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Abstract

Cosmological perturbation theory is crucial for our understanding of the universe.
The linear theory has been well understood for some time, however developing and
applying the theory beyond linear order is currently at the forefront of research in
theoretical cosmology.

This thesis studies the applications of perturbation theory to cosmology and,
specifically, to the early universe. Starting with some background material intro-
ducing the well-tested ‘standard model’ of cosmology, we move on to develop the
formalism for perturbation theory up to second order giving evolution equations for
all types of scalar, vector and tensor perturbations, both in gauge dependent and
gauge invariant form. We then move on to the main result of the thesis, showing
that, at second order in perturbation theory, vorticity is sourced by a coupling term
quadratic in energy density and entropy perturbations. This source term implies a
qualitative difference to linear order. Thus, while at linear order vorticity decays
with the expansion of the universe, the same is not true at higher orders. This
will have important implications on future measurements of the polarisation of the
Cosmic Microwave Background, and could give rise to the generation of a primor-
dial seed magnetic field. Having derived this qualitative result, we then estimate
the scale dependence and magnitude of the vorticity power spectrum, finding, for
simple power law inputs a small, blue spectrum.

The final part of this thesis concerns higher order perturbation theory, deriving, for
the first time, the metric tensor, gauge transformation rules and governing equations
for fully general third order perturbations. We close with a discussion of natural
extensions to this work and other possible ideas for off-shooting projects in this
continually growing field.

3



Acknowledgements

I would like to thank Karim Malik for all his help, support and guidance, without
which this truly would not have been possible. I am very grateful to David Ma-
travers for his valuable input into an enjoyable collaboration. I would like to thank
everyone in the cosmology group at Queen Mary, in particular Ian Huston, James
Lidsey and Reza Tavakol, and my fellow students of 301, both past and present.

Finally, I would like to thank my parents for their encouragement and Christine
for her constant support, helping me remember that there exists a world outside of
science!

This work was funded by the Science and Technology Facilities Council (STFC),
and by the Astronomy Unit and School of Mathematical Sciences at Queen Mary,
University of London.

4



To the loving memory of Ted and Iris.

5



Contents

Abstract 3

Acknowledgements 4

List of Figures 8

List of Tables 9

1 Introduction 10
1.1 Standard Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Inflationary Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Cosmological Perturbations 23
2.1 Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Energy Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Perfect Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Scalar Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Gauge Transformations at First and Second Order . . . . . . . . . . . 30
2.3.1 Active Approach . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Passive Approach . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Four Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 The Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.5 Four Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Gauge Choices and Gauge Invariant Variables . . . . . . . . . . . . . 38
2.4.1 Uniform Curvature Gauge . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Longitudinal (Poisson) Gauge . . . . . . . . . . . . . . . . . . 40
2.4.3 Uniform Density Gauge . . . . . . . . . . . . . . . . . . . . . 41
2.4.4 Synchronous Gauge . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.5 Comoving Gauge . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.6 Beyond Linear Order . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Thermodynamics of a Perfect Fluid . . . . . . . . . . . . . . . . . . . 46
2.5.1 Entropy or Non-Adiabatic Perturbations from Inflation . . . . 47

3 Dynamics and Constraints 48
3.1 First Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Uniform Density Gauge . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Uniform Curvature Gauge . . . . . . . . . . . . . . . . . . . . 52
3.1.3 Longitudinal Gauge . . . . . . . . . . . . . . . . . . . . . . . . 55

6



Contents 7

3.1.4 Scalar Field Evolution and Sound Speeds . . . . . . . . . . . . 56
3.1.5 Combined Dark Energy and Dark Matter System . . . . . . . 59

3.2 Second Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1 Uniform Curvature Gauge . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Poisson Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Vorticity 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Vorticity in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Vorticity Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Solving the Vorticity Evolution Equation . . . . . . . . . . . . . . . . 78

4.4.1 The Vorticity Power Spectrum . . . . . . . . . . . . . . . . . . 79
4.4.2 Evaluating the Vorticity Power Spectrum . . . . . . . . . . . . 85

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Third Order Perturbations 93
5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Gauge Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Four Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 The Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Gauge Invariant Variables . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 Fluid Conservation Equation . . . . . . . . . . . . . . . . . . . 101
5.4.2 Klein-Gordon Equation . . . . . . . . . . . . . . . . . . . . . . 105
5.4.3 Einstein Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Discussion and Conclusions 110
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A Second Order i− j Einstein Equation 115

B Third Order Einstein Tensor 116

Bibliography 119



List of Figures

4.1 Plot of I(k), Eq. (4.71), for the illustrative choice of kc = 10Mpc−1;
small range of k < kc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Plot of I(k) for the illustrative choice of kc = 10Mpc−1; wide range
of k including k > kc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Plot of Pω(k), i.e. the scale dependence of the vorticity power spectrum. 90
4.4 Plot of Pω(k), for a narrower range of k values than Figure 4.3. . . . 90

8



List of Tables

4.1 Parameter values from the WMAP seven year data [77]. . . . . . . . 89

9



1 Introduction

Over the last few decades cosmology has moved from a mainly theoretical disci-

pline to one in which data is of increasing importance. This is promising, since it

means that we are no longer confined to the theorists’ playground, but instead have

observational data with which to constrain our models.

At present the main observable that we have with which to test our theories is

the Cosmic Microwave Background (CMB) radiation. This is radiation that was

produced when the universe was around 380,000 years old and had cooled enough to

allow electrons and protons to combine to produce Hydrogen atoms. Its first detec-

tion in 1964 by Penzias and Wilson was hailed as a firm success of the hot Big Bang

cosmological model, and experiments have been performed in the years after in order

to obtain more details of this radiation. The Cosmic Background Explorer (COBE)

[23] and the Wilkinson Microwave Anisotropy Probe (WMAP) [77] satellites have

since probed the anisotropies of the CMB, finding that it is extremely isotropic (up

to one part in 100,000), and the Planck [1] satellite is currently taking data to further

increase our wealth of data on the CMB. This observation of small anisotropies is

very much in agreement with the theory, which states that quantum perturbations

in the field driving inflation produce small primordial density fluctuations which are

then amplified through gravitational instability to form the structure that exists in

the universe today.

In order to study the theoretical framework of the standard cosmological model

(see, e.g. Ref. [107], for a particularly lucid review), one uses cosmological pertur-

bation theory, which is the main topic of this thesis. The basic idea is quite simple:

we model the universe as a homogeneous ‘background’ which has inhomogeneous

perturbations on top. The perturbations can then be split up order-by-order, with

each order being smaller than the one before.

Early studies of the linear order theory were mainly done by the following authors.

Lifshitz pioneered the early work on perturbations in Ref. [89], which was later

extended in Ref. [90], with Bonnor considering density perturbations in Ref. [25].

This early work by Lifshitz was conducted in the synchronous gauge, which has

since been shown to exhibit gauge artefacts if one is not careful [128]. Though the
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1: Introduction 11

authors used intricate geometrical arguments in order to remove these unphysical

modes, the fact that the calculations cannot be done easily was far from ideal.

Thus, Hawking [63] and Olson [124] took a different approach to this problem and

attempted the first fully covariant study of cosmological perturbations, focussing not

on perturbations of the metric tensor, but instead on perturbations of the curvature

tensor. However, the most pioneering work in modern cosmological perturbation

theory was completed by Bardeen. In Ref. [16], Bardeen presented a systematic

method for removing the gauge artefacts by constructing gauge invariant variables.

His work focussed on the two metric potentials Ψ and Φ, which correspond to the two

gauge invariant scalar metric perturbations in the longitudinal gauge. This work was

then followed by the two review articles by Kodama and Sasaki [75] and Mukhanov,

Feldman and Brandenberger [120]. These three articles together arguably form the

basis of linear metric cosmological perturbation theory.

An alternative approach to metric perturbation theory is often called the covariant

approach. The approach defines gauge invariant variables using the Stewart-Walker

lemma (a perturbation which vanishes in the background is gauge invariant [145])

and was mostly pioneered by Ellis and collaborators [49–51]. An interesting paper

made a first step towards relating the covariant approach to the metric approach

which was written by Bruni et al. [29].

Cosmological perturbations can be decomposed into scalar, vector and tensor

perturbations, as we will show in Chapter 2 and, at linear order, the three types of

perturbations decouple from one another. The scalar modes are related to density

perturbations, vector modes are vortical or rotational perturbations, and the tensor

modes are related to gravitational waves. The CMB radiation is polarised, and

the different types of perturbations induce different polarisations. Scalar modes

produce only E-mode (or curl-free) polarisation and tensor modes produce only B-

mode (divergence-free) polarisation. Vectors produce both, but are usually deemed

negligible, since any produced in the early universe will be inflated away, or will

decay with the expansion of the universe [75].

However, once we go beyond linear order, different types of perturbation no

longer decouple and so, for example, vector and tensor perturbations are sourced

by scalar modes. This mathematical difference between linear and higher orders

therefore plays an important role in the theory and can result in qualitatively differ-

ent physics beyond linear order which will, in turn, generate different observational

signatures. This is, really, the main reason for extending perturbation theory be-

yond linear order, which has been studied by many authors in the last few years

[3, 18, 30, 41, 105, 110, 119, 121–123, 148] (see Ref. [112] for a recent review and a
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comprehensive list of references on second order cosmological perturbations). Per-

turbation theory beyond linear order is the central theme of this thesis.

This thesis is organised as follows. In the remainder of this introductory Chapter

we present the standard model of cosmology in a more detailed sense, briefly intro-

ducing inflationary cosmology, and restating our notation that will be used for the

remainder of this thesis at the end of the Chapter. In Chapter 2 we introduce the

theory of non-linear cosmological perturbations up to second order. We present the

perturbed metric tensor, and energy momentum tensor for a perfect fluid (i.e. a fluid

with no anisotropic stress) and a scalar field. We consider next the transformation

behaviour of the different perturbations under a gauge transformation, using these

to choose gauges and define gauge invariant variables. Next, we present a discussion

of the thermodynamics of a perfect fluid, discussing the pressure and energy density

perturbations and the definition of the non-adiabatic pressure perturbation, which

will play a central role in the following work. Finally, to close Chapter 2, we briefly

consider how non-adiabatic pressure perturbations can arise naturally in multiple

fluid or multi-field inflationary models.

In Chapter 3 we continue presenting the foundations of cosmological perturbation

theory and present the dynamic and constraint equations up to second order. Start-

ing with the linear order theory we present the governing equations for scalar, vector

and tensor perturbations of a perfect fluid without fixing a gauge. We then fix a

gauge, giving the equations in terms of gauge invariant variables for three different

gauges: the uniform density, uniform curvature and longitudinal gauges, solving the

equations for the latter two. We then present the Klein-Gordon equation for a scalar

field, and highlight the important difference between the adiabatic sound speed and

the speed with which perturbations travel for a scalar field system. Finally, we inves-

tigate the perturbations of a system containing both dark energy and dark matter.

Having laid the foundations with the linear theory, we move on to the second order

theory, presenting the governing equations for a perfect fluid coming form energy

momentum conservation and the Einstein equations in gauge dependent form. We

then present all equations in the uniform curvature gauge which we will use in Chap-

ter 4, including now only the canonical Klein-Gordon equation. Finally, in order to

connect with the literature, we give the equations for scalars in the Poisson gauge.

Having now developed the tools for second order perturbation theory, in Chapter 4

we use the qualitative differences between the linear theory and higher order theory

to show that, at second order in perturbation theory, vorticity is sourced by a

coupling between first order energy density and entropy perturbations. This is



1.1: Standard Cosmology 13

analogous to the case of classical fluid mechanics and generalises Crocco’s theorem

to an expanding background. To show this, we start by defining the vorticity tensor

in general relativity, and then calculate the vorticity tensor at linear and second

order using the fluid four velocity and the metric tensor defined in Chapter 2. We

then compute the evolution equation for the vorticity, making use of the governing

equations in Chapter 3. At linear order vorticity is not sourced, however there

exists a non-zero source term at second order when allowing for fluid with a general

equation of state that depends upon both the energy and the entropy. Having

derived this qualitative result, we then give a first quantitative solution, estimating

the magnitude and scale dependence of the induced vorticity using simple input

power spectra: the energy density derived in Chapter 3, and using a simple ansatz

for the non-adiabatic pressure perturbation.

In Chapter 5 we extend the formalism from the second order theory to third

order, presenting the gauge transformation rules and constructing gauge invariant

variables. Then, considering perfect fluids and including all types of perturbation,

we present the energy and momentum conservation equations and give components

of the Einstein tensor up to third order. We also give the Klein-Gordon equation for

a scalar field minimally coupled to gravity. Finally, to close, we conclude in Chapter

6 and present possible directions in which one can extend the work presented in this

thesis.

1.1 Standard Cosmology

We now introduce some elements of standard cosmology in a more quantitative sense

and, in doing so, define our notation. The basic starting point in cosmology is the

cosmological principle which states that, on large enough scales, the universe is both

isotropic and homogeneous. In general relativity, geometry is encoded in the metric

tensor gµν , or the line element ds2 = gµνdx
µdxν . The general line element for an

isotropic and homogeneous spacetime, and thus one which obeys the cosmological

principle, takes the form1 [87]

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdχ2

)]
, (1.1)

in spherical coordinates (t; r, θ, χ), where t denotes the coordinate time, a(t) is a

function that depends only on time, and K denotes the global curvature of the

1Throughout this thesis we use the so-called ‘East coast’ metric signature (− + ++) and the
positive (+ + +) sign convention in the notation of Misner et al. [116].
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spatial slices, where K = 1 denotes a positively curved, or closed, universe, K = 0

a flat universe, and K = −1 a negatively curved, or open, universe. This is the

Friedmann-Robertson-Walker (FRW) metric. An alternative way of representing

the FRW metric is

ds2 = −dt2 + a2(t)γijdx
idxj , (1.2)

where γij is the metric tensor on spatial hypersurfaces.

Since current observations are consistent with a flat, K = 0 universe, which is

also in agreement with inflation, we adopt this choice henceforth and so write the

line element as

ds2 = −dt2 + a2(t)δijdx
idxj , (1.3)

where δij denotes the Kronecker delta.

We note here the importance of the function a(t), called the scale factor, in an

expanding spacetime. We can picture space as a coordinate grid which expands

uniformly with the increase of time. The comoving distance, x between two points,

which is just measured by the comoving coordinates, remains constant as the uni-

verse expands. The physical distance, r, is proportional to the scale factor,

r = a(t)x , (1.4)

and so does evolve with time. Thus, an isotropic and homogeneous universe is

characterised not only by its geometry, but also by the evolution of the scale factor

[45]. In order to quantify the expansion rate, we introduce the Hubble parameter,

H(t) defined as

H(t) =
da/dt

a
=
ȧ

a
, (1.5)

where an overdot denotes a derivative with respect to coordinate time, which mea-

sures how rapidly the scale factor changes.

It is often convenient to use, instead of t, the conformal time coordinate η defined

through

η =

∫ t

∞

dt

a
, (1.6)

in terms of which the line element (1.3) becomes

ds2 = a2(η)
[
− dη2 + δijdx

idxj
]
. (1.7)

In doing this, we have increased the spatial coordinate grid introduced above to a

coordinate grid over the entire spacetime. We can furthermore define the conformal
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Hubble parameter

H(η) =
da/dη

a
=
a′

a
, (1.8)

where we have used a prime to denote a derivative with respect to conformal time.

Then, the Hubble parameter in coordinate and conformal time are related to one

another by

H = aH . (1.9)

Having introduced the metric tensor of an FRW universe, we can now go on

to discuss the dynamical equations. In general relativity the curvature of a given

spacetime is encoded in the Riemann curvature tensor, defined as [33]

Rα
µβν = Γαµν,β − Γαµβ,ν + ΓαλβΓλµν − ΓαλνΓ

λ
µβ , (1.10)

where Γσδλ are the Christoffel connection coefficients, defined in terms of the metric

tensor and its derivatives as

Γαβγ =
1

2
gαλ(gλβ,γ + gλγ,β − gβγ,λ) , (1.11)

where we have introduced the notation gαβ,γ ≡ ∂γgαβ. There are two contractions

of the Riemann tensor that are particularly useful: the Ricci tensor is given by

Rµν ≡ Rα
µαν , (1.12)

and the Ricci scalar, which is the contraction of the Ricci tensor

R ≡ gµνRµν . (1.13)

The Riemann tensor obeys the following identity

∇[λRµν]ρσ = 0 , (1.14)

where the square brackets denote anti-symmetrisation over the relevant indices.

Eq. (1.14) is often called the Bianchi identity. If we introduce the Einstein tensor

Gµν , defined as

Gµν = Rµν −
1

2
gµνR , (1.15)

then the Bianchi identity implies that the divergence of this tensor vanishes identi-
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cally:

∇µGµν = 0 . (1.16)

The equation of motion in general relativity is the Einstein equation,

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.17)

where G is Newton’s gravitational constant. Tµν is the energy momentum tensor,

which describes the energy and momentum of the matter content of the spacetime.

We take the perfect fluid energy momentum tensor which has the following form

T µν = (ρ0 + P0)uµ(0)u(0)ν + P0δ
µ
ν , (1.18)

where ρ and P are the energy density and pressure, and uµ the fluid four velocity,

satisfying the constraint uµuµ = −1. Note that the subscript ‘0’ denotes the value of

the quantity in the homogeneous and isotropic background: the importance of this

notation will become apparent in Chapter 2. In addition to the Einstein equation,

there also exist a set of evolution equations for the matter variables. These are

obtained through the covariant conservation of the energy momentum tensor,2

∇µT
µ
ν = 0 . (1.19)

This equation is obtained from the conservation of the Einstein tensor, Eq. (1.16),

and by using the Einstein equation, Eq, (1.17).

Now, let us consider the FRW spacetime. Using the fluid four velocity

uµ(0) =
1

a
(1, 0) , u(0)µ = −a(1, 0) . (1.20)

and the Christoffel symbols for the (flat) FRW spacetime

Γ0
00 = H , Γ0

ij = Hδij , Γij0 = Hδij , (1.21)

Γ0
0i = 0 , Γi00 = 0 , Γijk = 0 , (1.22)

2It should be noted that this is not the only way one can obtain evolution equations. Instead,
varying the action with respect to the matter fields will result in the same evolution equations
except in the case where the system cannot be described by an action (e.g., dissipative fluids
[2]).
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the Einstein equations (1.17) are then

H2 =
8πG

3
ρ0a

2 , (1.23)

H′ = −4πG

3
(ρ0 + 3P0)a2 , (1.24)

where the first equation comes from the 0-0 component and the second from the trace

of the spatial Einstein equation. Eqs. (1.23) and (1.24) are called the Friedmann and

acceleration equations, respectively. The acceleration equation can be rewritten, by

introducing the constant equation of state P0 = wρ0, as

H′ = −4πG

3
(1 + 3w)ρ0a

2 , (1.25)

where w is the equation of state parameter. Energy conservation gives the continuity

equation

ρ′0 = −3H(ρ0 + P0) , (1.26)

which can also be rewritten as

ρ′0 = −3H(1 + w)ρ0 . (1.27)

This can then be integrated to give

ρ0 = ρ̄0

(a
ā

)−3(1+w)

, (1.28)

where an overbar denotes the value of a quantity today. The scale factor and Hubble

parameter can then be shown to evolve as

a = ā

(
η

η̄

)2/(1+3w)

, H =
2

1 + 3w
η−1 . (1.29)

We now highlight the evolution of the parameters in the different eras of the

universe in the hot Big Bang model. The first is the radiation era, where the

universe is filled with a fluid of particles moving at (or close to) the speed of light,

such as photons.3 The equation of state parameter for such a fluid is w = 1/3, which

3We should note that, generically, one would expect the initial radiation era to be violently
disordered. However, the existence of the inflationary era guarantees that the radiation era is
smooth. We will introduce inflationary cosmology in the next section.
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gives

ρ0 ∝ a−4 , and a ∝ η . (1.30)

The next epoch is the matter domination era, where the universe is filled with

collisionless, non-relativistic particles which better models a universe filled with

galaxies. This matter is called dust, and is well modelled by a pressureless fluid

with equation of state parameter w = 0. In this era the energy density and scalar

factor evolve, respectively, as

ρ0 ∝ a−3 , and a ∝ η2 . (1.31)

1.2 Inflationary Cosmology

Any summary of modern cosmology would not be complete without a short discus-

sion on the inflationary paradigm4, which is a crucial part of the standard cosmolog-

ical model. Historically, it was introduced in an attempt to solve some outstanding

problems in the big bang model. These are:

• the Horizon problem, that CMB radiation coming from areas of the universe

that were never in causal contact are observed to have the same temperature;

• the Flatness problem, that in order for the universe to be so close to flat today,

it must have started off very close to flat;

• the Relic problem, that no topological relics5 are observed, though they are

likely produced in the early universe.

In order to solve these problems, inflation was postulated in the early ‘80s, simul-

taneously by Guth [60], Starobinsky [143], Albrecht and Steinhardt [8] and Linde

[91, 92]. The precise definition of inflation is simple: it is a period during which the

universe undergoes accelerated expansion, i.e.

ä > 0 , (1.32)

4See, e.g., Ref. [87] for a more complete treatment of the classical Big Bang problems
5Topological relics, such as magnetic monopoles are generically produced if the symmetry of a

Grand Unified Theory is restored in the early universe and then broken spontaneously. Such an
abundance of relics is higher than observation allows. See, e.g., Refs. [64, 150] for more details.
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where we have switched to coordinate time in the section for clarity. Another defi-

nition, equivalent to the first is

d

dt

(
1

aH

)
< 0 . (1.33)

This definition is more intuitive, since 1/aH is the Hubble horizon size, and so infla-

tion is defined as a period in which the Hubble size is decreasing. This is precisely

the condition required to solve the flatness problem. Finally, a third equivalent

definition of inflation is

ρ0 + 3P0 < 0 , (1.34)

which, since ρ0 is always positive from the weak energy condition [62], implies a

negative pressure during inflation.

In order to be entirely critical of inflation, we should state that inflation does not

completely remove the initial flatness problem. To begin an inflationary phase, there

must exist a Planck-scale patch of spacetime that is roughly smooth at an early time.

It is hoped that the tuning necessary to achieve this is less than that required to

suppress the spatial curvature at early times in the absence of an inflationary phase,

but this is not necessarily true; it may be much worse. Similarly, one might argue

that inflation does not entirely solve the relic problem, depending on the model of

inflation, since some hybrid models may produce topological defects as a by-product

of their operation. Thus, it is too simplistic to claim that inflation solves all the

problems completely, however any further investigation into this is beyond the remit

of this thesis.

The most popular type of matter which can drive inflation is a scalar field. A

scalar field has a Lagrangian density of the form

L = p(X,ϕ) , (1.35)

where X is the relativistic kinetic energy, X ≡ 1
2
gµνϕ,µϕ,ν which, for a homogeneous

field, is then X = −1
2
ϕ̇0

2, where ϕ0(t) is the scalar field. Inflationary models can

be classified according to the form of the Lagrangian, and whether they contain a

single scalar field or multiple fields. The most simple single field inflationary model

has a Lagrangian

p(X,ϕ0) = X − U(ϕ0) , (1.36)

where U(ϕ0) is the potential of the field. This simple model can take very different

forms depending on the choice of this potential function. More exotic models have
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been considered more recently which modify the Lagrangian through changing the

dependence on X as well or instead of changing the potential. These models have

been of interest since they enable us to evade observational bounds placed on the

simple, canonical, single field models.

For the simple, canonical model, then, we can write down a pressure and energy

density for the scalar field as

ρ0 =
1

2
ϕ̇0

2 + U(ϕ0) , (1.37)

P0 =
1

2
ϕ̇0

2 − U(ϕ0) . (1.38)

Then, using the energy conservation equation (1.26) we obtain the Klein-Gordon

equation for the homogeneous field

ϕ̈0 + 3Hϕ̇0 + U,ϕ = 0 , (1.39)

and the Friedmann equation (1.23) becomes

H2 =
8πG

3

(
U(ϕ0) +

1

2
ϕ̇0

2
)
. (1.40)

A useful approximation exists, which consists of neglecting the first term of

Eq. (1.39) and the last term of Eq. (1.40), to give

H2 ' 8πG

3
U , (1.41)

3Hϕ̇0 ' −U,ϕ , (1.42)

which, for this approximation to be true, demands two parameters defined as

ε(ϕ0) = 4πG

(
U,ϕ
U

)2

, (1.43)

η(ϕ0) = 8πG
U,ϕϕ
U

, (1.44)

to be small (i.e. much less than 1). This approximation is called the slow-roll

approximation, and if it holds guarantees that inflation will occur. In fact, inflation

ends when ε becomes 1. We do not discuss specific models of inflation here, instead

pointing the interested reader to one of the many textbooks available on the topic

[87].
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To close this brief section on inflationary cosmology, we consider some observa-

tional signatures of the early universe. Since this is somewhat beyond the main

aim of this thesis, we simply present some results, and refrain from any derivations.

To begin, we use the two point correlator of the linear scalar field perturbation,

〈δϕ1δϕ1〉, defined later on, which one can then relate to the spectrum of the curva-

ture perturbation that will source the anisotropies in the CMB, e.g. the comoving

curvature perturbation 〈R1R1〉, which is defined in Eq. (2.143). This can then be

evolved forwards using a Boltzmann code [86, 138, 154], to give predictions for the

anisotropies in the CMB.

In the notation of the WMAP team [77], the primordial spectrum is then taken

to be a power law with amplitude ∆R(k0)2 and spectral index ns

∆R(k)2 = ∆R(k0)2
( k
k0

)ns−1

, (1.45)

where ∆R(k0)2 = 2.38×10−9 and ns = 0.969, at the pivot scale of k0 = 0.002Mpc−1.

The observations are compatible with the mostly adiabatic and Gaussian inflation-

ary initial condition, but are incompatible with other a priori equally motivated

suggestions, such as density perturbations induced by topological defects. Con-

straints on inflationary model building are discussed in detail in, e.g., Refs. [5, 6].

Similarly, we can write the spectrum for tensor perturbations as

∆h(k)2 = ∆h(k0)2
( k
k0

)nT

, (1.46)

and we can then define the tensor-scalar ratio, r, as [77]

r ≡ ∆h(k0)2

∆R(k0)2
. (1.47)

Inflationary models can then be tested according to their predictions for these

observables. The scalar spectral index is well constrained by WMAP observations,

and in fact a generic, successful feature of inflation is its ability to generate a near

scale invariant spectrum [87]. However, the tensor-scalar ratio is less constrained,

and different inflationary models make varying predictions for r (e.g. Refs. [4, 5, 99,

142] and references therein). It is hoped that we will be able to narrow the error

bars on the tensor-scalar ratio by future observations of the polarisation of the CMB

from the sky (Refs. [1, 21]) and from the ground (e.g. Ref. [53]) which will in turn

enable us to rule out some models of inflation.
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1.3 Notation

To close the introduction, we briefly state some of the notational conventions that

will be used in this thesis.

• We use the mostly positive metric signature, (− + ++), and the (+ + +)

convention in the notation of [116].

• Coordinate time is denoted with t and an overdot denotes a derivative with

respect to coordinate time; the Hubble parameter is H = ȧ/a.

• Conformal time is denoted by η and a prime denotes a derivative with respect

to conformal time; the conformal Hubble parameter is H = a′/a.

• Greek indices {µ, ν, . . .} cover the entire spacetime and take the range {0 . . . 3}.

• Latin indices {i, j, . . .} cover the spatial slice and take the range {1 . . . 3}.

• The index 0 (as in u0) denotes conformal time, and an index t (as in ut) denotes

coordinate time.

• The order in the perturbative expansion is denoted with a subscript, φ1, or

with a subscript enclosed in parentheses if the meaning could be ambiguous,

as in uµ(0).

• A comma denotes a partial derivative so, e.g.,

X,µ ≡ ∂µX ≡
∂X

∂xµ
, or, when X ≡ X(Y ), X,Y ≡

∂X

∂Y
.

• A semicolon denotes a covariant derivative with respect to the full spacetime

metric, gµν , i.e.,

Xν;µ ≡ ∇µXν .

• The Lie derivative along a vector field ξµ is denoted £ξ and takes the following

forms for a scalar ϕ, a vector, vµ, and a tensor, tµν :

£ξϕ = ξλϕ,ϕ , (1.48)

£ξvµ = vµ,αξ
α + vαξ

α
,µ , (1.49)

£ξtµν = tµν,λξ
λ + tµλξ

λ
,ν + tλνξ

λ
,µ . (1.50)



2 Cosmological Perturbations

As discussed in the introduction, cosmological perturbation theory is an extremely

useful, and successful, tool to study the universe in which we live. In this Chapter

we introduce cosmological perturbation theory in the metric approach (i.e. where we

consider perturbations to the metric á la Bardeen [16]) in a more formal and quan-

titative manner. We introduce the line element for the most general perturbations

to FRW, and then define the perturbed energy momentum tensor for both a perfect

fluid and for a scalar field (with both a canonical and non-canonical action). We

then derive gauge transformations for the different types of perturbation (scalar,

vector and tensor), and use these to define choices of gauge and gauge invariant

variables. We focus on gauge choice at linear order and give an illustrative example

of how to choose a gauge at second order. We close this Chapter by considering

the thermodynamics of a perfect fluid, defining what we mean by non-adiabatic, or

entropic, perturbations, and briefly discuss how such perturbations can naturally

arise in multi-field or multiple fluid systems.

2.1 Metric Tensor

We consider the most general perturbations to the flat FRW metric, which gives a

line element of the form

ds2 = a2(η)
[
− (1 + 2φ)dη2 + 2Bidx

idη + (δij + 2Cij)dx
idxj

]
. (2.1)

We choose a flat background metric because it agrees with observations and is math-

ematically easier to work with, but should note that all the techniques used in this

Chapter are valid for a background spacetime with non-zero curvature.

The perturbations of the spatial components of the metric can be further decom-

23
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posed as

Bi = B,i − Si , (2.2)

Cij = −ψδij + E,ij + F(i,j) +
1

2
hij . (2.3)

The perturbations are classified as scalar, vector and tensor perturbations according

to their transformation behaviour on spatial three hypersurfaces [112, 120]. The

scalar metric perturbations are φ, the lapse function, ψ, the curvature perturbation

and E and B, which make up the scalar shear. Si and Fi are divergence free

vector perturbations, and hij is a transverse, traceless tensor perturbation. The

perturbations therefore obey the following relations

∂iS
i = 0 , (2.4)

∂iF
i = 0 , (2.5)

∂ih
ij = 0 = hii . (2.6)

Since the perturbations are inhomogeneous, they depend upon both space and

time, e.g.

φ ≡ φ(xµ) = φ(η, xi) . (2.7)

The scalar perturbations each contribute one degree of freedom to the perturbed

metric tensor, each divergence free vector perturbation has two degrees of freedom,

as does the transverse, traceless tensor perturbation, so we see that, in total, there

are 10 degrees of freedom – the same as the number of independent components of

the perturbed metric tensor. Each perturbation can then be expanded in a series:

For example the lapse function is split as

φ =
∑
n

εn

n!
φn (2.8)

= εφ1 +
1

2
ε2φ2 +

1

3!
ε3φ3 + · · · , (2.9)

where the subscript denotes the order of the perturbation and ε is a fiducial expan-

sion parameter. We will often omit ε when not required for brevity and write

φ = φ1 +
1

2
φ2 +

1

3!
φ3 + · · · , (2.10)

In order to define this expansion uniquely, we choose the first order quantity, φ1,

to have Gaussian statistics. The series is then truncated at the required order.
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Performing this split then gives us the covariant components of the metric tensor

up to second order

g00 = −a2 (1 + 2φ1 + φ2) , (2.11)

g0i = a2 (2B1i +B2i) , (2.12)

gij = a2 (δij + 2C1ij + C2ij) . (2.13)

The contravariant components of the metric tensor are obtained by imposing the

constraint

gµνg
νλ = δµ

λ , (2.14)

to the appropriate order. To second order this gives

g00 = − 1

a2

(
1− 2φ1 − φ2 + 4φ1

2 −B1kB
k
1

)
, (2.15)

g0i =
1

a2

(
Bi

1 +
1

2
Bi

2 − 2φ1B
i
1 − 2B1kC

ki
1

)
, (2.16)

gij =
1

a2

(
δij − 2Cij

1 − C
ij
2 + 4Cik

1 C1k
j −Bi

1B
j
1

)
. (2.17)

2.2 Energy Momentum Tensor

The matter content of the universe is described by the energy momentum tensor.

Since General Relativity links the geometry of spacetime to its matter content,

perturbations in the metric tensor invoke perturbations in the energy momentum

tensor.1 In this section, we outline the perturbed energy momentum tensor for a

perfect fluid and a scalar field, to second order in perturbation theory.

2.2.1 Perfect Fluid

The energy momentum tensor for a perfect fluid, i.e. in the absence of anisotropic

stress, is as presented in the previous section,

T µν = (ρ+ P )uµuν + Pδµν , (2.18)

where ρ is the energy density, P is the pressure and uµ is the four velocity of the

fluid. Note that, for the purposes of this thesis, we define a ‘perfect fluid’ to be a

1There are, in fact, works where this is not the case and, for example, only the energy momentum
tensor is perturbed. However, in order for the work to be consistent, one should perturb both
the geometry and the matter content of the spacetime.
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fluid with a diagonal energy momentum tensor as in, e.g., Ref. [57].

The energy density and the pressure are expanded up to second order in pertur-

bation theory in the standard way

ρ = ρ0 + δρ1 +
1

2
δρ2 , (2.19)

P = P0 + δP1 +
1

2
δP2 . (2.20)

The fluid four velocity, which is defined as

uµ =
dxµ

dτ
, (2.21)

where τ is an affine parameter, here the proper time, and is subject to the constraint

uµuµ = −1 . (2.22)

To second order in perturbation theory the fluid four velocity has the contravariant

components

ui =
1

a

(
v1
i +

1

2
v2
i

)
, (2.23)

u0 =
1

a

(
1− φ1 −

1

2
φ2 +

3

2
φ2

1 +
1

2
v1kv1

k + v1kB1
k

)
, (2.24)

and the covariant components,

ui = a

(
v1i +B1i +

1

2
(v2i +B2i)− φ1B1i + 2C1ikv1

k

)
, (2.25)

u0 = −a
(

1 + φ1 +
1

2
φ2 −

1

2
φ2

1 +
1

2
v1
kv1k

)
, (2.26)

where vi is the spatial three velocity of the fluid. Then, by substituting the com-

ponents of the four velocity along with the expansions of the energy density and

pressure into Eq. (1.18), we obtain the components of the energy momentum tensor,



2.2: Energy Momentum Tensor 27

up to second order

T 0
0 = −(ρ0 + P0)(v1

k +B1
k)v1k − (ρ0 + δρ1 +

1

2
δρ2) , (2.27)

T 0
i = (ρ0 + P0)

(
v1i +B1i +

1

2
(v2i +B2i)− φ1(v1i + 2B1i) + 2C1ikv1

k

)
+ (δρ1 + δP1)(v1i +B1i) , (2.28)

T ij =

(
P0 + δP1 +

1

2
δP2

)
δij + (ρ0 + P0)v1

i(v1j +B1j) . (2.29)

2.2.2 Scalar Field

As shown in Section 1.2, scalar fields play an important role in modern cosmology

through the theory of inflation. The energy momentum tensor for a scalar field

minimally coupled to gravity is defined through the Lagrangian density. For a

canonical scalar field, the Lagrangian takes the form

L = −1

2
gµνϕ,µϕ,ν − U(ϕ) , (2.30)

where U(ϕ) is the potential energy of the scalar field. The variational energy mo-

mentum tensor (or Hilbert stress-energy tensor) is then defined as [87]

Tµν ≡ −2
∂L
∂gµν

+ gµνL , (2.31)

and, for a scalar field ϕ, we obtain

T µν = gµλϕ,λϕ,ν − δµν
(
U(ϕ) +

1

2
gαβϕ,αϕ,β

)
. (2.32)

Expanding the scalar field in the usual way, and using the definition of the metric

tensor given in Section 2.1, gives the components of the energy momentum tensor for
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a scalar field up to second order in perturbation theory (see, e.g., Refs. [3, 105, 123])

T 0
0 = −ϕ

′2
0

2a2

[
1− 2φ1 + 2

δϕ′1
ϕ′0

+ 4φ1
2 −B1kB

k
1 + 2φ1δϕ

′
1 −

(
δϕ′1
ϕ′0

)2

(2.33)

+
δϕ1,kδϕ

k
1,

ϕ′20
− φ2 −

δϕ′2
ϕ′0

]
− U(ϕ0)− U,ϕδϕ1 − U,ϕϕδϕ2

1 − U,ϕδϕ2 ,

T i0 =
ϕ′20
a2

[
Bi

1 +
δϕ1,

j

ϕ′0
− 2φ1B

i
1 − 2B1kC

ki
1 + 2

Bi
1δϕ

′
1

ϕ′0
+
δϕ′1δϕ1,

i

ϕ′20

− 2
δϕ1,jC

ij
1

ϕ′0
+

1

2

(
Bi

2 +
δϕ2,

i

ϕ′0

)]
, (2.34)

T 0
i = −ϕ

′
0

a2

[
δϕ1,i +

δϕ′1δϕ1,i

ϕ′0
− 2φ1δϕ1,i +

1

2
δϕ2,i

]
, (2.35)

T ij =
ϕ′20
a2

[Bi
1δϕ1,j

ϕ′0
+
δϕ1,

iδϕ1,j

ϕ′20

]
− δij

{
U(ϕ0) + U,ϕδϕ1 + U,ϕϕδϕ

2
1 + U,ϕδϕ2

− ϕ′20
2a2

[
1− 2φ1 + 2

δϕ′1
ϕ′0

+ 4φ1
2 −B1kB

k
1 + 4

φ1δϕ
′
1

ϕ′0
− 2

Bk
1δϕ1,k

ϕ′0

−
δϕ1,

kδϕ1,k

ϕ′20
−
(
δϕ′1
ϕ′0

)2

− φ2 −
δϕ′2
ϕ′0

]}
. (2.36)

We can write down a pressure and energy density for the scalar field by comparing

the components of the scalar field energy momentum tensor to that of a perfect fluid

given in Eqs. (2.27)-(2.29). In the background this gives, as shown in Section 1.2,

ρ0 =
1

2a2
ϕ′20 + U(ϕ0) , P0 =

1

2a2
ϕ′20 − U(ϕ0) , (2.37)

and, to linear order,

δρ1 =
1

a2

(
δϕ′1ϕ

′
0 − φ1ϕ

′2
0

)
+ U,ϕδϕ1 , (2.38)

δP1 =
1

a2

(
δϕ′1ϕ

′
0 − φ1ϕ

′2
0

)
− U,ϕδϕ1 . (2.39)

We can also express the fluid velocity in terms of the field by comparing Eq. (2.28)

to Eq. (2.35) to give

V1 = −δϕ1

ϕ′0
, (2.40)

where V1 ≡ B1 + v1.

There has been a lot of recent interest in scalar fields with non-canonical actions:

early work in the realm of the early universe such as k-inflation [12, 56] and more
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current work including the string theory motivated Dirac–Born–Infeld (DBI) infla-

tion [9, 66, 88, 135, 140] . Scalar fields with non-canonical actions have also recently

been considered as dark energy candidates (see, e.g. Ref. [149]). These models all

modify the Lagrangian (2.30) to the more general function2

L = p(X,ϕ) , (2.41)

where X = −1
2
gµνϕ,µϕ,ν . The Lagrangian for DBI inflation is then given by

p(X,ϕ) = −T (ϕ)
√

1− 2T−1(ϕ)X + T (ϕ)− V (ϕ) , (2.42)

where T (ϕ) and V (ϕ) are functions that further specify the model.

The energy momentum tensor for the general Lagrangian (2.41) is then obtained

from Eq. (2.31) as

T µν = p,Xg
µλϕ,λϕ,ν + δµνp . (2.43)

This has the components, up to linear order in perturbation theory, and in coordinate

time, t,

T tt = (p0 − 2p,XX0)− [(p,X + 2X0p,XX) δX1 + 2X0p,Xϕδϕ1 − p,ϕδϕ] , (2.44)

T ti = −p,Xϕ̇0δϕ1,i , (2.45)

T ij = (p0 + p,XδX1 + p,ϕδϕ1) δij , (2.46)

where we have defined δX1 = ϕ̇0
˙δϕ1 − φ1ϕ̇0

2, and X0 = 1
2
ϕ̇0

2. As in the canonical

case, we can define a pressure and energy density for the scalar field. The background

quantities are

ρ0 = 2p,XX0 − p , P0 = p , (2.47)

and the linear order quantities are

δρ1 = (p,X + 2X0p,XX)δX1 + (2X0p,Xϕ − p,ϕ)δϕ1 , (2.48)

δP1 = p,XδX1 + p,ϕδϕ1 . (2.49)

2One could, of course, cook up even more general Lagrangians. However, typically if higher-order
derivatives of the scalar field are present then the model will exhibit Ostrogradski instabilities
(see Ref. [47] for an outline of Ostrogradski’s original argument).
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2.3 Gauge Transformations at First and Second

Order

Gauge transformations play an important role in cosmological perturbation theory.

General relativity is a theory of differential manifolds with no preferred coordinate

charts, and is therefore required to be covariant under coordinate transformations.

However, when we come to consider perturbations in general relativity we must, for

consistency, consider perturbations of the spacetime itself. That is, in the language

of differential geometry, we consider a one parameter family of four-manifolds Mε,

embedded in a five-manifold N [108, 144]. Each Mε represents a spacetime, with

the base spacetime, or unperturbed ε = 0 manifold, M0. The problem comes in

perturbation theory when attempting to compare two objects which ‘live’ in different

spaces. In order to deal with this, we introduce a point identification map pε : M0 →
Mε which relates points in the perturbed manifold with those in the background.

This correspondence introduces a new vector field, X on N , and points which lie on

the same integral curve γ of X are regarded as being the same physical point.

However, the choice of this point identification map and, therefore, the vector field

X is not unique. The choice of the correspondence between the points on the M0

and those on Mε or, equivalently, the choice of the vector field X is called a choice

of gauge, and X is then the gauge generator. A gauge transformation then tells us

how we move from one choice of gauge to another.

There are two approaches to gauge transformations. First, consider a point p on

M0. Two generating vectors X and Y then define a correspondence between this

point p and two different points s and t on Mε. Clearly, then, these choices induce

a coordinate change (gauge transformation) on Mε. This is known as the passive

view. Alternatively, consider a point p on Mε. We then find a point s on M0 which

maps to p under the gauge choice X and a point t, also on M0 that maps to p under

the choice Y . In this case, a gauge transformation is induced on the background

manifold, M0. This is known as the active view. We can think of the active approach

as the one in which the transformation of the perturbed quantities is evaluated at

the same coordinate point, and the passive approach where the transformation of

the perturbed quantities is taken at the same physical point.

In this section we go on to discuss the active and passive approach briefly then,

adopting the active approach, we derive the gauge transformation rules for scalars,

vectors and tensors up to second order in the perturbations.
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2.3.1 Active Approach

In the active approach to gauge transformations, the exponential map is the starting

point [108, 119]. Once the generating vector of gauge transformation, ξµ, has been

specified, we can immediately write down how a general tensor T transforms. The

exponential map is

T̃ = e£ξT , (2.50)

where £ξ denotes the Lie derivative with respect to the generating vector ξµ which,

up to second order in perturbation theory, is

ξµ ≡ εξµ1 +
1

2
ε2ξµ2 + · · · . (2.51)

The exponential map is then

exp(£ξ) = 1 + ε£ξ1 +
1

2
ε2£2

ξ1
+

1

2
ε2£ξ2 + · · · (2.52)

up to second order in perturbation theory. Splitting T order by order, we find that

the tensorial quantities transform at zeroth, first and second order, respectively, as

[30, 119]

T̃0 = T0 , (2.53)

εδ̃T1 = εδT1 + ε£ξ1T0 , (2.54)

ε2δ̃T2 = ε2
(
δT2 + £ξ2T0 + £2

ξ1
T0 + 2£ξ1δT1

)
. (2.55)

By noting that the Lie derivative acting on a scalar is just the directional deriva-

tive, £ξ = ξµ(∂/∂xµ), the exponential map can be applied to the coordinates xµ to

obtain the following relationship between coordinates at two points, p and q3

xµ(q) = e
ξλ ∂

∂xλ

∣∣
p xµ(p) . (2.56)

Expanding this to second order gives

xµ(q) = xµ(p) + εξµ1 (p) +
1

2
ε2
(
ξµ1,λ(p)ξ

λ
1 (p) + ξµ2 (p)

)
. (2.57)

3Note that, in some of the literature, a different sign is taken in the exponent in this equation to
obtain correspondence between the active and passive approach at linear order. Since we are
not solely working at linear order in this work, there is no advantage gained by making such a
choice.
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This coordinate relationship is not required to perform calculations in the active

approach, but will be useful for the discussion in Section 2.3.2 below.

2.3.2 Passive Approach

A natural starting point for discussing the passive approach to gauge transformations

is the coordinate relationship Eq. (2.57) since, in the passive approach, one states

the relationship between two coordinate systems and then calculates how variables

change when transforming from one coordinate system to the other. However, since

in the passive approach quantities are evaluated at the same physical point we need

to rewrite Eq. (2.57) [108]. Choosing p and q such that x̃µ(q) = xµ(p), Eq. (2.57)

enables us to write

x̃µ(q) = xµ(p)

= xµ(q)− εξµ1 (p)− 1

2
ε2
[
ξµ1,λ(p)ξ

λ
1 (p) + ξµ2 (p)

]
. (2.58)

Using the first terms of Eq. (2.57),

xµ(q) = xµ(p) + εξµ1 (p) , (2.59)

allows us to Taylor expand ξµ1 as

ξµ1 (p) = ξµ1
(
xµ(q)− εξµ1 (p)

)
= ξµ1 (q)− εξµ1,λ(q)ξ

λ
1 (q) , (2.60)

which is valid up to second order. Substituting Eq. (2.60) into Eq. (2.58) gives the

relationship between the two coordinate systems at the same point, q

x̃µ(q) = xµ(q)− εξµ1 (q)− 1

2
ε2
[
ξµ2 (q)− ξµ1λ(q)ξ

λ
1 (q)

]
. (2.61)

Having highlighted the two approaches to gauge transformations we now focus on

the active approach and give some concrete examples.
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2.3.3 Four Scalars

We will now look at the transformation of four scalars, choosing the energy density,

ρ, which can be expanded as in Eq. (2.19),

ρ = ρ0 + δρ1 +
1

2
δρ2 +

1

3!
δρ3 + · · · , (2.62)

as an example.

First Order

Before studying the transformation behaviour of perturbations at first order, we

split the generating vector ξµ1 into a scalar temporal part α1 and a spatial scalar and

divergence free vector part, respectively β1 and γ1
i, as

ξµ1 = (α1, β1,
i + γ1

i) . (2.63)

Since the Lie derivative of a scalar ρ with respect to the vector ξµ is simply

£ξρ = ξµρ,µ , (2.64)

from Eq. (2.54), we then find that the energy density transforms, at linear order, as

δ̃ρ1 = δρ1 + ρ′0α1 . (2.65)

We see that, at first order, the gauge transformation is completely determined by

the time slicing, α1.4

Second Order

At second order we split the generating vector ξµ2 in an analogous way to first order

as

ξµ2 = (α2, β2,
i + γ2

i) . (2.66)

Then, using Eq. (2.55), we find that the second order energy density perturbation

transforms as

δ̃ρ2 = δρ2 + ρ′0α2 + α1(ρ′′0α1 + ρ′0α
′
1 + 2δρ′1) + (2δρ1 + ρ′0α1),k(β1,

k + γ1
k) . (2.67)

4Note that α1 does not generate a foliation of spacetime by spatial hypersurfaces – this is inherited
from the foliation already present in the background spacetime. Instead, α1 labels the time
slicing.
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Thus, at second order, the gauge transformation is only fully determined once the

time slicing is specified at first and second order (α1 and α2) and the spatial threading

(or spatial gauge perturbation) is specified at first order (β1 and γ1
i) [112].

2.3.4 The Metric Tensor

We will now focus on the transformation behaviour of the metric tensor. Again, the

starting point is the Lie derivative, which for a the metric tensor, gµν , is given by

£ξgµν = gµν,λξ
λ + gµλξ

λ
,ν + gλνξ

λ
,µ . (2.68)

First Order

At first order, the metric tensor transforms, from Eqs. (2.54) and (2.68) as

δ̃g
(1)
µν = δg(1)

µν + g
(0)
µν,λξ

λ
1 + g

(0)
µλ ξ

λ
1 ,ν + g

(0)
λν ξ

λ
1 ,µ . (2.69)

We can obtain the transformation behaviour of each particular metric function by

extracting it, in turn, from the above general expression using the method outlined

in Ref. [112]. From Eq. (2.68) we obtain the following transformation behaviour for

C1ij

2C̃1ij = 2C1ij + 2Hα1δij + ξ1i,j + ξ1j,i . (2.70)

From this we can extract the transformation behaviour of the spatial metric func-

tions. Here we do not focus on the details, but instead quote results. We find that

the scalar metric perturbations transform as

φ̃1 = φ1 +Hα1 + α′1 , (2.71)

ψ̃1 = ψ1 −Hα1 , (2.72)

B̃1 = B1 − α1 + β′1 , (2.73)

Ẽ1 = E1 + β1 , (2.74)

the vectors as

S̃1
i = S1

i − γ1
i′ , (2.75)

F̃1
i = F1

i + γ1
i , (2.76)
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and, as is well known, the tensor component, h1ij, is gauge invariant. Finally, the

scalar shear, which is defined as

σ1 ≡ E ′1 −B1 , (2.77)

transforms as

σ̃1 = σ1 + α1 , (2.78)

which will be useful later when we come to define gauges and gauge invariant vari-

ables.

Second Order

At second order we obtain the transformation behaviour of the metric tensor from

Eqs. (2.55) and (2.68), noting that

£2
ξ1

T = £ξ1(£ξ1T) . (2.79)

The metric tensor therefore transforms as

δ̃g
(2)
µν = δg(2)

µν + g
(0)
µν,λξ

λ
2 + g

(0)
µλ ξ

λ
2 ,ν + g

(0)
λν ξ

λ
2 ,µ + 2

[
δg

(1)
µν,λξ

λ
1 + δg

(1)
µλ ξ

λ
1 ,ν + δg

(1)
λν ξ

λ
1 ,µ

]
+ g

(0)
µν,λαξ

λ
1 ξ

α
1 + g

(0)
µν,λξ

λ
1 ,αξ

α
1 + 2

[
g

(0)
µλ,αξ

α
1 ξ

λ
1 ,ν + g

(0)
λν,αξ

α
1 ξ

λ
1 ,µ + g

(0)
λαξ

λ
1 ,µξ

α
1 ,ν

]
+ g

(0)
µλ

(
ξλ1 ,ναξ

α
1 + ξλ1 ,αξ

α
1, ν

)
+ g

(0)
λν

(
ξλ1 ,µαξ

α
1 + ξλ1 ,αξ

α
1, µ

)
, (2.80)

from which we can extract, as at first order, the transformation behaviour of individ-

ual metric perturbation functions. It is a little trickier to obtain the transformation

behaviour of ψ2 from this expression. However, we note that the expression in

Eq. (2.80) gives the transformation of C2ij, namely,5

2C̃2ij = 2C2ij + 2Hα2δij + ξ2i,j + ξ2j,i + Xij , (2.81)

where Xij contains terms quadratic in the first order perturbations and is defined

below in Eq. (2.87), and so we need intermediate methods in order to extract the

transformation of a particular component. Again, we we do not go into the unnec-

essary details here, but instead refer the interested reader to Ref. [112]. After this

5In the following and for the rest of this section, we do not split up the spatial part of the gauge
transformation generating vector into scalar and vector parts for brevity. We denote the spatial
part of ξµ by ξi.
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calculation we obtain

ψ̃2 = ψ2 −Hα2 −
1

4
X k

k +
1

4
∇−2X ij

,ij . (2.82)

We find that the other second order scalar metric perturbations transform as [112]

φ̃2 = φ2 +Hα2 + α2
′ + α1

[
α1
′′ + 5Hα1

′ +
(
H′ + 2H2

)
α1 + 4Hφ1 + 2φ′1

]
(2.83)

+ 2α1
′ (α1

′ + 2φ1) + ξ1k (α1
′ +Hα1 + 2φ1)

k
, + ξ′1k

[
α k

1, − 2B1k − ξk1
′
]
,

Ẽ2 = E2 + β2 +
3

4
∇−2∇−2X ij

,ij −
1

4
∇−2X k

k , (2.84)

B̃2 = B2 − α2 + β′2 +∇−2XB
k
,k , (2.85)

where XBi and Xij are defined as

XBi ≡ 2
[

(2HB1i +B′1i)α1 +B1i,kξ
k
1 − 2φ1α1,i +B1kξ

k
1, i +B1iα

′
1 + 2C1ikξ

k
1

′
]

+ 4Hα1 (ξ′1i − α1,i) + α′1 (ξ′1i − 3α1,i) + α1

(
ξ′′1i − α′1,i

)
+ ξk1

′
(ξ1i,k + 2ξ1k,i) + ξk1

(
ξ′1i,k − α1,ik

)
− α1,kξ

k
1, i , (2.86)

and

Xij ≡ 2
[(
H2 +

a′′

a

)
α2

1 +H
(
α1α

′
1 + α1,kξ

k
1

) ]
δij + 2 (B1iα1,j +B1jα1,i)

+ 4
[
α1

(
C ′1ij + 2HC1ij

)
+ C1ij,kξ

k
1 + C1ikξ

k
1 ,j + C1kjξ

k
1 ,i

]
+ 4Hα1 (ξ1i,j + ξ1j,i)− 2α1,iα1,j + 2ξ1k,iξ

k
1 ,j + α1

(
ξ′1i,j + ξ′1j,i

)
+ ξ1i,kξ

k
1 ,j + ξ1j,kξ

k
1 ,i + ξ′1iα1,j + ξ′1jα1,i + (ξ1i,jk + ξ1j,ik) ξ

k
1 . (2.87)

Furthermore, the vector perturbations transform as

S̃2i = S2i − γ2i
′ −XBi +∇−2XB

k
,ki , (2.88)

F̃2i = F2i + γ2i +∇−2X k
ik, −∇−2∇−2X kl

,kli , (2.89)

and the tensor perturbation which at second order, unlike at first order, is not gauge

invariant, as

h̃2ij = h2ij + Xij +
1

2

(
∇−2X kl

,kl −X k
k

)
δij +

1

2
∇−2∇−2X kl

,klij

+
1

2
∇−2X k

k,ij −∇−2
(
X k
ik, j + X k

jk, i

)
. (2.90)
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2.3.5 Four Vectors

Finally, we move on to the transformation behaviour of a four vector. The Lie

derivative of a vector, Wµ, is given by

£ξWµ = Wµ,αξ
α +Wαξ

α
,µ . (2.91)

First Order

A four vector transforms at first order, from Eq. (2.91), as

δ̃W 1µ = δW1µ +W ′
(0)µα1 +W(0)λξ

λ
1,µ , (2.92)

which gives, for the specific case of the four-velocity, the transformation rule

Ṽ1i = V1i − α1,i , (2.93)

where the quantity V1i is defined as

V1i ≡ v1i +B1i . (2.94)

Then, on splitting the velocity perturbation into a vector part and the gradient of

a scalar, as

v1i = vV
1i + v1,i , (2.95)

recalling that the metric perturbation B1i can be split up as

B1i = B1,i − S1i , (2.96)

and making use of Eqs. (2.73) and (2.75), we obtain the transformation rules

ṽ1 = v1 − β′1 , (2.97)

ṽVi
1 = vVi

1 − γ1
i′ . (2.98)

Second Order

At second order we find that a four vector, W2µ, transforms as

δ̃W 2µ = δW2µ +W ′
(0)µα2 +W(0)0α2,µ +W ′′

(0)µα
2
1 +W ′

(0)µα1,λξ
λ
1 , (2.99)

+ 2W ′
(0)0α1α1,µ +W(0)0

(
ξλ1α1,µλ + α1,λξ

λ
1,µ

)
+ 2
(
δW1µ,λξ

λ
1 + δW1λξ

λ
1,µ

)
.
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Focussing again on the fluid four velocity, we obtain from the ith component of

Eq. (2.99), the transformation behaviour of V2i:

Ṽ2i = V2i − α2,i + 4ξk1
′Cik + 2α′1

(
ξ′1 +B1i −

3

2
α1,i

)
+ α1(2V ′1i − α′1,i)

+ 2(ξ1i,k + ξ1k,i)(ξ
k
1
′ − vk1) + 2Hα1(2B1i − v1i + 3ξ′1i)

+ ξk1 (2V1i,k + α1,ik) + ξk1,i(2V1k − α1,k) + 2φ1(ξ′1 − 2α1,i) . (2.100)

Then, using the transformation behaviour of B2i, given by

B̃2i = B2i + ξ′2i − α2,i + XBi , (2.101)

we find that the second order three-velocity, v2i, transforms as

ṽ2i = v2i − ξ′2i + ξ′1i(2φ1 + α′1 + 2Hα1)− α1ξ
′′
1 − ξk1ξ′1i,k

+ ξk1
′ξ1i,k + 2α1(v′1i −Hv1i)− 2vk1ξ1i,k + 2v1i,kξ

k
1 . (2.102)

2.4 Gauge Choices and Gauge Invariant Variables

As mentioned previously, a central element to Einstein’s theory of general relativity

is the covariance of the theory under coordinate reparametrisation. However, a

problem arises when undertaking metric cosmological perturbation theory since the

process of splitting the spacetime into a background and a perturbation is not a

covariant process (see, e.g., Ref. [48] and Section 2.2 of Ref. [108]) Therefore, in

doing so, one introduces spurious gauge modes so that variables depend upon the

coordinate choice. Observational quantities should not depend upon the choice of

coordinate used, and therefore this so-called gauge problem of perturbation theory

seemingly would introduce confusion and erroneous results. However, as long as one

is careful to remove the gauge modes, this will not pose us a problem.

The gauge problem was first ‘solved’ by Bardeen in a consistent way in Ref. [16],

and has been studied in much detail, and extended beyond linear order, in the

decades since. The solution lies with the introduction of gauge invariant variables,

that is, variables which no longer change under a gauge transformation. Bardeen

constructed two such variables for scalar perturbations, which happen to coincide

with the lapse function and curvature perturbation in the longitudinal gauge (see

Section. 2.4.2). However, the systematic approach can be extended to other gauges:

one simply inspects the gauge transformation rules presented in the previous sec-
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tions, and chooses coordinates such that, e.g., two of the scalar metric perturbations

are zero. This enables one to remove the gauge dependencies α1 and β1, rendering

the other scalar perturbations gauge invariant. Similarly, this can be extended be-

yond scalar perturbations, and one can inspect the transformation rules for a vector

perturbation, setting it to zero, and thus removing the dependency on γi1.

Finally, let us emphasise the ‘gauge issue’ by considering degrees of freedom of the

metric. In four dimensions, the metric starts with 16 degrees of freedom: 6 are lost

because of symmetry, 4 more because of coordinate invariance (gauge choice) of the

metric and 4 to do with the Hamiltonian constraints, which arise when writing down

the field equations – also called a gauge choice. This leaves 2 degrees of freedom for

the two polarisations of the graviton. But this is so far not related to perturbation

theory. By perturbing the metric, one introduces further degrees of freedom which

are not addressed by the above – the option to change the gauge, or map. These

are the degrees of freedom addressed by the perturbation gauge choice.

This paragraph does well to highlight that ‘gauge’ is a well used term in theo-

retical physics, and is often used to mean different (albeit closely related) things.

When discussing cosmological perturbation theory, and for the rest of this thesis, we

reserve the phrase ‘choice of gauge’ to mean a specification of the mapping between

the background and the perturbed spacetimes.

In this section we concentrate on the linear theory, present the definitions of

various gauges commonly used throughout the literature, and define some gauge

invariant variables. We then give an example of how the theory works at second

order, by describing the uniform curvature gauge. This section is mainly a review,

and more details can be found in Ref. [112].

2.4.1 Uniform Curvature Gauge

A possible choice of gauge is one in which the spatial metric is unperturbed. At

linear order, this amounts to setting Ẽ1 = ψ̃1 = 0 and F̃1i = 0. This specifies the

gauge generating vector, ξµ1 , using Eqs. (2.72) and (2.74), as

ψ̃1 = ψ1 −Hα1 = 0 (2.103)

⇒ α1flat =
ψ1

H
, (2.104)
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Ẽ1 = E1 + β1 = 0 (2.105)

⇒ β1flat = −E1 , (2.106)

and

F̃1
i = F1

i + γ1
i = 0 (2.107)

⇒ γ1flat
i = −F1

i . (2.108)

The other scalars in this gauge, which are then gauge invariant are, from Eqs. (2.71)

and (2.73),

φ̃1flat = φ1 + ψ1 +

(
ψ1

H

)′
, (2.109)

B̃1flat = B1 −
ψ1

H
− E1

′ . (2.110)

The gauge invariant vector metric perturbation is, from Eq. (2.75),

S̃1flat
i = S1

i + F1
i . (2.111)

Note that the scalar field perturbation on spatially flat hypersurfaces is the gauge

invariant Sasaki-Mukhanov variable [118, 133], often denoted by Q,

Q ≡ δ̃ϕ1flat = δϕ1 + ϕ′0
ψ1

H
. (2.112)

2.4.2 Longitudinal (Poisson) Gauge

The longitudinal gauge is the gauge in which the shear, σ, vanishes. It is also known

as the conformal Newtonian or orthogonal zero-shear gauge. Its extension to include

vector and tensors is called the Poisson gauge. This gauge is commonly used in the

literature, since the remaining gauge invariant scalars in this gauge are the variables

introduced by Bardeen [16].

At linear order the temporal part of the gauge generating vector is specified by

the choice σ̃1 = 0 as, using Eq. (2.78)

σ̃1 = σ1 + α1 = 0 (2.113)

⇒ α1` = −σ1 , (2.114)

where the subscript ` denotes the value in the longitudinal gauge. The generating
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vector is fully specified, for scalar perturbations, by making the gauge choice Ẽ1 = 0

(and hence B̃1 = 0) as

Ẽ1 = E1 + β1 = 0 (2.115)

⇒ β1` = −E1 . (2.116)

The other two scalar metric perturbations in this gauge are then

φ̃1` = φ1 −Hσ1 − σ′1 , (2.117)

ψ̃1` = ψ1 +Hσ1 , (2.118)

which, by using the definition of the shear, Eq. (2.77), give

φ̃1` = φ1 −H(E1
′ −B1)− (E1

′ −B1)′ , (2.119)

ψ̃1` = ψ1 +H(E1
′ −B1) . (2.120)

These are then identified with the two Bardeen potentials, Φ1 and Ψ1, respectively

(or, in Bardeen’s notation, ΦAQ
(0) and −ΦHQ

(0)).

In the Poisson gauge, the generalisation of the longitudinal gauge beyond scalar

perturbations, the spatial vector component of the gauge transformation generating

vector by demanding that S̃1
i = 0 gives, using Eq. (2.75),

S̃1
i = S1

i + γ1
i′ = 0 (2.121)

⇒ γ1`
i =

∫
S1

idη + F1
i(xj) , (2.122)

where F1
i is an arbitrary constant three-vector. Thus, when having fixed the Poisson

gauge, there still exists some residual freedom in this choice of constant vector.

The remaining gauge invariant vector metric perturbation in the Poisson gauge is

then

F̃1`
i = F1

i +

∫
S1

idη + F1
i(xj) . (2.123)

2.4.3 Uniform Density Gauge

As an alternative to the gauges above, we can define a gauge with respect to the

matter perturbations. One example is the uniform density gauge which is based

upon choosing a spacetime foliation such that the density perturbation vanishes.

At first order we can fix α1 by demanding that δ̃ρ1 = 0. Using Eq. (2.65) we
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obtain

δ̃ρ1 = δρ1 + ρ′0α1 = 0 (2.124)

⇒ α1δρ = −δρ1

ρ′0
. (2.125)

We still have the freedom to choose the spatial scalar part of the gauge transforma-

tion generating vector, which can be done unambiguously by choosing, e.g., Ẽ1 = 0.

An especially interesting variable is the curvature perturbation in this gauge, ζ1,

which is a gauge invariant variable and defined as

− ζ1 ≡ ψ̃1δρ = ψ1 +Hδρ1

ρ′0
, (2.126)

where the sign is chosen to agree with that in Ref. [17]6. This quantity will come

in useful in later chapters because it is conserved on large scales for an adiabatic

system, as will be shown in Section 3.1.1.

2.4.4 Synchronous Gauge

The synchronous gauge was popular in early work on cosmological perturbation

theory, and was introduced by Lifshitz in the groundbreaking work of Ref. [89]. It is

characterised by φ̃1 = 0 = B̃1i, so that the g00 and g0i components of the metric are

left unperturbed and any perturbation away from FRW is confined to the spatial

part of the metric. It can be thought of physically as the gauge in which η defines

proper time for all comoving observers. This gauge is also used in many modern

Boltzmann codes such as CMBFAST [138], and is discussed in detail, and compared

to the longitudinal gauge in Ref. [102].

The synchronous gauge condition fixes the temporal gauge function through

φ̃1 = φ1 +Hα1 + α′1 = 0 (2.127)

⇒ aφ1 + a′α1syn + aα′1syn = aφ1 + (aα1syn)′ = 0 (2.128)

⇒ α1syn = −1

a

(∫
aφ1dη − C(xi)

)
, (2.129)

6See Ref. [151] for a detailed comparison of different sign conventions and notation used for the
curvature perturbations in different papers.
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and the spatial gauge functions as

β1syn =

∫
(α1syn −B1)dη +D(xi) , (2.130)

γi1syn =

∫
Si1dη + E i(xk) . (2.131)

The function D,i(xk) +Ei(xk) affects the labelling of the initial spatial hypersurface.

However, the function C(xk) affects the scalar perturbations, and so the synchronous

gauge does not determine the time-slicing unambiguously. It is therefore not possible

to define gauge invariant variables from the metric in this gauge, since the remaining

scalars (for example the curvature perturbation), have spurious gauge dependence:

ψ̃1syn = ψ1 +
H
a

(∫
aφ1dη − C(xk)

)
. (2.132)

In Lifshitz’ original work, the gauge mode was removed using symmetry arguments.

Nowadays a systematic approach is used to remove this gauge mode, and a further

gauge condition is taken, setting the perturbation in the three velocity of the dark

matter fluid to zero. Then,

˜v1cdm, syn = v1 − β′1syn = 0 (2.133)

⇒ a(v1 +B1) +

∫
aφ1dη − C(xi) = 0 . (2.134)

However, we then refer to the field equations, Eq. (3.2) which, in the synchronous

gauge guarantees that for the cold dark matter perturbation (where c2
s = 0 = δP1),

V1cdm = a(v1 +B1)|cdm is a constant (in conformal time). Thus, we obtain

C(xi) = a(v1 +B1)
∣∣∣
cdm

, (2.135)

which removes the gauge freedom. Note that we can only choose the dark matter

fluid with which to define the gauge since it is pressureless. The same does not

hold true for a fluid with non-zero pressure. In order to see this we need to use an

equation that we will derive in full detail later from the momentum conservation,

Eq. (3.7) which, in coordinate time, is

V̇1 − 3Hc2
sV1 +

c2
sδρ1

ρ0 + P0

+ φ1 = 0 . (2.136)
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In the synchronous gauge, B1 = 0 = φ1, so this becomes

˙av1 − 3Hc2
sav1 +

c2
sδρ1

ρ0 + P0

= 0 . (2.137)

If we then set the three-velocity to zero, in order to specify the threading, Eq. (2.137)

becomes
c2

sδρ1

ρ0 + P0

= 0 , (2.138)

which states that the fluid is pressureless. Therefore, we can only define the syn-

chronous gauge as comoving with respect to a pressureless fluid, e.g. cold dark

matter, and not with respect to a fluid with pressure.

2.4.5 Comoving Gauge

Another example of a gauge defined by the gauge transformation of a matter variable

is the comoving gauge. This is defined by choosing the gauge such that the three-

velocity of the fluid vanishes, ṽ1i = 0. Furthermore, this choice implies that Ṽ1i = 0.

Then,

Ṽ1 = V1 − α1 = 0 (2.139)

⇒ α1com = V1 = v1 +B1 , (2.140)

and

ṽ1 = v1 − β′1 = 0 (2.141)

⇒ β1com =

∫
v1dη + F(xk) , (2.142)

where F(xk) denotes a residual gauge freedom. However, note that scalar pertur-

bations are all independent of F(xk). One of the remaining scalars is the curvature

peturbation on comoving hypersurfaces, which is quite popular in the literature, and

often denoted R:

R ≡ ψ̃1com = ψ1 −HV1 . (2.143)

2.4.6 Beyond Linear Order

At second order the procedure is very much the same as at linear order, and the

various gauges are defined in an analogous way to linear order. Of course, the

expressions obtained are much longer, due to the fact that the second order gauge
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transformations contain many more terms than those at first order. Since we do not

intend this work to be a comprehensive summary of gauge choice and gauge invariant

variables (this topic has already been covered in full, gory detail in Ref. [112]), we

instead sketch how the gauge choice and construction of gauge invariant variables

work at second order for one choice of gauge: the uniform curvature gauge.

As at linear order, detailed above in Section 2.4.1, we determine the components

of the gauge transformation generating vector through the conditions ψ̃2 = Ẽ2 = 0

and F̃2i = 0. The first gives, from Eq. (2.82),

α2flat =
ψ2

H
+

1

4H

(
∇−2X ij

flat,ij −X
k
flatk

)
, (2.144)

where Xflatij is defined as Eq. (2.87) with the first order generators given above in

Eqs. (2.104), (2.106) and (2.108), and the second condition gives

β2flat = −E2 −
3

4
∇−2∇−2X ij

flat,ij +
1

4
∇−2X k

flatk . (2.145)

Finally, imposing the condition F̃2i = 0, gives

γ2flati = −F2i −∇−2Xflatik,
k +∇−2∇−2X kl

flat,kli . (2.146)

As an example of a gauge invariant variable at second order, we present the

lapse function in the uniform curvature gauge, φ2flat. Using Eq. (2.83) along with

Eqs. (2.104) and (2.144), we obtain

φ̃2flat = φ2 +
A2

H
+

1

H

[(
H− H

′

H

)
+ ∂η

][
∇−2Xflat

kl
,kl −X k

flatk

]
+

1

H2
(ψ1
′′ψ1 + 2ψ1

2) +

(
2− H

′′

H3

)
ψ1

2 +
1

H

(
5− 6

H′

H2

)
ψ1ψ1

′ +
2

H
φ1
′ψ1

+
4

H
A1φ1 +

1

H

[
A1 + 2Hφ1

]
,k
ξk1flat +

1

H

[
A1,k − 2HB1ik

]
ξk1flat

′ , (2.147)

where we have defined

A(n) = ψ′(n) +

(
H− H

′

H

)
ψ(n) . (2.148)



2.5: Thermodynamics of a Perfect Fluid 46

2.5 Thermodynamics of a Perfect Fluid

Considerable physical insight can be gained by studying the thermodynamic proper-

ties of a system [80, 96]. In this section, we study a single perfect fluid system. Such

a system is fully characterised by three variables, of which only two are independent.

Here we choose the energy density, ρ and the entropy, S, as independent variables,

with the pressure being given by the equation of state P = P (ρ, S). The pressure

perturbation can then be expanded, at linear order in perturbation theory, as

δP1 =
∂P

∂S

∣∣∣
ρ
δS1 +

∂P

∂ρ

∣∣∣
S
δρ1 . (2.149)

This can be cast in the more familiar form

δP1 = δPnad1 + c2
sδρ1 , (2.150)

by introducing the adiabatic sound speed

c2
s ≡

∂P

∂ρ

∣∣∣∣
S

, (2.151)

and by defining the non-adiabatic pressure perturbation, which is proportional to

the perturbation in the entropy, as [152]

δPnad1 ≡
∂P

∂S

∣∣∣∣
ρ

δS1 . (2.152)

Note that δPnad1 is gauge invariant. This can be shown by considering the gauge

transformation for the energy density perturbation, Eq. (2.65), along with the anal-

ogous equation for the pressure perturbation. One can extend Eq. (2.149) to higher

order by simply not truncating the expansion at linear order, that is

δP =
∂P

∂S
δS +

∂P

∂ρ
δρ

+
1

2

[
∂2P

∂S2
δS2 +

∂2P

∂ρ∂S
δρδS +

∂2P

∂ρ2
δρ2

]
+ . . . . (2.153)

The entropy, or non-adiabatic pressure perturbation at second order, for example,

is then found from Eq. (2.153), as [110]

δP2nad = δP2 − c2
sδρ2 −

∂c2
s

∂ρ
δρ2

1 . (2.154)
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2.5.1 Entropy or Non-Adiabatic Perturbations from

Inflation

One way in which a non-adiabatic pressure perturbation can be generated is through

the relative entropy perturbation between two or more fluids or scalar fields. For

example, the relative entropy or isocurvature perturbation, at first order, between

two fluids denoted with subscripts A and B is [113] (dropping here the subscripts

denoting the order, for brevity)

SAB = 3H

(
δρB
ρ′0B
− δρA
ρ′0A

)
. (2.155)

In a system consisting of multiple fluids, the non-adiabatic pressure perturbation is

split as [75, 112]

δPnad = δPintr + δPrel , (2.156)

where the first term is the contribution from the intrinsic entropy perturbation of

each fluid, and the second term is due to the relative entropy perturbation between

each fluid, SAB, and is defined as

δPrel ≡
1

6Hρ′0

∑
A,B

ρ′0Aρ
′
0B

(
c2
B − c2

A

)
SAB , (2.157)

where c2
A and c2

B are the adiabatic sound speed of each fluid. Thus, for a multiple

fluid system, even when the intrinsic entropy perturbation is zero for each fluid,

there is a non-vanishing overall non-adiabatic pressure perturbation. This can be

extended to the case of scalar fields by using standard techniques of treating the

fields as fluids. Much recent work has been focussed on the discussion of entropy, or

isocurvature perturbations in multi-field inflationary models. See, e.g. Refs. [7, 19,

31, 32, 54, 59, 76, 78, 81, 82, 84, 93, 94, 101, 127, 134] and references therein.



3 Dynamics and Constraints

In this Chapter we give the governing equations for perturbations of a FRW universe.

The background evolution and constraint equations are presented in Chapter 1, so

here we consider the equations at first and second order in perturbation theory.

Starting with the linear order theory we present the governing equations for scalar,

vector and tensor perturbations for a universe filled with a perfect fluid without

fixing a gauge. We then make three choices of gauge, the uniform density, uni-

form curvature and longitudinal gauges, and solve the evolution equations for scalar

perturbations in the latter two case. Next, we present the evolution equation for

a scalar field – the Klein-Gordon equation – for a field with both a canonical and

non-canonical Lagrangian, highlighting the importance of the difference between the

adiabatic sound speed and the phase speed for a scalar field system. We finish our

discussion of linear perturbations with an investigation into the perturbations of a

system with both a dark matter and a dynamical dark energy component.

Having discussed linear order perturbations, we then move on to the second order

theory. We derive the governing equations for a perfect fluid in a perturbed FRW

universe from energy momentum conservation and the Einstein equations, without

fixing gauge. We go on to present the equations for scalar and vector perturbations

in the uniform curvature gauge, which will come in useful in Chapter 4, and then

for scalar perturbations only, including now the canonical Klein-Gordon equation

at second order. Finally, to connect with other parts of the literature, we give the

equations for scalars in the Poisson gauge.

3.1 First Order

In this section we give the evolution and constraint equations at first order in cos-

mological perturbation theory for a universe filled with a perfect fluid, in a gauge

dependent form,1 and for all scalar, vector and tensor perturbations, neglecting

anisotropic stress. We also present the equations in some commonly used gauges,

1By gauge dependent, we mean that the equations are presented in a form where the gauge
functions α, β and γi have not yet been specified

48



3.1: First Order 49

present the evolution equation for a scalar field – the Klein-Gordon equation – for

both a canonical and non-canonical field, and solve some of the evolution equations.

First, in gauge dependent form, energy conservation at linear order gives

δρ1
′ + 3H(δρ1 + δP1) = (ρ0 + P0)(3ψ1

′ −∇2E1
′ − v1i,

i) , (3.1)

where ∇2 denotes the spatial Laplacian, ∇2 ≡ ∂k∂
k,2 while momentum conservation

gives

V ′1i +H(1− 3c2
s )V1i +

[
δP1

ρ0 + P0

+ φ1

]
,i

= 0 , (3.2)

where we have introduced the covariant velocity perturbation as V1i = v1i + B1i.

Note, Eq. (3.2) is the analogue of the Euler equation in an expanding background

(see Chapter 4).

The Einstein equations give the energy constraint equation

3H(ψ1
′ +Hφ1)−∇2(ψ1 +HE1

′) +H∇2B1 = −4πGa2δρ1 , (3.3)

and the momentum constraint

ψ′1,i +
1

4
S1i +Hφ1,i = −4πGa2(ρ0 + P0)V1i . (3.4)

Finally, the (i, j) component gives the equation

E1,
i′′
j + 2HE1,

i′
j + (ψ1 − φ1),

i
j −

1

2
(∂η + 2H)

(
2B1,

i
j − Si1,j − S1j,

i
)

+(∂2
η + 2H∂η −∇2)

(
F

(i
1 ,j) +

1

2
hi1j

)
+ δij

{
− 2φ1

(
H2 − 2a′′

a

)
+ 2ψ1

′′

+∇2(φ1 − E ′′1 − ψ1 +B′1) + 2H
(

2ψ1
′ +∇2(B1 − E ′1) + φ1

′
)}

= 8πGa2(P0 + δP1)δij . (3.5)

Simplifying now to scalar perturbations, the energy-momentum conservation equa-

2Since we are working with a background whose spatial submanifold is Euclidean, the position
of the Latin indices does not have a meaning. However, we preserve the position in order to
keep with notational conventions such as the summation convention, and for ease of future
generalisation.
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tions then become

δρ1
′ + 3H(δρ1 + δP1) = (ρ0 + P0)(3ψ1

′ −∇2(E ′1 − v1)) , (3.6)

V ′1 +H(1− 3c2
s )V1 +

δP1

ρ0 + P0

+ φ1 = 0 , (3.7)

and the Einstein equations are

3H(ψ1
′ +Hφ1)−∇2(ψ1 +HE1

′) +H∇2B1 = −4πGa2δρ1 , (3.8)

ψ′1 +Hφ1 = −4πGa2(ρ0 + P0)V1 , (3.9)

E1,
i′′
j + 2HE1,

i′
j + (ψ1 − φ1),

i
j −B1,

i′
j − 2HB1,

i
j + δij

{
− 2φ1

(
H2 − 2a′′

a

)
+∇2(φ1 − E ′′1 − ψ1 +B′1) + 2ψ1

′′ + 2H
(

2ψ1
′ +∇2(B1 − E ′1) + φ1

′
)}

= 8πGa2(P0 + δP1)δij . (3.10)

We can obtain from Eq. (3.10) two scalar equations. Firstly, by applying the operator

∂i∂
j, using the method outlined in Ref. [109], we obtain

ψ1
′′ + 2Hψ1

′ +Hφ1
′ + φ1

(
2a′′

a
−H2

)
= 4πGa2δP1 , (3.11)

and then, taking the trace of Eq. (3.10) and using Eq. (3.11), we obtain

(B1 − E ′1)′ + 2H(B1 − E ′1) + φ1 − ψ1 = 0 , (3.12)

which can be recast in terms of the shear (σ1 ≡ E ′1 −B1) as

σ′1 + 2Hσ1 − φ1 + ψ1 = 0 . (3.13)

3.1.1 Uniform Density Gauge

We now work in the uniform density gauge which, as we saw in the previous chapter,

is specified by δ̃ρ1 = 0, and consider only scalar perturbations. Eq. (3.6) evaluated

in this gauge is

3Hδ̃P1δρ = (ρ0 + P0)
[
3ψ̃1δρ

′
−∇2(Ẽ1δρ

′
− ṽ1δρ)

]
. (3.14)

Noting that ψ̃1δρ ≡ −ζ1 is the gauge invariant curvature perturbation on uniform

density hypersurfaces, introduced in Eq. (2.126), and δ̃P1δρ = δPnad1, this then
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becomes

3ζ ′1 = − 3H
(ρ0 + P0)

δPnad1 −∇2(Ẽ ′1δρ − ṽ1δρ) . (3.15)

Recall, as mentioned in section 2.4.3, that the uniform density gauge condition does

not specify the spatial gauge function, β1. The transformations of E1 and v1 do

not depend upon the temporal gauge function, so Ẽ1δρ = Ẽ, and similarly for v1.

However, the combination Ẽ1

′
− ṽ1 is a gauge invariant variable, the three-velocity

in the longitudinal gauge, and so Eq. (3.15) can be written solely in terms of gauge

invariant variables as

3ζ ′1 = − 3H
(ρ0 + P0)

δPnad1 −∇2v1` . (3.16)

We then recover the known result that, on large scales, the evolution of the cur-

vature perturbation is proportional to the non-adiabatic pressure perturbation:

ζ ′1 = − H
(ρ0 + P0)

δPnad1 . (3.17)

Thus, the curvature perturbation on uniform density hypersurfaces is conserved on

large scales for adiabatic perturbations such as those from a single fluid or a single

scalar field [152].

Let us now consider whether a general scalar field can support non-adiabatic per-

turbations. We can calculate the non-adiabatic pressure perturbations for a general

scalar field with Lagrangian L ≡ L(X,ϕ), Eq. (2.41). Noting that the pressure and

energy density are both functions of X and ϕ, and so their perturbations can be

expanded in a series as

δP1 =
∂P

∂ϕ
δϕ1 +

∂P

∂X
δX1 , (3.18)

and

δρ1 =
∂ρ

∂ϕ
δϕ1 +

∂ρ

∂X
δX1 , (3.19)

the non-adiabatic pressure perturbation can then be obtained by substituting Eqs.

(3.18) and (3.19) into Eq. (2.149), giving

δPnad1 = ρ,ϕ

(
Pϕ

ρ,ϕ
− c2

s

)
δϕ1 + ρ,X

(
PX

ρ,X
− c2

s

)
δX1 . (3.20)

In such a system and on large scales, the relationship between δϕ1 and δX1 is [37]

δX1 = ϕ̈0δϕ1 , (3.21)
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which, when substituted into Eq. (3.20), along with the definition for the adiabatic

sound speed, c2
s , yields

δPnad1 = 0 . (3.22)

Therefore, the curvature perturbation on uniform density hypersurfaces is conserved

on large scales in an expanding universe not only for a canonical scalar field, but for

any scalar field with Lagrangian (2.41).3 This result is in agreement with Ref. [83].

3.1.2 Uniform Curvature Gauge

Now, returning to the full equations, we neglect tensor perturbations and work in

uniform curvature gauge, where Ẽ1 = ψ̃1 = F̃ i
1 = 0. The energy conservation

equation then becomes4

δρ1
′ + 3H(δρ1 + δP1) + (ρ0 + P0)v1i,

i = 0 , (3.23)

while momentum conservation gives

V ′1i +H(1− 3c2
s )V1i +

[
δP1

ρ0 + P0

+ φ1

]
,i

= 0 . (3.24)

Let us now consider the dynamics of scalar, linear perturbations in the uniform

curvature gauge. The energy-momentum conservation equations then reduce to

δρ1
′ + 3H(δρ1 + δP1) = (ρ0 + P0)∇2v1 , (3.25)

V ′1 +H(1− 3c2
s )V1 +

δP1

ρ0 + P0

+ φ1 = 0 , (3.26)

and the Einstein equations give

3H2φ1 +H∇2B1 = −4πGa2δρ1 , (3.27)

Hφ1 = −4πGa2(ρ0 + P0)V1 , (3.28)

Hφ1
′ + φ1

(
2a′′

a
−H2

)
= 4πGa2δP1 , (3.29)

B′1 + 2HB1 + φ1 = 0 . (3.30)

We will now solve this set of equations for the energy density perturbation of

a perfect fluid. Let us first rewrite the equations in terms of the ‘new’ velocity

3Note that, in a contracting universe this is not true (see, e.g., Ref. [73]).
4We omit the tildes and gauge subscripts for brevity.
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perturbation

V1 ≡ (ρ0 + P0) (v1 +B1) . (3.31)

This enables us to write Eq. (3.28), using Eq. (1.23), the background Friedmann

equation, as

φ1 = −3

2

H
ρ0

V1 , (3.32)

and using this, Eq. (3.27) becomes

∇2B1 =
9

2

H2

ρ0

V1 −
3

2

H
ρ0

δρ1 . (3.33)

Then the evolution equations, Eqs. (3.25) and (3.26) are

δρ′1 +
3

2
H (3 + w) δρ1 + 3HδP1 − k2V1 −

9

2
H2 (1 + w)V1 = 0 , (3.34)

V1
′ +
H
2

(5− 3w)V1 + δP1 = 0 , (3.35)

where w ≡ P0/ρ0 defines the background equation of state,5 and we are working

in Fourier space, k being the comoving wavenumber. Equations (3.34) and (3.35)

make up a system of coupled, linear, ordinary differential equations. Given an

equation of state and initial conditions, this system can be solved immediately (for

a given k), numerically. One can also obtain a qualitative solution by considering a

system of two equations such as this one. However, if one wants to solve the system

quantitatively, and analytically, it is easier to rewrite the system as a single second

order differential equation, which we do in the following. We solve Eq. (3.34) for V1

and get

V1 =
1

T

(
δρ′1 +

3

2
H (3 + w) δρ1 + 3HδP1

)
, (3.36)

where T ≡ k2 + 9
2
H2 (1 + w) .

After some further algebraic manipulations of Eq. (3.36), and using Eq. (3.35),

we arrive at the desired evolution equation

δρ′′1 +

(
7H− T′

T

)
δρ′1 +

3

2
H (3 + w)

[
H′

H
+

w′

(3 + w)
− T′

T
+

1

2
H (5− 3w)

]
δρ1

+ 3HδP ′1 +

[
3H
(
H′

H
− T′

T

)
+

3

2
H2 (5− 3w) + T

]
δP1 = 0 .

(3.37)

5We do not demand that w be constant here.
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Equation (3.37) is a linear differential equation, of second order in (conformal) time.

It is valid on all scales, for a single fluid with any (time dependent) equation of

state. Furthermore, it assumes nothing more than a perfect fluid and hence allows

for non-zero non-adiabatic pressure perturbations.

Having derived a general governing equation (3.37) valid in any epoch, we now

restrict our analysis to radiation domination, where the background equation of

state parameter is w = 1
3

and the adiabatic sound speed is c2
s = 1

3
. We recall from

Eq. (2.150) that the first order pressure perturbation can be expanded as

δP1 ≡ c2
sδρ1 + δPnad1 ,

where δPnad1 is the non-adiabatic pressure perturbation, which is proportional to

the perturbation in the entropy, and is defined in Eq. (2.152). Then, the general

governing equation, Eq. (3.37), becomes, during radiation domination, where H ∝
1/η

δρ′′1 + 4H
(

2 +
3H2

k2 + 6H2

)
δρ′1 +

(
6H2 +

1

3
(k2 + 6H2) +

72H4

k2 + 6H2

)
δρ1

+ 3HδPnad
′
1 +

[
9H2 + 36

H4

k2 + 6H2
+ k2

]
δPnad1 = 0 .

(3.38)

For the case of zero non-adiabatic pressure perturbations the second line in Eq. (3.38)

vanishes, and the resulting equation can be solved directly using the Frobenius

method, to give [40]

δρ1(k, η) = C1(k)η−5
[

cos

(
kη√

3

)
kη − 2 sin

(
kη√

3

)√
3
]

+ C2(k)η−5
[
2 cos

(
kη√

3

)√
3 + sin

(
kη√

3

)
kη
]
, (3.39)

where C1 and C2 are functions of the wave-vector, k, and k is the wavenumber,

k ≡ |k|. For small kη, the trigonometric functions can be expanded in power series

giving, to leading order, the approximation

δρ1(k, η) ' A(k)kη−4 +B(k)η−5 , (3.40)

for some A(k) and B(k), determined by the initial conditions.

In order to solve for a non vanishing non-adiabatic pressure, we make the ansatz
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that the non-adiabatic pressure grows as the decaying branch of the density pertur-

bation in Eq. (3.34), i.e.,

δPnad1(k, η) = D(k)kλη−5 . (3.41)

This assumption is well motivated, since we would expect the non-adiabatic pressure

to decay faster than the energy density, and in fact observations are consistent with a

very small entropy perturbation today. Furthermore, if one is considering a relative

entropy perturbation between more than one fluid or field, as time increases the

system will equilibriate and one species will dominate.6 This gives the solution

δρ1(k, η) = C1(k) η−5

[
cos

(
kη√

3

)
kη − 2 sin

(
kη√

3

)√
3

]
+ C2(k) η−5

[
2 cos

(
kη√

3

)√
3 + sin

(
kη√

3

)
kη

]
− 3D(k)kλη−5 .

(3.42)

3.1.3 Longitudinal Gauge

In this section we consider scalar, linear perturbations in the longitudinal gauge in

order to make a connection with the literature. In the longitudinal gauge, E1 =

B1 = 0, and ψ1 = Ψ1, φ1 = Φ1, and so Eq. (3.12) tells us that, in the absence

of anisotropic stress, Φ1 = Ψ1. Taking this into account, the energy-momentum

conservation equations become

δρ1
′ + 3H(δρ1 + δP1) = (ρ0 + P0)(3Φ1 +∇2v1) , (3.43)

v′1 +H(1− 3c2
s )v1 +

δP1

ρ0 + P0

+ Φ1 = 0 , (3.44)

and the Einstein equations are

3H(Φ′1 +HΦ1)−∇2Φ1 = −4πGa2δρ1 , (3.45)

Φ′1 +HΦ1 = −4πGa2(ρ0 + P0)v1 , (3.46)

Φ′′1 + 3HΦ′1 + Φ1

(
2a′′

a
−H2

)
= 4πGa2δP1 , (3.47)

Assuming adiabatic perturbations, in which case δP1 = c2
sδρ1 and w = c2

s , we can

6Of course, given a specific model of the early universe this relative entropy perturbation can be
calculated.
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combine Eqs. (3.45) and (3.47), using Eqs. (1.23) and (1.25) to give

Φ′′1 + 3H(1 + c2
s )Φ′1 + c2

sk
2Φ1 = 0 , (3.48)

which, in radiation domination (where we recall from section 1.1 that c2
s = 1/3 and

H ∝ η−1), then becomes

ηΦ′′1 + 4Φ′1 +
1

3
ηk2Φ1 = 0 . (3.49)

This equation can then be solved (see, e.g., Ref. [10] for the general method) to give

Φ1(k, η) =
C̃1(k)

(kη)3

[
cos

(
kη√

3

)
kη − sin

(
kη√

3

)√
3

]

+
C̃2(k)

(kη)3

[
cos

(
kη√

3

)√
3 + sin

(
kη√

3

)
kη

]
. (3.50)

3.1.4 Scalar Field Evolution and Sound Speeds

In this section we consider the dynamics of a scalar field. Many oscillating systems

can be described by a wave equation, that is a second order evolution equation of

the form
1

c2
ph

Ẍ−∇2X + F (X, Ẋ) = 0 , (3.51)

where X is, for example, the velocity potential, F (X, Ẋ) is the damping term, and

c2
ph is the phase speed, i.e. the speed with which perturbations travel through the

system [79, 141]. The situation for a scalar field is not dissimilar, and the evolution

equation in this case is the Klein-Gordon equation, where X = ϕ is the scalar

field. The Klein-Gordon equation is obtained by substituting the expressions for

the energy density and the pressure into the energy conservation equation. The

background equation is given in Section 1.2 and here we focus on the perturbations.

There is some confusion in the literature on the meaning of adiabatic sound speed

and phase speed. Although this seems not to affect the results of previous works, and

the adiabatic sound speed is often simply used as a convenient shorthand for Ṗ0/ρ̇0,

as defined in Eq. (2.151), it is often confusingly used to denote the phase speed.

The adiabatic sound speed defined above describes the response of the pressure

to a change in density at constant entropy, and is the speed with which pressure

perturbations travels through a classical fluid. A more intuitive introduction of the
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adiabatic sound speed is using the compressibility [79],

β ≡ 1

ρ

∂ρ

∂P

∣∣∣
S

=
1

ρc2
s

, (3.52)

which describes the change in density due to a change in pressure while keeping the

entropy constant.

A collection of scalar fields can also be described as a fluid, but the analogy is not

exact. Whereas in the fluid case the phase speed c2
ph and the adiabatic sound speed

c2
s are equal, this is not true in the scalar field case and the speed with which per-

turbations travel is given only by c2
ph. The phase speed, c2

ph can be read off from the

perturbed Klein-Gordon equation governing the evolution of the scalar field. This is

just a damped wave equation, like Eq. (3.51), and so by comparing the coefficients

of the second order temporal, and second order spatial derivatives, we obtain the

phase speed.

We first focus on the canonical scalar field with Lagrangian (2.30); the background

equation is given in section 1.2. The equation for linear perturbations is, in the

uniform curvature gauge,

δϕ′′1 + 2Hδϕ′1 + 2a2U,ϕφ1 − ϕ′0∇2B1 −∇2δϕ1 − ϕ′0φ1
′ + a2U,ϕϕδϕ1 = 0 . (3.53)

We can express this in closed form, that is containing only matter perturbations, by

replacing the metric perturbations using the appropriate field equations. Doing so

gives (e.g. Ref. [106])

δϕ′′1 + 2Hδϕ′1 −∇2δϕ1

+ a2

[
U,ϕϕ +

8πG

H

(
2ϕ′0U,ϕ + ϕ′20

8πG

H
U(ϕ0)

)]
δϕ1 = 0 . (3.54)

Similarly, we can calculate the Klein-Gordon equation for a scalar field with the

non-canonical Lagrangian, (2.41). We obtain

1

c2
ph

δ̈ϕ+

[
3H

c2
ph

+ C1

]
˙δϕ+

[
k2

a2
+ C2

]
δϕ = 0 , (3.55)
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where the coefficients C1 and C2, both functions of ϕ and X, are

C1 =
c2

ph

p2
,X

[
p,ϕ − 3Hp,Xϕ̇0 − p,Xϕϕ̇0

2
] [

3p,XXϕ̇0 + ϕ̇0
3p,XXX

]
+

1

p,X

[
ϕ̇0p,Xϕ + ϕ̇0

3p,XXϕ
]
, (3.56)

C2 =
c2

ph

p2
,X

[
p,ϕ − 3Hp,Xϕ̇0 − p,Xϕϕ̇0

2
]

×
[
p,Xϕ + ϕ̇0

2p,XXϕ −
4πGϕ̇0p,X

H

(
5ϕ̇0

2p,XX + ϕ̇0
4p,XXX + 2p,X

)]
− 4πGϕ̇0

Hc2
ph

[
3Hϕ̇0p,X + p,ϕ −

p,Xϕ̇0

H
(3H2 + 2Ḣ) + c2

ph(ϕ̇0
4p,XXϕ + p,ϕ)

]
+

1

p,X

[
ϕ̇0

2p,Xϕϕ − p,ϕϕ + 3Hϕ̇0p,Xϕ
]
. (3.57)

The constants in this equation of motion can be interpreted physically: C1 is an

additional damping term, and C2 affects the frequency of the oscillations. The

phase speed is then read off as

c2
ph =

p,X
p,X + 2X0p,XX

, (3.58)

which, using Eq. (2.37) reduces to [56]

c2
ph =

P0,X

ρ0,X

. (3.59)

The adiabatic sound speed for the Lagrangian (2.41) is given by

c2
s =

p,Xϕ̈0 + p,ϕ
p,Xϕ̈0 − p,ϕ + p,XXϕ̇0

2ϕ̈0 + p,Xϕϕ̇0
2 . (3.60)

Finally, the adiabatic sound speed for the canonical Lagrangian is

c2
s = 1 +

2U,ϕ
3Hϕ0

′ , (3.61)

and becomes c2
s = −1 in slow-roll. The phase speed for a canonical scalar field is

c2
ph = 1, as can be read off from Eq. (3.53).

Thus we note that, although in classical fluid systems the adiabatic sound speed
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and phase speed are the same, they are different in the scalar field models studied

here, with only the phase speed describing the speed with which perturbations travel.

We emphasise that only the definition for the adiabatic sound speed, Eq. (2.151),

enters the definition of the pressure perturbation. Similarly, in the adiabatic case

when δPnad1 = 0, Eq. (2.152) reduces to δP1 = c2
sδρ1. Again, this convenient relation

between the pressure and the energy density perturbation is only correct when using

the adiabatic sound speed, as defined in Eq. (2.151).

3.1.5 Combined Dark Energy and Dark Matter System

In this section, as an application of gauge choice and the linear equations, we consider

perturbations of a combined dark matter and dark energy system. The importance

of considering dark energy perturbations in such a system is still under discussion.

Recently, in Ref. [126], it was shown that ignoring the dark energy perturbations

results in gauge dependent predictions. The authors showed this by first taking the

governing equations for the dark matter/dark energy system calculating, using a

numerical simulation, the matter power spectrum in three gauges: the comoving

gauge, the uniform curvature gauge and the uniform expansion gauge. As expected,

the same result was obtained for each gauge. They then ignored perturbations to

the dark energy component, and repeated the analysis, this time obtaining different

results for each of the three gauges. They then concluded that it was crucial to

include the dark energy perturbations when analysing such a system. Thus one

cannot use the familiar evolution equation for the dark matter density contrast,

δc ≡ δρc/ρc,

δ̈c + 2Hδ̇c − 4πGρcδc = 0 , (3.62)

which is obtained by ignoring dark energy perturbations once the equations have

been put into a gauge comoving with the dark matter.

In this section we consider a similar question, and ask whether we can come

to the same result without using numerical simulations, but instead by using the

formalism of cosmological perturbation theory. The section contains work published

in Ref. [35].

We consider here the linear governing equations for scalars only in coordinate

time and without fixing a gauge (dropping the subscript ‘1’ in this section for ease

of presentation). Though some of the equations from previous sections are replicated

here, since we are using a different time coordinate in previous sections, we give all

equations used for completeness. We assume that the dark matter and dark energy

are non-interacting, and so energy momentum conservation for each fluid is given
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by

∇µT
µ
(α)ν = 0 . (3.63)

Note that this assumption is for brevity, and to allow us to deal with more man-

ageable equations. The results highlighted in this work will still hold in the case

of interacting fluids for which the overall energy-momentum tensor is covariantly

conserved, but the components obey

∇µT
µ
(α)ν = Q(α)ν , (3.64)

where Q(α)ν is the energy-momentum transfer to the αth fluid [70, 112].

Then, we obtain an evolution equation for each fluid from the energy (temporal)

component of Eq. (3.63),

δ̇ρα + 3H(δρα + δPα) + (ρ0 + P0)
∇2

a2
(Vα + σ) = 3(ρα + Pα)ψ̇ , (3.65)

where the covariant velocity potential of each fluid is defined as Vα = a(vα +B).

Considering the dark matter fluid and the dark energy scalar field, respectively,

Eq. (3.65) then gives

δ̇c = 3ψ̇ − ∇
2

a2
(σ + Vc) , (3.66)

δ̈ϕ+ 3H ˙δϕ+
(
U,ϕϕ −

∇2

a2

)
δϕ = ϕ̇

(
3ψ̇ − ∇

2

a2
σ + φ̇

)
− 2U,ϕφ , (3.67)

where we have used the expressions for the energy density perturbation and pressure

perturbation of a scalar field given in Section 2.2, and note that the dark matter

is pressureless. We have also used the background evolution equation for the dark

energy scalar field

ϕ̈0 + 3Hϕ̇0 + U,ϕ = 0 , (3.68)

the background conservation equation for the dark matter,

ρ̇c + 3Hρc = 0 , (3.69)

and the expression

Vϕ = −δϕ
ϕ̇0

. (3.70)

There is also a momentum conservation equation, coming from the spatial compo-
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nent of Eq. (3.63), corresponding to each fluid

V̇α − 3Hc2
αVα + φ+

δPα
ρα + Pα

= 0 , (3.71)

where c2
α = Ṗα/ρ̇α.

The Einstein field equations give (from the previous section or, e.g., Ref. [111])

3H(ψ̇ +Hφ)− ∇
2

a2
(ψ +Hσ) + 4πGδρ = 0 , (3.72)

ψ̇ +Hφ+ 4πG(ρ0 + P0)V = 0 , (3.73)

σ̇ +Hσ − φ+ ψ = 0 , (3.74)

ψ̈ + 3Hψ̇ +Hφ̇+ (3H2 + 2Ḣ)φ− 4πGδP = 0 , (3.75)

where the total matter quantities are defined as the sum of the quantity for each

fluid or field, i.e.

δρ = δρϕ + δρc , (3.76)

δP = δPϕ , (3.77)

(ρ+ P )V = (ρϕ + Pϕ)Vϕ + ρcVc , (3.78)

and we have used the fact that the dark matter is pressureless, i.e. Pc = 0 = δPc.

Introducing a new variable Z, both for notational convenience and to assist with

the following calculations, defined as

Z ≡ 3(ψ̇ +Hφ)− ∇
2

a2
σ , (3.79)

we can rewrite Eq. (3.75), using Eqs. (3.72) and (3.74), as

Ż + 2HZ +
(

3Ḣ +
∇2

a2

)
φ = 4πG(δρ+ 3δP ) . (3.80)

Then, from Eq. (3.66),

Z = δ̇c + 3Hφ+
∇2

a2
Vc , (3.81)

and from Eq. (3.71) for the dark matter fluid (for which c2
s = 0),

φ = −V̇c . (3.82)
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Differentiating Eq. (3.81) gives

Ż = δ̈c + 3(Hφ)̇ +
∇2

a2

(
V̇c − 2HVc

)
. (3.83)

Substituting this into Eq. (3.80) gives

δ̈c + 2Hδ̇c − 4πGρcδc = 8πG(2ϕ̇0
˙δϕ− U,ϕδϕ)

+ V̇c(6(Ḣ +H2) + 16πGϕ̇0
2) + 3HV̈c . (3.84)

The evolution equation for the field is then obtained solely in terms of matter per-

turbations from Eq. (3.67) by using Eqs. (3.82) and (3.81):

δ̈ϕ+ 3H ˙δϕ+
(
U,ϕϕ −

∇2

a2

)
δϕ = ϕ̇

(
δ̇c +

∇2

a2
Vc + 3HV̇c + 3HV̇c − V̈c

)
+ 2U,ϕV̇c .

(3.85)

It is worth restating that we have derived these equations in a general form with-

out fixing a gauge. If we set the dark matter velocity to zero, i.e. Vc = 0, then

they reduce to those presented in, for example, Refs. [34, 70] (for the case of a zero

energy-momentum transfer).

We now want to consider fixing the gauge freedoms in this set of governing equa-

tions. In order to do so, we need to consider the gauge transformations of the

variables under the transformations

t̃ = t− α , (3.86)

x̃i = xi − β,i , (3.87)

where the generating vector is then defined as

ξµ = (α, β,
i) . (3.88)

Note that, since the choice of time coordinate is different to that used in the previous

chapter, the following gauge transformations will differ from those presented in, e.g.,

Section 2.3.4 due to the different definition of ξµ. Then, scalar quantities such as

the field perturbation transform as

δ̃ϕ = δϕ+ ϕ̇α , (3.89)
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the density contrast transforms as

δ̃c = δc +
ρ̇c

ρc

α , (3.90)

and the components of the velocity potential as

ṽα = vα − aβ̇ . (3.91)

Furthermore, by considering the transformation behaviour of the metric tensor we

obtain the following transformation rules for the scalar metric perturbations

φ̃ = φ+ α̇ , (3.92)

ψ̃ = ψ −Hα , (3.93)

B̃ = B − 1

a
α + aβ̇ , (3.94)

Ẽ = E + β , (3.95)

and so the scalar shear transforms as

σ̃ = σ + α . (3.96)

Finally Eq. (3.91) gives the transformation behaviour of the components of the

covariant velocity potential

Ṽα = Vα − α . (3.97)

Turning now to the case at hand, choosing the gauge in which the perturbation

in the dark energy field is zero, δ̃ϕ = 0, fixes α as

α = −δϕ
ϕ̇
. (3.98)

Since none of the gauge transformations of the quantities involved in the governing

equations depend upon the threading β, we do not need to consider fixing it explicitly

here. (Of course, one can rigorously fix β by choosing a suitable gauge condition, as

outlined in Section 2.4.) The governing equations in this gauge are then

¨̂
δc + 2H

˙̂
δc − 4πGρcδ̂c =

˙̂
Vc(6(Ḣ +H2) + 16πGϕ̇2) + 3H

¨̂
Vc , (3.99)

¨̂
Vc −

2U,ϕ
ϕ̇0

˙̂
Vc −

∇2

a2
V̂c = − ˙̂

δc , (3.100)
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where the hat denotes that the variables are evaluated in the uniform field fluctuation

gauge. That is, in this gauge, δ̂c and V̂c are gauge invariant variables defined as

δ̂c = δc −
ρ̇c

ρcϕ̇0

δϕ , V̂c = Vc +
δϕ

ϕ̇0

. (3.101)

Alternatively, choosing a gauge comoving with the dark matter, in which Ṽc = 0

fixes the generating vector as

α = Vc , (3.102)

and reduces the governing equations to

¨̄δc + 2H ˙̄δc − 4πGρcδ̄c = 8πG(2ϕ̇0
˙̄δϕ− U,ϕδ̄ϕ) , (3.103)

¨̄δϕ+ 3H ˙̄δϕ+
(
U,ϕϕ −

∇2

a2

)
δ̄ϕ = ϕ̇0

˙̄δc , (3.104)

where the bar denotes variables in the comoving gauge and we have

δ̄c = δc +
ρc

ρ̇c

Vc , δ̄ϕ = δϕ+ ϕ̇0Vc . (3.105)

By studying the above systems of equations, it is evident that choosing the dark

energy field perturbation to be zero is a well defined choice of gauge, reducing the

governing equations to Eqs. (3.99) and (3.100). Then, having done so, we are no

longer allowed the freedom to make another choice of gauge. Alternatively, choosing

a gauge comoving with the dark matter uses up the gauge freedom, and so we are not

permitted to neglect the perturbation in the dark energy field. In fact, doing so will

result in erroneous gauge dependent results. It is clearest to see why this is the case

by considering the set of governing equations. By making our choice of gauge we

are left with a set of equations which is gauge invariant: that is, performing a gauge

transformation will leave the set of equations unchanged. However, by neglecting

the perturbation in the dark energy field after having chosen the gauge comoving

with the dark matter amounts to setting the right hand side of Eq. (3.103) to zero.

This resulting equation will, in general, then no longer be gauge invariant.

Thus, we conclude that the dark energy perturbation must be considered in a

system containing a mixture of dark matter and dark energy. Our result is consistent

with that of Ref. [126], though we have shown this by simply using the formalism

of cosmological perturbation theory instead of relying on more involved numerical

calculations.
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3.2 Second Order

We can extend the governing equations presented in the previous section to beyond

linear order by simply not truncating the expansion of each variable after the first

term. Doing so, we obtain equations with similar structure to those at linear order,

however with new couplings between different type of perturbation. In fact, these

couplings will turn out to be the reason for the qualitative difference between the

linear and higher order theories. In this section, we will present the full second order

equations for scalar, vector and tensor perturbations in a gauge dependent format.

These equations have been derived previously, for example in Ref. [123], though are

derived in a slightly different way, using the ADM split, and so are written in terms

of the extrinsic curvature. The energy conservation equations have also been derived

in Ref. [112].

Conservation of energy momentum again gives us two equations: an energy con-

servation equation

δρ2
′ + 3H(δρ2 + δP2) + (ρ0 + P0)(Ci

2
′
i + v2i,

i) + 2(δρ1 + δP1),iv
i
1

+ 2(δρ1 + δP1)(Ci
1
′
i + v1i,

i) + 2(ρ0 + P0)
[
(V i

1 + vi1)V ′1i + vi1,iφ1

− 2C ′1ijC
ij
1 + vi1(Cj

1j,i + 2φ1,i) + 4Hvi1(V1i + v1i)
]

= 0 , (3.106)

and a momentum conservation equation[
(ρ0 + P0)V2i

]′
+ (ρ0 + P0)(φ2,i + 4HV2i) + δP2,i + 2

[
(δρ1 + δP1)V1i

]′
+ 2(δρ1 + δP1)(φ1,i + 4HV1i)− 2(ρ0 + P0)′

[
(B1i + V1i)φ1 − 2C1ijv

j
1

]
+ 2(ρ0 + P0)

[
V1i(C

j
1
′
j + vj1,j)−B1i(φ1

′ + 8Hφ1) + (2C1ijv
j
1)′

+ vj1(V1i,j −B1j,i + 8HC1ij)− φ1(V ′1i +B′1i + 2φ1,i + 4Hv1i)
]

= 0 , (3.107)

where we have not expanded the terms in Cij in order to keep the equations compact,

but recall from Eq. (2.3), that

Cij = −ψδij + E,ij + F(i,j) +
1

2
hij . (3.108)
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The Einstein equations give the (0− 0) component

∇2Cj
2j − C2ij,

ij + 2H(−Ci′

2 i +Bi
2,i + 3Hφ2) + 2Cj

1j,i(
1

2
Ck

1 k,
i − 2Cik

1 ,k)

+ 2Bi
1

[
Cj′

1 j,i − C
′

1ij,
j +

1

2

(
∇2B1i −B1j,i

j
)

+ 2H
(
C1j

j,i − 2C1ij,
j − φ1,i

) ]
+ 4Cij

1

[
2C1jk,i

k − Ck
1 k,ij −∇2C1ij + 2H(C

′

1ij −B1i,j)
]

+ 2C1jk,i(C
ik
1 ,

j − 3

2
Cjk

1 ,
i)

+ 2Ci′

1 i(B1j,
j − 1

2
Cj′

1 j + 4Hφ) + 4Cij
1 ,iC1jk,

k + 2C
′

1ij(
1

2
Cij′

1 −B
j
1 ,
i)

+
1

2
B1j,i(B

i
1,
j +Bj

1 ,
i)− 6H2(4φ2

1 −B1iB
i
1)−Bi

1,iB1j,
j − 8HBi

1,iφ1

= −8πGa2
[
2(ρ0 + P0)V k

1 v1k + δρ2

]
, (3.109)

and the (0− i) component

Ck
2

′

k,i − C
′

2ik,
k − 1

2

(
B2k,i

k −∇2B2i

)
− 2Hφ2,i + 16Hφ1,iφ1 − 2Cj′

1 jφ1,i

+ 2C
′

1ij

(
2Ckj

1 ,k − Ck
1 k,

j + φ1,
j
)

+ 4Ckj
1

[
C

′

1ik,j − C
′

1jk,i +
1

2
(B1k,ij −B1i,kj)

]
+ 2Bj

1

(
C1kj,i

k − Ck
1 k,ij + C1ik,k

j −∇2C1ij − 2HB1j,i

)
−
(
B1i,j +B1j,i

)
φ1,

j

+ 2 (B1i,j −B1j,i)

(
1

2
Ck

1 k,
j − Cjk

1 ,k

)
− 2C1ik,j

(
Bk

1 ,
j −Bj

1 ,
k
)

+ 2Bj
1 ,jφ1,i

+ 2φ1

[
B1j,i

j −∇2B1i + 2
(
C

′

1ij,
j − C1j′

j,i

)]
− 2Ckj′

1 Ckj,i

= 16πG
[1

2
V2i − φ1(V1i +B1i) + 2C1ikv

k
1 + (δρ1 + δP1)V1i

]
. (3.110)

We present the full (i− j) component in Appendix A.

The equations for scalar perturbations only in a gauge dependent form are then

obtained by substituting Cij = −ψδij + E,ij and Bi = B,i, at both first and second

order, into the above. The energy conservation equation then becomes

δρ2
′ + 3H(δρ2 + δP2) + (ρ0 + P0)

(
∇2(E2

′ + v2)− 3ψ2
′
)

+ 2(δρ1 + δP1),iv1
i

+ 2(δρ1 + δP1)
(
∇2(E1

′ + v1)− 3ψ1
′
)

+ 2(ρ0 + P0)
[
(V ′1,i + 4Hv1,i)(V1,i + v1,i)

+ 3ψ1ψ1
′ +∇2v1φ1 − (ψ1∇2E)′ + E ′1,ijE1,

ij + v1,
i(2φ1,i − 3ψ1,i +∇2E1,i)

]
= 0 ,

(3.111)
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while the momentum conservation equation is[
(ρ0 + P0)V1,i

]′
+ (ρ0 + P0)

(
φ2 + 4HV2

)
,i

+ δP2,i + 2
[
V1,i(δρ1 + δP1)

]′
+ 2(δρ1 + δP1)

(
φ1 + 4HV1

)
,i
− 2(ρ0 + P0)′

[
(V1 +B1),iφ1 − 2(E1,ijv1,

j − ψ1v1,i)
]

+ 2(ρ0 + P0)
[
V1,i

(
∇2(E1

′ + v1)− 3ψ1
′
)
−B1,i(φ1

′ + 8Hφ1) + v1,
j(v1,ij + 8HE1,ij)

+ 2
(
v1,

jE1,ij − ψ1v1,i

)′
− φ1

(
(V1 +B1)′ + 2φ1 + 4Hv1

)
,1
− 8Hψ1v1,i

]
= 0 .

(3.112)

Turning now to the Einstein equations, the energy constraint is

3H(ψ2
′ +Hφ2) +∇2

(
H(B2 − E2

′)− ψ2

)
+∇2B1

(
∇2(E1

′ − 1

2
B1)− 2ψ1

′
)

+B1,i

(
H(3HB1,

i − 2∇2E1,
i − 2(ψ1 + φ1),

i)− 2ψ1,
i′
)

+ 2E1,
ij(ψ1 − 2HB1),ij

+ 4H(ψ1 − φ1)
(

3ψ1
′ −∇2(E1

′ −B1)
)

+ E1,
ij ′
(

4HE1 +
1

2
E1
′ −B1

)
,ij

+ ψ1
′
(

2∇2(E1
′ − 2HE1)− 3ψ1

′)
)

+ ψ1,
i(2∇2E1 − 3ψ1),i + 2∇2ψ1(∇2E1 − 4ψ1)

− 12H2φ1
2 +

1

2

(
B1,ijB1,

ij +∇2E1,j∇2E1,
j − E1,ijkE1,

ijk −∇2E1
′∇2E1

′
)

= −4πGa2
(

2(ρ0 + P0)V1,
kv1,k + δρ2

)
, (3.113)

and the momentum constraint

ψ2
′
,i +Hφ2,i − E1

′
,ij(ψ1 + φ1 +∇2E1),

j +B1,ij(2HB1 + φ1),
j

−
[
ψ1,i(∇2E1 − 4ψ1)

]′
− φ1,i

(
8Hφ1 + 2ψ1

′ +∇2(E1
′ −B1)

)
−B1,jψ1,i

j + 2ψ1,
j ′E1,ij + E1,jk

′E1,i
jk − ψ1

′
,i(∇2E1 + 4φ1)−∇2ψ1B1,i

= −4πGa2
[
(ρ0 + P0)

(
V2,i − 2φ1(V1 +B1),i − 4(ψ1v,i − E1,ikv1,

k)
)

+ 2(δρ1 + δP1)V1,i

]
, (3.114)
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while, from the trace of the i− j component, we obtain

3H(2ψ2 + φ2)′ +∇2(E2
′′ + 2E2

′ + 2ψ2 −B2
′ − φ2 + 2HB2)− 3φ2

(
H2 − 2

a′′

a

)
+ 3ψ2

′′

+ (ψ1 − φ1)
(

12(ψ1
′′ + 2Hψ1

′) + 4∇2(φ1 + (B1 − E1)′) + 8H∇2(B1 − E1
′)
)

+ E1,
ij
(

8H(E1
′ −B1),ij + 2ψ1,ij − 4φ1,ij − 4B1

′
,ij

)
+ E1,

ij
(5

2
E1
′
,ij −B1,ij

)
+ 2∇2E1

′
(

4φ1
′ −∇2(E1

′ − 2B1)
)

+∇2E1,
i
(
∇2E1,i + 2φ1,i − 4HB1,i − 2B1

′
,i

)
+ ψ1,

i
(

2∇2E1,i − 4HB1,i − 2(ψ1 + φ1),i − 2B1
′
,i

)
− 2φ1

′(∇2B1 + 12Hφ1)

− 2φ1,iφ1,
i + 2∇2ψ1(∇2E1 − 4ψ1) + ψ1

′
(

3ψ1
′ − 6φ1

′ − 8H∇2E1 − 2∇2(E1
′ +B1)

)
+ 2B1,

i
(
H(3B1

′ − 2φ1)− 3ψ1
′
)
,i

+
1

2

(
B1,ijB1,

ij − E1,ijkE1,
ijk −∇2B1∇2B1

)
+ 4(E1,

ijE1
′′
,ij − ψ1

′′∇2E1) + 3
(
H2 − 2

a′′

a

)(
4φ1

2 −B1,iB1,
i
)

= 4πGa2
(

3δP2 + 2(ρ0 + P0)v1,
iV1,i

)
. (3.115)

We can obtain, from the i− j component a fourth Einstein equation, as at linear

order, by applying the operator ∂i∂
j. However, since we do not require this equation

for the work in this thesis, as one can always use the energy-momentum conservation

equations in place of the i− j equations, we omit that equation here.

3.2.1 Uniform Curvature Gauge

We now present the second order equations in the uniform curvature gauge, where

ψ̃ = Ẽ = F̃i = 0, at both first and second orders. We also consider only scalar and

vector perturbations in this section, i.e. we choose to neglect tensor perturbations,

and so Cij = 0, at both first and second order. We obtain the energy conservation

equation

δρ2
′ + 3H(δρ2 + δP2) + (ρ0 + P0)v2i,

i + 2(δρ1 + δP1),iv
i
1 + 2(δρ1 + δP1)v1i,

i

+ 2(ρ0 + P0)
[
(V i

1 + vi1)V ′1i + vi1,iφ1 + 2vi1φ1,i + 4Hvi1(V1i + v1i)
]

= 0 , (3.116)
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and momentum conservation equation[
(ρ0 + P0)V2i

]′
+ (ρ0 + P0)(φ2,i + 4HV2i) + δP2,i + 2

[
(δρ1 + δP1)V1i

]′
+ 2(δρ1 + δP1)(φ1,i + 4HV1i)− 2(ρ0 + P0)′(B1i + V1i)φ1

+ 2(ρ0 + P0)
[
V1iv

j
1,j −B1i(φ1

′ + 8Hφ1) + vj1(V1i,j −B1j,i)

− φ1(V ′1i +B′1i + 2φ1,i + 4Hv1i)
]

= 0 . (3.117)

The Einstein equations give us an energy constraint

2H(Bi
2,i + 3Hφ2) + 2Bi

1

[1

2

(
∇2B1i −B1j,i

j
)
− 2Hφ1,i

]
+

1

2
B1j,i(B

i
1,
j +Bj

1 ,
i)− 6H2(4φ2

1 −B1iB
i
1)−Bi

1,iB1j,
j − 8HBi

1,iφ1

= −8πGa2
[
2(ρ0 + P0)V k

1 v1k + δρ2

]
, (3.118)

a momentum constraint

1

2

(
∇2B2i −B2k,i

k
)
− 2Hφ2,i + 16Hφ1,iφ1 − 4HBj

1B1j,i

−
(
B1i,j +B1j,i

)
φ1,

j + 2Bj
1 ,jφ1,i + 2φ1(B1j,i

j −∇2B1i)

= 16πG
[1

2
V2i − φ1(V1i +B1i) + (δρ1 + δP1)V1i

]
, (3.119)

and a third equation from the (i− j) component

− 1

2
(Bi′

2 ,j +B2j,
i′)− φ2,

i
j −H(Bi

2,j +B2j,
i)

+ δij

{
2φ2

(2a′′

a
−H2

)
+ 2H(Bk

2 ,k + φ′2) +Bk′

2 k +∇2φ2

}
+ 2φ1,

iφ1,j

+Bk
1 (B1j,

i
k +Bi

1,jk − 2B1k,
i
j) + (Bi

1,j +B1j,
i)(φ1

′ +Bk
1 ,k)−B1k,

iBk
1 ,j −B1j,

kBi
1,k

+Bi
1(B1k,j

k −∇2B1j + 4Hφ1,j) + 2φ1[B1j,
i′ +B1

i′
,j + 2φ1,

i
j + 2H(B1j,

i +B1
i
,j)]

+ 2δij

{(
H2 − 2a′′

a

)
(4φ2

1 −B1kB1
k)− 2φ1[Bk′

1 ,k −∇2φ1 + 2H(2φ′1 +Bk
1 ,k)]

Bk
1 [∇2B1k −B1l,k

l + 2H(B′1k − φ1,k)]−
1

4
(2Bk

1 ,kB1l,
l −B1l,kB

k
1 ,
l − 3Bl

1,kB1l,
k)

− φ′1Bk
1 ,k − φ1,kφ1,

k
}

= 8πG
[
2(ρ0 + P0)vi1V1j + δijδP2

]
. (3.120)
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Considering scalar perturbations only, energy conservation gives

δρ2
′ + 3H(δρ2 + δP2) + (ρ0 + P0)∇2v2 + 2(δρ1 + δP1),iv1

i

2(δρ1 + δP1)∇2v + 2(ρ0 + P0)
[
(V ′1,i + 4Hv1,i)(V1,i + v1,i)

+∇2v1φ1 + 2v1,
iφ1,i

]
= 0 , (3.121)

and momentum conservation gives[
(ρ0 + P0)V1,i

]′
+ (ρ0 + P0)

(
φ2 + 4HV2

)
,i

+ δP2,i + 2
[
V1,i(δρ1 + δP1)

]′
+ 2(δρ1 + δP1)

(
φ1 + 4HV1

)
,i
− 2(ρ0 + P0)′(V1 +B1),iφ1

+ 2(ρ0 + P0)
[
V1,i∇2v1 −B1,i(φ1

′ + 8Hφ1) + v1,
jv1,ij

− φ1

(
(V1 +B1)′ + 2φ1 + 4Hv1

)
,1

]
= 0 . (3.122)

Finally, the Einstein equations for scalars only in the uniform curvature gauge are

3H2φ2 +∇2HB2 − ψ2 −
1

2
(∇2B1)2 +HB1,i(3HB1,

i − 2φ1,
i) + 4Hφ1B1

− 12H2φ1
2 +

1

2
B1,ijB1,

ij = −4πGa2
(

2(ρ0 + P0)V1,
kv1,k + δρ2

)
, (3.123)

Hφ2,i +B1,ij(2HB1 + φ1),
j − φ1,i

(
8Hφ1 −∇2B1

)
= −4πGa2

[
(ρ0 + P0)

(
V2,i − 2φ1(V1 +B1),i

)
+ 2(δρ1 + δP1)V1,i

]
, (3.124)

and

3Hφ2
′ +∇2(2HB2 −B2

′ − φ2)− φ1

(
4∇2(φ1 +B1

′) + 8H∇2B1

)
− 2φ1

′(∇2B1 + 12Hφ1)− 2φ1,iφ1,
i + 2HB1,

i
(

3B1
′ − 2φ1

)
,i

+
1

2

(
B1,ijB1,

ij −∇2B1∇2B1

)
+ 3
(
H2 − 2

a′′

a

)(
4φ1

2 −B1,iB1,
i − φ2

)
= 4πGa2

(
3δP2 + 2(ρ0 + P0)v1,

iV1,i

)
. (3.125)

The Klein-Gordon equation can be obtained at second order by using the same

technique as at first order: comparing the energy-momentum tensor for the scalar

field to that of a perfect fluid and using energy conservation. The equation for a
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canonical scalar field is

δϕ′′2 + 2Hδϕ′2 −∇2δϕ2 + a2U,ϕϕδϕ2 + a2U,ϕϕϕδϕ
2
1 + 2a2U,ϕφ2 − ϕ′0(∇2B2 + φ2

′)

+ 4ϕ′0B1,kφ1,
k + 2(2Hϕ′0 + a2U,ϕ)B1,kB1,

k + 4φ1(a2U,ϕϕδϕ1 −∇2δϕ1) + 4ϕ′0φ1φ1
′

− 2δϕ′1(∇2B1 + φ1
′)− 4δϕ′1,kB1,

k = 0 , (3.126)

where we are yet to use the field equations to remove the metric perturbations. See

Refs.[65, 67, 68, 106] for the closed form of the Klein-Gordon equation at second

order and for detailed work on the second order Klein-Gordon equation.

3.2.2 Poisson Gauge

In this section we present the second order equations in the Poisson gauge, in order

to connect with the literature which often uses this gauge (for example, Ref. [3]

presents the Einstein equations with scalar field matter in this gauge). The gauge

is defined by Ẽ = 0 = B̃, and then φ̃ = Φ and ψ̃ = Ψ. In the absence of anisotropic

stress, as is the case for this work, Ψ1 = Φ1 (though note that this does not hold

true for the second order variables Φ2 and Ψ2). Note also that, in this gauge, V = v.

Energy conservation then becomes

δρ2
′ + 3H(δρ2 + δP2) + (ρ0 + P0)

(
∇2v2 − 3Ψ′2

)
+ 2(δρ1 + δP1),iv1

i

+ 2(δρ1 + δP1)
(
∇2v1 − 3Φ′1

)
+ 2(ρ0 + P0)

[
2(v′1,i + 4Hv1,i)v1,

i

+ 3Φ1Φ′1 +∇2v1Φ1 − v1,
iΦ1,i

]
= 0 , (3.127)

while the momentum conservation equation is[
(ρ0 + P0)v2,i

]′
+ (ρ0 + P0)

(
Φ2 + 4Hv2

)
,i

+ δP2,i + 2
[
v1,i(δρ1 + δP1)

]′
+ 2(δρ1 + δP1)

(
Φ1 + 4Hv1

)
,i
− 6(ρ0 + P0)′Φ1v1,i

+ 2(ρ0 + P0)
[
v1,i

(
∇2v1 − 3Φ′1

)
+ v1,

jv1,ij − Φ1

(
v′1 + 2Φ1 + 4Hv1

)
,i

− 2
(

Φ1v1,i

)′
− 8HΦ1v1,i

]
= 0 . (3.128)

Then, the Einstein equations (where we here do not decompose the velocity into
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a scalar and divergenceless vector) are

3H(Ψ′2 +HΦ2)−∇2Ψ2 − 3Φ′1Φ′1 − 3Φ1,
iΦ1,i − 8∇2Φ1Φ1 − 12H2Φ2

1

= −4πGa2
(

2(ρ0 + P0)v1
kv1k + δρ2

)
, (3.129)

Ψ′2,i +HΦ2,i + 4(Φ1,iΦ)′ − Φ1,i(8HΦ1 + 2Φ′1)− 4Φ′1,iΦ1

= −4πGa2
[
(ρ0 + P0)(v2i − 6Φ1v1i) + 2(δρ1 + δP1)v1i

]
, (3.130)

and

Ψ′′2 +H(2Ψ2 + Φ2)′ +
1

3
∇2(Φ2 −Ψ2) +

(2a′′

a
−H2

)
Φ2

+ 4Φ2
1

(
H2 − 2a′′

a

)
− 2Φ1,

iΦ1,i − 8HΦ1Φ′1 −
8

3
∇2Φ1Φ1 − 3(Φ′1)2

= 4πGa2
(
δP2 +

2

3
(ρ0 + P0)v1

iv1i

)
. (3.131)

For completeness, we present the fourth field equation, obtained by applying the

operator ∂i∂
j to the i− j component of the Einstein equations, Eq. (A.1):

Ψ′′2 +H(2Ψ′2 + Φ′2) +
(2a′′

a
−H2

)
Φ2 = 4πGa2δP2 + 8πGa2(ρ0 + P0)∇−2∂i∂

j(v1
iv1j)

−∇−2
{

2Φ1,kΦ1,
k ′ + 4Φ1,

i
jΦ1,i

j −∇2
[
Φ1 + Φ′′1 + 2Φ2

1

(
H2 − 2a′′

a

)]
+ Φ′1

(
4∇4Φ′1 − 3∇2Φ′1 + 2H∇2Φ1

)}
, (3.132)

where ∇−2 is the inverse Laplacian operator. Finally, combining Eqs. (3.131) and

(3.132), we obtain

∇2(Ψ2 − Φ2) = 24πGa2(ρ0 + P0)
[
vi1v1i −∇−2

(
∂i∂

j(vivj)
)]

+ 12Φ2
1

(
H2 − 2a′′

a

)
− 18HΦ1Φ′1 − 3∇−2

{
2Φ1,k

′Φ1,
k ′ + 4Φ1,

i
jΦ1,i

j + Φ′1(4∇4Φ′1 − 3∇2Φ′1 + 2H∇2Φ1)
}

− 6Φ1,iΦ1,
i + Φ1Φ′′1 + (Φ′1)2 + 2Φ2

1

(
H2 − 2a′′

a

)
. (3.133)

which is the second order analogue of the equation which, at first order, tells us that

the two Newtonian potentials are identical in the absence of anisotropic stress.
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3.3 Discussion

In this chapter we have presented the dynamical equations for general scalar, vector

and tensor perturbations of a flat FRW spacetime at both linear and second order.

The case of linear perturbations is relatively simple since the different types of

perturbation decouple from one another. However, as one moves beyond linear

order, this is no longer the case and so things necessarily become more involved.

As we have seen, at second order the energy-momentum conservation equations,

for example, not only depend upon the true second order perturbations, but also

involve terms quadratic in first order perturbations. So, while in this chapter we

have managed to solve the linear equations analytically in, for example, the uniform

curvature gauge, doing this at second order would be far more complicated. But

with this complication comes great reward, since this coupling between lower order

perturbations provides a source which can result in qualitatively new results, and

thus new observational phenomena. In the next chapter we will discuss one such

example: vorticity generation at second order in perturbation theory.



4 Vorticity

Vorticity is a common phenomenon in situations involving fluids in the ‘real world’

(see e.g. Refs. [2, 79]). There has also been some interest recently in studying

vorticity in astrophysical scenarios, including the inter galactic medium [44, 155], but

relatively little attention has been paid to the role that vorticity plays in cosmology

and the early universe.

In this chapter we will consider vorticity in early universe cosmology. Starting

with a summary of vorticity in classical fluid dynamics as motivation, we show

that vorticity is generated by gradients in energy density and entropy. We then

consider vorticity in cosmology, for which we need to use general relativity and

cosmological perturbation theory. At linear order, there is no source term present

in the evolution equation, and any vorticity present in the early universe will decay

with the universe expansion. At second order, however, vorticity is induced by linear

order perturbations. As mentioned in Chapter 1, while at first order perturbations

of different types decouple, this is no longer true at higher orders. Recent work

in the area of second order gravitational waves has exploited this fact [11, 13–

15, 20, 114, 117, 125, 132, 148], as have recent studies of induced vector perturbations

[97, 98]. Though Ref. [98] assumed the restrictive condition of adiabaticity which

therefore could not source vorticity at any order, we show that, in analogy with the

classical case, vorticity is sourced at second order in perturbation theory by a term

quadratic in energy density and entropy (or non-adiabatic pressure) perturbations.

Finally, we present a first estimate of the magnitude and scale dependence of this

induced vorticity, using the expression for the energy density derived in Section 3.1.2

as an input power spectrum along with a sensible ansatz for that of the non-adiabatic

pressure perturbation. We close the chapter with a discussion of the results, and

highlight some potential observational consequences. The results in the chapter have

been published in Refs. [38–40].

74
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4.1 Introduction

In classical fluid dynamics the evolution of an inviscid fluid in the absence of body

forces is governed by the Euler, or momentum, equation [79]

∂v

∂t
+ (v ·∇)v = −1

ρ
∇P , (4.1)

where v is the velocity vector, ρ the energy density and P the pressure of the fluid.

The vorticity, ω, is a vector field and is defined as

ω ≡∇× v , (4.2)

and can be thought of as the circulation per unit area at a point in the fluid flow.1 An

evolution equation for the vorticity can be obtained by taking the curl of Eq. (4.1),

which gives
∂ω

∂t
= ∇× (v × ω) +

1

ρ2
∇ρ×∇P . (4.3)

The second term on the right hand side of Eq. (4.3), often called the baroclinic

term in the literature, then acts as a source for the vorticity. Evidently, this term

vanishes if lines of constant energy and pressure are parallel, or if the energy density

or pressure are constant. A special class of fluid for which the former is true is a

barotropic fluid, defined such that the equation of state is a function of the energy

density only, i.e. P ≡ P (ρ), and so (1/ρ2)∇ρ×∇P = 0.

For a barotropic fluid, the vorticity evolution equation, Eq. (4.3), can then be

written, by using vector calculus identities, as

Dω

Dt
≡ ∂ω

∂t
+ (v ·∇)ω = (ω ·∇)v − ω(∇ · v) , (4.4)

where D/Dt denotes the convective, or material derivative, which is commonly used

in fluid dynamics. From Eq. (4.4) it is clear that the vorticity vector has no source,

in this case, and so ω = 0 is a solution.

1The circulation, Γ, is defined as

Γ =
∮
C

v · dl ,

where C is the boundary of the surface S. Then, using Stokes theorem, this becomes

Γ =
∫ ∫

S

(∇× v) · dS ,

which gives the result that the vorticity is the circulation per unit area at a point in the fluid
flow. �
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Allowing for a more general perfect fluid with an equation of state depending not

only on the energy density, but of the form P ≡ P (S, ρ) will mean that, in general,

the baroclinic term is no longer vanishing, and so acts as a source for the evolution

of the vorticity. This is Crocco’s theorem [43] which states that vorticity generation

is sourced by gradients in entropy in classical fluid dynamics.

4.2 Vorticity in Cosmology

In General Relativity, the vorticity tensor is defined as the projected anti sym-

metrised covariant derivative of the fluid four velocity, that is [75]

ωµν = P α
µ P β

ν u[α;β] , (4.5)

where the projection tensor Pµν into the instantaneous fluid rest space is given by

Pµν = gµν + uµuν . (4.6)

Note that, in analogy with the classical case, it is possible to define a vorticity vector

as ωµ = 1
2
εµνγω

νγ, where εµνγ ≡ uδεδµνγ is the covariant permutation tensor in the

fluid rest space (see Refs. [62, 98]). However, since this is less general we choose

to work with the vorticity tensor when deriving the equations, and only switch to

using the vorticity vector when solving the equation in Section 4.4.

The vorticity tensor can then be decomposed in the usual way, up to second order

in perturbation theory, as ωij ≡ ω1ij + 1
2
ω2ij. Working in the uniform curvature

gauge, and considering only scalar and vector perturbations, we can obtain the

components of the vorticity tensor by substituting the expressions for the fluid four

velocity, Eq. (2.23), along with the metric tensor into Eq. (4.5). At first order this

gives us

ω1ij = aV1[i,j] , (4.7)

and at second order

ω2ij = aV2[i,j] + 2a
[
V ′1[iV1j] + φ1,[i (V1 +B1)j] − φ1B1[i,j]

]
. (4.8)

The first order vorticity is gauge invariant. In order to see this we recall, from

Eq. (2.94), that V1i transforms under a gauge transformation as

Ṽ1i = V1i − α1,i , (4.9)



4.3: Vorticity Evolution 77

so the first order vorticity transforms as

ω̃1ij = aṼ1[i,j] = a(V1i,j − α1,ij − V1j,i + α1,ji) = ω1ij , (4.10)

and is therefore gauge invariant.

4.3 Vorticity Evolution

In order to obtain an evolution equation for the vorticity at first order, we take the

time derivative of Eq. (4.7) to get

ω′1ij = a′V1[i,j] + aV ′1[i,j] . (4.11)

Noting that, from Eq. (3.24),

V ′1[i,j] +H(1− 3c2
s )V1[i,j] +

[
δP1

ρ0 + P0

+ φ1

]
,[ij]

= 0 , (4.12)

which gives

V ′1[i,j] = −H(1− 3c2
s )V1[i,j] = −1

a
H(1− 3c2

s )ω1ij , (4.13)

and so, from Eq. (4.11),

ω′1ij − 3Hc2
sω1ij = 0 . (4.14)

This reproduces the well known result that, during radiation domination, |ω1ijω
ij
1 | ∝

a−2 in the absence of an anisotropic stress term [75].

At second order things get somewhat more complicated. We now take the time

derivative of Eq. (4.8), to give

ω′2ij = a′V2[i,j] + aV2[i,j] + 2a′
[
V ′1[iV1j] + φ1,[i (V1 +B1)j] − φ1B1[i,j]

]
+ 2a

[
V ′′1[iV1j] + V ′1[iV

′
1j] + φ′1,[i (V1 +B1)j] + φ1,[i (V1 +B1)′j]

− φ′1B1[i,j] − φ1B
′
1[i,j]

]
. (4.15)

Therefore we now must use the first order conservation and field equations to elim-

inate the first order metric perturbations as well as the second order conservation

equations in order to eliminate the second order metric perturbation variables. This

process involves simple algebra, but is very tedious and so we omit the intermedi-
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ate steps and instead quote the result. We arrive at the evolution equation for the

second order vorticity

ω′2ij − 3Hc2
sω2ij + 2

[(
δP1 + δρ1

ρ0 + P0

)′
+ V k

1,k −Xk
1,k

]
ω1ij (4.16)

+ 2
(
V k

1 −Xk
1

)
ω1ij,k − 2

(
Xk

1,j − V k
1,j

)
ω1ik + 2

(
Xk

1,i − V k
1,i

)
ω1jk

=
a

ρ0 + P0

{
3H
(
V1iδPnad1,j − V1jδPnad1,i

)
+

1

ρ0 + P0

(
δρ1,jδPnad1,i − δρ1,iδPnad1,j

)}
,

where X1i is given entirely in terms of matter perturbations as

X1i = ∇−2

[
4πGa2

H
(
δρ1,i −H(ρ0 + P0)V1i

)]
. (4.17)

Eq. (4.16) then shows that the second order vorticity is sourced by terms quadratic

in linear order perturbations.

In fact, even assuming zero first order vorticity, i.e. ω1ij = 0, the second order

vorticity evolves as

ω′2ij − 3Hc2
sω2ij =

2a

ρ0 + P0

{
3HV1[iδPnad1,j] +

δρ1,[jδPnad1,i]

ρ0 + P0

}
, (4.18)

and so we see that there is a non zero source term for the vorticity at second order

in perturbation theory which is, in analogy with classical fluid dynamics, made up

of gradients in entropy and density perturbations. Note that, in the absence of a

non-adiabatic pressure perturbation, we recover the result of Ref. [98] that there is

no vorticity generation.

4.4 Solving the Vorticity Evolution Equation

Having derived an evolution equation for the second order vorticity in the previous

section, we now seek an analytic solution to this equation (or, more precisely, the

power spectrum of the vorticity governed by this evolution equation), using suitable,

realistic approximations for the input power spectra.
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4.4.1 The Vorticity Power Spectrum

In order to keep our results conservative and our calculation as simple as possible

and hence analytically tractable, we assume that the source term in Eq. (4.18) is

dominated by the second term.2 Then, choosing the radiation era as our background

in which c2
s = 1/3, the evolution equation simplifies to

ω′ij −Hωij =
9a

8ρ2
0

δρ,[jδPnad,i] , (4.19)

where we note that, for the remainder of this Chapter, we omit the subscripts

denoting the order of the perturbation in order to avoid notational ambiguities, and

to keep the expressions as compact and clear as possible: the vorticity is a second

order quantity and the energy density and non-adiabatic pressure perturbations are

first order quantities. We define the right hand side of Eq. (4.19) to be the source

term,

Sij(x, η) ≡ 9a(η)

8ρ0(η)2
δρ,[jδPnad,i] , (4.20)

which on defining the function f(η) as

f(η) =
9a

16ρ2
0

, (4.21)

is written, for convenience, as

Sij(x, η) ≡ 2f(η)δρ,[jδPnad,i] . (4.22)

Since we want to solve the evolution equation we move to Fourier space, in which

the source term becomes the convolution integral

Sij(k, η) = − f(η)

(2π)3/2

∫
d3k̃(k̃ikj − k̃jki)δPnad(k̃, η)δρ1(k − k̃) , (4.23)

where k is the wavevector, as usual. Instead of considering the vorticity tensor ωij,

it is easier, and more natural in this case, to work, in analogy with the classical case,

2This is a reasonable assumptions since we are working on small scales and the first term has a
prefactor 1/k2.
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with the vorticity vector. This is defined as3

ωi(x, η) = εijkω
jk(x, η) , (4.24)

where εijk is the totally antisymmetric tensor, and we can define a source vector in

an analogous way:

Si(x, η) = εijkS
jk(x, η) . (4.25)

Note that the vorticity is an axial vector (that is, it arises from the generalisation

of the cross product), and so both ωi and Si are pseudovectors. Thus, under the

transformation of the argument x → −x the vector vorticity transforms as ωi →
−ωi, and similarly for Si. The source vector is then Fourier transformed as

Si(x, η) =
1

(2π)3/2

∫
d3k Si(k, η)eik·x , (4.26)

with the source vector in Fourier space then being split up as

Si(k, η) = SA(k, η)eAi , (4.27)

where SA are the amplitudes, with A ∈ {1, 2, 3}, and the basis vectors are

{
e1
i , e

2
i , e

3
i

}
=

{
ei(k), ēi(k),

ki
|k|
≡ k̂i

}
, (4.28)

In order to keep a right handed orthonormal basis under the sign reversal of k

(k→ −k), the basis vectors must obey

ei(−k) = ei(k) , (4.29)

ēi(−k) = −ēi(k) ; (4.30)

the basis vectors are also cyclic:

εijk e
j
1e
k
2 = e3i . (4.31)

Given these definitions, the evolution equation, Eq. (4.19), can then be written as

ω′A(k, η)−HωA(k, η) = SA(k, η) , (4.32)

3Though strictly this is a covector not a vector, since we are working in a flat background the
two are equivalent up to raising or lowering of indices by the Kronecker delta. Therefore, we
are slightly loose with terminology here, and do not differentiate between the two.
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for each basis state, A (though we omit the subscript in the next few lines, since

the evolution equations is the same for each polarisation). The left hand side of

Eq. (4.32) can be expressed as an exact derivative, giving

a

(
ω(k, η)

a

)′
= S(k, η) , (4.33)

which, in radiation domination when a = η, becomes(
ω(k, η)

η

)′
= η−1S(k, η) . (4.34)

This can then be integrated to give

ω(k, η) = η

∫ η

η0

η̃−1S(k, η̃)dη̃ , (4.35)

for some initial time η0. Having solved the temporal evolution of the vorticity, we

now move on to considering the power spectrum. In analogy with the standard case

for scalar perturbations, we define the power spectrum of the vorticity Pω as

〈ω∗(k1, η)ω(k2, η)〉 =
2π

k3
δ(k1 − k2)Pω(k, η) , (4.36)

where here the star denotes the complex conjugate, and k = |k| is the wavenumber,

as usual. On substituting Eq. (4.35) into Eq. (4.36), we can write the correlator for

the vorticity as

〈ω∗(k1, η)ω(k2, η)〉 = η2

∫ η

η0

η̃−1
1

∫ η

η0

η̃−1
2 〈S∗(k1, η̃1)S(k2, η̃2)〉 dη̃1dη̃2 , (4.37)

and so, in order to obtain the vorticity power spectrum, we must calculate the

correlator of the source term. Thus, we need to consider how the Fourier amplitudes,

SA(k, η), behave under complex conjugation. From Eqs. (4.26) and (4.27) we can

write

Si(x, η) =
1

(2π)3/2

∫
d3k
[
S1(k, η) ei(k) + S2(k, η)ēi(k) + S3(k, η)k̂i

]
eik·x , (4.38)
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whose complex conjugate is then

Si(x, η) =
1

(2π)3/2

∫
d3k
[
S∗1 (k, η) ei(k) + S∗2 (k, η)ēi(k) + S∗3 (k, η)k̂i

]
e−ik·x .

(4.39)

Alternatively, under the change k→ −k, on which Si → −Si, as mentioned above,

Eq. (4.38) becomes

Si(x, η) =
1

(2π)3/2

∫
d3k
[
− S1(−k, η) ei(−k)− S2(−k, η)ēi(−k)

− S3(−k, η) · (−k̂i)
]
e−ik·x . (4.40)

Comparing Eqs. (4.39) and (4.40), we can then read off the relationship between the

Fourier amplitudes and their conjugates:

S∗1 (k, η) = −S1(−k, η) , (4.41)

S∗2 (k, η) = S2(−k, η) , (4.42)

S∗3 (k, η) = S3(−k, η) . (4.43)

Then, from the definition of the vector source term, we obtain the Fourier amplitudes

S1(k, η) = − f(η)

(2π)3/2

∫
d3k̃ · 2kēik̃iδPnad(k, η)δρ1(k − k̃, η) , (4.44)

S2(k, η) =
f(η)

(2π)3/2

∫
d3k̃ · 2keik̃iδPnad(k, η)δρ1(k − k̃, η) , (4.45)

S3(k, η) = 0 . (4.46)

This last equation tells us that the projection of Eq. (4.38) onto the basis vector ki

gives zero (since contracting Eq. (4.38) with ki contracts two copies of k with the

permutation symbol, automatically giving zero). The complex conjugates are

S∗1 (k, η) = − f(η)

(2π)3/2

∫
d3k̃2kēik̃

iδPnad(k, η)δρ(−(k + k̃), η) , (4.47)

S∗2 (k, η) =
f(η)

(2π)3/2

∫
d3k̃2keik̃

iδPnad(k, η)δρ(−(k + k̃), η) . (4.48)
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Having now obtained the required amplitudes and their conjugates, we can com-

pute the correlator of the source terms for the A = 1 mode in Eq. (4.37).4 Assuming

that the fluctuations δρ and δPnad are Gaussian, we can put the directional depen-

dence into Gaussian random variables Ê(k), which obey the relationships〈
Ê∗(k1)Ê(k2)

〉
= δ3(k1 − k2) ,

〈
Ê(k1)Ê(k2)

〉
= δ3(k1 + k2) , (4.49)

and write, for example,5

δρ(k, η) = δρ(k, η)Ê(k) . (4.50)

The correlator then becomes

〈S∗(k1, η̃1)S(k2, η̃2)〉 =
f1̃f2̃

(2π)3

∫
d3k̃12k1k̃1iē

i
1δPnad(k̃1, η̃1)δρ(|k1 + k̃1|, η̃1)

×
∫
d3k̃22k2k̃2iē

i
2δPnad(k̃2, η̃2)δρ(|k2 − k̃2|, η̃2)

×
〈
Ê(−k̃1)Ê(−k1 − k̃1)Ê(k̃2)Ê(k2 − k̃2)

〉
, (4.51)

where we have introduced the notation f1̃ ≡ f(η̃1). Wick’s theorem (see, e.g.,

Ref. [46]) then allows us to express the correlator in the above in terms of delta

functions as〈
Ê(k̃1)Ê(−k1 − k̃1)Ê(k̃2)Ê(k2 − k̃2)

〉
=
〈
Ê(k̃1)Ê(−k1 − k̃1)

〉〈
Ê(k̃2)Ê(k2 − k̃2)

〉
+
〈
Ê(k̃1)Ê(k̃2)

〉〈
Ê(−k1 − k̃1)Ê(k2 − k̃2)

〉
+
〈
Ê(k̃1)Ê(k2 − k̃2)

〉〈
Ê(−k1 − k̃1)Ê(k̃2)

〉
= δ3(k̃1 + k̃2)δ3(−k1 − k̃1 + k2 − k̃2) + δ3(k̃1 + k2 − k̃2)δ3(−k1 − k̃1 + k̃2) ,

(4.52)

4Note that we need only consider one orthogonal component of the source vector, since we can
make an appropriate choice such that its component in one direction is zero.

5In making this choice, we are assuming that δρ and δPnad are completely correlated variables.
This is perhaps not the most physically motivated assumption, since one might expect some
level of decorrelation between the two variables. However, this assumption will likely give
the largest signal (the partially decorrelated case will, in its simplest form, require a new
parameter less than one, which characterises how decorrelated the two variables are – this
parameter can be determined from the specific model for the production of the non-adiabatic
pressure perturbation), so is suitable as a first approximation. We leave the case where the two
variables are decorrelated for future work.
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which gives

〈S∗(k1, η̃1)S(k2, η̃2)〉 =
f1̃f2̃

2π3

∫
d3k̃1

∫
d3k̃2

{
k1ēik̃

iδPnad(k̃1, η̃1)δρ(|k1 + k̃1|, η̃1)

× k2ēik̃
i
2δPnad(k̃2, η̃2)δρ(|k2 − k̃2|, η̃2)

}
(4.53)

×
{
δ3(k̃1 + k̃2)δ3(k2 − k1 − k̃1 − k̃2) + δ3(k̃1 − k̃2 + k2)δ3(k̃2 − k1 − k̃1)

}
.

(4.54)

By integrating over the delta functions, and collecting terms, we arrive at

〈S∗(k1, η̃1)S(k2, η̃2)〉 =
f1̃f2̃

2π3
δ3(k2 − k1)k2

∫
d3k̃(ēik̃

i)2δPnad(k̃, η̃1)δρ1(|k + k̃|, η̃1)

×
[
δPnad(|k + k̃|, η̃2)δρ1(k̃, η̃2)− δPnad(k̃, η̃2)δρ1(|k + k̃|, η̃2)

]
,

(4.55)

from which we can read off the power spectrum:

Pω(k, η) =
k5η2

4π4

∫ ∫
f1̃f2̃η̃

−1
1 η̃−1

2 dη̃1dη̃2

∫
d3k̃(ēik̃

i)2δPnad(k̃, η̃1)δρ1(|k + k̃|, η̃1)

×
[
δPnad(|k + k̃|, η̃2)δρ1(k̃, η̃2)− δPnad(k̃, η̃2)δρ1(|k + k̃|, η̃2)

]
. (4.56)

Now, as a first approximation for the source term, we can expand Eq. (3.42) to

lowest order in kη to give

δρ(k, η) = Ākβ η−4 , (4.57)

δPnad(k, η) = D̄kα η−5 , (4.58)

where Ā and D̄ are yet unspecified amplitudes, and α and β undetermined powers.

Using these approximations gives

Pω(k, η) =
81

256

k5η2

4π4
(AD)2

[
ln

(
η

η0

)]2

×
∫
d3k̃(ēik̃

i)2k̃α|k + k̃|β
(
|k + k̃|αk̃β − k̃α|k + k̃|β

)
(4.59)

where we have performed the temporal integral by noting that as mentioned above,

a ∝ η during radiation domination, and thus ρ0 ∝ η−4. To perform the k-space

integral, we first move to spherical coordinates oriented with the axis in the direction

of k. Then, denoting the angle between k and k̃ as θ, the integral can be transformed
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as ∫
d3k̃ → 2π

∫ kc

0

k̃2dk̃

∫ π

0

sin θdθ , (4.60)

where the prefactor comes from the fact that the integrand has no dependence on

the azimuthal angle, and kc denotes a cut-off on small scales. This cut-off is chosen

to be smaller than the typical separation of galaxies, and therefore much smaller

than the continuum limit, solely for the purpose of studying this toy model. Noting

that, in this coordinate system k̃iē
i = k̃ sin θ the integral in Eq. (4.59) becomes

I(k) = 2π

∫ kc

0

∫ π

0

k̃4+α sin θ dθ dk̃ sin2 θkβ
[
1 + (k̃/k)2 + 2(k̃/k) cos θ

]β/2
×
(
kα(1 + (k̃/k)2 + 2(k̃/k) cos θ)α/2k̃β − k̃αkβ(1 + (k̃/k)2 + 2(k̃/k) cos θ)β/2

)
(4.61)

Finally, we change variables again to dimensionless u and v defined as [11] (or

similarly [27])

v =
k̃

k
, u =

√
1 + (k̃/k)2 + 2(k̃/k) cos θ =

√
1 + v2 + 2v cos θ , (4.62)

for which the integral (4.61) becomes

I(k) = k2(α+β)+5

∫ kc/k

0

∫ v+1

|v−1|
u du v3 dv uβvα

(
1− 1

4v2
(u2 − v2 − 1)2

)[
uαvβ − vαuβ

]
.

(4.63)

4.4.2 Evaluating the Vorticity Power Spectrum

In order to perform the integral Eq. (4.63) derived above, we need to specify the

exponents for the power spectra of the energy density and the non-adiabatic pressure

α and β. The energy density perturbation on slices of uniform curvature can be

related to the curvature perturbation on uniform density hypersurfaces, ζ, during

radiation domination through [112]

δρ = −ρ
′
0

H
ζ = 4ρ0ζ , (4.64)
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and hence the initial power spectra can be related as 〈δρiniδρini〉 = 16ρ2
0γini 〈ζiniζini〉,

and we get the power spectrum of the initial density perturbation

δρini ∝ ζini ∝
(
k

k0

) 1
2

(ns−1)

, (4.65)

where k0 is the Wmap pivot scale and ns the spectral index of the primordial

curvature perturbation [77]. This allows us to relate our ansatz for the density

perturbation, to the Wmap-data which gives

δρ = δρini

(
k

k0

)(
η

η0

)−4

= Ainiρ0ini

(
k

k0

) 1
2

(ns+1)(
η

η0

)−4

. (4.66)

From this, we can read off that β = 1
2
(ns + 1) ' 1 and the amplitude A = Ainiρ0ini.

We have some freedom in choosing α, however would expect the non-adiabatic pres-

sure to have a blue spectrum, though the calculation demands α 6= β. Using the

notation of Ref. [77] we get

A2 = ρ2
0iniPR(k0)2 = ρ2

0inik
−6
0 ∆4

R , D2 = ρ2
0iniPS(k0)2 = ρ2

0inik
−6
0 ∆4

S (4.67)

where we also have the ratio6

∆2
S

∆2
R

=
α(k0)

1− α(k0)
, (4.68)

and therefore,

(AD)2 =
α(k0)

1− α(k0)
∆8
Rρ

4
0inik

−12
0 . (4.69)

We can then substitute in numerical values for ∆2
R and α(k0) from Ref. [77] later

on.

Then, making the choice α = 2, the input power spectra are

δρ(k, η) = A

(
k

k0

)(
η

η0

)−4

, δPnad(k, η) = D

(
k

k0

)2(
η

η0

)−5

, (4.70)

for which the integral Eq. (4.63) becomes

I(k) = k11

∫ kc/k

0

∫ v+1

|v−1|
u2 du v5 dv

(
1− 1

4v2
(u2 − v2 − 1)2

)[
u2v − v2u

]
. (4.71)

6The parameter α(k0) is introduced in Refs. [22, 77] in order to quantify the ratio of ∆2
S to ∆2

R.
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We can then integrate this analytically to give

I(k) =
16

135
k9

ck
2 +

12

245
k7

ck
4 − 4

1575
k5

ck
6 , (4.72)

which clearly depends upon the small scale cut-off, as expected.7 For illustrative

purposes, we choose kc = 10Mpc−1 and plot the solution I(k). Fig. 4.1 shows that

the amplitude of the integral grows as the wavenumber increases. Fig. 4.2 shows a

turn around and a decrease in power at some wavenumber (in fact, for a non-specific

cutoff, this point is at 3.7375kc). However, we note that this value is greater than

our cutoff, and therefore not physical. As long as we consider values of k less than

the cutoff, our approximation will still be valid.

Then, using the above, and noting that the input to the temporal integrals are

a ∝
(
η

η0

)
, ρ0 = ρ0ini

(
η

η0

)−4

, (4.73)

we obtain the power spectrum for the vorticity, for general kc as

Pω(k, η) =
81

256
k5

0

η2

4π4

1

ρ4
0ini

ln2

(
η

η0

)(
α(k0)

1− α(k0)

)2

k−12
0 ∆8

Rρ
4
0inik

5
c

×

[
16

135

k4
c

k4
0

(
k

k0

)7

+
12

245

k2
c

k2
0

(
k

k0

)9

− 4

1575

(
k

k0

)11
]
. (4.74)

Substituting in values of parameters from Ref. [77], as presented in Table 4.1 taking

a conservative estimate for α(k0), being 10% of the upper bound as reported by

Wmap7, we obtain the vorticity power spectrum

Pω(k, η) = η2 ln2

(
η

η0

)[
0.87× 10−12k9

c

(
k

k0

)7

Mpc11 + 3.73× 10−18k7
c

(
k

k0

)9

Mpc9

− 7.71× 10−25k5
c

(
k

k0

)11

Mpc7

]
, (4.75)

7It should be noted that if one were to reduce the assumption of 100% correlation between the
energy density and entropy perturbation, this could soften this dependence. However, this is
left for future investigation.
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Figure 4.1: Plot of I(k), Eq. (4.71), for the illustrative choice of kc = 10Mpc−1;
small range of k < kc.
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Figure 4.2: Plot of I(k) for the illustrative choice of kc = 10Mpc−1; wide range of k
including k > kc.
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Parameter WMAP7 value

k0 0.002 Mpc−1

∆2
R(k0) 2.38× 10−9

α(k0) 0.13 (95% CL)

Table 4.1: Parameter values from the WMAP seven year data [77].

and for our above choice of kc = 10Mpc−1,

Pω(k, η) = η2 ln2

(
η

η0

)[
0.87× 10−3

(
k

k0

)7

+ 3.73× 10−11

(
k

k0

)9

− 7.71× 10−20

(
k

k0

)11
]

Mpc2 . (4.76)

This shows that, under our approximations, the vorticity spectrum has a non-

negligible amplitude, with a huge amplification of power on small scales. We plot

this, for illustrative purposes, in Figs. 4.3 and 4.4, where we have ignored the time

dependence and focused only on the scale dependence of the spectrum. We should

emphasise that we are studying the generation of vorticity in the wavenumber region

k0 < k < kc and do not expect the dynamics to be dominated by an “inverse cascade”

(i.e. a feedback of power from smaller scales to larger scales). Therefore, the physics

around the cut-off wavenumber cannot influence the vorticity generation. To study

this phenomenon in detail, a much more detailed calculation including backreaction

effects would have to be performed, beyond the scope of this thesis.

4.5 Discussion

In this Chapter we have studied the generation of vorticity in the early universe,

showing that second order in cosmological perturbation theory vorticity is sourced

by first order scalar and vector perturbations for a perfect fluid. This is an extension

of Crocco’s theorem to an expanding, dynamical background, namely, a FRW uni-

verse. Whereas previous works assumed barotropic flows, allowing for entropy gives

a qualitatively novel result. This implies that the description of the cosmic fluid as

a potential flow, which works exceptionally well at first order in the perturbations,

will break down at second order for non-barotropic flows. Similarly, in barotropic

flow Kelvin’s theorem guarantees conservation of vorticity. This is no longer true if
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Figure 4.3: Plot of Pω(k), i.e. the scale dependence of the vorticity power spectrum.
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Figure 4.4: Plot of Pω(k), for a narrower range of k values than Figure 4.3.
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the flow is non-barotropic.

Having derived the qualitative result, we then obtained the first realistic calcu-

lation of the amount of vorticity generated at second order. As an input spectrum

for the linear energy density, we used the solution obtained in Section 3.1.2 approx-

imated for small kη and normalised to Wmap7. Then, making the ansatz that the

non-adiabatic pressure perturbation has a bluer spectrum than that of the energy

density in order to keep the non-adiabatic pressure sub-dominant on all scales, we

obtained an analytical result for the vorticity. Our results show that the vorticity

power spectrum has a non-negligible magnitude which depends on the cutoff, kc, and

the chosen parameters. As this is a second order effect, the magnitude is somewhat

surprising. We have also shown that the result has a dependence of the wavenum-

ber to the power of at least seven for the choice α = 2, where α is the exponent

of the wavenumber for the non-adiabatic pressure input spectrum. Therefore the

amplification due to the large power of k is huge, rendering the vorticity not only

possibly observable, but also important for the general understanding of the physical

processes taking place in the early universe.

The consequences of this significant power are not immediately clear as the model

under consideration is only a toy model. Although vorticity is not generated in

standard cosmology (at linear order), the vorticity generated at second order will

not invalidate the standard predictions, as it is, on large scales, very small and

can only be of significant size on small scales. However, any possible observational

consequences will depend on the wavenumber at which the power spectrum peaks

(to be determined by an actual model).

One prospect for observing early universe vorticity is in the B-mode polarisation

of the CMB. Both vector and tensor perturbations produce B-mode polarisation, but

at linear order such vector modes decay with the expansion of the universe. However,

vector modes produced by gradients in energy density and entropy perturbations,

such as those discussed in this chapter, will source B-mode polarisation at second

order. Furthermore, it has recently been noted that vector perturbations in fact

generate a stronger B-mode polarisation than tensor modes with the same amplitude

[55]. Therefore, it is feasible for vorticity to be observed by future surveys such as the

space-based CMBPol [21], which is currently in the planning stage, or the ground

based experiment Polarbear [53], which is due to start making observations in

2011.

Finally, a non-zero vorticity at second order in perturbation theory has important

consequences for the generation of magnetic fields, as it has been long known that

vorticity and magnetic fields are closely related (see Refs. [24, 61]). Previous works
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either used momentum exchange between multiple fluids to generate vorticity, as in

Refs. [58, 72, 74, 103, 115, 139, 146], or used intermediate steps to first generate vor-

ticity for example by using shock fronts as in Ref. [129]. However, we do not require

such additional steps. Therefore, an important extension to the work presented in

this chapter is to consider the magnetic fields generated by our mechanism which

could be an important step in answering the question regarding the origin of the

primordial magnetic field. We will discuss more future prospects in the concluding

chapter of this thesis.



5 Third Order Perturbations

In the preceding chapters we have developed cosmological perturbation theory at

both linear and second order. However, one does not need to stop there: it is

worthwhile and feasible to consider perturbation theory even beyond second order.

In this chapter we explore aspects of cosmological perturbation theory at third order.

We have already seen that extending perturbation theory to second order reveals

new phenomena which arise due to quadratic source terms in general, and the cou-

pling between different types of perturbation which is not present at linear order.

At third order a new coupling occurs in the energy conservation equation, namely

the coupling of scalar perturbations to tensor perturbations. This will allow for

the calculation of yet another different observational signature, highlighting another

aspect of the underlying full theory.

There has already been some work on third order theory. For example, Refs. [69,

71] considered third order perturbations of pressureless irrotational fluids as “pure”

general relativistic correction terms to second order quantities. The calculations fo-

cused on the temporal comoving gauge, allowing the authors to consider only second

order geometric and energy-momentum components, and neglected vector pertur-

bations. Ref. [85] includes a study of third order perturbations with application to

the trispectrum in the two-field ekpyrotic scenario in the large scale limit. There

has also been reference in the literature of the need to extend perturbation theory

beyond second order. For example, in Ref. [42] UV divergences in the Raychaudhuri

equation are found when considering backreaction from averaging perturbations to

second order. The authors state that these divergences may be removed by extend-

ing perturbation theory to third, or higher, orders.

In this chapter, we develop the essential tools for third order perturbation the-

ory, such as the gauge transformation rules for different types of perturbation, and

construct gauge invariant quantities at third order. We consider perfect fluids with

non-zero pressure, including all types of perturbation, namely, scalar, vector and

tensor perturbations. In particular allowing for vector perturbations is crucial for

realistic higher order studies, since vorticity is generated at second order in all models

93
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employing non-barotropic fluids as shown in Chapter 4. Hence studying irrotational

fluids at higher order will only give partial insight into the underlying physics. We

present the energy and momentum conservation equations for such a fluid, and also

give the components of the perturbed Einstein tensor, up to third order. All equa-

tions are given without fixing a gauge. We also give the Klein-Gordon equation for a

scalar field minimally coupled to gravity at third order in cosmological perturbation

theory. This work is published in Ref. [36].

5.1 Definitions

As in Chapter 2 we take the perturbed metric tensor with covariant components

g00 = −a2(1 + 2φ) , g0i = a2Bi , gij = a2(δij + 2Cij) , (5.1)

In order to obtain the contravariant metric components we impose the constraint

Eq. (2.14), gµνg
νλ = δµ

λ, up to third order. This gives

g00 = − 1

a2

(
1− 2φ+ 4φ2 − 8φ3 −BkB

k + 4φBkB
k + 2BiBjCij

)
, (5.2)

g0i =
1

a2

(
Bi − 2φBi − 2BkC

ki + 4φ2Bi + 4BkC
kiφ+ 4CkjCj

iBk −BkBkB
i
)
,

(5.3)

gij =
1

a2

(
δij − 2Cij + 4CikCk

j −BiBj + 2φBiBj − 8CikCjlCkl

+ 2BiCkjBk + 2BkB
jCik

)
. (5.4)

Note that in this chapter we do not explicitly split terms up into first, second and

third order parts unless where necessary, since doing so would dramatically increase

the size of the equations presented. For example, expanding the 0 − 0 component

fully order by order gives

g00 = − 1

a2

(
1− 2φ1 − φ2 −

1

3
φ3 + φ2

1 + 8φ1φ2 − 8φ3
1 −B1kB1

k −B2kB1
k

+ 4φ1B1
kB1k + 2B1

iB1
jC1ij

)
, (5.5)

which when compared to Eq. (5.2) illustrates the increase in number of terms, and

thus why we refrain from splitting perturbations up.
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Furthermore, to third order in perturbation theory, the fluid four velocity, defined

in Eq. (2.21) and satisfying the constraint

uµuµ = −1 ,

has components

ui =
1

a
vi , (5.6)

u0 =
1

a

(
1− φ+

3

2
φ2 − 5

2
φ3 +

1

2
vkv

k + vkB
k + Ckjv

kvj − 2φvkBk − φvkvk
)
,

(5.7)

ui = a

(
vi +Bi − φBi + 2Cikv

k +
3

2
Biφ

2 +
1

2
Biv

kvk +Biv
kBk

)
, (5.8)

u0 = −a
(

1 + φ− 1

2
φ2 +

1

2
φ3 +

1

2
vkvk + φvkv

k + Ckjv
kvj
)
. (5.9)

5.2 Gauge Transformations

We firstly need to extend the gauge transformations derived earlier to third order

in cosmological perturbation theory. Expanding the exponential map, (2.50)

T̃ = e£ξT , (5.10)

to third order gives

exp(£ξ) = 1+ε£ξ1+
1

2
ε2£2

ξ1
+

1

2
ε2£ξ2+

1

6
ε3£ξ3+

1

6
ε3£3

ξ1
+

1

4
ε3£ξ1£ξ2+

1

4
ε3£ξ2£ξ1+. . .

(5.11)

Splitting the tensor T up to third order and collecting terms of like order in ε we

find that tensorial quantities transform at third order as

δ̃T3 = δT3 +
(

£ξ3 + £3
ξ1

+
3

2
£ξ1£ξ2 +

3

2
£ξ2£ξ1

)
T0

+ 3
(
£2
ξ1

+ £ξ2

)
δT1 + 3£ξ1δT2 . (5.12)

Then, by expanding the coordinate transformation, Eq. (2.56) to third order we
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obtain the relationship

xµ(q) = xµ(p) + εξµ1 (p) +
1

2
ε2
(
ξµ1,ν(p)ξ

ν
1 (p) + ξµ2 (p)

)
+

1

6
ε3
[
ξµ3 (p) +

(
ξµ1,λβξ

β
1 + ξµ1,βξ

β
1,λ

)
ξ λ

1 (p)
]

+
1

4
ε3
(
ξµ2,λ(p)ξ

λ
1 (p) + ξµ1,λ(p)ξ

λ
2 (p)

)
,

(5.13)

relating the coordinates of the points p and q.

In the rest of this section, we will derive the gauge transformations at third order

in an analogous way to those derived for first and second order in section 2.3.

5.2.1 Four Scalars

At third order we also split the generating vector ξµ3 into a scalar temporal and

scalar and vector spatial part, as

ξµ3 =
(
α2, β

i
2, + γ i

3

)
, (5.14)

where the vector part is again divergence-free (∂kγ
k

3 = 0). We then find from

Eqs. (5.12) that the energy density transforms as

δ̃ρ3 = δρ3 +
(

£ξ3 + £3
ξ1

+
3

2
£ξ1£ξ2 +

3

2
£ξ2£ξ1

)
ρ0

+ 3
(
£2
ξ1

+ £ξ2

)
δρ1 + 3£ξ1δρ2 , (5.15)

which gives

δ̃ρ3 = δρ3 + ρ′0α3 + ρ′′′0 α
3
1 + 3ρ′′0α1α1,λξ

λ
1 + ρ′0

(
α1,λβξ

λ
1 + α1,λξ

λ
1, β

)
ξβ1

+ 3ρ′′0α1α2 + ρ′0
3

2

(
α2,λξ

λ
1 + α1,λξ

λ
2

)
+ 3

(
δρ1,λβξ

λ
1 + δρ1,λξ

λ
1, β

)
ξβ1

+ 3δρ1,λξ
λ
2 + 3δρ2,λξ

λ
1 . (5.16)

Similar to the second order case, we need to specify the time slicings (at all orders),

and also the spatial gauge or threading at first and second order, in order to render

the third order density perturbation gauge-invariant.

5.2.2 The Metric Tensor

We now give the transformation behaviour of the metric tensor at third order. The

starting point is again the Lie derivative, which for a covariant tensor is given by



5.2: Gauge Transformations 97

Eq. (2.68).

As above in the case of the transformation behaviour of a four scalar at third order,

the change under a gauge transformation of a two-tensor can be found applying

the same methods as at second order. We therefore find that the metric tensor

transforms at third order, from Eqs. (5.12) and (2.68), as

δ̃g
(3)
µν = δg(3)

µν + g
(0)
µν,λξ

λ
3 + g

(0)
µλ ξ

λ
3 ,ν + g

(0)
λν ξ

λ
3 ,µ

+ 3

[
δg

(1)
µν,λξ

λ
2 + δg

(1)
µλ ξ

λ
2 ,ν + δg

(1)
λν ξ

λ
2 ,µ + δg

(2)
µν,λξ

λ
1 + δg

(2)
µλ ξ

λ
1 ,ν + δg

(2)
λν ξ

λ
1 ,µ

+ δg
(1)
µν,λαξ

λ
1 ξ

α
1 + δg

(1)
µν,λξ

λ
1 ,αξ

α
1 + 2

[
δg

(1)
µλ,αξ

α
1 ξ

λ
1 ,ν + δg

(1)
λν,αξ

α
1 ξ

λ
1 ,µ + δg

(1)
λαξ

λ
1 ,µξ

α
1 ,ν

]
+ δg

(1)
µλ

(
ξλ1 ,ναξ

α
1 + ξλ1 ,αξ

α
1, ν

)
+ δg

(1)
λν

(
ξλ1 ,µαξ

α
1 + ξλ1 ,αξ

α
1, µ

) ]

+
3

2

[
2g

(0)
µν,λβξ

λ
2 ξ

β
1 + g

(0)
µν,λ

(
ξλ2,βξ

β
1 + ξλ1,βξ

β
2

)
+ 2g

(0)
λβ

(
ξλ2,µξ

β
1,ν + ξλ2,νξ

β
1,µ

)
+
(
g

(0)
µλ,βξ

λ
2,ν + g

(0)
λν,βξ

λ
2,µ + g

(0)
µλ ξ

λ
2,βν + g

(0)
λν ξ

λ
2,βµ

)
ξβ1 +

(
g

(0)
βν,λξ

λ
2 + g

(0)
λν ξ

λ
2,β

)
ξβ1,ν

+
(
g

(0)
βν,λξ

λ
2 + g

(0)
λν ξ

λ
2,β

)
ξβ1,µ +

(
g

(0)
µλ,βξ

λ
1,ν + g

(0)
λν,βξ

λ
1,µ + g

(0)
µλ ξ

λ
1,βν + g

(0)
λν ξ

λ
1,βµ

)
ξβ2

+
(
g

(0)
βν,λξ

λ
1 + g

(0)
λν ξ

λ
1,β

)
ξβ2,ν +

(
g

(0)
βν,λξ

λ
1 + g

(0)
λν ξ

λ
1,β

)
ξβ2,µ

]

+

{
g

(0)
µν,αβλξ

α
1 ξ

β
1 ξ

λ
1 + 3g

(0)
µν,λβξ

λ
1 ξ

α
1 ξ

β
1,α + g

(0)
µν,λξ

λ
1,αβξ

α
1 ξ

β
1 + g

(0)
µν,λξ

λ
1,βξ

β
1,αξ

α
1

+ 3g
(0)
µβ,λ

(
ξλ1 ξ

β
1,αξ

α
1,ν + ξα1 ξ

λ
1 ξ

β
1,αν

)
+ 3g

(0)
µα,λξ

β
1 ξ

λ
1,βξ

α
1,ν + 3g

(0)
µα,βλξ

β
1 ξ

λ
1 ξ

α
1,ν

+ g
(0)
µλ

[
ξα1 ξ

β
1 ξ

λ
1,αβν + ξβ1,αξ

λ
1,βξ

α
1,ν + ξα1 ξ

β
1,αξ

λ
1,βν + 2ξβ1 ξ

λ
1,αβξ

α
1,ν + ξβ1 ξ

λ
1,αξ

α
1,βν

]
+ 3g

(0)
νβ,λ

(
ξλ1 ξ

β
1,αξ

α
1,µ + ξα1 ξ

λ
1 ξ

β
1,αµ

)
+ 3g

(0)
να,λξ

β
1 ξ

λ
1,βξ

α
1,µ + 3g

(0)
να,βλξ

β
1 ξ

λ
1 ξ

α
1,µ

+ g
(0)
νλ

[
ξα1 ξ

β
1 ξ

λ
1,αβµ + ξβ1,αξ

λ
1,βξ

α
1,µ + ξα1 ξ

β
1,αξ

λ
1,βµ + 2ξβ1 ξ

λ
1,αβξ

α
1,µ + ξβ1 ξ

λ
1,αξ

α
1,βµ

]

+ 6g
(0)
αβ,λξ

λ
1 ξ

β
1,ν + 3g

(0)
αλ

[
ξλ1,β

(
ξα1,µξ

β
1,ν + ξα1,νξ

β
1,µ

)
+ ξβ1

(
ξα1,µξ

λ
1,βν + ξα1,νξ

λ
1,βµ

) ]}
.

(5.17)

However, in this case it becomes even more obvious than in Section 5.1 that the

expressions at third order are of not inconsiderable size. This will also be clear

from the Einstein tensor components and the evolution equations given below in
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Section 5.4.

Now, following along the same lines as at second order, Eq. (5.17) gives the

transformation for the spatial part of the metric at third order,

2C̃3ij = 2C3ij + 2Hα3δij + 2ξ3(i,j) + X3ij , (5.18)

where X3ij contains terms cubic in the first order perturbations. Extracting the

curvature perturbation gives

ψ̃3 = ψ3 −Hα3 −
1

4
X k

3 k +
1

4
∇−2X ij

3 ,ij . (5.19)

This expression is general, including scalar, vector, and tensor perturbations and is

valid on all scales. However, we shall detail here only the expression valid for scalar

perturbations and large scales and find that X3ij takes then the simple form

X3ij ≡ 2a2δij

{
− 3
[
α2ψ

′
1 +

1

2
α1ψ

′
2 + α1α

′
1 (ψ′1 + 2Hψ1) + α2

1 (ψ′′1 + 4Hψ′1)

+ 2Hα2ψ1 +Hα1ψ2 + 2

(
a′′

a
+H2

)
α2

1ψ1

]
+

(
a′′′

a
+ 3Ha

′′

a

)
α3

1

+ 3

(
a′′

a
+H2

)
α2

1α
′
1 +Hα1

(
α′′1α1 + α′1

2
)

+
3

2

[
H (α1α

′
2 + α′1α2) + 2

(
a′′

a
+H2

)
α1α2

]}
. (5.20)

Hence we finally get for the transformation of ψ3

−ψ̃3 = −ψ3 +Hα3 +

(
a′′′

a
+ 3Ha

′′

a

)
α3

1 + 3

(
a′′

a
+H2

)
α2

1α
′
1

+Hα1

(
α′′1α1 + α′1

2
)

+
3

2

[
H (α1α

′
2 + α′1α2) + 2

(
a′′

a
+H2

)
α1α2

]
− 3
[
α2ψ

′
1 +

1

2
α1ψ

′
2 + α1α

′
1 (ψ′1 + 2Hψ1) + α2

1 (ψ′′1 + 4Hψ′1) + 2Hα2ψ1

+Hα1ψ2 + 2

(
a′′

a
+H2

)
α2

1ψ1

]
. (5.21)

5.3 Gauge Invariant Variables

In the previous section we have described how perturbations transform under a

gauge shift. We can now use these results to construct gauge-invariant quantities,

in particular the curvature perturbation on uniform density hypersurfaces, ζ. In
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this section, as before, we consider only scalar perturbations, and restrict ourselves

to the large scale limit.

We first define hypersurfaces in different gauges as in Section 2.4. From Eq. (5.16)

we find the time slicing defining uniform density hypersurfaces at third order in the

large scale limit as

α3δρ = −δρ3

ρ′0
+

1

2ρ′0
2

[
3 (δρ1δρ

′
2 + δρ′1δρ2)− δρ′′1δρ1

2

ρ′0
− 4δρ′1

2 δρ1

ρ′0
+ ρ′′0δρ

′
1

(
δρ1

ρ′0

)2 ]
.

(5.22)

Similarly, the temporal gauge transformation on uniform curvature hypersurfaces is

defined by evaluating (5.21) and gives, at third order,

α3flat =
ψ3

H
+

1

2H2

[
3ψ′1ψ2 +

ψ2
1ψ
′′
1

H
+ 6Hψ1ψ2 +

4ψ1ψ
2
1

H

]
− ψ2

1ψ
′
1

H4

(a′′
a
− 37

2
H2
)

+
8ψ3

1

H
. (5.23)

We can now combine the results found so far to get gauge invariant quantities,

and as before choose the curvature perturbation on uniform density slices as well as

the density perturbation on uniform curvature hypersurfaces as examples.

One gauge invariant matter quantity of interest is the perturbation to the energy

density on uniform curvature hypersurfaces. This is obtained by substituting the

temporal gauge transformation components in the uniform density gauge into the

appropriate transformation equation, Eq. (5.16). This gives, at third order,

δ̃ρ3flat = δρ3 + ρ′0
ψ3

H
+

3ρ′0
2H2

(2ψ2ψ
′
1 + ψ′2ψ1) + 3

ψ2
1

H3

[
2(ρ′0ψ1 + ψ′1ρ

′′
0) + ψ′′1

]
+ 3

ψ2ψ1

H2

[
ρ′′0 + 2ρ′0H− ρ′0

a′′

a

]
− 9ρ′0

ψ2
1ψ
′
1

H3

(a′′
a
−H

)
+
ψ3

1

H3

[
ρ′′′0 − 3ρ′′0

(a′′
a

+ 3H
)

+ 3ρ′0H
(

3
a′′

a
−H

)
+ ρ′0

((a′′
a

)2

− a′′′

a

)]
.

(5.24)

The curvature perturbation on uniform density hypersurfaces, ζ, as introduced in

Eq. (2.126), is defined as

− ζ ≡ ψ̃δρ . (5.25)

This is obtained by substituting the temporal gauge transformation components in

the uniform curvature gauge into the appropriate transformation equation, Eq. (5.21).
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Evaluating this on spatially flat hypersurfaces then gives, at third order

ζ3 = −Hδρ3

ρ′0
+

3H
ρ′20

(δρ2
′δρ1 + δρ1

′δρ2)− 3

ρ′20
δρ2δρ1

[Hρ′′0
ρ′0
−
(a′′
a

+H2
)]

− 3H
ρ′30

δρ1
2δρ1

′′ − 6H
ρ′30

δρ1
′2δρ1 −

3

ρ′30
δρ1

2δρ1
′
[
2
(a′′
a

+H2
)
− 3Hρ

′′
0

ρ′0

]
− δρ1

3

ρ′30

[
3H
(
ρ′′0
ρ′0

)2

−Hρ
′′′
0

ρ′0
+
a′′′

a
+ 3Ha

′′

a
− 3

ρ′′0
ρ′0

(a′′
a

+H2
)]
. (5.26)

There are different definitions of the curvature perturbation present in the litera-

ture, depending on different decompositions of the spatial part of the metric tensor.

A different definition to the one above, as discussed in e.g. Ref. [112], was used by

Maldacena in Ref. [104] to calculate the non-gaussianity from single field inflation,

and was introduced by Salopek et al. in Refs. [130, 131]. They define the local scale

factor ã ≡ eα, then

e2α = a2(η)e2ζ = a2(η)(1 + 2ζSB + 2ζ2
SB +

4

3
ζ3

SB) . (5.27)

Comparing to the expansion from perturbation theory

e2α = a2(η)(1 + 2ζ) , (5.28)

one can obtain the relationship

ζ = ζSB + ζ2
SB +

2

3
ζ3

SB . (5.29)

Splitting this up order by order gives, at second order

ζ2SB = ζ2 − 2(ζ1)2 , (5.30)

and, at third order,

ζ3SB = ζ3 − 6ζ2ζ1 + 8(ζ1)3 . (5.31)

Note that it is this definition, (5.31), of the curvature perturbation which occurs

in Ref. [85], though with different pre-factors since their perturbative expansion

is defined differently. It is perhaps worth mentioning that ζSB, the variable first

introduced by Salopek and Bond and then employed for non-gaussianity calculations

by Maldacena, is extremely Gaussian after slow-roll inflation, as opposed to other ζ

variables which exhibit non-gaussianity, as can be seen e.g. from Eq. (5.30).
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5.4 Governing Equations

Having constructed gauge invariant quantities up to third order in the previous sec-

tion, we now turn to the evolution and the field equations. The equations presented

in this section in full generality are new; Refs. [69, 71] previously considered some

governing equations at third order in perturbation theory, however they focussed on

pressureless, irrotational fluids.

5.4.1 Fluid Conservation Equation

In this section, we give the energy momentum conservation equations for a fluid with

non-zero pressure and in the presence of scalar, vector and tensor perturbations.

The latter generalisation is important since at orders above linear order, all types

of perturbation are coupled.

As at linear and second order, presented in the previous chapters, energy momen-

tum conservation

∇µT
µ
ν = 0, (5.32)

gives us evolution equations. Substituting the definition for the energy momentum

tensor, Eq. (2.18) expanded to third order, into Eq. (5.32) gives energy conservation

(the 0-component)

δρ′ + 3H(δρ+ δP ) + (ρ0 + P0)(Ci′
i + vi,

i) + (δρ+ δP )(Ci′
i + vi,

i) + (δρ+ δP ),iv
i

+ (ρ0 + P0)
[
(Bi + 2vi)(v′i +B′i) + vi,iφ− 2C ′ijC

ij + vi(Cj
j,i + 2φ,i) + 4Hvi(Bi + 2vi)

]
+ (δρ+ δP )

[
(Bi + 2vi)(v′i +B′i)− 2C ′ijC

ij + vi(Cj
j,i + 2φ,i + 4H(vi +Bi)) + vi,iφ

]
+ (δρ′ + δP ′)vi(Bi + vi) + (δρ+ δP ),iφv

i + (ρ0 + P0)(2Cijvivj −Biv
iφ+ viviφ)

− (ρ0 + P0)
[
2Cij(Cij,kv

k − 2v′ivj +BiB
′
j − 2Ci

kC ′jk) +
1

2
vi,i(φ

2 − vjvj)

+ (vi +Bi)(2B′iφ− Cj ′
jvi)− vj

{
BiBi,j + vivi,j + φ(vj + 2v′j + 3Hvj − 2φ,j + Ci

i,j)

− 2φ′Bj + 3C ′ijv
i
}

+Bj(BiC ′ij +Bjφ
′ + v′jφ)

]
= 0 , (5.33)
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and momentum conservation (the i−component)[
(ρ0 + P0)(vi +Bi)

]′
+ (ρ0 + P0)(φ,i + 4H(vi +Bi)) + δP,i +

[
(δρ+ δP )(vi +Bi)

]′
+ (δρ+ δP )(φ,i + 4H(vi +Bi))− (ρ′0 + P ′0)

[
(2Bi + vi)φ− 2Cijv

j
]

+ (ρ0 + P0)
[
(vi +Bi)(C

j ′
j + vj ,j)−Bi(φ

′ + 8Hφ) + vj(Bi,j −Bj,i + vi,j + 8HCij)

+ (2Cijv
j)′ − φ(v′i + 2B′i + 2φ,i + 4Hvi)

]
+ (ρ′0 + P ′0)

[
vj(Bivj +Bjvi + 2BiBj +

1

2
vivj

− 2Cijφ) + (
3

2
vi + 4Bi)φ

2
]

+ (ρ0 + P0)
[
φ2

(
4B′i +

3

2
v′i + 2H(8Bi + 3vi) + 4φ,i

)
+ (vi + 2Bi)(v

′
jB

j − Cj ′
jφ) + (vi +Bi)(B

′
jB

j − C ′jkCjk) + vj
{

2Bi(B
′
j + v′j)

+Bj(2B
′
i + 2φ,i + v′i) + 2H(vi + 2Bi)(2Bj + vj) + 2Cij(C

k ′
k + vk,k − 4Hφ)

+ Ck
k,j(Bi + vi) + vi(B

′
j + φ,j) + vj(B

′
i + φ,i) + vk(2Cik,j − Cjk,i)

+ (Bj,i −Bi,j − 2C ′ij)φ+ 2Cikv
k
,j

}
+

1

2
(vivjv

j)′ − 2Cijv
j ′φ+Bi(4φ

′φ− vj,jφ)
]

= 0 .

(5.34)

As emphasised earlier, Eq. (5.33) highlights the coupling between tensor and scalar

perturbations which occurs only at third order (and higher) in perturbation theory.

At both linear and second order, no such coupling exists, since the only terms

coupling the spatial metric perturbation, Cij, to scalar perturbations contain either

the trace or the divergence of Cij and the tensor perturbation, hij is, by definition,

transverse and trace-free. However, at third order, terms like δρC ′ijC
ij occur in the

energy conservation equation which, on splitting up order by order and decomposing

Cij becomes δρ1h
′
1ijh1

ij. It is clear that this term only shows up at third order and

beyond. Thus, as mentioned earlier, third order is the lowest order at which all the

different types of perturbations couple to one another in the evolution equations,

which will produce another physical signature of the full theory.

Scalars only

It will be useful to have energy and momentum conservation equations for only

scalar perturbations. These equations are obtained by making the appropriate sub-

stitutions Cij = −δijψ + E,ij, vi = v,i, and Bi = B,i into the above expressions. On
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doing so, we obtain the energy conservation equation

δρ′ + 3H(δρ+ δP ) + (ρ0 + P0)(∇2v +∇2E − 3ψ′) + (δρ+ δP )(∇2v +∇2E − 3ψ′)

+ (δρ+ δP ),iv,
i + (ρ0 + P0)

[
(Bi + 2v,

i)(v′,i +B′,i) +∇2vφ− 2
(
ψ′(3ψ −∇2E)

− ψ∇2E ′ + E ′,ijE,
ij
)

+ v,
i(2φ,i +∇2E,i − 3ψ,i) + 4Hv,i(B,i + 2v,i)

]
+ (δρ+ δP )

[
(B,

i + 2v,
i)(v′,i +B′,i)− 2

(
ψ′(3ψ −∇2E)− ψ∇2E ′ + E ′,ijE,

ij
)

+ v,
i(2φ,i − 3ψ,i +∇2E + 4H(v,i +B,i)) +∇2vφ

]
+ (δρ′ + δP ′)v,

i(B,i + v,i)

+ (δρ+ δP ),iφv,
i + (ρ0 + P0)(v,

iv,iφ−B,iv,
iφ− 6ψv,

jv,j + E,
ijv,iv,j)

− (ρ0 + P0)
[
2E,

ij(v,
kE,ijk − 2v′,iv,j +B,iB

′
,j − 2E,i

kE,kj)− 2∇2Eψ,kv,
k

− 2ψ
(
v,
k(∇2E,k − 3ψ,k)− 2v′,jv,

j +B′,jB,
j + 6ψψ′

)
+

1

2
∇2v(φ2 − v,jv,j)

+ (v,
i +∇2E ′ +B,

i)(2B′,iφ+ 3ψ′v,i)− v,j
{
B,

iB,ij + v,
iv,ij − 2φ′B,j − 3ψ′v,j

+ φ(v,j + 2v′,j + 3Hv,j − 2φ,j − 3ψ,j +∇2E,j) + E ′,ijv,
i
}

+B,
j(B,jψ

′ + E ′,ijv,
i +B,jφ

′ + v′,jφ)
]

= 0 , (5.35)

and the momentum conservation equation



5.4: Governing Equations 104

[
(ρ0 + P0)(v,i +B,i)

]′
+ (ρ0 + P0)(φ,i + 4H(v,i +B,i)) + δP,i

+
[
(δρ+ δP )(v,i +B,i)

]′
+ (δρ+ δP )(φ,i + 4H(v,i +B,i))

− (ρ′0 + P ′0)
[
(2B,i + v,i)φ+ 2ψv,i − 2E,ijv,

j
]

+ (ρ0 + P0)
[
(v,i +B,i)(∇2v − 3ψ′ +∇2E ′)−B,i(φ

′ + 8Hφ)

+ v,
j
(
v,ij − 8H(ψδij − E,ij)

)
− 2(ψv,i + E,ijv,

j)′ − φ(v′,i + 2B′,i + 2φ,i + 4Hv,i)
]

+ (ρ′0 + P ′0)
[
v,
j(B,iv,j +B,jv,i + 2B,iB,j +

1

2
v,iv,j + 2φ(ψδij − E,ij))

+ (
3

2
v,i + 4B,i)φ

2
]

+ (ρ0 + P0)
[
(v,i + 2B,i)

(
v′,jB,

j − (3ψ′ −∇2E ′)φ
)

+ φ2

(
4B′,i +

3

2
v′,i + 2H(8B,i + 3v,i) + 4φ,i

)
+ (v,i +B,i)

(
B′,jB,

j − 3ψ′ψ

+ ψ′∇2E + ψ∇2E ′ − E,jkE ′,jk
)

+ v,
j
{

2B,i(B
′
,j + v′,j) +B,j(2B

′
,i + 2φ,i + v′,i)

+ 2H(v,i + 2B,i)(2B,j + v,j)− (3ψ,j −∇2E,j)(B,i + v,i)

− 2(ψδij − E,ij)(∇2v +∇2E ′ − 3ψ′ − 4Hφ) + v,i(B
′
,j + φ,j)

+ v,j(B
′
,i + φ,i)− 2ψ,jv,i + E,ikjv,

k + ψ,iv,j + 2(ψ′δij − E,ij))φ− 2ψv,ij

+ 2E,ikv,
k
j

}
+

1

2
(v,iv,jv,

j)′ + 2ψv′,iφ− 2E,ijv,
j ′φ+Bi(4φ

′φ−∇2vφ)
]

= 0 . (5.36)

Considering the large scale limit, in which spatial gradients vanish, the energy

conservation equation becomes

δρ′ + 3H(δρ+ δP )− 3ψ′(ρ0 + P0)− 3ψ′(δρ+ δP )

− 6ψψ′(ρ0 + P0)− 6ψψ′ (δρ+ δP ) + 12ψ2ψ′(ρ0 + P0) = 0 . (5.37)

Splitting up perturbations order by order, this becomes

δρ3
′ + 3H(δρ3 + δP3)− 3ψ′3(ρ0 + P0)− 9ψ′2(δρ1 + δP1)− 9ψ′1(δρ2 + δP2)

− 18(ρ0 + P0)(ψ2ψ
′
1 + ψ1ψ

′
2) + 72ψ2

1ψ
′
1(ρ0 + P0) = 0 . (5.38)

In the uniform curvature gauge, where ψ = 0, this is

δρ′3flat + 3H(δρ3flat + δP3flat) = 0 , (5.39)
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and in the uniform density gauge, where δρ = 0,

3HδP3δρ + 3ζ ′3(ρ0 + P0) + 9ζ ′2δP1δρ + 9ζ ′1δP2δρ

− 18(ρ0 + P0)(ζ2ζ
′
1 + ζ1ζ

′
2)− 72ζ2

1ζ
′
1(ρ0 + P0) = 0 , (5.40)

with ζ as defined above. This can be recast in the more familiar form by introduc-

ing the (gauge invariant) non-adiabatic pressure perturbation. At linear order the

pressure perturbation can be expanded as, from Eq. (2.149),

δP1 =
∂P

∂S
δS1 +

∂P

∂ρ
δρ1 ≡ δPnad1 + c2

sδρ1 . (5.41)

This can be extended to second order [37] and higher by simply not truncating the

Taylor series:

δPnad2 = δP2 − c2
sδρ2 −

∂c2
s

∂ρ
δρ1

2 , (5.42)

δPnad3 = δP3 − c2
sδρ3 − 3

∂c2
s

∂ρ
δρ2δρ1 −

∂2c2
s

∂ρ2
δρ1

3 . (5.43)

Thus, in the uniform density gauge, the pressure perturbation is equal to the non-

adiabatic pressure perturbation at all orders. Then, Eq. (5.40) becomes

ζ ′3 +
H

ρ0 + P0

δPnad3 = 6(ζ2ζ
′
1 + ζ1ζ

′
2)+24ζ2

1ζ
′
1−

3

ρ0 + P0

(ζ ′2δPnad1 + ζ ′1δPnad2) . (5.44)

In the case of a vanishing non-adiabatic pressure perturbation, ζ ′1 and ζ ′2 are zero

and hence we see that ζ3 is also conserved, on large scales. This was also found in

Ref. [85], and previously in Ref. [52].

5.4.2 Klein-Gordon Equation

The energy momentum tensor for a canonical scalar field minimally coupled to

gravity is easily obtained by treating the scalar field as a perfect fluid with energy-

momentum tensor (c.f. Chapter 2)

T µν = gµλϕ,λϕ,ν − δµν
(

1

2
gαβϕ,αϕ,β + U(ϕ)

)
, (5.45)

where the scalar field ϕ is split to third order as

ϕ(η, xi) = ϕ0(η) + δϕ1(η, xi) +
1

2
δϕ2(η, xi) +

1

3!
δϕ3(η, xi) , (5.46)
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and the potential U similarly as

U(ϕ) = U0 + δU1 +
1

2
δU2 +

1

3!
δU3 , (5.47)

where we define

δU1 = U,ϕδϕ1 , δU2 = U,ϕϕδϕ
2
1 + U,ϕδϕ2 ,

δU3 = U,ϕϕϕδϕ
3
1 + 2U,ϕϕδϕ1δϕ2 + U,ϕδϕ3 , (5.48)

and making use of the shorthand notation U,ϕ ≡ ∂U
∂ϕ

. Then, Eq. (5.32) gives the

Klein-Gordon equation

δϕ′′
3−∇2δϕ3+4Hδϕ′

3+
ϕ′′
0
ϕ′
0
δϕ′

3−
3δϕ′′

2
ϕ′
0

(2ϕ′
0φ−δϕ′

1)− 3
ϕ′
0
(∇2δϕ2δϕ′

1+δϕ′
2∇2δϕ1)

− 6δϕ′
2

ϕ′
0

(φϕ′′
0−2Hδϕ′

1+ϕ0φ′+ϕ′
0B

i
,i−Ci′iϕ′

0+4Hϕ′
0φ)−

6(δϕ′
1)2

ϕ′
0

(φ′+Bi,i+4Hφ−Ci′i)

− 6δϕ′′
1

ϕ′
0

(2φδϕ′
1−4ϕ′

0φ
2+2ϕ′

0φ−
1
2
δϕ′

2+BiBiϕ
′
0)−

6δϕ′
1

ϕ′
0

[
ϕ′′

0 (2φ−4φ2+BiBi)

+8φϕ′
0(H−2Hφ−2φ′)+Bi(ϕ′

0B
′
i+2δϕ′

1,i+4HBi)+2ϕ′
0

{
Bi,i+φ

′−Ci′i(1−2φ)

−2Cij(Bj,i−C′
ij)+B

iCji,j−2Cij ,jBi−Biφ,i−2Bi,iφ

}
−2Cijδϕ1,ij

+δϕ1,i(B
i′+2HBi+2Cij ,j+φ,

i)

]
−3δϕ2,i(Bi′+Cjj,i+φ,i−2Cij ,j+2HBi)

−6δϕ1,i

[
Bi′+Cjj,i−2Cij ,j+φ,

i+
Cjj,

i

ϕ′
0

+2HBi−2BjC
ij ′+BiCj ′j+B

jBj,
i−BjBi,j

−BiBj ,j−2CijB′
j−2CijCkk,j+4CijCjk,

k−2Cijφ,j−2Bi′φ−Biφ′−2φ,iφ−4HBjCij

−4HBiφ+4CkjCj
i
,k−2CkjCk

i
,j

]
−12Bi(δϕ′

1,i+
1
2
δϕ′

2,i)+24δϕ′
1,i(B

iφ+CijBj)

+6δϕ2,ijC
ij−6δϕ1,ij(4C

kjCk
i−BiBj)−24Hϕ′

0φ(1−2φ+4φ2−φ′+3φ′φ)

−6ϕ′′
0

(
2φ(1−2φ+4φ2)+BiBi−4BiBiφ−2BiBjCij

)
−6Cij ,jϕ

′
0(Biφ−2Bi)

+6Ci′iϕ
′
0(1−2φ+4φ2−BjBj)−6Cjj,iϕ

′
0(Bi−2CikBk−2Biφ)−6Cij ′ϕ′

0(2Cij−BiBj

−4Cijφ−4CkjC
k
i)−12ϕ′

0C
ij

[
2BiCjk,

k+2BkCki,j−Bj,i−BiB′
j+Biφ,j−BkCji,k

+2CikB
k
,j+2Bj,iφ−4HBiBj

]
−6ϕ′

0

[
φ+Bi,i+B

iB′
i−BiBiBj ,j−BiBjBj ,i−4BiB′

iφ

+2HBiBi−2BiBiφ
′−8HBiBiφ+4Biφ,i−2Bi,iφ+4Bi,iφ

2−Biφ,i

]
+6U,ϕa2=0 . (5.49)

One can again see the coupling between first order tensor and scalar perturbations.

For example, the δϕ1,iC
ijφ,j contains a term that looks like δϕ1,ih1

ijφ1,j, which

occurs only at third order and beyond.

Again, we refrain from splitting up the perturbations order by order for ease of



5.4: Governing Equations 107

presentation. Once split up, one can then replace the metric perturbations by using

the appropriate order field equations. We present the Einstein tensor at third order

in the next section. Note also that Eq. (5.49) implicitly contains the Klein-Gordon

equations at first and second order. We refer the reader to, for example, Ref. [106],

for a detailed exposition of the second order Klein-Gordon equation.

5.4.3 Einstein Tensor

The Einstein tensor, which describes the geometry of the universe, is defined (as

shown in Section 1.1) as

Gµ
ν = Rµ

ν −
1

2
δµνR , (5.50)

where Rµ
ν is the Ricci curvature tensor and R is the Ricci scalar. Here, we give the

components of the Einstein tensor up to third order:

a2G0
0=−3H2+∇2Cjj−Cij,ij+2H(−Ci′ i+Bi,i+3Hφ)+Cjj,i(

1
2
Ckk,

i−2Cik,k)+C
′
ij(

1
2
Cij

′−Bj ,i)

+Bi

[
Cj

′
j,i−C

′
ij,
j+ 1

2(∇2Bi−Bj,ij)+2H(Cjj,i−2Cij,
j−φ,i)

]
+2Cij

[
2Cjk,i

k−Ckk,ij−∇2Cij

+2H(C
′
ij−Bi,j)

]
+Cjk,i(C

ik
,
j− 3

2
Cjk,i)+Ci

′
i(Bj,

j− 1
2
Cj

′
j+4Hφ)+2Cij ,iCjk,

k

+ 1
4
Bj,i(B

i
,
j+Bj ,i)−3H2(4φ2−BiBi)− 1

2
Bi,iBj,

j−4HBi,iφ+G0
0 , (5.51)

a2G0
i=C

k′
k,i−C

′
ik,
k− 1

2(Bk,ik−∇2Bi)−2Hφ,i+8Hφ,iφ+C
′
ij(2Ckj,k−Ckk,j+φ,j)−Cj

′
jφ,i

+2Ckj
h
C

′
ik,j−C

′
jk,i+

1
2(Bk,ij−Bi,kj)

i
+Bj(Ckj,ik−Ckk,ij+Cik,kj−∇2Cij−2HBj,i)

− 1
2

(
Bi,j+Bj,i

)
φ,j+(Bi,j−Bj,i)( 1

2
Ckk,

j−Cjk,k)−Cik,j(Bk,j−Bj ,k)+Bj ,jφ,i

+φ
h
Bj,i

j−∇2Bi+2
“
C

′
ij,
j−Cj′ j,i

”i
−Ckj′Ckj,i+G0

i , (5.52)
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a2Gij=C
i′′
j+2HCi′j−

1
2

(Bi
′
,j+Bj,

i′ )−Cll,j i+Cil,j l−φ,ij−∇2Cij+Cjl,
il−H(Bi,j+Bj,i)

+δij

n“
H2− 2a′′

a

”
(1−2φ)+2H

“
Bk,k−Ck

′
k+φ

′”
+Bk

′
k−Ckl,kl−Ck

′′
k+∇2(φ+Cll)

o
+Bk

[
Cjk,

i′+Ci
′
k,j−2Ci

′
j,k+2H(Cjk,

i+Cik,j−Cij,k)+ 1
2(Bj,ik+Bi,jk−2Bk,

i
j)
]

+(Ck
′
k−φ

′−Bk,k)(Ci
′
j−

1
2(Bi,j+Bj,i))+Cik

′“
Bj,k−2C

′
kj

”
+C

′
kjB

i
,
k+φ,iφ,j

+(Bk
′−2Ckl,l+C

l
l,
k+φ,k)(Cjk,

i+Cik,j−Cij,k)+ 1
2
Bi(Bk,j

k−∇2Bj+4Hφ,j−2Ck
′
k,j+2C

′
kj,

k)

+2Cik

[
1
2

“
B

′
j,k+B

′
k,j

”
−C′′

kj+φ,jk−Ckl,j
l−Cjl,kl+∇2Ckj+C

l
l,jk+H

“
Bj,k+Bk,j−2C

′
kj

”]
− 1

2(Bk,iBk,j+Bj,kBi,k)+φ

[
(Bj,

i′+Bi
′
,j+2φ,ij+2H(Bj,

i+Bi,j)−2Ci
′′
j −4HCi′j

]
+2(Cik,lCkj,l−Clj,kCik,l+Ckl,jCkl,i)+2Ckl

[
Ckl,j

i−Cjl,ik−Cil,jk+Cij,kl

]
+Gioj

+δij

(“
H2− 2a′′

a

”
(4φ2−BkBk)+2φ

[
Ck

′′
k−Bk

′
k−∇2φ+2H(Ck

′
k−2φ

′−Bk,k)

]
+Bk

[
2Cl

′
l,k−2C

′
kl,
l+∇2Bk−Bl,kl+2H(B

′
k−φ,k−2Clk,l+C

l
l,k)

]
+Ckl

′“ 3
2
C

′
kl−Bl,k

”
+2Ckl

[
C

′′
kl−∇

2Ckl+2HC′
kl+2Clm,k

m−Cmm,kl−2HBl,k−B
′
l,k−φ,kl

]
+2Bk

′
(Cll,k−Ckl,l)

+Ck
′
k

“
Bl,l− 1

2
Cl

′
l

”
+2Ckl,kClm,

m+Clm,k(Ckm,l− 3
2
Clm,k)−Cll,k(2Ckm,m− 1

2
Cmm,k)

+φ
′“
Ck

′
k−Bk,k

”
− 1

4(2Bk,kBl,
l−Bl,kBk,l−3Bl,kBl,

k)+φ,k(Cll,k−2Clk,l−φ,k)+Gidj} , (5.53)

where G0
0,G0

i,Gi
j are the third order corrections (the latter split into a diagonal

part Gi
oj, and an off diagonal part Gi

dj) which we give in the appendix as Eqs.

(B.1), (B.2), (B.3) and (B.4), respectively. Note that, in calculating the third order

components given above, we have implicitly obtained the full second order Einstein

tensor components for fully general perturbations (i.e. including all scalar, vector

and tensor perturbations).

5.5 Discussion

In this chapter we have developed the essential tools for cosmological perturbation

theory at third order. Starting with the definition of the active gauge transformation

we have extended the work presented in Section 2.3 to third order, and derived

gauge invariant variables, namely the curvature perturbation on uniform density

hypersurfaces, ζ3, and the density perturbation on uniform curvature hypersurfaces.

We also relate the curvature perturbation ζ3, obtained using the spatial metric split

of Ref. [112] to that introduced by Salopek and Bond [130], which is also popular at

higher order.
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We have then calculated the energy and momentum conservation equations for a

general perfect fluid at third order, including all scalar, vector and tensor pertur-

bations. The Klein-Gordon equation for a canonical scalar field minimally coupled

to gravity is also presented. We highlight the coupling in these conservation equa-

tions between scalar and tensor perturbations which only occurs at third order and

above. Finally, we have presented the Einstein tensor components to third order.

No large scale approximation is employed for the tensor components or the con-

servation equations. All equations are given without specifying a particular gauge,

and can therefore immediately be rewritten in whatever choice of gauge is desired.

However, as examples to illustrate possible gauge choices, we give the energy con-

servation equation on large scales (and only allowing for scalar perturbations) in

the flat and the uniform density gauge. This gives an evolution equation for the

curvature perturbation ζ3, Eq. (5.44). As might be expected from fully non-linear

calculations [100] and second order perturbative calculations [110], the curvature

perturbation is also conserved at third order on large scales in the adiabatic case. It

is worth noting that higher order perturbation theory, as discussed in this chapter,

has the advantage of being valid on all scales whereas fully non-linear methods, such

as separate universe approaches are gradient expansions (in powers of k/aH), and

so are only valid on superhorizon scales.

Another application of our third order variables and equations, in particular the

Klein-Gordon equation (5.49), is the calculation of the trispectrum by means of the

field equations. Whereas calculations of the trispectrum so far derive the trispec-

trum from the fourth order action, it should also be possible to use the third order

field equations instead. The equivalence of the two approaches for calculating the

bispectrum, using the third order action or the second order field equations, has

been shown in Ref. [136]. Having included tensor as well as scalar perturbations it

will be in particular interesting to see and be an important consistency check for

the theory whether we arrive at the same result as Ref. [137].

A final advantage of extending perturbation theory to third order is that, in doing

so, one obtains a deeper insight into the second order theory. Also second order

perturbation theory, despite remaining challenging, becomes less daunting having

explored some of the third order theory.



6 Discussion and Conclusions

6.1 Summary

The main focus of this thesis has been the study of cosmological perturbations be-

yond linear order. In Section 1.1 we introduced the standard cosmological model,

giving the background evolution and constraint equations and briefly discussing

inflationary cosmology. In Chapter 2 we introduced the theory of cosmological per-

turbations up to second order, presenting the perturbed metric tensor and energy

momentum tensor for both a perfect fluid, including all types of scalar, vector and

tensor perturbations, and a scalar field. We then considered the behaviour of the

perturbations under a gauge transformation in the active approach, using this be-

haviour to define gauges and construct gauge invariant variables. Next, we discussed

the thermodynamics of a perfect fluid and defined the non-adiabatic pressure pertur-

bation, closing the chapter by considering how non-adiabatic pressure perturbations

can arise naturally in multiple-component systems.

In Chapter 3 we continued the discussion of the foundations of cosmological per-

turbation theory by presenting the dynamic and constraint equations, from energy

momentum conservation and the Einstein field equations, up to second order in the

perturbations. Starting with the linear theory, we gave the governing equations for

scalar, vector and tensor perturbations of a perfect fluid in a gauge dependent form,

i.e. without fixing a gauge. We then presented the gauge invariant form of the

equations for three different gauges: the uniform density, the uniform curvature,

and the longitudinal gauges, solving the equations for the latter two in the case

of scalar perturbations. We then presented the Klein-Gordon equation for a scalar

field, to linear order for both a canonical and non-canonical action, and highlighted

the important difference between the adiabatic sound speed and the speed with

which perturbations travel in a scalar field system (the phase speed). Finally, we

investigated the perturbations of a system containing both dark energy and dark

matter.

Having laid the foundations of the linear order theory we then discussed the sec-
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ond order theory, presenting the governing equations for a perfect fluid derived, as

at first order, from energy momentum conservation and the Einstein field equations.

We then presented all equations in the uniform curvature gauge, which we then used

in Chapter 4, and for scalars only in the Poisson gauge, in order to connect with the

literature.

In Chapter 4 we used the tools developed in the previous chapters to investi-

gate non-linear vector perturbations in the early universe. Using the qualitative

difference between the linear theory and the higher order theory we showed that, at

second order in perturbation theory, vorticity is sourced by a coupling quadratic in

linear energy density and entropy perturbations, extending Crocco’s theorem from

a classical framework to an expanding, cosmological background. In order to show

this, we first defined the vorticity tensor in General Relativity and calculated the

vorticity tensor at first and second order in cosmological perturbation theory using

the metric tensor and fluid four velocity presented earlier. We then computed the

evolution of the vorticity tensor by taking the time derivative, and using the gov-

erning equations from Chapter 3 to simplify the expressions and replace the metric

perturbation variables. We found that at linear order the vorticity is not sourced

in the absence of anisotropic stress, in agreement with the previous results known

in the literature. However, at second order we obtained the novel result that there

exists a non-zero source term for a fluid with a general equation of state (depending

on both the energy density and entropy) which is quadratic in linear energy density

and non-adiabatic pressure perturbations.

Having derived this qualitative result we then gave the first quantitative solu-

tion, estimating the magnitude and scale dependence of the induced vorticity using

simple input power spectra: the energy density derived in Chapter 3 approximated

for small kη, and an ansatz for the non-adiabatic pressure perturbation. We found

that the resulting spectrum has a surprisingly large magnitude, given that it is a

second order effect, and a dependence on the wavenumber to the power of at least

seven, given our assumptions. Thus, this spectrum is hugely amplified on small

scales, rendering the vorticity not only possibly observable, but also important for

the general understanding of the physical processes taking place in the early universe.

In Chapter 5 we extended the formalism of cosmological perturbation theory from

the second order theory to third order, starting with the gauge transformation rules

and defining gauge invariant variables. Then, considering perfect fluids and scalar,

vector and tensor perturbations we presented the energy and momentum conser-
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vation equations and the Klein-Gordon equation for a scalar field without fixing a

gauge. Finally, we gave the components of the Einstein tensor at third order also in

a gauge dependent form.

6.2 Future Directions

The work presented in this thesis can naturally be extended in several directions.

One clear extension is to study the vorticity generation in specific models, moving

beyond the simple ansatz for the non-adiabatic pressure perturbation used in Chap-

ter 4. As discussed in Section 2.5.1, non-adiabatic pressure perturbations naturally

arise in any system consisting of more than one component, such as a multiple fluid,

or multiple scalar fields model. Even in the case of zero intrinsic non-adiabatic

pressure perturbation, there exists a relative non-adiabatic pressure perturbation

between the different components of the system which is proportional to the rela-

tive entropy perturbation, i.e.

δPnad ∝ SIJ ≡ 3H

(
δρJ
ρ′0J
− δρI
ρ′0I

)
.

This can then be written in terms of field variables using the definitions in Chapter 2

in order to obtain an expression for the relative entropy perturbation in multi-field

inflation models.

Another way in which this work can be extended is to exploit the potential for

this mechanism to generate magnetic fields. As mentioned in Chapter 4, magnetic

fields and vorticity are intimately related. This relationship has been studied in

some detail in classical fluid mechanics and in astrophysical situations (see, e.g.,

Ref. [153] for a review), though there is still much work to be done on incorporating

magnetic fields into cosmological perturbation theory. Since the energy density is

related to the magnetic field, bi, through the expression

ρb ∼ b2 , (6.1)

when considering linear perturbations of the energy density one often considers

perturbations of the magnetic field to ‘half order’. That is, one assumes that the

magnetic energy density as shown above to be of order b2, is formally the same

order as the scalar density perturbation. ensuring that the perturbed version of

Eq. (6.1) holds at linear order (see, e.g., Ref. [26]). However, one does not need to
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use this technique and, in fact, when considering higher order perturbations it is

not immediately clear how this will work. Instead, one can consider and develop

cosmological perturbation theory to consistently include magnetic fields at integer

order. Having done that, it will be possible to obtain estimates of the primordial

magnetic field produced by the vorticity generated using cosmological perturbations

as shown in this thesis by using the simple ansatz considered in Chapter 4 [28].

A further extension to this work will be to consider the primordial magnetic field

generated from the relative non-adiabatic pressure perturbation in a system with

multiple components, such as a hybrid inflation model.

6.3 Outlook

Cosmological perturbation theory has matured over the last few decades and has

been incredibly successful in making predictions that agree with observations. How-

ever, with the data sets available to us continually growing in their size and quality

it is now a realistic aim to use perturbation theory even beyond linear order to make

predictions which are observationally testable.

The main observable with which we can constrain our cosmological models is the

CMB, of which we have, to date, collected much information, predominantly from

the successful Wmap experiment. The Planck satellite [1] will greatly improve the

temperature measurements of the CMB and together with the proposed CMBPol

satellite [21], will measure the polarisation of the background radiation. Since the

CMB is not affected by the astrophysics of the late universe, usually one prefers the

use of CMB data over other techniques for the study of higher order observables.

However, with the recent technological advances, Large Scale Structure (LSS)

surveys, such as the Sloan Digital Sky Survey (SDSS) [147] and the proposed 21cm

anisotropy maps are attracting more attention as a way to probe the evolution

of the universe at different epochs of its history. The 21cm signal, generated by

neutral Hydrogen left over after the Big Bang, can probe the era after decoupling

but before galaxy formation, i.e. between redshift 200 and 30, while LSS surveys

probe out to around redshift 1. The 21cm anisotropy maps contain much more data

than the CMB [95], though it should be noted that it is still not clear whether the

foregrounds can be removed with enough accuracy to enable reliable results.

This is but one area where calculations at higher order can be tested against

observations. Thus, the future study of cosmological perturbation theory will greatly

increase our understanding, serving to broaden and deepen our knowledge of the
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universe in which we live.



A Second Order i− j Einstein

Equation

In this appendix we give the second order (i−j) component of the Einstein Equation

omitted from Section 3.2:
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B Third Order Einstein Tensor

Here, we give the third order corrections to the components of the Einstein tensor.

We do not split up perturbations order by order.
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