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Summary  

Fluoride prevents dental cavities, stimulates bone mineralisation and decreases the melting 

temperature of glasses and is therefore an interesting component of bioactive glasses for use as 

dental or orthopaedic biomaterials. However, when designing new glass compositions, the 

structural role of fluoride in the glass needs to be better understood. We have characterised a glass 

series in the system SiO2-P2O5-CaO-Na2O with increasing concentrations of CaF2. Network 

connectivity was fixed at 2.13 by adding CaF2 while the ratio of all other components was kept 

constant. 19F and 29Si MAS NMR spectra showed that addition of CaF2 does not cause disruption of 

the glass network by formation of Si-F bonds but forms mixed calcium sodium fluoride species. 31P 

MAS NMR showed phosphate being present as orthophosphate. Hence it does not form part of the 

actual glass network backbone and no Si-O-P bonds are present. 23Na MAS NMR showed presence 

of multiple sodium sites with an increase in the mean coordination number of sodium with 

increasing CaF2 content. The glass transition temperature decreased with increasing amounts of 

CaF2. As no Si-F bonds were formed, this can be explained by formation of hypothetical CaF+ 

species. The results can be used for designing new fluoride-containing bioactive glass compositions 

for specific applications.  
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Introduction 

Fluoride is well known to prevent dental decay by inhibiting enamel and dentine demineralisation, 

enhancement of remineralisation and inhibition of bacterial enzymes.1,2 One key step in caries 

prevention is the formation of fluorapatite, which is more acid resistant than carbonated 

hydroxyapatite, the main component of enamel and dentine. Fluoride is also known to increase 

bone density and despite some dispute on dose and effectiveness in prevention of fractures, it is of 

interest for treatment of osteoporosis.3,4 For these reasons addition of fluoride to bioactive glasses 

and ceramics is of great interest for the development of dental or orthopaedic biomaterials.5,6 

However, if we want to successfully design new bioactive glass compositions, we need to know the 

glass structure.  

Bioactive glasses are known to form an intimate bond to bone due to formation of a 

hydroxycarbonate apatite (HCA) layer on their surface when in contact with body fluids due to 

dissolution processes.7 Their bone bonding ability makes bioactive glasses of interest for use as 

bone replacement materials and coatings of metallic implants but also dentifrices8 and in all these 

applications fluoride would be beneficial. The structure of silicate glasses can be described as a 

crosslinked inorganic polymer of oxygen and silicon. Glass properties may be explained on the 

basis of network connectivity (NC) which is the number of bridging oxygen atoms (BO) per 

network forming element.9 Thus pure silica glass has a NC of 4 while a glass structure consisting of 

linear [SiO3]n
2n- chains has a NC of 2. NC can be used to predict glass surface reactivity, solubility 

or the likelihood of undergoing glass-in-glass phase separation and bioactivity.9,10 In general, 

reactivity and solubility change dramatically at a network connectivity of 2, which is the point 

where the glass structure changes from a crosslinked network to linear chains of decreasing molar 

mass. The lower the network connectivity of a glass, the lower its glass transition temperature and 

the greater its reactivity and solubility. Thus NC is a helpful tool when designing new bioactive 

glass compositions.  

Solid-state nuclear magnetic resonance (NMR) is an ideal modern tool for investigation of glass 

structure as NMR is element specific and highly sensitive to the local chemical environment of 

atoms containing magnetically active nuclei. For instance, 19F magic angle spinning (MAS) NMR is 

known to be an excellent technique for providing information on the local structure in fluoride-

containing silicate glasses. 29Si and 31P MAS NMR are widely used to monitor next neighbours and 

the silicon and phosphorus environments in glasses and it can determine the Qn structure. In 

addition, we take advantage of the 23Na MAS NMR which is recognised as a sensitive probe of 

sodium environment in amorphous and crystalline materials. 



Brauer et al.  Structural Investigations of Fluoride-Containing Bioactive Glasses 4/19 

J. Mater. Chem., 2009, 19, 5629–5636 

The purpose of this study was to examine fluoride-containing bioactive glasses and the effects of 

fluoride incorporation on glass structure, thermal properties and temperature behaviour. We 

hypothesise that in these compositions, with their large number of non-bridging oxygen (NBO), 

fluoride does not disrupt the glass network by formation of non-bridging fluorines (NBF), but 

instead remains complexed to calcium. Hence CaF2 was added by keeping the NC and the ratio of 

all other components constant. Glasses were characterised using X-ray powder diffraction, 

differential scanning calorimetry, 19F, 29Si, 31P and 23Na MAS NMR spectroscopy.  

Experimental 

Glass synthesis  

Glasses in the system SiO2-P2O5-CaO-Na2O-CaF2 were produced using a melt-quench route. CaF2 

was added in increasing amounts while network connectivity (NC) and the ratio of all other 

components were kept constant (Table 1). In addition, one sodium-free glass was synthesised. 

Mixtures of analytical grade SiO2 (Prince Minerals Ltd., UK), P2O5, CaCO3, Na2CO3 and CaF2 (all 

Sigma-Aldrich) with addition of < 0.1 wt% CoCO3 (Alfa Aesar) to reduce the spin-lattice relaxation 

times for 29Si NMR were melted in a platinum/rhodium crucible for 1 hour at 1430°C in an electric 

furnace (Lenton EHF 17/3). A batch size of approximately 100 g was used. After melting, the 

glasses were rapidly quenched into water to prevent crystallisation.  

 

Table 1:  Synthetic glass composition in mol% and theoretical network connectivity (NC1 

calculated assuming fluorine complexes calcium, NC2 calculated assuming fluorine forms 

non-bridging fluorines attached to silicon).  

Glass SiO2 P2O5 CaO Na2O CaF2  NC1 NC2 
A 49.47 1.07 23.08 26.38 -  2.13 2.13 
B 47.12 1.02 21.98 25.13 4.75  2.13 1.82 
C 44.88 0.97 20.94 23.93 9.28  2.13 1.49 
D 42.73 0.92 19.94 22.79 13.62  2.13 1.15 
E 40.68 0.88 18.98 21.69 17.76  2.13 0.78 
F 36.83 0.80 17.18 19.64 25.54  2.13 -0.01 
G 33.29 0.72 15.53 17.75 32.71  2.13 -0.90 
H 44.88 0.97 44.87 - 9.28  2.13 1.49 

 

Glass characterisation  

All compositions were obtained in an amorphous state as confirmed by powder X-ray diffraction 

experiments (XRD; Phillips PW1700, 40 kV/40 mA, CuKα, data collected at room temperature; 

results not shown). The glass transition temperature (Tg) and crystallisation temperatures of the 

glasses were determined using differential scanning calorimetry (DSC). 50 mg of glass frit were 
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analysed in a platinum crucible using analytical grade alumina powder as reference with a heating 

rate of 10 K/min.  

For investigation of crystal phases, milled glass powder was heat treated in analogous fashion to the 

DSC experiments: Samples were heated to crystallisation onset (Tc,ons) temperature at a heating rate 

of 10 K/min and then were allowed to cool to room temperature without holding at Tc,ons. 

Crystallised phases were analysed using XRD and NMR (see below).  

Solid-state MAS NMR 

For solid state MAS NMR experiments, the glass was ground using a Glen Creston Gy-Ro mill for 

7 min. Glass structure was analysed using 19F, 29Si, 31P and 23Na MAS NMR. Experiments were 

performed using Bruker 200 MHz (4.7 T) and 600 MHz (14.1 T) spectrometers. 19F NMR data were 

collected at a Larmor frequency of 188.2 MHz under spinning conditions of 12.5 kHz in a 4 mm 

rotor. To avoid ringing effects from the probe, the Hahn-echo pulse sequence π/2−τ−π was applied 

with a π/2 pulse of 2.35 µs and the echo delay τ of 76.5 µs. A recycle delay of 10 s was used, with 

16 dummy scans performed before counting. A 19F NMR background signal thoroughly acquired on 

the fluorine-free glass of this series was subtracted from the spectra of the fluorine-containing 

glasses. The background suppression method (DEPTH) was used for 19F NMR on crystallised 

glasses.11 19F chemical shift scale was referenced using the -120 ppm peak of 1 M NaF aqueous 

solution as a secondary reference against CFCl3. 29Si MAS NMR experiments were carried out at a 

Larmor frequency of 39.7 MHz and spinning speed of 4.5 kHz in a 4 mm rotor using the Hahn-echo 

pulse sequence with the π/2 pulse of 5.25 µs and 76.5 µs echo delay τ. 29Si NMR was set up using a 

3 min recycle delay. The -1.5 ppm peak of tetrakis(trimethylsilyl)methane was used for reference in 
29Si NMR. 19F and 29Si NMR data were processed with 200 Hz line broadening. 29Si NMR 

experiments on crystallised samples were performed using 36.5 µs echo delay and 50 Hz 

exponential filter was applied to these data. 31P MAS NMR spectra were acquired at 81.0 MHz in 

the 4 mm rotor spinning at 4.5 kHz. 64 transients of a single pulse experiment with 2.5 µs π/2 pulse 

and 49 s recycle delay were collected for each sample. 31P chemical shift was referenced to the 

signal of 85% H3PO4. 23Na NMR was performed at 158.7 MHz in 2.5 mm and 4 mm rotors and 

spinning speeds of about 20-25 kHz and 15 kHz, respectively. Short pulses corresponding to the 

magnetisation tip angle of π/12 and 0.5 s recycle delay were used for these measurements. The 

spectra were referenced to a 0 ppm frequency of the signal from 1 M aqueous solution of NaCl. 

50 Hz line broadening was applied before Fourier transforming of the 31P and 23Na NMR spectra. 
23Na 3QMAS NMR data were obtained using a 4-pulses sequence with 20 µs zero filter. The 

spectra were processed with xfshear utility of Xwinnmr Bruker software and presented in a 

universal scale.12 
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Figure 1:  29Si MAS NMR spectra of glasses A, C and E to G (from bottom to top). Spinning 

side bands are marked by an asterisk. 

Results and discussion 

Structural behaviour of silicate phase 

The introduction of fluoride into a bioactive glass composition did not cause formation of 

detectable amounts of Si-F bonds: 29Si MAS NMR results (Fig. 1) show a peak at about -80 ppm 

which corresponds to Q2 Si units and a shoulder at about -92 ppm indicating the presence of a small 

number of Q3 Si units, which were estimated using dmfit13 as a 10 to 14 % contribution to the 

signal. This is in good agreement with NC calculations assuming fluorine is binding calcium and 

thus reducing the availability of calcium for forming NBO (NC1; Table 1). These calculations gave 

a NC of 2.13 for all glasses which corresponds to mainly Q2 with small amounts of Q3. If the 

network connectivity is calculated assuming fluorine forms NBF attached to Si (NC2; Table 1), the 

values are too low to be credible. There is no change in peak (Fig. 1) position with increasing 

amounts of CaF2, which suggests that formation of Si-F bonds does not occur (peaks would be 

expected to move to less negative chemical shift (towards 0 ppm) if there was formation of Si-F 

bonds in the glass which does not occur), but also that no significant amounts of fluorine were lost 

during melting. The absence of Si-F is in agreement with the findings by Lusvardi et al. who 

investigated the structure of fluoride-containing bioactive glasses by computational investigation.14 

Due to differences in glass design (Lusvardi et al. substituted CaF2 for CaO and Na2O, respectively) 

they found increased NC with increasing CaF2 content but did not find any Si-F bonds for CaF2 

concentrations below 20 mol%, and even above 20 mol% the amount was negligible. This agrees 

with our NMR results presented here and with other previously reported experimental findings.15-18 
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Figure 2:  XRD patterns of heat-treated crystalline samples A to H (from bottom to top). Crystal 

phases are combeite (+), cuspidine (∗) and calcium fluoride (○). 

After heat-treatment, the fluorine-free sample (A) shows combeite (Na2Ca2Si3O9) as the main 

crystal phase as determined by XRD (Fig. 2). It also shows some additional peaks of low intensity 

which we were not able to assign. With increasing amounts of CaF2 in the composition, calcium 

fluoride (CaF2, samples B to F) and cuspidine (Ca4Si2O7F2, samples C to F) appear as additional 

crystal phases. Sample G, which has the highest fluorine content gives only a single crystal phase 

which is calcium fluoride. Sodium-free sample H only crystallised to a small degree and therefore 

the XRD pattern shows only a few peaks, which makes interpretation problematic.  

The main peak for combeite at about 34° 2θ (Fig. 2) appears as a single peak for glasses A and B 

and only appears as the typical split peak for higher concentrations of CaF2. It was shown that 

mixed calcium sodium silicate glasses crystallise through the formation of solid solutions of several 

phases including combeite of different stoichiometry and a Na4CaSi3O9 phase.19 In sodium-rich 

glasses A and B we assume additional precipitation of Na4CaSi3O9
20 which gives the principal XRD 

peak at about 34° 2θ overlapping with the split reflections of combeite. Absence of this phase on 

the XRD patterns of the compositions starting from C can be explained by the decrease in sodium 

content in the compositions.  
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Figure 3:  (a) 29Si MAS NMR spectra of heat-treated crystalline samples E (bottom) and F (top) 

and (b) 19F MAS NMR spectra of heat-treated crystalline samples E (bottom) and F 

(top). 
29Si MAS NMR spectra (Fig. 3a) for the heat-treated crystalline sample E show peaks in the range 

of Q3 (-85 ppm) and Q4 (-90 ppm). However, Q2 in ring structures gives similar chemical shifts as 

Q420. As the six-membered ring combeite21 is the main crystal phase, the peak at -90 ppm 

corresponds to one of the sites in the silica ring.20,22 The peak at -85 ppm can then be explained by 

the remaining glass phase, which after crystallisation of combeite has a higher NC and therefore 

mostly a Q3 structure. The fact that combeite is the main crystal structure in glasses A to E also 

suggests that in the amorphous glasses silica ring structures might also be present. This can explain 

the position of the Q3 shoulder (-92 ppm) which is more negative than usually assigned to Q3 units.  

The presence of cuspidine detected by XRD is consistent with the change in 29Si NMR peak 

position (-82 ppm) towards Q1 structure for crystallised sample F (Fig. 3a). Cuspidine has not been 

obtained as a single crystalline phase in our glasses unlike in low sodium glasses of Hayashi et al.23 

This is primarily because of a lower NC of 1.6 for the glasses designed by Hayashi et al. compared 

to our compositions.  

Structural role of fluoride and sodium ions 

In the 19F MAS NMR spectrum (Fig. 4) of the sodium-free glass (H) a single peak at -89 ppm 

corresponds to F-Ca(n) species as observed previously in calcium fluorosilicate glasses.16,17 This 
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peak is at higher chemical shifts than F-Ca(4) or F-Ca(3) in crystalline species due to slightly 

longer Ca-F distances in amorphous glasses.24 In glasses B to G the peak at about -220 ppm is close 

to position of the hexa-coordinated F-Na(6) species25 and, thus, corresponds to complexes with 

sodium. 

 
Figure 4:  19F MAS NMR spectra of glasses B (bottom) to H (top). Spinning side bands are 

marked by an asterisk. Peak positions according to deconvolution are found in the 

supporting information.  

The signals between -115 and -165 ppm (Fig. 4) can be assigned to mixed sodium calcium fluoride 

species.26,27 Hayashi et al.26 report their chemical shifts relative to hexafluorobenzene (C6F6), 

conversion to the scale relative to trichlorofluoromethane (CFCl3) using a -164.9 ppm chemical 

shift value for C6F6 are found in Table 2. Their spectra show three broad peaks, which the authors 

assign to a) F-Ca(4), F-Ca(3)Na(1) and F-Ca(2)Na(2) species in tetrahedral coordination, b) 

F-Ca(1)Na(4) in pentahedral coordination and c) F-Na(6) in hexahedral coordination.  

 
Figure 5:  Glass transition temperature (Tg), crystallisation onset (Tc,ons) and crystallisation peak 

(Tc,peak) temperatures vs. CaF2 content. The error is less than the size of the points. 

For glasses B to D we clearly see three main peaks at about -130, -165 and -220 ppm (Fig. 4). The 

peak at -165 ppm we assign to F-Ca(2)Na(2) species whereas the observed signals at -130 ppm in 
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glasses B to D and -115 ppm in E to G are attributed to overlapping/unresolved signals from 

F-Ca(4) (at -108 ppm) and F-Ca(3)Na(1) (at -138 ppm). Presence of 5- or 6-coordinated fluorine in 

mixed calcium/sodium environment in this region should also be considered. Due to the high 

calcium concentration in glasses E to G the dominating contribution from F-Ca(4) causes the shift 

of the total signal towards the site of F-Ca(4).  

 

Table 2:  19F MAS NMR chemical shift references found in literature.25,26  

Species 19F Chemical Shift in ppm 
 relative to C6H6 relative to CFCl3 

F-Ca(4) 
F-Ca(3)Na(1) 
F-Ca(2)Na(2) 
(tetrahedral 
coordination) 

60.5
58.3
50.6
38.1
32.0
26.4

-104.4
-106.6
-114.3
-126.8
-132.9
-138.5

F Ca(1)Na(4) 
(pentahedral 
coordination) 

-8.2
-9.9

-10.4
-10.9

-173.1
-174.8
-175.3
-175.8

F-Na(6) 
(hexahedral 
coordination) 

-56.6
-59.4
-62.0

-221.5
-224.3
-226.9

Si-F-Ca(n) -
-123
-129
-135

Si-F-Na(2) - -152
 
19F MAS NMR spectra of the heat treated samples (Fig. 3b) demonstrate a significant increase in 

structural order of the fluoride sites compared to the untreated glasses. This is consistent with the 

fluorine containing phases identified on XRD patterns (fluorite and cuspidine). In addition to peaks 

at about -175 and -225 ppm, the spectra of heat-treated crystalline samples E and F clearly illustrate 

that the broad peak between about -115 and -130 ppm actually consists of at least two individual 

peaks at about -108 and -138 ppm. The signal from cuspidine is not clearly resolved on the 19F 

NMR spectra due to severe overlaps in the region from -100 to -110 ppm. We assign the peak at 

-175 ppm in the crystalline samples to a mixed sodium calcium coordination which is an 

intermediate to the pure sodium site F-Na(6) at -225 ppm. Hayashi et al.26 assigned this to a 

pentahedral coordination of fluorine in F-Ca(1)Na(4), however, we do not exclude the possibility 

that it could be hexahedral F-Na(4)Ca(2) species.  

For higher fluorine concentrations, the relative intensities of the 19F NMR peaks in the region from 

-165 to -225 ppm in glasses and their crystalline counterparts decreases and only shoulders are 

visible for some of these resonances. This is caused by the fact that with increasing amounts of 
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CaF2 the concentration of sodium decreases and thus fluorine preferentially complexes calcium, 

rather than sodium. 

The 19F NMR data presented above provides further evidence for the absence of NBF and 

Si-F-Ca(n) and Si-F-Na(n) species, the signals of which would be expected in the range between 

-123 and -152 ppm (Table 2).25 This is in agreement with the findings by Hayashi et al. who 

investigated the effect of fluorine addition on the network connectivity of glasses in the system 

SiO2-CaO-CaF2 using X-ray photoelectron spectroscopy (XPS)18. According to their results 

fluorine does not affect the network connectivity or the concentration of NBO, but is coordinated 

with Ca2+. This was further confirmed by 19F NMR investigations by Watanabe et al.28 In glasses 

with a network connectivity around 2, the presence of Si-F bonds is unlikely since there is a large 

concentration of NBO in the glasses and Si4+ has a higher affinity for O2- ions than for F- ions.16 

Thus this strongly suggests that fluorine complexes only calcium and sodium.  

 
Figure 6:  Illustration of the hypothetical effect of CaF2 addition on silicate network. 
 

Transition temperature (Tg) of the glasses decreased with increasing CaF2 content (Fig. 5) which 

further indicates that fluorine was not lost in significant amounts. Crystallisation onset (Tc,ons) and 

peak (Tc,peak) temperatures also decreased with increasing CaF2 content. The decrease in Tg can also 

be explained by the fact that fluorine is complexing calcium: in fluorine-free glass A, divalent 

calcium ions bind together silicate anions by electrostatic forces and the calcium ions effectively act 

as ionic bridges between two NBO. When CaF2 is added (Fig. 6), hypothetical CaF+ species are 

added to the silicate ions which reduces the electrostatic forces between non bridging oxygens 

considerable and results in a decrease in Tg.18,29,30  
23Na MAS NMR spectra of glasses A, C and E to G (Fig. 7) exhibit a single broad peak centred 

between -1 and -5 ppm. Despite the broadness of the peaks there do appear to be sites within the 

glass between 4 and 7 ppm, with a sharp feature at 4 ppm which is particularly pronounced in 

sample A. In glass ceramics, the 23Na MAS NMR signal from NaF varies between 5 and 7 ppm 

depending on the crystal size.31 Therefore, the appearance of a small shoulder at ca. 7 ppm can be 

explained by complexing of sodium with fluorine with increasing fluorine concentrations. After 
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crystallisation (Fig. 8), a very sharp peak appears at 7 ppm due to an increase in structural order of 

the fluorine environment as seen in 19F MAS NMR.  

 
Figure 7:  23Na MAS NMR spectra of glasses A, C and E to G. 
 

Gradual replacement of combeite by the fluorine containing phases cuspidine and fluorite, which 

was seen in XRD results, should be expected to be associated with the evolution of the 23Na NMR 

signal of the crystallised samples (Fig. 8) at 13 and -1 ppm along the series. Unfortunately, there are 

no 23Na NMR reference spectra for combeite crystals of any stoichiometry. Moreover, the 

precipitation of a 2Na2SiO3-CaSiO3 or Na4CaSi3O9 phase in sodium rich compositions of the series 

(as seen from the XRD data) additionally complicates interpretation of the 23Na NMR spectra for 

the crystalline samples. The broad peak at -1 ppm for crystallised sample G (Fig. 8) is likely to be 

caused by the significant amount of glassy phase found by XRD (Fig. 9). 

 
Figure 8:  23Na MAS NMR spectra of crystalline samples A, C and E to G. 
 

23Na 3QMAS NMR spectra for samples A and G are given in Figs. 10 and 11 and confirm the 

presence of multiple sodium sites in the glasses. The distinctive shoulder in the fluorine-free glass 

(A) appearing on the MAS spectrum (Fig. 7) at 4 ppm has an isotropic chemical shift at ca. 8 ppm 
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overlapping to a broad featureless signal as seen in Fig. 10. This result agrees with the simulation of 

the 23Na 3QMAS NMR experimental spectrum for Bioglass® 45S5 containing at least three 

different sites32 with one of them giving a distinctively narrow resonance. The origin of this narrow 

signal is not clear and could also arise from the surface hydration. Comparison of these 

deconvolution results with an NMR study on bioactive glasses by Lockyer et al.33 indicates that the 

broad site perhaps dominates in the low field spectra, giving a nearly -10 ppm value for MAS shift 

at 8.45 T. In the glass with the highest fluorine content (glass G) the signal becomes broader, but 

does show at least two lines one of which has the larger quadrupolar constant (site I), as shown in 

Fig. 11, but as in glass A no sharp features are detected. A slight shift to more negative values of 

the broad 23Na resonance indicates an increase in the mean coordination number of sodium in 

glasses34 moving from A to G, probably arising from a decrease in sodium content within the series. 

This is consistent with the observations by Lusvardi et al.14 

 
Figure 9:  XRD patterns of heat-treated crystalline samples G (bottom) and H (top) showing 

crystalline diffraction pattern superimposed on an amorphous halo. 

Structural role of phosphate 
31P MAS NMR spectra (Fig. 12) show a single peak corresponding to orthophosphate, Q0, which 

shows that phosphate is not part of the actual glass network backbone and no Si-O-P bonds are 

present. These findings are in contrast to the modelling results by Lusvardi et al. who found that 

increasing amounts of fluoride ions forces phosphate groups to bond to silicon atoms by removing 

the modifier ions Ca and Na from the silicate glass network.14 Orthophosphate groups are charge 

balanced by cations, which in our glasses are Na+, Ca2+ and the hypothetical CaF+ species. While 

we introduce CaF2 into the glass, chemical shift of the orthophosphate peak moves from 9 ppm 

(glass A) to 6 ppm (glass G) and 3 ppm (sodium-free glass H). This agrees with the findings by 

Lockyer et al. and Elgayar et al. who substituted CaO for Na2O in bioactive glass compositions and 

observed a shift to less positive peak positions (towards 0 ppm) with increased amounts of CaO.10,33 
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Lockyer et al. explained this by differences in the electronegativities of Na+ and Ca2+, which result 

in displacement of charge from the oxygen and hence from the P-O bond. This increases the 

electronic shielding of the phosphorus and produces a more negative chemical shift.  

 
Figure 10:  23Na 3QMAS NMR spectrum of glass A. The lines inside the spectrum illustrate the 

position of the isotropic chemical shift and quadrupolar product. The distribution of 

isotropic chemical shift (CS) and quadrupolar isotropic shift are indicated by arrows. 

10 contours are drawn every 10% from 10 to 100% of spectral intensity. 

Alternatively, the higher field of the Ca2+ cation drives the 31P chemical shift towards more negative 

values compared to the effect of the lower potential of Na+.35 In our system, however, we have an 

additional species potentially contributing to the chemical shift of orthophosphate, the hypothetical 

CaF+ unit. We therefore compared our 31P MAS NMR results with those in the literature.10,33,36 Fig. 

13 illustrates the 31P isotropic chemical shift trend graphically: It shows the 31P NMR chemical shift 

vs. calcium as a fraction of total calcium and sodium (each expressed in at%) and our results show 

very good agreement with those found in the literature. Thus, the hypothetical CaF+ species do not 

seem to contribute to the charge balancing of the orthophosphate species and the evolution of the 
31P chemical shift is governed by the reduction of the sodium proportion in glasses A to G. 

Additionally, the results in Fig. 13 reveal the disordered character of the phosphate environment, 

i.e. the cations charge balancing the orthophosphate units while CaF2 is introduced in glass. This 

indicates that there is no preferential association with either sodium or calcium ions, and these will 

therefore be present in a ratio consistent with that of the overall glass composition.33 This differs 

from the conclusions of Lusvardi et al. who suggested an ultimate preference of the phosphate units 

for calcium cations.14 We would expect formation of mixed sodium calcium orthophosphates during 

crystallisation in our glasses, although the amount of this phase is perhaps too low for detection by 

XRD.  
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Figure 11:  23Na 3QMAS NMR spectrum of glass G. The lines inside the spectrum illustrate the 

position of the isotropic chemical shift and quadrupolar product. The distribution of 

isotropic chemical shift (CS) and quadrupolar isotropic shift are indicated by arrows. 

10 contours are drawn every 10% from 10 to 100% of spectral intensity. Features of at 

least two different sites are distinguished: site I has a larger quadrupolar constant than 

site II. 

 
Figure 12:  31P MAS NMR spectra of glasses A (bottom) to H (top). Spinning side bands are 

marked by an asterisk. 

Impact on bioactivity 

The knowledge of the structure of fluoride-containing bioactive can be applied to previous studies 

of bioactive glasses in the literature: Table 3 shows four compositions taken from Fuji et al.37 Using 

the fact that fluorine complexes Ca and Na, we have calculated the theoretical and experimental NC 

which determines the proportions of the Qn species present and can also be used to predict the 

bioactivity. There is an excellent agreement between our predicted NC and their experimental 

determined values (Table 3). Furthermore taking the value of a NC = 2.4 as the cut off for 

bioactivity,9 the bioactivity of the glasses can be successfully predicted: The glass (F10C40S50) 
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with a theoretical NC of 2.4 gave an experimental NC of 2.60. In vitro formation of apatite in 

simulated body fluid is often taken as an indicator of bioactivity38 and glass F10C40S50 showed no 

formation of apatite within one week while all other compositions with NC below 2.4 did.  

 
Figure 13:  31P MAS NMR chemical shift vs. calcium content as a fraction of total calcium and 

sodium (all in at%): • our results, + Elgayar et al.10, ○ Lockyer et al.33 and × 

Grussaute et al.36 

This shows that a) NC calculations can be used to successfully predict the bioactivity of glasses and 

b) knowledge of the glass structure is very important when designing new bioactive glasses.  

 

Table 3:  Synthetic glass composition in mol%, theoretical (NC calculated assuming fluorine 

complexes calcium) and experimental network connectivity species and experimental 

bioactivity (in terms of formation of an apatite layer in simulated body fluid within 3 

days) of glasses by Fujii et al.37  

Glass SiO2 CaO NaF  theor. NC exp. NC (NMR) Bioactive 
C50S50 50 50 0  2.0 2.11 yes 
F10C40S50 50 40 10  2.4 2.60 no 
F10C45S45 45 45 10  2.0 2.05 yes 
F10C50S40 40 50 10  1.5 1.63 yes 
 

Conclusions 

To our knowledge, this is the first multi-nuclei characterisation of the structure of fluoride-

containing bioactive glasses. Our detailed structural investigations result in a thorough 

understanding of the structure-property relationship in this class of bioactive glasses. We have 

demonstrated that in fluoride-containing bioactive glasses formation of Si-F bonds or non-bridging 

fluorines does not occur to a significant extent. Instead, fluorine complexes calcium and sodium and 

is present principally as mixed calcium sodium fluoride species. This means that if calcium fluoride 

is substituted for network modifiers such as CaO or Na2O, it results in crosslinking of the network, 
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an increase in network connectivity and thus reduced reactivity and bioactivity of the glass. By 

assuming that fluorine complexes calcium and keeping the ratio of network former to network 

modifier constant when adding calcium fluoride, network connectivity and subsequently bioactivity 

are kept constant. The results of this study will be valuable in designing and producing new 

fluoride-containing bioactive glasses for use as reconstructive material for bone and other hard 

tissue, but they are also of interest for the design of other fluoride-containing silica glass systems 

with a high concentration of non-bridging oxygens, e.g. mould flux systems.  
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