthenium(II) complex diluted in deionised H2O. Left: Laser 

excitation at 468 nm and fluorescent orange emission displayed as line, Right: Zoomed in of emission. 
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Figure 29 – Schematic diagram show excitation and emission path of light beam. Excitation exits from laser 

hit optical window of curvette and reflects the emission light at 45° to the opposing window exiting at 
right-angles from the following window. The emission hits the filter high pass filter to exclude any 

excitation light and enters the detector. 

Measurements were recorded on the oscilloscope as a function of time triggered by 

the optical parametric oscillator, with 256 decays averaged per lifetime profile. Lifetimes 

and backgrounds were measured with different time bases depending on the length of the 

decays varying between 0.2-2 ns and slits were set to 1000 µm.  

2.3.3.2 Data analysis 

Measurements were repeated with different time bases, 1, 0.5 and 0.2 ns depending 

on the length of decay. The background noise was measured with the same time bases. 

Files were imported into Origin statistical software. Background noise was subtracted from 

decays with the appropriate time base. Intensity versus time was plotted on a semi-log scale 

and lifetimes was determined using least square fit analysis with Eq. 15, 

Eq. 15     ( )τ
tAyy −+= exp0  

where, A is the amplitude, t is the time point, y0 is the offset and τ is the lifetime. 

The model was fitted after the initial peak and before the increase of noise at the end of the 

decay, as shown in Figure 30. 
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Figure 30 – Intensity decay with time of [Ru(bipy)3]
2+ in water. The models are fitted between the blue 

dashed lines displayed on the graph. 

2.3.3.3 Results 

The intensity decay over time using pulse sampling for [Ru(bipy)3]
2+, [Ru(dpp)3]

2+ 

and [Ru(phen)3]
2+ at atmospheric (Atm) and in Na2SO3 solution, are shown in Figure 31. 

The lifetimes measured for [Ru(bipy)3]
2+, [Ru(dpp)3]

2+ and [Ru(phen)3]
2+ in Na2SO3 were 

554 ns, 2573 ns, and 871 ns, while in atmosphere they were 380 ns, 767 ns, and 448 ns, 

respectively. The mono-exponential model fitted to the decay showed an adjusted R2>0.99 

for all decays. The decays shows slight sinusoidal effects in the logarithmic plot, especially 

for [Ru(phen)3]
2+ in Figure 31c. The longest decay completes by 10 µs for [Ru(dpp)3]2+ 

Na2SO3, 2.5 times longer than [Ru(dpp)3]
2+ in atmospheric oxygen. The peak intensity for 

both decays in [Ru(bipy)3]
2+ and [Ru(phen)3]

2+ experiments are similar at around 0.1, but 

for both [Ru(dpp)3]
2+ samples, the peak intensities appear 3 time lower. The lifetimes in the 

presence of Na2SO3 have substantially longer lifetimes than in atmosphere indicating that 

oxygen is quenching the fluorescence as expected for these dyes. The instrument response 

function of the spectrometer was measured and gave a pulse width of 10 ns at FWHM this 

defines the limits of the time resolution in analogue systems [27]. 
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Figure 31 – Semi-logarithmic decays of intensity during time for (a) [Ru(bipy)3]
2+ τ = 554 ns and 380 ns, (b) 

[Ru(dpp)3]
2+ τ = 2573 ns and 767 ns and (c) [Ru(phen)3]

2+ τ = 871 ns and 448 ns, displayed in a solution of 

Na2SO3 and at atmosphere, respectively, using a time-resolved luminescence system pulsed sampling at 

room temperature. 
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2.3.3.4 Discussion 

It took <30 seconds to acquire a full lifetime decay. The lifetimes for the Na2SO3 

samples were longer than in atmosphere. This showed that the lack of oxygen reduced the 

level of quenching hence a longer lifetime was apparent. The measured IRF of the 

spectrometer showed a FWHM of 10 ns. This introduces a possible error of ±10 ns to the 

accuracy of the photon timing [27] affecting validity and error of the derived lifetime. 

In Figure 31c the decay appears to have a slight sinusoidal variation. Observing the 

weighted residuals of Figure 31 in Figure 32 it clearly shows that these sinusoidal variations 

are displayed in (a) [Ru(bipy)3]
2+ and (c) [Ru(phen)3]

2+. The effect could be associated to the 

charging and discharging of the RC circuit originating in the detection system, which 

includes the detector, cabling, and coupling impendence of the oscilloscope. The effect of 

charging and discharging during acquisition induces the shape of photocurrent pulse to be 

‘normal’ during charging and ‘broader’ during discharge, increasing the measured intensity 

and pulse width during discharge [122]. These effects from the RC circuit can be minimised 

by the number of time points collected (in these experiments exceeds 10,000 during 4 µs) 

reducing effects arising from photocurrent broadening during detection and improves the 

time resolution. As a form of photon discrimination over noise using the ‘leading edge’ as 

the actual timing of each photon which is affected by amplitude jitter. 

 

 

Figure 32 – Weighted residual of fit and experimental data for (a) [Ru(bipy)3]
2+, (b) [Ru(dpp)3]

2+ and (c) 
[Ru(phen)3]

2+ in Na2SO3 (black lines) and at atmosphere (red lines). 
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The low peak intensity for [Ru(dpp)3]
2+ is either due to concentration or laser 

power. The concentrations for all the dyes are the same, but in this case the measurement 

had to be repeated due to other exponential components appearing. Only ruthenium and 

water are present therefore the other components could have arisen from two populations, 

dissolved and undissolved ruthenium. As no extra components are seen in these decays, it 

can be assumed that the concentration was correct therefore it must derive from the laser. 

The laser power was maintained at the same level for each experiment, but when 

examining the second set of measurements the peak power had large variations present for 

consecutive pulses. The laser emission was dependent on previous user settings, the warm 

up period for the laser and the re-positioning of the cuvette. It highlighted the unreliability 

of the laser system and the effects on acquired lifetime magnitudes and hence the method. 

 The luminescence system acquired the full lifetime decay without restriction and 

provided an instant display of the decay in real-time with the flexibility of a tuneable laser. 

Unfortunately the disadvantages associated with this technique for future application are 

marked. The photoluminescence system was very temperamental, requiring realignment 

for the start of each days experiment. The system was unable to resolve positional 

excitation through the cuvette, which would be inappropriate for determining gradient 

measurements. Image acquisition was not possible because spatial information was not 

acquired due to the type of optical setup. Only solid powders and liquid measurements 

were possible due to the long path length between sample and detector. If a 3D cell system 

were used the diffraction and absorption would diffuse the exiting emission so much that it 

would be difficult to distinguish the low signal over the background noise. The use of 

‘leading edge’ discrimination for time resolved measurements affected the peak height and 

width of the detected photon caused by the RC circuit. This would affect the overall 

registration of the photon arrival time and therefore the precision and accuracy of the 

derived lifetime. 

2.3.4 Single-Photon Confocal LSM 

A pulsed diode laser with variable repetition rate (PLP-10 470, Hamamatsu 

Photonics, Japan) provided single photon excitation at 467 nm with a 90 ps pulse duration, 

and pulse repetition between 100 MHz-1 Hz. The laser was connected to an inverted 

scanning confocal microscope (SP2 DM IRE2, Leica Microsystems Ltd., UK). The emitted 

photons were detected and counted using a time-correlated single photon counting 

(TCSPC) card (SPC830, Becker & Hickl, Gmbh) and cooled photomultiplier detector 

(PMC100-01, Becker & Hickl, Gmbh). The lifetime decays were displayed on a 3 GHz, 

Pentium IV, 1GB RAM computer.  
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2.3.4.1 Methods 

Each dye solution was prepared with and without Na2SO3 as previously described 

in section 2.3.1.1. Slide encapsulation was used to minimise effects from evaporation. For 

each sample 50 µl of solution was pipetted into single cavity (15 mm dia.) microscope slides 

(76 x 26 mm, MNK-140-010A, Fisher Scientific, UK), as shown schematically in Figure 

33. The cavity was enclosed by sliding over a rectangular cover slip (24 x 40 mm, thickness 

170 µm, 631-1333, VWR, UK), whilst ensuring no air bubbles were present. Silicone 

adhesive was applied and cured for 1.5 h to seal the edge of the coverslip creating a liquid 

tight barrier. Slides were mounted and visualised using a Leica x63 (1.4 NA) oil immersion 

objective lens.  

Experimental setup involved 467 nm excitation and used a pulse picked repetition 

rate at 500 kHz. The repetition rate was confirmed by the photon detector and 

synchronised (SNYC) count in the FLIM software. Optimisation of TCSPC acquisition 

was conducted through a trial and error procedure. FLIM acquisition times were 300 sec 

and used 256 time channels on the analogue to digital converter (ADC). 

 

Figure 33 – Sample set-up for confocal microscope, Left: Microscope slide with cavity holding ruthenium 

dye sealed with a cover slip and silicone adhesive to create slide encapsulation. Right: Orientation of the 
encapsulated slide and microscope objective for measuring photon decay with time. 

2.3.4.2 Data analysis 

Due to the low noise level attributed to this method no extra manipulation of the 

data was necessary. Fitting the model to determine lifetime used the same software and 

equation as for luminescence system in section 2.3.3.2. 

2.3.4.3 Results 

The measured semi-logarithmic decays using TCSPC after excitation of 

[Ru(bipy)3]
2+ , [Ru(dpp)3]

2+ and [Ru(phen)3]
2+ in aqueous solution are shown in Figure 34. 

The resulting measured lifetimes for [Ru(bipy)3]
2+, [Ru(dpp)3]

2+, and [Ru(phen)3]
2+ in 
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Na2SO3 were 539 ns, 363 ns, and 249 ns, while in atm they were 395 ns, 1064 ns, and 440 

ns, respectively. The TCSPC time range was restricted to 2 µs therefore the full decay was 

not recorded or visible. All decay profiles exhibited anomalise at the start, before the 

excitation, and at end of the decay. All the decays appear noisy indicated by the low level 

of counts collected apart from [Ru(phen)3]
2+. For [Ru(bipy)3]

2+ in Atm and Na2SO3, and 

[Ru(phen)3]
2+ in Atm, the adjusted R2 fits of mono-exponential decays were >0.99, but in 

Figure 34c [Ru(phen)3]
2+ in Na2SO3 shows a non-linearity on a log-scale at the start of the 

decay. This indicates that another component is present and is confirmed by the low 

lifetime and the poor fit of a mono-exponential model with an adjusted R2 = 0.97, where as 

a bi-exponential model produces an adjusted R2 = 0.99. The decay response for 

[Ru(dpp)3]
2+ appears almost flat with very little sign of any exponential decay present. The 

[Ru(dpp)3]
2+ Na2SO3 sample has a lifetime almost three times shorter than in atmosphere, 

while both [Ru(dpp)3]
2+ samples have very low count levels, at least 8 times less photons in 

the peak count than the other two dyes.  
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Figure 34 – Semi-logarithmic decay of intensity during time for (a) [Ru(bipy)3]
2+ τ = 539 ns and 395 ns, (b) 

[Ru(dpp)3]
2+ τ = 363 ns and 1064 ns and (c) [Ru(phen)3]

2+ τ = 249 ns and 440 ns, in solution with Na2SO3 and 

at atmosphere using a single-photon Confocal LSM and TCSPC system at ambient temperature. 
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2.3.4.4 Discussion 

The decays all appear noisy except for [Ru(phen)3]
2+ this indicates a low level of 

collected counts compared with background for the other decays. Every dye in Figure 34 

shows a anomalies at the start and end of the decay. As all three dyes exhibited this it must 

derive from a systematic error in the system; false triggering of the SYNC and incorrect 

offset parameters of the TAC would lead to the effects, facilitating an increased background 

noise. The flat response from [Ru(dpp)3]
2+ can only derive from two issues, low 

concentration or too short a collection time. The collection time was the same for all dyes 

therefore the issue must arise from the concentration. As the prepared concentrations are 

the same for each dye and the experiment environments are equal it rules out evaporation, 

leaving dissociation. This suggests that the dye is not dissolving or precipitates out of 

solution when competing with another substance that has a better affinity in water, such as 

Na2SO3. 

The single-photon confocal LSM lacked optimisation for the FLIM set-up files this 

led to remnants of previous lifetime profiles accumulating at the beginning and ends of the 

decays. The system was only able to excite at 467 nm, which was adequate for this dye, but 

would be restrictive if using other fluorophores or for looking at other metabolites. The 

confocal facilitates the application of cellular samples providing high spatial resolution in 

the x-y axis, and creating sectioning in the z-axis as well as spatial registration. The use of 

single photon confocal restricts the excitation to <700 nm where the ‘background’ 

absorption limits the penetration depth due to tissue absorption [302] and can induce 

photo-damage. 

2.3.5 Conclusion from section 2.3 

Three techniques were tested to determine the time-domain suitability of obtaining 

lifetime decays for ruthenium(II) complexes. Assessment was based on technique 

utilisation, lifetime collection, and potential for investigating 3D cellular constructs.  

The current fluorimeter was not capable of accurately acquiring lifetime, but other 

systems exist where it would be possible. Unfortunately these systems still rely on wide-

field illumination, restricting the level of tissue/construct penetration and spatial resolution 

that is required. As summaried in Table 10 the fluorimeter in combination with time-gating 

was a suitable technique for multiple global intensity measurements during one acquisition, 

but not for multi- and bi-exponential decays, short lifetimes or spatial measurements. 

The advantage of the luminescence system is the tunability in excitation and the 

flexibility of adjusting any part of the system. At the same time to achieve the required 
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spatial resolution a total system overhaul would be required. The pulse sampling was prone 

to interference from laser power and RC circuit effects in the cabling influencing the 

lifetime magnitude and decay, respectively. The time-resolved luminescence systems is 

excellent for acquiring long lifetime decays in liquid or solid samples, but is an 

inappropriate method for tissue or cellular measurements and is susceptible to timing errors 

induced by variations in laser power, RC circuit effects and IRF. 

The advantage of using the TCSPC was that these timing problems were removed. 

Confocal setup also provides the high spatial resolution required in the x-y axis and 

sectioning in the z-axis. The only drawback was the laser as it could only excite at 467 nm, 

restricting investigation into other metabolites and increases the probability of photo-

damage through the sample. This restricts the imaging/exposure time to the sample and 

reduces the depth of penetration. The confocal offers high spatial resolution and the ability 

for investigating cellular samples. If optimised the TCSPC has the potential to provide 

accurate and sensitive lifetime measurements for ruthenium(II) complexes. This system 

requires adaptation to provide variable wavelength excitation and a deeper penetration into 

tissue/construct. 

Table 10 – Summary of the advantages and disadvantage of the three time resolved time-domain systems 

investigated. 

 

If an optimised setup file was used the only variation to this system would be a 

multi-photon laser to increase penetration depth, while minimising photo-damage to the 

surrounding area and gain the flexibility of a tunable laser. 

 

 

 

TECHNIQUES ADVANTAGES DISADVANTAGES 

Fluorimeter 
- Multiple samples measured 

simultaneously 

- Initial decay profile not recorded 
- Restricted excitation and emission wavelength 
- Only provided global measurements/no spatial 

information 

Time-resolved 
luminescence 

system 

- Flexibility of a tuneable laser 
- Provides full decay profiles 

- Time-gate affected by laser power variation and 
RC circuit 

- Unable to use on tissue or cellular samples 

Single-Photon 
Confocal LSM 

- Used on tissue or cellular 
samples 

- High spatial resolution 

- Restricted laser excitation 
- Depth measurements not possible 

- Collection of entire lifetime decay not possible 
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2.4 MP Confocal TCSPC time-resolved system 

2.4.1 Introduction 

The addition of a multi-photon laser to a confocal microscope is not a new concept, 

neither is its combination with TCSPC lifetime detection. This is already a well established 

technique that is at the forefront of lifetime technology for detection of autofluorescent 

components and distinction between wavelengths with multiple detectors [158, 168]. It has 

been used for the detection of rapidly decaying lifetimes, but due to the repetition rate of 

approximately 80 MHz the available time ranges are restricted to a maximum of 12.5 ns or 

less. With the addition of a pulse picker the tunability of wavelength is maintained, but 

with the added gain of variable repetition rates. This form of setup is less often used and 

tends to be incorporated with time-gated systems [284] because of its ability to rapidly 

collect fluorescent emission.  

2.4.2 Equipment 

A multi-photon 80 MHz tuneable laser (Mai Tai-Sapphire, Spectra Physics, UK) 

provided excitation (ex 700 - 990 nm, pulse width 50 - 150 fs) to an inverted scanning 

confocal microscope (SP2 DM IRE2, Leica Microsystems Ltd., UK). The pulse picker 

(Model 3980, Newport Spectra-Physics, UK) was capable of reducing the pulse repetition 

rate from 8 MHz down to single shot, controlled via a pulse selector (Model 3986, Newport 

Spectra-Physics, UK). The excitation pulse triggered a photon counter (PHD-400N, 

Becker&Hickl GmbH, Germany) used to determine the start of a decay, while emitted 

photons were captured using a time-correlated single photon counting (TCSPC) card 

(SP830, Beckle&Hickl GmbH, Germany) and PMT detector (PMH-100, Becker&Hickl 

GmbH, Germany). An optimised FLIM set-up file was provided by Leica for photon 

detection at a repetition rate of 500 kHz. 

2.4.2.1 Optical light path 

The excitation light exits the Mai-Tai laser by means of a periscope mirror. To 

utilise the adjustable repetition rate (8 MHz to single shot) the light is directed through the 

pulse picker where the pulse selector is used to adjust the repetition rate before it exits. For 

the 80 MHz repetition rate an optional light path is used, the flip-mirror is engaged prior to 

the pulse picker and diverted around it using two further mirrors perpendicular to each 

other. A second flip-mirror acts to realign the laser beam to continue along the original 

light path.  
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A beam splitter reflects a small percentage of the beam to a photon counter to 

synchronise the TCSPC module, while the rest continues to the electro-optical modulator 

(EOM), remotely controlled via the Leica software. Upon exiting the EOM the light 

continues to another periscope mirror adjusting the height of the beam to reach an opening 

on top of the SP2 Leica system. The beam travels into the confocal eventually reaching the 

objective and is focused at the sample. The return emission is detected in a PMT via the 

objective where the photon emission is converted to counts by the TCSPC module. 

 

Figure 35 – Schematic representation of optical light path of FLIM system layout from laser to confocal and 
TCSPC. Abbreviations: PM – periscope mirror, FM – Flip mirror, M – Mirror, BS – Beam splitter, PC – 

Photon counter, PH – Pinhole, EOM – electro-optical modulator, TCSPC – Time correlate single photon 
counting module, EC – Environmental chamber, HP – Heating plate. 

2.4.3 Methods 

The sample preparation for ambient and low oxygen was carried out as in section 

2.3.1.1. The laser excitation and pulse picked repetition rate was set to 880 nm and 500 

kHz, respectively. The pinhole was fully open (600 µm) and the beam expander was set to 

“1” removing the lens and over filling the back objective plane to provide maximum 

illumination for sample excitation and detection. An SP700 filter blocked laser light 

reaching the detector at wavelengths >700 nm. The Electrical Optical Modulator (EOM) 

controlled the laser power and the gain was set to 65% with an offset of 47%. Photons were 
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collected until the maximum dynamic range was reached (65535/time channel) or 100 sec 

collection time had elapsed.  

2.4.4 Results 

Figure 36 shows the mono-exponential photon decay against time for [Ru(bipy)3]
2+, 

[Ru(dpp)3]
2+ and [Ru(phen)3]

2+ at ambient temperature, in atmosphere (Atm) and in 

Na2SO3. The lifetimes measured for [Ru(bipy)3]
2+, [Ru(dpp)3]

2+ and [Ru(phen)3]
2+  in 

Na2SO3 were 556 ns, 150 ns and 806 ns, while in Atm they were 360 ns, 890 ns and 656 ns 

respectively. All the dyes exhibit a rapid decline of counts at the end of the time period. 

The decay for [Ru(bipy)3]
2+ and [Ru(phen)3]

2+ in Atm solution attain the maximum 

dynamic range before the set collection times. In the Na2SO3 samples maximum dynamic 

range had not been fulfilled before the collection time had elapsed and this gave lower 

photon peak counts. All dyes show a mono-exponential decay, except for [Ru(dpp)3]
2+ in 

Na2SO3 where the decay appears very noisy.  
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Figure 36 – Semi-logarithmic decay of intensity during time for (a) [Ru(bipy)3]
2+ τ = 556 ns and 360 ns, (b) 

[Ru(dpp)3]
2+ τ = 150 ns and 890 ns and (c) [Ru(phen)3]

2+ τ = 806 ns and 656 ns, in solution with Na2SO3 and 
at atmosphere using a two-photon Confocal LSM at ambient temperatures. 
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2.4.5 Discussion 

The single photon confocal TCSPC has been adapted by changing the laser and 

incorporating a pulse picker. This dealt with the issue of flexibility for excitation of other 

metabolites at different wavelengths, increased the potential penetration depth, while 

reducing the effects of photo-damage in the out of focus regions. The two photon confocal 

LSM uses a tunable IR laser (700-900 nm) that can penetrate tissue; as tissue is optically 

transparent above 700 nm [158]. The incorporation of an optimised FLIM setup file has 

vastly improved the acquired data, reduced artificial pulsing and produced less noisy 

decays, but reoccurring problems still arose for [Ru(dpp)3]
2+ Na2SO3 samples as seen in all 

previous experiments.  

There are great similarities between measured and published data as seen in Table 

11, but in some cases it is lacking and the greyed out boxes signify poor data. A direct 

comparison of lifetime decays for [Ru(dpp)3]
2+ in solution is near impossible as others have 

only described it dissolved in an organic solvent [46] or embedded in a matrix [18]. It has 

proven to be difficult to measure in aqueous solution due to its poor solubility and would 

therefore be an inappropriate dye to take further for cellular investigation; it is also 400 

times more expensive that the other ruthenium(II) complexes tested. 

Similar problems were seen for [Ru(phen)3]
2+, where the majority of papers describe 

intensity based measurements and very few showed lifetime results. Liebsch et al. [184] did 

show [Ru(phen)3]
2+ at zero oxygen has a lifetime of 880 ns, which is similar for both 

photoluminescence and two-photon systems. Discrepancies between the published and 

measured results can be attributed to the non-zero oxygen levels used in current 

experiments. 

 [Ru(bipy)3]
2+ was well documented for the detection of oxygen in aqueous 

solution, which was shown by the abundance of measurements reported. The table shows 

that published and measured data for [Ru(bipy)3]
2+ in atmosphere are very similar where 

the variation <35 ns and span of lifetimes is between 360-395 ns. The measurements for 

[Ru(bipy)3]
2++Na2SO3 are near identical for measured data with a difference of <17 ns. 

Generally the Na2SO3 values are lower than the published results, but they are compared 

with zero oxygen measurements and the use of Na2SO3 cannot be relied upon to 

completely remove all oxygen from the sample unless monitored. 

The photoluminescence system used a PTFE sealed cuvette restricting the oxygen 

from entering, but the two-photon system used a silicon sealed slide, which has a high 

permeability to oxygen, but restricts evaporation. This shows the need for an air-tight 
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sealable chamber to be developed for future experiments that can be mounted onto a 

microscope stage. 

Table 11 - Lifetime decays in nanoseconds for three ruthenium (II) complexes in aqueous solution at 

atmosphere and Na2SO3. Values obtained using three different systems and compared to values reported in 
previous studies 

* Refers to measurements made at τ0 i.e. zero oxygen 
□ Samples were measured in phosphate buffer solution 

° Samples measured in ethylene glycol 

⊗ Samples measured in methanol 

⊕ Sample measured at 25°C 

2.4.6 Conclusion from section 2.4 

The adapted system has fulfilled all the required specifications outlined at the 

beginning of the project in Chapter 1 and has shown good correlation with published data 

for [Ru(bipy)3]
2+ in Atm and Na2SO3. Once again the problems previously seen with 

[Ru(dpp)3]
2+ in aqueous solution have arisen leading to the conclusion that it is not an 

appropriate dye for aqueous cellular experiments. This leaves two possible ruthenium(II) 

complexes that have the potential for detecting oxygen in aqueous solution. Both have 

similar atmospheric lifetimes, but at low oxygen [Ru(phen)3]
2+ is longer, which means more 

sensitive to change in oxygen levels. Before a final decision is reached suitability of using 

the dyes with cells should be determined. 

OXYGEN LEVEL 
Atm (ns) Na2SO3 (ns) 

TECHNIQUES 
Ru(bipy) Ru(dpp) Ru(phen) Ru(bipy) Ru(dpp) Ru(phen) 

Luminescence system 380 767 448 554 2573 871 

Single-Photon Confocal LSM 395 1084 440 539 363 249 

Two-Photon Confocal LSM 360 809 656 556 150 806 

Van Houten[300]    580 *⊕   

Morris [212] 393 2300 °  600 * 5300 °  

Castellano [49] 360± 4      

Mulazzani [217]    610 *   

Zhong [324] 381 □   610 *□   

Liebsch [184]      880 * 

Casper [47]    630 *⊕   

Demas [68]    765 *⊗ 5340 *⊗ 313 *⊗ 
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2.5 Cytotoxicity of ruthenium (II) on cells 

2.5.1 Introduction 

As described in Chapter 1 there are a host of ruthenium (II) complexes used in a 

variety of application, for example, inhibition of cancer cell growth by interstrand 

crosslinking to DNA [132] or used in photodynamic therapy (PDT) to non-invasively 

irradiated cells by production of radicals [180]. One of the largest interests in ruthenium(II) 

complexes derives from its ability to inflict cell death by restricting DNA repair/replication 

and the production of radicals from light stimulation. It is therefore important to ascertain 

whether incubation of with cells ruthenium(II) complex will induce cell death or affect 

cellular metabolism. 

It would be expected that as the concentration and exposure times of the dyes 

increase there would be a reduction of cell growth, therefore a viability assay is required to 

assess cytotoxic effects from the dyes. AlamarBlue® (AB) provides a measure of cellular 

metabolic activity by detecting the level of oxidation during respiration. AB has been 

shown to be more sensitive than the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 

bromide) MTT assay and is relatively inexpensive [111]. AB incorporates a colourimetric 

REDOX indicator so that a reduction causes the REDOX indicator to change from blue to 

red. Continued metabolism reduces the environment (changes to red), while inhibition of 

metabolism maintains an oxidised environment (stays blue), but only the reduced form is 

excited and measured [62]. The vehicle of measurement is a multi-well plate system that 

can be loaded onto a fluorimeter allowing rapid assessment of multiple samples 

simultaneously. 

Optimisation of AB was necessary before continuing with further experiments as 

the standard density or incubation period is cell and microwell plate dependent. A 96 well 

plate with nine cell densities ranging from 391-100,000 cells/cm2 were incubated from 0-74 

hours and emission recorded 10 times over a 48 hour period. The data suggested that the 

optimum cell seeding density for chondrocyte cells was 25,000 cells/cm2 during an 

incubation period of 48 hours (data shown in Appendix A). 

2.5.2 Materials and Methods 

2.5.2.1 Chemicals 

The oxygen sensitive dyes used were Tris(2,2′-bipyridyl)ruthenium(II) chloride 

hexahydrate [Ru(bipy)3]
2+ (224758), and tris(1,10-phenanthroline)ruthenium(II) chloride 

[Ru(phen)3]
2+ (343714) (Sigma-Aldrich, UK); 10 mM stock solutions were created with 
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deionised water. The cell culture media used was Dulbecco's Modified Eagle Medium 

(DMEM) (D6429) supplemented with 3.8 g/l HEPES (H0887), 80.6 U/ml penicillin and 

80.6 mg/l streptomycin (P4333), 0.12 g/l L-ascorbic acid (A0278), 1% L-glutamine 

(G7513), and 16% (v/v) fetal bovine serum (FBS) (F7524) (Sigma-Aldrich, UK). Enzyme 

digestion used Pronase 700 units/ml (P8811) and Collagenase 100 unit/ml (C7657) 

purchased from Sigma-Aldrich, UK. The viability assay was AlamarBlue® (DAL1025, 

Invitrogen, UK). 

2.5.2.2 Chondrocyte isolation 

Chondrocyte isolation followed a well established protocol as used in many 

previous studies [54, 130]. Cartilage was dissected from the proximal surface of bovine 

metacarpal-phangel joints of adult steers. Initially joints were cleaned and soaked in 70% 

Industrial Strength Methanol (IMS) for five minutes prior to dissection. Joints were opened 

under sterile conditions and sections of cartilage were removed using a scalpel and 

transferred to media filled 35 mm Petri dishes for each joint. Once all cartilage had been 

removed from the joint the cartilage fragments were finely diced. 

Tissue from each joint (n=3) was sequentially digested, 37ºC, with pronase and 

collagenase enzymes for one and 14 hours, respectively. The digested solutions were sieved 

through a 70 µm nylon cell strainer (BD falcon), washed three times with 

DMEM+16%FBS, pooled together, and resuspended in 30 ml fresh DMEM+16%FBS. 

Once re-suspended in media (DMEM+16% FBS) a haemocytometer was used to 

determine the number of cells. The cells were seeded in four 96 well plates at a density of 

25,000 cells/cm2 and incubated for 48 hours to allow cell attachment. 

2.5.2.3 AlamarBlue™ assay preparation 

The AlamarBlue® reagent was filtered and diluted in media to produce a 10% (v/v) 

solution. As a control a small quantity was removed and autoclaved, providing a fully 

reduced form of AlamarBlue®. The reduced solution was equilibrated at 37°C in a multi-

well plate and transferred to the fluorimeter. The reduced form of alamarBlue® was tested 

with the gain adjustment to ensure the PMT would not saturate during the actual 

experiment and the value was recorded. 

2.5.2.4 Cytotoxicity experiment 

To minimise sample photo-degradation the experiment was conducted without 

lights in the sterile hoods and all pots containing dye and alamarBlue® were wrapped in 

sliver foil.  Six serial dilutions from ruthenium stock solutions were created with media at 
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concentrations between 5 mM and 156.25 µM. After the cells had been incubated for 48h 

the media was replaced with each ruthenium dilution and control. 

Four multiwell plates were prepared representing cells with different exposure times 

with dye for 10min, 20min, 40min, and 24h. To aid temperature stability water was 

pipetted surrounding the periphery of the wells. Plates were immediately transferred to the 

incubator after applying dye to the cells. Once the exposure times had elapsed, dyes and 

control solution were removed, replaced with media and incubation was continued until all 

time points had been completed. At the final time point media was removed from all the 

plates and replaced with the pre-prepared diluted alamarBlue® in DMEM+16%FBS 

solution. A control measurement was recorded for each plate to ensure no anomalies were 

present and all plates were then incubated for a further 48 h and the final measurement was 

recorded to determine levels of reduction. 

2.5.3 Data analysis 

Background measurements were taken from water, averaged and subtracted from 

all values. Excel files were exported to OriginPro scientific software where intensity values 

of replicates were averaged and percentage of cell metabolism calculated using Eq. 16, 

Eq. 16     100×
Ι

Ι
=

UT

T
IG  

 

where, IT is the fluorescence intensity of treated cells (ruthenium dye added), IUT 

fluorescence intensity of untreated cells (negative control), GI is percentage of metabolic 

activity, used as a measure of cellular viability. 

2.5.4 Results 

Figure 37 and Figure 38, display the chondrocytes metabolism with increasing dye 

concentration and exposure. Cells exposed to [Ru(bipy)3]
2+ maintain metabolic activity 

above 80% for all exposure times at concentration <2.5 mM. For [Ru(phen)3]
2+ if exposure 

times are ≤40 min metabolic activity is maintained at 80% for all concentrations <2.5 mM, 

but at longer exposure times metabolic activity drops below 80% at concentrations >1 mM.  
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Figure 37– The effect of concentration and exposure of [Ru(phen)3]
2+ on cell metabolic  activity, data points 

represent mean values with error bars representing standard error (n=3). 

 

Figure 38 – The effect of concentration and exposure of [Ru(bipy)3]
2+ on cell growth. Data points represent 

mean values with error bars representing standard error (n=3). 

2.5.5 Discussion 

Ideally maintaining cellular viability above 90% is the optimal option for cell 

culturing purposes. At low concentration of [Ru(bipy)3]
2+ and [Ru(phen)3]

2+ <2.5 mM and 

exposure times <40 mins cells maintain more than 90% of the metabolic activity of non-
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exposed cells. As ruthenium(II) complexes and Calcien AM are of similar molecular 

weight the time required to diffuse through an agarose construct would be expected to take 

at least 2h before the sample could be tested. Plus the additional time of illumination 

suggests only the 24h exposure time can be considered in order to remove any risk of 

cytotoxicity. Applying this restriction means [Ru(bipy)3]
2+ can be applied in cellular 

measurements up to a concentrations of 2.5 mM. However with [Ru(phen)3]
2+ the onset of 

cytotoxcity is apparent at concentrations as low as 0.5 mM. This was also found by 

Dobrucki [72] who showed that [Ru(phen)3]
2+ did not pass through intact biological 

membranes, or cause measurable photo-damage to plasma membranes at concentrations of 

<0.2mM. In order to maintain flexibility the more suitable option for oxygen sensitive dye 

would be [Ru(bipy)3]
2+. 

Dobrucki [72] also mentioned the effects from phototoxicity where he found that at 

extracellular concentrations of <0.2 mM, and after 120 illuminations using 457 nm light, a 

detectable amount of both complexes accumulated at the plasma membranes. The loss of 

membrane integrity was suggested to occur via a mechanism that may involve the 

generation of singlet oxygen species [72]. However, this was suggested to be dependent on 

dye concentration and the number of illuminations. It highlights that phototoxicity is 

another aspect that requires further investigation once an established experimental protocol 

has been completed. 

2.5.6 Conclusion from section 2.5 

It has been shown that [Ru(bipy)3]
2+ poses the least cytotoxic risk to chondrocytes 

provided exposure times and concentrations are maintained at less that 24 h and 2.5 mM. 

Although the effect of illuminating the dye still requires investigation, it is not possible to 

test this until a full imaging protocol has been determined. 

2.6 Air-tight sample chamber 

During current experiments it has become apparent that a more appropriate 

method for transporting dye solution, restricting evaporation and maintenance of low 

oxygen atmospheres is required for further investigations. These are issues that need to be 

considered when designing a suitable vessel, but restriction to the design derives from the 

intended FLIM system, involving a heated confocal microscope. The specifications are: 

• Coverslip required for contact with objective 

• Temperature must be maintained at 37°C inside chamber  

• Chamber must be sealable and maintain low oxygen environment 
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• Material must be sterilised via autoclave 

• Withstand temperature from 4°C  to >126°C  

• Not degrade, rust or corrode 

• Unreactive to oil, aqueous solutions, salts, proteins and methanol 

 

There are a wide variety of materials available for the body of the chamber at our 

disposal, but the field can be narrow by observing what is already used in the biological 

field.  Traditionally surgical stainless steel uses austenitic 316L due to its high resistance to 

corrosion, ability to endure sterilisation processing and its high strength material [195]. Its 

hardness does require specialist tools to machine, but its resistance to corrosion makes it an 

ideal option for cellular interaction. The other necessary component is the interaction 

between the body of the chamber and the coverslip. This requires a form of seal that 

prevents gas permeability. 

There are a large variety of seals available, but they are dependent on the type of 

pressure, temperature, chemical interaction, and permeability of the intended application. 

One of the lowest gas permeable materials is Butyl based isobutylene-isoprene that are used 

in high pressure and vacuum systems, although they should not be used in conjunction 

with mineral oil [305]. This makes it an inappropriate option due to the use of oil on the 

objective lens. The other option is a fluoroelastomer such as Viton®. This material can 

withstand severe chemical conditions, high temperature range (-30 to 250°C) [305] and is 

routinely used in high vacuum systems by Swagelok. 

The material properties of both body and seal chosen, the design of the chamber 

had to be small enough to locate on a microscope stage inside a heating plate, whilst 

maintaining enough clearance for objective lens to reach the coverslip. The final design is 

shown in Appendix A and the finished product is displayed below in Figure 39; Six 

chambers were manufactured. 

    

Figure 39 – Final manufactured air-tight sample chamber composed of a stainless steel 316L body and 
Viton® ‘o’ring seal. Left: exploded side view of chamber, Right: view of o-ring embedded with in stainless 

steel body. 
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2.7 Summary 

• Single photon excitation spectra for ruthenium(II) complexes showed that all 

complexes displared a maximum excitation peak of 468 nm and emission peak 

of 592 nm, 607 nm and 616 nm for [Ru(phen)3]
2+, [Ru(bipy)3]

2+  and 

[Ru(dpp)3]
2+, respectively. 

• [Ru(bipy)3]
2+ was chosen for continued experiments  while the two excluded 

dyes [Ru(dpp)3]
2+ and [Ru(phen)3]

2+ were shown to be unsuitable for aqueous 

solutions and induced cytotoxic effects at concentrations >1 mM reducing 

viability to <80% at exposures of 24h, respectively. 

• Assesment of the time-resolved time-domain techniques identified an adapted 

two-photon TCSPC confocal could meet the required specification with the 

addition of the pulse picker. 
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Calibration of the 

FLIM system 

3  

3.1 Introduction 

The previous chapter identified the selected oxygen sensitive fluorophore and 

lifetime detection system as [Ru(bipy)3]
2+ and the confocal laser scanning microscope with 

multi-photon laser excitation and time correlated single photon counting (TCSPC) system, 

respectively. The laboratory setup and schematic layout of the equipment is displayed 

below in Figure 40. 

 

Figure 40 – The laboratory equipment setup identifies the layout of the FLIM system displayed (a) 
photographically and (b) schematically. The automated computer (A) control of the confocal and the MP 

laser (B) drives the operation and data acquisition process. The Mai Tai (B) delivers laser light into the 

metal safety enclosure (C) containing the pulse picker and EOM. The adjusted pulsed beam exits the 
enclosure and is directed to the confocal microscope contained within an environmental chamber (D). The 

lifetime setup and data collection is controlled from the TCSPC (E) module located within the computer 
and communicates with the confocal. 

This chapter focuses on the issues pertaining to the combination of a fluorescent 

dye operating at the limits of a relatively rapid detection system. Identifying these complex 

issues that arise from this unique situation will be achieved by providing a fundamental 
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understanding of each component. This knowledge base will highlight areas prone to 

problems and by strategically placing strict controls will resolve and ensure minimum 

variability or reasons for inducing error. The initial stages of this PhD were involved in the 

specification and installation of the FLIM system for use with the selected oxygen sensitive 

fluorophore. This chapter separately investigates the components of this FLIM system: the 

multiphoton laser, the confocal microscope and the TCSPC module. The experimental 

calibration will identify set parameters suitable for creating a protocol for future 

experiments. The standard operating procedure for the alignment and realignment of 

switching the laser repetition rate between 80 MHz and single-shot is described in 

Appendix C. 

3.2 Multi-photon Laser: Two-photon excitation (TPE) 

3.2.1 Introduction 

The theory of two-photon excitation was first described by Maria Goppert-Mayer 

in 1931 [8], she predicted that an atom or molecule could simultaneously absorb or emit 

two photons in a single quantised event [197]. It wasn’t until 30 years later in 1963 that 

Kaiser and Garret [146] obtained the technology and were able to confirm the theory. In 

1990 the invention of two-photon fluorescence microscopy based on the nonlinear 

excitation of fluorophores, led to the development of 3D imaging technology, as described 

by Denk et al. [69]. The development of two-photon microscopy removed many issues 

associated with single-photon excitation (SPE) microscopes. Unlike in SPE, TPE could 

penetrate deeper within the tissue only exciting at the focal point. This technology has been 

considered a revolution for biological imaging due to its ability to: 

• Reduce photo-damage and allow long term monitoring of living specimens [158] 

• Image turbid specimens with sub-micrometer axial resolution of a few hundred 

nanometers [26] 

• Allow high-sensitivity imaging by eliminating the contamination of fluorescent 

signal from excitation light [284] 

• Initiate photochemical reaction within a sub-femtoliter volume inside cells and 

tissues [69] 

SPE excites the specimen throughout the sample, as shown in Figure 41 

(continuous beam path) photo-bleaching occurs on a time-averaged excitation intensity, 

regardless of axial position [69]. The TPE occurs only at the focal point, as shown in Figure 

41 (spot), photo-bleaching is dependent on the time-averaged square of the excitation 



3 •  Calibration of the FLIM system  89 

 

 

intensity. Outside of the focal point the TPE reduces quadratically minimising possible 

photobleaching and providing naturally occurring optical sectioning without the 

requirement for of pinhole [69]. 

 

Figure 41 – Image displaying comparison of TPE (dot) and SPE (cone shape) in a fluorescein sample excited 
at 380 nm and 760 nm for SPE and TPE, respectively [319]. 

The difference between the SP and TP excitation process is diagrammatically 

shown in Figure 42. In single photon excitation the electrons are excited into the higher 

energy state (S2) with a single photon, the electrons undergo an internal conversion through 

vibrational and heat transition, before reaching the lowest high energy state (S1) and 

reducing to ground state (S0) via fluorescence. In two photon excitation the simultaneous 

collision of two photons is required within 10-15-10-16s [171] to create enough energy to force 

an electron into a higher energy state (S2). This is achieved using a femto- or pico-second 

pulsed laser that emit photons at the same wavelength or two lasers of different 

wavelengths combined to produce the same excitation energy [274]. Once the electrons 

attain the higher energy state (S2), the transition process to the ground state (S0) is identical 

to SPE. Multi-photon excitation is essentially the same as TPE except more than two 

photons at less energy are required to reach the higher energy state. The setup used in these 

experiments is designed to measure TP events therefore MP events will not be further 

discussed. 
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Figure 42 – Simplified Jablonski diagram displays the electron excitation pathway for SPE and TPE. Left: 

SPE uses one photon to excite the electron into the higher energy state S2 where internal conversion occurs 
to the lowest high energy state S1 and fluorescence emission occurs. Right: TPE uses two photons with half 

the energy to excite the electron into the higher energy state S2 where internal conversion occurs to the 
lowest high energy state S1 and fluorescence emission occurs. Abbreviations: S0 – ground state, S1 – lowest 

high energy state, S2 – highest high energy state, E - excitation, IC – internal conversion, F – fluorescence. 
Adapted from So et al. [274]. 

TPE is provided by high peak power femto- or pico-second pulses delivered 

through an objective lens [27]. TPE uses near-infrared laser light (700-1100 nm), which 

takes advantage of tissues naturally occurring optical window thus avoiding absorption 

[158]. The major absorbing components of tissue are shown in Figure 43, with regards to 

chondrocytes in agarose only the water absorption needs to be considered in this situation. 

This lack of absorption reduces the possibility of photodamage to the surrounding tissue 

[284], and the likelihood of signal attenuation [26], as shown in Figure 44. This avoids the 

need to compensate with increased laser power for deeper penetration, but the light is 

absorbed at the focal point leading to possible photobleaching or damage. However this is 

minimised with the use of a femto-second laser that reduces the pulse width and exposure 

time at the focal point [158]. 

A large variety of methods exist for the production of femto-second excitation 

sources these experiments used a Mai Tai™ from Newport Spectra-Physics. A more 

comprehensive understanding is outlined in the following section. 
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Figure 43 – Absorbance spectra of water (line), dehaemoglobin (dotted line) oxyheamoglobin (dashed line), 
and melanin (dash-dot line) across wavelength range from 500 to 2000 nm. The highest optical 

transmittance window is shown between 800-1000 nm [10], but generally 700-1100nm is considered the 
optical window as not all tissue has melanin.  

 

Figure 44 – Scanned images in the X-Z plane (above) showing the attenuation signal in the z-axis when 

using of single/one-photon excitation compared to two-photon excitation profile plots in the z-axis. The 
resulting intensities are shown below. Adapted from Piston et al. [240]. 
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3.2.2 Mai Tai™ Sapphire two-photon excitation laser 

The Mai Tai™ laser (Ti:Sapphire, Newport Spectra-Physics, UK) is a self 

contained unit with computer controlled excitation tuning between 710-990 nm. It 

produces a <100 fs pulse width at a repetition rate of 80 MHz. Cryo-cooling is required 

with most MP systems, but instead this system maintains diode temperature at <32°C 

using aqua-cooling [275]. A TP laser is built-up of multiple excitation modules that each 

stimulate the other; all use the same stimulation method.  

The process of excitation consists of a light source, e.g. lamp, electrical power 

supply or another laser, ‘stimulating’ a gain medium made from fluid or solid material. The 

composition of the gain medium determines the emission wavelength and whether it emits 

continuous or pulsed light. Emission from the gain medium is amplified by a resonator 

cavity consisting of one highly and one partially reflecting mirror, as shown in Figure 45 

[198].  

 

Figure 45 – Excitation mechanisms is used to stimulate a gain medium and the emitted fluorescence is 
amplified between two reflective mirrors. Adapted from McConnell [198]. 

The Mai Tai™ laser is composed of an electrical power supply (240 V) that 

stimulates a semi-conductor laser, which emits light at 808 nm. The 808 nm excitation light 

stimulates a neodymium-doped yttrium orthovanadate (Nd:YVO4) gain medium to 

generate the strongest laser transition in the Nd:YVO4. This creates a diode-pumped solid-

state laser [275] with an emission at 1064 nm [234]. Second harmonic generation is then 

created by a non-linear crystal, which doubles the frequency and energy producing 

emission at half the wavelength at 532 nm [234, 236].  

The 532 nm emission is directed to a Ti:sapphire crystal, which absorbs in the green 

spectrum. Ti:sapphire refers to the sapphire (Al2O3) crystal that is doped with titanium ions 

[234]. The length of the cavity determines the time between each generated pulse. Within 

the cavity an AOM generates a periodic loss using regenerative modelocking [275], 

whereby the longitudinal modes constructively and destructively interfere at points in the 

cavity to create an in phase ‘locked’ single circulating pulse [198], as shown by Figure 46.  
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Figure 46 – Schematic demonstrating longitudinal cavity modes locked in place by constructive and 

destructive interference. In the process an ultrafast pulse is created circulating the cavity at the speed of 
light and producing an output pulse via the output coupler. Adapted from Kruger et al. [165] 

The AOM signal must be synchronised to the timing of the pulse period to allow 

the pulse to pass through the AOM with minimal loss. The AOM can be adjusted to ensure 

this synchronisation is maintained via a feedback loop triggered from exiting pulses [275]. 

This mode-locks the pulse train and produces ‘ultrashort’ pulses <100 fs [205, 275].  In the 

Ti:sapphire cavity it takes 12.5 ns therefore producing a repetition rate frequency of 80 

MHz [275]. 

A pulse travelling through any material is susceptible to a frequency dependent 

refraction due to the refractive index of the material [204]. A shorter pulse has a larger 

bandwidth [198] and is therefore composed of many frequencies which would each 

experience a slightly different index of refraction when entering a material [204]. The 

difference in refraction creates a time separation between the frequencies corresponding to 

a velocity difference defined at group velocity dispersion (GVD). If the lower frequencies 

lead entering the material it is considered positively chirped and so travel faster than higher 

frequencies. This changes the temporal shape of the pulse by broadening, if it was 

negatively chirped it would narrow the pulse [275]. 

Due to the non-uniform power distribution density of the beam profile it introduces 

an intensity-dependent refractive index at high intensity. This is caused by the non-linear 

effect of the Ti:sapphire crystal (lasing rod). Higher refractive indexes are induced at the 

centre causing a Kerr lens self-focusing effect, which changes the beam geometry [205]. 
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Pulse broadening in the Mai Tai does not occur from the AOM, but is due to a 

combination of group velocity dispersion (GVD) and nonlinear effect in the Ti:sapphire 

lasing rod [275]. This broadening can reduce the peak power exiting the laser and impact 

the excitation efficiency. An increase in the average power is then required to produce the 

same level of fluorophore excitation [97]. 

These problems are avoided by using negative GVD chirp compensator to 

rebalance the pulse using a two-prism configuration [275], as shown in Figure 47. Located 

between the prisms sequence is a tuning slit for wavelength selection of spectral 

components [275]. The corrected pulse returns back through the Ti:sapphire crystal and 

exits producing a 80 MHz repetition rate, <100 fs pulse width, and tuning range of 710-990 

nm, as shown in Figure 47. 

 

Figure 47 – Block diagram represents the component parts that compose the Mai Tai laser. 240V power 
supply provides energy for the laser diode and produces an 808 m, emission that then excites a Nd:YVO4 

crystal and emits a 1064 m, wavelength that enters a non-linear crystal. [204, 234, 275]. 

3.2.3 Control of laser power and repetition rate 

Exiting the Mai Tai, the laser beam is diverted to the input port of the pulse picker 

(Model 3980, Newport Spectra-Physics, UK), as shown in Figure 40. The beam is focused 

to a narrow waist and a pulse stretcher is used to minimize the peak power to avoid 
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damaging the AOM crystal [275]. A pulse selector (Model 3986, Newport Spectra-Physics, 

UK) adjusts the repetition rate by sending an electrical signal to the AOM. A 10W burst, 

equivalent to 390 MHz RF energy, is generated creating an acoustic wave across the crystal 

inducing bifringence [275]. The frequency of the bursts can be varied from 10 to 8000 

cavity periods this provides a selection of 16 dividing ratios. The acoustic wave interacts 

with the optical wave (laser beam) and diffracts the propagating beam, as shown in Figure 

48. Only the 0 and ±1 order of diffraction are emitted from the pulse picker and the rest are 

blocked with an aperture [275]. A high level of discrimination between selected pulses and 

adjacent pulses [234, 275] is achieved by using the Kerr effect to control the refractive index 

of the crystal material and diffracts the beam by about 3º. The selected frequency exits the 

pulse picker and pass through a beam splitter, which diverts a small percentage of the beam 

to the photon counter, synchronizing the excitation pulse with the TCSPC module, the rest 

continuous to the laser modulator. 

 

Figure 48 – Schematic diagram of laser beam passing through crystal and diffracting due to the applied RF 

pulse producing an acoustic wave. Only the where m=0 and ±1 order does light exits the pulse picker while 
the rest is blocked by an aperture [275]. Abbreviations: v is the velocity of the acoustic wave, c is the speed 

of  light, f is the acoustic frequency, λ is the wavelength of the incident light, m is the order of diffraction. 

Inside the laser modulator (LM 0202 IR KD*P High Power, Linos, Germany) an 

EOM crystal is held. It is powered and controlled by a digital pulse amplifier (LIV20, 

Linos, Germany). The setup uses the Pockel effect to control the refractive index of the 

crystal with the use of an electric field [205]. This effectively rotates the incident beams 

polarisation as a function of the applied external field [204]. It is linearly dependent and 

can modulate the intensity by acting as a voltage-controlled waveplate [236]. Modulation 

of the intensity is achieved via two polarizers before and after the EOM crystal, as shown 

in Figure 49. The first polarizer creates vertical polarised light while the second is 
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positioned with a 90° rotation. This second polarizer will only allow light through at this 

rotation. Varying the applied voltage ‘EOM gain’ allows quick changes of the refractive 

index of the crystal and diffracts the vertically polarised light modulation of the laser beam 

intensity. An offset voltage, ‘EOM offset’, is applied for maximum extinction this shifts the 

intensity curve over the voltage. To go from the minimum to the maximum transmission 

(<90%) [234] the applied voltage must induce a phase change of π. The adjustment of the 

EOM gain and offset are controlled from the Leica software. After exiting the EOM the 

beam enters the Leica SP2 confocal microscope. Information on the confocal will follow in 

the preceding section 3.3, the focus will now turn to TPE of [Ru(bipy)3]
2+. 

 

Figure 49 – Diagram represents the operation of an EOM in controlling the intensity of the laser beam using 

the Pockel effect. Circularly polarised light enter the first polarizer (Pol 1) and is vertically polarised prior 
to entering the electro-optical crystal. The applied voltage adjusts the rotation of light and exits to the 

second polarizer (Pol 2) controlling the intensity [204]. Symbols: U(t) is the applied voltage, φφφφ is the 
polarisation. 

3.2.4 Two-photon excitation of [Ru(bipy)3]
2+ 

The process of TPE was discussed in section 3.2.1. The purpose now is to identify 

the peak TPA of [Ru(bipy)3]
2+, which differs from single or continuous excitation. In SPE 

the fluorophore can be directly excited in the visible spectrum displaying the relationship 

between incident intensity emission and wavelength. The probability of two-photon 

excitation occurring relies on the quadratic dependence of the intensity and the cross-

sectional area of the fluorophore. Prior knowledge of the one photon cross-section does not 

always aid quantitative prediction of the two-photon cross-section [70]. 

It is possible to compare single-photon and two-photon excitation using a simple 

calculation. Assume the emission wavelength (λem) is unrelated and generally shorter than 

the excitation wavelength λex, which provides λex = γλem, where γ is a constant and must be 

<1. As two-photon absorption requires simultaneous absorption of two photons at half the 

energy, the excitation wavelength can be rewritten as λex = 2γλem [70]. Therefore, if the 

single photon (SP) excitation and emission peak of [Ru(bipy)3]
2+ in water is 468 nm and 

608 nm, respectively, it would provide a γ = 0.769 and the estimated TP excitation as 936 
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nm. This method has been shown by Xu and Webb [317] to be a reasonable approximation 

for many dyes, but other researchers have used alternative two photon excitation peaks for 

[Ru(bipy)3]
2+ namely Castellano et al. who used 880 nm [48]. This discrepancy arises due to 

the selection rule for two photon absorption [274]. This relates to TPA transitions only 

occurring at even-parity transitions between ground and excited state, unlike signal photon 

absorption based on opposite-parity transition [193], which is what this equation is based 

on. 

Only a small fraction of photons are absorbed in the two-photon process and the 

response is laser power dependent this makes direct measurement of the cross-section 

difficult [317]. Instead fluorophores with known two-photon cross-sections and 

fluorescence quantum efficiencies are compared, but still require knowledge of the applied 

laser power. The response of TPA cross-sections to the measured incident power allows an 

estimation of the probability for two photons to be absorbed within a single excitation 

pulse. This provides an approximation on the possibility of sample saturation and the 

expected emission rate. The laser power at the sample will be measured to determine the 

influence over the expected TPA. The power measurements will be applied to theoretical 

calculations and will incorporate TPA measurements taken from other researchers. 

3.2.4.1 Laser power at the sample 

The power at the sample was measured using an optical power meter (model 1830-

C, Newport Physics, UK) and a low-power semiconductor photodetector (818-IR/CM, 

Newport Physics, UK), with an additional neutron density filter, which was mounted on 

the microscope stage. The detected power was adjusted from 730-950 nm in steps of 10 nm 

in tandem with the laser excitation wavelength, so as to utilise the bandpass filter 

incorporated into the power meter. The ‘offset’ and ‘gain’ of the EOM was adjusted and 

noted at each set point to maintain maximum delivered laser power. The background light 

in the room was measured with the detector at the sample and subtracted from the 

measured laser power values. 

Once the power measurements were completed the intensities at the corresponding 

wavelengths were measured using the TP confocal microscope. A 40 µl (0.412 mM) sample 

of [Ru(bipy)3]
2+ in deionised water at ambient temperature was deposited on a coverslip 

(no. 1.5, 22x32 mm) (Cat. No. 631-0134, VWR Ltd., UK) and mounted on an x63 (NA 

1.4) oil immersion objective lens (506192, HCX PL APO, Leica Microsystems Ltd., 

GmbH). The maximum intensity was located at 780 nm by traversing through the 

wavelengths and the PMT gain and offset were adjusted to ensure saturation did not occur. 

The mean intensity was measured across 550-670 nm, using the same excitation 
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wavelength in the power measurements at repetition rates of 500 kHz and 8 MHz. The 

Leica parameter settings were, line average 2, frame average 3, 512x512 image format 

(voxel size: 0.46503 µm), beam expander 1, and SP700 filter. 

The mean intensity at a repetition rate of 500 kHz (Figure 50 left) mimics the rise 

and falls of the power with matching peaks at 780 nm and 800 nm. The mean intensity at a 

8 MHz repetition rate also mimics the power at the sample, but to a slightly greater extent 

than at 500 kHz (Figure 50 right). The average power at the sample is 14 times greater 

using the laser repetition rate at 8 MHz than at 500 kHz. This is expected as the pulse rate 

is 16 times faster. Even though the power has increased by a magnitude of 14 the intensity 

has only increased by a magnitude of 6.25. 

     

Figure 50 – Influence of wavelength on intensity and power at the microscope stage with a, A: 500 kHz 

and, B: 8MHz repetition rate. Intensity (black line squares) measurements at incrementing wavelengths of 
[Ru(bipy)3]

2+ at a concentration of 0.412 mM. Power (red line circles) at the sample was measured with a 

meter at incrementing wavelengths. 

Observing the response of [Ru(bipy)3]
2+ to the change in wavelength and laser 

power it is difficult to separate what is the main influencing factor. Using these power 

measurements it is possible to estimate the number of photons absorbed and the expected 

emission rate that can be attained from each repetition based on TPA measured taken by 

other researchers. 

3.2.4.2 Estimated emission rate based on TPA 

Applying the power measurements and the TPA values of Nag et al. [219] and 

Castellano et al. [48]. Denk et al. [69] equation allows an estimate for the number of 

absorbed photons at both repetition rates. The number of absorbed photons is dependent 

on the pulse duration, repetition rate, average incident laser power, and the NA of the 

objective lens [69]. 
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The number of absorbed photon, na, is equivalent to, p0 the average measured 

incident laser power (W), δ the two photon absorption cross-section (cm4 s/photon) (1x10-

50 = 1 GM), τp the pulse duration (100 fs), fp the repetition rate (500 kHz and 8 MHz), NA  

the numerical aperture (NA=1.4), ħ the Planck’s constant (6.626068x10-34 m2 kg/s), c the 

speed of light (299792458 m/s) [204] and λ the excitation wavelength (730-950 nm). Using 

the values obtained for na the photon emission can be estimated from multiplying it by the 

repetition rate; in order to avoid saturation values, na should be <1. 

The TPA spectra for [Ru(bipy)3]
2+ in dicheoromethane (DCM) has been taken from 

Nag et al. [219] who measured the absorption with a femto-second Ti:sapphire laser with a 

reduced repetition rate of 500 Hz. The two photon absorption cross-section of [Ru(bipy)3]
2+ 

in water at 880 nm was measured by Castellano et al. [49]; using a 90 fs pulse duration and 

80 kHz laser repetition rate. Both studies used Rhodamine in methanol as the reference 

sample. Assuming that TPA continues to decrease, an asymmetric double sigmoidal fit was 

used to extrapolate the data and cover the full range of wavelengths. The TPA spectra 

peaks at 785 nm with a cross-section of 211 GM, but the two-photon absorption spectra 

does not overlap with the single-photon spectra. If the assumed response of the TPA was to 

continue decreasing Castellano et al. [49] measurement would produce the same response 

for [Ru(bipy)3]
2+ as Nag et al. [219]. 

 

Figure 51 – Two- and single-photon absorption spectra of [Ru(bipy)3]
2+ in water. TPA data extracted from 

Nag et al. [219] (blue circles) with a fitted line  (black line) extended to 980 nm and Castellano et al. [49] 
(red triangle) data point plotted. SPA data taken using a fluorimeter described in Chapter 2. 
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Using the TPA from Nag et al. [219] and Eq. 17 the probability that [Ru(bipy)3]
2+ 

would simultaneously absorb two photons during a single pulse period at a repetition rate 

of 500 kHz and 8 MHz has been estimated in Figure 52. The response at both repetition 

rates is near identical, only the magnitudes of the number of absorbed and emitted photons 

differ. Three peaks can be identified for all measurements at 780, 800, and 850 nm. At a 

repetition rate of 500 kHz the probability of na is <0.1 this determines limited ability for 

sample saturation. The maximum estimated emission of photons is only 2000 photons/s, 

consisting of 0.4% of the collection rate. At a repetition rate of 8 MHz the probability of na 

occurring is >1 and so at these laser power levels saturation of the fluorophore will be 

induced. This is also apparent in the estimated emission (right y-axis), which is 200 times 

greater than the rate of excitation. 

 

Figure 52 – Left y-axis probability of two photon simultaneously being absorbed by a [Ru(bipy)3]
2+ 

fluorophore in one excitation cycle and right y-axis represents the rate of photon emission for and at 
incrementing wavelengths [69, 70]. A: Laser repetition rate 500 kHz (black squares) B: Laser repetition rate 

8 MHz (red circles). 

3.2.4.3 Discussion 

The absorption rates of the TPE cross-section rely heavily on the spatial and 

temporal coherence of the excitation light [7]. The relationship between the fluorescence 

power and excitation power is essential for TPE cross-section measurements. [70]. 

Therefore to determine the number of absorbed photons, saturation, and emission rate, 

data from Nag et al. [219] was used to provide an accurate measurement of the TPA cross-

section. Applying these values into Eq. 17 provided the probability of two photons being 

absorbed during a single excitation cycle. This showed that using the 8 MHz repetition rate 

at full power would induce saturation of the fluorophore and most probably lead to 

photobleaching [235]. By contrast, using the 500 kHz repetition rate there would be no 

chance of inducing saturation at the maximum power, but the estimation suggests there 

could be a problem with achieving high emission rates at the maximum power. Comparing 

the estimated emission (Figure 52) to the measured intensity (Figure 50) shows very similar 
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responses except the peak intensity is at 780 nm instead of 800 nm in the estimated 

emission.  

The two-photon absorption cross-section can be theoretical determined from prior 

knowledge of single photon transition rates. The two-photon absorption (TPA) cross-

section represents the transition from ground state to excited state and is measured in units 

of cm4s/photon [70]. The simultaneous absorption of two photons requires the ‘first’ 

photon to excite the molecule to a virtual intermediate state and a ‘second’ to excited to the 

final state, as shown in Figure 53.  

 

Figure 53 – Schematic representation of the approximated two photon absorption cross-section using a 

single intermediate state. The first single photon cross-section σij represents photon transition from ground 
state i, to intermediate state j, and the second single photon cross-section σjf represents a photon transition 

from intermediate state j, to excited state f. The complete two photon cross-section represents the 

combination of single photon cross-sections and the intermediate state lifetime not represented in this 
diagram. Adapted from Xu et al.  [70]. 

Although all excitation states contribute to this intermediate state, an 

approximation can improve the reliability of the estimation. The two-photon absorption 

cross-section σ2 can be obtained from [70]: 

Eq. 18     jjfij τσσσ ⋅⋅=2  

where, σij and σjf  represent the one-photon absorption cross-sections and τj is the 

intermediate-state lifetime, which determines the time scale for simultaneous photon 

arrival. It can be estimated as [70]: 

Eq. 19     
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where, ωij is the transition frequency, and ω is the incident photon frequency. 

Applying Eq. 18 and Eq. 19 to [Ru(bipy)3]
2+ provides an approximation of the two-photon 

absorption cross-section. The intermediate and final state energies are assumed to be close 

to that of an electronic transition (ωif) in the visible frequency range. The transition energy 

between ground state and metal-to-ligand charge transfer (excited state) has been 
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determined by Heully et. al [124] as 18,242 cm-1. The TPA was calculated using the incident 

photon frequency of 780 nm and 880 nm, based on peak TPA of Nag et al. [219] and 

Castellano et al. [48], respectively. Converting all values into frequencies requires use of the 

equations below [204]: 

Eq. 20     
λ

ν
c

=   c⋅=νν ~
 

where, ν is the frequency (s-1), λ wavelength (nm), c speed of light (2.9979x1010 

cm/s), and ν~  is the wave number (cm-1) [204]. This provides ωij = 5.47x10
14 s-1, ω780 = 

3.844x1014 s-1 and ω880 = 3.407x10
14 s-1 inserting these values into Eq. 19 establishes τj780 and 

τj880 as 6.153x10
-15 s and 4.85x10-15s, respectively. The single photon absorption, σij and σjf , 

can be related to the extinction coefficient ε (M-1 cm-1) and calculated from Eq. 21 below 

[204]: 
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Eq. 21    ( ) ( )
20106154.2 ×

=∴
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where, NL is Loschmidt’s number (6.0221367x1023, mol-1). Miedlar et al. [206] 

measured the extinction coefficient of [Ru(bipy)3]
2+ in water at an absorption maximum of 

450 nm as 9000 M-1 cm-1. Inputting this value into Eq. 21 provides an approximation of the 

SPA cross-section as 3.44x10-17 cm2, which is in good agreement with Tarnovsky et al.[285] 

who measured the SPA for [Ru(bipy)3]
2+ at an excitation of 400 nm σ400= 2.3x10

-17 cm2. 

Combining the derived values of Eq. 21 and Eq. 19 with Eq. 18 delivers the TPA cross-

section at an excitation wavelength of 780 nm and 880 nm as approximately 7.285x10-48 

cm4s/photon and 5.743x10-48 cm4s/photon, which is within the range of possible values 

quoted by Xu et al. [70] for TPA cross-sections of fluorophores. 

The theoretical principle for estimating TPA as described by Xu [70] over estimated 

the TPA values (728 GM at 780nm, 574 GM at 880 nm) measured by Nag et al. [219] by 

3.6 times (at 780 nm) and Castellano et al. [49] by 2 orders of magnitude (at 880 nm). The 

errors in these calculations relate to the estimated values for the lifetime state (τj) where as 

in reality they tend to be slower [70] i.e. [Ru(bipy)3]
2+ is a trans-metal-ligand where there 

are variable excitation states that can also enter into triplet states [124]. For complex 

molecular excitation states the theoretical estimation of TPA is an inappropriate model to 

use. 

Although the TPA of Nag et al. [219] appears shifted compared with the SPA peak, 

another peak exists further in the UV at approximately 300 nm, which is 2.8 times higher 
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than the peak emission at 468 nm. The left shifted peak in Figure 51 could actually be a 

right shifted peak originating from 300 nm and could explain the difference between the 

TPA data for Nag et al. [219] and the theoretical results.  

3.2.5 Conclusion 

At a repetition rate of 500 kHz and using maximum power it is estimated that the 

probability of two photons being absorbed by [Ru(bipy)3]
2+ during one excitation cycle is 

<0.1. Where as, for an 8 MHz repetition rate huge saturation will occur most probably 

leading to fluorophore photobleaching. The TPA peak of [Ru(bipy)3]
2+ exists at 785 nm and 

does not mimic the SPA spectra. The theoretical model is not able to describe the real 

intermediate lifetime state and is therefore not appropriate for the more complex molecular 

excitation states of [Ru(bipy)3]
2+. An TPE of 780 nm will be used for all subsequent 

excitations of [Ru(bipy)3]
2+ described in this thesis. 

3.3 Confocal Laser Scanning Microscope 

3.3.1 Introduction 

Fluorescent microscopes were invented in 1904 and fluorescently labelled anti-

bodies appeared in 1941, but the realisation that anti-bodies could be raised to normal 

proteins was not understood until the 70s where the merger of the microscope and 

fluorescent labels soon accelerated [13]. By 1984, it was understood that thick samples gave 

rise to a uniform glow from out-of-focus sections and many researchers had resorted to 

studying thin and flat cells in an attempt to resolve fine structure. But the single limitation 

derived from the microscope itself and there was a great demand for improvements to be 

found. 

The confocal microscope was first invented in 1955 by Minsky, but the term 

‘confocal’ was first used by Brakenhoff and others in 1979. It described an illumination 

confined to a diffraction-limited spot in a specimen and the detector confined by an 

aperture optically conjugated to the focused spot [13]. At the plane of focus the 

fluorescence from a point object will fall with distance. This occurs according to the inverse 

fourth-power producing an “optical sectioning” effect where the out-of-focus blur was 

almost completely removed [236]. Brakenhoff et al. [37] could only produce a single point 

on a specimen at any one time and required the entire specimen and support stage to be 

moved in a raster fashion. White et al [309] used a polygon mirror that rotated and a 

refractive telescopic relay to create the raster scanning across a sample, but it suffered with 
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noise generated from beam scanning and triggering and chromatic aberrations, 

respectively. The improvement came with the replacement of the polygon mirror with a 

pair of oscillating galvanometer mirrors and Amos et al. [12] designed an arrangement of 

concave mirrors  to substitute the refractive telescope relay. 

This was the complete confocal point-scanning system, which until now is still 

manufactured by Bio-Rad [12]. Other major companies have since copied or adapted this 

confocal point scanning system, which is now seen in the majority of biological 

laboratories, but the setup and acquisition process are slightly different. This same system 

was later used, by Denk, Strickler and Webb in 1990 [69], to prove the basis for two-photon 

induced fluorescence imaging. The operation and layout of the MP laser combined with 

the confocal will now be discussed. 

3.3.2 The inverted SP2 Leica confocal microscope 

A multi-photon laser only excites at the point of interception with a rapid reduction 

of excitation from the focal point. All photon emission originates from this femto-litre 

excitation volume, removing the need for an aperture to exclude out-of-focus blur. As 

shown in Figure 54 the excitation light (700-990 nm) is diverted via a beam splitter and 

focus with an objective lens to provide point excitation per pixel. The point excitation 

raster scans across the field of view and the returning emission passes back through the 

objective lens and beam splitter (<700nm) to the PMT where the software compiles a 

pixelated image. 

 

Figure 54 – Pictorial representation of excitation and emission pathway for laser light in confocal. The 

pulsed excitation laser is reflected via a beam splitter on to the sample and the emission from the pulse 

returns only passing through the beam splitter at wavelength <700nm. The light then hits the PMT detector 
and is converted to a digital signal displayed on the Leica software. 

The confocal system used in these experiments is an inverted Leica SP2 confocal 

microscope (DM IRE2, Leica Microsystems Ltd., UK). Traditionally a Leica microscope 

sends the excitation beam through an acousto-optical beam-splitter (AOBS), which 

operates similarly to an AOM. This allows up to 8 laser lines to be directed at any one time 
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into the crystal and the propagating acoustic waves diffract the different wavelengths of 

light. It can be used to spectrally combine or separate light at specific wavelengths [236]. In 

an IR set-up, as with two-photon laser excitation, this ABOS is not required as the laser is 

tunable. Instead the light enters an IR beam splitter (SP700) and is diverted to the sample, 

as shown in Figure 55, via a beam expander. Before the beam enters the objective lens it 

passes though a k-scanner module and a scan lens. The objective lens focuses the beam to a 

point on the sample and the k-scanning module raster scans the sample using the 

galvanometer mirrors. The emission is captured back through the objective, scan lens, k-

scanning module, and beam expander. Emission light <700 nm passes through the SP700 

beam splitter and enters the pinhole optics that focuses the beam on to the back of the 

pinhole. In IR mode the pinhole is left fully open (600µm) and the beam passes unrestricted 

to the collimating lens. Some researchers have reduced the size of the pinhole to improve 

resolution on fine detailed structure, but this balance must not come at the cost of reducing 

the intensity [70, 89]. The collimated beam hits the side of a prism and is dissipated into a 

spectral array of wavelengths directed to a PMT. Mirrors either side of the PMT select the 

required wavelength, while reflecting the rest of the wavelengths to PMTs located either 

side, as shown in Figure 55. In the current system only PMT 1 & 2 are installed, but it is 

possible to have up to four PMTs. Based on the low level of emission discussed in section 

3.2.4.3 the pinhole was fully open to maximise light collection and only PMT 1 was 

utilised for [Ru(bipy)3]
2+ experiments. 

 

Figure 55 – Internal optical path of the Leica SP2 confocal from laser to sample and return path to PMT. 

Adapted from Rietdorf and Paweley [236]. Abberviations: EOM – electro-optical modulator, ABOS – 
acousto optical beam splitter, PMT – photomultiplier tube.  

With the pinhole fully open and the addition of realigning the optical beam the 

setup is now susceptible to variation unlike a purely commercialised system. This has 
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effectively rendered the microscope setup similar to an open optical system.  It is therefore 

important to confirm the actual resolution and asses any misalignment of the laser system, 

which can be determined from the point spread function. 

3.3.3 Establishing point spread function (PSF) 

The point spread function (PSF) describes the spatial variation in intensity around 

an infinitely small point source. A Fourier Transform of this point describes the spatial 

frequency of the diffracted light and is termed the Airy pattern; the cross-section is the Airy 

disc [236], as shown in Figure 56 A and B, respectively. The cross-section of the airy disc is 

determind as the diameter of the first dark ring (dariy) that is created when the light waves 

destructively interfere and is defined by: 

Eq. 22    
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where, λ is the wavelength of light, α is the angle of the objective, η is the refractive 

index, and NA is the numerical aperture of the objective lens. The PSF can be influenced 

by the optical properties of the system, the NA of the objective lens and optical aberrations. 

In a two-photon system the PSF is directly related to the localised focal volume of TP 

absorption [73]. The PSF defines the resolution of the microscope which is the minimum 

separation at which two point objects can be separately resolved (Figure 56 C-E) [236]. 

 

Figure 56 – Graphical diagram discriminating two point objects at varying distances and a point object airy 
disc cross-section in an optical system. A: Cross-sectional profile of single point object airy disc, B: Fourier 

transform of single point object spatial frequency displayed as airy disc pattern, C: Point objects are well 

separated, D: Point objects separated by Rayleigh criteria providing 26.4% contrast and E: Point objects 
separated by cut-off distance using Sparrow criteria, no contrast point objects are unresolved. Adapted from 
Pawley et al. [236]. 
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Determining where that point occurs can be some what ambiguous. According to 

the Rayleigh criterion two point objects are resolved when the first minimum of one Airy 

disc is aligned with the central maximum of the second Airy disc [70], as shown in Figure 

56 D. Thus the limit of resolution is given by half the diameter of the first airy ring [236], 

i.e. Eq. 23. 

Eq. 23     
NA

rairy
λ

61.0=  

However in some cases it is still possible to resolve the two point-like objects 

beyond the Rayleigh limit, so the development of the Sparrow criterion was seen as an 

improvement on this [203]. The sparrow criteria states that the dip that exists between two 

point-like objects coming together can no longer be resolved when the combined maxima 

of the two Airy discs start to become one, i.e. there is no contrast between them. The 

Sparrow resolution is defined as a cut-off distance at and below the existence of zero 

contrast, where as, the Rayleigh resolution describes the level of separation between the 

points at which 26.8% contrast is achieved [70]. 

Determining the spatial resolution of a system can be difficult, but an 

approximation can be achieved by oversampling a subresolution spherical bead [70]. This 

provides a conjugation of the bead and point spread function (PSF). Measuring the full 

width half maximum (FWHM) and accounting for the size of the bead will confirm the 

maximum pixel size that should be used to avoid a loss of structural information about the 

specimen [236].  

3.3.3.1 Methodology 

PS-Speck™ Microscope Point Source kit (P7220, Invitrogen, UK) was purchased 

from molecular probes. PS-Speck™ contains 4 different coloured fluorescent microspheres 

each with a diameter of 175±5 nm to enable sub-resolution point source calibration. The 

protocol was based on a combination of standard protocol supplied with kit and the 

instructed protocol outlined by Grauw et al. [70]. The PS-Speck™ kit was stored at 4°C and 

the suspension density of the microspheres was ~3x109 beads/ml. A circle was drawn with 

a permanent pen in the centre of a coverslip (no. 1.5, 22x32 mm) (Cat. No. 631-0134, 

VWR Ltd., UK). 8 µl of green fluorescent microsphere (ex 505/em 515) suspension was 

dispensed on to the reverse of the coverslip in the centre of the circle. The coverslip was 

then left uncovered for 2h to allow the solution to evaporate. Once the sample had dried 

mounting media, supplied with the kit, was applied to the beads. A small circular coverslip 

(φ 22 mm, Cat. No. 631-0159, VWR Ltd., UK) was positioned on the mounting media and 
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the sample was positioned on to an x63 oil immersion objective (NA 1.4) lens (11506192, 

HCX PL APO, Leica Microsystems Ltd., GmbH).  

The pulse picked TP laser was set to a repetition rate of 8 MHz and the excitation 

was set to either 780 nm or 800 nm. The emission was captured over 400-700 nm, scan 

speed 400 Hz, line average 2, frame average 4, and the beam expander was set to 1 to 

overfill the backfocal plane of the objective. The marked circle on the coverslip was located 

using the eye piece then the objective lens was traversed in the z-axis until emission was 

seen from the beads. The pinhole was fully open (600 µm), image format set to 256 x 256, 

and the zoom adjusted reducing the image size to 12 µm x 12 µm. A set of beads were 

selected and the zoom increased to the maximum providing an image size of 7.4 x 7.4 µm. 

A 25 image z-stack was taken starting below and ending above the bead, the resulting voxel 

size was 29 x 29 x 90 nm. The completed image sets are shown below in Figure 57. 

 

Figure 57 – 3D image stack of green fluorescent beads taken on a TP confocal using an x63 (NA 1.4) oil 
immersion objective lens. Average intensity projection in X-Y axis (left) and X-Z axis (right). Scale bar 

represents 1.5 µm. 

3.3.3.2 Data Analysis 

The stacked series of images were analysed in Leica confocal software (Version 

2.61, LCS Lite, Leica Microsystems, GmbH) using the quantification tools: profile and 

stack profile. The axial point spread data was obtained from the stack profile by drawing a 

region of interest (ROI) in the centre a bead and exporting the produced graph. The data 
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points were imported into Origin software (OriginPro 8 SR0, OriginLab Corporation, 

USA) and fitted with a Gaussian model to provide the axial full width at half maximum 

(FWHM) data.  

To obtain the lateral data the profile tool was used to draw two lines in the x- and 

y-axis across the same fluorescent bead. The data points were exported, plotted, and fitted 

in the same manner as for the axial data using the Gaussian model in OriginPro. This 

process was repeated for both excitation rates. The image of the bead is an optical transfer 

function, meaning that it is a combination of the PSF and the object. By subtracting the 

dimensions of the bead from the image the remaining distance can be determined as the 

PSF. 

3.3.3.3 Results 

A zoomed fluorescent bead and its intensity line profile in the x- and y-axis at an 

excitation of 780 and 800 nm is displayed in Figure 58. The shape of the distribution is 

Gaussian and both x-y axis overlap well although the data does appear noisy, but 

symmetrical. The calculated FWHM for the x- and y-axis at an excitation of 780 nm and 

800 nm was 272.9 nm and 253.6 nm, and 195.3 nm and 270.7 nm, respectively; taking into 

account the size of the bead. Figure 59 is an average projection of the z-stacked images in 

the x-z axis of the same fluorescent bead. The line profile through the z-axis has a 

asymmetric Gaussian distribution, noticeable in both image and graph. The determined 

axial FWHM was 836.1 nm and 831 nm for 780 nm and 800 nm, respectively, taking into 

account the bead size. All Gaussian fits produced an adjusted R2 >0.98. The resulting 

FWHM values are give in Table 12. 
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Figure 58 – Normalised intensity image and profile of fluorescent beads, diameter 175 nm, in x- and y-axis 

using excitation of 780 and 800 nm. Top: Oversampled image of fluorescent bead in x-y axis at excitation 
780 nm, Bottom: Line profile of lateral x-axis (black squares) and y-axis (red cicrles) point spread of 

fluorescent bead at excitation wavelength A: 780 nm and B: 800 nm. 

   

Figure 59 – X-Z stacked average intensity and normalised intensity profile of fluorescent beads, diameter 

175 nm, at excitation 780 and 800 nm. Left: 25 stacked images in z-x axis at 780 nm, Right: Stack plot of 
the fluorescent bead through the axial direction at excitation of 780 (black squares) and 800 nm (red circles) 

with Gaussian fits to both represented by the fitted line. 
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3.3.3.4 Discussion 

Experiment evaluation of the PSF was conducted to establish the resolution of the 

optical pulse picked TP confocal system. A comparison was also conducted between two 

excitation wavelengths at 780 and 800 nm to determine possible influences of laser pointing 

stability drift. The axial resolution is three times larger than the lateral resolution, which 

compares well with Brakenhoff et at. who also showed triple increase of the axial 

dimensions compared with lateral [37]. 

The point spread function at FWHM can also be theoretical estimated using 

established equations [35]. The assumptions are that no light is absorbed or scattered, and 

the object is independent of position in the field of view [70]. This allows experimental 

results to be compared with theory, establishing if the resolution has been compromised by 

distortions from misaligned or refractive index mismatch. The equations below describe the 

x-y axis (Eq. 24) and z axis (Eq. 25) resolution for a point object in a two-photon 

microscope [70].  

Eq. 24     
NA

r em
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λ⋅
≈
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,  

Eq. 25     
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r em
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≈  

Where, r is the resolution and the subscript text describes the x, y, z axis, λem is the 

emission wavelength, η is the refractive index of the specimen, and NA is the numerical 

aperture of the objective lens ( αη sin=NA ).  

The table shows the experimental FWHM Gaussian fits for an averaged x-y axis 

and z-axis from Figure 58 and Figure 59 with the bead sized subtracted to provide the 

experimental PSF. The theoretical calculations use Eq. 24 and Eq. 25 to calculate the 

lateral and axial axis, respectively. The theoretical computations were based on the 

emission wavelength of the green fluorescent beads as λem = 515 nm, a NA = 1.4 and η is 

the refractive index of the sample which is assumed to be 1.333 (water at 20ºC). 

Table 12 – Comparison of experimental and theoretical PSF in the lateral and axial directions at 780 and 

800 nm excitation. 

 Lateral (nm) Axial (nm) 

Experimental x y average z-axis 

780 nm 272.9 253.6 263.3±9.7 (3%) 836.1 

800 nm 195.3 270.7 233±37.7 (16%) 831 

Theoretical (nm) 257.5 805.58 
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At 780 nm excitation, the x-y lateral measurements compare well with the 

theoretical result showing only a +2% difference in the measure FWHM. The 800 nm 

excitation exhibits a 5 times greater error (-9.5%) in FWHM of the lateral axis compared 

with 780 nm. This discrepancy could be due to the distortion arising form a slight 

broadening of the pulse width with the longer wavelength or from drift of the laser pointing 

stability as it changes wavelength. The Mai Tai information states that there is a shift of 30 

µrads/100 nm when tuning across the range 780-920 nm [275]. It is more likely to arise 

from the pointing stability causing a change of alignment affecting one axis more than the 

other, rather than broadening which would affect both x and y axis. 

Axial measurements show an increase of 3.7% and 3.2% in the FWHM for 780 and 

800 nm excitation, respectively, compared with the theoretical calculations. The 

discrepancy for both excitations could occur due to refractive index mismatch between the 

mounting media (water) and immersion oil, which is equivalent to 1.333 at 20°C and 1.518 

(Type N, Leica Microsystems Ltd., GmbH), respectively. The mismatch between the 

sample and immersion fluid results in an incorrect scaling along the optical axis [303]. An 

approximation of this mismatch can be calculated between the nominal (apparent) focus 

position (NFP) and the actual focus position (AFP) using the low-NA approximation 

derived by Hell [118]: 

Eq. 26     
2

1
η

η×= NFPAFP  

where, η1 and η2 are the refractive index of the immersion fluid and sample. This 

calculates a scaling factor as =21 ηη 1.139 the measured axial scaling factor at 780 nm 

and 800 nm is 1.03 for both. This suggests that the assumed refractive index of the 

mounting media as water is incorrect and exactly matched that of glycerol, which is known 

to have a refractive index of 1.474 at 20˚C [118]. 

In a two-photon system a form of wide-field detection is employed by using a fully 

open pinhole making it insensitive to chromatic effects and other aberration in the 

detection paths [70]. The PSFs optical response is affected by aberrations or properties of 

the excitation path [70]. This confirms that any discrepancies seen between experimental 

and theoretical resolution are most likely due to misalignment. 

This effectively means that with each wavelength shift the laser alignment should 

be checked to confirm the excitation is evenly distributed across the image or only use the 

aligned wavelength, which has been visually checked. Measuring the PSF has also 

confirmed the resolution of the system as laterally 263.25± 3% nm and axial 836 nm when 

using 780 nm excitation this compares well with the theoretically calculated values and 
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confirms that the protocol outlined in the appendix produces excellent alignment of the 

system. 

3.3.4 Confocal raster scanning speed 

Measuring [Ru(bipy)3]
2+ in deionised water on the Leica requires the laser to scan 

across the sample to create an image by exciting each pixel in-turn, raster scanning. There 

are four speeds 200 Hz, 400 Hz, 800 Hz, and 1000 Hz available, which describes the 

number of lines scanned/sec. The higher the number the faster the image is scanned, but 

this can incur a penalty for shorter laser dwell time per pixel. Normally the confocal 

operates a default setting of 400 Hz for continuous or high repetition lasers.  The 

consequences of using a laser at a slow repetition rate needs to be assessed. The effect of an 

incorrect scan speed could impact the quality of the image and introduce aliasing phase 

effects. 

The sample setup was used as in section 3.2.4.1. The laser repetition rate was set to 

500 kHz and TPE intensity images were captured across an excitation wavelength range of 

710-870 nm, with 20 nm increments; the PMT was set between 550-670 nm. The parameter 

settings were 512x512 image format, 200-800 Hz line scan speed, beam expander 1, and 

SP700 filter.  

 

Figure 60 – Leica intensity images of [Ru(bipy)3]
2+ in water at a concentration of 0.412 mM imaged across 

the excitation wavelength range from 710 – 870 nm in increments of 20 nm with a repetition rate of 500 kHz 

and line scan of 400 Hz. 

The intensity images of [Ru(bipy)3]
2+ in water at a concentration of 0.412 mM with 

incrementing excitation wavelengths between 710-870 nm, are shown in Figure 60. The 
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images initially appear dim then increase in brightness peaking at 770 nm and then 

decreasing from 830 nm onwards. Each image shows some level of distortion with 730nm 

and 850 nm expressing the worst aliasing effects. The geometric distortions appear to be 

caused from a shift of phase between the laser scanning speed and the image processing. 

Using the 400 Hz scan speed the glavomirrors have 2.5 msec to scan one line and with a 

512x512 image provides a dwell time of 4.88 µs per pixel. The excitation pulse is <100 fs 

and the duration between pulse is 2 µs. This only allows each pixel to be excited twice 

before moving to the next pixel. Increasing to 800 Hz increases the distortions where as 

reducing the scan rate to 200 Hz removes the geometric distortions. The other option 

would be to reduce the number of pixels/scan line, which would also remove this effect. 

3.3.5 Conclusion 

The excitation wavelength does affect the PSF, but this can be corrected by re-

aligning the laser. As the beam is not visible in the IR range re-alignment could prove 

problematic at higher wavelengths. At an excitation of 780 nm the lateral and axial 

resolution has been measured as 263 nm and 836 nm, respectively, which agrees well with 

theory suggesting the laser has been well aligned.  

Slower scan speed or lower size image format is required when raster scanning with 

a low repetition rate laser. 

3.4 Time-Correlated Single Photon Counting (TCSPC) 

3.4.1 Introduction 

Fluorimetery measurements using phase and modulation where first introduced in 

1926 by Gaviola providing the ability to perform fluorescence decay measurements [155]. 

By 1949, Norrish and Porter had extended the experimental time-domain from millisecond 

to microsecond and from then on the advancement in technology accelerated. It was not 

until 1957 that reasonably accurate determination of fluorescence lifetime was possible due 

to the introduction of pulsed excitation sources [155]. Unfortunately, during this period and 

up until the early 80s acquisition times remained slow, limited by electronic response and 

low repetition light sources that could only facilitate one-dimensional lifetime decay 

acquisitions [27]. It was not until the combination of transistors on a single chip, increased 

pulse repetition, and laser power that the full potential of this technique was realised. In 

1993, Becker & Hickl was founded and introduced a fast TAC/ADC conversion that 

created a TCSPC system 100 times faster than any existing device. It also related acquired 

photons to spatial coordinates and wavelengths, creating a multidimensional TCSPC 
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system [29]. There are only a few companies that produce time domain time-correlated 

single photon counting systems, but the principles are the same. 

The component parts used in this TCSPC system consist of a photo-multiplier tube 

(PMT) detector (PMH-100, Becker&Hickl GmbH, Germany) and a TCSPC module 

(SP830, Becker&Hickl GmbH, Germany). The internal components that create the TCSPC 

module are composed of a number of architectural blocks mounted onto a single board, as 

shown in Figure 61, and located inside a computer. Each has an individual function and 

purpose involved in detection, quantification, digitization, and collation of photons relating 

to arrival times.  

 

Figure 61 – Architectural schematic representation of a classic TCSPC system with, photomultiplier tube 

(PMT) detector, constant fractional discriminator (CFD), time to analogue converter (TAC), Bias 
Amplifier, analogue to digital converter (ADC), and data memory, adapted from Becker [27]. 

A breakdown of each architectural block will be explained below; describing the 

function and combined operation involved to produce TCSPC lifetime decays. Following 

this explanation, further sections will investigate variable parameters and issues related to 

optimisation and control for future experiments. 

3.4.2 TCSPC module 

3.4.2.1 Photomultiplier Tube (PMT) Detector 

The role of the PMT is to detect photons from fluorescing samples and relay them 

to the TCSPC module where the constant fractional discrimination (CFD) continues 

processing the information. The construction of a PMT incorporates a glass envelope 

housing a photocathode, several dynodes and an anode maintained in a high vacuum, it is 

especially good in a low level light situation. As shown in Figure 62 the photon strikes the 

photocathode. The negative electric field of the photocathode and the positive electric 

potential of the dynode accelerate the electron to the dynode surface. Upon collision with 

the surface several electrons are emitted and traverse along the PMT. The electrons amplify 

as they collide with other dynodes finally produce 106 to 108 electrons [27]. The large 

positively charged electrode surface used by the anode attracts the accumulated electrons 
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and upon collision a current pulse indicates the arrival of a photon. As a photon arrives at 

the photocathode it enters at different trajectories causing a spread of arrival times at the 1st 

dynode. The distribution of these times is termed the transit time spread (TTS) for the 

PMT. It is wavelength-dependent and affects the timing accuracy of the arriving photon, 

therefore limiting the time resolution of the TCSPC [170]. 

 

Figure 62 – Schematic diagram of a photon entering a photomultiplier tube, incrementing the electron gain 
and producing a current pulse to indicate the arrival of a photon. Adapted from Eberhardt et al. [76]. 

In order to synchronize the arriving photons in a specific time channel each sweep 

of the time range must be triggered at the same rate. The laser has a continuous train of 

excitation pulses with set repetition rates and is therefore an ideal method for 

synchronizing the TCSPC module. The excitation pulses are detected with a photon 

counter (PHD-400N, Becker&Hickl GmbH, Germany) that uses a fast PiN photodiode, 

powered by the detector controller (DCC-100 Becker&Hickl GmbH, Germany) to generate 

a synchronizing signal [27]. 

3.4.2.2 Constant Fractional Discriminator (CFD) 

A detected signal at the PMT can consist of background noise or photons of 

differing amplitudes. The objective is to only detect photons and determine accurate arrival 

times. A constant threshold ensures that only signals above a certain amplitude will trigger 

and discriminate noise from photons. The technique is termed, ‘Leading edge’, as shown in 

Figure 64, but varying pulse amplitudes introduced timing jitter caused by the pulse rise 

time. 
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Figure 63 - Leading edge constant threshold to detect arriving photons is affected by amplitude jitter that 

manifests a timing jitter [27]. 

The development of CFD was to correct for the errors in photon timing. Instead the 

input pulse is divided into two fractions where a delay is applied to one and the other is 

inverted. The last step adds them back together producing a zero crossing point 

independent of pulse height, as shown in Figure 64. The CFD is used for both the reference 

excitation and detected emission pulse. The detected photon is sent as a zero point signal to 

the time-to-analogue converter.  

 

Figure 64 –Constant fractional discrimination block diagram describing the process or determining the zero 
cross point for timing of photon arrival [170]. 

3.4.2.3 Time to Analogue Converter (TAC) 

The TAC relates the arrival time of the emitted photon to an analogue voltage that 

can be later digitised. The zero point signal sent from the CFD ‘starts’ the TAC capacitor  

charging until a ‘stop’ signal is received from the reference excitation pulse and the 

capacitor stops charging [155], as shown in Figure 65. About 10 ns after the TAC has 

stopped the ADC is started and the digital processing of the current photon is initiated. The 

TAC then begins discharging, but the ADC keeps the TAC in a reset state until it is ready 

to accept the next photon. Once the TAC has returned to its original state and the output 

amplifiers have resettled the TAC is ready to accept the next photon [27]. The period after 
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the ‘stop’ signal is termed the TAC ‘dead time’ and increases based on the length of time 

between ‘start’ and ‘stop’ signal. The system dead time for the detection of a photon is the 

combination of the TAC ‘dead time’ and the ‘start’ – ‘stop’ time [27]. 

 

Figure 65 – A representative diagram of the TAC associating the arrival time of a photon to an analogue 

signal. This uses a capacitor that ramps the charge at the ‘start’ signal, a photon arriving, and ‘stops’ charge 

with the arrival of the excitation signal. The voltage is converted for later manipulation to a digital log of 
the photon arrival time. Adapted from Becker and Pawley [27, 236]. 

By adjusting the ‘TAC range’ the gradient of the ramp is adjusted allowing time 

range changes, based on excitation cycle. A programmable gain amplifier (PGA) is used to 

vary the ‘TAC gain’, which can magnify the recording interval, but is only really used 

when the range cannot be reduced any more [27]. The ‘TAC offset’ is used to adjust the 

position of the ramp on the voltage axis and therefore the position of the decay in the time 

window. There is also a window discriminator that blocks the processing of any events 

outside the time range window. 

3.4.2.4 Analogue to Digital Convertor (ADC) 

The analogue voltage signal from the TAC signal is converted by the ADC to a 

digital word that represents the photon detection time. The word is then addressed to a 

memory location and stored in a channel according to the time in the signal period [27]. 

The SP830 can use up to a maximum of 4098 ADC time channels, but can be reduced 

dependent on the required time resolution. The memory locates the ADC data words to the 

associated time channels creating a histogram, as shown in Figure 66. This continues until 

the collection time has completed or the maximum limit of the memory location has been 

attained at 65535 counts per channel [27]. 
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Figure 66 – Pictorial representation describing the logging of photons per excitation cycle and conversion 

from detected pulses to the digital conversion in to time channels to build lifetime decay [27]. 

3.4.3 Multi-dimensional photon distribution 

So far the discussion has concentrated on single decay acquisition, the main 

difference between the TCSPC module and previous systems is not only the speed, due to 

all the components located on one printed circuit board, but also the correlation of 

information. Normally the photon distribution is recorded as a function of time, but it can 

also be associated with spatial location and registration with an intensity image, sequential 

time resolution, wavelength, or externally triggered with a delivery or motor system, as 

shown in Figure 67. The calibration of this system will concentrate on the single decay 

acquisition process, a closer examination of image processing and image registration will 

be conducted in later chapters. 

 

Figure 67 – Schematic diagram of the TCSPC module and the time correlated photon distribution assigned 

to memory. The extra parameters that are also recorded via triggers, sync scans, and clocks to provide 
spatial registration and external sequencing [27]. 
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3.4.4 Instrument response function (IRF) 

The recorded decay response after excitation is not a true representation of 

fluorescence lifetime. Deriving the true lifetime of a fluorophore initially requires the 

measurement of the IRF. The reason for this is that the recorded decay is a convolution of 

the IRF and the true lifetime [224]. Therefore to derive the true lifetime the IRF must be 

measured and deconvoluted from the decay especially when dealing with short lifetime 

decays [236]. When measuring the IRF it is also a good opportunity to optimise the 

TCSPC set-up otherwise later changes, which affect the width of the IRF can lead to 

erroneous results [31]. In the TCSPC system this only needs to occur once after the 

threshold has been set, it is then saved and recalled for each analysis of the decay. The IRF 

is the fastest response of the detector to a signal. The best method for recording the IRF 

uses a scattering medium or a mirror, but using a NIR laser the spectral response of the 

PMT detector head will be limited to the visible wavelength range [27]. By recording the 

response from a second harmonic generating (SHG) sample a signal faster than the 

response of the detector is produced [27]. The measured IRF can suffer from contaminating 

fluorescence interfering with the detected signal, but a SHG signal it so strong that it does 

not pose a problem. A false secondary peak can sometimes appear if the sample is not 

covered arising from backward transmittance of the SHG sample reflecting off the 

condenser lens or other mirrors [27]. 

3.4.4.1 Method 

The second harmonic sample was made from reconstituted powdered Urea 

(U5378, Sigma-Aldrich, UK). A bijou tube with 480 mg/ml of Urea was dissolved in 

deionized water and 40 µl of Urea solution was then pipetted on to a coverslip (thickness 

1.5, 22x32 mm) (Cat. No. 631-0134, VWR Ltd., UK). The sample was allowed to dry out 

over a 2h period and mounted on to a x63 oil immersion objective (NA 1.4) lens (506192, 

HCX PL APO, Leica Microsystems Ltd., GmbH). The microscope was focused onto the 

SHG sample and laser excitation set to 780 nm with a repetition rate of 80 MHz using the 

SP700 filter. The TCSPC module (SP830, Becker&Hickl, GmbH) was set to a collection 

time of 100 sec, ADC 1024, Gain 4, and time range of 50 ns. TCSPC files .sdt were 

converted to ASCII files and exported to Origin software (OriginPro 8 SR0, OriginLab 

Corporation, USA) and a Gaussian model fitted to the peak. 

3.4.4.2 Results: Instrument response function can be affected by CFD threshold 

The time base used was 50 ps and the IRF completed within the first 5 ns. An 

uncorrected IRF had a CFD threshold or ‘lower limit’ set to zero and the corrected IRF 
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was set to -80.39 mV, as shown in Figure 68 A and B, respectively. The uncorrected graph 

(left) has an extra pulse after the IRF, an increased peak before the main response, and an 

increased background level from 10 to 35 photons/channel. A Gaussian model was fitted 

to the peaks of both graphs and the FWHM for uncorrected and corrected was 189.3 ps and 

196.2 ps, respectively, adjusted R2 >0.99. 

 

Figure 68 – Instrument response function of a SHG sample measured on a NIR FLIM system and plotted on 
a semi-logarithmic graph. A: Sample with CFD threshold set to zero, B: Sample has corrected CFD 

threshold set to -80.39 mV to reduce background and afterpulsing. 

3.4.4.3 Discussion 

The IRF describes the response of a detector in a TCSPC system. It is preferred to 

use a SHG sample with NIR lasers to avoid spectral wavelength limitations of the detector 

and to provide a strong signal that can minimise any contaminating fluorescence. 

Adjusting the threshold and zero cross levels can affect the shape and width of the IRF. 

This is shown in Figure 68B where the CFD threshold or ‘lower limit’ is adjusted to 

suppress afterpulsing and background noise. There is a change of 6.9 ps in the FWHM of 

the IRF and a reduction in background noise by 25 photons/channel. The values measured 

for the FWHM of the IRF is comparable with published information for the photomultipler 

tube PMH-100 in a simple TCSPC setup ~180 ps [30].  

Normally, in short lifetime decays the IRF would be deconvoluted from the lifetime 

decay, but if it is assumed that the [Ru(bipy)3]
2+ decay would complete by 2250 ns (5τ) then 

the IRF would only contribute to 8x10-6% of the decay. Therefore the level of convolution 

is very low and can be excluded [75] by determining the lifetime decay after the IRF. This 

also avoids fitting error induced from scattering that only occur at the beginning of the 

decay. No deconvolution of the IRF from the [Ru(bipy)3]
2+ decay is required. 

3.4.5 Background noise detection 

It is not possible to view the background noise level in the ruthenium decays 

measured using the TCSPC, because the lifetime has not completed within the limited time 
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range of the TAC (2 µs). Therefore, when fitting an exponential model to the data the offset 

(y0) is not able to asses where this occurs. One way of dealing with this is to measure the 

background levels in the room and subtract or restrict the decay fitting to account for it. 

This was the general practice in older systems where the background level was subtracted 

from the decay [224]. Different contributions of possible room noise were evaluated for 

increments collection periods to determine a relationship. 

3.4.5.1 Method 

A short decaying media sample was used to determine the room background level. 

Media was mounted on to a coverslip on the objective lens, the laser excitation was set to 

780 nm with repetition rate of 500 kHz. The TCSPC module (SP830, Becker&Hickl, 

GmbH) was set to an ADC 1024, Gain 1, a count increment of 10, a time range of 2 µs and 

collection times of 10, 100, 200, 400 sec. The collection timings were applied to three 

different room environments, total darkness, one monitor on, one monitor on and door 

open; each measurement was repeated three times. As the ‘total darkness’ setting would be 

the standard environment that would be worked in an 800 sec measurement was also 

taken.  

All files were converted to ASCII and imported into Origin software (OriginPro 8 

SR0, OriginLab Corporation, USA). Data sets were divided by 10 to remove the effect of 

the ‘count increment’. The measured background was averaged between the ‘lower limit’ of 

the TAC and after the emission signal generated from the sample, as highlighted by the 

dashed lines in Figure 69. Replicate measurements were averaged and standard errors and 

linear fits plotted for each environment exposure.  

3.4.5.2 Results: Background noise has a linear relationship with time 

A media sample with short decaying lifetime was used to maximise the number of 

channels for background counts. The time range for the measurements were 2 µs and 

counts in channels were averaged from just after the SHG signal and before the end of the 

time range between 189.15 and 1698.45 ns, as shown in Figure 69. The average and 

standard error of average counts/channel are calculated for replicate measurements (n=3) 

and plotted for incrementing collection times for increasing background light 

environments. 
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Figure 69 – The media sample was excited at 780 nm with a repetition rate of 500 kHz and collection rate of 

800 sec in a blackout room. Background noise was averaged between the red lines (dashed) for varying 

levels of room light and repeated (n=3). 

Linear fits were made for each background environment and extended to span the 

graph, as shown in Figure 70. There is a significant (p<0.01) positive linear relationship 

between the collection time and the average counts/channel for each background 

environment. The ‘blacked out room’ (black squares) had the lowest gradient, and ‘one 

monitor on’ and ‘one monitor and an open door’ gradient increased by 37.7% and 65.8%, 

respectively. The ‘blacked out room’ contributed to an increase of 1 count per channel/100 

sec collection time, where as ‘the open door and monitor on’ increased the number of 

counts per channel by 1.5 counts/100 sec collection time. 
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Figure 70 – The average photon count per channel was collected for incrementing time period from 10-800 
sec and with increasing exposures of background light. Three different background noise situations were 

investigated, a room in total darkness (black square), monitor on in the same room (red circle), and the door 

open and one monitor on in the same room (blue triangle). Values represent means with error bars 
indicating SEM for n=3 replicate measures. Linear fits of each background noise environment was 

performed, adjusted R2 >0.98. 

3.4.5.3 Discussion 

As expected, increasing levels of background light contributed to a higher 

accumulation of photon counts/channel. The relationship of accumulating counts within 

the same environment was positively linear indicating a constant incrementing noise. The 

shorter the collection time, the lower the background count. The gradient of each 

environment is only relevant for an ADC of 1024 and time window of 2 µs (500 kHz rep. 

rate), but the graph can be adapted for other channel widths. These graphs would not be 

transferable to other systems as the background light is specific to each room, but the 

graphs do provide a quick reference guide for identifying background noise levels. 

3.4.6 Lifetime decay fitting 

The environmental aspects of running the TCSPC have been explored and now an 

investigation into operating the TCSPC for acquiring lifetime shall be undertaken. Different 

models can be used to determine the lifetime of a decaying fluorophore, but the models are 

based on the physics behind molecular emission. If a dye is excited by an infinitely sharp 

pulse a population of fluorophores will be excited. The population of electrons in this 
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excited state will decay at a rate of emission plus non-radiative decay with respect to time 

[224]. 

Eq. 27    ( ) ( )tnkk
dt

tdn
nrr ⋅+−=

)(
 

The above Eq. 27 refers to an exponential decay where kr is the radiative emission, 

knr is the non-radiative emission, and n(t) is the number of excited molecules at time t 

following excitation [171]. In Chapter 1 (section 1.4) it was discussed that the sum of the 

radiative and non-radiative rates that depopulate the excited state were equal to the inverse 

of the fluorescence decay time (lifetime, τ) [75], as shown in Eq. 28.  

Eq. 28     

nrr kk +
=

1
τ  

As each fluorophore has the same probability of emitting for a given period and it is 

a random event the decay of an excited state population is exponential [171]. Integrating 

Eq. 27 gives, 

Eq. 29     ( ) ( )τ
t

ntn
−

= exp0  

where, n0 is the number of excited molecules at time zero. Generally, it is not the 

number of excited molecules that are observed, more the fluorescence intensity, or when 

using TCSPC the photon counts that are recorded. However both are proportional to n(t). 

Therefore, the lifetime can be determined from the time where the decay has decreased 

from its initial value to 1/e or by measuring the slope of a semi-log plot of counts (or 

intensity) vs. time [171]. Determining the lifetime depends on the type of decay and the 

model being applied, as shown in Table 13.  
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Table 13 – Different exponential fits used for the calculation of lifetime (τ) where, A is the pre-exponential 

and the subscript denotes the lifetime component, t is time channel/interval, ττττ is the lifetime, y(t) is the 

number of counts with respect to the time channel/interval, ββββ is related to the distribution of decay times, b 

depends on the quencher concentration and diffusion coefficient 

 

Mono-exponential decays refer to population of fluorophores decaying during a 

measurement at the same rate. Bi-exponential refers to two of the same or different 

fluorophore populations decaying in the same measurement at different rates. It therefore 

requires identification of the separate component decays. This model is also used to 

describe the occurrence of fluorescence resonance energy transfer (FRET) where the 

excited energy is transferred to another, dependent on distance. Multi-exponential is used 

for more than two fluorophores in the same decay, but attempting to derive these values 

can be difficult as with more components there are more unknowns. Stretched exponentials 

have been used to study dielectric relaxation in polymers where there is an expected 

distribution of relaxation times [237] [171]. It is also used in tissues with complex multi-

exponential decays and autofluorescence, where there is a continuous distribution of 

lifetimes rather than a few discrete lifetime components [178]. Non-exponential or transient 

effects can be used in collisonal quenching and resonance energy transfer (RET) for rapid 

quenching of closely spaced fluorophore-quencher pairs. In this instance the decay is not 

related to the number of excited molecules as would normally be the case. Instead the 

fluorescence is restricted by the close proximity of quenchers [171]. The initial decision of 

which model to use can be derived from prior knowledge of the system and number of 

fluorescent components or if unknown, based on the goodness of fit. The goodness of fit is 

used as a comparison between the fitted models and the experimental data. In these 
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experiments the single exponential model will be used as it is well documented that 

[Ru(bipy)3]
2+ in aqueous solution has a mono-exponential response [91, 171, 257, 279]. 

3.4.6.1 Mono-exponential decay fitting 

Initially when fitting the data, cursors were used to manually select the maximum 

and minimum boundary time points an hence the data range that should be modelled. This 

approach was useful for excluding scattering arising from coverslips or other reflective 

surfaces. The modelling software estimates the values based upon an iterative process to 

minimise the discrepancy between the fit and data, while maintaining the boundaries of the 

model. There are different analysis methods that can be used for this purpose including, 

maximum likelihood estimator (MLE) [108], methods of moments [75], least-square 

Marquardt-Levenberg [108], global analysis [171], Monte-Carlo [265], maximum entropy 

method (MEM) [15] and Bayesian [75]. The different analysis options have varying levels 

of complexity and speed, some are better at precision, but take a long time to process and 

others are used for specific types of data, low count levels or FRET analysis. The most 

widely used method is the least-squares Marquardt-Levenberg, which can be found in most 

statistical software and is also available in the TCSPC analysis software. In order to use this 

analysis it is necessary to make a set of assumptions about the collection of the data as 

listed by Lakowicz [171]: 

1) All experimental uncertainty is dependent on time (y-axis) 

2) Measured values (in y-axis) have a Gaussian distribution centred on the 

correct value 

3) No systematic errors exist in either time or counts (x-y axis) 

4) Assumed fitting function is the correct mathematical description of the 

system and incorrect models will yield incorrect parameters 

5) Data points are independent observations 

6) Sufficient number of data points exists to over determine parameters 

 These generally fit well with operation of the TCSPC experiment. 

3.4.6.2 Goodness of fit 

 The goodness of fit is assessed with the Chi-square (χ2) describing the level of 

difference between the fitted model and the experimental data. The Chi-square is weighted 

by the standard deviation of each interval σi, as shown in Eq. 30, 
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where, f is the fitted data, y is the experimental data, and ωi is the applied weighting 

described by the squared standard deviation σi for each data point prior to summation [155, 

213]. The standard deviation specific to lifetime decay can be assumed as Poissonian 

distributed. This relates to the photon emission being independent to one another [213], 

where each photon has an equal mean and variance of arriving at a particular interval 

[155]. Therefore the Poissonian statistical noise or standard deviation per interval is 

described as the square root of the number of photon counts in each interval ( ) 21
ii ty=σ  

[155, 171, 213]. Applying this to Eq. 30  provides weighted chi-square value Eq. 31, 
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This forces the fit to rely more heavily on the time intervals with more counts, at 

the beginning, rather than treating all the time channels equally [171]. The only issue with 

using the weighted χ2, as a determination for goodness of fit, is the dependence on the 

number of channels or data points. This creates a difficulty when comparing results from 

experiments with a different number of data points. By accounting for the degrees of 

freedom (υ) a reduced Chi-square χr
2 can be used to account for the data points (n1 being, n2 

end channel number) and number of fitting parameters (p), as shown in Eq. 32.  
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As the χr
2 is normalised it provides a minimised value that is optimally 1 for data 

with Poisson noise or 0 for no Poisson noise [171]. These experiments contain Possionian 

noise therefore values greater than one suggest a poor fit between the model and data. This 

can occur from other unknown exponential components in the decay or the presence of 

systematic error. The manifestation of a poor fit can be visually observed from the residual 

plot, Ri, between the data, y(ti), and the fit, f(ti), as shown in Eq. 33.  

Eq. 33     ( ) ( )iii tftyR −=  

In this instance a weighted residual plot (rW) can be applied to account for the 

relationship between Possionian noise and the number of counts per time interval, as 

shown in Eq. 34. This residual plot relies more heavily on the earlier time channels. 
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A visual inspection between the model and data facilitates another aspect of 

determining a good or poor fit by observing all the fitted data points and identifying any 

discrepancies. A more sensitive approach is to consider the χr
2 value to warrant rejection of 

the data or model. Standard mathematical tables for χr
2 distribution [34] provide a 

predicted probability that random error is the cause of the value. Typically probabilities 

greater than 5% are not rejected. Based on the number of data points acquired in these 

lifetime decays (≥200) fits are accepted if χr
2 ≤ 1.17. Therefore if ample counts were 

obtained any [Ru(bipy)3]
2+ decay displaying a mono-exponential characteristic decay χr

2 

>1.17 would indicated possible problems with the sample, contamination, or systematic 

error in the experiment. 

3.4.7 Systematic error 

An inherent problem referred to as ‘pile-up’ exists within in every single photon 

counting system [224]. It is based on the electronics of the system regarding the number of 

photons that the TAC can process during one excitation cycle, as discussed in section 

3.4.2.3. The process of logging a photon takes a finite period of time referred to as the 

‘TAC start-stop’ time, while the ADC processes the photon the TAC enters a ‘TAC dead 

time’. A combination of these two periods is referred to as the system dead time. During 

this dead-time any second photon arriving at the PMT cannot be processed by the TAC 

and are therefore excluded from the final decay. The effect is seen mainly during low 

repetition rate experiments observing long decaying dyes. Therefore the later part of the 

decay is more susceptible to the loss of photons. This can affect the accuracy of the lifetime 

decay through false manifestation of other lifetime components termed ‘classic pile-up’ 

[27].  

In low repetition rate lifetime experiments a constant battle is waged to acquire data 

with the shortest possible collection time, but long enough to acquire an accurate lifetime 

decay, whilst maintaining low repetition rates to minimise the effects of pile-up on lifetime. 

There are varying ways to minimise or correct for pile-up using pile-up rejection circuits, 

multiplexing, or mathematical correction equations [27, 224].  

3.4.7.1 Pile-up rejection circuit  

The pile-up rejection circuit is used to detect the arrival of a second photon in the 

same excitation cycle, if two photons are detected both are rejected. However, this 

technique has a significant flaw relating to the detection of the two photons within the 

width of the detector response. If a second photon arrives within the detectors response to 

the first photon the second photon cannot be registered [27]. There are possible ways of 
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overcoming this limitation by using multiple detectors to distinguish the arrival of two or 

more photons during the response of the detector or multiplexing. 

3.4.7.2 Multiplexing 

There are two types of multiplexing methods, namely pulse-by-pulse multiplexing 

[27] and multiplexed TCSPC [282]. Pulse-by-pulse multiplexing creates different optical 

delays, but uses the same detector and TAC range [27]. This method suffers at high 

repetition rates with overlapping of the detected signals. Alternatively multiplexed TCSPC 

uses signals that switch several diode lasers and route the detected photon distribution into 

different memories, all controlled via a switching signal [27]. In addition multiplexed 

TCSPC can be used to describe multiple detectors that detector channels to distinguish two 

photons arriving within the detector response. This method is useful as it relies only on one 

TAC module to process the information [282]. 

3.4.7.3 Mathematical equations 

The final option uses a mathematical equation written by Coates [56] to correct for 

pile-up. This method is not widely applied because its assumes that all the excitation pulses 

are of equal energies [306]. Another iterative algorithm written by Walker [306] does take 

into account the variation in excitation energies.  

 

The first two options require additional component support to assist with the effects 

of pile-up and despite the mathematical equations aim to remove the effects of pile-up the 

general consensus is to avoid these equations and rather reduce the collection rate. Prior to 

the undertaking of additional costs to the system the extent of pile-up interference in data 

collection should be determined and a future decision base on this assessment. The 

optimum count rate for collection is disputed among different users quoting collection rates 

between 10% - 0.1% of the excitation cycle [27, 224]. These are stated as inducing minimal 

effects from pile-up or determined as an accepted level of error within the decay. 

3.4.8 Determining the onset of pile-up 

Understanding when and why pile-up occurs and establishing a protocol to follow 

are vital for obtaining accurate reliable lifetimes. Experiments were conducted on the 

occurrence of classic pile-up. This examined the effects of dye concentrations, laser power, 

excitation wavelengths, and oxygen levels. Levels of discrimination between an accepted 

and rejected lifetime were also assessed.  
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3.4.8.1 Sample preparation and FLIM setup 

A stock solution (13.34 mM) of oxygen sensitive dye Tris(2,2′-bipyridyl) 

ruthenium(II) chloride hexahydrate, [Ru(bipy)3]
2+ (224758, Sigma-Aldrich, UK) was 

prepared with deionised water. Samples at four concentrations of [Ru(bipy)3]
2+ (0.334, 

0.845, 1.67, and 3.34 mM) were created from the stock solution and deionised water. A 

coverslip (thickness 1.5, 22x32 mm) (Cat. No. 631-0134, VWR Ltd., UK) was mounted on 

an x63 oil immersion objective (NA 1.4) lens (506192, HCX PL APO, Leica Microsystems 

Ltd., GmbH) and 20 µl of each solution was pipetted onto the coverslip; for ambient 

oxygen measurement. For low oxygen samples, airtight sample chambers were used with 

Na2SO3 (100 mM) added to solutions.  

The laser excitation was either set to 780 nm or 880 nm, uses a repetition rate of 

500 kHz, and emission captured over 500 – 670 nm. The TCSPC module (SP830, 

Becker&Hickl, GmbH) parameters were set to: ADC 1024, EOM gain was varied from 0-

60%, TAC Gain was 1, time range was 2 µs and collection time was 800 sec. This long 

collection time ensured that the maximum dynamic range was utilised, but if it was 

reached prior to the collection time completing then the elapsed time was noted down. The 

mono-exponential model from Table 13 was applied to each decay using OriginPro8. The 

data points between 100 and 1900 sec were selected for fitting the model using the data 

cursor. The produced fit also provided the calculated χr
2, but the residual plots were 

determined using Eq. 34 from the experimental and fitted data provided by OriginPro8. 

3.4.8.2 Assessment of using visual inspection for determining pile-up 

The sample preparation and instrument setup was conducted as outlined above. 

The lifetime decay of [Ru(bipy)3]
2+ dissolved in deionized water at a concentration of 0.845 

mM is plotted in all of Figure 71 on a semi-log graph against time. The lowest power has 

the EOM at 0% (black) increasing to 20% (left, red) and then the maximum at 60% (right, 

blue). All graphs have reached the maximum dynamic range of 65535 and the fitted mono-

exponential models have an adjusted R2 >0.99 for each graph. Fitting of the derived 

lifetime data shows 0%, 20%, and 60% EOM gain producing a lifetime of 388.78 ns, 366.99 

ns, and 240.26 ns, respectively. The EOM gains of 20% and 60% have a decreased lifetime 

of 5.6% and 38.4%, respectively, in comparison to 0% EOM gain. Visual inspection of the 

graphs shows no difference between 0% and 20% EOM gain (left), but there is a noticeable 

difference between 0% and 60% EOM gain (right) where pile-up has been induced.  



3 •  Calibration of the FLIM system  132 

 

 

  

Figure 71 – Lifetime decay with time of [Ru(bipy)3]
2+ in a deionized water solution (0.845 mM) plotted on 

semi-log graph. A: has EOM gains of 0% (black) and 20% (red) which appears to not induce visible pile-up, 

by constrast B: replicates the EOM gains of 0% (black), but pile-up was visible apparent for EOM gain 

60%(blue). 

Closer examination between the fits and data can be seen in Figure 72, with the 

weighted residual plots of Figure 71. The plots only show the residuals between the fitting 

regions selected by the data cursor. Visual inspection of the weighted residuals plots show 

no obvious difference between 0% and 20% EOM gain, but a large variation can be seen 

between 0% and 60% EOM gain. At 60% EOM gain the weighted residuals show a greater 

discrepancy between the data and the fit at the start (<400 ns) and end (>1600 ns) of the 

lifetime. The discrepancies seen in the residual plots are also confirmed in the goodness of 

fit, where 0%, 20% and 60% EOM gain have an χr
2 of 0.994, 1.33, and 4.67, respectively. 

 

Figure 72 – Weighted residual plots with time of [Ru(bipy)3]
2+ in deionized water solution (0.845 mM) at 

different EOM gain level compared. A: is the EOM gain at 0% (black) and 20% (red) and B: is the EOM 
gain at 0% (black) and 60% (blue). 

The graphs in Figure 71 and Figure 72 both show no obvious difference between 

0% and 20% EOM gain, but there is a large discrepancy for 0% and 60% EOM gain, where 

the difference in lifetime is up to 34%. Solely using visual means for determining 

discrepancies the residual plot easily highlights the problem between 0% and 60%, but the 

20% and 0% lack a definitive conclusion. Prior knowledge of the measured background 

from section 3.4.5 shows that for a collection time of 800 sec the minimum background 

count/channel should be in the region of 7 to 12 for an ADC with 1024 time channels. 
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Viewing the offset data for 0%, 20%, and 60% EOM gains, an offset of 11, 37.9, and 136.5 

is displayed. This demonstrates that the fitting model is altering the other parameters in an 

attempt to provide a reasonable fit by biasing the offset. Using the cut-off value by 

disregarding χr
2 ≥ 1.17 confirms pile-up occurring for 20% and 60% EOM gain from the 

determined reduced chi-squares values of 1.33 and 1.46, respectively. This shows that 

reliance purely on visible inspection is not justified and offset, background, and reduced 

chi-square also need to be considered to confirm if pile-up is influencing the lifetime.  

3.4.8.3 Effect of dye concentration and repetition rate on pile-up 

Figure 73 displays the lifetimes at increasing concentrations, between 0.334 – 3.34 

mM, of [Ru(bipy)3]
2+ in deionised water for an excitation wavelength of 780 nm. The 

measurements were conducted at ambient temperatures with increasing EOM gain. At the 

lowest concentration (0.334 mM) there is a discrepancy of 87 ns between the 0% and 60% 

EOM gain, while at the maximum concentration (3.334 mM) the discrepancy is 265 ns a 

difference of 38% and 232%, respectively. The mean lifetime and standard deviation at the 

lowest and highest concentration is 354.5±37 ns and 237.5±114 ns, respectively. A 

statistically significant negative correlation (p<0.05) exists between concentration and 

lifetime at all EOM gains. An increase in EOM gain (laser power) induces a decrease in 

lifetime, and this relationship is magnified at increasing dye concentration. The exception 

is the 51% EOM gain, which appears to have induced a larger effect on the lifetime than 

the 60% EOM. This is due to the peak point of maximum transmission in the EOM lying 

between the two gain values. This was tested prior to running experiments to determine 

maximum transmission of laser light through the EOM, as described in section 3.2.3. 

At an excitation wavelength of 880 nm (Figure 74), the relationship is similar 

except that there is a reduced discrepancy between 0% EOM gain and gains up to and 

including 60%. The discrepancy between 0% and 60% EOM for the lowest and highest 

concentrations induced a decrease in lifetime of 8% and 66%, with a mean lifetime and 

standard deviation of 381±11.5 ns and 327.6±67 ns, respectively. There is little or no 

correlation (p>0.05) between concentration and lifetime at EOM gain <31%, but there is a 

negative linear (p<0.05) correlation at 40% and EOM gains above.  
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Figure 73 – Lifetime decay of [Ru(bipy)3]
2+ in deionised water at a concentration of 0.334, 0.845, 1.67, 3.34 

mM, measured at incrementing EOM gain between 0-60% with laser excitation wavelength at 780 nm and 
laser repetition rate of 500 kHz.  

 

Figure 74 – Lifetime decay [Ru(bipy)3]
2+ in deionised water at a concentration of 0.334, 0.845, 1.67, 3.34 

mM, measured at incrementing EOM gain between 0-60% with laser excitation wavelength at 880 nm and 

laser repetition rate of 500 kHz. 

The measured lifetime in Figure 73 and Figure 74 has been directly compared with 

the collection rate as a function of repetition rate for 780 nm and 880 nm excitation as 

shown in Figure 75. It is apparent that a decaying exponential model fits the relationship 

for 780 nm excitation (adjusted R2 > 0.99), however the 880 nm excitation appears to 

warrant a linear model (adjusted R2 > 0.99). This difference is also noticeable in Figure 73 
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and Figure 74. The higher rate of photon detection at the start of the lifetime decay is 

affecting the detection of photons arriving later within the same excitation cycle creating 

pile-up exponentially for 780 nm and linearly for 880 nm due to the large difference in laser 

power and therefore emission. This highlights the need for a separate parameter to 

distinguish acceptable lifetime values, which can be determined using the χr
2. 

 

Figure 75 – Collation of all concentration measurements taken and separated into 780 nm (black squares) 
and 880 nm (red circles) excitation to display the relationship with the collection rate as a function of 

repetition rate. Data collected with 780 nm excitation was fitted with exponential model adjusted R2 >0.99 

and 880 nm excitation was fitted with linear model adjusted R2 >0.99. Inset graph represents zoomed in 
section of graph identified by the blue box. 

The calculated reduced chi-square from the fitted data in Figure 73 is displayed in 

Figure 76 against the derived lifetime for excitation at 780 nm. The standard deviation of 

the fit is represented by the error bar. The number displayed above the data points 

described the count rate. This is described by the collection rate divided by the laser 

repetition rate and is dependent on laser power (EOM gain) and dye concentration. The 

full-scale is represented by the smaller graph and the larger graph represents a zoomed in 

observation of the red box. The colours represent the different concentrations used in the 

experiment. The cut-off value, represented by the dashed line, is determined by χr
2 ≤1.17. 

This ensures there is at least a 5% probability that the χr
2 value is due to random deviations 

and the fit can be accepted [171], as described in section 3.4.6.2.  
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Figure 76 – The calculated reduced chi-square of mono-exponential lifetime fitting [Ru(bipy)3]
2+ at varying 

concentrations between 0.334 mM – 3.34 mM and increasing EOM gain at an excitation 780 nm. The inset 

graph represents the full range of lifetimes measured and the red box represents the zoom in of the full size 

graph. The error bars represent the standard deviation of lifetime fitting. The dashed line dictates χχχχr
2 ≤≤≤≤1.17 

and the values above the data points are the count rate percentage. 

The maximum and minimum χr
2 at 780 nm (lifetime) was 8.5 (113 ns) and 0.9 (388 

ns) at a concentration of 3.34 mM and 1.67 mM, respectively. The count rate at the 

maximum and minimum χr
2 was 113% and 1.73%, respectively. The maximum count rate 

under the cut-off line was 3.08%. The EOM gain value is not of importance as it is 

described by the count rate. The maximum concentration (3.34 mM) does not reach below 

the cut-off limit. The number of collected photons in the decay is not affected at lower 

concentration, i.e. at 0.334 mM and an EOM gain of 0% and 60% the number of counts are 

maintained between 1.3 x106 - 1.07 x106. But at 3.34 mM between an EOM gain of 0% and 

60% the number of counts drop from 1.27 x106 to 0.474 x106, respectively. 

The calculated reduced chi-square from fitted data in Figure 74 is displayed against 

the determined lifetime in Figure 77 for the excitation wavelength of 880 nm. The 

maximum and minimum χr
2 is 5.59 (238 ns) and 0.92 (394.3 ns) at a concentration of 3.34 

mM and 0.845 mM and count rate of 31% and 0.256 %, respectively. The maximum count 

rate below the χr
2 cut-off is 2.8%. 
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Figure 77 – The calculated reduced chi-square of mono-exponential lifetime fitting [Ru(bipy)3]
2+ at varying 

concentrations between 0.334 mM – 3.34 mM and increasing EOM gain at 880 nm excitation. The small 
graph represents the full range of lifetimes measured and the red box represents the zoom in of the full size 

graph. The error bars represent the standard deviation of lifetime fitting.  The dashed line dictates χχχχr
2 ≤≤≤≤1.17 

and the values above the data points are the count rate percentage. 

The lifetime measurements below the χr
2 ≤1.17 cut-off for excitation of 780 nm and 

880 nm are displayed in Figure 78. The number of lifetimes below the cut-off out of a 

possible 24 decays (4 concentrations, 6 EOM gains) for 780 nm is 6, which is only a quarter 

of the decays. For an excitation of 880 nm the number of decays below the cut-off is 14, 

half of the available decays. As these lifetimes meet the cut-off values they are determined 

to have minimal influence from systematic error (pile-up). Therefore the accepted mean 

lifetimes and standard deviations for 780 nm and 880 nm are 388.18 ±4.89 ns and 387.71 

±6.63 ns, respectively. This shows a difference of 0.1%, between the mean lifetimes. 

 

Figure 78 – Box and whiskers plot of minimal pile-up influence over lifetime variability below the cut-off 

limit χχχχr
2 ≤≤≤≤ 1.17 at an excitation of 780 nm (black box) and 880 nm (red box). The whiskers represent the 

maximum and minimum values the box size is the standard deviation, the open square is the mean. 
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The increasing EOM gain has a large influence over lifetime, which can be 

magnified at higher [Ru(bipy)3]
2+ concentrations. There is a negative linear relationship 

with lifetime at an excitation wavelength of 880 nm, but is more exaggerated at 780 nm. 

This observation is reinforced when observing the calculated reduced chi-square. At 780 

nm excitation, only 25% of decays reach below the cut-off compared with 50% at 880 nm. 

Similarly, the variability in calculated reduced chi-square at 780 nm excitation is 50% 

greater than at 880 nm. It also affects the number of photons processed due to pile-up. At 

780 nm excitation with a concentration of 3.34 mM the number of counts collected is 

reduced by 63.3% compared to equivalent conditions using 880 nm excitation. The major 

difference between 880 nm and 780 nm excitation is the energy in the wavelength. As 

shown in section 3.2.4, at repetition rate of 500 kHz there is a power difference between 

780 and 880 nm excitation of 120 µW of power. 

This data shows that higher EOM gain and therefore energy into a fluorophore 

creates an increased photon emission [171]. This effect is magnified with higher dye 

concentration as more photon will be absorbed and therefore a higher probability of 

emitting. This will increase the likelihood of pile-up as more photons will emit during the 

same excitation cycle, if the EOM gain is not adjusted to compensate.  

Even though the number of decays accepted below the cut-off differs the mean 

lifetime at excitation wavelengths 780 nm and 880 nm is approximately 388 ns with similar 

standard deviations. The maximum count rate for decays below the count rate cut-off limit 

for both is approximately 3% for both excitation wavelengths. Compared with a count rate 

of 1% to acquire the same number of photons this would decrease the imaging time by a 

third. This decrease in imaging time would make a huge difference when scanning cellular 

samples reduce the possibility of photon damage. 

3.4.8.4 Effect of oxygen concentration of pile-up 

Sample preparation, FLIM setup and decay fitting followed procedures outlined in 

section 3.4.8.1. Lifetime decay measurements of two [Ru(bipy)3]
2+ solutions in deionized 

water at atmosphere and the other in Na2SO3 using a concentration of 0.167 mM at 37ºC, 

are shown in Figure 79. Lifetime decays were collected for 120 sec at a collection rate of 

10x103 photons/sec, 3% of the excitation rate 500 kHz. The number of photons collected in 

atmosphere (Atm) and Na2SO3 was 992589 and 995889 photons, respectively, a difference 

of approximately 3000 photons. For Atm and Na2SO3 the calculated lifetimes were 298 ns 

and 455 ns, which is reflected by the decay gradient in Figure 79. 
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Figure 79 – Lifetime decay of [Ru(bipy)3]
2+ and deionised water solution at a concentration of 0.167 mM in 

atmosphere (Atm: black square and line) and with sodium sulfite (Na2SO3: red cicrle and line). Solutions 
were maintained at 37ºC and approximately 1x106 photons were collected in 120 sec. 

The weighted residual plots for both decays are shown in Figure 80 where the χr
2 

was 1.101 and 2.175 for Atm and Na2SO3, respectively. The discrepancy between Atm and 

Na2SO3 can be visually seen in the plot. The Atm is evenly distributed about the zero line, 

and the Na2SO3 begins evenly distributed for the first 700 ns, but then deviates from the 

zero line. This indicates a poor fit between modelled and experimental data, which was 

confirmed by the χr
2. 

 

Figure 80 – Weighted residual plot of mono-exponential fit with lifetime decay data for [Ru(bipy)3]
2+ and 

deionised water solution at a concentration of 0.167 mM in atmosphere (Atm: black square) and with 

sodium sulfite (Na2SO3: red circle), χχχχr
2 is 1.101 and 2.175, respectively. 

The previous results in section 3.4.8.3 gave the impression that a faster collection of 

data was possible, but it now appears that this advantage has quickly disappearing. In 
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Figure 79, the two decays of [Ru(bipy)3]
2+ in deionized water, are at atmospheric oxygen 

and in a reduced oxygen environment, Na2SO3. Both decays were recorded at 37°C and 

had a concentration of 0.167 mM with the same parameters ADC 1024, excitation rate 500 

kHz, collection rate 3%, total collected photons 0.99x106. Inspection of the calculated 

lifetimes shows 298 ns and 455 ns, and χr
2 as 1.101 and 2.175, for Atm and Na2SO3, 

respectively. This discrepancy is also apparent in the weighted residual plots shown in 

Figure 80 where the Atm is evenly distributed about the zero line, but the Na2SO3 is evenly 

distributed above the zero line. The difference in lifetime values for Atm and Na2SO3 

would be expected due to the difference in oxygen levels and therefore quencher. But under 

current criteria for rejection of induced pile-up the Atm decay would be accepted and the 

Na2SO3 would be not.  

The reason for this discrepancy is pile-up and the reason behind this can be seen 

from applying an equation written by Coates [56] to the collected data. As it is known from 

section 3.4.7 pile-up occurs when more than one count appears within the same excitation 

cycle. Here the goal is to determine the probability of detecting a photon or count in 

channel i during one excitation cycle. The effective number of cycles for channel i is then: 

Eq. 35     ∑
−

=

−=
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where, the number of counts in time channel i is Ni and the total number of 

excitation cycles is E. A photon in channel i cannot be detected if a photon in a previous 

channel j has been detected j<i. Therefore the probability (Pi) of detecting a count (i) during 

each excitation cycle is, 

Eq. 36     
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Applying the above equation Eq. 35 and Eq. 36 to the data sets for atmosphere and 

Na2SO3 produces identical graphs to Figure 79. However it displays the probability of 

detecting a second photon in later channels with time. It showed that with the same 

number of excitation cycles, the number of photons collected in the later part of the Na2SO3 

decay has a higher likelihood of pile-up occurring, confirmed by current results. Even 

though the probability of pile-up occurring was extremely low (1.6%) it has been shown to 

be sufficient enough to induce pile-up and warrant rejection. 

Coates equation also shows that the relationship between excitation rate, collection 

rate and the number of emitted photons play a major role in the development of pile-up, 

which are dependent on laser power (EOM gain) and dye concentration, as shown in these 
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results. The model has also identified that experimental collection rates should be matched 

to the longest anticipated lifetime decay. The lifetime decay of [Ru(bipy)3]
2+ is longest with 

no quencher, therefore for future experiments the collection rate must be maintained at ≤ 

1% of the excitation rate.  

3.4.8.5 Quantifying repeatability 

An important assessment of a newly developed technique is the quantification of 

systematic error inherent within the system rather than the acquisition of data. Minimising 

other influences arising from pile-up or the number of photons collected per decay an 

unbiased assessment of the systematic error can be determined. This provides opportunity 

for comparison with other researchers the accuracies possible for oxygen discrimination. 

A similar sample preparation, FLIM setup, and data analysis was conducted as 

outlined in section 3.4.8.1. EOM gain adjustment maintained a count rate ≤1% and 

photons were collected for 800 sec to ensure maximum dynamic range was reached; five 

repeated measurements were collected.  

Lifetime decays of [Ru(bipy)3]
2+ in deionized water were measured at room 

temperature in atmosphere. Five repeated measurements of the same sample provided a 

mean lifetime of 377.14 ns, a standard deviation of ±1.07 (±0.28%) and standard error of 

±0.48 (±0.13%). On average the number of photons collected per decay was in the region 

of 1.2x106 counts. 

The systematic variability of the system was assessed by recording five lifetime 

measurements of [Ru(bipy)3]
2+ in deionized water. Comparing results of this technique with 

other researchers proved difficult as very few quote the accuracy of their measurements or 

technique. One researcher, Sud et al. [279] did discuss the accuracy of their lifetime 

measurements based on a wide-field microscope and time-gated lifetime detection system. 

The lifetime variability of this FLIM system was ±2% or ±6 ns of [Ru(bipy)3]
2+ lifetime 

translating to minimum detection of 8 µM oxygen concentration. The variability quoted for 

lifetime must be ignored as this change will be dependent on oxygen concentration and 

temperature. Comparing the percentage standard deviation of the FLIM systems shows the 

current system has an increased accuracy of up to 7 times. This highlights the advantage of 

using confocal TCSPC rather than wide-field time-gate. It further shows the potential for 

providing an increased level of discrimination between oxygen concentrations in the 

surrounding area. 
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3.4.8.6 The effect of repetition rate on systematic error 

In time-gate experiments the total integration time for two gates is suggested to be 

optimum at 5τ [19] providing minimal error. The difference with TCSPC is that there are 

1024 time channels spread over the decay. The standard deviation of the TCSPC decay is 

based on Poisson statistics, i.e. higher the photons per channel less the error. The optimum 

time range window allows the decay to complete to background noise level. This avoids 

incomplete decays, where the photons wrap around appearing prior to the initial decay 

peak masking the baseline and restricting the fitting model from determining the offset. If 

the suggested optimum time range were to be applied to a lifetime at 500 ns it would 

require 2.5 µs to complete, but the SP830 TAC has a time range limit of 2 µs (500 kHz 

repetition rate). Therefore in these experiments the time range is dictated by the equipment. 

Using a shorter time range than optimum for a decaying fluorophore to relax 

induces the possibility of stroboscopic excitation affecting measurements. Stroboscopic 

excitation is where fluorophores electrons are re-excited before returning to the ground 

state, thus reducing the excitation efficiency per pulse [196]. This subtle effect can interfere 

with the true lifetime, whereby the excited electrons increasingly do not return to the 

ground state and create an exponential growth of electrons in a high energy state until 

equilibrium is reached. Only once this equilibrium is attained can the real lifetime be 

measured without a changing baseline. Even though the manual states that the limit of the 

TAC range is 2 µs [27] the time base can actually be adjusted to 5 µs (200 kHz repetition 

rate), which suggests there might be a problem with photon timing for photons at the start 

of the decay, but initial test revealed no such issue. In order to determine the possibility of 

stroboscopic excitation the repetition rates must be varied and compared. If no difference in 

lifetime is observed it can be assumed that the repetition rates were not fast enough to 

induce anomalies. 

The same sample preparation, FLIM setup and data analysis was used as in section 

3.4.8.1. The sample concentration used in these experiments was 0.412 mM and the 

environment temperature and oxygen level were at ambient and atmospheric, respectively. 

The laser repetition rates were varied between 1 MHz, 500 kHz, and 200 kHz with 

respective time ranges of 1 µs, 2 µs, and 5 µs. Collection rates and time channels were 

maintained at 300 sec to ensure identical photon counts and ADC 1024, respectively. 

Lifetime decay of [Ru(bipy)3]
2+ in deionized water was measured at three excitation 

rates 1 MHz, 500 kHz, and 200 kHz, as shown in Figure 81. The lifetimes and total decay 

counts are similar for repetition rates of 1 MHz, 500 kHz, and 200 kHz as 390.6 ±1%, 

390.7 ±0.5%, 391.0 ±0.25% ns and 960710, 929559, 969951 counts, respectively. However, 



3 •  Calibration of the FLIM system  143 

 

 

the peak counts for repetition rates of 1 MHz, 500 kHz, and 200 kHz are different at 2845, 

4977, and 12314, respectively. 

 

Figure 81 – Lifetime decay of [Ru(bipy)3]
2+ in deionized water at a concentration of 0.412 mM in 

atmosphere and room temperature, at three laser excitation rates 1 MHz (black), 500 kHz (red), and 200 
kHz (blue) using an ADC 1024. 

The variation in excitation rate has had minimal effect on the lifetime values. 

Although there does appear to be a relationship between repetition rate and standard 

deviation. Where the repetition rate is halved so is the standard deviation. This might 

suggest a slight effect from stroboscopic excitation, but not enough to induce an obvious 

change in lifetime. The number of counts per decay is similar, but the peak counts vary 

vastly where the largest difference of 77% is seen between 1 MHz and 200 kHz repetition 

rate. This can be attributed to the number of ADC time channels, as the number of 

channels are maintained at 1024 for all repetition rates. At 200 kHz the time channels are 

wider so counts combine incrementing more rapidly. At 1 MHz there is a higher level of 

segregation between time channels and so counts increment at a slower rate. As the total 

number of counts collected at each repetition rate is the same it confirms there is just a 

different distribution. This shows that the different repetition rates do not induce 

stroboscopic excitation. It needs to be determined what is the minimum number of counts 

required to maintain an optimum lifetime accuracy. 

3.4.8.7 The effect of collection time on minimum fitting error 

Maintaining a minimum contribution of pile-up does not infer accurate lifetime, it 

merely accounts for the goodness of fit between the data and the model. It is possible to 

obtain an excellent chi square, but determined an inaccurate lifetime. Accordingly the 

greater the number of photons collected the smaller the standard deviation in the data, 
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reducing the experimental error for lifetime fitting. Therefore another method of 

quantifying a sufficient number of photons must be employed to provide confirmation that 

the quality of the data is adequate. This aspect is not an issue if decays are collected to 

reach maximum dynamic range, but that can cost time. A balance needs to be obtained that 

meets both a low collection time, but maintains an optimum number of photons for fitting 

decays with minimum lifetime error. 

The same sample preparation, FLIM detection and analysis were conducted as set 

out in section 3.4.8.1. The effects of collection rates on laser repetition rate used excitation 

rates of 500 kHz, 400 kHz, and 200 kHz with respective time ranges of 2 µs, 2.5 µs, and 5 

µs. Samples were measured a low oxygen level with the addition of Na2SO3 to air tight 

sample chambers. At each repetition rate lifetime decays were collected for 0.5, 1, 2, 4, 16, 

32, 64,124 sec with triplicate repeats. Data was exported to OriginPro 8 and a one-way 

ANOVA of the 9 was applied to the lifetimes measured at each collection rate. 

[Ru(bipy)3]
2+ was dissolved in deionzed water to produce a concentration of 0.414 

mM and maintained at 37ºC in Na2SO3. The average lifetime was measured at three 

excitation rates 200, 400, 500 kHz with incrementing collection times as shown in Figure 

82. At the lower collection time of 0.5 sec the average lifetime and standard deviation for 

all repetition rates was 517.8 ±47.32 ns, respectively. As the collection time increased the 

lifetime variability decreases i.e. at 128 sec the lifetime and deviation was 492.9 ±0.61 ns. 

Although a one-way ANOVA showed the mean lifetimes for all collection times were not 

significantly different (p>0.8). 

 

Figure 82 – Average lifetime and standard error of varied repetition rate 200 kHz (black square), 400 kHz 

(red circle), 500 kHz (blue triangle) with incrementing collection times (n=3) plotted on a semi-log plot. 
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The adjusted R2 for each fit of the lifetime data is plotted against total decay count 

for each repetition rate, as shown in Figure 83. An inset graph represents a zoomed section 

of the Figure 83, identified by the red box. This displays the adjusted R2 values greater than 

0.90 for maintaining minimum influence in variability. All three repetition rate data follow 

a double exponential pattern, although at slightly different rates. The adjusted R2 values for 

each repetition rate exponentially increases rapidly until reaching a plateaux. In order to 

maintain an adjusted R2>0.9 the minimum required counts for 200, 400 and 500 kHz are 

7018, 13,000 and 20,000 counts per decay, respectively. 

 

Figure 83 – Adjusted R2-sqaure of mono-exponential fitted lifetime measurements at repetition rates of 200 
(black square), 400 (red circles), and 200 (blue triangle) kHz against total number of photons counted per 

decay. The inset graph represents a zoomed in section represented by the red box.  

The total and peak counts are displayed against collection time for the three 

repetition rates in Figure 84. The total and peak number of counts has a positive linear 

correlation with the collection time for each repetition rate. There are different gradients for 

each repetition rate with 200 kHz displaying an overall lower total count compared with 

the other rates, but a high peak count than the other rates. For a total count of 7018, 13,774 

and 20,000 the required collection time must be >3.2, 4.2, and 5.7 sec per decay, 

respectively. Using this collection time the peak count for each repetition rate is determined 

as 103, 88 and 97 peak counts for repetition rates of 200, 400 and 500 kHz, respectively. 
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Figure 84 – The effect on the total and peak count of a lifetime decay through the combined effects of 

collection time and repetition rate 200 kHz (black squares), 400 kHz (red circles), and 500 kHz (blue 
triangles) displayed on a log plot. A: represents the total counts and B: represents the measured peak 

counts. 

The mean lifetimes for all collection times and repetition rates were not statistically 

different, but the variation in standard deviation was between 25% and 0.02%. The 

collection rate was maintained at less than 1% during the experiment minimising influences 

from pile-up (χr
2 ≤1.17). The adjusted R2 had been used to describe the standard deviation 

in the data rather than just the quality of the fit with the data. To ensure a standard 

deviation in the lifetime is maintained at <1.5%, the adjusted R2 value must be >0.90. For 

repetition rates of 200, 400, and 500 kHz the collection time, total count and peak count 

must be greater than 3.2, 4.2 and 5.7 sec, and 7018, 13,774, and 20,000 total counts and 

103, 88 and 97 peak counts, respectively. Even though it has been possible to collect decays 

at longer repetition rates future experiments will operate at 500 kHz as physically the TAC 

should not be able to operate efficiently at these longer repetition rates [27].  

3.4.9 Conclusion 

The TCSPC module converts the acquired photon emission into digital counts and 

assigns them to time channels. Mono-exponential fits of these decaying histograms provide 

the lifetime of [Ru(bipy)3]
2+ in solution. The decays reflect a Poissonian distribution and the 

standard deviation relies on Poisson statistics to describe the probability of photon 

emission. The optimised operation of the TCSPC module with [Ru(bipy)3]
2+ has verified 

parameters for future experiments. The IRF does not need to be deconvolved from these 

lifetime decays as it only contributes to 8x10-6% of the decay. The relationship between 

background counts and time is linear and can be used to confirm the correct offset revealing 

decays affected by pile-up. The systematic variability of measuring the lifetime repeatability 

is less than 0.3%. Visual inspection of the weighted-residual plot does not always conclude 

the occurrence of pile-up and so it should be used in conjunction with the χr
2.  A cut-off 

value of χr
2 ≤1.17 is to used to accept mono-exponential fits of [Ru(bipy)3]

2+ decays, 
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provided data points exceed 200. Collection rates must be maintained <1% of the 

excitation rate in the study (<5x103 photons/sec) so as to minimise the effects of pile-up. 

Stroboscopic excitation does not affect the accuracy of the lifetime if an ample number of 

counts are collected. The adjusted R2 is used to confirm a sufficient number of counts have 

been collected and must be maintained at >0.9 and the minimum collection time per decay 

must be >5.7 sec for a repetition rate of 500 kHz. 

3.5 Summary 

• Theoretically at 500 kHz fluorophore saturation should not induce 

photobleaching at maximum power. 

• Laser alignment should be checked when traversing through the excitation 

wavelengths to account for the wavelength dependent laser pointing stability drift. 

• To avoid geometric distortions at low laser repetition rates scan speed or image 

format size should be reduced to increase dwell time/pixel and therefore counts. 

• Collected data must produce χr
2 ≤1.17 and adjusted R2 >0.9 otherwise it should 

be rejected. Also total and peak counts for 500 kHz should be >20,000 and 97 

counts, respectively. 

• In order to minimse pile-up collection rates should be maintained <1% of the 

repetition rate (at 500kHz = <5000 photons/sec).  

• Using full dynamic range, whilst maintained at maximum collection rate of <1% 

repetition rate, the systematic lifetime variability measurement was < 0.3%. 
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Characterisation of 

Ruthenium(II)  

4  

4.1 Introduction 

The previous chapter discussed the optimised procedure for detecting accurate 

lifetime and the parameter settings and limits that should be considered and used. The 

following chapter will examine the possible environmental fluctuations that [Ru(bipy)3]
2+ 

could be exposed to and determine the implications to the detected lifetime. As discussed 

previously the dye and detection will be applied to a cell seeded agarose construct 

submerged in cell culture media for the detection of oxygen concentration surrounding the 

cell. Therefore to determine the effects on lifetime this chapter will be separated into two 

sections focusing on: 

• Environmental factors – interaction of [Ru(bipy)3]
2+ with its surroundings 

• Oxygen concentration – establishing a relationship between lifetime and oxygen  

4.2 Environmental considerations 

4.2.1 Background 

4.2.1.1 Effect of [Ru(bipy)3]
2+ concentrations on lifetime 

As the dye diffuses through a construct it could be assumed that the spatial 

localisation in a static system would ultimately become homogenously distributed. But 

with the addition of cells a more complex diffusional path would be created. Also the effect 

of using an agarose construct could affect the diffusion coefficient of [Ru(bipy)3]
2+. This 

effect, to the diffusion coefficient, is seen with larger molecules like dextran [242], but the 

extent of the influence is pore size dependent reliant on the manufacturing process of the 

agarose gel [242]. In the case of intensity, measurements are concentration dependent and 

so influenced by any variation of dye presence [171]. The advantage of lifetime 
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measurement is the independence between concentration and lifetime as it is a measure of 

the rate processes. However, it is still necessary to confirm that the lifetime measurements 

are not affected by the concentration of the fluorophore. A set of concentrations shall be 

tested for two-photon (TP) emission spectra to confirm it produces the same results as for a 

continuous intensity measurement. This will identify the relationship between 

concentration and intensity. Finally lifetime measurements will be determined to confirm 

that concentration does not influence lifetime and investigate any systematic error in the 

TP confocal FLIM system. 

4.2.1.2 Effects of temperature on lifetime 

It has been shown that oxygen solubility in solution is temperature dependent [25] 

and as the oxygen concentration changes it would be expected to affect the decay. 

However, the [Ru(bipy)3]
2+ complex also displays temperature sensitivity to its 

environment. Van Houten & Watt [300] showed a relationship between temperature and 

[Ru(bipy)3]
2+ in deoxygenated deionised water. These data confirmed that it was the 

temperature sensitivity of the dye not the response to oxygen that influenced the change in 

lifetime. Since then many studies have investigated the temperature dependence of the dye, 

using it as a long lifetime laboratory standard, by varying the oxygen concentration and 

temperature [212]. It has also been suggested by Harrigan et al. [113] that it could be used 

as a cryogenic temperature sensor, but more recently it has been embedded in a film and 

used to acquire three-dimensional thermal images using a two-photon microscope [150]. 

Temperature affects the τ0 of [Ru(bipy)3]
2+, therefore any lifetime relationship established 

with oxygen should to be conducted at the experimental temperature, as the Stern-Volmer 

constant will be temperature dependent. A range of temperatures will be tested to confirm 

that the collated lifetime results are in keeping with those determined at other research 

facilities and to assess the suitability of the temperature controlled environment. 

4.2.1.3 Effects of pH on lifetime 

Previous studies have shown changes to oxygen partial pressures induce changes in 

the pH environment of chondrocytes [210]. It is therefore vital to confirm that pH levels do 

not induce changes in lifetime measurements in the absence of cells. The physiological 

range of pH in the body is vast from pH 2 in gastric juice to > pH 8 in the small intestine. 

However when considering the cellular environment variability it is restrictive [160], i.e. in 

blood the normal pH range is between 7.35 and 7.45 and in lysosomes it can be between 

pH 4.5-5.5. The cytoplasm of cells is approximately between pH 7 - 7.3, whereas extra-

cellular concentration in cartilage can range from pH 6.6 - 7.1 [93, 296] and in the synovial 
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fluid up to pH 7.38 [141]. In order to cover a suitable physiological range for cartilage and 

the prospect of using this technique for other cell types, [Ru(bipy)3]
2+ will be dissolved in 

phosphate buffers varying between pH 5 - 7.5. 

4.2.1.4 Effect of cell culture media and serum on lifetime 

Chondrocytes, like other cell types, require nutrients and oxygen for survival. 

Oxygen is delivered via the surrounding environment, but for an in-vitro system cell culture 

media is required that provides key nutrients and growth factors, and tends to be cell-type 

specific. The nutritional media contains a wide variety of inorganic salts, vitamins, amino-

acids, sugars, proteins and pH buffers (see Appendix D), to provide optimal growth 

conditions. Figure 85 shows the excitation and emission spectra of some of these 

components of the culture media. 

 

Figure 85 – Two photon cross-section (σ2P) of a set of biological molecules and the excitation and emission 

peaks of [Ru(bipy)3]
2+. A: TP absorption cross-section (σ2P) of intrinsic intracellular fluorophores (1 

GM=1x10-50) all measured in saline solutions. B: Emission spectra of the intrinsic fluorophores shown on 
the left. Adapted from Zipfel et al. [329]. 

The spectra in Figure 85 demonstrate that the possible excitation wavelength for 

media components are not straight forward Gaussian peaks as generally seen for SP 

excitation. Instead TP excitation spectra are relatively broad, which means that the 

likelihood of exciting an endogenous fluorophore associated with these media components 

are relatively high. However, the emission spectra are focused more towards the UV range 

(350 - 450 nm) whilst [Ru(bipy)3]
2+ peaks at approximately 600 nm. Thus appropriate filters 

can be used to exclude returning emission from media component, but this is not possible 

with lifetime, unless there are multiple detectors. It is known that the lifetimes of 

endogenous fluorophores tend to be very short, in the order 5 ns [236]. This makes it 

possible to remove their effect by analysing the decays after completion. For example 

riboflavin has a τ0 of 4.2 ns in solution [172]. Nevertheless it is necessary to determine the 



4 •  Characterisation of Ruthenium(II)   151 

 

 

influences these autofluorescent components could have on the detection of [Ru(bipy)3]
2+ 

lifetime.  

4.2.2 Materials & Methods 

4.2.2.1 Chemical materials 

A stock solution of the oxygen sensitive dye Tris(2,2′-bipyridyl)ruthenium(II) 

chloride hexahydrate, [Ru(bipy)3]
+2 (224758, Sigma-Aldrich, UK) was prepared with de-

ionized water (13.34 mM). Prior to experimentation the stock solution was pre-filtered 

through a 0.2 µm Supatop syringe filter cap (ALG422A, Anachem Instruments Ltd., UK). 

Standard DMEM (D6429) was supplemented with 3.8 g/l HEPES (H0887), 80.6 U/ml 

penicillin and 80.6 mg/l streptomycin (P4333), 0.12 g/l L-ascorbic acid (A0278), 1% L-

glutamine (G7513), and 16% (v/v) fetal bovine serum (FBS) (F7524) (Sigma-Aldrich, UK). 

Phosphate buffer solutions at varying pH values were made from a mixture of liquid 

potassium phosphate dibasic solution (K2HPO4, 1 M) (P8584, Sigma-Aldrich, UK), and 

liquid potassium phosphate monobasic solution (KH2PO4, 1 M) (P8709, Sigma-Aldrich, 

UK).  

4.2.2.2 TP Confocal TCSPC optimised parameter 

All TP confocal FLIM measurements were run at an excitation of 780 nm and 

repetition rate of 500 kHz. The EOM gain was adjusted to ensure collecting rates were 

maintained at <1% of the repetition rate (5000 photons/sec) and emission mirrors were set 

to 600±50 nm. Samples were transferred to coverslips (no. 1.5, 22x32 mm) (Cat. No. 631-

0134, VWR Ltd., UK) and mounted on to x63 (NA 1.4) oil immersion objective lens 

(506192, HCX PL APO, Leica Microsystems Ltd., GmbH). Equipment parameters were 

set to ADC 1024, time range 2 µs, fully open pinhole (600 µm), and image format 256x256. 

Single lifetime decays were converted from ‘.std’ to ‘.asc’ files using SPCM software and 

transferred to OriginPro8 (SR0, OriginLab Corportation, USA). Any mono-exponential 

lifetime decay fits with a χr
2 >1.17 or an adjusted R2<0.90 were rejected. All experiments 

followed the same procedure unless otherwise stated. 

4.2.2.3 Emission spectra and intensity measurements 

Four concentrations of [Ru(bipy)3]
+2 ranging from 0.208 - 3.34 mM in de-ionized 

water were prepared from stock solutions and maintain in atmosphere. The solutions were 

transferred to air tight sample chambers and mounted into a heating plate on the 

microscope stage, set to 37°C; the stage was enclosed with an environmental chamber set 
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to 35°C. For recording the emission spectra, the PMT was set to 11 nm and a series of 19 

images were recorded incrementing between 507 nm to 722 nm; recorded with 2 line 

averages and 3 frame averages. A stack profile with a ROI of the series was taken and 

exported to Origin. The intensity measurements involved drawing a ROI over the image 

and recording the mean intensity for the full PMT range 507-722 nm for each concentration 

at a TPE of 780 nm; measurements were repeated three times and averaged.  

4.2.2.4 Lifetime concentration dependence 

Doubling dye concentrations, between 0.104-3.34 mM, were prepared with 

[Ru(bipy)3]
+2 in de-ionized water. A glass bottomed 12 well dish (P12G-1.5-10-F, MatTek 

Corportation, MA, USA) was filled with six 1 ml aliquots of each concentration. The dish 

was mounted on the microscope stage and maintained in atmosphere at room temperature 

(25°C) to remove the possibility of inducing temperature gradients across well dish. 

Lifetime decays were collected for 150 sec, in replicates of three, averaged and plotted on a 

semi-log graph. 

4.2.2.5 Temperature variation 

Pre-calibration of the heating plate was completed prior to experiments, using 

digital hand-held T-type thermocouple temperature sensor (accuracy ± 0.2°C) (311-1658, 

Digitron, RS components, UK). A single chamber, normally used for airtight 

measurements, was filled with a 0.412 mM solution of [Ru(bipy)3]
+2 in deionized water. 

Direct temperature measurements of the solution were performed using the handheld 

digital thermocouple. A T-type thermocouple was positioned at the centre of the coverslip 

inside the chamber. The thermocouple was sealed into position using 12 sections of 

parafilm, restricting sample solution evaporation. Base heating was maintained via an 

environmental chamber to provide a controlled ambient temperature of 35ºC, and the stage 

mounted heating plate (14-002-08, Intracel Ltd., UK) was adjusted to provide a finer 

temperature control of 32 to 39ºC with temperature increments of 1-2ºC. Temperatures 

were set and left to stabilise for 40 mins between increments and lifetime decays were 

collected for 400 sec. The temperatures were noted at the start and completion of each 

lifetime measurements, to account for possible drift during the experiment. 

4.2.2.6 Susceptibility of pH concentration on lifetime 

Pre-prepared solutions of phosphate buffer (50 mM) at pH 9 (K2HPO4) and pH 4 

(KH2PO4) were combined to create six 1 ml aliquots with pH ranging between pH 5 - 7.5 

with pH 0.5 increments. The final pH concentrations were confirmed using a 3 mm 
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specialist pH meter (Orion 3-Star Plus Benchtop, ThermoScientific, MA, USA), with an 

accuracy of ±0.002 pH. The stock solution of [Ru(bipy)3]
+2 was combined with the desired 

pH range to produce a final working concentrations of 0.412 mM. Each concentration was 

transferred into the wells of a glass bottomed 12 multi-well dish (P12G-1.5-10-F, MatTek 

Corportation, MA, USA) and mounted on the microscope stage. Measurements were 

performed at room temp (25°C) and the decay was collected for 150 sec; five replicates 

were measured for each pH concentration. 

4.2.2.7 Media autofluorescence 

Five samples were prepared: FBS, water+16% FBS (v/v), standard DMEM, 

standard DMEM+HEPES+l-ascorbic acid, and DMEM+16%FBS; DMEM with all 

chemical components required for cell culture media as stated in section 4.2.2.1.  To enable 

a comparison, stock solutions of [Ru(bipy)3]
2+ was mixed with DMEM+16%FBS (media) 

to provide a concentration of 0.412 mM. Autofluorescent measurements used a laser 

repetition rate of 8 MHz, time range was 125 ns, each decay was collected for 120 sec. For 

the comparison between autofluorescence (DMEM+16%FBS) and [Ru(bipy)3]
2++ media 

the laser repetition rate was dropped to 500 kHz, time range 2µs, and collection for 800 sec 

or until dynamic range was reached. 

4.2.2.8 Fetal bovine serum (FBS) concentrations 

Stock solution of [Ru(bipy)3]
2+ was diluted in deionized water and FBS to produce 

nine FBS concentrations, between 0-40% and final [Ru(bipy)3]
2+ concentration of 0.412 

mM; solutions were mixed by inversion before pipetting. For intensity measurements 200 

µl aliquots of each concentration were transferred to a 96 well plate (CLS3790, Costar, 

Corning), in replicates of 5, and excited using a fluorescence fluorimeter (Galaxy, BMG 

LABTECH GmbH, Germany). The excitation and emission filters were set to, 485 nm and 

610±10 nm, respectively. The fluorimeter uses a xenon flash lamp with 50 excitation cycles 

and a gain adjustment of 48. 

Time-resolved measurements and emission wavelength spectrum were completed 

on the TP confocal FLIM system. The multiple replicates used for the intensity 

measurements were recombined and transferred to single wells of a glass-bottomed 12 well 

dish (P12G-1.5-10-F, MatTek Corportation, MA, USA) and mounted on the microscope 

stage. Five replicate time-resolved single lifetime decays were collected for 100 secs at 500 

kHz and converted to ASCII files before importing to Origin; single exponential decays 

were fitted between 200 and 1500 ns for each file.  The emission spectrum of each dilution 

was measured between 500–750 nm in 5 nm increments. Images at each wavelength were 
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captured with 2 line and frame scans and analysed using the Leica stack profiling tool to 

produce the emission spectrum, which was then exported to Origin. All measurements 

were performed at room temperature. 

4.2.3 Results 

4.2.3.1 The TPE emission peak for [Ru(bipy)3]
+2 replicates that of SPE 

The emission intensity from two-photon excitation of [Ru(bipy)3]
2+, dissolved in 

water at 37°C, at varying concentrations is shown Figure 86. At a concentration of 0.208 

mM the measured intensity at each point was too low to produce an emission spectrum 

and has not been included. As the concentration of the dye increases the magnitude of the 

emission intensity peaks also increases. The emission peak profiles were slightly 

asymmetric and so an asymmetric double sigmodal model was used to derive the central 

peak and FWHM of each concentration. The mean centre peak and standard deviation for 

all four concentrations was 608.8 ±0.11 nm (±0.02%). The FWHM and standard deviation 

for all four concentrations was 72.1 ±0.78nm (±1.1%); (adjusted R2 >0.99). Compared 

against the SP emission spectra in chapter 2 at an excitation wavelength of 468 nm the 

[Ru(bipy)3]
2+ emission peak has red-shifted by 4 nm (0.6%) and the FWHM has increased 

by 28.62 nm (40%). This spectral broadening could arise from higher energy level 

absorption combined with thermal changes affecting radiative pathways as in seen in laser 

material [204]. 

 

Figure 86 – Emission spectra with TP excitation at varying concentrations of [Ru(bipy)3]
2+. Four 

concentrations of [Ru(bipy)3]
2+ dissolved in water at 3.34 mM (black squares), 1.67 mM (red circle), 0.845 

(blue up pointing triangle), and 0.418 mM (green down pointing triangle) were excited at 780 nm TPE and 
intensity emission spectra captured between 507 nm and 722 nm. 
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4.2.3.2 Intensity has a linear relationship with [Ru(bipy)3]
+2 concentration 

TP intensity measurements of incrementing concentrations of [Ru(bipy)3]
2+ 

dissolved in water at 37°C and maintained in atmosphere, are shown in Figure 87. A linear 

fit was performed on the data points and a positive linear correlation (adjusted R2 >0.99) 

was established between intensity and [Ru(bipy)3]
+2 concentration.  

 

Figure 87 – The effect of incrementing dye concentration on emission intensity. Increasing concentrations 
of [Ru(bipy)3]

+2 dissolved in water at 37°C shows a positive linear relationship with increasing fluorescence 

intensity, adjusted R2>0.99. 

4.2.3.3 Lifetime is unaffected by [Ru(bipy)3]
+2 concentration 

Lifetime measurements of increasing concentrations 0.104 mM - 3.34 mM, at 25°C 

in atmosphere of [Ru(bipy)3]
+2 in deionized water, showed no correlation with lifetime, as 

shown in Figure 88. Sud et al. [279] measured lifetimes of [Ru(bipy)3]
+2 at 25°C in 

phosphate buffered saline (PBS) over a varying dye concentration between 0.67 mM - 6.67 

mM using a wide-field time-gate microscope. A comparison of the average measured 

lifetime for the current system, TP confocal TCSPC, against a wide-field time-gate [279] 

shows a mean lifetime and standard deviation of 375.45 ±1.36 ns (0.36%) and 363 ±8.9 ns 

(2.45%), respectively. 
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Figure 88 –The lifetime of [Ru(bipy)3]
2+ in water has been measured at varying dye concentration and 

plotted on a semi-log graph. Incrementing dye concentration measured using the current system TP confocal 

TCSPC (red circles) compared with a wide-field time-gated system (black squares), used by Sud[279], at a 
temperature of 25°C. Each point represents the mean and standard deviation of 3 replicates. 

4.2.3.4 [Ru(bipy)3]
+2 shows temperature dependence 

Figure 89 provides an example of the response of [Ru(bipy)3]
+2 to change in 

temperature. A shift in lifetime gradient is clearly seen in the inset of Figure 89. The 

measured lifetimes for the temperatures of 32, 33, 34, 35, 37, and 39°C are 343, 336, 332, 

328, 319, and 311 ns, respectively. The standard deviation for the fitting of each lifetime is 

<0.2%. There is also a statistically significant negative correlation (p<0.05) between the 

temperature and the total number of counts collected; an increase in temperature reduces 

the number of counts collected.  
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Figure 89 – Semi-log plot showing decay of photon counts with time and the effect induced by temperature. 

Inset: represents the central section of the decay between 500-1500 sec displaying the shift in gradient when 
[Ru(bipy)3]

+2 is exposed to 32°C (red line), 34°C (green line), and 39°C (dark blue line). 

 

Figure 90 – Response of [Ru(bipy)3]
2+ in deionized water to incremental changes in temperature. Lifetime 

measurements (red squares) are shown with error bars in x-axis representing temperature drift and error 

bars y-axis representing standard deviation of fit. Measured data compared with Morris [212] (black line) 

shown with upper (UCL – purple dot dash line) and lower confidence limits (LCL – blue dot dash line). 

The lifetime decays shown in Figure 89 have been plotted against the measured 

temperature, as shown in Figure 90. The standard deviation in lifetime and temperature 
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come from the five repeated measurements and variation during collection time, 

respectively. The upper and lower confidence limits of the Morris [212] data agree with the 

measured results. Initially a linear relationship appears to exist between [Ru(bipy)3]
2 and 

temperature, but over a larger temperature range the data from Morris [212] shows that a 

binomial models fits Morris’s data over large temperature ranges. 

4.2.3.5 No correlation between [Ru(bipy)3]
+2 lifetime and pH 

The stock solution of [Ru(bipy)3]
2+ was dissolved in phosphate buffer between pH 5 

- 7.5 to produce a final [Ru(bipy)3]
2+ concentration of 0.412 mM. Replicate lifetime 

measurements (n=5) at room temperature were taken of each pH concentration as shown 

in Figure 91. There was no correlation (p=0.8) between lifetime and pH concentration 

between 5 and 7.5 pH. The mean and standard deviation of the measured lifetimes were 

calculated as 388.4 ±0.76 ns (0.19%), respectively. 

 

Figure 91 – Measured lifetime of [Ru(bipy)3]
+2 in phosphate buffer with incrementing concentration of pH. 

[Ru(bipy)3]
+2 dissolved in varying concentrations of phosphate buffer between 5-7.5 pH at room 

temperature with a linear fit. 

4.2.3.6 Cell culture media exhibits autofluorescent components 

Autofluorescence decays arising from cell culture media are shown in Figure 92. 

All five samples exhibit complex multi-exponential decay profiles and were fitted with tri-

exponential decays. For comparison purposes the mean lifetimes (τm) for water+16%FBS, 
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FBS only, DMEM all, DMEM H&A, DMEM only, were 2.7 ns, 2.5 ns, 3.18 ns, 2.9 ns, 

and 3.19 ns, respectively. The full exponential details are listed in Table 14. There is no 

difference in the mean lifetime of sample 5 and 3, which is also confirmed by looking at the 

individual components. But for sample 4 the amplitude percentage of all the components 

differs from samples 3 and 5 with a more equal distribution for component a1 and a2. The 

lifetime of component 3 is longer, but component 2 is slightly shorter. The mean lifetimes 

of the FBS samples are shorter than the DMEM samples, but when observing the 

breakdown of components the percentage of the first and second have risen and decreased, 

respectively. 

 

Figure 92 – Autofluorescent lifetime decays of DMEM and the components that make up cell culture media 

excited with a 8MHz repetition rate at 780 nm. Abbreviation: FBS – Fetal Bovine Serum, DMEM – 
Dulbecco's Modified Eagle Medium, H&A – HEPES and L-Ascorbic acid. 

Table 14 – Fitted tri-exponential decay components of above sample. 

Components 
Samples 

τ1 (ps) a1 (%) τ2 (ps) a2 (%) τ3 (ps) a3 (%) 

1) water+16%FBS 1013 71 4662 28 17764 0.8 

2) FBS only 1230 69 4713 29 12881 2 

3) DMEM all 1457 59 5332 38 13317 2.2 

4) DMEM H&A 1175 49 4515 50 21286 0.3 

5) DMEM only 1197 58 5613 39 14129 1.9 

In Figure 93, the autofluorescent ‘Media’ is compared with ‘Ru’ sample using a 500 

kHz excitation rate. The autofluorescence has a rapid decay in comparison to [Ru(bipy)3]
2+. 

An initial peak is displayed in the [Ru(bipy)3]
2+ sample matching that of the 

autofluorescence confirming that it is not a scattering effect. Using a bi-exponential decay 

to fit the [Ru(bipy)3]
2++media sample shows that the percentage of the autofluorescent 
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amplitude contribution to the [Ru(bipy)3]
2+ sample is 75%, which means that the dynamic 

range can be reached prematurely due to the media. Using data from the table the largest 

expected autofluorescent lifetime is 21 ns where as the lifetime of this [Ru(bipy)3]
2+ is 370 

ns, 20 times longer that any autofluorescence sample. 

 

Figure 93 – Lifetime decay of cell culture media and [Ru(bipy)3]
2++media plotted on a semi-log graph with a 

500 kHz repetition rate. Autofluorescence can be seen in the media decay and the [Ru(bipy)3]
2+ + media 

decay. 

4.2.3.7 Fetal bovine serum (FBS) shields [Ru(bipy)3]
2+ from quenching  

The emission wavelength of increasing concentration of FBS diluted in deionised 

water with [Ru(bipy)3]
2+ (0.412mM) are presented in Figure 93. All emission spectra are 

identical regardless of percentage FBS concentration, with similar asymmetric responses. 

An asymmetric double sigmodal peak function was used to determine the peak emission 

and FWHM as 608.14 ±0.27 ns and 60.13 ±0.64 ns, respectively.   
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Figure 94 – Emission wavelength of [Ru(bipy)3]
2+ with incrementing concentrations of FBS. Normalised 

intensity measurements at an excitation of 780 nm and repetition rate of 500 kHz across an emission range 
of 540-700 nm. 

 

Figure 95 – Mean intensity (n=4) and lifetime decays (n=5) of [Ru(bipy)3]
2+ with increment concentrations 

of FBS . Left y-axis displays the mean lifetime (black squares) and right y-axis refers to mean intensity (red 

circles). Data points are fitted with a dose response curve described by the solid red and black line (adjusted 

R2>0.96). The percentage of FBS in the cell culture media is represented by the purple dashed line, which 
corresponds to a lifetime of 388 ns. The maximum response is represented by the dotted green line with a 

lifetime of 389 ns. 
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The mean lifetime and intensity of [Ru(bipy)3]
2+ have been plotted for increasing 

percentage of FBS in solution at ambient temperatures, as shown in Figure 95. The 

standard deviations for the data of both lifetime and intensity were between 1%-0.29% of 

the measurement. Measurements for lifetime and intensity were acquired using the same 

sample. Both display an identical response to the increase in FBS concentration with an 

initial change in lifetime with increasing concentration that subsequently plateaus at the 

higher concentrations. Both sets of data have been fitted with a dose response curve 

(adjusted R2>0.96) reaching a maximum for the lifetime and intensity at 389.09 ns and 

56702, respectively, represented by the green dotted line. The percentage of FBS used in the 

cell culture media is 16%, represented by the purple dashed line; it reaches a point on the 

curve that corresponds to a lifetime of 387.9 ns. The difference between the lifetime at the 

cell culture concentration and the maximum response of the fitted lifetime is 0.28%. 

4.2.4 Discussion 

4.2.4.1 Emission spectra 

Comparing the results from the continuous and TP emission spectra revealed a 

slight red-shift and broadening of the peak almost double the size for TPE. This shows that 

rather than there being a narrow selection of emission pathways for [Ru(bipy)3]
2+ there 

appears to be an increase in the available deactivation pathways, which would not 

normally be seen when exciting with SPE at 468 nm. Using TPE has induced a wider range 

of energy levels involved in the process of emission and is therefore not identical to SPE 

[236]. 

4.2.4.2 Concentration dependence 

Over the concentration range 0.208-3.34 mM the emission intensity, shown in 

Figure 87, a linear response to increasing concentrations. This slightly contradicts the 

results in chapter 2 where a partial non linear plot of [Ru(bipy)3]
2+ concentration intensity 

determined the limit of self-quenching. This discrepancy between a linear and non-linear 

response arises due to the measurement techniques. Sud et al. [279] also noted that their 

intensity measurements of [Ru(bipy)3]
2+ in water saturated at 2.5 mM. They determined 

that the effect was due to the geometric setup and retested it on a fluorimeter noting a 

decrease at higher concentration consistent with other reports [170] and the findings in 

Chapter 2. The influence of the setup and dye concentration on intensity measurements 

confirms the unreliability of quantifiable and repeatable measurements when using only 

intensity. 
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The lifetime measurements made with the same [Ru(bipy)3]
2+ concentrations 

confirmed that no correlation exists between lifetime and concentration. The measured 

standard deviation of the mean (±0.36%) compares well with the repeatability 

measurement conducted in Chapter 3. This also revealed a variability for the same 

measurement as <0.3%. The TCPSC has demonstrated a 7-fold improvement in the 

accuracy of lifetime measurements when compared with that of the time-gate (standard 

deviation ±2.45%) used by Sud et al. [279]. The variability of the mean lifetime between 

TCPSC (375.45 ns) and time-gate (363 ns) can be attributed to variations in the recorded 

absolute temperatures and errors in the time-gate measurement. 

4.2.4.3 Temperature effect 

There is a negative correlation between temperature and lifetime measurements, in 

accordance other researchers [144, 212, 300]. In Figure 90 the relationship between lifetime 

and temperature appears and can be assumed to be linear, but over a larger temperature 

scale a polynomial relationship exist [212]. An increase in the temperature of water reduces 

dissolved oxygen and therefore should reduce the quenching and increase the lifetime. At 

the same time there is an increase in the rate of diffusion and therefore collisional 

quenching. However studies of the temperature effect on [Ru(bipy)3]
2+ without oxygen 

present have shown that this relationship is due to the activation of a non-radative pathway 

that operates via the non-luminescent d-d energy state [212, 300], as shown in Figure 96. 

 

Figure 96 – A Jablonski schematic diagram representing the electronic energy states of [Ru(bipy)3]
2+ and the 

thermally activated non-luminescent energy state kdd. The electron is excited from ground state (S0) by light 

energy (hυυυυA) to the singlet metal-to-ligand charge transfer (1MLCT) where the electron dissipates to the 

triplet metal-to-ligand charge transfer (3MLCT). At this point it can take optional pathways: non-radiative 

(kd+kq+k2[O2]), radiative (kr) or thermal activation (kdd). Abbreviation: energy change ∆∆∆∆E[212]. 

The change in temperature induces a change in the energy levels of ddk , which is 

the thermally activated quenching rate constant [144, 212]. For example a change of 1°C in 

[Ru(bipy)3]
2++water can induce a 1% change in the lifetime. This highlights the vital 
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importance of maintaining stable and reliable temperature control system to obtain 

accurate results. 

4.2.4.4 pH concentration 

Altering pH to mimic the physiological range, did not affect the measured 

[Ru(bipy)3]
2+ lifetime. The variability between the measurements across all pH levels shows 

a standard deviation of 0.19% below the variability of dye concentration or systematic 

error.  These data are consistent with previous studies [72]. 

4.2.4.5 Media concentration 

The autofluorescence produced in the cell culture media was measured with 

lifetime. The mean lifetime only differed by 700 ps between all samples tested and was not 

longer than 3.2 ns. The longest lifetime component was 21 ns in the DMEM H&A sample. 

Using the estimated completion of lifetime of 5τ [19] it can be determined that any 

autofluorescence arising from the cell culture media would have completed by 105 ns. 

Comparing this to the lifetime of a [Ru(bipy)3]
2+ decay (2500 ns) the autofluorescence only 

occupies 4% of the total decay. This means that when fitting the lifetime decay of 

[Ru(bipy)3]
2++media, in order to avoid the autofluroescent signal creating another fitting 

component the decay can be modelled after 150 ns to the end of the decay. It also 

highlights an important reason for using the 1024 ADC instead of 256 ADC. A mono-

exponential decay requires ≥200 data points for utilising a χr
2 value 1.17. However if data 

points are excluded due to autofluoresence, noise and TAC lower limit the number of data 

points removed would be greater than 50 jeopardising the χr
2 fitting. It is therefore more 

appropriate to use an ADC 1024 time channels. 

4.2.4.6 FBS effect 

The emission spectra showed identical profiles and no spectral shift for increasing 

concentrations of FBS in water+[Ru(bipy)3]
2+. Comparing the emission spectra between the 

dependence of concentration on [Ru(bipy)3]
2+ (section 4.2.3.1) against the incrementing 

concentration of FBS revealled near identical peak emission; with a peak-to peak difference 

of 0.7 nm this was within the measured emission standard deviation. No spectral shift 

suggests that there is no physical binding to ruthenium(II) [171] and that only one 

population of fluorophores are emitting, i.e. rather than bound to FBS and free in solution 

[170]. 

Examining the lifetime and intensity measurements of [Ru(bipy)3]
2+ with increasing 

concentrations of FBS reveals similar responses with a positive correlation that gradually 
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decreases to disassociation (Figure 95). At low concentrations of FBS, oxygen produces a 

change in lifetime and intensity, but as the concentration increases there is a weaker 

correlation until there is no correlation with oxygen. Since both the lifetime and intensity 

increase this indicates that there is less oxygen quenching the fluorophore. However as the 

overall oxygen concentration has not been changed it suggests that the FBS must be 

abating the oxygen surrounding the [Ru(bipy)3]
2+.  

This is supported by previous studies by Vaughan and Weber [301] who looked at 

pyrenebutyric acid (PBA) as a dynamic probe for microenvironments. They showed that if 

PBA was conjugated to by bovine serum albumin (BSA) there was no response to changes 

in oxygen, but when free in solution, there was a positive linear relationship. Lakowicz and 

Weber [172] stated that this effect is caused by the protein structure that prevents the 

diffusion of oxygen reaching the fluorophore. However the fluorophores used in these 

previous studies were conjugated to BSA and showed a slightly different response between 

the intensity and lifetime measurements, which was a combination of static and dynamic 

quenching. The intensity measurements were unaffected by BSA concentration and 

produced a linear response, but the lifetime measurements only produced a partial response 

and then became static, as found in the current study [172]. This suggest that [Ru(bipy)3]
2+ 

is not conjugated to FBS or its constituents. This was further supported by the fact that 

there was no shift in the emission spectra. 

Similar effects are also seen when [Ru(bipy)3]
2+ comes into contact with DNA, 

although in this case it can become electrostatically bound or can exhibit partial 

intercalation depending on the ratio of dye and DNA [99]. It has been shown by Jain et al. 

[139] that [Ru(bipy)3]
2+ has the weakest binding of all ruthenium(II) complexes to DNA, 

proteins and serum, which has been suggested is due to the hydrophobic organic ligands. 

This suggests that FBS is partially shielding [Ru(bipy)3]
2+ from oxygen until the FBS 

increase in concentration has shielded all [Ru(bipy)3]
2+ at which point no further response is 

seen with increasing FBS concentrations. 

4.2.5 Conclusion 

There is no correlation between lifetime and pH or [Ru(bipy)3]
2+ concentration 

level. Results confirmed that an oxygen calibration should be completed at the operational 

temperature of the experiments. The cell culture media contains autofluorescent 

components, but by applying the mono-exponential fit after 150 ns minimises any influence 

from autofluorescent interference.  It is suspected that there will be a difference between the 

Stern-Volmer relationship of oxygen and lifetime in a solution of water and media due to 
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other dissolved solutes as has been seen in FBS. It is therefore required that a Stern-Volmer 

relationship be conducted for [Ru(bipy)3]
2+ in both water and media. 

4.3 Oxygen concentration 

To enable lifetime measurements to be used for quantitative analysis of oxygen 

concentrations in a cellular system a relationship between oxygen and the lifetime of 

[Ru(bipy)3]
2+ must be established. The relationship is established from the bimolecular rate 

of the dye in that particular environment and derived from the response of lifetime to 

changes in oxygen, referenced against the lifetime without quencher.  

 Measurement of oxygen in atmosphere or gas phase is usually described in terms 

of pressure, Torr, Atm, bar, or Pascal (Pa) or more specifically partial pressure. Using 

Raults law the total pressure is equal to the sum of the combined pressures of all the gases. 

But when describing oxygen in water or dissolved oxygen, the terms are only capable of 

quantifying pressure and so units must be converted in order to describe concentration, 

which requires theoretical derivation. In biological and limnological literature 

concentration is generally the preferred measure of solubility [95], and IUPAC standards 

suggest the use of molality to remove the effect of temperature. 

4.3.1 Theoretical calculation of oxygen in water 

In order to calculate the oxygen concentration in water it is necessary to derive a 

relationship between oxygen in gas phase and oxygen dissolved in water. A gas at 

equilibrium with a liquid is referred to as a ‘vapour’ (saturated vapour) and considered to 

have the same properties as a ‘gas’ [261]. The environmental conditions dictate the 

relationship and therefore the thermodynamic analysis of this solute-solvent system. The 

considered system is at constant pressure, volume, and temperature and is assumed to be in 

equilibrium at the point of measurement. The phase equilibrium fundamental relies on the 

chemical potential of each component being equal [311]. For the condition of 

thermodynamic equilibrium at constant temperature and pressure a vapour-liquid system 

can be described using fugacity, a chemical quantity describing a realistic gas rather than an 

‘ideal gas’ with the units of pressure, as shown in Eq. 37 [248]. 

Eq. 37     
L

i

V

i ff =  

where, 
V

if and
L

if  are the fugacities of component i (oxygen) and the superscripts 

denote the vapour phase (V) and the liquid phase (L), respectively. At equilibrium the 

fugacities of one component (oxygen) in two phases (vapour, liquid) must be equal [140]. 

As fugacity cannot be directly measured [140], it is necessary to relate them to determinable 
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components. This is achieved by rewriting Eq. 37 in terms of the fugacity coefficients, as 

shown in Eq. 38. 

Eq. 38     
o
iiiii fxPy γφ =  

where 
V

if  is the product of total pressure P, mole fraction yi, and iφ  is the fugacity 

coefficient [248]. The 
L
if  is expressed in terms of the liquid-phase activity coefficient and 

is equal to the liquid activity coefficient γi, the mole fraction xi, and 
o
if  is an appropriate 

standard-state fugacity [311].  

The iφ  is the ratio of fugacity to the partial pressure of a gaseous constituent [200], 

and is dependent on temperature, pressure and all mole fractions in the vapour phase [248]. 

The fugacity coefficient can be calculated from the virial equation of state, truncated after 

the second virial coefficient [169], but for gases below the normal boiling point of water 

and at pressures of a few atmosphere, it is considered negligible [312]. This allows Lewis’s 

rule to be used, which states that at low pressures where the gas phase is nearly ideal the 

fugacity coefficient can be considered 1=iφ  [248], providing Eq. 39: 

Eq. 39     Pyf i
V
i =  

In the ideal vapour phase P = 1 atm therefore the solute (oxygen) is a component of 

this pressure and can be referred to as the partial pressure ( ip ), further simplifying Eq. 39 

by replacing the mole fraction and total pressure [105, 116]. 

Eq. 40     ii
V
i pPyf ==  

For an ideal solution the activity coefficient is considered equal to unity [248] 

therefore in an ideal solution for each component of i , 1,1 →→ ii xγ  reducing the 

equation to Raoult’s law [248] 
o
ii

L
i fxf = . But for an ideal-dilute solution, i.e. air 

dissolved in water is weakly soluble [50], the ‘symmetric convention’ does not hold true for 

both dissolved solute and solvent. Instead the activity coefficient adopts an [312] 

‘unsymmetric convention’ [223]. 

Eq. 41  1,1 11 →→ xγ  (Solvent)  0,1 22 →→ xγ  (Solute) 

This convention leads to the use of Henry’s law [32, 186] where the real and 

hypothetical states of the solvent are equal, but the solute is related by Henry’s constant 

12, →Hk . This involves a pure solute in a hypothetical liquid state corresponding to 

extrapolation from infinite dilution [311]. 
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Eq. 42     12, →⋅= Hi
L
i kxf  

Substituting Eq. 40 and Eq. 42 back into Eq. 37 provides, 

Eq. 43     12, →⋅= Hii kxp  

Rearranging for dissolved oxygen concentration, 

Eq. 44     

OHOH

O
O

k

p
x

22,

2
2

→
=  

where 
2O

x is the mole fraction of oxygen dissolved in water, 
2O

p  is the partial 

pressure of oxygen, and OHOHk 22, →  is Henry’s constant for the interaction between 

dissolved oxygen and water. Therefore to calculate the mole fraction of oxygen dissolved in 

water Henry’s constant and the partial pressure of oxygen must be known or identified. 

4.3.1.1 Henry’s constant 

Henry’s constant is not a directly measured value, but instead is derived empirically 

from experiments [273]. Investigations of oxygen dissolved in water date back to 1889 by 

Winkler and Fox, whose values were standard for over 50 years, until doubts were raised 

about their accuracy [32]. It wasn’t until 1979 when Benson and Krause [33] produced the 

most reliable and precise results to-date. Even now calculations and models are based on 

their empirical approach to extracting Henry’s law constants from solubility measurements 

[250]. Using a simple three-term power series ( T1 ) allowed the relationship between the 

molecular properties of the pure gases and the thermodynamic properties of their solutions 

[33] to be established: 

Eq. 45    







+








+=→ 2

21
022,ln

T

a

T

a
ak OHOH  

where, T is the temperature (Kelvin), a is a constant, and OHOHk 22, →  is the 

derived Henry’s constant (Pa-1). Rettich et al. [250] used Benson-Krause’s equation to 

provide an improved set of constants due to the very accurate fit of Henry’s constants over 

large temperature ranges and it is relative simplicity to apply [250]. The derived constants 

are listed below in Table 15. 

Table 15 - Parameter for Correlation of Henry’s constant for interaction between O2 and H2O in 
Eq.(13)[250] 

Model T (K) 0a  1a (K) 2a (K2) 

Rettich (2000) 283.17-328.14 14.835722 5.837177x103 -1.085201x106 
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4.3.1.2 Partial pressure of oxygen 

As identified with Eq. 44 the partial pressure of oxygen is equal to the mole fraction 

multiplied by the total pressure. Assuming that all components are in equilibrium the gas 

immediately adjacent to the water has 100% relative humidity [116]. It is therefore 

considered as a separate pressure, exerted by water vapour, as the saturated vapour 

pressure, 
sat
wp . This reduces the total pressure immediately above the water interface and 

means that the partial pressure of oxygen can be described as: 

Eq. 46    )(
22

sat
wTOO pPyp −=  

where, TP  is the total pressure of the environment, 
2O

y  is the mole fraction of 

oxygen in a dry gas mixture. The atmospheric pressure is defined as 101.325 kPa (1 atm) as 

recommended by the Committee on Data for Science and Technology CODATA [209]. 

The mole fraction of oxygen in standard dry air is 0.20939 [92]. The saturated vapour 

pressure of water,
sat
wp , is temperature dependent and can be calculated using an equation 

derived by Saul and Wagner [259]: 

Eq. 47  ( )







+++++=














5.7

6
4

5
5.3

4
3

3
5.1

21ln ττττττ &&&&&& aaaaaa
T

T

P

p C

C

sat
w

  

Rearranged to make vapour pressure the subject gives: 

Eq. 48  ( ) C
Csat

w Paaaaaa
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where, TC is the temperature at the critical point and is equal to 647.14 K, PC is the 

pressure at the critical point and is equal to 2.21x107 Pa-1, τ&  refers to the relationship 

between the temperature and the critical temperature ( )CTT−1 , and 61−a are constants 

displayed in Table 16  [259]. 

Table 16 - Vapour Pressure constants for Eq. 48 

1a  2a  3a  4a  5a  6a  

-7.85823 1.83991 -11.7811 22.6705 -15.93 1.77516 

 

Substituting Eq. 48 into Eq. 46 provides the real atmospheric pressure and allows 

the partial pressure of oxygen in the vapour phase to be determined. Combining Eq. 46 and 

Eq. 45 and substituting into Eq. 44 the temperature dependent mole fraction of oxygen 

dissolved in water can be determined. This equation is sufficient for calculating the 
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concentration of oxygen in water, but for cellular experiments culture media will be used 

and this contains other solutes with ion charges that can effect the solubility of oxygen [94]. 

4.3.2 Calculating the molality of dissolved oxygen 

In order to convert the mole fraction of dissolved oxygen into molality it is 

necessary to calculate the number of moles of oxygen per kg of water. The reason behind 

using molality (mol/kg) instead of molarity (mol/l) is to remove the dependence of water 

density on temperature in accordance with the IUPAC suggested standard for dissolved 

gases in liquid [209]. The molality of oxygen solute in water solution is given by: 

Eq. 49     

OH

O
O

m

n
c

2

2
2

=  

where, 
2O

c is the molality of oxygen (mol/kg), OHm 2
 is the mass of water (kg), 

and 
2O

n is the number of moles of oxygen (mol). To calculate the number of moles of 

oxygen the mole fraction 
2O

x can be used [209]. 

Eq. 50    
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where, Bx  is the mole fraction of the solute, Bn  is the number of moles of the 

solute, ∑ An  is the sum of solute and solution moles, OHn 2
 is the number of moles in 

water. One mole of water has a mass of 18.016 g [310] therefore in 1 kg there are OHn 2
= 

55.5084 moles [209]. Rearranging Eq. 50 and substituting into Eq. 49 provides Eq. 51 

[291]. 

Eq. 51     

2

2
2 1

5084.55

O

O
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x
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−

⋅
=  

The temperature dependence on the concentration of dissolved oxygen in water can 

be viewed by applying Eq. 51 to Eq. 44. 
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Figure 97 – Effect of temperature on concentration of dissolved oxygen. Experimental data of Benson (black 

squares) [33] and Rettich (red circles) [250] plotted against a theoretical model (blue line - Eq. 51) for 
determining the oxygen molality based on atmospheric mole fraction of oxygen (0.20939). Inset figure 

shows an expanded section of the response between temperature of 300 and 315K. 

The relationship between oxygen molality and temperature is shown in Figure 97 

for an oxygen mole fraction of 0.20939. Increasing temperature has a decreasing 

polynomial effect on the oxygen molality. For a variation of 1°C between 25 - 42°C the 

oxygen molality is expected to change between 5 – 3 µmol/kg. The equations derived so far 

are temperature dependent and complex and a further simplification can be applied. 

Combining Eq. 44, Eq. 46, and Eq. 48 for a working cell culture temperature of 37°C 

provides Eq. 52: 
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Eq. 52    
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substituting Eq. 52 into Eq. 51 to provide Eq. 53, 
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Eq. 53     
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⋅
=  

where, a = 55.5084, and c = 54852.53. This provides a simplified equation for the 

oxygen molality in water at 37°C dependent on the mole fraction of oxygen in the dry gas 

above the water. It is only valid and suitable at a temperature of 37°C and the interaction 

between oxygen and water, but in these experiments the interaction between oxygen and 

biological solvents is also of interest. 

4.3.3 Theoretical determination of oxygen molality in cell culture media 

Oxygen solubility is affected by temperature, partial pressure of oxygen in the gas 

phase and inorganic electrolyte solutes [292]. The salting out effect has been investigated 

with regard to the salinity of salt water and its effect on the solubility of oxygen in water 

[88, 95]. The reason behind this is that the interactions of ions influence the overall average 

spacing between water molecules so that the partial molar volume of the water component 

changes from that of pure water to an apparent value [292]. The water component has 

therefore less “volume” in which to accommodate the dissolved oxygen species and is 

“forced” from the solution [292], i.e. it is expected that there would be less dissolved 

oxygen in media based solutions than compared with pure water. Tromans [292] has 

developed an empirical equation based on thermodynamics to describe the solubility of 

oxygen gas in liquid as shown in Eq. 54. 

Eq. 54     
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Eq. 55 

where 
2O

c  is the molality of oxygen in water (kg/mol), 
2O

p is the partial pressure 

of oxygen (Pa), and 
2O

S is the solubility of oxygen in water (kg/mol/Pa). Complex 

interactions between polar water molecules and the ionic components in inorganic 

electrolytes (I) create disturbances that influence the overall spacing between H2O 

molecules [292]. This suggests that only a fraction (φ ) of the water component is available 

for dissolving oxygen whereas the remaineder involved in the ion-water interaction, 

providing the relationship in Eq. 56. 
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Eq. 56    ( )
2222 OOOIO Spcc ⋅⋅=⋅= φφ  

The fraction is treated as an empirically function of the solute concentration Ic  and 

is derived from experimental solubility data to fit the function in Eq. 57. 

Eq. 57    ( ){ } hy
Ic

−
+= κφ 1  

Eq. 58    ( ) ( ){ } hy
IOOIO cSpc

−
+⋅⋅= κ1

222
 

where, Ic is the solute concentration (mol/kg), κ is a coefficient, and y, h are 

exponents that are tabulated in Tromas’s paper [292]. Eq. 58 is only relevant for analysing 

one solute component, but using Eq. 59 multiple solute components can be considered 

together in one aqueous solution. 

Eq. 59    

q
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where, ∏
z

i

2

φ  represents zφφφ ...32 ××  and q is an empirical exponent 1> q >0. It 

has been shown to have a value of 0.8 [291], the individually calculated  solute values are 

arranged so that zφφφ <<< ...21 ; effφ  replaces φ  in Eq. 56 to provide Eq. 60. 

Eq. 60   

( ) q
z

iOeffO
O

IO
SS

p

c











⋅⋅=⋅= ∏

2
122

2

2 φφφ  

The inorganic salt concentrations present in the DMEM cell culture media that 

have also been investigated by Tromas [292] are presented below in Table 17 with the 

correlating coefficients and exponent values. Three inorganic salts are not included, ferric 

nitrate (0.0001 g/l), sodium phosphate monobasic (0.109 g/l), and sodium bicarbonate (3.7 

g/l) being the largest of the three. Inputting the coefficients and exponent values into Eq. 

57 provides the ion fraction of each component. The full DMEM media composition and 

the conversion from g/l to mol/kg is listed in Appendix D, but at 37°C the change in water 

density is 0.993443 kg/l. 

Table 17 – List of ions in DMEM cell culture media also included in Tromas’s paper [292] 

Type of 

Ion 

Conc. 

(g/l) 

Molar 

mass (g) 

Conc. 

(mmol/kg) 
Fractions y

 h  κ  
Ion 

fractions 

NaCl 6.4 58.44 110.23682 NaClφ
 

1.01 4.224 0.076 0.9661 

KCL 0.4 74.56 5.40021 KCLφ
 

1.116 0.842 0.407 0.998991 

MgSO4 0.09767 120.37 0.81677 
4MgSOφ
 

1.108 5.456 0.12 0.999752 

CaCl2 0.2 111 1.81369 
2CaClφ
 

0.985 2.711 0.18 0.999028 
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Substituting the ion fractions into Eq. 59 provides a fraction effect effφ equal to 

0.96439. Using Eq. 55 for a temperature of 37°C the solubility of oxygen is 10.6 

nmol/kg/Pa. Substituting Eq. 46, Eq. 55 and Eq. 59, into Eq. 60 produces the molality of 

oxygen in an ion aqueous solution at 37°C. Varying the mole fraction of oxygen allows a 

relationship between partial pressure and molality to be established as shown in Figure 98. 

A comparison of the theoretical and experimentally calculated solubilities and molalities of 

dissolved oxygen are shown in Table 18. 

Table 18 – List of experimental and theoretical (xO2 = 0.20939) oxygen solubilities and concentrations in 

water at 37°C. 

Researcher Solvent 
Solubility 

(nmol/kg/Pa) 

Concentration 

(µµµµmol/kg) 

Gnaiger (2007)  [95] Theo Water @37°C 10.63 208.67 

Benson (1980) [32] Exp Water @37°C - 211.64 

Current theory Water @37°C 10.6 211.48 

Gertz (1954)  [96] Exp Pure serum @37°C 9.462 188.31 

Current theory Est. Media @37°C 10.22 203.37 

 

 

Figure 98 – Estimate oxygen molality in solutions at 37°C with incrementing oxygen mole fractions 
Theoretically calculated oxygen concentration in pure water (cO2 black squares), media solution ((cO2)I red 
square). Experimentally measured results from Gertz et al. [96] of pure serum ((cO2)Serum green triangles)  are 

plotted with linear fits.  

The theoretical determination of oxygen molality dependence on mole fraction is 

shown in Figure 98. The dependence of oxygen molality on serum established by Gertz et 

al. [96] has also been included. Each concentration type shows a linear relationship with 
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the mole fraction and all intercept at zero. The gradients of each molality are 

xcO
4

2
101.10 −×= , ( ) xc

IO
4

2
1071252.9 −×= , and ( ) xc

serumO
4

2
1099327.8 −×=  

(mol/kg) (adjusted R2= 1). The added ion content reduces the concentration of oxygen 

when compared with pure water, but serum has an increased effect e.g. at a mole fraction 

of 0.15 the molality would be 5.151
2

=Oc , ( ) 69.145
2

=
IOc , and ( ) 9.134

2
=

serumOc  

(µmol/kg). These equations can be used to convert partial pressures into oxygen molalities 

and determine the quenching relationship. 

4.3.4 Relationship between oxygen and lifetime 

Determining a relationship between oxygen and lifetime provides a conversion 

factor for reverting measured fluorescence lifetime into a quantifiable oxygen 

concentration. This can be achieved by calibrating the measured fluorescence lifetime with 

known partial pressures of oxygen. As the oxygen environment is controlled via partial 

pressure the theoretical analysis must be used to convert them into quantifiable oxygen 

concentrations or molalities. 

4.3.4.1 Methodology 

The chemicals used in these experiments are the same as outlined in section 4.2.2.1. 

The desired oxygen partial pressures where created using a sealed incubation system 

(Xvivo, Biospherix Ltd., USA) consisting of a gloved chamber and hydrated incubators. 

This utilised automated and independently controlled temperature and gas partial pressure 

(N2, O2, CO2) between chamber and incubator; maintained at a barometric pressure of 1 

atm (101.325 kPa). For these experiments the temperature and gas partial pressures were 

maintained at 37°C and 5% CO2, N2 balance. The only variability was the oxygen partial 

pressure between 0-19%; accuracy and precision was 0.1%. Calibration of the Xvivo and 

independent oxygen probe (OxyValidator Model F series, Biospherix Ltd.) used research 

grade N2 gas and air cylinders to replicate zero and atmospheric oxygen (20.9%), 

respectively. The oxygen probe used an embedded temperature sensitive dye that required 

an independent temperature probe to be present to correct for a change in environment 

temperature and had a barometer to account for the atmospheric pressure. The XVivo 

system was calibrated against the gas partial pressure where the oxygen and temperature 

probe were submerged into deionised water; equilibrating for 40 min consecutively with 

each gas. Oxygen sensor accuracy was ± 2 Torr (0-160 Torr), repeatability <0.2% (relative 

standard deviation over 10 repeated measurements); Temperature sensor, ± 0.2°C, 

resolution 0.001°C; Pressure transducer ± 2%, resolution 0.001 Torr [314]. 
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Stock solutions of [Ru(bipy)3]
2+ were diluted with deionised water or media for a 

final concentration of 0.412 mM. 500 µl of solution were dispensed into six specially 

designed air-tight sample chambers and left to equilibrate at the desired oxygen partial 

pressure overnight, in the hydrated incubator at 37°C. The oxygen probe was used to 

confirm dissolved partial pressures of oxygen in sample chambers. Each day chambers 

were sealed, transferred to the temperature-equilibrated FLIM system, and loaded into the 

heating plate located on the microscope stage. FLIM measurements were conducted as 

described in section 4.2.2.2 and single lifetime decays collected for 800 sec in replicates of 

10. This was repeated for each chamber and at each oxygen partial pressure. 

4.3.4.2 Data analysis 

Lifetime decays were converted to ASCII files and extracted to Origin where mono-

exponential models were applied to extract τ.  Decays were only accepted if  χr
2 < 1.17 and  

R2 >0.90. The Stern-Volmer equation provides a direct relationship between oxygen and 

lifetime, as shown in Eq. 61 [46, 67, 257]. 

Eq. 61     ][1 2
0 OK sv+=
τ
τ

 

where, 0τ  is the lifetime with no quencher, τ is the lifetime measured at varying 

oxygen partial pressures, [O2] is the concentration of quencher (mol/kg), and KSV is the 

Stern-Volmer constant. The Stern-Volmer constant is described by the bimolecular 

quenching constant 2k  and the lifetime with no quencher 0τ , as shown in Eq. 62 [67]. 

Eq. 62     02τkK sv =  

Plotting a graph of ττ 0  against [O2] produces the required relationship where the 

intercept should be equivalent to 1 and the gradient provides KSV. It is assumed that only 

dynamic collisional quenching will be involved, as the fluorophore is in solution, and 

therefore the graph is expected to be linear. Diversion from this would indicate other forms 

of quenching described in section 4.2.4.6.  

4.3.4.3 Results 

4.3.4.4 Oxygen has linear relationship with [Ru(bipy)3]
2+ lifetime 

Lifetime measurements of [Ru(bipy)3]
2+ dissolved in water and media at a 

temperature of 37°C have been acquired at incrementing concentrations of dissolved 

oxygen, as shown in Figure 99. A linear correlation can be seen between lifetime and 

oxygen molality this is confirmed with a negative linear fit producing (adjusted R2 >0.98): 
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Eq. 63  ][%)5.5(1011.689%)1.1(10869.464 2
69 Owater ⋅±×−±×= −−τ  

Eq. 64  ][%)8.2(10598.616%)49.0(10421.460 2
69 Omedia ⋅±×−±×= −−τ  

The measured τ0 for deionized water and media was 470.94 nm and 463.5 ns 

respectively. Comparing the standard deviation of the linear fits, represented by the bracket 

in the equations, for water and media solution shows that media has less variation between 

the measurements. The gradient for waterτ  is steeper than for media with a slightly 

different intercept (4 ns difference). By rearranging Eq. 63 and Eq. 64 the oxygen molality 

can be calculated from the measured lifetime by applying Eq. 61 which produces Figure 

100. 

 

Figure 99 – The effect of oxygen quenching on [Ru(bipy)3]
2+ in solutions of deionized water (black squares) 

and media (red circles) at 37°C. The average water and media data points (n=10-20) are fitted with linear 
fits and have error bars in the x-axis relating to 0.1% for the accuracy of the Xvivo system and error bars in 

the y-axis representing the standard deviation between the results. 

Figure 100 depicts the ratio of ττ 0  plotted against oxygen molality for 

[Ru(bipy)3]
2+ in water and in media. Linear fits of both sets of data show a positive linear 

relationship between the ratio ττ 0  and oxygen molality. The linear fits provide Eq. 65 

and Eq. 66 for water and media, respectively, from which KSV can be determined (adjusted 

R2>0.99). 

Eq. 65   ][79.210899425.0 2
0 O
water

⋅+=
τ
τ

 (mol/kg) 

Eq. 66   ][84.18199936.0 2
0 O
media

⋅+=
τ
τ

 (mol/kg) 
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The gradient for water is steeper than for media, but both intercept at 

approximately 1. The determined Stern-Volmer constant can now be used to calculate the 

bimolecular rate with Eq. 62: 79.2108=
watersvk  mol/kg, 79.1819=

mediasvk  mol/kg, 

9
.2

10478.4 ×=
water

k  mol/kg/s, 
9

.2
10926.3 ×=

media
k  mol/kg/s.  

 

Figure 100 – Determining KSV with linear fits of water (black squares) and media (red circles) measurements 

of τ0/τ against [O2] concentration. 

Using the derived values of KSV and 0τ  the efficiency of quenching or accessibility 

of the fluorophore to the quencher can be solved by rearranging the equation for 2k . By 

combining this with the diffusion-controlled bimolecular rate constant 0k  the efficiency of 

quenching Qf  can be determined by using Eq. 67 [171]. 

Eq. 67     02 kfk Q ⋅=  

The efficiency of quenching Qf  requires the diffusion-controlled bimolecular rate 

constant 0k  to be determined. This uses Smoluchowki’s equation, which relates the 

collisional radius and the diffusion coefficient of the fluorophore and quencher in the 

solvent of interest as shown in Eq. 68 [171]. 
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Eq. 68    

( ) ( )qfqf DDDRRR

RDNk

+=+=

⋅= 100040 π
 

where, R is the collisional radius, D is the sum of the diffusion coefficients and N is 

Avogardro’s number (6.0221367x1023 mol-1)[209]. The subscripts refer to the fluorophore 

(f), [Ru(bipy)3]
2+ and the quencher (q), oxygen. The collisional radius is assumed to be 

equivalent to the sum of each molecular radii [171]. The terms in the calculations must be 

identified for 37°C and using the SI units cm. In order to calculate the diffusion coefficient 

of [Ru(bipy)3]
2+ the standard Stokes-Einstein equation can be used, as shown in Eq. 69 

[171]. 

Eq. 69     

qR

kT
D

πη6
=  

where, T is the temperature (310 K), D is the diffusion coefficient (m2/s), k is the 

Boltzmann constant (1.380658x10-23 m2.kg/s/K) [209], η is the viscosity of the solvent 

(water) at 37°C (kg/m/s), and Rq is the molecular radii of [Ru(bipy)3]
2+ (239.7 pm Ru-N 

length that is affected by quenching [77]). The viscosity of water at 37°C can be determined 

from Eq. 70 derived by Korson et al. [161], but is only valid at temperatures between 10-

70°C. 

Eq. 70    
( )

Ct

tBtAt
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−−−
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2
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)20(20
log

η
η

 

where, ηt is the viscosity at the temperature of interest (cP), t is the temperature 

(°C), η20  is the viscosity at 20°C (1.002 cP), A = 1.1709, B = 0.001827, and C = 89.93; 

conversion for 1 cP = 0.001 kg/m/s. This calculates a viscosity of water at 37°C as 6.9x10-4 

kg/m/s and a diffusion coefficient for [Ru(bipy)3]
2+ in water at 37°C as 1.373x10-5 cm2/s. 

The Stokes-Einstein equation tends not to be used for small molecules as it underestimates 

the diffusion coefficient [171]. However, it can be adapted to consider diffusion of 

molecules and solvent the same size by changing the factor 6 to 4, but if molecules are 

smaller than the solvent the factor is further reduced [131]. 

As dioxygen has a molecular radii of 140 pm [147] and the solvent water is 135 pm 

[222] they display similar radii. This changes the factor in Eq. 69 to 4 and produces a 

diffusion coefficient for oxygen at 37°C to 3.52x10-5 cm2/sec. Lakowicz et al. suggests using 

the nomogram graph method [171] established by Othmer et al. [230] to derive the oxygen 

diffusion coefficient. This only requires knowledge of the temperature and the molar 

volume of oxygen (26 cm3/g.mol) [230]. A line is drawn between two reference points on 

the nomogram graph to reveal that the oxygen diffusion coefficient as 3x10-5 cm2/sec at 
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37°C. In this case the Stokes-Einstein equation has overestimated the oxygen diffusion 

coefficient, but if a factor of 6 was used it would be 2.35x10-5 cm2/sec underestimating the 

correct value. 

Inputting these values into Eq. 68 calculates the diffusion-controlled bimolecular 

rate constant 0k  as 1.248x1010 mol/kg/s. A summary of these values are shown in Table 

19. 

Table 19 – Summary of values for diffusion coefficient and radius of molecules in water at 37°C 

 
R 

Radius  

(pm) 

D 
Diffusion Coefficient a 

 (x10-5) (cm2/s) 

Oxygen (q) 140 3 

[Ru(bipy)3]
2+ (f) 239.7 1.37 

Total 379.7 4.37 

        a @37°C in water  

 

A comparison is shown in Table 20 of the currently determined values in water and 

media to other values obtained by other researchers. As the other researchers have not 

disclosed the temperatures to allow for an exact comparison all calculated values have been 

converted to mol/l from mol/kg by multiplying by 0.993443 kg/l. 

Table 20 – A bimolecular compilation of the interaction of oxygen and [Ru(bipy)3]
2+ for KSV, k2, k0, and fQ. 

Researcher 
Temp. 

(°C) 

τ0 

(ns) 

KSV 

(M-1)a 

k2 x10
9 

(M-1s-1) a 
ko x10

9 

(M-1s-1) a 
fQ 

Rusak  [257] 25 562 1863 3.31 7.4 0.447 

Demas [65] Unknown 660 2130 3.2 6 0.533 

Saez [258] Unknown 600 - 3 - - 

Maheswari [188] 25 406 3300 a - 7 - 

Gorner [99] Unknown 590 - 3.9 - - 

Mulazzani [217] 23 610 - 3.4 - - 

Current study water 37 470 2094.96 4.45 12.39 0.36 

Current study 
media 

37 463 1807.92 3.901 12.39 0.31 

a in the presence of DNA 

 

Observing the τ0 it is possible to determine that the majority of the other researchers 

have conducted the measurements at room temperature. The bimolecular quenching 

constant only describes the interaction of the two molecules therefore should not be 

influenced by τ0 or KSV. The k2 is influenced by the diffusion coefficient which is 

temperature dependent. It would be expected that with higher temperature there would be 

faster diffusion and so a faster collision rate [257], which is reflected in the results. 
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4.3.5 Discussion 

4.3.5.1 Theoretically determined oxygen molality in water and media 

The current theoretically calculated solubilities of oxygen dissolved in pure water 

are similar to the experimental results of Benson et al. [33], but differs from the theoretical 

results of Gnaiger et al. [95]. However this is accounted for by the fact that Gnaiger et al. 

used a value for pO2 as 19.63 kPa derived by assuming a barometric pressure of 100 kPa 

instead of using the total atmospheric pressure of 101.325 kPa to calculate a pO2 of 19.9 kPa 

as used in the current study. Translating the barometric pressure of 100 kPa at 37°C to 

height above sea level it suggests that their experiments were conducted 390 m above sea 

level. In comparison our laboratory is only 11 m above sea level which would have 

minimal effect on the barometric pressure. 

The list of solutes provided by Tromas [292] did not include three inorganic salts 

present in media, with the largest missing concentration being sodium bicarbonate. This 

suggests that the theoretically derived molality of oxygen in media does not fully account 

for the missing solutes or serum, which are seen to have an effect on the solubility data 

shown by Gertz et al. [96]. One thing that is clear, the molality and solubility of oxygen in 

media is at least 4% less than in water at the same environmental partial pressures and 12% 

less between pure serum and pure water. The reason for the effect of serum could be 

attributed to a change in the chemical potential by increasing the solute concentration 

[172]. 

4.3.5.2 Determining oxygen molality and relationship with lifetime 

Experiments have confirmed that there is a negative linear relationship between 

lifetime and oxygen molality. As the oxygen partial pressure increases so does the molality 

leading to fluorescence quenching and a decrease in lifetime. The τ0 for water and culture 

media containing FBS are different, which indicates that some form of electrostatic binding 

could be affecting the radiative rates as was observed for the interaction between water and 

FBS in section 4.2.4.6. 

The linear fits that establish the relationship between [Ru(bipy)3]
2+ in water and 

media (Figure 99) display smaller standard deviations for media than for water. This 

indicates that the dye is less sensitive to the environmental changes when in media i.e. 

oxygen concentration or temperature fluctuations. The Stern-Volmer plots indicate 

dynamic quenching is involved due to the linear lifetime measurement [171]. This 

relationship has also been confirmed by other researchers [257, 279]. The difference in the 

Stern-Volmer gradients between water and media reflects different bimolecular quenching 
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interactions. It shows that [Ru(bipy)3]
2+ in water is 12% more accessible to oxygen than in 

media the same percentage difference between water and serum oxygen molality.  

The increased k2, non-radiative bimolecular rate, in the current study compared 

with the other researcher in Table 20 suggests there is an increase in energy deactivation. 

This is most likely due to the increasing temperature effect on kdd, the non-radiative 

pathway as discussed in section 4.2.4.3. However, the k2 media value is 14% less than for 

water suggesting less non-radiative deactivation, where the kdd has been restricted by the 

effect of serum. The KSV values are reflective of the fluorophores environment i.e. the 

influence of temperature, viscosity and binding. The largest effect to KSV was reported by 

Maheswari et al. [188] where [Ru(bipy)3]
2+ was measured in the presence of DNA due to 

electrostatic intercalation with DNA base pairs. The effect of binding is apparent in 

Maheswari et al. [188] data with an 83% greater KSV value in comparison to the current 

study for [Ru(bipy)3]
2+ in media. This confirms that [Ru(bipy)3]

2+ in media is not bound, but 

rather has a restrictive quenching relationship. 

The large differences seen for the calculated diffusion-controlled bimolecular 

constants in Table 20 can be explained by the presumptions undertaken by Demas et al. 

[64] and Rusak et al. [257]. They assumed that the size and the specific molecules were 

unimportant, and rather only the temperature and viscosity of the solvent need to be 

considered, Eq. 71 shows their applied equation [257],  

Eq. 71      
η3

8RT
ko =  

where, T is the temperature (K), R is the gas constant (8.314472x103 L.Pa/mol.K) 

and η is the viscosity (kg/m/l). Using this same equation and applying it to the current 

studies values it provides a corrected value for ok  9.968x109 M/s.  

It would be expected that an increase in temperature would increase the diffusion 

rate and therefore the number of collisions. This is reflected by the reduced lifetime, as 

shown in section 4.2.3.4, however it would also be counteracted by a reduction in the 

oxygen concentration. The frequency of collisions was lower for the current study than 

those calculated for Demas et al. [64] and Rusak et al. [257], however when applying the 

adjust k0 the frequency of collisions change to 0.449 and 0.394 for water and media, 

respectively. The adjusted frequency of collision for water is identical with the value 

derived by Rusak et al. [257], however the media value remains 14% less than water. 

Identical values of k0 were used for water and media not taking into account the difference 

in viscosity due to serum this would increase the k0 value. Whether this adjustment would 

match the frequency of collisions for water requires further investigation.  
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4.3.6 Conclusion 

Serum and ion solutes in water have adverse effects on the solubility of oxygen, 

reducing the molality in comparison to pure water by at least 4%, and could be as much as 

12%. A negative linear relationship between oxygen and lifetime was established for water 

and media. However, the media solution appeared to be less sensitive to environmental 

changes, such as temperature. It also showed oxygen was 12% less accessible to 

[Ru(bipy)3]
2+ in media than in water. The results from this study have confirmed that the 

reduced Ksv, k2 or fQ media values are due to the restricted access of oxygen quenching on 

[Ru(bipy)3]
2+ by the serum in media rather than any physical binding and the effect of 

viscosity. Using the corrected equation of Demas et al. [64] and Rusak et al. [257]  to 

calculate the adjusted ko provided identical values between Rusak et al. and water for the 

current study. This identifies that a 48% increase in temperature also increases the 

bimolecular rate constant by 34% and the lifetime by 9% for water samples. It has been 

identified that the difference between lifetimes with no quencher for water and media 

samples is 1.5% highlighting the influence of media solutes on the non-radiative 

component. 

4.4 Summary 

• Using the TP confocal TCSPC system it was established that TPE maximum was 

780 nm and emission peak was maintained at 608 nm± 35 nm. 

• No correlation was found between lifetime and varying [Ru(bipy)3]
2+ 

concentrations or pH levels. 

• Temerature was shown to effect [Ru(bipy)3]
2+ lifetime and highlighted the 

importance that temperature stability is vital for accurate lifetime measurements. 

• Cell culture media contain autofluorescent components like riboflavin or FBS. 

• [Ru(bipy)3]
2+ lifetime data should be fitted after 150 ns with a monoexponential 

model to avoid fitting other lifetime components associated with autofluroscence.  

• FBS has been shown to acts as a collisional protector of [Ru(bipy)3]
2+ from 

oxygen quenching dependant on concentration. 

• The Stern-Volmer constant has identified that [Ru(bipy)3]
2+ in water is 12% more 

accessible to oxygen that in media 

• The non-radiative rate (k2) for [Ru(bipy)3]
2+ in media is 14% slower than in water 

and could be attributed to the additional media components 
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• The adjusted formula for k0 provides an identical frequency of collision for 

[Ru(bipy)3]
2+ in water as Rusak et al. [257]. 
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Data Acquisition 5  

5.1 Introduction 

The previous chapter discussed the effects of environmental conditions on the 

measured [Ru(bipy)3]
2+ lifetime. It established that [Ru(bipy)3]

2+ was a temperature 

sensitive dye not influenced by dye concentration or pH level in solution, but lifetime 

measurements were susceptible to serum at low concentrations of FBS or high 

concentrations of [Ru(bipy)3]
2+. The relationship between oxygen and [Ru(bipy)3]

2+ was 

also verified for experimental conditions providing a means of converting lifetime into 

oxygen concentrations. 

However previous equipment parameters have only referred to acquisition of 

lifetime from a single point or area, without spatial resolution. The requirement for spatial 

resolution necessitates an increase in the acquisition time if the same level of lifetime 

accuracy is applied to each pixel. Thus the technique requires a balance between lifetime 

accuracy, appropriate spatial resolution and practical acquisition times. The method of 

image data analysis and collection will be critical to the quality and quantity of information 

that can be extracted within these restrictive working criteria. Further investigation of 

equipment parameters is required to enable two or three dimensional information to be 

collected. Once these issues have been overcome, application of the optimised FLIM 

technique can finally be used for spatial oxygen mapping in living three-dimensional 

cellular systems. Initially, confirmation of the proposed imaging protocol was applied to 

three-dimensional cell seeded agarose constructs in order to determine possible impact 

from phototoxicity caused by laser exposure to tissue or dye. 

Therefore this chapter will be sectioned into two areas examining the level of 

phototoxicity and the methods for data analysis in two-dimensions. All experiments were 

conducted in accordance to parameters outlined in chapter 3. 
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5.2 Laser induced phototoxicity 

In order to examine the effects of phototoxicity an understanding of the underlying 

mechanism from fluorophore excitation is required. During the excitation of [Ru(bipy)3]
2+ 

cations, the electrons initially delocalise from the metal and localise on to one of the three 

bipyridyl ligands. It then relaxes through internal conversion to the lowest excited triplet 

state [99]. During this process, [Ru(bipy)3]
2+ can be quenched by oxygen using two 

mechanisms; charger transfer (Eq. 72) or energy transfer (Eq. 73) [217], 

Eq. 72   ( )[ ] ( )[ ] −•++∗ +→+ 2
3

32
2

3 ObipyRuObipyRu  

Eq. 73   ( )[ ] ( )[ ] ( )gObipyRuObipyRu ∆+→+ ++∗ 1
2

2
32

2
3  

where the superscript * refers to [Ru(bipy)3]
2+ in an excited state. In Eq. 72 

*[Ru(bipy)3]
2+ is quenched by oxygen via charge transfer creating a superoxide (O2

•-). In Eq. 

73, the quenching by oxygen produces singlet oxygen (O2 
1∆g). There has been much 

investigation into the different mechanism of ruthenium(II) complexes. It was thought that 

[Ru(bipy)3]
2+ quenching with oxygen was dominated by energy transfer due to electron 

charge transfer being less energetically favourable [68]. It was also thought that charge 

transfer actually returned the electron and reverted [Ru(bipy)3]
2+ back to its original state 

[87, 217]. Mulazzani et al. [217] showed that 50% of collisions between [Ru(bipy)3]
2+ and 

O2 (
3Σg

-) lead to the excited singlet states O2 (
1∆g or 

3Σg
+) [1], energy transfer. Recently 

researchers have noted that the large discrepancy between diffusion-controlled estimations, 

kO, and measured bimolecular quenching, k2, values as seen in chapter 4 could arise from a 

charge transfer process [1, 2], but it is still unclear which method is the dominate process. 

However it is known that the excitation process creates ROS, which as discussed in 

Chapter 1 can lead to cellular toxcitiy and damge. 

This has been shown by Dobrucki [72] who investigated the impact of laser 

excitation on [Ru(bipy)3]
2+ and [Ru(phen)3]

2+ incubated with macrophage cells. He 

suggested that the creation of reactive oxygen species from the illumination of [Ru(bipy)3]
2+ 

and [Ru(phen)3]
2+ lead to cellular membrane permeability, collapse and eventually cell 

death. The concentration level at which phototoxicity occurs is disputed among researchers 

and can be between 0.2 mM to 1.34 mM [72, 91, 279], therefore it is essential that an 

assessment of phototoxicity is completed. This variation can arise from the excitation 

source, method of excitation (widefield, confocal), number of illuminations, and length of 

illumination period can all influence the optimum concentration. 

ROS can also induce damage to the dye causing increased photobleaching. This has 

been shown in silicon based encapsulation systems where [Ru(bipy)3]
2+ is embedded in 
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silica [84]. In this case the restriction to diffusion prevents radical oxygen dissipating away 

from the dye and has a higher likelihood of reacting with the immediate environment 

causing photobleaching. The dependence of phototoxicity on excitation variables highlights 

the importance of conducting independent assessments of the current system. 

5.2.1 Methodology 

5.2.1.1 Cell preparation 

Chondrocyte-agarose constructs were prepared as outlined in section 5 of Chapter 

2. Briefly, cartilage was dissected from adult bovine metacarpal-phangel joints (n=3) and 

sequentially digested in an oven at 37ºC with pronase and collagenase enzymes, for one 

and 14 hours respectively. The digest solutions were sieved, washed three times with 

DMEM+16%FBS, pooled together, and resuspended in 30 ml fresh DMEM+16%FBS. 

Cells were counted and seeded at 20x106 cell/ml in 3% (w/v) agarose, type VII (A4018). 

The cell-agarose mixture was gelled at 4°C for 20 mins in specially designed air-tight 

chambers (see Appendix B). Each chamber was filled with 1 ml of media, caps loosely 

fitted, incubated in a 5%CO2 at 37ºC and left overnight to stabilise. Prior to a chamber 

being imaged, the media was replaced with [Ru(bpy)3]
+2+DMEM+16%FBS (0.412 mM) 

and incubation continued at 37˚C for a further 1.5 h. 

5.2.1.2 Cellular photo-exposure 

Chambers were numbered and coverslips marked with perpendicular lines using 

permanent marker pen to aid re-location of the specific cells exposed to laser excitation. 

Chambers were individually mounted into the heating plate at 37˚C, positioned on the 

inverted microscope stage, within an environmental chamber set to 35°C. The 

perpendicular lines were located using the eye piece and orientated so that the intersection 

was positioned in the top left corner of the field of view (FOV), as shown in Figure 101A.  

A single brightfield image was taken using the transmitted PMT and x20 

(N.A.=0.5) objective lens (506503, HC PL FLUOTAR, Leica-Microsystems, GbmH) with 

a 2048 x 2048 format, two line averages, and two frame average (Figure 101A). Excitation 

was provided at 633 nm via a helium/neon laser, to avoid direct excitation of [Ru(bipy)3]
2+. 

This image was used to relocate the specific cells and FOV 24 hours after excitation of 

[Ru(bipy)3]
2+. A x63 objective lens (NA = 1.4) was used with an image format, speed and 

laser repetition rate of 1024x1024, 400 Hz and MP 4 MHz, respectively, to select two cells 

for illumination, as shown in Figure 101B. The image format was adjusted to 256x256 and 
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a zoom in of the selected cell produced an image voxel sizes of 130x130 nm, half the 

Rayleigh criteria for maximum resolution, therefore maximising possible photodamage. 

The selected cell was located centrally for maximum exposure, as shown in Figure 102A, 

and the detector switched to TCSPC PMT. The laser repetition rate was dropped to 500 

kHz and EOM gain adjusted to provide a count rate <5x103 counts/sec. The TCSPC 

parameters were also set to 256x256 image format and 256 time channels with a 

collection/exposure time of 1800 sec, producing an image as shown in Figure 102B.  

After the laser exposure, agarose constructs were washed three times in media and 

continued incubation with 1 ml DMEM+16%FBS for a further 24 hours at 37°C (5%CO2). 

Two cells were imaged per chamber and the procedure was repeated for a total of 11 cells. 

The control cells were treated in an identical manner, and mounted on the microscope for 

the same length of time with the [Ru(bipy)3]
2+, but without excitation.  

 

Figure 101 - Brightfield images were used to identify the two exposed cells seeded in agarose within a single 
chamber to aid relocation during viability tests. A: Two perpendicular lines appearing as dark colouration 

on the left and top of the image were drawn on the underlying coverslip and used for positioning markers; 

the image was taken using x20 objective lens and 2048x2048 image format (scale bar = 150 µµµµm). B: The 

large box shown in A is represented by the zoomed in image of B, where the same two cells have been 
identified as cell 1 and cell 2 using a x63 objective lens with an image format of 1024x1024 (scale bar = 50 

µµµµm). 

5.2.1.3 Cellular viability 

Cellular viability was determined 24 hours after excitation of [Ru(bipy)3]
2+ 

including the corresponding control studies. The chambers were removed from the 

incubator and 5 µl/ml of Calcein AM (C3099, Invitrogen™ Ltd., UK) and Ethdium 

homodimer-2 (EthD-2) (E3599, Invitrogen™ Ltd., UK) were added. The chambers then 
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continued incubation for a further 1 hour. Brightfield images from the previous day were 

used to locate each exposed cell by realigning the perpendicular lines in the FOV. For the 

live/dead stain a FITC and TRITC program stored on the Leica confocal was reloaded. 

The FITC and TRITC programs were run using an Argon (ex 488 nm, em 500-535 nm, 

gain 17%) and He/Neon laser (ex 543 nm, em 555-700 nm, gain 69%), respectively. The 

pre-adjusted programs were placed into a sequence file and the selected cells imaged using 

two line and frame averages per image. This process was repeated for each chamber (see 

Figure 101) including controls producing a total of 11 cells in each group.  

5.2.2 Results 

Using the above relocation it was possible to identify the same cell 24 hours after 

excitation of [Ru(bipy)3]
2+ and to assess viability (Figure 102C). The percentage viability 24 

hours after exposure was 90% with an identical 90% viability for control cells. 

 

Figure 102 – Process of selecting and identification of cells 1&2 prior and after exposure to asses viability. 

A: Brightfield image of identified cells before exposure, scale bar = 5 µµµµm. B: Lifetime image cells exposed 
to the imaging protocol and then chamber returned to the culture incubator for 24 h. C: Same cells relocated 

using brightfield (Figure 101A,B) and imaged using 488 nm and 564 nm excitation to reveal cells labelled 

with calcien AM (live-green) and EthD-2 (dead-red), respectively, scale bar = 50 µµµµm. 
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5.2.3 Discussion 

Cells maintained >90% viability after 1800 sec of laser exposure to the surrounding 

[Ru(bipy)3]
+2 at a concentration of 0.412 mM. This is in contradiction to Dobrucki who 

exposed macrophages up to 112 illuminations using a confocal before cellular membrane 

break down (phototoxicity) occured at concentrations of 0.2 mM [72]. However other 

researchers have used concentrations up to 1.34 mM with no reported loss of viability 

[279]. However the difference stems from the power of the excitation which governs the 

generation of reactive oxygen species created by oxygen quenching [Ru(bipy)3]
2+ and 

confirms the variability between imaging protocols and excitation methods influence the 

possibility of phototoxicity. Dobrucki states that the high pressure mercury arc lamp used 

in the experiments delivered a light beam with 0.1 mW of light that focused onto a 

diffraction limited spot delivering 0.16 J/cm2 for one scan/pixel. The current systems 

excitation wavelength was 780 nm at 500 kHz repetition rate and, according to the power 

measurements taken in Chapter 3, had a 160 µW of average power at the sample. The 

energy per pulse E, is calculated as 3.2x10-10 J using Eq. 74, 

Eq. 74     

rR

P
E =  

where, P is the power and Rr is the repetition rate. The fluency can then be 

calculated by dividing the energy by the area of the beam exposure. The pixel size was 

130x130 nm, so assuming a circular beam diameter of 130 nm the fluency can be calculated 

by dividing the energy by the area to provide 2.46 J/cm2. This fluency is 15 times higher 

than the value calculated by Dobrucki and suggests that the slow repetition rate provides 

the damaging radicals time to diffuse away. This means that the cell has minimal ROS 

exposure and cellular viability is maintained. These experiments confirm that the image 

protocol and [Ru(bipy)3]
2+ concentration are suitable for the assessment of lifetime without 

effecting chondrocyte viability in agarose.  

5.3 Data collection methodology 

Previously only single decay collection and analysis has been discussed forming the 

basis for image acquisition of 500 kHz lifetime decays. Expanding this knowledge and 

applying it to an imaged based setting requires further investigation. It is important to strike 

a balance between providing information of local oxygen distribution and maintaining 

quantitative oxygen concentration. This balance is determined though lifetime spatial 

resolution and accuracy. These issues are primarily restricted by imaging time and number 



5 • Data Acquisition  191 

 
 

 

of photons collected. The following section will examine the optimum image format judged 

on collection time and required photon counts. 

5.3.1 Image format adjustment 

Adjustment of the laser repetition rate requires a TCSPC imaging protocol to be 

setup for each rate and image size. The setup for imaging acquisition of TCSPC can be 

viewed in two phases. Phase one requires a single decay to be recorded at the chosen 

repetition rate, with CFD, SYNC, and TAC parameters characterising the laser operation. 

The settings obtained from this initial phase are the basis for deriving single lifetime decays 

at that repetition rate. Phase two ensures that prior knowledge of minimum number of 

photon and collection time defines the acquisition of each pixel. Correlating the Leica 

setup, consisting of image format and raster scanning speed, with the TCSPC finally 

completes the image production of a lifetime map. 

The single decay files that had previously been setup for 500 kHz are the basis of 

phase 1 and the statistical analysis of photon collection is the basis of phase 2, both defined 

in Chapter 3. The final stage is to replicate the image obtained on the Leica with the 

TCSPC system. In some systems the scanning speed of the Leica communicates directly 

with the TCSPC though the pixel clock [27] automatically adjusting the pixel dwell time, 

but is currently not available in this system. To enable user adjustment a sample containing 

structure must be used to provide visual markers for correlating image registration.  

5.3.1.1 Methods 

A cell-agarose sample was prepared as in section 5.2.1.1. The sample consisted of 

isolated chondrocyte cells, at 40 x 106 cells/ml, in 3% (w/v) agarose deposited at the base 

of a sealed sample chamber in a solution of 1 ml 0.412 mM [Ru(bipy)3]
+2 with 

DMEM+16%FBS. A cluster of cells were selected and intensity image on the Leica were 

obtained using the 4 MHz MP laser to provide reference images at varying image formats. 

Using a scanning speed of 400 Hz, two line and frame averages, images were recorded for 

each format size 256 x 256, 128 x 128, and 64 x 64. The laser repetition rate was then 

dropped to 500 kHz and emission diverted to the FLIM detector. In the TCSPC system the 

original ‘single’ operation acquisition decay file for 500 kHz was loaded; it contained the 

pre-set parameters for optimum photon collection. The collection time used was 20 sec 

with a count increment of 100. 

The operation mode was then changed to ‘Scan Sync In’ providing communication 

between the Leica microscope and TCSPC module. The spatial registration of the image in 
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the SPCM was manipulated via the pixel dwell time to replicate the original intensity 

image produced on the Leica at 4 MHz. There is no established method for translating this 

and is regarded as a trial and error process [27]. Adjustment of the pixel dwell time is 

located in ‘more parameters’. The upper and left boarders can be adjusted to effectively 

crop the image to avoid dynamic effects. These are induced from the galvanometer mirrors 

in the first pixels of a frame or during flyback that prevent an adequate signal being 

recorded [27]. 

5.3.1.2 Results 

The trial and error registration process between a Leica intensity image and FLIM 

TCSPC image, for a 64x64 image format at a repetition rate of 500 kHz, is shown in Figure 

103. A comparison between the Leica intensity image A and the SPCM images B and C 

are either too compressed or too stretched, respectively. The SPCM image in D does show 

a good correlation to the Leica image A, which is highlighted by the yellow circle showing 

the matching positions of the cells. To ensure the cells are in the correct positions the pixels 

are counted from the edge and compared with the array numbers of the SPCM image. 
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Figure 103 – Image adjustment of 64x64 image format of a cell-agarose construct 40x106 cells/ml. A: Leica 

intensity image, B: Lifetime image pixel time 90 µµµµsec C: Lifetime time pixel time 6.6 µµµµsec, D: Lifetime 

image pixel time 11 µµµµsec. Yellow circles represent matching cells. Scale bar =20 µµµµm. 

5.3.1.3 Discussion 

An estimate of the pixel dwell time can be achieved from knowledge of Leica scan 

rate, which in this case is 400 Hz. Converted into scan time per line 400 Hz is equivalent to 

2.5 ms/line and for a 64x64 pixel image format it provides an estimated pixel dwell time of 

39.1 µs/pixel. However image registration was only achieved once the pixel dwell time was 

reduced to 11 µs/pixel (Figure 103D). The reason behind this discrepancy is described by 

Becker et al. who states that as the scanning speed of the microscope (39 µs), i.e. pixel rate, 

is higher than the photon count rate (< 2µs) it leads to a recording process that is random 

[27]. Also small discrepancies may arise due to differences in the internal pixel clock on the 

SPC board and in the PC. The only way to avoid this is to use an external pixel clock 
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linked to the Leica system. However this is currently unavailable. This entire process was 

successfully completed for each image format and scan speed, with all settings saved for 

future experiments. 

5.3.2 Image analysis 

There are a variety of methods available that can translate the collected photons/ 

time channel/pixel and process them into an intensity image. Through application of an 

appropriate fitting model, a lifetime image based on the generation of lifetime for each pixel 

is determined. The restriction arises from the programs available for data logging, i.e. 

processing the thousands of counts into the correct time channels, pixel arrays and spatially 

registering the location in combination with an intensity image. The TCSPC module uses a 

specific file type ‘.sdt’ that can only be opened with a few designated programs, namely the 

single photon correlation module (SPCM); Edinburgh instruments; Time Resolved 

Imaging (TRI2)(Version 2.4.1.1, Gray Institute for Radiation Oncology and Biology) [22]; 

and Matlab (only using a user written program). The two programs available that provide 

specifically designed graphical user interfaces (GUI) for lifetime analysis are the single 

photon correlation image (SPCImage), provided with the TCSPC, and the TRI2, that can 

be acquired free from Paul Barber at Oxford University.  

The two programs have different advantages. The SPCImage is directly linked to 

the SPCM where all images or single lifetime files can be transferred and is purpose built 

for lifetime analysis. The TRI2 on the other hand requires the files to be imported and can 

not analyse single lifetime decays yet. However it does provide greater flexibility for 

processing the data. The following investigation shall identify the imaging parameters and 

how they affect image acquisition. Finally a comparison between the analysis programs 

and methods for data extraction will identify the final parameters required to obtain oxygen 

gradient information. 

5.3.2.1 Image Format 

Determining a suitable image format requires a compromise between the required 

spatial resolution (image format), the accuracy of the lifetime (number of counts required), 

the collection rate and the total collection time. Thus an estimation of the required 

collection time can be derived from Eq. 75, 

Eq. 75     
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where, FI is the total number of pixels in the image format, NC is the number of 

required photon counts per pixel, CR is the collection rate, and CT is the collection time. The 

minimum number of photons required, as established in chapter 3, is NC = 20,000 

counts/pixel, and the maximum collection rate whilst avoiding systematic pile-up, is CR = 

5000 counts/sec. By using these optimised parameters the relationship between image 

format and collection time can be represented graphical, as shown in Figure 104. Based on 

the known parameters in Eq. 75 and the minimum image format available from the Leica 

microscope FI (64x32) the minimum collection of time for imaging is CT = 8,192 sec or 

approximately 2 h 27 min per image (Figure 104). Based on these settings it would take 

over 14 days of imaging for 8 hours per day to obtain the information from 50 cells. Also, 

this is beyond the accepted phototoxicity time for laser exposure as established in section 

5.2.1.2. Therefore other means of reducing the imaging time require consideration without 

jeopardising the integrity of the experiment. 

 

Figure 104 – Estimated collection times for various image formats with a minimum of 20,000 counts per 

pixel necessary to give a adjusted R2>0.9. Colour contour represents the number of hours for the total 

collection time and the red boxes are the standard image formats available on the Leica system including the 
minimum image format. 

5.3.2.2 Binning 

One method for reducing the exposure time would be the use of binning, by adds 

the surrounding counts into the pixel of interest. This effectively increases the total count 

per pixel and can act as a form of decay averaging, which reduced noise and variability 

between pixels. However excess binning can smooth the image to such an extent that the 
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differences in lifetime are reduced affecting the spatial lifetime resolution. Generally in 

microscopy, images tend to be over sampled to extract more structural information and so 

in these cases use of binning does not induce a loss of spatial lifetime resolution [27], see 

Chapter 3 section 3.2 on image resolution. Therefore a balance is necessary between the 

number of required photons, total imaging time and the spatial lifetime resolution. An 

example of a form of binning that uses square expansion is shown in Figure 105.  

 

Figure 105 – Example of square binning selection for a single central pixel. The number inside the boxes 
represents the bin number and the total pixel shows how many pixels the bin number is equivalent to, 

adapted from Becker [27]. 

The lifetime of interest is the central pixel referred to as ‘Bin 0’. The adjacent pixels 

that surround the central pixel form a larger square. Using a ‘Bin 1’ or 3x3 binning refers to 

the pixels adjacent to the central pixel being included. The user determines if enough 

counts are available to apply a mono-exponential fit, otherwise the next set of pixels are 

incorporated, referred to as ‘Bin 2’ or 5x5 binning. This continues until a sufficient number 

of counts are available for lifetime fitting.  

Once the correct bin setting for that pixel has been determined the software will 

apply the same settings to each pixel and then perform a lifetime fitting. The effect of 

binning on the collection time can be modelled for different image formats based on the 

minimum number of counts required per pixel (20,000) and the maximum collection rate 

(5000 counts/sec), as shown in Figure 106. 
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Figure 106 – Semi-log plot of the variation of pixel binning and the effect on collection time for varying 
image format sizes based on 20,000 counts per pixel and a collection rate of 5000 counts/sec. 

A bi-exponential relationship exists between the collection time and the number of 

pixels binned for each image format size. Imaging times beyond 10 mins are not only 

impractical and reduce the possibility of observing the dynamics of oxygen utilisation. 

According to Figure 106 the minimum number of bins for a collection time of <10 min is 

>27 pixels based on the smallest image format of 64x32. In comparison for the same 

number of binned pixels it would take an estimated collection time of 20 mins for a format 

of 64x64, 75 mins for 128x128 and 325 min for 256x256. 

5.3.2.3 Discussion 

The spatial resolution is determined by the size of the pixel rather than the number 

of pixels, therefore image format is not necessarily the determining factor in this process but 

rather it is the imaging time that is of importance. Minimum exposure will help to reduce 

phototoxicity and maintain viability, but also allow a faster analysis of the oxygen 

environment. As cells are dynamic in their behaviour it is assumed that oxygen gradients 

will adjust over time depending on the surrounding oxygen concentration. Therefore 

systems need to produce oxygen maps with both good spatial and temporal resolution. The 

average size of an isolated chondrocyte is 10 µm [156], thus the pixel size should be at most 

approximately 350 nm based on a 64x33 image format and an intended image layout as 

shown in Figure 110. Future experiments should be run at most, half the exposure time 
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used in phototoxicity experiments (15 min) to maintain good viability. This will ensure at 

least double the minimum number of photons will be collected based on a 64x32 image 

with binning of at least 27 pixels to account for possible photon loss in the system during 

the acquisition process. The initial image format parameters have been theoretically 

suggested and now quantification of experimental system losses will confirm the actual 

binning and software processing that should be applied. 

5.3.3 Parameter control image test run 

During lifetime acquisition it is assumed that photons will be lost through detection 

and data processing. Therefore an experimental test run was completed to confirm the 

actual acquired photon count based on the theoretically determined collection rate. The test 

run mimicked the intended experimental protocol using agarose and [Ru(bipy)3]
2++media 

without cells to provide baseline data and avoid lifetime influences from cellular oxygen 

consumption effects. 

5.3.3.1 Method 

The air-tight sample chamber and coverslips were autoclaved along with a separate 

glass bijou of agarose powder mixed at 3% (w/v) with Hanks buffer. The autoclaved gel 

was transferred to a 60ºC oven to cool for 1.5 hour and was then transferred to a second 

oven to cool to 37ºC for a further 30 mins. During this process the sample chamber was 

constructed and coverslips added using autoclaved tweezers in a sterile environment. A 

sterile Pasteur pipette was used to transfer the agarose gel to the chambers creating an 

agarose layer, 10 mm in thickness. The chambers were covered and transferred to the fridge 

for 20 min to gel the molten agaose. A sterile scalpel was then used to extract quarter 

sections of agarose. Quarter sections of the agarose gel were removed to provide fast 

delivery of [Ru(bpy)3]
+2, aid diffusion and produced a clear boundary between media and 

agaose in the x-y plane. 1 ml of DMEM+16%FBS was added to each chamber, the lids 

where loosely sealed and the chambers transferred to a hydrated incubator at 37ºC 

(5%CO2, air balance) and left overnight.  

Prior to imaging (1.5 hours), a preheated (to 37°C) solution of [Ru(bipy)3]
2++ 

DMEM+16%FBS (0.412 mM) was exchanged with DMEM+16%FBS. The sealed 

chamber was then transferred to a preheated stage heating plate (37ºC) and environmental 

chamber (35ºC). The chamber was mounted on the microscope stage and a x63 oil 

objective lens was used to locate the coverslip. The position of the lens was adjusted to a 

depth of 100 nm and 8 separately located images at 64x33 image format were recorded 
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from the non-cellular agarose sample. The laser excitation was 780 nm at a repetition rate 

of 500 kHz and photons were collected for 900 sec. 

Each captured image was sent to SPCImage from SPCM, which displayed the non-

cellular agarose image. The cross-hair automatically located the peak intensity pixel in the 

acquired image providing maximum number of acquired counts, which was recorded for 

later analysis. To determine the total number of counts recorded per image datasets were 

transferred to TRI2 software where all pixels can be binned deriving the counts per image. 

The count rates for the photon processing elements of the system were obtained from 

constant fractional discriminator (CFD), time-to-analogue converter (TAC) and analogue 

to digital converter (ADC). This requires the original ‘.sdt’ image file to be reloaded into 

the SPCM. It produces a simulation of the maximum and minimum counts rates for the 

CFD, TAC and ADC during that experiment. It is important to identify the location of 

losses in the system to propose possible solutions. 

5.3.3.2 Results 

The maximum and minimum collection rates for the CFD and TAC during 

measurements of non-cellular agarose constructs bathed in [Ru(bipy)3]
2++media at 37°C are 

shown in Figure 107. The mean (± standard deviation) values for the maximum and 

minimum collection rate for the CFD was 2285 (±154) and 1218 (±85) counts/sec, 

respectively. Similarly for the TAC the maximum value was 1828 (±103) and the minimum 

values was 1083 (±72) counts/sec. The difference between the mean maximum and 

minimum values for both the CFD and TAC are similar at 47.8% and 42.5%, respectively. 

The difference between the maximum CFD and TAC was on average 25%, where as 

between the minimum CFD and TAC it was 12%. 

The mean collection rate for the CFD and TAC were 1751±563 and 1456±394 

count/sec, respectively, shown in Figure 107. This shows as an average loss of 20% 

between the registered photons and the converted photons to count. The collection rates for 

the TAC and ADC were identical showing no loss between the two processes (not shown 

here), which means the TAC logged photons are not lost during conversion to digital 

count. 
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Figure 107 – Box and whiskers plot of the counts recorded per sec in the CFD and TAC of a non-cellular 

agarose sample. A comparison between max and min CFD (black and red) and TAC (green and blue), 
respectively, described as a percentage difference. Box and whiskers represent maximum and minimum 

values (n=8) and standard deviation, respectively. 

As the TAC and ADC are producing identical results it is important to determine if 

the counts are translated to the acquired image. The peak and mean collected count per 

pixel from the imaged samples are compared against the maximum and minimum ADC, 

respectively, as shown in Figure 108. The mean (±standard deviation) peak pixel counts in 

the acquired images and the maximum converted counts by the ADC were 509.5 (±25.5) 

and 779.3 (±44.1) counts/pixel, respectively. The minimum number of photons converted 

to digital counts is 461.8±30.9 counts/pixel, but there are on average only 351.6±20.4 

counts/pixel arriving in the image this is a loss of at least 23% in the processing of data. 
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Figure 108 – Box and whiskers plot of the peak and average counts/pixel in the non-agarose cellular 
sample. Compared with the estimated peak and minimum count of the max ADC and min ADC, based on 

the collection rate. Box and whiskers represent standard deviation and maximum and minimum values. 

5.3.3.3 Discussion 

Non-cellular agarose samples were tested in experimental conditions to determine 

effects to photon collection induced during image collection. Low variation between 

samples was seen for the total number of counts acquired with a difference of 

approximately 5-7%. The average loss of photons between CFD detection and TAC 

logging is 20%, but the average loss between mean converted count in the ADC to mean 

pixel count/image counts could be up to 43%. Therefore, from the mean CFD to the mean 

pixel count/image there could be as much as a 63% loss of counts. An example showing 

the maximum collection rate at the CFD would translate to the number of counts/pixel in 

a 64x33 image format based on the identified variation has been shown in Figure 109. 

Even though collection rates have been set within the collection rate limits of 

minimising pile-up effects a loss is still experienced between the CFD and TAC most likely 

this arises from classic pile-up [27]. Where the photons are detected at the PMT, but arrive 

during the dead-time of the TAC during one cycle and are therefore not recorded. This is 

confirmed by the identical count rates for the TAC and ADC showing no loss between 

these processes.  
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Figure 109 – Diagrammatic example of the photon counting loss from CFD to acquired image. The 
components are shown on the left with the CFD, ADC, and example image. Based on the maximum 

collection rate and outcome from non-cellular agarose images an example estimates the effective collection 
rate of the setup. 

There is little reason as to why a count loss would occur between the ADC and the 

image, but there are known issues with regards to electrostatic noise interfering with the 

time resolution of the ADC by broadening the signals [27]. However this should not affect 

the conversion of the signal from the ADC to the image unless there is a problem with 

during the fly back of the laser creating a loss of counts in the pixel. The likelihood is that a 

combination of this and translation of the counts to the correct pixels in the image. 

Confirmation of this was seen by comparing other image format sizes, where a 256x256, 

(data not shown) displayed identical loses of 20% between the CFD and TAC in terms of 

maximum and minimum values, but only a 9% loss between the estimated total counts and 

the min ADC. Whereas the 64x33 image had a difference of 23% this shows a large 

discrepancy.  

This has shown that the image acquisition process is also limited by pile-up 

affecting the TAC. It is important to consider the minimum ADC when estimating the 

intended collection of counts. However, the max CFD must be used for adjusting the EOM 

gain and maintaining the collection rate <1% to avoid pile-up. It is assumed that the ADC 

to image effects seen would be minimised if the pixel clock of the Leica was communicated 



5 • Data Acquisition  203 

 
 

 

directly to the TCSPC. Without this an extra test should be completed comparing the total 

number of counts in an image to the minimum ADC conversion rate and collection time. 

This will identify the minimum collection time required for optimum counts/pixel. 

5.3.4 Image acquisition 

A test cell has been used to determine the most appropriate method for displaying 

the lifetime information and suitable quantitative analysis. Two different software systems 

were investigated namely SPCImage and TRI2. The test cells was imaged using the 

proposed experimental method and the analysis method investigated the effect of binning 

on the image quality and whether an alternative method can or should be used. Cellular 

preparation and FLIM setup were conducted as described in section 5.2.1.1 and the data 

analysis methods SPCImage and TRI2 are described below. 

5.3.4.1 Single Photon Counting Imaging (SPCImage)  

The acquired image of the test cell was transferred from the SPCM to the 

SPCImage. In ‘options’ the model preferences are changed to allow for long lifetimes to be 

analysed. Initially an intensity image is displayed in the top left corner of the SPCImage 

window (Figure 110A). The cross hairs on the image indicate the peak intensity in the 

intensity image with the corresponding decay shown in the plot below (Figure 110B). 

Selecting the appropriate settings for analysis, i.e. shifting the cursors and fixing the 

‘scatter’ to zero, allows the software to apply the exponential fit to each pixel and calculate 

the lifetime, amplitude, offset and χr
2 for each pixel in the image applying a lifetime map 

superimposed over the intensity image. A histogram of all the calculated lifetimes are 

displayed in the top right hand corner (Figure 110C) with a rainbow ‘look up table’. The 

size of the ‘look up table’ can be adjusted by shifting the hue cursors, which assign colours 

to a particular lifetime range. The overlaid lifetime map is represented by the selected 

colours. 

The pixels that appear inside the cell were thresholded out by placing the cross-hair 

on a pixel inside the cell and then increasing the threshold ‘thld’ until the red fitted decay 

line disappears. The image then requires recalculation. Each time the ‘Bin’ is adjusted the 

threshold also requires adjustments and recalculation. The reason for binning is described 

in section 5.3.2.2, essentially it is a means of reducing the collection time. However the 

effect to the image quality can only be seen through experimentation. 
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Figure 110 – Example of test cell in SPCI data analysis program used for determining the lifetime 

components in the measured data set. A – Original intensity image, latter overlaid by lifetime data, B – 
lifetime plot for pixel selected by cross hairs. This is automatically selected as the pixel maximum intensity 

but this can be adjusted by moving the cross hair on the intensity/lifetime image. Highlighted red boxes 
identify where the binning, tau, threshold ‘thld’, total number of counts and reduced chi-square are 

displayed corresponding to this lifetime. C – Histogram of number of pixels at each lifetime values and the 

rainbow lookup table which can be adjusted by moving the max and min markers. The lifetime of each pixel 
are then displayed on the intensity image (A) based on this rainbow lookup table. 

Different binning sizes were applied to the test cell as shown in Figure 111. The 

cross-hair identifies the same pixel in all images. The left side uses the same histogram 

bandwidth whereas the right-side varies the bandwidths in line the peak base width. It is 

apparent that with the increasing bin size in Figure 111 the FWHM and peak height of the 

histogram decreases and increases, respectively. The peak becomes smoother due to the 

improved fitting from higher counts/pixel. However the lifetime becomes more averaged 

with decreased FWHM. Without adjustment of the histogram cursors with increase bin 

size the lifetime contrast disappears (Figure 111 left). To maintain the same level of 

contrast the cursor requires adjustment to the same percentage of the histogram as shown 

in Figure 111 right. 
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Figure 111 – Lifetime maps of test cell in agarose with varying binning regimes and colour map selections. 

Left: Same colour map cursor selection, but varying bin setting from 2, 3, and 4. Right: Adjusted colour 
map cursor selection cutting off wings of histogram, but using the same bin settings as in left side images. 

5.3.4.2 TRI2 

The saved files recorded in SPCM are reopened in the TRI2 software. The time 

resolved analysis is selected from the tool bar opening a separate window, as shown in 

Figure 112. The intensity image (Figure 112A) has a square box identifying the location of 

the lifetime decay display (Figure 112B). Adjustment of the cursor in the decay window 

selects the section of the decay required for fitting with the residual fit below (Figure 112C). 

Adjustment of the fitting parameters are displayed bottom left, with a selection of fitting 

models, a targeted Chi-square, and type of noise model. Parameters were set in accordance 

to these defined in Chapter 3 where the type of fit was set to mono-exponential 

(Marquardt) and the target Chi-square was set to <1.1 prior to fitting the decay, and the 

noise model used was based on a Poisson estimate. The fitting function used in these 

experiments was the Levenberg-Marquardt fitting model.  

Eq. 76     
( )τ
t

AZtf
−

+= exp)(  

where, Z is the offset, A is the amplitude, t is the time and τ is the lifetime. Once the 

selected parameters are set, a variety of options are available for extracting lifetime 

information. 
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Pre-processing was selected from ‘experimental functions’ which applied a 

threshold excluding low and high values the intensity image. The effect of adjusting these 

cursors can be seen immediately in the intensity image and the same settings are 

maintained for future experiments. Adjacent to the threshold is a binning option where a 

variety of pixel bin types and sizes can be applied to each pixel. Instead of using the 

standard binning types, square or circle, another option available is a mask. This allows 

any shape to be designed and applied to the image and binning all the pixels in the mask. 

The transient decay fitting can be set to automatically update when any adjustments has 

been made, providing the ability to instantly observe any changes.  

The fitted values can be saved separately for individual or multiple images. 

Experimental and fitted data points can be saved for individual pixels. A global fitting 

option can be applied to a data set and a lifetime image produced of the fitted values. With 

the chosen option four images are produced in a separate window consisting of intensity, 

lifetime, amplitude and χr
2. This allows a comparison between the different parameters and 

can determine possible error or influences from the appearance of similar patterns. 

 

Figure 112 – Example of test cell in TRI2 time resolved data analysis software for extraction of lifetime 
information. A – Intensity image, B- Lifetime plot for pixel selected in intensity image, C- Residual 

corresponding to the lifetime plots above. Highlighted red boxes identify where the binning, tau, total 

number of counts and reduced chi-square are located. 
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The test cell image was applied to the TRI2 software with incrementing bin sizes, as 

shown in Figure 113. As the bin is increased from Bin 2 (left) to Bin 4 (right) the bin box 

size increases as well as the amplitude of the decay. The increase in bin provides an 

increase in the total count such that the decay is less noisy and has an improved weighted 

residual plot. The histogram variations in lifetime image from bin size adjustment is seen in 

SPCImage, but does not occur in TRI2 as the cursors position is based on histogram 

percentage. 

 

Figure 113 – Lifetime decay of selected pixel in the intensity image of the test cell at different square 
binning sizes 2, 3, and 4. The increasing area of the bin is also shown by the yellow box in intensity images, 

with corresponding lifetime decay and residual plot below. 

5.3.4.3 Comparison between SPCImage and TRI2 

The test cell has been applied to both software packages with incrementing bins and 

a direct comparison of the lifetime images produced are shown in Figure 114. The colour 

maps have been produced with identical mono-exponential decay models that use a least 

squares Leverburg-Marquadt fitting method. The length of time taken to process the 

SPCImage and TRI2 image with a bin of 2 was 39 sec and 2.3 sec, respectively. As the bins 

increase, the contrast between the pixels start to blur and a smoothed less distinct image is 

produced with reduced spatial resolution. In Figure 114, highlighted regions, depicted by 

the purple circles in the TRI2 software are maintained in the binned images, but this was 

not observed in the SPCImage software. As a direct comparison between the software 

packages the fluorescence decay in one pixel, identified by the cross-hair, was analysed for 

each bin setting and results displayed in Table 21. 
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Figure 114 – Comparison of lifetime maps from the test cell using TRI2 and SPCImage software with 

binning of 2,3, and 4. The TRI2 software lifetime colours blue to red as 322 to 368 ns and the SPCI the 
reversed colour red to blue, but the lifetime range changes as shown in figure 13 right. 

Table 21 – Comparison of data analysis methods using same test cell image with variation in bin number 

 

Table 21 for both software types shows an increase in the number of counts with 

increasing bin number. The TRI2 does not have as many counts as the SPCImage due to 

the TRI2 considering only the number of counts in the fit rather than the total decay as 

with SPCImage. The TRI2 shows a decrease in the standard deviation with increasing 

Data analysis software 

SPCI TRI2 
Bin 

τ 
(ns) 

Total  

photons 
χr

2 
τ 

(ns) 
±sd 

(ns) 

Total  

photons 
χr

2 

2 330.75 16240 1.07 347 10.5 13222 0.97 

3 335.99 31693 0.95 347 6.7 25898 1.02 

4 342.0 52266 1.01 345 4.8 42582 0.99 
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counts confirming that less variability is seen with higher counts in excellent agreement 

with Figure 82. Althought for the TRI2 software in Table 21 the lifetime has no decimal 

places as is displayed in the GUI when the data is exported it provides upto three decimal 

places matching that of the SPCI software. The χr
2 is unaffected by the binning, except 

maybe a slight improvement from SPCImage. The τ values calculated with the SPCImage 

increase with increasing bin size, but for TRI2 there is very little variation. This suggests 

that the fitting algorithm used for TRI2 is superior to that in the SPCImage and that at 

lower counts the calculated lifetime will be more reliable. TRI2 has faster data analysis that 

also produce a visual representation of the fitting parameters as a map and most 

importantly multiple data files can be analysed simultaneously. A summary of the 

advantages and disadvantages are discussed in Table 22. 

Table 22 – Summary of advantages and disadvantages of the SPCI and TRI2 lifetime software analysis 
packages 

Software Advantages Disadvantages 

SPCI 
- Directly link to acquisition software 

- Simple to use 

- Only one image can be analysed at a time 

- Only two methods of fitting available 
- No information on the equations used to 

fit the decays 
- Slow data analysis (39 sec) 

TRI2 

- Multiple image analysis 

- Data analysis is faster (2.3 sec) 
- Threshold is in % therefore automatically 

adjusts for each bin 

- All statistical information on screen 
- Large variety of statistical analysis  

- Greater flexibility with regards to creating 
masks and binning 

- More complex due to the variety of 

applications 

 

The numerous advantages of the TRI2 software outweigh the disadvantaged of 

increased complexity and suggest that the more proficient software package to use would 

be TRI2 and thus this software has been selected for all subsequent data analysis. 

5.3.4.4 Masking and binning using TRI2 

Analysis of preliminary lifetime maps (Figure 114) showed considerable high 

frequency spatial heterogeneity. A masking binning procedure was used to attempt to 

reduce the variability and determine the existence of any spatial oxygen gradients that 

occur with distance from the cell, as might be produced by cellular oxygen consumption. 

Binning or masking the data in TRI2 can be completed using any shape or number of 

pixels. If it is assumed that chondrocytes consume oxygen uniformly around the cell 

periphery, then it is acceptable to image one side of the cell. Binning pixels around the 
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circumference and shifting the mask radially away from the cell in incrementing steps will 

provide the ability of a gradient to be determined. 

Using TRI2 software, a mask is drawn and loaded on to the FLIM image. The 

pixels in the mask are binned and time resolved analysis applied only to the masked pixels 

to create appropriate lifetime decay. This represents one point at a specific distance from 

the cell (Figure 115) providing single point lifetime measurements at discrete distances from 

the cell, as shown in Figure 116. 

 

Figure 115 – Diagrammatic representation of a user defined mask applied to extract lifetime decay 
information. The mask is used on an intensity image of an unresolved test cell where only the selected 

pixels in the mask are transferred to the time resolved analysis section and binned to produce a lifetime 
decay. Separate masks are created along the entire image to produce a single data set of lifetime values 

versus distance from the cell periphery. 
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Figure 116 – Extracted lifetime measurements from chondrocyte with incrementing distance from cell 

periphery with assumed linear fit (red line) in close proximity to the cell. Test cell 1 shows a significant 
(p<0.05) negative gradient with increasing distance from the cell periphery. 

5.3.5 Discussion 

The comparison between which analysis software is appropriate for investigating 

lifetime decays has shown that the TRI2 produces reliable lifetime measurements that can 

quickly analyse multiple images at the same time. It provides the user with flexibility and 

allows user defined masks to be generated. Examination of the data extraction process has 

shown that cellular periphery masks are an appropriate method for completing large scale 

comparison analysis of lifetime data. By converting lifetime values into oxygen 

concentration and fitting assumed linear models at close proximity to the cell, gradients can 

be extracted that will provide a means of quantifying oxygen gradients.  

5.3.6 Conclusion 

The pixel dwell time must be pre-adjusted and saved for each image format and 

scan speed. A trial and error approach has been used to determine an appropriate pixel 

dwell time. It is a required step before image acquisition can be correctly processed. This 

lack of correlation between pixel dwell time could be the source of the discrepancy between 

the ADC and image counts. A more efficient method would be to install a communication 

cable between the Leica and TCSPC to avoid this unnecessary step and provide greater 

flexibility in the adjustment of parameters. The image analysis has shown that the 

maximum image format size that should be used is 64x33 and that binning pixels within 

the image is paramount to maintaining low image collection times with high counts per 

pixel for fitting. 
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The TRI2 has proven to be the most appropriate software to use for analysing the 

lifetime decay providing fast, reliable and flexible interfacing software that can implement 

masking features to extract comparable information. The most appropriate method for 

mass comparison uses assumed linear fits for deriving the gradients. 

5.4 Summary 

• Chondrocyte cells maintained viability of >90% after laser exposure of 1800 

sec at a concentration of 0.412 mM [Ru(bipy)3]
2+, showing limited phototoxic 

effects. 

• Pixel dwell time is important for minimsing loss of counts between ADC and 

image count collection. 

• There is a 20% loss of counts between CFD and TAC due to pile-up 

eventhough the collection rate has been maintained <1% of the repetition rate. 

• TRI2 has been chosen as the superior software package to allow flexible 

masking and application. 

• Linear fits applied to the extracted data can be used to derived spatial oxygen 

gradients assuming that the gradient is linear over the short distance. 

• The estabilished protocol uses image settings for future experiments as 900 sec 

collection time full binning of mask containing 33 pixels. 

 

 



 

213 

Pericellular O2 

Investigation 

6  

6.1 Introduction 

The previous chapter identified that no phototoxic effects were induced by the 

imaging protocol. A data analysis procedure has been established and can now be applied 

to live cell quantification of spatial oxygen gradients in conjunction with the developed 

imaging protocol. Application of the optimised FLIM technique can finally be used to 

quantify spatial oxygen gradients in living three-dimensional cellular systems. 

Confirmation that the information acquired is derived from cellular consumption and not 

an artificial artefact arising from the surrounding cell will complete the validation of this 

technique. All experiments were conducted in accordance to parameters outlined in 

chapters 3 and 5. 

6.1.1 Pericellular oxygen quantification 

Researchers have shown that the same cell types exhibit different rates of oxygen 

consumption depending on cell location within the native tissue and associated access to 

nutrients and oxygen. Specifically in articular cartilage, chondrocytes isolated from the 

deep zone display larger morphology and higher rates of oxygen consumption compared to 

the superficial zone cells [127]. The optimised FLIM system was applied to 50 individual 

bovine articular chondrocytes seeded in agarose constructs from within air tight chambers. 

Established analysis procedures were applied for investigating pericellular oxygen 

concentrations at the periphery of the chondrocytes. The chondrocyte diameters were 

measured in an attempt to determine a relationship between gradient and chondrocyte size.    

6.1.2 Extrinsic manipulation of oxygen consumption 

In order to confirm that the spatial oxygen gradients observed occur from cellular 

oxygen consumption, further studies were conducted in which cellular oxygen 

consumption was manipulated artificially. Cellular oxygen consumption was elevated by 
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addition of oligomycin, which decreases oxygen consumption or CCCP which increase 

consumption. In addition oxygen consumption was also increased by reducing the glucose 

concentration within the cell culture media. All cellular preparation, FLIM setup, data 

acquisition and data analysis was conducted as outline in section 6.2. 

6.2 Materials and Methods 

6.2.1 Normal cell culture media preparation for imaging spatial oxygen gradients 

6.2.1.1 Cell preparation 

Chondrocyte-agarose constructs were prepared as outlined in section 3 of chapter 2. 

Briefly, cartilage was dissected from adult bovine metacarpal-phangel joints (n=3) and 

sequentially digested in an oven at 37ºC with pronase and collagenase enzymes, for one 

and 14 hours respectively. The digest solutions were sieved, washed three times with 

DMEM+16%FBS, pooled together, and resuspended in 30 ml fresh DMEM+16%FBS. 

Cells were counted and seeded at 4x106 cell/ml in 3% (w/v) agarose, type VII (A4018). 

The cell-agarose mixture was gelled at 4°C for 20 mins in specially designed air-tight 

chambers (see Appendix B). Quarter sections of the cell-agarose gelled mixture were 

removed to provide fast delivery of [Ru(bpy)3]
2+ to cells and to enable studies to investigate 

the relationship between depth within the agarose and oxygen consumption. Each chamber 

was filled with 1 ml of media, caps loosely fitted, in a 5%CO2 incubator at 37ºC and left 

overnight to stabilise. Prior to a chamber being imaged, the media was replaced with 

[Ru(bpy)3]
2++DMEM+16%FBS (0.412 mM) and returned for further incubation at 37°C 

for 1.5 h. Once chambers had completed the incubation period with [Ru(bipy)3]
2++media 

chambers were transferred sequentially to the heating plate on the microscope stage.  

6.2.1.2 Imaging protocol 

Chambers were rotated to allow the removed quarter section to be imaged in the 

top right corner. Cell location in relation to the agarose edge was identified with the aid of 

a transmitted PMT using He/Neon laser (ex 633nm, image format 512x512) and a x63 oil 

immersion objective lens (N.A. 1.4).  

The chosen cell was centred in the x-y axis then the image format and voxel size 

was adjusted to 64x33 pixels and to 350x350 nm, respectively. The right side of the cell was 

positioned on the left of the image, as shown in Figure 117. The detector was switched to 

the TCSPC PMT and repetition rate was dropped to 500 kHz with a collection rate <5x103 

counts/sec. The TCSPC parameters were set as described in Chapter 3 with a collection 
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time of 900 sec and image format set to 64x33 to match the Leica file setup. This method 

was repeated for each cell and as a control applied to chambers with cell free agarose.  

6.2.1.3 Data acquisition 

A set of 59 masks were created that mapped the curvature of the cell periphery at 

incrementing points along the x-axis. FLIM experimental data sets for each cell (n=52) and 

control (n=8) were loaded in TRI2 for analysis. The furthest mask from the cell periphery 

was loaded first and applied to each data set. Each mask was binned and a mono-

exponential fit was applied and decays were accepted based on established parameters 

namely χr
2 ≤ 1.17 and adjusted R2 >0.9. This was maintained for each mask fitting and the 

fitted parameters for each data set were saved into an Excel file. A Matlab file was created 

(Appendix E) that extracted the fitted parameters, τ and amplitude. This correlated each 

mask to the corresponding location in x-axis of the image and compiled it for each data set. 

It finally produced two separate spreadsheet files containing τ values and the corresponding 

amplitude values of that decay for each data set. These were imported into OriginPro8.  

 

Figure 117 – A schematic representation of the theoretical pericellular oxygen gradient and the imaging 

approach used for quantification. The green lines indicate the binning masks (n=59) used during the data 
processing. 

The edge of the cell, identified from the brightfield image correlated with the drop 

in amplitude in the two photon image presumably where the [Ru(bipy)3]
2+ was excluded 

from the viable cell (Figure 118A). Thus it was possible to use the amplitude data with a 

high pass cut-off threshold value to identify the location of the cell periphery. All amplitude 

values below this cut off value were removed along with the corresponding τ values. The 

adjusted τ data sets were plotted against distances using the imaged voxel size as a measure 

of distance from the cell periphery.  
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6.2.1.4 Data analysis 

Post-processing was performed to determine the cell diameter (Figure 118A) and 

distance of the cell from agarose edge, as shown in Figure 118B & C. This was achieved by 

importing the Leica 4 MHz intensity and brightfield images into Volocity (Version 5.1).  

The τ values were converted to oxygen concentrations using the rearranged equation 

defined in Chapter 4 section 4.3, as shown in Figure 122: 

Eq. 77     [ ]
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The resulting oxygen concentrations were plotted against distance from the cell 

periphery for each cell. It was assumed that over such a short distance linear fits were an 

appropriate approximation to determine the gradient at close proximity to the cell. This 

would identify which cells presented a significant level of change in the oxygen 

concentration in relation to the distance from the cell periphery. 

 

Figure 118 – Two-photon and brightfield image of chondrocytes embedded in agarose and bathed in 

[Ru(bipy)3]
2++DMEM+16%FBS. A: 4 MHz TP zoomed in image of a chondrocyte appearing as the black 

void and the grey intensity as [Ru(bipy)3]
2+ in solution in agarose. The green and blue lines are drawn on 

measurements using Volocity™ displaying the x and y diameters of the cell. Scale bar for A = 5 µµµµm. B: 

Brightfield and C: 4 MHz TP image of a cluster of cells next to agarose edge, the coloured lines are 

measurements from the edge of the cell to the agarose edge. Scale bar for B&C = 50 µµµµm. 
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6.2.2 Regulation of respiration through addition of CCCP and oligomycin  

The rate of oxidative phosphorylation is based on the level of proton gradient 

across the mitochondrial membrane and regulated by the synthesis of ATP, as shown in 

Figure 119A. It is possible to bypass this regulation by uncoupling the mitochondrias 

reliance on the ATPase pump for maintaining proton levels. Uncouplers of oxidative 

phosphorylation are weak organic acids with delocalised negative charge allowing the 

uncoupler molecule to penetrate the membrane [145]. In an attempt to compensate, the 

negatively charged compound is translocated out of the mitochondria, while the protonated 

uncoupler diffuses back into the matrix, thus degrading the proton gradient.  

Two types of uncoupling exist intrinsic and extrinsic. Intrinsic arises from 

degradation of the proton gradient within the cell, whilst extrinsic is caused by an 

externally applied compound that restricts proton pump transportation [145]. The most 

commonly used uncouplers are carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and 

carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP). Both have been used in 

numerous studies on various cell types including chondrocyte cells [125, 126]. The 

uncoupler compound bypasses the normal ATPase pump (coupled) and permeates the 

membrane, as shown in Figure 119B. However, specific dosing must be used otherwise the 

oxidative pathway becomes inhibited affecting oxygen utilisation. However when used at 

an adequate dose it inhibits ATP synthesis, while upregulating oxygen utilisation [287].  

Inhibition of oxygen utilisation can be achieved through the addition of 

oligomycin. This inhibits H+ entry through H+-ATP synthase [287] by binding to the 

transmembrane H+ carrier, the F0 subunit, of the ATPase pump [5] , as shown in Figure 

119C. This blocks the movement of protons through F0 and therefore inhibits 

transportation of H+ effecting the ability of the mitochondria to regulate the proton gradient 

and reduces the consumption of oxygen [266].  
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Figure 119 – Schematic diagram describes the proton pumps involved in the electron transport chain (green) 
and ATP synthesis (F0 - light purple, F1 - dark purple) used for oxygen consumption and ATP production, 

respectively. A: Normal production, B: CCCP uncouples flow of H+ through ATP synthase and permeates 
membrane with H+ inhibiting ATP production, C: Oliomycin inhibits F0 of ATP synthase restricting proton 

flow and production of ATP. 

6.2.2.1 Cell culture preparation for incubation with inhibitor and uncoupler 

Normal DMEM+16%FBS culture media was used as the control solution and 

prepared as previously described in Chapter 2. Stock solutions of CCCP (C2759, Sigma-

Aldrich, UK) and oligomycin (O4876, Sigma-Aldrich, UK) where created with dimethyl 

sulfoxide (DMSO) (D2560, Sigma-Aldrich, UK) at a concentration of 4 g/l and 1.23 g/l. 

Stock solutions were separately diluted with 10 µl of dissolved in 90 µl of normal 

DMEM+16%FBS media. Filtered 1 ml [Ru(bipy)3]
2++media (0.412 mM) was incubated 

with cells for 1.5 h prior to imaging. Half an hour prior to the start of imaging 5 µl of the 

oligomycin or CCCP was added to [Ru(bipy)3]
2++media in chambers and then return for 

continued incubated. This created a final concentration of 2 µg/ml and 3 mM for 

oligomycin (Olig) and CCCP, respectively [125, 129]. These concentrations had been 

previously tested on chondrocytes by Heywood et al. [125] to determine the optimum level 

and incubation period to induce inhibition and upregulation of oxygen consumption.  

6.2.3 Regulation of oxygen consumption through changes to glucose concentration 

In articular cartilage, oxygen consumption is inhibited by glucose [127], which is 

defined as the Crabtree effect and sometimes referred to as ‘negative Pasteur effect’. 

Heywood et al. [127] and Zhou et al. [326] investigated the oxygen consumption response of 

isolated bovine articular chondrocytes to different concentrations of glucose cell culture 

media. Zhou et al. measured the response of chondrocytes in alginate to changes in cell 

culture glucose over a wide range of concentrations 0-10 mM.  Whereas Heywood et al. 

measured the effect of glucose concentration over 0-22 mM on the oxygen consumption 
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rates of subpopulations of superficial and deep zone chondrocytes seeded in agarose 

constructs. Figure 120 shows the results of the two experimental studies which indicate that 

an increase in oxygen consumption occurs when glucose concentration is reduced to less 

than approximately 5 mM. 

 

Figure 120 – Response of chondrocyte oxygen consumption rates to glucose concentrations in cell culture 

media. Plot shows a comparison between two investigating researchers using different matrix substrate for 
chondrocyte cell culture. Chondrocytes cultured in alginate beads (black squares) represented by averaged 
extracted data from Zhou et al. [326]. Chondrocytes separated into superficial (red circle) and deep (green 

triangle) populations seeded in agarose constructs represented by extracted and unnormalised data from 
Heywood et al. [127]. Dashed lines represent the suggested quantities of glucoses that should be added to 

solution 

6.2.3.1 Cell culture media preparation 

For these studies, ultra low glucose (ULG) and low glucose (LG) media were 

created from powdered DMEM (D5030, Sigma-Aldrich, UK) following company 

instructions [269]. Briefly, 8.3 g/l powered DMEM was dissolved in deionised water with 

3.7 g/l sodium bicarbonate (S8875, Sigma-Aldrich, UK). For ULG and LG DMEM 

solutions 0.01 g/l and 0.5 g/l of glucose (G6152, Sigma-Aldrich, UK) were added 

respectively. Osmolarity and pH levels were adjusted between 320-340 mOsm and pH 6.8-

7.1, respectively. Prior to filtering, 3.8 g/l HEPES (H0887), 80.6 U/ml penicillin and 80.6 

mg/l streptomycin (P4333), 0.12 g/l L-ascorbic acid (A0278), 1% L-glutamine (G7513), 

and 16% (v/v) fetal bovine serum (FBS) (F7524) (Sigma-Aldrich, UK) were added to 500 

ml of DMEM ULG and LG. Normal media solution was prepared as previously described 

in Chapter 2 and contains 1 g/l of glucose. 
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6.3 Results 

6.3.1 Pericellular spatial oxygen gradient quantification under normal conditions 

6.3.1.1 Statistically significant pericellular oxygen gradient occurs around a 

subpopulation of cells 

A subpopulation of 54% (28/52) of cells in agarose gel had no statistically 

significant correlation between oxygen concentration and distance from the cell periphery 

(Figure 122A). For the other 46% of cells, there was a statistically significant positive 

correlation (p<0.05) (Figure 122B). Only 4% of cells (2/52) showed a negative gradient, 

however, neither of these were statistically significant (Figure 123).  

 

Figure 121 – Representative raw data displaying the change in lifetime with spatial variation from the cell 
periphery with assumed linear models applied at close proximity to the cell. (A) Cell 2 displays no statistical 

significant correlation with distance, however (B) Cell 3 does display a significant negative correlation 
(p<0.05) with a gradient.  

 

Figure 122 – Converted lifetime data of representative cells in graph above showing spatial variation in 

oxygen concentration with distance from the periphery of two cells with linear models assumed at close 
proximity to the cell were fitted to the data. For cell 2 (A), the linear model shows no statistically 

significant correlation. For cell 3 (B), there is a significant positive correlation (p<0.05) with a gradient of 

0.5 µµµµmol/kg/µµµµm and pericellular oxygen concentration of 174 µµµµmol/kg. 
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Figure 123 – Cellular frequency distribution of spatial oxygen gradients derived from linear models fitted to 

data sets of change in oxygen concentration versus distance from the cell periphery. 

6.3.1.2 Cells with significant pericellular gradient are larger than those without 

The significance of the linear fit for each cell has been plotted against cell diameter 

in Figure 124. The dashed line identifies the cut-off between significant (p<0.05) and non-

significant (p>0.05) gradients.  

 

Figure 124 – Significance of gradient verse cell diameter (n=52). The level of statistical significance (p) of 

the correlation between oxygen and distance from cell periphery is plotted against cell diameter. A 
statistically significant gradient was indicated by a p-value<0.05 (red circles). The hashed area represents 

the range of measurements taken from agarose with no cells. 
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The cells associated with statistically significant oxygen gradients were larger than 

those with no statistical significant gradient (Figure 125). The significant set of cells had a 

median diameter of 12.5 µm whereas the non-significant cells had a median diameter of 

10.9 µm. This difference in cell size was itself statistically significant based upon a Mann-

Whitney U-test (p<0.05).  

 

Figure 125 – Histograms depicting the frequency of significant and non-significant cells in relation to cell 

diameter. A: Non-significant (p>0.05) population (red hash), B: Significant (p<0.05) cell population (blue 

hash). The bars and black lines above the histograms display the lower/upper quartiles and the median 
values, respectively. 
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6.3.1.3 No correlation was found between cells with significant pericellular gradient and 

cell diameter 

The relationship between cell diameter and oxygen gradient is shown in Figure 126. 

The linear model was applied to those gradients that were statistically significant (circles). 

However there was no significant correlation between oxygen gradient and cell size 

(p>0.05). However if all the data points are included there was a statistically significant 

positive correlation between oxygen gradient and cell diameter (p<0.0005). 

 

Figure 126 – Relating the change in oxygen concentration per micrometer to cell diameter for all cells. Non-

significant (black squares) and significant (red circles) cells are plotted and correlated to cell diameter. A 
linear fit is completed for the significant cells (red line) and all cells (blue line). 

6.3.1.4 No correlation was found between depth of measurement into agarose and spatial 

oxygen gradient or pericellular oxygen concentration  

The correlation of cellular oxygen spatial gradient with cell depth in relation to the 

pericellular oxygen concentration and agarose edge is shown in Figure 127 and Figure 128, 

respectively. Linear fits were applied to the populations of significant spatial oxygen 

gradient cells and whole cell population. Both populations showed no significant 

correlation of spatial oxygen gradient with pericellular concentration or cell depth (p>0.05). 
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Figure 127 – Linear fits between the pericellular oxygen concentration and the spatial oxygen gradient 
showed no statistically significant correlation (p>0.05). 

 

Figure 128 – Cellular oxygen gradient related to depth of cell in agarose from nutritional access. Linear fit 
in statistically significant cells and all cells showed no significant correlation between spatial oxygen 

gradient and depth of cell (p>0.05). 
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6.3.2 Extrinsic manipulation of oxygen consumption rate can effect spatial oxygen 

gradient 

The percentage of cells displaying statistically significant spatial oxygen gradients 

was 46% for normal DMEM, 39% for media supplemented with oligomycin, 45% for 

media supplemented with CCCP, 53% for cells incubated in ultra low glucose and 48% for 

cell incubated in low glucose media (Figure 129). Using χ2 analyses of proportions no 

statistically significant difference was see between any of the conditions for the effect to cell 

populations exhibiting statistically significant spatial gradients. 

 

Figure 129 – Bar graph displays the population of significant cells in different cell culture conditions. 
Normal cellular media (DMEM+16%FBS) and then supplemented with Olig (oligomycin) or CCCP and 

cells cultured in ultra-low glucose (ULG) and low-glucose (LG) media. 
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Figure 130 – Box plot of significant oxygen measurements taken from cellular experiments and cell-free 

control for A: Spatial oxygen gradient and B: Pericellular oxygen concentration. Experiments consisted of 

cells exposed to [Ru(bipy)3]
2+ and normal media (DMEM+16%FBS) supplemented with either, oligomycin 

(Olig) or CCCP. In addition data is shown for the response of cells cultured in low glucose media (LG) and 

ultra-low glucose (ULG). The boxes represent 1st and 3rd quartile with error bars as standard deviation and 
thick black line as mean. Values in parentheses represent the percentage of cell showing a statistically 

significant spatial oxygen gradient statistically significant differences are indicated at p<0.05 (*) or p<0.01 

(**). 
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For the cells in Figure 130A, the mean (±standard deviation) oxygen gradients 

were 0.53 (±0.11), 0.51 (±0.14), 0.63 (±0.17) 0.56 (±0.15) and 0.61 (±0.24) µmol/kg/µm 

for normal media, plus oligomycin, plus CCCP, ultra low glucose media (ULG) and low 

glucose media (LG), respectively. Figure 130A also shows the magnitude of spatial oxygen 

gradient measured in cell free agarose although it should be noted that none of these were 

statistically significant. Based upon an one way ANOVA Fisher Test CCCP was 

significantly different from both normal cell culture media and oligomycin p<0.05 and 

p<0.01, respectively, whereas no significant difference was seen with the cells cultured in 

ultra-low and low glucose media.  

Figure 130B shows the box plots of the identical cells in Figure 130A, but describes 

the effect of culture conditions on the pericellular oxygen concentrations. The mean 

(±standard deviation) pericellular oxygen concentrations were 118.4 (±48.4), 122.4 

(±12.3), 93.5 (±33.6), 117.5 (±11.3), 100.7 (±26.1) and 200.6 (±9.6) µmol/kg for normal 

media, plus oligomycin, plus CCCP, ultra low glucose media (ULG), low glucose media 

(LG) and cell-free agarose, respectively. A one way ANOVA Fisher t-Test was used to 

compare the culture conditions where statistically significant differences between the means 

were seen for CCCP against normal media, oligomycin and ultra low glucose all with 

p<0.01. Also a statistically significant difference was seen for low glucose media against 

normal media and oligomycin (p<0.05). All conditions were significantly different to cell-

free agarose. 

6.4 Discussion 

6.4.1 Pericellular quantification of spatial oxygen gradient in normal media 

Analysing the correlation of oxygen concentration at close proximity and with 

distance from the cell periphery has identified a sub-population of 46% of the measured 

cells exhibiting a statistically significant positive spatial oxygen gradient (p<0.05). 

Furthermore those with a statistically significant oxygen gradient had a steeper gradient 

than those without (Figure 123). This suggests an overall trend such that all cells generate a 

pericellular oxygen gradient, but only the larger gradients reach statistical significance. This 

is consistent with the fact that all cells are likely to be consuming oxygen whilst some do so 

at a faster rate. None of the gradients measured from the population displayed any 

statistically significant negative spatial oxygen gradients (p>0.05). This relationship 

between significant changes in oxygen concentration with distance from the cell periphery 

reflects oxygen consumption by the cells at a rate greater that the diffusional rate of oxygen 

in agarose at 37°C, which will be concentration dependent. The diffusion coefficient of 
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oxygen in water at 37°C is 3x10-5 cm2/s, as established in chapter 4 section 3. The effective 

diffusion rate for oxygen through agarose is conflicting between published theoretical and 

experimental results [242]. However, it can be estimated based on the agarose volume 

fraction of fibres calculated from Eq. 78, 

Eq. 78    agaroseagaroseagarosec ωρφ ⋅= /
 

where, cagarose % (w/v) is the agarose concentration, ρagarose is the dry agarose density 

(1.64 g/l) and ωagarose is the mass fraction of agarose in a fibre (0.625) [242]. Therefore a 3% 

of agarose construct would have an estimated 0.02927 volume fraction of fibres. By 

considering the diffusion of oxygen through agarose as a network of randomly orientated 

cylindrical fibres the agarose fraction of fibres can be applied to Eq. 79, 

Eq. 79     
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where, RH is the hydrodynamic radius of the diffusing molecule oxygen, rf is the 

radius of the fibres, Dw and Da is the diffusion of oxygen in water and agarose, respectively 

[201, 242]. As the diffusing molecule of oxygen is so small Meeren et al. [201] used a 

corrected version of Eq. 79 as, 

Eq. 80     [ ]φ*2.0exp103 5 −×= −
aD  

This equation calculates the effective diffusion rate of oxygen in agarose at 37°C as 

2.899x10-5 cm2/s. Meeren et al. [201] calculated an oxygen diffusion coefficient at 30°C in 

2% (w/v) agarose as 97.7% lower than pure water, whereas the increase in temperature to 

37°C and agarose concentration to 3% (w/v) only reduces to 96.6% of the diffusion 

coefficient of pure water. As the temperature increases the diffusion coefficient should also 

increase whereas the restriction to diffusion has a fractional effect dependent on diffusion. 

Comparing the cell diameters of the subpopulations has shown that cells displaying 

significant spatial oxygen gradient are also significantly larger in diameter than cells 

associated with no significant spatial oxygen gradient. The size of cells with significant 

oxygen gradients are 15% larger in diameter than those associated with non-significant 

oxygen gradients. This difference is also statistically significant (Figure 125). 

The sub-population of cells with significant gradients did not show any correlation 

between cell diameter and the magnitude of spatial oxygen gradient, which has a mean 

(±standard deviation) value of 0.53 (±0.13) µmol/kg/µm. However, incorporation of all 

cells did produce a significant correlation between cell diameter and oxygen gradient 

(p<0.0005). This suggests that as cells increase in size the consumption rate of oxygen also 

increases until a plateau level is reached whereby no further increase in oxygen 
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consumption takes place (Figure 126). This increase in consumption rate by larger deep 

zone cells is consistent with published results by Heywood et al. [127]. 

Previous studies have shown that chondrocytes isolated from the deep zone of 

bovine metacarpal joint articular cartilage are larger than cells from the superficial zone 

[177]. The deep zone cells are also more metabolically adjusted than superficial zone cells 

as shown by greater synthesis of extracellular matrix in agarose [177]. Furthermore it is 

perhaps unsurprising that deep zone cells also consume oxygen faster that superficial zone 

cells [127]. It is therefore tempting to speculate that the sub-population of cells with a 

significant spatial oxygen gradient are isolated from the deep zone of the articular cartilage. 

To exclude any possibility that these spatial oxygen gradients were induced due to 

oxygen levels in the environment or distance of the measurement in the agarose linear fits 

were applied to spatial oxygen gradient data. Although it did appear that there was an 

increase of significant spatial oxygen gradients towards lower pericellular concentration no 

statistically significant correlation (p>0.05) was found for either population (Figure 127). 

Also no statistically significant correlation (p>0.05) between spatial gradient and depth of 

measurement in agarose was seen for both populations (Figure 128). This confirms that the 

environmental oxygen concentration and agarose depth was not influencing cellular spatial 

oxygen gradient measurements for this study.  

6.4.2 Extrinsic manipulation of cellular oxygen consumption rate and its effects on the 

spatial oxygen gradient 

Oxygen consumption rates in bovine chondrocytes have previously been shown to 

be down- or up-regulated by oligomycin, CCCP and low glucose in cell culture media [126, 

127, 129]. The same concentrations were applied to Day 1 isolated bovine chondrocytes 

seeded agarose constructs as for Heywood et al. study, however their method of culture was 

a monolayer [129]. The application of oligomycin to the media would be expected to 

inhibit oxygen consumption rates of cells by knocking out oxidative phosorphorylation. In 

these results there is a reduction of 7% for the number of cells exhibiting a significant 

spatial gradient and a 4% reduction in the mean spatial oxygen gradient. At the same time 

the pericellular oxygen concentration increases by 3% showing that a reduction in number 

of cells and significant spatial oxygen gradient minimises the consuming potential of the 

cell. Although none of the oligomycin results were statistically significant against normal 

media there was a significant difference with CCCP for the spatial oxygen gradient and 

pericellular oxygen concentration, also for low glucose media for pericellular oxygen 

concentration. This may explain the limited effect seen with chondrocytes exposed to 

oligomycin. There is a ratio of 0.1 between the percentage change in the mean spatial 
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oxygen gradient of the current study and the percentage change in consumption rate upon 

addition of oligomycin to media from Heywood et al. [129] study. However, it should also 

be noted that chondrocytes are mainly glycolytic cells and so will be less sensitive to 

oligomycin affecting the oxidative pathway [127].  

In comparison the upregulation of oxygen consumption with CCCP uncoupler has 

maintained the same percentage of cells with statistically significant oxygen gradients as in 

normal media. However, there is a significant increase of 18% in the measured mean 

spatial oxygen gradients, while the pericellular oxygen concentration has significantly 

decreased by 21%. This confirms the dependence between oxygen consumption, significant 

spatial oxygen gradient and pericellular oxygen concentration. These results are in 

agreement with the findings of Heywood et al. [129] for CCCP applied to monolayer cells. 

This showed an increase of 63% in oxygen consumption rates with the addition of CCCP. 

The ratio of percentage change between the consumption rate and spatial oxygen gradient 

0.3 and between the pericellular oxygen concentration is -0.3. 

As chondrocytes are glycolytic cells and observe a crabtree effect, studies have 

shown that a reduction of glucose in cell culture media stimulates the cells requirement for 

energy through upregulation of oxidative phosphorylation and therefore oxygen 

consumption. For cells incubated in ultra-low glucose (0.06 mM) an increase of 7% is seen 

for the number of cells displaying a significant oxygen gradients and a 6% increase in the 

mean spatial oxygen gradient. However only a 0.8% decrease of oxygen concentration was 

seen pericellularly compared with normal media. Although no significant difference was 

seen between media and ultra-low glucose media the shift is in the correct direction, in 

agreement with Zhou et al. [326] who showed an 87% increase in chondrocyte 

consumption rates for the same glucose cell culture media concentration. However there 

were construct composition differences, in Zhou et al. study alginate beads were used, 

whereas in the current study agarose was used. As discussed previously, there are 

differences in the effectively oxygen diffusion rates for agarose and alginate at 37°C at a 3% 

concentration, estimated as 2.89x10-5 cm2/s and reported as 2.58x10-5 cm2/s [326], 

respectively. Whether this could impact the large variations between these two results 

remains to be determined. More likely the differences are due to the incubation period of 

cells with the very low glucose levels and reduced oxygen levels down regulating cellular 

consumption levels. When oxygen environmental levels reduce, cells adapted by reducing 

their oxygen consumptions rates, which has been shown in superficial and deep cells [127]. 

However the pericellular oxygen concentrations had not reduced significantly in the ultra-

low glucose in comparison with normal media. 
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In order to compare the low glucose concentration of Heywood et al. [127] with the 

current study the average of the superficial and deep consumption rates at 2.8 mM and 5.5 

mM for low and normal glucose concentrations were taken, respectively, as shown in Table 

23. The low glucose level only increased the number of cells exhibiting significant spatial 

oxygen gradients by 2%, however the mean spatial oxygen gradient increased by 14%. A 

statistically significant drop of 15% for the pericellular oxygen concentration compared 

with normal media was also found. A ratio of 0.4 and -0.4 for the percentage change in 

spatial oxygen gradient and pericellular oxygen concentration, respectively, compared 

against the percentage change in oxygen consumption rate for Heywood et al. [127] with 

the same change increased glucose concentration.  

Table 23 – Consumption rate changes due to cell culture conditions from other studies compared with cell 
number, mean significant spatial oxygen gradients and pericellular oxygen changes of current study. Study 

data observed from isolated bovine chondrocyte from day zero. 

6.5 Conclusion 

The calibrated and optimised pulse-picked two-photon confocal TCSPC technique 

has been applied to isolated individual chondrocyte cells for determining spatial oxygen 

gradients. Lifetime analysis was performed on user defined binned masks to provide high 

spatial resolution with distance from the cell.  

In relation to chondrocytes this technique has established that a sub-population of 

cells demonstrate statistically significant spatial oxygen gradients, suggesting that they are 

more metabolically active and therefore have a higher oxygen consumption rates. This sub-

populations is significantly larger than cells without a significant oxygen gradient. It 

indicates that these cells are more likely to be isolated from the deep zone, which are 

known to be larger [294] and more metabolically active [127].  

Through extrinsic manipulation of oxygen consumption rates it was possible to 

influence the spatial oxygen gradients of chondrocytes. These results have established a 

Cellular consumption rates Current study – change to normal media and consumption rate 

Conditions 
% change 

to media 
Study 

Cell 

number 
Spatial 

Cons

Spatial

∆

∆

%

%  
Pericellular 

Cons

Peri

∆

∆

%

%  

Olig -42% [129] -7% -4% 0.1 +3% -0.07 

CCCP +61% [129] -1% +18%* 0.3 -21%* -0.3 

ULG +87% [326] +7% +6% 0.07 -0.8% -0.01 

LG +34% [127] +2% +14% 0.4 -15%* -0.4 

* refers to statistically significant difference to media results 
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direct link between cellular consumption rates, spatial oxygen gradient and pericellular 

oxygen concentration. It also suggests that for chondrocytes exhibiting statistically 

significant oxygen gradients a percentage change in the oxygen consumption rate would 

reflect in a ratio increase and decrease of 0.3-0.4 for the spatial oxygen gradient and 

pericellular oxygen concentration, respectively. The results collated in this study are 

consistent with those observed by Heywood et al. and Zhou et al. [127, 129, 326]. 

Thus the developed and optimised TCSPC TP FLIM technique in this study has 

successfully been used to quantify spatial oxygen gradients around individual cells in three-

dimensional scaffolds. Furthermore it has been validated that the spatial oxygen gradient 

and pericellular oxygen concentration is dependent on the cellular oxygen consumption 

rate. This information has the potential for use in modelling and could aid the creation of 

further robust models in assessing tissue gradients in native or tissue engineered constructs.  

6.6 Summary 

• A sub-population of chondrocytes exhibit statistically significant spatial oxygen 

gradients that appears linear at close proximity to the cell. 

• This subpopulation is significantly larger in diameter and is assumed to be deep 

zone chondrocytes. 

• No statistically significant negative gradients were seen for normal media 

culture conditions. 

• Spatial oxygen gradient increases with cell size until gradient become 

significant at which point the relationship ceases to exist. 

• Cellular oxygen consumption can be adjusted through chemical compounds 

and regulated through glucose concentration. 

• A percentage change in the cellular oxygen consumption rate is reflected by a 

positive and negative ratio of approximately 0.35 for the percentage change in 

the spatial oxygen gradient and pericellular oxygen concentration, respectively. 
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Conclusion 7  

The aim of this thesis was to detect or quantify the presence of cellular induced 

spatial oxygen concentration gradients within a 3D tissue engineered agarose construct. 

The method for the intended investigation was a time-resolved time-domain lifetime 

detection technique applied to an oxygen sensitive ruthenium(II) complex. The objectives 

were to: 

1) Examine the available time-resolved time-domain techniques using a selection 

of ruthenium(II) complexes.  

2) Select and optimise a time-resolved time-domain technique. 

3) Characterise the chosen ruthenium(II) complex with envisaged environmental 

components and establish dissolved oxygen relationship. 

4) Combine the optimised technique and dye to assess the method of data 

acquisition, cellular phototoxicity and image processing.  

5) Apply the developed FLIM system to measure oxygen concentrations in a 

three-dimensional agarose construct seeded with chondrocytes and to 

determine cellular induced spatial oxygen gradients. 

6) Regulate cellular respiration to confirm that the measured spatial oxygen 

gradients are attributed to cellular oxygen consumption and to establish a 

relationship. 

7.1 Development of FLIM system 

7.1.1 Ruthenium(II) complex and time-domain 

A selection of ruthenium(II) complexes were investigated and based on literature 

searches (Chapter 1 section 6) of which the most established for oxygen detection were 

[Ru(bipy)3]
2+, [Ru(phen)3]

2+ and [Ru(dpp)3]
2+. Subsequently it was determined that 

[Ru(bipy)3]
2+ and [Ru(phen)3]

2+ were the most suitable fluorophores for investigating 
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oxygen concentrations in an aqueous system (Chapter 2 section 4). Interestingly at a 

concentration and cellular incubation period of less than 2.5 mM and 24 h, respectively, 

[Ru(bipy)3]
2+ produced minimal cytotoxic effect and maintained chondrocyte viability at 

greater than 90% for 24 h (Chapter 2 section 5). A comparison between three time-domain 

techniques proved that with adaptation of a two-photon laser scanning confocal with 

TCSPC lifetime detection would provide superior spatial resolution, maintain low noise 

photon collection and was applicable to 3D cellular constructs.  

7.1.2 Multi-photon laser 

A Mai-Tai: Sapphire multi-photon tunable laser was applied for fluorophore 

excitation. The tested system provided two-photon excitation at 780 nm, which avoided 

direct excitation of the chosen oxygen sensitive dye [Ru(bipy)3]
2+ (ex 468 nm and em 608 

nm). The incorporation of a pulse picker to the optical path reduced the laser repetition rate 

from 80 MHz to 500 kHz. This affected the average power delivered to the sample reducing 

it from 2.5 mW at 8 MHz down to 160 µW at 500 kHz for an excitation of 780 nm. The 

low laser power at the 500 kHz repetition rate ensured that the [Ru(bipy)3]
2+ sample would 

not be saturated during excitation at maximum power (Chapter 3 section 2).  

7.1.3 Confocal Microscope 

A Leica laser scanning confocal microscope was used for optical imaging. Point 

spread function testing confirmed that the spatial resolution was able to facilitate restricted 

excitation through optical sectioning by combining the MP laser and confocal microscope. 

In the z-axis a spatial resolution of >830 nm was achieved and a confocal high spatial 

resolution was maintained in the x-y axis >260 nm in accordance with theoretical 

calculations [70]. Data collection at this resolution is greater than any currently available 

oxygen detection technique (Table 3). 

The low repetition rate of the laser was tested with the raster scanning module of 

the confocal and found that geometric distortions were introduced. Compensation for the 

low repetition rate requires a reduction in either the image scan speed or format size 

(Chapter 3 section 3). 

7.1.4 TCSPC 

 The time-resolved time-domain lifetime detection was enabled with the uses of 

TCSPC. Testing of the instrument response function identified that during the analysis 

processing deconvolution was unnecessary due to the width only contributing to 8x10-6% of 

the final decay. It is well established that low repetition rate experiments suffer from ‘classic 
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pile-up’ [27]. Tests showed that laser power, dye concentration and oxygen concentration 

were all contributing factors that could influence the occurrence of pile-up in these 

experiments (Chapter 3 section 4). It was determined that these influences could be 

controlled by maintaining the collection rate at less than 1% of the laser repetition rate, 

which for these experiments was 5x103 photons/sec.  

Confirmation of pile-up occurrence could be monitored by examining the 

goodness-of-fit. Decays were accepted on the basis that the reduced chi-square was less 

than or equal to 1.17. This produced low noise photon collection with minimal systematic 

variability of less than 0.3%. Acquisition of lifetime data with less than ±1.5% lifetime error 

requires at least a 97 peak count or 20,000 total decay counts for a repetition rate of 500 

kHz, which can be confirmed by maintaining an R2 greater than 0.9. A ±1.5% lifetime error 

is reflected as a maximum lifetime error of ±5 ns equivalent to a maximum error of oxygen 

concentration ±7 µmol/kg for a media solution at a temperature of 37˚C. This system has 

achieved greater oxygen detection resolution than the currently used wide-field time-gate 

system [279]. 

7.1.5 Characterisation of [Ru(bipy)3]
2+ 

No correlation was found between lifetime measurements and changes in pH levels 

or dye concentrations, in accordance with other studies [72, 279]. However [Ru(bipy)3]
2+ 

was found to have a negative linear relationship with temperature between 31-39˚C 

consistent with physiological temperatures and other researchers [144, 212]. It was 

identified that an inherent non-radiative decay component kdd within the dye was 

susceptible to temperature changes [212, 300] i.e. a 1˚C change in temperature would 

manifest as a 1% change in lifetime. This highlighted the importance of temperature control 

and stability within the system facilitated by a confocal environmental chamber and sample 

chamber heating plate. The autofluorescent components identified within the cell culture 

media had very short lifetimes. These were avoided from the data analysis process by a 

fitting mono-exponential model 150 ns after the start of the decay. Concentration effects of 

fetal bovine serum (FBS) to lifetime identified a restrictive barrier to oxygen quenching of 

[Ru(bipy)3]
2+, consistent with other researchers [172]. However at the FBS concentrations 

used in the cell culture media for the current experiment produces a difference of 0.3% 

between the maximum response and that derived from the measured lifetime with 16% 

FBS (Chapter 4 section 2). 

The oxygen molality in pure serum at 37˚C is 12% less than in pure water. The 

lifetime of [Ru(bipy)3]
2+ without quencher is 1.5% less in media than in water highlighting 

the slight influence of media components over the physical dye. The Stern-Volmer constant 
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shows that [Ru(bipy)3]
2+ in water is 12% more accessible to oxygen than in media. The 

non-radiative rate is 14% less in media than water and must be attributed to the additional 

media components interacting with [Ru(bipy)3]
2+. The adjusted formula derived by  Demas 

et al. [64] and Rusak et al. [257] and applied to calculate the diffusion controlled 

bimolecular constant provides an identical frequency of collision for [Ru(bipy)3]
2+ in water 

as Rusak et al. identified (Chapter 4 section 3). 

7.1.6 Establishing method of data acquisition 

Phototoxicity tests exposed chondrocytes, seeded in 3D agarose constructs and 

incubated with [Ru(bipy)3]
2++media, to 30 mins of direct MP laser exposure. Cells 

maintain 90% viability 24 h after imaging in contradiction to a study done by Dobrucki 

[72] who stated that 120 illuminations saw breakdown of the cellular membrane. 

Interestingly this number of illuminations is only relevant for the individual setup of each 

system explaining the discrepancy (Chapter 5 section 2). 

The communication between the TCSPC and Leica system is important for 

relaying information regarding pixel dwell time. To adhere to the minimum number of 

photons collected per pixel the image format size was determined as 64x33 and a collection 

time of 15 mins was assigned for practicality. Investigations showed that 20% of the 

collected photons were lost between the CFD and TAC identifying that at least 33 pixels 

require binning to maintain accurate lifetime decay. A comparison of SPC analysis 

software identified the TRI2 as the superior option for speed of calculation, manipulation 

of binning regions, analysing multiply data sets in tandem and accuracy of lifetime fits and 

spread. A new method for data analysis was developed specifically for extraction of high 

spatial resolution information to avoid the averaging effects induced from generalised 

binning as found in most SPC software. This method followed the curvature of the cell 

periphery to emphasize the suspected morphology of cellular oxygen consumption. The 

application of linear fits to pericellular spatial distribution of oxygen concentrations 

identified differences between significant and non-significant lifetime gradients and 

therefore oxygen gradients (Chapter 5 section 3).  

7.1.7 Application to chondrocytes 

The ability of measuring individual cellular gradients has revealed a subpopulation 

of chondrocytes that exhibit significantly steeper spatial oxygen gradients (0.5 

µmol/kg/µm) without the requirement for prior identification or separation of cells during 

isolation. This identified a subpopulation that displayed a significantly larger mean cell 
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diameters (12.5 µm) and upregulated metabolic systems consistent with deeper zone cells 

(Chapter 6 section 2). 

Confirmation that the oxygen gradient arose from cellular consumption was 

confirmed with the use of extrinsic chemical compound that directly affect ATP 

production. This used established applications in cellular oxygen consumption inhibition 

and upregulation [127] to display changes in oxygen consumption rates and therefore to 

asses the relationship to spatial oxygen gradients. Expected cellular response to application 

of CCCP upregulation of oxygen consumption were mimicked as a percentage change 

ratio. This ratio was seen as a 0.3 increased and decreased spatial oxygen gradient and 

pericellular oxygen concentration, respectively, against oxygen consumption rate. The 

same effect was also seen with low glucose concentration cell culture media highlighting 

the glycolytic dependence and crabtree relationship with glucose and oxygen consumption, 

as identified by other researchers [126, 324]. The cellular response to extrinsic 

manipulation of consumption identified by other studies [127, 129] are replicated in these 

results and identified in the spatial oxygen gradient. This establishes a relationship between 

consumption, gradient and pericellular oxygen concentrations. However, whether this 

utilisation is consumption from the cell membrane or from the mitochondria has not been 

confirmed. 

Although for a negative or positive linear concentration gradient the change must 

be associated in one direction and governed by diffusion. This identifies that the significant 

cells are consuming oxygen at a higher rate than the diffusion rate of oxygen in agarose at 

37°C, 2.899x10-5 cm2/s (Chapter 6 section 4). It has been established that a subpopulation 

of chondrocytes create significant oxygen gradients that can be detected using the 

developed system. The development of these gradients arises due to cellular utilisation of 

oxygen and demand out-weighing the availability of intracellular oxygen. 

7.2 Comparison with other available techniques 

Invasive probes have been used to determine spatial oxygen in tissue engineered 

constructs, but they do not facilitate spatial registration of the measurement with sample, 

damages the tissue in the process [51], or in the case of oxygen electrodes consume oxygen 

in the measurement process [295].   

The majority of previous non-invasive systems have focused on global oxygen 

consumption rates [128], single point measurements over large distances [104] or 

intracellular oxygen concentrations [279] (Chapter 1 section 3). The global systems tend to 

facilitate rapid detection on monolayer cell cultures using multi-plate fluorimeter readers. 
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This method does not provide spatial resolution, but has the ability of measuring multiple 

samples with a rapid temporal measurement. Single point measurement systems can be 

combined with microscopes to provide spatial resolution (limited >1 µm), but tends to be 

used on very long lifetime fluorescent dyes. This means only single point measurements are 

collected in order to maintain a higher temporal resolution [79, 82, 104, 208]. 

The wide-field time-gate systems have limited detection capabilities that would 

have masked the obtain measurements [279, 324]. Also the use of the [Ru(bipy)3]
2+ 

intracellularly has caused interaction issues leading to a recent incorporation of applying 

EPR separately to quantify the correct oxygen concentrations in specific solute solution 

[278]. A comparison of these techniques against the developed system is described in Table 

24 listing the advantages and disadvantages of the current system based on limitations and 

advantages of the other systems. To address the disadvantages of the current system further 

discussion is provided in section 7.3. 

Table 24 – List of advantages and disadvantages of the current developed system TP confocal TCSPC 

7.3 Future improvements to the system  

Improvement of the fitting methods for lifetime data analysis would have the 

potential to convert collected data into images without the need for binning. It would also 

mean that larger spatial areas could be acquired maintaining high spatial resolution and 

lifetime accuracy or imaging time could be reduced to provide rapid measurements for 

determining oxygen consumption rates. These advantages achieved with the development 

of Bayesian analysis currently being proposed by Gray’s Laboratory (Oxford). At the time 

of writing their analysis technique was unable to cope with the type of decay recorded 

Advantages Disadvantages 

- High spatial resolution: <400 nm  - Limited temporal resolution: >15 min 

- High lifetime discrimination: <±5 ns - Pile-up currently restricting optimum photon collection 

- Non-invasive measurement - Restricted FOV due to collection time 

- Investigation in 3D cellular structure 
- Depth of imaging restricted by working distance of 

objective lens 

- Captures lifetime and intensity map - Currently not possible to apply to human in vivo 

- Could be applied to animal models in vivo - Only one cell per time can be imaged at that resolution 

- Spatial registration of measurement  
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using this system, but it is hoped that in the future this could be come a real possibility of 

determining decays with as little as 100 photons or less. Also automating the analysis 

process would reduce the currently labour intensive data analysis procedure. 

Upgrading certain equipment of the system would also reduce the effects pile-up 

causes to the collection of photons with the potential for more rapid collection rates. This 

could involve the addition of extra detectors to reject the arrival of more than one photon 

within the same time period and installing a cable to commicate between microscope and 

TCSPC regarding pixel dewel time.  

The recent development of a wide-field photon counting imaging system [283] has 

the potential of capturing complete lifetime images 1000 times faster than previously 

possible and minimises the problems associated with pile-up. This novel development 

could hold the potential for applying the background knowledge derived here for FLIM 

detection of individual oxygen consumption rates and creation of gradients in real-time. 

However it would restrict the axial spatial resolution due to limited optical sectioning and it 

remains to be seen whether the use of this wide-field technique would also create lifetime 

variability due to wide field collection as seen in prior wide-field systems. 

7.4 Potential applications of the technique 

In consideration to the work that has currently been conducted on chondrocytes 

confirmation that the larger subpopulation displaying significant spatial oxygen gradients 

derives from deeper zone cells would confirm the suggested correlation. This would be 

achieved by repeating the experiment on separated superficial and deep populations during 

the isolation process and comparing results. Also applying the same oxygen detection 

method to chondrocytes seeded in different 3D tissue engineered constructs will identify 

differences induced by diffusional restrictions to the developed spatial oxygen gradients and 

pericellular oxygen concentration, i.e. for instance alginate and agarose. Further testing of 

cartilage components with dye would provide the potential for investigation of native 

cartilage tissue spatial oxygen gradient and facilitate comparison between native and 

engineered constructs. This could be achieved simply by extracting articular cartilage plugs 

from the bovine metacarpal-phangel joint and incubating with [Ru(bipy)3]
2++media in 

sample chambers. Expanding the FOV to measure macrogradients across constructs or 

cartilage tissue with an adjusted set of binning masks would provide the opportunity of 

measuring at high spatial resolution the development of long distance gradients, which 

could be compared against local pericellular gradients. This would aid the understanding 

for more complex computational models for gradient development.  
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Incorporating the spatial oxygen gradient as an oxygen flux would allow 2D 

oxygen maps to be developed based on the fitted gradients. The addition of a visual 

perspective would provide comparison of cellular spacing to asses the influence of adjacent 

cell distance on the oxygen flux patterns. This has the potential to then be applied to large 

scale simulations observing the effects of chondron size on the oxygen delivery or model 

the effect of a full depth cartilage tissue based on cellular distance. Determining the 

location of the oxygen consumption utilisation where it occurs from the cell membrane or 

from the mitochondria would provide an understanding of cellular function and energy 

requirements. 

Applying this technique in combination with other metabolites of interest such as 

glucose or NADH would allow a complete view of the metabolic makeup and energy 

production and requirements of chondrocytes, aiding development of future bioreactors for 

tissue engineering. To determine the difference ratio between oxygen consumption arising 

from the mitochondria or the cellular membrane a technique based on excitation of 

endogenous protoporphyrin IX within the mitochondria could been used to quantify 

oxygen concentrations [207]. Incorporating both applications on the same system would 

require the setup a delayed fluorescence lifetime technique. If this was feasible it would be 

able to quantify the different compartment of cellular consumption providing invaluable 

information regarding cell metabolism. 

Further adjustment of environmental effects on chondrocytes to replicate those 

found in the progress of cartilage disease or trauma can be applied to observe the impact to 

consumption, gradient development or degradation. It has been shown that oxygen 

concentrations change when disease is present [290]. If successful this could potentially be 

used as an early identification tool for the onset of cartilage degradation by adapting the 

system for endoscope surgery.  

All these applications could be applied to investigate other tissue engineering cells 

types. This technique has the potential to show more distinctive results as chondrocyte 

cellular oxygen consumption is extremely low. In comparison to other cells such as 

hypertrophic located in avian growth plate cartilage their consumption rate is 14 times 

greater than deep zone chondrocytes [117]. 

7.5 Summary of key achievements 

The TP confocal TCSPC system has provided a minimally invasive method of 

detecting oxygen concentrations around single living cells within a 3D environment. The 

high level of spatial resolution and oxygen discrimination has identified for the first time 
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the existence of pericellular spatial oxygen gradients on a micron scale around individual 

cells. The method provides a potentially non-invasive technique for investigating cellular 

oxygen consumption within three-dimensional tissues on an individual basis. 

• An oxygen detection technique has been developed with the highest x-axis 

spatial resolution currently available (>350 nm) and with high z-axis spatial 

resolution (>830 nm). 

• The FLIM system has achieved high oxygen concentration discrimination >±7 

µmol/kg. 

• It has for the first time verified that individual cells exhibit a spatial oxygen 

gradient. 

• Determination of significant spatial oxygen gradients has identified a 

subpopulation of chondrocytes displaying larger cell diameters similar to deep 

zone cells. 

• This subpopulation of cells exhibits a spatial oxygen gradient of 0.5 

µmol/kg/µm. 

• It has established that changes to cellular oxygen consumption have a direct 

influence over individual cellular spatial oxygen gradients and pericellular 

oxygen concentrations. 
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Appendix – 

AlamarBlue™ 

        A 

Using 96 well-plate with chondrocytes in monolayer at different seeding densities 

and fluorescence recorded at different time points. The results show the optimum cell 

density for chondrocytes cells are 25000 cells/cm2 and an incubation time of 48 hours. 

 

Figure 131 – Effect of incrementing cellular density and incubation time on AlamarBlue™ reduction. Top: 
Determined cellular density, Bottom: Determined incubation time. 
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Appendix – Sample 

Chambers  

Air-tight chamber schematics 

        B 
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Appendix – Laser 

Alignment 

SOP Alignment of Multi-Photon (MP) Laser 

        C 

For general use during an experiment the beam is totally encased within a sealed 

enclosure and therefore has no risk to the user. This protocol details the necessary 

procedure required to implement a re-alignment of the multi-photon laser located in 

confocal lab of the tissue engineering laboratory. The re-alignment of the laser allows a 

trained user to direct the beam through or around a pulse picker located within a laser 

enclosure. This protocol is only to be used by trained personnel named: Neveen Hosny and 

Chris Mole, at no time may other confocal users attempt this protocol. Information about 

how the laser should be operated can be found in the confocal lab, this document will not 

refer to it. Normal laboratory rules apply during this procedure. 

7.6 Security 

1) Access to the laboratory is controlled via security cards. 

2) Signs out side the confocal lab notify staff/students/contractors of the dangers 

before entering 

3) An extra sign is placed outside the confocal lab to notify when the microscope is 

in operation 

4) Door is locked from the inside to stop staff/students/contractors from walking 

in. This can be unlocked from the other side of the door for emergency access. 

7.7 Precautions 

1) Before ever using the laser ensure the water chillier is on, this should never be 

turned off. 

2) Remove all watches and rings to avoid reflections 
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3) Wear safety coat and gloves 

4) Ensure warning sign is outside the confocal door 

5) Ensure door has been locked from the inside 

6) NEVER adjust the beam in far IR; adjust wavelength to below 780nm so that the 

beam is visible (red) 

7) Beam must be operated at low power during re-alignment 

8) Do not sit down when re-aligning laser, if someone needs to sit then they must 

wear the laser safety goggles; located in the cupboard. 

These issues must be adhered to before opening the top of the safety enclosure. 

7.8 Laser Safety Features 

1) There are two shutters located on the system these are on the laser and the 

scanner shutters. Operating these shutters can be achieved via “laser control 

config” and “active” on the beam panel.  

2) Four security screws lock down the safety panel on the laser enclosure, it is not 

possible to unscrew these without an appropriate security key.  

3) Computers are password protected and the laser cannot be initialised without 

accessing the relevant computer program. 

4) Laser safety enclosure creates a beam stop that surrounds exposed beam. 

7.9 Alignment 

Use a fluorescein sample or a fluorescent green plastic with a 20x dry lens objective. 

This is then used to provide a constant fluorescent field of view that will allow the operator 

to adjust the fluorescent settings. 

7.10 Changing from Pulse Picker to MP 80MHz 

7.10.1 Flipping the Mirrors 

In the “IR/MP” tab click the “crtl” button and adjust the laser wavelength to below 

780nm, this brings the beam into the visible spectrum. Close laser shutter by holding down 

the button for 3 sec. To ensure that the beam is off, open the safety lids on the enclosure 

and check, using a piece of white card, that there is no red beam exiting from the laser 
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aperture. If the wavelength has not been adjusted to below 780nm the beam will be 

invisible to the naked eye, and therefore not appear on the card. 

Switch the two flip mirrors (circled with the dotted lines) very carefully, trying to 

avoid any twisting movement. Replace safety lid and check to see if there is an image 

produced, most probably not, if not then close down the MP Leica software and open “No 

MP Leica” software. 

7.10.2 Re-aligning the Mirrors 

Reopen the Spectra-Physics Mai Tai software, choosing com port 2, and turning on 

the laser emission with a wavelength below 780nm. Wait for the laser to power up to 4.5 

Watts at which point it will start pulsing. It is too dangerous to align in pulsing mode and 

so the laser must be put in to a continuous wave (CW) mode. 

7.10.3 Continuous Wave 

From the task bar select “View” and then “Setup”, a new window will appear.  In 

the window check the “Green Power” box and adjust the number to the side of it down to 

4.5Watts. In the original window the red bar will start to decrease, the aim being to reduce 

the red bar so that the laser is only delivering a power around 2 to 1.2 without reducing the 

red bar too much that it disappears. The numbers won’t be exactly the same each time as 

the power varies with wavelength. If the red power bar does disappear then that number 

next to the green power box must be increased again to get the laser lasing again at which 

point the process must be repeated. 

7.10.4 Pinhole Alignment 

Once the laser power has been reduced open the safety lid and check with the piece 

of card that the beam is exiting from the laser. Using the card follow the path of the beam 

to ensure it is following the correct path and that it is going into the EOM and coming out 

into the block just before the second shutter. Close pinhole (3), if it is not aligned it will not 

go to the center of the pinhole, switch flip mirror (1) between its two set points to see it if 

alignment improves, this can then be further improved by the fine adjustment of the mirror 

knobs located behind the mirror. The center point of the pinhole can be easily determined 

by slightly opening the orifice of the aperture, once the flares of the beam are only visible 

then it is certain that beam is passing through the center. 

Once pinhole (3) is ok open the pinhole fully and check pinhole (2) repeating the 

same process, but only improving the alignment via flip mirror (1). If pinhole (2) is ok, re-
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check pinhole (3), misaligned readjust the knobs on flip mirror (1) and re-check pinhole (2). 

Once pinhole (3) & (2) are aligned remove the safety guide and box it goes into between the 

safety enclosure and the environmental chamber, attach the target guide to the 3 pin 

mirror. 

Open the shutter behind the EOM by click “Continuous” on the Leica software this 

will and allow pinhole (1) to be checked for alignment. If this is misaligned adjust flip 

mirror (2) in the same manor as for flip mirror (1). Check that the entire beam is entering 

the EOM if there is some reflection adjust flip mirror (2). If all the pinholes are aligned 

check the beam entering the target tube and last the pinhole before the mirrors. Now the 

alignment is complete, if there are still problems with the alignment do not adjust any other 

mirror only the flip mirror marked with black pen should be adjusted. 

7.10.5 Near & Far Adjustment 

In the Leica Software perform the EOM adjustment for the gain and offset and then 

close the shutter in the laser control. Go to Spectra Physics and adjust wavelength by 1nm 

this will power up the laser again and start the system pulsing. In the Leica software check 

that the “SP700” filter is off, “pinh” is at 600µm, open the shutter and start the system 

scanning. 

Adjust the two knobs, one at a time, located on top of the telescopic mirror to 

obtain the maximum power by viewing the scanning image. Reduce PMT1 (to stop 

saturation) and pinhole to 50µm and, using an allen key, adjust each of the 3 pins in the 

mirror to obtain maximum power. Increase the pinhole back to 600µm and adjust the 

telescopic mirror as before, keep repeating this process until no more improvement is seen 

in the image. To confirm the efficiency of alignment the pinhole should be able to be 

reduced from 600µm down to below half the pinhole size before a power drop off is seen. 

It is now ready to be used closed down the Leica and Spectra Physics software and 

restart “MP Leica” software. 

7.11 Changing from MP 80MHz to Pulse Picker 

In the “MP Leica” software make sure that the wavelength is below 780nm, close 

the shutter in the laser control, using a piece of paper to check that the beam is not exiting 

the laser aperture. The IR power must be on maximum to produce image for pulse picked 

signal. Carefully flip both mirrors out of the path of the beam, open the shutter and turn on 

the scanning, check pinhole (1) is aligned adjust the telescopic mirror. Check “pinh” is at 
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600µm, PMT1 is collecting all the wavelengths and is turned up, SPC700 is in place, adjust 

EOM as before, and then repeat the “Near & Far Adjustment”. 

7.12 Schematic diagram of system overview 
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Appendix – Media 

Composition 

        D 

Standard DMEM media components (D6429, Sigma-Aldrich, UK) 
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Conversion of g/l to mol/kg 

 

Conversion of water density with temperature 
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Appendix – Matlab 

Data extraction file for ‘Masks’ 

        E 
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