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Abstract 
 

Porous scaffold materials have been widely used in biological tissue 

engineering. It is known that fluid flow in porous media significantly 

increases the supply of oxygen and other nutrients to cells seeded in the 

porous material, and speeds up the clearance of metabolic end products. Local 

shear stress distribution is a function of media flow rate, viscosity and the 

porous scaffold micro-structure. This research project aims to investigate fluid 

movement in porous structures by using a lattice Boltzmann method. This new 

numerical method models the fluid as a collection of identical particles with 

collision and propagation procedures, and has been shown as an alternative 

and efficient numerical solver of Navier-Stokes equations, in particular for 

flows in complex geometries. The numerical scheme is verified using flow in 

a two-dimensional channel, as well as in three-dimensional ducts with 

constant shapes, where analytical solutions are available. 2D porous structures 

originated from micro-CT images are then used to study the flow and wall 

shear stress distribution. One of the advantages of the lattice Boltzmann 

method is that the shear stress can be computed directly from the local 

distribution function and has the same accuracy with the velocity profile. 

Fluid patterns and wall shear stress distribution in 3D porous structures, which 
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are reconstructed from the micro-tomographic slices, have been investigated 

under different flow rates, viscosity and geometrical structures. Results from 

this project demonstrate that lattice Boltzmann method is suitable for flow 

modelling in scaffold materials. It provides detailed information on localized 

velocity and stress distributions, which can be used to improve the design of 

the scaffold for cell and tissue engineering. 
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1 Introduction  

1.1 Cell culture in tissue engineering 

Cell culture is the process to grow cells isolated from living tissues, 

especially of the animal, in the laboratory, by controlling the supply of 

nutrients and other conditions (Bhatia 1999). The history of cell culture can 

date back to 19th century. In 1885, Roux removed a portion of the medullary 

plate of a chicken embryo and kept it alive in a warm saline solution for 

several days, which showed that it might be possible to culture cells in vitro 

(Alberts et al 2002). Ross Granville Harrison, working at Johns Hopkins 

Medical School and then at Yale University, published his results from 

1907-1910, establishing the methodology of tissue culture (Schiff 2002). Cell 

culture techniques were advanced significantly in the 1940s and 1950s to 

support the research in virology. The Salk polio vaccine, one of the first 

products mass-produced using cell culture techniques was made possible by 

the work of John Franklin Enders, Thomas Huckle Weller, and Frederick 

Chapman Robbins, who were awarded the Nobel Prize for Physiology or 

Medicine in 1954 “for their discovery of the ability of poliomyelitis viruses to 

grow in cultures of various types of tissue” (Hargittai 2002). From then on, 

cell culture became a routine laboratory technique. A Colombian woman, 
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Claudia Castillo, who had suffered a tuberculosis infection, became the first 

person to receive a whole organ transplantation using her own stem cells. This 

operation, cooperated by scientists and surgeons from Britain, Italy and Spain, 

gives the patients the choice to get engineering replacements for their 

damaged organs, such as the bowel or bladder (Macchiarini et al 2008).  

Cell culture includes both the extraction and implantation processes. In 

the first place, cells need to be isolated from the tissue for ex vivo culture, 

which is usually called extraction. Then, they are often implanted or 'seeded' 

into an artificial structure, typically known as scaffolds. Usually, the scaffold 

is kept in an incubator which maintains an optimal temperature and humidity 

for cell growth. For mammalian cells, temperature is typically set at 37 °C, the 

relative humidity is >95% and a slightly acidic pH is achieved by maintaining 

a CO2 level at 5% (Langer & Vacanti 1993).  

3D scaffolds can potentially provide flow-induced mechanical 

stimulation and allow cells to synthesis 3D multilayered extracellular matrix 

(ECM) (Bancroft et al 2002). The scaffolds, in order to supply oxygen and 

nutrients to the cells as well as the transport of metabolite, are normally 

porous media with a high porosity and adequate pore size. Meanwhile, some 

researchers are trying to graft porous scaffold made by biodegradable material 

in vivo to avoid a second surgery (Hollister 2005; 2006).  

Mechanical stimulus are widely used to stimulate cell proliferation and 

differentiation (Bakker et al 2001; Bancroft et al 2002; Gutierrez & Crumpler 
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2008; McAllister & Frangos 1999). Flow rate, wall shear stress, porosity as 

well as permeability can impact on cell activities (Hollister 2005). At the same 

flow rate, effects of the wall shear stress can be singled out by altering the 

fluid viscosity. Using this approach, Bakker et al demonstrated that the shear 

stress is one of the most important mechanical factors on cell proliferation 

(Bakker et al 2001). However, the detailed distribution of the wall shear stress 

in a scaffold material and the mechanisms involved need much more 

investigation.  

Bancroft found that minor increases in the shear stress was relevant to the 

augment of the mineralization of the scaffolds compared to the static control 

sample,   and further increases in the shear stress did not improve this 

effect(Bancroft et al 2002). Cartmell et al also reported that cell proliferation 

had been enhanced by the increase of shear stress from the static control, and 

would be inhibited by further increase of the flow rate (i.e. shear stress, as in 

the Stokes flow, fluid shear stress is proportional to the flow rate)  (Cartmell 

et al 2003). 

Lappa presented a numerical model in which the cell growth rate is 

proportional to the shear stress (Lappa 2003). The validity of the model is yet 

to be established, since experiment results have shown that the shear stress 

can enhance as well as inhibit the cell proliferation.  
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1.2 Porous media 

Porous media consist of solid (often called the frame or matrix) and pores 

(voids) with a liquid or gas. Most pores are usually interconnected to each 

other so that the fluid can move through them. Many natural substances, such 

as rocks, bushes, biological tissues and man-made materials (e.g. cements, 

foams and ceramics) can be considered as porous media.  

Porosity and permeability are two of the primary properties which 

indicate the capability of the storage and movement of fluid in porous media.  

Porosity, presenting the storage capability of fluid, is defined as the ratio 

of the volume of voids to the total volume. 

 v

t

V
V

φ =  (1.1) 

where , ,v tV Vφ  are the porosity, the volume of void space, the total 

volume of material, respectively. Obviously, the range of φ  is between 0 and 

1. 

Alternatively, the porosity can be got from the density of the current 

porous medium and the substance.  

 1 b

s

ρφ
ρ

= −  (1.2) 

where ,b sρ ρ  are the bulk density and the substantial density, 

respectively. 

Permeability indicates the ability of the flow through a porous medium, 

which is influenced by the packing, shape and pore size distribution. For 
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example, a porous medium with a high porosity may be impermeable, if the 

voids are isolated from each other. It is hard to calculate the permeability 

theoretically, even with detailed information on the structure. The commonly 

used measurement is based on flow experiments using the Darcy’s law, as 

detailed below. 

In 1856, Henry Darcy, by conducting experiments of flow through sand, 

found the relationship between the pressure and the fluid discharge, which is 

known as the Darcy’s law (Darcy 1856). Figure 1.1 is the demonstration of the 

experiment: the tube, fully filled with sand, is placed horizontally to avoid the 

influence of gravity; a reservoir is connected to the left pipe to drive the flow 

by supplying a constant water pressure, another tank is connected to the right 

pipe to get the total volume of water during a given time. Using this trivial 

setup, Darcy found the discharge rate through the porous medium was 

proportional to the pressure drop, which can be written as 

 a bP PKAQ
Lμ
−

=�  (1.3) 

where Q�  is the discharge, K is the permeability, A is the area of 

cross-section, μ  is the dynamic viscosity of fluid, ,a bP P  are the pressure at 

the inlet and outlet, respectively, L is the length of pipe filled with porous 

media. By dividing both sides of Equation (1.3) with the surface area A, 

Darcy’s law can be written in a differential from as 

 
KV P
μ

= − ∇
G

 (1.4) 
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where V
G

 is the average velocity through the porous media, P∇  is the 

pressure gradient, the negative sign means that the flow is from high pressure 

to low pressure, the opposite direction of pressure gradient.  

 

Figure 1.1 The illusion of experiment setup by Darcy in 1856.  

 

Darcy’s law is widely used to study flows in homogeneous porous media 

at low Reynolds numbers (Blokhra & Khajuria 1991; Sen 1989). However, if 

the Reynolds number is not very small, nonlinear correction term is needed to 

consider the inertial effect of the flow (Firdaouss et al 1997).  

 

1.3 A Brief introduction on the lattice Boltzmann 

method 

Following the introduction of the famous game, “Game of Life” 

(Gardner 1970), devised by a British mathematician John Conway in 1970, 

some researchers found the flow simulation can also be mimicked by cellular 
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automaton (Frisch et al 1986b; Hardy et al 1976). In the so-called FHP model, 

named by the initials of the authors, two simple steps were applied to the 

particles: collision and propagation. This scheme was found to be a 

discretization to the Boltzmann equation, and therefore can  introduce the 

Navier-Stokes equations by Chapman-Enskog expansion (Koelman 1991b; 

Qian et al 1992). Their works, named as lattice gas cellular automata or 

LGCA for short, offered a new way to  model the fluid flow.  

To get rid of the noise in FHP (Frisch et al 1987) or four-dimensional 

face-centered-hyper-cubic   (Dhumieres et al 1986) lattice in lattice gas 

cellular automata, McNamara suggested to replace the Boolean variables 

which represent the presence or absence of the particles (Mcnamara & Zanetti 

1988). Later, the particle-collision operator has been replaced by the 

Bhatnagar-Gross-Krook (BGK for shorter) approximation by Koelman 

(Koelman 1991a), Qian (Qian et al 1992) and others. In around 1996, Sterling  

and He  found that lattice Boltzmann equation is a special discretization 

scheme of Boltzmann equation, which finally established the lattice 

Boltzmann method on the solid foundation of the kinetic theory (He & Luo 

1997b; Sterling & Chen 1996).  

After that, the lattice Boltzmann method have been rapidly developed to 

solve problems such as, multiphase flows (Grunau et al 1993; Premnath & 

Abraham 2005), blood flows (Krafczyk et al 1998; Zhang et al 2008), flow in 

porous media (Chen et al 1991b; Olson & Rothman 1997), non-Newtonian 
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flows (Boyd et al 2006; Yoshino et al 2007) and so on.  

Figure 1.2 is the annual number of publications using the lattice 

Boltzmann method. The exponent increase implies the potential application of 

this method and the rising interesting from investigators. The 2010 data is 

only to August 2010 with delayed update of the database.   

 

Figure 1.2 Annual number of publications using the lattice Boltzmann 

method. The graph is generated using the ISI Web of Science digital 

databases in August 2010. 

 

1.4 Aim and objectives 

This project aims to apply the lattice Boltzmann method to model fluid  

velocity and shear stress distribution in highly porous scaffold materials that 

are used in cell & tissue engineering and to investigate effects of parameters, 

such as the flow rate, pressure on detailed flow patterns in the scaffolds.  
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1.4.1 Methodology - why the lattice Boltzmann 

method? 

The tradition numerical method such as the finite volume method (FVM), 

finite element method (FEM), finite difference method (FDM) have been well 

developed to solve Navier-Stokes equation in flow simulation problems 

(Kumar & Naidu 1995; Nadobny et al 2007; Shibeshi & Collins 2005). They 

can provide detailed information on flow in blood vessels (Sun et al 2009; 

Torii et al 2009), with encouraging progresses on patient- specific CFD 

simulations based on computational tomography images (Cheng et al). The 

effects of wall shear stress on cell growth has been studied by these methods 

(Lappa 2003). The Lappa’s model assumed the cells as an additional fluid 

phase and calculated the multiphase flow field using a finite volume method, 

with the volume-of-fluid (VOF) method and level-set method to capture the 

interface. On top of other limitations in the traditional methods, the simulation 

needs to re-mesh the grid to accommodate the cell growth, which adds to extra 

computation requirement. 

Unlike the convention methods above, the lattice Boltzmann method 

does not need to re-mesh the grid at all. Besides, LBM is second-order 

accurate for the shear stress as well as the velocity. So it has been extensively 

used to solve for flows in porous media or in fluid-solid coupling problems 

(Premnath & Abraham 2005; Spaid & Phelan 1997; Zhang et al 2008). 

However, it is necessary to employ interpolation or extrapolation for the 
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treatment of  the solid boundary, which will affect LBM's accuracy. 

Furthermore, it was found that the lattice Boltzmann method provided 

comparable accuracy under lower expenses in terms of CPU time compared to 

commercially available finite volume/element software (Geller et al 2006). 

Moreover, the accuracy of the shear stress calculation using the lattice 

Boltzmann method is of the second order, due to the fact that shear stress 

calculation is independent of the velocity (Kruger et al 2009).  

Cellular automaton has been used to investigate cell proliferation and 

immigration (Cheng et al 2006; Lee et al 1995), in which the 

convection-diffusion process of the nutrition supply is solved by finite 

difference method (Chung et al 2010). Since the lattice Boltzmann method is a 

special case of cellular automaton (Chen & Doolen 1998), it is intrinsically 

compatible with the general cellular automaton.  

 

1.4.2 Objectives of the project 

The first objective of this study is to develop an efficient program based 

on the lattice Boltzmann method that can read the micro-CT images of real 

porous media, reconstruct the porous structure, model the fluid flow under 

given parameters such as boundary condition, density and viscosity.and output 

the calculation results to other post-process software. To achieve this, Matlab 

(Version 2008a, licensed), a high-level language including the package of 



 
Introduction 

26 

graphs, is used for the preprocess; FORTRAN 95, a general-purpose 

programming language which is especially suitable for high-performance 

scientific computation, is used in the main part of the software to reduce the 

simulation time; Tecplot (Version 360, licensed), another commercial software, 

is used for the flow analysis and the presentation of the results.  

2D simulation is carried out first and is then extended to 3D simulation 

based on realistic geometries of a porous scaffold using the lattice Boltzmann 

method.  

The other objective of the project is to develop a numerical model that is 

capable to simulation the cell growth based on  the relationship to 

mechanical factors such as pressure gradient and wall shear stress.  

In all studies, validation of the program has been carried out using either 

available analytical/asymptotic results or other numerical softwares. The 

porous geometry is taken from the micro-CT images in our own laboratory.  

 

1.5 A brief overview of the structure of the thesis 

The thesis is organized in the following way: 

Chapter 1 reviews the background on cell culture and the lattice 

Boltzmann method. It also lays out the objectives of this report and the 

advantage of using the lattice Boltzmann method in the study. 

Chapter 2 gives details on the development of the lattice Boltzmann 



 
Introduction 

27 

method, and derives the Navier-Stokes equations from the lattice Boltzmann 

method by Chapman-Enskog expansion. In addition, different treatments of 

boundary conditions are also presented. 

In Chapter 3, the program developed based on the lattice Boltzmann 

method is validated by modeling Poiseuille flows in a planar channel and in a 

rectangular duct.  

2D flow simulation in a porous structure based on a 2D  micro-CT 

image is presented in Chapter 4.  

Chapter 5 presents cell proliferation study in the 2D structure, a 

simplified relationship between the cell growth and local shear stress is 

proposed. The purpose of this chapter is to demonstrate the capacity of our 

program based on the lattice Boltzmann method, rather than to demonstrate 

the actual cell proliferation process. 

3D flow simulation in a reconstructed porous scaffold based on 

micro-CT images is presented in Chapter 6. In the preliminary study, a small 

volume in the middle of scaffold is used, rather than the whole scaffold.  

Following the list of references, the main code of 2D lattice Boltzmann 

method developed in FORTRAN program language is given in Appendix. 
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# insert a section break (1.0) Figure 1.0 Table 1.0  

2 Lattice Boltzmann Method 

2.1 Introduction 

The lattice Boltzmann method originates from the lattice gas cellular 

automaton, which is a discrete particle with some certain rules. The first 

lattice gas cellular automata can be dated back in 1973, when Hardy, de Pazzis 

and Pomeau (known as HPP model after the initials of three authors) proposed 

a simple two dimensional model on a square lattice (Hardy et al 1973). Today, 

the HPP model is mainly of historical interest because it does not lead to the 

correct Navier-Stokes equations in macroscopic limit due to the deficiency of 

rotational symmetry (Wolf-Gladrow 2000). However, the collision and 

propagation processes introduced by HPP model are key features for all lattice 

gas cellular automata models for the fluid simulation ever since, including the 

lattice Boltzmann method. The evolution equation of the lattice gas cellular 

automata is  

 ( , 1) ( , )i i i in x e t n x t+ + = +Ω
G G G  (2.1) 

where ( , )in x tG  is a set of Boolean variables describing the presence and 

absence of particles, ieG  is the local particle velocities, and iΩ  are the local 

collision rules predefined based on the particles status.  

In 1986, by changing the square lattice to hexagonal lattice and by 
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introducing a more complex collision rules, Frisch et al proposed a very 

simple lattice gas cellular automata method which was able to account for the 

complexity of real fluid flows (Frisch et al 1986b). This was also 

independently proposed by Wolfram in the same year (Wolfram 1986). The 

so-called FHP model meshes the 2D computation domain with hexagonal 

lattice. Each lattice sites up to six particles with identity mass and these 

particles can only move along one of the six directions which are the line 

connections to the neighboring lattice as shown in Figure 2.1. In a time step, 

these particles travel to their neighbors and certain collision rules are 

implemented based on the state of the lattice. There are two collision rules in 

their pioneering work: one for the two body collision and another for the three 

body collision, as depicted in Figure 2.2. It has been shown that this simple 

model obeys the incompressible Navier-Stokes equations after coarse-grain 

process (Koelman 1991b; Qian et al 1992). The computation fluid dynamics 

community shows great interests in lattice gas cellular automata, and more 

than a thousand papers have cited Frisch et al’s work so far, according to the 

“Web of Science” database. A four-dimensional face-centered-hyper-cubic 

(FCHC) lattice was proposed by d’Humieres et al to model the 3D fluid 

dynamics (d'Humieres et al 1986). 
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Figure 2.1 A sketch of FHP lattice. Up to six  particles can be sited in the 

lattice. There are four fluid particles in current lattice presented by black 

solid circles and two voids presented by white circles. The arrows are the 

moving directions of the particles.  

 

 

 

 

a)  2-particle head-on collision rules 

0.5p =
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Figure 2.2 The collision rules for FHP model. a) If there are 2 fluid 

particles (dark solid circle) in the lattice opposite to each other, after 

collision, these 2 fluid particles will be rotated by 60°to left or right with 

equal probability. b) If there are 3 fluid particles with 120°to each other, 

after collision, these 3 fluid particles will change their positions with the 

voids.  

 

Despite the remarkable achievement in the late 80s, a number of serious 

intrinsic problems remain unresolved in the lattice gas algorithms. For 

example, the exclusion principle in which only two statuses (occupied or 

unoccupied, fluid or void) are allowed at a certain node leads to a Fermi-Dirac 

distribution for the local equilibrium particles instead of Maxwell distribution 

in fluid dynamics (Frisch et al 1986a). The usage of Boolean variables can be 

easily implemented with parallel computers without any round-off error; on 

the other hand, coarse grain process is required to get the macroscopic 

variables, such as density and velocity. The artificial collision rules are very 

hard to construct and usually do not have any physical meanings 

(Wolf-Gladrow 2000). 

 

b)  3-particle collision rules 
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To reduce and to remove the statistic fluctuations of lattice gas cellular 

automata (Orszag & Yakhot 1986), McNamara and Zanetti introduced lattice 

Boltzmann model by replacing the Boolean variables with Feimi-Dirac 

distribution functions which is real variables (Mcnamara & Zanetti 1988). A 

linear collision operator was proposed to simplify the collision rules by 

assuming that the distribution was very close to the local equilibrium state 

(Higuera & Jimenez 1989). The Bhatnagar-Gross-Krook (short as BGK 

afterwards) operator (Bhatnagar et al 1954), suggested by several groups 

independently (Chen et al 1991a; Qian et al. 1992), has been popularly 

adapted in the lattice Boltzmann simulation. In this thesis, the lattice BGK 

model has been applied to derive the Navier-Stokes equations and to mimic 

the flow in porous scaffolds. 

 

2.2 Lattice Boltzmann method to Navier-Stokes 

equations 

The lattice Boltzmann method with BGK approximation can be written 

as 

 ( )1( , ) ( , ) ( , ) ( , )eq
i i i i iF t t t F t F t F uρ

τ
+ Δ + Δ = − −
G G G G Gx c x x  (2.2) 

where ( , )iF x tG  is the distribution function in site xG at time t , τ  is the 

dimensionless relaxation time, ic  is the lattice velocity defined as the ratio to 

the lattice length and step time tΔ , and ( , )eq
iF uρ G  is the equilibrium 
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distribution function. 

Analog to the lattice gas cellular automata, the implement of lattice 

Boltzmann method can be separated into two steps, which are usually called 

collision step and streaming (propagation) step, respectively.  

 ( )1collision: ( , ) ( , ) ( , ) ( , )

streaming: ( , ) ( , )

eq
i i i i

i i i

F t F t F t F u

F t t t F t

ρ
τ

= − −

+ Δ + Δ =

G G G G�

G G G�

x x x

x c x
 (2.3) 

where ( , )iF x tG�  is the post-collision value. The collision step can be 

implemented locally, and particles travel to their corresponding neighbour 

lattice in the streaming step.  

The macroscopic values, local mass density ρ  and the momentum 

density j , are defined as the sum over the distribution at each lattice. 

 
( , )

( , )

i
i

i i
i

F x t

j u c F x t

ρ

ρ

=

= =

∑

∑
 (2.4) 

To derive the Navier-Stokes equations from lattice Boltzmann equation, 

Chapman-Enskog expansion is used by assuming the time for diffusion 

process is much slower than that of convention process (Chapman et al 1970; 

Rivet & Frisch 1986). Likewise, the distribution function ( , )iF x tG are expanded 

around the equilibrium distributions (0) ( , )iF x t .  

 (0) (1) 2 (2) 3( , ) ( , ) ( , ) ( , ) ( )i i i iF x t F x t F x t F x t oε ε ε= + + +  (2.5) 

where ε  is a small parameter commonly used in asymptotic analysis.  

Also, it is assumed that only the zero-th term has the contribution to the 

density ρ  and momentum j . other perturbations ( (1) ( , )iF x t , (2) ( , )iF x t , and 
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etc) do not contribute to the mass and momentum at all. 

 

(0) (0)

( ) ( )

( , ) , ( , )

( , ) 0, ( , ) 0, 0

i i i
i i

n n
i i i

i i

F x t c F x t j

F x t c F x t n

ρ= =

= = >

∑ ∑
∑ ∑

 (2.6) 

The small parameter ε  can be Knudsen number which is the ratio 

between the mean free path and the characteristic length scale of the flow or 

the time step tΔ , here we adapt the setting in He and Luo’s work. (He & Luo 

1997a).  

By introducing the following expansions 

 0

( )

0

( , ) ( , )
!

n
n

i t i
n

n n
t t

n

F x x t t D F x t
n
ε

ε

∞

=

∞

=

+ Δ + Δ =

∂ = ∂

∑

∑
 (2.7) 

where ( )t t iD c≡ ∂ + ⋅∇  and tε = Δ , we can rewrite the lattice 

Boltzmann equation (2.2) in the consecutive order of the parameter ε  as 

follows 

 0 (0)( ) : eq
i iO F Fε =  (2.8) 

 1 (0) (0) (1)1( ) : t i iO D F Fε
τ

= −  (2.9) 

 ( )22 (1) (0) (0) (1) (0) (0) (2)1 1( ) :
2t i t i t i iO F D F D F Fε

τ
∂ + + = −  (2.10) 

Substituting Equation (2.9) into Equation (2.10), we can simplify it as 

 2 (1) (0) (0) (1) (2)2 1 1( ) :
2t i t i iO F D F Fτε
τ τ
−⎛ ⎞∂ + = −⎜ ⎟

⎝ ⎠
 (2.11) 

The n-th lattice tensor is defined as 

 ( )
,1 ,2 ,

n
i i i i n

i
E W c c c=∑ G G G…  (2.12) 

where ,i kcG  is the thk − lattice velocity of ic , and its value depends on 
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the specific model used. For D2Q9 model which will be mentioned in the 

following section, the lattice tensors have the following properties: 

 

(0)

(2) 2

(4) 4

(2 1)

1
1
3
1
9

0 0

ij

ijkl

k

E

E c

E c

E k

δ

δ

+

=

=

=

= >

 (2.13) 

where ijδ  and ijklδ  are the Kronecker delta function with two and four 

indices, respectively.  

 
1
0ij

ijkl ij kl ik jl il jk

i j
i j

δ

δ δ δ δ δ δ δ

=⎧
= ⎨ ≠⎩
= + +

 (2.14) 

By applying the properties of the lattice tensor ( )nE , we have 

 
2

2

1
3

1 ( )
3

eq
i

i
eq

i i
i

eq
i i i

i

eq
i i i i a

i

F

c F u

c c F c u u

c c c F c u u u

α α

α β αβ α β

α β γ β γ βγ α γα β

ρ

ρ

ρδ ρ

ρ δ δ δ

=

=

= +

= + +

∑

∑

∑

∑

 (2.15) 

where the Greek index ,α β  represent the spatial axis, and Latin index 

i  represents one of the 9 lattice components.  

The first two equations are the same as the first two of Equation (2.6) if 

Equation (2.8) is introduced. Sum up all the 9 components of iF  in Equation 

(2.9), and using the properties of lattice tensors stated in Equation (2.15),  we 

get  

 (0) ( ) 0t uα αρ ρ∂ + ∂ =  (2.16) 
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and 

 (0) (0) 0t uα β αβρ∂ + ∂ Π =  (2.17) 

where (0) eq
i i i

i
c c Fαβ α βΠ =∑  is called as the zero-th momentum flux 

tensor.  

Following the same step, for Equation (2.11), we get  

 (1) 0t ρ∂ =  (2.18) 

and 

 (1) (1)2 1 0
2t uα β αβ
τρ
τ
−⎛ ⎞∂ + ∂ Π =⎜ ⎟

⎝ ⎠
 (2.19) 

where (1) (1)
i i i

i
c c Fαβ α βΠ =∑  is named as the first order momentum flux 

tensor, which can be expressed with the aid of Equation (2.9) and Equation 

(2.16) as  

 

( )

(1) (1) (0) (0)

(0) (0) (0)

(0) 2 2

(0) 2 2

1 1 ( )
3 3

1 1
3 3

i i i i i t i
i i

t i i i i i i i
i

t a
i

t

c c F c c D F

c c F c c c F

c u u c u u u

c u u c u u u

αβ α β α β

α β α β γ

αβ α β β γ βγ α γα β

αβ α β γ γ αβ α β β

τ

τ

τ ρδ ρ ρ δ δ δ

τ ρδ ρ ρ δ ρ ρ

Π = = −

= − ∂ +∇ ⋅

⎡ ⎤⎛ ⎞ ⎛ ⎞= − ∂ + +∇ ⋅ + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞= − ∂ + + ∂ + ∂ + ∂⎜ ⎟
⎝ ⎠

∑ ∑

∑

∑

( )

( ) ( )(0) 21
3

i

t
i

u u c u u

α

α β α β β ατ ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤= − ∂ + ∂ + ∂⎢ ⎥⎣ ⎦

∑

∑

(2.20) 

It is easy to find that the first term is of order 3( )O M , and can be 

neglected. Therefore, by assembling all the expressions we got so far, we have 

 (0) (1)( ) 0t t uα αε ρ ρ∂ + ∂ + ∂ =  (2.21) 

and  
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 (0) (1) (0) (1)2 1( ) 0
2t t uα β αβ αβ
τε ρ ε
τ
−⎛ ⎞∂ + ∂ + ∂ Π + Π =⎜ ⎟

⎝ ⎠
 (2.22) 

By setting 1ε =  and assuming that the density variation is very small, 

after some simple manipulations, we get the so-called continuity equation and 

Navier-Stokes equations, respectively. 

 0u u
t

∂
+∇ ⋅ =

∂

G G  (2.23) 

 2u u u p u
t

ν∂
+ ∇⋅ = −∇ + ∇

∂

G G G G  (2.24) 

with the kinetic viscosity as 

 2 1
6
τν −

=  (2.25) 

From the derivation, we can also get the relationship between shear rate 

tensor αβε  and the first order momentum flux tensor (1)
αβΠ  as 

 ( ) (1)1 3
2 2

u uαβ β α α β αβε
ρτ

= ∂ + ∂ = − Π  (2.26) 

Thus the stress tensor aβτ  of Newtonian fluid is 

 (1)

2

11
2

a p

p

β αβ αβ

αβ αβ

τ δ με

δ
τ

= − +

⎛ ⎞= − − − Π⎜ ⎟
⎝ ⎠

 (2.27) 

From Equation (2.27), we can find that the shear stress can be calculated 

from the differences between local distribution function and equilibrium 

values, and is not relevant to the calculation of velocity values.  

 

2.3 2D lattice Boltzmann model 

From the derivation of the Navier-Stokes equation in the last section, we 
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have found the importance of the lattice tensor ( )nE . A proper lattice tensor 

should meet the requirement of isotropy of the 2nd and 4th ranks (Wolfram 

1986). For example, the lack of isotropy of rank 4 of the HPP lattice tensor 

fails to yield the Navier-Stokes equations in the macroscopic limit 

(Wolf-Gladrow 2000).  

D2Q9 model is the most popular two-dimension lattice Boltzmann model 

with a rest particle in the center and 8 active particles with different directions. 

 

Figure 2.3 The 9-component distribution function. 

 

As depicted in Figure 2.3, the 9 components of different directions in 

D2Q9 model can be expressed as 

 
(0,0) 0
(cos[( 1) / 2],sin[( 1) / 2]) 1, 2,3, 4

(cos[( 5) / 2 / 4],sin[( 5) / 2 / 4]) 2 5,6,7,8
i

i
c i i c i

i i c i

π π

π π π π

⎧ =
⎪

= − − =⎨
⎪ − + − + =⎩

(2.28) 

The subscript index is traditionally from 0 to 8.  

The equilibrium distribution of “virtual” fluid particles should obey the 
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Maxwell-Boltzmann distribution 

 
3/2

2exp( / 2 )
2

eq
B

B

mF mu k T
k T

ρ
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.29) 

where m is the mass of the particle, Bk  is the Boltzmann constant, T is 

the temperature, and u is velocity. If the velocity is very small, we can expand 

it in Taylor series as 

 2 2( , ) ( )
2

eq
i i i i

B B B

m m mF u W c u c u u
k T k T k T

ρ ρ ρ ρ
⎧ ⎫⎡ ⎤⎪ ⎪= + ⋅ + ⋅ −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

G G G G  (2.30) 

or more explicitly 

 

2

2

2 2

2 4 2

2 2

2 4 2

4 31 0
9 2

9( )1 31 3 1,2,3,4
9 2 2

9( )1 31 3 5,6,7,8
36 2 2

i

i i
i

i i
i

uF i
c

c u c u uF i
c c c

c u c u uF i
c c c

ρ

ρ

ρ

⎡ ⎤
= − =⎢ ⎥

⎣ ⎦
⎡ ⎤⋅ ⋅

= + + − =⎢ ⎥
⎣ ⎦
⎡ ⎤⋅ ⋅

= + + − =⎢ ⎥
⎣ ⎦

G G

G G

 (2.31) 

with 
2

3
Bk T c
m

= . We will give a brief introduction to the calculation of the 

weight value iW  in the following section. 

 

2.4 3D lattice Boltzmann method 

The extension of 2D lattice Boltzmann model to 3D one is rather 

straightforward. One just needs to choose a certain 3D lattice mode and 

calculate the corresponding weight. d’Humieres et al proposed a multispeed 

lattice-gas cellular automata over a cubic lattice with 19 velocities which is 

called D3Q19 model (d'Humieres et alet al 1986). As shown in Figure 2.4, 
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there are three different speeds in D3Q19 model: 1 rest particle in the center 

with zero speed, 6 particles with 1 lattice speed (black arrows), and 12 

particles with 2  lattice speed (red arrows). The lattice velocity can be 

written as  

 
(0,0) 0
( 1,0,0), (0, 1,0), (0,0, 1) 1, 2,...,5,6
( 1, 1,0), ( 1,0, 1), (0, 1, 1) 7,8,...,17,18

i

i
c i

i
c

=⎧
⎪= × ± ± ± =⎨
⎪ ± ± ± ± ± ± =⎩

G  (2.32) 

 

Figure 2.4 The lattice velocities of the D3Q19 model.  

 

The local equilibrium distribution eq
iF , which is a function of local 

value of density and velocity, can be derived theoretically by applying the 

maximum entropy principle under the conservation of mass and momentum 

(Karlin et al 1998). Alternatively, Keolman proposed a general and simple 

method to calculate the weight iW  for particles with different lattice speed 
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(Koelman 1991b). First, The Taylor expansion of equilibrium distribution 

eq
iF  up to second order of velocity from the Maxwell-Boltzmann distribution 

function (2.29) can be written as 

 2 2( , ) ( )
2

eq
i i i i

B B B

m m mF u W c u c u u
k T k T k T

ρ ρ ρ ρ
⎧ ⎫⎡ ⎤⎪ ⎪= + ⋅ + ⋅ −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

G G G G  (2.33) 

where iW  is the weight factor, ρ  is the local density, m  is the mass, 

Bk  is the Boltzmann constant as recalled. 

The velocity momentum tensor up to fourth order should equal to those 

of the continuum Boltzmann distribution, which leads to 

 

( )
2

( )

( )

( )

eq

eq B
i j i j ij

eq
i j k n i j k n

B
ij kn ik jn in kj

F f u du

k Tc c F f u u u du
m

c c c c F f u u u u u du

k T
m

α
α

α α α
α

α α α α α
α

ρ

ρ δ

ρ δ δ δ δ δ δ

= =

= =

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

∑ ∫

∑ ∫

∑ ∫
 (2.34) 

After some manipulations, we can get the solution to the constraint 

Equation (2.34) as  

 

2

1 0
3
1 1,2,...,5,6

18
1 7,8,...,17,18
36

3

i

B

i

W i

i

k T c
m

⎧ =⎪
⎪
⎪= =⎨
⎪
⎪ =⎪⎩

=

 (2.35) 
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2.5 Boundary conditions  

The implement of boundary conditions is necessary and very important 

to any numerical simulation, and will influence the accuracy and stability of 

the schemes. Extensive tests have been carried out to investigate the behavior 

of various boundary conditions (Ahrenholz et al 2006; Kao & Yang 2008; Mei 

et al 1999; Pan et al 2006; Wagner & Pagonabarraga 2002; Zou & He 1997). 

Unlike the finite element method or finite volume method, which solves the 

velocity directly from Navier-Stokes equations, in lattice Boltzmann method, 

we are going to solve the distribution function ( , )F x t . It is a challenge to 

implement the traditional velocity or pressure conditions. Even for the no-slip 

boundary condition at the solid surface, more research is needed. In this 

section, we will give a brief introduction to the treatments of various boundary 

conditions using D2Q9 model.  

 

2.5.1 Velocity and pressure boundary condition 

A widely used scheme to deal with velocity and pressure boundary 

condition was proposed by Zou and He, by extending the bounce back scheme 

to the non-equilibrium part in 1997 (Zou & He 1997). One single case, i.e. an 

east boundary treatment is introduced here, while the others can be 

implemented similarly.  

a. Velocity inlet condition in the east boundary 
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As an example, if we want to apply a velocity inlet boundary condition in 

the east boundary as shown in Figure 2.5. After propagation, the values of 

0 2 3 4 6 7, , , , ,F F F F F F  are known since they travel from the neighbor lattices in 

the inner domain, while the values of 1 5 8, ,F F F  are unknown. Suppose the 

horizontal velocity 0u u=  and vertical velocity 0v v= . 4 equations are 

needed to work out the denisty ρ  and distribution function components 

1 5 8, ,F F F .  

From the density formula, we have 

 
8

0
i

i
Fρ

=

=∑  (2.36) 

The formulas of x- and y- direction velocities give another two  

 
8

0
0

ix i
i

u c Fρ
=

=∑  (2.37) 

 
8

0
0

iy i
i

v c Fρ
=

=∑  (2.38) 
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Figure 2.5 Illustration of the lattices after streaming at the east boundary, 

the distribution functions 1 5 8, ,F F F  are unknown. 

 

Zou and He proposed the fourth equation by assuming that the bounce 

back condition of non-equilibrium parts holds in the direction normal to the 

boundary 

 1 1 3 3
eq eqf f f f− = −  (2.39) 

After some manipulations, we can work out 

 
( )

( )

3 6 7 0 2 4

0

1 3 0

0 0
5 7 2 4

0 0
8 6 2 4

2( ) ( )
1

2
3
1
2 6 2
1
2 6 2

F F F F F F
u

F F u

u vF F F F

u vF F F F

ρ

ρ

ρ ρ

ρ ρ

+ + + + +
=

−

= +

= − − + +

= + − + −

 (2.40) 

 

b. Pressure inlet condition in the west boundary 

To implement the pressure inlet condition inp p= , first, we need convert 

it into density inρ  which is based on the extremely simple state equation of 

ideal gas. Besides, the value of the velocity tangent to the boundary, the 

y-component of velocity 0v  here, should also be given to close the equation. 

Analog to the analysis of velocity inlet condition above, we can get the four 

equations for the pressure inlet condition  
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8

0

8

0
0
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0
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i
i

ix i
i

iy i
i

eq eq

F

u c F

v c F

f f f f

ρ

ρ

ρ

=

=

=

=

=

= =

− = −

∑

∑

∑

 (2.41) 

And the unknown variables 0 1 5 8, , ,u F F F  can be solved 

 
( )

( )

3 6 7 0 2 4
0

1 3 0

0
5 7 2 4

0
8 6 2 4

2( ) ( )1

2
3
1
2 6
1
2 6

in

F F F F F Fu

F F u

uF F F F

uF F F F

ρ

ρ

ρ

ρ

+ + + + +
= −

= +

= − − +

= + − +

 (2.42) 

 

2.5.2 Wall boundary condition 

Unlike traditional methods that apply the velocity (Dirichlet) or flux (Von 

Newman) conditions directly on the boundary, there is no corresponding, 

physically based boundary condition for the distribution function iF  in the 

mesoscopic level. For the regular meshes used in lattice Boltzmann method, 

truncation error will raise from the exact solid boundary, especially for the 

curved boundary. These make it non-trivial to implement the accurate wall 

boundary condition in lattice Boltzmann method, and the challenge remains 

an open one (Latt et al 2008). The bounce back scheme, which is a 

particularly straightforward approach from lattice gas cellular automata, was 

proposed at the very beginning of LBM to model no-slip conditions on solid 
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surfaces (Lavallee et al 1991). In this scheme, as implied by its name, the 

“virtual” particle which reaches the solid boundary will reverse immediately. 

The bounce back condition was found only first-order in numerical accuracy 

at the wall boundary (Cornubert et al 1991; Ginzbourg & Adler 1994; Ziegler 

1993). To improve the accuracy of zigzag approximation of curved boundary, 

several schemes have been proposed using interpolation/extrapolation 

treatment (Chun & Ladd 2007; Junk & Yang 2005; Kao & Yang 2008; 

Verschaeve 2009). A brief introduction will be given to the treatments of wall 

boundary condition.  

 

a. Bounce back scheme 

The process is illustrated in Figure 2.6. At time step t, the distribution 

functions 4 7 8, ,F F F  travel to their corresponding solid neighbors in the 

steaming process, and immediately reflect back at the solid boundary, at the 

time step t t+ Δ , these vectors meet at the original lattice with same 

magnitude but opposite directions. It was found that if the boundary was 

moved to the half mesh unit between the fluid and solid interface, the bounce 

back scheme is second order accurate for straight wall and flow in the porous 

media (Pan et al 2006).  
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Figure 2.6 The treatment of bounce back scheme. 

As already mentioned, the numeric implement of bounce back scheme on 

node ( , )i j  illustrated in Figure 2.6 is shown in Table 2.1, where temp  is a 

temporal variable, ( , )k ijF x t  is the distribution function on node ( , )i j  as 

defined before. 

 

Table 2.1 Algorithm of bounce back scheme. 

1 1 3 3( , ), ( , ) ( , ), ( , )ij ij ij ijtemp F x t F x t F x t F x t temp= = =  

2 2 4 4( , ), ( , ) ( , ), ( , )ij ij ij ijtemp F x t F x t F x t F x t temp= = =  
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5 5 7 7( , ), ( , ) ( , ), ( , )ij ij ij ijtemp F x t F x t F x t F x t temp= = =  

6 6 8 8( , ), ( , ) ( , ), ( , )ij ij ij ijtemp F x t F x t F x t F x t temp= = =  

 

b. Bouzidi’s scheme 

However, if the boundary is curved (Figure 2.7), the simple bounce back 

scheme will treat it as some zig-zag approximation, which will obviously 

introduce inaccuracy result. To solve this issue, Bouzidi proposed an 

interpolation approach to catch the accurate solid boundary for the no-slip 

boundary condition (Bouzidi et al 2001). Later, Lallemand et al applied the 

same method to the moving boundary problem (Lallemand & Luo 2003).  

 

Figure 2.7 A sketch of curved boundary. 
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Figure 2.8 Illustration of the Bouzidi’s boundary treatment for a rigid 

wall located arbitrarily between two grid sites in one dimension.  

 

For the sake of simplicity, the 2D boundary in Figure 2.7 can be 

projected into 1D. This treatment is very intuitive and can be expanded to 3D 

problem. In Figure 2.8, a wall wr  is placed between node jr  and sr , the 

shadow area is solid. The parameter q  indicates the faction of fluid part. 

 j w

j s

r r
q

r r

−
=

−
 (2.43) 

 In the tradition bounce back scheme (Figure 2.8 a), distribution function 

1( , )F x t  at node jr  with lattice velocity 1c , travels from left to right, will hit 

the wall at wx r= , and bounce back to jr , which is the value of 3F  at the 

next time step 1nt + . An analogue implement is taken In the Bouzidi’s scheme. 
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The virtual particle will travel a specific distance ( )xΔ  as the same treatment 

of propagation step. The only difference is that a rigid bounce back will occur 

when the particle reaches the wall. To avoid extrapolation, which will induce 

numerical considering the numerical stability, Bouzidi’s scheme, illustrated in 

Figure 2.8, can be classified into 2 situations (Figure 2.8 b and c). If 1/ 2q <  

depicted in Figure 2.8b, at time step nt , The distribution function 1F  at the 

grid jr  with the lattice velocity pointing to sr  would end up at jr  after 

back back from wr . The distance from ir  to jr  is ( )1 2q xδ− . Because ir  

does not locate at the grid, the value of 3F  at the grid jr  can be interpolated 

by the points ' , , ,j j i jr r r r ′′ . Using linear interpolation, the value of 3F  is 

 ( , 1) 2 ( , ) (1 2 ) ( , )i j i j i jF r t qF r t q F r t′ ′+ = + −� �  (2.44) 

where i′  is the opposite direction of i , the tilde over F  is the 

after-collision, before-propagation distribution function. 

To achieve second order interpolation, the value of 3F  can be written as 

 
2( , 1) (1 ) ( , ) (1 4 ) ( , )

(1 2 ) ( , )
i j i j i j

i j

F r t q q F r t q F r t

q q F r t
′ ′

′′

+ = + + −

− −

� �

�  (2.45) 

Similarly, the linear and quadratic interpolation of 1/ 2q >  can be 

written as 

 1 2 1( , 1) ( , ) ( , )
2 2i j i j i j

qF r t F r t F r t
q q′ ′

−
+ = +� �  (2.46) 

 

1 2 1( , 1) ( , ) ( , )
(1 2 )

2 1 ( , )
2 1

i j i j i j

i j

qF r t F r t F r t
q q q

q F r t
q

′ ′

′′

−
+ = +

+
−

−
+

� �

�
 (2.47) 
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c. Filippova and Hänel (FH) scheme 

On the other hand, Filippova and Hänel proposed another linear 

interpolation method which take the distribution function at node sr  instead 

of jr ′  to the wall boundary condition treatment (Filippova & Hanel 1998).  

 *( , 1) (1 ) ( , ) ( , )i j i j i sF r t F r t F r tχ χ′ + = − +�  (2.48) 

where χ  is a interpolation weight, *
jF  is called as friction equilibrium 

distribution function. 

 * 2 2
2 4 2

3 9 3( , ) 1 ( ) ( )
2 2i s i i sf i s sF r t w c u c u u

c c c
ρ ⎡ ⎤= + ⋅ + ⋅ −⎢ ⎥⎣ ⎦

 (2.49) 

where su  is the velocity at the solid node sr , sfu  is a ‘correction’ 

velocity. More details of the derivation can be found in (Mei et al 1999). 

Filippova and Hänel chose the following values of χ  and sfu   

when 1/ 2q < : 

 (2 1),
1sf j

qu u ωχ
ω
−

= =
−

 (2.50) 

and 1/ 2q ≥  

 1 1 , (2 1)sf j s
qu u u q

q q
χ ω−

= + = −  (2.51) 

where 1ω
τ

= . 

To improve the numerical stability, Mei and Luo (Mei et al 1999) 

suggested the following values for χ  and sfu .  
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1 (2 1): ,
2 1 2
1 2 3 3 2 (2 1): ,
2 2 2 2

sf j

sf j s

qq u u

q qq u u u
q q

ωχ
ω

ωχ
ω

′
−

< = =
−

− −
≥ = + =

+

 (2.52) 

Kao and Yang’s recent work showed FH scheme is second order accurate 

(Kao & Yang 2008). 

 

2.6 Summary 

To overcome the intrinsic drawbacks of lattice gas cellular automata, the 

Maxwell-Boltzmann distribution functions of “virtual” particles and the linear 

BGK operator have been introduced by scientists in a lattice Boltzmann 

method (Chen et al 1991a; Higuera & Jimenez 1989; Mcnamara & Zanetti 

1988; Qian & et al. 1992). The macroscopic Navier-Stokes equations can be 

derived from the microscopic lattice Boltzmann method by applying 

Chapman-Enskog expansion (Chen & Doolen 1998; He & Luo 1997a), which 

also requires the isotropy of 2nd and 4th ranks of the lattice tensor. The weights 

of equilibrium distributions of a specific lattice model can be determined from 

the conservation of density and momentums (Koelman 1991b). The bounce 

back boundary condition originated from the LGCA, and was found to be 

second order accurate if the wall aligns at the middle of the interface of fluid 

and solid lattice (Pan et al 2006). The bounce back scheme was applied to the 

non-equilibrium part to introduce the pressure and velocity boundary 

conditions (Zou & He 1997). 
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# insert a section break Eq (2.0) Figure 2.0 Table 2 

3 Flow Simulation Validation 

In this chapter, simulations based on the lattice Boltzmann method of 

flow in two simple geometries are carried out: Poiseuille flow is simulated to 

investigate the accuracy of the lattice Boltzmann method in two dimensional 

flows; and flow though an infinite duct with rectangular shape is used to 

verify the code in three dimensional conditions. 

3.1 Poiseuille flow  

Let us consider a channel with a width in the y-direction of 2h . The 

pressure gradient along the x-direction is /dp dx− . The dynamic viscosity of 

fluid is μ . The mesh of Poiseuille flow is shown in Figure 3.1. 

 

Figure 3.1 the mesh of channel flow. The blue block indicates the solid 

wall, which is half way from the grid 

flow 
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Assuming that the flow is steady and impressible, we can write the 

governing equation as 

 
2

2

d u dp
dy dx

μ = −  (3.1) 

where u  is the x-component velocity. With the no-slip boundary 

condition, 

 
0 0

2 0
y u

y h u
= =
= =

 (3.2) 

The theoretical solution for this problem can be easily got by integrating 

Equation (3.1) as 

 21 (2 )
2

dpu hy y
dxμ

= − −  (3.3) 

and for Newtonian fluid, the shear stress is 

 

( )

0

0

xy

xx

yy

du dp h y
dy dx
du
dx
dv
dy

τ μ

τ μ

τ μ

= = −

= =

= =

 (3.4) 

 

3.1.1 Numerical simulation 

In the lattice Boltzmann method, the lattice length is usually considered 

as the base unit of length, and the physical quantities as length need to be 

converted to lattice unit prior to the simulation based on the preserve of 
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non-dimensional Reynolds number. If the domain of length L has N lattice 

units, the space unit can be simply defined as δx=L/N. For convenience, the 

unit lattice length is used in this thesis. To validate the lattice Boltzmann code, 

in current simulation, the half-height is set as 9 lattices, the length of the 

channel is 30 lattices, the driven pressure drop is 41 10 N−− ×  per unit lattice, 

the relaxation parameter ω  is set to 1.3, and the density of the “virtual” 

particles is 0.8 kg per cubic unit lattice. From these parameters, we can work 

out the Reynolds number as 

 
3

2 2.83
4

Uh dp hRe
dxν ρν

= = − =  (3.5) 

where 
2

4
dp hU
dx μ

= −  is the average velocity, which can be easily derived 

from the theoretical velocity Equation (3.3).  

Figure 3.2 (a) is a 3D color graph of velocity in the x direction, and (b) is 

the x-component velocity profile in a cross-section. The stream line in Figure 

3.3 shows that the flow is parallel to the channel wall, which is supported by 

the near-zero y-direction velocity distribution shown in Figure 3.4. The 

parabolic shape along the cross-section in Figure 3.2 (b) agrees to the 

theoretical profile very well and the L2-norm error is about 31 10−×  which 

will be defined later. However, the y-component velocity, although very small 

in magnitude, has a parabolic-like distribution as shown in Figure 3.4 

indicating that high order of distribution function series (i.e. (2) (3), ,i iF F ") 

may induce some minor errors to the velocity results. Nevertheless, the 
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maximum error is approximately 155 10−× unit lattice per second, which is 

negligibly small.  

 

(a) The x-component velocity contours. 

 

(b) The comparison with the LBM results and the theoretic result in a 

y-axis cross-section 

Figure 3.2 x-velocity of Poiseuille flow in a channel 
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Figure 3.3 the streamline of Poiseuille flow in a channel 

 

 

Figure 3.4 The y- velocity contours 

 

3.1.2 Error analysis 

In LBM calculation, 2L -norm error of velocity is introduced to indicate 

the convergence. The definition of the 2L -norm error is  
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1/2
2

1
2 1/2

2

1

( )
n

LBM exact
i

n

exact
i

E
φ φ

φ

=

=

⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
 (3.6) 

where 2E  is the 2L -norm error, LBMφ  is the result of LBM, which can 

be velocity or shear stress, exactφ  is the theoretical velocity and wall shear 

stress given in Equation (3.3) and (3.4). A summation is taken for all the fluid 

nodes. Figure 3.5 shows the 2L -norm errors of velocity and shear stress xyτ . 

We can find that the velocity converges after ~ 15,000 iterations and the shear 

stress after ~60,000 iterations. The residual of the velocity is approximately 

31 10−× , i.e. the difference between the simulation results and theoretic 

solution is less than 0.1%. Surprisingly, the residual of shear stress in this 

simulation reaches 1410− , almost the machine precision of the floating point 

number we used in the program, which is a much precise results compared to 

the velocity. From Equation 2.27, we know that the calculation of shear stress 

does not rely on the value of velocity, which allows the shear stress to have 

highly accurate results. This is indeed one of the advantages of the LBM and 

is not possible for conventional numerical methods. Besides, the shear stress 

is linear to y-coordinate, while the velocity profile has a parabolic profile, 

which will result in additional benefits to the accuracy of shear stress.  
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Figure 3.5 The L2 velocity and shear stress xyτ  errors against the 

calculating time step. 

  

The theoretic shear stress components ,xx yyτ τ  are zero, so the L2-norm 

error will be infinity. However, we can use the standard error as an indicator,  

 

1/2
2

1
( )

n

LBM
i

sE
n

φ
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 (3.7) 

The standard errors are shown in Figure 3.6. The error of x-directional 

normal component, xxτ , rises from around 710−  at the beginning of 

calculation, to 63.8 10−×  at 8000 time step and remains steady afterwards. 

The error of y-directional normal component yyτ , remains close to zero at ~

1710− . 
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Figure 3.6 The standard errors of shear stresses ,xx yyτ τ  against the 

calculating time step.  

 

3.2 Flow in a rectangular duct 

3.2.1 Theoretical consideration on duct flow 

Flow velocity in a straight, infinite duct with a constant shape is 

unidirectional and varies only with the y and z axis, as shown in Figure 3.7. 

The continuity and momentum equations for an incompressible flow are 

Continuity: 0u
x
∂

=
∂

 (3.8) 

Momentum: 
2 2

2 2 0dp u u
dx y z

μ
⎛ ⎞∂ ∂

− + + =⎜ ⎟∂ ∂⎝ ⎠
 (3.9) 
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Figure 3.7 The sketch of steady laminar flow in infinite duct with 

arbitrary but constant cross-section, the velocity in y and z direction is 

zero, and x-direction velocity is a function of y and z. 

 

For the fully developed flow in an arbitrary duct, the shear stress should 

balance with the net pressure difference,  

 w
s

dpds A
dx

τ = −∫v  (3.10) 

From the definition of mean shear stress, we have 

 1
w w

s

ds
S

τ τ= ∫v  (3.11) 

where S is the perimeter of section. 

The stress tensor for an incompressible Newtonian viscous fluid in 

Cartesian coordinate system is (White 1991) 

 ji
ij ij

j i

uup
x x

σ δ μ
⎛ ⎞∂∂

= − + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 (3.12) 

0
y
v =

 

0
z
w =

 ( , )
x
u u y z=  



 
Flow Simulation Validation 

62 

where p is the pressure, ijδ  is the Kronecker delta as recalled, which is 

unity if the subscript i and j are equal, and zero otherwise. μ  is the dynamic 

viscosity, and iu  is the component of velocity.  The stress tensor can be 

written more explicitly in matrix form as 

 

2

2

2

u v u w up
x x y x z

v u v w vp
x y y y z

w u w v wp
x z y z z

μ μ μ

σ μ μ μ

μ μ μ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞− + + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎢ ⎥+ + − +⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.13) 

where the notation ‘=’ over σ  indicates it is a tensor, and ( ), ,u v w  are 

the velocity components in x, y and z axis, respectively. 

For the full developed laminar flow in an infinite duct of arbitrary 

constant cross-section, the velocity is purely axial and depends only on the y 

and z direction, i.e. 0 and ( , )v w u u y z= = = , the shear stress tensor is 

simplified as  

 0

0

u up
y z

u p
y
u p
z

μ μ

σ μ

μ

∂ ∂⎡ ⎤−⎢ ⎥∂ ∂⎢ ⎥
∂⎢ ⎥= −⎢ ⎥∂⎢ ⎥
∂⎢ ⎥−⎢ ⎥∂⎣ ⎦

 (3.14) 

The normal vector nG  at point 0 0 0( , , )x y z  on the cross-section 

( , ) 0f y z =  is given by 
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( )

0 0 00 0 0

0 0 00 0 0

( , , )( , , )

2 2

( , , )( , , )

0, ,

0, cos , sin

x y zx y z

x y zx y z

f f
y z

n
f f
y z

θ θ

⎛ ⎞∂ ∂⎜ ⎟
⎜ ⎟∂ ∂⎝ ⎠=
⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

≡

G
 (3.15) 

where θ  is the angle between normal vector and y axis. 

From Cauchy’s stress theorem (Irgens 2008), The shear stress at a 

specific point ( )0 0 0, ,x y z  is 

 

0 0 0( , , )

cos sin

cos
sin

x y z

u u
y z

n p
p

μ θ μ θ

σ σ θ
θ

∂ ∂⎛ ⎞+⎜ ⎟∂ ∂⎜ ⎟
= ⋅ = −⎜ ⎟

⎜ ⎟−⎜ ⎟⎜ ⎟
⎝ ⎠

G G  (3.16) 

The tangent shear stress, generally called wall shear stress, which is one 

component of τG , can be obtained as 

 

0 0 0( , , )

cos sin

( ) 0
0

x y z

u u
y z

n n

μ θ μ θ

τ σ σ

∂ ∂⎛ ⎞+⎜ ⎟∂ ∂⎜ ⎟
= − ⋅ = ⎜ ⎟

⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

G G G G G  (3.17) 

We have got the theoretic wall shear stress expression for the infinite 

duct with constant shape. Not surprisingly, the wall shear stress in y and z 

direction is zero, and the pressure p has no contribution to it.  

From the derivation in Chapter 2, we know that the shear stress in lattice 

Boltzmann method can be expressed by a distribution function as 

 ( )
18

0

11
2

eq
ij ij i jp c c F Fα α α α

α

σ δ
τ =

⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

∑  (3.18) 

if D3Q19 model is applied. 
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Now, let's consider a straight, rectangular duct with width 2a  and 

height 2b , as shown in Figure 3.8. The centre of the coordinate system is 

located at the centre of the channel of the entrance plane. The velocity profile 

of Stokes flow in the rectangle duct can be achieved by solving Equations (3.8) 

and (3.9) with boundary conditions  

 ( , ) ( , ) 0u a z u y b± = ± =  (3.19) 

The solution can be expressed as (White 1991) 

 

2

3 3
0

16 ( 1) cosh[(2 1) / 2 ]( , ) 1
(2 1) cosh[(2 1) / 2 ]

cos[(2 1) / 2 ]

n

n

a dp n z au y z
dx n n b a

n y a

π
μπ π

π

∞

=

⎛ ⎞− +⎛ ⎞= − −⎜ ⎟⎜ ⎟ + +⎝ ⎠ ⎝ ⎠
× +

∑  (3.20) 

and the y- and z- velocities are zero.  

 

Figure 3.8 The cross-section of a rectangular duct. 

 

From Equation (3.17), u
y
∂
∂

 and u
z
∂
∂

 are required to work out the shear 

stress, which can be manipulated from Equation (3.20) as 

2a  

2b  y  

z
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1

2 2
0

8 ( 1) cosh[(2 1) / 2 ]1
(2 1) cosh[(2 1) / 2 ]

sin[(2 1) / 2 ]

n

n

u a dp n z a
y dx n n b a

n y a

π
μπ π

π

+∞

=

⎛ ⎞∂ − +⎛ ⎞= − −⎜ ⎟⎜ ⎟∂ + +⎝ ⎠ ⎝ ⎠
× +

∑  (3.21) 

and 

 

1

2 2
0

8 ( 1) sinh[(2 1) / 2 ]
(2 1) cosh[(2 1) / 2 ]

cos[(2 1) / 2 ]

n

n

u a dp n z a
z dx n n b a

n y a

π
μπ π

π

+∞

=

⎛ ⎞∂ − +⎛ ⎞= − ⎜ ⎟⎜ ⎟∂ + +⎝ ⎠ ⎝ ⎠
× +

∑  (3.22) 

Since the pressure does not contribute to the tangent wall shear stress 

which we are interested in (see Equation (3.17) for details), we will 

investigate the stress tensor without the pressure, which can be calculated 

totally from the distribution function. So these 6 components for the 

rectangular flow are 

 

2 0, 2 0

2 0,

0

xx yy

zz xy

yz zx

u v
x y

w v u u
z x y y

w v w u u
y z x z z

τ μ τ μ

τ μ τ μ μ

τ μ τ μ μ

∂ ∂
= = = =

∂ ∂

⎛ ⎞∂ ∂ ∂ ∂
= = = + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= + = = + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

 (3.23) 

 

3.2.2 Numerical simulation by the lattice Boltzmann 

method 

In the lattice Boltzmann simulation, the width and height of the fluid 

domain are set equally at 30 lattice units, and the length of the duct at 5 lattice 

units. The pressure drop per unit lattice is 51 10 N−− × , the relaxation 

parameter ω  is set at 1.2 and the density of the “virtual” particles is 1 kg per 

cubic unit lattice. From these parameters, we can work out the kinetic 
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viscosity of the experimental fluid is 

 1 1 1 1( )
3 2 9

ν
ω

= − =  (3.24) 

and the Reynolds number is  

 1.61UhRe
ν

= =  (3.25) 

Bounce back condition is implemented at the wall boundary. A constant 

pressure difference /dp dx  condition is applied in the x direction. For sake 

of simplicity, the velocity is set as zero and the density is set to be uniform for 

the whole flow region in the initial condition treatment. The calculation will 

converge quicker for a better guess of velocity (Skordos 1993). As shown in 

Figure 3.9, we can see that after 3400 time steps of simulation, convergence is 

achieved with the largest L2-norm error is less than 61 10−× . The overall 

calculation takes about 30 seconds in an Intel Pentium D CPU 3.4GHz with 

3GB memory computer. The error of x-velocity drops from 310−  to less than 

61 10−× . The errors of y-velocity and z-velocity, follow the same trend and 

drop at the same rate due to the identical geometry setting. 
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Figure 3.9 The L2-norm error of x-, y- and z-direction of velocity. 

  

 

Figure 3.10 The x-velocity contours in the cross-section x=3 
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Figure 3.11 The y-velocity contours in a cross-section x=3 
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Figure 3.12 The z-velocity contours in a cross-section x=3 

 

Figure 3.13 The contours of x-velocity error between lattice Boltzmann 

results and analytic solution 

Figure 3.10 ~ Figure 3.12 are the contours of the x-, y- & z- velocities. 

The x-velocity near the center is alike to the cylindrical pipe flow, where the 

boundary effect is weak. The y- & z- velocities have got anti-symmetric 

distributions along the midline z = 15 and y = 15 respectively, while the 

analytic solution is zero at the whole region. The overall standard errors for 

y-velocity and z-velocity are both 94.1 10−× , which is negligibly small. The 

contours of x-velocity error ( )theory LBM
x xV V−  are depicted in Figure 3.13, 

where the maximum error occurs near the middle of the boundary walls at 

69 10−×  unit lattice per second, which is approximately 1% of the analytic 

results there. In the center, the difference between the LBM result and analytic 

one is ~ 67.8 10−×  unit lattice per second, which represents a relative error of 

Y

Z

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Verror

9E-06
8E-06
7E-06
6E-06
5E-06
4E-06
3E-06
2E-06
1E-06



 
Flow Simulation Validation 

70 

~ 0.13% . The L2-norm error for the x-velocity is 32.5 10−× , which 

demonstrates exceptionally satisfactory accuracy of the lattice Boltzmann 

method. 

 

(a) The shear stress component xxτ     (b) The shear stress component 

yyτ  
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(c) The shear stress component zzτ     (d) The shear stress component 

yzτ  

 

(e) The shear stress component xyτ     (f) The shear stress component 
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Figure 3.14 Contours of the 6 components of the shear stress in the 

cross-section x = 3. 

 

Figure 3.14 (a) – (f) present contours of the 6 components of the shear 

stress. From Equation (3.23), we know 4 of them should be zero, and the 

residual of which is of the order 810−  in the lattice Boltzmann results. The 

contour pattern of xxτ  is very similar to the x-velocity, and the maximum 

value of is 86 10−× , with the standard error of 86.65 10−× . The contours of 

yyτ  and zzτ  are the same if they change the coordinates, with the same value 

of 96.2 10−×  at the center, 1/10 of the maximum of xxτ . The standard errors 

are both 82.18 10−× . yzτ  is anti-symmetric for the midlines y = 15 and z = 15, 

and the maximum of which is 81.18 10−× , with the standard error of 

81.70 10−× .  

The non-zero components xyτ  and zxτ  are very similar, so only xyτ  is 

used to compare with the analytic solution in Equation (3.21). As depicted in 

Figure 3.15, the lattice Boltzmann results and analytic ones have very good 

agreement in the majority part of the rectangular colored by green, where the 

difference is smaller than 85 10−× . At the four corners, the error raises to 

62 10−×  mainly caused by the linear interpolation there. 
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Figure 3.15 The contours of differences of xyτ between lattice Boltzmann 

results and analytic solution based on Equation (3.21) 

 

3.2.3 Effects of the lattice density 

We have performed a mesh-independent study to check the accuracy of 

lattice Boltzmann method. In all cases, the aspect ratio /b aκ =  is 1, the 

length of channel is 5 lattice units with periodic boundary condition applied. 

The pressure gradient per unit lattice is 51 10−− × . A number of different mesh 

densities (lengthൈwidthൈheight) are examined in the computational domain, 

i.e 5 5 5× × , 5 10 10× × , 5 15 15× × , 5 20 20× × , 5 30 30× × , 5 40 40× ×  and 

5 50 50× ×  respectively. By compared to the analytic velocity profiles, we can 

find the relative errors with different lattice densities. As shown in Figure 3.16, 

the error drops from 3.7% at 5 lattice units to 0.14% at 30 lattice units, and 

remains almost the same as the unit number increases further. Even at 10 

lattice units, the error is less than 1%, which can be considered as satisfactory 
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in most calculations.  

 

Figure 3.16 The relative errors with different number of lattice densities 

in simulations. 

 

3.3 Summary 

In this chapter, we have conducted a 2D Poiseuille flow between two 

infinite planar planes and in a 3D rectangular duct to verify our lattice 

Boltzmann program. For the 2D Poiseuille flow, the length of channel is set as 

30, and the width at 20. Driven by a steady pressure gradient, the parabolic 

velocity profile simulated matches the analytic results very well, and the L2 

norm of the x-velocity is less than 31 10−× . The shear stress xyτ , on the other 

hand, reaches 141 10−×  after ~60,000 iterations, which is many orders of 

magnitude smaller than the error in the velocity, but takes 4-fold increase in 

time to reach convergence. Standard errors are used to study the error in cases 
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with zero analytic results. The standard errors of xxτ and yyτ  are 63.8 10−×  

and 1710−  respectively. This simulation not only validates our LBM program, 

but also provides an example that the lattice Boltzmann method makes 

possible much higher accuracy in shear stress calculation.  

A cubiod with 30 lattice units in both height and width is used for the 3D 

flow simulation. To speed up the calculation, only 5 lattice units are used 

along the flow direction with periodic boundary condition to mimic the 

infinite duct flow. The x-velocity by lattice Boltzmann method shows very 

good agreement to the analytical results, with a relative error of 0.13% at the 

center. The error of shear stress xyτ  in most part is less than 85 10−× , and the 

error raises at the four corners due to the linear interpolation. The accuracy of 

current shear stress calculation can be improved further by applying high 

order interpolation. The standard errors of y- and z-velocities are 94.1 10−× , 

with the same order of the zero shear stress components: , ,xx yy zzτ τ τ  and 

yzτ .  

A mesh-independent study has been performed to check the accuracy of 

lattice Boltzmann method. Even with only 10 lattice units, the error is as low 

as below 1%. The results can be considered to be very good in most 

engineering numerical calculations. As the lattice density increases, the 

relative error decreases further, but no apparent improvement can be seen 

when the lattice unit number is above 30.  

Again, for flow in a duct, we have also seen that the lattice Boltzmann 
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method provides accurate results. The fact that highly accurate shear stress 

can be calculated independently of the velocity makes it a highly desirable 

method to study flow in porous scaffolds.  
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# insert a section break Eq (3.0) Figure 3.0 Table 3 

4 2D simulation of flow in porous 
scaffolds using the lattice Boltzmann 
method 

4.1 Flow around an array of solid square 

cylinders 

We start with creeping flow through an array of square cylinders in this 

chapter. As shown in Figure 4.1, the square cylinders align in a rectangular 

with 3 squares in a column and 4 squares in a row. The dimension of each 

square is 8 8×  lattice units. The computation domain is the rectangle with a 

length of 64 lattice units, and a width of 48 lattice units. Periodic condition 

both in the x and y direction are applied. The flow around these square 

cylinders is driven by a pressure gradient in the x-direction, with 

5/ 10dp dx N−= − . The Reynolds number is around 1.  

Based on the average velocity (flow rate at the outlet divided by the 

width) as shown in Figure 4.2, the simulation is found to converge in less than 

5000 time steps, which is much quicker than that in the simulation of 

Poiseuille flow in Chapter 3. One possible reason for this is that the amount of 

convergent time step is dependent on the difference between distribution 

function iF  and the equilibrium distribution function eq
iF  (i.e. eq

i iF F− ). 
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The closer the two values, the faster the calculation will converge. Low 

velocity used in the simulation using the lattice Boltzmann method is clearly 

beneficial for flow simulation in porous media. 

 

 

Figure 4.1 A sketch of the flow domain with an array of square cylinders. 

 

 

Figure 4.2 The average velocity against time steps to show the 

convergence of LBM calculation. 
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The streamlines in Figure 4.3 show that the flow is mainly through the 

channels between two rows of square blocks. The vector contour in Figure 4.4 

implies the effects of blocks to form a sub-channel Poiseuille flow between 

the two neighbour rows. From the vectors along the outlet, we can see that the 

velocity behind the block is very low, and the velocity profile in the 

sub-channel is parabolic-like. This hypothesis can be supported by the 

velocity distribution at the cross-section 24x =  in Figure 4.6.  When the 

pressure gradient changes, as shown in Figure 4.5, the average velocity 

changes linearly forming a straight line passing through the origin point. This 

agrees to results predicted by the Darcy’s law. In addition, from the slope we 

can get the permeability of this porous structure. To verify the LBM program, 

Fluent is used to simulate flow in the same structure under identical conditions, 

except that more dense meshes (double density) are used in Fluent to ensure 

accurate result. Figure 4.6 shows the velocity comparison between results by 

Fluent and LBM at two cross-sections, 16x = , which lies in the middle of the 

fluid region between two column blocks, and 24x = , which lies in the middle 

of a column squares. Good agreement is seen in the results. 
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Figure 4.3 The streamline of flow around an array of square cylinders in 

LBM simulation. 
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Figure 4.4 The velocity vectors of flow around an array of square 

cylinders in LBM simulation. 
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Figure 4.5 The average velocity against the pressure gradient. 

 

 

Figure 4.6 Comparison in the velocity calculated using Fluent (curves) 

and LBM (solid circles) at the x = 16 (blue) and x = 24 (red) cross-sections 

respectively. . 
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4.2 Flow simulation in a more realistic porous 

structure 

Micro-CT uses x-ray to get the structural information at fine 

cross-sections of a 3D-object, with the pixel size of the image at micrometer 

resolution. In this project, the porous scaffold used in cell engineering is a 

porous disk with a diameter of 30mm. A slice image of the disc taken by the 

micro-CT is shown in Figure 4.7. The black color is void and the white is for 

the solid frame. The size of this image is 650 650× pixels. For the sake of 

simplicity, we assume 1 pixel represents 0.05mm (since the diameter of the 

disc is 30mm and the image covers slightly larger area than the disc). Since 

the real geometry is a disk, voids exist at four corners. A rectangular part of 

the image is chosen, outlined in red box in Figure 4.7 and given in Figure 4.8. 

The resolution of the rectangular region is 552 422× pixels, represented the 

physical dimensions of 27.6 21.1mm mm× .  
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scaffold can be significantly reduced in a 2D slice. In order to simulate flow in 

a complex 2D structure that is based on a 2D image of a real scaffold material, 

the image above is edited to create more connections. The structure is then put 

in a channel, as shown in Figure 4.9, where flow from the left to the right is 

simulated using the lattice Boltzmann method. The whole flow region is 

meshed by 1000 422×  lattice units, too dense to clarify a single grid. A 

22 22×  part has been magnified to show the details of the mesh.  

 

Figure 4.9 The mesh for flow in a more realistic 2D porous scaffold. The 

resolution for the calculation is 1000 422×  lattice units. A closer look of 

a 22 22×  section is provided as an insert to show details of the lattice 

mesh.  

 

In the simulation, Zou & He velocity inlet boundary condition is applied 

at the entrance, and the inlet velocity is set to 0.001 /m s . The pressure outlet 
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boundary condition is applied at the right side of the channel exit (Zou & He 

1997). Following the Poiseuille flow, the L2-norm error is used to indicate the 

convergence of the calculation. Slightly different from our previous study, we 

calculate the L2-norm every successive 500 time steps (see Equation (4.1) for 

comparison), in order to consider the effect of complex geometry and the slow 

convergence of shear stress. 
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∑
 (4.1) 

where φ  represents the value of , xuρ  or yu . 500 ,t tφ φ+  are the 

values at time step t+500, or t, respectively. Though the geometry is rather 

complex, and the computation domain is more than 700 times larger than that 

for the Poiseuille flow, The L2-norm residual is less than 610−  after 15000 

iterations, the same as the Poiseuille flow we discussed in Chapter 3. After 

36000 iterations, The L2-norm of y-velocity is below 710−  and treated to be 

convergent. 
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Figure 4.10 The L2-norm of mass and velocity in the calculation 

 

Figure 4.11 (a) and (b) are the x- and y- velocity contours for the flow 

respectively. It can be seen that the flow forms patterns to pass through easy 

connections with low energy cost (i.e. pressure drop). Along that flow path, 

the narrower the channel, the higher the velocity value is. There exist two 

major channels (A-B-C-G and E-D-C-G) in the porous structure, the 

maximum value of the x- velocity lies at point A. For the y-velocity, after pass 

through the narrow channel A, the fluid moves upwards to B & then to C, this 

induces an increase in the y- velocity in channels B and C. In the mean time, 

negative y-velocity occurs in channels D and F as the fluid flows downwards. 

Figure 4.11 (c) gives the pressure contour in the flow domain. Due to the 

creeping nature of the flow, pressure change is very small in the flow domain. 

Pressure drops occur mainly in the narrow channels where the resistance to 
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flow is high.  

 

(a) x-axis velocity contours 

 

(b) y-axis velocity contours 

 

(c) The contours of pressure 
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Figure 4.11 2D flow and pressure simulation by LBM in a more realistic 

porous scaffold. 

 

Streamlines are presented in Figure 4.12, which give details on the exact 

flow path from any given point in the domain. The density of streamlines, in 

addition, can be used as an indicator to the velocity magnitude. It can be seen 

clearly that the connection A-B-C-G is the main channel for fluid movement. 

The shear stress contour is presented in Figure 4.13. As mentioned earlier, the 

shear stress calculation in LBM does not depend on the velocity and has the 

same 2nd order accuracy. Regions with large value of shear stress exist in the 

narrow areas along the main connection channels, including points A - G as 

indicated in the figure. 

 

 

Figure 4.12 Streamline ditribution in the porous scaffold by LBM   
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Figure 4.13 Contours of the shear stress component xyτ distribution in the 

porous scaffold by LBM  

 

To examine the accuracy of the lattice Boltzmann method for flow in the 

more complex porous material, we have also simulated the flow in above 

geometry using Fluent. 2 cross-sections, denoted by light brown and dark 

brown planes respectively in Figure 4.14, have been picked up to compare the 

results.  

Results by the lattice Boltzmann method and by Fluent at y = 10mm (i.e. 

the central line along the x-axis) is given in Figure 4.15. The x- velocity and 

y-velocity are compared in Figure 4.15 (a) and (b), and show very good 

agreement. The x-velocity is 0.001 m/s at x = 0 due to the velocity boundary 

condition at the entrance; at the exit, the value is great than 0.001 m/s, 

indicating that more flow occurs near the centre of the scaffold than near the 

wall boundary. 2 peak values of approximately 0.003m/s are seen at x = 19 

mm and x = 26 mm, where the narrow channels meet. The negative velocity at 
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x = 35mm is caused by the local channel structure near point F. The y-velocity 

is zero at the entrance and the exit due to the fixed boundary conditions. The 

velocity profiles indicate satisfactory agreement between results by LBM and 

Fluent. For velocity profile in the x = 25 mm section, shown in Figure 4.16 (a) 

& (b), similar conclusion can be made. 

For the shear stress distribution, as shown in Figure 4.15 (c) and Figure 

4.16 (c), there are good agreements in results by LBM and Fluent, but the 

magnitude of peak values of the shear stress is smaller as calculated by the 

lattice Boltzmann method than that by Fluent. We are confident that our LBM 

program is capable of calculate the shear stress in a complex porous structure 

at second order accuracy and more importantly, doing so independently of the 

velocity.  

 

 

Figure 4.14 The cross-sections used to compare results by LBM and by 

Fluent results (light brown: y=10mm; dark brown: x=25mm.)   
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(a) The x-component velocity 

 

(b) The y-component velocity 
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(c) The magnitude of shear stress 

Figure 4.15 Velocity and shear stress profiles at y = 10 mm section, i.e. the 

central line along the x-axis. The red solid line is result by LBM and the 

black dashed line is that by Fluent. 
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(a) The x-component velocity 

 

(b) The y-component velocity 

 

(c) The magnitude of shear stress 
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Figure 4.16 Velocity and shear stress profiles at x = 25 mm section, i.e. the 

central line along y-axis. The red solid line is result by LBM and the black 

dashed line is that by Fluent. 

  

4.3 Summary 

In this chapter, two 2D flow simulations have been studied using the 

lattice Boltzmann method: the creeping flow around an array of square 

cylinder and a porous scaffold originated from a micro-CT image. It takes less 

than 5000 iterations to reach the convergence for the first geometry. For the 

latter geometry, the maximum residual for mass and velocities is less than 

610−  after 15000 iterations, and is as low as 710− after 36000 iterations. This 

represents a similar iteration steps as in Poiseuille flow discussed in Chapter 3, 

although the geometry is much more complex and the computation domain is 

approximately 700 times larger. These results show that the convergence of 

the lattice Boltzmann method is irrelevant to the complexity of geometry and 

the mesh size, which make it a powerful tool to simulate of flow in complex 

geometries, such as a porous scaffold. 

For the creeping flow around an array of square cylinders, velocity 

profiles by Fluent and the lattice Boltzmann method show very good 

agreement. For the complex porous geometry, originated from micro-CT 

images, the lattice Boltzmann simulation provides very similar results in 

velocity to those by Fluent. The magnitude of the peak shear stress by the 
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lattice Boltzmann method is smaller than that by Fluent. The error may be 

caused by, in our view, the calculation of velocity gradients in Fluent, or the 

interpolation process in the lattice Boltzmann method. The underestimate of 

shear stress by LBM was also reported by using a finite difference formula to 

calculate the wall shear stress from the velocity (Porter et al 2005).  

Results from this chapter set the foundation to mimic the proliferation of 

cells seeded in the porous scaffold, when a relation between cell growth and 

local shear stress is known (or assumed), as well as for simulation of flow in 

3D porous scaffolds in the following two chapters.  
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# insert a section break (4.0) Figure 4.0 Table 4.0 equ 

5 2D simulation of cell proliferation in 
scaffolds 

5.1 Introduction 

The process of cell proliferation, called cell cycle, has four major phases 

(Smith & Martin 1973). G1 phase is marked by synthesis of various enzymes 

that are required for DNA replication. The cell then enters the S phase, where 

DNA replication occurs. The G2 phase is the gap between DNA replication 

and division, the cell continue to grow, and significant proteins are produced, 

which are required during the process of mitosis. The fourth phase is M phase, 

where a cell separates the duplicated chromosomes into two identical daughter 

cells.  

There are a small number of preliminary studies on the relationship 

between the fluid simulation and cell proliferation using coarse porous 

samples (Bancroft et al 2002; Cartmell et al 2003). Experimental results show 

that with the increase of shear stress,  cell proliferation rate will be enhanced 

at low values, but after a certain critical value, cell proliferation will be 

inhibited.. Based on these findings, a simplified hypothetical Gaussian 

relationship between the cell proliferation rate and the shear stress is proposed 

in the current study. Details on the model will be discussed in the next section. 
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Cell growth alters the geometry of the scaffold. This effect is particularly 

significant in regions where the dimension of the cell is compatible to the 

width of the micro-channel in the porous material. Therefore, it creates 

another dimension of complexity in numerical simulation. In conventional 

methods, the altered geometry of the solid boundary will require re-meshing 

of the flow domain, which can be computing intensive. The lattice Boltzmann 

method, on the other hand, generates the mesh of the solid structure and the 

fluid domain together. As cell grows and the solid boundary evolves, one only 

needs to change the label of node from fluid to solid accordingly in regions 

with new cells. Therefore the lattice Boltzmann method is intrinsically much 

more efficient in solving the coupled problem.  

In this chapter, a pilot study on the interaction between flow and cell 

proliferation is carried out based on a shear stress dependent cell proliferation 

model. The lattice Boltzmann method is used to calculate the flow field and 

shear stress distribution following every stage of cell division, which itself is 

dependent on, among other factors, the local shear stress. It needs to be 

emphasized that the purpose of the pilot study is to demonstrate the capacity 

of our method using LBM in studying flow-structure interaction with an 

active boundary, rather than to confirm or to mimic cell proliferation process 

in scaffolds. The Gaussian function of cell proliferation rate with the shear 

stress, although supported qualitatively by available experimental 

observations, can only be regarded as a crude assumption. 
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5.2 Cell proliferation model 

In our model, cell proliferation is affected by 3 factors: the cell cycle 

time, contact inhibition and wall shear stress factor.  

The cell cycle time is assumed as a constant cT , which means the new 

born cell will grow and divide into two cells after a period of cT . The typical 

cell cycle time is around 12~24 hours, which may vary between different cells 

and under different stimuli (Olariu et al 2007). At each time step, the state of 

all the cells will increase by / ct TΔ  as 

 ( ) ( ) tp t t p t
T
Δ

+ Δ = +  (5.1) 

where ( )p t  is the cell state function, where ( ) 0p t =  denotes a new born 

cell, and the cell will divide into two if ( ) 1p t ≥ , tΔ  is the time interval. As 

an example to illustrate Equation (5.1)., let’s consider a cell with a cell cycle 

24cT h=  and the time interval 4t hΔ = . At its birth, t = 0 and the cell state 

function (0) 0p = . Assuming there is no other factors affecting the cell 

growth, the cell state function increases 1/ 6  at each step and the cell will 

divide into 2 cells after 6 time steps, when 

 (6 ) 6 1
c

tp t
T
Δ

Δ = × =  (5.2) 

When neighboring cells touch each other and there is no room for cell 

division, the cell proliferation stops. This phenomenon, known as ‘contact 

inhibition’, has been observed both on flat plates (Folkman & Moscona 1978; 
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Takahashi & Suzuki 1996) and in 3D porous scaffolds (Risbud et al 2002; 

Shigematsu et al 1999). This effect can be built easily into our model by a 

conditional check, 

 
0,

( )
( ) ,

if contact inhibition occurs
p t t

p t p if not
⎧

+ Δ = ⎨ + Δ⎩
 (5.3) 

where pΔ  is the change of cell state by the cell cycle or wall shear stress. 

Most cells sense and respond to mechanical stimuli, including pressure 

and shear stresses. In the bone, for example, cells react to mechanical 

stimulation induced by the interstitial fluid movement (Fritton & Weinbaum 

2009). The cell proliferation will be enhanced by the increase of the flow 

induced shear stress compared to the static control sample (Bancroft et al 

2002). However, further increases in the shear stress will inhibit the 

proliferation and cause the cell to be detached and washed away from the 

substance (Alvarez-Barreto et al 2007; Cartmell et al 2003). The recommend 

shear stress has been suggested to be 0.8-3 Pa  in the lacunar-canalicular 

system (Maes et al 2009; Stolberg & McCloskey 2009). To model this effect, 

which we call it ‘shear stress dependent cell proliferation rate’, we assumed a 

Gaussian function as shown in Figure 5.1.  
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Figure 5.1 The Gaussian function of cell proliferation with fluid shear 

stress. 

 

In the above model, at zero shear stress, there is no shear-enhanced effect. 

At low magnitude of the shear stress, e.g. 0.0 < τ < 2.0 Pa, cell proliferation is 

sped up when cells are subjected to a shear stress, with the maximum effect at 

τ = 1.0 Pa. Further increase in shear stress from 2 Pa results in cell 

proliferation being inhibited,  

 
( )2 2

0 0
2 2

1 1exp exp
2 22 2

τ τ τθ
σ σσ π σ π

⎛ ⎞− ⎛ ⎞
⎜ ⎟= − − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (5.4) 

where θ  is the value of ‘shear stress dependant cell growth rate’, σ  is the 

standard deviation, 0τ  is the expected value, τ  is the local shear stress. It 

can be easily found that when the shear stress equal to 0τ , the θ  reaches its 

maximum value. 
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In our model, N  cells are randomly cultured in the porous scaffold at 

0t =  with randomly given values of , 1, ,ip i N= " . Each cell will occupy a 

rectangular space with a lattice unit xδ , as depicted in Figure 5.2.  

 

Figure 5.2 An illustration of cells randomly seeded in a porous structure. 

 

At each time step nt t= , shear stress will be calculated by the lattice 

Boltzmann method as the fluid domain may have changed. Then, the influence 

of shear stress will be calculated by Equation (5.4) and added to cell state 

function, a parameter that records the percentage of the cell cycle that has 

elapsed since last cell division. The overall change of cell state function 

together with cell cycle effect can be written as 

 ( ) ( ) , 1, ,n n
i i i

c

tp t p t t i N
T

θ Δ
= −Δ + + = "  (5.5) 

where nt t− Δ  denotes the previous time step. 

Before the implement of cell division, the condition check will be applied 
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for the contact inhibition effect. If the cell state function of a cell reaches 1 or 

above, the cell divides and the state function of the two daughter cells is set to 

0. One of the daughter cells will stay in the original lattice, and the other one 

will occupy one of the available lattices, randomly, of the 8 neighbouring 

lattices.  

 
1

( ) 0 cell stays in the old position 
( ) 0 the new born cell in the neighbor

n
i

n
N

p t
p t+

⎧ =
⎨

=⎩
 (5.6) 

where the subscript N+1 denotes the increase of cell amount.  

 

5.3 Results and discussion 

Two different cases have been investigated, as examples, in this study. In 

the first case, the effect of wall shear stress dominates the cell proliferation, 

which can be seen as a simplified model in which the supply of the nutrition is 

very limited, so that only regions with high velocity/shear stress have enough 

supply for cell growth and division. 

In the initial step, 50 cells are randomly cultured in a porous scaffold. We 

record the development of cells in the scaffold and present results when the 

total cell number increases to 100, 150 …and to 300 in Figure 5.3. It can be 

seen in the Figure 5.2 that the small gap near the bottom wall is very narrow 

and becomes blocked by the new cells. As a result, cell growth becomes very 

slow there. In contrast, the channel near the top wall is the main stream for 

fluid movement with relatively high shear stresses. Cell proliferation is 
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significantly enhanced, e.g. Figure 5.2 (a) – (d), until the channel is blocked 

totally in Figure 5.2 (e). Following that, as shown in Figure 5.2 (f), the 

channel in the middle becomes the main stream for fluid movement, and cell 

proliferation is significantly enhanced there.  

 

 

(a) Cell number N=50            (b) Cell number N=100 

 

 

(c) Cell number N=150            (d) Cell number N=200 
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(e) Cell number N=250            (f) Cell number N=300 

Figure 5.3 Cell proliferation in a porous scaffold, where the effect of wall 

shear stress is predominant. White is the fluid, black is the solid, and blue 

is the cell, green in (a) is the original 50 mother cells 

 

In the second case, we assume that the effect of wall shear stress on cell 

proliferation rate is negligibly small. In the initial step, 50 cells are randomly 

seeded into the same porous scaffold as in the earlier case. We show the state 

of cell distribution following every cell cycle in Figure 5.4. At the end of the 

first cell cycle, as shown in Figure 5.4 (b), the number of cells is doubled. The 

same doubling process happens again at the end of the second cell cycle, as 

shown in Figure 5.4 (c). By now the cell density in certain regions becomes 

dense. At the end of the third cell cycle, only 167 new cells have the extra 

room to grow, and 33 cells are inhibited from dividing into two daughter cells 

due to the ‘contact inhibition’ condition. During the fourth cell cycle time, 229 

cells divide, which is only 62.4% of the total number of mature cells. As cell 

cycle carried on, there are only 37.8% cells divide during the fifth cell cycle. 
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Cell growth occupies available spaces in a few cell cycles and the cell 

proliferation rate decreases very quickly as more and more cells are prohibited 

from division. 

 

 

(a) initial state, cell number        (b) by the end of the 1st cell cycle 

N=50             N=100 

 

(c) by the end of the 2nd cell cycle     (d) by the end of the 3rd cell cycle 

N=200        N=367 
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(e) by the end of the 4th cell cycle      (f) by the end of the 5th cell cycle 

N=596         N=821 

Figure 5.4 Cell proliferation in a porous scaffold at different time points. 

In the figure, effects of wall shear stress on cell growth are assumed to be 

negligible.  
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# insert a section break (5.0) Figure 5.0 Table 5.0 equation  

6 Flow in a 3D porous scaffold material 

Most cells sense and respond to mechanical stimuli, including pressure 

and shear stresses. In the bone, for example, cells react to mechanical 

stimulation induced by the interstitial fluid movement (Fritton & Weinbaum 

2009). The flow induced shear stress has been suggested to be 0.8-3 Pa  in 

the lacunar-canalicular system (Maes et al 2009; Stolberg & McCloskey 

2009), while the growth of tissue cells was inhibited by the shear stress higher 

than 2.6 Pa (Alvarez-Barreto et al 2007).  

However, it is not a simple task to get the detail information on shear 

stress in a complex porous structure. Theoretical and experimental methods 

have been applied to estimate shear stress inside 3D porous scaffolds (Cioffi 

et al 2006; Wang & Tarbell 2000). By assuming that flow through the 

scaffolds with an idealized pore structure of varying tortuosity obeyed Darcy’s 

law, Botchwey et alet al estimated shear stresses within their microcarrier 

scaffolds with high aspect ratio rotation (Botchwey et al 2003). While this 

approach provides an order of magnitude estimate of the average shear stress, 

the distribution of shear stresses within complex 3D porous materials is yet to 

be determined. The lattice Boltzmann method may provide a useful tool in 

addressing this challenge. In this chapter, we will apply the lattice Boltzmann 

method to investigate flow in a 3D porous scaffold. 
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6.1 Imaging process 

Micro-CT has been successfully used to reconstruct the micro-structure 

of porous scaffolds (Cartmell et al 2004; Kuhn et al 1990; Unser et al 1995), 

which is an efficient tool to quantitatively measure the distribution of 

micro-structure. There are several general protocols to reconstruct 3D objects, 

mostly based on interpolation schemes (Tinku & Ping-Sing; Unser et al 1995). 

The resolution of images is 650 650×  pixels for a diameter of 30 mm porous 

disk. Recall that for the sake of simplicity, we assume 1 pixel represents 

0.05mm (since the diameter of the disc is 30mm and the image covers slightly 

larger area than the disc). Figure 6.1 is a grayscale micro-CT slice image of 

the porous disk. The dark color indicates the pore and the light color is the 

solid phase. The 3D porous disk shown in Figure 6.2 is reconstructed using a 

Matlab program developed inhouse which is based on the Parallel-beam CT 

reconstruction algorithm (Hu 1999). A close look of the scaffold can be found 

in Figure 6.3, where a small volume of the structure in the middle of the 

scaffold ( 128 128 128× ×  pixels, i.e. 6.4 6.4 6.4mm mm mm× × ) is shown 

following surface smoothing.  
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Figure 6.3 A representative volume of the structure in the middle of the 

3D scaffold with 128 128 128× ×  pixels, or 6.4 6.4 6.4mm mm mm× ×  in 

physic units.  

 

6.2 3D results based on LBM simulation 

In the last section, we have constructed the 3D porous scaffold. However, 

it is still beyond the capability of computers in most research groups to mimic 

flow through the whole porous disk (Maes et al 2009; Porter et al 2005). In 

our current study, a small volume in the middle of the scaffold is chosen to 

carry out flow simulation to demonstrate that our method based on LBM 
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works in 3D structures. A 64 64 64× × lattice units, which represents a volume 

of 3.2 3.2 3.2mm mm mm× ×  has been selected in the center of the porous disk 

in order to avoid the end effect in flow simulation. The driven pressure drop is 

51 10 Pa−− × , the relaxation parameter ω  is set at 1.2, and the density of the 

“virtual” particles is 1 kg per cubic unit lattice. From these parameters, we can 

work out the Reynolds number is  

 Re 0.58Uh
ν

= =  (6.1) 

Due to the asymmetric geometry, it is not appropriate to implement the 

symmetric or periodic boundary conditions. Instead, no-slip bounce back 

conditions are applied at the solid structure (Porter et al 2006). Flow in the 

void is driven by a constant pressure difference /dp dx . Fluid with a constant 

density is assumed initially. As shown in Figure 6.4, after 4600 time steps of 

calculation, numerical convergence is achieved with the largest L2-norm error 

being smaller than 61 10−× . The errors of x-, y- and z- velocities, drop at 

nearly equal rate from 210−  to less than 61 10−× . 
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Figure 6.4 The L2-norm error of x-, y- and z- velocity. 

 

The contours of velocity magnitude are shown in Figure 6.5 as an 

overview of the flow along the x-direction. The void in the center represents 

the solid phase. The high velocity is shown in red colour, which lies mainly in 

the left hand of the obstacle. 
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Figure 6.5 Contours of velocity magnitude at different cross-sections 

along the flow direction. 

 

 

XY

Z

V

0.0036
0.0034
0.0032
0.0030
0.0028
0.0026
0.0024
0.0022
0.0020
0.0018
0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002

Y

Z

0 10 20 30 40 50 60
0

10

20

30

40

50

60

V_x

0.0042
0.0037
0.0032
0.0027
0.0022
0.0017
0.0012
0.0007
0.0002



 
Flow in a 3D porous scaffold material 

114 

Figure 6.6 Contours of the x-velocity in the middle plane, x = 32. 

 

 

Figure 6.7 Contours of the y-velocity in the middle plane, x = 32. 
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Figure 6.8 Contours of the z-velocity in the middle plane, x = 32. 

 

 

Figure 6.9 Contours of the wall shear stress on the scaffold. 

 

Figure 6.6 to Figure 6.8 are the contours of the three velocity components 
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in the midplane x = 32. The maximum value of x-, y- and z- velocity is of the 

same order at ~0.0015 m/s. This indicates that the portion of the porous 

scaffold chosen for flow simulation is randomly structured with no preferred 

direction of distribution. The wall shear stress contour on the scaffold material 

is shown in Figure 6.9. Near the entrance, the surface of the solid is normal to 

the flow direction, and the wall shear stress is close to zero due to the static 

flow in that region. The shear stress reaches its maximum value of ~0.028 Pa 

in regions with rapid variation in velocity. 

 

Figure 6.10 The distribution of wall shear stress values in the porous 

scaffold. 

 

Figure 6.10 is the histogram of the distribution of wall shear stress. It is 

seen that in all regions of the scaffold, wall shear stress is low, i.e. below 0.03 

Pa. Nearly 50% of the scaffold surface is subjected to shear stress equal or 
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greater than 0.02 Pa. Less than 25% of the scaffold surface has shear stress 

values < 0.01 Pa. The shear stress distribution can help us to identify the range 

of the shear stress that seeded cells experience and, with information on cell 

locations within the scaffold, provides information on population of cells 

under different shear stress magnitude. Clearly, the distribution of the shear 

stress is not unique and is dependent on scaffold structure and flow conditions. 

 

6.3 Darcy’s law 

For flow with low Reynolds number, its governing equation can be 

simplified from the Navier-Stokes equations to the Stokes equation,  

 2u p u
t

μ∂
+∇ = ∇

∂

G G  (6.2) 

The linear equation dictates proportional change in the velocity with the 

pressure gradient increases, i.e. 

 2( ) ( ) ( )u p u
t
α α μ α∂

+ ∇ = ∇
∂

G G  (6.3) 

It is obvious that 

 p bu∇ =
G

 (6.4) 

where b is the ratio which depends on the structure of the porous media. 

Equation (6.4) still holds by replacing the velocity u with the average velocity 

U in a cross-section along x-axis.  

 dp U
dx K

μ
=  (6.5) 

where K is the permeability. This well-known linear relationship is first 
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reported by Henry Darcy in 1856, by conducting a number of experiments of 

water through beds of sand (Darcy 1856).  

When we investigate the relationship between the pressure drop and the 

average velocity, we achieved following results, shown in Table 6.1:  

Table 6.1 The average velocity under different pressure gradient in lattice 

unit. 

Pressure gradient (Pa) Average velocity (m/s) 
1.00E-07 1.03E-05 
2.50E-07 2.58E-05 
5.00E-07 5.16E-05 
1.00E-06 1.03E-04 
2.50E-06 2.59E-04 
5.00E-06 5.19E-04 
1.00E-05 1.04E-03 
2.00E-05 2.12E-03 
4.00E-05 4.38E-03 

 

Figure 6.11 The average velocity against the pressure gradient. 
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By fitting the average velocity as a linear function of pressure gradient, 

we have got the slope of this fitting as 109.1, the point at which this line 

intersects the average velocity is 51.66 10−− × m/s, the correlation coefficient 

of these two columns is 0.9998, as depicted in Figure 6.11. We can easily 

calculate the permeability of the scaffold using Darcy’s law as  

 
2

3 2 7 2

( )
(0.05 10 ) 109.1 2.73 10

K x slope
m− −

= Δ ×

= × × = ×
 (6.6) 

 

6.4 Relationship between the pressure drop and 

the average wall shear stress 

Analog to the discussion of average velocity, it is easy to find that the 

average wall shear stress is proportional to the pressure gradient as well from 

the Stokes equation (6.2). For the flow through a periodic square array of 

cylinders, the average wall shear stress is a function of the pressure drop dp
dx

, 

permeability K and porosity φ  as (Wang & Tarbell 1995) 

 
( )( )

2 4

4 4

4 1 0.319285 0.043690

1 0.305828 1 0.305828

dpK
dx

φ φτ
π φ φ φ φ

− −
= −

− − + −
 (6.7) 

A similar linear expression has been assumed recently as 

 B U
K
μτ =  (6.8) 

and the value of factor B was found as 1.07 0.03B = ±  (Roman et al 2010).  

In our study, we assume the average shear stress is proportional to the 
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applied pressure gradient instead of average velocity 

 dpB K
dx

τ =  (6.9) 

This assumption can be beneficial from the less parameters taken into 

account (2 parameters from 3). We have simulated flow in 4 additional cubes 

with 64 64 64× × lattice units from different part of the porous disk under 

different pressure gradient to work out their permeability. The permeability of 

the 5 cases (in total) are shown in Figure 6.12. The permeability of the case 2 

is almost 2 times greater than that of the case 4, although they have very 

similar porosity. This implies that the Kozeny–Carman equation (McCabe et 

al 2005) does not holds at the mesoscopic level. The resistant force through a 

porous media varies due to the difference of micro-structure between these 

cases.   
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Figure 6.12 Permeability against porosity of 5 cubic volumes in the 

scaffold disc.  

 

 

Figure 6.13 The average shear stress against /K dp dx  of the 5 different 

objects, labelled with the value of corresponding coefficient B . 

 

On the other hand, we can estimate the B  value in Equation (6.9) by 

working out the average shear stresses τ  and the corresponding value of 

/K dp dx . In Figure 6.13, we present results based on the 5 cases. The 

average value of B is 0.16 with the standard deviation of 0.08.  
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the micro-CT images. The lattice Boltzmann method is then applied to 

simulation flow in a small cubic portion of the porous scaffold. The detailed 

information on the velocity and the wall shear stress distributions has been 

presented. A near perfect linear relationship is found between the average 

velocity and the pressure gradient, largely due to the fact that our study is 

focused on flow in the porous scaffold with very low flow velocity. From the 

relation, we can calculate the permeability of the porous structure.  

While the Kozeny–Carman equation predicts that the permeability has a 

simple relation with the porosity, our study has demonstrated that it may not 

hold true in the microscopic level, although the permeability has been found 

to be of the same order of magnitude, i.e. 7 210 m− in all cases. Furthermore, 

we have tried to find an empirical equation to estimate the average wall shear 

stress, by assuming a linear relationship between it and the value of dpK
dx

. 

If such a relation exists, the slope between the two, based on our study is 

approximately 0.16 0.08± . One possible limitation in our estimation is in the 

fact that the size of the cubic structure we used to simulate flow is fairly small. 

Wall effects, as imposed to surround the cubic structure may have had a strong 

effect on the value of the slop we estimated.    
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7 Conclusion 

The lattice Boltzmann method is based on the linear BGK collision 

operator, and can lead to the Navier-Stokes equations by applying the 

Chapman-Enskog expansion under low velocity. In our current study, the 

magnitude of Reynolds number is of the order of unity, which makes the 

lattice Boltzmann method eligible in our simulations.  

We have developed computer programs based on the lattice Boltzmann 

method in FORTRAN 95, a general-purpose programming language which is 

especially suitable for high-performance scientific computation. Two 

dimensional and three dimensional programs, with D2Q9 model of 9 different 

lattice velocities and D3Q19 of 19 different lattice velocities, respectively, 

have been developed in separate programs.  

We have carried out simulation of 2D Poiseuille flow between two 

infinite planar planes and of flow in a 3D rectangular duct to validate the 

computer programs. For the 2D Poiseuille flow, the L2-norm residual between 

the numerical simulation and the analytic solution is approximately 31 10−×  

for the velocity, and is significantly lower, i.e. ~ 1410− for the shear stress. 

Besides, the average standard error of normal shear stress in the x-axis xxτ  is 

63.8 10−× , 1/1000th of the velocity error. The much smaller error in the shear 

stress than that of the velocity supports the theoretical derivation, in which the 
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calculation of the shear stress is directly from the distribution function, and is 

independent of the velocity.  

The 3D lattice Boltzmann program is verified by the simulation of flow 

in an infinite duct with rectangular shape. The L2-norm differences between 

two consecutive time steps for the x-, y- and z- components of velocity are less 

than 61 10−× . The x-velocity error between lattice Boltzmann simulation and 

analytic results is ~0.14%, which is of satisfactory accuracy for a mesh of 

30 30×  or above. A mesh-independent study has been carried out on the 

computer program based on the lattice Boltzmann method. Even at a fairly 

low lattice density, e.g. at 10 x 10 lattice units across the domain, the error of 

velocity is below 1%, which is usually considered as of acceptable accuracy in 

most engineering numerical calculations. As the lattice density increases, the 

relative error decreases further, but no apparent improvement can be seen 

when the lattice unit number is above 30. We have discovered the 

convergence of shear stress is slower than that of the velocity, which implies 

that the L2-norm of shear stress might be a better indicator, if accurate results 

are required and the computer time is less considered.  

To further check the accuracy of our program in complex geometries, the 

creeping flows around either an array of square cylinder or a porous scaffold 

originated from micro-CT images have been studied using both the lattice 

Boltzmann method and Fluent in 2D flow simulations. Fluent, as a 

commercially available Navier-Stokes equation solver based on the finite 
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volume method, is used here for comparison. Results in both geometries 

provide very similar results in by LBM and by Fluent. Our study provides 

further evidence that the lattice Boltzmann method provides satisfactory 

accuracy with lower expenses in terms of CPU time in comparison to 

commercial software (Geller et al 2006).   

It has been reported that cells cultured in 2D monolayers behave 

differently in a number of ways to those in vivo, where they are commonly 

subjected to 3D environment (Benya & Shaffer 1982; Zhang et al 2010). The 

use of 3D scaffolds can provide a way to overcome this problem by providing 

flow-induced mechanical stimulation and allowing cells to synthesis 3D 

extracellular matrix (ECM) (Bancroft et al 2002). However, the local velocity 

and shear stress that are experienced by the cells in a 3D scaffold can be 

different by a few orders of magnitude under the same flow conditions. 

Detailed information on local shear stress and its distribution are needed to 

investigate their effects on cell activities, such as cell growth, proliferation and 

differentiation (Porter et al 2005). In order to achieve this, we have developed 

a program to reconstruct the 3D porous scaffold from micro-CT images 

produced in our laboratory, and then selected a small portion of the porous 

scaffold to simulate 3D flow inside. Currently, it is still beyond the capability 

of computers in most research groups to mimic flow through the whole porous 

disk (Maes et al 2009; Porter et al 2005).  

In the current study, a 64 64 64× × cubic portion subjected to 
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3.2 3.2 3.2mm mm mm× × in the center of the porous disk is simulated using the 

lattice Boltzmann method. Detailed distribution on the velocity and wall shear 

stress has been calculated. A histogram distribution of the wall shear stress 

gives the percentage of wall surface under a specific range of shear stress. A 

near perfect linear relationship is found between the average velocity and the 

pressure gradient in our simulation. This results from the fact that flow in the 

porous scaffold in our simulation has very low velocity. The permeability of 

the porous structure can be readily calculated from the velocity-pressure 

gradient relation by applying the Darcy’s law (Darcy 1856).  

We have selected additional four 64 64 64× ×  lattice units from different 

part of the porous disk and simulated flow in them. In all cases, linear 

relationship between the average velocity and the pressure gradient holds. 

Average porosity of the 5 cubic volumes is 0.217, with a standard deviation of 

0.025. This shows that the porous disk has a rather uniform porosity at 

different locations. The permeability in all 5 cases has been found to be of the 

same order of magnitude, i.e. 7 210 m− . We further extended our model to 

consider an empirical equation that has been proposed to estimate the average 

wall shear stress, by assuming a linear relationship between its value and the 

value of /K dp dx . Our preliminary results show that if such a relation 

exists, the slope between these two, based on our study is approximately 

0.16 0.08± . 

There are a number of studies that link cell proliferation rate to the shear 
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stress. In the current study, we have developed a numerical model based on 

the LBM to account for the time-history effect of the shear stress on cell 

growth with evolving geometries (i.e. as cell growths). It is intended as a 

preliminary study based on a hypothetical relation between the cell 

proliferation rate and the accumulative effect of the shear stress. In the model, 

effects of the cell cycle and other factors, such as contact-inhibition are 

modelled by a ‘cell state probability function’, p. A cell will divide into 2 

daughter cells when the p value reaches 1 or above. This study is designed to 

demonstrate the capacity of the LBM model to simulate such a process, and to 

reveal the intrinsic advantage of the LBM method over other conventional 

numerical methods in tacking moving boundary problems. 

 

There are a number of limitations in the current study. They include: 

The lattice Boltzmann method, as a new numerical methods, is still under 

development. Several issues have been raised by researchers, e.g. the viscosity 

is limited in a certain range due to numerical stability (Worthing et al 1997). It 

is very difficult to implement a ‘good’ boundary condition (i.e. second order, 

mass-conserved, numerical stable) for curved walls. Some schemes with high 

order accuracy does not conserve the mass, while the bounce back condition 

only have one-order accuracy in general case (Chun & Ladd 2007; Verschaeve 

2009).  

It has been reported that the shear stress is underestimated near the wall 
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(Porter et al 2005). However, the error caused by the interpolation and 

calculation of normal vector in the zig-zag boundary has not been 

investigated. 

Due to the capacity of computers used in the study, we have only 

simulated flow in a small cubic portion of the porous disk. The effect of the 

imposed wall surrounding (side) walls of the cube has not been properly 

investigated. In future studies, a bigger portion or the whole porous disc can 

be considered.  

To estimate the average wall shear stress, we have assumed a linear 

relationship between τ  and dpK
dx

. Parameters, such as the average pore 

size, surface area, tortuosity, need to be taken into consideration in future 

studies.  

The proposed model on the interaction between the flow shear stress and 

cell proliferation needs to be carefully considered and improved using 

experimental data.  

 

In conclusion, we have developed a new numerical model based on the 

lattice Boltzmann method to study flow in porous scaffolds. It provides 

satisfactory results with a number of intrinsic advantages over conventional 

numerical methods, and can be further developed into a robust tool to 

investigate performance of scaffold materials in 3D cell culture. 
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Appendix: Main code of 2D lattice 
Boltzmann method 
 

Program LBM 

use ComPara, only: CP_max_t, CP_frame, CP_tol, Flag_BC_force, CP_time_step, CP_L2_err, lx, ly, 

gamma 

use Node_data_D2Q9, only: macro, macro_temp 

!use CellCulture 

implicit none 

!integer ierr 

real*8 :: tic, toc, tic1, toc1 

!real*8 t0,t1,t2 

integer time,max_t,frame,ti, min_t 

integer i, j, k, ierr 

 character*40 flog 

 character Flag_resume 

!-----------initialize 

 call CPU_time(tic) 

 call init_parameters_comment 

  

! call read_geometry 

 

 

 call init_density 

 !if(FLAG_BC_Pressure .OR. FLAG_BC_Velocity) then 

 call init_BC 

 !end if 

! call init_CellCulture 

 call init_FE 

 call cal_FE_fluid 

 call write_fluid_structure 

! call FE_category 

! call output_neutral 

! stop 

! call write_cell_structure 

 call CPU_time(toc) 

 write(*, '(/1x,a,e9.3,a)') "Elapsed time for initialization is ",toc-tic," seconds." 

 write(*,'(/1x,a)')"============================================================" 
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!-----------LOOP 

 call CPU_time(tic) 

max_t=CP_max_t 

frame=CP_frame 

ti=0 

fLog=".\Results\lbm.log" 

!open(9,file=flog) 

!stop 

 write(* ,'(/1x,a)')"========================MAIN 

LOOP===========================" 

 write(9 ,'(/1x,a)')"========================MAIN 

LOOP===========================" 

 CP_L2_err=1.d0 

 !cell_generation=0 

!do while(cell_no<cell_max_no .and. cell_generation<cell_max_generation) 

! judge to resume or not 

    write(* ,'(/1x,a)')"Do you want to resume your calculation? (y) or (n)" 

    read(*,'(a)')Flag_resume 

    !min_t=1 

    if( Flag_resume=='y') then 

        call read_cas_file(min_t) 

        write(*,*)"Resume calculation from time step=", min_t 

        open(9,file=fLog, STATUS = "OLD", ACTION = "WRITE", IOSTAT = ierr, ACCESS 

="APPEND") 

        write(9,*)"resume calculation" 

    else 

        open(9,file=fLog, STATUS = "NEW", ACTION = "WRITE", IOSTAT = ierr) 

        min_t=1 

    end if 

     

    !main loop 

     

    do time=min_t,max_t+min_t 

        if(maxval(CP_L2_err)>CP_tol) then 

            call collision 

            call propagation 

            call bounceback 

            call BC_treatment 

            call cal_macro 

            if( time==min_t) then 

                !call CPU_time(tic1) 

                macro_temp=macro 

                !call CPU_time(toc1) 

                !write(*, '(/1x,a,e9.3,a)') "Elapsed time for copy macro is ",toc1-tic1," seconds." 
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            end if 

            if(mod(time,CP_time_step)==0) then 

                

write(* ,'(/1x,a)')"========================================================" 

                ti=ti+1 

                call cal_L2_error 

                call check(time,tic,toc,ti) 

    !           call write_fluid_cell_vel(cell_generation) 

                call FE_cal_vel_wss 

                call write_fluid_vel_wss(1) 

                call write_cas_file(time) 

            end if 

    !       write(*,*) time 

        end if 

         

    end do 

    !initial the cell 

!    if( cell_generation==0) then 

!        call init_CellCulture 

!        call write_cell_structure(cell_generation) 

!    end if 

!   call write_fluid_cell_vel(cell_generation) 

!    call Cell_growth 

!   call write_cell_structure(cell_generation) 

!   CP_L2_err=1.d0 

!   write(*,*)"cell_generation=",cell_generation 

!   stop 

!end do 

 call del_mem 

 close(9) 

end program LBM 

 

!> define the common parameters  

 

 

Module ComPara  

!-----------LBM parameters----------------- 

integer :: lx, ly !<computation domain 

real*8  :: density, omega, force !< density, relexation parameter, body force 

integer :: CP_max_t, CP_frame, CP_time_step 

real*8  :: CP_tol 

real*8  :: CP_L2_err(3) 

! the precondition parameters 

! cf. I:\LBM\Reference\Optimization\PhysRevE.70.066706-1.pdf for more details 
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real*8  :: gamma 

 

 

 

!-----------mathematic constant------------ 

real*8, parameter:: PI       = 3.14159265358979323846d0 !< accurate enough :P 

real*8, parameter:: CP_Cs    = 0.57735026918962576451d0 

real*8, parameter:: CP_Cs_sq = 0.33333333333333333333d0 

real*8, parameter:: CP_bct   = 0.5d0 !< for the upper and bottom boundary, esp. for Poiseuille flow 

 

!----------functions------------------------ 

real*8 , external :: my_mod 

logical, external :: fun_no_fracture  

logical, external :: fun_is_fluid 

integer, external :: fun_point_number 

integer, external :: fun_4point_case 

real*8 , external :: fun_distance 

real*8 , external :: fun_theta 

integer, external :: FE_node_xy 

real*8 , external :: fun_cal_rate 

 

!----------BC flag-------------------- 

logical :: FLAG_Debug_Poisseuille=.True. 

logical :: FLAG_BC_Pressure=.True. 

logical :: FLAG_BC_Velocity=.True. 

logical :: FLAG_BC_FH      =.True. 

logical :: FLAG_BC_force   =.True. 

real*8  :: BC_Pressure_inlet 

real*8  :: BC_Pressure_outlet 

   

end module ComPara 

 

Module FE 

implicit none 

!-----------Output: finite element---------  

!real*8 ,ALLOCATABLE, dimension(:, :) :: FE_node !< x,y coordinate for each all point 

!integer,ALLOCATABLE, dimension(:, :) :: FE_seq  !< connectivity  

real*8 ,ALLOCATABLE, dimension(:, :) :: FE_fluid_node !< x,y coordinate for each fluid point  

integer,ALLOCATABLE, dimension(:, :) :: FE_fluid_seq  !< fluid connectivity 

!integer,ALLOCATABLE, dimension(:, :, :) :: FE_node_rate  !< 4- sequence of fluid interface particles 

!integer,ALLOCATABLE, dimension(:, :) :: node_xy       !< sequency of fluid particles 

real*8 ,ALLOCATABLE, dimension(:, :) :: FE_wss_node 

integer,ALLOCATABLE, dimension(:, :) :: FE_wss_seq 

real*8 ,ALLOCATABLE, dimension(:, :) :: FE_wss_area 
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real*8 ,ALLOCATABLE, dimension(:, :) :: FE_wss_sort 

integer,ALLOCATABLE, dimension(:, :) :: FE_fluid_seq_1  

!<----------flag ---------------------------- 

!integer 

!----------count---------------------------- 

!integer :: FE_seq_number=0     !< the number of fluid meshes 

integer :: FE_number(4)=0   !< the number of fluid particles 

integer :: FE_node_number(4)=0 !< the mount of 4-direction interface 

integer :: FE_seq_fluid_number=0 !< the mount of total fluid nodes 

integer :: FE_total_node_number=0 

integer :: FE_wss_node_number=0 

!integer :: FE_wss_seq_number =0 

integer :: FE_wss_sort_i=10 

!functions 

end Module FE 

 

Module Node_Data_D2Q9 

implicit none 

Type Node 

!>NodeType 

!!0 - fluid 

!!1 - solid 

!!2 - fluid, interface 

!!3 - solid, interface 

integer :: NodeType=0 

!record of queue 

integer :: rate_ij =0 

! macroscopic density 

!real*8  :: density=0.0d0 

! x,y-direction velocity 

!real*8  :: velocity(2)=0.0d0 

end type Node 

 

!define the parameter in the node  

real*8 :: D2Q9_weight(0:8),D2Q9_c(0:8,2) 

real*8 ,ALLOCATABLE, dimension(:, :, :) :: fbar 

real*8 ,ALLOCATABLE, dimension(:, :, :) :: feq 

real*8 ,ALLOCATABLE, dimension(:, :, :) :: macro 

real*8 ,ALLOCATABLE, dimension(:, :, :) :: macro_temp 

type(Node), pointer ,dimension(:,    :) :: pNode 

!integer,ALLOCATABLE, dimension(:, :   ) :: NodeType 

end module Node_Data_D2Q9 

 

! Boundary Condition module 
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Module BoundaryCondition 

implicit none 

type BC_Velocity 

! Zou & He (POF 1997) 

! i,j -- position 

! index: id 

!  1 -- east 

!  2 -- north 

!  3 -- west 

!  4 -- south 

! u_x,u_y: given velocity 

integer :: i,j,id 

real*8 :: u_x,u_y 

end type BC_Velocity 

 

Type BC_Pressure 

! Zou & He (POF 1997) 

! i,j -- position 

! index: id 

!  1 -- east 

!  2 -- north 

!  3 -- west 

!  4 -- south 

! u_1: given velocity along the boundary 

! rou:  

integer :: i,j,id 

real*8 :: u_1=0.d0, rou 

end type BC_Pressure 

!> Filippova and Hanel boundary treatment   

Type BC_FH 

!!NodeType 

!!0 - fluid 

!!1 - solid 

!!2 - fluid, interface 

!!3 - solid, interface 

!integer :: NodeType=0 

!!Boundary condition type 

!!x,y-direction distance to the node 

!real*8 ::rate(8)=0.0d0 

 

integer :: i,j 

integer :: id(0:4)=0 

real*8 :: rate(8)=0.d0 

end type BC_FH 



 
Appendix: Main code of 2D lattice Boltzmann method 

148 

 

type(BC_velocity), pointer:: pBC_velocity(:) 

type(BC_pressure), pointer:: pBC_pressure(:) 

type(BC_FH),       pointer:: pBC_FH(:) 

end module BoundaryCondition 

 

! Cell Culture module 

Module CellCulture 

implicit none 

type cell 

integer :: i,j 

real*8 :: p, wss 

end type cell 

type(cell), pointer::pCell(:) 

integer:: cell_no, cell_x_min, cell_x_max 

integer:: cell_max_no, cell_max_generation, cell_generation 

real*8 :: cell_max_wss, cell_dead_wss 

real*8 , external :: fun_wss_pro 

end module 

 

 

subroutine init_parameters_comment 

!/////////////////////////////////////////////////////////////////// 

! initialize the parameter 

use ComPara 

use Node_Data_D2Q9 

use FE, only: FE_wss_sort_i 

implicit none 

integer :: ierr 

real*8  :: t0 

namelist /parameter/ lx,ly, density, omega, force, & 

 FLAG_Debug_Poisseuille, & 

 FLAG_BC_Pressure, FLAG_BC_Velocity, FLAG_BC_FH, FLAG_BC_force, & 

 CP_max_t, CP_frame, CP_time_step, CP_tol, & 

 FE_wss_sort_i 

    

write(*,'(/1x,a)')"============================================================" 

    write(*,'(/1x,a)')"initize the parameter from parameter.in" 

    open(1, file='.\input\parameter.in', STATUS = "OLD", ACTION = "READ", & 

    IOSTAT = ierr) 

    if( ierr==0) then 

        ! computation domain 

  read(1,*) 

        read(1,*)lx 
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  read(1,*) 

        read(1,*)ly 

  read(1,*) 

        read(1,*)density 

  read(1,*) 

        read(1,*)omega 

  read(1,*) 

        read(1,*)force 

        ! boundary condition flag 

!  read(1,*) 

!        read(1,*)BC_Pressure_inlet 

!  read(1,*) 

!        read(1,*)BC_Pressure_outlet 

!        ! Boundary condition 

  read(1,*) 

        read(1,*)FLAG_Debug_Poisseuille 

  read(1,*) 

        read(1,*)FLAG_BC_Pressure 

  read(1,*) 

        read(1,*)FLAG_BC_Velocity 

  read(1,*) 

        read(1,*)FLAG_BC_FH 

  read(1,*) 

        read(1,*)FLAG_BC_force 

   

   

        ! temporal parameter 

  read(1,*) 

        read(1,*)CP_max_t 

  read(1,*) 

        read(1,*)CP_frame 

  read(1,*) 

  read(1,*)CP_time_step 

  read(1,*) 

        read(1,*)CP_tol 

!  read(1,*) 

!        read(1,*)FE_wss_sort_i 

    end if 

    close(1) 

    !-------report the parameter 

    open(1, file='.\results\parameter.out') 

    write(1,nml=parameter) 

    close(1) 

    !-------allocate fbar 
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    allocate(fbar(lx,ly,0:8),stat=ierr) 

    if( ierr/=0) then  

        write(*,'(/1x,a)')"Allocate fbar FAILED." 

        stop 

    end if 

    !-------allocate feq 

    allocate(feq(lx,ly,0:8),stat=ierr) 

    if( ierr/=0) then  

        write(*,'(/1x,a)')"Allocated feq FAILED." 

        stop 

    end if 

  

    !-------allocate macro 

    allocate(macro(lx,ly,3),stat=ierr) 

    if( ierr/=0) then  

        write(*,'(/1x,a)')"Allocated macro FAILED." 

        stop 

    end if 

    !-------allocate macro_temp 

    allocate(macro_temp(lx,ly,3),stat=ierr) 

    if( ierr/=0) then  

        write(*,'(/1x,a)')"Allocated macro_temp FAILED." 

        stop 

    end if 

    !-------allocate NodeType 

    allocate(pNode(lx,ly),stat=ierr) 

    if( ierr/=0) then  

        write(*,'(/1x,a)')"Allocated pNode FAILED." 

        stop 

    end if 

    !-------init weight and lattice unit velocity 

    t0=1.d0/36.d0 

    D2Q9_weight(0)=t0*16.d0 

    D2Q9_weight(1:4)=t0*4.d0 

    D2Q9_weight(5:8)=t0 

    D2Q9_c((/0,2,4/),1)=0.d0 

    D2Q9_c((/1,5,8/),1)=1.d0 

    D2Q9_c((/3,6,7/),1)=-1.d0 

    D2Q9_c((/0,1,3/),2)=0.d0 

    D2Q9_c((/2,5,6/),2)=1.d0 

    D2Q9_c((/4,7,8/),2)=-1.d0 

 

end subroutine init_parameters_comment 
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!!/////////////////////////////////////////////////////////////////// 

!initialize the variable of each node 

subroutine init_density 

use ComPara, only : density, lx, ly, CP_cs_sq, BC_Pressure_inlet, gamma 

use Node_Data_D2Q9 

 

implicit none 

integer i,j,k 

real*8 :: u_n(8),u_x, u_y, u_squ, d_loc, u_max 

write(*,'(/1x,a)') 'initializing the equilibrium distribution function feq and fbar' 

macro(:,:,2)=BC_Pressure_inlet 

macro(:,:,3)=0.d0 

!macro(:,:,1)=dsqrt(macro(:,:,2)*macro(:,:,2)+macro(:,:,3)*macro(:,:,3)) 

!u_max=MAXVAL(macro(:,:,1)) 

!gamma=(10.d0*dsqrt(3.d0)*u_max)**2 

macro(:,:,1)=density 

 

 

do j=1, ly, 1 

    do i=1, lx, 1 

           d_loc= macro(i,j,1) 

           u_x  = macro(i,j,2) 

           u_y  = macro(i,j,3) 

 

            u_n(1) =   u_x 

            u_n(2) =         u_y 

            u_n(3) = - u_x 

            u_n(4) =       - u_y 

            u_n(5) =   u_x + u_y 

            u_n(6) = - u_x + u_y 

            u_n(7) = - u_x - u_y 

            u_n(8) =   u_x - u_y 

            u_squ = u_x * u_x + u_y * u_y 

 

!...........zero velocity density 

 

            feq(i,j,0) = D2Q9_weight(0) * d_loc * (1.d0 - u_squ / (2.d0 * CP_cs_sq)) 

            do k=1,8 

            feq(i,j,k) = D2Q9_weight(k)* d_loc * (1.d0 + u_n(k) / CP_cs_sq & 

                    + u_n(k) ** 2.d0 / (2.d0 * CP_cs_sq ** 2.d0)  & 

                    - u_squ / (2.d0 * CP_cs_sq) ) 

            end do 

    end do 

end do 
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fbar(:,:,:)=feq(:,:,:) 

!write(1,*) 'initial density' 

end subroutine init_density 

 

!/////////////////////////////////////////////////////////////////// 

! initial boundary condition from different file 

subroutine init_BC 

use ComPara, only: FLAG_BC_Velocity, FLAG_BC_Pressure,  flag_BC_FH 

!use BoundaryCondition 

implicit none 

!integer i,j, ierr, p_i,v_i 

write(*,'(/1x,a)') 'Initializing Boundary Conditions...' 

if( flag_BC_Pressure==.True.) then 

 call init_Pressure 

end if 

if( flag_BC_Velocity==.True.) then 

 call init_Velocity 

end if 

if( flag_BC_FH==.True.) then 

 call init_FH 

end if 

end subroutine init_BC 

!/////////////////////////////////////////////////////////////////// 

! initial pressure from BC_pressure.in file 

subroutine init_Pressure 

use ComPara, only: ly 

use BoundaryCondition 

implicit none 

integer ierr, p_i, i 

real*8 BC_Pressure_outlet, BC_Pressure_inlet 

write(*,'(/1x,a)') 'initializing pressure and velocity boundary condition' 

!init pressure outlet 

! Poisseuille flow 

if( FLAG_Debug_Poisseuille==.True.) then 

!    inlet 

    !p_i=2*(ly-2) 

    p_i=ly-2 

    BC_Pressure_inlet=0.8d0 

    BC_Pressure_outlet=0.79d0 

     if(FLAG_BC_Pressure) then 

     

        allocate(pBC_pressure(p_i),stat=ierr) 

        if(ierr /= 0) then 

            write(*,'(/1x,a)')"Allocated pBC_pressure FAILED." 



 
Appendix: Main code of 2D lattice Boltzmann method 

153 

        end if 

        do i=1,ly-2 

            pBC_pressure(i)%i=lx 

            pBC_pressure(i)%j=i+1 

            pBC_pressure(i)%id=1 

            pBC_pressure(i)%u_1=0.0d0 

            pBC_pressure(i)%rou=BC_Pressure_outlet 

        end do 

        do i=ly-1,p_i 

            pBC_pressure(i)%i=1 

            pBC_pressure(i)%j=i-ly+2 

            pBC_pressure(i)%id=3 

            pBC_pressure(i)%u_1=0.0d0 

            pBC_pressure(i)%rou=BC_Pressure_inlet 

        end do 

    end if 

else 

 

    open(1, file='.\input\BC_pressure.in', STATUS = "OLD", ACTION = "READ", & 

    IOSTAT = ierr) 

    if( ierr /= 0) then 

        write(*,'(/1x,a)')"Open file BC_pressure.in FAILED." 

        STOP 

    end if 

    read(1,*)p_i 

    allocate(pBC_pressure(p_i),stat==ierr) 

    if(ierr /= 0) then 

        write(*,'(/1x,a)')"Allocated pBC_pressure FAILED." 

    end if 

!    # read comments 

    read(1,*) 

    do i=1,p_i 

        read(1,*) pBC_Pressure(i)%i, pBC_Pressure(i)%j,pBC_Pressure(i)%id, pBC_Pressure(i)%u_1, 

pBC_Pressure(i)%rou 

    end do 

end if 

end subroutine init_Pressure 

 

!/////////////////////////////////////////////////////////////////// 

! initial velocity from BC_velocity.in file  

subroutine init_Velocity        

!init velocity inlet 

!v_i=2*(ly-2) 

implicit none 
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integer v_i,i 

logical flag_BC_velocity_DEBUG 

flag_BC_Velocity_DEBUG=.False. 

If( flag_BC_Velocity_DEBUG) then 

    v_i=ly-2 

!   if(FLAG_BC_Velocity) then 

    allocate(pBC_velocity(v_i),stat=ierr) 

    if(ierr /= 0) then 

        write(*,'(/1x,a)')"Allocated pBC_Velocity is unsuccessful." 

    end if 

    do i=1,ly-2 

        pBC_velocity(i)%i=1 

        pBC_velocity(i)%j=i+1 

        pBC_velocity(i)%id=3 

        pBC_velocity(i)%u_x=1.d-3 

        pBC_velocity(i)%u_y=0.d0 

    end do 

!    do i=ly-1,v_i 

!        pBC_velocity(i)%i=lx 

!        pBC_velocity(i)%j=i-ly+2 

!        pBC_velocity(i)%id=1 

!        pBC_velocity(i)%u_x=1.d-3 

!        pBC_velocity(i)%u_y=0.d0 

!    end do 

else 

 

    open(1, file='.\input\BC_velocity.in', STATUS = "OLD", ACTION = "READ", & 

    IOSTAT = ierr) 

    if( ierr /= 0) then 

        write(*,'(/1x,a)')"Open file BC_velocity.in FAILED." 

        STOP 

    end if 

    read(1,*)v_i 

    allocate(pBC_Velocity(v_i),stat==ierr) 

    if(ierr /= 0) then 

        write(*,'(/1x,a)')"Allocated pBC_pressure FAILED." 

    end if 

!    # read comments 

    read(1,*) 

    do i=1,v_i 

        read(1,*) pBC_Velocity(i)%i, pBC_Velocity(i)%j,pBC_Velocity(i)%id, pBC_Velocity(i)%u_x, 

pBC_Velocity(i)%u_y 

    end do 

end if     
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end subroutine init_Velocity 

 

!/////////////////////////////////////////////////////////////////// 

subroutine init_FH 

!/////////////////////////////////////////////////////////////////// 

!initialize the geometry 

use ComPara 

use Node_Data_D2Q9 

use BoundaryCondition 

use FE, only: FE_number, FE_node_number 

implicit none 

integer ierr 

integer i,j,k, FH_number(0:4), temp , temp1!, temp2 

 

 

write(*,'(/1x,a)')"Reading geometry from .\input\FH_indicator.dat & FH_rate_file.dat " 

 

    !-----------open the indicator.dat file 

    open(1,file='.\input\FH_indicator.dat', STATUS = "OLD", ACTION = "READ", & 

    IOSTAT = ierr) 

    if( ierr/=0) then  

        write(*,'(/1x,a)')"read file .\input\FH_indicator.dat FAILED." 

        stop 

    end if 

    open(2,file='.\input\FH_rate_file.dat', STATUS = "OLD", ACTION = "READ", & 

    IOSTAT = ierr) 

    !----------read file 

    read(1, *) 

    read(1, *)FH_number(0) 

    ! allocate node 

    allocate(pBC_FH(0:FH_number(0)),stat=ierr) 

    if( ierr/=0) then  

        write(*,'(/1x,a)')"Allocate pBC_FH FAILED." 

        stop 

    end if 

    ! read NodeType from indicator.dat 

    read(1, *)FH_number(1) 

    read(1, *)FH_number(2) 

    read(1, *)FH_number(3) 

    read(1, *)FH_number(4) 

!    temp1=0 

!    temp2=0 
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    do i=1,lx 

        do j=1,ly 

            !write(*,*) i,j 

 

            read(1,*)pNode(i,ly+1-j)%NodeType 

            select case(pNode(i,ly+1-j)%NodeType) 

                case(0) 

                    FE_number(1)=FE_number(1)+1 

                    pNode(i,ly+1-j)%rate_ij=FH_number(3)+FH_number(4)+FE_number(1) 

                case(1) 

                    FE_number(2)=FE_number(2)+1 

                    

pNode(i,ly+1-j)%rate_ij=FE_number(2)+FH_number(3)+FH_number(4)+FH_number(1) 

                  

                case(2) 

                    FE_number(3)=FE_number(3)+1 

                    pNode(i,ly+1-j)%rate_ij=FE_number(3) 

                    pBC_FH(FE_number(3))%id(0)=FE_number(3) 

                    read(2, *) pBC_FH(FE_number(3))%i 

                    read(2, *) temp1 

                    pBC_FH(FE_number(3))%j=ly+1-temp1 

                    read(2, '(8e14.9)') pBC_FH(FE_number(3))%rate(:) 

                    do k=1,4 

                        if(pBC_FH(FE_number(3))%rate(k)>0.d0) then 

                            FE_node_number(k)=FE_node_number(k)+1 

                            pBC_FH(FE_number(3))%id(k) =FE_node_number(k) 

                        end if 

                    end do  

                case(3) 

                    FE_number(4)=FE_number(4)+1 

                    pNode(i,ly+1-j)%rate_ij=FE_number(4)+FH_number(3) 

                    temp=pNode(i,ly+1-j)%rate_ij 

                    read(2, *) pBC_FH(temp)%i 

                    read(2, *) temp1 

                    pBC_FH(temp)%j=ly+1-temp1 

                    read(2, '(8e14.9)') pBC_FH(temp)%rate(:) 

            end select 

             

        end do 

    end do 

 

    close(1) 

    close(2) 

    !-----check the input file 
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    if( maxval(ABS(FE_number(1:4)-FH_number(1:4)))>0) then 

        write(*,*)"in subroutine read_geometry, input file header is wrong" 

        stop 

    end if 

 

 

 

 

!write(1,'(/1x,a)')"end of subroutine init_geo." 

!write(1,'(/1x,a)')"------------------------------------------ " 

!write(*,'(/1x,a)')"end of subroutine read_geo." 

!write(*,'(/1x,a)')"------------------------------------------ " 

end subroutine init_FH 

 

 

!/////////////////////////////////////////////////////////////////// 

subroutine read_cas_file(time) 

use ComPara 

use Node_data_D2Q9 

implicit none 

integer i,j,k 

integer time 

 character*40 flog 

 write(*,'(/1x,a)') 'read feq from lbm2d.cas' 

 fLog=".\input\lbm2d.cas" 

 open(10,file=fLog,STATUS='OLD') 

 ! write the time step 

 read(10,'(I10)')time 

do j=1,ly,1 

    do i=1,lx,1 

        read(10,'(9e20.11)')(feq(i,j,k),k=0,8) 

    end do 

end do 

!write(9,*)feq(20,30,:) 

close(10) 

fbar(:,:,:)=feq(:,:,:) 

end subroutine read_cas_file 

 

!/////////////////////////////////////////////////////////////////// 

!collision 

subroutine collision 

use ComPara, only: lx, ly, omega, fun_is_fluid 

use Node_data_D2Q9, only: feq, fbar 
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implicit none 

integer i,j,k 

real*8 max_tau,t1(0:8),t2(0:8),t3(0:8) 

!calculate equillibium function feq 

! call cal_feq 

 

do j=1,ly,1 

  do i=1,lx,1 

    if(fun_is_fluid(i,j)) then 

      !do k=0,8,1 

      ! Reference 

      ! JFM Y Li, etc 

      ! 2004, vol. 519, pp. 273 

        t1(:)=feq(i,j,:) 

        t2(:)=fbar(i,j,:) 

  t3=1.d0-t1/t2 

     max_tau=MAXVAL(t3) 

  max_tau=DMAX1(max_tau, omega) 

        feq(i,j,:)=(1.0d0-max_tau)*t2+max_tau*t1 

      !end do 

    end if 

  end do 

end do 

!write(1,*) 'collision finish' 

!write(*,*) 'collision finish' 

end subroutine collision 

!/////////////////////////////////////////////////////////////////// 

!propagation 

subroutine propagation 

!integer time 

use ComPara, only: lx, ly 

use Node_data_D2Q9, only: feq, fbar 

implicit none 

integer i, j, k, x_e, x_w, y_n, y_s 

 

do j=1,ly,1 

  do i=1,lx,1 

!.........compute upper and right next neighbour nodes with regard 

!         to periodic boundaries 

          y_n = mod(j,ly) + 1 

          x_e = mod(i,lx) + 1 

 

!.........compute lower and left next neighbour nodes with regard to 

!         periodic boundaries 
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          y_s = ly - mod(ly + 1 - j, ly) 

          x_w = lx - mod(lx + 1 - i, lx) 

 

!.........zero 

          fbar(i  ,j  ,0) = feq(i,j,0) 

!.........east 

          fbar(x_e,j  ,1) = feq(i,j,1) 

!.........north 

          fbar(i  ,y_n,2) = feq(i,j,2) 

! .........west 

          fbar(x_w,j  ,3) = feq(i,j,3) 

! .........south 

          fbar(i  ,y_s,4) = feq(i,j,4) 

! .........north-east 

          fbar(x_e,y_n,5) = feq(i,j,5) 

! .........north-west 

          fbar(x_w,y_n,6) = feq(i,j,6) 

! .........south-west 

          fbar(x_w,y_s,7) = feq(i,j,7) 

! .........south-east 

          fbar(x_e,y_s,8) = feq(i,j,8) 

 

  end do 

end do 

 

!write(1,*) 'propagation' 

 

end subroutine propagation 

!/////////////////////////////////////////////////////////////////// 

!implement bounceback scheme in the solid particles 

subroutine bounceback 

use ComPara, only: lx, ly, fun_is_fluid 

use Node_data_D2Q9, only: feq, fbar, pNode 

 

implicit none 

integer i,j, x_e, x_w, y_n, y_s 

real*8 :: temp(0:8) 

 

 

do j=1,ly,1 

  do i=1,lx,1 

      !debug 
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!solid or solid interface 

    if(fun_is_fluid(i,j)==.False.) then 

          y_n = mod(j,ly) + 1 

          x_e = mod(i,lx) + 1 

          y_s = ly - mod(ly + 1 - j, ly) 

          x_w = lx - mod(lx + 1 - i, lx) 

 

!.........east 

          fbar(x_e,j  ,1) = fbar(i,j,3) 

!.........north 

          fbar(i  ,y_n,2) = fbar(i,j,4) 

! .........west 

          fbar(x_w,j  ,3) = fbar(i,j,1) 

! .........south 

          fbar(i  ,y_s,4) = fbar(i,j,2) 

! .........north-east 

          fbar(x_e,y_n,5) = fbar(i,j,7) 

! .........north-west 

          fbar(x_w,y_n,6) = fbar(i,j,8) 

! .........south-west 

          fbar(x_w,y_s,7) = fbar(i,j,5) 

! .........south-east 

          fbar(x_e,y_s,8) = fbar(i,j,6) 

    end if 

    end do 

  end do 

     

 

end subroutine bounceback 

 

!/////////////////////////////////////////////////////////////////// 

!implement bounceback scheme in the solid particles 

subroutine BC_treatment 

use ComPara, only: Flag_BC_FH, Flag_BC_force, Flag_BC_Pressure, FLAG_BC_Velocity 

!use Node_data_D2Q9, only: feq, fbar, pNode 

!use BoundaryCondition 

implicit none 

! add force 

if( Flag_BC_force) then 

    call add_force 

end if 

! implement the velocity & pressure boundary 

if( Flag_BC_Pressure .OR. Flag_BC_Velocity) then 

    call BC_treatment_vp 
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end if 

! implement the FH boundary 

if( Flag_BC_FH) then 

    call BC_treatment_FH 

end if 

end subroutine BC_treatment 

!/////////////////////////////////////////////////////////////////// 

!adding force 0.01 pascal/lu 

subroutine add_force 

use ComPara, only: lx, ly, force, fun_is_fluid, gamma 

use Node_data_D2Q9, only: fbar, feq 

implicit none 

real*8 ::  t1,t2 

integer i,j 

t1=force/3.d0 /gamma 

t2=force/12.d0 /gamma 

do j=1,ly,1 

  do i=1,lx,1 

    if(fun_is_fluid(i,j)) then ! 

        if(fbar(i,j,3)>t1 .and. fbar(i,j,6) >t2 .and. fbar(i,j,7)>t2) then 

          fbar(i,j,1)=fbar(i,j,1)+t1 

          fbar(i,j,3)=fbar(i,j,3)-t1 

          fbar(i,j,5)=fbar(i,j,5)+t2 

          fbar(i,j,6)=fbar(i,j,6)-t2 

          fbar(i,j,7)=fbar(i,j,7)-t2 

          fbar(i,j,8)=fbar(i,j,8)+t2 

        end if 

    end if 

  end do 

end do 

!write(1,*) 'add force 0.01 pascal/lu' 

end subroutine add_force 

!/////////////////////////////////////////////////////////////////// 

!treat the velocity and pressure 

subroutine BC_treatment_vp 

use ComPara, only: Flag_BC_Pressure, FLAG_BC_Velocity 

use Node_data_D2Q9, only: fbar 

use BoundaryCondition 

implicit none 

integer :: time 

 

integer :: i,j,k,p_i,v_i 

!u_n -- normal velocity 

real*8  :: u_n, rou_in, ftemp(0:8),u_t 
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!pressure Boundary treatment 

 

 if(FLAG_BC_Pressure) then 

    p_i=size(pBC_pressure) 

     

    do k=1,p_i 

        i=pBC_pressure(k)%i 

        j=pBC_pressure(k)%j 

        u_t=pBC_pressure(k)%u_1 

        rou_in=pBC_pressure(k)%rou 

        !Zou and He pressure boundary on East side 

        if(pBC_pressure(k)%id==1) then 

            ftemp(:)=fbar(i,j,:) 

            u_n=1.d0-(2.d0*(ftemp(1)+ftemp(5)+ftemp(8))+(ftemp(0)+ftemp(2)+ftemp(4)))/rou_in 

            fbar(i,j,3)=ftemp(1)+2.d0/3.d0*rou_in*u_n 

            fbar(i,j,6)=ftemp(8)-.5d0*(ftemp(2)-ftemp(4))+rou_in*u_n/6.d0+0.5d0*rou_in*u_t 

            fbar(i,j,7)=ftemp(5)+.5d0*(ftemp(2)-ftemp(4))+rou_in*u_n/6.d0-0.5d0*rou_in*u_t 

        end if 

        !Zou and He pressure boundary on West side 

        if(pBC_pressure(k)%id==3) then 

            ftemp(:)=fbar(i,j,:) 

            u_n=1.d0-(2.d0*(ftemp(3)+ftemp(6)+ftemp(7))+(ftemp(0)+ftemp(2)+ftemp(4)))/rou_in 

            fbar(i,j,1)=ftemp(3)+2.d0/3.d0*rou_in*u_n 

            fbar(i,j,5)=ftemp(7)-.5d0*(ftemp(2)-ftemp(4))+rou_in*u_n/6.d0+0.5d0*rou_in*u_t 

            fbar(i,j,8)=ftemp(6)+.5d0*(ftemp(2)-ftemp(4))+rou_in*u_n/6.d0-0.5d0*rou_in*u_t 

        end if 

        !Zou and He pressure boundary on North side 

        if(pBC_pressure(k)%id==2) then 

            ftemp(:)=fbar(i,j,:) 

            u_n=1.d0-(2.d0*(ftemp(2)+ftemp(5)+ftemp(6))+(ftemp(0)+ftemp(1)+ftemp(3)))/rou_in 

            fbar(i,j,4)=ftemp(2)+2.d0/3.d0*rou_in*u_n 

            fbar(i,j,7)=ftemp(5)+.5d0*(ftemp(1)-ftemp(3))+rou_in*u_n/6.d0-0.5d0*rou_in*u_t 

            fbar(i,j,8)=ftemp(6)-.5d0*(ftemp(1)-ftemp(3))+rou_in*u_n/6.d0+0.5d0*rou_in*u_t 

        end if 

        !Zou and He pressure boundary on South side 

        if(pBC_pressure(k)%id==4) then 

            ftemp(:)=fbar(i,j,:) 

            u_n=1.d0-(2.d0*(ftemp(4)+ftemp(7)+ftemp(8))+(ftemp(0)+ftemp(1)+ftemp(3)))/rou_in 

            fbar(i,j,2)=ftemp(4)+2.d0/3.d0*rou_in*u_n 

            fbar(i,j,5)=ftemp(7)-.5d0*(ftemp(1)-ftemp(3))+rou_in*u_n/6.d0+0.5d0*rou_in*u_t 

            fbar(i,j,6)=ftemp(8)+.5d0*(ftemp(1)-ftemp(3))+rou_in*u_n/6.d0-0.5d0*rou_in*u_t 

        end if 

    end do 

end if 
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!velocity Boundary treatment 

 

 if(FLAG_BC_Velocity) then 

    v_i=size(pBC_velocity) 

     

    do k=1,v_i 

        i=pBC_velocity(k)%i 

        j=pBC_velocity(k)%j 

 

        !Zou and He velocity boundary on East side 

        if(pBC_velocity(k)%id==1) then 

            u_n=-pBC_velocity(k)%u_x 

            u_t=pBC_velocity(k)%u_y             

            ftemp(:)=fbar(i,j,:) 

            rou_in=(2.d0*(ftemp(1)+ftemp(5)+ftemp(8))+(ftemp(0)+ftemp(2)+ftemp(4)))/(1.d0-u_n) 

 

            fbar(i,j,3)=ftemp(1)+2.d0/3.d0*rou_in*u_n 

            fbar(i,j,6)=ftemp(8)-.5d0*(ftemp(2)-ftemp(4))+rou_in*u_n/6.d0+0.5d0*rou_in*u_t 

            fbar(i,j,7)=ftemp(5)+.5d0*(ftemp(2)-ftemp(4))+rou_in*u_n/6.d0-0.5d0*rou_in*u_t 

        end if 

        !Zou and He velocity boundary on West side 

        if(pBC_velocity(k)%id==3) then 

            u_n=pBC_velocity(k)%u_x 

            u_t=pBC_velocity(k)%u_y  

            ftemp(:)=fbar(i,j,:) 

            rou_in=(2.d0*(ftemp(3)+ftemp(6)+ftemp(7))+(ftemp(0)+ftemp(2)+ftemp(4)))/(1.d0-u_n) 

            fbar(i,j,1)=ftemp(3)+2.d0/3.d0*rou_in*u_n 

            fbar(i,j,5)=ftemp(7)-.5d0*(ftemp(2)-ftemp(4))+rou_in*u_n/6.d0+0.5d0*rou_in*u_t 

            fbar(i,j,8)=ftemp(6)+.5d0*(ftemp(2)-ftemp(4))+rou_in*u_n/6.d0-0.5d0*rou_in*u_t 

        end if 

        !Zou and He velocity boundary on North side 

        if(pBC_velocity(k)%id==2) then 

            u_n=-pBC_velocity(k)%u_y 

            u_t=pBC_velocity(k)%u_x  

            ftemp(:)=fbar(i,j,:) 

            rou_in=(2.d0*(ftemp(2)+ftemp(5)+ftemp(6))+(ftemp(0)+ftemp(1)+ftemp(3)))/(1.d0-u_n) 

            fbar(i,j,4)=ftemp(2)+2.d0/3.d0*rou_in*u_n 

            fbar(i,j,7)=ftemp(5)+.5d0*(ftemp(1)-ftemp(3))+rou_in*u_n/6.d0-0.5d0*rou_in*u_t 

            fbar(i,j,8)=ftemp(6)-.5d0*(ftemp(1)-ftemp(3))+rou_in*u_n/6.d0+0.5d0*rou_in*u_t 

        end if 

        !Zou and He velocity boundary on South side 

        if(pBC_velocity(k)%id==4) then 
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            u_n=pBC_velocity(k)%u_y 

            u_t=pBC_velocity(k)%u_x  

            ftemp(:)=fbar(i,j,:) 

            rou_in=(2.d0*(ftemp(4)+ftemp(7)+ftemp(8))+(ftemp(0)+ftemp(1)+ftemp(3)))/(1.d0-u_n) 

            fbar(i,j,2)=ftemp(4)+2.d0/3.d0*rou_in*u_n 

            fbar(i,j,5)=ftemp(7)-.5d0*(ftemp(1)-ftemp(3))+rou_in*u_n/6.d0+0.5d0*rou_in*u_t 

            fbar(i,j,6)=ftemp(8)+.5d0*(ftemp(1)-ftemp(3))+rou_in*u_n/6.d0-0.5d0*rou_in*u_t 

        end if 

    end do 

end if 

 

end subroutine BC_treatment_vp 

 

!/////////////////////////////////////////////////////////////////// 

!BCTreatment(time) 

subroutine BC_Treatment_FH 

use ComPara, only: lx, ly 

use Node_data_D2Q9, only: pNode 

use BoundaryCondition 

implicit none 

integer :: y_n, x_e, y_s, x_w, y_nn, x_ee, y_ss, x_ww, i, j, k 

!real*8 :: tmp, xi, u_sf, f_star, c_squ, u_f, u_squ 

integer :: f1_i, minus_i, r_ff_x, r_ff_y, r_s_x, r_s_y 

 

  

 

!write(1,*) 'BCTreatment' 

!BC treatment by F_H method 

!!debug 

!write(*,*) '(10,1)' 

!write(*,*) pNode(10,1)%node(0:8) 

!write(*,*) '(10,2)' 

!write(*,*) pNode(10,2)%node(0:8) 

do k=1, size(pBC_FH)-1 

    i=pBC_FH(k)%i 

    j=pBC_FH(k)%j 

    if(pNode(i,j)%NodeType==2) then 

 

    !debug 

    !write(*,*) i,j 

  

    !fluid interface 

!.........compute upper and right next neighbour nodes with regard 

!         to periodic boundaries 
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          y_n = mod(j,ly) + 1 

          y_nn= mod(y_n,ly)+1 

          x_e = mod(i,lx) + 1 

          x_ee= mod(x_e,lx)+1 

 

!.........compute lower and left next neighbour nodes with regard to 

!         periodic boundaries 

 

          y_s = ly - mod(ly + 1 - j, ly) 

          y_ss= ly - mod(ly+1-y_s,ly) 

          x_w = lx - mod(lx + 1 - i, lx) 

          x_ww= lx - mod(lx+1-x_w,lx) 

           

      !BC treatment  

      !########################################### 

      !# 1 rate(1) 

      !########################################### 

 

       

      

      if(pBC_FH(k)%rate(1)>0.d0 ) then 

        !########################################### 

        !deal with rate(1) 

        f1_i=1 

        !x_ff 

        r_ff_x=x_w 

        r_ff_y=j 

        r_s_x=x_e 

        r_s_y=j 

        minus_i=3 

        call cal_BC_FH(i,j, 1, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

      end if 

      if(pBC_FH(k)%rate(3)>0.d0) then 

        f1_i=3 

        r_ff_x=x_e 

        r_ff_y=j 

        r_s_x=x_w 

        r_s_y=j 

        minus_i=1 

        call cal_BC_FH(i,j, 3, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

      end if 

       

      !########################################### 

      !# 2 rate(2) 
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      !########################################### 

       

      

      if(pBC_FH(k)%rate(2)>0.d0 ) then 

        !########################################### 

        !deal with rate(1) 

        f1_i=2 

        !x_ff 

        r_ff_x=i 

        r_ff_y=y_s 

        r_s_x=i 

        r_s_y=y_n 

        minus_i=4 

        call cal_BC_FH(i,j, 2, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

      end if 

      if(pBC_FH(k)%rate(4)>0.d0) then 

        f1_i=4 

        r_ff_x=i 

        r_ff_y=y_n 

        r_s_x=i 

        r_s_y=y_s 

        minus_i=2 

        call cal_BC_FH(i,j, 4, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

      end if 

 

      !########################################### 

      !# 3 rate(3) 

      !########################################### 

       

      

      if(pBC_FH(k)%rate(5)>0.d0 ) then 

        !########################################### 

        !deal with rate(1) 

        f1_i=5 

        !x_ff 

        r_ff_x=x_w 

        r_ff_y=y_s 

        r_s_x=x_e 

        r_s_y=y_n 

        minus_i=7 

        call cal_BC_FH(i,j, 5, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

      end if 

      if(pBC_FH(k)%rate(7)>0.d0) then 

        f1_i=7 
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        r_ff_x=x_e 

        r_ff_y=y_n 

        r_s_x=x_w 

        r_s_y=y_s 

        minus_i=5 

        call cal_BC_FH(i,j, 7, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

      end if 

 

       

      !########################################### 

      !# 4 rate(4) 

      !########################################### 

       

      

        if(pBC_FH(k)%rate(6)>0.d0 ) then 

            !########################################### 

            !deal with rate(1) 

            f1_i=6 

            !x_ff 

            r_ff_x=x_e 

            r_ff_y=y_s 

            r_s_x=x_w 

            r_s_y=y_n 

            minus_i=8 

            call cal_BC_FH(i,j, 6, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

        end if 

        if(pBC_FH(k)%rate(8)>0.d0) then 

            f1_i=8 

            r_ff_x=x_w 

            r_ff_y=y_n 

            r_s_x=x_e 

            r_s_y=y_s 

            minus_i=6 

            call cal_BC_FH(i,j, 8, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

        end if 

       

    end if   

 

end do 

!!debugging 

!write(*,*) '(10,1)' 

!write(*,*) pNode(10,1)%node(0:8) 

!write(*,*) '(10,2)' 

!write(*,*) pNode(10,2)%node(0:8) 
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!write(1,*) 'BCTreatment' 

!write(*,*) 'BCTreatment' 

end subroutine BC_Treatment_FH 

!/////////////////////////////////////////////////////////////////// 

!used for Loop BC treatment 

subroutine cal_BC_FH(i,j, rate, f1_i,r_ff_x, r_ff_y,r_s_x, r_s_y, minus_i) 

use ComPara, only:  CP_cs_sq, fun_cal_rate, omega 

use Node_data_D2Q9, only: fbar, macro, D2Q9_c, D2Q9_weight 

 

implicit none 

integer :: i,j, rate, f1_i, r_ff_x, r_ff_y, r_s_x, r_s_y, minus_i 

real*8  :: tmp, xi, u_sf, u_w, f_star, c_squ, u_f, u_squ 

        u_w=0.d0 

        c_squ = CP_cs_sq 

        tmp = fun_cal_rate(i,j,rate) 

        ! 0<q<0.5 

        if(tmp<0.5d0 .AND. tmp>0.d0) then 

            xi=omega*(2.d0*tmp-1.d0)/(1.d0-2.d0*omega) 

            ! here is u_sf*c_i instead of u_sf 

            ! i=1 

            u_sf=(D2Q9_c(f1_i,1)*macro(r_ff_x,r_ff_y,2) +D2Q9_c(f1_i,2)*macro(r_ff_x,r_ff_y,3)) 

        ! 0.5<=q<=1 

        else if (tmp>=0.5d0 .AND. tmp<1.d0) then 

            xi=2.d0*omega*(2.d0*tmp-1.d0)/(2.d0+omega) 

            u_sf=(1.d0-1.5d0/tmp)*(D2Q9_c(f1_i,1)*macro(i,j,2) & 

            +D2Q9_c(f1_i,2)*macro(i,j,3))+1.5d0/tmp*u_w 

        else 

            write(*,*) 'check pNode rate(k)',i,j,rate,tmp 

        end if 

        u_f=D2Q9_c(f1_i,1)*macro(i,j,2)+D2Q9_c(f1_i,2)*macro(i,j,3) 

        u_squ=(macro(i,j,2) ** 2.d0+macro(i,j,3)**2.d0) 

        f_star=D2Q9_weight(f1_i)* macro(i,j,1) * (1.d0 + u_sf / c_squ & 

              + u_f ** 2.d0 / (2.d0 * c_squ ** 2.d0) - u_squ / (2.d0 * c_squ)) 

        fbar(i,j,minus_i)=(1.d0-xi)*fbar(i,j,f1_i)+xi*f_star 

!        pNode(r_s_x,r_s_y)%node(minus_i)=(1.d0-xi)*pNode(i,j)%node(f1_i)+xi*f_star 

         

end subroutine cal_BC_FH 

 

 

!/////////////////////////////////////////////////////////////////// 

!calculate the macroscope variables and the equilibrium functions feq 

subroutine cal_macro 

use ComPara, only: lx, ly, fun_is_fluid, density, CP_cs_sq, gamma 

use Node_data_D2Q9, only: fbar, feq, macro, D2Q9_weight 
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implicit none 

integer i,j,k 

real*8 :: u_n(8),u_x, u_y, u_squ, c_squ, d_loc, u_max 

 c_squ = CP_cs_sq 

! calculate the gamma 

!macro(:,:,1)=dsqrt(macro(:,:,2)*macro(:,:,2)+macro(:,:,3)*macro(:,:,3)) 

!u_max=MAXVAL(macro(:,:,1)) 

!gamma=(10.d0*dsqrt(3.d0)*u_max)**2 

!write(*,*) "gamma=",gamma 

do i=1,lx,1 

    do j=1,ly,1 

        !------------calculate the macroscopic variables 

        d_loc=sum(fbar(i,j,:)) 

        if( d_loc>0.0d0 .and. fun_is_fluid(i,j)) then 

            macro(i,j,1)=d_loc 

            macro(i,j,2)= ((fbar(i,j,1)+fbar(i,j,5)+fbar(i,j,8)) & 

           -(fbar(i,j,3 ) + fbar(i,j,6 ) + fbar(i,j,7 ))) / d_loc 

            macro(i,j,3)=((fbar(i,j,2)+fbar(i,j,5)+fbar(i,j,6))& 

           -(fbar(i,j,4 ) + fbar(i,j,7 ) + fbar(i,j,8 )))/ d_loc 

       else 

            macro(i,j,1)=density 

            macro(i,j,2:3)=0.d0 

        end if 

        !------------upgrade the equilibrium functions feq 

        d_loc=macro(i,j,1) 

        u_x  =macro(i,j,2) 

        u_y  =macro(i,j,3) 

        u_n(1) =   u_x 

        u_n(2) =         u_y 

        u_n(3) = - u_x 

        u_n(4) =       - u_y 

        u_n(5) =   u_x + u_y 

        u_n(6) = - u_x + u_y 

        u_n(7) = - u_x - u_y 

        u_n(8) =   u_x - u_y 

        u_squ = u_x * u_x + u_y * u_y 

        feq(i,j,0) = D2Q9_weight(0) * d_loc * (1.d0 - u_squ / (2.d0 * c_squ)) 

        do k=1,8 

            feq(i,j,k)=D2Q9_weight(k) * d_loc * (1.d0 + u_n(k) / c_squ & 

                    + u_n(k) ** 2.d0 / (2.d0 * c_squ ** 2.d0) & 

                    - u_squ / (2.d0 * c_squ) ) 

        end do 

         

    end do 
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end do 

 

 

end subroutine cal_macro 

 

 

!/////////////////////////////////////////////////////////////////// 

!check(time) 

subroutine check(time,tic,toc,ti) 

use ComPara, only: lx, ly, CP_L2_err 

use Node_data_D2Q9, only: macro 

 

implicit none 

integer :: time,ti 

real*8  :: tic,toc 

real*8 :: d_loc,t 

 character*13 ::  char_time 

 integer :: temp(4) 

 

 call CPU_time(toc) 

 d_loc=toc-tic 

 t=d_loc/float(3600)!xxx.xxx hours left 

 temp(1)=int(t) 

 t=(t-float(temp(1)))*float(60)!xxx.xxx mins left 

 temp(2)=int(t) 

 t=(t-float(temp(2)))*float(60) 

 temp(3)=int(t) 

 t=(t-float(temp(3)))*float(100) 

 temp(4)=int(t) 

 write(char_time,'(I4.4,a,I2.2,a,I2.2,a,I2.2)')temp(1),":",temp(2),":",temp(3),":",temp(4) 

 

d_loc=sum(macro(:,:,1)) 

 

if(mod(ti,25)==1) then 

    write(* ,'(/,a,4x,a,2x,a,2x,a)')"time(sec)", "iteration","  density","rsd-density  rsd-x       rsd-y" 

!    write(9 ,'(/,a,4x,a,2x,a,2x,a)')"time(sec)", "iteration","  density","rsd-density  rsd-x       

rsd-y" 

end if 

 

write(*,'(a,i8,f12.4,3e12.3)') char_time, time,  d_loc, CP_L2_err(1:3) 

write(9,'(a,i8,f12.4,3e12.3)') char_time, time,  d_loc, CP_L2_err(1:3) 

 

end subroutine check 
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!/////////////////////////////////////////////////////////////////// 

!calculate the L2 relative error 

subroutine cal_L2_error 

use ComPara, only: lx, ly, CP_L2_err, fun_is_fluid 

use Node_data_D2Q9, only: macro, macro_temp, pNode 

implicit none 

integer :: i,j 

real*8  :: err1(3), err2(3) 

!real*8 :: d_loc,t 

err1=0.d0 

err2=0.d0 

do i=1,lx 

    do j=1,ly 

        if(fun_is_fluid(i,j)) then 

            err1(:)=err1(:)+(macro(i,j,:)-macro_temp(i,j,:))**2 

            err2(:)=err2(:)+(macro(i,j,:))**2 

        end if 

    end do 

end do 

 CP_L2_err(:)=dsqrt(err1(:)/err2(:)) 

 macro_temp=macro 

 

end subroutine cal_L2_error 

!////////////////////////////////////////////////////////// 

! function my_mod 

real*8 function my_mod(a,p) 

implicit none 

real*8 a,p !, my_mod 

my_mod=a-int(a/p)*p 

end function my_mod 

 

 

!////////////////////////////////////////////////////////// 

! function fun_is_fluid(i,j) 

! determine whether point is fluid or not 

 

 

logical function fun_is_fluid(i,j) 

!use ComPara 

use Node_data_D2Q9, only: pNode 

implicit none 

integer :: i,j 

!logical fun_no_fracture 

if(pNode(i,j)%NodeType==0 .OR. pNode(i,j)%NodeType==2 .OR. pNode(i,j)%NodeType==6) then 
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 fun_is_fluid=.True. 

 else 

 fun_is_fluid=.False. 

end if 

 

end function fun_is_fluid 

 

!////////////////////////////////////////////////////////// 

! calculate the rate(i,j,k) 

real*8 function fun_cal_rate(i,j,k) 

!use ComPara 

use Node_data_D2Q9, only: pNode 

use BoundaryCondition, only: pBC_FH 

implicit none 

integer :: i,j,k 

 

 

if(pNode(i,j)%NodeType==2 .OR. pNode(i,j)%NodeType==3) then 

 fun_cal_rate=pBC_FH(pNode(i,j)%rate_ij)%rate(k) 

 else 

 fun_cal_rate=0.d0 

end if 

 

end function fun_cal_rate 

 

!////////////////////////////////////////////////////////// 

! function fun_4point_case(i,j) 

! determine whether point is fluid or not 

 

 

integer function fun_4point_case(i,j) 

use ComPara, only: fun_cal_rate, fun_point_number 

use Node_data_D2Q9, only: pNode 

implicit none 

integer :: i,j 

 

    if( fun_cal_rate(i,j,5)<=0.5d0 & 

     .AND. fun_cal_rate(i+1,j,6)<=0.5d0 & 

     .AND. fun_cal_rate(i+1,j+1,7)<=0.5d0 & 

     .AND. fun_cal_rate(i,j+1,8)<=0.5d0 ) then 

     if( pNode(i,j)%NodeType==2) then 

     if(fun_cal_rate(i,j,5)>0.d0) then 

     fun_4point_case=1 

     else 
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     fun_4point_case=2 

     end if 

     else if ( pNode(i,j)%NodeType==3) then 

     if(fun_cal_rate(i,j,5)>0.d0) then 

     fun_4point_case=3 

     else 

     fun_4point_case=4 

     end if 

     end if 

    else 

    open(1, file='.\results\fun_4point_case.dat',ACCESS ='append') 

    write(1,*) "fun_4point_case",i,j 

    close(1) 

     write(*,*) "in function fun_4point_case: rate(5:8)>0.5d0 has been found in", i,j 

    end if 

 

 

end function fun_4point_case 

 

 

!////////////////////////////////////////////////////////// 

!function fun_distance(x1,y1,x2,y2) 

! calculate the distance between (x1,y1) and (x2, y2) 

! 

real*8 function fun_distance(x1,y1,x2,y2) 

implicit none 

real*8 :: x1, x2, y1, y2 

fun_distance=DSQRT((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)) 

 

 

end function fun_distance 

 

 


