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Abstract 
	  

The carbon cycle modulates climate change, via the regulation of atmospheric CO2, and it 

represents one of the most important ecosystem services of value to humans. However, 

considerable uncertainties remain concerning potential feedbacks between the biota and the 

climate. I used an ecosystem-level manipulative experiment in freshwater mesocosms to test 

novel theoretical predictions derived from the metabolic theory of ecology (MTE), in an attempt 

to understand the consequences of warming for aquatic communities and ecosystems. The year-

long experiment simulated a warming scenario (A1B) expected by the end of the century. The 

experiment revealed that (1) Ecosystem respiration increased at a faster rate than primary 

production, reducing carbon sequestration by 13%. These results confirmed my theoretical 

predictions based on the different activation energies of these two processes. Furthermore, I 

provided a theoretical prediction that accurately quantified the precise magnitude of the 

reduction in carbon sequestration observed experimentally, based simply on the activation 

energies of these metabolic processes and the relative increase in temperature. (2) Methane 

efflux increased at a faster rate than ecosystem respiration and photosynthesis in response to 

temperature. This phenomenon was well described by the activation energies of these metabolic 

processes. Therefore, warming increased the fraction of primary production emitted as methane 

by 21%, and methane efflux represented a 9% greater fraction of ecosystem respiration. 

Moreover, because methane is 21 times more potent as a greenhouse gas, relative to CO2, this 

work suggests that warming may increase the greenhouse gas efflux potential of freshwater 

ecosystems, revealing a previously unknown positive feedback between warming and the carbon 

cycle. (3) Warming benefited smaller organisms and increased the steepness of the slope of the 
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community size spectrum. As a result the mean body size of phytoplankton in the warmed 

systems decreased by an order of magnitude. These results were down to a systematic shift in 

phytoplankton community composition in response to warming. Furthermore, warming reduced 

community biomass and total phytoplankton biomass, although zooplankton biomass was 

unaffected. This resulted in an increase in the zooplankton to phytoplankton biomass ratio in the 

warmed mesocosms, which could be explained by faster turnover within the phytoplankton 

assemblages. Warming therefore shifted the distribution of phytoplankton body size towards 

smaller individuals with rapid turnover and low standing biomass, resulting in a reorganisation of 

the biomass structure of the food webs. The results of this thesis suggest that as freshwater 

ecosystems warm they become increasingly carbon limited, resulting in a reduced capacity for 

carbon sequestration, elevated greenhouse gas efflux potential, and altered body size and 

biomass distribution.   



	  
4	  

	  
Acknowledgements 
	  

This thesis is dedicated to my father, who nurtured my fascination for science from a very early 
age and continues to support my academic endeavours with unwavering enthusiasm and 
excitement. 

A special thank you must go to my first supervisor, Jose Montoya for giving me the opportunity 
to work on this unique project and teaching me the philosophy of scientific study. Thank you 
also for all the good times in London, Dorset and Barcelona (though I’m still awaiting a visit to 
the fabled absinth bar). 

Thanks also to Mark Trimmer for your bounding enthusiasm about any scientific question and 
for teaching me the importance of rigorous and detailed measurement (or in Mark’s words “belts 
and braces”) when studying biogeochemical cycles. 

Thank you also to Guy Woodward, who was the initial catalyst of my scientific career and has 
continued to support my academic progress by giving me numerous unique opportunities along 
the way. 

Thanks to Drew Allen and Dan Reuman for many fascinating discussions and helping me with 
theoretical aspects of this thesis. I look forward to our exciting collaborations in the very near 
future. 

A big thanks to my dear friends, flatmates and office-mates Daniel and Jacob. We’ve shared 
some great times over the past four years, and without your much needed distraction, completing 
this work would have been a much more painful (although maybe slightly quicker) task. 

I would also like to thank the rest of my family for your unconditional support and inspiration.  

Finally and most importantly, thank you to Joanna, for helping me through all of this, for 
rebuilding my enthusiasm in difficult times and tempering my hyperbole where necessary.  

 



	  
5	  

	  
 

Table of Contents	  
Abstract.................................................................................................................................................... 2	  

Acknowledgements ................................................................................................................................. 4	  

General Introduction: On the Community and Ecosystem Level Consequences of Warming .................... 8	  

The Ecosystem: Reconciling Structural and Functional Components ..................................................... 9	  

Carbon Cycling within an Ecosystem: A Tractable Model.................................................................... 11	  

The Ecological Consequences of Global Warming ............................................................................... 15	  

The Metabolic Theory of Ecology and Global Change ......................................................................... 18	  

Ecosystem Level Manipulations: Simulating Warming ........................................................................ 24	  

Goals of the Thesis ................................................................................................................................ 25	  

References ............................................................................................................................................. 27	  

General Methods: The Mesocosm Experiment.......................................................................................... 33	  

General Equipment and Techniques ...................................................................................................... 37	  

(a) Measuring Dissolved Oxygen ...................................................................................................... 37	  

(b) Measuring Methane on the Gas Chromatogram .......................................................................... 39	  

Potential Confounding Variables ........................................................................................................... 40	  

(a) Inorganic Nutrient Regime........................................................................................................... 40	  

(b) Air-Water Gas Exchange due to Advection and Diffusion ........................................................... 42	  

References ............................................................................................................................................. 46	  

Warming Alters the Metabolic Balance of Ecosystems............................................................................. 48	  

Abstract.................................................................................................................................................. 49	  

Introduction ........................................................................................................................................... 50	  

Theoretical Framework.......................................................................................................................... 52	  

Materials and Methods .......................................................................................................................... 58	  

Experimental Set-up........................................................................................................................... 58	  

Calculation of Metabolic Parameters................................................................................................ 59	  

Statistical Analyses ............................................................................................................................ 63	  

Results ................................................................................................................................................... 64	  

The Temperature Dependence of NPP, GPP and ER ........................................................................ 64	  

The Metabolic Balance: Quantitative Predictions............................................................................. 67	  



	  
6	  

	  
Discussion.............................................................................................................................................. 69	  

Conclusion ......................................................................................................................................... 73	  

References ............................................................................................................................................. 74	  

Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater 
Mesocosms ................................................................................................................................................ 79	  

Abstract.................................................................................................................................................. 80	  

Introduction ........................................................................................................................................... 81	  

Theoretical Framework.......................................................................................................................... 83	  

Material and Methods ............................................................................................................................ 90	  

Dissolved Methane ............................................................................................................................ 90	  

Methane Efflux................................................................................................................................... 91	  

Determination of GPP and ER .......................................................................................................... 93	  

Meta-analysis of literature data on methanogenesis in pure culture................................................. 94	  

Statistical Analyses ............................................................................................................................ 94	  

Results ................................................................................................................................................... 95	  

Discussion............................................................................................................................................ 102	  

References ........................................................................................................................................... 107	  

Warming Alters the Size Spectrum and Shifts the Distribution of Biomass in Aquatic Ecosystems ...... 112	  

Abstract................................................................................................................................................ 113	  

Introduction ......................................................................................................................................... 114	  

Materials and Methods ........................................................................................................................ 118	  

Measuring the Size Spectrum........................................................................................................... 118	  

Phytoplankton turnover ................................................................................................................... 121	  

Constructing the Size Spectrum ....................................................................................................... 121	  

Statistical Analyses .......................................................................................................................... 122	  

Results ................................................................................................................................................. 123	  

Warming alters the Size Spectrum ................................................................................................... 123	  

Effects of Warming on Community Composition ............................................................................. 126	  

Warming Shifts the Distribution of Biomass.................................................................................... 131	  

Discussion............................................................................................................................................ 134	  

Conclusion ....................................................................................................................................... 141	  

References ........................................................................................................................................... 141	  



	  
7	  

	  
Overview ............................................................................................................................................. 148	  

The Ecosystem: Reconciling Structural and Functional Components ................................................. 151	  

Conclusions, Caveats and Future Directions ....................................................................................... 155	  

References ........................................................................................................................................... 162	  

Appendix 1. Quantitative prediction for changes in the metabolic balance in response to warming... 166	  

Appendix 2. Quantitative prediction for changes in the balance between CH4 efflux and GPP. ......... 168	  

Appendix 3. Quantitative prediction for changes in the fraction of ER taken up by whole ecosystem 
methanogenesis, ME. ........................................................................................................................... 169	  

Appendix 4. Regression statistics for the community size spectrum. .................................................. 170	  

Appendix 5. Regression statistics for the phytoplankton size spectrum. ............................................. 172	  

Appendix 6. Formulas and geometric shapes used to estimate biovolumes of zooplankton and 
phytoplankton. ..................................................................................................................................... 173	  

	  

 
 



	  
8	  

	  

 

 

 

 

 

 

General Introduction: On the Community and Ecosystem Level 
Consequences of Warming 

 



	  
9	  

	  
The Ecosystem: Reconciling Structural and Functional Components 
 
“.....the more fundamental conception is as it seems to me, the whole system (in the sense of 

physics), including not only the organism-complex, but also the whole complex of physical 

factors forming what we call the environment..... Though the organisms may claim our primary 

interest, when we are trying to think fundamentally we cannot separate them from their special 

environment, with which they form one physical system..... Our natural human prejudices force 

us to consider the organisms as the most important parts of these systems, but certainly the 

inorganic factors are also parts – there could be no systems without them, and there is constant 

interchange of the most various kinds within each system, not only between the organisms but 

between the organic and the inorganic. These ecosystems.....are of the most various kinds and 

sizes. ”         A. G. Tansley, 1935 (pg 299) 

Since its inception by Arthur Tansley in 1935, the concept of the ecosystem has borne 

many guises (Tansley 1935, Lindeman 1942, Odum 1953, O'Niel et al. 1986, Jones & Lawton 

1992, Likens 1992, Willis 1997), though the fundamental tenet that organisms and their physical, 

biological and chemical environment are inextricably linked has remained the cornerstone of 

ecology for almost a century. This definition is suitably broad, as it must encompass the 

multitude of biogeochemical processes that occur within the ecosystems of the biosphere. 

However, its brevity has brought about a significant dichotomy in ecological thinking and has 

hindered its conceptual unification. Ecosystems are frequently conceptualised and studied from 

one of two overarching perspectives. The “structural” or “community” perspective emphasises 

the importance of the organisms within the ecosystem and focuses on the interactions, dynamics 

and diversity of the populations that comprise a community, a viewpoint enormously influenced 

by the early ideas of Robert MacArthur (MacArthur 1955, 1960, 1972). On the other hand, the 
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“functional” or “ecosystem” approach advocates the importance of the fluxes and 

transformations of energy and matter through ecosystems, which are governed by the physical 

laws of thermodynamics and chemical stoichiometry. This perspective was largely developed by 

the ideas of Eugene Odum (Odum 1953, Odum et al. 1962). These two seemingly different 

branches of enquiry into the nature of ecosystems are, in reality, inextricably bound to one 

another and the generality of the nature of this interrelationship is a cornerstone of modern 

ecology, although one that is often implicit rather than explicit in our thinking. For example, it 

seems obvious that the distribution of the abundances of different populations in an ecosystem is 

related to the flux of energy from autotrophs (organisms which synthesise their own energy 

either from the sun – the photoautotrophs – or from inorganic compounds – the 

chemoautotrophs) through the community food web. What is less obvious however is the 

ubiquity of the mechanism (or mechanisms) that governs the flux of energy through ecosystems, 

and ultimately couples “structural” (i.e. the abundance of populations in this case) with 

“functional” (i.e. energy flux) attributes.  

This fundamental gap in our knowledge has long been a “Holy Grail” for ecologists, and 

one that has assumed increasing prominence in the last twenty years, as exemplified in the 

landmark publication “Linking Species and Ecosystems” by Jones and Lawton (1992). 

Understanding how the structure and functioning of ecosystems might be related has taken on 

increased urgency in light of forecasted global warming due to anthropogenic inputs of CO2 to 

the atmosphere (IPCC 2007), and the unprecedented rates of biodiversity loss related to the 

human domination of the Earth’s ecosystems (Vitousek et al. 1997). Significant progress has 

been made thanks to the realisation that the biodiversity within an ecosystem is typically 

correlated with its ability to perform vital biogeochemical processes (e.g. CO2 sequestration, 
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decomposition, primary production, nutrient cycling) (Naeem et al. 1994). Biodiversity-

ecosystem functioning relationships have provided considerable insight into the linkages 

between structural and functional components of ecosystems (Loreau et al. 2001), though these 

effects have often lacked generality, owing to the idiosyncratic responses to biotic and abiotic 

variables (Emmerson et al. 2001, Hooper et al. 2005) that reflect trait differences among species 

(McGill et al. 2006). These limitations have hindered the development of a single general, 

mechanistic theory that links biodiversity to ecosystem functioning, suggesting that this approach 

might not be the most fruitful avenue for developing a more general understanding of the 

connections between structure and function. Here I approach this problem from a new 

perspective, by adopting a holistic view of the carbon cycle within an ecosystem and the 

response of its constituent structural and functional components to an important perturbation – 

“environmental warming” – in a freshwater mesocosm experiment.  

 

Carbon Cycling within an Ecosystem: A Tractable Model 
	  

The cycling of carbon between the organic (i.e. the biotic) and inorganic (i.e. the abiotic) 

pools of an ecosystem (Fig. 1.1) is a useful place to begin to build an understanding of the 

interrelatedness of the structure of the biotic communities and the transformations and fluxes of 

energy, of which carbon is the universal currency (Baird & Ulanowicz 1989). In a simplified 

view of the carbon cycle of a lentic freshwater ecosystem, biomass is synthesised either from the 

capture of photons (light energy) by photosynthesis or from the exergonic redox reaction of 

inorganic chemical compounds by chemosynthesis (i.e. methanogenesis). This biomass, which is 

predominantly composed of organic carbon compounds, is transferred through the food web 
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from autotrophs (i.e. the photo- and chemosynthesisers) to heterotrophic primary consumers and 

then to secondary consumers, and so on. Along each trophic transfer in a food chain a substantial 

proportion of the energy converted to biomass by an organism is lost as work (i.e. respiration and 

the production of heat), a result of the 2nd law of thermodynamics (i.e. it is energetically 

expensive to maintain negative entropy), and is not transferred to its consumer (Lindeman 1942). 

This is why large organisms at the top of food chains tend to be scarce (Hutchinson 1959): I will 

revisit this concept again in chapter five. At each node in the food web a certain portion of the 

biomass senesces, and along each link a certain portion of the biomass consumed is excreted. 

This “dead” biomass is then remineralised by aerobic and anaerobic respiration back to its 

inorganic constituents by the vast microbial consortium in the benthic and pelagic zones of the 

lake.  

The carbon cycle of an ecosystem forms an energetic feedback loop, where in an 

idealised “closed” system the energy that enters via autotrophic processes is balanced by the 

energy released from the system by heterotrophic processes (again a result of thermodynamics). 

In terms of carbon this is called the “metabolic balance” of the ecosystem, and is determined by 

the balance between the gross absorption of CO2 from the atmosphere by photosynthesis (gross 

primary production) and the total respiration (ecosystem respiration) of fixed carbon which then 

effluxes back to the atmosphere as CO2. Because CO2 is a greenhouse gas and has radiative 

forcing potential, the net exchange of CO2 between ecosystems and the atmosphere is crucial in 

the regulation of global temperature (Lovelock 1972). The response of the metabolic balance of 

ecosystems to warming is therefore likely to be important for the strength of biotic-atmospheric 

feedbacks on a global scale and forms the principal theme of chapter three. The greenhouse gas 

efflux potential of an ecosystem is further complicated by considering CH4 in conjunction with 
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CO2, which are the two most important gaseous end products of the remineralisation of organic 

carbon. The fraction of carbon fixed by the ecosystem that is respired and released as either CO2 

or CH4 determines its greenhouse gas efflux potential and, because CH4 has 21 times the 

radiative forcing potential of CO2 (Rodhe 1990), the balance of the efflux of these gases may be 

decisive in determining the propagation of future global warming: I will consider this topic in 

detail in chapter four.    

 

Fig. 1.1. Simplified view of the carbon cycle in a model aquatic ecosystem. The structure of the biotic community is 
illustrated by the size spectrum. Here the community size spectrum is denoted by the dashed red line, and the 
phytoplankton size spectrum is donated by the green circles and line, while the heterotrophic size spectrum is given 
by the black circles and lines. According to energetic equivalence and food web theory the slope of the community 
size spectrum is expected to be steeper than the slope of the size spectra within trophic levels because ~only 10% of 
production is transferred between trophic levels and production to biomass ratios vary with trophic level. The 
biogeochemical processes are denoted by the bold arrows. 	  

	  

A significant advance in developing an understanding of how the structural and 

functional components of an ecosystem are related has come with the appreciation that the gross 
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photosynthetic and respiratory fluxes of an ecosystem are the product of the fluxes of all the 

individual organisms in that ecosystem (Enquist et al. 2003, Allen et al. 2005). This is a 

fundamental tenet of the “metabolic theory of ecology” (Brown et al. 2004), which offers a 

foundation for a deeper understanding of the nature of ecosystems and will be discussed in detail 

later in this chapter. For now it is sufficient to note that metabolism (i.e. the rate at which energy 

is transformed and allocated within an organism) determines the overall fluxes of energy and 

materials through communities and ecosystems. The relationship between the abundance and 

body size of all the organisms in an ecosystem is an important “structural property” (White et al. 

2007, Reuman et al. 2008), which is a useful candidate for linking structure with function. This 

is because the abundance of organisms (grouped either by the similarity of their body size or by 

taxonomy) is determined by the amount of energy they receive, either through their interaction 

with other members of the food web, or by the amount of energy they can synthesise themselves 

(i.e. in the case of autotrophs). In aquatic ecosystems the relationship between abundance and 

body size is typically conceptualised as a frequency distribution of individual body sizes, 

regardless of taxonomy, which has been dubbed the “size spectrum” (Sheldon et al. 1972, 

Gaedke 1993, Kerr & Dickie 2001, Jennings & Mackinson 2003, Blanchard et al. 2009). 

Generally, abundance declines as body size increases and this gives size spectra their 

characteristically negative slopes (in a log-log relationship). In aquatic ecosystems, especially in 

the pelagic zones of lakes and oceans, feeding interactions are strongly size structured: small 

organisms are fed on by larger organisms, which are consumed by progressively larger 

organisms, and so on (i.e. energy flows from a suite of small, abundant and diverse organisms to 

larger, rarer consumers) (Cohen et al. 2003). Consequently, the dissipation of energy along food 

chains means that larger organisms become progressively scarcer. The slope and the elevation of 

the size spectrum (see Fig. 1.1) are key aspects of community structure and provide important 
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clues to the partitioning of production and biomass and also the efficiency of energy transfer 

through food webs. They are also likely to be intrinsically related to the abiotic drivers (e.g. 

environmental temperature), as well as the rates of biogeochemical cycling of key elements (C, 

N and P) in the ecosystem, though the mechanisms that might drive these interrelations are as yet 

poorly understood and are a central aim of this thesis to be explored in detail in chapters five and 

six.     

 

The Ecological Consequences of Global Warming 
	  

The biosphere is in the midst of a pronounced warming trend: global surface temperature 

has risen by ~ 0.74°C in the last century and is projected to increase by a further 3-5°C over the 

next 100 years (IPCC 2007). The ecological consequences of recent athropogenic global 

warming have been far reaching, pervading all levels of ecological organisation, from individuals 

to ecosystems (Walther et al. 2002, Montoya & Raffaelli 2010). Indeed, an ever increasing 

catalogue of species experiencing altitudinal or pole-ward range shifts, alterations in 

phenological cycles, and local extinction or extirpation punctuate the literature (Parmesan & 

Yohe 2003). However, although the ecological impacts of global warming on numerous 

examples of single taxa are now unequivocal, the potential responses of whole ecosystems 

remain uncertain. This is often ascribed to the perceived complexity of ecological networks, 

since the apparently frequent indeterminacy of ecological interactions often appears to preclude 

clear predictions at these higher levels of organisation (Montoya et al. 2006).     

Alterations to the carbon cycle are regarded as one of the greatest potential impacts of 

global warming on ecosystem services (e.g. nutrient cycling, CO2 sequestration, crop pollination) 
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supply (Schroter et al. 2005, Montoya & Raffaelli 2010). These changes include direct effects –

e.g. on productivity, CO2 sequestration, and resource quality-, but also indirect effects –e.g. on 

precipitation patterns, water availability, and crop production. Specifically, the carbon 

sequestration capacity and the greenhouse gas efflux potential of ecosystems have the potential 

to be dramatically altered by changes in temperature. This is because the metabolic rates of 

organisms (e.g. their photosynthetic, respiratory and methanogenic rates) are strongly dependent 

on temperature (Gillooly et al. 2001). Furthermore, warming has the potential to shift the size 

structure of aquatic communities by two main mechanisms, which are not necessarily mutually 

exclusive. First, organisms might exhibit a degree of phenotypic plasticity to changes in 

temperature. This hypothesis has been termed the temperature-size rule and posits that reduced 

organism size at higher temperatures is an adaptive plastic response that results from selection 

for earlier reproduction as population growth rate increases. The accelerated completion of the 

life cycle occurs at the expense of maturation size (Atkinson et al. 2003). Second, warming has 

the potential to alter the prevailing selection pressures in the environment which determines the 

outcome of interspecific competition and therefore the species composition of the assemblages 

(Finkel et al. 2005). Changes in the distribution of body size in aquatic communities could alter 

carbon sequestration rates in pelagic ecosystems profoundly because the mean particle size of 

phytoplankton is an important determinant of their sinking rates, and therefore their potential to 

“bury” atmospheric carbon in sediments. In marine ecosystems this phenomenon is commonly 

referred to as the biological pump (Fujii et al. 2005).     

 Recent evidence has highlighted the potential for strong positive feedbacks between 

warming and the carbon sequestration capacity of terrestrial ecosystems, due to the temperature 

dependence of soil respiration (Knorr et al. 2005, Davidson & Janssens 2006). However, this 
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topic remains controversial as others have suggested that the long term sequestration capacity of 

soils is unaffected by temperature: for instance, the initial stimulation of soil respiration 

eventually acclimates as the labile carbon stored in the sediment is consumed (Luo et al. 2001). 

Nevertheless, the longevity of the incipient elevation of soil respiration can last for years 

(Trumbore 2000), which on a global scale, and in combination with anthropogenic greenhouse 

gas emissions is likely to alter atmospheric chemistry. There is also increasing concern that the 

large quantities of stored carbon and CH4 currently locked up in permafrost regions may thaw if 

mean global temperatures continue to rise, which could result in a potentially catastrophic 

emission of greenhouse gases (Mastepanov et al. 2008).Given the emerging evidence for strong 

positive feedbacks between biogeochemical cycles and future global warming, the need to 

develop accurate and widely applicable coupled climate-carbon models, linking the biotic 

components of the C cycle to the multiple aspects of climate change has increased in urgency in 

recent years (Cox et al. 2000, Friedlingstein et al. 2006). In addition to the mounting evidence 

for feedbacks between biogeochemical processes and warming, new results suggest that 

“reduced body size is the third universal response to global warming, besides range, and 

phenological shifts” (Daufresne et al. 2009), and changes in the size-structure of communities in 

response to warming are beginning to be documented across a range of ecosystem types and 

spatial scales (Finkel et al. 2005, Winder et al. 2009, Moran et al. 2010) which are also likely to 

be important for determining the propagation of future global warming. 

 Despite the abundance of ecological evidence of recent global warming across a diverse 

range of spatio-temporal scales and levels of biological organisation, we still understand 

relatively little about the underlying mechanisms driving this change, and as a result our 

predictive capabilities remain limited. Further, a coherent comprehension of the potential 
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synergies between the multifarious effects of warming at the ecosystem level is urgently required 

if we are to successfully address the challenges brought about by environmental change. It is the 

overarching goal of this thesis to make a first step in developing a better understanding of the 

feedbacks between warming, community size structure and the biogeochemical cycling of carbon 

in aquatic ecosystems. I have taken a multidisciplinary approach to tackle this problem, by 

developing bioenergetic models based on the metabolic theory of ecology which use the physical 

and chemical laws that govern the flux of energy through biological systems to make robust 

predictions. I have combined this theoretical approach with an ecosystem scale experimental 

manipulation that attempted to simulate the effects of future warming on shallow lake 

ecosystems and to test the predictions of my models.  	     

 

The Metabolic Theory of Ecology and Global Change 
	  

 Metabolism is the rate at which an organism uptakes energetic and material resources 

from its environment, transforms them into useable forms and provisions them to the 

biochemical processes necessary for growth, survival, and reproduction (Brown et al. 2004). 

Metabolic rate therefore “sets the pace of life” and determines the reciprocal interactions 

between organisms and their environment. Over the past decade the rich history of research into 

the comparative physiology of organisms (Klieber 1961, Peters 1983) has been combined with a 

more mechanistic, theoretical perspective taken from physics (West et al. 1997) that attempts to 

explain biological phenomena in terms of physical and chemical laws: this integration underpins 

the “metabolic theory of ecology” (Brown et al. 2004).  
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The metabolic theory of ecology (MTE) has developed two broad types of models. The 

first set of models attempt to explain the size and temperature dependence of metabolic rate. The 

relationship between body size and metabolic rate has had a long tradition in biology that can be 

traced back to Max Rubner (1883), who was the first to demonstrate that whole organism 

metabolic rate typically scales as the 2/3 power of body size, and was thought to be related to the 

rate at which heat generated from metabolism was dissipated through the body surface (Rubner 

1883). However, Max Kleiber’s influential monograph demonstrated that metabolic rate actually 

scaled as the ¾ power of body size, which has been known since as Klieber’s law (Klieber 

1961). This scaling relationship has subsequently been extended to encompass a diverse array of 

prokaryotic and eukaryotic life, from a single mitochondrion to a blue whale (West et al. 2002). 

In 1997 a model developed by West et al., proposed to account for the quarter power scaling of 

metabolism (mass specific metabolic rate scales as the -⅟4 power of body size) with body size. 

 
Fig. 1.2. An extension of Kleiber’s ¾ power law for the metabolic rate of mammals, to cover 27 orders of magnitude 
from individuals (blue circles) to uncoupled mammalian cells, mitochondria and terminal oxidase molecules, CcO, 
of the respiratory complex (red circles). Also shown are data from unicellular organisms (green circles). Figure 
redrawn from West et al., (2002).  
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In their model, West et al., (1997) made three simplifying assumptions: (i)	  the	  biological	  

distribution	  networks	  that	  deliver	  energy	  and	  materials	  to	  cells	  are	  fractal-‐like	  in	  their	  

geometry;	  (ii)	  the	  terminal	  metabolic	  units	  (i.e.	  mitochondria	  and	  chloroplasts)	  of	  these	  

networks	  are	  energetically	  invariant,	  meaning	  that	  the	  energy	  flux	  per	  metabolic	  unit	  is	  

independent	  of	  body	  size	  and	  (iii),	  the	  energy	  required	  to	  distribute	  resources	  through	  the	  

network	  is	  minimized.	  The	  “universality”	  of	  quarter	  power	  scaling	  laws	  in	  biology	  is	  

however	  shrouded	  in	  controversy	  and	  there	  have	  been	  numerous	  contravening	  examples	  

to	  the	  ¾ or the -⅟4 scaling	  of	  metabolism	  (Glazier	  2005,	  Makarieva	  et	  al.	  2008)	  as	  well	  as	  

criticisms	  of	  the	  mathematical	  foundations	  of	  the	  theory,	  which	  have	  polarised	  the	  field	  

(Kozlowski	  &	  Konarzewski	  2005,	  Makarieva	  et	  al.	  2005).	  In	  fact,	  new	  research	  (DeLong	  et	  

al.	  2010)	  has	  demonstrated	  that	  the	  ¾ power scaling of metabolic rate does not hold across all 

evolutionary domains of life,	  for	  prokaryotes	  the	  relationship	  is	  super-‐linear	  (i.e.	  >1),	  while	  

for	  protists	  it	  is	  linear	  (i.e.	  =1),	  suggesting	  that	  the	  theory	  of	  fractal	  distribution	  networks	  is	  

also	  invalid	  for	  these	  groups.	  

The	  exponential	  increase	  in	  biological	  rates	  with	  temperature,	  including	  metabolic	  

rate	  has	  been	  well	  established	  for	  over	  a	  century.	  The	  kinetics	  of	  metabolism	  are	  well	  

described	  by	  the	  Boltzmann	  factor	  or	  the	  Van’t	  Hoff-‐Arrhenius	  relation	  e-E/kT, where E is the 

activation energy of metabolism, k is Boltzmann’s constant and T is absolute temperature.	  This	  

exponential	  form	  describes	  the	  temperature	  dependence	  of	  metabolism	  of	  almost	  all	  

organisms,	  from	  unicellular	  organisms	  to	  the	  largest	  multicellular	  plants	  and	  animals	  

(Gillooly et al. 2001).	  Together,	  the	  joint	  effects	  of	  body	  size	  and	  temperature	  can	  be	  

combined	  in	  the	  general	  model	  of	  the	  MTE	  to	  describe	  the	  metabolic	  rate	  of	  an	  individual	  

organism:	  
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where Bi is the metabolic rate of an individual i, b0 is a normalisation constant that is independent 

of body size and temperature and Mi the individual’s body size. This simple model is the 

foundation of the MTE and provides a potential platform for a deeper understanding of the 

structure and functioning of individuals, populations, communities and ecosystems, whose 

dynamical interactions with their environment can be explained, to a large degree, by 

metabolism. 

  The second class of models that have been derived from the MTE have built upon these 

foundations to explore the consequences of metabolism across almost all levels of biological 

organisation, from genomes and subcellular organelles (Gillooly et al. 2005, Savage et al. 2007, 

Allen & Gillooly 2009) to the structure and dynamics of populations (Savage et al. 2004), 

communities and ecosystems (Enquist et al. 2003, Allen et al. 2005, Allen & Gillooly 2009). 

Arguably one of the greatest steps forward in developing a mechanistic understanding of the 

structure and functioning of ecosystems offered by the MTE, and of the greatest direct relevance 

to this thesis, is the appreciation that the biogeochemical fluxes at the ecosystem level (e.g. gross 

primary production, ecosystem respiration) are the product of the sum of all the metabolic rates 

of all the organisms within the system under study (Enquist et al. 2003, Allen et al. 2005). For 

example: 

€ 

Btot =
1
V
B0e

−E / kT Mi
3 / 4

i=1

n

∑                                                          (2) 

where Btot is the metabolic flux of the ecosystem (i.e. gross photosynthesis or respiration) B0 is a 

normalisation constant that is independent of mass and temperature and n is the number of 
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individuals of i in the volume V of the ecosystem. This realisation provides great predictive 

power and underpins the development much of the theory presented in this thesis. For example, 

equation 2 is particularly useful for exploring the consequences of warming on ecosystem 

metabolism because it is implicit in equation 2 that the temperature dependence of ecosystem 

metabolism is equal to the activation energy of metabolic rate at the individual level (Enquist et 

al. 2003, Allen et al. 2005). This can be seen best by taking logarithms of both sides of equation 

2 (Fig. 1.3):    

€ 

ln(Btot ) = −E 1
kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ln

1
V
B0 Mi

−3 / 4

i=1

n

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                                         (3) 

In equation 3 the natural logarithm of ecosystem metabolism is a linear function of the inverse of 

absolute temperature (1/kT), with a slope (i.e. the temperature dependence) given by the 

activation energy of metabolism.  

 

Fig. 1.3. Example of a typical Boltzmann-Arrhenius plot. Here the natural logarithm of metabolic rate is plotted 
against the reciprocal of absolute temperature. Note that temperature increases in the opposite direction on the x 
axis. The slope provides an estimate of the of the activation energy (eV; 1eV = 96.49 KJ mol-1) of metabolism, i.e., 
the average amount of energy required to catalyse the reactions involved in metabolism  
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Equations of this general form will be used frequently throughout this thesis to make predictions 

on the effects of warming on the fundamental biotic components of the carbon cycle.  

 

 Despite its obvious appeal – it provides a simple general mechanism for explaining 

diverse ecological phenomena – the MTE has come under heavy criticism mainly for its 

perceived oversimplification and tendency to ignore, rather than incorporate, its exceptions 

(Glazier 2005, Kozlowski & Konarzewski 2005, Makarieva et al. 2005, Hawkins et al. 2007, 

Makarieva et al. 2008, Glazier 2010). One of the major criticisms of the MTE is that it is 

anchored to a “universal ¾ power-law”. Recent work has demonstrated that there is often 

considerable inter- and intraspecific variation which surrounds the ¾ power mass scaling of 

metabolic rate (Glazier 2005), and it has been argued that the focus of the current model [i.e. the 

model of (West et al. 1997)], which explains the average exponent, should be shifted to explain 

extreme boundary limits of this exponent (Glazier 2010). However, proponents of the MTE have 

responded with the counter-argument that to find general laws in science with broad predictive 

capabilities it is sometimes necessary to give less credence to the variability and focus emphasis 

on the underlying patterns (Allen & Gillooly 2007). Whatever its shortcomings the MTE has 

provided ecology with a quantitative set of predictions derived from first principals that can be 

tested with empirical data. Therefore, the MTE has generated a huge amount of research over the 

past decade in an attempt to either prove or disprove its predictions and this has been a 

significant positive influence on ecology, by stimulating debate and providing a framework 

within which to attempt to link previously seemingly disparate disciplines (e.g. community and 

ecosystem ecology).     
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Ecosystem Level Manipulations: Simulating Warming 
	  

The experimental component of this study involved a replicated, ecosystem level manipulation 

of freshwater mesocosms which simulated the potential effects of future warming on aquatic 

ecosystems (Fig. 1.4): this experimental set-up is described in detail in chapter two. Briefly, the 

experiment consisted of twenty freshwater mesocosms: ten replicates remained at ambient 

temperature, whilst the other ten were maintained at 3-5°C (mean 4°C) above ambient, in line 

with the A1B warming	  scenario predicted for temperate latitudes by the end of the 21st century 

(IPCC 2007). Mesocosm experiments represent an inevitable compromise between the control 

and replication of laboratory studies and the realism of descriptive field surveys but, despite their 

limitations, they can provide a useful tool for predicting how global change scenarios might 

affect ecosystem level processes (Benton et al. 2007).  

Fig. 1.4. (a) Aerial view of the global warming mesocosm experiment in April 2008. The experimental plot 
consisted of 20 mesocosms: 10 heated and 10 unheated. (b) Close-up of mesocosm 1 (heated) in April 2008, 
highlighting the presence of diverse floral and faunal assemblages. 

 

In particular, they afford the opportunity to isolate the effects of temperature from other 

potentially confounding variables (e.g. latitude, altitude, nutrient avialability) on the structure of 

entire replicated ecosystems, and permit direct comparisons to be made between the structure 
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and functioning of ecosystems under ambient conditions with those of their “future” warmed 

counterparts (Table 1.1). This thesis can therefore be understood from two perspectives. First, 

the theoretical and experimental results represent an “applied” approach that can provide much-

needed insight into the potential future consequences of warming on aquatic ecosystems and aid 

in developing more mechanistic, predictive capabilities to tackle future climate change. Second, 

warming can be viewed as a perturbation experiment within a purely fundamental scientific 

perspective that aims to provide a deeper understanding of the intricate and reciprocal nature 

between community structure and ecosystem functioning. 

 
Table 1.  Advantages and disadvantages of different scales of ecological experiments used to answer global change 
questions. This thesis focuses on field mesocosm experiments.  

 

Goals of the Thesis 
	  

The overarching goal of this thesis was to understand the reciprocal relationship between 

community structure and ecosystem functioning and to provide a first glimpse of the potential 

ecosystem level responses to future warming. To achieve this I addressed the following 



	  
26	  

	  
subsidiary aims and hypotheses using the experimental and theoretical approach described 

above: 

1) To gain predictive capabilities to assess how the metabolic balance of aquatic ecosystems 

might respond to future warming scenarios (chapter three). 

a) I expect the ratio of ecosystem respiration (ER) to gross primary production (GPP), 

which determines the net carbon sequestration capacity of the ecosystem, to increase with 

increases in temperature. This is because the activation energy for respiration (Er) is 

greater than that of photosynthesis (Ep), therefore respiration should increase faster than 

photosynthesis with increasing temperature. I expect that this will reduce the ability of 

warmer ecosystems to sequester carbon.  

2) To gain a mechanistic understanding of how the rate of methane efflux in relation to primary 

production (i.e. CO2 absorption) and ecosystem respiration (CO2 efflux) will be affected by 

warming (chapter four).  

a) Similarly to hypothesis 1a, I expect the ratio of methane emission (ME) to GPP and ME 

to ER to increase with increases in environmental temperature. The ratio of ME/GPP 

represents the proportion of carbon absorbed by the ecosystem that is subsequently 

released as methane due to the anaerobic remineralisation of organic matter. The ratio of 

ME/ER represents the proportion of ER that is effluxed to the atmosphere as methane and 

gives an indirect estimate of the balance between CH4 and CO2 emission. In both cases I 

expect these ratios to increase with temperature, because methanogenesis should have a 

higher activation energy than aerobic respiration or photosynthesis. This is because the 

entropy change in the biochemical reaction is particularly great (Conrad & Wetter 1990). 
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3) To explore how the size structure and distribution of biomass in aquatic ecosystems might be 

expected to respond to future warming (chapter five). 

a) In line with recent observations in aquatic ecosystems I expect warming to favour small 

sized organisms (Daufresne et al. 2009), which will drive an increase in the steepness of 

the slope of the size spectrum (see section carbon cycling within an ecosystem: a 

tractable model, for a definition).  

b) If the resource supply rates of limiting resources remains unchanged with increases in 

temperature by applying the MTE I would expect total community biomass to decline 

with temperature according to e-E/kT. 

I will develop these predictions in greater detail and test them empirically at the ecosystem scale 

using a replicated freshwater mesocosm experiment in chapters three, four and five.  
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Experimental Design 
 

The field-based mesocosm experiment was established in December 2005 by Dr Jose 

Montoya as part of a NERC fellowship (NE/C002105/1), and the research presented in my thesis 

is focused on a 12-month period of intensive sampling I undertook between April 2007 to April 

2008. The experiment was based at the Freshwater Biological Association River Laboratory 

(2°10`W, 50°13`N) East Stoke, Dorset, UK. Twenty artificial ponds, each holding 1m3 of water 

were set up to mimic shallow lake ecosystems (Fig. 2.1): this scale of mesocosm reproduces the 

key elements of community structure (e.g. diversity, trophic complexity) and functioning (e.g. 

nutrient cycling) of shallow lake ecosystems (Jones et al. 2002, McKee et al. 2003, Ventura et 

al. 2008). 

 

Fig. 2.1. Schematic diagram of the design of the mesocosm experiment, highlighting the position of warmed (W) 
and ambient (A) treatments. 
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Ten of the 20 ponds were warmed 3-5°C above ambient temperature, in accordance with the 

IPCC A1B global warming projections for the next 100 years for temperate areas in the northern 

hemisphere (IPCC 2007). Experimental warming was achieved by an electronic heating element 

connected to a thermocouple which monitored the temperature in a given heated and unheated 

treatment pair of mesocosms. Temperatures were logged every 5 minutes over the entire year 

using HOBO temperature-irradiance data loggers and regular adjustments were made to ensure 

that temperature differences between treatments were ~4°C. The mean annual temperature 

difference between treatments was 4.1°C (±SE 0.01; Table 2.1) 

Fig. 2.2. Annual temperature differences between heated and unheated treatments. Example of temperature regimes 
over the course of the experiment for a heated and unheated treatment pair. Pond 1 (Heated: Red; see fig. 2.1) and 
Pond 2 (Unheated: Black; see fig. 2.1). The mean temperature difference over the year was 4.8°C, ± 0.0096. Insert, 
diel temperature differences between heated and unheated treatments. Example of diel temperature regimes for a 
heated and unheated treatment pair. Pond 1 (Heated: Red) and Pond 2 (Unheated: Black). 

 

The mesocosms were seeded in December 2005 with organic substrates and a suite of organisms, 

representing a pelagic and benthic community that contained representative species from primary 

producers to top predators (Roach, Rutilus rutilus), and a suite of intermediate invertebrate 
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consumers (zooplankton, including Daphnia and Bosmina, and benthic macroinvertebrates, 

including Mollusca, Malacostraca, Trichoptera, Ephemeroptera, and Odonata) to mimic, as far as 

possible, the organismal composition, trophic complexity and physical structure of shallow lake 

ecosystems. The submerged macrophytes Elodea canadensis Michaux, Myriophyllum spicatum 

L. and Ceratophyllum spicatum L. were added to each pond in equal quantities (250 g wet 

weight) and Chara contraria A. Braun ex Kutz colonized all 20 ponds during the experiment.	  

The biota was left to establish for ten months prior to the onset of experimental warming, which 

commenced in September 2006, thereby allowing time for further natural colonisation before the 

start of the annual sampling period on the 11th April 2007. Populations of the introduced top 

predator, R. rutilus were maintained at constant densities [two individuals (age 1+) per 

mesocosm (~12 g C m-3)] in all mesocosoms and monitored via regular eletro-fishing surveys. 

Because the fish were maintained at predetermined biomass-densities they merely served to 

“complete” the food webs to mimic natural shallow lakes and were not considered further in the 

analyses.    	  
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Table. 2.1. Summary of the temperature differences between heated and unheated treatments over the course of the 
experiment (April 2007-April 2008). No data were available for ponds 3 and 4 due to failure of the data loggers 
(N/E). 

 

General Equipment and Techniques 

(a) Measuring Dissolved Oxygen 
	  

 Changes in the concentration of dissolved oxygen were used to measure rates of 

ecosystem metabolism (either gross photosynthesis or respiration). Measurement of dissolved 

oxygen was achieved by deploying YSI 600XLM multiparameter Sondes equipped with 6562 

rapid pulse™ dissolved oxygen sensors in the mesocosms 24 hours (Fig. 2.4).  



	  
38	  

	  

 
 
Fig. 2.4. Photograph of the YSI600XLM dissolved oxygen sensor deployed in the centre of the mesocosm. 
 
 
The Sondes measure dissolved oxygen by means of a Clark-type sensor which is polarized at a 

voltage sufficiently negative to cause oxygen to be reduced to hydroxide ion at the cathode and 

silver metal to be oxidized to silver chloride at the anode. The oxygen diffuses through the 

Teflon membrane. The current associated with this process is proportional to the oxygen present 

in the solution outside the membrane. A unique feature of this sensor is the rapid pulse™ 

technology which prevents significant consumption of oxygen by the sensor during electrolysis. 

To minimise oxygen depletion, the probe electrodes are rapidly polarized and depolarized during 

a measurement sequence and the sensor measures the charge associated with the reduction of 

oxygen during a carefully controlled time interval. The net charge is therefore proportional to the 

oxygen partial pressure in the medium. The oxygen sensors were calibrated in water saturated air 

using a specially designed calibration capsule attached to the probe. Calibration accuracy was 

determined against know oxygen saturation for the given temperature and pressure prior to 
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deployment. The YSI 600XLM oxygen probe consisted of an internal data logger which 

facilitated the deployment of the probe for 24 hours.  

 

(b) Measuring Methane on the Gas Chromatogram 
	  

To measure methane (CH4) emission from the mesocosms in-situ gas samples were taken 

from custom built chambers positioned at the air-water interface (details of the precise sampling 

protocol are given in chapter four) and were stored in 3 mL gas tight vials (Exetainers; Labco, 

High Wycombe, UK). The CH4 concentration in the headspace of the sample was determined by 

gas chromatography. Samples (50 µl) were withdrawn from the headspace of the sample vials 

and injected using an auto-sampler (Multipurpose Sampler MSP2, Gerstel, GmbH, Germany) 

into a gas-chromatograph fitted with a flame ionising detector (GC/FID; Agilent Technologies, 

UK). Gases (CO, CH4, CO2) were separated on a stainless steel column (length 6’ x 1/8ʺ″∅) 

packed with Porapak (Q 80/100) at 30oC with zero grade N2 (British Oxygen Company, BOC) as 

the carrier gas (14 ml min-1). CH4 was combusted in H2 and zero grade air (40 and 450 ml min-1 

respectively) and measured with a FID detector heated to 300°C. Headspace concentrations of 

CH4 were calculated from peak areas calibrated against known standards (Scientific and 

Technical gases, Staffs, UK) and were converted into µmol m-2 accordingly (Fig. 2.3). 
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Fig. 2.3. Example calibration for CH4. The detected peak area from the gas chromatogram is regresses against 
known standards, formula is then used to determine the actual concentration of CH4 in each sample. 
 
 

Potential Confounding Variables    

(a) Inorganic Nutrient Regime 
	  

The fundamental goal of this thesis was to determine the potential effects of warming on 

the carbon cycle of aquatic ecosystems. Therefore, it was crucial to isolate the effects of 

warming per se from any other potentially confounding variables that might influence rates of C 

cycling. One such potentially confounding variable is the extent of inorganic nutrient limitation, 

because this can strongly influence rates of primary production (Woodward 2007) and also the 

size structure of phytoplankton communities (Finkel et al. 2005, Winder et al. 2009). To 

determine whether the experimental treatment (i.e., warming) affected the extent of nutrient 

limitation in the mesocosms, I made detailed seasonal measurements of the major inorganic 

nutrients which might be expected to regulate primary production: water samples for measuring 

dissolved inorganic nutrient concentrations were collected from mid depth in each mesocosm at 

9am on each sampling occasion. Samples were filtered (Whatmann GF/F) and stored frozen (-

20˚C) for subsequent determination of NO3
-, NO2

-, NH4
+, PO4

3- and Si (Si(OH)4) using a 
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segmented flow auto-analyser (Skalar, San++, Breda, Netherlands), according to (Kirkwood 

1996).  

 

Fig. 2.5. Seasonality of inorganic nutrients in the warmed (red lines) and ambient (black lines) mesocosms. (a) 
Nitrite, (b) Nitrate, (c) Ammonium, (d) Silicate, (e) Phosphate, (f) the stoichiometry of the inorganic nutrient pool, 
N:P. 

 

Inorganic nutrients (NO3
-, NO2

-, NH4
+, PO4

3- & Si) exhibited strong seasonal trends (Fig. 

2.5). For example, NO3
- concentrations peaked in spring and declined progressively throughout 

the summer, and were depleted to ~0.005 µmol l-1 by October, before remineralisation in the 

winter. Concentrations of NO3
-, NO2

-, NH4
+ and PO4

3- showed identical seasonal patterns in the 

warmed and ambient treatments, with no significant differences in the overall mean annual 
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concentrations of these nutrients (Table 2.2). Furthermore, the stoichiometry of the inorganic 

nutrient pool exhibited remarkable similarity between treatments, with a mean annual ratio of 

total inorganic N to P of ≈11:1 in both heated and ambient mesocosms. The only inorganic 

nutrient which differed markedly between treatments was Si, which exhibited the greatest 

differences between warmed and ambient mesocosms during the spring and summer (Table 2.2): 

I explore the possible explanations for this pattern in detail in chapter 5.  

Importantly, consistency of the dissolved inorganic nutrient concentrations between 

experimental treatments meant that this potentially confounding variable, because it represents 

the potential resource supply rate for primary production, could be discounted from further 

analyses: i.e., any changes in carbon cycling in the mesocosms could be ascribed to the effects of 

warming per se. 

 
Table. 2.2. Results of the linear mixed effects model testing for differences in the concentration of inorganic 
nutrients between heated and ambient mesocosms. A linear mixed effects model was conducted with restricted 
maximum likelihood methods using the lme (linear mixed-effects model) function in R, treatment (heated or 
unheated) was the fixed effect, and temporal pseudo-replication from repeated sampling of the mesocosms over the 
year was accounted for by including mesocosm identity nested within sampling occasion as random effects. 

 

(b) Air-Water Gas Exchange due to Advection and Diffusion 
	  

Apart from biological metabolic activity, gas exchange with the atmosphere due to 

diffusion and advection is an additional factor that might affect the DO concentration and may 

also affect the interpretation of my results (Cole & Caraco 1998). The flux of oxygen across the 
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air-water interface is dependent on the concentration gradient between the water and the 

overlying air, and the gas transfer velocity, k, (otherwise known as the piston velocity). Gas flux 

across the air-water interface is described by the following equation (Cole & Caraco 1998): 

                                  (1) 

where k is the gas transfer velocity (cm h-1), and Cwater – Ceq is the concentration gradient 

of the gas between the water and the concentration that would be at equilibrium with the 

atmosphere. In running waters characterised by turbulent flow, reaeration due to physical 

processes is typically a crucial determinant of the concentration of dissolved gases, and must 

therefore be accounted for in calculation of metabolism from changes in the concentration of 

dissolved gases (Marzolf et al. 1994, Mulholland et al. 2001).  In still waters however, reaeration 

due to turbulence is less important and k is typically determined by wind velocity (Cole & 

Caraco 1998) which determines surface water turbulnce. In the present study measured wind 

velocities were typically very low (average 0.53 m s-1), with only 2.22% of measurements above 

3 m s-1. Importantly, k is largely independent of wind velocity at wind speeds < ~3 m s-1 (Cole & 

Caraco 1998) therefore, enhanced gas exchange due to the turbulence created by wind was not 

considered in the calculations of ecosystem metabolism. However, advective processes which 

also determine k at low winds might still have been influenced by the heating of the mesocosms 

(i.e. through convection). To determine whether experimental warming systematically altered the 

gas transfer velocity I estimated k from simultaneous measurements of the efflux of CH4 and 

dissolved CH4 from: 

                                     (2) 
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where f is the measured efflux of CH4 across the air-water interface, Cwater - Ceq is the 

concentration gradient of the gas in the water and the concentration in the water at equilibrium 

with the atmosphere (Ceq). Ceq was calculated using the equations of (Yamamoto et al. 1976) and 

the measured mixing ratio for CH4 in the air and temperature of the water on each occasion. 

Details of the precise methodology employed in the measurement of CH4 efflux and the 

concentration of dissolved CH4 are given in detail in chapter four, however, a discussion of the 

potentially confounding effects of advective gas exchange are relevant at this early stage because 

they have the potential to influence the findings of all aspects of ecosystem metabolism 

discussed in this thesis.  

The gas transfer velocity, k, exhibited no clear seasonal variability (i.e. it was 

independent of seasonal changes in temperature; Fig. 2.6) and was not significantly different 

between treatments on average over the course of the experiment (Fig. 2.6; F1,123 = 3.46; P = 

0.068). This evidence suggests that the physical influence of heating the mesocosms by ~4˚C had 

little discernable effect on advective processes. Consequently, this potentially confounding 

variable can be discounted from further analyses of the biogeochemical processes in the 

experiment, and changes in the concentration of oxygen and methane in the water column and 

the efflux of methane across the air-water interface can be ascribed to biological metabolism.   

In addition, gas exchange due to diffusive flux alone (i.e. molecular diffusion) was 

considered insignificant and similarly excluded from further analyses for a number of reasons. 

Firstly, the diffusive capacity of oxygen into and out of water is extremely low compared with 

other processes (i.e. advection or biological consumption/production) (Strumm & Morgan 1996 

). For example, the diffusive flux (calculated using Fick’s 1st law: Flux = da[Csat-Cwat], where d 
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is the diffusivity constant and a is the surface area to volume ratio) was typically a vanishingly 

small proportion of the total oxygen pool of the mesocosms. 

	  

Fig. 2.6. Seasonal trends in the gas transfer velocity (k), between heated (red lines) and unheated (black lines) 
treatments. The gas transfer exhibited little seasonal variability and was not systematically affected by the heating of 
the mesocosms (Table 4.1). Data were natural log transformed for statistical analysis but presented here 
untransformed for ease of interpretation. A linear mixed effects model was conducted with restricted maximum 
likelihood methods using the lme (linear mixed-effects model) function in R, treatment (heated or unheated) was the 
fixed effect, and temporal pseudo-replication from repeated sampling of the mesocosms over the year was accounted 
for by including mesocosm identity nested within sampling occasion and block as random effects. 

 

For example, in August in pond 1 (heated) the mean ratio of gas transfer due to diffusion relative 

to the total oxygen pool (i.e. the concentration of O2 multiplied by the volume of the mesocosm) 

was 0.0013 (95% confidence interval, 0.0011 to 0.0015; i.e. 0.13%). Therefore, changes in 

oxygen transfer due to molecular diffusion were less than the error associated with oxygen 

measurement using the probe (±1% of saturation). Taken together these analyses provide firm 

evidence to suggest that abiotic factors that might affect the concentration of dissolved gases 

such as diffusion and re-aeration through the turbulent effects of wind velocity and convection 

are comparatively insignificant relative biological metabolic activity and vary little between 

treatments. Therefore, because heated and unheated treatments were measured simultaneously, 
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they were assumed to experience equivalent atmospheric gas exchange regimes over the diel 

cycle.    
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Abstract 
	  

The carbon cycle modulates climate change, via the regulation of atmospheric CO2, and it 

represents one of the most important services provided by ecosystems. However, considerable 

uncertainties remain concerning potential feedbacks between the biota and the climate. In 

particular, it is unclear how global warming will affect the metabolic balance between the 

photosynthetic fixation and respiratory release of CO2 at the ecosystem scale. Here I present a 

combination of experimental field data from freshwater mesocosms, and theoretical predictions 

derived from the metabolic theory of ecology to investigate whether warming will alter the 

capacity of ecosystems to absorb CO2. The manipulative experiment simulated the temperature 

increases predicted for the end of the century and revealed that ecosystem respiration increased at 

a faster rate than primary production, reducing carbon sequestration by 13%. These results 

confirmed my theoretical predictions based on the differential activation energies of these two 

processes. Using only the activation energies for whole ecosystem photosynthesis and respiration 

I provide a theoretical prediction that accurately quantified the precise magnitude of the reduction 

in carbon sequestration observed experimentally. The combination of whole-ecosystem 

manipulative experiments and ecological theory is one of the most promising and fruitful research 

areas to predict the impacts of climate change on key ecosystem services.  
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Introduction 
	  

The biosphere is in the midst of a pronounced warming trend. Global surface temperature 

has risen by ~ 0.74°C in the last century and is projected to increase by a further 3-5°C over the 

next 100 years (Houghton 2001, IPCC 2007). Evidence for the ecological impacts of global 

warming on individual taxa is now unequivocal, as represented by range expansions and 

poleward migrations (Walther et al. 2002, Parmesan & Yohe 2003, Rosenzweig 2008) but the 

potential responses of whole ecosystems are uncertain (Walther et al. 2002). This may be at least 

partially due to the perceived difficulties of dealing with such seemingly complex systems 

(Walther et al. 2002, Montoya et al. 2006, Memmott et al. 2007).  

Changes to the carbon cycle are generally considered as being one of the greatest 

potential impacts on ecosystem services associated with climate change (Schroter et al. 2005). 

These changes compries direct effects –e.g. on productivity, CO2 sequestration, resource quality-, 

but also indirect effects –e.g. on precipitation patterns, water availability, and crop production. 

Of special interest are those changes in the biogeochemical cycling of carbon that could 

potentially alter the “metabolic balance” of ecosystems, because this determines the carbon 

sequestration capacity of ecosystems. This balance is defined as the rate of carbon absorption by 

photosynthesis relative to remineralisation by respiration, and it determines whether an 

ecosystem acts as a source or a sink for atmospheric CO2 (Woodwell et al. 1998, del Giorgio & 

Duarte 2002, Woodward 2007). 

Some recent evidence has highlighted the potential for feedbacks between warming and 

ecosystem CO2 sequestration (Cox et al. 2000, Canadell et al. 2007, Piao et al. 2008). For 

instance, in terrestrial ecosystems there is a strong positive feedback between temperature and 
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CO2 emission due to elevated rates of soil respiration (Lloyd & Taylor 1994, Cox et al. 2000, 

Knorr et al. 2005, Davidson & Janssens 2006, Arnone et al. 2008), and it has also been 

suggested that as the oceans warm their ability to sequester CO2 from the atmosphere may 

weaken (del Giorgio & Duarte 2002, Lopez-Urrutia et al. 2006).  

Recently, several attempts have been made with coupled climate-carbon models to 

incorporate some of the key biotic components of the carbon cycle (Cox et al. 2000, 

Friedlingstein et al. 2006). However, there is little agreement as to exactly how this should be 

done in a systematic and predictive manner.  In relation to this point the two fundamental 

questions that I address here, are: 

(i) How will the metabolic balance of ecosystems respond to warming? 

(ii) Is it possible to predict the precise magnitude of such changes for any likely 

warming scenario?  

To answer these questions I combined a whole-system experiment with predictive 

ecological theory. In particular, the experimental component permits direct comparisons to be 

made between contemporary ecosystems with their “future” warmed counterparts, and also gives 

the opportunity to explore the underlying drivers behind the observed responses. Furthermore, by 

using materially closed systems (i.e. the only inputs of carbon are through gaseous exchange 

with the atmosphere) I am able to avoid the confounding effects of changes in the movements of 

allochthonous carbon into and out of the system and focus on the mechanisms affecting changes 

in the balance of autochthonous carbon.  

Here, I first present and test the Metabolic Theory of Ecology (MTE) [sensu (Brown et 

al. 2004)] by attempting to establish the temperature dependence of the fundamental components 

of the carbon cycle [net and gross primary production and ecosystem respiration (NPP, GPP and 
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ER respectively)] and their dependence on metabolism. I then use the theoretical platform of the 

MTE to explore whether warming will alter carbon sequestration rates in ecosystems.Finally, 

through extension of the MTE, I attempt to predict quantitative changes in the metabolic balance 

of ecosystems in response to a likely warming scenario predicted for the end of the next century 

(IPCC 2007). I then test my predictions at the ecosystem scale using a whole system 

manipulative experiment in aquatic mesocosms that mimicked this degree of warming. 

 Lentic freshwater ecosystems are tractable as mesocosms because the unit of the 

ecosystem is easily delimited and replicable. Importantly, these systems enable the assembly of 

functioning ecosystems which, although simplifications of their natural counterparts, allow an 

understanding the mechanisms behind the ecosystem level changes that may occur as a result of 

warming. Furthermore, freshwater ecosystems (e.g. wetlands) are fundamental components of 

the global carbon cycle with respect to carbon sequestration (Whiting & Chanton 2001). 

Therefore, understanding how carbon sequestration rates behave in response to warming in these 

systems is critical.  

 

Theoretical Framework 
	  

Metabolism is a fundamental process that regulates the flux of energy and matter through 

multiple levels of biological organisation, from individuals to ecosystems (West et al. 1997, 

Brown et al. 2004). According to the MTE, individual metabolic rate (i.e. the power required to 

sustain an organism), can be explained by the general metabolic model (West et al. 1997, 

Gillooly et al. 2001, Brown et al. 2004): 

                                                           (1) 
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where Bi is the basal metabolic rate of an individual i, b0 is a normalisation constant independent 

of body size and temperature, e-E/kT is the Boltzmann factor that describes the temperature, T, 

dependence of metabolic rate, where k is Boltzmann’s constant (8.62·10-5 eV K-1) and E is the 

activation energy of metabolism. Mi corresponds to the body mass of an individual i, and α is the 

allometric scaling exponent (West et al. 1997, Brown et al. 2004). By summing the individual 

metabolic rates of all the organisms within an ecosystem it is possible to predict total ecosystem 

metabolic rates (Enquist et al. 2003, Allen et al. 2005, Lopez-Urrutia et al. 2006). This general 

metabolic model has been extended to describe three ecosystem processes that underpin the 

carbon cycle: net primary production (NPP), gross primary production (GPP), and ecosystem 

respiration (ER) (Enquist et al. 2003, Allen et al. 2005, Lopez-Urrutia et al. 2006). 

The rate of Gross Primary Production (GPP) for a whole ecosystem can be estimated 

from the sum of the individual photosynthetic rates of all of its autotrophic organisms (Allen et 

al. 2005, Lopez-Urrutia et al. 2006):  

	   	   (2)	  

where na is the number of autotrophic organisms in volume V, n0 is a normalisation constant 

independent of body size Mi and temperature T, Ep is the “effective” activation energy governing 

the temperature dependence of photosynthetic reactions reported in the literature (≈ 0.32 eV) 

(Allen et al. 2005, Lopez-Urrutia et al. 2006), and α is the allometric scaling exponent. The 

parameter Ep, which is the “effective” activation energy of photosynthesis, approximates the 

hyperbolic temperature dependence of photosynthesis with an exponential function over the 

temperature range (0-30°C) to permit direct comparison with the exponential temperature 

dependence of respiration. (Allen et al. 2005, Lopez-Urrutia et al. 2006). The photosynthesis-
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temperature response is typically hyperbolic, slowing at high temperatures due to deactivation of 

the component reactions (Medlyn et al. 2002). However, photosynthetic temperature optima are 

generally correlated with the environmental temperature range experienced by plants and 

deactivation is uncommon within the annual environmental temperature range experienced by 

plants in their natural environment (Larcher 1995). I therefore approximate the hyperbolic 

photosynthesis-temperature relationship with  Ep,  following Allen et al. (2005) using a well 

established model of leaf photosynthesis (Farquhar et al. 1980) and reasonable assumptions 

(internal CO2 concentrations are about 70% of ambient, co-limitation of photosynthesis by 

Rubisco, similar kinetic properties for Rubisco across species) that are frequently used in carbon 

cycling models (Farquhar et al. 1980). It is important to note here, that the derivation of Ep is 

based on the expected concentrations of CO2 at the sites of photosynthesis in terrestrial plants 

(Allen et al. 2005). Therefore, potential differences between aquatic and terrestrial 

photosynthesis, for instance, changes in the concentration gradient of CO2 at the site of 

photosynthesis, due to Henry’s law or slight differences in Rubisco kinetics between aquatic and 

terrestrial plants, may result in a divergence from the expected Ep ~ 0.32 eV in aquatic 

ecosystems, a point that has been previously neglected in tests of MTE in aquatic systems 

(Lopez-Urrutia et al. 2006).      

The GPP of an ecosystem is the gross absorption of CO2 and thus accounts for the 

photosynthate respired by autotrophs. Because autotrophic respiration is ultimately limited by, 

and tightly coupled to, photosynthate production within individual autotrophs (i.e. by substrate 

availability) (Dewar et al. 1999, Atkin & Tjoelker 2003) the temperature dependence of 

autotrophic respiration should be constrained by the photosynthetic activation energy over 

relatively short temporal scales. This process is called type I respiratory acclimation, and has 



	  
55	  

	  
been observed empirically (Atkin & Tjoelker 2003) and experimentally (Dewar et al. 1999). In 

the model for GPP I therefore assume that autotrophic respiration (AR) has an activation energy 

equivalent to Ep (Allen et al. 2005).	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (3)	  

 where (1-ε) is the fraction of photosynthate respired by autotrophs.	  

 The Net Primary Production (NPP) of an ecosystem is defined as its GPP minus the 

carbon respired by autotrophs, AR (i.e. it is the net fixation of CO2 into plant biomass) (Allen et 

al. 2005, Woodward 2007): 

       
                          (4)	  

where ε is the is the fraction of photosynthate allocated to the net primary production of producer 

biomass. 	  

In a similar way, the rate of ecosystem respiration (ER) can be estimated from the 

individual respiratory rates of all of its autotrophic (AR) and heterotrophic (HR) organisms 

(Enquist et al. 2003, Allen et al. 2005, Lopez-Urrutia et al. 2006):  

         (5) 

where na is the total number of autotrophic organisms and nh is the number of heterotrophic 

organisms in a volume V, r0 is a normalisation constant which is independent of Mi and T. The 

scaling exponent α is the same for autotrophs, a, and heterotrophs, h, (West et al. 1997, Gillooly 
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et al. 2001, Brown et al. 2004). The average activation energy governing the temperature 

dependence of respiratory reactions, Er is ≈ 0.65 eV (Gillooly et al. 2001, Enquist et al. 2003).  

In equation (5), unlike NPP or GPP, because ER is the sum of both heterotrophic and 

autotrophic respiration it does not have a simple exponential temperature dependence governed 

by a single activation energy. At steady state, in a closed system, ER, is limited for substrate and 

must equal GPP over the course of a year. Therefore, under conditions of substrate limitation the 

activation energy for heterotrophic metabolism, Er should approach the activation energy for 

photosynthetic reactions, Ep resulting in equivalent temperature dependences between GPP and 

ER over the relevant temporal scale (Allen et al. 2005). However, when an ecosystem deviates 

from steady state (i.e. ER < GPP or ER > GPP), ER is not constrained by GPP. During non-

steady state dynamics, such as those likely to be occurring in this experiment, providing there is 

sufficient stored carbon, heterotrophic respiration may exceed NPP (i.e. the potential 

contemporary carbon substrate) over temporal scales dependent on the turnover time of the 

carbon stores. Under such conditions heterotrophic metabolism can proceed at maximum 

capacity. Therefore, during non-steady state dynamics, because Er >Ep, ER should have a 

temperature dependence approaching that of heterotrophic metabolism, Er and therefore, greater 

than the activation energy for GPP. 

	   Equations (2), (4) and (5) yield general expressions for the temperature dependence of 

NPP, GPP and ER and highlight the importance of the activation energies for individual 

metabolism in controlling the temperature response of whole ecosystem metabolic rates. 

Importantly, the theory outlined above differs from previous work modelling the temperature 

dependence of the carbon cycle based on individual metabolism (Allen et al. 2005). Here I do 

not make the assumption of steady state. Rather, because I am simulating the consequences of 
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global warming on ecosystem metabolism (i.e. a perturbation), I attempt to understand what 

might happen to the metabolic balance of ecosystems during the transitory phase between steady 

states. As such, GPP and ER have the potential to go out of balance. In a scenario where 

ER>GPP, ER may be fuelled by baseline respiration (i.e. respiration uncoupled from 

contemporary primary production) that is dependent on the carbon stored within the system 

(Trumbore 2000, del Giorgio & Williams 2005). On the other hand, when ER<GPP, ER is not 

substrate limited. In either case ER is not constrained by GPP and can exhibit non-steady state 

dynamics in response to warming, and increase exponentially with temperature according to the 

activation energy of heterotrophic metabolism (Er ~0.65 eV).  

The theory above provides a platform from which a mechanistic understanding of the 

potential consequences of global warming on the metabolic balance of ecosystems can be drawn 

and leads to a number of important predictions, which I tested experimentally. First, the 

temperature dependence of NPP is governed by the effective activation energy that characterises 

photosynthetic reactions, and the relationship between ln(NPP) and 1/kT should approximate a 

slope of Ep ~ 0.32 eV . Second, the temperature dependence of GPP is constrained by the 

activation energy for photosynthetic reactions because of the acclimation of autotrophic 

respiration and the slope of the relationship between ln(GPP) and 1/kT should be 

indistinguishable from  that of NPP. Third, assuming non-steady state dynamics, the temperature 

dependence of ER should be greater than that of GPP and the slope of the relationship between 

ln(ER) and 1/kT should approach the activation energy of heterotrophic metabolism, Er ≈ 0.65 

eV. Finally, and most importantly, because of the differential temperature dependences of the 

two processes, ecosystem respiration should increase more rapidly than primary production as 

ecosystems warm, which has the potential to alter rates of carbon sequestration.  



	  
58	  

	  
With an understanding of the mechanisms controlling the temperature dependence of 

NPP, GPP and ER it is possible predict how the metabolic balance (ER/GPP) - which is the 

ability of an ecosystem to sequester carbon - will respond to warming. I define RH:U as the ratio 

of the metabolic balance (ERH/GPPH) in the heated, i.e. “future”, systems to the ratio of the 

metabolic balance (ERU/GPPU) in the unheated, i.e. “contemporary”, ecosystems, which is given 

by: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (6) 

where Er and Ep are the activation energies for ecosystem respiration and photosynthesis, 

respectively, and TH and TU are the temperatures of heated and unheated ecosystems (see 

appendix 1 for a full derivation of equation 6). Equation (6) suggests that the response of the 

metabolic balance of an ecosystem to warming can be predicted and quantified from the 

knowledge of two parameters: the difference between the activation energies of respiration and 

photosynthesis (Er - Ep) and the temperature increase affecting the system (TH-TU). 

 

Materials and Methods 

Experimental Set-up 
	  

I tested these predictions by comparing ecosystem metabolism rates in freshwater 

mesocosms designed specifically for ecosystem scale manipulations (see chapter two for details 

of the experimental set-up). 
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Calculation of Metabolic Parameters 
	  

Ecosystem metabolic fluxes (NPP, GPP and ER) were measured over a 24h diel cycle for each 

replicate of each treatment on alternate months over the course of one year (April 2007 to April 

2008) using the dissolved oxygen (DO) change technique (Marzolf et al. 1994, Mulholland et al. 

2001), resulting in 140 measurements of each. This technique assumes that changes in DO 

concentration over a diel cycle represent the metabolic activity (photosynthetic and respiratory) 

of an aquatic ecosystem. To measure the concentration of DO in the mesocosms, YSI 600XLM 

multiparameter Sondes equipped with 6562 rapid pulse™ dissolved oxygen sensors were 

deployed for 24 hours in each heated and unheated treatment pair on each of the seven sampling 

occasions over the year. Measurements of DO, temperature and pH were taken every 15 minutes 

for 24 hours at mid depth (0.25m) in the water column of each pond. At the beginning of each 

sampling occasion the calibration of each Sonde was tested by deploying both Sondes in the 

same pond for 1 hour to ensure equivalence in DO readings, re-calibration was carried out when 

necessary. Subsequently, prior to deployment in each treatment pair, the Sondes were calibrated 

in water-saturated air with a correction for barometric pressure. Calibration accuracy was 

verified by monitoring the DO concentration of water-saturated air for 10 min and checking 

against 100% O2 saturation for the measured temperature and pressure.    

 The record of continuous DO measurements was used to calculate the NPP, GPP and ER 

for each pond on each sampling occasion. The dissolved oxygen change (∆DO) for each 15 

minute time interval was calculated as the difference in O2 concentration between t1 and t2 (i.e., t2 

- t1) (Fig. 3.1). The daylight and night-time analysis periods were 
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Fig. 3.1. Calculation of NPP, GPP, and ER from diel oxygen profiles. Diel Oxygen profiles for Pond 1 (heated) on 
the 5th June 2007. (a): Dissolved oxygen concentration (µmol l-1) (b) dissolved oxygen change (µmol O2 l-1 15mins-

1). Net primary production (NPP) was calculated as the sum of all oxygen change values during the day (i.e. vertical 
lines above zero). Gross primary productivity (GPP, vertical lines) was calculated by the addition of NPP and day 
respiration (Rday, cross hatched area) (i.e. sum of all vertical lines). Ecosystem respiration (ER) was calculated as the 
integral of the region indicated by horizontal lines. 

 

delimited as follows: the total analysis period was defined from the minimum O2 concentration 

on the 1st night and extended for 24 hours to include the minimum O2 concentration on the 2nd 

night. Photosynthetic dawn was identified as the minimum O2 concentration after which all 

subsequent values were greater than it. Photosynthetic dusk was defined as the maximum O2 

concentration after which all subsequent values were lower (Fig. 3.1) (Bales 2007). Each O2 

change value was then assigned to a day or night-time category. Subsequently the metabolic 

parameters were calculated by numerical integration. NPP was calculated as: 
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                                                                                                    (7) 

GPP was calculated as: 

                                                                                                (8) 

where Rday is day-time respiration. Since it is impossible to directly measure Rday, it was 

estimated, in keeping with the literature, by extrapolating the mean night time respiration value 

across the hours of daylight (Marzolf et al. 1994, Mulholland et al. 2001, Bales 2007). ER was 

calculated as: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (9)	  

The metabolic balance of each replicate of each treatment was then determined as the 

ratio of ER/GPP. In the rare event of significant instrument drift or failure, the entire replicate 

was removed from the final analysis (9 measurements were removed from a total of 140; n = 

131). Current biogeochemical techniques presently preclude the disentanglement of autotrophic 

and heterotrophic respiration at the ecosystem level (Mulholland et al. 2001) and rule out the 

estimation of photorespiration (Marzolf et al. 1994). Consequently measures of GPP using the 

DO change technique may be slightly overestimated given the inclusion of heterotrophic 

respiration in calculation of Rday. Furthermore, as with other studies  it was not possible to isolate 

heterotrophic respiration (resulting in O2 consumption) from my measures of NPP (Bales 2007), 

so NPP estimates may be slightly underestimated. 
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Fig. 3.2. Temperature (1/kT) dependence of ecosystem respiration (ER) separated by treatment (heated = red circles; 
unheated = black circles). Data exhibit the identical temperature dependence of ER in both treatments (see Table 3.1 
for ANCOVA analysis), which provides substantial evidence to suggest that the gas transfer velocity (k) was 
unaffected by the heating of the mesocosms. 

	  

Apart from biological metabolic activity, as discussed in chapter two, gas exchange with 

the atmosphere due to diffusion and advection are additional factors that might affect the DO 

concentration in running waters (Marzolf et al. 1994, Mulholland et al. 2001) and large lakes 

(Cole & Caraco 1998) but are relatively insignificant in the small still water mesocosms used in 

this study. Nevertheless, to provide further quality control I analysed the data for ER, determined 

by the O2 change technique, to test for homogeneity of the slopes of the temperature - ER 

relationship between treatments. The slopes were indistinguishable between treatments (Fig. 3.2; 

Table 3.1). If gas transfer velocities (i.e. k in equation VII) were significantly elevated in the 

heated mesocosms due to convection caused by heating I would expect the slope of the 

temperature dependence of ER to be steeper because ER would be over estimated at higher 

temperatures due to faster de-gassing of O2. This was not the case. Therefore, gas exchange due 

to advective processes (i.e. turbulence caused by wind or convection caused by heating) was 
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considered to be equivalent between treatments and was not considered in the estimation of 

GPP, NPP or ER.  

 

Statistical Analyses 
	  

The activation energy of metabolism is given by the slope of the relationship of an Arrhenius 

plot between ln(x flux) and 1/kT, where k is Boltzmann’s constant and T is absolute temperature 

(K). The temperature dependence of ln(NPP), ln(GPP) and ln(ER) (i.e. the activation energy) 

was determined by ANCOVA. Furthermore, I used ANCOVA to test for statistical differences in 

the slopes and intercepts of these relationships between treatments and months (i.e. n = 7 

sampling occasions), to identify the most parsimonious model for determining the activation 

energy (i.e. the temperature dependence). Model comparison was carried out using the Akaike 

Information Criterion (AIC). In the ANCOVA, temperature was delimited as a continuous 

variable and defined as 1/kT. To account for temporal pseudo-replication in the statistical model 

pond identity (n = 131) was nested within sampling occasion. ANCOVA computations were 

carried out in R statistical software (R. Development. Core. 2006). 

Comparison of mean annual NPP, GPP, ER and the ratio of ER/GPP amongst treatments 

(treating temperature as a categorical factor) was conducted with restricted maximum likelihood 

methods (PROC MIXED) in SAS, using a blocked, factorial design with repeated measures 

(Wolfinger 1998). In the model, treatment (heated or unheated) was the fixed effect, and 

temporal pseudo-replication from repeated sampling of the mesocosms over the year was 

accounted for by including mesocosm identity nested within block and sampling occasion as 

random effects. The repeated measures model was used to test for overall statistical differences 

between treatments in the mean annual values of the above parameters.  
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Results 

The Temperature Dependence of NPP, GPP and ER 
	  

NPP, GPP and ER all increased with temperature (Fig 3.3 a, b, and c, Table 3.1). There were no 

significant differences in the slopes or intercepts of the temperature dependences of NPP, GPP 

or ER between heated and unheated mesocosms (Table 3.1). Furthermore, there were no 

significant interactions between temperature, treatment or pond identity and sampling occasion 

for NPP, GPP or ER suggesting that temporal random effects were not important (Table 3.1). 

This facilitated the use of a single linear model to characterise each of the empirically 

determined temperature dependences of NPP, GPP and ER (Fig 3.3 a, b, and c).  Empirical 

measures of photosynthetic and respiratory activation energies were close to theoretical 

expectations and those values reported in the literature. For NPP, Ep was 0.41 eV (95% 

confidence interval 0.32 to 0.5 eV, n = 131) which is steeper than the predicted value (Ep ≈ 0.32 

eV) (Allen et al. 2005) (Fig 3.3a). This small overestimate may be ascribed to the fact that NPP 

measures based on O2 production are inevitably influenced to some extent by heterotrophic 

metabolism and may therefore more accurately be described as “net ecosystem production” 

(Bales 2007). Because it is currently impossible to completely disentangle autotrophic and 

heterotrophic processes in a systematic way at the ecosystem level (Baldocchi et al. 2001) 

heterotrophic metabolism could not be isolated from the measurements of O2 production. 

Nevertheless, the effective activation energy of NPP reported in the literature (Ep ≈ 0.32 eV) 

(Allen et al. 2005) falls within the 95% confidence limits of the empirically determined 

activation energy for NPP.  For GPP, Ep was 0.45 eV (95% confidence interval 0.38 to 0.53 eV, 

n = 131) (Fig 3.3b), which was statistically indistinguishable from the activation energy from 

NPP (Table 3.1) though slightly steeper than predicted from the activation energy of 
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photosynthesis. Nevertheless, these results provide substantial evidence for the assumption that 

the temperature dependence of GPP is governed by the activation energy for photosynthesis due 

to the type I acclimation of autotrophic respiration to photosynthate production over periods of 

months to years (e.g., (Dewar et al. 1999, Atkin & Tjoelker 2003)).  

	  

Fig. 3.3. Temperature dependence of whole ecosystem net primary production NPP (a), gross primary production, 
GPP (b) and whole ecosystem respiration ER (c). The slope of the temperature response equates to the activation 
energy of the respective process rate. Each data point corresponds to either, the NPP, GPP or ER of a single 
mesocosm on each of the seven sampling occasions.  The slope of the temperature dependence of ER was more 
sensitive to increases in temperature than NPP and GPP (see main text).   
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Table 3.1. Results from Analysis of Co-Variance (ANCOVA). The first ANCOVA tests for relationships between 
ecosystem level metabolic rates (NPP, GPP or ER) and temperature, parallelism between treatments, and difference 
between intercepts. Metabolic rates are used as dependent variables, temperature (1/kT) as the covariate, and 
treatment (heated or control) as the factor. The second ANCOVA tests for differences in the slope of the temperature 
dependence between metabolic rates (i.e., ER x NPP and ER x GPP). Here metabolic rate is used as the dependent 
variable, temperature (1/kT) as the covariate and metabolic rate ID (e.g. NPP or ER) as the factor.  

    

For ER, the activation energy was 0.62 eV (95% confidence interval 0.55 to 0.69 eV n = 131), 

and approached the activation energy expected for heterotrophic metabolism (Er ≈ 0.65 eV) 

(Gillooly et al. 2001, Enquist et al. 2003, Allen et al. 2005) (Fig 3.3c). The activation energy for 

ER was greater than that of GPP, supporting the assumption that ER and heterotrophic 

metabolism were not limited by GPP (i.e. the mesocosms exhibit non-steady-state dynamics). 

Further, the empirically determined temperature dependence of NPP, and GPP differed from ER 

(Table 3.1) and, as predicted, ER was more sensitive to temperature increases than NPP and 

GPP, further substantiating the modelling assumption of non-steady state dynamics. Moreover, 
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because ER responded more rapidly to rising temperatures than NPP and GPP, warming has the 

potential to alter the metabolic balance (i.e., the balance between gross primary production 

[GPP] and ER) and carbon sequestration rates within ecosystems.   

 

The Metabolic Balance: Quantitative Predictions 
	  

GPP and ER were consistently elevated (both within and across seasons) in the warmed 

mesocosms (Fig 3.4a and 3.4b). Correspondingly, mean annual GPP (F1,113=9.58, P=0.0025, 

Fig. 3.4a) and mean annual ER (F1,113=33.37, P<0.0001, Fig. 3.4b) were significantly higher in 

the warmed mesocosms, but the magnitude of their responses to warming differed markedly. In 

agreement with my qualitative theoretical predictions, ER increased at a faster rate under 

experimental warming than did GPP. As such, experimental warming increased ER considerably 

more than GPP which showed smaller differences between warmed and control mesocosms (Fig 

3.4a and 3.4b).  

Given the differential responses of GPP and ER to warming, which were governed by 

their activation energies at the individual level, I then sought to predict how the metabolic 

balance of the mesocosms would respond to warming (i.e. equation 6; RH:U). In Figure 3.5, I 

show how the metabolic balance of a given ecosystem should change quantitatively with 

increasing temperatures. For a constant reference value of TU (e.g. present-day temperatures), 

carbon sequestration is reduced (RH:U increases) as TH increases. The magnitude of the increase 

(i.e. the slope) is governed by the difference in the activation energies of respiration and 

photosynthesis (see equation 6; Er - Ep ).  
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I tested this general prediction with data from the experiment. Here, Er and Ep were the 

empirically observed values of 0.62 and 0.45 eV, respectively; TH and TU were the mean annual 

absolute temperatures in the heated and unheated mesocosms (290.9 and 286.1 K respectively). 

After substituting the empirical values into equation (6) I would expect the ratio RH:U to be 1.12, 

i.e. carbon sequestration will be reduced by a 12% in the warming scenario. The empirically 

measured RH:U (mean annual ratio) was 1.13 (95% confidence interval 1.07 to 1.19), 

	  

Fig. 3.4. Differences in ecosystem metabolism (±SE) between heated (red) and unheated (black) experimental 
treatments.  Both Gross Primary Production, GPP (a), and ecosystem respiration, ER (b), were consistently elevated 
in warmed treatments. The magnitude of the increase in ER between warmed and unheated systems was markedly 
greater than the increase in GPP, reflecting its stronger temperature dependence. Correspondingly, there was a 
highly significant treatment effect on the ER:GPP ratio (c), such that the metabolic balance of the warmed 
mesocosms shifted towards heterotrophy, both seasonally and over the whole year (represented by mean annual 
values). The dotted line represents the metabolic balance (ER = GPP). Warmed ecosystems were net sources of CO2 
to the atmosphere in June, August, October and April (i.e., ER:GPP>1).   
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and was statistically indistinguishable from my theoretical prediction (Fig 3.5). Accordingly, the 

metabolic balance (ER:GPP ratio) of the warmed mesocosms was significantly elevated over the 

course of the year (F1,113=12.71, P<0.005, Fig. 3c). In fact, in four months during the study 

(June, August, and October 2007 and April 2008) the ER/GPP ratio was greater than one, 

suggesting that the warmed systems became net sources of CO2 to the atmosphere over the 

growing season.  

	  

Fig. 3.5. Quantitative changes in the ratio of the metabolic balance between warmed and ambient ecosystems (RH:U 
in equation 10) as temperature, Th, increases. The black line corresponds to the prediction for the experimentally-
observed activation energies for respiration, Er, and photosynthesis, Ep (0.62 and 0.42 eV, respectively). The red line 
is the prediction for the mean value reported in the literature, based on Er of 0.65 eV and Ep of 0.32 eV. The dot 
corresponds to the mean annual value (and 95% confidence intervals) measured empirically in the mesocosms, 
which is undistinguishable from the theoretical prediction.    

 

Discussion 
	  

These results suggest that the temperature dependences of whole ecosystem respiration 

and primary production are fundamentally different, and are governed by their respective 

activation energies, providing strong support for aspects of the MTE which predict that the 

temperature dependence of metabolism can be scaled from the individual to the ecosystem level 
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(Enquist et al. 2003). This finding provides a simple mechanistic platform with strong predictive 

power for understanding how global warming might alter carbon sequestration rates within 

ecosystems. Because the activation energy for ecosystem respiration is higher than that of 

primary production, ecosystem respiration increased proportionately more than production under 

the experimentally induced global warming scenarios predicted for the end of the century. The 

shift in the metabolic balance of the warmed ecosystems in my experiment suggests that a larger 

fraction of the carbon fixed by photosynthesis was remineralised and released as CO2, thus 

compromising the capacity of these systems to sequester carbon as they warm.  

In this experiment both warmed and control mesocosms were net sinks for CO2 on 

average over the year. However, the carbon sequestration capacity of the warmed systems 

relative to the control systems was severely compromised. In both warmed and control 

mesocosms the carbon balance deviated from steady state because ER/GPP was <1 averaged 

over the year, validating the assumptions of my theoretical models. Importantly, in the control 

mesocosms, at ambient temperature, ER/GPP averaged over the year was considerably lower 

than 1, indicating that these systems were strong sinks for CO2. In the warmed mesocosms 

ER/GPP was <1 when averaged over the year, however, during the summer and autumn months 

these systems were net CO2 sources (i.e. ER/GPP >1) indicating that a portion of heterotrophic 

metabolism was fuelled by stored organic carbon. Because the mesocosms were not at steady 

state (i.e. ER/GPP <1 or ER/GPP >1) ER was not substrate limited by contemporary NPP. As 

such, heterotrophic metabolism increased in response to warming, and was unconstrained by the 

weaker temperature dependence of GPP. This corroborates the assumption that the activation 

energy for ER closely reflected the activation energy for heterotrophic metabolism in response to 

warming. In the mesocosm experiment the temperature response of ER was not constrained by 
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GPP and warming increased the fraction of absorbed carbon (GPP) that was respired (ER), 

thereby reducing carbon sequestration.    

In general, caution must be exercised when extrapolating from mesocosm experiments to 

natural ecosystems. Having a general theoretical framework that is supported by experimental 

observations may assist this extrapolation. In particular, the effects of temperature on the 

metabolic balance observed in this whole-ecosystem manipulation should be treated somewhat 

cautiously when extrapolating to other systems where limiting resources (e.g. light, nutrients, 

organic carbon) might alter the temperature response of primary production and, to a lesser 

extent, ecosystem respiration (Woodwell et al. 1998). For instance, in both marine (Lopez-

Urrutia & Moran 2007) and terrestrial (Woodwell et al. 1998) systems it has been suggested that 

resource limitation may override the effects of temperature on primary production at the 

ecosystem level. However, if at higher temperatures resource limitation were to curtail the 

temperature response of primary production to a greater extent than respiration, as seen in 

oceanic carbon cycling (Lopez-Urrutia & Moran 2007), the shift in the metabolic balance might 

be further amplified over temporal scales relevant to the turnover times of stored organic carbon 

pools (i.e. years). This is because the large stores of organic carbon in these systems will be 

available to fuel ER even if contemporary primary production is reduced. 

Acclimation is of fundamental importance to any discussion of the potential effects of 

warming on the metabolic balance of ecosystems (Dewar et al. 1999, Melillo et al. 2002, Atkin 

& Tjoelker 2003, Allen et al. 2005). It has often been suggested that over temporal scales 

relevant to the study of the effects of global warming ER must balance GPP (i.e. the ecosystems 

reach steady state) (Gifford 2003, Allen et al. 2005). The acclimation of ER to GPP arises from 

the assumption that oxidative metabolism is ultimately limited by carbon from GPP (Gifford 
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2003, Allen et al. 2005). If this is correct, the consequences of warming revealed in this study 

may be viewed as transient non-steady state effects which, in natural ecosystems, would 

eventually reach metabolic equilibrium. However, the consequences of warming for the carbon 

balance of natural ecosystems depend fundamentally on the turnover times of the organic carbon 

pools. For instance, studies of soil organic carbon (SOC) pools suggest that the majority of 

contemporary respiration is driven by organic matter fixed more than two years but less than 

thirty years ago (Trumbore 2000). Furthermore, the effects of warming on soil respiration are 

most pronounced on the non-labile SOC pools that have large turnover times (decades to 

centuries), which increases the potential for strong long term positive feedbacks to warming 

(Knorr et al. 2005). Given the considerable reserves of “stored” organic carbon in natural 

ecosystems (Trumbore 2000, del Giorgio & Williams 2005), particularly in soils and aquatic 

sediments, any increase in baseline respiration (i.e. respiration uncoupled from contemporary 

primary production) relative to primary production driven by the differential activation energies 

of heterotrophic and autotrophic processes could shift the carbon balance of many ecosystems 

from being net sinks for atmospheric CO2 to becoming net sources.  

Importantly, and as I have shown in this experiment, ecosystems are likely to exhibit non-

steady state dynamics with respect to carbon sequestration in response to warming, which is a 

long-term, ongoing press perturbation. Over geological time scales these “transient” dynamics 

must reach steady state because ultimately ER requires fixed carbon as a substrate. However, 

understanding the effects of global warming on the carbon sequestration of ecosystems is crucial 

over much shorter temporal scales, and those which are relevant to the manifestations of positive 

feedbacks which may hasten global warming (i.e. decades). In this context, the use of 
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manipulative experiments to inform short term consequences of warming can be very useful 

(Benton et al. 2007). 

 

Conclusion 
	  

The biotic regulation of atmospheric CO2 constitutes one of the most important 

“ecosystem services” of value to humans (Schroter et al. 2005). It is perhaps surprising then, that 

there is still no general consensus as to how the metabolic balance of ecosystems will respond to 

projected global warming (del Giorgio & Duarte 2002, Knorr et al. 2005, Lopez-Urrutia et al. 

2006, Lopez-Urrutia & Moran 2007). In addressing these problems I have used a combination of 

ecological theory, tested explicitly in experimental ecosystems. My approach revealed a 

fundamental mechanism, ultimately driven by the metabolic rates of individuals, which dictated 

the effects of temperature on the metabolic balance of ecosystems. Furthermore, my results 

demonstrate that predicting how the metabolic balance of ecosystems respond to environmental 

warming may not require a bespoke model plagued with detail and numerous parameters specific 

to the system under study. A significant portion of the biological complexity of an ecosystem 

(e.g. community composition, trophic architecture) may be reduced to two fundamental 

parameters: the activation energies for metabolic processes and temperature. However, given the 

inherent complexity and diversity of biotic and abiotic factors influencing the dynamics of 

carbon cycling in natural ecosystems caution should be exercised in extrapolating my findings in 

mesocosms to natural systems. The generality of the quantitative predictions developed here to 

other systems may be achieved after verification in other natural ecosystem types (e.g. terrestrial 

and marine).  Nevertheless, the models developed here and their experimental verification 
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provide an important baseline and foundation for understanding the mechanisms dictating the 

effects of temperature on the metabolic balance of ecosystems, and for predicting future change.  
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Abstract 
 
Methane and carbon dioxide are the dominant gaseous end products of the remineralisation of 

organic carbon and also the two largest contributors to the anthropogenic greenhouse effect. I 

investigated whether warming altered the balance of methane efflux relative to primary 

production and ecosystem respiration in a freshwater mesocosm experiment. Whole ecosystem 

CH4 efflux was strongly related to temperature with an apparent activation energy of 0.85eV. 

Furthermore, CH4 efflux increased faster than ecosystem respiration or primary production with 

temperature, with all three processes having sequentially lower activation energies. Warming of 

4°C increased the fraction of primary production effluxing as methane by 20% and the fraction 

of ecosystem respiration as methane by 9%, in line with the offset in their respective activation 

energies. Because methane is 21 times more potent as a greenhouse gas, relative to CO2, these 

results suggest freshwater ecosystems could drive a previously unknown positive feedback 

between warming and the carbon cycle. 
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Introduction 
	  

The two most important gaseous end products of the remineralisation of organic carbon, carbon 

dioxide (CO2) and methane (CH4), are also the two largest contributors to the anthropogenic 

greenhouse effect (IPCC 2007). The net emission of greenhouse carbon gases from an ecosystem 

is the balance between the CO2 absorbed by the ecosystem by gross primary production (GPP) 

and the carbon that is respired and released as CO2 and/or CH4 (Whiting & Chanton 2001). 

Further, the fraction of fixed carbon that is respired and released as either CO2 or CH4 may be 

decisive for future global warming, as shifts in this balance will affect the greenhouse gas efflux 

potential of ecosystems, because CH4 has 21 times the radiative forcing potential of CO2 over 

periods of up to 20 years (Rodhe 1990, Lelieveld et al. 1991, Whiting & Chanton 2001).  

Methanogenesis in freshwater ecosystems is the result of complex and often interrelated 

biotic and abiotic processes (Christensen et al. 2003a). Methane is produced under strictly 

anaerobic conditions during organic matter mineralisation but the net efflux of CH4 from 

ecosystems can be considerably reduced through oxidation by methanotrophs, which can 

consume significant quantities of the CH4 produced in the sediments of lakes (Kuivila et al. 

1988) and wetlands (Bartlett & Harriss 1991, Segers 1998).   Primary production by plants also 

influences CH4 production (Joabsson et al. 1998, 1999, Christensen et al. 2003b), and this has 

been attributed to the co-variability of organic carbon through root exudation (Chanton et al. 

1995), the turnover of labile carbon, and/or litter production (Joabsson et al. 1999, Christensen et 

al. 2003b). These various lines of evidence are supported by isotopic data which have shown that 

a large fraction of the organic material that fuels methanogenesis in wetlands is derived from 

recently synthesised carbon (Chanton et al. 1995, Joabsson et al. 1999). Vascular plants can also 

enhance emissions of CH4 to the atmosphere via root aerenchyma that act as conduits across 
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zones of potential CH4 oxidation in soils and sediments (Kelker & Chanton 1997, King et al. 

1998).  

Clearly the mechanisms that influence CH4 efflux are diverse, however, when all other 

limiting factors (e.g. substrate limitation, water-table depth) are equal, temperature, via the 

physiological stimulation of microbial metabolism, has been shown to exert strong control on 

CH4 efflux (Schutz et al. 1990, Christensen et al. 2003a, Gedney et al. 2004). Recently, 

considerable attention has been given to the temperature dependence of the biotic components of 

the carbon cycle and how the “metabolic balance” of ecosystems, that is the balance between the 

gross sequestration and release of CO2, might respond to future global warming (Allen et al. 

2005, Lopez-Urrutia et al. 2006, Yvon-Durocher et al. 2010). Emerging evidence suggests that 

autotrophic and heterotrophic metabolisms (e.g. photosynthesis and respiration) have different 

temperature dependencies (or activation energies when depicted in an Arrhenius plot) at the 

ecosystem level, such that respiration increases more rapidly with temperature than does 

photosynthesis (Allen et al. 2005, Lopez-Urrutia et al. 2006, Yvon-Durocher et al. 2010). In 

chapter three I demonstrated that the differential temperature dependence of these two processes 

reduced the ability of the warmed systems to sequester CO2 because more of the carbon fixed by 

primary production was respired (Yvon-Durocher et al. 2010). The response of the greenhouse 

gas efflux potential of aquatic ecosystems to warming is further complicated by considering the 

balance of CH4 efflux in relation to carbon sequestration and CO2 emission.  

A substantial body of work over the last two decades has established the strong 

temperature dependence of methanogenesis in a wide range of ecosystems (i.e. from landfill sites 

to high latitude wetlands) and from pure cultures of methanogens to whole ecosystem-level 

production (Schutz et al. 1989, Westermann et al. 1989, Conrad & Wetter 1990, Schutz et al. 
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1990, Walter & Heimann 2000, Christensen et al. 2003a, Gedney et al. 2004). Studies of the 

temperature dependence of methanogenesis in pure cultures (under optimal conditions) have 

revealed that its activation energy is typically higher than for other forms of metabolism, due to 

the relatively large entropy change of the reaction (Westermann et al. 1989, Conrad & Wetter 

1990, Segers 1998). Methanogenesis and potentially CH4 efflux may, therefore, be especially 

sensitive to increases in temperature which raises a number of important unanswered questions. 

First, does the temperature dependence of CH4 efflux at the ecosystem scale differ from that of 

primary production and ecosystem respiration? Second, how will the balance between carbon 

sequestration, ecosystem respiration and CH4 efflux respond to warming?  

Although our knowledge of CH4 efflux and its regulation by temperature is extensive, it 

is largely based on seasonal field surveys (e.g. in wetlands, soils, lakes) and laboratory 

experiments (e.g. with peat monoliths and rice paddy-soil incubations) which cannot fully 

address these unanswered questions. I sought to extend this knowledge by generating 

quantitative predictions of the effects of warming on the greenhouse gas balance using a novel 

extension of the metabolic theory of ecology (MTE) and testing my predictions in controlled a 

freshwater mesocosm experiment where I compared the efflux of CH4 with rates of gross 

primary production (GPP) and whole ecosystem respiration (ER).  

	  

Theoretical Framework 
	  

The fundamental ecosystem processes involved in the maintenance of the greenhouse gas carbon 

balance involve distinct metabolic pathways which are carried out by fundamentally different 

organisms. For instance, the GPP of an ecosystem is determined by the photosynthetic rates of 
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all its autotrophs (see chapter three also), while ER is governed by the rates of aerobic 

respiration of both autotrophs and heterotrophs. The CH4 efflux of an ecosystem is controlled by 

a distinct metabolic pathway and group of organisms: methanogenesis by anaerobic 

methanogenic Archaea.  

To predict how the net emission of greenhouse gases from freshwater ecosystems will 

respond to global warming, we first need to understand the mechanics of the temperature 

dependence of individual metabolism. I applied recent developments of the MTE to define these 

constraints. The metabolism of individuals exhibit predictable size- and temperature-

dependencies (Enquist et al. 2003, Brown et al. 2004, Allen et al. 2005, Lopez-Urrutia et al. 

2006, Yvon-Durocher et al. 2010). Furthermore, recent advances toward a metabolic theory of 

ecology have demonstrated that whole ecosystem-level fluxes (i.e. GPP and ER) can be 

predicted based on the sums of individual-level fluxes (Enquist et al. 2003, Brown et al. 2004, 

Allen et al. 2005, Lopez-Urrutia et al. 2006, Yvon-Durocher et al. 2010). Using MTE as a 

theoretical platform, I sought to predict quantitatively how warming will affect the fraction of 

carbon absorbed by the ecosystem (GPP) that is respired via the methanogenic pathway and 

released to the atmosphere as CH4. Furthermore, I attempted to predict how the proportion of ER 

due to methanogensis will respond to the elevated temperatures predicted for the end of the 

century; this balance is likely to be decisive in determining the greenhouse gas efflux potential of 

freshwater ecosystems. Importantly, in the theoretical framework (see chapter three) I do not 

make the assumption of steady state. Rather, because I am simulating the consequences of global 

warming on ecosystem metabolism (i.e. a long-term press perturbation away from steady state) I 

attempt to understand what happens to the carbon balance of ecosystems during the transitory 

phase between steady states.  
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The flux of CH4 from an individual methanogen is determined by its metabolic rate, 

which has a predictable mass Mi and temperature T (K) dependence, and can be described by the 

following equation (Brown et al. 2004): 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (1)	  

where Ai is the rate of CH4 flux of individual i. The normalisation constant, A0, is independent of 

mass Mi and temperature T. The Boltzmann factor e-Ea/kT describes the temperature dependence 

of metabolic rate, where k is Boltzmann’s constant (8.62·10-5 eV K-1) and Ea is the activation 

energy of methanogenesis. By summing the individual metabolic fluxes of all the organisms 

within an ecosystem it is possible to predict total ecosystem metabolic fluxes (Enquist et al. 

2003, Allen et al. 2005, Lopez-Urrutia et al. 2006, Yvon-Durocher et al. 2010). The rate of CH4 

production (a) can therefore be estimated from the sum of the individual CH4 fluxes of all the 

methanogens in the community: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2) 

where na is the number of methanogens in the sediment area, A, a0 is a normalisation constant 

independent of body mass, Mi, and temperature T, and Ea is the apparent activation energy 

governing the temperature dependence of methanogenesis. The normalisation constant: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (3)	  

where <M 3/4>n is the average Mi 
3/4 for individuals (=(1/n) ∑n

i=1 Mi 
¾) (Allen et al. 2005), and 

accounts for the total standing ecosystem biomass of methanogens ((na/A) <M 3/4>n) and 
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represents the intrinsic capacity for methanogenesis of the ecosystem. Equation 2 can be 

rewritten as: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4) 

Here, I am attempting to understand how biogeochemical feedbacks will respond to global 

warming and to predict how the net efflux of CH4 to the atmosphere behaves in response to 

temperature. There is, however, an important distinction between CH4 efflux and CH4 production 

(a). CH4 efflux to the atmosphere is the net result of the difference between CH4 production in 

the anaerobic zone of the sediment and the oxidation of CH4 by methanotrophs in the oxic layers 

of the sediment and the overlying water column (Segers 1998). CH4 oxidation can in the 

presence of sufficient concentrations of oxygen, oxidize ~90% of CH4 production in the 

sediment (Schutz et al. 1989) and substantially reduce net CH4 efflux relative to its production. 

In my model I make the simplifying assumption that although CH4 oxidation can typically 

considerably reduce net CH4 efflux it has little effect on the its temperature dependence. As such, 

I expect CH4 efflux to be a constant proportion of CH4 production with temperature, therefore 

the temperature dependence of CH4 efflux should be equivalent to the activation energy for 

methanogenesis. 

Here I am attempting to understand the mechanisms controlling the temperature 

dependence of CH4 efflux not predict the absolute amounts of CH4 efflux or CH4 production. 

Given the above assumptions, equation (4) yields a general expression for the temperature 

dependence of CH4 efflux, and leads to a number of important predictions. First, the temperature 

dependence of CH4 efflux should be governed by the activation energy of individual 

methanogenesis. Thus, the slope of the relationship between ln(CH4 efflux) and the reciprocal of 
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absolute temperature 1/kT should approximate a slope equal to the activation energy of 

methanogenesis in pure culture. Second, ln(a0) should be lower in ecosystems which are 

substrate limited. This is a result of the effects of resource limitation on the intrinsic 

methanogenic capacity of the ecosystem (a0), which is dependent on the abundance of 

methanogens (n/A) and the relative rate of methanogenesis per individual methanogen (A0). 

Finally, ln(a0) may be higher in warmed ecosystems as a consequence of greater oxygen 

consumption from respiration and the reduction in oxygen solubility with temperature both of 

which  may increase the extent of the anaerobic zone in sediments facilitating a greater biomass 

of methanogens. 

The rate of photosynthesis also has a predictable size Mi and temperature T dependence 

(Brown et al. 2004, Allen et al. 2005), and can be described by the following equation: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (5)	  

where Pi is the rate of photosynthesis of individual i. The normalisation constant, P0, accounts for 

the rate of photosynthesis per chloroplast and the density of chloroplasts per unit body mass 

(Allen et al. 2005). Ea is the “effective” activation energy for photosynthesis (0.32 eV) (Allen et 

al. 2005), which describes the temperature dependence of the rate limiting step in 

photosynthesis, Rubisco carboxylation (see chapter three). Similarly, the GPP (p) for a whole 

ecosystem can be described by the sum of the photosynthetic rates of all of the autotrophic 

organisms in the ecosystem (Allen et al. 2005, Yvon-Durocher et al. 2010):  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (6)	  

Here the normalisation constant:  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (7)	  

where np is the number of autotrophs in the area, A. The temperature dependence of GPP (p) is 

governed by the effective activation energy for individual photosynthesis, Ep, ~ 0.32 eV (Allen et 

al. 2005). 

Similarly, individual respiration has a predictable size Mi and temperature T (K) 

dependence (Brown et al. 2004, Allen et al. 2005), which can be described by the following 

equation: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (8) 

where Ri is the rate of respiration of an individual i. The normalisation constant, R0, accounts for 

the rate of respiration per respiratory complex and the density of mitochondria per unit body 

mass (Allen et al. 2005). Here, Er is the apparent activation energy for respiration (~0.65 eV) 

(Gillooly et al. 2001). Like CH4 efflux and GPP, the rate of ER (r) can be estimated from the 

sum of the individual respiratory rates of all its autotrophic and heterotrophic organisms (Enquist 

et al. 2003, Allen et al. 2005, Lopez-Urrutia et al. 2006, Yvon-Durocher et al. 2010):  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (9)	  	  	  	  	  	  

The normalisation constant: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (10)	  
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accounts for the numbers of heterotrophs and autotrophs in the ecosystem, nr. ER is the sum of 

both heterotrophic and autotrophic respiration. Here, as in chapter three I assume a transient, 

non-steady state, (Yvon-Durocher et al. 2010) with respect to the balance between ER/GPP 

because I am attempting to understand ecosystem dynamics in response to perturbations away 

from steady state (i.e. warming). Therefore, I assume that the temperature dependence of ER is 

unconstrained by NPP, a portion of which can be sustained by baseline respiration of stored 

organic carbon (del Giorgio & Williams 2005) and is therefore governed by the activation energy 

of heterotrophic respiration Er ~ 0.65eV, as has been shown previously in chapter three. 

GPP represents the total absorption of CO2 by autotrophic biomass. Previous work has 

shown that primary productivity exerts a strong control on methanogenesis as it provides a 

significant portion of its labile substrate, therefore the two biogeochemical processes are often 

tightly coupled (Whiting & Chanton 1993, Joabsson et al. 1999, Christensen et al. 2003b). The 

fraction of GPP that is respired via the methanogenic pathway and emitted from the ecosystem to 

the atmosphere as CH4 is important in determining the greenhouse gas efflux potential of the 

system and its response to warming might be crucial in determining the extent of future biotic 

feedbacks. I define the fraction of GPP respired via the methanogenic pathway in the warmed 

(aH/pH) versus contemporary (aU/pU) ecosystems as RfixedH:U, and it is given by: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (11)	  

where Ea and Ep are the empirically determined activation energies for CH4 efflux and GPP, 

respectively, and TH and TU are the temperatures of the heated and unheated ecosystems (see 

appendix 2 for the full derivation of equation 11). Similarly the proportion of ecosystem 

respiration that is due to methanogenesis is an important determinant of the balance between CH4 
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and CO2 efflux. Therefore, to predict the relative offset between warmed and ambient treatments 

with respect to the balance between ecosystem respiration and CH4 efflux I define the fraction of 

ecosystem metabolism respired via the methanogenic pathway in warmed (aH/rH) versus 

contemporary (aU/rU) ecosystems as RemittedH:U, and it is given by:  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (12)	  

where Ea and Er are the empirically determined activation energies for CH4 efflux and ER, 

respectively (see appendix 3 for the full derivation of equation 12). Importantly, equations (11 

and 12) suggest that the balance of the net emission of greenhouse gases from an ecosystem can 

be predicted from the knowledge of the differences in the activation energies for the metabolic 

process under question and the degree of expected warming. 

	  

Material and Methods 

Dissolved Methane  

	  

The concentration of dissolved CH4 was measured by removing a water sample (30 mL in a gas-

tight syringe) and gently transferring it to a gas tight vial (12.5 mL Exetainers, Labco, High 

Wycombe, UK), allowing it to overflow, fixing it with a bactericide (100 µL 50 % w/v ZnCl2) 

and sealing it. Samples were collected at hourly time intervals (in total 6 to 10 hours depending 

on the time of year) over a day for each replicate on alternate months for one year (April 2007 to 

April 2008, n = 1416 individual measurements). Upon return to the laboratory, a headspace (2 

mL analytical grade helium) was introduced to the gas tight vial and the sample was shaken 
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vigorously for 0.5 minutes and then allowed to stand for a further 30 minutes to allow for 

headspace equilibration, before analysis of the headspace concentration of CH4 using a gas 

chromatograph as described in chapter two (Sanders et al. 2007). Samples (50 µL) were 

withdrawn from the headspace of the sample vials and injected into a gas-chromatograph fitted 

with a flame ionising detector (GC/FID; Agilent Technologies, UK). Headspace concentrations 

of CH4 were calculated from peak areas calibrated against known standards (Scientific and 

Technical gases, Staffs, UK) and the total amount of CH4 in the gas tight vial (water plus 

headspace) was calculated using the appropriate solubility coefficients (Yamamoto et al. 1976). 

Finally, the 1,416 individual measurements were pooled in each case to give an average daily 

concentration of dissolved CH4 for each pond (140 measures over the year for 70 heated and 70 

ambient). 

 

Methane Efflux  
	  

Measurements of the efflux of CH4 were made simultaneously to those of dissolved CH4. A 

single gas chamber was positioned at the water surface of each mesocosm on each sampling 

occasion. The chambers were made of polycarbonate and enclosed a headspace (300 mL) of 

ambient air at the air-water interface of the mesocosm (Fig. 4.1). The lid of the gas chamber was 

equipped with a Teflon septum port, through which samples of gas (1 mL) were removed using a 

gas-tight syringe (2 mL VICI gas tight syringe) every 15 minutes for the first hour of the 

incubation, then hourly for up to 10 hours thereafter. The samples were then transferred to water-

filled gas-tight vials (3 mL, Exetainers; Labco, High Wycombe, UK) through a two way valve 



	  
92	  

	  
venting through a narrow bore needle. The gas-tight vials were then stored upside down prior to 

analysis. 

	  

Fig.  4.1. Diagram of the gas trap sampler used to measure CH4 efflux. 

 

The concentration of CH4 in the headspace of the sample was determined by gas 

chromatography as described above and chapter two. The efflux of CH4 across the water-air 

interface was calculated by regression analysis of the change in concentration of CH4 in the 

chamber headspace over time. Subsequently, one hour was used as an appropriate duration for 

accurately estimating the flux of CH4 (Lambert & Frechette 2005) (Fig. 4.2). Regression slopes 

with a significance of P > 0.05 and/or an R-squared of below 0.9 were considered non-significant 

and were excluded from further analyses (9 from the 140 individual flux measurements). 
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Fig. 4.2. Example of field measurements of methane efflux (ME) from mesocosm 1 (June 2007) to the atmosphere. 
After approximately 7 hours ME reaches an asymptote (dashed line). This might be an artefact of the gas trap 
enclosure and artificial changes in partial pressure and/or temperature, but may also include a decline in 
photosynthesis and gas transfer through the aerynchema of the macrophytes in early afternoon as photosynthesis 
declines. As a result the shortest possible time (typically 1 hour) to generate a significant (r2>0.9; P<0.05) flux 
(insert) was used for determination of flux rates. 

	  	   	  	  

Determination of GPP and ER 
	  

GPP and ER were estimated simultaneously with the measurements of dissolved CH4 and CH4 

efflux, by applying a standard single station dissolved oxygen (DO) change technique (Odum 

1956, Marzolf et al. 1994, Mulholland et al. 2001). This technique is described in detail in 

chapter three. 
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Meta-analysis of literature data on methanogenesis in pure culture 
 

To determine the average activation energy of methanogenesis in pure cultures of methanogens 

under controlled laboratory conditions I performed a meta-analysis of the available literature data 

on rates of CH4 production in pure cultures of methanogens conducted at a range temperatures. 

Because I was interested in determining the “true” activation energy of methanogenesis it was 

important that temperature was the only variable affecting the rate of methanogenesis in the 

experiments selected for reanalysis. Therefore, only studies in which methanogenic substrates 

were supplied in non-limiting quantities were chosen. The studies were (Vandenberg et al. 1976, 

Huser et al. 1982, Westermann et al. 1989)). Data were removed from the temperature-methane 

production figures in these manuscripts using GrabIT™ software. Only values within the 

exponentially increasing parts of the temperature-methanogenesis curves up to the optimum 

temperature were used for subsequent analysis because at high temperatures (+35˚C) in these 

studies rates of CH4 production were inhibited. The activation energies in each study were 

determined by plotting the natural logarithm of the rate of CH4 production against the reciprocal 

of absolute temperature (1/kT), where the slope of the relationship describes the activation 

energy.      

 

Statistical Analyses 
	  

All data were checked for normality using the Shapiro Wilks test for normality and were natural 

log transformed prior to statistical analysis where necessary. The activation energy of 

metabolism is given by the slope of the relationship of an Arrhenius plot between ln(x flux) and 

1/kT, where k is Boltzmann’s constant and T is absolute temperature (K). The temperature 
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dependence of ln(CH4 efflux), ln(GPP) and ln(ER) (i.e. the activation energy) was determined by 

ANCOVA. Furthermore, I used ANCOVA to test for statistical differences in the slopes and 

intercepts of these relationships between treatments and months (i.e. n = 7 sampling occasions), 

to identify the most parsimonious model for determining the activation energy (i.e. the 

temperature dependence). Model comparison was carried out using the Akaike Information 

Criterion (AIC). In the ANCOVA, temperature was delimited as a continuous variable and 

defined as 1/kT. To account for temporal pseudo-replication in the statistical model pond identity 

(n = 131) was nested within sampling occasion. ANCOVA computations were carried out in R 

statistical software (R. Development. Core. 2006). 

Categorical analyses (treating temperature as a fixed factor i.e. heated or unheated) of 

CH4 efflux, dissolved CH4 pool, k gas transfer, CH4 efflux /GPP and CH4 efflux /ER was 

conducted with restricted maximum likelihood methods using the lme (linear mixed-effects 

model) function in R (R. Development. Core. 2006). In the model, treatment (heated or 

unheated) was the fixed effect, and temporal pseudo-replication from repeated sampling of the 

mesocosms over the year was accounted for by including mesocosm identity nested within block 

and sampling occasion as random effects. The repeated measures model was used to test for 

overall statistical differences between treatments in the mean annual values of the above 

parameters.  

 

Results 
	  

The concentration of CH4 exhibited clear and near identical seasonal trends in the water of both 

the heated and ambient mesocosms and, on average, over the year, was not significantly different 
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between treatments (Fig. 4.3a and Table 4.1). The concentration of CH4 ranged from 0.04 µmol 

L-1 to 6.8 µmol L-1, though the distribution of CH4 concentration exhibited strong positive skew 

(Shapiro Wilks test; W = 0.63; P < 0.005), such that 75% of all measurements were less than 

0.66 µmol L-1 over the seasonal cycle. Using the 75th percentile for dissolved CH4 as a 

conservative estimate, and the average concentration of CH4 that would be at equilibrium with 

the atmosphere (~3.55 ×10-3 µmol L-1), I estimated that the mesocosms were typically about 128 

times supersaturated with respect to the atmosphere. 

	  

Fig. 4.3. (a) Differences in the pool of dissolved methane [ln(CH4)] (±SE) between heated (red lines) and unheated 
treatments (black lines). The pool of dissolved methane exhibited strong seasonal trends and which were identical 
between treatments. Furthermore, the average annual pool of dissolved methane was identical between treatments 
(Table 1). (b) Differences in methane efflux, ln(ME) (±SE) between heated (red lines) and unheated (black lines) 
treatments.  Methane efflux showed a strong seasonal pattern and was elevated, on average, over the annual cycle in 
warmed treatments reflecting its strong temperature dependence (Table 1). 
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Similarly, the rate of CH4 efflux showed strong seasonal trends with peaks in early 

summer and lowest rates in winter (Fig. 4.3b) and was strongly positively correlated (r = 0.94; 

P<0.005) with the concentration of CH4 in the water column. The rate of CH4 efflux ranged from 

0.35 to 7.02 µmol m-2 h-1 in the ambient mesocosms and from 0.96 to 8.14 µmol m-2 h-1 in the 

warmed mesocosms. The distribution of CH4 efflux between heated and ambient mesocosms was 

also strongly positively skewed (Shapiro Wilks test; W = 0.74; P < 0.005), with 75% of 

measurements falling below 3.6 µmol m-2 h-1. Furthermore, the rate of CH4 efflux was elevated 

in the warmed mesocosms over parts of the seasonal cycle (April, August and February), and, on 

average, the mean annual rate of CH4 efflux was significantly greater in the warmed mesocosms 

(Table 4.1).  

	  

Table 4.1. Linear mixed effects model analysis. Analysing differences between heated and unheated treatments in 
the annual means of methane efflux [ ln(CH4 efflux)], the dissolve methane pool [ln(CH4 Pool)], the ratio of 
methane efflux to GPP [ln(CH4 efflux)/ln(GPP)], and the ratio of methane efflux to ER [ln(CH4 efflux)/ln(ER)]. 
Significant P-values are given in bold. 
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Fig.  4.4. Temperature dependence of whole ecosystem methane efflux. The slope of the temperature response of 
methane efflux in the experiment was equivalent to the activation energy of methanogenesis.  Each data point 
corresponds to the CH4 efflux from a single mesocosm on each of the seven sampling occasions (n = 131).  There 
were no significant differences in the slopes of the temperature dependences of CH4 efflux between heated and 
unheated mesocosms nor any effects due to repeatedly sampling individual ponds (Table 4.2): this facilitated the use 
of a single model to characterise the activation energy.     

	  

Fig.  4.5. Positive correlation between methane efflux [ln(ME)] and gross primary production and [ln(GPP)]. Each 
data point corresponds to the CH4 efflux and GPP of a single mesocosm on each of the seven sampling occasions (n 
= 131). There were no significant differences in the slope or intercepts of the relationship between ln(ME) vs 
ln(GPP) between heated and unheated mesocosms nor any effects due to repeatedly sampling individual ponds 
(Table 2), facilitating the use of a single model to characterise the relationship.  
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CH4 efflux was strongly related to water temperature (1/kT) (Table 4.2 and Fig. 4.4), with 

an apparent activation energy in the order of 0.85 eV (95% confidence interval: 0.64 to 1.02 eV). 

In addition, CH4 efflux was also related to GPP, though much more weakly (Table 4.2 and Fig. 

4.5), with temperature explaining 43% of the variance in rate of CH4 efflux, while GPP 

explained only 23% (Fig. 4.4 and Fig. 4.5). 

	  

	  

Table 4.2. Analysis of Co-Variance table for the relationships between ln(CH4 efflux), ln(GPP) and ln(ER) vs 1/kT. 
Significant P-values are given in bold.  

	  

Methanogenesis in pure cultures of methanogens under non-limiting conditions, 

determined from a meta-analysis of previous published data revealed that it was also strongly 

temperature dependent (Fig. 4.6). The activation energy of methanogenesis in pure cultures was 

(mean Ea = 0.88 eV, 95% confidence interval: 0.80 to 0.96 eV). Furthermore, as predicted this 

was indistinguishable from that of the activation energy of CH4 efflux at the ecosystem level (Ea 

= 0.85 eV, 95% confidence interval: 0.64 to 1.02 eV; Fig. 4.4).    
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GPP and ER were also strongly related to temperature, as has been described previously 

in chapter three, with apparent activation energies in the order of 0.45 eV (95% confidence 

interval 0.38 to 0.53 eV) and 0.62 eV (95% confidence interval 0.55 to 0.69 eV) for each, 

respectively. The temperature dependence of CH4 efflux was significantly higher than that for 

either GPP or ER (Table 4.2) and, correspondingly, CH4 efflux increased more rapidly in 

response to warming than did either GPP or ER. 

	  

Fig.  4.6. Temperature dependence of methanogenesis in pure cultures of the methanogens. (a) Methanogenesis of 
Methanosarcina barkeri using H2 as a substrate; (b) methanogenesis of an enrichment culture using CH3COOH as a 
substrate; (c) methanogenesis of M. barkeri using CH3COOH as a substrate; and (d) methanogenesis of 
Methanothrix soehngenii using CH3COOH as a substrate. Data in a and c were reanalysed from Vmax values and 
temperatures reported in Westermann et al. (1989). Data for b was reanalysed from data on rates of CH3COOH 
conversion to CH4 in Van den Berg et al., (1976), and data for c was reanalysed from data on rates of CH4 
production in Huser et al., (1982). In each case, the slope of the temperature response equates to the activation 
energy of methanogenesis and agree very well with that derived in Fig. 4.5.  
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Given the large differences between the activation energies of GPP, ER and CH4 efflux I 

attempted to predict how the fraction of GPP respired via the methanogenic pathway and emitted 

as CH4 (i.e. RfixedH:U in equation 11) and the balance between CH4 and CO2 emission (i.e. 

RemittedH:U in equation 12) would respond to experimental warming. The balance between 

carbon absorption and CH4 emission is given by the ratio of CH4 efflux to GPP, which was 

significantly elevated in the heated mesocosms, on average, over the year (Table 4.1 and Fig 

4.7a). The mean annual ratio of CH4 efflux to GPP was elevated by ~20 % in response to the 

~4˚C experimental warming. Substituting the empirically derived activation energies for CH4 

efflux, Ea, and GPP, Ep, (0.85 and 0.45 eV respectively) and the mean annual absolute 

temperatures in the heated and unheated mesocosms (290.9 and 286.1 K respectively) into 

equation (11) I would expect a 1.30 fold (range 1.18 to 1.38; based on the 95% confidence 

intervals of the respective empirically measured activation energies) increase in RfixedH:U. The 

empirically measured value of RfixedH:U was 1.20, close to my theoretical prediction.  

Similarly, the ratio of CH4 efflux to ER was significantly elevated in the heated 

mesocosms, on average, over the annual cycle (Table 4.1 and Fig 4.7b), with warming elevating 

the mean annual ratio of CH4 efflux to ER by 9%. By substituting the empirically derived 

activation energies for methanogenesis, Em, and ER, Er, (0.85 and 0.62 eV respectively) and the 

mean annual absolute temperatures in the heated and unheated mesocosms (as in equation 11) 

into equation (12), I would expect a 1.16 fold (range 0.17 to 1.24; based on the 95% confidence 

intervals of the respective empirically measured activation energies) increase in RemittedH:U. 

Again, my empirically measured value of RfixedH:U was 1.09 (9%) (±SE = 0.22) and very close 

to my theoretical prediction. 
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Fig.  4.7. (a) Differences in the ratio of methane efflux to GPP [ln(ME)/ln(GPP)] (±SE) and (b) methane efflux to 
ER ln(ME)/ln(ER) (±SE) between heated (red lines) and unheated (black lines) experimental treatments.  Both 
ln(ME)/ln(GPP), and ln(ME)/ln(ER), were elevated, on average over the annual cycle in the warmed treatments. The 
magnitude of the increase in ln(ME)/ln(GPP) and ln(ME)/ln(ER) reflected the differences in activation energies of 
these three metabolic processes. Correspondingly, the fraction of GPP respired via the methanogenic pathway 
increased by 20% in the warmed mesocosms. Furthermore, the fraction of ER due to methanogenesis was 9% 
greater in the heated treatment.  

 

Discussion 
	  

Mesocosm experiments represent a compromise between the control and replication of 

laboratory studies and the realism of descriptive field surveys but, despite their limitations, can 

provide a fundamental tool for predicting how global change scenarios might affect ecosystem 

level processes (Benton et al. 2007). Measured rates of mesocosm CH4 efflux (0.35 – 8.14 µmol 

CH4 m-2 h-1) were comparable to those measured in natural shallow lakes (Rudd & Hamilton 
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1978, Bastviken et al. 2004), suggesting that the experimental scale was sufficiently realistic to 

reproduce the fundamental components of biogeochemical cycling of carbon observed in natural 

ecosystems. 

To provide further quality control to rule out the influence of elevated gas transfer in the 

warmed mesocosms due to advection I simultaneously measured the concentration of dissolved 

CH4. If the gas transfer velocity was systematically enhanced by artificial warming, I would have 

expected to observe considerable differences in the concentration of dissolved CH4 between 

treatments, because of more rapid de-gassing of dissolved CH4 in the warmed mesocosms. This 

was not the case. At first glance, the consistency in the pool size of dissolved CH4 appears at 

odds with the elevated efflux of CH4 measured in the warmed mesocosms because the gas 

transfer velocity and the concentration gradient (i.e. between the water and the atmosphere) drive 

the efflux of gas across the air-water interface (Cole & Caraco 1998). This discrepancy can be 

explained when the relative magnitudes of the respective processes and pool sizes are taken into 

consideration: using the 75th percentiles for both CH4 efflux and dissolved CH4 (scaled to a 

whole mesocosm) of 11 µmol CH4 mesocosm-1 h-1 and 662 µmol CH4 mesocosm-1, respectively, 

75% of the measurements of CH4 efflux represented <1.7% of the total pool of dissolved CH4. 

The subtle differences detected in the efflux of CH4 between treatments would have been masked 

when analysing for treatment effects at the level of the pool, because the overall magnitude of 

the pool size of dissolved CH4 was much greater than the flux. Therefore, any error associated 

with the measurement of the CH4 pool would likely overwhelm the detection of any subtle 

statistical differences between treatments. This evidence suggests, therefore, that the physical 

influence of heating the mesocosms by ~4˚C had little discernable effect on advective processes. 
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Consequently, the biogeochemical patterns revealed by the experiment could be ascribed to the 

biological consequences of warming on the experimental ecosystems.   

My experimental results have implications for understanding the mechanisms controlling 

CH4 efflux from freshwater ecosystems, and how CH4 dynamics in relation to carbon 

sequestration rates might be affected by future global warming. The experiment revealed that 

temperature was the dominant driver of CH4 efflux from the mesocosms. This result agrees with 

other studies from a range of natural ecosystems, from soils to wetlands, which also highlight the 

strong temperature dependence of CH4 efflux (Schutz et al. 1990, Whiting & Chanton 2001, 

Christensen et al. 2003a, Gedney et al. 2004). Because of the overriding influence of 

temperature, the overall rates of CH4 efflux were elevated on average in the warmed mesocosms 

relative to ambient conditions over the course of the annual study, presumably reflecting the 

strong physiological response to the temperature stimulation of methanogenesis. 

The activation energy for CH4 efflux at the ecosystem level was indistinguishable from 

the activation energy of methanogenesis in pure cultures, in line with my predictions. The 

consistency of these results across experimental scales and organisational levels suggests that 

much of the potential complexity associated with ecosystem level efflux of CH4 might be 

reduced to the first principals of individual/cellular kinetics. This result suggests that whole 

ecosystem metabolic fluxes can be scaled from the individual to the ecosystem level, in line with 

my predictions derived from the “metabolic theory of ecology” (Enquist et al. 2003, Allen et al. 

2005, Lopez-Urrutia et al. 2006). This study, therefore, contributes to the growing body of 

evidence which suggests that metabolism is a fundamental driver of the dynamics of ecological 

processes across multiple levels of organisation, by demonstrating that CH4 efflux at the 

ecosystem level appears to be constrained by the activation energy of methanogenesis. The 
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models presented in this study and those derived from the metabolic theory of ecology might 

therefore provide additional insight into the dynamics and temperature response of whole 

ecosystem CH4 efflux in aquatic and other ecosystems. 

As well as temperature, primary production has been shown to regulate the efflux of CH4 

to the atmosphere. Such regulation stems from the whole autotrophic assemblage providing 

structural, labile carbon compounds in the form of dead biomass (Whiting & Chanton 1993), and 

vascular plants producing root exudates in the form of organic acids (Chanton et al. 1995, 

Joabsson & Christensen 2001, Christensen et al. 2003b). Furthermore, rooted aquatic vascular 

plants can act as conduits for the transport of CH4 from the anaerobic zone of the sediment to the 

atmosphere, bypassing the zones of potential CH4 oxidation in the sediment and water column 

(Joabsson et al. 1999, Joabsson & Christensen 2001). In the experiment, however, the efflux of 

CH4 did not appear to be limited by substrates from GPP, as suggested by three lines of 

evidence. Firstly, the weak correlation and gentle slope of the relationship between the efflux of 

CH4 and GPP indicated that the flux of CH4 was relatively independent of the simultaneous rate 

of photosynthesis and carbon fixation. Secondly, warming had no effect on the intercept of the 

relationship between ln(CH4 efflux) vs 1/kT between treatments (Table 4.2). In equation 6, I 

predicted that if organic substrates were limiting for CH4 production and efflux, I would expect 

to see a lower intercept in the warmed treatments because elevated physiological rates would be 

expected to reduce organic substrates more rapidly, resulting in faster substrate limitation and 

thus a reduced intrinsic capacity for methanogenesis. Thirdly, on average, the efflux of CH4 

represented a very small fraction of GPP (mean annual value = 0.01%). If oxidation of methane 

production is assumed to be 95% (King et al. 1990), from the average annual CH4 efflux 

measures (3 µmol m-2 h-1), I estimate the mean annual CH4 production to be ~290 µmol m-2 h-1 



	  
106	  

	  
which would represent only 10% of the mean annual rate of GPP (2862 µmol m-2 h-1). Therefore, 

carbon sequestration and fixation by photosynthesis is likely to vastly exceed the demand of 

methanogenesis throughout the annual cycle. 

The response of the greenhouse gas carbon balance of freshwater ecosystems to warming 

could affect the strength of biotic feedbacks on a potentially global scale (Woodwell et al. 1998). 

In my experiment, the fraction of carbon absorbed by GPP and subsequently remineralised via 

the methanogenic pathway to efflux as CH4 increased by 20% in response to the simulated global 

warming scenarios projected for the end of the century. In addition, the efflux of CH4 as a 

proportion of ER was 9% greater in the warmed mesocosms. If, as aquatic ecosystems warm, 

carbon remineralisation becomes increasingly dominated by methanogenesis this could result in 

more CH4 being emitted to the atmosphere relative to CO2 emission and carbon draw-down. 

Using a novel extension of the metabolic theory of ecology I was able to show that these patterns 

could be explained by the differential activation energies of the three metabolic processes 

involved in the greenhouse carbon balance of ecosystems. For instance, here, and in chapter 

three, I have demonstrated that the three key ecosystem level carbon fluxes have progressively 

higher activation energies (i.e., GPP = 0.45eV; ER = 0.62eV; CH4 efflux = 0.85eV). 

Furthermore, using, equations 11 and 12 I was able to predict the direction of change in the 

relative offset of the greenhouse carbon gas balance between the ambient and warmed 

mesocosms. This finding suggests that the response of the main components of the carbon cycle 

to warming can be predicted by the differences in activation energies of the metabolisms and the 

degree of expected warming.  In addition, this result highlights the potential for a positive 

feedback between warming and the carbon cycle of freshwater ecosystems, especially given the 

greater radiative forcing potential of CH4 (Rodhe 1990, Lelieveld et al. 1991, Whiting & 



	  
107	  

	  
Chanton 2001). Finally, accepting the caveats associated with mesocosms, the close agreement 

between the activation energy of methanogenesis in pure culture and that of whole system CH4 

efflux, suggests that much of the complexity of ecosystem level fluxes can be reduced to produce 

simpler predictive models.  
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Abstract 

	  

Body size is one of the key determinants of community structure. The relationship between 

abundance and body size can explain how community biomass is partitioned among the biota of 

an ecosystem. I used an aquatic mesocosm experiment to explore how warming of ~4˚C would 

affect the distribution of body size and biomass in planktonic communities. I found that warming 

increased the steepness of the slope of the community size spectrum, primarily by altering the 

phytoplankton size spectrum. Warming also reduced the mean and maximum body size of 

phytoplankton by approximately one order of magnitude. The observed shifts in phytoplankton 

size structure were reflected in large shifts in phytoplankton community composition, though 

zooplankton taxonomic composition was unaffected by warming. Furthermore, warming reduced 

community biomass and total phytoplankton biomass, although zooplankton biomass was 

unaffected. This resulted in an increase in the zooplankton to phytoplankton biomass ratio in the 

warmed mesocosms, which could be explained by faster turnover within the phytoplankton 

assemblages. Overall, warming shifted the distribution of phytoplankton body size towards 

smaller individuals with rapid turnover and low standing biomass, resulting in a reorganisation of 

the biomass structure of the food webs. These results indicate future environmental warming 

may have profound effects on the structure and, by extension, the functioning of aquatic 

communities.  
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Introduction 
	  

Body size can play  a key role in determining community structure (Elton 1927, Lindeman 1942, 

Damuth 1981, Peters 1983, Brown et al. 2004, Petchey et al. 2008) because it influences 

ecological processes across multiple levels of organisation; from individuals (Peters 1983, 

Brown et al. 2004), and their interactions (Emmerson & Raffaelli 2004, Berlow et al. 2009), to 

populations (Damuth 1981, Jennings & Mackinson 2003, Reuman et al. 2008), communities and 

ecosystems (Petchey et al. 2008). Understanding how this “size-structure” might then be altered 

by human impacts is an important contemporary challenge for ecology, especially in light of 

recent concerns over accelerating rates of biodiversity loss and climate change (Walther et al. 

2002). 

The relationship between abundance and body size (≈ body mass; terms are 

interchangeable hereafter) is potentially a very powerful descriptor of how energy and nutrients 

are partitioned within the biomass of an ecosystem (White et al. 2007). It is also a result of size 

structure at lower levels of organisation: for example, body size can be important for determining 

the presence and strength of trophic interactions between individuals because it constrains their 

metabolic requirements (Berlow et al. 2009). The trophic architecture of the community 

determines the amount of energy available to an organism of a given size, and therefore its 

population abundance (Damuth 1981). The relationship between abundance and body mass 

therefore integrates size-structure over many levels of organisation.   

	   Since the pioneering work of Sheldon et al. (1972) the relationship between abundance 

and body size in pelagic food webs has typically been conceptualised as a frequency distribution 

of individual body sizes, largely irrespective of taxonomy (Sheldon et al. 1972). This 
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relationship has been dubbed the “size spectrum” (Kerr & Dickie 2001). The negative slopes of 

size spectra describe how quickly abundance decreases with size, and have often been used to 

assess the ecological status of aquatic ecosystems impacted by fisheries (Rice & Gislason 1995) 

and, more recently, terrestrial systems impacted by agricultural practices (Mulder & Elser 2009). 

For example, in the former case, steep size spectra with negative slopes in marine ecosystems are 

indicative of over-fishing because the relative abundance of large organisms is suppressed by 

size-selective harvesting (Pauly et al. 1998).   

 Understanding how the distribution of biomass in aquatic ecosystems might respond to 

warming is crucial for predicting the robustness and functioning of these ecosystems in the 

warmer climates predicted for the coming decades. New evidence suggests that “reduced body 

size is the third universal response to global warming, besides range, and phenological shifts” 

(Daufresne et al. 2009). Changes in the size-structure of communities in response to warming are 

now being documented across a range of ecosystem types and spatial scales. For instance, 

experiments on aquatic micro-organisms have found that warmed communities appear to be 

dominated by smaller bacteria (Daufresne et al. 2009). Macroecological studies across latitudinal 

temperature gradients (Moran et al. 2010), and palaeoecological studies (Finkel et al. 2005) in 

the open ocean have also revealed an increased prevalence of small phytoplankton in warmer 

oceanic regions. These studies suggest that the underlying size structure of aquatic ecosystems 

might not be robust to global warming (Finkel et al. 2005, Falkowski & Oliver 2007, Daufresne 

et al. 2009, Winder et al. 2009, Finkel et al. 2010, Moran et al. 2010). This has important 

implications for the carbon sequestration capacity of oceanic ecosystems because plankton 

particle size can be an important determinant of sinking rates which drive carbon export in the 

biological pump (Fujii et al. 2005).  
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However, these studies have either focused on the effects of warming on restricted 

subsets of species (e.g. diatoms or phytoplankton) within an ecosystem (Finkel et al. 2005, 

Winder et al. 2009) or documented changes in community size-structure across latitudinal 

gradients where other factors (i.e. nutrient limitation) are potentially confounded with 

temperature (Moran et al. 2010).  At present, we still lack sufficient data documenting the effects 

of warming per se on the size-structure of entire local communities to be able to isolate its 

effects at this level of biological organisation. 

	   Here I attempt to address this current knowledge gap by characterising the community 

size spectrum and the distribution of biomass in planktonic food webs from 20 replicated 

freshwater mesocosms.  These experimental systems were maintained at either ambient 

temperature (n = 10), or ~ 4ºC above ambient (n = 10), in line with warming scenarios predicted 

for temperate latitudes by the end of the 21st century (IPCC 2007), as part of a long-term field 

experiment. Mesocosm scale experiments such as these afford the opportunity to isolate the 

effects of temperature from other potentially confounding variables (e.g. spatial gradients in 

available nutrients) on the structure of entire replicated communities. They also permit direct 

comparisons to be made between communities under ambient conditions with those of their 

“future” warmed counterparts. I used this experiment to test the following hypotheses:  

 (i) Warming will shift the distribution of body size by increasing the prevalence of small 

sized organisms, resulting in an overall steepening of the slope of the community size spectrum. 

This effect is predicted to be most pronounced in the phytoplankton assemblages because 

phytoplankton size structure tends to be strongly related to the prevailing physical and chemical 

environment (Reynolds 1984) and recent observations in aquatic ecosystems suggest that 
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warming tends to favour smaller phytoplankton (Finkel et al. 2005, Falkowski & Oliver 2007, 

Daufresne et al. 2009, Winder et al. 2009, Moran et al. 2010).  

(ii) Warming will reduce total standing community biomass. Again, this effect is 

predicted to be most pronounced for phytoplankton for two reasons. First, a shift in the 

community size spectrum towards smaller individuals should result in an overall reduction in the 

standing biomass. Second, theoretical expectations from the metabolic theory of ecology (MTE) 

suggest total standing biomass should decline with increasing temperature (Allen et al. 2002), 

such that the total standing biomass in a community (Btot) is predicted to vary as Btot =  r0  e-E/kT M 

1/4 where r0 is the resource supply rate, e-E/kT  is the Boltzmann factor where E is the activation 

energy of metabolism, k is Boltzmann’s constant and T is absolute temperature. Therefore, 

holding r0 constant (i.e. if the supply rate of limiting resources does not vary with T), Btot should 

decline with increases in environmental temperature according to e-E/kT. 

(iii) Warming will alter the relative distribution of biomass between phytoplankton and 

zooplankton assemblages. This shift in phytoplankton size structure and a concomitant reduction 

in standing biomass will result in elevated zooplankton-to-phytoplankton biomass ratios in the 

warmed mesocosms. I also predict that relatively high zooplankton biomass will be retained in 

the warmed mesocosms, because phytoplankton turnover rates should increase in response to 

metabolic stimulation by warming and by a shift towards smaller individuals with faster 

generation times. Comparable shifts in the organisation of plankton communities have been 

observed in the open ocean (Gasol et al. 1997) and in lakes (del Giorgio & Gasol 1995) along 

large scale spatial gradients of nutrient limitation.    

 



	  
118	  

	  
Materials and Methods 

Measuring the Size Spectrum 
	  

The plankton communities from each of the 20 mescosms were sampled at the beginning and 

end of the growing season in April and October 2007 respectively (Yvon-Durocher et al. 2010) 

to limit the potential disturbance caused by the destructive sampling of the biota which was 

necessary to characterise the size spectra. The entire water column (depth 0.5m) from the 

sediment surface to the water surface was sampled using a 0.8m – long tube sampler (Volume: 

2L), which was positioned at random in each mesocosm on each date. Each sample was divided 

into two size categories for preservation and subsequent analyses, via filtration through a 80µm 

sieve: organisms that were retained were preserved in 4% Formalin, and of the remaining sample 

(i.e. organisms <80 µm), a 100ml sub-sample was preserved in 1% Lugol’s iodine for 

microscopy analyses.      

 Plankton >80 µm were counted and measured by microscopy (using a Nikon SMZ1500 

dissection microscope). Planktonic Organisms <80µm were enumerated and measured by 

inverted microscopy. Organisms were settled for 24 h in a 10ml Utermöhl sedimentation 

chamber before viewing under an inverted light microscope (Leica DMIRE2). An initial scan of 

the sample, viewed under low magnification (150×), of a fixed area (50 mm2) was used to count 

and measure large, rare organisms. At higher magnification (630×), n fields of view were chosen 

at random and all organisms were counted, sized and identified until a minimum of 400 

individuals were measured from each sample. This was sufficient to estimate 95% of the 

variance in the distribution of body size (Fig. 5.1) given that settlement of organisms followed a 

Poisson distribution within the sedimentation chamber (Fig 5.2).  
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Fig. 5.1. Frequency distributions of individual body mass for (a) all individuals measured, (b) a random sample of 
400 (i.e. the number of individuals actually measured in a sample) from a, (c) a random sample of 2000 from a, (d) a 
random sample of 100 from a. Data highlight that a sample of 400 individuals is sufficient to estimate the variance 
in the distribution of body size comparable to the whole community. When measuring the phytoplankton a minimum 
of 400 individuals from any given pond were measured over the number of fields of view required to count 400 
from the sample in the sedimentation chamber. It is also clear that a sample of 100 is not sufficient to accurately 
reproduce the variance in the body mass distribution of the whole community. Assuming that organisms of a given 
body mass are Poisson distributed (figure S2, table S3) on the surface of the sedimentation chamber, the 
measurement of 400 individuals should be sufficient to attain an error of 5% [if error = 1/sqrt(n)]. 
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Fig. 5.2. Size-frequency distribution for phytoplankton in pond 14 from April 2007. Panels show the size-frequency 
distribution after analysing all fields of view (FOV) taken to measure ~400 individuals in the sedimentation 
chamber, 1 FOV, 2 FOVs, 3 FOVs and 4 FOVs. Data highlight the equitable distribution of body size among fields 
of view which reflects the random settlement of phytoplankton cells in the sedimentation chamber. Tests for 
dispersion were carried for all samples and settlement conformed to Poisson statistics in every case.  

	  

Linear body dimensions were determined with an interactive image analysis system (Hamamatsu 

C4742-95 camera and Openlab software).  Body size of all organisms was expressed in units of 

carbon (µg C). For organisms >80µm (typically zooplankton), biovolumes were determined by 

assigning organisms to geometric shapes (see appendix 6) that closely represented the real shape 

of the organism (Ruttner-Kolisko 1977, Reiss & Schmid-Araya 2008). Body mass was  

determined by converting biovolume to freshweight using a factor of 1.1, and carbon content was 

then estimated from a dry/wet weight ratio of 0.25 and a dry carbon content of 40% (Reiss & 

Schmid-Araya 2008). For organisms <80µm (typically phytoplankton) biovolumes were 
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similarly estimated from geometric shapes (see appendix 6) that were most similar to the shape 

of the organism (Hillebrand et al. 1999). Biovolume was then converted into carbon units 

assuming a multiplication factor of 0.109 (Montagnes et al. 1994). In total 47,699 individual 

organisms of both phytoplankton and zooplankton were measured. 

 

Phytoplankton turnover 
	  

Turnover rates of the phytoplankton assembalges (µg C m-3 d-1/µg C m-3) were estimated for 

each mesocosm on each sampling occasion (n = 40). Phytoplankton turnover was calculated as 

the quotient of primary production and standing phytoplankton biomass after Gasol et al. (1997). 

This gives an estimate of the biomass specific production, or the rate at which the carbon in the 

assemblage turns over. Measurements of primary production were made simultaneously using 

the dissolved oxygen change technique and are presented in detail in chapter three.  

 

Constructing the Size Spectrum 
	  

The community size spectrum (n = 40), which included phytoplankton and zooplankton, and the 

phytoplankton assemblage size spectrum (n = 40) were constructed for each mesocosm on each 

sampling occasion. The size spectrum of the zooplankton assemblage alone could not be 

constructed accurately due to the relatively small body mass range and the low number of 

individuals present in some samples. Size spectra were constructed by logarithmic binning of the 

body masses (M) of the individuals measured in each mesocosm (either the entire community or 

just the phytoplankton). The total range of log10 (M) values was divided into 10 bins of equal 

width and the log10 of the total population abundance of all organisms with log10 (M) in each bin 
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were regressed against the bin centres (Reuman et al. 2008, White et al. 2008). The slope of the 

linear model describes how quickly the abundance of individuals declines with increasing size in 

the size spectrum (see appendix 4 and 5). I also derived two normalisation constants of the linear 

model. The intercept at x = 0: its variation between warmed and ambient treatments gives 

information on the relative abundance of large organisms, and the intercept at x = -8: its variation 

provides information on the differences among treatments in the relative abundance of the 

smallest organisms. For both the community and the phytoplankton size spectrum, non-

significant coefficients of the linear models (i.e. at P>0.05) were excluded from further analyses 

(n = 5 out of 40 for the phytoplankton size spectrum). 

 

Statistical Analyses 
	  

Between treatment differences in size spectrum slopes and intercepts, total community biomass, 

phytoplankton and zooplankton biomass and mean individual body mass, were analysed by 

ANOVA, using treatment (either warmed or ambient) and sampling occasion (April or October) 

as fixed factors.  The relationships between phytoplankton and zooplankton biomass and the 

biomass ratio of zooplankton to phytoplankton were determined using ANCOVA, again using 

treatment and sampling occasion as factors. In all statistical modelling procedures the most 

parsimonious model was identified using the Akaike Information Criterion (AIC). Statistical 

analyses were performed using R statistical software (R. Development. Core. 2006).  

 Multivariate analysis of phytoplankton taxonomic composition was conducted using the 

vegan package in R. Redundancy analysis (RDA) was used to test for a significant linear trend in 

community composition. RDA is a constrained form of principal components analysis and 
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assesses the variation in taxonomic composition that can be explained by specific environmental 

variables defined as the constraints. Here, the first RDA axis quantified the linear component of 

the between treatment variation in phytoplankton taxonomic composition. Consequently, it was 

used to assess the strength of the trend and its significance was tested using permutation tests. 

The F-ratio of the first RDA axis was compared with those of 999 permutations, to assess the 

statistical significance of the linear trend. As well as treatment (warming), NO3
-, NO2

-, NH4
+, 

PO4
3-, and total inorganic N:P (see chapter two for details on nutrient measurements) were tested 

as constraining environmental variables. Phytoplankton taxon biomass was transformed prior to 

the construction of the RDA by taking the proportional contribution of a given taxa as a fraction 

of the total biomass in a given mesocosm. Furthermore, rare genera defined as those occurring in 

less than two mesocosms per sampling date were excluded from the RDA analysis to reduce 

noise in the data.            

 

Results 

Warming alters the Size Spectrum 
	  

Warming significantly increased the steepness of the slope of the community size spectrum from 

-0.86 (95% CI -0.83 to -0.89) in the systems at ambient temperature to -0.95 (95% CI -0.92 to -

0.98) in the warmed mesocosms (Fig. 5.3 a, b & c; Table 5.1), i.e., smaller organisms were 

relatively more abundant than large organisms in the warmed communities. Furthermore, the 

intercept of the community size spectrum at x = 0 (i.e. at large body masses) was significantly 

reduced, whilst the intercept at x = -8 (i.e. at small body masses) was significantly elevated in the 

warmed mesocosms (Table 5.1). Thus, the abundance of larger organisms declined on average, 

whereas the abundance of small organisms increased in response to warming. 
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Fig. 5.3. The size spectrum. (a) The community size spectrum of a heated (red circles) and ambient (black circles) 
mesocosm, highlighting the increase in the steepness of the slope in the warmed mesocosm. (b) Frequency 
distribution of the slope of the community size spectrum in the ambient mesocosoms (n=20), (c) frequency 
distribution of the slope of the community size spectrum in the warmed mesocosoms (n=20). On average the slope 
of the community size spectrum in the warmed mesocosms was significantly steeper than the ambient mesocosms 
(Table 1). (d) The phytoplankton size spectrum of a heated (red circles) and ambient (black circles) mesocosm, 
highlighting the increase in the steepness of the slope and the truncation of large sized individuals in the warmed 
mesocosm. (e) Frequency distribution of the slope of the phytoplankton size spectrum in the ambient mesocosoms 
(n=17), (f) frequency distribution of the slope of the community size spectrum in the warmed mesocosoms (n=18). 
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Comparable patterns were observed for the phytoplankton size spectrum (Fig. 5.3 d, e & f). 

Warming significantly increased the steepness of the slope of the phytoplankton size spectrum 

from -0.36 (95% CI -0.32 to -0.40) in the systems at ambient temperature to -0.49 (95% CI -0.43 

to -0.55) in the warmed mesocosms (Table 5.1; Fig. 5.3 d, e & f). Warming also significantly 

reduced the intercept of the phytoplankton size spectrum (Table 5.1). Therefore, small organisms 

were relatively more abundant than large organisms in the warmed mesocosms. Additionally, 

warming truncated the upper size classes of the phytoplankton size spectrum (Fig. 5.3 d). 	  

	  

Fig. 5.4.  Effects of warming on mean body mass (±1 s.e.m) of phytoplankton (a) and zooplankton (b) individuals. 
Data are presented as the overall average of the mean body mass of phytoplankton and zooplankton individuals over 
20 mesocosms for each treatment. The mean cell mass of phytoplankton is significantly reduced in response to 
warming while there is no significant difference in the mean body mass of zooplankton between heated and 
unheated treatments (table 5.1). 
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The maximum phytoplankton body mass in the ambient mesocosms was 1.36×10-2 µg C, while 

in the heated the maximum body mass was only 3.88×10-3 µg C. Furthermore, the average body 

mass of an individual phytoplankter was almost an order of magnitude smaller in the warmed 

mesocosms relative to the ambient systems (Fig. 5.4; Table 5.1), while the average size of an 

individual zooplankter was unaffected by warming (Fig. 5.4; Table 5.1).  	  

	  

	  

Table 5.1. The effect of treatment (heated or ambient) on community-level properties. CSS is the community size 
spectrum and PSS is the phytoplankton size spectrum. ANOVAs were used to isolate treatment effects on individual 
community-level properties. In each ANOVA month (either April or October) was added as a factor. For each 
community-level property there was no significant effect of month, which was removed from the model using the 
AIC score.  

	  

Effects of Warming on Community Composition 
	  

Redundancy analysis of the phytoplankton taxa revealed that the composition of the 

phytoplankton assemblages were significantly different between warmed and ambient treatments 

in both April (Fig. 5.5; F-ratio = 5.72; P = 0.011; permutation number = 999) and October (Fig. 

5.6; F-ratio = 5.87; P = 0.001; permutation number = 999). RDA1 which was constrained by 

treatment, explained 24.1% and 24.6% of the variation in the taxonomic composition of the 
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phytoplankton assemblages in April and October respectively, which in both cases was greater 

than the variation explained by PCA1, indicating that treatment effects were the dominant 

predictor of phytoplankton taxonomic composition. We also tested for significant relationships 

between phytoplankton taxonomic composition and other environmental variables (NO3
-, NO2

-, 

NH4
+, PO4

3-, total inorganic N:P) using permutation tests, though none of these variables 

significantly predicted taxonomic composition. Certain taxa were strongly associated with either 

warmed or ambient treatments. For example, in both April and October, the large chlorophyte, 

Botryococcus clustered towards the ambient treatment centroid, while the small cyanophyte 

Synechocystis, and the small chlorophyte Monoraphidium, typically clustered towards the heated 

centroid. The phytoplankton assemblages consisted of many rare, generalist taxa that were 

present in both treatments; however, in most of the mesocosms the biomass was dominated by a 

few indicator taxa (named above) that were associated with either the heated or the ambient 

treatments. Furthermore, figures 5.5 and 5.6 show that a large core contingent of the 

phytoplankton assemblages were present in both April and October and that only a few taxa were 

present in only one month, suggesting that temporal succession was less important than treatment 

effects in determining phytoplankton community composition. 
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Fig. 5.5.  Redundancy analysis (RDA) biplot for sites (i.e. mesocosms) and species scores for phytoplankton taxa 
recorded in the mesocosm experiment in April. RDA 1 was constrained by treatment and accounted for 24.1% of the 
variation in the taxonomic composition of the mesocosms. In the plot the dotted lines denote the 95% confidence 
ellipses around the centroids for both treatments. Note that these ellipses do not overlap indicating that the 
community composition was significantly different between warmed and ambient treatments. The solid lines enclose 
all mesocosms that belong to a particular treatment; in both cases heated treatments (1, 4, 6, 8, 9, 12, 14, 15, 17, 19) 
cluster to the left, while ambient treatments (2, 3, 5, 7, 10, 11, 13, 16, 18, 20) cluster to the right. Genus 
abbreviations are as follows: Aphanothece (Aph), Asterococcus (Ast), Botryococcus (Bty), Bumilleriopsis (Bum), 
C.dinobryonis (C.d), Chlorella (Chl), Chlorococcum (Coc), Chroococcus (Chr), Chroomonas (Cho), Coencococcus 
(Coe), Cosmarium (Cos), Cryptomonas (Cry), Goniochloris (Gon), Kirchneriella (Kri), Monoraphidium (Mon), 
Navicula (Nav), Nephrocytium (Nep), Rhodomonas (Rho), Scenedesmus (Sce), Synechococcus (Syn), Synechocystis 
(Syc), Spermatozopsis (Spe).  
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Fig. 5.6.  Redundancy analysis (RDA) biplot for sites (i.e. mesocosms) and species scores for phytoplankton taxa 
recorded in the mesocosm experiment in April. RDA 1 was constrained by treatment and accounted for 24.6% of the 
variation in the taxonomic composition of the mesocosms. In the plot the dotted lines denote the 95% confidence 
ellipses around the centroids for both treatments. Note that these ellipses do not overlap indicating that the 
community composition was significantly different between warmed and ambient treatments. The solid lines enclose 
all mesocosms that belong to a particular treatment; in both cases heated treatments (1, 4, 6, 8, 9, 12, 14, 15, 17, 19) 
cluster to the left, while ambient treatments (2, 3, 5, 7, 10, 11, 13, 16, 18, 20) cluster to the right. Genus 
abbreviations are as follows: Aphanothece (Aph), Asterococcus (Ast), Botryococcus (Bty), Bumilleriopsis (Bum), 
C.dinobryonis (C.d), Chlorella (Chl), Chlorococcum (Coc), Chroococcus (Chr), Chroomonas (Cho), Coencococcus 
(Coe), Cosmarium (Cos), Cryptomonas (Cry), Goniochloris (Gon), Kirchneriella (Kri), Monoraphidium (Mon), 
Navicula (Nav), Nephrocytium (Nep), Rhodomonas (Rho), Scenedesmus (Sce), Synechococcus (Syn), Synechocystis 
(Syc), Spermatozopsis (Spe).  
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Fig. 5.7. Mean biomass of the major zooplankton taxonomic groups documented in the mesocosms in (a) April and 
(b) October. Note that there is very little difference in the biomass contribution of the different zooplankton taxa 
between treatments suggesting that the zooplankton community composition was unaffected by warming.   

	  

	   In contrast to the phytoplankton assemblages the taxonomic composition of the 

zooplankton assemblages differed very little between treatments in both April and October (Fig. 

5.7a & b). In heated and ambient treatments calanoid and cyclopoid copepods dominated 
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zooplankton biomass with cladocerans and rotifers forming a smaller secondary contingent of the 

assemblages. These patterns were consistent between April and October, though ostracods, 

oligochates and the rotifer Asplanchna were absent from the zooplankton assemblage in October.     

	  

Warming Shifts the Distribution of Biomass 
	  

Total planktonic community biomass differed between April and October in the ambient but not 

in the warmed mesocosms (Fig. 5.8). Overall, warming significantly reduced total community 

biomass (Fig. 5.8; Table 5.1). This was principally driven by a considerable reduction in total 

phytoplankton biomass in the warmed mescocosms (Fig. 5.8; Table 5.1). Overall, warming 

shifted the distribution of biomass and body size of phytoplankton from assemblages comprised 

of large individuals with high standing biomass to assemblages with low standing biomass and 

many small individuals. In contrast, warming appeared to have no effect on the biomass of the 

zooplankton assemblages (Fig. 5.8; Table 5.1).  

Zooplankton and phytoplankton biomass were not correlated (Fig. 5.9a; Table 5.2).  The 

former varied by about two orders of magnitude and the latter by three orders of magnitude 

among mesocosms (Fig. 5.9a). The ratio of zooplankton to phytoplankton biomass (Z:P) was, 

however, significantly and negatively correlated with phytoplankton biomass (Fig. 5.9b; Table 

5.2). In general, zooplankton biomass exceeded phytoplankton biomass (i.e. Z:P >1) when 

phytoplankton biomass was low and vice versa (i.e. Z:P <1) when phytoplankton biomass was 

high. Warming significantly increased the ratio of Z:P biomass (Table 5.1). Furthermore, the 

ratio of Z:P biomass was strongly and positively correlated with the estimated turnover rates of 

the phytoplankton assemblages, which exhibited distinct variation between warmed and ambient 
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mesocosms (Fig. 5.9c; Table 5.2). In summary, the warmed mesocosms were characterised by 

phytoplankton assemblages comprised of small individuals with low standing stocks of biomass 

and rapid turnover rates which supported relatively high standing stocks of zooplankton, 

exemplified by high Z:P biomass ratios.   	  

	  

Fig. 5.8. Effects of warming on mean total planktonic biomass (±1 s.e.m). Data are presented as the averages of the 
total biomass of either phytoplankton and/or zooplankton across the mesocosms for each treatment (n=20 per 
treatment for the overall mean; n=10 per treatment for each sampling occasion). Total biomass is significantly 
reduced by warming. This is mainly driven by a reduction in phytoplankton biomass, while there is no significant 
difference in the biomass of zooplankton in response to warming (table 1).  
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Fig. 5.9. (a) Relationship between zooplankton and phytoplankton biomass. (b) Relationship between the ratio of 
zooplankton to phytoplankton biomass (Z:P) and total phytoplankton biomass. (c) The relationship between Z:P and 
the turnover rate of the phytoplankton communities. Each data point corresponds to either the total zooplankton or 
phytoplankton biomass or the Z:P in either a heated (red circles) or ambient mesocosm (black circles). 
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Table 5.2. Analysis of covariance for the relationships between zooplankton and phytoplankton biomass, the Z:P 
biomass ratio and phytoplankton biomass, and the Z:P biomass ratio and phytoplankton turnover time. 

 

Discussion 
	  

There is ample evidence that ecological responses to recent climate change are already occurring 

at the species (and by extension the population) level (Walther et al. 2002), but scaling from 

populations to communities and ecosystems is challenging because of the perceived 

indeterminacy of ecological interactions (Yodzis 1988). As a result, there is an increasingly 

urgent need to explore the higher-level effects of the principal components of climate change 

(e.g., warming) on community structure and ecosystem functioning (Tylianakis et al. 2008). My 

results broadly supported my experimental hypotheses: i.e., that warming would increase the 

steepness of the size spectrum slope, reduce total community biomass, and increase the 

zooplankton to phytoplankton biomass ratio. These findings could provide some novel insights 

into how future warming might change the distribution of body size and biomass in aquatic 

ecosystems. The size structure of plankton communities in aquatic ecosystems is a key driver of 

rates of carbon sequestration and nutrient cycling (Laws et al. 2000), and therefore changes in 

the distribution of planktonic body size and biomass could alter the regulation of biotic 

feedbacks with warming on a potentially global scale (Falkowski et al. 1998).   
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The general increase in the prevalence of small organisms with increases in 

environmental temperature that I observed experimentally agrees well with recent studies that 

have either focused on specific taxa, or subsets of taxa (Atkinson et al. 2003, Finkel et al. 2005, 

Daufresne et al. 2009, Winder et al. 2009), or described correlational trends in community 

structure across latitudinal gradients in temperature (Moran et al. 2010). The increase in the 

dominance of small phytoplankton and the truncation of the larger size classes in their size 

spectrum resulted in a general increase in the steepness of the slope of the community size 

spectrum in the warmed mesocosms. Changes in the distribution of organism size might arise 

from at least two broad mechanisms, which are not necessarily mutually exclusive. Firstly, 

organisms might exhibit a degree of phenotypic plasticity to changes in temperature, as described 

by the “temperature-size rule” (Atkinson et al. 2003) that posits reduced organism size at higher 

temperatures is an adaptive plastic response resulting from selection for earlier reproduction as 

population growth rate increases: i.e., the accelerated completion of the life cycle occurs at the 

expense of maturation size (Atkinson et al. 2003). In the second mechanism, changes in the 

physicochemical environment created by warming select for smaller species. In this case, 

changes in community size structure occur as an indirect effect of warming, mediated for 

example by concomitant nutrient limitation, resulting in the competitive exclusion of larger 

species (Finkel et al. 2005, Irwin et al. 2006, Falkowski & Oliver 2007, Winder et al. 2009, 

Finkel et al. 2010). Here, small cell size increases the efficiency of the acquisition of limiting 

nutrients because of a higher surface area to volume ratio and is therefore competitively 

advantageous under conditions of nutrient limitation (Litchman et al. 2009).    

	   The results presented here support the second mechanism. Redundancy analysis revealed 

that warming dramatically shifted the taxonomic composition of the phytoplankton assemblages. 
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Moreover, warming favoured smaller phytoplankton genera, resulting in a reduction in mean and 

maximum body size by almost an order of magnitude. For example, the large cholorophyte 

Botryococcus dominated the biomass of the ambient mesocosms in both April and October, but 

was almost entirely absent from the warmed mesocosms. Similarly the small cyanophyte 

Synechocystis and the small chlorophyte Monoraphidium were strongly associated with the 

warmed mesocosms but were only peripheral members of the assemblages in the ambient 

mesocosms.  Warming therefore resulted in the establishment of phytoplankton assemblages 

dominated by small species, rather than reducing the body size of the same species composition 

present in the ambient mesocosoms.  

	   The relatively infrequent but highly replicated sampling regime adopted in my 

experimental design was a necessary compromise. For example, I documented the size, biomass 

and taxonomic structure of 20 replicated experimental ecosystems on two separate sampling 

occasions at the beginning and end of the growing season (identified from measures of primary 

production; see Yvon-Durocher et al., (2010) and chapter three for details) rather than focusing 

on the complex temporal dynamics of the plankton assemblages of one or two systems, as would 

typically be logistically feasible within such a study. As a result, these findings come with an 

associated caveat: I am unable to discern the effects of warming on the temporal succession of 

the plankton communities. However, analysis of the phytoplankton taxonomic composition 

suggests that a large, core contingent of these assemblages are present in both April and October 

but which differ markedly between treatments in both months. These results suggest that 

temporal succession in the plankton communities was less important than the effect of treatment 

(i.e. warming) in determining the taxonomic and therefore the body size and biomass structure of 

these assemblages.     
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Inorganic nitrogen was limiting throughout the experiment (N:P ratios were ≈11:1, and 

were below the 16N:1P expected at Redfield; see chapter two for further details) but to the same 

extent in both warmed an ambient treatments: i.e., warming did not exacerbate nutrient 

limitation. It is therefore unlikely that a direct effect of nutrient limitation induced by warming 

caused the observed shifts in phytoplankton size structure that have been frequently documented 

in the open ocean and in lake ecosystems (Finkel et al. 2005, Falkowski & Oliver 2007, Winder 

et al. 2009, Finkel et al. 2010).  The observed shift in phytoplankton size structure in the warmed 

treatments might simply reflect the fact that smaller phytoplankton have lower specific nitrogen 

requirements than large phytoplankton (Litchman et al. 2007). Litchman et al. (2007) found that 

the minimum nitrogen quota required to support growth, Qmin, across a wide range of 

phytoplankton taxa increases allometrically, resulting in a disproportionate increase in cellular 

nitrogen quota with size. Metabolic rates and nutrient uptake rates increase with temperature and 

size (Gillooly et al. 2001, Allen & Gillooly 2009), so under conditions of nutrient limitation 

small cell size should provide a competitive advantage as environmental temperatures rise 

because species with lower Qmin will be better able to balance the increased demand for limiting 

nutrients imposed by temperature driven elevated metabolic rates.   

An alternative mechanism for the shifts in phytoplankton size and taxonomic structure in 

the warmed mesocosms is that warming served to increase “top down” control of the 

phytoplankton community by increasing zooplankton grazing rates. We have previously 

demonstrated that heterotrophic metabolism increased more rapidly than autotrophic metabolism 

with increasing temperature in the same experimental system (measurements made 

simultaneously; see Yvon-Durocher et al., (2010) and chapter three for details). Therefore, 

because ingestion rates increase in proportion with metabolic rates (Berlow et al. 2009), 



	  
138	  

	  
warming might have increased the strength of top down control of phytoplankton populations by 

zooplankton grazing. Moreover, zooplankton are often size selective when feeding on 

phytoplankton, typically consuming the largest size classes possible (Porter 1973, Hall et al. 

1976, Katechakis et al. 2002). Warming might therefore have increased the prevalence of small 

sized phytoplankton indirectly, by elevating grazing pressure on the larger size classes of the 

phytoplankton community due to the elevated metabolic demands of zooplankton at higher 

temperature. Importantly, both the “top down” and “bottom up” hypotheses stated here are not 

mutually exclusive: both bottom up regulation of phytoplankton competitive ability for limiting 

nutrients, and top down control of large phytoplankters by zooplankton grazing could occur 

simultaneously, and combine with the direct effects of warming on metabolism to produce the 

observed shifts in size, biomass taxonomic structure.   

	   Warming reduced total standing community biomass, largely via a reduction in 

phytoplankton biomass, in line with my qualitative theoretical predictions. For example, because 

the potential resource supply rate (i.e. the concentrations of limiting inorganic nutrients) 

remained constant, I predicted that elevated metabolic demands at higher temperatures should 

have resulted in a decline in standing community biomass in the warmed mesocosms. Assuming  

Btot =  r0  e-E/kT M 1/4 and that r0 (i.e. the resource supply rate) and M 1/4 (i.e. the allometric scaling 

of biomass with body mass) are constant with temperature, for ~4˚C rise in temperature, standing 

community biomass should decline approximately 1.54 fold according to: e-E/kTh / e-E/kTa where Th 

and Ta are the mean annual temperatures of the heated and ambient mesocosms (290.9 and 286.1 

K, respectively) and E is the activation energy of metabolism ~0.65eV (Gillooly et al. 2001). In 

the experiment average total community biomass declined 2.53 fold (i.e. the ratio of mean 
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biomass in the heated and ambient mesocosms), almost double that predicted by metabolic costs 

alone, suggesting that additional factors might be operating. 

The large shift in the distribution of body size from large to small phytoplankton might 

further reduce standing biomass. For example, the above prediction assumes that the allometric 

scaling of biomass with body mass (i.e. Btot = M 1/4) remains constant with warming. However, 

the slope of the community size spectrum (i.e. the log-log relationship), which is equivalent to 

the exponent of N = M-α , where N is abundance (White et al. 2007, Reuman et al. 2008, White et 

al. 2008), changes from -0.86 to -0.95 in response to warming. Therefore, because Btot = N×M, 

the allometric scaling of Btot declined from Btot  = M 0.14 in the ambient mesocosms to Btot  = M 0.05 

in the warmed mesocosm: i.e., more standing biomass was retained in larger body size classes in 

the ambient relative to the warmed mesocosoms. The effects of increased metabolic costs 

associated with warmer temperatures and the shift in the distribution of body size caused by 

changes in the balance of competition between large and small phytoplankton might therefore 

have acted synergistically to reduce total community biomass in the warmed mesocosms. 

The ratio of zooplankton to phytoplankton biomass, Z:P, declined as a function of 

phytoplankton biomass, in line with my third experimental hypothesis.  These results are 

qualitatively similar to the findings of Gasol et al. (1997) who also demonstrated that the ratio of 

heterotroph to autotroph biomass (H:A) was a declining function of autotroph biomass in the 

open ocean and coastal seas, although they attributed the relationship to a nutrient gradient rather 

than temperature. In this experiment, the large shifts in community size structure and the 

distribution of biomass between zooplankton and phytoplankton were independent of the 

inorganic nutrient status of the mesocosms and appear to have been driven largely by the effects 
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of temperature on metabolism and the relative competitive abilities of large and small 

phytoplankton.   

	   A strong, positive correlation was evident between the Z:P biomass ratio and the turnover 

rate of the phytoplankton assemblages, which differed profoundly between warmed and ambient 

treatments. The inverted pyramid or squared biomass distributions (i.e. Z>P or Z=P) in the 

warmed mesocosms contrasted markedly with the pyramidal biomass structure (i.e. Z<P) of the 

mesocosms at ambient temperature, suggesting that warming of ~4˚C fundamentally altered both 

the structure and functioning (i.e. energy transfer) of the experimental ecosystems. In the heated 

mesocosms the high relative biomass of zooplankton may have been supported by a fast turnover 

rate of the phytoplankton assemblage: for the low standing stocks of phytoplankton biomass in 

the warmed mesocosms (2.93×105 µg C m-3 in heated; 1.12×106 µg C m-3 in ambient) to sustain 

the equivalent biomass of zooplankton as the mesocosms at ambient temperature (1.71×105 µg C 

m-3 in ambient; 1.36×105 µg C m-3 heated), the turnover rate of the phytoplankton community 

would need to increase by a factor of ~4. The average turnover rates of the phytoplankton 

community in the warmed treatments were actually elevated by a factor of ~5 (i.e. 40.9 µg C m-3 

d-1 / µg C m-3 in heated; 8.25 µg C m-3 d-1 / µg C m-3 in the ambient) and were therefore likely to 

be sufficient to support the biomass of zooplankton in these systems. Taken together, these 

results suggest that warming might dramatically increase the rate of carbon flux between 

autotrophs and heterotrophs, primarily via the relative increase in small phytoplankton, which 

should have faster turnover times (Gillooly et al. 2002, Brown et al. 2004), and also the direct 

stimulation of metabolism and generation time by temperature (Gillooly et al. 2002).      
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Conclusion 
	  

       Warming pushed planktonic communities towards greater heterotrophy, and the results of 

this experiment reflected empirical patterns observed in phytoplankton communities over 

macroevolutionary time (Finkel et al. 2005, Finkel et al. 2007), across latitudinal gradients in 

temperature (Moran et al. 2010), and across gradients of nutrient regime and productivity (del 

Giorgio & Gasol 1995, Gasol et al. 1997). My results represent the first experimental evidence 

for a shift in the distribution of body size and biomass of whole plankton communities that can 

be attributed directly to the effects of warming via a controlled and replicated whole ecosystem 

manipulation.  Although these results offer some of the first tantalising hints as to the underlying 

mechanism, the elucidation of the relative importance of phenotypic versus taxonomic effects 

requires future research that can integrate both size-based and species-based approaches to 

community and ecosystem ecology. Furthermore, these results raise a further unanswered 

question for ecology and the science of global change: what is the mechanistic basis of the 

relationship between temperature and the competition of large and small phytoplankton?         
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General Discussion: On the Community and Ecosystem 

Level Consequences of Warming 
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Overview 

Ecosystems are composed of thousands to millions of individuals, which often belong to 

hundreds to thousands of species, and which interact with one another in a multitude of different 

ways - competition, mutualism and predation being the three most familiar examples.  This 

inevitably results in the emergence of ecosystems that display often seemingly bewildering 

complexity. The array of different species in an ecosystem typically also express great diversity 

in their traits and attributes, which are often strongly linked to body size.  The open ocean is a 

striking example of this, where the body size range spans from picoplankton (10-13 g) to the 

largest animal that has ever lived, the blue whale (108 g): a range of ~20 orders of magnitude 

within a single ecosystem (Brown & West 2000, McGill et al. 2006). A range of ecosystem 

processes (e.g., nutrient recycling, primary production) are overlain on this taxonomic and 

functional complexity, and these are carried out by the vast biotic consortium which maintains 

the normal functioning of ecosystems that provide important goods and services to human 

civilization (Loreau et al. 2001, Schroter et al. 2005). It is the organisms that define the structure 

of a community and carry out the functions of the ecosystem. Given this obvious link between 

structure and functioning, it is perhaps surprising that a general, comprehensive, mechanistic 

understanding of the linkages between these levels of ecological organisation is still lacking 

(Allen & Gillooly 2009). Three relatively new fields in ecology, “metabolic ecology”, which 

views metabolism as being a unifying biological mechanism that determines a diverse range of 

ecological phenomena (Brown et al. 2004); “ecological stoichiometry”, which demonstrates that 

the mass balance of essential elements in biological systems are key in determining their 

structure and function (Sterner & Elser 2002); and “biodiversity-ecosystem functioning”, which 

focuses on understanding the role of species and their traits in determining ecosystem level 

processes (Loreau et al. 2001, Hooper et al. 2005), have made significant advances toward this 
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end.  However, a far more complete understanding of the interrelations between structure and 

function within a general predictive framework, capable of successfully addressing the 

challenges posed by global change is most likely to be achieved through integration of these 

approaches.  

Evidence for the ecological impacts of the multifarious components of climate change, 

most notably global warming, has now been amassed for a great number of individual taxa 

(Walther et al. 2002, Parmesan & Yohe 2003, Montoya & Raffaelli 2010). Far less is known, 

however, about the likely responses of entire communities and ecosystem level processes. 

Moreover, the potential feedbacks between warming, community structure and ecosystem 

functioning remain largely unexplored. In this thesis, I attempted to take a first step towards 

addressing this important knowledge gap, by measuring the effects of a simulated potential 

future warming scenario (A1B; IPCC 2007) on community structure and biogeochemical cycling 

in a freshwater mesocosm experiment. The effects were marked. Warming of ~4˚C dramatically 

impaired the ecosystems’ carbon sequestration capacity, increased the efflux rates of CH4 

relative to primary production, and reorganised the distribution of biomass, body size and 

taxonomic composition.  

The integrated experimental and theoretical approach, which focused on the metabolic 

theory of ecology, provided insight into the mechanistic basis for the experimentally observed 

changes and may also provide predictive tools for the wider scientific community to explore the 

potential consequences of changes in temperature in other ecosystems. For example, two 

important new findings of this thesis are that not only did warming reduce carbon sequestration 

capacity by 13%, but that the precise magnitude of this shift could also be predicted by the 

differences in the activation energies of photosynthesis and respiration at the cellular (or even 
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organelle) level. The activation energy of ecosystem respiration (ER, Er = 0.62eV) was greater 

than that of gross primary productivity (GPP, Ep = 0.45eV), therefore ER increased 

proportionately more rapidly than GPP as temperatures increased. Another discovery made here 

for the first time, with potentially far reaching consequences, was that the activation energy that 

describes the temperature dependence of CH4 efflux (Ea = 0.85eV) was significantly greater than 

that of either GPP or ER. This meant that not only was the carbon sequestration capacity reduced 

but the warmed systems also emitted relatively more CH4, which is up to 21 times more potent as 

a greenhouse gas in the atmosphere compared to CO2 (Rodhe 1990). This discovery identifies 

the potential for a previously unknown positive feedback between warming and the carbon cycle. 

Again, the relative offset of these ecosystem level fluxes could be predicted by the models 

developed here which were derived from the metabolic theory of ecology.   

     The large shifts in ecosystem level carbon flux changed in parallel with the size 

structure of the plankton communities in the mesocosms: warming shifted the distribution of 

body size of phytoplankton to assemblages dominated by small individuals with low standing 

biomass but rapid turnover rates. This resulted in a redistribution of biomass within the plankton, 

to communities that were dominated by heterotrophic biomass in the warmed mesocosms, 

reflecting the patterns observed with the changes in ecosystem metabolism. The warmed 

mesocosms not only shifted towards heterotrophy with respect to the dominant pool of standing 

biomass, but also in the balance between ER and GPP. These findings point towards fundamental 

similarities in the response of both the structural and the functional components of the 

experimental systems to warming and provide substantial evidence for the reciprocal relationship 

between these levels of organisation. I will now explore these relations in greater detail and 

hypothesise on the potential mechanisms that determine them. 
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The Ecosystem: Reconciling Structural and Functional Components     
	  

 There were significant correlations between several structural attributes of the 

communities in the mesocosms and their associated ecosystem processes (Fig. 6.1, 6.2). 

Although a correlation between two variables does not necessarily imply cause-and-effect, it 

may be that the underlying mechanism is related to a co-variable (in this case the most likely one 

is temperature). Nevertheless, if we have an a priori reason to expect the correlation based on a 

mechanistic hypothesis, such relationships may provide important insight into the nature of the 

correlation. Furthermore, the consequences of environmental warming are likely to result in 

complex feedbacks between levels of organisation, whereby changes in one level caused directly 

by warming result in changes in another level, which are then amplified by the press 

perturbation. In this case, the ecosystem may exist in alternative stable states where the effects of 

the perturbation propagate over all levels of ecological organisation resulting in a hysteresis 

towards an alternative equilibrium state under the newly imposed environmental conditions 

(Scheffer et al. 2001, Scheffer & Carpenter 2003). Phase transition dynamics between alternative 

equilibria have been frequently documented in lakes subjected to heavy nutrient loading or by 

removal of large piscivores (Scheffer et al. 2001, Scheffer & Carpenter 2003). Environmental 

warming has the potential to induce similar changes in the prevailing stable state of shallow 

lakes, though such changes have not yet been documented (McKee et al. 2003). The results from 

this experiment however, appear to provide the tentative evidence that warming has the potential 

to induce shifts in both community structure and ecosystem functioning that might, over time 

constitute a shift towards a new equilibrium ecosystem state.   

 The average annual slopes of the community and the phytoplankton size spectra were 

negatively correlated with the average annual metabolic balance (ER/GPP) of the mesocosms 
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(Fig. 6.1a & b), such that systems characterised by a high ratio of ER/GPP tended to have 

communities with steeper size spectra, especially among the warmed mesocosms.  

 

Fig. 6.1. Linkages between community structure and ecosystem functioning, black circles denote ambient treatments 
and red circles denote the warmed treatments. All data points are the mean annual values for a particular mesocosm 
error bars are not shown to ease interpretation of the correlation. (a) The negative correlation between the slope of 
the community size spectrum (CSS) and the metabolic balance (ER/GPP). (b) The negative correlation between the 
slope of the phytoplankton size spectrum (PSS) and the metabolic balance (ER/GPP). 

 

This correlation between ecosystem and community level attributes might have a mechanistic 

basis. For example, high ratios of ER/GPP suggest that heterotrophic metabolism respires (or 

consumes) a greater proportion of primary production (i.e. phytoplankton biomass) averaged 

over the year. Because the activation energy for heterotrophic metabolism was greater than that 

of autotrophic production, and because consumption rates are proportional to metabolic rates 

(Emmerson et al. 2005, Berlow et al. 2009), this suggested the intensity of grazing pressure in 

the warmed systems with elevated ratios of ER/GPP was greater. Zooplankton grazing is 

typically size selective, whereby the largest and most nutritious phytoplankton are consumed 

preferentially (Porter 1973, Hall et al. 1976, Katechakis et al. 2002). This might indicate that 

increased grazing pressure brought about by elevated rates of heterotrophic relative to 
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autotrophic metabolism resulted in a suppression of large phytoplankton, thereby truncating the 

phytoplankton size spectrum and increasing its slope. This points towards a direct mechanism 

linking changes in community structure with ecosystem functioning, mediated by the differential 

temperature dependence of photosynthesis and respiration.      

 The mean annual ratio of zooplankton to phytoplankton biomass (Z:P) was negatively 

correlated with both the concentration of PO4
3- and the concentration of NH4

+ (Fig. 6.2). 

Therefore, in systems with relatively high concentrations of PO4
3- and NH4

+ phytoplankton 

biomass exceeded zooplankton biomass. This finding appeared to be independent of temperature 

and therefore of the experimental treatment, because neither PO4
3- nor NH4

+ varied 

systematically with temperature (Fig. 6.2; see chapter two also). The correlation between Z:P 

biomass and PO4
3- or NH4

+ is perhaps not surprising, considering phosphorous and nitrogen are 

typically nutrients that limit phytoplankton growth in aquatic ecosystems (Elser et al. 2000a).  

Fig. 6.2. (a) Positive correlation between the mean annual ratio of zooplankton to phytoplankton biomass and the 
mean annual concentration of dissolved PO4

3-. (b) Positive correlation between the mean annual ratio of zooplankton 
to phytoplankton biomass and the mean annual concentration of dissolved NH4

+. 
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What is surprising, however, is the lack of co-variability between phytoplankton biomass, 

temperature and PO4
3- and/or NH4

+. For example, the reciprocal of mean annual temperature 

(1/kT) and the natural logarithm of phytoplankton biomasses were correlated (Fig.6.3a). 

However, it is evident from figure 6.2a that PO4
3- might also be important for regulating 

phytoplankton. To assess this I plotted the residuals from the temperature-phytoplankton biomass 

relationship (Fig. 6.3a) against the mean annual concentration of PO4
3- (Fig. 6.3b). The residuals 

in figure 6.3a were positively correlated with the mean annual concentration of PO4
3-, therefore 

in the systems where phytoplankton biomass was greater than the average for a given 

temperature (i.e. positive residuals), concentrations of PO4
3- were typically relatively high and 

might have facilitated elevated phytoplankton biomass production. Taken together, these 

findings suggest that temperature and rates of recycling of limiting elements might have jointly, 

but independently, regulated phytoplankton in the experiment. An important caveat to bear in 

mind here is that during the study I did not directly measure rates of PO4
3- flux, rather 

instantaneous concentrations were measured seasonally. However, because the mesocosms used 

in this study were materially closed systems (i.e. allochthonous subsidies were improbable) I 

assumed that the mean annual pool of PO4
3- is reflective of the relative rate of its regeneration as 

this is its only potential source. Nevertheless, this result again provides tantalising evidence for 

building an understanding of the potential mechanisms that will determine the feedbacks 

between warming and changes in community structure and biogeochemical cycling. 
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Fig. 6.3. (a) Relationship between the natural logarithm of mean annual phytoplankton biomass and the reciprocal of 
the mean annual temperature of the mesocosm. (b) Relationship between the residuals from the fitted line in Fig. 
6.3a and the mean annual concentrations of PO4

3- in the mesocosms. Red circles denote heated treatments; black 
circles denote treatments at ambient temperature.   

 

Conclusions, Caveats and Future Directions 
	  

In conclusion, this thesis has demonstrated that the warming scenario (A1B) projected for 

temperature latitudes by the end of this century (IPCC 2007) has the capacity to profoundly alter 

both the structure and the functioning of aquatic ecosystems. Indeed, in this experiment warming 

reduced the capacity of the ecosystems to sequester carbon, which was driven by the greater 

activation energy of respiration relative to photosynthesis. Furthermore, warming increased the 

greenhouse gas efflux potential of the ecosystems by increasing rates of CH4 efflux relative to 

primary production and ecosystem respiration elucidating a previously unknown potential 

positive feedback between warming and the carbon cycle. Again, this was driven by the fact that 

the activation energy of methanogenesis and, therefore, the temperature dependence of CH4 

efflux were greater than that of primary production and ecosystem respiration. These findings 

reveal a general pattern with potentially broad application: the temperature dependence of the 

ecosystem level fluxes involved in the biogeochemical cycling of carbon are different and are 
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predictable from their activation energies at the cellular level. These shifts in ecosystem 

functioning were mirrored by a reorganisation of the body size and biomass distributions in the 

warmed mesocosms. Warmed communities were dominated by phytoplankton assemblages with 

low standing biomass, smaller average body size, and rapid turnover rates. This resulted in a shift 

in the biomass structure of the food webs whereby the warmed systems were characterised by 

inverted or squared biomass pyramids, in which zooplankton biomass often exceeded 

phytoplankton biomass, but was sustained by the elevated turnover rates of the smaller, warmed 

phytoplankton assemblages (Fig. 6.4).  

 
Fig. 6.4. Conceptual diagram illustrating how the different levels of biological organisation are simultaneously 
controlled by metabolism and reciprocally related to one another. Many of the attributes of these levels were 
measured in this study and are discussed in the text.  

 

 The results presented in this thesis portray a convincing story of the potential future 

consequences of warming for aquatic ecosystems, and how they might be predicted in natural 

ecosystems using a general ecological theory. However, it is important to bear in mind the 

caveats associated with both the experimental approach (i.e. mesocosm scale experiments) and 

the application of the metabolic theory of ecology in the interpretation of these results and their 
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relevance for natural ecosystems. The use of mesocosm experiments in ecology represents an 

inevitable compromise between the control and specificity of laboratory studies and the realism 

of field surveys (Benton et al. 2007). Mesocosm experiments cannot replicate the full range of 

the complexities of the ecosystem processes and aspects of community structure that occur in 

nature. For example, this experiment, which attempted to mimic shallow lake ecosystems, was a 

materially closed-system, therefore, allochthonous subsides which are often important in lakes 

both for community structure (del Giorgio & Gasol 1995) and ecosystem metabolism (del 

Giorgio & Peters 1994, del Giorgio et al. 1999) were not considered. Although this may be 

considered a shortcoming of the experiment, in that it might not truly replicate the dynamics of 

natural systems to warming, it did offer the opportunity to focus solely on the mechanisms that 

govern the changes in autochthonous carbon, without the extra complexity associated 

allochthonous subsides that can be highly variable both temporally and spatially (Matthews & 

Mazumder 2006). Furthermore, the temporal and spatial scales of the experiment are clearly an 

abstraction of the potential dynamics of future warming on natural systems. For example, the 

warming of the mesocosms from ambient to plus 4˚C in this experiment occurred almost 

instantaneously, whereas in reality this level of warming is likely to occur over decades (IPCC 

2007). Therefore, the potential for acclimation of natural communities to warming is likely to be 

far greater than can be replicated in this experiment. However, the temporal scale of the 

experimental perturbation spanned multiple generations of many of the planktonic organisms 

that were the focus of this investigation. Experiments such as these offer the only opportunity to 

provide a “best guess” approach to predicting the future consequences of global change.  

 The application of the metabolic theory of ecology in combination with the mesocosm 

experiment allowed a more mechanistic understanding of the effects of elevated temperature on 
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ecosystem metabolism to be gained. However, there are also a number of caveats associated with 

the application of metabolic theory because, as with any other theory, it is an oversimplification 

of complex natural phenomena. For example, in chapters three and four I demonstrated that 

primary production, ecosystem respiration and CH4 efflux increased with temperature according 

to their respective activation energies at the cellular level. Therefore, the temperature 

dependences of the ecosystem level fluxes were equivalent to their activation energies at the 

cellular level, as predicted by the metabolic theory of ecology (Gillooly et al. 2001). However, 

potential divergence between the temperature and mass scaling with metabolic rate within 

species and across species (such as the ones presented in this thesis) have caused considerable 

debate in the ecological literature (Clarke 2004, Clarke & Fraser 2004). Here I will concentrate 

primarily on the debate surrounding the temperature scaling of metabolic rate, because it most 

closely relates to the analyses and approach presented in this thesis. Gillooly et al., (2001) 

suggested a universal temperature dependence for the scaling of metabolism (respiration) with 

temperature, which is governed by the Boltzmann-Arrhenius factor taken from statistical 

thermodynamics b0 e-E/kT, where b0  is a normalisation constant, E is the average activation energy 

of metabolism (i.e. the average for all of the component reactions involved in metabolism and 

assumed to range between 0.6-0.7 eV), k is Boltzmann’s constant (8.62×10-5 eV K-1) and T is 

absolute temperature. In this equation the parameter E, the activation energy, drives the rate of 

change in the reaction rate (i.e. the metabolic rate) with temperature. The main point of 

contention concerns the constancy of E within and across species (Clarke 2004, Clarke & Fraser 

2004). For example, Gillooly et al., (2001) propose that E is consistent because the same 

mechanism governs the temperature dependence of metabolism: i.e., the speed of the reaction 

(metabolism) is governed by the kinetic energy of the system, which takes the form of 

temperature, and determines rate of collisions between molecules and the probability that any 
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given collision will lead to a reaction. Any differences between species should be reflected by 

changes in b0, which may be related to thermal acclimation or adaptation (Gillooly et al. 2006). 

The counter-argument put forward by Clarke & Fraser (2004) and Clarke (2004) refute this claim 

of a “universal temperature dependence”, and propose an alternative “evolutionary trade off 

hypothesis” in which they suggest that the temperature dependence of metabolism in every 

species represents an evolutionary optimisation to the energetic demands of maintaining 

metabolism at its environmental temperature and ecological mode. They posit that the across 

species relationship is merely a statistical description of “quasi-independent evolutionary 

optimisations to temperature and ecology” (pg 253) and therefore there is no mechanistic a priori 

reason to suggest the temperature dependence of respiratory metabolism should be universal. 

The work presented in this thesis, however, appeared to support the ideas of Gillooly et al., 

(2001) and the metabolic theory of ecology, because the temperature dependence of the 

ecosystem level fluxes were equivalent to their respective activation energies at the individual 

level. Moreover, in chapter four I demonstrated with a literature compilation that the temperature 

dependence of CH4 efflux at the ecosystem level was identical to the activation energy of 

methanogenesis in pure cultures, which varied little between species.              

 The approach adopted in this thesis, which involved the simultaneous analysis of both the 

community and ecosystem level consequences of warming and not only offered insight into the 

effects of warming on these levels of organisation in isolation, but also the opportunity to 

understand the mechanisms that drive the linkages between the structure of communities and the 

functioning of ecosystems as a whole. For example, I found that the size structure of the plankton 

communities, exemplified by the slope of the size spectrum, was well correlated with the 

metabolic balance of the ecosystem. Moreover, this relationship might be explicable by the 
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cascading effects of the elevated temperature dependence of heterotrophic relative to autotrohic 

metabolism, resulting in a shift in the size spectrum in concert with that of the metabolic balance. 

Further work is clearly needed in this field to truly elucidate the ultimate mechanisms that link 

community structure to ecosystem functioning. For example, the application of environmental 

metagenomics (He et al. 2010), and the combination of ecological stoichiometric and metabolic 

theories in ecology (Allen & Gillooly 2009) are emerging promising avenue of research. This 

thesis has provided some evidence to suggest that a new perspective emphasising the importance 

of the size structure of communities, rather than the classic paradigm focused on the role of 

biodiversity (Raffaelli 2007) might offer a promising avenue for future research. 

 Emerging research at the intersection of the metabolic theory of ecology and ecological 

stoichiometric theory could potentially offer a useful platform to build a more predictive 

understanding of linkages between community structure and biogeochemical cycles based on the 

flux, storage and turnover of elements (Gillooly et al. 2005, Allen & Gillooly 2009). For 

example, the efficiency of energy transfer across the autotroph to heterotroph interface is crucial 

for determining the overall biomass structure of food webs (Cebrian 1999, 2004, Cebrian & 

Lartigue 2004). Typically, the efficiency of secondary production is strongly related to the 

stoichiometry of autotrophic resources (e.g., CNP), because this determines its nutritional quality 

for the herbivore (Cebrian et al. 2009). Combining aspects from the metabolic theory of ecology 

with ecological stoichiometric theory could lead to predictions of how autotrophic stoichiometry 

might change with temperature. For instance, a significant but variable fraction of whole body P 

is dependent on the RNA concentration within tissues, and because ~85% of RNA is in the form 

of ribosomal rRNA changes in cellular ribosome density reflect changes in whole body P. This is 

part of Elser’s growth rate hypothesis from ecological stoichiometric theory, which posits that 
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changes in the density of rRNA, and thus whole body P, reflect differences in an organism’s 

capacity for growth; i.e., the more rRNA present for protein synthesis the greater the capacity for 

rapid growth (Elser et al. 2000b). Extensions of the metabolic theory of ecology have indeed 

shown that the activation energy for protein synthesis by ribosomes is equivalent to the 

activation energy for respiration, ~0.65 eV (Gillooly et al. 2005), while the activation energy of 

photosynthesis per chloroplast is ~0.32 eV (Allen et al. 2005). Thus, at higher temperatures, less 

ribosomes are required per chloroplast to keep pace with rates of cellular photosynthesis 

(Andrew Allen; pers. com), therefore, in plants, which have the capacity to regulate their sub-

cellular constituents to a much greater extent than animals (Sterner & Elser 2002), the ratio of 

N:P should increase with increases in temperature. In fact, in a recent compilation of data from 

field surveys and experiments using aquatic and terrestrial plants from all over the Earth, I have 

demonstrated that the ratio of plant N:P increases with temperature according to the difference in 

the activation energies of protein synthesis by ribosomes and photosynthesis by chloroplasts 

(Fig. 6.5; Yvon-Durocher; unpublished data). This suggests that, on average, at higher 

temperatures the nutritional quality of autotrophic biomass is lower, which might have important 

implications for the efficiency of energy transfer through food webs, and provide a mechanistic 

link between community structure, rates of nutrient cycling, sub-cellular metabolism, and 

elemental composition. Furthermore, if the gross growth efficiencies of herbivores are 

predictable from the elemental ratio of their resources (i.e. using the threshold elemental ratio 

theory) (Frost et al. 2006) then changes in the slope of the community size spectrum in response 

to altered stoichiometry at the base of food webs should be predictable by combining aspects of 

the metabolic theory of ecology (Reuman et al. 2008) with ecological stoichiometric theory. This 

work I hope to form the basis of my future research.   
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Fig. 6.5. N/P ratio of aquatic (red circles) and terrestrial (black circles) autotrophs as a function of the inverse of 
absolute average growing season temperature (1/kT). The slope of this relationship is indistinguishable to the 
difference between the activation energies of protein synthesis by ribosomes (0.65 eV) and photosynthesis by 
chloroplasts (0.32 eV) suggesting a potential biochemical explanation for this biogeographical phenomena. Clearly 
more experimental work is needed to characterise the temperature dependence of the potential changes in the 
densities of the sub-cellular constituents that might drive this relation, though the overall pattern is tantalisingly 
consistent. Data have been compiled and reanalysed from Cebrain et al., (2009) PLOS one, 4, 4129-4135; Reich & 
Oleksyn (2006) PNAS, 101, 11001-11006; Brey et al., (in-press), J. Sea. Res.   
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Appendix 1. Quantitative prediction for changes in the metabolic balance in response to 
warming 
	  

The ratio RH:U of the metabolic balance between heated and unheated systems can be expressed 
as: 

  (I) 

Substituting ER and GPP by their allometric equations I get: 

 

   (II) 

ER is the sum of both heterotrophic and autotrophic respiration. For simplicity, and in order to 

get a quantitative prediction that does not require many parameters, I assume that that during 

non-steady state dynamics, as was the case in the mesocosm experiment, the temperature 

dependence of heterotrophic respiration is unconstrained by NPP (i.e. the available 

contemporary carbon substrate; see main text for empirical justification). This implies that the 

temperature response of ecosystem respiration is mainly driven by heterotrophic metabolism 

because Er > Ep as has been shown for marine oceanic ecosystem (Lopez-Urrutia et al. 2006, 

Lopez-Urrutia & Moran 2007). During non-steady state dynamics heterotrophic metabolism can 

increase at maximum capacity, getting ahead of NPP and dominating the respiratory response of 

the ecosystem. Thus, given this assumption, I can remove the term for autotrophic respiration 

from equation (II). As such the ratio RH:U is given now by: 
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                                      (III)                                    

I then simplify equation (III) to get: 

                                              (IV) 

In simplifying equation III I make the fundamental assumption that total biomass and the 

distribution of body mass are independent of temperature. By rearranging terms in equation (IV) 

I get: 

                                                       (V) 

Which can be rearranged to get equation (6) in the main text as follows: 

                                                                                      (VI) 

Equation (6) provides a simple yet informative approximation for the behaviour of the metabolic 

balance between heated and unheated systems while using minimal parameterisations, and 

making the assumption that heterotrophic respiration dictates ecosystem respiration in transient 

dynamics between different steady-states. Importantly, at steady state, where ER is limited by 

contemporary primary production I expect to see no shift in the metabolic balance of an 

ecosystem. This may be the case over geological time scales, but for temporal scales relevant to 
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the effects of global warming (i.e. decades) an understanding of transient non-steady state 

dynamics is fundamental. 

 

Appendix 2. Quantitative prediction for changes in the balance between CH4 efflux and 
GPP. 
	  

The ratio RfixedH:U between heated and unheated systems can be expressed as: 

                                                               (I) 

Where a and p are the allometric equations for CH4 efflux and GPP respectively and H and U 

denote the heated and unheated mesocosms. Substituting a and p by their allometric equations 

gives: 

  (II)  

Equation (2) can then be simplified to give: 

     (III) 

In simplifying equation II I make the fundamental assumption that total biomass and the 

distribution of body mass are independent of temperature. By rearranging terms in equation (III) 

we get: 
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   (IV) 

Which can be rearranged to get equation (11) in the main text as follows: 

      (V) 

 

Appendix 3. Quantitative prediction for changes in the fraction of ER taken up by whole 
ecosystem methanogenesis, ME. 
	  

The ratio RemittedH:U between heated and unheated systems can be expressed as: 

                                                                  (I) 

 a is as equation (II) above. Substituting a and r  by their allometric equations we get: 

 (II) 

Equation (II) can be simplified to give: 

     (III) 



	  
170	  

	  
In simplifying equation II I make the fundamental assumption that total biomass and the 

distribution of body mass are independent of temperature. By rearranging terms in equation (III) 

we get: 

   (IV) 

Which can be rearranged to get equation (12) in the main text as follows: 

      (V) 

 

 

Appendix 4. Regression statistics for the community size spectrum. 
	  

Regression statistics for the community size spectrum of each mesocosm for the relationship: log 

(Ni) = b * log (Mi) + a. Where Ni is the abundance of the size class i and is the mass at the centre 

of the ith size bin, b and a are the slope and the intercept respectively. These data highlight that 

the size spectrum was linear for each of the mesocosms and that the individual size distribution 

was a power law. 

Pond Treatment Month Slope  Intercept r2 P-value 
1 Heated April -0.92 4.64 0.91 0.00020 
2 Ambient April -0.94 4.58 0.81 0.00040 
3 Ambient April -0.93 4.80 0.86 0.00030 
4 Heated April -0.93 4.50 0.90 0.00003 
5 Ambient April -0.79 5.28 0.84 0.00020 
6 Heated April -1.12 3.30 0.78 0.00060 
7 Ambient April -0.83 5.09 0.84 0.00020 
8 Heated April -0.90 4.39 0.80 0.00040 
9 Heated April -1.03 3.94 0.85 0.00040 
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10 Ambient April -0.92 3.89 0.80 0.00100 
11 Ambient April -0.86 4.71 0.78 0.00200 
12 Heated April -0.90 4.52 0.97 0.00004 
13 Ambient April -0.98 4.21 0.74 0.00100 
14 Heated April -0.88 4.25 0.91 0.00080 
15 Heated April -0.94 4.64 0.80 0.00100 
16 Ambient April -0.91 4.90 0.93 0.00001 
17 Heated April -1.05 4.05 0.88 0.00050 
18 Ambient April -0.71 5.58 0.81 0.00030 
19 Heated April -0.92 5.09 0.97 0.00000 
20 Ambient April -0.75 5.49 0.90 0.00010 
1 Heated October -0.87 4.58 0.94 0.00001 
2 Ambient October -0.94 4.15 0.95 0.00001 
3 Ambient October -0.72 5.46 0.70 0.00200 
4 Heated October -0.94 4.02 0.90 0.00001 
5 Ambient October -0.94 4.10 0.81 0.00040 
6 Heated October -1.06 3.68 0.85 0.00100 
7 Ambient October -0.97 4.12 0.83 0.00020 
8 Heated October -0.92 4.50 0.89 0.00040 
9 Heated October -0.90 4.50 0.84 0.00040 
10 Ambient October -0.84 5.09 0.87 0.00070 
11 Ambient October -0.80 5.27 0.83 0.00020 
12 Heated October -0.93 4.42 0.88 0.00006 
13 Ambient October -0.78 5.30 0.88 0.00010 
14 Heated October -0.94 3.75 0.82 0.00080 
15 Heated October -0.95 4.17 0.93 0.00010 
16 Ambient October -0.79 5.00 0.87 0.00020 
17 Heated October -1.01 4.25 0.93 0.00010 
18 Ambient October -0.95 3.77 0.93 0.00009 
19 Heated October -0.85 4.70 0.89 0.00010 
20 Ambient October -0.94 4.24 0.92 0.00004 
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Appendix 5. Regression statistics for the phytoplankton size spectrum. 
	  

 Regression statistics for the phytoplankton size spectrum of each mesocosm for the relationship: 

log (Ni) = b * log (Mi) + a. Where Ni is the abundance of the size class i and is the mass at the 

centre of the ith size bin, b and a are the slope and the intercept respectively.  

 
Pond Treatment Month Slope Intercept r2 P-Value 
1 Heated April -0.41 7.50 0.42 0.040000 
2 Ambient April -0.31 8.20 0.70 0.005000 
4 Heated April -0.50 6.89 0.90 0.000092 
6 Heated April -0.35 7.70 0.71 0.002200 
7 Ambient April -0.22 8.39 0.57 0.012000 
8 Heated April -0.27 8.03 0.55 0.014000 
9 Heated April -0.55 6.78 0.88 0.000160 
10 Ambient April -0.47 6.72 0.91 0.000020 
11 Ambient April -0.30 7.82 0.53 0.018000 
12 Heated April -0.76 5.08 0.62 0.011000 
13 Ambient April -0.34 7.77 0.56 0.013000 
14 Heated April -0.65 5.52 0.70 0.004600 
15 Heated April -0.57 6.86 0.87 0.000200 
16 Ambient April -0.45 7.28 0.75 0.001200 
17 Heated April -0.52 7.20 0.67 0.004000 
18 Ambient April -0.27 7.90 0.48 0.030000 
19 Heated April -0.65 6.36 0.93 0.000006 
20 Ambient April -0.34 7.60 0.77 0.000900 
2 Ambient October -0.48 6.65 0.82 0.000300 
4 Heated October -0.50 6.41 0.78 0.000680 
5 Ambient October -0.34 7.70 0.85 0.000300 
7 Ambient October -0.34 7.70 0.62 0.007000 
8 Heated October -0.30 8.14 0.68 0.004000 
9 Heated October -0.42 7.16 0.94 0.000005 
10 Ambient October -0.43 7.50 0.79 0.001400 
11 Ambient October -0.32 7.90 0.77 0.000880 
12 Heated October -0.45 7.09 0.87 0.000240 
13 Ambient October -0.40 7.43 0.90 0.000099 
14 Heated October -0.35 7.41 0.58 0.010000 
15 Heated October -0.57 6.25 0.80 0.000400 
16 Ambient October -0.25 8.20 0.60 0.023000 
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17 Heated October -0.60 6.70 0.91 0.000200 
18 Ambient October -0.46 6.70 0.82 0.000300 
19 Heated October -0.36 7.49 0.69 0.003000 
20 Ambient October -0.38 7.38 0.86 0.000300 

 

 

Appendix 6. Formulas and geometric shapes used to estimate biovolumes of zooplankton 
and phytoplankton.  
	  

Taxon   Biovolume (V)  Reference   
Rotifera – Bdelloidea   V= ¼(l×w2×Π)/6   Ruttner-Kolisko, 1977   
Rotifera – Monogononta   V= ¼(l×w2×Π)/6  Ruttner-Kolisko, 1977   
Oligochaeta   V= ¼(l×w2×Π)×530   Ruttner-Kolisko, 1977   
Copepoda – Nauplii   V= ¼(l×w2×Π)/6   Reiss and Schmid-Araya, 2007 
Copepoda – Harpacticoida   V= ¼(l×w2×Π)×560  Reiss and Schmid-Araya, 2007 
Copepoda-Cyclopoida   V= ¼(l×w2×Π)×560    Reiss and Schmid-Araya, 2007 
Ostracoda   V= ¼(l×w2×Π)×450    Reiss and Schmid-Araya, 2007 
Cladocera   V= ¼(l×w2×Π)/6 Reiss and Schmid-Araya, 2007 
Phytoplankton V = (Π×l×w2)/6 Ellipse; Hillebrand et al. 1998 
 V = (Π×w3)/6 Sphere; Hillebrand et al. 1998 
 V = Π×w2×l Cylinder; Hillebrand et al. 1998 
 V = 1/3×Π×w2×l Cone; Hillebrand et al. 1998 
 V = Π/4×l×w Half elliptic prism; Hillebrand et al. 1998   

 

 

 

	  


