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Abstract 

 

This thesis investigates the structure and function of three enzymes of biotechnological 

and biomedical interest: telomerase from Caenorhabtidis elegans, pectate lyase from 

Bacillus subtilis and the methyltransferase CobJ from Rhodobacter capsulatus.  

 

Telomerase is a ribonucleoprotein found in all eukaryotes and its function is to maintain 

telomere length, sustain chromosome integrity and circumvent the end-replication 

problem. The protein requires two subunits to function, telomerase reverse transcriptase 

(TERT), the catalytic component, and an intrinsic RNA template (TR). The TR makes 

telomerase a unique reverse transcriptase using the template in the synthesis of short 

iterative sequences which cap the ends of telomeres. This work reports the successful 

cloning of a small and therefore potentially crystallisable TERT from C. elegans and 

expression trials of this catalytic component. 

 

Cobalamin (vitamin B12) is an intricate small molecule belonging to a group of 

compounds called cyclic tetrapyrroles. Its biosynthesis is achieved through a complex 

pathway encompassing over thirty different enzyme-mediated reactions. Within this 

pathway there are seven methyltransferases which add eight S-adenosyl-methionine 

(SAM) derived methyl groups to the macrocycle. CobJ catalyses the methylation of C17 

and ring contraction at C20, this reaction which exudes C20 from the tetrapyrrole ring is 

unprecedented in nature. In this thesis I report the crystallisation of native CobJ and 

refinement and validation of a high resolution structure along side co-crystallisation and 

soaking experiments aimed at capturing an enzyme-tetrapyrrole complex. 

 

Pectate lyase (BsPel) is an enzyme secreted from the bacterium B. subtilis, it is one of 

many enzymes secreted by plant pathogens that is responsible for soft rot disease in 

plants and vegetables. The lyase utilises anti β-elimination chemistry to cleave an α-1,4-

glycosidic link present in polygalacturonate the major component of the plant cell wall. 
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The structure of BsPel in complex with hexagalacturonate and a cobalt metal has been 

solved confirming the position and role of the putative catalytic base Arg 279 in the 

abstraction of a proton from C5 in galacturonate. 
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In this Thesis the structural studies of three enzymes are described. The first results 

chapter focuses on the cloning and expression of the protein subunit of telomerase 

reverse transcriptase (TERT). A small telomerase was chosen for study since it may be 

easier to produce and crystallise and yet still would illuminate the general principles of 

telomerase action. The next chapter details the structural studies on the 

methyltransferase CobJ specifically the refinement of a high resolution structure of CobJ 

and the synthesis of tetrapyrroles for the production of CobJ-tetrapyrrole complexes in 

the crystal to understand the process of ring contraction, which is unique to cobalamin 

and catalysed by the enzyme CobJ. In the last results chapter I detail the production and 

structure of a Michaelis complex of pectate lyase (BsPel) that illuminates the mechanism 

of this enzyme. This introduction mirrors the three results chapters by providing first 

background on telomerase before describing the cobalamin methyltransferase CobJ and 

finally pectate lyase. 

 

 

1.1 Introduction: Telomerase 

 

1.1.2 Telomerase and the end replication problem 

 

DNA replication is a fundamental biological process that requires extreme accuracy in 

order to preserve the integrity of the genome from generation to generation. Replication 

occurs at a specific point called the origin where the DNA double strands unwind 

forming a replication fork, a leading strand and a lagging strand. In eukaryotes the DNA 

is linear and due to the uni-directional action of polymerase and the requirement for 

RNA primer initiation via RNA primase, the resultant daughter strands from the parental 

lagging strand will have DNA information compromised at its most 5’ end (see Figure 

1.1.1). Continuation of such a trend would ultimately lead to gradual shortening of 

telomeres and eventual loss of chromosomal DNA and cell senescence (Watson 1972; 

Blackburn 1984). 
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Nature has developed a way to combat the end-replication problem by capping the ends 

of chromosomes with short repetitive DNA sequences thereby maintaining telomere 

length. Human telomeres are made up of tandem repeats of TTAGGG nucleotides and 

can range from 15 to 20 kbp at birth and can be reduced to 5 kbp during chronic disease 

(Collins 2000). In order for telomeres to remain protected and prevent them from being 

recognised as broken or damaged DNA, the ends form a T loop structure as a defence 

mechanism (Van steensel 1998). The enzyme responsible for catalysing the repeat 

synthesis of short tandem DNA repeats is telomerase and this enzyme action was first 

discovered in Tetrahymena (Greider 1985). Telomerase adds short G-rich iterative DNA 

sequences onto the 3’ ends of the parent strands allowing RNA priming and DNA 

replication of the extreme 5’ ends of daughter DNA strands (see Figure 1.1.2). 

Telomerase maintains the chromosome integrity by maintaining telomere length and 

preventing chromosome end-to-end fusion, without telomerase telomeres will become 

successively shorter after every cell division which leads to loss of DNA information 

and eventually replicative senescence.  
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Figure 1.1.1 Diagram depicting the end-replication problem. Double stranded DNA unwinds 
forming a replication fork separating the strands into a leading strand and a lagging strand. 
Due to the uni-directional 5’-to-3’ action of DNA polymerase formation of Okazaki 
fragments occur requiring the removal of primers and joining of fragments via ligase. 
Lagging strand synthesis requires RNA priming and at the most 5’ end of the daughter 
strand chromosomal DNA is not copied, figure adapted from (Fanti 1999).  
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Figure 1.1.2 Telomerase action provides the ability to cap and maintain telomere length by 
synthesising tandem repeats of a short sequence specific for different organisms. To help 
circumvent the end replication problem telomerase adds these short repeats to the 3’ end of 
parental strands providing RNA primer initiation and allowing DNA polymerase to read 
through to the portion of DNA not copied and filling in the gap at the 5’ end of the daughter 
strand, figure adapted from (Autexier 2006). 
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1.1.3 Telomerase independent survival 

 

Telomerase dependent chromosomal DNA maintenance is by far the most widely 

studied mechanism for telomere replication and in most cases upregulation of telomerase 

is found in cancer cells. However, it has been shown in 10-15 % of cancer cells 

continual telomere lengthening was achieved by an alternative mechanism other than 

telomerase action, called alternative lengthening of telomeres (ALT) (Cesare 2010). 

ALT uses recombinational telomere elongation and due to the repetitive nature of 

telomeres these loci are prone to intra- and interchromosomal recombination. Studies 

have shown Sacchromyces cerevisiae and Kluyveromyces lactis mutants lacking 

telomerase activity use ALT mechanisms (Lundblad 1993). 

 

1.1.4 Telomerase reverse transcriptase subunit 

 

Telomerase is an unusual reverse transcriptase since it possesses its own RNA template, 

telomerase RNA (TR), which it reverse transcribes from. This subunit along with 

telomerase reverse transcriptase (TERT) are the two subunits which are minimally 

required for enzymatic function. Together they work in tandem to synthesise short DNA 

telomere repeats (Shay 2002). 

 

TERT is the catalytic protein subunit of telomerase identified in a number of organisms 

including humans, mice, plants, yeast and ciliated protozoa. The gene for TERT was 

initially cloned from the yeast S. cerevisiae and the ciliated protozoa Euplotes 

aediculatus (Lingner 1996; Lingner 1997). Sequence comparison studies have shown 

telomerase carries the same seven conserved motifs in the central region of TERT (see 

Figure 1.1.3) that are universally common in all reverse transcriptases (Lingner 1997). 

Within the central region of TERT are sequence motifs A and C which appear to harbour 

three aspartate residues important for catalysis also commonly found in other reverse 
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transcriptases (RTs) such as HIV-1 RT. These motifs are needed for metal binding and 

polymerase chemistry (Joyce 1994). 

 

 

 

 

 
 
 

Figure 1.1.3 N-terminal (NTE) and C-terminal domain (CTE) highlighted in yellow and 
green respectively. (a) General reverse transcriptases possess a thumb and fingers and palm 
domains with seven conserved motifs in the central domain. Insertion in fingers domain 
(IFD) is found between A and B’. (b) TERTs have a similar structure; the only difference is 
the addition of a large NTE domain separated into a distal and proximal NTE domain joined 
by a linker and a smaller CTE domain. 
 

The difference in structural features which sets telomerase and other RTs apart is a large 

insertion between two of the conserved motifs termed A and B’. In retroviral RTs the 

distance between the two motifs is 20 residues, in TERTs the distance between A and B’ 

ranges from 70 to 120 residues. Since the two motifs are situated in a region called the 

palm and fingers this insertion is also known as the insertion in fingers domain (IFD). It 

is thought that IFD is involved in RNA recognition and telomere lengthening (Lue 

2003).  

 

Other than the central region of TERT harbouring the seven motifs, there are also N- and 

C-terminal domains present which serve to provide the different functions of telomerase 

including maintaining telomere length, integrity and structure. The N-terminal region is 

approximately 400 amino acids in size and can be divided into two portions; distal and 

proximal which are separated by a large linker. The C-terminal domain is smaller in size 

typically 150 amino acids, this holds true for the majority of TERTs examined in a 

number of studies (Nakamura 1997; Bryan 2000). Two motifs found in the proximal N-

terminus are T and CP motifs which are highly conserved among phylogenetic groups 

1 2 A    B’ C D E 

Fingers and palm Thumb 

  Linker 

(a) 

(b) 

NTE NTE RT Motifs CTE 

 IFD 
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and they appear to be essential for RNA recognition and binding, together these motifs 

make up the RNA-binding domain (Lai 2001). Both T and CP motifs are involved in 

telomerase RNA binding, however they appear to bind non-template regions of TR and 

allow the securing of TR to TERT whilst allowing RNA to move through the active site 

as confirmed by mutational studies (Bryan 2000). In humans and Tetrahymena an 

additional RID2 (RNA interaction domain 2) is found in the proximal N-terminus 

involved in RNA template interactions regulating telomerase assembly. It contains a 

vertebrae specific RNA binding motif and RID2 mutants failed to reconstitute activity 

(Moriarty 2002). 

 

RNA interaction domain 1 (RID1) is found in the distal portion of the N-terminus 

separated from RID2 via a linker. RID1 appears to be involved in repeat addition 

processivity and provides an anchoring point for TR (Moriarty 2004). Within RID1 

region is a sequence named N-DAT, which has been reported to dissociate the biological 

and catalytic activities of telomerase (Counter 1998) and may be important for the 

recruitment of telomerase to telomeres. Studies have suggested that RID1 may work in 

tandem with the C-terminal of TERT which is implicated in repeat addition processivity 

and physical interactions with RID1.  

 

The yeast catalytic subunit is encoded by the EST2 (ever shorter telomeres) gene. 

Mutational analysis revealed shortening of telomeres and senescence in yeast and so it 

was confirmed as the TERT component of telomerase, termed Est2p (Lingner 1997). As 

with other reverse transcriptases, conserved aspartates in motifs A and C are essential 

for catalytic activity. Within the proximal N-terminal region of yeast, motif GQ has been 

identified as essential for telomerase catalysis and sequence motifs CP and QFP are 

required for efficient binding of TR (Bosoy 2003). 

 

In summary TERT is generally made up of four domains including the central portion of 

TERT harbouring the common RT motifs, distal and proximal N-terminal domains and 
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the C-terminal domain (Autexier 2006). Within these domains are characteristic 

sequences making up motifs which carry specific telomerase activities as summarised in 

Table 1.1.1, motifs A and C are commonly found in all RTs.  

 

Domain Sequence motif Suggested Function 

RT motif A and C (across all 

TERTs) 

Catalysis 

IFD (across all TERTs) TR recognition and telomere 

lengthening 

Proximal N-terminal T and CP (across all 

TERTs) 

Binding of non-template regions 

TR 

RID2 (humans) Interacts with TR and regulates 

telomerase assembly 

CP (yeast and 

tetrahymena) 

Catalysis and efficient binding 

TR 
QFP (yeast) 

Distal N-terminal RID1 (humans) Repeat addition processivity 

N-DAT (humans) Recruitment of telomerase to 

telomeres 

GQ (yeast) Catalysis and efficient binding 

TR 

C-terminal None (humans and yeast) Repeat addition processivity 

Table 1.1.1 Summary of the domains and sequence motifs found in TERT and their 
suggested functions and roles in telomerase activity. 
 

1.1.5 Telomerase RNA domain 

 

As mentioned earlier telomerase uses an intrinsic telomerase RNA template to reverse 

transcribe G-rich portions of tandem DNA repeats which are added onto the 3’ ends of 
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telomeres. TR was first discovered in T.thermophila (Yu 1990) and subsequently 

identified in several ciliates, yeast and vertebrates. The size of TR varies widely from 

150 nucleotides to over 1300 nucleotides in fungi and the primary sequence of TR 

differs greatly with little sequence homology between groups, but within groups that are 

closely related there are some sequence similarities. Phylogenetic analysis has revealed a 

number of conserved secondary structures making up the core of TR including a 

template from which telomeric repeats are synthesised which are approximately eight to 

eleven nucleotides long, a 5’ template boundary that regulates the sequence to be 

transcribed and a putative pseudoknot structure, which together make up a large loop 

structure by base pair interaction (Romero 1991).  

 

To accomplish template recognition, template boundary sequences are used to enable 

proper template usage essential for the synthesis of the correct telomere repeats. In most 

vertebrates long-range base pair interaction forms a P1 helix. In humans, this is divided 

into two regions; helix P1a and P1b connected via an internal loop. Helix P1 was 

suggested to have a role in defining the template boundary. To test the function of the P1 

helix in humans, truncations of bases were made at various points at the 5’ and 3’ ends 

and were used in telomerase reconstitution experiments. The results showed helix P1b 

and P1a were required for correct template utilisation and are critical for template 

boundary definition (Chen 2003a). In human TR the pseudoknot and a domain called 

CR4/CR5 are needed for catalytic activity and TERT binding. The CR4/CR5 domain 

consists of two helices and a hairpin loop (p6.1). The hairpin is thought to be important 

for protein interaction (Tesmer 1999; Moriarty 2004). The pseudoknot structure in 

human TR is highly conserved and is required for telomerase activity, it includes the 

template region, template boundary region and a folded extended helical arrangement 

making the pseudoknot (Theimer 2005), see Figure 1.1.4.  

 

Various studies ranging from phylogenetic and mutational analyses to NMR have all 

contributed towards the uncovering of a number of TRs and structures of TR domains. 
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In Tetrahymena telomerase a sequence termed TRE was suggested as the regulating 

element. Mutation of the TRE sequence prevents effective rounds of telomeric repeat 

synthesis, but it is still able to bring the template to the active site of telomerase. The 

mutated TRE sequence prevents accurate priming and in return disallows the promotion 

of repeat addition processivity (Miller 2002). Another region is T. thermophila  

identified as being important for defining proper template boundary include the tight 

helix stem-loop II (Richards 2006a). Another TR structure domain from T.thermophila 

identified is the stem-loop IV, this region has been linked to TERT binding and proper 

pseudoknot folding and processivity. This domain forms a helical structure with a highly 

kinked region and deletion of this region renders the telomerase inactive, and therefore 

stem-loop IV must be kinked in order to function (Sperger 2001; Richards 2006b), see 

Figure 1.1.4.  

 

Yeast TR otherwise known as TLC1 telomerase RNA from S. cerevisiae is one of the 

largest at 1157 nucleotides long. The structure contains three large arms that originate 

from the central core enclosing the template and Est2p the binding site of yeast TERT, 

see Figure 1.1.4. Although TLC1 is large in size and possesses long arms, studies have 

shown that a smaller approximately 500 nucleotide long mini TR consisting of the 

template, Est1p, Est2p and Ku arm is able to still function and maintain activity in vivo 

and in vitro, however telomeres were shortened and overall cell fitness was reduced 

(Zapulla 2005). The Est1p and Ku arm appears to be a DNA binding motif which helps 

recruit telomerase to the telomere ends (Peterson 2001; Lundblad 2003).  
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Figure 1.1.4 TRs do not have highly conserved sequences and the sizes vary widely however 
their secondary structures hold some similarity and a common core consists of a template 
region, pseudoknot (blue) and template boundary (red). The trans activation domain is 
shown in green. Here the TRs for human, Saccharomyces and Tetrahymena are shown. In 
humans the P1a and P1b helix defines the template boundary and the psuedoknot and 
CR4/CR5 structure are required for catalytic activity. In T. thermophila the template 
boundary, TRE and stem-loop II helix has been identified and without these elements 
effective rounds of telomere synthesis can not take place. S. cerevisiae TR is one of the 
largest possessing long arms Est1p, Est2p and Ku. Est2p is the binding site for TERT 
and the Ku and Est1p arms help recruit telomerase to the ends of telomeres (Autexier 
2006). 
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1.1.6 Repeat addition processivity 

 

Repeat addition processivity is a unique biochemical attribute of telomerase and the 

mechanism can be broken down into two types of movement; after each nucleotide 

addition the RNA-DNA complex is simultaneously translocated away from the active 

site and translocation of the RNA template occurs to realign the 3’ end of DNA to 3’ end 

of RNA after each cycle of template copying. The first type of movement has been 

referred to as type I and the second movement as type II translocation. Type I nucleotide 

addition is common in all RTs and type II nucleotide repeat addition processivity is only 

found in telomerase (Collins 1999; Chen 2003b).  

 

The large insertion between motifs A and B’ (IFD) located in the RT domain (see Figure 

1.1.3) is required for telomerase function in vivo and in vitro in S. cerevisiae. 

Mutagenesis analysis revealed residues important for primer utilisation and type II 

translocation (Lue 2003). Another domain identified as important for processivity is 

RID1 located in the distal portion of N-terminal domain (RNA interaction domain) in 

human TERT, it interacts with the conserved pseudoknot template in human TR 

(Moriarty 2004). The C-terminal domain of TERT in humans and S. cerevisiae has also 

been recognized as essential for telomerase catalytic activity and repeat addition 

processivity (Huard 2003). In total there are three groups of TERT domains or motifs 

that have been demonstrated to promote repeat addition processivity; IFD, RID1 and C-

terminal domain. 

 

Elongation requires the alignment of the 3’ end of telomere-primer and TR-template 

facilitated by an anchor site in TERT. Once the template has been copied the extended 

telomere dissociates and realigns to the 3’ end of the template, see Figure 1.1.5 (Chen 

2003b). The anchor site is predicted to prevent dissociation of telomerase from its DNA 

substrate during the translocation step of repeat addition processivity; the anchor site 

may also facilitate alignment or positioning of primers in the active site and promote the 
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elongation of partially telomeric and non-telomeric substrates (Harrington 1991; Morin 

1991; Wang 1998). 

 

 

 
Figure 1.1.5 A model for the repeat addition processivity mechanism for human telomerase. 
An anchor site tethers the incoming telomere-primer allowing binding to the TR template 
region. The annealed primer is then elongated followed by dissociation and re-alignment of 
telomere to the 3’ end of TR facilitated by base pair interaction (as represented by the 
dashed lines). The final step is the release of lengthened telomere ends (Chen 2003b).  
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1.1.7 Biomedical significance  

 

Telomeres are thought to be the marker that controls the number of cell divisions that a 

given cell can complete. The Hayflick limit describes the phenomena of the number of 

times a cell is able to divide before the cell stops dividing. The number of times a cell 

can divide is linked to the length of the telomeres (Hayflick 1961). Telomerase can 

provide cells with immortality and in doing so, allow cancerous cells to proliferate.  

 

Telomerase activity is low or undetectable in somatic cells (Wright 1996) but is found 

active in highly proliferative stem cells, germline, epithilial  and haemopoietic cells 

(Forsyth 2002). Interestingly telomerase activity is upregulated in the majority of cancer 

cells by approximately 90 %. Screening carried out shows most types of human cancer 

are associated with the presence of telomerase activity and malignancy (Shay 1997). 

 

Since many cancers have active telomerase function it provides a motivation for cancer 

therapy development as a drug target. If successful, telomerase can be down-regulated in 

cancerous cells.  
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1.2 The cobalamin methyltransferase CobJ 

 

Vitamin B12 biosynthesis is achieved via an intricate and complicated pathway 

harbouring approximately 30 enzyme-mediated reactions. CobJ is one of many enzymes 

in the vitamin B12 pathway and acts as a methyltransferase as well as performing an 

auxiliary reaction catalysing a unique ring contraction step unprecedented in nature. The 

following sections discuss the cobalamin biosynthetic pathway and CobJ in more detail.  

 

1.2.1 Vitamin B12 pathway  

 

The ability to synthesise vitamin B12 (cobalamin), a cobalt-containing modified 

tetrapyrrole, is only seen in some archaea and eubacteria and no evidence suggests that 

eukaryotes can synthesise vitamin B12, although it is a known cofactor for a number of 

enzymes mediating methylation, reduction and intramolecular rearrangements (Kadner 

1977). Cobalamin is vital for some protists and humans but plants and fungi neither 

make nor use vitamin B12 and it appears to have no role in some bacterial metabolism 

(Roth 1996). Cobalamin was first isolated and crystallised in 1948 by two different 

groups (Rickes 1948; Smith 1948). The steps in the pathway include methylation, ring 

contraction, amidation and decarboxylation reactions (Scott 2003).  

 

Over time the synthesis of cobalamin has diverged into two routes; an aerobic pathway 

with late-on cobalt insertion and an anaerobic route with early-on cobalt chelation 

(Muller 1991; Frank 2005; Heldt 2005). In total there are eight methylations catalysed 

by six methyltransferases. The first methylations occur at two positions C2 and C7 

catalysed by S-adenosyl-L-methionine uroporphyrinogen III methyltransferase (SUMT) 

also known as CobA which forms precorrin-2 from uroporphyrinogen III (uro’gen III). 

Only after this point does the pathway take its separate paths into aerobic or anaerobic 

synthesis of cobalamin, see Figure 1.2.1 (Vevodova 2004). The anaerobic equivalent to 
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CobA is the enzyme CysG. For a summary of the other methyltransferases present in the 

aerobic and anaerobic pathway see Table 1.2.1. 

 

 
Figure 1.2.1 Incomplete vitamin B12 pathway showing the point of diversion from aerobic to 
an anaerobic pathway after the synthesis of precorrin-2 (Scott 2002). 
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Aerobic  Anaerobic Methylation position Product 

CobA CysG C2 and C7 Precorrin-2 

CobI CbiL C20 Precorrin-3a 

CobJ CbiH C17 Precorrin-4 

CobM CbiF C11 Precorrin-5 

CobF CbiD C1 Precorrin-6a 

CobL CbiE and CbiT C5 and C15 Precorrin-8 

Table 1.2.1 Methyltransferases present in the aerobic and anaerobic vitamin B12 pathway 
indicating the site of methylation and the corresponding product. 
 

 

1.2.3 Modified Tetrapyrroles 

 

All modified tetrapyrroles are derived from uroporphyrinogen III (uro’gen III) (Warren 

1990), see Figure 1.2.3, which is synthesised from two molecules of 5-aminoleavulinic 

acid (ALA) via a condensation reaction catalysed by HemB or ALA dehydratase 

forming porphobilinogen (PBG). The next step in the formation of uro’gen III is the 

polymerisation of four molecules of PBG via PBG deaminase or HemC forming 

preuroporphyrinogen, a linear tetrapyrrole. The final step is the generation of the 

unsymmetrical isomer uro’gen III via uro’gen III synthase (Warren 1990), see Figure 

1.2.2. 

 

        
Figure 1.2.2 Schematic diagram depicting the initial steps of uro’gen III production from 
ALA (Patrick 1996). 
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Vitamin B12 is a large, complex, modified tetrapyrrole belonging to a class of 

compounds called cyclic tetrapyrroles which includes haem, sirohaem, chlorophyll and 

cofactor F430, see Figure 1.2.3. The core of vitamin B12 consists of a corrin ring made up 

of four pyrrole subunits and in the middle of this ring is a cobalt metal making four 

bonds with the pyrrole group nitrogens. Cobalamin is generally found in three forms 

adenosylcobalamin involved in reductase and rearrangement reactions, methylcobalamin 

involved in transfer of methyl groups between compounds (former and latter being 

biologically active forms) and cyanocobalamin (commercially prepared vitamin B12) 

(Ludwig 1997).  

 

 
Figure 1.2.3 All modified tetrapyrroles are derived from uro’gen III where it branches into 
different pathways undergoing transformation into either haem, coenzyme F430, sirohaem, 
chlorophyll or vitamin B12 (Warren 2002). 
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Adenosylcobalamin has a 5’ deoxyadenosyl moiety attached covalently to the upper 

(Coβ) axial ligand joining it to cobalt and the lower Coα axial ligand is 5,6- 

dimethylbenzimidazole attached covalently as a loop. Methylcobalamin and 

cyanocobalamin on the other hand have a methyl group and a cyanide in place of the 5’ 

deoxyadenosyl moiety respectively (Schneider 1987) see Figure 1.2.4. 

 

 
Figure 1.2.4 The structure cobalamin highlighting the corrin ring system, cobalt metal, lower 
axial ligand 5,6-methylbenzimidazole ribonucleotide and upper axial ligand shown with ‘X’ 
can be replaced by either 5’ deoxyadenosyl moiety, methyl group or cyanide in the case of 
adenosylcobalamin, methylcobalamin and cyanocobalamin respectively. The names 
referring to the derivatives of incomplete cobalamin are also shown (Warren 2002). 
 

 

1.2.4 Aerobic pathway 

 

As mentioned earlier, cobalamin biosynthesis is divided into two pathways, the 

difference in the two being the requirement for molecular oxygen and the timing of 

cobalt insertion. Since a component from the aerobic pathway was studied in this Thesis 

the next sections look at the steps of the aerobic pathway in more detail. 
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1.2.4.1 Conversion of uro’gen III into cobyric acid 

 

The branch point between the aerobic and anaerobic pathways occur after the production 

of precorrin-2; therefore the first step in the biosynthesis of cobalamin is the production 

of precorrin-2 in both routes. S-adenosyl-L-methionine uro’gen III methyltransferase 

(SUMT) encoded by CobA gene (Crouzet 1990), catalyses the conversion of uro’gen III 

into precorrin-2, also known as dihydrosirohydrochlorin, methylated at two positions C2 

and C7. The product is also thought to be the last common intermediate for the synthesis 

of all other modified tetrapyrroles apart from chlorophyll, see Figure 1.2.3.  

 

The committed step into aerobic synthesis is via the enzyme CobI which catalyses the 

SAM-dependant methylation at position C20 see Figure 1.2.5. This produces the 

tetrapyrrole precorrin-3a followed by the insertion of a hydroxyl group via CobG, which 

is characteristic of the aerobic pathway since there is a requirement for molecular 

oxygen during this step (Debussche 1993; Scott 1993). The next step is a ring 

contraction step with the exuding of C20 and methylation at C17 by CobJ forming 

precorrin-4 (Warren 2002). Precorrin-4 is converted to precorrin-5 by CobM, 

methylating at C11 followed by deacetylation of C1 methyl ketone and methylation at 

C1 via CobF provides precorrin-6a (Thibaut 1990; Debussche 1993). A NADPH 

dependant reduction of the C18-C19 double bond converts precorrin-6a to precorrin-6b 

catalysed by CobK followed by methylation at two positions, C5 and C15, by CobL 

(Blanche 1992). The corrin ring synthesis is complete after hydrogenobyrinic acid (HBA) 

is made via CobH isomerase with the rearrangement of C11 and C12 methyl groups 

(Thibaut 1990). With these steps in place the corrin ring is now complete forming 

cobyric acid; the next steps are the ring decoration steps which will form cobinamide. 
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1.2.4.2 Formation of cobinamide from cobyric acid 

 

The first reaction in the decoration of the corrin ring is catalysed by cobyrinic acid a,c-

diamide synthase (CobB), which converts cobyric acid to cobyrinic acid a,c-diamide 

with amide groups donated by glutamine to positions C2 and C7 producing 

hydrogenobyrinic acid a,c-diamide (Debussche 1990). The next stage is cobalt insertion 

by cobalt chelatase which consists of a complex CobN, S and T, as their separate entities 

the enzymes are inactive but together they catalyse the cobalt chelation step forming 

co(II)cobyric acid a,c-diamide intermediate late on in the pathway characteristic of the 

aerobic route (Debussche. 1992). CobR reduces co(II)cobyric acid a,c-diamide to Co(I) 

which is more nucleophilic and suitable for adenosylation by CobO. The adenosyl group 

is donated from ATP to the upper axial position of cobalt producing 

adenosylcob(III)yrinic acid a,c-diamide or ado-cobyrinic acid a,c-diamide (Debussche 

1991; Lawrence 2008). The last step of corrin ring decoration is the amidation of side 

chains via CobQ, see Figure 1.2.5 (Blanche 1991). After this point the aerobic and 

anaerobic pathways rejoin in their route to vitamin B12 biosynthesis and four more 

enzymes are required in the full conversion of uro’gen III to adenosylcobalamin.  
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Figure 1.2.5 Summary of the aerobic pathway and the enzymes involved in converting 
uro’gen III into adenosylcobalamin. The corrin ring synthesis requires the action of eight 
enzymes CobA through to CobH producing HBA (Heldt 2005).  
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1.2.4.3 Conversion of cobinamide into adenosylcobalamin 

 

The final steps of converting cobinamide into adenosylcobalamin are depicted in Figure 

1.2.6 with CobC/D, CobP and CobV. The first step is catalysed by CobC/D where 

aminopropanol from threonine is transferred to the propionic acid side chain of ring D, 

(see Figure 1.2.2) and this reaction requires R-1-aminopropan-2-ol and Mg2+/ATP for 

activity, producing adenosylcobinamide. Following this step is the phosphorylation of 

the intermediate by CobP and transfer of a guanidine monophosphate group from GTP 

giving rise to adenosylcobinamide-GDP (Blanche 1991; Crouzet 1991). The final step is 

the exchange of the guanidine monophosphate group with α-ribazole 5’-phosphate 

forming cobalamin 5’-phosphate and dephosphorylation of cobalamin 5’-phosphate 

generating adenosylcobalamin (Cameron 1991). 
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Figure 1.2.6 Diagram depicting the final common enzymatic steps for aerobic and anaerobic 
biosynthesis of adenosylcobalamin from Adenosyl cob(III)yrinic acid. 
 

 

1.2.5 Biological significance  

 

Cobalamin was first discovered in 1948 by its ability to cure pernicious anaemia, a 

condition where vitamin B12 is not absorbed into the body and a lack of red blood cells 

ensues (Smith 1948). In the present day, three classes of vitamin B12 enzymes have been 

recognised and these are adenosylcobalamin dependent isomerases, methylcobalamin 

dependent methyltransferases and the reductive dehalogenases. Humans require vitamin 
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B12 but are unable to synthesise it, in order to obtain the vitamin it is ingested through 

foodstuffs rich in the vitamin. The recommended daily intake of vitamin B12 is 

approximately 5 µg a day. In humans cobalamin is needed for methionine synthase 

(Allen 1993) and methylmalonyl CoA (Ledley 1990). Cobalamin deficiency can 

manifest as neurological dysfunction, pernicious anaemia and is associated with asthma, 

depression, multiple sclerosis and tinnitus. 
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1.3 Pectate lyase 

 

Pectate lyase is secreted from bacteria causing soft rot disease and crop spoilage.  The 

last results chapter in this Thesis focuses on the enzyme pectate lyase from Bacillus 

subtilis and the reaction mechanism used for cleavage of glycosidic bonds. 

 

 

1.3.1 Plant cell wall 

 

The cell wall is important for maintaining the form and structural elements of the plant, 

it is made up of two types of polysaccharide networks, pectin and cellulose (Carpita 

1993; Vincken 2003). The pectin network is the major component of the plant cell wall 

in dicotyledonous plants forming the middle lamella and is composed of up to 17 

different monosaccharides. The monosaccharides are organised into different smooth 

and hairy regions forming homogalacturonan (HGA), rhamnogalacturonan-I (RG-I) and 

rhamnogalacturonan-II polysaccharide backbones (RG-II) (O'Neill 1990; Mohnen 

1999). 

 

HGA is a polysaccharide made up of GalA (galacturonate) residues α-1,4 linked 

together and is synthesised by the Golgi apparatus followed by the deposition in the cell 

wall (Zhan 1998). RG-I is composed of a repeating backbone disaccharide 4)-α-D-

galacturonic acid-(1,2)-α-L-rhamnose(1 (Vincken 2003). RG-II has a backbone of at 

least eight GalA residues α-1,4 linked with four structurally distinct oligoglycosyl side 

chains of known consistent lengths attached to the backbone (Vidal 2000). Enzymes 

which degrade the cellulose and pectate network belong to two different classifications, 

the hydrolases and polysaccharide lyases, respectively. 

 
 
 
 



  Chapter One- Introduction
  
   

  44 

1.3.2 CAZy database 

 

A CAZy (Carbohydrate-Active Enzymes Database) classification system identifies each 

polysaccharide lyase as a member of a PL family based on the amino acid sequence 

similarities reflecting the structural features (Cantarel 2009). There are 22 families of 

polysaccharide lyases based on the CAZy classification database and only three types of 

topologies have been observed for pectate lyases, the (α/α)7 barrel in PL-2, parallel β-

helix observed in PL-1, 3 and 9 and (α/α)3 barrel in PL-10. BsPel belongs to the 

polysaccharide lyase family 1 (PL-1). All enzymes belonging to PL-1 carry out a β-

elimination reaction on the glycosidic bond with subsequent formation of a carbon-

carbon double bond at the non-reducing end. 

 
 
1.3.3 Pectic enzymes 
 
 
Enzymes secreted from plant pathogens cause devastating diseases in plants and 

vegetation such as soft rot which destroys the integrity of plant tissues. There are a 

number of enzymes capable of crop spoilage.   

 
Pectins are naturally degraded by pectic enzymes and there are three types of de-

esterifying enzymes known as; pectinesterases, depolymerising enzymes (hydrolases and 

lyases) and protopectinases. BsPel is a depolymerising enzyme, therefore the next 

sections cover hydrolase and lyase enzymes in more detail. 

 
 
1.3.3.1 Hydrolysis of the glycosidic bond 
 
 
In nature oligosaccharides and polysaccharides can be assembled in many different 

ways, adopting a multitude of stereochemical variations. Living organisms take 

advantage of this ability and use oligosaccharide and polysaccharides for specific roles 

in storage, structure and signalling (Laine 1994).  



  Chapter One- Introduction
  
   

  45 

 

Glycosidic bond hydrolysis commonly requires a proton donor and a nucleophile (base). 

There are two possible mechanisms, retaining and inverting which refer to the retention 

or inversion of the configuration about the anomeric carbon centre. In the former 

mechanism the base is in close vicinity of the sugar anomeric carbon and in the inverting 

reaction the base is further away to allow for the accommodation of a water molecule 

between the base and the sugar, see Figure 1.3.1. The positioning of the proton donor is 

the same for both retaining and reverting mechanisms where both proton donors are 

within hydrogen-bonding distance of the glycosidic oxygen (Davies 1995).  

 
 

 
 
Figure 1.3.1 The distances between the catalytic residues are 5 Å and 10 Å for retaining and 
inverting mechanisms respectively. (a) The inverting mechanism requires the attack of water 
molecule protonating the glycosidic oxygen. (b) In the retaining mechanism the glycosidic 
oxygen is protonated by an acid catalyst and a base assists in the departure of galacturosyl group 
(Williams 2009). 
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1.3.3.2 Elimination of the glycosidic bond 
 

Pectate lyases, otherwise known as pectate transeliminases, were first discovered in 

Erwinia carotovora and Bacillus polymyxa (Starr 1962). The enzyme is known to 

catalyse the eliminative cleavage of pectin (Carpita 1993). Unlike hydrolases, lyases 

have a basic pH optimum. The enzyme harnesses an anti β-elimination reaction which 

involves the abstraction of the α-proton from C5 of polygalacturonic acid resulting in 

the elimination of the β-leaving group and cleavage of the C4 glycosidic oxygen bond. 

This generates a 4,5-unsaturated galacturonosyl product residue at the non-reducing end 

of the polysaccharide see Figure 1.3.2. The reaction requires the presence of calcium 

ions (Collmer 1986). This mechanism uses a base in close vicinity to the C5 proton 

adjacent to the C4 glycosidic oxygen bond to be cleaved, previous studies have shown 

the base to be a conserved arginine, and mutation of this catalytic amino acid residue 

renders the enzyme inactive (Charnock 2002). Protonation of the leaving group is also 

expected to be a feature of a catalyst accelerating the rate of reaction.  

 
Figure 1.3.2 General anti β-elimination mechanism adopted by lyases making use of a 
catalytic base to abstract a proton from C5 cleaving the glycosidic bond, figure adapted from 
(Yip 2004). 
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1.3.4 The structures of polysaccharide lyases 

 

Pectate lyase PelC (Yoder 1993) and PelE (Lietzke 1994) both from Erwinia 

chrysanthemi  and BsPel from Bacillus subtilis (Pickersgill 1994) all have the then- 

unusual structure consisting of β strands folded into a large right-handed helix termed 

the parallel β-helix. Later another two topologies were identified in pecate lyase; (α/α)3 

barrel and (α/α)7. Other enzymes which break the glycosidic bond with the same parallel 

β-helix structure are summarised in Table 1.3.1. 

 

Enzyme Short name Origin Family Reference 

Pectate lyase PelC E. chrysanthemi PL-1 (Yoder 1993) 

 BsPel B. subtilis  (Pickersgill 1994) 

 PelE E. chrysanthemi  (Lietzke 1994) 

 PelA E. chrysanthemi  (Thomas 2002) 

 Pel-15 Bacillus sp. KSM-P15 PL-3 (Akita 2001) 

 PelI E. chrysanthemi  (Creze 2008) 

 Pn1B Aspergillus  niger  (Vitali 1998) 

 Pel9A E. chrysanthemi PL-9 (Jenkins 2004) 

Rhamnogalacturonase RGase A Aspergillus aculeatus PL-4 (Petersen 1997) 

Polygalacturonase PehA Erwinia carotivora GH-28 (Pickersgill 1998) 

Polygalacturonase II PG II A. niger  (Van Santen 1999) 

Pectin methylesterase PemA E. chrysanthemi CE-8 (Jenkins 2001) 

Table 1.3.1 Pectic enzymes with the parallel β-helix structure as identified from the 
CAZy database. The families which possess the parallel β-helix fold include pectate 
lyases (PL), carbohydrate esterases (CE) and glycoside hydrolases (GH). 
 
 
The crystal structure of PelC mutant in complex with a pentagalacturonate sugar has 

been solved and the fragment binds in a pocket interacting with positively charged 

amino acids and four calcium ions. From this structure Arg218 was highlighted as being 

responsible for initiating proton abstraction during β-elimination of the glycosidic bond, 

since the R218K mutation rendered the enzyme inactive (Scavetta 1999). 
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Cevibrio japonicus lyase Pel10A from PL-10 was solved revealing a topology that was 

predominantly α-helical with a distorted (α/α)3 barrel. A Michaelis complex of an 

inactive mutant with trigalacturonate and calcium ions bound confirmed the importance 

and catalytic activity of Arg254 (Charnock 2002). Comparison with an inactive mutant 

of Pel1C (Herron 2000) from the PL-1 family in complex with tetragalacturonate and 

calcium ions, revealed an identical location for the putative catalytic bases Arg254 and 

Arg218 for Pel10A and Pel1C respectively. The mechanism involving the use of an 

arginine acting as a base is supported by the observation of converging geometry in the 

active site as seen in the comparison between PL-10 and PL-1 family lyase structures 

(Charnock 2002).  

 

1.3.5 Industrial significance 

 

Pectate lyases play a pivotal role in recycling and remodelling of plant material which is 

important for maintaining the biosphere (Scavetta 1999). Apart from acting as 

cementing agents in the plant cell wall, pectins also play a role in the texture of fruits 

and vegetables. Industrially, pectic substances account for one-quarter of the world’s 

food enzyme production and are used frequently in the food industry for increasing the 

yield and clarity of fruit juices and as gelling components (Panchev 1988; Alkorta 

1998). Other areas of commercial use include the textile industry, fermentation of coffee 

and tea, oil extractions and treatment of pectic waste water (Kashyap 2001). There is 

potential to exploit the enzymes, rather than using crude preparations, for the more 

selective modification of pectins and the production of more specific pectin additives 

and ingredients.  In the developed world, phytopathogenic bacteria can devastate crops, 

Erwinia infections are now well established in Europe as the summers become milder 

and wetter, so inhibitors based on transition state analogues may be useful in protecting  

the security of our crop supply.
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2.1 Materials 

 

 

2.1.1 Water 

 

The water used for all crystallisation experiments was purified to 18.2 MΩ.cm (ddH2O) 

and all buffers were made up using water purified to 15.0 MΩ.cm (dH2O) both from 

Purelab ELGA water purifier system. For molecular biology molecular grade water was 

used where possible or autoclaved ddH2O. 

 

 

2.1.2 Plasmids 

 

All plasmids used for cloning were pET vectors from Novagen (Table 2.1) see Appendix 

1 for vector maps. 

Table 2.1 List of pET vectors used for molecular cloning.  
 

 

2.1.3 Polymerases 

 

A number of polymerases were used for cloning and site-directed mutagenesis reactions 

including KOD Hot start DNA polymerase (Novagen), PfuTurbo DNA polymerase 

(Stratagene) and HotStar Taq (Qiagen). 

Vector Promoter Antibiotic resistance Tags 

pET3d T7 ampicillin N terminal T7 tag 

pET14b T7 ampicillin N terminal His tag 

pET41 T7 lac kanamycin N terminal GST tag 

pETcoco2 T7 ampicillin N terminal His tag 
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2.1.4 Restriction Enzymes 

 

Restriction enzymes were used to cut specific sites by recognising characteristic 

sequences of nucleotides. Table 2.2 lists all the restriction enzymes and sites used. 

 

 

Restriction enzyme Restriction site 

NdeI 5’ CA/TATG 3’ 

3’ GTAT/AC 5’ 

BamHI 5’ G/GATCC 3’ 

3’ CCTAG/G 5’ 

XhoI 5’ C/TCGAG 3’ 

3’ GAGCT/C 5’ 

BlpI 5’ GC/TNAGC 3’ 

3’ CGANT/CG 5’ 

Table 2.2 The restriction enzymes and restriction sites used where ‘/’ indicate the site of 
cleavage (New England BioLab). 
 

 

2.1.5 Luria Bertani medium 

 

Medium used for bacterial cell growth was Luria Bertani medium (LB medium). 

Tryptone and yeast extract were obtained from Oxoid (Thermo Fisher Scientific, UK), salt 

was from Fisher scientific. LB was made up to one litre using deionised water 15.0 

MΩ.cm purity and autoclaved to sterilise, see below for details. 

 

Per Litre 

5 g NaCl 

10 g Tryptone 

10 g Yeast extract 
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Agarose plates were made using the same LB medium but with added 1.5 % agar 

(Sigma Aldrich) sterilised by autoclaving. 

 

 

2.1.6 Protein Purification 

 

2.1.6.1 Buffers 

 

All buffers were made using deionised water of 15.0 MΩ.cm purity and filtered using 

0.2 µm filter and buffers were pH corrected using 5 M NaOH or neat HCl using a 

MP230 pH meter from Mettler Toledo. For detailed composition of buffers used for 

protein purification see Tables 2.3 to 2.5. 

 

  

Buffer name Buffer composition pH 

Binding buffer 5 mM Imidazole 

20 mM Tris 

400 mM NaCl 

8.0 

Wash buffer I 50 mM Imidazole 

20 mM Tris 

400 mM NaCl 

8.0 

Wash II 100 mM Imidazole 

20 mM Tris 

400 mM NaCl 

8.0 

Elution buffer 400 mM Imidazole 

20 mM Tris 

400 mM NaCl 

8.0 

Table 2.3 The buffers required for nickel immobilised purification. Imidazole was from 
Sigma Aldrich, Tris and NaCl were from Fisher Scientific. 
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Buffer name Buffer composition pH Usage 

Buffer A 20 mM MES 6.0 Cation exchange 

Buffer B 20 mM MES 

1 M NaCl 

6.0 

Buffer A 20 mM Tris 

100 mM NaCl 

8.0 Size exclusion  

Wash  PBS 7.5 Glutathione sepharose 

Elution 10 mM reduced glutathione 

50 mM Tris 

8.0 

Low salt 20 mM Tris 

100 mM NaCl 

8.0 pd-10 

High salt 20 mM Tris 

500 mM NaCl 

8.0 

Activation Ethanol  

1 %  Acetic acid 

__ CP-18 

Wash 1 %  Acetic acid __ 

Elution 90 % Ethanol __ 

Table 2.4 The buffers used for various purification procedures. MES was from Fisher 
Scientific, PBS (phosphate buffered saline) tablets were purchased form Sigma-Aldrich and 
reduced glutathione was from Calbiochem. 
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Buffer name Composition pH 

Wash I 20 mM Tris 8.0 

Wash II 20 mM Tris 

100 mM NaCl 

8.0 

Wash III 20 mM Tris 

200 mM NaCl 

8.0 

Wash IV 20 mM Tris 

300 mM NaCl 

8.0 

Elution 20 mM Tris 

400 mM NaCl 

8.0 

Table 2.5 The buffers required for purification on a DEAE (Diethylaminoethyl Sephacol) 
column. 
 

 

2.1.6.2 Columns 

 

The different types of columns used during the entirety of this thesis are listed in Table 

2.6. All columns and resins were from GE Healthcare with exception to DEAE column 

which is from Sigma Aldrich and CP-18 column from Waters. 

 

Type of column Column name 

Size exclusion Superdex 200 10/300 GL 

Affinity  HiTrap chelating HP 

Affinity batch method Glutathione sepharose 

Immobilised nickel 

Ion exchange HiTrap SP HP 

DEAE 

Reverse phase CP-18 

De-salting  pd-10 

Table 2.6 Columns used for various purification procedures.  
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2.1.7 Competent cells 
 

Transformations were carried out using E. coli cells where up-taking of recombinant 

plasmid DNA allows for cloning and expression by using the host’s machinery. Various 

competent cells were used for replication and protein production, see Table 2.7.  

 

Purpose Competent cells 

DNA replication XL-1 Blue 

Nova Blue 

α- Select 

Nova F- 

Protein production BL21 (DE3) 

BL21 (DE3) pLysS 

BL21 star (DE3) pLysS 

BL21 codonplus (DE3)- ril 

Origami (DE3) 

Rosetta Blue (DE3) pLysS 

C43 (DE3) pLysS 

Table 2.7 A summary of the competent cells used for cloning and expression. All cells were 
from Novagen except for α-Select (Bioline), BL21 codonplus (DE3)-ril (Stratagene) and 
BL21 star (DE3) pLysS (Invitrogen). 
 
 

2.1.8 Antibodies  

 

Primary antibody anti-His mouse from Novagen was used at a working dilution of 

1:1000. The secondary antibody was goat anti-mouse IgG alkaline phosphatase 

conjugate from Novagen used at 1:5000 dilution.  Colourimetric alkaline phosphatase 

detection tablets SigmaFast BCIP/ NBT were purchased from Sigma-Aldrich. 
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2.1.9 Antibiotics 

 

Antibiotics were used during DNA cloning and expression of cells, a list of antibiotics 

with the stock and working concentrations can be found at Table 2.8. 

 

Antibiotics Stock concentration (mg/ ml) Final concentration (µg/ml) 

Ampicillin 100 100 

Chloramphenicol 35 35 

Tetracycline 12.5 12.5 

Kanamycin 30 30 

Table 2.8 Antibiotics used and the corresponding stock and final concentrations.  
 

 

2.1.10 Crystallisation 

 

2.1.10.1 Buffers 

 

For the purpose of crystallisation all buffers were made from deionised water of purity 

18.2 MΩ.cm (see Table 2.9).  

 

Buffer Stock concentration (M) pH Stock (%) w/v Purchased from 

Sodium acetate 1 4.6 __ BDH 

Tris 1 8.5 __ Fisher Scientific 

Ammonium acetate 1 4.6 __ BDH 

Sodium cacodylate 0.1 6.5 __ Fluka 

Calcium acetate 1 __ __ BDH 

PEG 4000 __ __ 50 Hampton Research 

PEG 8000 __ __ 40 Hampton Research 

Table 2.9 Buffers and precipitants used during optimisation crystallisation trials.  
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2.2 Methods 

 

 

2.2.1 Molecular cloning and site-directed mutagenesis 

 

2.2.1.1 Primer design 

 

Parameters were followed for the design of primers for molecular cloning such that 

primer length was between 25 to 30 base pairs long, the ends of the primers ended with a 

G (guanine) or a C (cytosine), the overall GC content was 40 to 60 %, melting 

temperature was between 52 to 58º C, complimentarity between the forward and reverse 

primers were minimised and ensuring no frameshift took place. By adhering to such 

rules formation of primer-dimers and hair-pin loops were minimised and allowed for 

optimum primer annealing parameters and primer stability to be obtained. A free 

program called NetPrimer (www.premierbiosoft.com) was used to check these 

parameters. 

 

Primers used for site-directed mutagenesis were designed in the same way as described 

above with the exception to a change of a single base situated near the middle of the 

sense and antisense primers to allow for a point mutation. 

 

The primers used for molecular cloning and site-directed mutagenesis can be found in 

section 3.2.1 and 5.2.1. All primers were ordered from MWG Biotech. Primers were 

stored at -20 °C at 100 mM stock and diluted to 10 mM using molecular grade water 

when required for PCR reactions. 
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2.2.1.2 Polymerase chain reaction 

 

The general cycling parameters for the different DNA polymerases used are listed in 

Table 2.10. All PCR reactions were carried out using a PTC-150 MiniCycler by MJ 

Research. 

 

A typical PCR reaction set up consists of the following: 

 2 µl DNA template 

 5 µl 10× reaction buffer 

 1.5 µl forward primer 

 1.5 µl reverse primer 

 1 µl dNTP 

 38 µl ddH2O 

 1 µl polymerase 
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DNA polymerase Step Temperature (ºC) Time  

PfuTurbo 

polymerase 

(Stratagene) 

1. Activation 95 2 min 

2. Denaturation 95 30 sec 

3. Annealing Primer Tm-5 ºC 30 sec 

4. Elongation 72 1 min for targets ≤1 kb 

5. Final elongation 72 10 min 

Repeat steps 2 to 4 for 30 cycles. 

KOD Hot Start 

polymerase 

(Novagen) 

1. Activation 95 2 min 

2. Denaturation 95 20 sec 

3. Annealing Lowest primer Tm  10 sec 

4. Elongation 70 20 sec/kb 

Repeat steps 2 to 4 for 20 to 40 cycles. 

HotStar Taq  

polymerase 

(Qiagen) 

1. Activation 95 15 min 

2. Denaturation 94 0.5 to 1 min 

3. Annealing 50 to 68 0.5 to 1 min 

4. Elongation 72 1 min 

5. Final elongation 72 10 min 

Repeat step 2 to 4 for 25 to 35 cycles. 

Table 2.10 Summarises the general cycling conditions for the different DNA polymerases 
used for cloning, for specific optimised cycling parameters refer to later results chapters.  
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2.2.1.3 Direct cloning  

 

Direct cloning required the introduction of two unique restriction sites to either side of 

the gene by PCR amplification. Choosing the appropriate restriction sites were important 

and care was taken to ensure these sites were not present in the gene of interest, but 

found on the destination vector to allow for ligation. To achieve ligation the PCR 

reaction mixture was gel purified first using a Qiagen gel purification kit followed by 

double digestion of the gene of interest and vector using suitable restriction enzymes. 

These were ligated using Takara ligase (Takara Bio Inc).  

 

Double digestion and ligation set-ups are described below, restriction enzymes and 

buffers were from NEB. Subsequent ligated insert and vector were transformed into 

DNA cloning competent E. coli cells. 

 

Double digestion of plasmid vector or gene insert: 

10 µl vector or PCR product of gene  

1 µl 10× buffer  

1 µl restriction enzyme one 

1 µl restriction enzyme two 

7 µl dH20 
 

Ligation 

7 µl gene insert 

1 µl vector 

8 µl Takara  

 

The ligation mix was left to incubate at 16 ºC for 30 minutes using the PCR machine. 
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2.2.1.4 Digestion and ligation independent cloning 

 

This particular technique uses an Ek/LIC cloning system (Novagen) which carries the 

advantage of eliminating the need for digestion and ligation. This is valuable since the 

number of steps are reduced thereby making the cloning process quicker and reducing 

the likelihood of errors.  

 

The primers used for Ek/LIC system are specially designed to incorporate extensions 

compatible with the vector pET41 (see section 3.2.2). KOD Hot Start polymerase was 

used for insert amplification, the general cycling parameters can be found in Table 2.10. 

The PCR mixture and subsequent steps for Ek/LIC strategy cloning are listed as follows. 

 

PCR reaction mixture 

5 µl Buffer 

3 µl MgSO4 

5 µl dNTP 

1.5 µl forward primer 

1.5 µl reverse primer 

2 µl DNA template 

1 µl KOD Hot Start polymerase 

31 µl dH2O 

 

T4 Treatment 

2 µl insert 

2 µl 10× T4 DNA polymerase buffer 

2 µl dATP 

1 µl DTT 

12.6 µl dH2O 

0.4 µl T4 DNA polymerase 
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The mixture was incubated for 30 minutes at 22 ºC to activate the enzyme and then 

incubated at 75 ºC for 20 minutes to inactivate the enzyme. 

 

Annealing 

1 µl Ek/LIC vector pET41 

2 µl insert 

 

This was incubated for five minutes at 22 ºC then 1 µl of EDTA was added and further 

incubated for another five minutes at 22 ºC. The ligated product was then ready for 

transformation (see 2.2.3). 

 

 

2.2.2 Site-directed mutagenesis 

 

For site-directed mutagenesis PCR reactions PfuTurbo polymerase or KOD Hot Start 

polymerase was used as listed in Table 2.10 with the general cycling parameters. For 

different target genes specific cycling parameters were used see section 3.2.2 and 4.2.7.  

 

Once the target gene was amplified with the appropriate primers for single base mutation 

1µl DpnI was added, gently mixed and incubated at 37 ºC for one hour to digest the 

parental non-mutated template. The DpnI-treated DNA was then used in a 

transformation.  
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2.2.3 Transformation 

 

Cloned genes were transformed into E. coli cells for DNA replication followed by 

plasmid isolation using QIAprep Spin Miniprep Kit from Qiagen. For protein production 

the plasmid was transformed into the appropriate E. coli competent cells. The general 

transformation protocol used during the entirety of the project for different cell lines is 

as follows: 

 

1. 50 µl of cells were thawed on ice and 1 µl plasmid DNA was added to the cells and left 

on ice for five minute. 

2. The cells were then heat-shocked (see Table 2.11). 

3. Immediately after heat treatment the cells were placed on ice for two minutes. 

4. 250 µl of LB media was added and incubated for one hour at 37 ºC with shaking at 200 

rpm. 

5. 50 µl of the cells were plated onto LB agarose plates with the appropriate antibiotics, the 

remaining cells were centrifuged and most of the supernatant was decanted and the 

pellet was resupsended. The plates were left in a 37 ºC incubator overnight. 

 

Competent cells Heat-shock temperature (ºC) Duration (sec) Antibiotic resistance 

XL-1 Blue 42 45 __ 

Nova Blue 42 30 __ 

Nova F 42 30 __ 

α-Select 42 45 __ 

BL21 (DE3) 42 30 __ 

BL21 (DE3) pLysS 42 30 Cam 

BL21 star (DE3) pLysS 42 30 Cam 

BL21 codonplus (DE3)-ril 42 20 Cam 

Origami (DE3) 42 30 Tet, Str, Kan 

Rosetta Blue (DE3) pLysS 42 30 Tet, Cam 

C43 (DE3) pLysS 42 30 Cam 

Table 2.11 Summarises the heat-shock temperatures and duration, also listed are the 
antibiotic resistance of each cell line. 
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2.2.4 Protein production 

 

2.2.4.1 Protein growth conditions 

 

Starter cultures of 5 ml of LB media supplemented with the appropriate antibiotics were 

inoculated and grown overnight at 37 ºC. In baffled two litre flasks the starter cultures 

were used to start protein growth in a litre of LB media at variable temperatures 

depending on the cell strain used and protein growth requirements. The cells were then 

induced with IPTG once an O.D600 of 0.6 was reached. Induction took place at a suitable 

temperature and duration. For specific growth and induction conditions see sections 

3.3.2, 3.3.3, 4.2.1 and 5.3.1. 

 

Cells were then harvested by centrifugation at 5,000 rpm for 20 minutes using a Sorvall 

RC-5B refrigerated centrifuge from Du Pont Instruments. The pellet was stored in a 

falcon tube at -80 ºC.  

 

 

2.2.4.2 Cell lysis 

 

To lyse the cells from crude lysate a French press from, SLM-Aminco, Rochester, N.Y 

was used. The system used high pressures of 20,000 psi to disrupt the cells, for sufficient 

lysis the crude lysate was passed through the press twice. To pellet cell debris the 

solution was centrifuged at 18,000 rpm for 20 minutes (Sorvall RC-5B). 

 
An alternative method for releasing protein was sonication. A sonicator from sonics 

VibraCell was used to pulse the resupsended pellet in binding buffer at 15 second 

increments and then centrifuged at 18,000 rpm for 20 minutes (Sorvall RC-5B) to pellet 

the cell debris. The lysate was ready for column application. 
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2.2.5 Protein purification 

 

2.2.5.1 Nickel immobilised column 

 

For His-tagged protein, cell pellets were resuspended in binding buffer (see Table 2.3) 

and lysed, the lysate was loaded onto a nickel column. Two types of nickel columns 

used; batch method with nickel immobilized on a column of Fast Flow Chelating 

Sepharose from GE Healthcare and AKTA assisted HiTrap chelating HP column. Both 

methods required charging of the column with NiSO4. 

 

The method for NiSO4 charging for batch method is listed below.  

 

1. Load 4 ml of Fast Flow Chelating Sepharose into a clean plastic column. 

2. Wash the beads with five column volumes of dH2O. 

3. Load 2.5 ml of 500 mM NiSO4. 

4. Wash the beads with five column volumes of dH2O followed by five 

column volumes of binding buffer to equilibrate. 

 

To charge HiTrap chelating HP column the same procedure was followed from step 

number two, but two column volumes of NiSO4 were used for charging the column. 

 

Once charged the lysate was loaded onto the column with extensive washing using 

binding buffer and then a gradient elution was used for HiTrap chelating HP column 

with increasing concentrations of imidazole ranging from 5 mM to 400 mM. The batch 

method required washing and elution sequentially using the buffers listed in Table 2.3. 
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2.2.5.2 Glutathione sepharose column 

 

For GST-tagged proteins a batch method glutathione sepharose column was used. In a 

clean plastic column 3 ml of glutathione sepharose beads from GE Healthcare were 

loaded and washed with 30 ml of PBS. Lysate was then added to the column and washed 

with 60 ml of PBS. Reduced glutathione was added at 1.5 ml and incubated for ten 

minutes at 4 ºC (see Table 2.4 for list of buffers used). The fraction was then collected, if 

necessary the incubation step was repeated until no more protein was eluted. This was 

checked using a BioRad assay (Bradford 1976). 

 

 

2.2.5.3 Ion exchange columns 

 

Proteins exposed to a pH lower than its pI will carry a positive charge and therefore will 

bind to a cation exchanger column HiTrap SP HP. For protein purification the column 

must first be equilibrated with buffer A (see Table 2.4 for list of buffers). Lysate was 

then loaded onto the column and gradient eluted using buffer B.  

 

The DEAE column was a batch method purification technique requiring 4 ml of DEAE 

beads loaded into a clean plastic column. The beads were equilibrated with five column 

volumes of wash buffer I (see Table 2.5 for list of buffers). Lysate was loaded onto the 

column carefully without disturbing the resin. Washes followed using buffers of 

increasing amounts of NaCl and finally eluted in 400mM NaCl.  

 

 

2.2.5.4 pd-10 column 

 

The pd-10 is a pre-packed column with Sephadex G-25 Medium used for de-salting, 

buffer exchanging and removal of low molecular weight compounds. The column was 
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equilibrated with 50 ml of either high salt or low salt buffer (see Table 2.4) depending 

on the sample to be loaded onto the column. After equilibration 2.5 ml of sample was 

loaded onto the column followed by 3.5 ml of high or low salt buffer to elute depending 

on the desired buffer to be transferred into, the initial ten drops were allowed to flow 

through, the rest was collected. 

 

 

2.2.5.5 Size exclusion column 

 

The size exclusion column Superdex 200 10/300 was used as a final purification step 

serving as a buffer exchange system, removal of any aggregated proteins and separation 

of protein by size between 10 kDa to 600kDa. Protein was concentrated down to 1 ml 

using concentrators from VivaSpin with various molecular weight cut offs including 5 

kDa and 10 kDa. Concentrated samples were loaded onto a 1 ml loop and injected onto a 

pre-equilibrated size exclusion column (see Table 2.4 for buffer).  The protein was 

eluted over two column volumes of buffer collecting 1 ml fractions. 

 

 

2.2.5.6 CP-18 column 

 

The CP-18 column is a reverse phase column used for de-salting and obtaining samples 

in an organic solvent for drying. The column was firstly activated using 15 ml of hexane 

followed by 15 ml ethanol with 1 % (v/v) acetic acid. Acetic acid was added to the 

sample to a final of 1 % this was loaded onto the column and washed with 20 ml 1 % 

acetic acid. To elute 90 % ethanol was used. 
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2.2.6 SDS-PAGE gel 

 

In order to keep track of the expression and purification of a protein it was essential that 

SDS-PAGE gels were used after each purification step and for visualising the initial pre- 

and post-induction of a protein. 

 

Throughout the project 12 and 15 % polyacrylamide gels were used, the specific 

volumes of the various chemicals can be found in Table 2.12.  The resolving gel solution 

was made adding TEMED (tetramethylethylenediamine) last, using a BioRad SDS- 

PAGE gel casting system the resolving gel solution was poured between two glass 

plates. A layer of ethanol was added to the top of the resolving gel to provide a level 

surface for the stacking gel to set. Once the resolving gel had set the ethanol was poured 

off and washed with dH2O and blotted dry. Stacking gel was added and a comb with 10 

to 15 lanes was inserted and left to set. 

 

Solution components 12 % resolving gel 

component volumes 

(ml)  

15 % resolving gel 

component volumes 

(ml) 

5 % stacking gel 

component volumes 

(ml) 

H2O 1.6 1.1 2.7 

30 % acrylamide 2.0 2.5 0.67 

1.5 M Tris (pH 8.8) 1.3 1.3 _ 

1.0 M Tris (pH 6.8) _ _ 0.5 

10 % SDS 0.05 0.05 0.04 

10 % ammonium 

persulfate 

0.05 0.05 0.04 

TEMED 0.002 0.002 0.004 

Table 2.12 Volumes for one SDS-PAGE gel (5 ml total) are given for 12 % and 15 % 
resolving gels and 5 % stacking gel (total volume 4 ml). 
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To run the gel 1× SDS-running buffer was used, see below: 

 Per litre 

 30.2 g Tris pH 8.3  

 188 g Glycine  

 10 g SDS  

 

Protein samples were prepared by adding 1× SDS-loading buffer in a 1:1 ratio, the 

components of 1× SDS-loading buffer is listed below: 

 

 Per 10 ml 

 100 mM Tris 

 200 mM DTT 

 4 % (w/v) SDS 

 0.2 % (w/v) bromophenol blue 

 20 % (v/v) glycerol 

 

The samples were then heated on a heat block at 100 °C for five minutes; the samples 

were then loaded onto the gels and ran at 100 V until the dye front ran out of the gel. For 

pre- and post-induction samples a pellet from 1 ml sample was resuspended in 400 µl of 

SDS loading buffer denatured at 100 °C for five minutes and then 3 µl samples were 

loaded. SeeBlue plus (Invitrogen) protein ladder was used. The gels were then stained in 

Comassie blue dye for 10 minutes, the stain solution was made up as follows: 

 

 Per litre 

 1 g Comassie blue 

 30 % (v/v) Methanol 

 10 % (v/v) acetic acid 
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After staining, the gels were destained in a small amount of destain so that protein bands 

can be observed, which consisted of: 

 
 Per litre (v/v) 

 Acetic acid 30 % 

 Methanol 40 % 

 

For both stain and destain the remaining volume was made up to one litre using dH2O. 

 

 

2.2.7 Western blot 

 

Western blotting is a technique used to identify a target protein, in this thesis the His-tag 

in the construct was exploited. Primary antibodies specific to His-tagged proteins were 

used, once the antibody was bound specific secondary conjugate antibodies were then 

applied to allow for colour detection and amplification of the chemiluminescense signal 

(see section 2.1.8). 

 

Proteins to be probed were run on a polyacrylamide gel. The gel, together with two pads 

and a piece of nitrocellulose membrane (Invitrogen) were soaked in running buffer (see 

below) for ten minutes before blotting. 

 

 Per 500 ml 

 15.1g Tris pH 8.3 

 94g Glycine 

 20 % (v/v) Methanol 

 

Next the gel was placed in a Trans Blot SD semi-dry transfer cell from BioRad in a stack 

consisting of a pad, nitrocellulose membrane, polyacrylamide gel and a pad (see Figure 

2.2.1). 
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Figure 2.2.1 The set-up for a western blot using a semi-dry blotter consists of 1) pad 2) 
polyacrylamide gel 3) nitrocellulose membrane 4) pad. 
  

 

The gel was left to blot for 30 minutes at 200 mA. After 30 minutes the membrane was 

blocked with 5 % (w/v) skimmed milk powder (oxoid, Thermo Fisher) and 0.1 % (v/v) 

tween (Fisher Scientific) made up in PBS for an hour to block off non-specific proteins. 

The membrane was then incubated in 15 µl anti-His mouse antibody in 10 ml 5 % 

skimmed milk powder and 0.1 % tween for one hour at 4 °C with rocking, after one hour 

the membrane was washed three times each time for ten minutes with PBS. Next 3 µl of 

goat anti-mouse alkaline phosphatase conjugate secondary antibody was added to 10 ml 

of TBS buffer (tris buffered saline) consisting of 50 mM Tris pH 7.5, 150 mM NaCl and 

0.1 % tween and used to incubate the membrane for one hour at 4 °C with rocking. 

Again the membrane was washed three times successively for ten minutes each with 

TBS buffer. For the detection the membrane was incubated with one SigmaFast BCIP/ 

NBT tablet dissolved in 20 ml ddH2O. Once bands start to appear on the membrane care 

was taken to prevent over detection as non-specific bands may start to appear.  
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2.2.8 Substrate production 

 

2.2.8.1 Precorrin-3a 

 

Precorrin-3a (referred to as PC-3a hereafter) is a tetrapyrrole formed by the methylation 

of carbon 20 of precorrin-2 via a CobI methyltransferase. PC-3a is the substrate 

synthesised for use in soaking experiments into CobJ since the substrate is readily made 

under anaerobic conditions although the immediate tetrapyrrole utilised by CobJ in the 

vitamin B12 pathway is precorrin-3b (PC-3b). The difference between PC-3a and PC-3b 

is the addition of a lactone ring. 

 

To synthesise PC-3a a multi-enzyme assay using enzymes on the vitamin B12 pathway 

including Hem B, C, D and CobA with the addition of CobI are required. Details of the 

process can be found in section 2.2.8.5. 

 

 

2.2.8.2 Plasmid preparation of pET14b-BmCobI (Brucella melitensis) 

 

pET14b-BmCobI was transformed into DH5α competent cells (see section 2.2.4 and 

Table 2.15) and a single colony was picked and grown in 10 ml LB media consisting of 

ampicillin and chloramphenicol and grown at 37 ºC overnight with 250 rpm shaking. 

The cells were harvested for plasmid preparation (see section 2.2.4 for plasmid 

preparation protocol). 

 

 

2.2.8.3 Protein production of pET14b-BmCobI 

 

pET14b-BmCobI was transformed into BL21-Star (DE3) pLysS competent cells (see 

section 2.2.3 and Table 2.11) a single colony was picked and grown in a 10 ml LB 



  Chapter Two- Materials and methods 

  73 

media starter culture supplemented with ampicillin and chloramphenicol at 37 ºC 

overnight with shaking at 250 rpm. The starter culture was used to grow a one litre 

baffled flask of LB media with ampicillin and chloramphenicol at 37 ºC until an O.D600 

of 0.6 was reached. Induction was carried out at 19 ºC overnight with 0.4 mM IPTG 

final concentration. The cells were harvested and resuspended in 15 ml binding buffer 

(Table 2.3) and stored at -20 ºC ready for cell lysis and purification. 

 

 

2.2.8.4 Plasmid preparation of pETcoco2-Hem B, C, D and CobA  

 

pETcoco2 plasmid with Hem B, C, D and CobA (pETcoco2-abcd) was transformed into 

Nova F- competent cells (see section 2.2.3 and Table 2.11), colonies were picked and 

grown in 10 ml LB cultures with 0.2 % glucose supplemented with ampicillin. These 

were grown at 37 ºC overnight. An aliquot was removed and diluted in a 1:50 dilution 

into pre-warmed fresh LB media with ampicillin and no glucose. This was grown at 37 

ºC with shaking at 250 rpm until an O.D600 of 0.2-0.4 was reached, to induce plasmid 

replication L-arabinose was added to a final concentration of 0.01 %. This was grown 

for 4-5 hours and then harvested for plasmid purification. 

 

 

2.2.8.5 Protein production of pETcoco2-abcd 

 

pETcoco2-abcd plasmid was transformed into BL21-Star (DE3) pLysS competent cells 

(see section 2.2.3 and Table 2.11). A single colony was transferred into 10 ml LB 

containing ampicillin, chloramphenicol and 0.01 % L-arabinose and grown at 37 ºC 

overnight with 250 rpm shaking. This was used to inoculate one litre of LB medium 

with ampicillin, chloramphenicol and 0.01 % L-arabinose and grown to an O.D600 of 0.6 

and then induced with 0.4 mM IPTG overnight at 19 ºC. Cells were harvested by 
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spinning down at 5,000 rpm for 20 minutes and the pellet was resuspended in 15 ml 

binding buffer (see Table 2.3) and used directly in purification or kept frozen at -20 ºC.   

 

2.2.8.6 Multi-enzyme assay  

 

A multi-enzyme assay was carried out in an anaerobic glove box (Belle Technology). 

All buffers brought into the glove box were degassed for 30 minutes to one hour using 

argon prior to use. DEAE and pd-10 columns were purged with nitrogen for 30 minutes 

in the purge box and placed into the chamber a day in advance to allow for removal of 

oxygen and equilibration of column. 

 

Over expressed pETcoco2-abcd and pET14b CobI pellets were resuspended in binding 

buffer, sonicated, centrifuged and the lysate was loaded onto a batch method nickel 

immobilised column individually for purification. CobI was eluted with wash buffer II 

abcd was eluted with elution buffer (see Table 2.3 and section 2.2.5.1). This step was 

carried out aerobically. The samples were then transferred into the anaerobic chamber 

along with 500 µl of 18 mg/ml SAM (S-adenosyl-L-methionine) and 500 µl of 6 mg/ml 

ALA (aminolevulinic acid) both dissolved in 20 mM Tris pH 8.0 and 100 mM NaCl. 

SAM required pH adjusting to pH 8.0 using 2.0 M NaOH. 

 

Two separate pd-10 columns were pre-equilibrated with 50 ml of either high salt buffer 

(for CobI) or low salt buffer (for abcd) for buffer exchange and purification (see Table 

2.4 for buffers and section 2.2.5.4 for the use of pd-10 column). Once fractions were 

collected the concentration of CobI was determined by measuring the absorbance at 280 

nm via a UV-spectrophotometer (U-3010 by Jencons PLS).  

 

The multi-enzyme assay was composed of abcd, CobI, SAM, ALA and low salt buffer, 

three reactions were set up; A, B and C in glass tubes. Reaction A was a negative control 

where no CobI was added, reaction B and C contained 40 µM and 80 µM CobI 
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respectively, see Table 2.13 for the final volumes of the different components of the 

reaction. 

 

 

Vial A B C 

ABCD (µl) 1000 1000 1000 

CobI  (µl) - 311 622 

SAM (µl) 50 50 100 

ALA (µl) 50 50 100 

Buffer (µl) 3900 3589 2178 

Table 2.13 A summary of the final volumes of each component for the three reactions set up 
for PC-3a production in the glove box. Three vials of the multi-enzyme assay were set up as 
listed above. Vial A was the negative control with no CobI present, 1.8 mg/ml SAM and 0.6 
mg/ml ALA, vial C contained 40 µM CobI, 1.8 mg/ml SAM and 0.6 mg/ml ALA, vial B 
contained 80 µM CobI, 3.6 mg/ml SAM and 1.2 mg/ml ALA. The buffer was a low salt 
buffer.  
 

 

The tubes were left overnight in the glove box, since PC-3a is light sensitive the tubes 

were wrapped in aluminium foil. Once the reaction was complete each solution was 

scanned on the UV-spectrophotometer from 300 to 700 nm for characteristic trace of 

PC-3a (see section 4.3.1.1). To minimise oxygenation and unreliable scans each reaction 

was measured one at a time in cuvettes (UV-Cuvette micro from Brand) with plastic 

stoppers parafilmed at the edges. Once PC-3a had been identified the rest of the sample 

was purified on a DEAE column (see section 2.2.5.3). Fractions were collected and 

buffer exchanged into a low salt buffer using a pd-10 column to make the substrate 

suitable for co-crystallisation and crystal soaking experiments.  

 

For concentrated PC-3a it was necessary to use a CP-18 column to remove the high salt 

concentrations and allow for evaporation of ethanol until a more concentrated sample 

could be obtained in the glove box (see section 2.2.5.6 and Table 2.4).  
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2.2.8.7 Precorrin-3b 

 

Precorrin-3b (referred to as PC-3b hereafter) is a tetrapyrrole formed by the reaction of 

PC-3a with monooxygenase CobG forming PC-3b. The synthesis of CobG follows the 

same protocol for the production of PC-3a (see section 2.2.8.6) with the addition of 

purified and concentrated CobG to PC-3a in the glove box. To allow for oxygenation the 

reaction was taken out of the anaerobic chamber.  

 

 

2.2.9 BsPel spectroscopy activity assay 

 

To check the activity of BsPel a spectroscopic enzyme assay was used to monitor the 

cleavage of the α-1,4 glycosidic bond of polygalacturonic acid. The absorbance at 235 

nm was measured which is characteristic of the formation of a carbon-carbon double 

bond. 

 

Table 2.14 lists the assay solution used for the assay which was pH adjusted to 8.5 of 

which 1 ml of the assay solution was added to a cuvette followed by 20 µl of purified 

BsPel at 0.2 mg/ml. The mixture was then measured at 235 nm for duration of three 

minutes; the gradient tells us the activity of the enzyme.  

 

Chemical Stock (M) Volume (ml) Amount (mg) 

Tris pH8.5 1 1.0 _ 

CaCl2 1 0.02 _ 

Polygalacturonic acid _ _ 100 

Table 2.14 Summarises the assay solution used for BsPel enzyme assay. A final volume of 
20 ml was achieved by adjusting with dH2O. Polygalacturonic acid was obtained from 
Sigma-Aldrich. 
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2.2.10 Crystallography 

 

X-ray crystallography is a powerful technique used to solve the three-dimensional 

structures of proteins at atomic resolution. In order to produce images of individual 

atoms of bond distances of approximately 1.5 Å, X-rays are used since the wavelength 

typically falls between 0.5 and 1.6 Å.  

 

Crystallographers are unable to focus X-rays using lenses like a microscope can focus 

light, therefore diffraction spot position and intensity must be recorded in order to obtain 

an image of a protein structure. The relative phase of each diffracted reflection must also 

be measured or calculated before an electron density map of the structure can be 

synthesised. The first step for a crystallographer is to form protein crystals and 

crystallisation is often the major bottleneck in crystal structure solution as without a 

suitably diffracting crystal there is no prospect of a crystal structure. Crystals consist of 

regular arrangement of molecules in space. The asymmetric unit when operated on by 

the crystal symmetry generates the unit cell which when translated by the 

crystallographic vectors a, b, and c generates the crystal.  

 

 

2.2.10.1 Crystallisation 

 

Protein used for crystallisation trials should be pure and homogeneous, both chemically 

and conformationally. All buffers and precipitants used were made using deionised 

water of 18.2 MΩ.cm purity (see Table 2.9). Different reservoir conditions were made 

up in each well of a pre-greased 24-well plate (plates from Hampton Research and high 

vacuum grease from Dow Corning). A hanging drop vapour diffusion technique was 

used throughout; typically 2 µl mother liquor was mixed with 2 µl of protein on a clean 

siliconated glass slide (Hampton Research) and placed over the well to form an air-tight 

seal. The trays were left in a temperature controlled room at 19 ºC.  
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During this time wells were left to equilibrate with the protein drops, over time gradual 

diffusion of water occurs from the drops and causes a slow increase in the precipitant 

and protein concentration encouraging crystallisation see Figure 2.2.2. 

 
Figure 2.2.2 Phases of crystallisation where unsaturated regions indicate concentrations of 
protein and precipitant yielding no crystals. Increase in concentrations in protein and 
precipitant results in growth and nucleation however too much precipitant and protein 
results in precipitation. Ideally one would want growth, nucleation and back to growth phase 
until the largest possible crystals are obtained (Rhodes 2006).  
 

 

2.2.10.2 Crystal soaking 

 

For the purpose of a soaking experiment a suitable cryoprotectant was made and 

supplemented with the desired molecule or substrate to be soaked into the crystal.  It is 

also important to note that as a rule of thumb when soaking old crystals where 



  Chapter Two- Materials and methods 

  79 

precipitant concentration may have increased a fraction, it is important to make 

adjustments to the percentage of precipitant by 0.5 % of the precipitant concentration i.e 

40 % PEG 8000 would be increased to 40.2 % PEG 8000. Failure to match the 

conditions correctly may result in disordering and cracking of the crystal. This rule 

should also be followed in the case when preparing cryoprotectants for older crystals 

when freezing. 

 

To soak a crystal a small volume (5 µl) of the supplemented cryoprotectant was 

transferred onto a clean glass slide, the crystal was looped out of its drop using a wand 

and litho loop (both Hampton Research) and deposited into the supplemented 

cryoprotectant for some time (see section 4.4.2 and 5.5.2 for detailed cryoprotectant and 

soak conditions). Once the crystal had been soaked for the desired amount of time the 

crystal was looped out of the drop using a litho loop of the correct size and placed into 

liquid nitrogen to freeze.  

 

 

2.2.10.3 Crystal freezing 

 

Commonly used cryoprotectants include glycerol, ethyleneglycol, PEG 400 and 

propylene glycol. A good cryoprotectant will provide protection and prevent damage 

caused by freezing and at the same time will not hinder the diffraction potential of the 

crystal (McFerrin 2002). Typically the composition of a cryoprotectant is the reservoir 

condition which the crystal was grown in with 20 to 25 % (v/v) of the desired 

cryoprotectant. Crystals were frozen for ease of transportation and time saving purposes 

at synchrotrons. Crystals were looped out and briefly pulled through a drop of suitable 

cryoprotectant before dipping into liquid nitrogen vitrifying the crystal. Once the 

crystals were frozen they were transferred onto canes and into a pre-cooled storage 

dewar. 
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2.2.10.4 Data collection and reduction 

 

A diffraction spot or Bragg reflection is observed when the angle of incidence of the 

incoming X-ray beam is such that the path difference between rays reflected from 

successive layers in the crystal, separated by spacing d, equals an integer number of 

multiples of the X-ray wavelength (λ) so the reflected waves interfere constructively (see 

Figure 2.2.3).  This condition for diffraction is Braggs Law (a): 

 

 

(a) 2d sin θ = nλ  

 

d is the interplanar distance, θ is the angle of incidence, n is an integer and λ is the 

wavelength of the X-rays 

 

    
Figure 2.2.3 Illustration of Bragg’s law and the conditions needed in order to produce 
diffracted rays. dhkl is the interplanar distance.   
 

 

sin θ = BC/AB 

 

BC = AB sin θ = dhkl sin θ  
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Experiments requiring data collection took place at three different synchrotrons: SRS 

Daresbury, ESRF Grenoble and Diamond Light Source. Crystals were mounted onto a 

goniometer where a constant cold stream of nitrogen gas at 100 K keeps the crystal 

vitrified. Data was processed using MOSFLM (Leslie 1992) and reduced using SCALA 

(Evans 2005). Processing refers to the indexing of the diffraction pattern and the  

integration of the intensities image by image and reduction is the process whereby 

equivalent reflections, the same reflection measured twice of crystallographically 

equivalent reflections, are merged together to form the unique data set.   At this stage the 

intensities are converted to structure factor amplitudes.  

 

 

2.2.10.5 Fourier syntheses 

 

Processing the diffraction data produces a list of reflections, or more precisely structure 

factor amplitudes |F(hkl)|,  which are identified by their Miller indices h, k, and l. A 

Fourier synthesis can be used to convert the structure factor amplitudes |F(hkl)| and 

phase angles α(hkl) into electron density once the phase angles are known, (b). 

 

(b)   ρ (x,y,z) = 1/V Σhkl |F(hkl)| exp [-2πi(hx+ky+lz) + iα (hkl)] 

 

In the absence of phase information a Fourier summation with the intensities as 

coefficients and without phase angles, or rather with phase angles all set to zero, can be 

calculated.  This is called the Patterson function, after its originator, (c). 

 

(c)    P(u,v,w) = 1/V Σhkl |F(hkl)|2 cos [2π(hu+kv+lw)] 

 

To avoid confusion with real space (x,y,z), u,v,w are used in the Patterson cell.  The 

Patterson function can be calculated without any previous knowledge of the structure or 

the phases. 
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The phase angles may be obtained experimentally by isomorphous replacement, by 

exploiting anomalous scattering of an intrinsic or introduced metal, or can be calculated 

from an existing structure by a process called molecular replacement. 

 

Molecular replacement was the method used in this work and involves relating a model 

structure, derived from an existing crystal structure, to the molecule (or molecules) in 

the unknown crystal. The calculation can be separated into two problems, the rotation 

problem and the translation problem. The Patterson function contains all the information 

from the amplitudes and none from the phase and represents the collection of vectors 

between the elements of scattering density. The basic idea of the rotation function is that 

the Patterson function of a molecule will have a characteristic distribution of densities so 

that the Patterson function of the known molecule can be rotated over that of the 

unknown molecule and the greatest overlap will correspond to the orientation of the 

unknown molecule in the unknown crystal. Once the rotational relationship between the 

two molecules has been established, the translation of the molecule can be established. 

One method is to simply compute the crystallographic Rfactor as a function of the 

position of the correctly rotated molecule in the unit cell. Molecular replacement 

calculations were done using MOLREP (Vagin 1997).  
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2.2.10.6 Refinement and model building 

 

Successive cycles of refinement and model building were carried out using REFMAC 

(Vagin 2004) and COOT (Emsley 2004) to improve the agreement of the model and 

experimentally derived structure factor amplitudes. Agreement was measured as the 

Rfactor and along with this value Rfree was also calculated as a control, using the 5 % 

of reflections consistently left out of the refinement. After refinement the resultant 

electron density map was examined to see if there are any parts of the structure that 

could be improved manually using COOT (Emsley 2004). The Rfree and Rfactor 

indicate the quality of the refined data. Pymol was used to draw structure figures 

throughout (The Pymol Molecular Graphics System, Version 0.99, Schrödinger, LLC). 

 

 

2.2.10.7 Validation 

 

For validation, ADIT Validation Server was used (RCSB Protein Data Bank) this 

provided a validation report listing close contacts, chirality errors, bond angle and 

deviations, missing and extra atoms or residues and distant waters. The stereochemistry 

of the model was checked using a Ramachandran plot highlighting the φ and ψ angles of 

residues that lie outside of the allowed regions. 
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3.1 Caenorhabtidis elegans reverse transcriptase subunit 

 

Telomerase is a ribonucleoprotein found in all eukaryotes, it plays a vital role in 

maintaining telomere length, preventing end-to-end chromosome fusion and 

circumventing the end-replication problem. This dilemma is found in all eukaryotes due 

to the linear nature of eukaryotic chromosomal DNA and the 5’-to-3’ uni-directional 

action of DNA polymerase. During replication the linear chromosomes in eukaryotes 

separate into replication forks a leading strand and a lagging strand. The lagging strand 

runs in a 5’-to-3’ direction causing the formation of small Okazaki fragments that 

require ligation after the removal of RNA primer. At its most 3’ end of the newly formed 

strand, DNA is lost or not copied due to the inability of RNA priming (Watson 1972; 

Lingner 1995). However with telomerase action, sequences are added to the ends to 

allow for appropriate RNA priming and complete DNA replication, this was first 

identified in ciliate Tetrahymena thermophila (Greider 1985). Telomerase has the 

capability of synthesising a repetitive sequence that is used to cap and maintain the ends 

of telomeres, without such an ability, telomeres would become successively shorter with 

each cell division and lead to premature cell senescence (Yu 2001). Typically the 

enzyme is found in highly proliferative cells and interestingly in most cancerous cells. 

Telomerase appears to provide cancerous cells immortality allowing continual 

replication (Shay 2002). 

 

Telomerase minimally requires two subunits to function in vitro, the catalytic 

component telomerase reverse transcriptase (TERT) and an intrinsic RNA template 

(TR). The possession of this intrinsic RNA template makes telomerase a unique reverse 

transcriptase enabling the synthesis of iterative telomeric sequences. It is generally 

accepted that most TERT proteins identified are made up of seven conserved reverse 

transcriptase (RT) motifs which are found universally across other RTs. These seven 

motifs are located in the central region of TERT, commonly the other RTs are divided 

into fingers and palm and a thumb region (see Figure 3.1.1a). The difference between 
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telomerase and other RTs, apart from the intrinsic TR template, is an insertion between 

motifs A and B’ called IFD (insertion in fingers domain) which is thought to be involved 

in RNA recognition and telomere lengthening (Lue 2003). The TERT subunit also 

consists of  a large N-terminal extension which is approximately 400 amino acids long 

and can be separated into two regions, distal and proximal and a shorter 150 amino acid 

C-terminal extension, see Figure 3.1.1b (Lingner 1997). The function of N- and C-

terminal domains in humans and T. thermophila were demonstrated to be critical for 

activity, but in yeast TERT the C-terminal domain appeared to be dispensable.  Within 

the N- and C-terminal regions are motifs which are essential for TR recognition; binding 

and assembling of template region and repeat addition processivity (see Table 1.1.1 in 

section 1.1.3). 

 

The C-terminal of TERT was suggested to be involved in promoting telomerase 

processivity and regulating telomerase localisation. In humans this domain has been 

shown to maintain telomere length by repeat addition processivity, a technique used to 

elongate telomere ends which is a unique biochemical characteristic of telomerase 

(Huard 2003).  
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Little is known about the TR template that is used intrinsically to reverse transcribe short 

tandem G-rich repeats used as a protective cap on telomeres. TRs vary widely in length 

and in primary sequence homology making it difficult to identify potential TRs. 

However studies have shown TRs share common secondary structures such as a putative 

pseudoknot, a loop-closing helix, a 5’ template boundary region and a template region. 

Since there are conserved core structural elements it has been suggested that telomerase 

also shares a common mechanism for telomere lengthening among organisms (Chen 

2004). TR structures have been identified in a range of organisms including ciliate, 

vertebrate and yeast (Romero 1991; Chen 2000; Dandjinou 2004).  

 

During this work the crystal structure of an N-terminal domain of TERT termed TEN in 

T. thermophila was solved with a groove on its surface harbouring conserved amino acid 

residues. Site-directed mutagenesis studies have confirmed a number of crucial residues 

required for catalytic activity. Mutations of residues W187A, Q168A and F178A which 

all lie in the groove structure showed highly decreased levels or no measurable catalytic 

activity at all. It was proposed that the TEN domain is necessary for proper assembly 

and recognition of telomeric DNA (Jacobs 2006). The crystal structure of the RNA 

binding domain (TRBD) has also been solved, the domain is made up of conserved 

motifs CP and T. These motifs are exclusive to telomerase only and no other reverse 

transcriptases. CP and T motif are found in the proximal N-terminal  domain (Rouda 

2007).  

 

The first breakthrough on the structure of TERT was achieved by the over expression 

and crystallisation of Tribolium castaneum TERT. The structure of full length TERT 

was solved to 2.71 Å and consisted of three conserved domains; an RNA binding 

domain, the reverse transcriptase domain and the C-terminal domain which are 

organised in a ring-like structure. The N-terminal domain does not exist in this 

organism. The structure revealed  motifs involved in RNA binding that were located on 
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the interior of the ring that is able to accommodate double stranded nucleic acid of up to 

eight bases (Gillis 2008).  

 

The main focus of this chapter is Caenorhabditis elegans and its TERT domain, the gene 

encoding for this protein is termed DY3.4. C.elegans possesses a very small TERT 

component at 66 kDa compared to other TERTs (see Table 3.1.1) and this provided the 

motivation for cloning, expressing and ultimately crystallisation of the protein since it 

may be easier to overproduce and crystallise. DY3.4 lacks the N- and C-terminal 

domains (Autexier 2006). Evidence suggests the C-terminal is responsible for promoting 

telomerase processivity and in regulating telomerase localisation and the N-terminal 

domain mediates recognition of TR structures in different organisms (Bosoy 2003). To 

compensate for the loss of these domains, auxillary proteins would need to be utilised to 

replace the functions that otherwise would be missing, however little is known about C. 

elegans TERT.   

 

Organism TERT Size (kDa) 

Tetrahymena thermophila  133 

Saccharomyces cerevisiae 103 

Plasmodium falciparum 280 

Homo sapiens 127 

Tribolium castaneum 70 

Caenorrhabitidis elegans 66 

Table 3.1.1 A summary of a few organisms and their corresponding TERT component sizes, 
C. elegans TERT is the smallest TERT in comparison to other named TERTs. 
 
 

Past studies have predicted a transcribed telomerase-like sequence, tts-1 (see Appendix 

6) to be the TR component of C. elegans telomerase (Jones 2001). The sequence has 

common characteristics which would indicate the presence of a possible TR such as a 

one-and-a half repeat telomeric template reading TAAGCCTAA allowing the synthesis 
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of telomeres found in C. elegans and also a predicted pseudoknot. It is thought that a 

one-and-a-half telomeric template would allow easier translocation of the synthesised 

DNA by repositioning the most 3’-end to the start of the telomeric template.  

 

Since little is known about the structure and function of telomerase from this frequently 

used model organism C. elegans and because of the advantages offered by its small size 

there was motivation to work on this small TERT component, DY3.4. 
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3.2 Cloning and site-directed mutagenesis 

 

cDNA for the gene DY3.4 encoding for C. elegans telomerase was purchased from 

WormBase. The aim was to clone the gene into a vector for protein production, 

purification and ultimately crystallisation of the protein.  

 

 

3.2.1 Primer design 

 

A number of primers were designed for cloning and site-directed mutagenesis 

experiments, the method used for the design of primers can be found in section 2.2.1.1. 

TERT was successfully cloned into pET14b using direct cloning (see section 2.2.1.3) 

and pET41 vector which was obtained via Ek/LIC cloning system which was digestion 

and ligation independent (see section 2.2.1.4).  Site-directed mutagenesis was carried out 

to correct point mutations after PCR cloning, for a list of all the primers used for this 

results chapter see Table 3.2.1. 
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Primer pair Usage Restriction 

site 

3’ CGAGCAGTTAAAAACTATTTCAACGTTATTCGACTCGTGGC 5’ 

5’ GCCGCTCTCGAGATGGCACCAACGATTAAGAGTTCACTTAC 3’ 

Direct 

cloning 

BlpI 

XhoI 

5’ GACGACGACAAGATggcaccaacgattaag 3’ 

3’ tatttcaacgttATTTGGCCCGAAGAGGAG 5’ 

Ek-LIC 

cloning 

__ 

5’ GTGGCACCAACGATTAAGAGTTCAC 3’ 

3’ CACCGTGGTTGCTAATTCTCAAGTG 5’ 

site-directed 

mutagenesis 

__ 

5’ GGCTCTGATGGCTTTACGACAAG 3’ 

3’ CCGAGACTACCGAAATGCTGTTC 5’ 

site-directed 

mutagenesis 

__ 

5’ GGCTAATCCGAAAAAGTTCAAG 3’ 

3’ CCGATTAGGCTTTTTCAAGTTC 5’ 

site-directed 

mutagenesis 

__ 

Table 3.2.1 The primers designed and used throughout this chapter for cloning and site-
directed mutagenesis are listed above detailing the restriction sites introduced if any. The 
nucleotides highlighted in grey are the restriction sites introduced or a single base mutation 
for site-directed mutagenesis. In the case of the primers used for Ek-LIC cloning strategy the 
highlighted ATT is the stop codon. 
 

 

3.2.2 Digestion and ligation independent cloning  

 

To achieve fast effective cloning an Ek/LIC system from Novagen was used. The kit 

allows digestion and ligation independent cloning (see section 2.2.1.4). The PCR 

reaction was successful, see Figure 3.2.1, however confirmation of the gene sequence 

was needed via sequencing analysis (see section 3.2.4). The cycling parameters used are 

listed in Table 3.2.2. The PCR reaction mixture set-up was 1 µl insert template, 5 µl 10× 

reaction buffer, 1.25 µl forward Ek/LIC primer, 1.25 µl reverse Ek/LIC primer, 1 µl 

dNTP, 39.5 µl ddH2O and 1 µl Pfu Turbo polymerase. 
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Step Temperature (°C) Duration  

1. Activation 95 2 min 

2. Denaturation 95 20 sec 

3. Annealing 60 10 sec  

4. Elongation 70 40 sec 

5. Final elongation 72 3 min 

Steps 2 to 4 cycled 30 times. 

Table 3.2.2 Summarised cycling parameters used for cloning TERT into pET41 vector using 
the Ek/LIC cloning system. 
 

  

 
Figure 3.2.1 Lane (1) DNA marker hyperladder (2) and (3) bands showing the successful 
PCR reaction and presence of DNA. The size of insert was 1.6kb. 
 

 

The insert was subsequently gel purified and T4 treated followed by annealing to pET41 

vector (see section 2.2.1.5). The ligated product was transformed into NovaBlue 

competent cells and single colonies were grown and isolated in a plasmid preparation 

before sending off for sequencing. 

 

1.5 kb 
2.0 kb 

  1            2            3 



 Chapter Three- Cloning and expression of C. elegans TERT 

  93 

3.2.3 Direct cloning 

 

TERT was cloned into pET14b using primers designed to insert specific restriction sites, 

XhoI and BlpI on either end of the gene. The cycling parameters used for the PCR 

reaction are listed in Table 3.2.3. The PCR reaction set-up was 1 µl insert template, 5 µl 

10× reaction buffer, 1 µl Q-solution, 2 µl MgCl2, 1 µl forward primer (XhoI restriction 

site), 1 µl reverse primer (BlpI restriction site), 2 µl dNTP, 36.5 µl ddH2O and 0.5 µl 

Hotstar Taq polymerase. The resultant insert from the PCR reaction was then ligated to 

pET14b which had been double digested at the specific restriction sites. A diagnostic 

test was carried out using XhoI and BlpI restriction enzymes to confirm the presence of 

the insert and vector (see Figure 3.2.2). Sequencing analysis was carried out to confirm 

the successful cloning, see later section for sequencing results. 

 

 
Figure 3.2.2 Lane (1) Hyperladder DNA ladder (2) band showing insert ligated to vector (3) 
Double digested pET14b-TERT after ligation showing two bands one at around 1.5 kb 
indicating the presence of TERT (1.6 kb) and a band at around 4.0 kb showing pET14b (4.6 
kb). 
 
 
 
 
 
 

1.5 kb 
    2.0 kb          

    1          2           3 

5.0 kb 
4.0 kb 
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Step Temperature (°C) Duration  

1. Activation 95 15 min 

2. Denaturation 94 30 sec 

3. Annealing 60 30 sec  

4. Elongation 72 3 min 

5. Final elongation 72 10 min 

Steps 2 to 4 cycled 30 times. 

Table 3.2.3 Lists the temperature and duration for each step used in the PCR reaction for the 
cloning of DY3.4 into pET14b.  
 
 
 
3.2.4 Sequencing results 

 

Purified plasmids and pre-designed primers were sent off for sequencing analysis at 

MWG Biotech. The primers were used to ensure the entire gene sequence was covered 

in the analysis (see Table 3.2.4). The results from sequencing showed TERT had been 

successfully cloned into pET41 vector with no mutations present in the gene (see 

Appendix 2 for alignment).  

 

Primer  Primer 

name 

Direction 

of primer 

Base pair covered 

5’ CGTTATATAGTTCAAAAAGCTCCG 3’ Int2 Forward 780-1454 

5’ CCGAGAGATGAGTTCCTCTACAACA 3’ Int3 Forward 1261-1686 

5’ CGCGATACCGTTGTTTTACTGG 3’ Int4 Reverse 1-184 

5’ GGTTGAATTCGATGCTCTC 3’ Int5 Reverse 1-838 

5’ CACAGGGACATCCTATATCTTC 3’ Int6 Reverse 430-1407 

Table 3.2.4 A summary of the primers used for sequence analysis of pET41-DY3.4 and 
pET14b-DY3.4 construct. The regions of the gene sequence which provided a good strong 
read by each primer are also noted.  
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Sequencing results for pET14b-DY3.4 construct showed the gene had been successfully 

cloned with no insertions or deletions; however six point mutations were evident upon 

examination of the sequence (see Appendix 3). This may be due to the polymerase, 

Hotstar Taq, used in the cloning process. Hotstar Taq does not have 3’ to 5’ exonuclease 

activity.  Also thirty cycles were used in the PCR cycling parameters which could have 

increased the rate or likelihood of mutations. The mutations are summarised in Table 

3.2.5. The rationale for using HotStar Taq was because DY3.4 was a particularly 

difficult gene to clone and a number of polymerases were used including Pfu Turbo 

polymerase and KOD Hotstart polymerase and none were successful. The Hotstar Taq 

from Qiagen had an optional PCR additive, Q solution; which was useful for getting 

difficult PCRs to work as it changes the melting behaviour of the DNA template. 

 

Point mutation Residue mutation 

T to G Ile to Ser 

C to T Ala to Val  

G to A  Ala to Thr  

T to C Trp to Gly  

A to G Lys to Arg 

A to G  Silent mutation (Gly) 

Table 3.2.5 Mutations revealed in pET14b-DY3.4 construct after sequence analysis showed 
six point mutations of which one was a silent mutation (Gly). 
 
 
In order to correct the point mutations site-directed mutagenesis was carried out for all 

the point mutations apart from the silent Gly mutation to convert them back to the 

original base. The cycling parameters used for site-directed mutagenesis are listed in 

Table 3.2.6, the polymerase used was KOD Hotstar polymerase and the reaction set-up 

was 5 µl 10× reaction buffer, 3 µl 25 mM MgSO4, 5 µl dNTPs, 1.5 µl forward primer, 

1.5 µl reverse primer (primers for each mutagenesis can be found in Table 3.2.1), 1 µl 

template DNA, 32 µl ddH2O and 1 µl KOD Hotstart polymerase. Parental DNA was 

digested with 1 µl of DpnI at 37 ºC for one hour subsequent newly formed DNA were 
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transformed into DNA replication competent cells XL-1 Blue (see section 2.2.3 and 

Table 2.11). 

 

Step Temperature (°C) Duration  

1. Activation 95 2 min 

2. Denaturation 95 20 sec 

3. Annealing Lowest primer Tm 10 sec  

4. Elongation 70 3 min 

Steps 2 to 4 cycled 25 times. 

Table 3.2.6 (Tm is the melting temperature) Cycling parameters used for correction of point 
mutations in pET14b-DY3.4 using KOD Hotstar polymerase from Novagen. 
 
 
Plasmids were sent to MWG Biotech for sequencing to check for corrections of 

mutations and the results showed all mutations which required amendment were 

successfully mutated back to the original base (see Appendix 4 for sequence alignment). 

The plasmid was then used for protein expression studies. The primers designed and 

used for sequencing purposes are listed in Table 3.2.7, the primers used enabled the 

entire DY3.4 gene to be covered in the sequence analysis. 

 

Primer  Primer 

name 

Direction of 

primer 

Regions of DY3.4 

confirmed via 

sequencing (bp) 

5’ ATGGCACCAACGATTAAG 3’ Int1 Forward 56-759 

5’ CGTTATATAGTTCAAAAAGCTCCG 3’ Int2 Forward 780-1454 

5’ CCGAGAGATGAGTTCCTCTACAACA 3’ Int3 Forward 1261-1686 

5’ GATACATTTGTTGCATGCTCC 3’ Int10 Reverse 1-307 

Table 3.2.7 Primers used for sequencing of DY3.4 are listed above with details of the base 
pair regions covered in the TERT sequencing results. 
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3.3 Protein production  
 

 

3.3.1 Rare codon analysis 

 

Analysis of the amino acids of TERT in C.elegans revealed there were a total of 29 rare 

codons (RaCC: Rare Codon Calculator by NIH MBI Laboratory for Structural Genomics 

and Proteomics). These rare codons included Arg AGG, AGA, CGA, Leu CTA, Ile 

ATA and Pro CCC (see Appendix 5 for analysis). To supplement these codons BL21 

codonplus (DE3)-ril E.coli competent cells from Stratagene were used. 

 

 

3.3.2 Expression of pET41-DY3.4  

 

Protein expression required transformation of pET41-DY3.4 into BL21 codonplus 

(DE3)-ril cells. The protocol for general transformations can be found in section 2.2.3. 

Cells were grown in one litre LB media supplemented with chloramphenicol and 

kanamycin (see section 2.1.9 for working concentrations) at 37 ºC until an O.D600 of 0.6 

was reached. Cells were then induced using 0.5 mM IPTG and grown at 37 ºC for three 

hours. Cells were lysed using a French press (see section 2.2.4.2) and purified on a GST 

column (see section 2.2.5.2 for protocol). SDS-PAGE gel analysis of fractions collected 

from the GST column showed that there did not appear to be a large amount of protein 

expressed which was evident in the pre- and post-induction fractions. However since 

bands at around 98 kDa were seen on the gel in the eluted fractions and were of 

approximately the size of DY3.4 (63.8 kDa) and GST fusion tag (26 kDa) these fractions 

were pooled and purified on an S200 size exclusion column (see Figure 3.3.1). 
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Figure 3.3.1 (a) SDS-PAGE gel analysis of pET41-DY3.4 construct. Lanes (1) SeeBlue Plus 
2 protein ladder, (2) pre-induction sample, (3) post-induction sample, (4) and (5) PBS wash 
and (6) to (8) fractions obtained after elution with reduced glutathione sepharose buffer. (b) 
S200 size exclusion UV trace showing a large peak in the void volume at 8 ml identifying 
the presence of possible pET41-DY3.4 aggregated protein. 
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3.3.3 Expression and protein identification of pET14b-DY3.4  

 
 

pET14b-DY3.4 was transformed into BL21 codonplus (DE3)-ril cells following the 

same procedure used for protein expression of pET41-DY3.4. Cells were lysed and 

centrifuged (see section 2.2.4.2) separating cell lysate and cell debris. To identify the 

DY3.4 protein a western blot was carried out (see section 2.2.7) using anti-His 

antibodies since pET14b is N-terminally His-tagged. The results showed that pET14b-

DY3.4 was detected in the insoluble pellet with a band at around 64 kDa (see Figure 

3.3.2). Given that TERT was insoluble alternative methods were adopted in an attempt 

to obtain soluble TERT. 

 

 

              
Figure 3.3.2 (a) SDS-PAGE gel of pET14b-DY3.4 expressed in BL21 codonplus (DE3)-ril 
cells Lane (b) western blot analysis. (1) SeeBlue Plus 2 protein ladder, (2) pre-induction 
sample, (3) post-induction sample, (4) pellet after cell lysis and centrifugation and (5) 
supernatant after cell lysis and centrifugation (6) His-tagged protein positive control.  
 
 
 

 98 kDa  98 kDa 

 64 kDa  64 kDa 

    1     2     3     4     5     6     1     2     3     4     5     6 (a) (b) 
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3.4 Solubilising pET14b-DY3.4 

 

The following sections of this chapter focus on different methods used to try and obtain 

soluble TERT protein from C. elegans. 

 

3.4.1 Expression trials 

 

Expression trials were carried out using various E. coli cells and growth and induction 

conditions. The cells used in these trials were BL21 codonplus (DE3)-ril, Origami 

(DE3), Rosetta Blue (DE3) pLysS, C43 (DE3) pLysS and BL21 (DE3) pLysS the 

expression trial conditions are listed in Table 3.4.1.  

 

Growth temperature 

(ºC) 

Induction temperature 

(ºC) 

Induction duration IPTG concentration 

(mM) 

37 37 4 hrs 1 

37 37 4 hrs 0.5 

37 30 4 hrs 1 

37 30 4 hrs 0.5 

30 30 4 hrs 1 

30 30 4 hrs 0.5 

37 18 Over night 1 

37 18 Over night 0.5 

Table 3.4.1 Summarises the expression trial conditions used for various competent cells as 
listed previously. 
 

Unfortunately none of the conditions yielded any soluble protein as indicated by western 

blot analysis.  

 

 

 



 Chapter Three- Cloning and expression of C. elegans TERT 

  101 

3.4.2 GroEL and GroES chaperones 

 

GroEL and GroES are chaperones from E. coli, the two proteins form a chaperonin 

complex that aids the folding and or refolding of proteins. GroEL is a 60 kDa protein 

which forms two stacked rings of seven subunits, together with 10 kDa heptamer 

cochaperonin GroES which forms the “lid” they work in tandem to mediate correct 

protein folding (Sigler 1998). 

 

DY3.4 protein contains 14 cysteine residues, improper disulfide bond formation may 

have accelerated the misfolding of protein and hence forming insoluble aggregates. In an 

attempt to try and help folding and prevent aggregation a plasmid (pBAD) containing 

GroEL and GroES chaperones was used in a cotransformation with pET14b-DY3.4. The 

pBAD plasmid was courtesy of Dr Syeed Hussain. The pBAD system required L-

arabinose to induce the growth of chaperones with chloramphenicol resistance. Co-

transformation of pBAD and pET14b-DY3.4 was carried out using Origami (DE3) cells. 

Cells were grown in LB media supplemented with L-arabinose 0.05 %, chloramphenicol 

and ampicillin at 37 ºC until O.D600 of 0.6 was reached followed by induction at 37 ºC 

for four hours using 0.5 mM IPTG.  Cells were lysed using a sonicator and centrifuged 

to separate insoluble pellet from soluble supernatant. Fractions were analysed using 

western blot, initial results appeared to show pBAD-GroES/GroEL had been successful 

in solubilising DY3.4, with bright band in supernatant fraction at approximately 64 kDa 

indicating the presence of soluble protein. However further analysis showed that pBAD 

plasmid transformed into Origami (DE3) cells as a control also showed bands at around 

64 kDa (see Figure 3.4.1). 
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Figure 3.4.1 Lane (1) SeeBlue Plus2 protein ladder, (2) and (3) supernatant and pellet 
samples of pET14b-DY3.4 co-transformed with pBAD-GroES/GroEL into Origami (DE3) 
cells respectively. Lane 2 shows a bright band at around 64 kDa indicating possible soluble 
TERT. (4) and (5) supernatant and pellet samples of pBAD-GroEL/GroES transformed into 
Origami (DE3) cells respectively. A band can also be seen at around 64 kDa, confirming the 
chaperones were unsuccessful in solubilising TERT. 
 

 

3.4.3 Solubilising TERT using urea 

 

Since soluble TERT could not be obtained by expression trials or co-transforming with 

chaperones GroES and GroEL an alternative was to solubilise insoluble TERT pellet 

with high concentrations of urea. Cells were grown and induced as described in section 

3.3.3. The cell pellet was harvested and resuspended in binding buffer 5 mM imidazole, 

500 mM NaCl and 20 mM Tris pH 8.0. Cells were freeze thawed three times followed 

by sonication (5 sec pulse with 5 sec intervals for ten minutes). The lysed cells were 

centrifuged for 30 minutes at 10,000 g. The pellet was resuspended in binding buffer 

containing successively increased urea concentration ranging from 2 M, 3 M and 4 M 

plus 1 % Triton X-100. Each time the resuspended pellet was placed under agitation for 

one hour followed by centrifugation for 30 minutes at 10,000 g. The final buffer used to 

resuspend the inclusion bodies pellet contained 6 M urea plus 1 % Triton X-100 and left 

overnight under agitation at room temperature. Pellet and supernatant were separated via 

 1    2     3     4    5 

64 kDa 
98 kDa 
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centrifugation for 30 minutes at 10,000 g samples of supernatant and pellet were 

retained for western blot analysis (Lemercier 2003). 

 

Results from western blot analysis revealed that the solubilising of TERT using 6 M 

urea only achieved partial solubilisation see Figure 3.4.2. Very small amounts of protein 

was recovered from the supernatant fraction compared to the insoluble pellet due to the 

small amount of soluble protein that could be easily made and the difficult nature of the 

protein this method was not pursued.  

 

 
Figure 3.4.2 (a) SDS-PAGE gel. Lane (1) SeeBlue Plus 2 protein ladder. (2) Pellet after 
treatment with 6 M urea. (3) Supernatant after treatment with 6 M urea. (b) Western blot 
results. Lane (1) SeeBlue Plus 2. (2) Pellet portion after treatment with urea, band can be 
seen at around 64 kDa indicating the majority of DY3.4 was still present in the insoluble 
pellet. (3) Supernatant sample after resuspension in urea, only a small amount of soluble 
DY3.4 is present indicative of a faint band at approximately 64 kDa. 
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3.5 Conclusion and future work 

 

TERT from C. elegans has proved to be a difficult protein to clone and over-express. 

Two constructs were successfully made pET41-DY3.4 GST-tagged and pET14b-DY3.4 

His-tagged using the EK/LIC ligation and digestion independent system and direct 

cloning respectively.  The former construct produced protein, but the protein was 

aggregated as judged from its elution in the void volume. The pET14b-DY3.4 construct 

produced inclusion bodies and was located in the insoluble pellet as identified via 

western blotting experiments. Attempts at solubilising the protein were not productive 

with no soluble protein obtained from the co-tranformation with pBAD-GroES/GroEL 

chaperones and only partial solubilisation was achieved using urea. 

 

More work is required on the expression of soluble DY3.4. An alternative expression 

system could be used to help obtain non-aggregated soluble protein such as a yeast 

expression system or insect cells. This work was brought to a conclusion when the first 

full length TERT structure from T. castaneum was published (Gillis 2008). 

 

The TR component for C.elegans TERT catalytic subunit is unknown. Possible future 

work could be the identification of the telomerase RNA component. There have been 

suggestions that this component may be tts-1 (Jones 2001), with possible similar 

secondary structure and  common characteristics such as a pseudoknot, a telomeric 

template sequence and region of base pairing upstream and downstream of the telomeric 

template. A possible strategy for identifying TR is to synthesise tts-1 as DNA and use in 

vitro reconstitution (Xie 2008). 

 

In vitro transcription/translation in rabbit reticulocyte lysate might be used for in vitro 

reconstitution of telomerase. It utilises the cellular components necessary for protein 

synthesis such as tRNA, ribosomes, amino acids, initiation, elongation and termination 

factors and chaperones needed for correct folding of proteins. Cloned TERT synthesised 
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in rabbit reticulocyte and in vitro synthesised TR could be added to the reaction to 

reconstitute telomerase (Xie 2008).  The advantage of using such a system is that correct 

folding and TERT/TR interaction could be obtained with the help of correct chaperones 

that are already present in rabbit reticulocyte lysate. Past studies involving reconstitution 

of telomerase have used rabbit reticulocyte lysate successfully and produced active 

telomerase.  

 

In the event that tts-1 is not the TR sequence an alternative method to hunt for the 

sequence requires using TERT protein as bait to isolate TR from C.elegans total RNA. 

Assuming TERT and TR binds tightly, total RNA added to His-tagged TERT protein 

synthesised in rabbit reticulocyte would allow selection of TERT protein bound with TR 

on a nickel column. The TERT bound RNA would then be used in RT PCR. 

 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  106 

 

 

 
Chapter Four: 

High resolution structure 

and substrate binding to CobJ 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  107 

4.1 CobJ and ring contraction 

 

Cobalamin (vitamin B12) has been described as the most complex small molecule 

because of the number of biosynthetic steps involved in its synthesis.  There are two 

distinct, but related, pathways; an aerobic and an anaerobic route. The differences 

between the two lie in the requirement for molecular oxygen and at which enzyme 

mediated step cobalt chelation occurs. For the anaerobic pathway cobalt insertion takes 

place early on and requires no oxygen whereas the aerobic pathway requires molecular 

oxygen and adopts a late onset cobalt insertion (Battersby 1994; Raux 1996; Scott 

2003).  

 

Conversion of uroporphyrinogen III (uro’gen III) to cobalamin involves a number of 

types of reactions including methylation, amidation, removal of a ring carbon, insertion 

and reduction of a cobalt atom, addition of adenosyl moiety and the aminopropanol side 

chain. Of these reactions the focus will be on methylation at C17 and removal of a ring 

carbon in the pathway. In total there are eight methylations and six methyltransferases, 

in summary these include CobA (CysG) (anaerobic equivalents in brackets) which 

methylates uro’gen III at C2 and C7, CobI (CbiL) which methylates at C20, CobJ 

(CbiH) which methylates at C17, CobM (CbiF) which methylates at C11, CobF (CbiD) 

which methylates at C1 and CobL (CbiE and CbiT) which methylates at C5 and C15 

(Crouzet 1990; Roth 1993). Several of these enzymes have auxiliary reactions, for 

example, CobJ catalyses ring contraction. 

 

CobA is an S-adenosyl-L-methionine (SAM) dependent uro’gen III methyltransferase 

(SUMT) which catalyses the methylation of uro’gen III at C2 and C7 forming precorrin-

2, only from this point does the pathway diverge into an anaerobic one. In the anaerobic 

pathway precorrin-2 is oxidised to sirohydrochlorin (oxidised form of precorrin-2) via 

SirC before insertion of a cobalt ion via a cobalt chelatase, CbiX or CbiK (Leech 2003; 

Raux 2003).  In the aerobic pathway cobalt insertion occurs at hydrogenobyrinic acid 
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a,c-diamide via cobalt chelatase CobNST complex to generate cobyrinic acid a,c-

diamide (Blanche 1993). 

 

In this chapter the focus is on the ring contraction step of the bacterium Rhodobacter 

capsulatus. A contracted macrocycle is a unique characteristic of cobalamin. In the 

aerobic pathway; ring contraction is catalysed by the SAM dependent C17 

methyltransferase, CobJ. In the past elaborate NMR labelling studies deduced a pinacol 

type arrangement as the mechanism for the ring contraction step, where CobG, a 

monooxygense uses molecular oxygen and sets up the ring contraction reaction by 

hydroxylating at C20 of the macrocycle producing a lactone ring and a methyl ketone 

pendant. CobJ subsequently methylates at C17 followed by a spontaneous ring 

contraction with the extrusion of C20 and bond formation between C1 and C19, this a 

reaction unprecedented in nature (see Figure 4.1.1) (Debussche 1993; Scott 1993). 

 

 
Figure 4.1.1 A schematic diagram showing the pinacol type arrangement proposed by Scott 
et al 1993 where precorrin-3b is synthesised via the hydroxylation of precorrin-3a (not 
shown) to form a lactone ring and a methyl ketone pendant. 
 

 

However in R. capsulatus this CobG gene is missing and instead contains a gene CobZ 

which is able to compliment a CobG deficient strain (McGoldrick 2005). Other 

methyltransferases in the aerobic vitamin B12 pathway include CobA, CobI, CobM, 

CobF and CobL. Ring contraction in the anaerobic pathway is catalysed by CbiH and 

Precorrin-3b Precorrin-4 Pinacol intermediate 

CobJ 

 + SAM 
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mediates the formation of δ-lactone and ring contraction and methylation of a metallated 

macrocycle ring. (Roth 1993; Santander 1997)  

 

The genes for cobalamin synthesis have been structurally and functionally characterised 

for Pseudomonas denitrificans and from this it was possible to compare with Salmonella 

typhimurium genes in the cob operon and assign the function of each. A high degree of 

similarity between the two shows that these genes had evolved from a common ancestor 

(Roth 1993). Similarly 80 ORFs were functionally assigned for R. capsulatus of which 

26 of them matched with high similarity scores to the genes for synthesis of cobalamin 

in P. denitrificans and S. typhimurium (Vlcek 1997). 

 

A number of structures for methyltransferases have been solved and these are 

summarised in Table 4.1.1.  Obtaining an enzyme-substrate or -product complex has 

proved to be more challenging, some past studies have achieved such a feat including 

hydrogenobyrinic acid (HBA) bound to CobH and cobalt factor II bound to CbiL. 

 

CobH is a methyl mutase that catayses the migration of a methyl group from C11 of 

precorrin-8x to C12 forming HBA. A crystal structure of CobH from P. denitrificans 

bound to its product HBA revealed a 1:1 stoichiometry with the observed product bound 

to near full occupancy in the active site. The binding pocket nearly encapsulates the 

entire tetrapyrrole with rings A and B near the opening of the active site exposed to 

solvent and rings C and D situated in the inner most part of the cavity with many 

hydrophobic residues making hydrogen bonds to the product. The opening of the pocket 

appeared too small to allow product to move in freely, which led to the conclusion of a 

C-terminal loop region that changed conformation allowing the entry of HBA. This was 

substantiated by the weak density observed in the residues making up this loop marking 

its flexibility  (Shipman 2001). 
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A structure containing a doughnut-like ring of density near the catalytic pocket of CbiL 

has been reported. CbiL is a methyltransferase that catalyses the methylation of C20 via 

the methyl donor group SAM (SAH in the crystalline form) in the anaerobic pathway. 

Although a structure of cobalt factor II substrate bound to CbiL has been achieved, the 

density quality was poor for the substrate and therefore was not concisive in the residues 

responsible for binding of tetrpyrrole and resiudes involved in methylation and ring 

contraction. What was deducible from the result was that the density for cobalt factor II 

substrate would place C20 close to the sulphur group of SAH at 5.5 Å appropriate for 

methyl transfer (Frank 2007). 

 

In order to elucidate the mechanism of ring contraction, thereby solving the puzzle of the 

unusual step of a contracting macrocycle, extensive work has been carried out to try and 

obtain an enzyme substrate complex through methods of crystallisation, crystal soaking 

and co-crystallisation with tetrapyrroles and small molecules. More probing was 

required since it is unclear whether the contraction of the macrocycle occurs before or 

after methylation, or indeed if these events are concerted.  

 

Figure 4.1.2 Ribbon diagram of 
CobH in complex with HBA. The 
tetrapyrrole is nearly encapsulated 
inside of the catalytic pocket 
(Shipman 2001). 
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Methylates Enzyme Pathway Catalyses 

the 

formation 

of: 

Structural 

data 

Organism Reference 

C2 and C7 CobA aerobic uro’gen III 

into 

precorrin-2 

2.70 Å Pseudomonas 

denitrificans 

(Vevodova 

2004) 

C2 and C7 CysG anaerobic uro’gen III 

into 

precorrin-2 

2.21 Å Salmonella enterica (Stroupe 2003) 

C20 CbiL anaerobic cobalt 

precorrin-2 

into cobalt 

precorrin-3 

2.10 Å Methanothermobacte
r thermautotrophicus. 

(Frank 2007) 

C11 CbiF anaerobic cobalt 

precorrin-4 

into cobalt 

precorrin-5 

2.4 Å  Bacillus megaterium (Schubert 1998) 

C1 CobF aerobic precorrin-5 

into 

precorrin-6 

1.60 Å Corynebacterium 
diphtheriae 

(Nocek) 

C1 CbiD  anaerobic cobalt 

precorrin-5 

into cobalt 

precorrin-6 

1.90 Å Archaeoglobus 
fulgidus 

(Zhang)  

C5  CbiE  anaerobic Dihydro 

cobalt 

precorrin-6 

into cobalt 

precorrin-7 

2.27 Å Archaeoglobus 
fulgidus 

(Kim) 

C15 CbiT 

 

anaerobic Cobalt 

precorrin-7 

into cobalt 

precorrin-8 

2.30 Å Methanocaldococcus 
jannaschii dsm  

(Padmanabhan) 

Table 4.1.1 Details of all the methyltransferase structures solved from both aerobic and 
anaerobic pathways. 
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4.2 Protein production and purification of CobJ and CobG 

 

 

4.2.1 CobJ native and mutant protein production 

 

CobJ from R. capsulatus was cloned into an N-terminal His-tagged pET14b vector 

courtesy of Dr Evelyne Deery and Prof Martin Warren of Kent University additionally 

CobJ mutants pET14b-D82A and pET14b-H129A were kindly provided by Susanne 

Schroeder also of Kent University. 

 

For protein over production of pET14b-CobJ and mutants they were transformed into 

BL-21 (DE3) pLysS cells (the protocol for transformation can be found in section 2.15 

and 2.2.4).  CobJ and mutant protein required 37 °C growth temperature until an O.D600 

of 0.6 was reached and induced at 18 °C overnight using 0.4 mM IPTG. Harvested cells 

were lysed using a sonnicator (see section 2.2.4.1).  

 

 

4.2.2 CobJ native and mutant protein purification 

 

His-tagged native CobJ and mutants were firstly purified on a nickel immobilised 

column (see section 2.2.5.1) fractions were collected at 400 mM imidazole and at 300 

mM imidazole (Figure 4.1.3) and concentrated ready for size exclusion purification (see 

section 2.2.5.5).  

 

Concentrated samples were purified on S200 size exclusion column as a final buffering 

step where buffer exchange into low concentration salt took place and removal of any 

aggregated proteins. CobJ eluted at approximately 16 ml, see Figure 4.1.4. Typically 

from one litre of cells 10 mg/ml of CobJ protein was produced. 
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Figure 4.1.3 (a) CobJ SDS-PAGE gel showing a prominent band at approximately 36 kDa in 
the post induction and eluted fractions from a nickel immobilised column. (1) Protein ladder 
SeeBlue Plus (Invitrogen), (2) pre-induction, (3) post- induction, (4) flow-through, (5) wash 
I, (6) wash II, (7) wash III (collected as fractions for size exclusion chromatography), (8) 
eluted fractions. (b) SDS-PAGE gel showing fractions obtained after size exclusion 
chromatography on the S200 column. (1) Protein ladder SeeBlue Plus, (2) CobJ fractions 
from S200.   

1               2              

36 kDa 

7   1    2    3    4    5   6 

36 kDa 

8 (a) (b) 
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Figure 4.1.4 An FPLC trace at 280 nm showing a peak at 16.12 ml from a size exclusion 
S200 column where CobJ protein was eluted, fractions under the peak were checked on an 
SDS-PAGE gel pooled and then concentrated. 
 
 
 

 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  115 

4.2.3 CobG protein production 

 

CobG from Synechococcus elongatus was cloned into an N-terminal His-tagged pET14b 

vector courtesy of Dr Evelyne Deery and Prof Martin Warren from Kent University. 

Protein over expression was achieved by transforming the construct pET14b- CobG into 

BL21 (DE3) pLysS cells (see section 2.2.4 for the protocol) and grown at 37 °C until an 

O.D600 of 0.6 was reached followed by induction at 18 °C overnight, subsequent cells 

were harvested and lysed using a sonnicator (see section 2.2.4.1).  The crude lysate was 

then transferred into the anaerobic chamber ready for protein purification since CobG 

has a 4Fe-4S cluster and is oxygen sensitive. 

 

4.2.4 CobG protein purification 

As described in section 2.2.8.6 all buffers and columns were degassed and placed into 

the anaerobic chamber the night before for equilibration. Since CobG posessess an iron- 

sulphur cluster and is oxygen sensitive the lysate was purified on a nickel immobilised 

column anaerobically (see section 2.2.5.1). Fractions were collected from 300 mM 

imidazole (wash III) and 400 mM imidazole see Figure 4.1.5  the fractions were pooled, 

buffer exchanged and purified on a pd-10 column (see section 2.2.5.4 for pd-10 column 

protocol).   
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Figure 4.1.5 (a) CobG SDS-PAGE gel with a prominent band at around 64 kDa indicative of 
the size of pET14b-CobG in the post-induction, elution I and elution II lanes. Lane (1) 
Protein ladder SeeBlue Plus, (2) pre-induction, (3) post-induction, (4) flow-through, (5) 
wash I, (6) wash II, (7) elution I, (8) elution II. Fractions from lanes 7 and 8 were pooled and 
applied to a pd-10 column. (b) CobG SDS-PAGE gel showing fractions collected from a pd-
10 column.  Lane (1) Protein ladder SeeBlue plus, (2) fractions collected from pd-10 
column.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

64kDa 

   1      2      3     4     5     6              7         8 

64 kDa 

   1                       2 (b) (a) 
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4.3 Substrate production 

 

 

4.3.1 Precorrin-3a 

 

Precorrin-3a (PC-3a hereafter) is a tetrapyrrole synthesised in the vitamin B12 pathway 

by the methylation of Precorrin-2 at C20 via the methyltransferase CobI. In this thesis 

the production of PC-3a is described and was readily made. However PC-3a is not the 

correct substrate required for CobJ to carry out its ring-contraction step, ideally 

Precorrin-3b (PC-3b hereafter) was needed. Production of PC-3b requires CobG to 

hydroxylate C20 of PC-3a generating a gamma lactone structure and from this CobJ is 

then able to methylate at C17 and exude C20 from the macrocycle and form a bond 

between C1 and C19 (Schroeder 2009). 

 

 

4.3.1.1 Multi-enzyme reaction  

 

Production of substrate PC-3a required a multi-enzyme reaction containing CobI, CobA, 

HemB, HemC and HemD enzymes (see Figure 4.1.6) in an anaerobic glovebox 

(BelleTechnology) details of the method can be found in section 2.2.8. 
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Figure 4.1.6 A schematic diagram depicting the multi-enzyme assay, which converts ALA 
into PC-3a via the enzymes HemB, HemC, HemD, CobA and CobI. 
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The products of the multi-enzyme assay were measured using a UV-3010 

spectrophotmeter and a UV-visible trace was recorded over a range of 300 to 700 nm for 

three reactions A, B and C (see Figure 4.1.7).  PC-3a produces a characteristic peak at 

around 420 nm coupled with a yellow coloured product under anaerobic conditions and 

fluoresces yellow-orange when exposed to UV light (see Figure 4.1.8). The product of 

reaction A produced precorrin-2 using enzymes HemB, HemC, HemD and CobA. 

Tetrapyrroles have a conjugated π-electron system and the arrangements of the electrons 

in the macrocycle ring give the compound its characteristic colour. PC-3a is light and 

oxygen sensitive, after long exposure to oxygen a peak maxima was observed at 378 nm 

with a shoulder at 411 nm and an increase in absorption at 593 nm indicating the 

oxidation of PC-3a to sirohydrochlorin.  Sirohydrochlorin is characterised by absorption 

maximas at 376 nm and 590 nm (Raux 2003). 

 

 
Figure 4.1.6 Shows a UV trace between 300 to 700 nm of each vial A, B and C where A was 
a negative control producing up to the tetrapyrrole precorrin-2 in the absence of all enzymes 
apart from CobI, reaction A and B both produced PC-3a, however the quantity of CobI in 
reaction B was half of that present in reaction A. 
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Figure 4.1.8 (a) PC-3a was a yellow product under anaerobic conditions and (b) fluoresces 
yellow-orange under UV light, the fluorescence changes to pink when exposed to oxygen (c) 
PC-3a was pink coloured under aerobic conditions. 
 

 

4.3.2 Precorrin-3b 

 

PC-3b as mentioned earlier is the tetrapyrrole CobJ methylates at C17 and ring 

contracts. The synthesis of PC-3b enzymatically uses the same multi-enzyme assay (see 

section 2.2.8.6) with the addition of purified CobG, all under anaerobic conditions. To 

activate CobG, molecular oxygen was introduced by taking the mixture out of the 

glovebox. 

 

 

4.3.2.1 Production of Precorrin-3b 

 

To start the production of PC-3b 2 ml of 0.2 mg/ml CobG was added to 500 µl of PC-3a 

inside the glovebox, to activate the reaction; oxygen was introduced by taking the 

mixture out of the anaerobic chamber. To begin with the colour of the mixture was 

green, as expected for CobG under anaerobic conditions (Schroeder 2009), however 

over time under oxygen exposure the green colour changed to a brown colour, coupled 

with this observation the fluorescence changed from a strong pink to a lighter pink 

fluorescence see Figure 4.1.9.  

 

(a) (c) (b) 
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Further analysis by obtaining UV-visible traces after mixing PC-3a with CobG 

immediately after and 3.5 hours later showed a gradual change in the trace. Initial 

absorption maxima was recorded at 377 nm, a shoulder peak at 411 nm and two small 

absorption peaks at 590 and 630 nm. Gradually overtime the peaks flatten out and 

become more reminiscent of PC-3a when exposed to oxygen (Figure 4.1.10).  

 

It appeared that the reaction of PC-3a with CobG did not produce PC-3b since the 

product absorption maximas were very similar to that of PC-3a under aerobic conditions. 

The disappearance of fluorescence was caused by the possible subsequent metallation 

that occurs overtime from metal ions. Fluorescence is quenched by proximity of a 

coordinating metal. 

 

 

 
Figure 4.1.9 The reaction of CobG with PC-3a changes from (a) green to (b) brown over 
time. (c) The green substance fluoresces pink (d) gradually the pink fluorescence decreases. 
 

(a) (b) (c) (d) 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  121 

Figure 4.1.10 (a) UV- visible trace for PC-3a after exposure to oxygen with peak maxima at 
375 nm, a shoulder peak at 412 nm and small bump at 593 nm. (b) Two UV-visible traces 
from the same product after mixing PC-3a with CobG under aerobic conditions. After 3.5 
hours the trace flattened out considerably and resembles PC-3a under aerobic conditions 
with similar UV-visible trace characteristics. 
 
 
 
4.4 Native and mutant CobJ crystallography 

 

A selection of CobJ mutants were designed based on analysis of a 2.7 Å native CobJ 

structure solved by Dr Thomas Hutchison. In vitro experiments were carried out to test 

the enzyme activity by using a Salmonella strain deficient in cobalamin synthesis and 

complementation with various mutant CobJ plasmids revealed three mutants D82A and 

H129A with lowest activities at 1.5 % and 4.3 % respectively. This formed the basis of 

(a) 

(b) 
0

0.2

0.4

0.6

0.8

1

1.2

300 350 400 450 500 550 600 650 700

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

300 350 400 450 500 550 600 650 700

Initial absorbance Absorbance after 3.5 hours

  (nm) 

(abs) 

(abs) 

593 nm 

412 nm 

377 nm 

630 nm 590 nm 

411 nm 

377 nm 

  (nm) 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  122 

motivation behind crystallising and working with these particular mutants. Other 

mutants were also tested and the relative activity can be seen in Figure 4.1.11. Activity 

assay results are courtesy of our collaborators at Kent University: Susanne Schroeder 

and Prof Martin Warren. 

 

 

Activity (%)

 
Figure 4.1.11 Summary of the relative activities of various mutants, courtesy of Susanne 
Schroeder of Kent University. 
 

 

Purified and concentrated native and mutant (D82A and H129A) CobJs were used to set 

up crystallisation trays as detailed in section 2.2.10.1. For CobJ protein all crystallisation 

reservoirs were optimised conditions from Hampton research crystal screen 1 (CSI) 

condition 46, consisting of 0.2 M calcium acetate hydrate, 0.1 M sodium cacodylate 

trihydrate pH 6.5 and 18 % w/v PEG 8000.  
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4.4.1 Crystallisation of native and mutant CobJ 

 

Optimised crystallisation conditions used for native and mutant CobJs are listed in Table 

4.1.2.  A hanging drop set-up was used throughout with 2 µl reservoir mixed with 2 µl 

protein at 7 mg/ml which was supplemented with fresh SAM at varying concentrations 

see Figure 4.1.12.  

 

 

 
Figure 4.1.12 A schematic diagram of a 24-well hanging drop plate from Hampton research. 
Each greased well contained 500 µl of reservoir covered with a siliconated glass slide 
forming an air-tight seal. Each slide had four drops with reservoir and protein supplemented 
with SAM at different concentrations. (X) CobJ with no SAM, (Y) CobJ with 0.6 mM SAM, 
(Z) CobJ with 1.2 mM SAM, (W) CobJ with 1.8 mM SAM. 
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Reservoir  Sodium cacodylate 

trihydrate pH 6.5 (mM) 

Calcium acetate 

hydrate (mM) 

PEG 8000 

 (%) 

ddH2O (µl) 

A1 0.1 

 

0 14 

 

320 

A2 100 270 

A3 200 220 

A4 300 170 

A5 0.1 

 

0 15 

 

307.5 

A6 100 257.5 

B1 200 207.5 

B2 300 157.5 

B3 0.1 

 

0 16 

 

295 

B4 100 245 

B5 200 195 

B6 300 145 

C1 0.1 

 

0 17 
 

282.5 

C2 100 232.5 

C3 200 182.5 

C4 300 132.5 

C5 0.1 

 

0 18 
 

270 

C6 100 220 

D1 200 170 

D2 300 120 

Table 4.1.2 Lists the optimised reservoir conditions used for the crystallisation of native 
CobJ and mutant CobJs.  Stock concentrations used include 10 mM sodium cacodylate, 1 M 
calcium acetate and 40 % PEG 8000. The final volume of all reservoirs were 500 µl. 
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Native CobJ protein was readily crystallised as was mutant H129A, however D82A 

proved harder to produce good quality crystals see Figure 4.1.13. Native CobJ crystals 

measured 0.1 mm wide by 0.2 mm long and were produced from optimised conditions 

from CSI condition 46 as did D82A and H129A. H129A formed crystals which were 

approximately 0.2 mm in length. Crystal trays set up for D82A proved unsuccessful in 

many cases with precipitation forming in the drops. In order to combat this problem 

precipitant (PEG 8000) was reduced by half for each of the original reservoir conditions 

for example 14 % PEG 8000 was reduced to 7 % PEG 8000 (see Table 4.1.2 for 

crystallisation conditions) and in addition protein concentration was also reduced to 4 

mg/ml. This enabled formation of small crystals of approximately 0.05 mm. 

 

 

 
Figure 4.1.13 R.capsulatus CobJ crystals obtained from hanging drop vapour diffusion trays 
crystallization trials. (a) Native CobJ crystals from condition B4, (b) H129A crystals from 
condition A6, (c) D82A crystal from condition C3. For reservoir conditions see Table 4.1.2. 
Every ten small divisions on the scale bar was equivalent to 0.1 mm. 
 

 

(a) (b) 

 (c) 
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4.4.2 Crystal soaking 

 

Crystal soaking experiments were carried out aerobically and anaerobically in an 

anaerobic chamber, a general soaking method can be found in section 2.2.10.2. For more 

specific native and mutant CobJ crystal soaks in a variety of environments see Table 

4.1.3, which details the type of crystal (reservoir the crystal was crystallised from and 

SAM concentration used), soak formula, soak time and any observations made during 

the time. The majority of the soaks were supplemented with pyrrole-2-carboxylic acid 

and PC-3a. 

 

 Soak condition Crystal type Soak time 

(mins) 

Observations 

1 PC-3a, 20 % 

glycerol 

anaerobic 

WT A1 1.2 mM SAH N/a 

 

Crystal cracked 

H129A A1 1.2 mM SAH Crystal cracked 

2 40 mM P2CA, 

20 % glycerol 

WT B1 0.6 mM SAH 10  Clear drop 

WT A1 1.2 mM SAH 

H129A  A1 1.2 mM SAH 

4 40 mM P2CA, 

20 % glycerol 

WT A3 1.8 mM SAH 60 For all crystals a hard 

crusty skin had formed 

after 60 minutes. 
H129A A1 1.2 mM SAH 

5 100 mM P2CA 

in DMSO, 

20 % glycerol 

WT A3 1.8 mM SAH 30 For all crystals a hard 

crusty skin had formed 

after 30 minutes. 
H129A A1 1.2 mM SAH 

6 70 mM P2CA 

in DMSO, 

20 % glycerol 

WT A3 1.8 mM SAH 10 Clear drop 

H129A A1 1.2 mM SAH 

Table 4.1.3 PC-3A = precorrin-3a and P2CA = pyrrole-2-carboxylic acid 
Conditions used for soak experiments for wild type (WT) CobJ and mutants are listed. 
Crystal type lists the reservoir the crystal originates from e.g. A1, details of the composition 
can be found in Table 4.1.2 in section 4.4.1 and the concentration of SAH. 
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Crystal soaking using PC-3a proved to be unsuccessful as any crystal subjected to a 

soaking experiment with the tetrapyrrole caused the crystal to crack instantly as seen in 

Figure 4.1.14. The cryoprotectant consisted of the reservoir condition of the crystal 

supplemented with 20 % glycerol and the remaining volume made up with PC-3a (see 

section 2.2.10.2).  

 

 

 
Figure 4.1.14 (a) A native CobJ crystal grown inside of an anaerobic chamber. (b) The same 
crystal after being soaked in cryoprotectant supplemented with PC-3a. 
 
 
 
 
4.4.3 Co-crystallisation 

 

Soaking experiments with PC-3a caused immediate cracking of the crystal suggesting 

that the substrate was causing some change in conformation of the enzyme which in turn 

caused disruption of the crystal lattice. SAM is hydrolysed to SAH during 

crystallisation. An alternative method to crystal soaking was to use co-crystallisation of 

a pre-formed enzyme-tetrapyrrole complex. This circumvents any problems caused by 

the enzyme moving in response to the tetrapyrrole binding. However this method does 

require the complex to crystallise rather than exploiting a pre-grown crystal. 

 

 

 

(a) (b) 
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For co-crystallisation a selection of molecules were used including tetrapyrroles PC-3a 

and hydrogenobyrinic acid known as HBA hereafter (HBA courtesy of Dr Arefeh 

Seyedarabi), in addition one other tetrapyrrole was used which was precorrin-2. This 

was produced as a negative control in the multi-enzyme assay during the production of 

PC-3a (section 4.3.1.1). The product was purified in the same way as PC-3a, however no 

testing was carried out to ensure that this was in fact precorrin-2 produced, but was used 

in co-crystallisation anyway in the hope of a binding tetrapyrrole. 

 

Other small molecules used in co-crystallisation experiments were pyrrole-2-carboxylic 

acid and porphobilinogen both chosen for its small size and presence of a pyrrole ring, 

the basis of a tetrapyrrole. Conditions used are detailed in Table 4.1.4 and co-crystallised 

crystals successfully obtained can be seen in Figure 4.1.15. 
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Table 4.1.4 PC-3a = precorrin-3a, PC-2 = precorrin-2, P2Ca = pyrrole-2-carboxylic 
acid, HBA = hydrogenobyrinic acid, PBG = porphobilinogen 
Details of the types of crystals obtained from co-crystallisation experiments with various 
small molecules and tetrapyrroles. Glycerol was used as a cryoprotectant in all cases at 20 % 
(v/v). 

Crystal type Co-crystallised with 

CobJ WT A2 1.6 mM SAH PC-3a 

CobJ WT A6 1.6 mM SAH PC-3a 

CobJ WT B5 1.2 mM SAH PC-3a 

CobJ WT  B4 1.6 mM SAH PC-3a 

CobJ WT A3 0.6 mM SAH P2Ca 10 mM 

CobJ WT B1 0.6 mM SAH P2Ca 10 mM 

CobJ WT D2 1.8 mM SAH PC-2  

CobJ WT D1 0.6, 1.2 and 1.8 mM SAH PC-2 

CobJ WT C6 no SAH PC-2 

CobJ WT HBA 

CobJ H129A A4 1.8 mM SAH P2Ca  5mM 

CobJ WT A1 0.6 mM SAH PBG 2 mM 
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Figure 4.1.15 Examples of CobJ native crystals successfully formed from co-crystallisation 
experiments. (a) co-crystallised with PC-3a from condition B5, (b) co-crystallised with PBG 
from condition A1, (c) co-crystallised with PC-2 from condition D2, (d) co-crystallised with 
P2Ca from condition A4, (e) co-crystallised with HBA from condition D2. For reservoir 
conditions see Table 4.1.2. Every ten small divisions on the scale bar is equivalent to 0.1 
mm. 
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(d) 

(a) 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  131 

4.4.4 pET14b-CobJ from pull-down assay 

 

Aside from crystal soaking and co-crystallisation experiments, a pull-down experiment 

was used in an attempt to trap a complex. Courtesy of our collaborators from Kent 

University, Dr Evelyn Deery and Prof Martin Warren provided crystals of His-tagged 

CobJ grown from 0.1 M sodium cacodylate pH 6.9, 0.2 M calcium acetate and 22-26 % 

PEG 8000. Two separate constructs were used pET14b-CobJ and pETcoco2-ABCD, 

CobI and CobG. This approach enables the pull-down and crystallisation of His-tagged 

CobJ and any bound product. 

 

The construct produces CobJ protein of a strong blue hue aerobically. However when 

purified anaerobically CobJ was yellow in colour but once exposed to molecular oxygen 

the colour changed to blue (Debussche 1993). This observation would appear to suggest 

that precorrin-4 is present with CobJ enzyme anaerobically but once exposed to aerobic 

conditions the tetrapyrrole oxidises to factor IV (blue in colour). These simple 

experiments suggest that CobJ is being purified along with its product as had previously 

been seen with CobH and HBA (Prof Martin Warren, Kent University). 

 

Product binding may be a method of protecting oxygen-sensitive intermediates in the 

cobalamin biosynthetic pathway and may support the idea of 'retrograde evolution' as 

suggested by (Horowitz 1945). 
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4.4.5 High resolution data collection of native CobJ 

 

A 2.7 Å structure of CobJ was solved by Dr Thomas Hutchison using Se-Met enriched 

protein and single anomalous dispersion (SAD). Crystals grew in clusters and a single 

crystal required dissecting from the rest before data collection, however single straight 

edged crystals typically no smaller than 0.1 mm (see Figure 4.1.13) were successfully 

obtained for native CobJ from reservoir condition B4 (see Table 4.1.2) with 1.2 mM 

SAM. Crystals were supplemented with 20 % glycerol prior to freezing as a 

cryoprotectant. From these crystals a 2.2 Å high resolution dataset was collected at 

Diamond Light Source synchrotron beamline IO3. Pre-frozen crystals were 

automatically mounted via a Rigaku ACTOR sample changer and a total of 180 images 

were collected in 1° increments at a wavelength of 0.9808 Å. The detector used was an 

ADSC Q315r detector.  These native CobJ crystals belonged to spacegroup of P212121 

with cell dimensions of a= 85.64 Å, b= 110.99 Å, c= 116.19 Å and with four molecules 

(two dimers) in the asymmetric unit. The crystals were the same as previously described, 

but diffracted to a higher resolution.  

 

Collected data were processed using iMOSFLM (Leslie 1992) and reduced using 

SCALA from the CCP4i suite (Dodson 1997) see Table 4.1.5 for further 

crystallographic statistics.  Structures were viewed using COOT (Emsley 2004). The 

structure is a closely associated homodimer with a buried area of 4780 Å2, but it 

crystallises with four chains forming a dimer of dimers  with only 750 Å2 buried area 

between the authentic dimers, values were calculated using EBI-PISA (Krissinel 2007). 

One SAM molecule is bound to each chain in the hydrolysed form SAH (Figure 4.1.16). 
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Figure 4.1.16 (a) A diffraction pattern obtained for a native CobJ crystal diffracting to 2.2 Å 
(b) A ribbon diagram depicting four chains in the asymmetric unit in native CobJ, the 
adjoining homodimers have a small contact surface area with 750 square Å. (c) and (d) A 
2.2 Å structure provided strong electron density for example residue Tyr 38 and 
molecule SAH. Figures were drawn using Pymol. 
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 Overall Inner shell Outer shell 

Low resolution limit (Å) 58.56 58.56 2.34 

High resolution limit (Å) 2.22 7.03 2.22 

    
aRmerge (%) 0.081 0.026 0.525 
bRmeas (within I+/I-) (%) 0.094 0.031 0.613 
bRmeas (all I+ & I-) (%) 0.094 0.031 0.613 
cRpim (within I+/I-) (%) 0.046 0.016 0.309 
cRpim (all I+ & I-) (%) 0.046 0.016 0.309 

Fractional partial bias -0.016 -0.023 -0.068 

Total number of observations 215361 6705 31449 

Total number unique 54689 1821 7910 

Mean [(I)/sd(I)] (%) 12.3 51.8 2.6 

Completeness (%) 99.4 96.3 99.9 

Multiplicity 3.9 3.7 4.0 

    

Wilson B-factor (Å2) 38.27   

Table 4.1.5 Details of the crystallographic statistics for native CobJ.  
a Rmerge = (Σhkl Σj │ Ihkl - <Ihkl>│) / (Σhkl Σj Ihkl,j)  
b Rmeas = (Σhkl√(n/n-1) Σn

j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
c Rpim = (Σhkl√(1/n-1) Σn j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
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4.4.5.1 Data collection for native CobJ co-crystallised with PC-3a 

 

Data was collected to 2.75 Å at the European Synchrotron Radiation Facility (ESRF) 

using beamline ID 14-1 for native CobJ co-crystallised with PC-3a (see Figure 4.1.15 

panel a). This particular crystal was from reservoir condition B5 with 0.6 mM SAM 

added (Table 4.1.2) and the cryoprotectant used was 20 % glycerol. The detector was a 

ADSC Q210 CCD detector and the wavelength used was 0.9334 Å. In total 180 images 

were collected using a 1 ° oscillation range. The spacegroup was identified as C2221 

using POINTLESS (Evans 2005) with cell edges of a= 49.73 Å, b= 112.85 Å and c= 

91.25 Å.  Images were processed using iMOSFLM (Leslie 1992) and reduced using 

SCALA from the CCP4i suite (Dodson 1997) see Table 4.1.6 for further 

crystallographic statistics.  Matthews coefficient (Kantardjieff 2003) analysis shows 

there is one molecule in the asymmetric unit with 47.5 % solvent content (see Table 

4.1.7).  
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 Overall Inner shell Outer shell 

Low resolution limit (Å) 48.09 48.09 2.90 

High resolution limit (Å) 2.75 8.70 2.75 

    
aRmerge (%) 0.103 0.042 0.631 
bRmeas (within I+/I-) (%) 0.112 0.047 0.682 
bRmeas (all I+ & I-) (%) 0.112 0.047 0.682 
cRpim (within I+/I-) (%) 0.043 0.021 0.256 
cRpim (all I+ & I-) (%) 0.043 0.021 0.256 

Fractional partial bias -0.052 -0.064 -0.172 

Total number of observations 47126 1208 6962 

Total number unique 7019 241 1007 

Mean [(I)/sd(I)] (%) 12.2 32.4 2.7 

Completeness (%) 99.7 92.6 100.0 

Multiplicity 6.7 5.0 6.9 

    

Wilson B-factor (Å2) 66.509   

Table 4.1.6 Details of the crystallographic statistics obtained for CobJ co-crystallised with 
PC-3a. 
a Rmerge = (Σhkl Σj │ Ihkl - <Ihkl>│) / (Σhkl Σj Ihkl,j) 
b Rmeas = (Σhkl√(n/n-1) Σn

j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
c Rpim = (Σhkl√(1/n-1) Σn j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
 

 

Nmol/asym Matthews coeff % solvent 

1 2.34 47.5 

Table 4.1.7 Statistics from Matthews coefficient suggests one molecule in the asymmetric 
unit and corresponding solvent content. 
 

 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  137 

4.4.5.2 Data collection for native CobJ co-crystallised with porphobilinogen 

 

Data was collected for native CobJ co-crystallised with porphobilinogen to a resolution 

of 1.97 Å, the crystal (see Figure 4.1.15 panel c) was from condition A1 (see Table 

4.1.2) supplemented with 0.6 mM SAM and 2 mM porphobilinogen. The cryoprotectant 

used was 20 % glycerol. The beamline for data collection was the same for native CobJ 

co-crystallised with PC-3a and a total of 180 images were collected. The crystal had cell 

dimensions a= 68.31 Å, b= 69.43 and c= 72.65 and β= 118.16. The program 

POINTLESS (Evans 2005) suggested the spacegroup P21. 

 

Collected images were processed using iMOSFLM (Leslie 1992) and reduced using 

SCALA from the CCP4i suite (Dodson 1997) see Table 4.1.8 for further 

crystallographic statistics.  Matthews coefficient (Kantardjieff 2003) analysis suggests 

there are two molecules in the asymmetric unit with 53.4 % of solvent (see Table 4.1.9).  

 

Although CobJ was co-crystallised with porphobilinogen none was found to bind in the 

catalytic pocket, but bound elsewhere non-specifically. A total of four molecules of 

porphobilinogen were bound non-specifically. 
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 Overall Inner shell Outer shell 

Low resolution limit (Å) 34.72 34.72 2.08 

High resolution limit (Å) 1.97 6.23 1.97 

    
aRmerge (%) 0.195 0.039 0.792 
bRmeas (within I+/I-) (%) 0.232 0.047 0.927 
bRmeas (all I+ & I-) (%) 0.232 0.047 0.927 
cRpim (within I+/I-) (%) 0.124 0.026 0.479 
cRpim (all I+ & I-) (%) 0.124 0.026 0.479 

Fractional partial bias -0.081 -0.037 -0.315 

Total number of observations 151141 4343 22774 

Total number unique 41959 1319 6172 

Mean [(I)/sd(I)] 7.3 14.0 2.7 

Completeness (%) 98.8 94.0 100 

Multiplicity 3.6 3.3 3.7 

    

Wilson B-factor (Å2) 16.99   

Table 4.1.8 Details of crystallographic statistics for native CobJ co-crystallised with 
porphobilinogen. 
a Rmerge = (Σhkl Σj │ Ihkl - <Ihkl>│) / (Σhkl Σj Ihkl,j) 
b Rmeas = (Σhkl√(n/n-1) Σn

j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
c Rpim = (Σhkl√(1/n-1) Σn j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
 

 

Nmol/asym Matthews coeff % solvent 

1 5.51 77.69 

2 2.76 55.39 

3 1.84 33.08 

4 1.38 10.77 

Table 4.1.9 Statistics from Matthews coefficient indicating two molecules in the asymmetric 
unit. 
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4.4.6 Data collection of mutant CobJ 

 

Data was collected for the H129A mutant at Diamond Light Source (DLS) beamline IO2 

using an ADSC Q315 CCD detector and 0.979 Å wavelength. The sample was frozen 

using 20 % glycerol as cryoprotectant prior to data collection; a Rigaku ACTOR 

automatic sample changer was used. 

 

 

4.4.6.1 Data collection for H129A soaked in pyrrole-2-carboxylic acid 

 

Mutant CobJ H129A was crystallised from reservoir condition A6 (see Table 4.1.2) 

supplemented with 0.6 mM SAM. The crystal was soaked in 70 mM pyrrole-2-

carboxylic acid for ten minutes with 20 % glycerol as cryoprotectant and frozen in liquid 

nitrogen (see section 2.2.10.2). The data was collected using a 1 ° oscillation and a total 

of 230 images were recorded at 2.5 Å resolution. The spacegroup was P212121 with cell 

dimensions a= 84.96 Å, b= 109.43 and c= 114.65 Å.  

 

The structure had four molecules in the asymmetric unit as suggested by the Matthews 

coefficient (Kantardjieff 2003) with 50.9 % solvent (see Table 4.1.11). For more 

detailed crystallographic statistics collected for H129A mutant see Table 4.1.10. 

Although the crystal was soaked in pyrrole-2-carboxylic acid no small molecule was 

seen in the map bound near the catalytic pocket or non-specifically elsewhere.  
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 Overall Inner shell Outer shell 

Low resolution limit (Å) 57.2 57.2 2.64 

High resolution limit (Å) 2.50 7.91 2.50 

    
aRmerge (%) 0.110 0.040 0.611 
bRmeas (within I+/I-) (%) 0.122 0.045 0.681 
bRmeas (all I+ & I-) (%) 0.122 0.045 0.681 
cRpim (within I+/I-) (%) 0.053 0.020 0.296 
cRpim (all I+ & I-) (%) 0.053 0.020 0.296 

Fractional partial bias -0.002 -0.041 -0.103 

Total number of observations 190643 6313 27721 

Total number unique 37611 1312 5384 

Mean [(I)/sd(I)] 8.7 17.3 2.4 

Completeness (%) 99.8 98.8 99.9 

Multiplicity 5.1 4.8 5.1 

    

Wilson B-factor (Å2) 53.73   

Table 4.1.10 Crystallographic data statistics for CobJ mutant H129A, data collected at 
2.50Å. 
a Rmerge = (Σhkl Σj │ Ihkl - <Ihkl>│) / (Σhkl Σj Ihkl,j) 
b Rmeas = (Σhkl√(n/n-1) Σn

j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
c Rpim = (Σhkl√(1/n-1) Σn j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
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Nmol/asym Matthews coeff % solvent 

1 10.01 87.71 

2 5.00 75.43 

3 3.34 63.14 

4 2.50 50.86 

5 2.00 38.57 

6 1.67 26.29 

7 1.43 14.00 

8 1.25 1.72 

Table 4.1.11 Statistics from Matthews coefficient shows there are four molecules in the 
asymmetric unit for H129A mutant structure with 50.86 % solvent. 
 

 

The absence of the histidine side chain (H129A) was confirmed by inspection of the 

map, where electron density for the imidazole group was missing see Figure 4.1.17. His 

129 from one subunit is close to the SAH binding centre of the other subunit in the 

homodimer (Figure 4.1.18).  

 

Once the structure was refined it was superimposed onto native CobJ using 

SUPERPOSE (Krissinel 2004) for analysis of any structural changes caused by the 

mutation. From the superimposition no major structural differences can be seen between 

native and mutant CobJ (rmsd length 0.019, rmsd angle 1.842 and rmsd length 0.016, 

rmsd angle 1.723 respectively) therefore any reduced enzyme activity observed was not 

due to structural changes of the enzyme as a whole, but from the individual residue 

mutation H129A, which has caused the decrease in enzyme function. It is possible that 

H129 facilitates ring contraction. 
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Figure 4.1.17 Comparison of H129A and native CobJ structures highlighting the absence 
and presence of His 129 respectively. (a) CobJ mutant H129A can be seen with no density 
corresponding to His 129, (b) native CobJ showing His 129, (c) as a control His 64 is shown 
with strong density in the H129A structure, (d) and similarly native CobJ structure and His 
64 shows clear density. 

Ala129 His129 

His64 His64 

 (b)  (a) 

 (c) (d) 
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Figure 4.1.18 A dimer consisting of chain A and chain D with its corresponding SAH Y and 
Z respectively. Highlighted residue His 129 belongs to chain A, however it is closer to SAH 
at the active centre of chain D (12.5 Å) compared to that of chain A (24.8 Å). 
 

His 129 

SAH Z SAH Y 

Chain D 

Chain A 
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4.4.7 Data collection for pET14b-CobJ from pull-down assay  

 

The data was collected to a resolution of 2.5 Å using a 1 ° oscillation at DLS, beamline 

IO4. The spacegroup was P212121 with cell dimensions a= 84.96 Å, b= 109.270 and c= 

113.330 Å for more crystallographic statistics see Table 4.1.12. On examination of the 

density map precorrin-4 was not bound to the active site.  

 

 Overall Inner shell Outer shell 

Low resolution limit (Å) 67.98 67.98 2.65 

High resolution limit (Å) 2.58 11.55 2.58 

    
aRmerge (%) 0.08 0.023 0.733 
bRmeas (within I+/I-) (%) 0.094 0.027 0.854 
bRmeas (all I+ & I-) (%) 0.094 0.027 0.854 
cRpim (within I+/I-) (%) 0.035 0.011 0.312 
cRpim (all I+ & I-) (%) 0.048 0.014 0.435 

Fractional partial bias 0.0 0.0 0.0 

Total number of observations 242365 2680 17987 

Total number unique 33659 446 2427 

Mean [(I)/sd(I)] 18.9 49.7 2.6 

Completeness (%) 99.6 99.1 99.5 

Multiplicity 7.2 6.0 7.4 

    

Wilson B-factor (Å2) 57.97   

Table 4.1.12 Crystallographic data statistics for native pET14b-CobJ pull-down experiment, 
data collected to 2.58Å. 
a Rmerge = (Σhkl Σj │ Ihkl - <Ihkl>│) / (Σhkl Σj Ihkl,j)  
b Rmeas = (Σhkl√(n/n-1) Σn

j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
c Rpim = (Σhkl√(1/n-1) Σn j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
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4.4.8 Refinement  

 

For all structures obtained  refinement was carried out using REFMAC5 (Vagin 2004); 

see Table 4.1.13 for the Rfactor and Rfree values to which each structure was refined. Of 

the datasets collected the ones that were pursued in refinement processes included native 

CobJ and mutant CobJ H129A structure. A number of other structures that were co-

crystallised with tetrapyrrole or small molecules were not refined due to the lack of 

bound molecules in the active site.   

 

Native CobJ co-crystallised with PC-3a was not further refined because no density 

resembling PC-3a was found bound near the pocket nor was there any density to indicate 

non-specific binding. Therefore refinement was not continued especially because a 2.2 Å 

native CobJ model has been obtained already. The same goes for native CobJ co-

crystallised with porphobilinogen since none was found at the active site, but found only 

bound non-specifically elsewhere in the protein. Refinement was not pursued since there 

were many poorly defined blobs of electron density. 

 

The native CobJ structure at 2.2 Å resolution was deposited into the RCSB protein data 

bank under the entry 3NUT. 

 

 Structure Rfactor 

(%) 

Rfree 

(%) 

Resolution 

(Å) 

1 Native CobJ 20.63 27.36 2.20 

2 Native CobJ co-crystallised with PC-3a 31.27 40.08 2.75 

3 Native CobJ co-crystallised with porphobilinogen 25.48 31.95 1.97 

4 H129A co-crystallised with pyrrole-2-carboxylic acid 20.48 27.15 2.50 

5 pET14b-CobJ from pull-down experiment 21.59 29.40 2.50 

Table 4.1.13 Summary of Rfree and Rfactor values for various native and mutant CobJ 
structures. 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  146 

4.4.9 Validation  

 

Native CobJ and mutant H129A were the two structures further refined and validated. 

All other structures were not pursued since no tetrapyrrole was evident in the electron 

density map they were not further pursued. 

 

To ensure a refined model is of a good quality it is important to validate the structure. As 

a model is refined Rfree, Rfactor and root mean square (rms) deviations of the model’s 

bond lengths, angles and conformational angles are used to monitor the convergence to a 

final refined model. Generally rms deviations of no more than 0.02 Å for bond lengths 

and 4 ° for bond angles are accepted (Rhodes 2006). The two structures which were 

fully refined and validated were native CobJ and H129A mutant CobJ for the 

corresponding rmsd values see Table 4.1.14. 

 

Structure Rms length Rms bond 

Native CobJ 0.019 1.842 

H129A CobJ 0.016 1.723 

Table 4.1.14 The Rmsd length and bond values for native and mutant H129A CobJ 
structures.  
 

A Ramachandran plot allows visualisation of dihedral angles ψ against φ enabling quick 

detection of conformationally unrealistic regions of the structure. Residues with the most 

favourable ψ and φ angles are situated in core areas highlighted with pink colour. The 

higher the percentage of residues in these core areas, the higher the stereochemical 

quality of the model. For native CobJ and mutant CobJ H129A models the 

Ramachandran plots show both models have less then 3 % of residues in disallowed 

regions with the majority (more than 90 %) in preferred regions (see Figure 4.1.19). 

 

Validation of models were carried out using PROCHECK V3.4.4 (Morris 1992; 

Laskowski 1993) from RCSB Protein Data Bank. Stereochemical and geometrical 
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features were calculated highlighting any close contacts with distances less than 2.2 Å, 

bond angles and distances, covalent bond lengths and angles, torsion angles and chirality 

were also scrutinized.  

 

An overall summary of the validation for native CobJ and mutant CobJ H129A can be 

seen in Figures 4.1.20, 4.1.21, 4.1.22 and 4.1.23 showing main chain and side chain 

parameters where most residues are situated in favoured regions. 

 

 
 
Figure 4.1.19 (a) Ramachandran plot for native CobJ model and (b) Ramachandran plot for 
mutant CobJ H129A model.  

(a)  (b) 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  148 

 
Figure 4.1.20 Main chain analysis of native CobJ model showing all criteria lie in the 
acceptable regions highlighted in purple. 
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 Figure 4.1.21 Side chain analysis of native CobJ model showing all criteria lie in the 
acceptable regions highlighted in purple. 
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Figure 4.1.22 Main chain analysis of mutant CobJ H129A model showing all criteria lie in 
the acceptable regions highlighted in purple. 
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Figure 4.1.23 Side chain analysis of mutant CobJ H129A model showing all criteria lie in 
the acceptable regions highlighted in purple.
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4.5 Analysis of CobJ active site 
 

 

4.5.1 Alignment of CobJ sequences 

 

In order to identify conserved residues across organisms expressing CobJ which 

posseses a C17 methyltransferase activity, a BLAST search was carried out using NCBI-

BLAST2 from EBI server (Shpaer 1996). The protein-potein BLAST search using 

Swissprot database, identified organisms with similar sequences to R. capsulatus CobJ 

(see Figure 4.1.24). 

 

There are as many as 32 conserved residues identified in the BLAST search and of the 

32 residues some interesting ones that may play a role in catalysis include Tyr 35, Tyr 

38, His129 and Asp138; these residues are highlighted in Figure 4.1.25 showing the 

positions of residues relative to SAH. All these residues have the ability to act as a base 

and accept a proton; these residues could therefore play a role in ring-contraction and 

methylation. They are also well positioned to do either of the reactions catalysed by 

CobJ.   

 

Some other conserved residues identified are well positioned for SAH binding including 

Asp82, Gly84, Gly112 and Tyr163 or are structural residues such as Pro240 and Arg241 

which are positioned far away (more than 15 Å) from the SAH and cleft region. Only the 

conserved residues with a possible role in catalysis are highlighted in Figure 4.1.25 
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A 0 Q 3 3 9    M N N - - - - - - K G K L Y V I G I G P G S L D E M S I R A K K A I E E S E I I V G Y T K Y I K L I E P L I E G K E I F   5 4      
Q 7 3 Q 2 1    M S - - - - - - - - - K L F V V G I G P G G T E Y M S A Q A V E A L K Q S E I I V G Y S G Y I E Y I K P F I E G K E V F   5 1      
A 5 T U V 4    M N N - - - - - - - G K I Y V V G I G P G N M E D I S I R A Y N I L K N I N V I A G Y T T Y V D L V K D E F P D K E F L   5 3      
Q 2 4 Q 3 7    M E R G H G G H Q Q G K I Y V V G I G P G D A E H M T Q R A Q S V W N E V D V V A G Y K T Y I D L I R P W L A D K K V V   6 0      
Q 7 2 0 N 0    - - - - - - - - - - - M I Y V I G I G P G D K R L M T G E A L Q A I E D A E V I V G Y V T Y I K L I K E L I K D K E V V   4 9      
Q 4 E K Z 3    - - - - - - - - - - - - - - - - - - - - - - - - - M T G E A L Q A I E D A E V I V G Y V T Y I K L I K E L I K D K E V V   3 5      
Q 4 E V 4 2    - - - - - - - - - - - M I Y V I G I G P G D K R L M T G E A L Q A I E D A E V I V G Y V T Y I K L I K E L I K D K E V V   4 9      
A 2 S N T 3    - - - M R T T Q A A G K I M L V G I G P G S V G H M T Q R A R E A I A E A D V V V G Y V T Y I K L V A D L I E G K E V V   5 7      
Q 6 A R S 2    M E K Y N N G N G P G T L Y V I G T G P G A R D H I I P A A I E A I E R A D T I I G Y S T Y L D L I E E L L E G K E V I   6 0      
Q 3 J 2 J 7    - - - - - - - - M S G W L V V A G L G P G A E H L V T P E V S V A L A E A T D V V G Y I P Y V A R V A E R P - G L T L H   5 1      
Q 9 R 9 K 1    - - - - - - - - M S G W V A V A G L G P G A E D L V T P E V R A A L A E A T D V V G Y I P Y V A R V A P R P - G L A L H   5 1      
R c - C o b J   - - - - - - - - M S G W V T V A G L G P G R E D L V T P E V T A A L A E A T D I V G Y I P Y V A R I A P R E - G L T L H   5 1      
Q 5 L P I 1    - - - - - - - - M S G W L R I V G L G P G S E A L V T P E V T A V L E E A T D V V G Y I P Y V A R V A E R P - G L T L H   5 1      
Q 8 9 Q 6 3    - - - - - - - - M T G T L T I A G L G P G S D A L V T P E V S A A L G S A T D I L G Y A P Y V A R V P P R P - G L T L H   5 1      
Q 6 N 8 1 6    - - - - - - - - M T G S V V V A G L G P G A Q E L I T P E V S A A L A L A T D I V G Y A P Y V A R V A E R D - G L Q R H   5 1      
P 2 1 6 4 0    - - - - - - - - M T G T L Y V V G T G P G S A K Q M T P E T A E A V A A A Q E F Y G Y F P Y L D R L N L R P - D Q I R V   5 1      
Q 9 2 L V 0    - - - - - - - - M T G K L F I V G T G P G N P A Q M T P E A E D A I A V A T E F F G Y G P Y L D R L H L R A - D Q R R I   5 1      
Q 2 J Z Y 5    - - - - - - - - M S G R L F V I G T G P G N P E Q M T P E A L A V V E A A T D F F G Y G P Y L D R L Q L R S - D Q L R H   5 1      
Q 1 M 5 A 7    - - - - - - - - M S G R L F V I G T G P G N P E Q M T P E A L A A V D A A T D F F G Y G P Y L D R L Q L R H - D Q L R H   5 1      
                                  :    .          .  * *   * :   :      .      
 
 
A 0 Q 3 3 9    S T G M R G E L E R V E Y A L N E S K - S K T V S I I S T G D A G I Y G M A G P I L E M A T N - - - - - - - - E E V I V   1 0 5     
Q 7 3 Q 2 1    Q T G M T G E I E R C K Y A V S K A K E G K T V S I I S T G D A G L Y G M A G P I L E L A P D - - - - - - - - L N V E I   1 0 3     
A 5 T U V 4    V S G M K R E I E R C R E V L E V A K T G K D V A L I S S G D A G I Y G M A G I M L E V A M E S - - - - - - G I E V E V   1 0 7     
Q 2 4 Q 3 7    A T G M R Q E I D R C R E V V E I A L E G Q S I A L V S S G D A G V Y G M A G I L I E C L E E K D A L - - - D I S L E I   1 1 7     
Q 7 2 0 N 0    K T G M R R E I D R C Q E A V D I A L T G K K V A V V S S G D A G I Y G M A G L V L E L A E K S N P - - - - D L E V K V   1 0 5     
Q 4 E K Z 3    K T G M R R E I D R C Q E A V D I A L T G K K V A V V S S G D A G I Y G M A G L V L E L A E K S N P - - - - D L E V K V   9 1      
Q 4 E V 4 2    K T G M R R E I D R C Q E A V D I A L T G K K V A V V S S G D A G I Y G M A G L V L E L A E K S N P - - - - D L E V K V   1 0 5     
A 2 S N T 3    R K G M T E E L D R A V S A L E A A R A G K K V A L I S S G D A G V Y G M A G P T Y E V L F Q A G W T P E D A V Q V E I   1 1 7     
Q 6 A R S 2    S S S M M K E V D R C R L S L E M A E S G K S V A L V S G G D A G I Y A M A G L V L E M A S Q N - - - - D F Q A E I K I   1 1 6     
Q 3 J 2 J 7    A S D N R V E V E R A A H A L Q M A A E G R R V V V V S S G D P G V F A M A S A L F E A L E A R P E W Q - - A L D I R I   1 0 9     
Q 9 R 9 K 1    P S D N R V E L E R A R L A L D L A A R G R R V V V V S S G D P G V F A M A S A L F E A L E G C E N - - - - T P D I R I   1 0 7     
R c - C o b J   P T D N R V E L D R A T H A L E M A A E G R R V V V V S S G D P G V F A M A S A L F E A L E A H P E H A - - G T E I R I   1 0 9     
Q 5 L P I 1    A S D N R V E I D R S R H A L E L A A D G H R V V V V S S G D P G V F A M A S A V F E A V E A G P R A W R - D L D I Q V   1 1 0     
Q 8 9 Q 6 3    P S D N R E E L A R A S E A L R L A A E G G Q V V V V S S G D P G V F A M A S A V F E A L E Q A P Q Y R - - E L P I R V   1 0 9     
Q 6 N 8 1 6    A S D N R E E L D R A G F A L R L A T E G R H V V I V S S G D P G V F A M A A A L F E A I E A G D P S W R - E L D I R V   1 1 0     
P 2 1 6 4 0    A S D N R E E L D R A Q V A L T R A A A G V K V C M V S G G D P G V F A M A A A V C E A I D K G P A E W K - S V E L V I   1 1 0     
Q 9 2 L V 0    A S D N R E E L D R A H A A L A R A A A G A D V C V V S G G D P G I F A M A A A V C E A I D K G P Q E W R - E V D L T I   1 1 0     
Q 2 J Z Y 5    A S D N R E E L D R A G A A L S M A A D G A N V C I V S G G D P G V F A M A A A V C E A I E N G P A A W R - A V D L T V   1 1 0     
Q 1 M 5 A 7    A S D N R E E L D R A G A A L A M A A D G A K V C V V S G G D P G I F A M A A A V C E A I E N G P A A W R - A V D L T I   1 1 0     
          . .    * :  *     :   :   .   :  : : *  * * . * : : . * * .    *               :  :  
 
 
 
A 0 Q 3 3 9    I P G I T A S S S A A S L L G A P L M H D N C N I S L S D L L T P Y E V I K N R V E C A A K G D F I I S L Y N P K S K G   1 6 5     
Q 7 3 Q 2 1    I P G I S A A F A A A S R L G A P L M H D T A L I S L S D R L T D Y E V I K K R V G L A A E G D F V I A L Y N P K S K T   1 6 3     
A 5 T U V 4    V P G I T S T I A G A A L V G A P L M H D Q A I I S L S D L L T D W E V I K K R I D C A S Q G D F V I S L Y N P K S K G   1 6 7     
Q 2 4 Q 3 7    I P G V S A A N A A S S L L G A P L M H D F A V I S L S D L L T P W E V I Q K R V K L A A E G D F V M A I Y N P K S K G   1 7 7     
Q 7 2 0 N 0    I P G I T A S I G A A A V L G A P I M H D F C H I S L S D L M T P W E V I E K R L T H A A M A D F V V C F Y N P R S K G   1 6 5     
Q 4 E K Z 3    I P G I T A S I G A A A V L G A P I M H D F C H I S L S D L M T P W E V I E K R L T H A A M A D F V V C F Y N P R S K G   1 5 1     
Q 4 E V 4 2    I P G I T A S I G A A A V L G A P I M H D F C H I S L S D L M T P W E V I E K R L T H A A M A D F V V C F Y N P R S K G   1 6 5     
A 2 S N T 3    V P G A S A L N A C A A L V G A P L T H D F C A I S L S D L L T P W P V I A R R L D A V A M A D F V V A L Y N P K S G R   1 7 7     
Q 6 A R S 2    I P G I A A V N A C A A R L G A P L M H D F A A I S L S D L L T P W E T I V A R L E A T A S T D F V V A L Y N P K S K R   1 7 6     
Q 3 J 2 J 7    L P G I T A M L A A A A A A G A P L G H D F C A I N L S D N L K P W A L I E K R L R L A A E A D L A M A F Y N P R S K S   1 6 9     
Q 9 R 9 K 1    L P G I T A M L A A S A R L G A P L G H D F C A I N L S D N L K P W A L I E K R L R L A A E A D F A M A F Y N P R S K A   1 6 7     
R c - C o b J   L P G I T A M L A A A A A A G A P L G H D F C A I N L S D N L K P F E I L E K R L R H A A R G D F A M A F Y N P R S K S   1 6 9     
Q 5 L P I 1    L P G I T A M L A A A A R A G A P L G H D F C C I N L S D N L K P W P L I E R R L R L A A Q A D F A M A F Y N P R S K S   1 7 0     
Q 8 9 Q 6 3    L P G I T A M L A A A A R A G A P L G H D F C A I N L S D N L K P W A L I E K R L R L A A E A D F A I A L Y N P R S A S   1 6 9     
Q 6 N 8 1 6    L P G I S A M F A T A A R I G A P L G H D F C A I N L S D N L K P W E T V E K R L R A A A E A D F V I A L Y N P I S K A   1 7 0     
P 2 1 6 4 0    T P G V T A M L A V A A R I G A P L G H D F C A I S L S D N L K P W E V I T R R L R L A A E A G F V I A L Y N P I S K A   1 7 0     
Q 9 2 L V 0    T P G V T A M L A V A A R I G A P L G H D F C A M S L S D N L K P W D V I T R R L R L A A E A G L V I A L Y N P I S K A   1 7 0     
Q 2 J Z Y 5    L P G V T A M L A V A A R A G A P L G H D F C A I S L S D N L K P W N V I E N R L E L A A R A G F V M A L Y N P I S R A   1 7 0     
Q 1 M 5 A 7    L P G I T A M L A V A A R A G A P L G H D F C A I S L S D N L K P W N I I E T R L V L A A K A G F V I A L Y N P I S R A   1 7 0     
          * *  : :   .  : :   * * * :  * *  .  : . * * *  : .  :   :   * :   . :   . :  : . : * * *  *    
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A 0 Q 3 3 9    R P H Y L K E C L N I I K K Y R N D N T P I G V V K N A L R E G Q E I T V T T I G N F N D D I V D M M S I V V V G N S K   2 2 5     
Q 7 3 Q 2 1    R S D Y I E E A V N I I L K F R A P Q T P V G I V K N A C R N N E K I T V T E L Q K I N Y D E I D M F S L I I I G N S N   2 2 3     
A 5 T U V 4    R I E Q I V E A R E I M L K H K L P T T P V A L L R H I G R K E E N Y T L T T L E D F L N F E I D M F T I V L V G N S N   2 2 7     
Q 2 4 Q 3 7    R Q D Q I E W V R Q A V L D Y R D P Q T P V G I V R E A L R G E S Q V I I T T L A E F T Q S P I D M L T T V V I G N S H   2 3 7     
Q 7 2 0 N 0    R A N H L A N A F Q K M M E H K S G D T V V G I V K D V G R K E E R K I I T T M R D I D Y E L V D M T T M V I V G N K E   2 2 5     
Q 4 E K Z 3    R A N H L A N A F Q K M M E H K S G D T V V G I V K D V G R K E E R K I I T T M R D I D Y E L V D M T T M V I V G N K E   2 1 1     
Q 4 E V 4 2    R A N H L A N A F Q K M M E H K S G D T V V G I V K D V G R K E E R K I I T T M Q G I D Y E L V D M T T M V I V G N K E   2 2 5     
A 2 S N T 3    R T R Q I V E A Q R L F L R H R R A D T P V A I V K S A Y R R R Q H I E F R T L E T M C E A D I G M L S T V L I G N S H   2 3 7     
Q 6 A R S 2    R T A Q I A Q A R E I F L K H R D P A N V V G I V T G A T R E N E V I T L T T L D K M L E C E I G M Q S T V I I G N S K   2 3 6     
Q 3 J 2 J 7    R P E G F V R A L D L L R E T C G P D R L V T F A R A V S T P E Q H L R T V T L G E A T P E M A D M R T V V I V G N S A   2 2 9     
Q 9 R 9 K 1    R P E G F A R V L E I L R E A C G P D R L I S F A R A V S T P D E A L N T V T L A E A R P E M A D M R T V V I L G N S A   2 2 7     
R c - C o b J   R P H Q F T R V L E I L R E E C E P G R L I L F A R A V T T P E Q A I S V V E L R D A T P E M A D M R T V V L V G N A A   2 2 9     
Q 5 L P I 1    R P E G F E K T L Q I L R E E C E P E R L I L F A R A V S R P D E A L R I A Q L A E A T P E M A D M Q T V V L V G S S R   2 3 0     
Q 8 9 Q 6 3    R P E G F G R A L A V L K D A G C G E R L V I F A R A I S A S D E T I E T V T L N A A R P E M A D M R T L V I V G N S Q   2 2 9     
Q 6 N 8 1 6    R P W Q L G R A F E L L R S I H P A S V P V I F A T A I S D P R E R I D V A P L G E A V P Q R A D M R T L V M I G S S Q   2 3 0     
P 2 1 6 4 0    R P W Q L G E A F E L L R S V L P A S V P V I F G R A A G R P D E R I A V M P L G E A D A N R A D M A T C V I I G S P E   2 3 0     
Q 9 2 L V 0    R P W Q L G E A F E V L R Q V L P A Q V P V I F G R A A G R P D E R I A V M P L G E A D A G R A D M A T C V I I G S P E   2 3 0     
Q 2 J Z Y 5    R P W Q L G E A F K L L R H H L P A T T P V I F G R A A G R V N E H I A V Q P L S Q A D A S I A D M A T C I I I G S A E   2 3 0     
Q 1 M 5 A 7    R P W Q L G E A F K L L R D H L P A A T P V I F G R A A G R P D E R I A V Q Q L S Q A D A S I A D M A T C I I I G S A E   2 3 0     
         *    :       .          :  .         .       :         . *  :  : : : * .    
 
 
A 0 Q 3 3 9    S Y I K N - - - - - N K F I T P R G Y E N K A K G E V K - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 8     
Q 7 3 Q 2 1    T Y I Q N - - - - - G K I I T P R G Y K I K - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 0     
A 5 T U V 4    T Y V K D - - - - - G K M I T P R G Y E K K S N W G K - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 9     
Q 2 4 Q 3 7    T R V I G - - - - - P Y M V T P R G Y I L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 5 3     
Q 7 2 0 N 0    T Y V K N - - - - - G K M I T P R G Y T L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 1     
Q 4 E K Z 3    T Y V K N - - - - - G K M I T P R G Y T L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 2 7     
Q 4 E V 4 2    T Y V K N - - - - - G K M I T P R G Y T L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 1     
A 2 S N T 3    T F V R D - - - - - G L M V T P R G Y A N K Y D I E Q G G E T R E G E R P G R S L S T G L N G W L E N L L D D H A G G E   2 9 2     
Q 6 A R S 2    T F V W R - - - - - D K M I T P R G Y G E K Y Q L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 5 6     
Q 3 J 2 J 7    T R R V G - - - - - R W V Y T P R S A G - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 4     
Q 9 R 9 K 1    T R R A G - - - - - A W V Y T P R S V P - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 2     
R c - C o b J   T R R V G - - - - - P W V Y T P R G V A P - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 5     
Q 5 L P I 1    T R V I E R D - G T P I V Y T P R F T P E - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 5 0     
Q 8 9 Q 6 3    T R R V G - - - - - R W I Y A P R Q V R - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 4 4     
Q 6 N 8 1 6    T R I I P R S S G A D F V Y T P R F S G A V S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 5 3     
P 2 1 6 4 0    T R I V E R D G Q P D L V Y T P R F Y A G A S Q - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 5 4     
Q 9 2 L V 0    T R I I A R E G K H D L V Y T P R S F T G E S H - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 5 4     
Q 2 J Z Y 5    T R I V T R P G K P D L V Y T P R F M A G G K R - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 5 4     
Q 1 M 5 A 7    T R I V S R P G R L D L V Y T P R F M A G G N R - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -   2 5 4     
         :            .  : * *                                  

            
Figure 4.1.24 BLAST search of R.capsulatus CobJ revealing conserved residues across 
different organisms. A0Q339: Clostridium novyi, Q73Q21: Treponema denticola, A5TUV4: 
Fusobacterium nucleatum, Q24Q37: Desulfitobacterium psychrophila, Q720N0: Listeria 
monocytogenes, Q4EKZ3: Listeria monocytogenes Str 4b, Q4EV42: Listeria monocytogenes 
Str 1/2a, A2SNT3: Methylibium petroleiphilum, Q6ARS2: Desulfotalea psychrophila, 
Q3J2J7: Rhodobacter sphaeroides, Q9R9K1: Paracoccus denitrificans, Q5LPI1: 
Silicibacter pomeroyi, Q89Q63: Bradyrhizobium japonicum, Q6N816: Rhodopseudomonas 
palastris, P21640: Pseudomonas dentrificans, Q92LV0: Rhizobium meliloti, Q2JZY5: 
Rhizobium etli, Q1M5A7: Rhizobium leguminosarum, Rc-CobJ: Rhodobacter capsulatus. 
Conserved residues which may play a role in catalysis are highlighted in yellow. 
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Figure 4.1.25 Conserved residues Tyr 35, Tyr 38 and Asp 138 highlighted in chain A of 
CobJ at 8.1 Å, 13.5 Å and 10.8 Å respectively from SAH. 

Tyr 38 

Tyr 35 

SAH 

Asp 138 



 Chapter Four- High resolution structure and substrate binding to CobJ 

  156 

4.5.2 Superimposition of four molecules in CobJ structure  
 

Since native CobJ crystallises with four molecules in the asymmetric unit a simple 

superimposition of chains B, C and D onto chain A separately were carried out using 

SUPERPOSE (Krissinel 2004) to analyse any structural differences between chains (see 

Figure 4.1.26).  

 

 
Figure 4.1.26 Ribbon diagram depicting the main chain (Cα trace) of chains A (grey), B 
(yellow), C (blue) and D (green), from native CobJ structure superimposed onto each other 
with areas of change highlighted.  
 

 

The superimposition revealed similarities structurally between chains A and B and 

similarities between chains C and D. Since chains A/D and B/C form dimers we can say 

native CobJ assembles as a homodimer, with two dissimilar chains forming a single 

dimer (see Figure 4.1.27). From the superimposition, the residues 34 to 48 and 54 to 60, 

formed loop regions, which carry different conformations across the four chains. The 

 Residues 34 to 48 
 

Residues 54 to 60 
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loop consisting of residues 34 to 48 is close to the cleft pocket. In this loop conserved 

residues including Gly 34, Tyr35 and Tyr38, are present and these are likely to be 

important since they are conserved and are situated near the catalytic site where they 

may play a role in the auxillary reaction. The fact that they are in a loop showing 

structural differences may be explained by the possibility of flexible residues allowing 

the uptake of a tetrapyrrole and assisting its binding and then releasing the tetrapyrrole 

once ring-contraction and methylation has taken place. 

 

 

 

 
Figure 4.1.27 Native CobJ molecule. (a) Chains B and A have no major structural 
differences. (b) Chain D and A superimposed onto each other show loop regions that differ 
structurally; these chains form a dimer. (c) Chain C and A differ from each other in some 
loop regions. (d) With chain C superimposed onto chain D, no differences in the structures 
can be seen.  
 

 

(a) (b) 

(c) (d) 

Chain B on chain A Chain D on chain A 

Chain C on chain D Chain C on chain A 
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B factor analysis shows regions of high flexibility (Figure 4.1.28) with most flexible 

regions in red and least flexible in blue, it would seem the C terminal is more flexible 

than N terminal region. 

 

From Figure 4.1.26 we can see the loop regions from residue 34 to 48 and residues 54 to 

60 as identified earlier from superimposition of chains also correspond to areas of high 

flexibility as seen in the B factor analysis. Closer inspection shows the residues 

surrounding the cleft of the catalytic site are allowed greater movement compared to 

other residues in the structure, most probably to accommodate a tetrapyrrole by 

widening the cleft area possibly. 
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Figure 4.1.28 B factor analysis shows the surface of native CobJ structure chain A with 
residues highlighted in red for highly flexible regions and areas of lesser flexibility 
highlighted in blue colour.the figure was created using Pymol. 
 

 

 

C terminal 

N terminal 
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4.5.3 Proposed ring contraction mechanism 

 

The precise mechanism of the ring-contraction reaction is unknown. It is unclear 

whether ring-contraction occurs before or after methylation or indeed if these events are 

concerted.  

 

A proposed mechanism for the CobJ ring contraction step is a pinacol type arrangement 

(see Figure 4.1.29). In preparation for the reaction CobG acts as a monooxygenase and 

adds a hydroxyl group to C20 forming precorrin-3b, hence setting up the macrocycle for 

ring contraction and methylation at C17 by CobJ (Scott 1993).  

 

 

 
Figure 4.1.29 Schematic diagram depicting the proposed mechanism for the ring-contraction 
and methylation step catalysed by CobJ (Scott 1993). The boxed OH identifies the H 
which is abstracted later on in the mechanism. 
 

 

Two other possible mechanisms could be employed to carry out the ring contraction of 

the macrocycle and methyation of the ring including Scheme I where methylation occurs 

after ring contraction and Scheme II where methylation occurs before ring contraction 

see Figure 4.1.30 and Figure 4.1.31. The proposed mechanisms require a base to 

facilitate the proton abstraction from the hydroxyl group and a second base to catalyse 

the methylation at C17, similar to Scotts mechanism (see Figure 4.1.29). 

 

Precorrin-3b Precorrin-4 Pinacol intermediate 

CobJ 

 + SAM 
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Figure 4.1.30 Scheme I, a possible reaction mechanism for ring contraction in the absence of 
C17 methylation. 
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Figure 4.1.31 Scheme II depicts a possible ring contraction mechanism with the presence of 
C17 methylation.
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4.6 Conclusion: Structural implications of CobJ  
 

From the work carried out in this chapter we can establish that a higher resolution 

structure of native CobJ at 2.2 Å has been obtained improving from a previous 2.7 Å 

structure. The structure reveals residues of interest lining the catalytic pocket that have 

been highlighted using searches of the swissprot database using BLAST which identified 

important conserved residues. These residues include Tyr35, Tyr38, His129 and 

Asp138, which are found near the catalytic pocket and have been recognised as 

potentially important for the methylation step.  

 

Tyr38 is 5.47 Å away from the sulphur group of SAH and could be involved in 

methylation at C17 of the macrocycle since it is appropriately positioned for facilitating 

this reaction as a proton acceptor. Possible candidates for assisting the ring contraction 

reaction are Tyr35 and Asp138, which are 13.47 Å and 10.80 Å away from the sulphur 

group of SAH respectively, this may be too far to promote methylation at C17, but could 

assist ring contraction. 

 

Superimposition experiments showed Tyr35 and Tyr38 are both found on a loop that 

carries some flexibility which could be involved in proton abstraction. They also sit in a 

region where the highest temperature factors are found, suggesting that there could be 

structural flexibility. Since the opening of the cavity is small the ability for this loop 

region to change conformation in order to accommodate incoming tetrapyrroles, in the 

case of CobJ, precorrin-3b, would be ideal. This is indicative of an induced fit 

mechanism. 

 

His129 may be the best candidate for the residue that catalyses ring contraction, it is 

more distant from the SAH site and mutation of it has a profound effect on activity. It is 

plausible that residues close to the SAM are involved or provide the framework for 

SAM binding and methylation e.g. mutation of Asp82 will disrupt SAM binding.  On the 

other hand, His129 is over 12 Å from the SAM and may be involved in the ring 
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contraction process.  It would be interesting to see what the products of the reaction of 

these variants with precorrin-3b would be using mass-spectrometry and NMR analysis. 

 

 

4.7 Future work 

 

In order to help elucidate the mechanism of the ring contraction step catalysed by CobJ 

it would be immensely useful to obtain an enzyme-substrate or -product complex with 

its natural tetrapyrrole, precorrin-3b or precorrin-4 bound. This would reveal the exact 

residues involved in tetrapyrrole binding, and residues involved in methylation and ring 

contraction reactions.  

 

Two mutants appear to be inactive for different reasons, Asp82 (SAM binding) and 

His129 (catalysis), it would be interesting to characterise the products of the reaction of 

these with precorrin-3b. If His129 is involved in the ring contraction reaction it may be 

possible to confirm the order of the mechanism and the role of His129 in terms of 

whether methylation occurs before or after ring contraction.  

 

Recently, it has been proved possible to make product complexes in several of the 

biosynthetic enzymes using the cloned biosynthetic pathway in E.coli up to and 

including the enzyme to be studied e.g. CobH. If CobH is His-tagged then it can be 

pulled out and crystallized along with its bound product in this case, HBA.  This method 

has been used to obtain the structure of the CobH/HBA complex and has been applied to 

CobJ however further investigation is needed.   CobJ apparently also binds product, but 

it is not yet clear if the binding will be sufficiently tight to allow the structure of the 

complex to be resolved.   
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5.1 Introduction- Design of mutants 

 

Plant pathogens produce a number of enzymes capable of initiating soft-rot disease in 

plants and fruits by breaking down polygalacturonate which is a major plant cell wall 

component. These enzymes randomly cleave the α-1,4-glycosidic linkages between 

galacturonate residues using an anti β-elimination chemistry generating products with a 

4,5-unsaturated galacturonosyl residue at the non-reducing end (Collmer 1986) see 

Figure 5.1.1. Pectate lyase, pectin lyase and exopolygalacturonate lyase all utilise such 

reaction chemistry, in this Thesis the main focus is on pectate lyase (BsPel) from the 

bacterium Bacillus subtilis. 

 

 

 

 

 

 

 

 

Figure 5.1.1 Two galacturosyl sugars depicted with one glycosidic linkage between the two. 
Pectate lyase cleaves at α-1,4-glycosidic bonds as highlighted by the arrow. 
 

 

Pectate lyases play a pivotal role in recycling and remodelling of plant material which is 

important for maintaining the biosphere (Scavetta 1999). There are 22 families of 

polysaccharide lyases and pectate lyase belongs to five of the 22 including PL-1, PL-2, 

PL-3, PL-9 and PL-10.  The allocation of families is based on the amino acid sequence 

similarities reflecting their structural features (Cantarel 2009). From the three 

dimensional structures reported there have been three types of topologies including the 

parallel β-helix, (α/α)7 barrel and the (α/α)3 barrel, a common feature in polysaccharide 

lyases.  
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Pectate lyase activity was first discovered in 1962 by Starr and Morán in Erwinia 

carotovora (Starr 1962) and since then the three dimensional structures of pectate lyases 

PelC, PelE from Erwinia chrysanthemi and BsPel from B. subtilis have been solved 

(Yoder 1993; Lietzke 1994; Pickersgill 1994). Each of the structures exhibited a parallel 

β-helix with β-sheets folded into a large right handed helix with calcium bound, all 

belonging to PL-1 family. 

 

A complex between mutant R218K pectate lyase C (PelC) and pentagalacturonate sugar 

substrate has been solved to a resolution of 2.2 Å from Erwinia chrysanthemi (Scavetta 

1999). The substrate binds in a cleft interacting with positively charged groups arginine 

and lysine. The structure represents the intermediate in the reaction pathway since PelC-

R218K is inactive and therefore reveals some important mechanistic details of the β-

elimination reaction such that an arginine is responsible for proton abstraction at C5 of 

pentagalacturonate during the cleavage of α-1,4-glycosidic bonds (Scavetta 1999). The 

converging geometry of the active site between families PL-1 and PL-10 family lyase 

structures suggests that the mechanism involving the use of an arginine as a base is 

common. 

 

An inactive mutant D389A pectate lyase (Pel10Acm) from Cellvibrio japonicas in 

complex with a trisaccharide sugar substrate has been solved to 2.15 Å. This enzyme 

belongs to family PL-10, although the structure is unrelated to polygalacturonate lyases 

from family PL-1 there are similaritites in the catalytic machinery used by the two 

families, this may be due to the effect of convergent evolution. The residue Arg524 is 

well positioned at 2.5 Å away from C5 of the galacturonic residue. On comparison with 

the structure of PL-1 family lyase PelC1 complexed to tetragalacturonate substrate, both 

structures have different topologies, however in both cases the substrate carboxylates are 

coordinated to the putative -1 and +1 subsites with a Ca2+ ion bound. Surrounding the 

metal ion are ligands that are conserved. Along with these observations is the close 

vicinity of Arg254 in Pel10Acm in place to act as a catalytic base in the same location as 
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the putative arginine base in PL-1 enzymes, (Charnock 2002). Therefore this mechanism 

seems like a plausible assumption. 

 

The structure of BsPel from B. subtilis in complex with calcium at position one (see 

Figure 5.1.2 for the positioning of calcium ions) was solved to a resolution of 1.80 Å 

(Pickersgill 1994). The structure of the lyase consisted of a parallel β-helix domain and a 

loop region forming the catalytic site. A calcium ion was bound to three aspartate 

residues including Asp184, Asp223 and Asp227. In total there were seven ligands 

making contacts between the calcium and BsPel including one carboxy oxygen from 

Asp223 and Asp227, both carboxy oxygens from Asp184 and three oxygens from three 

clearly defined water molecules. 

 

Figure 5.1.2 (a) Cartoon representation of BsPel showing bound sugar substrate and three 
calciums (blue spheres labeled 1, 2 and 3) commonly seen bound to BsPel. (b) Closer look at the 
contacts the calcium ions make with the protein and sugar substrate (Seyedarabi 2010b). 
 
 
Pectate lyase (BsPel) from B. subtilis is the subject of this results chapter, the aim was to 

trap the Michaelis complex in an inactive enzyme in order to reveal the mechanistic 

details of the anti β-elimination reaction cleaving the α-1,4-glycosidic bond. In order to 

gain an enzyme-substrate complex, an inactive enzyme was needed and site-directed 

mutagenesis experiments mutating the possible catalytic base Arg279 to an Ala279 
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proved to provide an inactive enzyme with no turnover of sugar substrate (Seyedarabi 

2010b). However in order to confirm the role of Arg279 the residue should be present in 

the structure.  

 

In this chapter the residues that have been subjected to site-directed mutagenesis include 

Asn180 and Asp173. These residues are positioned to bind the third calcium binding site 

important for catalysis. Lys247 is thought to protonate substrate and stabilise the 

intermediate therefore this was also a candidate for mutation to an alanine. Site-directed 

mutagenesis of these three residues should provide an inactive enzyme to allow for 

successful binding and trapping of sugar substrate. In effect the third calcium binding 

site is removed. 

 

 

5.2 Site-directed mutagenesis 

 

In this chapter site-directed mutagenesis was used to probe the activity of BsPel by 

mutating residues that are involved in catalysis, once these residues were mutated 

crystallisation of the protein was carried out followed by substrate soaking. In order to 

trap an enzyme-substrate complex an inactive enzyme must be formed first. Site-

directed mutagenesis is a molecular technique where a point mutation is introduced to 

the DNA via pre-designed primers. 

 

 

5.2.1 Primer design 

 

Primers were designed as detailed in section 2.2.1.1, the target mutation for BsPel was a 

lysine residue at position 247 mutated to an alanine, details of the primer can be found in 

Table 5.1.1.  
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 Primer pair  

3’ GATAATAGTGCTAGTACTACGTTCGAGGTAAAAGCCTAG 5’ 

5’ CTATTATCACGATCATGATGCAAGCTCCATTTTCGGATC 3’ 

Table 5.1.1 Primers used for site-directed mutagenesis mutating lysine to an alanine at 
position 247, the bases that were changed to allow for an alanine mutation are highlighted in 
grey. 
 

 

5.2.2 PCR based site-directed mutagenesis 

 

BsPel was cloned into pET3d vector by Dr Katherine Worboys and the plasmid which 

was used for site-directed mutagenesis was already mutated with the mutations D173A 

and N180A courtesy of Salyha Ali. To synthesise a triple mutant site-directed 

mutagenesis was carried out using PfuTurbo polymerase, the general cycling parameters 

for this polymerase and reaction set up can be found in section 2.2.1.2 and Table 2.10. 

For specific cycling parameters used in the formation of K247A mutation (see Table 

5.1.2) and PCR reaction set up see below. 

 

Step Temperature (°C) Duration  

1. Activation 95 30 sec 

2. Denaturation 95 30 sec 

3. Annealing 55 1 min  

4. Elongation 68 6 min 

Steps 2 to 4 cycled 16 times. 

Table 5.1.2 Specific cycling parameters used for site-directed mutagenesis of BsPel. 
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PCR reaction set up consisted of: 
 

2 µl DNA template (already with mutations D173A and N180A) 

 5 µl 10× reaction buffer 

 1.5 µl forward K247A primer 

 1.5 µl reverse K247A primer 

 1 µl dNTP 

 38 µl ddH2O 

 1 µl Pfu Turbo polymerase 

 

Once the PCR reaction was completed the product was DpnI treated (see section 2.2.2) 

and then checked on a 1 % agarose gel followed by plasmid preparation (see Figure 

5.1.3) the subsequent plasmids (expected size 5.8 kb) were ready for sequence analysis. 

 

 
Figure 5.1.3 Plasmids sent for sequencing were first checked on an agarose gel to ensure 
DNA is present and PCR reaction had been successful. Lane (1) 1 kb ladder from novagen. 
Lanes (2-4) are plasmids from site-directed mutagenesis PCR reaction.  
 

 

5.2.3 Sequencing 

 

Plasmids were sent off to MWG Biotech for sequencing to ensure the site-directed 

mutagenesis was successful. The results showed lysine at position 247 was mutated to 

alanine, see Appendix 7 for alignment. 

 

   1      2       3       4        5 

  4 kb 

  6 kb 
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5.3 Expression and purification of mutant protein 

 

5.3.1 Expression of triple mutant BsPel  

 

Triple mutant (D173A, N180A and K247A) pET3d-BsPel was transformed into XL-1 

Blue cells for cloning, for protein expression BL21 (DE3) pLysS cells were used, for 

transformation protocol see section 2.2.3 and Table 2.11. For protein over-production, 

pET3d-BsPel cells were grown at 37 °C until an O.D600 of 0.6 was reached, followed by 

induction at 30°C overnight with 0.1 mM IPTG. Harvested cells were resuspended in 20 

mM MES pH 6 and lysed using a French press (see section 2.2.4.2).  

 

 

5.3.2 Purification of triple mutant BsPel 

 

Once cells had been lysed and centrifuged to remove cell debris the lysate was loaded 

onto a cation exchanger HiTrap SpHp column. Buffers for this particular column can be 

found in section 2.1.6, Table 2.4. A clean peak was eluted from the cation exchanger and 

the protein was pooled and checked on an SDS-PAGE gel (see Figure 5.1.4 and 5.1.5). 

Fractions were subsequently dialysed into 20 mM Tris pH 7.0 and 100 mM NaCl. 

Typically approximately 28 mg/ml of protein was produced from one litre of cell 

culture. 
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Figure 5.1.4 Protein was eluted on a gradient elution from a cation exchanger. 
 

 

 
Figure 5.1.5 SDS-PAGE gel of pET3d-BsPel after purification on a cation exchanger, bands 
at around 45 kDa indicate the presence of BsPel protein. Fractions B10, B11, B12 and C1 
were checked on the SDS-PAGE gel. 
 
 
 

1    B10  B11  B12  C1 

45 kDa 

66.2 kDa 
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5.4 Spectroscopic enzyme assay 

 

The aim of this project was to trap substrate in the enzyme allowing examination of the 

structure with the supposed catalytic base Arg 279 in place. In the past a number of 

mutagenesis experiments have been carried out on BsPel in an attempt to produce an 

inactive enzyme, these mutants and its relative activities are summarised in Table 5.1.3.  

 

 

Enzyme Role of residue substituted Relative activity 

Native BsPel ___ 100 % 

R279A Catalytic base <0.01 % 

R279K Catalytic base 1 % 

D184A Binds calcium 1 8 % 

D223A Binds calcium 1 and 2 <0.01 % 

D227A Binds calcium 1 0.5 % 

D173A Binds calcium 3 40 % 

N180A Binds calcium 3 30 % 

D173A/ N180A/K247A Above, plus catalytic acid substituted 0.2 % 

Table 5.1.3 A summary of the relative activities and the role of various BsPel mutants  using 
polygalacturonate as substrate (Seyedarabi 2010b). 
 

 

To determine the enzyme catalytic activity of triple mutant BsPel a spectroscopic 

enzyme assay was used to identify the conditions producing the lowest activity i.e 

lowest ability to turnover the sugar substrate and allowing trapping. The assay measures 

the formation of carbon-carbon double bonds at 235 nm. The formation of the bond is 

the result of BsPel breaking down α-1,4-glycosidic bonds in the sugar provided in the 

assay. Relative enzyme activity was calculated as a percentage using native BsPel 

activity. Details of the assay protocol can be found in section 2.2.9.  

 



 Chapter Five- Trapping the Michaelis complex in pectate lyase 

  175 

Triple mutant BsPel had 0.2 % activity, which was too high and meant that 

oligosaccharide substrate would be turned over too quickly; therefore the conditions of 

the assay were modified in order to decrease the catalytic activity.  In place of CaCl2, 
CoCl2 was used at varying concentrations also the pH of the assay was reduced from pH 

8.5 to pH 4.6 and then pH 3.0. The results showed the final enzyme assay condition 

which had no recorded enzyme activity consisted of 1 mM CoCl2 at pH 3.0. This was the 

condition used for trapping of sugar substrate in BsPel with Arg 279 present. 

 
 

5.5 Crystallography 

 

5.5.1 Crystallisation of triple mutant BsPel 

 

Purified and concentrated protein was used in crystallisation experiments in a hanging 

drop set up see section 2.2.10.1. Target concentration for BsPel crystallisation was 25 

mg/ml and the well conditions are detailed in Table 5.1.4, all stock concentrations can be 

found in section 2.1.10.1, Table 2.9. 
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Reservoir Tris HCL 

 pH 8.5 (µl) 

Ammonium acetate 

pH 4.6 (µl) 

Sodium 

acetate (µl) 

PEG 4000 ddH2O 

(µl) (%) 

A1 50 0 100 190 19 160 

A2 50 0 100 200 20 150 

A3 50 0 100 210 21 140 

A4 50 0 100 220 22 130 

A5 50 0 100 230 23 120 

A6 50 0 100 240 24 110 

B1 0 100 50 200 20 150 

B2 0 100 50 210 21 140 

B3 0 100 50 220 22 130 

B4 0 100 50 230 23 120 

B5 0 100 50 240 24 110 

B6 0 100 50 250 25 100 

Table 5.1.4 Summary of the reservoir conditions used for crystallisation of BsPel. 

 

Crystals were successfully grown from a number of the reservoirs however the largest 

single crystals (see Figure 5.1.6) were obtained from condition B6 (see Table 5.1.4) 

consisting of 0.2 M ammonium acetate pH 4.6, 0.1 M sodium acetate and 25 % PEG 

4000.  

 

 
Figure 5.1.6 Large singular, straight edged triple mutant BsPel crystals were obtained from 
reservoir condition B6 (see Table 5.1.4) they are 0.15 mm in length. Every ten small 
divisions on the scale bar was equivalent to 0.1 mm. 
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5.5.2 Crystal soaking 

 

In order to obtain a Michaelis complex with oligosaccharide substrate hexagalacturonate 

(DP6), kindly provided by Alistair MacDougall, bound to BsPel enzyme the crystal was 

soaked in various solutions under various conditions and these are summarised in Table 

5.1.5. For crystal soaking protocol see section 2.2.10.2, the cryoprotectant used was 20 

% glycerol. Once the crystals had been soaked they were immediately mounted onto the 

goniometer ready for data collection. 

 

2 mM CoCl2 PH 3 

DP6 (mM) Soak time (mins) 

2 5 

16 10 

20 10 

20 55 

33 12 

42 55 

100 10 

Table 5.1.5 Lists the concentration of sugar substrate DP6 used in the soak composition 
together with the duration of individual soaks. 
 

 

5.5.3 Data collection and structure solution  

 

A high resolution dataset of a calcium-free triple mutant BsPel with DP6 bound was 

collected to a resolution of 1.90 Å at SRS Daresbury Synchrotron at workstation 10.1. 

The detector used was a MARMOSAIC 225 mm CCD with 320 images collected using 

a 1 ° oscillation. The crystal had cell dimensions; a= 50.6 Å, b= 69.0Å, c= 59.2 Å and 

β= 113.6º. The spacegroup was P21 with one molecule in the asymmetric. The triple 
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mutant BsPel crystal was soaked in 100 mM DP6 for 10 minutes. Collected images were 

processed using iMOSFLM (Leslie 1992) and reduced using SCALA from the CCP4i 

suite (Dodson 1997). For further crystallographic data statistics see Table 5.1.6. 

 

 Overall Inner shell Outer shell 

Low resolution limit (Å) 69.01 69.01 2.00 

High resolution limit (Å) 1.90 6.01 1.90 

    
aRmerge (%) 0.057 0.057 0.067 
bRmeas (within I+/I-) (%) 0.067 0.067 0.079 
bRmeas (all I+ & I-) (%) 0.067 0.067 0.079 
cRpim (within I+/I-) (%) 0.035 0.036 0.041 
cRpim (all I+ & I-) (%) 0.035 0.036 0.041 

Fractional partial bias -0.028 -0.035 -0.025 

Total number of observations 106755 3450 15382 

Total number unique 28827 967 4138 

Mean [(I)/sd(I)] 23.8 27.9 18.3 

Completeness (%) 97.2 98.5 96.1 

Multiplicity 3.7 3.6 3.7 

    

Wilson B-factor (Å2) 8.608   

Table 5.1.6 Crystallographic data statistics for BsPel triple mutant N180A, D173A and 
K247A with calcium substituted with cobalt, data collected to 1.90Å. 
a Rmerge = (Σhkl Σj │ Ihkl - <Ihkl>│) / (Σhkl Σj Ihkl,j) 
b Rmeas = (Σhkl√(n/n-1) Σn

j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
c Rpim = (Σhkl√(1/n-1) Σn j=1│Ihkl,j - <Ihkl>│) / (Σhkl Σj Ihkl, j) 
 

 
5.5.4 Refinement 
 

The structure was refined using REFMAC5 (Vagin 2004) to an Rfactor and Rfree of 

13.1 % and 19.6 % respectively. The Rfactor was calculated using 95 % of the data 

included in the refinement and Rfree was calculated from the 5 % of reflections not 
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included. The triple mutant structure in complex with hexagalacturonate and Co2+ was 

deposited in Protein Data Bank under the entry 3KRG. 

 

 

5.5.5 Validation 

 

Validation of the structure took place to ensure the model quality was high. As a model 

is refined Rfree, Rfactor and root mean square (rms) deviations including bond lengths, 

angles and conformational angles are used to monitor the convergence to a final refined 

model. Generally rms deviations of no more than 0.02 Å for bond lengths and 4 ° for 

bond angles are accepted (Rhodes 2006), for the BsPel triple mutant final structure the 

rms length and bond values were 0.018 and 1.648 repsectively. For visualisation of 

dihedral angles ψ against φ enabling quick detection of conformationally unrealistic 

regions of the structure a Ramachandran plot was used (see Figure 5.1.7). Most residues 

were situated in preferred regions with only six outliers. 

 

Validation of the model was carried out using PROCHECK V3.4.4 (Morris 2003) from 

RCSB Protein Data Bank (see Figures 5.1.8 and 5.1.9). 

 

 



 Chapter Five- Trapping the Michaelis complex in pectate lyase 

  180 

 
Figure 5.1.7 Ramachandran plot showing the majority of residues are in conformationally 
allowed regions with only 1.51 % outliers. 
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Figure 5.1.8 Main chain parameter analysis from PROCHECK V3.4.4 for BsPel bound to 
hexagalacturonate with a cobalt ion. 
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Figure 5.1.9 Side chain parameter analysis from PROCHECK V3.4.4 4 for BsPel bound to 
hexagalacturonate with a cobalt ion. 
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5.5.6 Michaelis complex of BsPel 

 

The structure of BsPel-D173A, D180A and K247A mutant in complex with 

hexagalacturonate with a Co2+ ion bound at the first calcium binding site replacing the 

original Ca2+ ion was readily solved by molecular replacement using MOLREP (Vagin 

1997) and the native structure (protein data bank code: 1BN8) as the search model. 

Refinement and model building made use of REFMAC5 (Vagin 2004) and COOT 

(Emsley 2004), respectively. Arg279 can be seen in an appropriate position for 

abstracting the proton from C5 of hexagalacturonate, see Figure 5.1.10. The presence of 

the three mutations was confirmed by examination of the electron density map (see 

Figure 5.1.11).  
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Figure 5.1.10 (a) Diagram illustrating the parallel β-helix structure of triple mutant inactive 
BsPel in complex with hexagalacturonate and a Co2+ ion bound. (b) Density showing bound 
DP6 with mutated residues N180A and D173A, along with the catalytic base. (c) Residue 
Arg 279 is situated in close proximity to C5 of sugar occupying +1 subsite ready for proton 
abstraction. The density contour level was at 1σ for panels (b) and (c) (figures from 
Seyedarabi 2010b). 
 

       Co 

(a) 

(b) (c) 
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Figure 5.1.11 (a) Mutant N180A showing density for alanine confirming the mutation from 
asparagine. (b) N180 from wildtype BsPel. (c) Successful mutation from aspartate to 
alanine, no density is present for asapartate. (d) Control showing clear density for and D173 
residue from wildtype BsPel structure. (e) Density shown for alanine in place of lysine 
confirming the mutation K247A. (f) Density for K247 from wild type BsPel.  
 

(a)    (b) 

(c)    (d) 

(e)  (f) 

N180A 
N180 

D173A D173 

K247A K247 
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5.6 Conclusion 

 

The structure of triple mutant (D173A, N180A and K247A) BsPel in complex with 

hexagalacturonate and a cobalt ion has been solved to a resolution of 1.90 Å. 

Hexagalacturonate binds from subsites +2 through to -4 with weak density at -4 subsite 

(0.5 σ contour level). In order for an inactive enzyme to be obtained, mutations of three 

residues surrounding the third calcium were made and calcium was replaced with cobalt 

along with lowering of pH to pH 3. In doing so a Michaelis-complex was successfully 

trapped with the residue Arg279 present in the structure. This enabled viewing of the 

enzyme with arginine in place and allowing the confirmation of an appropriately 

positioned residue for proton abstraction at C5 (see Figure 5.1.10 panel c). This 

validates the Arg279 as the catalytic base as proposed previously (Charnock 2002) by 

the observation of converging geometry in the active site as seen in the comparison 

between PL-10 and PL-1 family lyase structures. 

 

Pectate lyase uses anti β-elimination chemistry cleaving α-1,4-glycosidic bonds in 

polygalacturonate. The enzyme requires essential catalytic residues together with 

calcium ion coordination and a bound sugar substrate in order for catalysis to take place. 

This mechanism is depicted in Figure 5.1.12 showing Arg279 abstracting the proton 

from C5 and cleaving the glycosidic bond separating R1 (additional α-1,4 linked 

galacturonate residues) as the leaving group. During this process Lys247 and two 

calcium ions binding between the enzyme and substrate carboxylates at the +1 subsite 

stabilise the reaction intermediate. 

 

This work forms part of a recent publication (Seyedarabi 2010b) see Appendix 9. 
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Figure 5.1.12 Reaction scheme showing the mechanism used for cleaving of glycosidic 
bonds with Arg279 acting as the catalytic base and Lys247 together with two calcium ions 
stabilising the reaction intermediate (Figure from Seyedarabi 2010b). See Figure 5.1.2 for 
the role and contacts made by D173 and N180. 
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5.7 Future work 

 

The original motivation for this project was to trap the Michaelis complex in the 

prescence of the catalytic base by mutating the third calcium-binding site. This proved to 

be insufficient to inactivate the enzyme and in addition lysine 247 was mutated, forming 

a triple mutant BsPel. To further suppress the enzyme activity cobalt was used in place 

of calcium and the pH was lowered.  

 

It would be worth investigating if the Michaelis complex is formed using wild type 

enzyme by simply lowering the pH. Another possibility is just the substitution of cobalt 

for calcium may be sufficient to inactivate the enzyme, or this substitution in 

combination with low pH may be needed. It is plausible that both cobalt substitution and 

low pH are needed to inactivate the enzyme, but this could be tested experimentally by 

assaying the activity in solution and soaking oligosaccharide in the crystal. 

 

It would also be interesting to know the pKa of the catalytic arginine, this could be 

investigated both theoretically and experimentally. Calculations may suggest the 

depression of pKa caused by the presence of oligosaccharide substrate and the proximal 

calcium ions.  Experimentally it might be possible to measure the pKa of the arginine in 

the complex formed using a non-cleavable substrate analogue, but to date no such 

analogue, for example with sulphur replacing the glycosidic oxygen, has been made. If a 

suitable non-cleavable substrate were available, then the pKa measurement could be 

made using NMR spectroscopy or possibly infrared spectroscopy. 
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In this thesis I have studied the structure and function of three enzymes: telomerase, the 

cobalamin methyltransferase CobJ, and pectate lyase.  The three projects were at 

different stages of their development, there was no structure of any telomerase, there 

was no structure of CobJ although members of the cobalamin methyltransferase family 

had been solved, and there were structures and complexes formed in pectate lyase but 

not without mutation of the catalytic base. A thread that runs through this thesis is the 

medical and biotechnological impact that knowledge of these enzymes may provide. 

Inhibiting the action of telomerase has potential application in cancer therapy since there 

is evidence that shows the enzyme is active and provides immortality in cancerous cells. 

A vital enzyme required for the living of eukaryotes, but also the key to the 

sustainability of the biggest killer in humans (Hahn 1999). 

 

Results chapter three covered results obtained from what proved to be a challenging 

protein, telomerase. Two constructs His-tagged and GST-tagged failed to yield soluble 

and non-aggregated protein. Knowing the insoluble fate of C.elegans TERT expressed in 

E.coli, further action was taken to try and produce soluble protein using expression 

trials, folding chaperones GroES and GroEL and solubilisation using high 

concentrations of urea. Clearly there is much more that could be done with C. elegans 

TERT including screening a large number of constructs for solubility, discovering the 

TR component and co-expression to name just two.  Publication of the first telomerase 

structure combined with the expression difficulties signalled the time to concentrate on 

more soluble proteins. 

 

Chapter four focused on the results obtained from CobJ the methyltransferase from 

R.capsulatus. CobJ is one of the enzymes from the vitamin B12 pathway responsible for 

synthesising cobalamin an essential cofactor required by humans who are otherwise 

unable to make it. This provides much biotechnological interest in the synthesis of 

vitamin B12 supplements since a lack of vitamin B12 can lead to a variety of health 

problems such as pernicious anaemia. This work was important because CobJ catalyses 
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the important ring-contraction reaction, a contracted macrocycle sets cobalamin apart 

from all other tetrapyrroles. Crystallisation of CobJ was explored (Seyedarabi 2010a) 

see Appendix 8, and a high resolution structure of CobJ at 2.2 Å was refined and 

validated alongside a mutant H129A CobJ structure. The main aim was to obtain an 

enzyme complex with a tetrapyrrole to help elucidate the ring contraction mechanism 

enabling the identification of amino acid residues involved in methylation and ring 

contraction. This has also proved to be a challenging goal.  Enzymatically the production 

of precorrin-3a was achievable under anaerobic conditions, but ideally precorrin-3b or 

precorrin-4 was a more suitable candidate for complexing with CobJ since it is the direct 

substrate/product.  A number of methods were employed in an attempt to trap a complex 

including soaking experiments and co-crystallisation with a variety of tetrapyrroles and 

derivatives and using pull-down experiments using a multi-enzyme assay and exploiting 

the His-tag pET14b-CobJ. 

 

I was able to extend the resolution of the CobJ structure to 2.2 Å and flexible regions 

were identified by B-factor analysis showing a region of residues lining the opening of 

the pocket with flexibility which could move to accommodate a large incoming 

tetrapyrrole. This is backed by the low density seen for these residues in the structure 

and the instant cracking of the crystal during soaking experiments with precorrin-3a. 

Analysis of the CobJ structure highlighted conserved residues in the vicinity of the 

active site pocket which could act as a proton acceptor in the ring-contraction step and 

His 129 appears to be an important residue and possibly plays a role in ring contraction. 

 

All enzymes in the vitamin B12 pathway have highly specific preferences to their 

“correct” tetrapyrroles this is highlighted by the fact that CobJ complexing with 

“incorrect” tetrapyrroles or fragments of a tetrapyrrole was not seen indicating that the 

“correct” tetrapyrrole precorrin-3b or precorrin-4 is needed in order to form a complex. 

In silico studies may help to further elucidate the mechanism or alternatively further 

work is required on the pull-down experiment since the technique was successful for 
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CobH pulled-down with HBA product bound and for cobalt chelatases CbiX and CbiK 

complexes. 

 

Finally, in chapter five I discuss trapping a complex in B. subtilis pectate lyase. Pectate 

lyases have been long used in the food, healthcare and textile industries and 

phytopathogenic bacteria secreting pectate lyase continue to challenge global food 

security. Further understanding of the mechanism of pectate lyases may help to develop 

mechanism-based inhibitors useful for the production of pesticides. Manipulation of 

pectate lyase specificity might be useful for producing novel polysaccharide products. 

Previous mutagenesis and crystallographic studies have identified an arginine as the 

likely candidate for the catalytic base that abstracts the C5 proton from the sugar residue 

in the +1 subsite.  

 

I successfully trapped a Michaelis complex revealing the structure of an inactive BsPel 

with Arg279 present in complex with hexagalacturonate and a cobalt ion. Upon 

examination of the structure it was clear to see the Arg279 was positioned in an ideal 

place to abstract a proton from C5 and catalyse the anti β-elimination reaction cleaving 

the α-1,4 glycosidic bond (Seyedarabi 2010b), see Appendix 9. 
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Appendix 1 

 

The vectors; pET3d, pET14b, pET41 and pETcoco2 used throughout this thesis are shown in 

this Appendix, all figures were from Novagen. 

 

 



  

  209 

 



  

  210 

 
 



  

  211 

 

  
 



  

  212 

Appendix 2 

 
Sequence alignment of pET41-DY3.4 construct using five different primers Int2, Int3 

forward primers, Int4, Int5 and Int6 reverse primers to ensure the entire gene sequence 

was covered in the analysis. Below shows the sequence alignment using Int2 primer. 
 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                785        795        805        815        825        835                
DY3-4-Int2   GCTCTCAATT TCTCGTCAAA AATTGCGACC TTTGTTCAAA AAAAAAGCAA TCGATAAAAA  
DY3.4        gctctcaatt tctcgtcaaa aattgcgacc tttgttcaaa agaaaagcaa tcgataaaaa  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                845        855        865        875        885        895                
DY3-4-Int2   AACAGAGACA ATGCAATGGA AAAGGTTGAA TTCGATGCTC TCATGGTGTT TGGAAAGAAG  
DY3.4        aacagagaca atgcaatgga aaaggttgaa ttcgatgctc tcatggtgtt tggaaagaag  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                905        915        925        935        945        955                
DY3-4-Int2   TGGAGTTTAC CGACATACAA TCAGAGATTC GTGTAAAAAA GTGTCAGATT TTCTAAAGAA  
DY3.4        tggagtttac cgacatacaa tcagagattc gtgtaaaaaa gtgtcagatt ttctaaagaa  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                965        975        985        995        1005       1015               
DY3-4-Int2   GAACTCACAA AACTCAAAAA TAATTGGATA CACAGCAGAT GTTAGCAAAT TTTTCTCAAC  
DY3.4        gaactcacaa aactcaaaaa taattggata cacagcagat gttagcaaat gtttctcaac  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1025       1035       1045       1055       1065       1075               
DY3-4-Int2   TGTTAATCAT GACGTGTTGA TATCAATTAT TGACCGACTT TTTTCTCAAG AGCACGATAT  
DY3.4        tgttaatcat gacgtgttga tatcaattat tgaccgactt ttttctcaag agcacgatat  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1085       1095       1105       1115       1125       1135               
DY3-4-Int2   TTATACGGTA TGTGGAAAAG GAAGAAATCA CGGAGGATTT CATAAATTGA TATTCTGTTC  
DY3.4        ttatacggta tgtggaaaag gaagaaatca cggaggattt cataaattga tattctgttc  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1145       1155       1165       1175       1185       1195               
DY3-4-Int2   AGCTGGAACT GAGTTGAATG CACATGAGGC GCTTCGTCGA AAAATGGAAT TGAAAGGAGT  
DY3.4        agctggaact gagttgaatg cacatgaggc gcttcgtcga aaaatggaat tgaaaggagt  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1205       1215       1225       1235       1245       1255               
DY3-4-Int2   ATTCAATTTT GAAGTTTGCC ACCGAGAGAT GAGTTCCTCT ACAACACTCT ACAGTGTTAT  
DY3.4        attcaatttt gaagtttgct accgagagat gagttcctct acaacactct acagtgttat  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1265       1275       1285       1295       1305       1315               
DY3-4-Int2   TCGTACCACA CTTTCAACGT ACTACTACAA GCGTGGCCCA ACCTCGGGGG AGAATTACAA  
DY3.4        tcgtaccaca ctttcaacgt actactacaa gcgtggccca acatcgtgg- agaattacaa  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1325       1335       1345       1355       1365       1375               
DY3-4-Int2   AAGGAGTTCC ACAGGGACAT CCTATATCTT CAAATTTAGC ACATATGCAC CTCAATAACT  
DY3.4        aaggagttcc acagggacat cctatatctt caaatttagc acatatgtac ctcaataact  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1385       1395       1405       1415       1425       1435               
DY3-4-Int2   TTGAGCAGAA ATATTGGAGC AAAGAAAAAG AGGATTCGAG AATTGTTTTC TGCAGATATG  
DY3.4        ttgagcagaa atattggagc aacgaaaaag aggattcgag aattgttttc tgcagatatg  
 
             ....|....|    
                1445                      
 
DY3-4-Int2   AGGATGATTT  
DY3.4        aggatgattt 
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Sequence analysis of pET41-DY3.4 construct using Int3 forward primer. 
 
 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1205       1215       1225       1235       1245       1255               
DY3-4-Int3   ---------- ---------- ---------- ---------- ----AATCC- CGGTGTTATT  
DY3.4        ttcaattttg aagtttgcta ccgagagatg agttcctcta caacactcta cagtgttatt  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1265       1275       1285       1295       1305       1315               
DY3-4-Int3   TCGTACCACA CTTTCA-CGT ACTACTACAA GCGTGGCCCA ACATCGTGGA GAATTACAAA  
DY3.4        -cgtaccaca ctttcaacgt actactacaa gcgtggccca acatcgtgga gaattacaaa  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1325       1335       1345       1355       1365       1375               
DY3-4-Int3   AGGAGTTCCA CAGGGACATC CTATATCTTC AAATTTAGCA CATATGTACC TCAATAACTT  
DY3.4        aggagttcca cagggacatc ctatatcttc aaatttagca catatgtacc tcaataactt  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1385       1395       1405       1415       1425       1435               
DY3-4-Int3   TGAGCAGAAA TATTGGAGCA ACGAAAAAGA GGATTCGAGA ATTGTTTTCT GCAGATATGA  
DY3.4        tgagcagaaa tattggagca acgaaaaaga ggattcgaga attgttttct gcagatatga  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1445       1455       1465       1475       1485       1495               
DY3-4-Int3   GGATGATTTC ATTTTCATTA CAACTGAAAA TTCTTTATTC GAGAAGATGA TGAAACCATT  
DY3.4        ggatgatttc attttcatta caactgaaaa ttctttattc gagaagatga tgaaaccatt  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1505       1515       1525       1535       1545       1555               
DY3-4-Int3   ATCTACTGGC AATAACACTC ATTTTTTGAC GGCTAATCCG AAAAAGTTCA AGAAATCAGA  
DY3.4        atctactggc aataacactc attttttgac ggctaatccg aaaaagttca agaaatcaga  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1565       1575       1585       1595       1605       1615               
DY3-4-Int3   GCGATGTGGA GCATCACAAG TCCTTCAATG GTGTGGAGTG AAACTGGATT TTCAATCGGG  
DY3.4        gcgatgtgga gcatcacaag tccttcaatg gtgtggagtg aaactggatt ttcaatcggg  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1625       1635       1645       1655       1665       1675               
DY3-4-Int3   AAATTGCTTT ATTCGACGAA GATGCAAAGA CGGTGTGGCT CGTCAATTTT TGATAAAGTT  
DY3.4        aaattgcttt attcgacgaa gatgcaaaga cggtgtggct cgtcaatttt tgataaagtt  
 
             ....|....|  
                1685        
DY3-4-Int3   GCAATAAACC  
DY3.4        gcaataa---  
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Sequence analysis of pET41-DY3.4 construct using Int4 reverse primer. 
 
 

   210       220       230       240       250       260                           
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   CCACACCGTCTTTGCATCTTCGTCGAATAAAGCAATTTCCCGATTGAAAATCCAGTTTCA  
DY3.4        CCACACCGTCTTTGCATCTTCGTCGAATAAAGCAATTTCCCGATTGAAAATCCAGTTTCA  
 

   270       280       290       300       310       320    
        ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-4-Int4   CTCCACACCATTGAAGGACTTGTGATGCTCCACATCGCTCTGATTTCTTGAACTTTTTCG 
DY3.4        CTCCACACCATTGAAGGACTTGTGATGCTCCACATCGCTCTGATTTCTTGAACTTTTTCG 
 
 

 330       340       350       360       370       380                 
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   GATTAGCCGTCAAAAAATGAGTGTTATTGCCAGTAGATAATGGTTTCATCATCTTCTCGA  
DY3.4        GATTAGCCGTCAAAAAATGAGTGTTATTGCCAGTAGATAATGGTTTCATCATCTTCTCGA  
 

 390       400       410       420       430       440 
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   ATAAAGAATTTTCAGTTGTAATGAAAATGAAATCATCCTCATATCTGCAGAAAACAATTC 
DY3.4        ATAAAGAATTTTCAGTTGTAATGAAAATGAAATCATCCTCATATCTGCAGAAAACAATTC 
 

 450       460       470       480       490       500          
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   TCGAATCCTCTTTTTCGTTGCTCCAATATTTCTGCTCAAAGTTATTGAGGTACATATGTG  
DY3.4        TCGAATCCTCTTTTTCGTTGCTCCAATATTTCTGCTCAAAGTTATTGAGGTACATATGTG  
 

 510       520       530       540       550       560                 
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   CTAAATTTGAAGATATAGGATGTCCCTGTGGAACTCCTTTTGTAATTCTCCACGATGTTG  
DY3.4        CTAAATTTGAAGATATAGGATGTCCCTGTGGAACTCCTTTTGTAATTCTCCACGATGTTG  
 

 570       580       590       600       610       620 
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   GGCCACGCTTGTAGTAGTACGTTGAAAGTGTGGTACGAATAACACTGTAGAGTGTTGTAG 
DY3.4        GGCCACGCTTGTAGTAGTACGTTGAAAGTGTGGTACGAATAACACTGTAGAGTGTTGTAG 
 

 630       640       650       660       670       680       
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   AGGAACTCATCTCTCGGTAGCAAACTTCAAAATTGAATACTCCTTTCAATTCCATTTTTC  
DY3.4        AGGAACTCATCTCTCGGTAGCAAACTTCAAAATTGAATACTCCTTTCAATTCCATTTTTC  
 

 690       700       710       720       730       740 
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   GACGAAGCGCCTCATGTGCATTCAACTCAGTTCCAGCTGAACAGAATATCAATTTATGAA 
DY3.4        GACGAAGCGCCTCATGTGCATTCAACTCAGTTCCAGCTGAACAGAATATCAATTTATGAA 
 

 750       760       770       780       790       800          
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   ATCCTCCGTGATTTCTTCCTTTTCCACATACCGTATAAATATCGTGCTCTTGAGAAAAAA  
DY3.4        ATCCTCCGTGATTTCTTCCTTTTCCACATACCGTATAAATATCGTGCTCTTGAGAAAAAA   
 
 

 810       820       830       840       850       860                 
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   GTCGGTCAATAATTGATATCAACACGTCATGATTAACAGTTGAGAAACATTTGCTAACAT  
DY3.4        GTCGGTCAATAATTGATATCAACACGTCATGATTAACAGTTGAGAAACATTTGCTAACAT  
 

 870       880       890       900       910       920        
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   CTGCTGTGTATCCAATTATTTTTGAGTTTTGTGAGTTCTTCTTTAGAAAATCTGACACTT 
DY3.4        CTGCTGTGTATCCAATTATTTTTGAGTTTTGTGAGTTCTTCTTTAGAAAATCTGACACTT 
 
  

 930       940       950       960       970       980                
....|....|....|....|....|....|....|....|....|....|....|....| 

DY3-4-Int4   TTTTACACGAATCTCTGATTGTATGTCGGTAAACTCCACTTCTTTCCAAACACCATGAGA  
DY3.4        TTTTACACGAATCTCTGATTGTATGTCGGTAAACTCCACTTCTTTCCAAACACCATGAGA  
 

 990       1000      1010      
....|....|....|....|....|....| 

DY3-4-Int4   GCATCGAATTCAACCTTTTCCATTGCATTG 
DY3.4        GCATCGAATTCAACCTTTTCCATTGCATTG 
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Sequence analysis of pET41-DY3.4 construct using Int5 reverse primer. 
  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                905        915        925        935        945        955                
DY3-4-Int5   GAGAAATTGA GAGCTTGAAG GTGGCAACAT TCGGTCTTAT AAAATGCGGA GCTTTTTGAA  
DY3.4 rev    GAGAAATTGA GAGCTTGAAG GTGGCAACAT TCGGTCTTAT AAAATGCGGA GCTTTTTGAA  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                965        975        985        995        1005       1015               
DY3-4-Int5   CTATATAACG TTGTTTGAAA TCCTTTATTT CTTTTGTTAA AATATTTAAA TATCCATCTC  
DY3.4 rev    CTATATAACG TTGTTTGAAA TCCTTTATTT CTTTTGTTAA AATATTTAAA TATCCATCTC  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1025       1035       1045       1055       1065       1075               
DY3-4-Int5   TCCACAGCAA AACTCTTTCT TCTTTAATTA CAATTGGAAT CATAACTTGT CGTAAAGCCA  
DY3.4 rev    TCCACAGCAA AACTCTTTCT TCTTTAATTA CAATTGGAAT CATAACTTGT CGTAAAGCCA  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1085       1095       1105       1115       1125       1135               
DY3-4-Int5   TCAGAGCCCA CCAGTGTACT CCTGATTTTA AATTATTCAC AATTGAAGTT TGAATATTCC  
DY3.4 rev    TCAGAGCCCA CCAGTGTACT CCTGATTTTA AATTATTCAC AATTGAAGTT TGAATATTCC  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1145       1155       1165       1175       1185       1195               
DY3-4-Int5   TCTTCACATT TGGATCCACA TTTTTCATAA CTTTAGATGC ACGAAATGCG CGAGTGAAAG  
DY3.4 rev    TCTTCACATT TGGATCCACA TTTTTCATAA CTTTAGATGC ACGAAATGCG CGAGTGAAAG  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1205       1215       1225       1235       1245       1255               
DY3-4-Int5   GAGCTTCTTT GTAGACAAAT GGCTTCATTT TATGATAACC ACCATTGTTT AACATTTTTG  
DY3.4 rev    GAGCTTCTTT GTAGACAAAT GGCTTCATTT TATGATAACC ACCATTGTTT AACATTTTTG  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1265       1275       1285       1295       1305       1315               
DY3-4-Int5   TAATCCACTC CAGTATATTT GCACAATTAG TTGATCCAAT ATATTTTTCC AGATGAAACA  
DY3.4 rev    TAATCCACTC CAGTATATTT GCACAATTAG TTGATCCAAT ATATTTTTCC AGATGAAACA  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1325       1335       1345       1355       1365       1375               
DY3-4-Int5   TTGAAATTAA TTTGGAGCAT GCAACAAATG TATCATTTTT AGACACAAAA CAATGTTCGA  
DY3.4 rev    TTGAAATTAA TTTGGAGCAT GCAACAAATG TATCATTTTT AGACACAAAA CAATGTTCGA  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1385       1395       1405       1415       1425       1435               
DY3-4-Int5   TTTCAACCAT TTTTCGTGTT GGTTTTAGTT TTCTCAGCTC AAAAATATTG CGAGAAGACA  
DY3.4 rev    TTTCAACCAT TTTTCGTGTT GGTTTTAGTT TTCTCAGCTC AAAAATATTG CGAGAAGACA  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1445       1455       1465       1475       1485       1495               
DY3-4-Int5   GGATACTCTG CGATAATTTG TTGATTTCCA GTAAAACAAC GGTATCGCGA ATATTTGAAA  
DY3.4 rev    GGATACTCTG CGATAATTTG TTGATTTCCA GTAAAACAAC GGTATCGCGA ATATTTGAAA  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1505       1515       1525       1535       1545       1555               
DY3-4-Int5   TGTTTTCAGA AGAAGCCAAA AAAGTGGACA TATGGCGGTA GTTTAATTTT TGTCTTCGTT  
DY3.4 rev    TGTTTTCAGA AGAAGCCAAA AAAGTGGACA TATGGCGGTA GTTTAATTTT TGTCTTCGTT  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1565       1575       1585       1595       1605       1615               
DY3-4-Int5   TCTTTTTGAA AATATTTCTG ACGAGACTTA AATGAGCACT TTTGCGAATA ATTGTGTTCC  
DY3.4 rev    TCTTTTTGAA AATATTTCTG ACGAGACTTA AATGAGCACT TTTGCGAATA ATTGTGTTCC  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1625       1635       1645       1655       1665       1675               
DY3-4-Int5   AATGACGTCT TTTATCGTAT TTTCGTATTT CTTCATGAAG TGTTGTAAGT GAACTCTTAA  
DY3.4 rev    AATGACGTCT TTTATCGTAT TTTCGTATTT CTTCATGAAG TGTTGTAAGT GAACTCTTAA  
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  
                1685       1695       1705       1715       1725       1735               
DY3-4-Int5   TCGTTGGTGC CATCTTGTCG TCGTCATCAC CAGAACCACC ACCGGTACCC AGATCTGGGC  
DY3.4 rev    TCGTTGGTGC CAT------- ---------- ---------- ---------- ----------  
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Sequence analysis of pET41-DY3.4 construct using Int6 reverse primer. 
 
  
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|   
                375        385        395        405        415        425    
DY3-4-Int6   GATGGGGATT CTC-ACGATG TTGGGC-ACG CTTGTAGTAG TACGTTGAAA GTGTGGTACG 
DY3.4 rev    TTTTGTAATT CTCCACGATG TTGGGCCACG CTTGTAGTAG TACGTTGAAA GTGTGGTACG 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                435        445        455        465        475        485      
DY3-4-Int6   AATAACACTG TAGAGTGTTG TAGAGGAACT CATCTCTCGG TAGCAAACTT CAAAATTGAA 
DY3.4 rev    AATAACACTG TAGAGTGTTG TAGAGGAACT CATCTCTCGG TAGCAAACTT CAAAATTGAA 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                495        505        515        525        535        545       
DY3-4-Int6   TACTCCTTTC AATTCCATTT TTCGACGAAG CGCCTCATGT GCATTCAACT CAGTTCCAGC 
DY3.4 rev    TACTCCTTTC AATTCCATTT TTCGACGAAG CGCCTCATGT GCATTCAACT CAGTTCCAGC 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                555        565        575        585        595        605       
DY3-4-Int6   TGAACAGAAT ATCAATTTAT GAAATCCTCC GTGATTTCTT CCTTTTCCAC ATACCGTATA 
DY3.4 rev    TGAACAGAAT ATCAATTTAT GAAATCCTCC GTGATTTCTT CCTTTTCCAC ATACCGTATA 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                615        625        635        645        655        665       
DY3-4-Int6   AATATCGTGC TCTTGAGAAA AAAGTCGGTC AATAATTGAT ATCAACACGT CATGATTAAC 
DY3.4 rev    AATATCGTGC TCTTGAGAAA AAAGTCGGTC AATAATTGAT ATCAACACGT CATGATTAAC 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                675        685        695        705        715        725       
DY3-4-Int6   AGTTGAGAAA CATTTGCTAA CATCTGCTGT GTATCCAATT ATTTTTGAGT TTTGTGAGTT 
DY3.4 rev    AGTTGAGAAA CATTTGCTAA CATCTGCTGT GTATCCAATT ATTTTTGAGT TTTGTGAGTT 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                735        745        755        765        775        785        
DY3-4-Int6   CTTCTTTAGA AAATCTGACA CTTTTTTACA CGAATCTCTG ATTGTATGTC GGTAAACTCC 
DY3.4 rev    CTTCTTTAGA AAATCTGACA CTTTTTTACA CGAATCTCTG ATTGTATGTC GGTAAACTCC 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                795        805        815        825        835        845        
DY3-4-Int6   ACTTCTTTCC AAACACCATG AGAGCATCGA ATTCAACCTT TTCCATTGCA TTGTCTCTGT 
DY3.4 rev    ACTTCTTTCC AAACACCATG AGAGCATCGA ATTCAACCTT TTCCATTGCA TTGTCTCTGT 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                855        865        875        885        895        905        
DY3-4-Int6   TTTTTTATCG ATTGCTTTTC TTTTGAACAA AGGTCGCAAT TTTTGACGAG AAATTGAGAG 
DY3.4 rev    TTTTTTATCG ATTGCTTTTC TTTTGAACAA AGGTCGCAAT TTTTGACGAG AAATTGAGAG 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                915        925        935        945        955        965        
DY3-4-Int6   CTTGAAGGTG GCAACATTCG GTCTTATAAA ATGCGGAGCT TTTTGAACTA TATAACGTTG 
DY3.4 rev    CTTGAAGGTG GCAACATTCG GTCTTATAAA ATGCGGAGCT TTTTGAACTA TATAACGTTG 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                975        985        995        1005       1015       1025        
DY3-4-Int6   TTTGAAATCC TTTATTTCTT TTGTTAAAAT ATTTAAATAT CCATCTCTCC ACAGCAAAAC 
DY3.4 rev    TTTGAAATCC TTTATTTCTT TTGTTAAAAT ATTTAAATAT CCATCTCTCC ACAGCAAAAC 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                1035       1045       1055       1065       1075       1085       
DY3-4-Int6   TCTTTCTTCT TTAATTACAA TTGGAATCAT AACTTGTCGT AAAGCCATCA GAGCCCACCA 
DY3.4 rev    TCTTTCTTCT TTAATTACAA TTGGAATCAT AACTTGTCGT AAAGCCATCA GAGCCCACCA 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|   
                1095       1105       1115       1125       1135       1145        
DY3-4-Int6   GTGTACTCCT GATTTTAAAT TATTCACAAT TGAAGTTTGA ATATTCCTCT TCACATTTGG 
DY3.4 rev    GTGTACTCCT GATTTTAAAT TATTCACAAT TGAAGTTTGA ATATTCCTCT TCACATTTGG 
 
             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 
                1155       1165       1175       1185       1195       1205         
DY3-4-Int6   ATCCACATTT TTCATAACTT TAGATGCACG AAATGCGCGA GTGAAAGGAG CTTCTTTGTA 
DY3.4 rev    ATCCACATTT TTCATAACTT TAGATGCACG AAATGCGCGA GTGAAAGGAG CTTCTTTGTA 
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             ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|   
                1215       1225       1235       1245       1255       1265        
DY3-4-Int6   GACAAATGGC TTCATTTTAT GATAACCACC ATTGTTTAAC ATTTTTGTAA TCCACTCCAG 
DY3.4 rev    GACAAATGGC TTCATTTTAT GATAACCACC ATTGTTTAAC ATTTTTGTAA TCCACTCCAG 
 
             ....|....| ....|....| ....|....|   
                1275       1285       1295                   
DY3-4-Int6   TATATTTGCA CAATTAGTTG ATCCAATATA   
DY3.4 rev    TATATTTGCA CAATTAGTTG ATCCAATATA 
 
 
 
Appendix 3 
 

Sequence alignment of pET14b-DY3.4 construct highlighting the point mutations found.  
 

            
 

             
 

            
Portions of alignment are shown highlighting the point mutation that has occurred in each 
position. (a) is mutation one with base change from t to g (Ile to Ser) (b) is mutation two 
with base change c to t (Ala to Val) (c) base change g to a is mutation number three (Ala to 
Thr) (d) mutation to t to c (Trp to Gly) is mutation number four (e) mutation number five is 
an a to g (Lys to Arg) (f) last mutation number six is a silent Gly mutation. 
 

 

(a) 

(c) 

(b) 

(d) 

(e) 
(f) 
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Appendix 4 

 
Sequence analysis of pET14b-DY3.4 construct using Int1 forward primer. Alignment 

shows successful correction of mutations T back to C (Val to Ala) and A back to G (Thr 

to Ala) corrected bases are highlighted in grey. 

 
 
                       70        80        90       100       110       120         
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     AAAAGACGTCATTGGAACACAATTATTCGCAAAAGTGCTCATTTAAGTCTCGTCAGAAAT  
DY3.4         ............................................................  
 
                      130       140       150       160       170       180      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     ATTTTCAAAAAGAAACGAAGACAAAAATTAAACTACCGCCATATGTCCACTTTTTTGGCT  
DY3.4         ............................................................  
 
                      190       200       210       220       230       240      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     TCTTCTGAAAACATTTCAAATATTCGCGATACCGTTGTTTTACTGGAAATCAACAAATTA  
DY3.4         ............................................................  
 
                      250       260       270       280       290       300      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     TCGCAGAGTATCCTGTCTTCTCGCAATATTTTTGAGCTGAGAAAACTAAAACCAACACGA  
DY3.4         ............................................................  
 
                      310       320       330       340       350       360      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     AAAATGGTTGAAATCGAACATTGTTTTGTGTCTAAAAATGATACATTTGTTGCATGCTCC  
DY3.4         ............................................................  
 
                      370       380       390       400       410       420      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     AAATTAATTTCAATGTTTCATCTGGAAAAATATATTGGATCAACTAATTGTGCAAATATA  
DY3.4         ............................................................  
 
                      430       440       450       460       470       480      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     CTGGAGTGGATTACAAAAATGTTAAACAATGGTGGTTATCATAAAATGAAGCCATTTGTC  
DY3.4         ............................................................  
 
                      490       500       510       520       530       540      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     TACAAAGAAGCTCCTTTCACTCGCGCATTTCGTGCATCTAAAGTTATGAAAAATGTGGAT  
DY3.4         ............................................................  
 
                      550       560       570       580       590       600      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     CCAAATGTGAAGAGGAATATTCAAACTTCAATTGTGAATAATTTAAAATCAGGAGTACAC  
DY3.4         ............................................................  
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                      610       620       630       640       650       660      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     TGGTGGGCTCTGATGGCTTTACGACAAGTTATGATTCCAATTGTAATTAAAGAAGAAAGA  
DY3.4         ................C...........................................  
 
                      670       680       690       700       710       720      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     GTTTTGCTGTGGAGAGATGGATATTTAAATATTTTAACAAAAGAAATAAAGGATTTCAAA  
DY3.4         ............................................................  
                   
                      730       740       750       760       770       780      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     CAACGTTATATAGTTCAAAAAGCTCCGCATTTTATAAGACCGAATGTTGCCACCTTCAAG  
DY3.4         .....................G......................................  
 
                      790       800       810       820       830       840      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     CTCTCAATTTCTCGTCAAAAATTGCGACCTTTGTTCAAAAAAAAAGCAATCGATAAAAAA  
DY3.4         ............................................................ 
 
                      850       860       870       880       890       900      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     ACAGAGACAATGCAATGGAAAAGGTTGAATTCGATGCTCTCATGGTGTTTGGAAAGAAGT  
DY3.4         ............................................................  
 
                      910       920       930       940       950       960      
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     GGAGTTTACCGACATACAATCAGAGATTCGTGTAAAAAAGTGTCAGATTTTCTAAAGAAG  
DY3.4         ............................................................  
 
                      970       980       990       1000      1010      1020     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     AACTCACAAAACTCAAAAATAATTGGATACACAGCAGATGTTAGCAAATGTTTCTCAACT  
DY3.4         ............................................................  
 
                      1030      1040      1050      1060      1070      1080     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-Int 1     GTTAATCATGACGTGTTGATATCAATTATTGACCGACTTTTTTCTCA  
DY3.4         ...............................................  
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Sequence analysis of pET14b-DY3.4 construct using Int3 forward primer. Alignment 

shows successful correction of mutations, shaded, C back to T (Gly to Trp); G back to A 

(Arg to Lys) and the final mutation in this sequence alignment shows the Gly silent 

mutation. 
 
                      1270      1280      1290      1300      1310      1320     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
tel4-int3for  CGTACCACACTTTCAACGTACTACTACAAGCGTGGCCCAACATCGTGGAGAATTACAAAA  
DY3.4         .............................................T..............  
 
                      1330      1340      1350      1360      1370      1380     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
tel4-int3for  GGAGTTCCACAGGGACATCCTATATCTTCAAATTTAGCACATATGTACCTCAATAACTTT  
DY3.4         ............................................................  
 
                      1390      1400      1410      1420      1430      1440     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
tel4-int3for  GAGCAGAAATATTGGAGCAACGAAAAAGAGGATTCGAGAATTGTTTTCTGCAGATATGAG  
DY3.4         ............................................................  
 
                      1450      1460      1470      1480      1490      1500     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
tel4-int3for  GATGATTTCATTTTCATTACAACTGAAAATTCTTTATTCGAGAAGATGATGAAACCATTA  
DY3.4         ............................................................  
 
                      1510      1520      1530      1540      1550      1560     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
tel4-int3for  TCTACTGGCAATAACACTCATTTTTTGACGGCTAATCCGAAAAAGTTCAAGAAATCAGAG  
DY3.4         ........................................A...................  
 
                      1570      1580      1590      1600      1610      1620     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
tel4-int3for  CGATGTGGAGCATCACAAGTCCTTCAATGGTGTGGAGTGAAACTGGATTTTCAATCGGGA  
DY3.4         ...................................G........................  
 
                      1630      1640      1650      1660      1670      1680     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
tel4-int3for  AATTGCTTTATTCGACGAAGATGCAAAGACGGTGTGGCTCGTCAATTTTTGATAAAGTTG  
DY3.4         ............................................................  
 
                      1690      1700      1710      1720      1730      1740     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
tel4-int3for  CAATAAGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGT  
DY3.4         ......------------------------------------------------------  
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Sequence analysis of pET14b-DY3.4 construct using Int10 reverse primer. Since a 

reverse primer was used for the sequencing analysis the alignment shows the reverse 

compliment of DY3.4. Successful correction of mutations C back to T (sense direction) 

or G back to A (antisense direction) Ser to Ile was achieved. 
 
 
                      1390      1400      1410      1420      1430      1440     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-rev10_In  CCATTTTTCGTGTTGGTTTTAGTTTTCTCAGCTCAAAAATATTGCGAGAAGACAGGATAC  
DY3.4 rev     ............................................................  
 
                      1450      1460      1470      1480      1490      1500     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-rev10_In  TCTGCGATAATTTGTTGATTTCCAGTAAAACAACGGTATCGCGAATATTTGAAATGTTTT  
DY3.4 rev     ............................................................  
 
                      1510      1520      1530      1540      1550      1560     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-rev10_In  CAGAAGAAGCCAAAAAAGTGGACATATGGCGGTAGTTTAATTTTTGTCTTCGTTTCTTTT  
DY3.4 rev     ............................................................  
 
                      1570      1580      1590      1600      1610      1620     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-rev10_In  TGAAAATATTTCTGACGAGACTTAAATGAGCACTTTTGCGAATAATTGTGTTCCAATGAC  
DY3.4 rev     ............................................................  
 
                      1630      1640      1650      1660      1670      1680     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-rev10_In  GTCTTTTATCGTATTTTCGTATTTCTTCATGAAGTGTTGTAAGTGAACTCTTAATCGTTG  
DY3.4 rev     .....................................................A......  
 
                      1690      1700      1710      1720      1730      1740     
              ....|....|....|....|....|....|....|....|....|....|....|....| 
DY3-rev10_In  GTGCCAT  
DY3.4 rev     .......  
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Appendix 5 

 

Rare codons identified by Rare codon calculator (RaCC) present in DY3.4 TERT gene 

sequence from C. elegans. 

 

Red = rare Arg codons AGG, AGA, CGA  
Green = rare Leu codon CTA  
Blue = rare Ile codon ATA  
Orange = rare Pro codon CCC  
 
For the following input sequence: 
 
atg gca cca acg att aag agt tca ctt aca aca ctt cat gaa gaa ATA cga aaa 
tac gat aaa aga cgt cat tgg aac aca att att cgc aaa agt gct cat tta agt 
ctc gtc aga aat att ttc aaa aag aaa cga aga caa aaa tta aac tac cgc cat 
atg tcc act ttt ttg gct tct tct gaa aac att tca aat att cgc gat acc gtt 
gtt tta ctg gaa atc aac aaa tta tcg cag agt atc ctg tct tct cgc aat att 
ttt gag ctg aga aaa CTA aaa cca aca cga aaa atg gtt gaa atc gaa cat tgt 
ttt gtg tct aaa aat gat aca ttt gtt gca tgc tcc aaa tta att tca atg ttt 
cat ctg gaa aaa tat att gga tca act aat tgt gca aat ATA ctg gag tgg att 
aca aaa atg tta aac aat ggt ggt tat cat aaa atg aag cca ttt gtc tac aaa 
gaa gct cct ttc act cgc gca ttt cgt gca tct aaa gtt atg aaa aat gtg gat 
cca aat gtg aag agg aat att caa act tca att gtg aat aat tta aaa tca gga 
gta cac tgg tgg gct ctg atg gct tta cga caa gtt atg att cca att gta att 
aaa gaa gaa aga gtt ttg ctg tgg aga gat gga tat tta aat att tta aca aaa 
gaa ATA aag gat ttc aaa caa cgt tat ATA gtt caa aaa gct ccg cat ttt ATA 
aga ccg aat gtt gcc acc ttc aag ctc tca att tct cgt caa aaa ttg cga cct 
ttg ttc aaa aga aaa gca atc gat aaa aaa aca gag aca atg caa tgg aaa agg 
ttg aat tcg atg ctc tca tgg tgt ttg gaa aga agt gga gtt tac cga cat aca 
atc aga gat tcg tgt aaa aaa gtg tca gat ttt CTA aag aag aac tca caa aac 
tca aaa ATA att gga tac aca gca gat gtt agc aaa tgt ttc tca act gtt aat 
cat gac gtg ttg ATA tca att att gac cga ctt ttt tct caa gag cac gat att 
tat acg gta tgt gga aaa gga aga aat cac gga gga ttt cat aaa ttg ATA ttc 
tgt tca gct gga act gag ttg aat gca cat gag gcg ctt cgt cga aaa atg gaa 
ttg aaa gga gta ttc aat ttt gaa gtt tgc tac cga gag atg agt tcc tct aca 
aca ctc tac agt gtt att cgt acc aca ctt tca acg tac tac tac aag cgt ggc 
cca aca tcg tgg aga att aca aaa gga gtt cca cag gga cat cct ATA tct tca 
aat tta gca cat atg tac ctc aat aac ttt gag cag aaa tat tgg agc aac gaa 
aaa gag gat tcg aga att gtt ttc tgc aga tat gag gat gat ttc att ttc att 
aca act gaa aat tct tta ttc gag aag atg atg aaa cca tta tct act ggc aat 
aac act cat ttt ttg acg gct aat ccg aaa aag ttc aag aaa tca gag cga tgt 
gga gca tca caa gtc ctt caa tgg tgt gga gtg aaa ctg gat ttt caa tcg gga 
aat tgc ttt att cga cga aga tgc aaa gac ggt gtg gct cgt caa ttt ttg ATA 
aag ttg caa taa  
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Appendix 6 
 

Possible predicted sequence of TR named tts-1 (transcribed telomerase–like sequence) 

from C.elegans. Highlighted in grey are the possible one-and-a half telomeric template 

for telomere synthesis. 
 

agtcagtattctttttttgagctagctataccttgagttaaaggttccgcttttctataaatatggctttgatgtaggtggaaattggcaa

gtagtacctaagcctaaacctaggccgaagtctaggaataagcctaatcctaagcccttacctaacttgcctgcttccatctatatc

aaagcccaatttccttacctcatttctctccaattccagaaaacttgaccggctcaaccatgtgacttctgacaattttcctcaatcct

ccgggcacaggaaccctgtaacaattctcgacttctcgtaaatggaagcacttcttcaaatgctctgcaacacaaaaatccaaaa

aaatgtatataaatgacacacaaaaatgacaaaaaacaaacgctttttctgatgatggttctctgtttttttttcaagtaaattgtttcgt

gcgacgacgggtttttgatacaattatcggaattttattggttgagtcaatgggtaaaacctacttttttaatttttttttgttttggtatttt

gtaaaaaatttttcaagcttgtaatttgtaattcaaattgtaaaagtaattgtaaaaatttgattttttcttcttttttttcttttttgttttaagttt

tgaataaattttttaatgctatt 
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Appendix 7 

Sequence alignment of BsPel with the successful mutation of amino acid lysine 247 to 

alanine as highlighted in grey. 
 
 
Query64    GCTGATTTAGGCCACCAGACGTTGGGATCCAATGATGGCTGGGGCGCGTACTCGACCGGC  123 
Sbjct41    ............................................................  100 
 
Query124   ACGACAGGCGGATCAAAAGCATCCTCCTCAAATGTGTATACCGTCAGCAACAGAAACCAG  183 
Sbjct101   ............................................................  160 
 
Query184   CTTGTCTCGGCATTAGGGAAGGAAACGAACACAACGCCAAAAATCATTTATATCAAGGGA  243 
Sbjct161   ............................................................  220 
 
Query244   ACGATTGACATGAACGTGGATGACAATCTGAAGCCGCTTGGCCTAAATGACTATAAAGAT  303 
Sbjct221   ............................................................  280 
 
Query304   CCGGAGTATGATTTGGACAAATATTTGAAAGCCTATGATCCTAGCACATGGGGCAAAAAA  363 
Sbjct281   ............................................................  340 
 
Query364   GAGCCGTCGGGAACACAAGAAGAAGCGAGAGCACGCTCTCAGAAAAACCAAAAAGCACGG  423 
Sbjct341   ............................................................  400 
 
Query424   GTCATGGTGGATATCCCTGCAAACACGACGATCGTCGGTTCAGGGACTAACGCTAAAGTC  483 
Sbjct401   ............................................................  460 
 
Query484   GTGGGAGGAAACTTCCAAATCAAGAGTGATAACGTCATTATTCGCAACATTGAATTCCAG  543 
Sbjct461   ............................................................  520 
 
Query544   GATGCCTATGACTATTTTCCGCAATGGGATCCGACTGACGGAAGCTCAGGGAACTGGAAC  603 
Sbjct521   ............................................................  580 
 
Query604   TCACAATACGACAACATCACGATAAACGGCGGCACACACATCTGGATTGATCACTGTACA  663 
Sbjct581   ............................................................  640 
 
Query664   TTTAATGACGGTTCGCGTCCGGACAGCACATCACCGAAATATTATGGAAGAAAATATCAG  723 
Sbjct641   ............................................................  700 
 
Query724   CACCATGACGGCCAAACGGATGCTTCCAACGGTGCTAACTATATCACGATGTCCTACAAC  783 
Sbjct701   ............................................................  760 
 
Query784   TATTATCACGATCATGATAAAAGCTCCATTTTCGGATCAAGTGACAGCAAAACCTCCGAT  843 
Sbjct761   ..................GCG.......................................  820 
 
Query844   GACGGCAAATTAAAAATTACGCTGCATCATAACCGCTATAAAAATATTGTCCAGCGCGCG  903 
Sbjct821   ............................................................  880 
 
Query904   CCGAGAGTCCGCTTCGGGCAAGTGCACGTATACAACAACTATTATGAAGGAAGCACAAGC  963 
Sbjct881   ............................................................  940 
 
Query964   TCTTCAAGTTATCCTTTTAGCTATGCATGGGGAATCGGAAAGTCATCTAAAATCTATGCC  1023 
Sbjct941   ............................................................  1000 
 
Query1024  CAAAACAATGTCATTGACGTACCG  1047 
Sbjct1001  ........................  1024 
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Appendix 8 

 

Paper published in Acta Crystallographica Section F: 

 

Cloning, purification and preliminary crystallographic analysis of cobalamin 

methyltransferases from Rhodobacter capsulatus 

 

Arefeh Seyedarabi, Thomas Hutchison, Teng Teng To, Evelyn Deery, Amanda 

Brindley, Martin J. Warren and Richard W. Pickersgill. 
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Cloning, purification and preliminary crystallographic analysis of cobalamin 

methyltransferases from Rhodobacter capsulatus 

 

Arefeh Seyedarabi1, Thomas Hutchison1, Teng Teng To1, Evelyn Deery2, Amanda 

Brindley2, Martin J. Warren2 and Richard W. Pickersgill1,* 
1School of Biological and Chemical Sciences, Queen Mary University of London, Mile 

End Road, London E1 4NS 2Centre for Molecular Processing, School of Biosciences, 

University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK 

*Correspondence should be addressed to: r.w.pickersgill@qmul.ac.uk 

 

Synopsis 

We report diffraction from crystals of the cobalamin methyltransferases CobJ, CobM, 

CobF and CobL (full-length and C-terminal domain) from Rhodobacter capsulatus; 

three of these enzymes also catalyse the auxiliary reactions of ring-contraction (CobJ), 

decarboxylation (CobL) and deacylation (CobF).  

 

Abstract 

Of the thirty biosynthetic steps necessary for the production of cobalamin (vitamin B12), 

eight involve the addition of S-adenosyl-methionine derived methyl groups to the 

tetrapyrrole framework.  The number of methylations highlights their importance in 

orchestrating the chemistry of cobalamin biosynthesis by changing the reactivity of the 

groups to which they attach and by causing prototrophic arrangement favourable for 

subsequent chemistries.  In fact, three of the four methyltransferases for which we report 

diffracting crystals also catalyse auxillary reactions: ring contraction (CobJ), deacylation 

(CobF) and decarboxyation (CobL). 

 

1. Introduction 

There are seven methyltransferases that add eight S-adenosyl-methionine (SAM)-

derived methyl groups to the tetrapyrrole framework that display a high level of regional 
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and temporal specificity.  The discrepancy between the number of methyltransferases 

and the number of methylations is due to the fact that the first methyltransferase in the 

sequence, CobA, carries out two methylations.  The remaining enzymes catalyse a single 

methylation reaction.  To complicate things further, there are two similar though distinct 

routes for vitamin B12 biosynthesis, which differ in a requirement for molecular oxygen 

and the timing of cobalt insertion.  These two routes are referred to as the aerobic and 

anaerobic pathways.  However, both pathways require the same temporal methylation 

pattern although the intermediates differ, mainly due to the presence or absence of 

cobalt.  Table 1 lists the methyltransferases associated with the aerobic late cobalt 

insertion pathway of B12 biosynthesis.  Within this pathway, 6 of the 7 

methyltransferases display sequence similarity to one another, clearly indicating that 

these enzymes have evolved from a common ancestor.  Indeed, most of the 

methyltransferases of the aerobic route have a homologue in the anaerobic pathway, 

indicating that the aerobic and anaerobic routes split after the primordial B12 pathway 

had evolved (Raux, Schubert et al. 2000; Warren, Raux et al. 2002).  The structure of the 

canonical cobalamin methyltransferase class III domain has been solved (Schubert, 

Wilson et al. 1998), as has the structure of the non-canonical fold (Keller, Smith et al. 

2002).  However, our understanding of the specificity and chemistry of the auxillary 

reactions as well as the evolutionary significance is unresolved. 

 

Our current understanding of the evolution of complex metabolic pathways is based 

upon the idea that pathways evolved from a collection of broad specificity enzymes, 

which subsequently refined their binding pattern to become particular for one substrate.  

This theory is known as the patchwork evolution model and infers that the recruitment 

of single enzymes from different pathways is the driving force for pathway evolution, 

where enzymes evolve to catalyse different reactions on the same structure scaffold. 

This explains the appearance of enzyme superfamilies, in which enzymes retain a 

common structural or mechanistic strategy for catalysis within a shared protein 

framework. 
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The alternative theory is the retrograde model of pathway evolution, where the pathway 

evolves backwards from a key metabolite.  Moreover, it was suggested that the enzymes 

of a pathway were descended from a common ancestral gene, by a process of gene 

duplication followed by functional differentiation, driven by substrate depletion.  By this 

model, enzymes in a pathway would have overlapping substrate specificities with an 

inherent molecular memory of the original key metabolite.  Such a theory was used to 

explain the existence of operons and end product inhibition of the first enzyme of the 

pathway and could be used to explain the prevalence of class III methyltransferases in 

the cobalamin biosynthetic pathway. 

 

2. Material and Methods 

2.1. Protein expression and purification 

The DNA fragments corresponding to amino acid residues 1-245, 1-255, 1-261 and 1-

396 encoded by the cobJ, cobF, cobM and cobL genes, respectively, were amplified 

from Rhodobacter capsulatus genomic DNA by polymerase chain reaction (PCR) using 

the FastStart High Fidelity PCR system (Roche). The PCR products were initially cloned 

into a modified pET3a (Novagen), which contains one SpeI site in 5’ of BamHI, by NdeI 

and SpeI digests (Table 2). The same restriction enzymes were used to subclone them 

into pET14b (Novagen), which had also been modified by adding the SpeI site in 5’ of 

BamHI. The DNA fragment corresponding to amino acids 214-396 encoded by the C-

terminal domain of the cobL gene was amplified by PCR using the pET3a::cobL(1-396) 

construct as template and cloned directly into the modified pET14b. The pET14b vector 

added an N-terminal His6-tag and a thrombin cleavage site to all the five enzymes.  

Recombinant clones were selected for by ampicillin resistance.  The expression 

constructs were transformed into competent E. coli BL21 star (DE3) plysS cells. A small 

10 ml overnight culture grown at 310 K in Luria-Bertani broth containing 100 µg ml-1 

ampicillin and 34 µg ml-1 of chloramphenicol was used to inoculate a 1 litre culture.  

Cells were grown to an OD600 of 0.6.  To express the recombinant proteins, the cells 
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were then induced by the addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) to a 

final concentration of 0.5 mM. After overnight induction at 291 K or 303 K, the cells 

were harvested by centrifugation at 4950 g for 20 minutes at 277 K. Subsequently, the 

cell pellets were resuspended in 25 mM Tris-HCl buffer pH 8.0 containing 10 mM 

imidazole and 400-500 mM NaCl (buffer A) and frozen at 193 K. For purification of the 

over-produced proteins, the frozen cell pellets were thawed and sonicated, followed by 

centrifugation at 26900 g for 30 minutes at 277 K to remove cell debris. A 5 ml HisTrap 

nickel immobilised metal affinity chromatography column (GE Healthcare) equilibrated 

with buffer A was attached to an ÄKTA FPLC system (GE Healthcare). The soluble 

fraction was applied onto the column and then the column was washed with 40 ml of 

buffer A before the target protein was eluted with a linear gradient of imidazole (from 10 

to 500 mM in 20 column volumes) in buffer A.  The fractions containing the His6-tagged 

Cobs (CobJ, CobF, CobM, CobL, CobL-C) were then identified by SDS-PAGE analysis. 

His6-tagged Cobs were concentrated using 10 kDa molecular weight cutoff vivaspin 

concentrators (Sartorius) and applied to Superdex-200 size exclusion column (GE 

Healthcare). The CobL-C protein was eluted in 25 mM MES pH 6.0 and 250 mM NaCl, 

while all the other Cobs were eluted in 50 mM Tris- HCl pH 8.0 and 100 mM NaCl. The 

protein fractions from the Superdex column were further analysed by SDS-PAGE 

analysis and the protein fractions concentrated.  CobJ protein was concentrated to 10-20 

mg ml-1; CobF to 25-50 mg ml-1; CobM to 20-40 mg ml-1; CobL to 8-10 mg ml-1 and 

CobL-C to 2-6 mg ml-1. The protein concentration was estimated from absorption values 

at 280 nm using ProtPram analysis and the ExPASy server. 

 

His6-tagged CobM and CobL protein at 7 mg ml-1 and 10 mg ml-1, respectively, were 

treated with thrombin (Novagen) to cleave off the His6-tag. 1 unit of thrombin was 

sufficient to cleave 1 mg of protein in thrombin cleavage buffer consisting of 20 mM 

Tris-HCl pH 8.4, 150 mM NaCl, and 2.5 mM CaCl2, over the course of 18-20 hours at 

room temperature. A final concentration of 1 mM PMSF was added to stop the thrombin 
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activity after the incubation period.  The thrombin was then removed by using size 

exclusion chromatography (Superdex-200).  

 

2.2. Crystallisation 

Crystallisation was at 292 K using the hanging-drop vapour diffusion method in 24-well 

plates.  The methyl donor, S-adenosyl-methionine (SAM; Sigma), was used to aid 

crystallisation of the proteins.  Two crystallisation screens exploiting sparse-matrix 

sampling (Jancarik and Kim 1991), Hampton Research Crystal Screens I and II 

(Hampton Research) with a total of 98 different conditions, were used to screen for 

crystallisation conditions. SAM was varied in the range 0-5 mM.  2 µl drops containing 

1:1 ratio of protein and reservoir solution were equilibrated against 500 µl of each 

reservoir solution. 

 

His6-tagged CobJ crystals grew in 2-4 days from Crystal Screen I condition 46 (0.2 M 

calcium acetate hydrate, 0.1 M sodium cacodylate trihydrate pH 6.5 and 18 % PEG 

8000).  Three crystal forms were characterised, slightly varying calcium acetate and 

PEG concentrations may have contributed to these different forms.  His6-tagged CobF 

crystals (type I, II, III) were obtained within 2-5 days in Crystal Screen I condition 37 

(0.1 M sodium acetate trihydrate pH 4.6 and 8% PEG 4000).  His6-tagged CobM crystals 

were obtained within 2-5 days in Crystal Screen I condition 17 (0.2 M Lithium sulfate 

monohydrate, 0.1 M Tris pH 8.5 and 30 % PEG 4000) and Crystal Screen II condition 

38 (0.1 M Hepes pH 7.5 and 20 % PEG 10,000), while crystals of His6-cleaved CobM 

were obtained within 5-7 days in Crystal Screen I condition 41 (0.1 M Hepes pH 7.5, 

10% isopropanol and 20% PEG 4000).  His6-tagged CobL-C crystals were obtained 

within 1-2 days in numerous conditions including for types I and II respectively, Crystal 

Screen I condition 9 (0.2 M Ammonium acetate, 0.1 M tri-sodium citrate dihydrate pH 

5.6 and 30% PEG 4000) and condition 40 (0.1 M tri-sodium citrate dihydrate pH 5.6, 

20% isopropanol and 30% PEG 4000).  His6-tagged CobL crystals grew after 1-2 weeks 
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from CSI condition 14 (0.2 M calcium chloride, 0.1 M sodium HEPES pH 7.5, 28% 

PEG 400). Figure 1 shows a crystal of each of the four methyltransferases. 

 

2.3. Cryoprotection and data collection 

Augmentation with 20 % glycerol was successful for CobJ and CobL-C crystals and 

augmentation with 25 % MPD was successful with CobF and CobM crystals.  

Diffraction data from eleven crystals were collected at 100 K and processed with 

MOSFLM (Leslie 2006). POINTLESS was used to identify the correct space group for 

each dataset before scaling using SCALA (Evans 2006). 

 

3. Results and discussion 

Four methyltransferases from Rhodobacter capsulatus CobJ, CobF, CobM and CobL, 

were successfully cloned, overproduced and crystallized (Figure 1).  The C-terminal 

domain of CobL (CobL-C) was also successfully cloned, overproduced and crystallized.  

In each case, the authenticity of the cloned DNA was confirmed by sequencing.  All five 

constructs expressed large quantities of protein and well diffracting crystals were grown 

of all, with the possible exception of CobL which gave reasonable diffraction 

(diffraction limit 3.2 Å).  CobL has two domains, a canonical and a non-canonical 

methyltransferase (see Table 1) and there may be some flexibility between the two 

domains which might contribute to the lower diffraction limit for these crystals.  The 

inclusion of SAM was crucially important in obtaining well-diffracting crystals of these 

SAM-binding methyltransferases.  Crystals were mostly grown with the hexahistidine 

tag intact, though removal of the tag from CobM did give slightly better diffracting 

crystals. The proteins had good stability with the exception of the C-terminal domain of 

CobL (CobL-C) which was stabilized by the addition of sodium chloride.  The quality of 

the diffraction data is presented in Table 3.  It is immediately clear from molecular 

replacement calculations that CobF, CobM, and CobL-C can be readily solved using 

existing methyltransferase structures and refinement and validation of these structures is 
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underway.  Experimental phases are being determined for CobJ and CobL from Se-Met 

labelled proteins. 
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Table 1 Methyltransferases the cobalamin biosynthesis pathway 

 
Methylates: Enzyme Pathway Catalyses the transformation Reference 

C2 & C7 CobA Both uroporphrinogen III into precorrin-2 (Vevodova, Graham et al. 2004) 

C20 CobI Aerobic precorrin-2 into precorrin-3A No data 

C20 CbiL Anaerobic Cobalt-factor II into cobalt factor III (Frank, Deery et al. 2007; Wada, Harada et al. 

2007) 

C17 CobJ Aerobic precorrin3B into precorrin-4 This work 

C17 CbiH Anaerobic Cobalt-factor III into cobalt factor IV No data 

C11 CobM Aerobic precorrin 4 into precorrin-5 This work 

C11 CbiF Anaerobic Cobalt-factor IV into cobalt factor V (Schubert, Wilson et al. 1998) 

C1 CobF Aerobic precorrin 5 into precorrin-6X This work and PDB code: 2NPN 

C1 CbiD Anaerobic Cobalt-factor V into cobalt factor VI Not canonical. PDB code: 1SR8 

C5 CobL-N Aerobic precorrin 6Y into precorrin-7 This work 

C5 CbiE Anaerobic Cobalt-factor VI into cobalt factor 

VII 

PDB code: 2BB3 

C15 CobL-C Aerobic precorrin 7 into hydrogenobyrinic 

acid 

This work 

C15 CbiT Anaerobic Cobalt-factor VII into 

hydrogenobyrinoic acid 

(Keller, Smith et al. 2002) 

 

The enzymes are given in order according to their position on the biosynthetic pathway 
(with the exception of CobA which is common to both) the methyltransferase of the 
aerobic (early cobalt insertion) pathway is given followed by the equivalent enzyme of 
the anaerobic (late cobalt insertion) pathway. When a PDB code is given, the structure is 
the result of a structural genomics consortium without other citation. CobL-N and CobL-
C refer to the N- and C-terminal domains of CobL. 
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Table 2 List of primers used for PCR amplification of the methyltransferases 

Gene Primers Restriction 
sites 

cobJ Forward: 
CATCATATGAGCGGTTGGGTCACG 
Reverse: 
CATACTAGTGGCTTGCCGATCACGGC 

NdeI 
SpeI 

cobF Forward: 
CATCATATGATCGAGCTTTCCCTG 
Reverse: 
CATACTAGTCACGCCGCGGGCACATTG 

NdeI 
SpeI 

cobM Forward: 
CATCATATGACGGTGCATTTCATCG 
Reverse: 
CATACTAGTCATTCGCTGCCCTCCGG 

NdeI 
SpeI 

cobL Forward: 
CTACATATGTCTGATCCGTGGTTG 
Reverse: 
CATACTAGTCATCTTTGCCCGCTCC 

NdeI 
SpeI 

CobL-C Forward: 
CATCATATGGGCACGGGGCTTTCGCAG 
Reverse: as for cobL above 

NdeI 
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Table 3: Crystallographic data statistics 

 

 

Values in parentheses are for the highest resolution shell. aRmerge = (Σhkl Σi |Ii(hkl) - 
<I(hkl)>|) / (Σhkl Σi I(hkl)),  where Ii(hkl) is the intensity measured for a each unique 
Bragg reflection with indices (hkl), <I(hkl)> is the average intensity for multiple 
measurements of this reflection. bRmeas = Σhkl [n/(n-1)]1/2 Σi |Ii(hkl) - <I(hkl) >| / Σhkl Σi 
Ii(hkl), where n is the multiplicity, other variables as defined for Rmerge. Vm is Matthew's 
coefficient and au represents asymmetric unit. 

Enzyme CobJ     
(I)   

CobJ   
(II)   

CobJ   
(III) 

CobF    
(I) 

CobF   
(II) 

CobF   
(III) 

CobM  
(I) 

CobM 
(II) 

CobL-
C (I) 

CobL-C 
(II) 

CobL 

Synchrotron DLS 
IO3 

ESRF  
ID14-1 

ESRF  
ID14-1 

SRS  
PX10.1 

ESRF    
ID14-1 

ESRF    
ID29       

SRS 
PX10.1 

ESRF    
ID29       

ESRF    
ID29 

DLS IO2 ESRF    
ID14-4 

Wavelength 
(Å) 

0.9808 0.933 0.933 1.117 0.933 1.011 1.117 1.011 1.011 0.9795 0.939 

Detector ADSC 
Q315R 

ADSC 
Q210 

ADSC 
Q210  

MAR 
MOSAI
C  

ADSC 
Q210  

ADSC 
Q315R 

MAR 
MOSAI
C  

ADSC 
Q315R 

ADSC 
Q315R 

ADSC 
Q315      

ADSC 
Q315R 

Space group P212121 P21 C2221 P212121 P21 C2221 P65 P21221 C2 P212121 I222 

Unit-cell 
parameters 
(Å) 

a=85.64 
b=110.9
9  
c=116.1
9 

a= 
68.31   
b= 
69.43 
c=72.65       
β=118.1
6 

a= 
49.73   
b=112.8
5 
c=91.25         

a=61.75   
b=89.42  
c=107.1
4  

a=54.15    
b= 
84.78   
c= 
58.61 
β=98.65
°  

a=61.38    
b= 
89.28    
c=107.9
9            

a=84.52    
b= 
84.52   
c= 
144.64   

a=51.05  
b=54.50  
c=175.8
5  

a=114.3
5 
b=44.80   
c=84.1
1 
β=119.
75 

a=62.67 
b=86.39  
c=149.96  

a=103.9
9 
b=112.3
3  
c=373.6
9  

Unique 
reflections 

54689 
(7910) 

41959 
(6172) 

7019  
(1007) 

95539 
(13791) 

41043 
(5940) 

22829 
(3264) 

39472 
(5720) 

17755 
(2525) 

10402 
(1514) 

21312   
(3045) 

36000  
(5188) 

Multiplicity 3.9 
(4.0) 

3.6 
(3.7) 

6.7 
(6.9) 

6.9 
(6.4) 

3.6 
(3.5) 

4.5 
(4.3) 

9.8 
(8.5) 

7.0 
(7.2) 

3.6 
(3.7) 

5.5 (5.6) 14.4 
(14.8) 

Resolution 
(Å) 

58.56-
2.22 
(2.34-
2.22) 

34.72-
1.97 
(2.08-
1.97) 

48.09-
2.75 
(2.90-
2.75) 

26.78-
1.50 
(1.58-
1.50) 

33.23-
1.90 
(2.00-
1.90) 

53.99-
1.93 
(2.03-
1.93) 

42.26-
2.00 
(2.11-
2.00) 

87.93-
2.50 
(2.64-
2.50) 

72.93-
2.70 
(2.85-
2.70)         

74.98-
2.78 
(2.93-
2.78) 

107.57-
3.2 
(3.37-
3.2) 

Completenes
s (%) 

99.4   
(99.9) 

98.8 
(100.0) 

99.7 
(100.0) 

99.9 
(100.0) 

99.5  
(98.9) 

99.9  
(99.7) 

100.0 
(100.0) 

100.0 
(100.0) 

99.9    
(100.0) 

99.9   
(100.0) 

98.6      
(98.6) 

Rmerge (%) a
 8.1     

(52.5) 
19.5   
(79.2) 

10.3  
(63.1) 

6.4    
(41.3) 

8.1    
(40.7) 

11.6    
(27.5) 

6.8    
(62.0) 

14.2  
(30.5) 

6.0        
(21.4) 

13.2  
(63.2) 

17.3      
(65.2) 

Rp.i.m. (%) b
 4.6 

(30.9) 
12.4 
(47.9) 

4.3 
(25.6) 

2.6 
(17.6) 

4.9 
(25.0) 

6.3 
(15.1) 

2.3 
(22.3) 

5.8 
(12.2) 

3.7 
(13.1) 

6.3 
(30.0) 

4.6 
(17.4) 

Mean I/σ(I) 12.3 
(2.6) 

7.3 
(2.7) 

12.2 
(2.7) 

15.2  
(3.7)     

13.1 
(3.1) 

9.0 
(4.6) 

19.2 
(3.3) 

9.9 
(5.6) 

14.6 
(5.3) 

9.4 (3.0) 17.3 
(5.4) 

Wilson B-
factor (Å2)   

38.3 16.9 66.5 16.3 18.7 20.30 33.2 35.1 56.5 63.4 66.8 

Mol. per au/ 
fraction 
solvent 

4/0.51 2/0.55 1/0.47 2/0.48 2/0.43 1/0.49           2/0.51 2/0.36 2/0.40 4/0.44 4/0.58 
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Figure 1 Crystals of Rhodobacter capsulatus methyltransferases: (a) CobJ (type I), (b) 
CobF (type I), (c) CobM (type I) and (d) CobL. 
 

b 

c 

a 

d 



  

  236 

References 
 
1. Collmer, A., and Keen, N. T. (1986) The Role of Pectic Enzymes in Plant 
Pathogenesis, Annual Review of Phytopathology 24, 383-409. 
 
2. Wolfenden, R., and Snider, M. J. (2001) The depth of chemical time and the 
power of enzymes as catalysts, Accounts of chemical research 34, 938-945. 
 
3. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and 
Henrissat, B. (2009) The Carbohydrate-Active EnZymes database (CAZy): an 
expert resource for Glycogenomics, Nucleic Acids Res. 37, D233-D238. 
 
4. Yoder, M. D., Keen N, T., and Jurank, F. (1993) New domain motif: the structure of 
pectate lyase C, a secreted plant virulence factor, Science 260, 1503-1507. 
 
5. Pickersgill, R. W., Jenkins, J., Harris, G., Nasser, W., and Robert-Baudouy, J. 
(1994) The structure of Bacillus subtilis pectate lyase in complex with calcium, 
Nat Struct Biol 1, 717-723. 
 
6. Akita, M., Suzuki, A., Kobayashi, T., Ito, S., and Yamane, T. (2001) The first 
structure of pectate lyase belonging to polysaccharide lyase family 3, Acta 
Crystallogr. Sect. D-Biol. Crystallogr. 57, 1786-1792. 
 
7. Jenkins, J., Shevchik, V. E., Hugouvieux-Cotte-Pattat, N., and Pickersgill, R. W. 
(2004) The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi, J 
Biol Chem 279, 9139-9145. 
 
8. Mayans, O., Scott, M., Connerton, I., Gravesen, T., Benen, J., Visser, J., 
Pickersgill, R., and Jenkins, J. (1997) Two crystal structures of pectin lyase A from 
Aspergillus reveal a pH driven conformational change and striking divergence in the 
substrate-binding clefts of pectin and pectate lyases, Structure 5, 677-689. 
 
9. Vitali, J., Schick, B., Kester, H. C. M., Visser, J., and Jurnak, F. (1998) The three 
dimensional structure of Aspergillus niger pectin lyase B at 1.7-angstrom resolution, 
Plant Physiol. 116, 69-80. 
 
10. Petersen, T. N., Kauppinen, S., and Larsen, S. (1997) The crystal structure of 
rhamnogalacturonase A from Aspergillus aculeatus: A right-handed parallel beta helix, 
Structure 5, 533-544. 
 
11. Pickersgill, R., Smith, D., Worboys, K., and Jenkins, J. (1998) Crystal structure of 
polygalacturonase from Erwinia carotovora ssp. carotovora, J. Biol. Chem. 273, 24660-
24664. 
 



  

  237 

12. Jenkins, J., Mayans, O., Smith, D., Worboys, K., and Pickersgill, R. W. (2001) 
Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a 
novel esterase active site, J Mol Biol 305, 951-960. 
 
13. Johansson, K., El-Ahmad, M., Friemann, R., Jornvall, H., Markovic, O., and 
Eklund, H. (2002) Crystal structure of plant pectin methylesterase, FEBS Lett 514, 243-
249. 
 
14. Fries, M., Ihrig, J., Brocklehurst, K., Shevchik, V. E., and Pickersgill, R. W. 
(2007) Molecular basis of the activity of the phytopathogen pectin methylesterase, 
EMBO J. 26, 3879-3887. 
 
15. Jenkins, J., and Pickersgill, R. (2001) The architecture of parallel beta-helices and 
related folds, Prog. Biophys. Mol. Biol. 77, 111-175. 
 
16. Abbott, D. W., and Boraston, A. B. (2007) A family 2 pectate lyase displays a rare 
fold and transition metal-assisted beta-elimination, J. Biol. Chem. 282, 35328-35336. 
 
17. Charnock, S. J., Brown, I. E., Turkenburg, J. P., Black, G. W., and Davies, G. J. 
(2001) Characterization of a novel pectate lyase, Pel10A, from Pseudomonas 
cellulosa, Proc Natl Acad Sci 99, 12067-12072. 
 
18. Scavetta, R. D., Herron, S., R.,, Hotchkiss, A. T., Kita, N., Keen, N. T., Benen, J. 
A., Kester H.C., Visser, J., and Jurank, F. (1999) Structure of a plant cell wall fragment 
complexed to pectate lyase C, Plant Cell 11, 1081-1092. 
 
19. Herron, S., Benen, J. A., Scavetta, R. D., Visser, J., and Jurank, F. (2000) 
Structure and function of pectic enzymes: virulence factors of plant pathogens, 
Proc Natl Acad Sci 97, 8762-8769. 
 
20. Leslie, A. G. (1999) Integration of macromolecular diffraction data, Acta 
Crystallogr D Biol Crystallogr 55, 240-255. 
 
21. Evans, P. (2006) Scaling and assessment of data quality, Acta Crystallogr. Sect. 
D-Biol. Crystallogr. 62, 72-82. 
 
22. Vagin, A. A., and Teplyakov, A. (1997) MOLREP: An automated program for 
molecular replacement, J Appl Crystallogr 30, 1022-1025. 
 
23. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of 
macromolecular structures by the maximum-likelihood method, Acta Crystallogr 
D53, 240-255. 
 
24. Perrakis, A., Morris, R., and Lamzin, V. S. (1999) Automated protein model 



  

  238 

building combined with iterative structure refinement, Nat Struct Biol 6, 458-463. 
 
25. Jones, T. A., Zou, J.-Y., and Kjeldgaard, M. (1991) Improved methods for 
building protein models in electron density maps and the location of errors in these 
models, Acta Crystallogr A47, 110-119. 
 
26. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular 
graphics, Acta Crystallogr D Biol Crystallogr 60, 2126-2132. 
 
27. Rigby, N. M., MacDougall, A. J., Ring, S. G., Cairns, P., Morris, R., and 
Gunning, P. A. (2000) Observations on the crystallization of oligogalacturonates, 
Carbohydr Res 328, 235-239. 
 
28. Clausen, M. H., Jorgensen, M. R., Thorsen, J., and Madsen, R. (2001) A strategy for 
chemical synthesis of selectively methyl-esterified oligomers of galacturonic acid, 
Journal of the Chemical Society-Perkin Transactions 1, 543-551. 
 
29. Clausen, M., and Madsen, R. (2004) Synthesis of oligogalacturonates conjugated to 
BSA, Carbohydr Res 339, 2159-2169. 
 
30. Clausen, M. H., and Madsen, R. (2003) Synthesis of hexasaccharide fragments of 
pectin, Chem.-Eur. J. 9, 3821-3832. 
 
31. Petersen, B. O., Meier, S., Duus, J. O., and Clausen, M. H. (2008) Structural 
characterization of homogalacturonan by NMR spectroscopy-assignment of reference 
compounds, Carbohydr. Res. 343, 2830-2833. 
 
32. Herron, S., R.,,, Scavetta, R. D., Garrett, M., Legner, M., and Jurank, F. (2003) 
Characterization and implications of Ca2+ binding to pectate lyase C, J Biol Chem 278, 
12271-12277. 
 
33. Morris, E. R., Powell, D. A., Gidley, M. J., and Rees, D. A. (1982) Conformations 
and interactions of pectins 1. Polymorphism between gel and solid states of calcium 
polygalacturonate, J. Mol. Biol. 155, 507-516. 
 
34. Powell, D. A., Morris, E. R., Gidley, M. J., and Rees, D. A. (1982) Conformations 
and interactions of pectins 2. Influence of residue sequence on chain association in 
calcium pectate gels, J. Mol. Biol. 155, 517-531. 
 
35. Walkinshaw, M. D., and Arnott, S. (1981) Conformations and interactions of 
pectins .1. X-ray-diffraction analyses of sodium pectate in neutral and acidified forms, J. 
Mol. Biol. 153, 1055-1073. 
 
36. Walkinshaw, M. D., and Arnott, S. (1981) Conformations and interactions of 



  

  239 

pectins models for junction zones in pectinic acid and calcium pectate gels, J. 
Mol. Biol. 153, 1075-1085. 
 
37. Jarvis, M. C., and Apperley, D. C. (1995) Chain conformation in concentrated 
pectic gels - evidence from C-13 NMR, Carbohydr. Res. 275, 131-145. 
 
38. Hricovini, M., Bystricky, S., and Malovikova, A. (1991) Conformations of (1-4)- 
linked alpha-D-galacturono-di-saccharides and alpha-D-galacturono-trisaccharides in 
solution analyzed by NMR measurements and theoretical calculations, Carbohydr. Res. 
220, 23-31. 
 
39. Gouvion, C., Mazeau, K., Heyraud, A., Taravel, F. R., and Tvaroska, I. (1994) 
Conformational study of digalacturonic acid and sodium digalacturonate in solution, 
Carbohydr. Res. 261, 187-202. 
 
40. Dinola, A., Fabrizi, G., Lamba, D., and Segre, A. L. (1994) SOLUTION 
Conformation of a pectic acid fragment by H-1-NMR and molecular-dynamics, 
Biopolymers 34, 457-462. 
 
41. Gerlt, J. A., and Gassman, P. G. (1992) Understanding enzyme-catalyzed proton 
abstraction from carbon acids: details of stepwise mechanisms for betaelimination 
reactions, J Am Chem Soc 114, 5928-5934. 
 
42. Gerlt, J. A., and Gassman, P. G. (1993) Understanding the rates of certain 
enzyme-catalyzed reactions: proton abstraction from carbon acids, acyl-transfer 
reactions, and displacement reactions of phosphodiesters, J Am Chem Soc 115, 
11552-11568. 
 
43. Jenkins, J., Shevchik, V. E., Hugouvieux-Cotte-Pattat, N., and Pickersgill, R. W. 
(2004) The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi, J. 
Biol. Chem. 279, 9139-9145. 
 
44. Atkins, E. D. T., Nieduszy.Ia, Parker, K. D., and Smolko, E. E. (1973) Structural 
components of alginic acid .2. Crystalline-structure of poly-alpha-L-guluronic 
acid - results of X-ray-diffraction and polarized infrared studies, Biopolymers 12, 
1879-1887. 
 
45. Perez, S., Mazeau, K., and du Penhoat, C. H. (2000) The three-dimensional 
structures of the pectic polysaccharides, Plant Physiol. Biochem. 38, 37-55. 
 
46. Braccini, I., Grasso, R. P., and Perez, S. (1999) Conformational and 
configurational features of acidic polysaccharides and their interactions with calcium 
ions: a molecular modeling investigation, Carbohydr. Res. 317, 119-130. 
 



  

  240 

47. DeLano, W. L., (Ed.) (2002) The PyMOL molecular graphics system on World 
Wide Web. 0.80 version. The PyMol User's Manual, DeLano Scientific, San 
Carlos, CA, USA. 
 
48. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT - A 
program to generate schematic diagrams of protein ligand interactions, Protein 
engineering 8, 127-134. 
 
 

 

 
 

 
 

 



  

  241 

Appendix 9 

 

Paper published in Biochemistry journal: 

 

Structural insights into substrate specificity and the anti β-elimination mechanism 

of pectate lyase 

 
Arefeh Seyedarabi, Teng Teng To, Salyha Ali, Syeed Hussain, Markus Fries, Robert 

Madsen, Mads H. Clausen, Susana Teixteira, Keith Brocklehurst and Richard W. 

Pickersgill. 
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