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Abstract

Unprecedented quantities of personal and business data are collected, stored,

shared, and processed by countless institutions all over the world. Promi-

nent examples include sharing personal data on social networking sites, storing

credit card details in every store, tracking customer preferences of supermarket

chains, and storing key personal data on biometric passports.

Confidentiality issues naturally arise from this global data growth. There

are continously reports about how private data is leaked from confidential

sources where the implications of the leaks range from embarrassment to seri-

ous personal privacy and business damages.

This dissertation addresses the problem of automatically quantifying the

amount of leaked information in programs. It presents multiple program anal-

ysis techniques of different degrees of automation and scalability.

The contributions of this thesis are two fold: a theoretical result and two

different methods for inferring and checking quantitative information flows are

presented.

The theoretical result relates the amount of possible leakage under any

probability distribution back to the order relation in Landauer and Redmond’s

lattice of partitions [35]. The practical results are split in two analyses: a first

analysis precisely infers the information leakage using SAT solving and model

counting; a second analysis defines quantitative policies which are reduced to

checking a k-safety problem. A novel feature allows reasoning independent of

the secret space.

The presented tools are applied to real, existing leakage vulnerabilities in

operating system code. This has to be understood and weighted within the

context of the information flow literature which suffers under an apparent lack

of practical examples and applications. This thesis studies such “real leaks”

which could influence future strategies for finding information leaks.
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Chapter 1

Introduction

Unprecedented quantities of personal and business data are collected, stored,

shared, and processed by countless institutions all over the world. Promi-

nent examples are sharing personal data on social networking sites, storing

credit card details in every store, tracking customer preferences of supermar-

ket chains, and storing key personal data on biometric passports.

Data breaches – malicious or unintentional release of confidential infor-

mation – naturally arise from this global data growth. There are multiple

institutions in the US alone which track and research these breaches. For

example, Verizon released the “2010 Data Breach Investigations Report” in

collaboration with the US Secret Service which studies and categorises a se-

lection of over 900 breaches and in excess of 900 million leaked data records in

the last six years. The most affected sectors are the Financial Services (33%)

followed by Hospitality (23%); however all industrial sectors are affected.

This global problem asks for solutions. Verizon’s report mentions, amongst

others, the following mitigation efforts: (1) ensure essential controls are met (2)

eliminate unnecessary data and keep tabs on what is left (3) test and review

web applications. How this is achieved in practice is however an unsolved

challenge.

One strategy to prevent or at least contain such data breaches is to check

the software which handles confidential information for leaks. The upcoming

research area of quantitative information flow tries to achieve exactly that.
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1.1 THESIS OUTLINE AND CONTRIBUTIONS

Ultimately, the goal is that quantifying information leakage is part of the

software development cycle and appears as simple as type checking programs.

However, the research is not yet there.

This dissertation addresses the question on how to automatically quantify

the amount of leaked information in programs. It presents multiple program

analysis techniques and implementations of different degrees of automation

and scalability.

The chapters tell the story of increasingly more useful and applied analyses.

It starts off with the foundational theory behind the works; the following chap-

ters each describe an analysis which is motivated by the previous chapter. It

finishes with an elegant and surprisingly simple algorithm to check information

leakage policies in much more complex code than previously achieved.

1.1 Thesis outline and contributions

Chapter 2 covers preliminary technical details and motivates assumptions

made throughout the thesis.

Chapter 3 describes the algebraic basis of quantitative information flow

analysis. We show how random variables and programs can be represented as

partitions. These partitions are shown to be useful building blocks to capture

how programs leak confidential information and the subsequent chapters al-

ways compute the partition representation of programs. The chapter contains

a fundamental result between the order of partitions and the possible leakage

under any distribution.

Chapter 4 describes a first analysis which runs on a simple while language.

It computes the leakage by complete enumeration of the whole confidential

variable range. It implements the loop leakage formula of [38] and presents a

safe upper bound for the leakage. Also, its inefficiency motivates more refined

analyses.

Chapter 5 describes algorithms and an implementation which automat-

ically and statically quantifies the exact leakage for a subset of ANSI C pro-

grams. The algorithms are based on SAT solving and model counting and

implement a reachability analysis.
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1.1 THESIS OUTLINE AND CONTRIBUTIONS

The chapter provides a small benchmark which demonstrates its perfor-

mance and scalability for difficult and known instances of the relevant litera-

ture. Also, we describe an application of the tool which measures leakage in

aggregated database queries. This unconventional application to an outside

field merely shows a possible, different use of quantifying information leaks.

Chapter 6 describes a method which does not precisely compute leakage

anymore. The idea is to bound leakage and ask instead the question whether

a program satisfies or violates a given leakage bound. This is an instance

of checking information leakage instead of inferring it which proves to be a

more feasible approach. One novelty of this approach is that the analysis is

independent of the confidential variable size. This allows the analysis to run

on much more complex data types. A driver formulates the leakage policy and

a model checker checks for violation.

The applications in this chapter are reported leakage vulnerabilities in the

Linux Kernel and different authentication routines. Device drivers with known

leakage vulnerabilities are checked for different leakage policies. Additionally,

the officially applied patches are proved to reduce the information leakage.

Chapter 7 describes other existing tools and techniques of authors who

work on quantifying leakage. It also lists all relevant techniques used within

this thesis and refers to their original publications.

This research is sponsored by the EPSRC grant EP/F023766/1 with the ti-

tle “Model Checking and Program Analysis for Quantifying Interference”. The

main focus of the grant is the development of tools for quantifying interference.
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Chapter 2

Preliminaries

This chapter introduces basic notation and theory used throughout the thesis.

It also serves to define the implicit computational and model assumptions made

in the rest of the document.

2.1 While language syntax and semantics

Throughout this work, concepts and analyses are explained in terms of the

following while-language unless mentioned otherwise. The syntax and denota-

tional semantics of commands of the language are shown in tables 2.1 and 2.2.

C := skip | x = E | C; C | if B C C | while B C

E := x | n | E + E | E − E | E ∗ E

B := ¬B | B ∧B | B ∨B | E < E | E == E

C ∈ Cmd, E ∈ Exp, B ∈ BExp, x ∈ Var, n ∈ N

Table 2.1: Syntax of While language

Members of the set of states Σ are denoted σ : Var → N, with Var being

the set of variable identifiers. Arithmetic expressions are interpreted as the

map [[E]] : Σ→ N and boolean expressions have the interpretation [[B]] : Σ→

10



2.2 INFORMATION FLOW AND NONINTERFERENCE

[[skip]] = λσ.σ

[[x = E]] = λσ.σ[[[E]]σ/x]

[[C1; C2]] = [[C2]] ◦ [[C1]] = λσ.[[C2]]([[C1]]σ)

[[if B C1 C2]] = λσ.

{
[[C1]]σ, if[[B]]σ = 1

[[C2]]σ, if[[B]]σ = 0

[[while B C]] = lfp F where F (f) = λσ.

{
(f ◦ [[C]])σ, if[[B]]σ = 1

σ, if[[B]]σ = 0

Table 2.2: Denotational Semantics of While language

{0, 1}. A command C is a state transformer map [[C]] : Σ→ Σ with the usual

interpretation of least fix point of a function F for loops [64]. We further

assume that in general commands are terminating, but in some contexts non-

termination can be included as observable state.

A program P is a sequence of commands using sequential composition.

For an initial store σ, [[P ]]σ computes the final variable store. As we only

consider input/output semantics, [[P ]] can be seen as set of all executions [[P ]] =

{(σ, [[P ]]σ), (σ′, [[P ]]σ′), . . . } where every element of the set is a single execution

(input/output tuple). A subset T ⊆ [[P ]] is a selection of executions.

2.2 Information flow and noninterference

This section introduces concepts from the secure information flow literature

used in this thesis. Denning introduced a lattice model of information flow

where variables are partitioned into security labels [23]. The confidential vari-

ables have a “high” security label H and the public variables have a “low”

security label L. All low variables are publicly observable while the high vari-

ables contain confidential information and are kept secret. A partial order

describes the allowed flows in a system, where L ≤ H allows flows up the

lattice and disallows flows from H to the lower label L.

Goguen and Meseguer describe, in a general automaton framework, the

idea of noninterference as a requirement for checking if a certain security pol-
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2.2 INFORMATION FLOW AND NONINTERFERENCE

icy holds [26]. Their definition works on groups of users where, given nonin-

terference, each group can not see the effect of commands used by any other

group.

Volpano, Smith, and Irvine described the lattice model of information flow

and noninterference in a language-based setting [63]. The authors proved the

soundness of Denning’s analysis using a type system which coincides with the

idea of noninterference.

Definition 1 (Noninterference). For any two states σ1 and σ2 which agree

on the values of all low variables v ∈ L, σ1(v) = σ2(v), also satisfy the same

equality after the execution of a terminating program P :

(P (σ1))(v) = (P (σ2))(v)

This definition is checked syntactically using type system rules where the

security labels are part of the type.

From an automation viewpoint a more useful and precise way of checking

secure information flows in a program is the semantic approach by Leino and

Joshi [36]:

Definition 2 (Secure information flow – Leino-Joshi). With the assignment

of an arbitrary value to all high variables denoted by HH, a program P is

noninterfering if the following equation is satisfied:

HH; P ; HH = P ; HH

Here the fragment HH; P describes a program running on an arbitrary high

value, where P ; HH indicates that after the program is run all high values are

“forgotten”. The equality of the two, as in the equation above, together with

a ; HH on both sides indicates that only low variables are known after the

execution and that the execution does not depend on the starting value of the

high variables.

This semantic approach has multiple benefits especially with our quantita-

tive goals in mind: it is less conservative than a type system approach. A type

system will have to reject any program which contains a sub program which

12



2.3 INFORMATION THEORY

on its own is noninterfering. It can be applied to any language construct with

definable semantics, including nondeterminism and it is more useful in the

context of automated verification than a type-based approach.

Leino and Joshi’s definition will be used in later chapters to motivate a

verification approach to quantifying information leaks.

2.3 Information theory

This section contains a very short review of some basic definitions of Infor-

mation Theory; additional background is readily available in the standard

textbook by Cover and Thomas [19].

Definition 3 (Entropy). Given a space of events X = (xi)i∈N with the prob-

ability mass function p(xi) for event xi, Shannon’s entropy is defined as

H(X) , −
∑
xi∈X

p(xi) log p(xi) (2.1)

Informally, the entropy measures the average information content of the

set of events: in the extreme case of an event with probability 1 the entropy

will be 0 and on the other hand, if the distribution is uniform with every

event equally likely then the entropy is maximal, i.e. log |N |. In the literature

the terms information content and uncertainty in this context are often used

interchangeably. Both terms refer to the number of possible distinctions on

the set of events.

The cardinality of the space of events is important in this work, thus we

are going to prove the information theoretical result when entropy attains its

maximal value.

H(X) ≤ log |N | (2.2)

Proof. Jensen’s Inequality is used for the proof which states that for any convex

function f and random variable X the following holds

E[f(X)] ≥ f(E[X])

13



2.3 INFORMATION THEORY

with E[·] being the expected value of random variable X. For a discrete random

variable with probability mass function p(xi) this is
∑

X xi p(xi).

Shannon entropy itself can also be seen as such an expectation, or mean

value, of a function f(u) where f = log2 and u = 1
p(x)

. As entropy is concave

we invert Jensen’s inequality and get

H(X) = E[log2(
1

p(x)
)] ≤ log2(E[

1

p(x)
])

then by noticing that E[ 1
p(x)

] =
∑

N p(x) 1
p(x)

= |N | we arrive at

H(X) ≤ log2 |N |

where the equality holds only when 1
p(x)

is constant, thus enforcing uniform

distribution.

Definition 4 (Joint Entropy). Given two random variables X and Y , the

joint entropy H(X, Y ) measures the uncertainty of the joint random variable

(X, Y ). It is defined as

H(X, Y ) , −
∑

x∈X,y∈Y

p(X = x, Y = y) log p(X = x, Y = y)

where p(X = x, Y = y) is the joint probability mass function defined as

p(X = x|Y = Y ) p(Y = y)

Definition 5 (Conditional Entropy). Conditional entropy H(X|Y ) measures

the uncertainty about X given the knowledge of Y . It is defined in terms of

the chain rule

H(X|Y ) , H(X, Y )−H(Y )

The higher H(X|Y ) is, the lower is the correlation between X and Y .

It is easy to see that if X is a function of Y , then H(X|Y ) = 0 (there is

no uncertainty on X knowing Y if X is a function of Y ) and if X and Y

are independent then H(X|Y ) = H(X) (knowledge of Y does not change the

uncertainty on X if they are independent) .

14



2.3 INFORMATION THEORY

Definition 6 (Mutual Information). Mutual information I(X; Y ) is a measure

of how much information random variables X and Y share. It is defined in

terms of conditional entropy

I(X; Y ) , H(X)−H(X|Y ) = H(Y )−H(Y |X)

Thus the information shared between X and Y is the information of X (re-

spectively, Y ) from which the information about X given Y has been deduced.

This quantity measures the relationship between X and Y . For example X

and Y are independent iff I(X; Y ) = 0.

Mutual information is a measure of binary interaction. Conditional mutual

information, a form of ternary interaction will be used to quantify leakage.

Definition 7 (Conditional Mutual Information). Conditional mutual infor-

mation measures the relationship between two random variables X and Y con-

ditioned on a third random variable Y . It is defined as

I(X; Y |Z) , H(X|Z)−H(X|Y, Z) = H(Y |Z)−H(Y |X, Z)

where H(Y |X, Z) is read as H(Y |(X, Z)).

A further important quantity based on mutual information is the channel

capacity.

Definition 8 (Channel Capacity). Given two random variables H and O which

represent the input and output of a system respectively, the channel capacity is

defined as the maximal mutual information between H and O. It is defined as

max
µ

Iµ(O; H)

where µ is the distribution on the input which maximises the mutual informa-

tion.

For a single random variable O, CC(O) denotes the channel capacity of O

as follows

CC(O) , max
µ

Hµ(O)
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2.5 PARTITION AND EQUIVALENCE RELATIONS

Here, µ is the distribution on the inputs of O which make the outputs of O

most uniform, as a result of equation 2.2.

2.4 Partition and equivalence relations

Partitions are heavily used to represent fundamental structures in this thesis

and the terms partition and equivalence relation are used interchangeably from

now on.

A partition Π of a set S is a family of subsets of S such that the following

conditions are satisfied

• Every block in Π is nonempty

• Every element in S is contained in exactly one block of Π

where a block of Π is simply an element of Π.

Given the set S = {a, b, c, d} then the following is an example partition of

that set

Π = {{a}{b, c}{d}}.

An equivalence relation on a set S satisfies a reflexive, symmetric, and

transitive relation on S. For example, the function λn. mod n describes an

equivalence relation ∼ mod n on a set of integers S for any integer n. Taking

S = {1, 2, 3, 4} and n = 2 then

∼ mod 2= {{1, 3}{2, 4}}

where 1 ∼ mod 2 3 denote that the two integers are seen as equivalent or related

under the given relation. Also, an equivalence class of s ∈ S with respect to

an equivalence relation ∼ is defined as [s]∼ = {s′ ∈ S|s′ ∼ s}. Thus, an

equivalence relation determines a partition of a given set where each block of

the partition is described by an equivalence class of the equivalence relation.

Equally, a partition Π of a set S determines a specific equivalence relation

on that set. This equivalence relation is described for every s, s′ ∈ S. s ∼ s′ if

and only if s and s′ are in the same block in partition Π.

16



2.5 ESTIMATING A MULTINOMIAL DISTRIBUTION

2.5 Estimating a multinomial distribution

Probability distributions are not a focus of the work presented in this thesis.

Uniform distribution is mostly used to assign probabilities to outcomes and

it is often just assumed that xi

n
is the “right” estimate for the probability of

an observed event, where xi is the number of occurrences of event i and n the

total number of observations.

Usually, an event is that a program evaluates to value o with input h, where

for example if 10 out of 100 tested inputs lead to value o then the probability

of that event is assumed to be 10
100

. The following derivation shows that this is

a reasonable estimate.

The multinomial distribution is suitable to model the probabilities of k

equivalence classes by their cardinality. We assume to have k possible out-

comes, the random variables Xi = xi describe the number of times outcome i

was observed over n trials. The probabilities are described by p1, . . . , pk, where

pi = P (Xi = xi). The probability mass function is

f(x1, . . . , xk; n, p1, . . . , pk) = P (X1 = x1, . . . , Xk = xk) =
n!

x1! · · ·xk!
px1

1 · · · p
xk
k

with
∑k

i=1 xi = n.

We assume the data is given, in other words we have observed the vector

x = (xi, . . . , xk). The task now is to assign the most likely probabilities to these

counts. This can be shown using a maximum likelihood estimate, by starting

with the log likelihood, where l(p1, . . . , pk) = f(x1, . . . , xk; n, p1, . . . , pk):

L = log l(p1, . . . , pk, λ) = log n!−
∑

k

log xi! +
∑

k

xi log pi + λ(1−
∑

k

pi)

which is simply the logarithm of the probability mass function and an addi-

tional lagrange multiplier encoding the constraint of a probability distribution.

This likelihood has to be maximised by setting all derivatives over all argu-

ments to 0. This is simplified greatly because the first two summands are

17



2.6 SUMMARY OF MODEL ASSUMPTIONS

constant and results in:

dL

dpi

=
xi

pi

− λ = 0

dL

dλ
= 1−

∑
k

pi = 0

To find the value of λ we multiply the first derivative by pi and plug in the

sum over k: ∑
k

xi − λ
∑

k

pi = 0

=
∑

k

xi − λ 1 = 0

=n = λ

Thus, we can substitute the newly found λ in the first derivative and arrive at

the maximum likelihood estimate

pi =
xi

n
(2.3)

This estimator of equivalence class probabilities can be shown to be unbi-

ased and consistent; unbiased because its expectation is the true probability

and consistent because the more data points there are the better the estimate.

2.6 Summary of model assumptions

Unless specified otherwise the following assumptions hold throughout the doc-

ument: all languages are deterministic; all programs terminate; semantics con-

sider input/output states only; all random variables follow uniform distribu-

tion; logarithms are base 2.

Table 2.1 summarises the notation and symbols used in this thesis.
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2.6 SUMMARY OF MODEL ASSUMPTIONS

E[·] Expected value
H(·), H(·|·) (Conditional) Shannon entropy

I(· ; ·), I(· ; ·|·) (Conditional) Mutual information
X, Y, O, H, L Random variables

h, l, o Program variables
[[C]] Input-output semantics of command C
Σ Set of all states/atoms in the lattice

σi, σ
′ Members of Σ

{{a, b} · · · } Partition with block containing states a, b
∼,',≈ Equivalence relations
I(Σ) Set of all partitions
>,⊥ Top and bottom element in the lattice
t,u Lattice join and meet
v Partial order on partitions

Figure 2.1: Notation
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Chapter 3

Lattice of Information

This chapter describes information leakage in programs using information the-

ory. It introduces and motivates the use of partitions as a central element in

the computation of leakage and recasts existing work [38] in terms of partitions.

The content has been published in the proceedings of Formal Methods

for Quantitative Aspects of Programming Languages (SFM 2010) in LNCS

[41]. Previous research on the same content has been presented at the Work-

shop Quantitative Analysis of Software (QA 2009) which had proceedings in

a Berkeley Technical Report [28], and has been presented at the Workshop on

Programming Language Interference and Dependence (PLID 2009).

For the syntax and semantics of language code used in this chapter, please

refer to section 2.1.

3.1 Quantifying interference

This section describes the work by Clark, Hunt, and Malacaria [13] as a brief

introduction to quantifying interference using information theory, or what will

also be called leakage.

The starting point is the usual assumption that program variables are par-

titioned into two sets, H “high” and L “low”. High variables contain confi-

dential or secret information which are never directly visible to an attacker.

Low variables on the other hand are publicly observable at any point during

20



3.1 QUANTIFYING INTERFERENCE

the execution, depending on the power of an attacker. Leakage is the amount

of information one can learn about H by observing L.

The leakage quantity is measured using information theory. This chapter

describes the connection between information theoretical measures of leakage

and programs.

The most central element of information theory are random variables. In

our setting, a random variable is a map X : D → R, where D and R are finite

sets and D has a probability distribution µ associated with it. We let x range

over the values which X can take on, and similarly elements in the sample

space D are denoted d.

The probability that X takes on value x, written p(x), is simply the sum

of the probabilities in X’s preimage

p(x)
def
=

∑
d∈X−1(x)

µ(d)

Next, as entropy is a function of p(x)

H(X) = −
∑

x

p(x) log2 p(x)

it follows that the preimage of X completely defines its entropy. Or again

in other words, the random variable X partitions its sample space D into

blocks which are indistinguishable to an observer who only sees X = x. This

partitioning is formalised by the kernel of a function f : A → B which is the

equivalence relation 'f where

a1 'f a2 ⇐⇒ f(a1) = f(a2). (3.1)

Thus, if two random variables have the same kernel they are said to be obser-

vationally equivalent and they also agree on their entropy.

We are going to adopt the deterministic model of information flow from

[13]. This model describes the information flow from a joint input 〈High, Low〉
(where for readability the random variables are written as words instead of

capital letters) to the output random variable O = f(〈High, Low〉) where f
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3.2 LATTICE OF INFORMATION AND LEAKAGE

is a deterministic function representing a program. The information flow, or

leakage from High to O is shown to be the conditional entropy of O given Low

FLow(High O) = H(O|Low)

This is the case in systems defined by simple imperative programs without

nondeterministic language constructs.

3.1.1 Computing entropy and leakage

Ultimately, we are interested in computing the entropy H(O|Low) which quan-

tifies the leakage in a program. One key aspect of the entropy calculation is

that there is a qualitative and quantitative part. The qualitative part is the

equivalence relation derived from the random variable O|Low, the quantitative

part is computing p(o|l) for all o ∈ O, l ∈ Low. These two parts however can

be separated. First the equivalence relation can be computed, then given µ,

the quantification can take place. This is the overarching strategy in this work

and we mainly focus on computing the qualitative part while always keeping

enough quantitative properties of O|Low intact.

This chapter describes the general structure of such equivalence relations

in more detail and connects them with observations and programs.

3.2 Lattice of information and leakage

3.2.1 Observations and indistinguishability

The concept of an observation is a key element in our model. The leakage

quantity can essentially be seen as the result of a backwards reasoning process

of an attacker, from the outputs – or observations – of a program to the high

values at the input of the program.

Given a specific observable O = o an attacker who would like to find the

high part of this computation is left with no choice but to assume that it was

one of the elements in the preimage O−1(o). The set of high values in the
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3.2 LATTICE OF INFORMATION AND LEAKAGE

preimage are in the context of equation 3.1 indistinguishable from each other.

Thus, one observable describes an equivalence class of high values.

Naturally, one can always define a least informative observation (no obser-

vations can be made) and a most informative observation (every element is

distinguishable). An equivalence class is then the set of high values that are

indistinguishable by the corresponding observation.

3.2.2 Order relation of equivalence relations

Given a system with a set of possible states Σ, the set of all possible partitions

over Σ is a complete lattice: the Lattice of Information (LoI) [35]. The order

on partitions is given by refinement: a partition is “above” another if it is more

informative, i.e. each block in the lower partition is larger or equal to a block

in the partition above.

An alternative view of the same structure is in terms of equivalence re-

lations. There is a simple translation between an equivalence relation and

a partition: an equivalence relation defines the partition whose blocks are

equivalences classes. The terms equivalence relation and partition are used

synonymously.

Let us define the set I(Σ) which stands for the set of all possible equivalence

relations on a set Σ. The ordering of I(Σ) is now defined as

≈ v ∼ ↔ ∀σ1, σ2 (σ1 ∼ σ2 ⇒ σ1 ≈ σ2) (3.2)

where ≈,∼ ∈ I(Σ) and σ1, σ2 ∈ Σ. Furthermore, the join t and meet u lattice

operations are the intersection of relations and the transitive closure union of

relations, respectively. Thus, higher elements in the lattice can distinguish

more while lower elements in the lattice can distinguish less states. It easily

follows from (3.2) that I(Σ) is a complete lattice.

We assume this lattice to be finite; this is motivated by the finite bit width

of program variables: a k bit variable has 2k possible values. This assumption

can be generalised to an infinite lattice which is however not considered in this

work.

A typical example of how these equivalence relations can be used in an
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3.2 LATTICE OF INFORMATION AND LEAKAGE

information flow setting is the following [68]. Let us assume the set of states

Σ consists of a tuple 〈h, l〉 where l is a low variable and h is a confidential high

variable. One possible program can be described by the equivalence relation

〈h1, l1〉 ≈ 〈h2, l2〉 ↔ l1 = l2

That is the observer can only distinguish states which agree on the low variable

part. Clearly, a more revealing program is one which distinguishes any two

states from one another, or

〈h1, l1〉 ∼ 〈h2, l2〉 ↔ l1 = l2 ∧ h1 = h2

The ∼-program reveals more information than the ≈-program by comparing

states, therefore ≈ v ∼.

3.2.3 Measures on the lattice of information

Let us attempt to quantify the amount of information provided by a point in

the lattice of information.

One possibility is to take the cardinality of a partition P as its measure,

which results in block counting: |P | = “number of blocks in P”. This measure

is 1 for the least informative partition and its maximal value is reached by

the top partition. This choice of measure reflects the lattice order because if

A v B then |A| ≤ |B|. However, the important property of “additivity” for

measures, the inclusion-exclusion principle, is not satisfied. In terms of sets,

the inclusion-exclusion principle states that the number of elements in a union

of sets is the sum of the number of elements of the two sets minus the number of

elements in the intersection1. In this example, the inclusion-exclusion principle

is expressed as

|A tB| = |A|+ |B| − |A uB|
1The principle is universal e.g. in propositional logic the truth value of A∨B is given by

the truth value of A plus the truth value of B minus the truth value of A ∧B.
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3.2 LATTICE OF INFORMATION AND LEAKAGE

To demonstrate the contradiction, let us take the following two partitions

A = {{1, 2}{3, 4}}, B = {{1, 3}{2, 4}}

then their join and meet will be

A tB = {{1}{2}{3}{4}}, A uB = {{1, 3, 2, 4}}.

The counting principle from above is in this case not satisfied

|A tB| = 4 6= 3 = |A|+ |B| − |A uB|

Another problem with the cardinality | · | is that when I(Σ) is considered as

a lattice of random variables the measure may end up being too coarse, as it

discards all probabilities. To address this problem we introduce more abstract

lattice theoretic notions.

A valuation on I(Σ) is a real valued map ν : I(Σ) → R which satisfies the

following properties:

ν(X t Y ) = ν(X) + ν(Y )− ν(X u Y ) (3.3)

X v Y implies ν(X) ≤ ν(Y ) (3.4)

A join semivaluation is a weak valuation, i.e. a real valued map where property

3.3 is relaxed to an inequality

ν(X t Y ) ≤ ν(X) + ν(Y )− ν(X u Y ) (3.5)

for every element X and Y in a lattice [51]. The property 3.4 is order-

preserving: a higher element in the lattice has a larger valuation than elements

below itself. The property 3.5 is a weakened inclusion-exclusion principle.

Proposition 1. The map

ν(X t Y ) , H(X, Y ) (3.6)
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3.2 LATTICE OF INFORMATION AND LEAKAGE

is a join semivaluation on I(Σ) .

Proof. The tricky part is to prove that inequality 3.5 is satisfied. Since it is

true that

H(X, Y ) = H(X) + H(Y )− I(X; Y )

it will be enough to prove that

H(X u Y ) ≤ I(X; Y )

This can be proved by noticing the following two facts

1. H(X u Y ) = I(X u Y ; X) this is clear because I(X u Y ; X) measures

the information shared between X u Y and X and because X u Y v X

such measure has to be H(X u Y )

2. I(X u Y ; X) ≤ I(Y ; X) this is clear because X u Y v Y hence there is

more information shareable between Y and X than between X u Y and

X

Putting those two items together, it follows that

H(X u Y ) = I(X u Y ; X) ≤ I(Y ; X).

An important result proved by Nakamura [51] gives a particular impor-

tance to Shannon entropy as a measure on I(Σ) . He proved that the only

probability-based join semivaluation on the lattice of information is Shannon’s

entropy. It is easy to show that a valuation itself is not definable on this lat-

tice, thus Shannon’s entropy is the best approximation to a probability-based

valuation on this lattice.

Other measures can be used, which are however less mathematically ap-

pealing. Min-Entropy, used recently by Smith in an information flow context

[57], could be considered as it seems like a good, complementing measure.

While Shannon entropy intuitively results in an “averaging” measure over a
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3.3 RELATING LATTICE ORDER AND ENTROPY

probability distribution, the Min-Entropy H∞ takes on a “worst-case” view:

only the maximal value p(x) of a random variable X is considered

H∞(X) = − log max
x∈X

p(x)

where it is always the case that H∞(X) ≤ H(X).

Another useful tool when working with partitions is considering condition-

ing of two partitions X and Y . The conditional partition Y |X = x (where x

is a block in X) is the intersection of all blocks in Y with x; given Y |X = x

a probability distribution is achieved by normalising the probabilities, with

normalisation factor p(x).

The notation Y |X = x is justified because H(Y |X = x) is the usual notion

of information theoretical entropy of the variable Y given the event X = x.

Formally,

Y |X = x ≡ {y ∩ x|y ∈ Y } (3.7)

and the probability distribution associated to Y |X = x is

{p(y ∩ x)

p(x)
|y ∈ Y }. (3.8)

3.3 Relating lattice order and entropy

The choice of using partitions as basic building block for the quantification of

leakage and to only assume uniform distribution may seem overly restrictive or

not expressive enough. The following two results however justify that decision.

The first states that the order relation imposes bounds on the possible entropy

of a random variable for any distribution. The second one restates the first

under the worst case distribution, the channel capacity.

Theorem 1.

X v Y ⇐⇒ ∀µ.Hµ(X) ≤ Hµ(Y )

Proof.

=⇒ direction follows from entropy being a semi valuation.
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3.4 RELATING LATTICE ORDER AND ENTROPY

⇐= direction by contraposition. We want to prove that

X 6v Y =⇒ ∃µ.Hµ(X) 6≤ Hµ(Y )

by taking two partitions where a block of Y is refined in X

Y = {{1, 2}{3, 4}{5}{6}}

X = {{1, 2}{3}{4}{5}{6}}

where it is clear that X 6v Y . Next, as choice of µ we assign zero probability

to all elements of the input space with the exception of the refining elements

3 and 4 which receive probabilities 0.1 and 0.9 respectively. Thus it is easy to

confirm that

−(0.1 + 0.9) log2(0.1 + 0.9) < −0.1 log2(0.1)− 0.9 log2(0.9)

H(Y ) < H(X)

In general, when blocks X1, . . . , Xi refine block Y1 then choosing the probability

distribution µ(Y1) = 1 leads to H(Y ) = 0 < H(X).

Here, CC(X) is the channel capacity of X as defined in section 2.3. The

channel capacity is achieved by the distribution which makes the probability

of equivalence classes uniform2.

Proposition 2.

X v Y =⇒ CC(X) ≤ CC(Y )

Proof. Y refines X, thus Y has equal or more equivalence classes than X. Its

larger cardinality implies larger channel capacity because channel capacity is

log2 of the cardinality (see equation 2.2 in chapter 2).

2not to be confused with uniform input distribution
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3.4 MEASURING LEAKAGE OF PROGRAMS

3.4 Measuring leakage of programs

3.4.1 Transition system and observations over programs

The previous sections defined the lattice and lattice order in terms of arbitrary

states Σ. To model programs we assume states to be part of a transition system

(Σ, I, F, T ) where

1. Σ is the set of states,

2. I is the set of initial states (I ⊆ Σ),

3. F is the set of final states,

4. T ⊆ Σ× Σ is a the transition relation.

Let us define a successor function for a state σ ∈ Σ

Post(σ) = {σ′ ∈ Σ | (σ, σ′) ∈ T}

A state σ is in F if Post(σ) = ∅. A path is a finite sequence of states

π = σ0σ1σ2 . . . σn such that σ0 ∈ I and σn ∈ F . Also, a state is a tuple

σ = σH × σL of the pair of confidential input H and low input L. The input-

output semantic valuation mapping [[P ]] : Σ→ Σ evaluates P for a given initial

state and outputs its final state.

Now, an observation over a program P is the equivalence relation on high

initial states σH ∈ I induced by [[P ]]. A particular equivalence class will be

called an observable. Hence an observable represents a set of states indistin-

guishable to an attacker making that observation.

A program may or may not have initial low variables whose values are

controlled by an attacker. This control is formalised as the ability to set the

low part of a state before the execution of the program. For the general case,

we assume that the attacker has control over some low variables, where one

particular equivalence relation 'l with value l for the initial low state as follows

∀σ, σ′ ∈ I. σH 'l σ′H ⇐⇒ [[P ]](σ) = [[P ]](σ′) ∧ σL = σ′L = l (3.9)
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3.4 MEASURING LEAKAGE OF PROGRAMS

Thus the equivalence relation relates the high states which under a particular

low value l result in the same observable output.

We denote this interpretation of a program P in I(Σ) as defined by the

equivalence relation (3.9) by Πl(P ). The relation Πl(P ) is nothing else than

the kernel of the semantics of P .

In the simple case where an attacker can not set the low state, the equiva-

lence relation reduces to

∀σ, σ′ ∈ I. σH ' σ′H ⇐⇒ [[P ]](σ) = [[P ]](σ′) (3.10)

This equivalence relation will be referred to as Π(P ). To ease readability this

equivalence relation is mostly used throughout the chapters unless the attacker

is specifically given the choice to initialise the low initial states.

The distinction between Π(P ) and Πl(P ) is only important if the attacker

has the ability to compare equivalence relations resulting from multiple low

values, or if the attacker has external knowledge that one particular low value

leads to an especially informative equivalence relation.

3.4.2 Definition of measuring leakage

As the lattice framework and program model are now connected, we can de-

velop the notion of leakage. Let us start with the following intuitive statement:

The leakage of confidential information of a program is defined as the dif-

ference between an attacker’s uncertainty about the secret before and after ob-

serving the outputs of the program.

For a Shannon-based measure, the above statement is traditionally [13]

expressed in terms of conditional mutual information. The uncertainty about

the secret by the attacker before observations is H(H|L) and the uncertainty

after observations is H(H|L, Π(P )). Using the definition of conditional mutual

information, leakage is defined as

H(H|L)−H(H|L, Π(P )) = I(H; Π(P )|L)
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3.4 MEASURING LEAKAGE OF PROGRAMS

We can now simplify the above definition as follows

I(Π(P ); H|L) = H(Π(P )|L)−H(Π(P )|L, H)

=A H(Π(P )|L)− 0 = H(Π(P )|L)

=B H(Π(P )) (3.11)

where equality A holds because the program is deterministic and B holds

when the program only depends on the high inputs, for example when all

low variables are initialised in the code of the program. The leakage for such

programs is then defined as

Definition 9 (Leakage). The (Shannon-based) leakage of a program P is de-

fined as the (Shannon) entropy of the partition Π(P ).

Notice that the above definition can easily be adapted to other real valued

maps from the lattice of information, providing possibly different definitions of

leakage: Π(P ) provides a very general representation that can be used as the

basis for several quantitative measures likes Shannon’s entropy, Renyi entropies

or guessability measures.

Definition 10 (Run). A run of a program P is defined to be a single realisation

of equation 3.9 resulting in one equivalence relation Π(P ) or Πl(P ).

Definition 11 (Evaluation). An evaluation of a program P is defined to be

the execution of the program from an initial to a final state, according to its

semantics.

Please note the following distinction which is made in this work: a pro-

gram P , before it is evaluated, always starts with a well-defined initial state,

such that there are no uninitialised variables. This implies that the Shannon-

entropy of a program is always just the entropy of its partition without con-

ditioning on the low variables. This is necessary to distinguish the entropy of

a single-run of the program (the equivalence relation resulting from one fixed

initial state) with the entropy of multiple runs of the program within the same

framework. There are three cases to distinguish:
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• Single-run leakage which is described by Π(P ) or for a particular choice

of l as Πl(P )

• Single-run maximising leakage which can be achieved by a powerful (or

lucky) attacker in one run which results in the maximal equivalence re-

lation (in terms of cardinality) of Πl(P )

• Multi-run leakage where an attacker is able to combine the leakage of

multiple runs by taking the least upper bound of the resulting partitions⊔
L Πl(P ) for some set of low inputs L.

Unless mentioned otherwise, the leakage of a program is the single-run leakage.

As corollary to theorem 1 the order of programs relates to the amount of

leakage by the following result

Corollary 1. Let P1, P2 be two programs depending only on the high inputs.

Then Π(P1) v Π(P2) iff for all probability distributions on states in LoI,

H(Π(P1)) ≤ H(Π(P2)).

The relation between order and leakage is an interesting result because it

underlines how fundamental the order relation in the lattice of information

is to reason about leakage. While the purely qualitative view of partitions is

clearly more coarse than a quantitative view (because it lacks the possibility

of assigning different probability weights to elements in an equivalence class)

it is still fundamentally restricting the amount of leakage that is possible in a

quantitative setting.

This result justifies the measure used in later chapters to bound leakage.

3.4.3 Lattice operations and leakage

The lattice t join operation can be used to combine leakage of different pro-

grams or different runs of the same program, under the assumption of shared

universe of values. First, let us give an example program for Π(P ) and Πl(P ).

Given the program

if (h==0) o=0; else o=1;
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where the variable h ranges over {0, 1, 2, 3}. The equivalence relation Π(P )

associated to the above program is then

Π(P ) = { {0}︸︷︷︸
o=0

{1, 2, 3}︸ ︷︷ ︸
o=1

}

Π(P ) effectively partitions the domain of the variable h, where each disjoint

subset represents an output. The partition reflects the idea of what a passive

attacker can learn of secret inputs by backwards analysis of the program, from

the outputs to the inputs.

A simple example of Πl(P ) with h ranging over {0, 1, . . . , 7} is the following

if(l == 5) {

if(h < 4)

o = h;

else

o = 0;

} else

o = 0;

Πl(P ) then represents different program runs each with a different choice of l

from the set L = {0, 1, . . . }

{⊥,⊥,⊥,⊥,⊥, {{0}{1}{2}{3}{4, 5, 6, 7}},⊥, . . . }

Every choice of l leads to the bottom partition except l = 5 where the first 4

high values can be distinguished. Clearly, an attacker who can choose any l

for Πl(P ) is much more powerful than one who has to start from fixed initial

values. An attacker which has the ability to maximise the leakage in one run

would choose Π5(P ), on the other hand, an attacker who can do multiple runs

could just “scan” the resulting partitions until he learned enough.

The next definitions show how to combine leakage of different programs

and different program runs of the same program using the join operation in

I(Σ) .

Definition 12. Given two programs P1, P2 which use the same set of variables
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and low initialisations l1, l2 the leakage of both programs combined is

Πl1(P1) t Πl2(P2) (3.12)

If P1 and P2 are the same program then 3.12 represents the leakage of two

runs and can be generalised for any number of runs

Definition 13. Given program P and a given choice of inputs L = {l1, l2, . . . }
the partition of |L| runs is the join of the partitions Πl(P ) for all l⊔

l∈L

Πl(P ) (3.13)

For some applications, as will be shown in a later chapter, it is useful to

syntactically create a new program which just combines a number of programs.

Thus, the syntactic transformation encodes all program paths of all programs

in a single program. This is more amendable for program analyses which need

to reason about multiple program runs.

Definition 14. Given programs P1, P2 a single program P1t2 exists such that

Π(P1t2) = Π(P1) t Π(P2) (3.14)

Given programs P1, P2, we define P1t2 = P ′
1; P

′
2 where the primed pro-

grams P ′
1, P

′
2 are P1, P2 with all variables renamed to achieve disjoint variable

sets. If the two programs are syntactically equivalent, then this results in

self-composition [5]. For example, consider the two programs

P1 ≡ if (h == 0) x = 0 else x = 1, P2 ≡ if (h == 1) x = 0 else x = 1

with their partitions Π(P1) = {{0}{h 6= 0}} and Π(P2) = {{1}{h 6= 1}}. The

program P1t2 is the concatentation of the previous programs with variable

renaming

P1t2 ≡ h′ = h; if (h′ == 0) x′ = 0 else x′ = 1;

h′′ = h; if (h′′ == 1) x′′ = 0 else x′′ = 1
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The corresponding lattice element is the join, i.e. intersection of blocks, of the

individual programs P1 and P2

Π(P1t2) = {{0}{1}{h 6= 0, 1} = {{0}{h 6= 0}} t {{1}{h 6= 1}}.

3.5 Reasoning about loops in programs

To understand the leakage behaviour of a system in more detail the input/out-

put semantics approach might be too coarse. This is especially the case for

loops which introduce circular dependencies between program points. Tradi-

tionally, this requires externally provided loop invariants which capture the

necessary behaviour of the loop and verification property in question.

Up until recently, leakage inference for loops took a safe but very imprecise

approach. As soon as there was a confidential variable contained in the guard

or body of the loop then everything of the confidential information was con-

sidered leaked [13]. A subsequent paper then provided the first precise leakage

semantics for loops [38] which separates the leakage analysis in two parts: the

leakage of the loop guard and body. This section will summarise that the-

ory and then show an equivalent interpretation in the lattice of information.

Chains of elements in the lattice are seen as loop iterations and the leakage is

the entropy of the least upper bound of such chains.

3.5.1 Analytical approach

One possible way to analyse loop leakage is by breaking down the leakage in

different contributing parts in the program source code. Both the guard and

the body of a loop can be separate sources of leaks. It has been shown [38] that

those are two of the three components needed to provide a precise quantitative

analysis. The three components are:

guard: the information of the number of iterations of the loop

body: the information of the output given the knowledge of the number of

iterations
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collisions: the information of the number of iterations given knowledge of the

output

The idea is that the leakage of a looping program, denoted L(P ), is given by

the sum of information leaked by the guard and the body minus the ambiguity

given by the collisions. In terms of random variables (which will be formally

defined later on) this can be expressed as follows [40]:

L(P ) = H(NIterations(P ))︸ ︷︷ ︸
guard

+ H(P |NIterations(P ))︸ ︷︷ ︸
body

−H(NIterations(P )|P )︸ ︷︷ ︸
collisions

Let us illustrate this formula with an example and its corresponding state

transformer in table 3.1

l=0;

while(l < h) {

if (h==2) l=3; else l++;

}

and suppose h,l are two bit variables with range {0, 1, 2, 3} and all values of

h are equally likely. Then the loop terminates in 0 iterations with probability

0.25 (i.e. only when h=0); it terminates in 1 iterations with probability 0.5

(i.e. only when h=1 and h=2), it never terminates after 2 iterations and finally

it terminates in 3 iterations with probability 0.25 (i.e. only when h=3). This

information about the partitioning of the inputs by the number of iterations

the loop needs to terminate makes up the first ingredient of L(P ):

H(NIterations(P ))︸ ︷︷ ︸
guard

= H(0.25, 0.5, 0.25)

For the body leakage, notice that for iterations 0 and 3 no uncertainty is

left about the secret (0 bits of information, see table 3.1), and only in the case

of 1 iteration the body leaks the information that h=1 or h=2 through its two

distinguishable outputs (1 bit of information). This amounts to:

H(P |NIterations(P ))︸ ︷︷ ︸
body

= 0.25 ∗ 0 + 0.25 ∗ 0 + 0.5 ∗ 1
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h = 0
0

−−−−−−→ l = 0

h = 1
1

−−−−−−→ l = 1

h = 2
1

−−−−−−→ l = 3

h = 3
3

−−−−−−→ l = 3

Table 3.1: State transformer: start
iteration→ end

For the collisions, notice that the output l=3 can be the result of 1 or 3

iterations, both resulting in the same output l=3. This setup generates 1 bit of

uncertainty about the number of iterations (it could be one or three iterations)

with probability 0.5. This gives the last element of the leakage formula:

H(NIterations(P )|P )︸ ︷︷ ︸
collisions

= 0.5 ∗ 1

For this particular program the leakage is then

H(0.25, 0.5, 0.25) + 0.25 ∗ 0 + 0.25 ∗ 0 + 0.5 ∗ 1− 0.5 ∗ 1 =

H(0.25, 0.5, 0.25) = 1.5

That 1.5 is the correct amount leaked can be checked with the following intu-

ition. An attacker observing the output of the program observes l=0 in which

case he knows that h=0; he observes l=1 in which case he knows that h=1; he

observes l=3 in which case he knows that h=2 or h=3. These three observations

have probability (0.25, 0.25, 0.5) and so the leakage given the observations is

H(0.25, 0.5, 0.25) = 1.5

We are now going to make this argument formal following [38].

3.5.2 The random variable NIterations

Given a looping program P ≡ while e M that only depends on a high in-

put variable h let us associate the random variable NIterations, or NItP in
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shorthand, to P .

NItP is the random variable where its values denote “number of iterations

the loop terminates in”. The associated distribution p(NItP = n) is the sum

of the probabilities of all values of h such that for those values P terminates

in n iterations.

p(NItP = n) =
∑
{p(h = v)|P (v) terminates in n iterations}

The next proposition shows that the analytical approach of separating guard

and body leakage results in the same leakage as in definition 3.11.

Proposition 3.

H(Π(P )) = H(NItP) + H(Π(P )|NItP)−H(NItP|Π(P ))

Proof. We use the information theoretical equality

H(Y ) = H(X) + H(Y |X)−H(X|Y ) (3.15)

which is true by definition of the conditional entropy

H(X) + H(Y |X)−H(X|Y ) = H(X) + H(Y,X)−H(X)−H(X|Y ) =

H(X) + H(Y,X)−H(X)−H(X, Y ) + H(Y ) = H(Y )

The result then follows with replacing X = NItP, Y = Π(P ).

The elements on the right hand side of equation 3.15 have the following

meaning

1. H(NItP) is the leakage of the guard

2. H(Π(P )|NItP) is the leakage of the body

3. H(NItP|Π(P )) is the measure of the collisions of the loop

A collision is an observable value that can be generated in different iterations

of the loop.
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The random variable NItP can be approximated by the random variable

NItPn which restricts the number of possible values from 0, . . . , n, where the

last value n has the meaning “the loop terminates in > n iterations”. The

probabilities associated to NItPn are also an approximation of the probabilities

of NItP. They are defined by

p(NItPn = m) =

{
p(NItP = m) if m ≤ n,

1−
∑
{p(NItP = s)|s > n} otherwise.

3.5.3 Basic loop leakage definitions

Definition 15 (Leakage of collision free loop). The leakage of a collision free

loop while e M up to n iterations is given by

W (e,M)n = H(NItPn) + H(Π(P )|NItPn)

Proposition 4. ∀n ≥ 0, W (e,M)n ≤ W (e,M)n+1

Proof. The proof can be decomposed by showing that H(NItPn) ≤ H(NItPn+1)

which is true because NItPn+1 refines the distribution NItPn. To prove the other

component of the inequality, i.e. H(Π(P )|NItPn) ≤ H(Π(P )|NItPn+1) consider

the event e′ as the “loop terminates in n + 1 iterations”. Using the definition

of conditional entropy this simplifies to

H(Π(P )|NItPn) =
∑

NItPn=e

p(e)H(Π(P )|NItPn = e)

≤
∑

NItPn=e

p(e)H(Π(P )|NItPn = e) + p(e′)H(Π(P )|e′)

=
∑

NItPn+1=e

p(e)H(Π(P )|NItPn+1 = e)

= H(Π(P )|NItPn+1)
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Using proposition 3 we can define the leakage of a loop as

lim
n→∞

W(e, M)n −H(NItP|Π(P )) (3.16)

which when there are no collisions simplifies to

lim
n→∞

W(e, M)n (3.17)

3.5.4 Examples

Let us apply the previous theory to the analysis of two looping programs. The

high input variable is a k-bit variable assuming possible values 0, . . . , 2k − 1

(i.e. no negative numbers).

Unbounded leakage with decreasing rate. Consider the following

simple loop with an increasing counter l:

l=0;

while (l != h) {

l=l+1;

}

No high variables appear in the body of the loop so there is no leakage in the

body, i.e

lim
n→∞

H(Π(P )|NItPn) = 0

Therefore we only need to study the behaviour of

lim
n→∞

H(NItPn)

The events associated to the random variable NItPn are:

(NItPn = i) =


0 = h, if i = 0

0 6= h, . . . , i 6= h ∧ i + 1 = h, if i > 0
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thus every event is equally likely, i.e. p(NItPn = i) = 1
2k . The entropy over all

possible guards is then

lim
n→∞

H(NItPn) = H(
1

2k
, . . . ,

1

2k
) = log(2k) = k

As expected all k bits of a variable are leaked in this loop, for all possible

k; however, 2k iterations are required to reveal k bits. We conclude that this

is an unbounded covert channel with decreasing rate k
2k .

Bounded leakage with constant rate. The next example is a loop

with a decreasing counter and a slightly different guard expression

l=20;

while (h < l) {

l=l-1;

}

Again, since the body of the loop does not contain any high variable, the body

part of the leakage is 0

lim
n→∞

H(Π(P )|NItPn) = 0

Thus we only need to study the leakage of the guard.

After executing the program, l will be 20 if h ≥ 20 and will be h if 0 ≤
h < 20, i.e. h will be revealed if its value is in the interval 0 . . . 19.

The events associated to NItPn are:

(NItPn = i) =



h < 20− i ∧ h ≥ 20− (i + 1) ≡

h = 20-(i+1), i > 0

h ≥ 20, i = 0
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Figure 3.1: Leakage in l=20; while (h < l) {l=l-1}

and

p(NItPn = i) =



2k−20
2k if i = 0

1
2k if 0 < i ≤ 20

0 if i > 20

The leakage is then given by

lim
n→∞

H(NItPn) =

H(
2k − 20

2k
,

1

2k
, . . . ,

1

2k
, 0, . . . , 0) =

−2k − 20

2k
log(

2k − 20

2k
)− 20(

1

2k
log(

1

2k
))

This function is plotted in Figure 3.1 for k = {6 . . . 16}. The interesting ele-

ment in the graph is how it shows that for k around 6 bits the program is unsafe

(more than 2.2 bits of leakage) whereas for k from 14 upwards the program is

safe (around 0 bits of leakage).
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However, the uniform distribution is not the channel distribution. The

capacity of this channel is 4.3923 and is achieved by the distribution where

the only values with non zero probability for h are in the range {0 . . . 20} and

have uniform distribution3.

3.6 Loops in the lattice of information

This section presents a natural interpretation of the previous analysis of loops

in the lattice of information. The key result is that leakage of loops is the

semivaluation of the least upper bound of a chain of elements in the lattice of

information, where the chain is the interpretation of the different iterations of

the loop.

To understand the ideas let us consider again the program

l=0;

while(l < h) {

if (h==2) l=3; else l++;

}

and let us now study the partitions it generates. The loop terminating in 0

iterations will reveal that h=0 i.e. the partition W0 = {{0}{1, 2, 3}}; termina-

tion in 1 iteration will reveal h=1 if the output is 1 and h=2 if the output is

3 i.e. W1 = {{1}{2}{0, 3}}; the loop will never terminate in 2 iterations i.e.

W2 = {{0, 1, 2, 3}}; in 3 iterations it will reveal that h=3 given the output 3,

i.e. W3 = {{3}{0, 1, 2}}. Let us define W≤n as tn≥i≥0Wi, we have then

W≤1 = W≤2 = W≤3 = {{0}{1}{2}{3}}

We also introduce an additional partition C to cater for the collisions in the

loop: the collision partition is C = {{0}{1}{2, 3}} because the inputs h=2 and

h=3 generate the same output in different number of iterations. Given these

partitions, the loop leakage is then

3We are ignoring the case where k < 5 where the capacity is less than 4.3923
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H(tn≥0W≤n u C) = H({{0}{1}{2, 3}})

Notice now that the analytic and lattice interpretation give the same result:

assuming uniform distribution we get

H(0.25, 0.5, 0.25)︸ ︷︷ ︸
guard

+ 0.5 H(0.5, 0.5)︸ ︷︷ ︸
body

− 0.5 H(0.5, 0.5)︸ ︷︷ ︸
collisions

= 1.5

= H({{0}{1}{2, 3}})

We can interpret looping programs in the lattice of information as least

upper bounds of increasing sequences; for some loops (those with collisions)

this is not immediately true: however we will show that all loops can be

interpreted as the meet of the least upper bound of an increasing sequence

and a point in the lattice representing the collisions.

3.6.1 Algebraic interpretation

Given a loop W , let Wn be the program W up to the nth iteration. The

random variable associated to Wn is a partition where only the outputs of

W up to the nth iteration are distinguished. Thus, Wn+1 will refine Wn by

introducing additional blocks.

As a simple example of a collision free program consider the “linear search”

program P below

l=0;

while (l < h) {

l=l+1;

}

We get the following corresponding family of partitions of states Pn:

Pn = {{0}, {1} . . . , {n− 1}, {x| x ≥ n}}

The following proposition establishes the relation between collision free

loops and the chain Wn being increasing:
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Proposition 5. For all n, Wn v Wn+1 iff the loop W is collision-free.

Proof. The direction ⇒ follows immediately from the definition of collision.

For the ⇐ suppose Wn 6v Wn+1, then at least a block in Wn+1 is not a refine-

ment of a block in Wn, e.g. {{a}, {b, c}} in Wn and {{a, b, c}} in Wn+1 and by

definition of Wn either {{a} or {b, c}} (w.l.g. we can say is {a}) corresponds

to an output o after ≤ n iterations. Then {{a, b, c}} in Wn+1 corresponds to

a collision, namely the collision which sends a, b, c to the same output o in a

different number of iterations.

Proposition 6. The random variable W of a collision-free loop is the Kleene

fixpoint tn≥0Wn of the chain (Wn)n≥0.

Proof. The result follows from Proposition 5 and the fact that the number of

states is finite.

Theorem 2. Given a collision-free loop while e M, the leakage limn→∞ W (e,M)n

is equal to the semivaluation H(tn≥0Wn).

Proof. This follows from Proposition 6.

Also note that in this case the chain W0 v W1 v . . . satisfies the ascending

chain condition. There exists an integer n such that Wm = Wn for all m > n,

because Wi+1 destructively refines or “splits” a finite block of Wi into smaller

equivalence classes.

3.6.2 Loops with collisions

Let us look at the colliding program shown in Figure 3.2. It consists of two

iterations, represented by functions f1 and f2.

The exact partition for this program is

P = {{a, a′}, {x, x′, y}, {c}}

The chain of partitions associated to the program is the following:

W1 = {{a, a′}, {x, x′}, {y, c}}

W2 = {{a, a′}, {x, x′, y}, {c}}
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a

x

x'

y

c

b

b'

b''

a'f1

f2

Figure 3.2: Two iterations with one collision at b′

We see that W2 extends the block containing x, x′ with y because all three of

them have the same image b′. This reflects the idea of collisions, namely that

two (or more) elements of the codomain of two different iteration functions,

here f1 and f2, coincide. The result is that their inverse images are indistin-

guishable from one another and therefore end up being in the same block, here

{x, x′, y}. Then, W2 is equal to P . However, because W2 extends a block in

W1 this is not an ascending chain anymore; actually by choosing a distribution

assigning probability 0 to c, we can see that H(W1) > H(W2) and therefore

theorem 2 is false in case of collisions.

To address this problem we first introduce a trick to transform a sequence of

partitions into an ascending chain of partitions: given a sequence of partitions

(Wi)i≥0 define the sequence (W≤i)i≥0 by

W≤i = tj≤iWj

It is easy to see that (W≤i)i≥0 is an increasing chain.

Define now the collision equivalence of a loop W as the reflexive and tran-

sitive closure of the relation σ 'C σ′ iff σ, σ′ generate the same output from

different iterations.

We are now ready to relate the leakage of arbitrary loops with semivalua-

tions on LoI.

Theorem 3. The leakage of an arbitrary loop as in definition 3.16 is equivalent
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to semivaluating the meet of the least upper bound of its increasing chain W≤n

and its collision partition C, i.e.

lim
n→∞

W(e, M)n −H(NItP|Π(P )) = H(tn≥0W≤n u C)

Proof. Notice first that increasing chains xn with a maximal element in a

lattice do distribute, i.e.:

(tn≥0xn) u y = tn≥0(xn u y)

Assuming distributivity the argument is then easy to show:

(tn≥0W≤n u C) = tn≥0 (W≤n u C)

Notice now that (W≤n uC)n≥0 is a chain cofinal to the sequence (Wn)n≥0 and

so we can conclude that

tn≥0(W≤n uC) is the partition whose semivaluation corresponds to W (e,M).

Notice the generality of the lattice approach: we can replace Shannon en-

tropy H with any real valued map from the lattice of information F and we

get a definition of leakage for loops as follows:

F (tn≥0(Wn u C)).
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Chapter 4

Exact Leakage Quantification by

Complete Enumeration

We start the first chapter of automated techniques to calculate leakage by

the most straightforward brute-force technique: complete enumeration of all

possible confidential inputs to a program and evaluating its leakage, usually

assuming uniform input distribution. This approach is an exact method as it

calculates the correct entropy quantity by running the program on all inputs.

This simple analysis is included for three reasons

• to motivate the use of smarter approximate methods presented in later

chapters

• it has proven to be a useful tool during research and development of more

advanced tools and was the starting point of my research

• a safe upper bound on the exact leakage has been formalised in cases

where not all inputs have been treated

The analysis has been implemented in a tool and has been tested on 82

different programs over the years. Two of those programs and their analysis

will be covered in this chapter as case studies.
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Input: Program text P ,Value range H
Output: Π(P ), NItP
Π(P ) = ∅
NItP = ∅
for h ∈ H do

o, n← P (h)
Π(P )← attach(o, Π(P ), {h})
NItP ← attach(n, NItP, {h})

end

Algorithm 1: Iteratively calculating partitions Π(P ) and NItP

4.1 Analysis

4.1.1 Objective

The objective of this analysis is to calculate the exact loop leakage for a simple

while language (as presented in section 2.1) with a single loop in the program

text. The leakage calculation should implement the formulas from section

3.5.1. Please refer to that section for the notation used.

4.1.2 Algorithm

For the complete enumeration we iteratively compute two partitions represent-

ing Π(P ) and NItP according to the algorithm 1. Input to the algorithm are

the program P and the range of secret values H. The program is run with only

the secret value h as input; its return value is the computed output observation

o and the last iteration count of the loop n.

The algorithm uses the helper function attach(label, partition, block)

which adds block block to the equivalence class with label label from partition

partition. It always returns the updated partition. The semantics of attach

are self-explanatory, e.g.

attach(i, ∅, {1, 2}) = {{1, 2}i}

attach(i, {{0}j{1, 2}i}, {3, 4}}) = {{0}j{1, 2, 3, 4}i}
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Following from that, the program and loop leakage of the resulting parti-

tions can be calculated easily. According to proposition 3, the program leakage

is H(Π(P )) and the loop leakage is calculated by the conditioning: leakage of

the guard is H(NItP), leakage of the body H(Π(P )|NItP) and collision leakage

is H(NItP|Π(P )).

The conditional entropy is calculated using the conditioning of partitions

from equations 3.7 and 3.8 and by its definition

H(Π(P )|NItP) =
∑
N

p(NItP = n)H(Π(P )|NItP = n).

Here, we assume that NItP = n is a shorthand for selecting the block with label

n from NItP. Thus, every block is selected and the entropy of the conditional is

calculated according to equation 3.8. As we consider uniform distribution the

probability reduces to block counting: p(NItP = n) = |NItP=n|P
i∈N |NItP=i| (see section

2.5).

4.1.3 Example

Let us take the following example with range of h ∈ H = {0, 1, 2, 3}.

l=0;

while(l<h) {

if(h==2 || h==3)

l=3;

else

l++;

}

The algorithm 1 finds the following two partitions

Π(P ) = {{0}0{2, 3}3{1}1}

NItP = {{0}0{1, 2, 3}1}

To calculate the leakage of the guard we have to only consider the block NItP =

1 ≡ {1, 2, 3}, thus p(NItP = 1) = 3
4

= 0.75. Plugging in equation 3.8 results in
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the following partition for the conditioning

(Π(P )|NItP = 1) = {{1}{2, 3}}

which results in the entropy

H(Π(P )|NItP = 1) = 0.75H(
1

3
,
2

3
)

Notice that there is no collision leakage because NItP v Π(P ). If there

was leakage it would work exactly in the same way as the leakage in the body,

except that we would also need identifying labels describing which output value

belongs to which equivalence class of Π(P ) for the selection and intersection

process. See section 3.5.1 for more information.

Thus the leakage of this loop amounts to

H(Π(P )) = H(
1

4
,
2

4
,
1

4
) = 1.5

H(Π(P )) = H(NItP) + H(Π(P )|NItP) = H(
1

4
,
3

4
) + 0.75H(

1

3
,
2

3
)

= 1.5

4.2 Safe upper bound

An information theoretical upper bound can be provided for Π(P ) if the anal-

ysis is not completely run on the set of all inputs; this is most often the case

when the algorithm is aborted before normal termination. This upper bound

is safe, which means that it is always greater than or equal to the true, precise

leakage. Let us assume that all variables have k bits thus the space of the

confidential variable H is 2k.

The reasons for not completing the enumeration are obvious

• P (h) could be an expensive function to evaluate

• 2k could be very large

• some h could cause P (h) to not terminate
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Let us assume that P is only run on the first m inputs, thus m < 2k then

the entropy of Π(P ) is

H(Π(P )m) = H(p1, . . . , pu, q)

with u ≤ m and q = 1−
∑u

i=1 pi. Remember that using the partition-view as

intuition, pi is the sum of the probability of all inputs leading to the output

representing the ith equivalence class. There are 2k − m inputs untreated

sharing a probability of q. The worst-case assumption is that every remaining

input will result in a new, distinguishable observation with probability q
2k−m

,

i.e. distributing the remaining probability q over the untreated inputs.

Proposition 7. Let k be the size of the secret, and the entropy calculated so

far for m inputs is

H(Π(P )m) = H(p1, . . . , pu, q) (4.1)

with u ≤ m and q = 1−
∑u

i=1 pi. A safe leakage upper bound is then calculated

as follows

H(Π̂(P )m) = H(p1, . . . , pu,
q

2k −m
, . . . ,

q

2k −m
) (4.2)

with Π̂(P )m being the partition which distributes the remaining probability q

over the untreated inputs.

Proof. The choice of uniform fractions q
2k−m

is motivated by equation 2.2 which

is shown to maximise entropy. The probabilities pi are calculated using the

maximum likelihood estimator ni

2k with ni being the cardinality of the ith equiv-

alence class. For proving the upper bound we also assume that every pi is

“complete”, i.e. no other inputs lead to the same output. This is generally

not the case but does not influence the upper bound.

There are two extreme cases:

I. no untreated input adds a new observation. The leakage is then bound

by log2(u) which is clearly less or equal to the upper bound.

II. assume m = u, i.e. when every input so far generated a unique ob-

servation, and also assuming that the remaining inputs show the same

behaviour, then the precise leakage and our upper bound in 4.2 coincide.
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As an illustrative example, let us take the parameters 2k = 8, m = 4 and

the partition

Π(P )m ≡ {{1, 2}{3, 4} {5, 6, 7, 8}︸ ︷︷ ︸
“q”

}

Thus q = 4
8

= 0.5, 2k −m = 8− 4 = 4 and each new singleton class is assigned

the probability 0.5
4

= 1
8
. The upper bound partition is then

Π̂(P )m ≡ {{1, 2}{3, 4}{5}{6}{7}{8}}

and its entropy is

H(Π̂(P )m) = H(
1

4
,
1

4
,
1

8
,
1

8
,
1

8
,
1

8
) = 2.5

out of the possible log(8) = 3 bit.

4.3 Case studies

The following two case studies show the application of the technique developed

in this chapter. The examples also serve as a way to compare human intuition

of leakage through code review with automatically computed leakage. We learn

that manual code review is not appropriate to calculate or estimate leakage

which is an argument for tool support.

4.3.1 Square root

The integer square root is defined as follows

sqrt(x) = b
√

xc

There are many different ways of implementing this definition in a while

language. One of the simplest is

l=0;
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while(l*l <= h) {

l++;

}

l--;

which calculates l=sqrt(h), therefore l contains the largest integer such that

l*l <= h. Our interest is to know how many bits of the secret h leak into

l. This example is straightforward, half the bits of h minus the remainder

removed by the floor operation are revealed by l after the execution of the

program. In this case, calculating the leakage is feasible and a code reviewer

can accurately reason about the revealed quantity.

But what about other implementations; do they leak the same amount and

can we rely on our intuition to deduce the leakage? The next program is an

equivalent implementation, computing res=sqrt(num).

curLog=16; res=0; flag=1;

nextNum=0; resAdd=0;

while(curLog > 0 && flag == 1) {

nextNum = num - (res << curLog);

curLog = curLog-1;

if(nextNum > 0) {

resAdd = (1 << curLog);

nextNum = nextNum - (resAdd << curLog);

if(nextNum > 0) {

num = nextNum;

res = res | resAdd;

} else {

if(nextNum == 0) {

res = res | resAdd;

flag=0;

}}}}

This version is so complex that, for most programmers it is hard to even

guess what this program is doing. Calculating the leakage from num to res

without tool-support is very difficult and error-prone. However, our tool re-
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vealed that this implementation leaks all of the input bits to the output1;

further, it showed that the variables nextNum and flag are acting as covert

channels and are responsible for the high leakage. This is reflected in the

following analysis output, with num being a 5 bit variable:

Guard leak: 0.3998 Body leak: 4.6002

Collision: 0.0000 Loop leaks: 5.0000

The 5 bit leakage means that we can uniquely identify the input by ob-

serving the output values alone. However, when we remove nextNum and flag

from the calculation we get:

Guard leak: 0.3998 Body leak: 2.2234

Collision: 0.0000 Loop leaks: 2.6232

Reducing the overall leakage from 5 to 2.62 bits – almost half the original

leakage.

To summarise, different implementations of the same algorithm can have

very different leakage behaviour and we can not always rely on intuition. Fur-

ther, we showed that automated quantitative analysis could help programmers

identify leaking components in algorithms and could provide ways to minimise

such information leakages by eliminating side-channels.

4.3.2 Prime numbers

Consider the following program:

l=2;

while (h % l > 0) {

l++;

}

which computes the smallest divisor of a secret h. Again, we are interested

in the information leaked from the secret h to the public variable l. In that

respect, this program is clearly unsafe: whenever h is prime the whole secret

will be disclosed. But how much do non-prime inputs contribute to the leakage?

1All observable variables together build the output
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One possible way to approach this question is by using the Prime Number

Theorem which states that

The proportion of primes less than a k bit number h is asymptotic

to 1/ ln h.

By this theorem one could derive the following estimate for the leakage: For

all k the above program leaks 1.94 bits.

The idea behind this estimation is the following: the probability of a prime

within 2k possible values can be approximated by 1
ln(2k)

and in this case it leaks

everything as stated above; so far this gives a leakage of k
ln(2k)

= 1.442. The

remaining 0.5 to reach the total of 1.94 bits is obtained by observing that half

of the numbers are divisible by 2. The knowledge that a number is divisible

by 2 consists of 1 bit: if the least bit of a number is 0 then it is divisible by

2. Multiplying this single bit by the probability of being in that set yields the

required 0.5 bit.

However, this argument has two flaws:

1. It does not take into account the non-primes which are divisible by any

number other than 2. Incorporating the leakage generated by these num-

bers may require more substantial mathematics

2. It does not takes into account that the program does not terminate if

the secret is 1

Using the algorithm 1 we can compute the real leakage. Below is an output

of the system computing the leakage of the program for a 3 bit secret:

[h -> 1] caused timeout

<l = 2 h = 4 > --0--> <l = 2 h = 4 >

<l = 2 h = 6 > --0--> <l = 2 h = 6 >

<l = 2 h = 2 > --0--> <l = 2 h = 2 >

<l = 2 h = 0 > --0--> <l = 2 h = 0 >

<l = 2 h = 3 > --1--> <l = 3 h = 3 >

<l = 2 h = 5 > --3--> <l = 5 h = 5 >

<l = 2 h = 7 > --5--> <l = 7 h = 7 >

Analysis:
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Guard leak: 1.6645 Body leak: 0.0000

Collision: 0.0000 Loop leaks: 1.6645

Upper Bound Analysis

Remaining (1-p) = 0.1250

Safe upperbound: 2.0000

The output starts by listing input/output variable configurations of the

program, e.g. the second line means the program on inputs l = 2, h = 4

terminated after 0 iterations with the values l = 2, h = 4, i.e. no computation

took place.

The output of the analysis tool explains the actual leakage of the program.

For a 3 bit secret a leakage of 1.6645 is calculated: in the three cases when h

is prime (3
7

of the cases) the observer will learn the whole secret (log(7) bits

of information), whereas in the other 4 cases one will know that the secret is

one of the 4 possible non prime numbers (log(7)− log(4) bits of information).

The leakage from the observable output is hence

3

7
log(7) +

4

7
log(

7

4
) = 1.6645

The first line of the output ([h -> 1] caused timeout ) indicates that

when the variable h was initialised with the value 1 then the program did not

terminate in the allowed time. The Upper Bound Analysis is using the upper

bounds of Proposition 7 exactly in such cases when one or more inputs cause

(observable) non-termination:

• The lower bound 1.6645 is the leakage where non-terminating inputs are

ignored, i.e. the non-terminating inputs contribute 0 to the leakage.

• The upper bound 2 is obtained by considering the case where the non-

terminating input contributes maximally to the leakage as proved in
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Secret size (bits) Leakage (terminating) Upper Bound Time
3 1.6645 2 0.010s
4 1.989 2.2028 0.014s
8 3.0890 3.1138 0.118s
10 3.3897 3.3976 0.960s
16 3.9298 3.9302 7m7s

Table 4.1: Leakage for the Primes program

Proposition 7:

q =
1

8
, 2k = 8, m = 7,

q

2k −m
=

1

8

Π(P ) = {{0, 2, 4, 6}{3}{5}{7}{1}}

= H(
4

8
,
1

8
,
1

8
,
1

8
,
1

8
) = 2

Table 4.1 shows the leakage, refined upper bounds, and runtime of the analysis

for different sizes of the secret. The runtime column demonstrates well how

this analysis does not scale. This is only a one dimensional secret space (one

secret variable) of maximally 16 bit, and a very short program. Clearly, the

runtime is prohibitively long.

To summarise, in respect to this example it has become clear that tool

support is needed to calculate leakage. Even very short programs, like the one

presented, can expose difficult leakage behaviours which are too error-prone

to be calculated by humans. This example also demonstrated that the new

bounds calculate meaningful results even in the presence of non-termination

inputs.

4.4 Review of technique

This chapter described a dynamic analysis to evaluate the leakage of a program

written in a while language. However, the analysis is not limited to while

languages but can be performed on any code which is executable. Also it

calculates the precise leakage, including the leakage breakdown in case of loops.
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Unfortunately, the runtime of the algorithm depends on the execution time of

the program multiplied by the size of the secret, which is very expensive in

general. Ideally, the runtime would be independent of either one of the two

variables.

Apart from the precise leakage calculation, the features described above

present drawbacks. The fact that the code has to be executable restricts the

programs which can be analysed. Either a whole program has to be analysed,

which is executable but consists of a large number of lines of code, or an

executable slice of a program has to be generated which is a whole research area

in itself. Thus, the analysis of, for example, a module or individual function

out of a more complex program, such as a kernel module, is not possible.

Another subtle difficulty introduced by the enumeration of the secret input

is that the input has to be easily enumerable. While this is trivial for simple

datatypes like integers, if more complex datastructures, which by definition

follow a certain structure, were used as secret input then this enumeration is

not straightforward anymore.

Finally, the dynamic analysis brings with it the obvious disadvantages when

it comes to security applications: if the code to be analysed is critical to a

system and one would want to know beforehand if there is leakage or not, then

this analysis is not suitable either.

The next chapters try to address these shortcomings by developing more

advanced analyses.
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Chapter 5

AQUA Tool

This chapter describes a different tool developed for this thesis which addresses

some of the weaknesses of the previous approach to automatically calculating

leakage. Most importantly, this analysis has three objectives:

• Employ static analysis techniques instead of dynamic execution

• Address scalability issues

• Move away from while-languages to ANSI-C

To achieve the objectives the new technique exploits the original definition

of noninterference and applies symbolic verification methods instead of the

explicit execution of the program.

The main idea for this work stems from multiple recent papers [59, 4, 62]

which describe how the noninterference property can be checked using conven-

tional program verification techniques such as verification of safety properties.

The most important source is the work from Backes, Köpf, and Rybalchenko

[4].

Let us start with some observations about noninterference. A program P

is noninterfering if it satisfies the well-known equation from Joshi and Leino

HH; P ; HH = P ; HH
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A B C

Figure 5.1: Distinction in class B as Non-Interference violation

which can be interpreted as: running a program does not create more distinc-

tions on the secret values.

It is known that if a program is non-interfering then it has no leakage or

equivalently Π(P ) = ⊥ [14]. Thus, it should be possible to use the violation

of this property as a way to quantify leakage.

A violation of noninterference is shown in the figure 5.1. Each oval describes

an equivalence class and the four dots inside the top figure are the elements

in the confidential space. Let us take the top1 figure as an initial partition of

the secret and the bottom figure as Π(P ). A violation of noninterference is

the arrow to the B equivalence class which creates a distinction between two

related secret values, i.e. A and B now distinguish the two input values in the

first equivalence class of the initial partition.

Every violation of NI is potentially an additional distinction between two

secret values. However, unless the program leaks everything, this does not

need to be the general case, because two secret values might be distinguished

but happen to fall in an existing equivalence class.

Definition 16 (NI violation). A noninterference violation (or NI violation)

is a counterexample to the NI property.

However, to completely find the partition Π(P ) using NI violations alone a

large number of counterexamples would need to be found. For k bit variables,

1Not to confuse with > partition

61



5.1 AUTOMATION BY APPLYING SELF-COMPOSITION

2k(2k − 1)/2 pairs of inputs would need to be evaluated, much larger than the

actual secret space. Therefore, the approach has to be modified to be practical.

The approach in this chapter is based on the assumption that there is

leakage. Using a combination of techniques, we compute two characteristics of

the partition Π(P ) separately:

• Number of distinct outputs in the program with respect to the confiden-

tial variables, i.e. number of equivalence classes

• Sizes of inverse images of every distinct output, i.e. equivalence class

sizes

For example, let us take the one-liner program P (h) = h % 4 where h is 4

bit. Then Π(P ) is

{{4, 8, 12, 16}{1, 5, 9, 13}{2, 6, 10, 14}{3, 7, 11, 15}}

which results in 4 distinct outputs (since the program is calculating modulo

4) and all equivalence classes have size 4 as well. The tool presented in this

chapter, called AQuA (Automated Quantitative Analysis), calculates these

two quantities automatically from the source code of the program; the resulting

partition is then ready to be quantified.

At the end of the chapter, a benchmark shows the performance of the tool

on examples from the literature and other relevant pieces of code. The appli-

cation section describes how AQuA could be applied to the area of statistical

databases to reason about leakage of combined queries.

This work has been published at the proceedings of the FAST (Formal

Aspect of Security and Trust) workshop [29] in LNCS.

5.1 Automation by applying self-composition

A property is a set of execution traces where checking if a trace is a member

of the property does not depend on any other traces in the property. A safety

property declares that something bad can never happen [34] and it can be

expressed as an invariance argument, or a predicate on states.
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Definition 17 (Safety Property). A safety property is a set of traces of a

program P where there exists some predicate φ(·) which every execution trace

satisfies.

S ⊆ [[P ]]. ∀s ∈ S. φ(s)

A safety problem is then the decision on the membership to a safety prop-

erty.

Noninterference is not a safety property [43] however Terauchi and Aiken

[59] showed that it is almost a safety property and defined it as 2-safety prop-

erty. Such a property can be refuted by observing two finite traces. The

same authors also showed that Noninterference can be checked using self-

composition (by Barthe et. al. [5]) which reduces a 2-safety problem into

a safety problem.

Self-composition is a simple program transformation which enables the pro-

gram P to be evaluated only once by sequencing a copy of P , named P ′, where

all variables have been replaced by fresh copies which do not appear in P sim-

ply as follows

P ; P ′

By executing this self-composed program two “runs” of the program P are

performed in one piece of code.

Using this technique, we can check 2-safety with the (un-)reachability of

some label. This is demonstrated as follows in pseudo code following Backes,

Köpf, and Rybalchenko [4]

if(l == l’ && h ' h’)

P(h,l); P’(h’,l’)

if(l != l’) ERROR

The assumption that an attacker can not learn anything about the secret

(i.e. for all h,h’. h ' h’) can be falsified by finding an execution path which

reaches the ERROR label. The reachability of this label can be efficiently checked

by off-the-shelf model checkers.

Thus, this approach is efficient for finding violations of the noninterference

property, or in other words of the initial assumption that all secret values are

indistinguishable.
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5.1.1 K-safety and quantitative information flow

The concept of 2-safety can be generalised to k-safety where k is the number

of traces needed to refute the property [16, 65]. Again, this property can be

reduced to a normal safety property and checked accordingly .

However, a negative result by Yasuoka and Terauchi [65] showed that in-

ferring, i.e. computing, quantitative information flow is not k-safety for any k.

Thus one can not simply use self-composition like in the noninterference case

to precisely calculate leakage.

To overcome this problem, we reformulate the reachability problem in a

way which assumes that there is leakage in P , i.e. that the secret input is not

the bottom partition. Starting from this assumption, the code from above is

modified as follows

assume(l = l’ && h = i)

P(h,l); P’(h’,l’)

assert(l != l’)

The initial assumption on the high equivalence is dropped and instead the

original high variable h is initialised with value i. Also, the primed variable

h’ is left uninitialised. As a next step, this program is fed to a SAT solver,

which when satisfiable found a model for this program where h’ is assigned a

value which is in a different equivalence class than h = i.

Iterating and extending this algorithm in the right way will necessarily find

the equivalence relation from equation 3.9.

5.2 Inferring QIF by SAT solving and model

counting

The previous section showed the core idea behind the analysis which takes the

“two program runs view” from Joshi and Leino’s interpretation of noninterfer-

ence and the translation to a constrained program which finds distinguishable

equivalence classes in the secret space. This section describes two algorithms

which perform the partition discovery.
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The two step process is best explained using the recurring password exam-

ple with 4 bit variable width and the secret input variable pwd:

if(pwd == 4) { return 1; } else { return 0; }

The first step of the method is to find a representative input for each possible

output. In our case, AQuA could find the set {4, 5}, for outputs 1 and 0,

respectively. This is accomplished using a SAT-based fixed point computation.

The next step runs on that set of representative inputs. For each input in

that set, the number of possible inputs are counted which lead to the same

implicit, distinct output. This step is accomplished using model counting.

5.2.1 Core algorithms

The method consists of two reachability analyses, which can be run either one

after another or interleaved.

The first analysis finds a set of inputs to which the original program pro-

duces distinct outputs for. That set has cardinality of the number of possible

outputs for the program. The second analysis counts the set of all inputs which

lead to the same output. This analysis is run on all members of the set of the

first analysis. Together, these two analyses discover the partition of the input

space according to the outputs of a program.

To a program P we associate two modified programs P 6= and P=, represent-

ing the two reachability questions. The two programs are defined as follows

P 6=(i) ≡ h = i; P ; P ′; assert(l! = l′)

P=(i) ≡ h = i; P ; P ′; assert(l = l′)

The program P is self-composed [5, 59] and is either asserting low-equality

or low-inequality on the output variable and its copy. Their argument is the

initialisation value for the input variable. This method works on any number

of input variables, but we simplify it to a single variable to ease readability.

The programs P 6= and P= are unwound into propositional formula and then

translated in Conjunctive Normal Form (CNF) in a standard fashion.
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Input: P 6=
Output: Sinput

Sinput ← ∅
h← random
Sinput ← Sinput ∪ {h}
while P 6=(h) not unsat do

(l, h′)← Run SAT solver on P 6=(h)
Sinput ← Sinput ∪ {h′}
h← h′

P 6= ← P 6= ∧ l′ 6= l
end

Algorithm 2: Calculation of Sinput using P 6=

Input: P=, Sinput

Output: M
M = ∅
while Sinput 6= ∅ do

h← s ∈ Sinput

#models← Run allSAT solver on P=(h)
M = M :: {#models}
Sinput ← Sinput \ {s}

end

Algorithm 3: Model counting of equivalence classes in Sinput

P 6= is solved using a number of SAT solver calls using a standard reacha-

bility algorithm (SAT-based fixed point calculation).

Algorithm 2 describes this input discovery. In each iteration it discovers a

new input h′ which does not lead to the same output as previous the input h.

The new input h′ is added to the set Sinput. The observable output l is added

to the formula as blocking clause, to avoid finding the same solution again in

a different iteration. This process is repeated until P 6= is unsatisfiable which

signifies that the search for Sinput elements is exhausted.

Given Sinput (or a subset of it) as result of Algorithm 2, we can use P=

to count the sizes of the equivalence classes represented by Sinput using model

counting. This process is displayed in Algorithm 3 and is straightforward to

understand.
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The algorithm calculates the size of the equivalence class [h]P= for every

h in Sinput by counting the satisfying models of P=(h). The output M of

Algorithm 3 is the partition Π(P ) of the original program P .

Proposition 8 (Correctness). The set Sinput from Algorithm 2 contains a

representative element for each possible equivalence class of Π(P ). Algorithm

3 calculates {[s1]P= , . . . , [sn]P=} with si ∈ Sinput which, according to (3.9), is

Π(P ).

Proof. Algorithm 2 terminates when P 6= is unsatisfiable. In every iteration

of the algorithm one distinct valuation of the boolean formula representing a

distinct output is removed by the blocking clause l′ 6= l; thus the assertion in

P 6= fails once all representative inputs leading to distinct outputs have been

found. As the inputs lead to distinct outputs, the model counting step in

Algorithm 3 find the size of every equivalence class.

Proposition 9 (Algorithm 2 leakage bounds). If Algorithm 2 completed with

an unsatisfiable P 6= then the channel capacity of P is bound from above by

log2(|Sinput|).
If the algorithm is in any other iteration, then the channel capacity of P is

bound from below by log2(|Sinput|).

Proof. Channel capacity is shown to be reached by the cardinality of the set

of events in equation (2.2). The set Sinput is by definition the cardinality of

possible unique outputs of program P when Algorithm 2 terminates, which

proves the bound from above.

In the case where the algorithm is interrupted early, program P has at

least as many outputs as the cardinality of Sinput as Spear is sound and

complete.

5.2.2 Implementation

The implementation builds up on a toolchain of existing tools, together with

some interfacing, language translations, and optimisations. See Figure 5.2 for

an overview.

AQuA has the following main features:
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Figure 5.2: Translation steps

• runs on a subset of ANSI C without memory allocation and with integer

secret variables

• no user interaction or code annotations needed except command line

options

• supports non-linear arithmetic and integer overflows

AQuA works on the equational intermediate representation of the CBMC

bounded model checker [17]. C code is translated by CBMC into a program

of constraints which in turn gets optimised through standard program analysis

techniques into cleaned up constraints2. This program then is self-composed

and user-provided source and sink variables get automatically annotated.

2CBMC adds some constraints which distorts the model counting.
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In a next step, the program is translated into the bit-vector arithmetic

Spear format of the Spear theorem prover [2]. At this point, AQuA will

spawn the two instances, P= and P 6=, from the input program P .

Algorithms 2 and 3 get executed sequentially on those two program ver-

sions. However, depending on the application and cost of the SAT queries,

once could also choose to execute them interleaved, by first calculating one

input to the program P= and then model counting that equivalence class. Ex-

ecuting the algorithms in this order could be beneficial because it allows to

calculate the entropy from below where intermediate results of the analysis

already provide a bound on the entropy.

For Algorithm 2, Spear will SAT solve P 6= directly and report the satisfying

model to the tool. The newly found inputs are stored until P 6= is reported to

be unsatisfiable.

For Algorithm 3, Spear will bit-blast P= down to CNF which in turn gets

model counted by either RelSat [6] or C2D. C2D is only used in case the

user specifies fast model counting through command line options. While the

counting is much faster on difficult problems than RelSat, the CNF instances

have to be transformed into a d-DNNF tree which is very costly in memory.

This is a trade-off between time and space. In most instances, RelSat is

fast enough, except in cases with multiple constraints on more than two secret

input variables. The decision which backend SAT solver to use is left as choice

to the user.

Once the partition Π(P ) is calculated, the user can choose which measure

to apply.

Loops

The first step of the program transformations is treating loops in an unsound

way, i.e. a user needs to define a fixed number of loop unwindings. This is a

inherent property of the choice of tools used, as CBMC is a bounded model

checker, which limit the number of iterations down to what counterexamples

can be found. While this is a real restriction in program verification – as bugs

can be missed in that way – it is not as crucial for our quantification purposes.
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In such cases Algorithm 2 detects at one point an input which contains all

inputs beyond the iteration bound. Using the principle of maximum entropy,

this “sink state” can be used to always safely over-approximate entropy (for

example see proposition 7 in section 4.2 for an explanation).

Let us assume we analyse a binary search examples with 15 unwindings of

the loop and 8 bit variables. AQuA reports the partition

Partition:

{241}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}: 256

where the number in the brackets are the model counts. The analysis output

describes 15 singleton blocks and one sink block with a model count of the

remaining 241 unprocessed inputs. When applying a measure, the 241 inputs

could be distributed in singleton blocks as well which would over-approximate

(and in this case actually exactly find) the leakage of the input program.

Proposition 10 (Sound loop leakage). For any unwinding bound n of program

P , its leakage can be overapproximated from the resulting partition Π(P )n by

distributing its “sink state” block into singleton blocks.

Proof. Let us assume partition Π(P )n is the result of n unwindings of P , and

Π(P )m is m unwindings of P , where m ≥ n. If every element of the “sink state”

block b ∈ Π(P )n is distributed in individual blocks, the partition denoted

as Π̂(P )n, then Π(P )m v Π̂(P )n. From property 3.4 of the semivaluation

definition it follows that H(Π(P )m) v H(Π̂(P )n).

5.2.3 Worked example

Let us demonstrate each step in the analysis on a small but non-trivial example.

The leakage of the polynomial 5h2 + 2h is analysed by the simple translation

to a C program

int main() {

int l,h;

l = 5*h*h+2*h;

}
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where as usual h is the confidential variable and all variables are 8 bit wide.

Constraint translation. CBMC translates this program in the following

constraint form

l@1#1 == 2 * h@1#0 + 5 * h@1#0 * h@1#0

P 6= and P= translation. AQuA translates these constraints into Spear

format. The program here is P=, while P 6= would be the same program with

the last line inverted.

v 1.0

d l11__:i8 l11sp2__:i8 l11sp0__:i8 h10__:i8 l11sp1__:i8 l11:i8

l11sp2:i8 l11sp0:i8 l11sp1:i8 h10:i8

p = h10 23:i8 # initialisation of the secret to 23

c l11sp1 * 5:i8 h10

c l11sp0 * 2:i8 h10

c l11sp2 * l11sp1 h10

c l11 + l11sp0 l11sp2

c l11sp1__ * 5:i8 h10__ # start of self-composition

c l11sp0__ * 2:i8 h10__

c l11sp2__ * l11sp1__ h10__

c l11__ + l11sp0__ l11sp2__

p = l11__ l11 # equality assertion

We notice the naive self-composition where the copy variables are identified

by double underscores. Also, we assume that the initialisation of 23 is a rep-

resentative input for some equivalence class.

Model Counting. Spear translates this program into CNF which is

then model counted by invoking an all SAT solver such as Relsat. The SAT

solver will return with an answer such as

Number of solutions: 16

Solution 1: 1 3 4 10 11 12

18 20 21 22 23 25 27 28 29 30 32

36 37 38 39 41 43 45 48 51 52 54
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56 57 58 59 60 62 64 65 66 69 70

71 72 74 75 79 85 86 89 90 91 92

94 97 98 103 107 108 110 112 113

114 115 116 118 120 121 123 124

125 126 131 132 133 137 141 145

151 152 155 156 157 158 160 162

163 165 171 172 175 176 177 183

184 189 190 192 193 194 196 199

203 204 206 209 210 215 216 218

228 230 231 232 234 247 248 250

251 252 255 256 257 261 268 269

270 272 273 279 280 282 283 287

293 294 295 296 298 299 300 302

303 304 306 307 308 310

...

where each number in the solutions represents an active bit of a variable in

the boolean formula. To get the actual members of this equivalence class, all

solutions can be mapped back to individual variables (e.g. here the variable

h consists of the 8 variables 27 28 29 30 31 32 33 34) and the values are

extracted by matching it against the active bits in the solution. Note that the

enumeration of equivalence classes is optional and not part of the normal oper-

ation of AQuA. In normal operation only equivalence class sizes are calculated

which avoids enumeration.

What AQuA users see. All of this is done fully automatically. A user

of AQuA only has to execute

aqua mult.c

and will see the following answer:

Program leaks 5.2500 bits (of 8.0000)

Partition:

{4}{4}{4}{8}{4}{16}{4}{4}{4}{8}{4}{4}{4}{4}

{8}{4}{4}{16}{4}{4}{4}{8}{4}{4}{8}{4}{16}{8}

{4}{4}{4}{4}{8}{4}{4}{16}{4}{4}{8}{4}{4}{4}{4}{4}: 256
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Figure 5.3: Polynomial 5h2 + 2h modulo 256 for h = {1, . . . , 256}

What does this actually mean? As the output variable is also a 8 bit

variable, we can map the domain of the polynomial to a space modulo 256.

This can be seen in figure 5.3. Also, for this example we have extracted an

arbitrary equivalence class and its members are

47, 175, 239, 111, 79, 207, 143, 15,

183, 247, 55, 119, 215, 87, 23, 151

As they are all in the same equivalence class, these secrets should be indistin-

guishable for an attacker observing the output of the polynomial. A simple

test in R verifies this; the values above are stored in the vector ps.
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Program #h range Σh bits P 6= Time P 6= + P= Time Spear LOC
CRC8 1h.c 1 8 bit 8 17.36s 32.68s 370
CRC8 2h.c 2 8 bit 16 34.93s 1m18.74s 763
sum3.c† 3 0 . . . 9 9.96 (103) 0.19s 0.95s 16
sum10.c? 10 0 . . . 5 25.84 (610) 1.59s 3m30.76s 51
nonlinear.c 1 16 bit 16 0.04s 13.46s 20
search30.c* 1 8 bit 8 0.84s 2.56s 186
auction.c†? 3 20 bit 60 0.06s 16.90s 42

Table 5.1: Performance examples. * 30 loop unrollings; † from [4]; ? counted
with C2D Machine: Linux, Intel Core 2 Duo 2GHz

> 5*ps^2+2*ps

[1] 11139 153475 286083 61827 31363 214659 102531

[11] 1155 167811 305539 15235 71043 231555 38019 2691 114307

> mod(5*ps^2+2*ps,256)

[1] 131 131 131 131 131 131 131 131

131 131 131 131 131 131 131 131

While all the values evaluate to different points in the polynomial (as it is a

strictly increasing function) they all collapse to the same value under modulo

256. Thus, they are indistinguishable when stored in a variable of 8 bit. These

16 points have been highlighted in figure 5.3. Naturally, they lie on a horizontal

line at 131. This example also shows how precise modelling of integer overflows

is crucial for making the analysis work.

5.3 Experiments

Table 5.1 provides a performance benchmark comparing the two algorithms

for P 6= and P= on different problems. The run times have been split between

Algorithm 2 to calculate P 6= and the total run time; the lines of code (LOC)

column is a measure of the size of the generated code in Spear format.

The biggest example is a full CRC8 checksum implementation where the

input are two char variables (16 bit). The program has been chosen because

its output is well known and can serve as a check if AQuA calculates the

74



5.3 EXPERIMENTS

equivalence class number and sizes correctly. As expected, AQuA always

reported a leakage of 8 bit and a uniform bucketing of the inputs over the 256

equivalence classes. Also, as this code produces a large number of outputs, the

runtime between the two algorithms are roughly equal.

The examples sum3.c and auction.c are taken and adapted from the

paper [4]. The performance of those examples has not been discussed in the

mentioned paper. The auction example is a simple loop where the output is

the highest bidder (variable l) of an auction, however the actual bids (h[i])

are confidential

...

l=0;

for(i=0; i<3; i++) {

if(h[i] > h[l]) l = i;

}

As there are only three outputs almost all time is spent in the model counting

algorithm. The other example sum3.c, and the related sum10.c, is a test to see

how the tool copes with multiple confidential variables, from 3 to 10. Multiple

confidential variables very quickly lead to difficult SAT instances which become

intractable. The value range of 10 values in sum3.c had to be reduced to 6

values and the instance had to be model counted with the C2D backend tool

for it to terminate within reasonable time.

The example search30.c is a loop unrolling test. The code itself is very

short, however due to 30 loop unrollings and self-composition the tool gener-

ated 186 lines of code out of the following code

l=0;

while(l < h) {

l++;

}

However, as the generated code consists mostly of control flow decisions, which

AQuA handles well, the runtime to calculate the leakage of this program is

below 3 seconds.
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Program Σh bits Enumeration Time AQuA x times faster
sum3.c 9.96 12.5s 13x
sum10.c 25.84 ⊥ -
nonlinear.c 13 10m32s 90x

Table 5.2: Runtime comparison to the enumeration tool in Chapter 4

Finally, the example nonlinear.c demonstrates the ability to handle inte-

ger overflows and non-linear arithmetic correctly (due to the bit vector nature

of Spear). The code is the following with the assumption of 16 bit variables

tmp = h * h;

if(tmp < 24) l=0;

else if(tmp > 32) l=1;

else l=2;

Clearly, it only produces three outputs. The interesting aspect however is that

only very few values of h squared will lead to an output of l=2. When run,

AQuA reports the following partition

{292}{65240}{4}

Where the largest equivalence class must be responsible for output 1, the

one with 292 inputs is most likely the one for output 0, and then there is

a class with only 4 inputs where the squared and truncated to 16 bit values

of h should be 25. An enumeration of this equivalence class gives the val-

ues {32763, 5, 32773, 65531}. A simple calculator confirms that all of these

numbers squared and modulo 16 are 25, i.e. the only possible integer square

between 24 and 32.

5.3.1 Comparison to Chapter 4

A direct comparison between the tool performances of the last chapter and

this chapter was not possible. Language restrictions of the previous tool (e.g.

no arrays) would make it difficult to provide all the examples from table 5.1.

However, table 5.2 gives the reader an idea of the performance advantage of

the SAT based tool versus direct enumeration.
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AQuA was 13 times faster than enumeration for program sum3.c. The

program sum10.c did not terminate within 30 minutes; a downscaled version

of nonlinear.c, from 16 to 13 bit secret size, was 90 times faster with AQuA

against enumeration.

5.4 Application: database queries

This section describes how AQuA could be applied to measure leakage of

combined statistical database queries. Database queries are modelled as pro-

grams; our analysis tool calculates the partition of states of that program and

in turn quantifies the leakage of the encoded queries. This section is not about

showcasing the performance of AQuA but to illustrate the potential width of

applications of automatically quantifying leakage.

We will use concepts used by Dobkin et al. [24] to describe databases.

Definition 18. A database D is a function from 1, . . . , n to N. The number

of elements in the database is denoted by n; N is the set of possible attributes.

A database D can also be directly described by its elements {d1, . . . , dn},
with D(i) = di for 1 ≤ i ≤ n. For a database with n number of objects, a

query is an n-ary function. Given D, q(D) = q(d1, . . . , dn) is the result of the

query q on the database D.

We assume that a database user can choose the function q and restrict its

application to some of the elements of {d1, . . . , dn}, depending on the query

structure. However, the user can not see any values the function q runs on.

An arbitrary query is translated by the following transformation

Q1 = q(di, . . . , dj) ⇒ l1 = e(hi, . . . hj)

where the function q applied to (di, . . . , dj) is rewritten to some C expression e3

on the secret variables hi, . . . , hj, where hn is equal to dn for all i ≤ n ≤ j; the

output is stored in the observable variable l1. A sequence of queries Q1, . . . , Qn

3Expressions usually used in statistical database are sum, count, average, mean,
median etc. Our context is general so any C expression could be used
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results in tuples of observable variables (l1, . . . , ln). We denote the partition

of states for a query Qi, after the transformation above, as Π(Qi).

5.4.1 Database inference by examples

To measure the degree of database inferences possible by a sequence of queries

we define the following ratio, comparing leakage with the respective secret

space

Definition 19 (SDB Leakage Ratio). Given an SDB, let Q1, . . . , Qn be queries,

and h1, . . . , hm be the involved secret elements in the database. The percentage

of leakage revealed by the sequence of queries is given by

H(
⊔

1≤i≤n Π(Qi))

H(h1, . . . , hm)
(5.1)

In the definition we can use definition 14 to compute
⊔

1≤i≤n Π(Qi)

Max/Sum Example. Two or more queries can lead to an inference prob-

lem when there is an overlap on the query fields. Assume two series of queries:

Q1 = max(h1, h2) Q2 = sum(h3, h4)

The first series of queries ask for the max and sum of two disjoint set of

fields. The two queries don’t share any common secret fields, so Q1 does not

contribute to the leakage of Q2.

Q′
1 = max(h1, h2) Q′

2 = sum(h1, h2)

It is a different picture if the two queries run on the same set of fields, as shown

in Q′
1, Q

′
2. Intuitively, we learn the biggest element of the two and we learn the

sum of the two. The queries combined reveal the values of both secret fields,

i.e. sum−max = min.

Assuming 2 bit variables, we get the following calculations:

H(Π(Q1)) = 1.7490 H(Π(Q2)) = 2.6556 H(Π(Q1) t Π(Q2)) = 4.4046

H(Π(Q′
1)) = 1.7490 H(Π(Q′

2)) = 2.6556 H(Π(Q′
1) t Π(Q′

2)) = 3.25
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Contributor Industry Geograph. Area
C1 Steel Northeast
C2 Steel West
C3 Steel South
C4 Sugar Northeast
C5 Sugar Northeast
C6 Sugar West

Table 5.3: Contributors

Contributing Group Amount
Steel h1 + h2 + h3

Sugar h4 + h5 + h6

. . . . . .
Northeast h1 + h4 + h5

. . . . . .

Table 5.4: Summary Table for Contributors

The measure of how much of the secret the two series of queries revealed is the

ratio between the join of the queries to the whole secret space:

H(Π(Q1) t Π(Q2))

H(h1, h2, h3, h4)
=

4.4046

8.0
≈ 55%

H(Π(Q′
1) t Π(Q′

2))

H(h1, h2)
=

3.25

4.0
≈ 81%

where we have used H, the Shannon entropy as the leakage measure4. The

3.25 bits, or 81% of the secret, is the maximal possible leakage for the query,

as we still don’t know which of the two secrets secret was the bigger one of

the two, however “everything” is leaked in a sense, while the first query only

reveals 55% of the secret space.

For the enforcement, we could think of a simple monitor which keeps adding

up the information released so far for individual users and which would refuse

certain queries in order to not reveal more than a policy allows. A policy can

be as simple as a percentage of the secret space to be released.

Sum Queries Inference. Consider a database storing donations of con-

tributors to a political party from the steel and sugar industry, contributors

coming from several geographical areas. Given Tables 5.3 and 5.4, a user is

4Taking a different measure like min entropy we would get 40% and 75% respectively
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allowed to make sum queries on all contributors which share a common at-

tribute (Industry or Geographic Area)5. Table 5.4 summarises all possible

queries, where the amount donated by each contributor Ci is represented by

the value hi.

In this scenario, the owner of the databases wants to make sure that no

user can learn more than 50% of the combined secret knowledge of what each

contributor donated.

We will look at two users querying the database; the queries of the first user

fulfill the requirements of the database owner, the second user (who happens

to be contributor C1) is clearly compromising the database information release

requirements.

User 1 is making two queries

Q1 = sum(h1, h2, h3) Q2 = sum(h4, h5, h6)

In other words, User 1 is asking for the sum of the contributors from the steel

and sugar industry. For simplicity, we assume only 2 bit variables for each

contributor hi. AQuA calculates a partition with 100 equivalence classes, and

a Shannon entropy of 5.9685 of total 12 bits.

This results in a ratio of

H(Π(Q1) t Π(Q2))

H(h1, . . . , h6)
=

5.9685

12
≈ 49.73%

which is just within the requirements of 50% information leakage.

User 2, who is contributor C1, is inquiring the following two queries:

Q3 = sum(h4, h5, h6) Q4 = sum(h1, h4, h5)

Here, Q3 and Q4 have an overlap in the fields h4 and h5. Since User 2 is C1,

the field h1 is known, so with these two queries, User 2 is able to learn h6, i.e.

h6 = Q3 − Q4 + h1. The substantial knowledge gain of User 2 is revealed in

5Example adapted from [24]
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the leakage ratio

H(Π(Q3) t Π(Q4))

H(h1, h4, h5, h6)
=

H(Π(Q3) t Π(Q′
4))

H(h4, h5, h6)
=

4.6556

6
≈ 77.6%

where in the second equation term h1 in the denominator disappear because

contributor C1 knows h1 (similarly Q′
4 = sum(h4, h5))

6. If our tool was eval-

uating the information leakage of these queries before the result was reported

back to the user, then Q4 could be denied for User 2.

We can see the previous database as an (easily computable) abstraction of

a real database with a large number of entries. In this case C1 could represent

the set of contributors form the Steel industry in the Northeast. In this case

the leakage ratio would tell us the amount of information the queries leak about

the group of individual (or set of secret data). We can hence extract valuable

information about the threat of a set of queries by automatically computing the

leakage on an abstraction of a database. This measure can be combined with

more classical query restriction techniques like set size and overlap restriction

within a threat monitor. While a precise theory of this monitor is beyond the

scope of this work we believe the ideas are sound and workable.

5.5 Review of technique

This chapter described a push-button static analysis tool called AQuA which

calculates precise partitions on multiple confidential variables generated by C

programs. It is based on a number of different tools and algorithms using SAT

solving and model counting.

This approach addresses a number of deficiencies from the approach in the

previous chapter such as

• possibility of analysing fragments of source code, from whole functions

down to individual lines of code

6To understand the numbers 4.6556 comes by the fact that the queries reveal h6 i.e. 2
bits, plus sum(h4, h5) which is 2.6556 bits
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• avoiding complete enumeration of secret space by the choice of only

counting

– number of equivalence classes

– sizes of equivalence classes

• support for multiple integer confidential variables

• runs on a subset of C instead of a simple while language

AQuA is arguably more scalable than the dynamic approach, as demon-

strated in analysing 700+ lines of generated code or calculating the leakage of

a 60 bit secret space below 17 seconds. However, predicting or bounding the

runtime of this program analysis is hard. Mapping from a set of features of a

problem instance (e.g. the description of a program) to the predicted runtime

is known as empirical hardness modelling [37] where problems as difficult as

the ones built by AQuA are, to the best of our knowledge, not within the

scope of that research area yet.

Still, there are a number of factors involved when evaluating the perfor-

mance and scalability of the tool. The runtime depends on

1. number of lines of code and therefore number of variables and clauses in

the CNF instance

2. number and size of confidential variables

3. arithmetic operations used in the code

4. number of equivalence classes described by the program

All of this basically reduces to how hard the CNF instances are to solve

which is difficult to predict as mentioned above. However, points 3 and 4

deserve further clarification. On point 3: when a program is translated to CNF

a technique called bit-blasting is applied which reduces arithmetic bit-vector

operations to boolean circuits. This can lead to very complex and difficult to

solve circuits for certain operations such as multiplication and modulus. On

point 4: the algorithm to find the number of equivalence classes, P 6=, adds a
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blocking clause for every equivalence class found. The formula grows linearly

with the number of equivalence classes which will slow down the analysis in

case there are a large number of equivalence classes to be found.

5.5.1 Improvements

The algorithms and techniques used to implement AQuA are completely un-

optimised. There are a number of features to add which could easily improve

the performance two-fold or more (obviously still dominated by any exponen-

tial explosion of states). The two most important points are

• Only naive self-composition has been implemented where a full copy of

the program is appended to the original program. More clever composi-

tions could save a lot of unnecessary variables and thus reduce complexity

• Almost all interactions between the different programs are performed

via input-output and parsing instead of direct API calls (mostly because

these APIs don’t exist). Switching to API interactions could dramatically

increase the performance.
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Chapter 6

Applying Model Checking to

Verify Leakage Policies

So far, we have presented automatic methods to compute the precise informa-

tion leakage in C programs. To reach such precision there is no way around

computing the whole partition of the high values one way or the other. The pre-

vious chapter showed algorithms to perform this calculation in a more scalable

and useful way than just brute-force complete enumeration. Most importantly,

the tool is able to calculate the number of equivalence classes independently

from calculating the sizes of the equivalence classes. This allows to bound the

leakage from above and might give a good indication on the nature of the

leakage – i.e. large leak or small leak. Still, the leakage computation done in

this way will always depend on the secret size; for secret sizes of more than a

few bits this is computationally prohibitive.

In this chapter, we take the idea of bounding the leakage a step further.

Instead of computing the precise leakage, we ask the simpler question “does the

program leak more than M bits” where M is a reasonable, externally provided

choice given a larger context. We call such a decision question a quantitative

policy. The crucial insight is that checking a quantitative policy is a k -safety

problem which is bounding the channel capacity based leakage of the program.

Checking whether such a policy holds or is violated allows for a different

style of analysis: the confidential information is modelled as nondeterminism
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and a driver code is provided to each program which asserts the number of

distinctions which are allowed to be observable for the program. This code

is then run by a model checker whose sole purpose is to find a number of

confidential values (drawn from a nondeterministic source) which violate such

a policy.

This chapter largely consists of the successful application of this quantita-

tive leakage analysis on Linux Kernel device driver code. We chose to apply

our method to reported information leakage vulnerabilities in the Linux Kernel

and to common authentication routines. All of the covered vulnerabilities are

indexed by the standardised vulnerability repository CVE from Mitre1. The

vulnerability description are quite detailed because this is the first account of

applying such verification techniques to quantifying real information leakage

bugs, thus it is interesting and important to understand the nature of the leaks.

The drivers can be run by off-the-shelf symbolic model checkers such as

CBMC [17], where this is our choice of verification tool. CBMC is a good choice

for several reasons: (i) it makes it easy to parse and analyse large ANSI-C

based projects (ii) it models bit-vector semantics of C accurately which makes

it able to detect arithmetic overflows amongst others, which turns out to be

important (iii) nondeterministic choice functions are provided to easily model

user input, which also enjoys efficient solving due to the symbolic nature of the

model checker (iv) despite being a bounded model checker, CBMC can check

whether enough unwindings of the transition system were performed which

prove that there are no deeper counterexamples.

Our experiments show that the analysis not only quantifies the leakage but

for certain instances also helps understanding the nature of the leak. In par-

ticular, the counterexample produced by the model checker, when a leakage

property is violated, can provide insights into the cause of the leak. For ex-

ample, we can extract a public user input from the counterexample needed to

trigger a violation.

Another surprising result of our experiment is that in certain circumstances

we were able to use our technique to prove whether the official patches provided

for the vulnerabilities actually eliminate the information leak. This is achieved

1http://cve.mitre.org, CVE is industry-endorsed with over 70 companies actively involved
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by point (iv) from above, when the model checking process is complete.

In summary the main technical contributions of this chapters are the fol-

lowing:

1. We present the first quantitative leakage analysis of operating system

code.

2. We show how to express Quantitative Information Flow properties that

can be efficiently checked using bounded symbolic model checking.

3. We show that the technique not only quantifies leakage in real code but

also provides valuable information about the nature of the leak.

4. In some cases we are able to prove that official patches for reported vul-

nerability do indeed eliminate leakage; these constitute the first positive

proofs of absence of QIF vulnerabilities for real-world systems programs.

This work has been published and presented at the Annual Computer Se-

curity Applications Conference (ACSAC) 2010 with proceedings published by

ACM [30].

6.1 Model of programs and distinctions

A transition system as described in section 3.4.1 is used to model programs.

Again, we are interested in the input/output behaviour of a C function where

inputs are formal arguments to the function and outputs are either return

values or pointer-type arguments. The partition Πl(P ) from equation 3.9 in

section 3.4.1 is used to describe the mapping between confidential inputs and

publicly observable outputs given a low input choice of l.

Formally, we define a quantitative policy as a non-negative natural number

N . A partition Πl(P ) breaches a policy if |Πl(P )| > N , where |Πl(P )| is the

number of equivalence classes of Πl(P ). This number describes the number

of distinct outputs of program P , or equivalently the maximal cardinality for

Πl(P ). We refer to it as the number of distinctions on the secret the program

makes.
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In our model, the question whether a program violates a policy can be

formulated by the following decision question

dΠl(P )e = max
l∈L
|Πl(P )| ≤ N (6.1)

where the verification task is to find a low input l with respect to N where

the cardinality of the resulting partition violates the policy. This search can

be interpreted as a powerful attacker who is able to pick the most damaging

low input l for a given policy N . If there is no such l where Πl(P ) violates the

policy then the program satisfies the policy.

The decision whether a program P satisfies such a policy gives a bound

on the channel capacity. Malacaria and Chen [39] proved that the channel

capacity of P is just log2(dΠl(P )e).
The next section will show the relationship between a channel capacity

based leakage policy and k-safety, as a mean to easily check such policies.

6.1.1 Checking policies and k-safety

Checking a policy for a fixed N distinctions is a k-safety problem. This has

been proved by Yasuoka and Terauchi [66] and previously implied by Malacaria

and Chen [39].

A k-safety property has been formally described by [66] as follows

Definition 20 (k-safety property). A property Q ⊆ Prog × N is a k-safety

property iff (P, N) 6∈ Q implies that there exists T ⊆ [[P ]] with cardinality

|T | ≤ k and ∀P ′.T ⊆ [[P ′]] =⇒ (P ′, N) 6∈ Q.

where in this specific case, the property Q = {(P, N) | dΠl(P )e ≤ N}.
Informally, the definition can be understood in the following way: a de-

cision can be made if a program satisfies the property or not by observing a

counterexample T ⊆ [[P ]] with size |T | ≤ k. Also, for all other programs where

T is also a valid trace, they are all not satisfying the property either. Since we

consider input/output semantics, |T | is the number of runs necessary to refute

the property.
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In our case, if a program and natural number N is not in the property,

(P, N) 6∈ Q, means that it is possible to count N + 1 distinct input/output

pairs in some trace T . This makes the policy check a N + 1-safety check [66].

Thus, our property states that every program contained in the property

does not make more than N distinctions on the output. As this coincides

with the channel capacity measure the outcome of the check has the following

quantitative implication

Also notice that “verified” in the following proposition assumes a complete

analysis.

Proposition 11. For a program P , maximising low choice l, and policy N , if

equation 6.1 is

• verified then log2(N) is an upper bound

• violated then log2(N + 1) is a lower bound

on the channel capacity of the program P .

Proof. Immediate through the channel capacity result in equation 2.2 and from

definition 20.

The next section will use the fact that every k-safety problem can be re-

duced to a normal safety problem using self-composition as a way to encode

policies in a driver function.

6.2 Encoding distinction-based policies

A program violates a quantitative policy if it makes more distinctions than

what is allowed in the policy. A leaking program is one breaching the policy

N = 1 in the above definition.

We take ideas from assume-guarantee reasoning [52] to encode such a pol-

icy in a driver function, which tries to trigger a violation, i.e. producing a

counterexample, of the policy. If the policy states that the function func is

not allowed to make more than 2 distinctions then this is modelled as shown in
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int h1,h2,h3;
int o1,o2,o3;

h1 = input(); h2 = input(); h3 = input();

o1 = func(h1);
o2 = func(h2);
assume(o1 != o2); // (A)

o3 = func(h3);
assert(o3 == o1 || o3 == o2); // (B)

Program 1: Example driver checking for 2 distinctions

Program 1. This driver only has a high component as a state, which is passed

to the function func where the policy is tested on.

Drivers always have a similar structure: we model the secret by a nonde-

terministic choice function input() as a placeholder for all possible values of

that type; then for a policy of checking for N distinctions, the function under

inspection is called N times. The crucial step (A) is the use of the assume

statement after the calls: the driver assumes that, in this case, there are two

different return values found already. The function is called an N + 1th time

and at (B) the driver asserts that the next output is either one of the previously

found outputs.

The assume statement only considers execution paths which satisfy the

given boolean formula, all other paths are rejected. Further, the bounded

model checker used will try to find a counterexample to the negated assertion

claim, which is only satisfiable if and only if a counterexample exists. An

unsatisfiable formula means that the original claim holds, i.e. the program

conforms to the policy. The verification condition generated by the bounded

model checker for the policy in Program 1 is:

o1 != o2 =⇒ (o3 == o1 || o3 == o2)

Where the bounded model checker tries to find a counterexample (execution

path) using the negated claim such that the following holds

o1 != o2 ∧ o3 != o1 ∧ o3 != o2
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Input: Function func, types t,t’,t”, comparison eq t, bound k, threshold
N

Output: Driver.c
t o_1, . . ., o_n, o_n+1;
t’ h_1, . . ., h_n, h_n+1;
t’’ l;

h_1 = input(); . . . h_n = input(); h_n+1 = input();
l = input();
o_1 = func(h_1, l);
...
o_n = func(h_n, l);
assume(!eq_t(o_1, o_2) && !eq_t(o_1, o_3) && . . .);

o_n+1 = func(h_n+1, l);
assert(eq_t(o_n+1, o_1) || eq_t(o_n+1, o_2) || . . .);

Algorithm 4: Template to syntactically generate a driver for an N
distinction policy

i.e. that there are three distinctions possible.

Another possibility is that the function func does not even make two dis-

tinctions, such that the assume statement at point (A) is always false, which

leads to proving the policy (or any policy) vacuously true, because for any

assertion Q the verification condition is true, i.e. false =⇒ Q.

6.2.1 Bounded model checking

We use the bounded model checker CBMC to verify or falsify a policy. CBMC

encodes an ANSI-C program into a propositional formula by unwinding the

transition relation and user defined specifications up to some bound. This for-

mula is only satisfiable if there exists an error trace violating the specification.

The tool can also check if the unwinding bound is sufficient by introducing

unwinding assertions, which are assertions on the negated loop guards. This

ensures that no longer counterexample can exist than the used bound. To

prove any properties the analysis has to pass unwinding assertions, otherwise

it can only be used as a way to find counterexamples up to the unwinding
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bound.

The C program gets encoded into constraints C and the property – user

defined assertions – are encoded in P . Then the model checker tries to find a

satisfiable assignment to the formula

C ∧ ¬P

where P is an accumulation of the assumptions and assertions made in the

program text. Thus if there are two assume statements in the driver with

expressions E1 and E2 and one assert statement with expression Q then P is

P ≡ E1 ∧ E2 =⇒ Q.

6.2.2 Driver

A general template for a driver is described in Algorithm 4. The inputs to the

algorithm are the function func to be analysed, possibly up to three different

types for the input/output pair 〈(h, l), o〉, and a comparison function eq t

which returns true if the arguments of type t are equal, where t is the type

of the observation of function func. This comparison function could be as

simple as == of C, or a more complex function, such as memcmp, if t is an array

or string. Also note that the observations o i do not need to be only return

values, but can also be variables passed by reference to func.

Proposition 12 (Correctness of driver template). If the driver template in

Algorithm 4 is successfully verified up to a bound k (i.e. the negated claim is

unsatisfiable) then the function func does not make more than N distinctions

on the output within the bound k. Formally, we state that the correctness

of the driver implies the correctness of the policy specified. We prove this

by showing that the structure of the driver encodes a limit on the maximum

possible distinctions made by the function func.

o1 6= o2 ∧ o1 6= o3 ∧ · · · ∧ on−1 6= on

=⇒ on+1 = o1 ∨ · · · ∨ on+1 = on
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Proof. We prove the proposition by showing that the triple assume(E); S;

assert(Q) generates the above implication through weakest precondition se-

mantics on the structure of the driver:

wp(assume(E); S, Q)

wp(assume(E), wp(S, Q))

E =⇒ wp(S, Q)

with S ≡ on+1 = func(hn+1, l), Q ≡ on+1 = o1∨· · ·∨on+1 = on, and E ≡ o1 6=
o2 ∧ o1 6= o3 ∧ · · · ∧ on−1 6= on we get by substitution:

E =⇒ Q[func(hn+1, l)/on+1]

o1 6= o2 ∧ o1 6= o3 ∧ · · · ∧ on−1 6= on =⇒ func(hn+1, l) = o1 ∨ · · · ∨ func(hn+1, l) = on

Thus, we can make the following claims on the result of the model checking

process: For a given bound k and a policy,

• if the model checker finds a counterexample then the policy is violated,

i.e. the program makes more distinctions than specified.

• if the process ends with a successful verification of the policy without

unwinding assertions then the policy holds up to an unwinding of k.

This result is complete up to bound k.

• if the process ends with a successful verification of the policy with un-

winding assertions then the policy holds for any number of iterations.

This result is complete.

6.3 Checking policies in practice

The steps in checking a program or function for the compliance with a quan-

titative policy are as follows:
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1. Define the input state (h, l) and output state o in the code, i.e. the

confidential input h, the low input l, and the observation o

2. Define the maximum number of distinctions allowed by the policy and

an unwinding factor k

3. Generate a driver function using the template in Algorithm 4

4. Run CBMC on the driver. If the driver is successfully verified, poten-

tially increase the unwinding factor or add the unwinding assertion

6.3.1 Modelling low input

A crucial aspect of the analysis is to model low user input, which is often

responsible for triggering a bug which causes the information leak. These

bugs only happen on a very restricted number of execution paths and could

be exploited by a malicious user choosing a special user input. This scenario

generally applies when studying many CVE reported information leakage vul-

nerabilities.

Let us look at the following simplified code in Program 2, which contains

an integer underflow, taken from the vulnerability CVE-2007-2875 in the linux

kernel.

At first, it seems not possible that the point (C) where the secret h gets

returned is ever executed; exactly that check is done in (A) which reduces

the variable nbytes to be within the bound bufsz. However, due to wrong

choice and combination of types, the subtraction in (B) causes an underflow

in nbytes for a very large ppos value. Unfortunately, ppos is a user controlled

input variable, such that when its value is chosen carefully, point (C) is reached.

In this example, a state in the system is the tuple (h, l) which represents

the arguments to the function underflow, i.e. the formal parameters h and

ppos; observations are the return values of this function. The generated driver

can automatically find the low part of a state which triggers such subsequent

information leaks, because the analysis instructs the model checker to find

any possible execution path satisfying the assumptions and assertions on the
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typedef long long loff_t;
typedef unsigned int size_t;
int underflow(int h, loff_t ppos) {
int bufsz;
size_t nbytes;
bufsz=1024;
nbytes=20;

if (ppos + nbytes > bufsz) // (A)
nbytes = bufsz - ppos; // (B)

if(ppos + nbytes > bufsz) {
return h; // (C)

} else {
return 0;

}
}

Program 2: Integer underflow causing a leak

outputs, given nondeterministic high values and fixed low inputs. As SAT-

based model checking is precise down to the individual bit, it will find a low

input which triggers the underflow and uncovers the leak.

CBMC generates a counterexample falsifying a policy of e.g. no leakage

and thereby having triggered the integer underflow. The following excerpt of

the counterexample

State 14 file underflow.c line 40 function main

----------------------------------------------------

underflow::main::1::l=1706688912 (00000000...

....

State 35 file underflow.c line 13 function underflow

----------------------------------------------------

underflow::underflow::1::nbytes=4027596816 (11110000...

shows that a low input of l=1706688912 lead to an nbytes which underflowed

from the previous value 20.

Clearly, for such leaks to be detected it needs bit-level precise reasoning,

just like SAT-based bounded model checkers support.
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6.3.2 Modelling environments

In model checking, the environment, such as library function calls or generally

functions and data structures which have no implementation, need to be mod-

elled in a way which allows for the property to be verified. Out of the box,

CBMC replaces function calls without implementation with nondeterministic

values.

As our analysis needs to check for equality on inputs and outputs of func-

tions a certain number of common library functions have to be modelled in a

way which preserves their original semantics. For example, the usual library

C functions memcmp, and strcmp are implemented in a way which return 0 if

their arguments are equal and a value not equal to 0 if they are not equal. The

functions memset and memcpy actually set an array of integers or characters to

a certain value or to the content of another array. The same applies to linux

kernel utility functions such as copy to user and copy from user which copy

memory blocks to or from user space.

For example, a memcmp implementation is shown in Program 3.

int memcmp(void *s1, void *s2, unsigned int n) {
int i;
char *us1,*us2;

us1 = (char*) s1;
us2 = (char*) s2;
for(i=0;i<n;i++) {

if(us1[i] != us2[i]) return -1;
}
return 0;

}

Program 3: Simplified memcmp model

These library functions do not have to follow the exact semantics of their

original implementation but merely have to be precise enough to represent the

necessary distinctions on the confidential variables. For example, the given

memcmp only returns the values 0 and -1 while the original libc function has

more complex return values. However, those return values are not needed for
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the purposes of the analysis as the only condition we rely upon is that if the

function returns 0 then all characters in both strings s1 and s2 are equal. How

to write these models needs understanding of the code which the analysis will

be run on.

A properly modelled environment contains all of the following points

• All types, type definitions, and preprocessor constants are provided

• Models for all library functions are provided

• All pointers referring to global structures have been initialised

• The confidential variables or structures have been assigned nondetermin-

istic values

It is clear that this involves a significant amount of manual effort to provide

a good environment. However, to put the effort in perspective, if there is a

large amount of work necessary to provide an environment then it can most

likely be reused for analysing different functions in the code base; if the code

to be analysed is small then the work to provide the model is small.

6.3.3 Modelling confidential values

The big advantage and difference between checking and inferring quantitative

information flow is that checking is independent of the range of confidential

values and solely depends on the number of distinctions which need to be

checked. Thus, it does not matter whether the confidential variable contains

1024 bits or 100 megabytes as long as the source the values are drawn from

allows for enough distinct values to violate the property. Confidential variables

are modelled using nondeterministic choice functions which are provided by

CBMC. Every primitive type has its own function returning nondeterministic

values, such as nondet int(), nondet char(), etc.

The simplest, runnable driver is shown in Program 4. The driver encodes

a policy of 2 distinctions and the function f returns nondeterministic integers

between 0 and 1 where the variable tmp implicitly models the confidential
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int f() {
int tmp = nondet_int() % 2;
__CPROVER_assume(tmp >= 0);
return tmp;

}

int main() {
int o1,o2,o3;

o1 = f();
o2 = f();
__CPROVER_assume(o1 != o2);

o3 = f();
assert(o3 == o1 || o3 == o2);

}

Program 4: Simple implementation of template in Algorithm 4

values. The function f satisfies the policy as long as it does not produce more

confidential values than the drivers checks for.

For more complex types (structures) allocation functions have to be pro-

vided to nondeterministically initialise all of the fields of the types. An example

allocation function used in one of the linux kernel experiments is the one in

Program 5.

6.4 Experimental results

We applied our technique to CVE reported information leakage vulnerabilities

in the Linux Kernel. In the experiments we checked for policy violations and

proved whether official patches resolve the information leakage. Notice that

proving the absence of information leakage could also be done by a noninter-

ference check, which is the special case of a policy N = 1. We also analysed

authentication routines of the Secure Remote Password protocol (SRP) and

of a Internet Message Support Protocol implementation. A summary of the

results is shown in Table 6.1. The leakage is reported in the second last column

where > log2(N) means that more than log2(N) bits leaked, i.e. the policy N
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struct sockaddr_at* alloc_sockaddr_at() {
int i;
struct sockaddr_at* tmp = (struct sockaddr_at*)

malloc(sizeof(struct sockaddr_at));

for(i = 0; i < 8; i++) {
tmp->sat_zero[i] = nondet_char();

}
tmp->sat_len = nondet_uchar();
tmp->sat_family = nondet_uchar();
tmp->sat_port = nondet_uchar();

return tmp;
}

Program 5: Allocation function for a sockaddr at type

Description CVE Bulletin LOC k? Patch Proof log2(N) Time

AppleTalk CVE-2009-3002 237 64 X >6 bit 1h39m
tcf fill node CVE-2009-3612 146 64 X >6 bit 3m34s
sigaltstack CVE-2009-2847 199 128 X >7 bit 49m50s
cpuset† CVE-2007-2875 63 64 × >6 bit 1m32s

SRP getpass – 93 8 X ≤1 bit 0.128s
login unix – 128 8 – ≤2 bit 8.364s

Table 6.1: Experimental Results. ? Number of unwindings † From Section
6.3.1

has been violated; equally, ≤ log2(N) means the policy N has been verified.

These two cases correspond to lower and upper bounds on the leakage.

6.4.1 Linux kernel

We define information leakage in the kernel always as parts of the kernel mem-

ory which gets mistakenly copied to user space, i.e. the virtual memory al-

located to conventional applications. Clearly, this should not happen as any-

thing allocated in the kernel space is not meant to be seen by users (except

within the bounds of normal user/kernel interactions), especially in multi-user

systems like Linux. Thus, in all examples the kernel memory is modelled as
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nondeterministic values.

The interface between user and kernel space are system calls or syscalls

in short. Syscalls, like normal functions, have a number of arguments and a

return value where the kernel can transfer data structures or single values back

and forth. This is the crucial point in the system where information leakage

is most common.

AppleTalk. The specific vulnerability CVE-2009-3002 in the appletalk

network code shows a quite common cause of information leakage: a user

requests, by a syscall, that a structure gets filled with values and returned to

user land. The developer however forgot to assign values to all fields in the

struct, thus these missing fields get “filled” with unspecified kernel memory, as

it is allocated on the stack. This CVE security bulletin actually comprises six

different vulnerable network protocol implementations, all following the same

leakage pattern, probably as result of copy&paste programming. We will only

present the affected code of the AppleTalk implementation – the same kind of

analysis applies to all six vulnerabilities.

In this case the structure returned to the user, thus the observable, is shown

in Program 6. The leaking function is atalk getname in net/appletalk/ddp.c

struct sockaddr_at {
u_char sat_len, sat_family, sat_port;
struct at_addr sat_addr;
union {

struct netrange r_netrange;
char r_zero[8];

} sat_range;
};
#define sat_zero sat_range.r_zero

Program 6: Complex observation struct leads to leak from sat zero.

is shown in Program 7.

In that function, the structure sat gets filled with values provided by the

kernel, at the end the whole structure is copied via memcpy to the address of

the uaddr pointer, which is, indirectly via the syscall getsockname, copied

back to user land. However, the field sat.sat zero has not been initialised,
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int atalk_getname(struct socket *sock,
struct sockaddr *uaddr, int *uaddr_len, int peer) {
struct sockaddr_at sat;

// Official Patch. Comment out to trigger leak
//memset(&sat.sat_zero, 0, sizeof(sat.sat_zero));
... // sat structure gets filled
memcpy(uaddr, &sat, sizeof(sat));
return 0;

}

Program 7: Function introducing the leak for CVE-2009-3002.

thus a number of bytes of kernel memory are not overwritten and get copied

back to the user.

The secret is implicitly modelled by allocating the sat structure with non-

deterministic values; observations are also of type sockaddr at. The driver

uses as parameter eq t the library function memcmp to compare memories.

Running the model checker on this driver for a 6 bit policy generated a

counterexample within 1 hour and 39 minutes. Once the official patch was

applied which sets the sat structure to 0 with memset, our driver successfully

verified the policy in about the same time with unwinding assertions, thus it

proved that the patch stops the leak.

tcf fill node. This information leak occurs in the netlink subsystem

of the kernel. In Program 8, the function tcf fill node prepares a struct

tcmsg to be sent back to the user. However, the programmer made a typing

mistake and assigned the field tcm pad1 twice instead of assigning tcm pad2

the second time.

This leaks kernel memory from tcm pad2 back to user space. Here, we

again modelled kernel memory implicitly by the memory allocated for tcm

through the function NLMSG DATA, which initialised the fields of the struct with

nondeterministic values. The observation is the filled out variable tcm, the low

user input is a simple integer variable not mentioned here for clarity.

The official patch which was applied to fix the leak is simply changing the

last line of Program 8 to tcm->tcm pad2=0. We were again able to prove
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struct tcmsg *tcm;
...
nlh=NLMSG_NEW(skb, pid, seq, event, sizeof(*tcm), flags);
tcm=NLMSG_DATA(nlh);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad1 = 0; // typo, should be tcm__pad2 instead.

Program 8: Function excerpt introducing the leak for CVE-2009-3612.

that this patch successfully fixes the security hole and with out it the program

violates a leakage policy of 6 bits.

Without the patch, a counterexample is found within 3 minutes and 34

seconds; with the patch, the program is verified within the same time.

sigaltstack. The leakage for this vulnerability is intricate and only

manifests itself on 64-bit processors. On such a system, the struct stack t,

as shown in Program 9, will be padded to a multiple of 8 bytes because on

64-bit systems void* and size t are both 8 bytes (instead of 4 bytes for 32-bit

systems), while an integer type remains 4 bytes. Thus, the size of stack t is

padded to 24 bytes, while on a 32-bit system it remains unpadded at 12 bytes.

typedef struct sigaltstack {
void __user *ss_sp;
int ss_flags; // 4 bytes padding on 64-bit
size_t ss_size;

} stack_t;

Program 9: Structure with padding depending on architecture.

The syscall do sigaltstack in kernel/signal.c copies such a structure

back to userland via the copy function copy to user, however it does not clear

the padding bytes, thus those are leaked to the user on a 64-bit system. In

the function visible in Program 10, the high input is the structure oss and the

low output is the argument uoss.

CBMC supports modelling of 64-bit widths however that is not enough to

automatically measure the padding bytes. This is because the sizeof operator

in CBMC returns only the sum of all sizes without eventual bit alignments.
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int do_sigaltstack (const stack_t __user *uss,
stack_t __user *uoss, unsigned long sp) {

stack_t oss;
... // oss fields get filled
if (copy_to_user(uoss, &oss, sizeof(oss)))

goto out; ....

Program 10: Leakage through copying whole structures including padding.

This is solved in our approach by providing a model of the copy to user

function, just like e.g. an implementation of memcpy is provided, which checks

if the length parameter is aligned according to the architecture (4 bytes for

32 and 8 bytes for 64). If there are padding alignments then these will be

chosen to be filled with nondeterministic integer values modulo the number of

padding bytes.

In Program 10, this would translate to the following: sizeof(oss) counts

20 bytes as the size of the structure. However, this does not account for the

padding bytes, and our copy to user model does the following calculation:

pad = ALIGN - (sizeof(oss) % ALIGN);

if(pad == ALIGN)

padding = 0;

else

padding = ((unsigned int) nondet_int()) % (1 << (pad*8))

where ALIGN is chosen to be 4 or 8 depending on the architecture used. In

a 64-bit system, this translates to 8 − (20%8) = 4 bytes for pad which are

represented by the padding variable.

With this setup, we were able to verify that on a 32-bit system the Program

10 does not leak anything, while on a 64-bit system this violates a policy of e.g.

7 bits. A counterexample was found within 49 minutes and 50 seconds. We

were also able to prove that the official patch removes the padding leak. The

patch in this case was not to copy the whole struct but copying the three struct

members separately through the function put user, where the padding does

not come into play.

cpuset. The crucial part of this vulnerability has already been discussed
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in Section 6.3.1. Our analysis finds the right low input which triggers the

integer underflow. The actual code however does not simply return the secret

as shown in the section mentioned above, but it copies nbytes number of bytes

from a buffer ctr->buf at offset *ppos. Because of the underflow, nbytes and

if (*ppos + nbytes > ctr->bufsz)
nbytes = ctr->bufsz - *ppos;

if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
return -EFAULT;

*ppos access memory way out of the actual buffer and thus disclose kernel

memory. However our analysis of this vulnerability requires at the moment

too much manual intervention to model memory access outside of the allowed

bound ( i.e. ctr->buf + *ppos).

One elegant way of addressing this problem would be by modifying CBMC

itself; CBMC could for example return nondeterministic values for such out-of-

bound memory accesses which would implicitly model the access to confidential

data.

6.4.2 Authentication checks

We analysed parts of the authentication routines of the secure remote password

suite (SRP) and the Unix password authentication of Cyrus’ Internet Message

Support Protocol daemon (IMSPD).

SRP. To demonstrate that confidential variables and observations can

be used flexibly, we checked that there is no leakage in the password request

function in libsrp/t getpass.c.

The confidential input is the password entered by the user when being

prompted at the login; the observations are the echos of the terminal of typed

characters. Whether the terminal echos the typed characters or not depends

on which mode the console is in. The environment modelling the console and

its modes had to be provided to check this program.

In Program 11, the function t getpass first gets the current mode of the

console by the function GetConsoleMode; then it sets a new console mode by
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_TYPE( int ) t_getpass (char* buf, unsigned maxlen,
const char* prompt) {

DWORD mode;

GetConsoleMode( handle, &mode );
SetConsoleMode( handle, mode & ~ENABLE_ECHO_INPUT );
if(fputs(prompt, stdout) == EOF ||

fgets(buf, maxlen, stdin) == NULL) {
SetConsoleMode(handle,mode);
return -1;

} ....

Program 11: Side-effect of mode decides on echo output of fgets

inverting the bit

ENABLE ECHO INPUT in the mode through the function

SetConsoleMode which clearly disables the echo of input read from standard

input. The function GetConsoleMode is modelled by nondeterministically set-

ting the mode to any integer value, the function SetConsoleMode sets a global

mode variable to its second argument. The function fgets, which reads a

number of bytes from stdin, is modelled to return its first argument buf

completely if the mode is set to echo the input and return a constant value

otherwise.

With this setup CBMC proves through our driver that starting from any

initial mode, the program will always end up with log2(| 'P |) = 0, i.e. that

there is no leakage. We can also successfully check that if the line which

disables the echo is removed then the policy is violated.

IMSPD. The function checked in this package is login plaintext in

imsp/login unix.c, as shown in Program 12.

The program first tries to receive the stored password context of a user using

the function getpwnam. If successful, it will compare the stored with the en-

tered password using strcmp. If this fails it will set the string reply to “wrong

password”. If authentication is successful it returns 0.

Clearly, this function has three distinguishable observables: (1) it returns

1 (2) it returns 1 and sets *reply (3) it returns 0. We modelled the three

parameters to the function as low user input and the stored password as con-
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int login_plaintext(char *user, char* pass,
char** reply) {

...
struct passwd* pwd = getpwnam(user);
if (!pwd) return 1;
if (strcmp(pwd->pw_passwd,

crypt(pass, pwd->pw_passwd)) != 0) {
*reply = "wrong password";
return 1;

}
return 0;

Program 12: Login function of IMSPD.

fidential variable. With this setup, we were able to verify, within 9 seconds,

that this program conforms to a policy which only allows 3 distinctions on the

confidential variable.

6.5 Review of technique

This chapter presented a way to check if an ANSI-C program conforms to a

quantitative policy. The checking of a policy is effectively the checking of a k-

safety problem where the outcome describes a bound on the worst case leakage

(channel capacity).

The biggest advantage of just checking quantitative information flow in-

stead of inferring it precisely is that the analysis is independent of the secret

size. The secret is modelled by nondeterministic choice functions which could

be seen as pool of values within the range of the secret. This pool only needs

to be large enough to draw as many values from it as necessary to falsify a

policy – the real size of the secret is unimportant. This made it possible to

run the analysis on data structures which are too large for enumeration or on

structures which represent unbounded memory.

A disadvantage of this approach is that it needs manual intervention and

modelling effort for each code base under analysis. Writing functions and li-

brary calls to model the environment is unavoidable. However, other manual

work involved like writing allocation and nondeterministic functions for confi-
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dential data structures could probably be avoided by extending CBMC.

6.5.1 Improvements

Extending CBMC

There are two parts in the whole process which need manual work: one is the

environment generation, the other one is allocating the confidential structures

with nondeterministic values. The latter one could probably be completely

automated by extending CBMC or by a preprocessing step. The working

of the allocation functions are completely mechanical: take all types in the

structure and assign them values from the respective nondet * functions.

This would further simplify the amount of effort necessary to check a certain

module for leakage.

Driver structure

To increase scalability, the function calls before the assume statement could

be replaced by an abstraction. This is easily possible because of the assume-

guarantee structure of the driver. For example, a simplified driver with N = 2

could be written as

o1 = f octagon();

o2 = f octagon();

assume(o1 != o2);

o3 = f();

assert(o3 == o1 || o3 == o2);

where f octagon is a function returning a concrete value chosen nondetermin-

istically from an octagonal abstract domain generated by abstractly interpret-

ing f. This would drastically reduce the size and complexity of the boolean

formula generated by CBMC without compromising soundness. However, this

will introduce spurious violations of a policy which would need refinement.
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Chapter 7

Related Work

7.1 QIF tools

7.1.1 Model checking & constraint solving

Recently, Backes, Köpf, and Rybalchenko published an elegant method to

calculate and quantify an equivalence relation given a C-like program [4].

Two algorithms are described to discover and quantify the required equiva-

lence relation. The procedure Disco starts with an equivalence relation equiv-

alent to the ⊥ element in the lattice of information, and iteratively discovers

and refines the relation by discovering pairs of execution paths which do lead

to a distinction in the outputs. The corresponding high inputs of those two

paths are then split in two different equivalence classes. This process is re-

peated until no more counter examples are discovered. The procedure Quant

calculates the sizes of equivalence classes generated by the output of the pre-

vious procedure. The result can be normalised to a probability distribution

and any probabilistic measure can be applied on it.

Disco is implemented by turning the information flow checking into a reach-

ability problem, as shown by [59]. The program P is self-composed by creating

a copy of the code P ′ with disjoint variable sets (indicated by the primes) and

an added low inequality check at the end of the newly created program, where

R is the relation to be refined:
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if(l = l’ && (h,h’) in R)

P(h,l)

P’(h’,l’)

if(l != l’)

error

If the error state is reachable then that indicates that there exist two paths of

the program P with related low and high inputs which produce distinguishable

outputs l and l′. This is a violation of the noninterference property and thus

a leak of information.

The model checker Armc is applied to this reachability problem which

will output a path to the error label, if reachable. Beside the path, the model

checker also returns a formula in linear arithmetic which characterises all initial

states from which the error state is reachable. Out of this formula, the two

previously related secrets h and h′ can be extracted which are then split in

two different equivalence classes.

Given the formula from the last step, Quant calculates the number and

sizes of those equivalence classes using a combination of the Omega calculator

and the Lattice Point Enumeration Tool. Omega calculates for each equiv-

alence class a linear arithmetic proposition in disjunctive normal form. The

enumeration tool then solves these system of linear inequalities for each class,

which results in counting the number of elements in the equivalence class.

The so generated equivalence class can then be applied to various entropy

formulas. The paper shows as example, among others, a sum query of three

secrets. The precision and scalability of the tool entirely depends on the choice

of underlying tools. The runtime depends on the number of execution paths

of the program under analysis and number of variables involved.

7.1.2 Interval abstraction

Mu and Clark use probabilistic semantics in an abstract interpretation frame-

work to build an automatic analyser [50]. The authors borrow Kozen’s seman-

tics for probabilistic programs which interprets programs as a partial measur-

able functions on a measurable space; these semantics can be seen as a way
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to map an input probability distribution to an output probability distribution

through the execution of the program under analysis. The entropy measure

used is Shannon’s entropy was extended to work on “incomplete” random

variables, where the entropy is normalised to the coverage of the probability

distribution.

To make their analysis tractable, they employ abstract interpretation as

their abstraction technique. The interval abstract domain is used to partition

the concrete measure space into blocks. Additionally, Monniaux’s abstract

probabilistic semantics are used to replace the previous concrete semantics.

The abstraction overestimates the leakage through uniformalization, which

provides safe upper bounds on the leakage. The concrete space X is abstracted

to a set of interval-based partitions for each program variable, together with

a weighting factor αi, which is the sum of the probabilities of the interval

value-range.

The abstract domain is described by a Galois connection X〈α, γ〉X#, where

the measure space X is abstracted by X#. The abstraction function α is a

map from X to sets of interval-based partitions X# = {〈αi, [Ei]〉}0<i≤n, with

n the number of partitions, αi the weight, [Ei] be the interval based partition

of X. The concretisation function γ maps X# to
⋃
{x|x ∈ [Ei/η]}, where Ei

is a block of the abstract object X# and η is a sub-partition on each block

under uniform distribution.

The corresponding abstract semantics function [[·]]# transforms the abstract

spaces described by X#. The description of the abstract operations are skipped

and instead we explain the effects of a conditional on the abstract domain as

an example: the test splits the abstract space into two parts according to the

two outcomes of the test. The if statement returns the sum of the statements

in the two branches where the new intervals of variable values are calculated

using interval arithmetic.

Taking an example from the authors paper

if(x==0) then y=0 else y=1

The analysis starts off with an initial probability distribution for x as 3 bit
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variable (
0→ 0.1 1→ 0.1 2→ 0.1 3→ 0.1

4→ 0.2 5→ 0.2 6→ 0.1 7→ 0.1

)
and y as low security variable under any distribution. An initial partition is

then for example
E1〈[0, 3]x, [0, 7]y〉 α1 = 0.4

E2〈[4, 7]x, [0, 7]y〉 α2 = 0.6

After applying the abstract operation for the if statement the abstract domain

is transformed to
E ′

1〈[0, 3]x, [0, 1]y〉 α′1 = 0.4

E ′
2〈[4, 7]x, [1, 1]y〉 α′2 = 0.6

The working of the interval-arithmetic is clearly visible in the restriction of the

intervals for the y variable.

Leakage of loops is done in a standard fashion using least fixpoints and

interval widening, additionally the weight on each abstract element is the max-

imum between the current and previous iteration.

Once the final abstract space has been calculated, the uniformalization

transformation guarantees a conservative leakage analysis; this is a process to

maximise the entropy for a given abstract space. Again, let us explain this

using an example. After some computation, we are given the abstract object

on the left; the uniformalized probability distribution on variable l is given on

the right.

E ′
1〈[2, 2]y〉 α′1 = 0.3

E ′
2〈[3, 3]y〉 α′2 = 0.4

E ′
3〈[4, 6]y〉 α′2 = 0.3

,


2 → 0.3/1

3 → 0.4/1

4 → 0.3/3

5 → 0.3/3

6 → 0.3/3


Thus, the weight of each interval is divided by the size of the interval. Finally,

the leakage upper bound of this space is calculated as H(0.3, 0.4, 0.3) + 0.3 ∗
log(3).

This work is the first description of an abstract domain for quantitative in-

formation flow. The precision of the analysis is clearly limited by the precision

of the interval arithmetic and uniformalization. The scalability of the analysis

has not been discussed by the authors.
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7.1.3 Network flow capacity & dynamic analysis

McCamant and Ernst [45, 46] present multiple techniques to analyse infor-

mation leakage in large C, C++, and Objective C programs. The authors

released as tool Flowcheck which computes leakage as the maximum flow

between inputs and outputs using a combination of network flow capacities

and dynamic binary analysis. The basic tool to model programs is a network

flow graph which represents the execution of a program in a form similar to

a circuit. Edges represent values, and have their secret bitwidths (how many

secret bits that can be transferred by that edge) as capacity. Nodes represent

basic operations on those values. Implicit flows, generated by branches and

pointers, are integrated in this model through what the authors call enclosed

region. Such a region is an annotation in the code which abstracts away a

block of the program into a single node with given inputs and outputs. Those

annotations can be partly inferred and some need manual editing of the source

code. The calculation of leakage then reduces to checking the maximum flow

in this network.

The tool was applied to a number of large programs, such as the OpenSSH

client, and X server, and the Imagemagick tool. Their approach is interesting

as it is not based on reachability, like most other analyses, and because it

reaches a high level of scalability through making use of dynamic instrumen-

tation tools, such as Valgrind.

7.1.4 Sampling channel capacity

Chatzikokolakis, Chothia, and Guha [10] automatically quantify information

flows using a statistical approach which treats probabilistic systems as black-

boxes; thus it is not a language-based analysis. Such a blackbox-approach has

the advantage that any system, even applications which the attacker has no

direct access to, could be analysed for leakage as long as repeated inputs and

outputs of the system can be observed.

Once inputs and outputs have been defined, the system is sampled on a

number of inputs. The aim is to build a probability transition matrix which

reflects the true conditional probabilities of the outputs given the inputs. Given
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this estimated matrix, the capacity, i.e. mutual information, of the system is

calculated.

The capacity is automatically calculated using an iterative algorithm, which

is a more efficient and more automated approach than previously described in

the quantitative information flow literature [39].

However, the leakage quantity calculated in this way is the result of an

approximation algorithm on a sampled matrix, thus it needs further statistical

analysis to gain confidence in the numbers. The authors provide a way to

calculate bounds on the true capacity given the estimated result.

The implemented tool is applied to a Mixminion remailer which provides

anonymous email forwarding. The goal of the analysis was to check how well

the remailer retains the anonymity of the sender. For example one of the

tests ran was to check if the ordering of packets entering and leaving the node

leaks information about the identity of the sender. The authors were able to

show that the estimate is within the bounds of zero leakage, i.e. no loss of

anonymity.

7.2 QIF theory

This section cites papers which introduced influential ideas used in this thesis.

Lattice of information. Landauer and Redmond wrote the original lattice

of information paper [35]. Knuth’s paper gave me the idea to look into lat-

tice valuations in relation to information theory [32]. Nakamura provided the

proofs and crucial insights connecting semivaluations and entropy [51]. The

papers by Schellekens [53] and Simovici [56] also described similar ideas on

entropy and the lattice of partitions. Zdancewic and Myers used the lattice

of information in an information flow setting where it was used as model to

describe what is distinguishable for an observer [68].

Self-composition. Barthe et al. first described secure information flow

by self-composition [5]. In the same paper, the authors also describe non-

interference in terms of Computation Tree Logic which could be in itself an

interesting research direction.

Terauchi and Aiken extended this work and introduced the idea of secure
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information flow being a 2-safety problem [59]. Both papers mention how self-

composition lends itself to using model checkers for verifying secure information

flows in programs.

K-safety. The concept of k-safety has been introduced by Clarkson and

Schneider’s Hyperproperties [16] and the two very influential papers on quan-

titative information flow by Yasuoka and Terauchi [65, 66]. The latter two

papers study the verification hardness of exactly quantifying and bounding

information leakage. The second paper proves a theorem which shows that for

a fixed number of distinctions, calculating a bound on the channel capacity

is a k-safety problem. While we independently found and described the same

result, the theoretical presentation is clearer in Yasuoka and Terauchi’s paper

and deserves special mention.

Counterexamples against non-interference. Unno et al. [62] describe an

analysis which uses model checking of self-composed programs to find vio-

lations of non-interference. The authors also described optimisations to the

naive self-composition. Finding non-interference violations via their technique

is definitely the first step towards quantifying information leakage. I am also

grateful to Hiroshi Unno who provided me with the full source code of their

implementation.
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Conclusion

This thesis described the lattice of information and its properties as the under-

lying structure of quantitative information flow. Furthermore, we presented

three techniques to infer and check leakage in programs.

The first approach exhaustively enumerates all possible confidential values

in order to calculate the leakage. It is a precise method to calculate the leakage

of loops, implementing the theory of [38]. However, state explosion issues make

this approach unusable in practice.

In chapter 5, a static analysis translated the program to be analysed to a

bit-vector language which in turn gets solved by a SAT solver. This approach

splits the task of calculating the precise leakage into finding the number of

equivalence classes and then model counting their sizes. It is a more automated

analysis, however the scalability issues are not adequately addressed yet.

Finally, the last tool developed in the course of this thesis, describes a way

to check bounds on how much information leaked in programs. A property

is defined which, if a counterexample exists, implies a lower bound on the

channel capacity. Encoding the confidential space as nondeterministic pool

of values allows reasoning independent of the size of the secret. The tool has

been applied to describe bounds on existing leakage vulnerabilities in the Linux

Kernel and also verified that some patches reduce the leakage.

To further improve the quantitative analysis of information leakage one has

to find an appropriate notion of abstraction. It is a very big challenge however
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to find an abstraction appropriate for a quantitative analysis. Abstraction is

about reducing the number of details to make the analysis more tractable;

quantification, on the other hand, becomes more precise the more details there

are in the system. There is a tradeoff to be made between precision and

tractability.

Chapter 6 introduced two forms of abstraction. Firstly, it does not precisely

quantify the leakage anymore but solely defines a property whose violation

or verification implies bounds on the maximal possible leakage. Secondly,

it represents confidential values in an abstract way by defining them as a

nondeterministic source. This allows a program analysis tool to draw values

from this pool “on demand” until the property is violated or verified.

Further improving and understanding abstractions in the context of a quan-

titative analysis is definitely the right way to go for future research.
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