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                  ABSTRACT 

 
There have been numerous studies reporting that cannabinoids, both exogenous 

and endogenous, have a potential beneficial function during incidences of 

neurological damage. Using gene knockout mice and cannabinoid-selective agents, 

this study demonstrates the diverse actions of cannabinoids with a particular focus 

on experimental autoimmune encephalomyelitis, an animal model of multiple 

sclerosis. The results presented here report on the action of stimulators of 

cannabinoid receptors in the nervous system (CNS) on; immune function, as a 

mechanism of suppressing autoimmune attack of the central nervous system, as 

agents to suppress neurodegenerative events leading to disease progression and as 

agents that can control signs of disease that occur as the consequences of 

autoimmune neurodegeneration such as spasticity. Tetrahydrocannabinol the 

psychoactive component in cannabis and the CB1 cannabinoid receptor appears to 

be central to many of the therapeutic actions of cannabis but also to the side-effect 

potential of cannabinoid drugs. This study reports on methods to avoid 

psychoactive side-effects of conventional brain-penetrant CB1 receptor agonists 

whilst exploiting the therapeutic potential of the cannabinoid system in order to 

control spasticity. This was achieved by targeting mechanisms of endocannabinoid 

degradation, particularly using fatty acid amide hydrolase inhibitors. Furthermore, 

this study also reports the development of novel cannabinoid compounds that are 

excluded from the brain and inhibit spasticity and also demonstrates the 

mechanism of exclusion of CNS-excluded cannabinoid CB1 receptor agonists. This 

study provides further evidence for the efficacy of cannabinoid compounds during 

an ongoing CNS disease and also their efficacy for treating the consequences of 

CNS autoimmune disease, which hopefully, will give additional impetus for further 

clinical investigations of cannabinoid agents in not only multiple sclerosis but also 

other neurodegenerative diseases of the CNS. 
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CHAPTER ONE 

  

INTRODUCTION 

 
 

Over recent years, experimental data on the role of cannabinoids in physiological 

processes has revealed that there are few areas of physiology where the actions of 

cannabinoids do not exert some influence, from the control of neuronal signaling to 

the regulation of bone formation and homeostasis.  It is also becoming increasingly 

clear that many neurological diseases share common mechanisms of neuronal 

damage and one of primary importance appears to be perturbation of excitatory 

neuronal signalling resulting in excitotoxic neuronal death. The location of these 

events and the type of neuronal damage leads to the clinical manifestation of each 

disease, and to the development of symptoms such as spasticity seen in multiple 

sclerosis. Cannabinoids can regulate neurotransmitter release and signalling plus 

elements of oxidative stress that may be neurotoxic in excess. There may a number 

of neurological diseases such as multiple sclerosis, which should be amenable to 

cannabinoid therapy, not only for symptom relief but also as neuroprotective 

strategies to modulate disease progression. Cannabinoids may be particularly 

attractive as they display low toxicity and with correct dose titration should be well 

tolerated. In addition, agents that enhance endocannabinoid levels, by inhibition of 

uptake/degradation, which are already elevated at sites of injury may also be an 

attractive approach, as it will bring a more targeted strategy of action whilst 

potentially limiting unwanted psychoactive side effects. 

 

1.1. The Cannabinoid system 

 

The cannabinoid system is a relatively novel regulatory pathway that was revealed, 

like the opioid system, following the study of plant-derived narcotics and it is now 

clear that it is a fundamental element of the biology of the nervous system and 

many other areas of the body. Since the identification and cloning of the 

predominantly neuronally expressed cannabinoid receptor CB1 (Devane et al., 

1988; Matsuda et al., 1990), there has been a huge increase in research into this 

new field. The cloning of a second, peripheral cannabinoid receptor, CB2 (Munro et 

al., 1993), which is expressed primarily on cells of the immune system, revealed 

the ubiquity of cannabinoid receptor signalling in many physiological processes. 

These are the classical cannabinoid receptors which are characterised by their 

agonism with the prototypic cannabinoid of Cannabis sativa that is ∆-9 

tetrahydrocannabinol (THC). Both of these receptors show constitutive activity, as 
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evidenced by the inverse agonism of many CB receptor antagonists. The 

identification of endogenous ligands such as anandamide (Devane et al,, 1992) and 

2-arachidonoyl glycerol (2-AG), (Mechoulam et al., 1995; Stella et al., 1997) 

termed endocannabinoids, for these receptors has identified a functional 

endogenous cannabinoid system, raising the possibility of utilizing aspects of the 

endocannabinoid system for potential therapeutic benefit, particularly in 

neurological disease.  A putative third CB receptor, GPR55 has also been described 

(Baker et al., 2006; Ryberg et al., 2007) and recently a fourth putative receptor 

GPR18 (McHugh et al., 2010).  The transmitter-gated channel transient receptor 

potential vanilloid type-1 receptor (TRPV1), associated with detection of noxious 

stimuli, is agonized by the endocannabinoid anandamide (Zygmunt et al., 1999) 

and recent evidence also indicates that cannabinoids have activity at the nuclear 

receptor family, peroxisome  proliferator- activated receptors (PPARs, O'Sullivan, 

2007; Stahel et al., 2008). 

 

1.1.1. Cannabinoid receptors - CB1 

Cannabinoid receptors are members of the 7-transmembrane-spanning receptor 

rhodopsin-like superfamily which appear to bind their ligands in the central core of 

the membrane-spanning helices (McAllister et al.,2002). The CB1 receptor sequence 

shows a high degree of conservation across mammalian species, whereas the CB2 

receptor shows a greater degree of interspecies difference (Howlett et al., 2002). 

CB1 is among the most highly expressed and ubiquitous G-protein coupled 

receptors in the brain (Moldrich and Wenger, 2000), with densities similar to 

gamma aminobutyric acid (GABA) and glutamate receptors (Herkenham et al., 

1991). The cannabinoid receptors are coupled to the intracellular signaling G 

protein Gi/o in a Bordatella pertussis toxin-sensitive manner (Howlett, 1984). CB1 

can also couple to the G-protein Gs under conditions where Gi/o signalling is blocked 

by B. pertussis toxin and under these conditions activate adenylyl cyclase activity 

(Bonhaus et al., 1998). The CB1 receptor coupling to G-proteins is relatively 

inefficient, with each cannabinoid receptor coupling to three G-proteins, compared 

to twenty for mu and delta opioid receptors (Breivogel et al., 1997). This low level 

of coupling may reflect that the high level of receptor expression renders a high 

level of amplification unnecessary (Howlett et al., 2004). CB1 receptor agonism 

inhibits adenylyl cyclase activity with a concomitant decrease in cytosolic cAMP 

levels, leading to inhibition of neurotransmitters from synaptic vesicles and 

stimulation of p42/p44 and p38 mitogen-activated protein kinase (MAPK) activity 

(Bouaboula et al.,1995a; Bouaboula et al., 1995b). CB1 agonism liberates Gi/oa 

proteins coupling to the inhibition of adenylyl cyclase, and the associated depletion 

of intracellular cAMP leads to the inactivation of the protein kinase A pathway (PKA) 
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and reduction in ion-channel phosphorylation, leading to reductions in neuronal 

activity due to hyperpolarisation of axon terminals (Childers and Deadwyler, 1996; 

Demuth and Molleman, 2006). PKA and cyclic AMP levels can also regulate gene 

expression and may influence long-term levels of gene expression (Demuth and 

Molleman, 2006). CB1 mediated inhibition of ion channels is associated with the 

reduction of the presynaptic release of glutamatergic (excitatory) and GABAergic 

(inhibitory) neurotransmitters from synaptic vesicles (Wilson and Nicoll, 2002).  CB1 

activation results in the triggering of intracellular protein kinases critical to the 

mediation of synaptic strength, in particular the stimulation of extracellular signal-

related kinase (ERK) and focal adhesion kinase (FAK) in response to a decrease in 

intracellular cAMP. 

CB1 receptor stimulation inhibits N and P/Q-type calcium channels by the 

interaction of Gi/o proteins with these channels in a pertussis toxin sensitive 

manner. CB1 agonists may inhibit L-type calcium currents and inhibition of this 

effect is seen with CB1 agonists in a PTX and SR141716A sensitive manner 

(Gebremedhin et al., 1999), in contrast stimulation has been seen by cannabinoids 

in neuroblastoma cells (Rubovitch et al., 2002). The increase of intracellular 

calcium in response to CB1 stimulation has been reported in several cell types and 

evidence suggests that CB1 receptor stimulation is coupled to phospholipase C 

activation via Gi/o proteins which increase intracellular inositol triphosphate 

triggering the release of Ca2+ from intracellular stores (Sugiura et al., 1996). The 

apparently paradoxical increase in intracellular Ca2+, when cannabinoids decrease 

neuronal excitability by inhibiting voltage-dependent calcium channels may itself be 

inhibitory by activating Ca2+ -dependent K+ channels, leading to hyperpolarisation 

and preventing Ca2+ influx (Demuth, 2006 #66). Though in the main CB1-mediated, 

there is also evidence for the direct modulation of ion channels by cannabinoids, 

inhibition of the T-type calcium channel by the endocannabinoid anandamide, 

appears to be a direct effect of ligand binding to this channel (Chemin et al., 2001).  

CB1 receptors couple positively to G-protein coupled inwardly rectifying potassium 

channels (GIRK), this stimulation is reported to be a mechanism for the inhibition of 

neurotransmitter release independent from the cAMP/PKA pathway (Mackie et al., 

1995). This activation of GIRK channels can be inhibited by stimulation of protein 

kinase C which may act by phosphorylation of the CB1 receptor, restoring neural 

excitability and synaptic strength (Garcia et al., 1998 ). This may also be a 

mechanism to restore a normal level of neuronal excitability when there are high 

levels of endocannabinoids present. The endogenous cannabinoid anandamide in 

cerebellar granule cells can directly inhibit the acid-sensitive background K+ 

channels TASK-1 and TASK-3, which can be reproduced with the cannabinoid 

agonist WIN55,212-2. Inhibition of these channels leads to depolarisation and 

enhances excitability (Maingret et al., 2001). In contrast, cannabinoids inhibit IM 
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and IK K+ currents in hippocampal neurons (Hampson et al., 2000; Schweitzer, 

2000). Both anandamide and WIN55-212 demonstrate the ability to directly inhibit 

voltage-dependent sodium channels, depressing synaptic transmission and reducing 

neurotransmitter release (Nicholson et al., 2003). 

CB1 receptors although primarily expressed in the CNS are also expressed in; 

reproductive tissues, gut, vascular endothelia, muscle, sympathetic ganglia, 

bladder, lung and cells of the immune system (Galiegue et al., 1995). Expression of 

CB1 by cells of the immune system is dependent on activation state, with T cells 

showing a decrease in CB1 expression post-activation whereas B cells displayed 

increased CB1 expression after mitogen stimulation (Klein et al., 2003). The order 

of CB1 receptor expression in human peripheral leukocytes is B cells> NK cells> 

Polymorphonuclear cells > CD8 T cells> monocytes > CD4 T cells (Bouaboula et al., 

1993). T cell CB1 receptor expression is influenced by agonism of the CB2 receptor 

(Borner et al., 2007). The expression of CB1 receptors in the CNS is heterogeneous 

and found in; cerebral cortex, hippocampus, caudate-putamen, substantia nigra 

pars reticulata, globus pallidus, cerebellum, periaqueductal grey, rostral 

ventromedial medulla, superior colliculus, thalamus and amygdala (Herkenham et 

al., 1991). In contrast, there is a low level of CB1 receptor expression in the brain 

stem, which may explain the low level of toxicity associated with cannabinoids 

(Howlett et al., 2004). The expression of CB1 in particular areas of the CNS 

accounts for the specific pharmacological effects of CB1 agonists, namely; control of 

motor function, effects on cognition and memory, control of the 

hypothalamus/pituitary axis and effects on the detection and transmission of painful 

stimuli.  

CB1 receptors are primarily located at the axonal presynaptic terminals of central 

and peripheral nerves, which have the function of reducing the release of a number 

of neurotransmitters from synaptic vesicles into the synaptic cleft (Wilson and 

Nicoll, 2002; Freund, 2003). The release of excitatory or inhibitory 

neurotransmitters is inhibited depending on the type of neuron terminal where the 

CB1 receptors are expressed. An example of this is in the hippocampus, where the 

predominant expression of CB1 is at the inhibitory neurotransmitter GABAergic 

neural terminals, with the result that inhibitory signals are reduced leading to a net 

increased excitation in this brain area. This phenomenon has been observed via 

endocannabinoid release in electrically stimulated hippocampal slices termed 

depolarization suppression of inhibition (DSI), (Wilson and Nicoll, 2002). In 

contrast, in the cerebellum CB1 receptor expression is predominantly on 

glutamatergic (excitatory) terminals so here, receptor agonism leads to a net 

reduction in excitation (Kreitzer et al., 2002). This has also been modelled in vitro 

in tissue slices and is described as depolarization suppression of excitation (DSE). 

This indicates the central role of the cannabinoids in synaptic strengthening and 
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plasticity.  This retrograde endocannabinoid signalling to inhibit neurotransmitter 

release appears to be primarily mediated by 2-AG, as gene deleted mice for the 

enzyme DAG Lipase α, responsible for the production of 2-AG show the abolition of 

retrograde signaling in the brains of animals (Gao et al., 2010; Tanimura et al., 

2010). 

Nitric oxide production has been reported in several cell types in response to CB1 

receptor stimulation via the stimulation of nitric oxide synthase (Fimiani et al., 

1999). Nitric oxide is a prominent second messenger with a role in the CNS in 

thermoregulation and also a supportive role in retrograde synaptic inhibition by 

cannabinoids (Makara et al., 2007). The reduction of the inflammatory-mediated 

release of nitric oxide via glial cells by CB1 receptor agonists is a potentially 

neuroprotective mechanism in neuroinflammatory events, protecting nerve cells 

from the toxic effects of Nitric oxide (Cabral et al., 2001).   

 

1.1.2. CB2 receptor 

 

The human CB2 receptor shows only a 45% homology with the CB1 receptor and is 

expressed primarily but not exclusively by cells of the immune system (Munro et 

al., 1993). The CB2 receptor has only been cloned in mammals. The cannabinoid 

system is implicated in the modulation of aspects of immune cell function via action 

on the CB2 receptor. In the immune system, the highest levels of CB2 expression, as 

assessed by mRNA levels, are seen in B-cells > natural killer cells > monocytes > 

polymorphonuclear neutrophils > CD8 T cells > CD4 T cells (Galiegue et al., 1995).  

The level of expression is higher than is seen for the CB1 receptor in these cells. CB2 

receptor expression is also dependent on the differentiation and activation state of 

cells (Klein et al., 2003). Microglial cells in the CNS may express/upregulate CB2 

receptors in response to damaging events (Maresz et al., 2005; Ashton et al., 

2007). Recently, CB2 receptor expression has also been reported in other organ 

systems of the body, including; central nervous system, liver and bone, and is 

implicated in several models of organ-specific inflammatory conditions (Xu et al., 

2007; Buckley et al., 2008). As with the CB1 receptor, CB2 inhibits adenylyl cyclase 

activity and activates p42/p44 ERK-MAP kinase (Bayewitch et al., 1995; Bouaboula 

et al., 1996). In contrast to CB1, CB2 receptors do not have a direct modulatory 

effect on ion channels and also in contrast to the CB1 receptor, CB2 does not couple 

to Gs in a pertussis toxin sensitive manner (Felder et al., 1995; Glass and Felder, 

1997).  

 

Endocannabinoid stimulation of CB2 with 2-AG and activation of p42/p44 ERK-MAPK 

is associated with the migration of leucocytes (Walter et al., 2003), and appears to 

act in a ligand specific manner. There are numerous studies detailing the 
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modulatory roles of cannabinoids on cells of the immune system, such as the 

inhibition of T cell proliferation, the inhibition of cytokine production by T cells, 

shifting of Th1/Th2 ratios, reduction of immunoglobulin production, impairment of 

cytotoxic T cell activity and also the down-regulation of macrophage function such 

as migration in vitro (Klein et al., 2003). Definitive results as to the role of the CB2 

receptor in the process of inflammation remain elusive, with reports of both 

potentially stimulatory effects and suppressive effects of CB2 agonism, depending 

on the models or cell types studied (Klein et al., 2003). In a mouse model of 

uveoretinitis, the CB2 selective agonist JWH-133 has been shown to have significant 

disease-suppressing activity in a dose-dependent manner (Xu et al., 2007). These 

studies are complicated by the fact that experiments are performed in cells also 

expressing CB1 or in the presence of selective agonists/antagonists of these 

receptors which may still show activity at other receptors. The fact that CB2 

deficient mice also fail to exhibit any obvious dysregulation of the immune system, 

such as a predisposition to autoimmunity, under normal conditions, would suggest 

that the involvement of the endogenous cannabinoid system on the immune system 

is complex, with the CB2 receptor having a contributory role in immune modulation 

or immune cell development/maturation. This is reflected in CB2 deficient mice 

having a reported deficiency in the splenic marginal zone, peritoneal B1a cells, 

splenic memory CD4+ T cells, and intestinal natural killer cells and natural killer T 

cells (Buckley, 2008). This deficiency is mimicked by gene-deficient mice lacking 

the signalling G-protein G alpha i2. This may further indicate that the CB2 receptor 

may be involved in developmental aspects of cells of the immune system rather 

than the suppression of activation. 

 

1.1.3. Non CB1/2 receptor mediated cannabinoid signalling 

 

1.1.3.1. GPR55 

 

A third proposed cannabinoid-binding receptor has been recently reported by 

searching the patent database (Baker et al., 2006; Ryberg et al., 2007).  This G 

protein-coupled orphan receptor has been identified as a novel metabotropic 

endocannabinoid binding receptor stimulated by the endocannabinoids anandamide 

and virodhamine plus the non cannabinoid receptor ligand pamitoyl ethanolamide. 

GPR55 is also stimulated by CP55940 and cannabidiol and abnormal cannabidiol, 

which have no activity at CB1 or CB2 (Ryberg et al., 2007). In contrast, it has also 

been reported that GPR55 does not show activity with conventional cannabinoid 

receptor ligands but may be a specific receptor for lysophoshatidylinositol (LPI), 

(Oka et al., 2007). Kapur et al., (2009), used an elegant alternative approach to 

determine GPR55 ligands by studying β-arrestin complex formation with activated 
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GPCRs. β-arrestins are intracellular proteins that bind and desensitize activated 

GPCRs forming stable GPCR/arrestin complexes.  

Measurement of GPR55/arrestin complexes in GPR55 transfected ligand stimulated 

cell cultures revealed that LPI and also the CB1 receptor antagonists/inverse 

agonists SR141716A and AM251 had GPR55 agonist activity in addition to the 

classical CB1 receptor agonist CP55,940. Anandamide or 2-AG showed no activity at 

GPR55 in this assay (Kapur et al., 2009). The CB1 antagonist SR141716A has also 

shown activity as a GPR55 antagonist (Lauckner et al., 2008). 

LPI and the putative endocannabinoid N-Arachidonoyl-serine have been shown to 

stimulate endothelial cell signaling, vasodilation and angiogenesis in a partially 

GPR55-dependent manner (Bondarenko et al., 2010; Zhang et al., 2010). 

In addition, GPR55 also appears to have a role in bone physiology by the regulation 

of osteoclast number and function. Osteoclast stimulation of function (polarization 

and resorption was effected by the endogenous GPR55 ligand LPI and the synthetic 

GPR55 agonist 0-1602 in vitro and was attenuated in osteoclasts from GPR55 

knockout mice and by cannabidiol. Cannabidiol also reduced bone resorption in vivo 

and increased bone mass in treated animals (Whyte et al., 2009) 

 

GPR55 is highly expressed the adrenal glands, gut and the CNS, particularly in 

large dorsal root ganglion neurons of the spinal cord. Activation of this receptor 

produces a slow rise in intracellular calcium, probably independent of Gi and Gs 

proteins and inhibition of the M type K+ current in response to THC and anandamide 

stimulation (Lauckner et al., 2008). This suggests that the GPR55 receptor may be 

pronociceptive and further evidence for this is provided by the observation that 

GPR55 gene knockout mice show resistance to inflammatory or neuropathic pain, 

suggesting that antagonists of this receptor may reduce painful stimuli (Staton et 

al., 2008).  

In summary, current pharmacological data concerning the role of GPR55 as a 

putative cannabinoid receptor and its role in physiological processes is conflicting 

and much more research is warranted before a coherent role for this receptor can 

be proposed. 

 

1.1.3.2. Vanilloid receptor TRPV-1 

 

The TRPV1 receptor is a protein that has been primarily associated with activation 

by noxious stimuli such as; heat and hydrogen ions. TRPV1 is also activated by 

capsaicin, which is the pungent ingredient of chilli peppers. TRPV1 was initially 

reported as being expressed by sensory neurons where opening of the channel 

triggers calcium influx, neurotransmitter release and transmission of painful or 

noxious stimuli. Numerous studies have demonstrated that the endocannabinoid 
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anandamide can also activate the TRPV1 receptor, although the binding site may be 

at cytosolic sites of the receptor (De Petrocellis et al., 2001). Anandamide can also 

mimic the vasodilatory properties of capsaicin at the TRPV1 receptor, which is 

blocked by the antagonist capsazepine. This vasodilatory property of anandamide is 

not cannabinoid receptor-dependent, as it is not blocked by CB1 receptor 

antagonists (Zygmunt et al., 1999). TRPV1 expression has been reported in the 

CNS where TRPV1 activation has also been observed in slice cultures of rat 

hippocampus. Thus anandamide can have inhibitory effects via CB1 receptors and 

stimulatory effects via TRPV1. The true potency of anandamide at the TRPV1 

receptor remains subject to conjecture as physiologically the response to capsaicin 

or anandamide intravenous injection are quite different with regard to an irritant 

effect being observed with the classical agonist capsaicin (Pryce, unpublished 

observation). Indeed, it is postulated the high levels of anandamide necessary to 

observe TRPV1 stimulation as opposed to inhibition at lower concentrations, may 

not be relevant under physiological conditions (Nemeth et al., 2003). Lower levels 

of anandamide (10µM) stimulated neuropeptide release from peripheral sensory 

nerve terminals where the inhibitory CB1 receptor was antagonised by SR141716A, 

again a condition not likely to have physiological relevance (Nemeth et al., 2003). 

Also, a study investigating the actions of anandamide in mice deficient in both CB1 

and the enzyme fatty acide amide hydrolase, responsible for anandamide 

inactivation, indicated that the CB1 receptor is the predominant target for the 

behavioural effects of anandamide (Wise et al., 2007). Anandamide does not induce 

desensitisation of the TRPV1 receptor as do conventional exogenous ligands (Dinis 

et al., 2004) and its limited ability to activate this receptor may serve to limit the 

inappropriate stimulation of TRPV1, resulting in a pain signal,  in the absence of a 

relevant pain-inducing stimulus.  It has also been suggested that anandamide acts 

as a conditional activator of TRPV1 with a potent activation potential in the 

presence of activating compounds such as inflammatory mediators (Singh Tahim et 

al., 2005). 

 

 

1.1.3.3.  Peroxisome proliferator-activated  receptors (PPARs) 

 

Recent observations point to the potential activity of cannabinoids on the 

peroxisome proliferator-activated receptors (PPAR) α and γ. These are a family of 

nuclear receptors consisting of 3 isoforms, α, δ and γ. PPARs heterodimerise with 

the retinoid X receptor and bind to PPAR response elements of DNA sequences 

which trigger the transcription of target genes upon ligand activation of these 

receptors (Burstein, 2005). Ligand binding elicits the recruitment of regulator 

proteins binding to a third site on PPARs which are proposed to regulate 
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transactivation. PPARs primarily influence the transcription of genes involved in the 

regulation of metabolism, cell differentiation and inflammation. PPAR receptor 

activation has been shown to inhibit pro-inflammatory gene transcription via the 

repression of the transcription factor nuclear factor κB (NFκB), (reviewed in Stahel 

et al., 2008). 

 

The ligand spectrum of PPARs is large with fatty acids and eicosanoids having 

reported activity. Cannabinoids and their metabolites can activate PPARα, with 

compounds such as the 2-AG metabolite oleolylethanolamide (OEA) and 

palmitoylethanolamide (PEA) showing ligand activities that are not as a result of  

classical cannabinoid receptor binding capacity (O'Sullivan, 2007). PEA is a weak 

agonist at the CB1 receptor but modulates anti-inflammatory activity by the 

activation of PPARα (Lo Verme et al., 2005). Endocannabinoids, such as 

anandamide, or the putative endocannabinoids noladin ether and virhodamine, all 

show binding to and activation of PPARα (O'Sullivan, 2007). The metabolite of ∆-9 

THC, ajulemic acid or CT-3 (Burstein, 2000), a therapeutically promising 

cannabinoid, has been shown to activate the PPARγ receptor, inducing an anti-

inflammatory effect (Liu et al., 2003). The endocannabinoids anandamide and 2-AG 

have also been reported to bind to this receptor, suppressing interleukin 2 release 

from T cells (Bouaboula et al., 2005; Rockwell et al., 2006), in a PPARγ antagonist 

sensitive manner and PPARγ agonists inhibit the activation of microglia and 

astrocytes, inhibiting the release of proinflammatory cytokines and the neurotoxic 

agent nitric oxide (Storer et al., 2005). In addition, PPARγ agonists have been 

reported to ameliorate disease in experimental models of multiple sclerosis and also 

in a patient with secondary progressive MS, supporting the potential beneficial role 

of cannabinoids as PPAR agonists in neurological inflammatory disease (Niino et al., 

2001; Natarajan and Bright; 2002; Pershadsingh et al., 2004; Loria et al, 2010).  

 

 

1.1.3.4 GPR18 

 

The G-protein-coupled receptor GPR18 gene was cloned and found to be expressed 

at a high level in testis and spleen and a lower level of expression in tissues 

associated with the endocrine and immune systems (Samuelson et al., 1996; Gantz 

et al., 1997). GPR18 is expressed significantly in lymphoid cell lines, but not in non-

lymphoid hematopoietic cell lines. The expression of GPR18 was higher in 

peripheral T lymphocyte subsets (CD4(+), CD4(+)CD45RA(+), CD4(+)CD45RO(+), 

CD8(+), and CD19(+))B cells than in monocytes and lymphoid cell lines, and the 

level of expression increased after stimulation with the T cell mitogen 

phytohaemagglutinin (Kohno et al., 2006). Lipid library screening revealed the 
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putative endocannabinoid N-arachidonoylglycine (NAGly) to be a ligand for GPR18, 

producing an increase in intracellular calcium in GPR18 transfected cells together 

with an inhibition of forskolin-stimulated cAMP production which was B. pertussis 

toxin sensitive (Kohno et al., 2006). 

GPR18 stimulation by NAGly has recently been reported to be a potent stimulator of 

proliferation, migration and MAP Kinases in the immortalized mouse microglial cell 

line BV-2 and GPR18 transfected HEK293 cells at sub nanomolar concentrations, 

which is B. pertussis toxin sensitive (McHugh et al., 2010). Abnormal cannabidiol 

(Abn-CBD) and 0-1602, synthetic isomers and agonists of the previously proposed 

but unidentified “Abn- CBD receptor” modulating vasodilation (Járai et al., 1999), 

also stimulate migration in these cell lines in a B. pertussis toxin sensitive manner. 

These effects on migration are blocked by the “Abn-receptor” antagonist 0-1918 

and suggest that GPR18 is the purported Abn-CBD receptor (McHugh et al., 2010). 

As activation and recruitment of microglia to inflammatory lesions is seen in both 

EAE and MS, the observation that GPR18 may be involved in this process and 

contribute to lesion development suggests that the modulation of GPR18 may have 

a novel therapeutic role in MS. 

 

1.2. CB1/2 receptor agonists/antagonists 

 

The prototypic cannabinoid ∆-9 THC, the main psychoactive component of Cannabis 

sativa was identified in 1964 (Gaoni and Mechoulam, 1964). Before the 

identification of specific receptors, it was postulated that cannabinoids exerted their 

effects by interaction with and perturbation of membrane lipids and associated 

proteins. The identification of the cannabinoid receptors revealed that cannabinoids 

exert their effects by directly binding to these receptors. THC is a partial agonist at 

both CB1 and CB2, exhibiting less efficacy at CB2 than CB1 (Pertwee, 2008). THC 

and its derivatives are termed classical cannabinoids, other cannabinoid receptor 

agonists are the non-classical cannabinoid derivatives as represented by CP55,940 

(Johnson et al., 1981), aminoalkylindoles such as WIN 55-212-2 (Pacheco et al., 

1991; Compton et al., 1992), and the endogenous cannabinoid receptor ligands 

anandamide and 2-arachidonylglycerol. Both CP55,940 and WIN 55-212-2 show 

equal affinity for both CB1 and CB2 receptors.  Anandamide shows a modest 

selectivity for CB1 receptors which can be enhanced by structural modification to 

give the derivatives R-methanandamide, ACEA, ACPA and O-1812 (Pertwee, 2008). 

Examples of CB2 receptor selective agonists are JWH133 (Huffman et al., 1999), a 

classical cannabinoid and the less selective JWH 015, an aminoalkylindole (Griffin et 

al., 1997).  The first cannabinoid receptor antagonists to be developed were the 

CB1 receptor selective SR141716A (Rimonabant, Accomplia™) and the CB2 selective 

antagonist SR144528 (Rinaldi-Carmona et al., 1994; Rinaldi-Carmona et al., 1998). 
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It is important to stress that both cannabinoid receptor selective agonists and 

antagonists lose their selectivity at higher concentrations whereupon both receptors 

will be blocked/stimulated to some extent. 

 

1.2.1. Inverse agonism 

 

CB1 antagonists can produce experimental effects that are opposite to the 

responses seen with direct CB1 receptor agonism. This may be a direct result of the 

antagonism of effects produced by endogenous endocannabinoids but also reflects 

the ability of these antagonists to induce “inverse agonism” by inhibition of the 

spontaneous coupling of CB1 receptors to their effector signalling pathways, 

indicating the constitutive activity of these receptors (Pertwee, 2005a). The same 

situation is also seen with antagonism of the CB2 receptor, indicating that this 

receptor is also constitutively active (Rhee and Kim, 2002). This has prompted the 

search for neutral antagonists which could discriminate between tonic activity 

derived from endocannabinoid release, to CB receptors compared to tonic activity 

via the constitutive activity of these receptors. 

 

1.3. Endocannabinoids 

 

Endocannabinoids are defined as endogenous compounds capable of binding to and 

stimulating endogenous cannabinoid receptors. The first endogenous ligand for 

cannabinoid receptors or endocannabinoid was isolated from porcine brain by 

(Devane et al., 1992). This fatty acid arachidonic acid derivative was identified as 

arachidonoyl ethanolamide and named anandamide, derived from the Sanskrit for 

“inner bliss”. Anandamide displayed agonist activity in assays identifying CB1 

agonist effects. Subsequently, a second major endocannabinoid, 2-arachidonyl 

glycerol (2-AG), was identified as having CB1 ligand activity, isolated from canine 

gut (Mechoulam et al., 1995), Anandamide shows slightly more binding activity to 

CB1 receptors than CB2 and shows partial agonist activity at CB1 and CB2 receptors 

with higher efficacy at CB1 than CB2. 2-AG has been reported to have a higher 

efficacy than anandamide at both CB1 and CB2, with a similar affinity to 

anandamide for both receptor types (Pertwee, 2005b). As 2-AG is detected at 

greater levels than anandamide in nervous tissue, with levels in the nanomole 

range compared to picomoles for anandamide, it is considered to be the primary  

retrograde signalling endocannabinid at both CB1 and CB2 receptors (Sugiura and 

Waku, 2000; Sugiura et al., 2002 ), which is further confirmed by the observation 

that retrograde signaling is abolished in DAG Lipase α (chiefly responsible for 2-AG 

synthesis) knockout mouse brains (Gao et al., 2010; Tanimura et al., 2010). These 

may be considered to be the 2 main endocannabinoids but other novel 
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endocannabioids have been reported to have activity at cannabinoid receptors, 

isolated from brain homogenates. These include; a 2-AG analogue, 2-arachidonoyl 

glyceryl ether (noladin ether) a selective CB1 agonist which is refractory to 

enzymatic hydrolysis (Hanus et al., 2001), the anandamide analogue, O-

arachidonyl-ethanolamine (virhodamine), a CB1 antagonist and partial CB2 agonist 

(Porter et al., 2002), and the arachidonyl amino acids N-arachidonyl-Dopamine 

(NADA), a selective CB1 agonist versus CB2 also showing activity at vanilloid 

receptors (Bisogno et al., 2000),  N-aracidonyl Glycine (NAGly), an inhibitor of 

inflammatory pain via a non-CB1 dependent mechanism (Burstein et al., 2000) and 

a ligand for the putative cannabinoid receptor GPR18 (Kohno et al., 2006), N-

arachidonyl γ-aminobutyric acid (NAGABA),  N-arachidonylalanine (NAAla), (Huang 

et al., 2001) and N-arachidonoyl serine (ARA-S) which has vasodilatory and pro-

angiogenic properties (Milman et al., 2006; Zhang et al., 2010). The 

characterization of these additional “endocannabinoids” is limited and at present, 

their physiological relevance remains unclear as to their status as true 

endocannabinoids (Alexander and Kendall, 2007). 

 

Endocannabinoids, in contrast to conventional neurotransmitters appear to be 

released ‘on demand’ from membrane precursors via multi-step enzymatic 

pathways, rather than being released from intracellular stores, in response to 

increased intracellular calcium after neuronal activation or  via the stimulation of 

metabotropic receptors coupled to Gq/11 proteins. Anandamide is synthesised via a 

number of pathways where the enzyme N-acyl-phosphatidyethanolamine (NAPE)-

selective phospholipase D plays a vital role (Okamoto et al., 2004).  However 

NAPE-PLD deficient mice did not have altered anandamide levels suggesting other 

pathways can generate anandamide synthesis (Leung et al., 2006). Another 

pathway for the generation of anandamide is proposed via phospholipase C-

mediated hydrolysis of NAPE to yield phosphoanandamide, which is then 

dephosphorylated by a number of phosphatases (Leung et al., 2006; 

Basavarajappa, 2007; Di Marzo, 2008).  

 

Phospholipase C (PLC) catalyzes the formation of the 2-AG precursor, 1,2-

diacylglycerol (DAG) from membrane phosphoinositides (Wang and Ueda, 2009). 

The crucial enzyme in the biosynthesis of 2-AG is diacylglycerol lipase (DAG lipase) 

where the α isoform is localised to postsynaptic dendritic spines (Bisogno et al., 

2003; Yoshida et al., 2006). Studies in mice genetically engineered to lack DAG 

lipase α or β, revealed that the the major biosynthetic enzyme for 2-AG production 

in the CNS is DAG lipase α. DAG lipase α deficient mice showed; a greatly reduced 

level of 2-AG in the brain and spinal cord, an absence of endocannabinoid mediated 

retrograde suppression of neurotransmitter release and also a compromised level of 
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adult neurogenesis, which is also observed in DAG lipase β knockout mice (Gao et 

al., 2010, Tanimura et al., 2010).  

Alternatively a phospholipase A1 (PLA1) hydrolyses phosphoinositol precursors to 

produce a lyso 2-arachidonoyl phosphoinositol (LAPL) and hydrolysis of this via lyso 

phopolipase C (LPLC) can also produce 2-AG (Leung et al. 2006; Basavarajappa, 

2007, Jung et al., 2007; Di Marzo, 2008). 

 

It has been postulated that endocannabinoids are first removed from the 

extracellular space by a diffusion-facilitated transporter, re-uptake mechanism 

present in cell membranes (Beltramo et al., 1997; Dainese et al., 2007), prior to 

enzymatic degradation. Indeed, compounds, which inhibit this anandamide re-

uptake activity such as AM404, VDM11, UCM707, OMDM1, OMDM2, 0-2093 can all 

be shown to have anti-spastic activity, without cannabimimetic adverse effects 

(Baker et al., 2001; de Lago et al., 2004; de Lago et al., 2006; Ligresti et al., 

2006).  However, the re-uptake transporter has yet to be cloned and there has 

been evidence questioning the existence of a specific–re uptake transporter (Day et 

al., 2001; Deutsch et al., 2001; Glaser et al., 2003). In particular, the prototypic 

transport inhibitor, AM404, has been reported by some to have to have CB1 binding 

affinity, transient receptor potential vanilloid receptor (TRPV1) agonist activity and 

be a FAAH inhibitor (Beltramo et al., 1997; Jarrahian et al., 2000; Ralevic et al., 

2001). Each of these could contribute to the therapeutic activities of putative 

transport inhibitors (Baker rt al., 2001; Brooks et al., 2002). However, not all 

transport inhibitors appear to have TRPV1 or FAAH activity and can increase 

endocannabinoid levels in vivo (De Petrocellis et al., 2000; Lopez-Rodriguez et al., 

2001; Ortar et al., 2003). Therefore, if a specific transport molecule does not exist, 

these agents may act competitively to allosterically inhibit biochemically-compatible 

sites of diffusion within the plasma membrane, as has been reported for 

interference in some receptor systems (Barann et al., 2002). More recently, it has 

been reported that intracellular fatty acid binding proteins (FABPs) function as 

carriers for anandamide, facilitating its degradation by FAAH (Kaczocha et al., 

2009).  

 

Once endocannabinoids enter the cell they are enzymatically degraded (Deutsch et 

al., 2002; Dinh et al., 2002; Fezza et al., 2002; Blankman et al., 2007).  Allthough 

both anandamide and 2-AG are substrates for fatty acid amide hydrolase (Cravatt 

et al., 2001; Deutsch et al., 2002), in vivo FAAH is the major degradative enzyme 

of anandamide, but not 2-AG, which is degraded by Monoglycerol lipase (MAG 

lipase) and  two novel serine hydrolases alpha-beta-hydrolase domain 6  and 12 

(ABHD6 and ABHD12),  (Dinh et al., 2002; Dinh et al., 2004; Blankman et al., 

2007). 
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MAG lipase knockout mice display highly elevated levels of 2-AG in the CNS with a 

concomitant desensitization of CB1 receptors and a significant reduction in the 

cannabimimetic activity of CB1 receptor agonists (Chanda et al., 2010). This CB1 

receptor desensitization is also observed in mice which were repeatedly 

administered a MAG lipase inhibitor with accompanying loss of analgesic activity, 

impaired endocannabinoid-dependent synaptic plasticity and physical dependence 

(Schlosburg et al., 2010). 

 

 Whilst MAG lipase has been considered to be the major enzyme involved in 2-AG 

hydrolysis, recent observations indicate that ABHD6 also controls the accumulation 

and efficacy of 2-AG at cannabinoid receptors (Marrs et al., 2010), further adding 

to the complexity of the endocannabinoid signaling network.  A recent study of  

patients with polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and 

cataract (PHARC) has revealed that these patients have mutations in the ABHD12 

gene, leading to a presumed loss of function which indicates a putative essential 

function of ABHD12 in 2-AG hydrolysis in the central, peripheral nervous systems 

and the eye and in addition suggests any proposed pharmacological modulation of 

2-AG degradation should be proceeded with with caution (Fiskerstrand et al., 

2010). 

 

When pharmacologically specific inhibitory agents have been generated and 

assessed in models of MS, it may be possible to determine the role of 2-AG and 

other putative endocannabinoids in control of signs/symptoms, however the 

analgesic and anti-spastic activity of compounds that inhibit FAAH indicate that 

anandamide at least controls signs, which can also be shown by exogenous 

endocannabinoid administration and knockout mouse studies (Baker et al., 2000; 

Walker et al., 2002; Lichtman et al., 2004). Potent FAAH inhibitors have been 

generated (Boger et al., 2000; Kathuria et al, 2003) which have symptom 

modifying potential, but it remains to be seen whether inhibitors of 

endocannabinoid degradation have a sufficiently strong therapeutic clinical benefit 

in spasticity in MS, although this approach may offer promise for the future.  

 

1.4. Multiple Sclerosis and experimental models 

 

1.4.1. Multiple Sclerosis 

 

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central 

nervous system (CNS) and is the most common cause of non-traumatic 

neurological disability in young adults of northern European descent (Compston and 

Coles, 2002).  This disease affects about 100,000 people within the UK.  The 



 29 

absolute number of cases of MS around the world has steadily increased, possibly 

as a result of improved diagnosis amongst other factors and affects 2-3 million 

people worldwide (Kurtzke, 1993). The incidence of MS is geographically restricted 

and occurs with high incidence in Northern Europe and in regions colonized by  

white Northern Europeans such as Canada and Northern USA, Australia and New 

Zealand with a gradient of higher incidence further from the equator (Compston 

and Coles 2002).  MS is more common in females compared to males with an 

increasing ratio of 3:1, with a more pronounced incidence in females in younger MS 

patients with relapsing-remitting disease (RRMS), (Runmarker and Andersen, 

1993). Disease is influenced by genetics, as evidenced by an increased concordance 

of MS in monozygotic twins (~30%) compared to dizygotic twins (~5% 

concordance rate) and is polygenically controlled (Compston and Coles 2002,  

Compston and Coles 2008).  Disease is associated with the expression of certain 

MHC haplotypes such as HLADRb*1501 (Prat et al., 2005)  Other susceptibility loci 

include the cytokine IL-7 and IL-2 receptors, the adhesion molecule LFA-3 (CD58) 

and the c-type lectin domain family 16 member A (Hafler et al., 2007, De Jager et 

al., 2009, Hoppenbrowers et al., 2009).  However the observation that the 

concordance of disease in identical twins demonstrates that other, environmental, 

factors may influence susceptibility. Migration studies from low to high incidence 

areas suggest that the environmental trigger is acquired before the age of fifteen 

[Compston and Coles, 2002]. Some have suggested that it may relate to age of 

infection and there are thoughts that this could relate to Epstein Barr Virus (EBV) 

infection (Sumaya et al., 1980; Ascherio and Munger, 2010). The vast majority of 

people with MS are infected with EBV compared to 90% of the general population 

and there is increased frequency of MS in people who developed glandular fever 

(Handel et al., 2010). Another hypothesis is that this environmental influence may 

relate to sunlight exposure and vitamin D production (Hayes et al., 1997; Freedman 

et al., 2000). This is indirectly supported by the geographic distribution of people 

with MS (Sadovnick and Ebers, 1993). Vitamin D levels can influence the immune 

response and may even be important in utero (Willer et al., 2005). Importantly a 

number of genes associated with MS, such as certain HLA haplotypes, contain 

vitamin D responsive elements in their promoter regions that can influence 

expression and may link environment and genetic susceptibility elements 

(Ramagopalan et al., 2009; Ramagopalan et al., 2010). MS most commonly (about 

80%) presents as a series of relapsing-remitting episodes of loss of neurological 

function that eventually develops into a chronic, secondary progressive (SPMS) 

phase with no remission and increasing disability over time, which correlates with 

CNS atrophy and axonal loss, particularly in the spinal cord (Bjartmar et al., 2000), 

Figure 1.1.  In about 10-15% of people, particulary in those with an onset later in 

life, disease becomes progressive (Primary progressive MS) from onset (Compston 
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and Coles 2002; Compston and Coles 2008). As such about 80% of people with MS 

will be severely disabled within 25 years from disease onset. 

 

Figure 1.1. Disease course in multiple sclerosis. 
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An initial period of repeated inflammatory episodes results in blood:brain barrier dysfunction and in 
some occasions relapsing neurological deficit induced by persistent demyelination. This creates a chronic 
neurodegenerative microenvironment, seen by brain atrophy, which reaches a threshold beyond which 
clinical disease progresses unabated (adapted from Compston & Coles 2002). 

Disease is associated with blood:brain barrier dysfunction and mononuclear cell 

infiltration that arises around post-capillary venules and leucocytes then invade the 

brain parenchyma leading to an expanding ring of macrophage-mediated myelin-

destruction. This leads to the pathological hallmark of MS, which is demyelination of 

the white and grey matter, due to loss of oligodendrocytes and myelin. Although 

initially there is remyelination (shadow plaques), the capacity to repair eventually 

becomes exhausted and astrogliotic scars are formed within demyelinated plaques. 

Whilst lesion load is decreased following successful immunosuppressive treatment 

(Polman et al., 2006; Jones and Coles; 2010), suggesting that leucocyte 

inflammation is the damaging force in MS, it has also been suggested that damage 

to the astrocyte or oligodendrocyte may be the primary event followed by 

infiltration of mononuclear cells (Barnett and Prineas, 2004; Parratt and Prineas, 

2010). 

 

As the disease evolves, inflammatory attacks increase the burden of demyelination 

and a dystrophic environment leads to eventual axonal loss, which impairs normal 

neurotransmission.  This leads to the development of additional distressing 

symptoms such as incontinence, limb tremor, pain, spasms, fatigue and spasticity, 

which have a major negative impact on quality of life indices (Compston and Coles, 

2002; Confavreux and Vukusic, 2006). RRMS is the most common clinically 
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presenting form of MS, with an incidence of approximately 85%, with the typical 

age of onset being the early third decade of life. RRMS is characterised by acute or 

sub-acute onset of neurological dysfunction lasting for more than 24 hours, usually 

resolving within weeks to complete or partial recovery. The frequency of relapses 

varies over time but there appears to be a clear trend for relapses to be more 

common in the initial years of the disease and recovery from these early relapses to 

be more complete (Weinshenker et al., 1989). The time taken to convert to a 

secondary progressive neurodegenerative phenotype can vary widely between 

individuals and may reflect differences in an individual’s ability to cope with 

episodes of neuronal insult, perhaps consistent with genetic control and 

heterogeneity of disease (Compston and Coles, 2002). In approximately a quarter 

of cases, neurological disability does not reach a level where it impinges on daily 

living but conversely in around 15% of cases the progression to disability is rapid. 

The prognosis for patients is better in cases where sensory symptoms dominate the 

course of disease and there is a complete recovery from these symptoms at 

remission whereas the prognosis is poorer when there is motor involvement such as 

deficits of pyramidal, visual, sphyncteric and cerebellar systems (Amato and 

Ponziani, 2000). Frequent relapses and incomplete recovery plus a short time 

period between the initial neurological event and the subsequent relapse also have 

a poorer prognosis. There is also a poorer prognosis for the disease in older men 

who develop MS (Weinshenker et al., 1989; Compston and Coles, 2002). However, 

once a threshold of disability has been reached, disability progression is remarkably 

uniform (Confavreux et al., 2000), and approximately 90% of RRMS patients will 

develop progressive disease after 25 years of clinical follow up (Weinshenker et al., 

1989). It may be that given enough time, all RRMS patients will eventually convert 

to the progressive phase of the disease.  A recent study demonstrated that 

disablility progression seems to follow a two stage course, the first stage, 

corresponding to clinical disease onset to irreversible Kurztke expanded disability 

status scale (EDSS) 3 (Moderate disability in one of eight functional systems (FS), 

or mild disability in three or four FS. Fully ambulatory) being dependent on ongoing 

focal neuroinflammation and a second stage, from irreversible disability scale 3 to 

irreversible disability scale 6 (Intermittent or unilateral constant assistance (cane, 

crutch, brace) required to walk about 100 meters with or without resting), which is 

independent of ongoing focal neuroinflammation and where neuroprotective 

strategies are indicated, rather than immunomodulatory therapies which are 

indicated for the phase one stage of MS (Leray et al., 2010). 

 

Whilst immune-mediated conduction block and destruction of CNS myelin, followed 

by lesion resolution and limited myelin repair, may account for the relapsing-

remitting nature of the disease, what is less clear are the mechanisms that account 



 32 

for the conversion to the chronic neurodegenerative secondary phase, which 

appears to be independent of, though worsened by, the accumulated neuronal 

dysfunction accompanying relapses (Bjartmar et al. 2003).  A gradual degeneration 

of predominantly the pyramidal and cerebellar systems evolves which is often 

accompanied by sphincter and sexual dysfunction (Amato and Ponziani, 2000). In 

addition, a subtype of MS, primary progressive MS (PPMS) presents as a 

progressive degenerative phenotype in 10-15% of patients after an initial bout of 

CNS inflammation, which along with secondary progressive MS is largely refractory 

to currently available MS therapies such as immunomodulation (Miller and Leary, 

2007), and where neuroprotective strategies are urgently indicated. Clinically, 

PPMS develops at a later age than RRMS, with onset in the fourth decade rather 

than the third decade as seen in RRMS (Andersson et al., 1999), and with a lower 

female preponderance. The presence of inflammatory cells of the immune system in 

active lesions, particularly in the white matter has lead to the hypothesis that MS is 

primarily an autoimmune T- cell mediated demyelinating disease. The presence in 

active inflammatory perivascular lesions of CD4 and CD8 positive T cells, 

monocytes and B cells has provided evidence for this hypothesis (Traugott et al., 

1983a; Traugott et al., 1983b; Hauser et al., 1986). 

 

Further evidence from experimental animal models of MS showing the central 

importance of T cell-mediated demyelination in the pathogenic process has lead to 

the dominant paradigm of MS as an autoimmune disease where self-tolerance to 

CNS antigens is lost, leading to autoimmune-mediated destruction of myelin in the 

CNS. T cells in the periphery become activated and migrate to the CNS, initiating 

disease episodes.  However, the cause of the initiating factors leading to the 

activation of T cells recognising CNS antigens, the identity of these antigens and 

the mechanism underlying the episodic nature of relapses have remained elusive. 

This has lead to a recent hypothesis that proposes that MS is primarily a 

neurodegenerative disease accompanied by secondary inflammatory demyelination 

(Trapp and Nave, 2008).  As to whether inflammation is a primary or secondary 

event in the disease process, results from clinical trials thus far have revealed that 

patients with established secondary progressive MS continue to accumulate 

disability, despite the cessation of relapses following treatment with the anti-CD52 

antibody, alemtuzumab/Campath-1H, which produces a profound long-lasting 

lymphocyte depletion. In contrast, patients in the earlier stages of relapsing–

remitting disease showed an improvement in disability scores which was maintained 

at a lower level at 36 months (Coles et al., 1999; Coles et al, 2006). When this 

therapy is administered early in the disease course there was a marked inhibition of 

relapse and apparent recovery of motor deficits (Coles et al., 2008; Jones et al., 

2010) in an ongoing trial which should reveal whether early intervention in 
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suppressing inflammatory lesions in the CNS can halt disease progression due to 

neurodegeneration. This indicates the importance of the primary inflammatory 

response in the development of progressive MS due to neuronal loss. It will be of 

interest to follow up these patients over a long period of time to establish whether 

the cessation of neuroinflammation completely halts disease progression and 

associated neurodegeneration. 

 

Over recent years, axonal pathology during MS has been re-examined and it has 

been established that CNS atrophy and axonal loss occurs, coincident with 

inflammatory lesion formation, early in the relapsing-remitting phase. This may be 

accommodated initially by remodelling of neuronal circuits (neural plasticity) or an 

increase in the number of neural precursors in some lesional areas contiguous with 

subventricular zones (Chang et al., 2008).  However, as the disease continues, a 

threshold is reached and beyond which, permanent impairment and increasing 

disability is established (Bjartmar et al., 2000; Confavreux et al., 2000; Bjartmar et 

al., 2003; Confavreux and Vukusic, 2006). This suggests that axonal loss rather 

than myelin damage is the key determinant of progressive disability in MS. In 

addition, a doubling in the levels of glutamate, an excitatory amino acid that has 

been shown to be neurotoxic in excess is seen in the CSF of MS patients undergoing 

an inflammatory episode (Stover et al., 1997). 

 

 In experimental allergic encephalomyelitis (EAE), an animal model of MS induced 

by the development of autoimmunity against myelin antigens, 15-30% of spinal 

cord axons can be lost before permanent locomotor impairment is noted (Bjartmar 

et al., 2000; Wujek et al., 2002). After a number of relapse events, permanent 

disability develops with significant axonal loss (40-80%, as also occurs in MS), in 

the spinal cord (Wujek et al., 2002) and the development of hind limb spasticity 

and tremor (Baker et al., 2000), which may reflect as the preferential loss of 

inhibitory circuits in certain locations of the spinal cord and their influence on 

signalling to skeletal muscles.  Whilst inflammatory events are associated with 

axonal transections, chronic demyelination may contribute to a slow degenerative 

process. Demyelinated axons must redistribute ion channels, particularly sodium 

channels, to maintain neurotransmission along the length of the axon (Waxman, 

2001), placing an increased metabolic burden on the demyelinated neuron. 

Demyelination makes the axon particularly vulnerable to damage in the presence of 

toxic mediators such as nitric oxide (Smith et al., 2001), released by activated 

macrophages or resident activated microglial cells. This has lead to the examination 

of the potential of partially reducing the activity of these sodium channels using the 

sodium channel blocker lamotrigene to reduce the level of axonal degeneration 

(Bechtold et al., 2006). The use of the sodium channel blocker phenytoin, whilst 
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having a beneficial effect in experimental MS, on withdrawal, a rapid exacerbation 

of the disease was observed accompanied by significant mortality. This may 

indicate that in these experiments sodium channel blockade is immunosuppressive 

rather than being definitively neuroprotective per se, where neuroprotection is 

observed via reduction in CNS inflammation and therefore reducing the 

inflammatory insult to the CNS (Black and Waxman, 2008). Recently trials of 

lamotrogine in secondary progresssive MS, indicated some slowing of the loss of 

motor function, although the anti-inflammatory effects and inhibition of swelling of 

nerve tissue masked influences on nerve loss being detected by reduction of loss of 

brain volume (Kapoor et al. 2010). 

 

As increasing numbers of axons are lost, this creates an extra burden on the 

remaining neurons and potential excitotoxicity due to increased activity on these 

neurons within the neural circuitry. Thus, a slow amplifying cascade of neuronal 

death may be triggered, which could occur independently of significant 

inflammation. This would be compatible with the slow progression in secondary 

progressive MS and the inability of potent immunosuppressive agents to inhibit this 

aspect of disease despite their efficacy in reducing blood:brain barrier dysfunction 

and the reduction of relapse rate (Coles et al., 1999; Confavreux and Vukusic, 

2006). During all neurodegenerative diseases, symptoms occur because 

homeostatic control of neurotransmission is lost, and may result from increased 

neurotransmission by excessive signalling of excitatory circuits or loss of inhibitory 

circuits or vice versa. As it appears that an important function of the cannabinoid 

system is the modulation of neurotransmitter release via CB1 receptor expression at 

pre-synaptic nerve terminals (Wilson and Nicoll, 2002), this raises the possibility of 

therapeutic intervention in CNS events for symptom control by the manipulation of 

this system. 

 

 

1.4.2. Experimental allergic encephalomyelitis (EAE) 

The most widely utilised animal model of multiple sclerosis is EAE, which can be 

induced in susceptible animal strains by immunisation with; CNS-derived antigens 

such as spinal cord homogenate, Myelin Associated glycoprotein (MAG), Myelin 

oligodendrocyte glycoprotein (MOG), Proteolipid protein 1 (PLP1)  infection with 

neurotropic viruses or the adoptive transfer of encephalitogenic T cell lines (Denic 

et al., 2010). Spontaneous transgenic mouse EAE models have also recently been 

reported which have a preponderance of myelin-specific T cell receptors (Ellmerich 

et al., 2005; Bettelli et al 2006; Friese et al., 2006). EAE is most commonly induced 

in mouse strains but there are also rat models and these have tended to have 
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supplanted animal models such as the guinea pig due to the large number of 

reagents available for the study of immunological parameters in particular. In 

addition there are some primate models of EAE, particularly the common marmoset 

which has tended to replace the use of rhesus macaque monkeys (‘t Hart et al., 

2005). 

Disease type and the associated CNS pathology can vary widely depending on the 

animal model used ranging from an acute monophasic disease in the Lewis rat 

strain, an acute progressive form with little remission seen in the C57BL/6 mouse 

strain, to a relapsing-remitting phenotype leading to secondary progression due to 

neurological loss seen in the Biozzi antibody high (ABH) mouse (Baker et al., 1990).  

EAE in the ABH mouse is typically induced by immunisation with whole spinal cord 

homogenate in complete Freund’s adjuvant leading to a chronic relapsing-remitting 

phenotype with secondary progression. In contrast, immunisation with a peptide of 

myelin oligodendrocyte glycoprotein (MOG) 35-55, which is commonly used for 

disease induction in the C57BL/6 mouse strain, results in a progressive chronic 

disease with minimal remission as seen in that strain (Amor et al., 2005). The 

relapsing-remitting phenotype of disease in the ABH mouse and the development of 

a chronic secondary progressive phase of disease, mirroring the type of disease 

most commonly seen in patients with MS, indicates this may be a particularly 

relevant model to investigate the pathology of the disease and potential therapeutic 

strategies both immunological and neuroprotective. 

ABH mice express a unique major histocompatibility (MHC) haplotype Kd Dq Lq 

which has been designated H-2 dql (Baker et al., 1990). In addition, ABH mice share 

the MHC class II molecule Ag7 with the non-obese diabetic mouse strain (NOD) but 

lack a functional E region due to a defect in the Ea molecule (Liu et al., 1993). In 

EAE studies, ABH mice express significant levels of IgG1 but no detectable levels of 

IgG2a are observed (Amor et al., 2005). During clinical episodes of 

neuroinflammation, ABH mice show perivascular infiltration of mononuclear immune 

cells comprising of CD4 positive T lymphocytes and macrophages (Butter, 1991a), 

predominantly in the spinal cord. This cellular accumulation in the CNS correlates 

with disease severity. Inflammatory cell infiltration is accompanied by increased 

expression of MHC class II molecule expression by microglia and perivascular 

macrophages and expression of adhesion molecules on endothelial cells of the CNS 

vasculature (Butter et al., 1991b; O'Neill et al., 1991). In the acute phase of the 

disease, there is little evidence of demyelination, but demyelination is observed 

during the relapse phase of the disease (Amor et al., 2005). Demyelinating 

inflammatory lesions are also seen in the optic nerve, (also a hallmark of early MS), 

accompanied by impaired visual responses and impaired axonal protein transport 
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(O'Neill et al., 1998). EAE in the ABH mouse is accompanied by increasing levels of 

axonal degeneration, particularly in the spinal cord during the course of disease and 

this degeneration leads to the development of signs of neurological impairment, 

such as decreased locomotor performance and clinical signs such as spasticity and 

tremor (Baker et al., 2000; Petzold et al., 2003).  There are also increased levels of 

expression of neuron-specific sodium channels in demyelinated axons to maintain 

saltatory conduction in chronic progressive EAE ABH mice, which is mirrored in MS 

brain tissue (Black et al., 2000; Craner et al., 2003).  

In an important recent study, it has been reported that using in vivo imaging 

techniques that a subset of T cells (Th17) identified by the production of the 

cytokine IL-17 are capable of forming direct contact with neurons/axons in a 

manner analogous to synapse formation in an antigen independent manner, which 

is of interest as MS and EAE have been considered to be triggered by antigen-

specific immunity to myelin antigens on oligodendrocytes. Formation of these 

Th17/neural synapses is accompanied by significant increases in intracellular 

neuronal Ca2+ levels leading to axonal transaction and neuronal death via Wallerian 

degeneration or apoptosis. A possible mechanism for this neuronal Ca2+ increase 

appeared to be via direct glutamate release from Th17 cells and the triggering of 

excitotoxicity via NMDA receptors, which can be modulated by treatment with the 

NMDA antagonist MK-801 and to a lesser extent blocking of Na+ channels with 

phenyoin (Siffrin et al., 2010). 

It is important in the use of EAE models for neuroprotective studies, that 

therapeutic strategies for neuroprotection are not confused with anti-inflammatory 

activity on disease. Many potential neuroprotective agents can also be 

immunosuppressive due to the co-expression of receptors on cells of the immune 

system as well as the CNS and a reduction in inflammatory infiltrates can be 

interpreted as being neuroprotective as a consequence of a reduction in the level of 

inflammatory attack. Potential neuroprotective agents should be titrated so that 

there is an equivalent level of disease in treatment and control groups before true 

neuroprotection can be demonstrated. It is surprising that in many if not the 

majority of “neuroprotective” studies in EAE, suppression of disease activity is 

routinely confused with neuroprotective properties of the therapeutic agent being 

studied and highlights the importance of interpreting results correctly. 
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1.5. Cannabinoids and symptom management in MS 

 

To date, the primary area of investigation of the cannabinoids in MS has been that 

of symptom relief, in particular bladder incontinence, tremor and particularly limb 

spasticity, as patients claim that these particular symptoms are alleviated by 

cannabis and this has been supported by some early reports (Consroe et al., 1997; 

Pertwee, 2002). Current therapies for spasticity include the GABA receptor agonist 

Baclofen, Tinazidine and Benzodiazepines (Paisley et al., 2002). Intrathecal 

Baclofen is commonly used for the treatment of severe refractory spasticity (Kita 

and Goodkin, 2000). The anti-convulsant, Gabapentin and local administration of 

botulinum toxin have also showen efficacy in clinical trials (Kita and Goodkin, 2000; 

Paisley et al., 2002) The pathophysiology of spasticity remains poorly understood 

but it may reflect a preferential loss of inhibitory circuitry in the spinal cord 

resulting in excessive levels of stimulatory signals. Under normal circumstances, 

inhibitory signals are sent via the corticospinal tract to the spinal cord, but following 

injury, damage to the corticospinal tract, a hallmark of MS, causes disinhibition of 

the stretch reflex leading to a reduction in the triggering threshold. This results in 

excessive contraction of the muscles, sometimes even at rest (Brown, 1994; Adams 

and Hicks, 2005; Nielsen et al., 2007)  The hypertonic mouse mutant hyrt  (Gilbert 

et al., 2006), show spastic signs in the hind limbs associated with a reduction in the 

level of inhibitory GABA A receptors in lower motor neurons. Loss of GABAergic 

inputs or GABA receptor expressing neurons may produce the spasticity seen in 

multiple sclerosis as neurodegeneration progresses and explain the efficacy of 

GABA agonists such as Baclofen.  Improved treatment regimes for spasticity are 

urgently needed, as agents that directly interfere with neurotransmitter activity are 

often associated with undesirable side-effects (Paisley et al., 2002). Experimental 

data in MS models in mice have indicated the anti-spastic and anti-tremor effects of 

cannabinoids and CB1 agonists (Baker et al., 2000; Baker et al., 2001) and any CB1 

agonist that reaches the CNS has the potential to inhibit spasticity. Furthermore 

and importantly, antagonism of the cannabinoid system produces a worsening of 

these signs, indicating the presence of an endogenous cannabinoid tone, which is 

modulating these signs to some degree via the release of endocannabinoids in 

response to elevated neuronal excitation (Baker et al., 2000, Baker et al., 2001). 

Surprisingly, although there is limited data to suggest that CB2 is expressed by 

nerves (Howlett et al., 2002), CB2 receptor agonists or their metabolites could 

inhibit spasticity (Baker, 2000). In addition, endocannabinoid (particularly 

anandamide) levels are raised in the spinal cords and brains of mice, which show 

hind limb spasticity, but not in animals, which have equivalent levels of 

neurodegeneration but without associated limb spasticity (Baker et al., 2001). This 

further indicates the presence of an endocannabinoid tone, which is elevated as a 
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result of spasticity and tremor in these animals. Indeed administration of 

compounds, which elevate endogenous anandamide levels, either via inhibition of 

re-uptake or enzymatic degradation by fatty acid amide hydrolase (FAAH), also 

reduces the level of spasticity in mice (Baker et al, 2001). These observations 

provide objective evidence, to underpin patient perceptions of the efficacy of 

cannabis on MS symptoms.  

 

In MS patients, it has been reported that a cannabis extract administered as a 

sublingual spray, shows efficacy in the treatment of bladder incontinence, showing 

both a decrease in emptying episodes and an increase in bladder retention volume 

(Brady et al., 2004). A second study as part of the Cannabis in Multiple Sclerosis 

(CAMS) study of patients, treated with a cannabis extract or ∆-9 THC, reported a 

significant reduction in episodes of urge incontinence compared to placebo 

(Freeman et al., 2006). This suggests that cannabinoids can compensate for the 

dysregulation of bladder neural circuitry that frequently accompanies disease 

progression in multiple sclerosis.  

 

A number of controlled and blinded trials have been undertaken on spasticity in MS 

(Killestein et al., 2002; Zajicek et al., 2003; Wade et al., 2004; Vaney et al., 2004; 

Zajicek et al., 2005; Wade et al., 2006; Collin et al., 2007).  Although oral cannabis 

at doses that lack overt psychoactivity, has so far shown no or a marginal effect in 

treating spasticity as assessed by the Ashworth Scale (Killestein et al., 2002), there 

was an improvement in the time taken to complete a ten metre walk (Zajicek et al., 

2003). Oral administration of cannabinoids is hampered compared to other routes 

due to variable absorption and metabolism including a significant first pass effect 

through the liver which complicates dose-titration (Agurell et al., 1986; Mattes et 

al., 1993; Grotenhermen, 2003). However, similar studies with a sublingual 

cannabis extract spray (Sativex®), has likewise had a minimal impact on objective 

outcomes such as the Ashworth Scale (Wade et al., 2003; Wade et al., 2004; Collin 

et al., 2007), but have had consistent, subjective patient assessed, perceived 

improvements in spasms and spasticity. These apparently negative results may be 

largely due to the insensitivity of the Ashworth Scale in detecting positive effects of 

anti-spastic therapies where many of the currently prescribed drugs fail to show 

efficacy using this measure (Shakespeare et al., 2003).  

 

As cannabis affects cognitive processes (Curran et al., 2002), it can be argued that 

whilst patients feel subjectively improved due to mood modulation, these may not 

be objectively demonstrable at cannabinoid doses that do not induce significant 

cannabimimetic psychoactive effects (Killestein et al., 2002; Zajicek et al., 2003; 

Wade et al., 2004; Zajicek et al., 2005; Wade et al., 2006; Pertwee, 2007).  
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However, positive effects, with few exceptions (Killestein et al., 2002), have been 

reported following treatment with THC or medical cannabis extracts (Zajicek et al., 

2003; Wade et al., 2004; Vaney et al., 2004; Wade et al., 2006; Collin et al., 

2007). Importantly, patients on clinical trials suggest that only certain signs such as 

spasticity, pain and sleep disturbances are notably being affected suggesting that 

these positive effects are unlikely to be simply due to a generalized perception of 

improvement following drug administration (Zajicek et al, 2003; Wade et al., 2004; 

Vaney et al., 2004; Wade et al., 2006; Collin et al., 2007).. This suggests some 

positive benefit of cannabinoids and further evidence of the efficacy on MS related 

spasticity following long-term administration of THC was reported showing a 

positive improvement on the Ashworth Scale in patients treated with THC for one 

year (Zajicek et al., 2005). 

 

The apparently limited evidence thus far of the efficacy of cannabis in symptom 

management in MS; may reflect the poorly designed nature of many of the early 

trials, with subjective rather than quantitative outcome measures and insufficient 

appreciation of the pharmacokinetic problems such as first pass effects via the liver 

with the oral route of administration (a clinically preferred route compared to 

smoking Agurell et al., 1986; Pertwee, 2002). It would appear that routes of 

delivery, which facilitate rapid entry to the bloodstream and then to the CNS, are 

preferable to the orally administered route. Such routes are; aerosol inhalation, 

rectal suppository or sublingual spray (Grotenhermen, 2003). This may account for 

the anecdotal claims that smoked cannabis, which is rapidly absorbed and has no 

first pass effects, allowing self-titration of therapeutic effect, is preferable to orally 

administered ∆
9-THC, which is slowly absorbed and subjected to first pass 

metabolism in the liver plus there is little chance of self titration (Agurell et al., 

1986; Consroe et al., 1997; Pertwee, 2002).  The biology of the cannabinoid system 

indicates that CB1 mediates both the psychoactive and the majority of the 

potentially therapeutic effects of cannabis, and therefore its use will invariably be 

associated with side effects, which some people may find intolerable (Killestein et 

al., 2002; Baker et al., 2003). However, through individual dose-titration, these 

may be limited to achieve a therapeutic window where a benefit is achieved whilst 

unwanted side-effects are limited. A study on cannabinoid-mediated control of tics 

associated with Tourette’s syndrome suggests it is indeed possible to have a 

positive therapeutic outcome without significant cognitive impairment (Muller-Vahl 

et al., 2003). Furthermore, oral ∆9-THC and Nabilone (a synthetic analogue of THC), 

are licensed anti-emetics, producing a therapeutic benefit within tolerable side-

effect limits. Therefore, usage in any clinical indication will be a balance between 

treatment of a particular condition and the acceptability of side effects. 
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The mounting evidence for the potential benefit of cannabis on MS –associated 

spasticity has recently lead (June, 2010) to the approval for prescription in the UK 

of the cannabis extract Sativex® for the treatment of spasticity in MS. 

 

1.6. Cannabinoids in Autoimmunity 

 

There is a perception that cannabis may affect disease course in MS (Consroe et al., 

1997), but quantifiable data are however lacking, and the clinical course of disease 

is notoriously variable (Compston and Coles, 2002; Confavreux and Vukusic, 2006). 

Although CB1 receptors are highly expressed in the neural compartments, they are 

also expressed on leucocytes, which may additionally express CB2 receptors 

(Bouaboula et al., 1993; Galiegue et al., 1995; Howlett et al., 2002). Here, it is 

expressed particularly on B cells and macrophages, which can also produce 

endocannabinoids (Bisogno et al., 1997). The level of CB1 and CB2 receptor 

expression is affected by the degree of activation, with CB2 levels being reduced on 

activation whereas CB1 receptor levels are reported to be reduced or increased 

depending on the cell type studied and the activating agent used (Klein et al., 

2003; Borner et al., 2007).  The upregulation of CB1 receptors on T cells in 

response to cannabinoids may enhance the immunomodulatory effects of 

cannabinoids (Borner et al., 2007) The function of the endocannabinoid system on 

leucocytes has yet to be fully elucidated, although it may function as a regulator of 

the development of haematopoietic cells, influence cellular activation, it may control 

the magnitude and migration of the immune response  (Klein et al., 2005; Klein 

and Cabral, 2006; Baker et al., 2007; Correa et al., 2007) or shift the Th1/Th2 

cytokine balance (Yuan et al., 2002)  to a potentially disease suppressing  Th2  

phenotype.  

 

There is abundant evidence that cannabinoids can influence the nature and level of 

cytokine production and leucocyte function (Klein et al., 2003) and have been 

shown to inhibit the development of disease in autoimmune (Lyman et al., 1989; 

Wirguin et al. 1994; Pryce et al., 2003; Ni et al., 2004; Fujiwara and Egashira, 

2004; Cabranes et al., 2005; Sanchez et al., 2006; Palazuelos et al., 2008) and 

viral models of MS (Arevalo-Martin et al., 2003; Croxford and Miller, 2003) via CB1 

and CB2-receptor dependent mechanisms. The CB2 receptor regulates T cell 

apoptosis which is mediated by CNS-derived endocannabinoids and CB2 selective 

agents (Sanchez et al., 2006; Lombard et al., 2007). In a mouse model of 

inflammatory retinal disease, experimental autoimmune uveoretinitis (EAU), the 

CB2 selective agonist JWH-133 has been shown to have significant disease-

suppressing activity in a dose-dependent manner (Xu et al., 2007). Stimulation of 
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the CB2 receptor can reduce Th1/Th17 responses, particularly the inhibition of 

gamma interferon production reflected by the failure of upregulation of MHC class II 

on glial cells resulting in a reduction in antigen presenting capacity to T cells 

(Arevalo-Martin et al., 2003).  In addition, the CB1/CB2 agonist WIN55,212-2 

inhibits leucocyte migration into the CNS of EAE mice by a partially CB2 receptor-

dependent mechanism (Sanchez et al., 2006). However, it has also been reported 

that CB2 receptor agonists and antagonists can inhibit leucocyte migration into 

tissues (Lunn et al., 2006, Oka et al., 2006). 

 

In EAE, cannabinoid immunotherapy is typically associated with peripheral 

immunosuppression that prevents the events leading to leucocyte accumulation in 

the CNS, possibly at the level of initial sensitization (Lyman et al., 1989; Wirguin et 

al., 1994; Pryce et al., 2003; Ni et al., 2004; Fujiwara and Egashira, 2004; 

Cabranes et al., 2005; Sanchez et al., 2006; Palazuelos et al., 2008) and inhibition 

of T cell function. Importantly, disease inhibition in MS models using cannabinoids 

typically occurred at relatively high doses that induced cannabimimetic effects 

Lyman et al., 1989; Wirguin, 1994; Croxford and Miller, 2003). This form of 

immunosuppression does not appear to be associated with the direct stimulation of 

cannabinoid receptors on cells of the immune system but an indirect effect of the 

stimulation of neuronal CB1 receptor stimulation. This results in the downstream 

production of immunosuppressive molecules such as glucocorticoids that have been 

shown to be potent modulators of the neuroinflammatory response in EAE 

(Pertwee, 1974; Wirguin, 1994; Bolton et al., 1997). However, in a clinical context, 

such dose levels necessary to achieve immunosuppression are unlikely to be 

achieved without severe psychoactive side effects (Zajicek et al., 2003).  In 

addition chronic cannabis smokers are not overtly immunosuppressed although 

they may exhibit some immune perturbations (Rachelefsky et al, 1976; Bredt et al., 

2002; Roth et al., 2002; Pacifici et al., 2003). Increases in proinflammatory 

cytokine levels such as TNFα in cannabinoid-treated patients have also been 

reported (Killestein et al., 2003) and there was no influence on cytokine levels 

compared to controls in a large study of MS patients treated with  cannabinoids  for 

spasticity alleviation (Katona et al., 2005). 

 

Furthermore, people infected with human immunodeficiency virus smoke cannabis 

and oral THC is approved for appetite stimulation in the wasting syndrome 

associated with human immunodeficiency virus (HIV) infection where 

immunosuppression would be a major contraindication (Bredt et al., 2002). As HIV-

induced disease is a problem of loss of immune control, this further suggests that 



 42 

clinically useful doses of plant-based cannabinoids may not be overtly 

immunosuppressive and is further supported by observations of people with MS 

receiving cannabis, of a sufficient level to induce psychotropic effects (Killestein et 

al., 2003; Katona et al., 2005). Similarly, although patients in symptom control 

trials of cannabis were selected for stability of disease, the relapse rate of people 

taking oral THC and cannabis extract did not appear to be reduced (Zajicek et al., 

2005).  

 

Although the CB1 receptor may offer more limited scope for control of immune 

responses, there is increasing evidence for influences of CB2 receptors in limiting 

some of the detrimental elements of immune responses. Indeed, CB2 receptors may 

control the activation and pattern of migration of leucocytes and microglial 

progenitors into the CNS (Ni et al., 2004; Palazuelos et al., 2008) and also 

upregulate the expression of the CB1 receptor on T cells (Borner et al., 2007). 

Whilst there has been not reported differences in disease severity of EAE in CB1 

receptor and FAAH deficient mice (Pryce et al., 2003; Webb et al., 2008), CB2-

deficient mice exhibit elevated disease severity compared to wildtype animals 

(Palazuelos et al., 2008). This may suggest a degree of tonic immune system 

control by the endocannabinoid system. The high endogenous level of 2-AG within 

the CNS compared to the blood, may provide a sufficient level of stimulation of CB2 

receptors on T cells entering the CNS, which is not achieved in the circulation, to 

limit autoimmune responses and provide an additional mechanism for immune 

privilege for the CNS. Increases in anandamide levels have been found in the blood 

and cerebrospinal fluid of people with MS and these levels may increase in active 

disease and could serve to limit immune function (Centonze et al., 2007). In 

contrast, in another study in MS patients, reduced levels of endocannabinoids were 

seen in the cerebrospinal fluid of RRMS patients compared to controls, which was 

even lower in SPMS patients. A small increase was seen in patients undergoing a 

relapse but was still lower than controls (Di Filippo et al., 2008). FAAH-deficient 

mice which exhibit elevated levels of anandamide develop EAE of comparable onset 

and severity to wild type controls (Webb et al., 2008), indicating that any increases 

in endocannabinoid levels are not sufficient to impact on the level of inflammation. 

Few studies have attempted to pharmacologically manipulate the endocannabinoid 

tone to affect autoimmune function, but AM404 the anandamide re-uptake inhibitor 

inhibited the development of EAE not by effects on cannabinoid receptors but via 

virtue of the apparent capacity of AM404 to stimulate TRPV1 receptors (Cabranes et 

al., 2005). In contrast, other re-uptake inhibitors have been shown to exhibit 

cannabinoid mediated disease inhibitory effects in viral models of MS (Ortega-

Gutierrez et al., 2005; Mestre et al., 2005).  
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The hybrid synthetic cannabinoid/vanilloid agonist arvanil has potent activity at the 

TRPV1 vanilloid receptor and has been shown to produce a moderate effect on the 

immunosuppression of EAE via a TRPV1-dependant mechanism (Malfitano et al., 

2006; Marquez et al., 2006). Again this immunosuppression is observed at doses 

that are likely to induce immunosuppressive stress responses such as glucocorticoid 

release in vivo due to the highly noxious/cannabimimetic properties of this 

compound (Brooks et al., 2002).  

 

In addition to CB2-mediated T cell immune modulation, CB2 receptors are expressed 

on microglial cells in MS lesions (Yiangou et al., 2006; Benito et al., 2007).  CB2 

receptor stimulation can serve to directly or indirectly inhibit the development of a 

pro-inflammatory environment that leads to microglial activation, as shown by 

upregulation of major histocompatibility complex class II antigens and migration of 

microglial displaying an amoeboid phenotype that is central not only to the 

development of lesions but also repair of immune attack (Arevalo-Martin et al., 

2003; Klegeris et al., 2003; Carrier et al., 2004; Maresz et al., 2005; Sheng et al., 

2005; Witting et al., 2006).  

 

Importantly, microglial activation and function appears to be central to the 

development of the processes associated with the "low-level" inflammatory 

neurodegenerative events that underpin clinical progression independent of 

autoimmune attack in MS and other neurodegenerative conditions via the release of 

toxic mediators such as nitric oxide, which is inhibited by cannabinoids via CB1 

(Waksman et al., 1999) and CB2 (Eljaschewitsch et al, 2006). Although perhaps 

marginal, any immunosuppressive activity could be beneficial due to reductions in 

the level of the inflammatory insult, however, more importantly the biology of the 

cannabinoid system and experimental data may indicate that cannabinoids may be 

neuroprotective in an environment where neuronal damage is taking place (Pryce et 

al., 2003; Witting et al., 2006; Webb et al, 2008). 

 

1.7 Cannabinoids in neuroprotection and disease progression in MS and 

animal models 

There is abundant experimental evidence that cannabinoids can act as 

neuroprotective agents in both in vitro and in vivo models of neurodegeneration.  

Cannabinoids can protect cultured cortical neurons from oxygen and glucose 

deficiency in a CB1 and CB2 independent manner (Nagayama et al., 1999). ∆-9 THC 
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and cannabidiol have also been reported to reduce glutamate toxicity in cultured 

cortical neurons independent of CB1 receptor activation (Hampson et al., 1998).  

CB1 receptor dependent neuroprotection has been observed in kainate excitotoxicity 

toxicity in mouse spinal neurons with ∆-9 THC (Abood et al., 2001) and the 

synthetic cannabinoid WIN 55,212-2 has also shown to protect cultured 

hippocampal neurons from glutamate-mediated excitotoxicity in a CB1 dependent 

manner (Shen and Thayer, 1998). 

 

The major cause of permanent disability in MS is the underlying neurodegeneration 

that drives progressive MS and this has so far evaded any satisfactory treatment 

(Compston and Coles, 2002; Bjartmar et al., 2003; Dutta and Trapp, 2007). There 

is increasing evidence that cannabinoids, including the endogenous cannabinoid 

tone can limit acute neurodegeneration in; experimental cerebral ischaemia 

(Nagayama et al., 1999; Parmentier-Batteur et al., 2002), closed head trauma 

(Panikashvili et al., 2001; Hansen et al, 2001), and neurodegeneration induced by 

excitotoxic agents (Hansen et al., 2001; van der Stelt et al., 2001a; van der Stelt 

et al., 2001b; Hansen et al., 2002; Pryce et al., 2003). Cannabinoids have also 

been shown to have a protective effect in chronic models of neurodegeneration 

(Pryce et al., 2003; Bilsland et al., 2006; Docagne et al, 2007), however, recent 

data suggest that cannabinoids may not be a ubiquitous neuroprotective agent in 

all neurodegenerative diseases as in a transgenic animal model of Huntington’s 

disease in R6/1 mice, neither THC, the synthetic CB1 agonist HU210 or the FAAH 

inhibitor URB 597 affected the deterioration of motor performance over the disease 

course when administered prior to the development of motor impairment (Dowie et 

al., 2010). However, chronic treatment with URB 597 did preserve CB1 receptor 

expression in the striatum, the early loss of which is a hallmark of this disease 

(Glass et al., 2000; Dowie et al., 2009), indicating that increased levels of 

anandamide may show some beneficial effects in this model. 

 

The neurotoxic mechanisms  during MS and experimental models are varied, with 

the potential agents of neuronal/axonal damage including; oxidative damage to 

mitochondria, release of inflammatory cytokines, nitric oxide release from activated 

macrophages/microglia and excitotoxicity due to excessive  glutamate signalling 

leading to toxic levels of calcium ion influx. There is increasing evidence that 

elevated levels of glutamate are seen in both MS and EAE particularly during the 

active stages of disease (Stover et al., 1997; Sulkowski et al., 2009; Marte et al., 

2010), accompanied by an increase in the level of expression of Group 1 

metabotropic glutamate receptors and excitatory amino acid transporters 

(Sulkowski et al., 2009). Elevation of glutamate was also observed in the 
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progressive phase of EAE concomitant with increased levels of neourodegeneration, 

further implicating glutamate excitotoxicity as a mechanism for neuronal degeration 

in experimental MS (Marte et al., 2010). Modulation of the effects of elevated CNS 

glutamate levels has been reported to show disease amelioration in experimental 

studies (Pitt et al., 2000; Smith et al., 2000; Srinivasan et al., 2005; Bolton and 

Paul, 2006). Elevated levels of glutamate may result from; the down-regulation of 

enzymes responsible for the catabolism of glutamate (Hardin-Pouzet et al., 1997),  

the down-regulation or reversal of the actions of neuronal and astrocytic glutamate 

transporters (Ohgoh et al., 2002, Loria et al., 2010) or the direct release of 

glutamate from activated Th17 cells forming direct  synapse-like contact with 

neurons (Siffrin et al., 2010) . 

 

 In addition, aberrant expression of sodium channels, which distort the firing 

patterns of neurons to prolong axonal conduction (Black et al., 2000;  Craner et al., 

2003), may render axons susceptible to damage from toxic mediators (Ferguson et 

al., 1997; Kornek et al., 2000; Lu et al. , 2000; Pitt et al., 2000; Smith et al., 

2000; Smith et al., 2001; Waxman, 2001; Lo et al., 2002; Kapoor et al, 2003). A 

sustained increase in the levels of glutamate from glutamatergic nerve terminals 

produces an increased activation of post-synaptic glutamate receptors of the NMDA, 

AMPA/kainate subtypes that results in a sustained influx of Ca 2+ ions into the 

neuron. Such a sustained calcium influx can activate calcineurin which further 

activates the apoptosis effector molecule caspase 3 (Polster and Fiskum, 2004) and 

death via the apoptotic pathway (Ahmed et al., 2002), in addition to Wallerian 

degeneration (degeneration of axons downstream of the primary insult) and 

necrosis (Perry and Anthony, 1999). In contrast to stroke and trauma, where these 

elements are rapid and often catastrophic, these elements accumulate slower and 

less aggressively in chronic neurodegeneration and thus there is a much greater 

treatment window for therapeutic modulation (Bjartmar et al., 2003; Dutta and 

Trapp, 2007). During MS and EAE inflammatory events may rapidly generate a 

damaging microenvironment (Compston and Coles, 2002; Bjartmar et al., 2003; 

Dutta and Trapp, 2007). The cannabinoid system can regulate potential 

degenerative events at multiple levels within the vasculature and CNS including; 

anti-oxidant activity, inhibition of glutamate release and signalling and in addition 

the cannabinoid response is negatively coupled with a number of calcium channels 

(Howlett et al, 2002). Initially, neurodegeneration occurs concomitantly with 

inflammation (Bjartmar et al., 2003; Dutta and Trapp, 2007) and cannabinoids can 

control the degree of neurodegeneration that develops as a consequence of 

immune attack of the CNS (Pryce et al., 2003; Eljaschewitsch et al., 2006; 

Centonze et al., 2007; Webb et al., 2008; Witting et al., 2006). In addition, in ABH 

mice that had established chronic EAE, where subsequent relapses were eliminated 
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by the reinduction of immune tolerance, degenerative signs continued to develop, 

indicating a continuing slow level of neurodegeneration in the absence of further 

inflammatory events. This may indicate the continuing presence of a 

neurodegenerative environment due to a lack of trophic support to neurons or the 

low-level release of neurotoxic mediators from activated microglial cells in the CNS 

(Pryce et al., 2005). Whilst not all neuroprotective elements of cannabinoids and 

the endocannabinoids may be mediated by CB1 receptors, CB1 receptors can act at 

many levels within the death cascade, which will ultimately lead to toxic ion 

influxes, cell metabolic failure and activation of death effector molecules, such as 

caspase 3 (Ahmed et al., 2002; Jackson et al., 2005) This would be consistent with 

the rapid neurodegeneration that accumulates in CB1 receptor deficient mice after 

both excitotoxicity and importantly in an experimental model of multiple sclerosis, 

where CB1 animals demonstrate a reduced ability to recover from the effects of 

inflammatory attack in the CNS (Pryce et al., 2003; Jackson et al., 2005). 

Furthermore, stimulation of cannabinoid receptors using WIN-55,212-2 or THC can 

induce neuroprotection from such an inflammatory attack, in the absence of overt 

immunosuppression that blocks relapsing disease (Pryce et al., 2003).  Enhanced 

levels of endocannabinoids in quiescent chronic disease (Baker et al., 2001), not 

only provide a mechanism for control of excessive neurotransmission, they may 

also provide a neuroprotective mechanism in response to excessive excitotoxicity 

(Pryce et al., 2003; Jackson et al., 2005; Eljaschewitsch et al., 2006; Witting et al., 

2006; Centonze et al., 2007).  Further evidence for an intrinsic neuroprotective 

endocannabinoid tone, is provided by the observation that UCM707, an inhibitor of 

anandamide uptake can protect against AMPA-mediated excitotoxicity in neural 

cultures in vitro, which is reversed by blockade of the glial glutamate transporter 

GLT-1. UCM707 also ameliorated disease in a Theiler’s virus model of MS in mice 

and reversed the downregulation of GLT-1 seen in this model (Loria et al., 2010). 

 

The apparent reduction in endocannabinoid levels during active, immune attack has 

been attributed to neurodegeneration (Cabranes et al., 2005), although it may also 

reflect the reduced level of neuronal signalling to the brain from the spinal cord 

during the paralytic phase of the disease or the suppressive effects of inflammatory 

cytokine release on endocannabinoid production (Witting et al., 2006). A 

concomitant reduction in the level of CB1 receptors and a reduction in the signalling 

ability of these receptors in motor related brain areas is observed in EAE mice in 

acute and also the chronic phase of disease where neurodegeneration is observed 

(Cabranes et al., 2006). Reduced levels of endocannabinoids have also been 

detected in the CSF of MS patients (Di Filippo et al., 2008), in contrast to the 

elevated levels of anandamide (but not 2-AG) reported in another study on CSF and 

plasma levels of endocannabinoids in MS patients (Centonze et al. 2007). The 
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reasons for this discrepancy is unclear but it may be noted that the study reporting 

an increased level of anadamide in MS patients also showed much greater levels of 

anandamide in control patients compared to previous studies in other CNS 

syndromes (Giuffrida et al., 2004; Sarchielli et al., 2007). Further studies are 

needed to establish which of these observations is correct. Elevated levels of 

anandamide in response to immune attack of the CNS may indicate that this is an 

endogenous neuroprotective response which may limit the damage associated with 

disease whereas decreased levels of anandamide may reflect a dysregulation in the 

endocannabinoid response to damaging events which may contribute to enhanced 

neurodegenration and disease progression particularly in SPMS in these patients. A 

schematic diagram of how 2-AG and anandamide may operate in both the normal 

physiological situation in the CNS and also during adverse events in the CNS is 

illustrated in Figure 1.2. 

 

Figure1.2. Mechanism of action of 2-Ag and anandamide in normal and 

pathological events in the CNS. 

 
This figure is reproduced with the kind permission of Sam Jackson. 

 

The neuroprotective properties of cannabinoids may be operating via a number of 

mechanisms, such as; inherent anti-oxidant properties and scavenging of reactive 

oxygen species (Hampson et al., 1998; Marsicano et al., 2002), inhibition of 

caspase-3 processing (Iuvone et al., 2004), and inhibition of voltage-sensitive 

calcium channels reducing toxic levels of calcium influx (Shen and Thayer, 1998). 

CB1 receptor stimulation with the synthetic cannabinoid WIN55,212-2, induces 

neuronal sprouting and increases in synaptic density which may be a significant 

neuroprotective stimulus (Tagliaferro et al., 2006).  In EAE, an increased level of 
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activation of the transcription factor NFκB  has been reported and inhibition of this 

increase attenuated clinical signs (Pahan and Schmid, 2000). The activation 

potential of the cytokine Interleukin-1, associated with neurodegeneration is 

blocked by the cannabinoid inhibition of the transactivation potential of NFκB by the 

synthetic cannabinoid WIN55,212-2 (Curran et al., 2005). Increases in the levels of 

the  endocannabinoid 2-AG has also been reported to be associated with a 

reduction in NFκB transactivation and a reduction in inflammatory signalling 

pathways (Panikashvili et al., 2005; Panikashvili et al., 2006), which is abolished in 

CB1 receptor knockout mice.  

 

The p38 MAP kinase family of signalling molecules is also implicated in the 

neuroprotective actions of cannabinoids. The upregulation of extracellular-regulated 

protein kinases (ERK) by endocannabinoids enhances synaptic integrity and 

protects against excitotoxicity (Karanian et al., 2005a; Karanian et al., 2005b). 

Conversely, the downregulation of p38 MAPK by the non-psychoactive cannabinoid 

cannabidiol, and by ∆-9 THC via the CB1 receptor has been reported to have a 

neuroprotective effect on retinal ganglion cells in an experimental diabetes model 

(El-Remessy et al., 2003; El-Remessy et al., 2006) via the inhibition of p38 MAP 

kinase signalling by proinflammatory cytokines.  ∆-9 THC has also been reported to 

downregulate the increased levels of p38 MAPK due to NMDA-mediated apoptosis 

and reactive oxygen species release in neuronal AF5 cells in vitro (Chen et al., 

2005). Many of the neuroprotective properties of cannabinoids are likely to include 

the modulation of the transcription factors involved in the release of 

proinflammatory mediators during both acute inflammatory episodes and also 

during states of chronic disease where these mediators may be released at a low 

level from resident cells in the CNS such as activated microglia. CB1 and CB2 

receptor agonists block microglial activation and subsequent cognitive impairment 

due to neuronal loss associated with β-amyloid neurotoxicity in an animal model of 

Alzheimer’s disease (Ramirez et al., 2005), which may have similarities to the low 

grade inflammation of progressive MS. This reduction in the toxicity of β-amyloid is 

also seen with cannabidiol, which is associated with a decrease in the activity of 

p28 MAP kinase and NFκB together with a reduction in nitrosative stress in neuronal 

PC12 cells in vitro (Esposito et al., 2006). 

 

The identity of the endogenous neuroprotective cannabinoid has yet to be 

definitively resolved and may involve more than one CB1/CB2-mediated pathway, 

possibly dependent on the neural circuitry involved. The reports of the Ca2+-

dependent synthesis of anandamide and 2-AG (Di Marzo et al., 1994; Stella et al., 

1997), indicates that endocannabinoids are produced in response to a potentially 

toxic Ca2+ influx to provide a feedback inhibition of excitotoxicity. There are 
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numerous studies showing upregulation of endocannabinoids in neurotoxic models. 

Some studies have reported beneficial effects of 2-AG in the neuroprotective action 

of endocannabinoids (Panikashvili et al., 2001; Witting et al, 2006), whereas others 

have reported beneficial effects of anandamide (Hansen et al., 2001; van der Stelt 

et al., 2001b), which is reported to be elevated in stroke and active MS (Schabitz et 

al., 2002; Eljaschewitsch et al., 2006; Centonze et al., 2007). Enhancement of 

anandamide levels via uptake inhibition or FAAH inhibition, protects against 

excitotoxic insult both ex vivo and in vitro (Karanian et al., 2005a,b). Furthermore, 

as FAAH-deficient mice exhibit an enhanced ability to recover from immune attack, 

it indicates that upregulation of anandamide levels exhibits a neuroprotective 

function during EAE (Webb et al., 2008). The function of 2-AG as a potentially 

neuroprotective agent will be clarified further once specific-inhibitory reagents and 

gene-deficient mice for the 2-AG synthesis and degradation pathways, such as the 

enzyme monoacylglycerol lipase, are studied.  

 

 

Although CB1 receptors can control some elements of the neurodegenerative 

process, CB2 receptors, particularly on microglial cells, provides another target for 

control of neurodegeneration in an indirect manner via limiting the of release of 

toxic mediators such as proinflammatory cytokines and reduction in the release of 

Nitric oxide (Waksman et al., 1999; Klegeris et al., 2003; Carrier et al., 2004; 

Sheng et al., 2005; Maresz et al., 2005; Esposito et al., 2006; Kim et al., 2006a; 

Witting et al., 2006). 

 

The capacity of cannabinoids to mediate beneficial effects in multiple sclerosis will 

be dependent on there being sufficient neural circuitry remaining intact. As 

cannabinoids can regulate both excitatory and inhibitory neural pathways, (Howlett 

et al., 2002) the outcome will be dependent also on the density and location of the 

cannabinoid receptor within the neural circuitry affected. Although many clinical 

endpoints were not met in symptom control trials (Zajicek et al., 2003), during 

clinical follow-up, after long-term administration of THC for one year, a number of 

positive effects were found (Zajicek et al., 2005), including the first report of a 

significant improvement in spasticity as assessed by the Ashworth scale. This either 

supports the concept that cannabinoids can slow neurodegenerative events during 

progressive MS, or that it can promote synaptogenesis, plasticity and repair, as 

cannabinoid receptor stimulation can promote neuronal sprouting and synapse 

formation that could promote compensation for the neurological deficit to occur 

(Galve-Roperh et al., 2006 Kim et al., 2006b; Tagliaferro et al., 2006; Berghuis et 

al., 2007; Hashimotodani et al., 2007).  In addition, cannabinoids may promote 

repair, as neural progenitors can be stimulated to proliferate in response to 
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cannabinoid receptor stimulation (Aguado et al., 2007; Galve-Roperh et al., 2007; 

Molina-Holgado et al., 2007; Rubio-Araiz et al., 2008). The synthetic cannabinoid 

WIN55,212-2, stimulates adult neurogenesis by inhibiting the suppression of 

neurogenesis by nitric oxide (Kim et al., 2006b). This neurogenesis is greatly 

reduced in the brains of CB1 receptor knockout mice (Jin et al., 2004). Further 

evidence for the involvement of the cannabinoid system in neurogenesis has been 

reported, where gene deleted mice for DAG Lipase α and/or β, the enzymes 

responsible for 2-AG production show a significantly compromised level of 

neurogenesis in the adult brain (Gao et al., 2010). 

 

In addition, several studies have reported evidence for the influence of 

cannabinoids on neurotrophin signalling. Brain-derived neurotrophic factor (BDNF), 

is involved in interneuron migration and morphogenesis and endocannabinoids 

facilitate this via transactivation of the receptor tyrosine kinase TrkB (Berghuis et 

al., 2005). This cannabinoid regulation of neurotrophic factors and the importance 

of BDNF as a neuroprotective agent is evidenced by the absence of upregulation of 

BDNF due to excitotoxicity in CB1 knockout animals. This is accompanied by 

enhanced neuronal loss which is reduced by the administration of exogenous BDNF 

(Khaspekov et al., 2004), and long-term administration of ∆-9THC, upregulates 

BDNF production in several brain areas, which may indicate the adaptation of the 

CNS to cannabinoid exposure (Butovsky et al., 2005). 

   

The neuroprotective effects of endocannabinoids or exogenous cannabinoid agonist 

administration may include short-term effects such as the inhibition of glutamate 

release and toxic mediators but also mediate longer term adaptations such as the 

generation of new neuronal formation and the differentiation of these neurons to 

compensate for neuronal loss during CNS insult. Currently, a large scale trial 

investigating the effect of long-term oral THC administration 

(http://www.pms.ac.uk/cnrg/cupid.php), where the potential neuroprotective 

benefits of cannabinoid therapy on symptom improvement or stabilisation will be 

investigated. 
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1.8 AIMS OF THIS STUDY 

 

In summary, there is now persuasive evidence to suggest that cannabinoids could 

be useful therapeutic agents in the treatment of a variety of neurological diseases 

including MS. However the use of cannabis is not without the potential to induce 

adverse effects. The aim of this project was to use the EAE model to investigate 

further the potential of cannabinoids in: 

1. Symptom (Spasticity) control. 

2. Autoimmunity. 

3. Progression of disease with respect to prevention of neurodegeneration. 

 

The aim was to avoid CB1 stimulation in brain centres controlling adverse 

physiological effects, using cannabinoid related agents and endocannabinoid 

modulators. 
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CHAPTER TWO 

 

      MATERIALS AND METHODS 

 
 

 
2.1. Animals  
 

Mice were from in-house bred stock that was maintained in a 12h light/dark cycle 

with controlled humidity and temperature. Animals were fed RM-1E diet and water 

ad libitum. All animal studies conformed to the United Kingdom Animals (Scientific 

Procedures) Act 1986. 

 
2.1.1. Laboratory Mice 

 

Biozzi ABH mice were from stock bred at the Institute of Neurology, University 

College London; Queen Mary University of London (QMUL), were purchased from 

Harlan UK Ltd, Bicester, Oxon UK or were donated by UCB, Cambridge, UK from 

stock held by Charles Rivers, Margate Kent. These mice were used for most studies. 

 

Crl:CD-1®(ICR) mice originated at Charles Rivers (Crl), USA from caesarian-

derived (CD) mice obtained from the Institute for Cancer Research (ICR. Chia et al. 

2005). Crl:CD-1® and C57BL/6J were purchased from Charles Rivers, UK or were 

from stock bred at QMUL. SWR/JOlaHsd, SJL/JOlaHsd; NIH/OlaHsd, Hds:NIHS, 

Hds:ICR(CD-1®), Hds:NIMR and C57BL/6/OlaHsd were purchased from Harlan 

(Hds) UK Ltd.  

 

2.1.2. Transgenic Mice 

 

These mice were bred at the Institute of Neurology, UCL and QMUL. 

 

2.1.2.1. CB1 Cannabinoid Receptor Knockout Mice 

 

CD-1.Cnr1tm1Map mice, which are deficient in the CB1 receptor (Ledent et al., 1999), 

were obtained from Catherine Ledent, Brussels, Belgium (Ledent et al., 1999). 

These were backcrossed onto the ABH mouse background for over 11 generations 

before intercross to produce congenic ABH.Cnr1tm1Map mice [Pryce et al. 2003]. 

Functional knockout of the gene was demonstrated by the lack of hypothermia and 

sedation following administration of 20mg/kg WIN-55,212-2 i.p. in 

dimethylsulphoxide (DMSO), cremophor, and phosphate buffered saline (PBS) 

(1:1:18). These animals are termed ABH.Cnr1-/- mice. Loss of receptor expression 
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was confirmed by CB1-specific immunocytochemistry as performed by the Group of 

Dr. Vincenco Di Marzo, Naples, Italy (Cristino et al., 2006). 

 

2.1.2.2. CB1 Cannabinoid Receptor Conditional Knockout Mice 

 

C57BL6.Cnr1tm1Ltz transgenic mice were obtained from Dr Beat Lutz and Giovanni 

Marsicano, Munich, Germany. These express Cnr1 genes that are flanked by Lox P 

sites (floxed) and can therefore be selectively excised following crossing with mice 

expressing Cre recombinase (Marsicano et al., 2002). C57BL6.Cnr1tm1Ltz mice were 

backcrossed to ABH mice for at least 6 generations and typically 11 generations 

prior to intercross to produce congenic floxed CB1 receptor ABH.Cnr1tm1Ltz mice. 

These are termed ABH.Cnrf/f mice 

 

To selectively delete CB1 receptors from nerves, B6.Cg-Tg(Nes-cre)1Kln/ mice 

expressing Cre-recombinase gene under control of the nestin (intermediate filament 

protein expressed in neural precursor cells, nerves and neuroglia) of the central and 

peripheral nervous systems) gene were purchased from the Jackson Laboratories. J 

(Tronche et al., 1999). These were backcrossed with ABH.Cnr1-/- for 7 generations. 

These were screened by Cre recombinase-specific PCR at each generation to 

produce ABH.Cnr1-/-.Tg (Nes-cre-/+) mice. These were crossed with ABH.Cnr1f/f 

to produce ABH.Cnr1tm1Map/tm1Ltz (ABH.Cnr1-/f) CB1 receptor heterozygote controls 

and ABH.Cnr1tm1Map/tm1Ltz.TgNes-cre neural CB1 conditional deletor (ABH.Cnr1-/f. TgNes-

Cre-/+) mice. These were screened using a Cre recombinase-specific PCR and, for 

functional loss of cannabinoid receptor from the brain, by the ability of mice to 

resist the hypothermic and sedative effects of 20mg/kg WIN55,212-2 i.p. It was 

also possible to assess deleter mice visually as they were notably smaller than non-

deleter litter mates (Table 2.1). 

 

Table 2.1 Conditional Loss of CB1 receptor from the nervous system. 

__________________________________________________________________ 

                                                 Mean Weight ± SD 

                                       ABH.Cnr-/f              ABH.Cnr-/f. TgNes-Cre-/+ 

__________________________________________________________________ 

Male   30.4 ± 2.6g (n=13)       24.4 ± 2.0g (n=8) P<0.001 

Female  23.4 ± 1.7g (n=12)       21.3 ± 2.5g (n=9) P<0.05 

__________________________________________________________________ 

ABH.Cnr1f/f mice were crossed with ABH.Cnr1-/-.TgNes-Cre-/+ mice and 7-8 old offspring were weighed. Mice 

with CB1 deleted from the nervous system, exhibited a smaller size than their litter mates.  No weight 

difference was evident between wildtype and global CB1 receptor knockout mice. 
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To selectively delete CB1 receptors from lymphocytes, B6.Cg-Tg(Lck-cre)548Jxm/J 

(Hennet et al., 1995) mice expressing Cre-recombinase gene under control of the 

thymidine kinase gene promoter were purchased from the Jackson Laboratories. J 

[Hennet et al. 1995]. These were backcrossed with ABH.Cnr1-/- for 7 generations. 

These were screened by Cre recombinase-specific PCR at each generation to 

produce ABH.Cnr1-/-.Tg (Lck-cre-/+) mice. These were crossed with ABH.Cnr1f/f to 

produce ABH.Cnr1tm1Map/tm1Ltz (ABH.Cnr1-/f) controls and ABH.Cnr1tm1Map/tm1Ltz.TgLck-cre   

lymphocyte CB1 conditional deletor (ABH.Cnr1-/f.TgLck-Cre-/+) mice. These were 

screened using Cre recombinase-specific PCR.   

  

To selectively delete CB1 receptor from peripheral nerves, transgenic C57BL/6-Tg 

(Prph1-cre)35Don/mmcd mice expressing Cre-recombinase gene under control of  

the peripherin 1 (intermediate filament protein of the peripheral nervous system) 

gene (Prph1) promoter (Zhou et al., 2002) were purchased from the mutant mouse 

regional resource center (UC Davies, CA, USA). These were backcrossed with 

ABH.Cnr1-/- for more than 15 generations. These were screened by Cre 

recombinase-specific PCR at each generation to produce ABH.Cnr1-/-.Tg (Prph1-

cre-/+) mice. These were crossed with ABH.Cnr1f/f to produce ABH.Cnr1tm1Map/tm1Ltz 

(ABH.Cnr1-/f) controls and ABH.Cnr1tm1Map/tm1Ltz.TgPrh1-cre  peripheral nerve CB1 

conditional deletor (ABH.Cnr1-/f. TgLck-Cre-/+) mice. These were screened using Cre 

recombinase-specific PCR.   

 

 

2.1.2.3. CB2 Cannabinoid Receptor Knockout Mice 

 

B6.129P2-Cnr2tm1Dgen/J homozygous CB2 receptor knockout mice, which were 

produced by Deltagen Inc. (Wotherspoon et al., 2005) were purchased from 

Jackson Laboratories, USA.  These mice had been backcrossed onto the C57BL/6 

background for more than 5 generations at the time of arrival. These are termed 

B6.Cnr2-/- mice. These mice were backcrossed, at least 4 generations prior to 

intercross, with the ABH mice to produce ABH.Cnr2tm1Dgen, termed ABH.Cnr2-/- 

mice. Cnr2tm1Dgen/J mice lack CB2 receptor expression. In contrast B6.Cnr2tm1Zim, 

which were obtained from Dr. G. Kunos, NIH, Bethesda, MD, USA, only lack 

intracellular loop 3, transmembrane domains 6 and 7, and the carboxy terminus 

due to replacement of the 3’, 341 nucleotide base pairs of Cnr2 with a neomycin 

resistance cassette, that functionally inactivates CB2 receptor (Buckley et al., 

2000). These mice were bred at the University of Aberdeen by Prof. Ruth Ross.  
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2.1.2.4. G-protein Coupled Receptor 55 Knockout Mice. 

 

B6.129-Gpr55tm1Lex/J homozygous GPR55 receptor knockout mice, termed B6.129-

Gpr55-/- mice, which were produced by Lexicon Inc. were purchased from Jackson 

Laboratories, USA. (www.jax.org).  

 

2.1.2.5. Transient Receptor Potential Vanilloid Receptor 1 Knockout Mice. 

 

C57BLB6.Trpv1tm1Jbd mice, which are deficient in transient receptor potential cation 

channel, subfamily V, member 1 (Vanilloid receptor-1), were obtained from Dr John 

B Davis, Glaxo Smith Kline, Stevenage, UK. These were backcrossed with ABH mice 

for 6 generations and screened for the expression of the neomycin resistance gene, 

prior to intercross to produce ABH.Trpv1tm1Jbd mice. These were termed 

ABH.Trpv1-/-   Functional knockout of the gene was demonstrated following the 

lack of hypothermia and sedation following administration of 0.5mg/kg arvanil 

(Cayman Biochem, UK) i.v. in alchohol, cremophor, and phosphate buffered saline 

(1:1:18). Loss of receptor expression was confirmed by TRPV1-specific 

immunocytochemistry as performed by the Group of Dr. Vincenco Di Marzo, Naples, 

Italy (Cristino et al., 2006). 

 

 

2.1.2.6.  Fatty Acid Amide Hydrolase Knockout Mice. 

 

C57BL/6/129.FaahTm1Crv mice, termed B6.Faah-/- were obtained from Dr. Benjamin 

Cravatt, Scripps Institute, La Jolla, CA, USA (Cravatt et al., 2001). These had been 

backcrossed with C57BL/6 mice 4 generations at the time of arrival. Heterozygous 

mice were crossed to produce B6.Faah+/+ and B6.Faah-/- litter mates. In addition, 

C57BL/6/129.FaahTm1Crv were backcrossed for a least 11 generations prior to 

intercrossing to produce ABH.FaahTm1Crv mice termed here. ABH.Faah-/-. It has 

been reported that levels of FAAH can influence fertility and miscarriage 

(Maccarrone et al., 2002) and due to repeated episodes of poor breeding-

performance, such as failure to produce or keep litters, the colony was maintained 

as male ABH.Faah-/- x female ABH.Faah-/+ mice and offspring screened before use.  

Functional deletion of FAAH was demonstrated by hypothermia and sedating effect 

of 1mg/kg anandamide i.v.   

 

Mass spectroscopic analysis of endocannabinoid: anandamide (AEA) and 2-AG 

levels using Liquid crystallography mass spectrometry techniques as used 

previously (Baker et al., 2001) was used to demonstrate an increase in the levels of 

anandamide In the spinal cord of ABH.Faah-/- mice as previously reported to occur 



 56 

(Cravatt et al., 2001). This was performed by Dr. Tiziana Bisogno in the group of 

Prof. Vincenco Di Marzo, Naples, Italy.  The influence of Faah gene deletion on CB1 

receptor expression was assessed by ligand binding, in situ hybridization receptor 

signaling potential in the brains of FAAH-deficient mice as described previously 

(Cabranes et al., 2006). This was performed by Anna Cabranes in the group of Dr. 

Javier Fernades-Ruiz, Madrid, Spain.  

 

2.1.2.7. P-Glycoprotein Knockout Mice. 

 

Wildtype FVB and congenic FVB.Abcb1aTm1Bor /Abcb1bTm1Bor double transgenic 

(termed FVB.Abcb1a/Abcb1b-/-) p-glycoprotein deficient mice originating from 

Taconic Farms Inc. Germantown, NY, USA were from stock bred at the Kings 

College London (Yau et al., 2007). These mice were provided by Dr Sarah A 

Thomas and Dr. Carmine M. Pariante, Kings College London and injections into 

these mice were performed at Kings College London by Brittany Mason. 

 

2.2. Genotyping of Animals 

 

2.2.1. Production of Crude DNA. 

 

Initial tail tips and more latterly ear biopsies were removed from weaned mice, in 

some instances under local anaesthetic. DNA samples were prepared following 

digestion overnight at 60°C in 500µl 0.2µg/ml Proteinase K (Invitrogen, Paisley, UK) 

in NucleonTM Reagent B lysis buffer pH8 (400mM Tris/HCl 400, 60mM EDTA 60, 

NaCl 150mM SDS 1%). 150µl 5M sodium perchlorate was added followed by a 

further 30minute incubation at 60°C . Equal volumes of chloroform were added, the 

sample vortexed, centrifuged for 4 minutes at 1400rpm in an Eppendorf microfuge. 

The aqueous phase was added to 2 volumes of cold ethanol to precipitate the DNA, 

which was then dissolved in water.  In later experiments, DNA was isolated from 

ear biopsies using a Qiagen DNeasy extraction kit (Qiagen, Crawley, UK) using the 

protocol provided by the manufacturer. 
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2.2.2 Polymerase Chain reaction (PCR). 

 
DNA from tail or ear biopsies were screened by PCR (Cycles 30-35; 94ºC 60 s,  

annealing temp 50, 55 0r 60º C, 72º C 60s) using Qiagen PCR core kit reagents 

(Qiagen, Crawley, UK). 

 

Per sample reaction mixture; 

Premix 

Qiagen buffer (10x) 2.5 µl. 

Qiagen dNTPs (10mM) 0.5µl. 

Qiagen MgCl2 (25 mM) 0.5µl. 

H2O 1.5µl. 

 

For each PCR reaction; 

Premix 5µl 

Primer A (forward) 0.5µl. 

Primer B (reverse) 0.5µl. 

Q buffer(Qiagen) 5µl. 

H2O 8.7µl. 

DNA sample from Dneasy extraction 5µl. 

Qiagen Taq DNA polymerase 0.3µl. 

Samples were run using a Hybaid Omigene thermal cycler (Hybaid, Cambridge, 

UK). 

PCR products were analysed by 2% Agarose (Sigma, Poole, UK) in 1x 

Tris/Borate/EDTA (TBE) buffer (Sgma, Poole, UK) gel electrophoresis (120 volts) for 

60-90 minutes. 
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Table 2.2 Primer Sequences used for Screening Transgenic Mice. 

 
 

 
 

 
_________________________________________________________________________ 

Target       Primer Sequence                Annealing Temp       Band size
  
__________________________________________________________________________________ 

 Wildtype Cnr1   5'-CATCATCACAGATTTCTATGTAC-3'    55°C           366bp 

5’-AGGTGCCAGGAGGGAACC-3';  

 

Cnr1-deletion   5'-GATCCAGAACATCAGGTAGG-3'                  55°C           521bp 

5' AAGGAAGGGTGAGAACAGAG-3'  

 

Wildtype& floxed-Cnr1 5'-GCTGTCTCTGGTCCTCTTAAA-3'                 55°C      WT 210bp        

5'-GGTGTCACCTCTGAAAACAGA-3'                                 Transgene 255bp                                    

 

CreRecombinase              5'-ACCAGCCAGCTATCAACTC-3'                  55°C            300 bp 

5'-TATACGCGTGCTAGCGAAGATCTCCATCTTCCAGCAG-3'   

 
 
CB2 wildtype  Forward  5’-GGGGATCGATCCGTCCTGTAAGTCT-3’         60ºC           350bp 
 
   Reverse1 5’-GGAGTTCAACCCCATGAAGGAGTAC-3’ 
 
CB2 knockout allele        Reverse2 5’-GACTAGAGCTTTGTAAGGTAGGCGGG-3’                           500bp 
 

 
FAAH   Forward 5’-TAACTAGGCAGTCTGACTCTAG-3’ 
 
               Reverse1 5’-ACTCAAGGTCAGCCTGAAACC-3’               50ºC        WT 200bp       
 
                                       Reverse2 5’-TTTGTCACGTCCTGCACGACG-3’                    Transgene 320bp  
 
GPR55   Forward 5’-TCTGGATTCATCGACTGTGG-3’                    55ºC 

    
                                      Reverse1 5’-CTCCACAATCAAGCTGGTCA-3’                   WT 207bp       
    
                                      Reverse2 5’-GTCACCCATCCAGGTGATGT-3’         Transgene 299bp  
 

LacZ  5’-GAATCTCTATCGTGCGGTGGTTGA-3’                 55°C           522 bp
  
5’-GGATCGACAGATTTGATCCAGCGA-3’   
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2.2.3. P-glycoprotein and CNS exclusion pump activity.  

 

To determine whether mice exhibited wildtype brain-derived p-glycoprotein 

(Abcb1amdr multidrug resistance (mdr) pump) or harboured the 0.52kb viral insert 

at the intron22, exon23 boundary associated with the Abcb1amds multidrug 

susceptible (mds) variant (Jun et al., 2000; Pippert & Umbenhauer, 20010, DNA 

was subject to PCR. Negative control (C57BL/6) and positive control (p-

glycoprotein-deficient mutant CF-1Abcb1amds mice) DNA was supplied from Charles 

Rivers, USA. Primers: 5’-ACAAGGTCAACCATGAGTCC-3’ and 5’-

AGTTGTTGTGTTCACCAAGTAG-3’ in intron 22 and exon 23 of Abcb1a, respectively 

were designed to produce a PCR products of 883bp (wildtype allele) and about 

1400bp for the mutant allele. Intron 22 and reverse primers 5’ctgttcatccgaatcgtgg3’ 

within the long terminal repeat of the mouse leukaemia virus produced an 848bp 

product in mutant allele [Jun et al. 2000]. DNA was subject to polymerase chain 

reaction: 94°C 5min and 35 cycles 94°C 1min, 56° 1min, 72°C 5min and products 

detected by agarose electrophoresis. This was undertaken by Prof. Alison 

Hardcastle, Institute of Ophthalmology, UCL, London, UK. 

 

2.2.4. Ribonucleic Acid (RNA) extraction and Microarray. 

 

100 mg of cerebral cortex tissue from CT3 responder and non-responder CD1 mice 

was collected in 10 x volume RNAlater  (Qiagen, Crawley, UK) and stored at -70°C 

prior to homogenisation.  This tissue was collected at least 2-3 weeks following 

phenotyping. Tissue was homogenised with a sterile autoclaved pestle and mortar 

in 1 ml of Trizol reagent (Invitrogen, Paisley, UK) under liquid nitrogen. The 

resulting Trizol plus tissue powder was transferred to a sterile 2 ml safelock 

microcentrifuge tube and stored at -70°C. For phase separation, homogenised 

samples were incubated at room temperature to allow the complete dissociation of 

nucleoprotein complexes. 0.2 ml of chloroform was added per 1 ml of Trizol sample, 

mixed by vortex mixer and incubated at room temperature for 3 mins. Samples 

were centrifuged at 12,000 x g for 15 mins in a bench-top centrifuge (Eppendorf, 

Cambridge, UK). The upper aqueous phase was collected and transferred to a new 

Eppendorf tube and an equal volume of 70% ethanol was added and mixed 

thoroughly with the sample. 700 µl of the sample was applied to the membrane of 

an RNeasy spin column (Qiagen, Crawley, UK),  placed in a collection tube supplied 

by the manufacturer and centrifuged for 15s at 8000 x g. Flow-through was 

discarded and a second 700µl aliquot was added  centrifugation repeated and flow-

through discarded. After three washing steps, according to the manufacturer’s 

protocol, the spin column was transferred to a new collection tube (supplied) and 

RNA was eluted from the spin column by the addition of 10µl of RNAse-free water 
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to the membrane and centrifugation at 8000 x g for 1 min. This elution step was 

repeated by the addition of a further 10µl of RNAse-free water and centrifugation. 

Samples were stored in safelock microcentrifuge tubes at -70°C prior to analysis by 

the Genome Centre, QMUL, London, UK. 1µg of RNA was subject to quality control 

and microarray analysis using Illumina® MouseRef-8 v2.0 Expression BeadChips 

(Illumina, Cambridge, UK), which detects approximately 25,600 well-annotated 

RefSeq transcripts and enables the interrogation of eight samples in parallel. 

GenomeStudio Data was analysed using GenomeStudio software (Illumina, 

Cambridge, UK). This was performed by Lia De Faveri and Charles Mein at the 

Genome Centre, QMUL, London, UK. 

 

2.3 Chemicals 

 

2.3.1. Vehicles 

 

The cannabinoid compounds are very hydrophobic and they can create a problem 

with regard to the choice of vehicles. This has changed over the time of the project. 

Initially [Baker et al. 2000], this involved dissolving compounds in ethanol 

containing Tween 80 (Sigma Poole, UK) and using a rotary, vacuum evaporator 

over 2h the ethanol was removed and the compounds were then resuspended in 

PBS. Cannabinoid compounds tended to form cloudy solutions. Intralipid® 30% 

(Pharmacia, Milton Keynes, UK), used for i.v. formulation in humans was used as a 

vehicle for some experiments, but was subsequently found to slow movement of 

animals when assessed by open-field activity monitoring. The typical vehicle 

contains ethanol cremophor and PBS (ECP) in a 1:1:18 ration. The compound is 

dissolved in ethanol followed by the addition of cremophor (Sigma, Poole, UK) and 

PBS.. R(+)WIN55,212-2 is more soluble in DMSO than in ethanol and was used 

with cremophor and PBS (1:1:18) vehicle (DCP) mixture.  

 

2.3.1. CB1-targeted Cannabinoid Receptor Reagents. 

 

The full CB1/CB2 receptor agonists R(+)WIN-55,212-2 (R(+)WIN-55) and its inactive 

enantiomer  S(-)WIN-55,212-3 were purchased and CP55,940 were purchased from 

RBI/Sigma (Poole, UK) or Tocris Ltd (Bristol, UK).   ∆9Tetrahydrocannabinol (THC) 

was provided by National Institute for Drug Abuse (NIDA) Supply Program. In 

addition, the non-CB1 receptor-binding compound cannabidiol (CBD) was 

generously provided by Dr. Malfait and Prof. Marc Feldmann, Imperial College 

London and Dr. Ruth Gallily, Hebrew University, Jersusalem, Israel or was 

purchased from Sigma (Poole, UK). The non CB1/CB2 selective agonist; RWJ352303 

(Ki CB1R =0.6nM Ki CB2R=0.3nM. Forskolin-stimulated cAMP agonism in SKN cells 
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IC50 CB1R =0.64nM, IC50 CB2R = 0.14nM (Dr. D. Argentieri and Dr. D Ritchie, 

unpublished observations) was supplied by RW Johnson (Raritan, NJ, USA). These 

were dissolved in ECP or DCP prior to intraperitoneal (i.p.) or intravenous (i.v.) 

injection with typically 0.1ml.  SR141617A (rimonabant), a CB1 receptor antagonist 

was supplied by the NIDA drug-supply program. 

 

2.3.2. CB2-selective Cannabinoid Receptor Reagents. 

 

The CB2 selective agonist; JWH056 (Receptor Affinity. Ki CB1=8770nM, Ki 

CB2=32nM), was provided by Dr. J. Huffman, Clemson University, USA (Huffman et 

al.,1996). The CB2 selective agonist; RWJ400065 (Binding Affinity. Ki CB1R=600nM, 

Ki CB2R =10nM. Forskolin-stimulated cAMP agonism IC50 CB1R= 6600nM, IC50 CB2R 

=6.6nM (Dr. D. Argentieri and Dr. D Ritchie, unpublished observations) compounds 

were provided R.W. Johnson (Raritan, NJ, USA). These were suspended in 

intralipid® 30% (Pharmacia, Milton Keynes, UK) prior to i.v. or i.p. injection in 

0.1ml. In addition JWH133 (Ki CB1 = 600nM, Ki CB2 = 3.4nM) was purchased from 

Tocris, (Bristol,UK), and dissolved in ECP. 

 

2.3.2. CNS Excluded CB1-Receptor Agonists.  

 

2-(2-hydroxy-ethylcarbamoyoxymethyl)-5,7-dimethyl-3-(2-methylsulphamoyl-

phenyl)-4-oxo-3,4-dihydro-quinazoline-6-carboxylic acid ethyl (Adam-Worrall et al., 

2007) termed here SAD488 was synthesized by Dr. Cristina Visintin, Wolfson 

Institute, UCL as described previously (Brain et al., 2003; Adam-Worrall et al., 

2007) or was supplied by Novartis (Basel, Switzerland). 1′,1′-dimethylheptyl-∆8-

tetrahydrocannabinol-11-oic acid (CT3/ajulemic acid) (Rhee et al., 1997, Burstein 

et al., 2004) was supplied by Atlantic Ventures Inc, New York, USA. Naphthalen-1-

yl-(4-pentyloxynaphthalen-1-yl) methanone (CRA13. Dziadulewicz et al., 2007; 

Gardin et al., 2009), termed here SAB378 and SAB722 a CNS-penetrant CB1 

agonist with IC50 CB1R = 11nM and Cyclosporin A (CsA) were supplied by Novartis.  

The compounds were dissolved in ECP and were injected intravenously via a tail 

vein using a 30g needle, intraperioneally (i.p.), or were administered by oral 

gavage in a volume of 0.1ml.  

 

 

2.3.3.  Endocannabinoid Degradation Inhibitors.   

 

1-(Oxazolo[4,5-b]pyridin-2-yl)-1-oxo-9(Z)-octadecene (Compound 29. Boger et al. 

2003) termed here CAY10400 and 1-(Oxazolo[4,5-b]pyridin-2-yl)-1-oxo-6-

phenylhexane (Compound 53 Boger et al. 2000) termed here CAY10402 were 
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supplied by Novartis Ag, Basel, Switzerland, or were purchased from Cayman  

Chemicals, UK. AM404 was purchased from Tocris Ltd (Bristol, UK). These were 

reconstituted (20mg/ml) in warmed ethanol prior to dilution in Intralipid vehicle 

(Intralipid 30%. Pharmacia, Milton Keynes, UK), prior to the injection intravenously 

of 0.1ml into the tail vein.  The MAG Lipase inhibitor JZL184 was a generous gift of 

the Skaggs Institute, Scripps Research Institute, La Jolla, USA. This was 

reconstituted in Ethanol;Cremophor:PBS (1:1:18) and injected into the tail vein of 

spastic animals in a volume of 0.1 ml, 5 mg/kg. 

 

2.3.4. Inhibitors of CNS efflux Pumps. 

 

Cyclosporin A (CsA) was supplied by Novartis (Basel, Switzerland) this was injected 

i.v. at 50mg/kg in ECP (Hendrikse et al. 1998).  Mitoxantrone (MX) was supplied by 

Lederle (Cyanamid, Gosport, UK) and 5mg/kg was injected i.p. (Baker et al., 1992). 

3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl)-(3-dimethyl-amino-3-oxopropyl)-

thio)-methyl)thio)propanoicacid (MK571) was purchased from Merck chemicals 

Nottingham, UK. These compounds were dissolved in PBS before use. Compounds 

were administered 30 minutes prior to the subsequent administration of 

cannabinoids. 

  

2.3.5. Non-Cannabinoid Receptor Reagents. 

 

3-(5-Cyano-pent-1-enyl)-N-(2-hydroxy-1-methyl-ethyl)-benzamide(VSN15), 

3-(5-dimethylcarbamoyl-pent-1-enyl)-N-(2-hydroxy-1-methyl-ethyl)benzamide 

(VSN16) and the VSN16S and VSN16R enantiomers were synthesised as described 

previously [Hoi et al., 2007]. VSN16 was sometimes dissolved in saline or water for 

intravenous or oral administration respectively. These were injected intravenously 

via a tail vein using a 30g needle or were administered by oral gavage in a volume 

of 0.1ml. Baclofen was purchased from RBI/Sigma (Poole, UK) and was dissolved in 

PBS prior to i.v. injection. Arvanil, a potent Trpv1 agonist, was purchased from 

Cayman Biochem, USA.  

 

 

2.4 Receptor Binding Assays.  

 

The compounds were tested in the the rat and mouse vas deferens in the 

Laboratories of Roger Pertwee and Ruth Ross, University of Aberdeen as described 

previously (Pertwee et al., 1992). Additional studies were performed by contract 

research organisations (CRO) on cell lines transfected with human receptors. These 

were performed by; CEREP, Poitiers, France; Euroscreen, Brussels, Belgium; 
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Multispan Inc, Hayward, California, USA; ChanTest, Rockville, Maryland, USA and 

also MDS Pharma services, Taipei, Taiwan, where it was also shown that VSN16R 

failed to reveal any evidence of cell cytotoxicity or mutagenicity at 30mg/ml 

(approximately 10mM) in the Ames Test (Maron and Ames, 1983), using the TA98, 

TA100, TA102 and TA1537 strains of Salmonella typhimurium.  

 

2.5 Pharmacokinetics.  

 

The stability to hepatic and plasma degradation of VSN16 was assessed in vitro by 

Inpharmatica, Cambridge, UK. Compounds (1µM) were incubated with either pooled 

mouse microsomes (0.1mg protein/ml) or pooled mouse plasma at 37oC for 0, 5, 

10, 20 and 40 minutes before termination with acetonitrile containing warfarin as 

analytical internal standard. Samples were centrifuged and the resultant 

supernatant analysed for parent compound. The mass responses at baseline were 

taken as the 100% reference values against which compound disappearance was 

measured. The natural log of the percentage remaining values was used to 

generate linear plots of disappearance of the compounds. Half-life values were 

calculated from the slope of these plots. 

 

The stability of VSN16R was assessed in vivo by Inpharmatica. Blood (plasma) 

samples were obtained prior to and 5min-8hours after drug administration of 2-

5mg/kg i.v. or 5mg/kg p.o. VSN16R into outbred mice and rats (n=3 per time-

point). Immediately after blood collection the brain and spinal cord were removed 

and then stored at -20ºC prior to assay. Tissue samples were weighed, 

homogenized and centrifuged and the lysates generated. Brain lysates and plasma 

were assayed by liquid chromatography-mass spectrometric assay methods by 

Inpharmatica, Cambridge, UK. The detection limit was 2ng/ml in plasma and brain. 

Pharmacokinetic parameters were assessed using PK solutions 2.0 software 

(Summit Research Services, Montrose CO, USA) by Inpharmatica, Cambridge, UK 

 

2.6 . Induction of Experimental Allergic Encephalomyelitis. 

 

2.6.1. Preparation of Spinal Cord Homogenate. 

 

20-50 animals, typically ex-breeders were killed by CO2 overdose. The head was 

removed using scissors and the spinal column was severed at the level of the 

pelvis, whilst holding the mouse. Once the cut is made the hindlimbs drop when the 

column is severed any blood will drain and the spinal cord becomes visible. A 20g 

needle attached to 20 ml syringe filled with distilled water was inserted into the 

spinal column. Tin foil was placed under the neck end of mouse to collect the cord. 
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The spinal cord was expelled from the cervical end by hydrostatic pressure. The 

pooled spinal cords were homogenised in a glass hand homogeniser.  Parafilm M 

(Sigma, Poole, UK) was used to seal the aperture of the glass homogeniser and 

multiple holes were made in the parafilm with a 25g needle, to allow the water to 

escape when freeze dried. Homogenate was frozen in -70°C freezer overnight and 

placed in a Freeze dryer (Edwards, Crawley, UK and freeze dried for 24-48hour. 

The dried spinal cord homogenate from the homogenizer was removed, placed on 

foil and diced to a fine dust with a single edged razor blade to make a fine powder 

and stored in 7 ml Bijoux containers (Sterilin, Caerphilly, UK)  at -20°C. 

 

2.6.2 Preparation of Inoculum for Spinal Cord-Induced Disease ABH Mice. 

 

20ml syringes (Becton Dickinson, Oxford, UK) were to make up the solution (i.e. 

multiples of 20ml). Firstly a stock solution was prepared (stock A), consisting  of 

4ml incomplete Freund Adjuvant (Difco, Becton Dickinson, Oxford, UK),16mg 

Mycobacterium tuberculosis H37Ra and 2mg M butyicum (Difco, Becton Dickinson, 

Oxford, UK), in a 5ml Bijou (Sterilin, Caerphilly, UK).  This was kept for no longer 

than 1 month at 4°C. Stock Mycobacteria were stored at -70°C. Once a vial was 

opened it was stored in fridge/freezer. If the incidence of EAE dropped to about 

50% it was usually that the M tuberculosis had lost its potency and needed 

replacing.  Complete adjuvant: Freund’s adjuvant was prepared by adding 11.5ml 

adjuvant incomplete Freund’s adjuvant to 1ml stock A that was vortex-mixed 

before use.  

 

The plunger from a 20ml syringe was removed and the barrel was plugged with a 

stopper cap (Scientific Laboratory Supplies, Nottingham, UK).  5ml sterile PBS was 

added and 33mg of freeze dried spinal cord homogenate (6.6mg/ml). This was 

mixed and then 5ml of Complete Freund’s adjuvant was added (see above). The 

syringe was sealed with Parafilm and vortexed. A retort stand, boss and clamp was 

used to hold the 20ml syringe in place with the water level reaching the level of the 

adjuvant (containing a drop of detergent) in a waterbath sonicator (Bransonic 

Ultrasonicator, Sigma, UK) and sonicated for 10 min to thicken the mixture and 

dissociate the spinal cord homogenate. The adjuvant was vortexed and placed on 

ice to cool. A 1ml syringe (Becton Dickinson, Oxford, UK) was inserted into the 

20ml syringe and the adjuvant was pumped using the 1ml syringe until it had 

thickened sufficiently that the solution did not disperse when a drop was added to 

water. The plunger was inserted into the 20ml syringe and the syringe was tapped 

on the bench such that the content moved towards the plunger and then the 

syringe cap was removed. A long (6cm) large bore needle was fixed to the syringe 

and insered into 1ml syringes with plungers pulled out to the 1ml mark.  The 
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syringe was filled to 1ml and the barrel of the 1ml syringe was wiped with tissue 

paper to remove any excess adjuvant. A 16mm 25g needle (Becton Dickinson, 

Oxford, UK) was fixed to the 1 ml syringe. With the tip of the needle cover on the 

bench, the syringe was pushed very firmly onto the needle. 

 

2.6.3 Preparation of Inoculum for MOG-Induced Disease in C57BL/6 Mice. 

 

The procedure was followed as above in 2.5.2 except that the spinal cord 

homogenate is replaced with a synthetic peptide amide corresponding to the 35-55 

amino acid residues of mouse myelin oligodendrocyte glycoprotein MOG35-55 made 

as a peptide amide. 

 

2.6.4. Injection of Animals. 

Disease was typically induced in 6-8 week male and or female mice. Mice were held 

at the nape of the neck between thumb and forefinger. The tail was held with the 

right hand with thumb and forefinger (tips facing the head) and the mouse was 

placed on the top of a wire mouse cage.  The skin of the dorsal surface of the flank 

was lifted with thumb and forefinger (left hand) and the needle was inserted (facing 

towards the head) subcutaneously into the mouse.  0.15ml of adjuvant was 

injected into the right flank and another 0.15ml was injected into the left flank. This 

was day 0. The procedure was repeated one week later (day 7). Injections were 

below, more posterior to the original injections. EAE ABH disease developed at 

around day 14-15 (Baker et al. 1990, Amor et al. 1994). A relapse could be induced 

about 7-8 days after a further injection of neuroantigen in Freund’s complete or 

incomplete adjuvant (O’Neill et al. 1991).  ABH mice did not require the injection of 

B pertussis toxin (Sigma, Poole, UK), however, MOG-induced disease in C57BL/6 

mice typically required the co-administration of 0.1ml of 200ng B. pertussis toxin in 

PBS on day 0 and day 7.   
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2.6.5 Clinical Disease Scoring. 

Figure 2.1. Induction and Assessment of Chronic Relapsing Experimental Allergic 
Encephalomyelitis. 
 

 

Animals were weighed and scored daily from day 10 onwards. At approximately day 13, mice lost more 
than 1.5g overnight. Weight loss continued for a few days. On about day 15, clinical signs start (Figure 
2.3). This was ascending paralysis that started with the tail. This was scored as follows: 

Normal = 0 

Fully flaccid tail = 1. Tail is completely paralysed. Tail does not lift but has some 

tone. E.g.  Tail can bend round finger. Lift the mouse by the scruff of the neck and 

the tail will helicopter = (1) = 0.5. This is the typical score of remission 1. 

Impaired righting reflex. = 2. When turned on back, the animal does not right 

itself. If it rights itself slowly it received a score of (2) = 1.5. 

Hindlimb paresis = 3. Significant loss of motor function of the hindlimbs. 

Hindlimb gait disturbance = (3) = 2.5. This is typical score of remission 2-3. 

Complete hindlimb paralysis = 4. Both hind limbs drag.  Limbs virtually 

paralysed but have some minor movement or one leg fully paralysed = 3.5= (4). 

 Limp tail 

Impaired                

righting reflex 

hindlimb paralysis 

Moribund 

 partial paralysis 

 Normal 

Remission 

Clinical Scale 

 

Day 7 Day 0 

Spinal cord homogenate in Freund’s complete adjuvant 
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Moribund/Death = 5. If forelimbs became paralysed, the animal was euthanised.  

We have set a weight loss limit of about 35% from the day 10 weight. However, 

animals that will die lose the ability to thermoregulate and appear cold to the touch. 

Relapse = Increase of Disease Score, usually accompanied with weight loss 

The data are presented as the mean daily clinical score ± standard error of the 

mean (SEM) or the mean maximal clinical score of the group (Group Score) ± SEM; 

the mean maximal clinical score of the animals that developed clinical disease (EAE 

Score) ± SEM and the mean day of onset ±  standard deviation (SD). Differences 

between groups were assessed using non-parametric, Mann Whitney U statistics 

using Minitab Software (O'Neill et al. 1992, Pryce et al. 2003a).  

 

2.7. Behavioral Testing. 

 

2.7.1. Open-Field Activity Monitoring. 

 Motor activity was assessed in a 27.9cm x 27.9cm open field activity monitor 

chambers and computer software  (Med Associates Inc, St. Albans, VT, USA.) and 

typically performed in a darkened room.  Recording were initiated once the mouse 

entered the chamber and continued for 5 minutes. These chambers, allowing 4 

simultaneous recordings of individual mice, were fitted with infrared beams that 

could detect movement in the X, Y planes. The total distance travelled (cm) was 

recorded.  

 

2.7.2. Temperature Measurement. 

 

Temperature was monitored by using a K-type single input thermocouple 

thermometer (Portec, Wrestlingworth, UK), or (ATP Instrumentation, Ashby-de-la-

Zouch, UK) , placed under the hindlimb in the inguinal region. The temperature was 

allowed to equilibrate for 30-60s and was recorded once the temperature failed to 

increase further(Brooks et al. 2002).  

 

2.7.3.  Rotorod Activity Monitoring.  

 

Motor control and coordination was assessed on an accelerating (4 – 40 rpm. 

12rpm/50s) RotaRod treadmill (ENV-575M. Med Associates Inc, St. Albans, VT, 

USA), during the remission phases of the disease, over a maximum 5 minute 

observation period. The trial was terminated when the mouse either fell from the 
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RotaRod spindle or if the mouse failed to tolerate the revolving drum shown by 

holding onto the RotaRod spindle rod for two consecutive turns. 

 

2.7.4. Gut Motility. 

 

Gut motility was assessed by counting and weighing the number of faecal pellets 

passed in 2 hours by mice into clean cages (Fride et al., 2004).  Differences 

between groups were assessed using t tests using Sigmastat software (Aspire 

Software International, Ashburn, VA, USA). 

 

2.7.5. Bladder Volume. 

 

Bladder volumes were measured using a high resolution portable digital ultrasound 

system (Sonosite® MicoMaxx®, BCF Innovative Imaging, Livingston, Scotland, UK) 

with a 13-6 MHz 26 mm linear array transducer. The ultrasound system acquires a 

high resolution 2D image from which volumetric calculations were made. For 

bladder measurements, the abdomens were shaved using electric clippers (Andis D-

4D Combo, Sandown Scientific Ltd, Hampton, Middlesex, UK) and an ultrasound gel 

(Alpha tube ultrasound scanning gel, BCF Innovative Imaging, UK) was applied. The 

animal was gently restrained, and the transducer was first placed longitudinally 

against the animal to capture the maximum bladder length and depth. Next; the 

transducer was rotated 90⁰ in order to capture the maximum width of the bladder. 

The volume of bladder urine was automatically calculated by the ultrasound 

imaging software (Al-Izki et al., 2009). 

 

2.7.6.  Spasticity Measurement. 

 

Following EAE induction and the development of chronic relapsing EAE, spasticity 

typically developed after 2-3 relapses, about 80-100 days post-induction (Baker et 

al., 2000). This was assessed during remission from active paralytic episodes by 

the force required to bend the hind limb to full flexion against a strain gauge (Baker 

et al., 2000). The limb was extended two-three times and then the limb was gently 

pressed against a strain gauge to full flexion. The measurement of left then right 

hindlimbs was repeated typically 5 times per time point. Analogue signals were 

amplified and then digitized and captured using either: a PCMDAS16S/12 PCMICA 

card (ComputerBoards Inc, Middleboro, MA, USA) and Dacquire V10 software (D. 

Buckwell, Institute of Neurology, UCL) on a WindowsTM 98 platform or a DAQcard 

1200 PCMICA card (National Instruments Austin, TX, USA) and Acquire V1 software 

(D. Buckwell, Insititute of Neurology, UCL) on the WindowsTM XP platform. The data 
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were analyzed using Spike 2 software (Cambridge Electronic Design, UK) and a 

mean score for each limb at each time point was calculated and forces were 

converted to Newtons. Each group contained a minimum of 5 different animals and 

the results represent the mean ± SEM resistance to flexion force (N) or individual 

limbs, which were compared using repeated measures analysis of variance or 

paired t tests using SigmaStat software (Baker et al., 2001). 

 

2.8. Assessment of Immune Function in EAE. 

 

Lymph node cells from cannabinoid-treated C57BL/6 mice immunized with MOG35-55 

in Freund’s adjuvant without B.pertussis toxin as co-adjuvant were cultured with 

MOG35-55 peptide (Croxford & Miller, 2003; Fuller et al., 2004). Cytokine production 

was assessed using cytokine bead array analysis 48h after antigen pulsing and 

proliferation was assessed using 3H-thymidine incorporation as described previously 

(Croxford & Miller, 2003). These studies were all performed by Dr J. Ludovic 

Croxford, Tokyo, Japan. 

 

2.9. Assessment of Neuroprotection in EAE. 

 

Axonal content was assessed using neurofilament-specific ELISA (Pryce et al., 

2003a). Whole spinal cords were homogenized in 500 µl of barbitone buffer [11 mM 

barbital, 63 mM sodium barbital, 1.2 mM EDTA (Sigma)] containing a protease 

inhibitor cocktail and 4 mM EGTA in a glass homogeniser. Lipids were extracted 

from the sample by adding di-isopropyl-ether (Sigma) at 1: 5000 and centrifuging 

for 5 min at 20,000xg. The supernatant was frozen and stored in aliquots at –70°C, 

and the total protein was measured using the standard Lowry method. Ninety-six 

well microtiter plates (Maxisorp; Nunc, Rochester, NY, USA) were coated overnight 

at 4°C with the monoclonal antibody against neurofilament heavy chain (SMI35; 

Sternberger Monoclonals Inc., Lutherville, MD, USA) diluted in 0.05 M sodium 

carbonate (pH 9.6). This was washed (barbitone buffer containing 5 mM EDTA, 1% 

bovine serum albumin and 0.05% Tween-20 (Sigma, Poole, UK) and non-specific 

protein binding was blocked by incubation with 1% bovine serum albumin in 

barbitone buffer for 1 h at room temperature. Spinal cord homogenates were 

serially diluted to 1:10 000 in barbitone buffer containing 5 mM EDTA (Sigma, 

Poole, UK), and incubated at room temperature for 2 h. After washing, a rabbit 

polyclonal anti-neurofilament H antibody (N-4142; Sigma, Poole, UK), diluted 

1:1000, was incubated at room temperature for 1 h. Following another wash, 

horseradish peroxidase-conjugated anti-rabbit immunoglobulin diluted 1:1000 was 

incubated for 1 h at room temperature. The tetramethylbenzidine (TMB) 

chromogenic reagent system (R & D Systems, Abingdon, UK) was used to detect 
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protein levels in the samples. Signal development was stopped using 1 M 

Phosphoric acid, and the plate was read at 450 nm, with a reference reading at 620 

nm on a Synergy HT ELISA plate reader (BioTek, Vermont, USA). The antigen 

concentration for each sample was calculated from an internal standard curve 

ranging from 0 to 250 ng/ml (high-performance liquid chromatography-purified 

bovine neurofilament H; Affiniti Bioreagents, Golden, Colorado, USA). All samples 

were analysed in duplicate.  This was performed by Samuel Jackson and Sarah Al-

Izki . 

 

2.10 Immunopathology 

 

2.10.1. Tissue Sections.  

 

Post-mortem central nervous system tissues from donors with multiple sclerosis 

were collected and classified by Prof. Paul Van der Valk and Dr Sandra Amor (Free 

University of Amsterdam, The Netherlands). The lesions were from patients with 

secondary progressive MS. Tissue was fixed in 10% formol saline and embedded in 

paraffin wax. All patients and controls, or their next of kin, had given informed 

consent for autopsy and use of their brain tissue for research purposes. This tissue 

was ethically obtained and used in accordance with law from The Netherlands and 

the UK. Spinal cord tissue was dissected from the spinal column of normal mice and 

mice with acute EAE phase paralysis (day 17 p.i.), first remission (day 27 p.i.), first 

relapse (day 37 p.i.), second remission (day 60 p.i.) and spastic chronic EAE (day 

120 p.i.). This was fixed in 10% formol saline and embedded in paraffin wax. 

 

2.10.2 Immunocytochemistry 

 

For immunohistochemical stainings, 5 µm cryosections were cut, de-waxed and 

hydrated. Sections were incubated with (a) C219 (GeneTex, Irvine, CA, USA) 

mouse IgG2a (which is not made by mice such as ABH mice that express the Igh1b 

immunoglobulin allotype) monoclonal antibody, which reacts with human, rat and 

mouse ABCB1  (b) 6D170 rat IgG monoclonal antibody (Europa Bioproducts, 

Cambridge, UK), which reacts with mouse and human ABCG2. Slides were 

incubated with EnVision Kit anti-rat/mouse-labeled horseradish peroxidase (DAKO, 

Glostrup, Denmark) for 30 minutes at room temperature. Peroxidase activity was 

visualised with 0.5 mg/ml 3,3'-diaminobenzidine tetrachloride (DAB; Sigma, St 

Louis, MO, USA) in PBS containing 0.02% H2O2. Between incubation steps, sections 

were thoroughly washed with phosphate-buffered saline (PBS). After a short rinse 

in tap water sections were incubated with haematoxylin for 1 minute and 

extensively washed with tap water for 10 minutes. Finally, sections were 
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dehydrated with ethanol followed by xylene and mounted with Entellan (Merck, 

Darmstadt, Germany). All antibodies were diluted in PBS containing 0.1% bovine 

serum albumin (BSA, Boehringer-Mannheim, Ingelheim, Germany), which also 

served as a negative control. This was performed by Dr. Sandra Amor and Wouter 

Gerritson, Free University Amsterdam, The Netherlands. 

 

2.11. Assay for CNS Drug exclusion pumps. 

P-glycoprotein function on human CMEC/D3 brain endothelial cells was measured as 

described previously (Kooij et al., 2009).  Briefly, cells were cultured to confluent 

monolayers in 96-well plates. Subsequently, cells were stimulated with various 

reagents. Cells were then washed three times with PBS and incubated for 45 

minutes at 37°C with fluorescent ABC transporter substrates. These were either: 

the p-glycoprotien substrate 2 µM rhodamine 123 (Sigma, Poole, UK) with or 

without a specific P-gp inhibitor 10 µM reversin 121 (Alexis, Exeter, UK) or the 

multi-drug resistance protein one (MRP-1/ABCC1) substrate, 2µM calciene AM 

(Sigma, Poole UK) with or without the MRP-1 inhibitor MK571 (Merck, Nottingham, 

UK) or CsA. After 45 minutes of incubation, cells were washed three times with PBS 

and fluorescence intensity was measured using a FLUOstar Galaxy microplate 

reader (BMG Labtechnologies, Offenburg, Germany), excitation 485 nm, emission 

520 nm or by a FACScan flow cytometer (Becton & Dickinson, San Jose, CA, USA). 

P-gp activity is expressed as ratios of fluorescence with modulator divided by 

fluorescence without modulator after subtraction of the fluorescence of the control. 

This was performed by Gijs Kooij and Elga De Vries, Free University Amsterdam, 

The Netherlands). 
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CHAPTER THREE 

 

CONTROL OF AUTOIMMUNITY AND PROGRESSION BY 

CANNABINOIDS. 

 

 

3.1 INTRODUCTION 

 

Multiple sclerosis (MS) is considered to be an autoimmune, demyelinating disease 

of the central nervous system (CNS), which has a complex pathophysiology 

(Compston and Coles, 2002; Compston and Coles, 2008). There is now clear 

evidence that: (i) the immune response drives lesion formation and relapsing-

remitting, clinical attacks and (ii) the progressive stages of MS result from 

neurodegenerative processes, which do not appear to respond to immunotherapy 

(Coles et al., 2006; Confavreux and Vukusic, 2006; Polman et al., 2006; Metz et 

al., 2007). These distinct but related, disease elements both produce nerve 

damage/loss that results in (iii) altered neurotransmission that lead to the 

development of a number of signs of disease, such as; spasticity, pain and bladder 

dysfunction (Compston and Coles, 2002). The inability of available medicines to 

control such symptoms has prompted people with MS to self-medicate and perceive 

benefit from taking cannabis (Consroe et al., 1997).  MS patients also perceived an 

effect on relapsing disease, suggestive of immunosuppressive capabilities (Consroe 

et al., 1997).  This latter aspect is notoriously difficult to predict and disease 

activity may naturally slow at a time when residual symptoms are becoming 

increasingly apparent and people may be taking cannabis for symptom control 

(Compston and Coles, 2002; Confavreux and Vukusic, 2006). 

 

Although the experimental autoimmune encephalomyelitis (EAE) disease model of 

MS is most commonly used to study (auto)immune function, we have previously 

investigated distinct, non-immunological aspects of the disease and provided the 

first objective evidence for both control of signs of disease and neuroprotection by 

cannabinoids in EAE (Baker et al., 2000; Pryce et al., 2003a).  This has gained 

some support from subsequent clinical studies (Wade et al., 2004; Rog et al., 

2005; Zajicek et al., 2003, 2005) and the recent understanding of the biology of 

cannabis. This shows that cannabis signals to an endogenous cannabinoid system 

via cannabinoid receptors (CBR), which can regulate neurotransmission and cell 

death pathways (Howlett et al., 2002).  However, plant cannabinoids have been 

shown to have the potential to inhibit the development of monophasic EAE (Lyman 
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et al., 1989; Wirguin et al., 1994) and suggest some potential to modulate immune 

function. 

 

Although, leucocytes have low levels of the receptor, CB1R is the most abundant G-

protein coupled receptor expressed in the CNS (Howlett et al., 2002; Klein, 2005). 

The cannabimimetic effects of cannabis and THC, which in rodents are assessed 

using "tetrad" tests (catalepsy, hypomotility, analgesia and hypothermia), are due 

to central CB1 receptor stimulation (Pertwee, 1972; Howlett et al., 2002; Varvel et 

al., 2005).  In contrast, CB2R is expressed chiefly by leucocytes, which suggest that 

cannabinoids may control immune function (Howlett et al., 2002; Klein, 2005; van 

Sickle et al., 2005).  Therefore, unsurprisingly, CB2R has been implicated in the 

control of inflammation in a number of studies (Noe et al., 2001; Walter et al., 

2003; Ni et al., 2004; Steffens et al., 2005; Lunn et al., 2006).  However, as 

leucocytes also express low levels of CB1 receptors and all current CB2 selective 

agents bind to CB1 receptor and vice versa (Pertwee, 1999), the role of the CB1 

receptor in the control of immunity has not always been adequately addressed. 

Thus, whilst selective cannabinoid receptor agonists/antagonists have largely been 

used to elucidate cannabinoid function, the pharmacological approach is hampered 

by the lack of any totally specific pharmacological tools and the fact that elements 

of the cannabinoid system, to which these agents may bind, have yet to be 

identified (Pertwee, 1999; Howlett et al., 2002). Thus, although agents may be 

selective in vitro, at doses used in vivo, there is a particular potential for such 

cannabinoids to cross-react with the other receptors (Breivogel et al., 2001; 

Howlett et al., 2002; Begg et al., 2005; Baker et al., 2006). Whilst genetic 

depletion in animals is not without its limitations, cannabinoid gene knockout 

technologies have been important in identifying cannabinoid function and provide 

additional confidence in validating targets for therapy (Ledent et al., 1999; Zimmer 

et al., 1999; Buckley et al., 2000; Marsicano et al., 2002). Recent studies in 

cannabinoid gene-deficient animals, suggest that both CB1R and CB2R agonism may 

be of benefit in controlling autoimmunity in EAE (Maresz et al., 2007). We have 

investigated this further, using exogenous CB1R and CB2R-selective agents, and 

although CB1R-mediated immunosuppression was detectable, it appears that 

cannabinoid-mediated neuroprotection may be more relevant to the clinical 

application of cannabis in MS. 
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3.2 RESULTS 

 

3.2.1. THC but not CBD, is immunosuppressive in EAE and inhibits T cell 

infiltration of the CNS.  

 

Previously, doses greater than 5mg/kg of THC have been shown to exhibit 

immunosuppressive effects in rat and guinea pig EAE (Lyman et al. 1989). We 

investigated this in mouse EAE and indeed THC greater than this dose, significantly 

delayed the onset and reduced the severity of spinal cord homogenate induced EAE 

in ABH mice (Fig. 3.1A, B). Low clinical scores in THC-treated animals were 

associated with the relative inhibition of mononuclear cell infiltration of the CNS 

(Fig. 3.1C). Infiltration was more readily detected in more severely affected animals 

(Fig. 3.1D). Lower doses of THC (<3mg/kg) failed to influence the development of 

EAE (Fig. 3.1A, B) and similarly CBD exhibited no apparent inhibitory effect on the 

development of EAE (Fig 3.1A). This contrasts with the anti-inflammatory effect of 

CBD in an autoimmune, arthritis model (Malfait et al. 2001). This lack of an 

immunosuppressive effect was evident in EAE, despite using similar dose ranges 

(Fig 3.1A), the same batches of CBD were used in previous arthritis studies and 

using a daily dosing protocol from the time of sensitization onwards.   

 

3.2.2. Cannabinoid-induced immunosuppression is associated with a 

reduction of Th1 cell differentiation.  

 

It has been shown that a short course of 20mg/kg R(+)WIN-55 exhibits 

immunomodulatory effects in the Theiler's virus model of MS in SJL mice (Croxford 

& Miller, 2003). To facilitate in vitro studies to examine cannabinoid induced 

immunosuppression in EAE, we investigated the effect of R(+)WIN55, a synthetic 

full CB1/CB2 agonist, on myelin peptide-induced EAE in C57BL/6 mice (Fig. 3.2). A 

single administration of 20mg/kg R(+)WIN-55 on either day 11 or day 15 post-

inoculation did not induce a significant amelioration of the severity of EAE, (Fig. 

3.2A, B), although the severity of animals treated on day 11 appeared to be 

reduced compared to vehicle or the CB-inactive enantiomer S(-)WIN-55 (Fig. 3.2A). 

However, by increasing the number of doses, a significant (P<0.05) 

immunosuppressive effect was seen on the clinical course that delayed onset and 

the severity of disease (Fig. 3.2C), which was not evident following similar injection 

of the potent CB2 receptor agonist JWH133 (Fig 3.2D). This treatment was 

associated with an inhibition of mononuclear cell trafficking to CNS and therefore 

inflammation-induced demyelination (Fig. 3.2E, F). This treatment could inhibit ex 

vivo T cell recall responses to MOG35-55 (Fig. 3.3A) and antigen-induced interleukin-

2; interferon-gamma and tumour necrosis factor alpha production (Fig. 3.3 B-D). 
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Treatment with S(-)WIN-55 exhibited no significant inhibitory effect (Fig. 3.3A-C). 

This suggested a cannabinoid receptor driven inhibition of Th1 responses by 

R(+)WIN-55 (Fig 3. 3B,C). There was no inhibition of Th2 cytokine production (Fig. 

3. 3E, F) and interleukin-4 and interleukin-5 appeared to be moderately 

augmented, although this was probably not cannabinoid receptor dependent as S(-

)WIN-55 induced a comparable response to R(+)WIN-55 (Fig. 3.3E,F).   
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Figure 3.1. Immunosuppression of SCH-induced acute EAE in ABH mice by high 

dose Tetrahydrocannabinol.  
 

      A                                                                           Group Score         EAE Score        Day of Onset 

Treatment    Dose           No.EAE/Total                      ± SEM                ± SEM                    ± SD 
____________________________________________________________________________________________ 
 
Untreated                    26/26  3.9 ± 0.1                 3.9 ± 0.1      17.1 ± 1.6 
Vehicle               -    8/8  3.8 ± 0.1                 3.8 ± 0.1      16.5 ± 0.9 
THC    0.25mg/kg   9/9  3.8 ± 0.1  3.8 ± 0.1        16.2 ± 2.0 
THC    2.5mg/kg    10/10  3.8 ± 0.1  3.8 ± 0.1        17.5 ± 1.9 
THC    25 mg/kg                   7/9  1.7 ± 0.4** 2.1 ± 0.3**      20.7 ± 1.8** 
 
Vehicle                -   9/10  3.6 ± 0.4  3.9 ± 0.1        15.2 ± 0.8 
THC    10mg/kg    6/7  2.3 ± 0.6*  3.1 ± 0.5**       17.2 ± 1.8** 
THC    20mg/kg    2/8  0.8 ± 0.5*** 3.0 ± 0.0        16.0 ± 1.8** 
 
Untreated                      11/12  3.3 ± 0.4  3.6 ± 0.2        16.2 ± 1.3 
CBD     0.5 mg/kg  10/10  3.7 ± 0.2  3.7 ± 0.2        16.5 ± 1.2 
CBD     5.0 mg/kg    8/10  3.0 ± 0.5  3.8 ± 0.1        16.9 ± 1.2 
 
Untreated                      12/12  3.8 ± 0.4  3.8 ± 0.2        14.9 ± 1.2 
CBD    10mg/kg     7/7  4.0 ± 0.0  4.0 ± 0.0        14.8 ± 1.8 
CBD    25 mg/kg                    8/8  4.0 ± 0.0  4.0 ± 0.0        15.1± 0.4 
 
 
 
 
 
 

 
 
 
ABH mice were injected with mouse spinal cord homogenate in Freund’s adjuvant on day 0 & 7. Animals 
were injected i.p. daily from day 10-22 with compounds either in Tween:PBS or DMSO:PBS. (A) The 
results indicate the mean maximal clinical score of the whole group, the mean maximal score of animals 
that developed EAE and the day of onset of signs. (B) The results indicate the mean daily clinical score ± 
SEM (C) Histological section of spinal cord tissue from an animal treated with 25mg/kg THC exhibiting 
mild disease (score 0.5). (D) Histological section of spinal cord tissue from an animal treated with 
25mg/kg THC exhibiting paresis (score 3). **P<0.05, **P<0.01, ***P<0.001 compared to vehicle-
treated controls. 
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Figure 3.2. Immunosuppression of MOG-induced EAE by high dose R(+)WIN55 in 

C57BL/6 mice.  
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C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein peptide in Freund’s adjuvant on 

day 0 and 7 using B. pertussis toxin as co-adjuvant. Animals were untreated or injected i.p. with either 

(A-C) 20mg/kg R(+)WIN55 or S(-) WIN55 on (A) day 11, (B) day 15 or (C) day 11-15 p.i. or (D) the 

CB2R-selective agonist JWH-133 in Tween:PBS (n=6-9/group). The results indicate the mean daily 

clinical score ± SEM. Histology was performed on day 17 from cervical spinal cords from mice treated 

from day 11-15 with 20mg/kg of either (E)    S(-) WIN55 or (F) R(+)WIN55. These were stained with 

haematoxylin and eosin to detect cellular infiltrates.  *P<0.05 compared to untreated animals. This was 

performed by J.Ludovic Croxford, Tokyo, Japan. 

 



 78 

Figure 3.3. Inhibition of MOG-induced, Th1 T cell responses in EAE by high dose 

R(+)WIN55 in C57BL/6 mice. 
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C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein peptide in Freund’s adjuvant on 

day 0 & 7, without the use of B.pertussis toxin as co-adjuvant. Animals were untreated or injected i.p. 

with 20mg/kg R(+)-WIN55 or S(-)-WIN55 in Tween:PBS on day 11-15 (A) Proliferative response from 

MOG peptide stimulated lymph node cells from animals injected with cannabinoids from day 11-15. (B-

F) Cytokine ELISA of tissue culture supernatants from 48 h cultures of lymph node cells stimulated with 

100µM MOG35-55 peptide. These detected either: (B) interleukin-2 (C) interferon gamma (D) tumour 

necrosis factor alpha (E) interleukin 4 or (F) interleukin 5. n=3/group * P<0.05 compared to untreated 

control animals. This was performed by J.Ludovic Croxford, Tokyo, Japan. 
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3.2.3.Immunosuppression induced by cannabinoid receptor agonists is 

CB1-mediated.  

 

To investigate the nature of the cannabinoid receptor(s) mediating 

immunosuppression, additional selective synthetic cannabinoid receptor agonists 

and antagonists were investigated (Fig. 3.2. Table 3.1). In addition to the peptide 

induced chronic EAE model in C57BL/6 mice, which is useful for performing in vitro 

experiments because T cell stimulation assays can be performed using a peptide, 

we also examined tissue homogenate induced disease in ABH mice that exhibit a 

distinct relapsing/remitting disease course, which is suited to monitoring drug 

effects on clinical course of disease (Pryce et al., 2003a).  CB1R deficient mice 

developed EAE of comparable severity to wildtype mice (Table 3.1., Table 3.2. 

Pryce et al. 2003a), although they exhibit poorer recovery due to accumulation of 

nerve damage (Pryce et al. 2003a). Following the twice daily injection of 

SR141617A (CB1R-antagonist) in ABH mice there was a tendency for disease to 

develop with earlier onset but  of comparable severity to that seen in wildtype mice 

(Table 3.1). Injection of SR144528 (CB2R-antagonist) failed to affect the incidence, 

onset or maximal severity of disease (Table 3.1). In contrast, CB1 receptor agonism 

inhibited EAE.   

 

On a C57BL/6, (Table 3.2. Palazuelos et al. 2008), or C57BL/10 (Maresz et al. 

2007), EAE-low susceptibility background mouse strain, there appeared to be 

greater susceptibility to EAE in CB2 receptor deficient mice (Table 3.2). Although 

RWJ352303 in ABH mice (Table 3.1) and R(+)WIN55 in C57BL/6 (Fig 3.2C), both 

full CB1R/CB2R agonists, significantly ameliorated the development of EAE, the 

potent selective CB2R agonists: RWJ400065 and JWH-133 (Xu et al. 2007)  in ABH 

mice (Table 3.1) and JWH-133 in C57BL/6 mice (Fig. 3.2D),  did not significantly 

inhibit disease. This suggested a CB1R mediated immunosuppressive action and this 

was definitively shown using CB1R-deficient mice where a high dose (10mg/kg i.p.) 

of RWJ352303 failed to influence the course of disease in Cnr1-/- mice (Table 3.1).  

This dose was used as it was known to be active for at least 24h and thus the lack 

of bioavailability of the compound at the cannabinoid receptors could be excluded, 

however this dose was too high to use in wildtype mice because of marked 

cannabimimetic effects following CNS penetration of the compound. Likewise, the 

immunosuppressive effect of THC was lost in Cnr1-/- mice (Table 3.2). Using 

conditional deletion to either remove CB1R from T cells or nerves it was evident that 

immunosuppression remained when CB1R was removed from T cells but the 

immunosuppressive actions of THC was lost when CB1 R were conditionally deleted 

from the nerves in the brain (Table 3.2). This suggested that the 

immunosuppressive action of cannabinoids was probably an indirect effect following 
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stimulation of cannabinoid receptors in the brain. This was further supported by the 

lack of immunosuppression following administration of a CNS excluded CB1R 

agonist. 

 

It appears that CT3 is a CB1R agonist that is excluded from the CNS (Ki CB1R = 6-

32nM, Ki CB2R = 1nM) in rodents (Dyson et al., 2005, Hirgata et al.2007). At the 

doses used, up to 10mg/kg i.p., it did not induce cannabimimetic effects 

(Temperature change at 20-120min post-injection 10mg/kg CT3 both 0.0 ± 0.1°C). 

Likewise, although CT3 may have anti-inflammatory properties (Burstein et al., 

2004), it failed to demonstrate evidence of immunosuppression and did not inhibit 

the development of EAE (Table 3.1).  

 

3.2.4. Immunosuppression is secondary to CNS cannabinoid receptor 

agonism and is associated with adverse physiological effects.  

 

To determine whether immunomodulation was due to direct effects of THC on 

lymphoid cells or due to immunomodulatory effects secondary to stimulation of 

CNS-expressed CB1R, conditional knockout mice were generated (Table 3.2). 

Conditional exclusion of CB1 from nerve cells in Nes-floxed CB1-deficit mice 

prevented the capacity of THC to suppress EAE (Table 1B). However, loss of CB1R in 

nerves not only stopped the immunosuppressive activity of the cannabinoids 

examined, but also inhibited the sedative potential of the cannabinoids. Although 

nestin is expressed in peripheral nerves (Hennet et al. 1995), the sedation was a 

central effect as cannabinoids induced sedation in ABH.Peripherin-Cre-floxed CB1-

deficit (Zhou et al. 2002), which delete CB1R from the peripheral nervous system. 

Sedation was evident following administration of immunosuppressive doses of THC, 

RWJ352303 and notably R(+)WIN-55, which also induced a transient hypothermia 

that was absent in generalised and Nes-floxed; CB1R-deficit mice (Fig. 3.4). This 

indicates that cannabinoid-induced immunosuppression occurs at doses that may 

cause adverse physiological responses such that they would be unlikely to be 

achieved in human use. 

 

3.2.5. Cannabinoid therapy at doses lacking overt immunosuppressive 

efficacy slow the accumulation of neurological deficit in relapsing EAE.  

  

In contrast to the immunomodulatory effect of 20mg/kg R(+)WIN-55 (Fig.3.1C), 

repeated administration of 5mg/kg failed to significantly inhibit the development of 

EAE in C57BL/6 mice (Fig 3.5A) and inhibition of ex vivo T cell proliferation and 

interferon gamma responses in MOG peptide induced disease in C57BL/6 mice, 

compared to untreated mice (J.L. Croxford. unpublished observations).  Similarly 
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lower doses of R(+)WIN-55 (0.5mg/kg i.p. day 10-22. n=10/10 EAE Score 3.8 ± 

0.1; Day of Onset 16.7 ± 1.6 compared to vehicle n=9/9 EAE Score 3.9 ± 0.1 Day 

of Onset 17.6 ± 1.5) and 5mg/kg R(+)WIN-55 did not prevent acute EAE in CB1 

receptor deficient (Not shown) or wildtype animals (Fig 3.5B) and did not prevent 

relapsing paralytic EAE in ABH mice (Fig. 3.5C,D). Whilst treatment started during 

the first remission (RM1), did not inhibit the development of relapse (RL) in mice, it 

was apparent that less residual deficit accumulated in R(+) WIN-55-treated animals 

and the clinical score significantly (P<0.01) diverged from vehicle-treated animals 

over time during the second (RM2) and third (RM3) remission periods (Fig. 3.5C,D). 

This was evident despite developing relapses of comparable maximal severity (Fig. 

3. 5D). Similarly, R (+) WIN-55, treatment slowed the rate of loss of mobility and 

axons/nerves in the spinal cord (Fig. 3.5 E,F). Thus, whilst immunosuppression of 

relapsing disease was not induced, cannabinoid-treated animals could better 

withstand the damaging effects of relapsing EAE (Fig 3.5C, F). This was consistent 

with the reduced capacity of CB1-deficient mice to tolerate inflammatory insults. 

Whereas ABH.Cnr1 +/+ (n=6), ABH.Cnr1 -/+ (n=7) and ABH.Cnr1 -/- (n=10) mice 

developed paralytic acute EAE of comparable severity (4.0 ± 0.0), the residual 

deficit of CB1 deficient mice (Minimum RM1 remission Score. 1.9 ± 0.3) was 

significantly (P<0.05) worse than  either the wildtype ABH.Cnr1 +/+ (RM1 Score. 

0.5 ± 0.3) or ABH.Cnr1 -/+ heterozygous (Minimal RM1 Score. 0.7 ± 0.3) mice. 

Therefore, this indicates that low dose cannabinoid treatment can induce 

neuroprotective effects, despite failing to affect the relapse rate that would be 

indicative of an immunosuppressive effect. This neuroprotective effect of WIN-55 

was lost in ABH CB1 deficient mice, where the observed rapid development of 

neurological impairment, assessed by clinical score after the acute phase of 

disease, was not ameliorated by 5mg/kg WIN-55 treatment that was 

neuroprotective in normal ABH mice (Figure 3.6). Due to the high level of residual 

neurological disability in these animals after the acute phase, it was not possible to 

assess motor impairment by rotarod analysis. 

 

In addition to the neuroprotective effects seen with low dose administration of the 

synthetic cannabinoid receptor agonist R(+) WIN-55,  neuroprotective effects in 

CREAE were observed with plant-based cannabinoids. An induced-relapse 

paradigmn was used as animals more rapidly accumulate damage, and disease is 

more synchronous, compared to spontaneous relapsing EAE. Therefore drug 

treatment effects can be observed more rapidly. Furthermore animals were 

subjected to rotarod analysis as a quantitative, objective outcome measure. 

Neuroprotection was detected following treatment with THC and also with the non-

cannabinoid receptor binding non-psychoactive cannabis constituent cannabidiol 

(10 and 5 mg/kg), administered separately (Fig 3.7) or in combination (Figure 3.8), 
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when assessed by clinical score and rotarod performance (Fig 3.7, Fig 3.8). As 

found previously in acute disease (Fig 3.1A) 2.5mg/kg or less THC and CBD did not 

induce immunosuppression as animals developed a paralytic attack of comparable 

serverity to vehicle-treated animals (Fig 3.7). However, there was a better motor 

recovery from the effects of the relapse, as seen in remission compared to vehicle-

treated animals.Although 2.5mg/kg THC was affective at controlling loss of motor 

function as assessed both clinically and via rotarod activity, CBD reached 

significance in only in the rotarod outcome measure. (Fig 3.8). This activity is 

associated with the relative sparing of spinal cord axons compared to vehicle 

treatment. Unfortunately a technical problem with the neurafilment assay 

prevented this being shown. The neuroprotective effect of THC was lost when the 

daily dose was lowered to 0.25mg/kg i.p., Likewise 1mg/kg CBD exhibited a 

minimal effect compared to 10mg/kg ip. CBD that significantly (P<0.05) limited the 

loss of motor function as a consequence of relapse (Fig 3.9). Therefore, CBD may 

possess neuroprotective effects in contrast to a lack of activity as an 

immunosuppressive (Fig 3.1) or symptom control agent (Baker et al., 2000). 
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Table 3.1 Immunosuppression in EAE by synthetic cannabinoids is CB1R-mediated. 

 
 

 
 

 
 
                                                                                                Daily group score        Max EAE score   Onset day                                                                    
Treatment                         Dose       No.EAE/Total        ± SEM                  ± SEM                    ± SD 

 
Vehicle            -    8/8    4.0 ± 0.2 4.0 ± 0.2          15.3 ± 0.7 
RWJ352303 (CB1R /CB2R Agonist)   1mg/kg     6/7    2.6 ± 0.5*** 3.0 ± 0.3**        19.0 ± 1.1*** 
RWJ400065 (CB2R Agonist)                 10mg/kg    8/8    3.7 ± 0.2 3.7 ± 0.2          16.3 ± 1.3 
 
Vehicle          -    6/7        3.4 ± 0.6 3.9 ± 0.1           13.2 ± 1.7 
JHH 133 (CB2R Agonist)  0.1mg/kg                   7/8    3.1 ± 0.6 3.6 ± 0.4           14.0 ± 1.8 
 
Vehicle          -    9/9    4.0 ± 0.0 4.0 ± 0.0           14.8 ± 0.7 
JWH133    1.5mg/kg                   8/8    4.0 ± 0.0 4.0 ± 0.0           14.4 ± 1.5 
 
Vehicle                -     7/7       3.8 ± 0.2 3.8 ± 0.2           16.1 ± 1.2 
CT3 (CNS-excluded,CB1R agonist) 0.01mg/kg        7/7       3.6 ± 0.6 3.6 ± 0.6            15.0 ± 0.9 
CT3    0.1mg/kg          6/7       2.8 ± 0.8 3.3 ± 0.6           16.8 ± 1.8 
CT3    10mg/kg          6/8       2.6 ± 0.7 3.5 ± 0.3           16.2 ± 1.7 
 
Vehicle            -  25/26          3.8 ± 0.2               4.0 ± 0.2           15.2 ± 1.1 
SR141617A (CB1R Antagonist)  2 x 5mg/kg   6/6    4.2 ± 0.4               4.2 ± 0.4           13.8 ± 0.4** 
SR144528 (CB2R Antagonist)   2 x 5mg/kg    8/8    4.0 ± 0.0 4.0 ± 0.0           14.4 ± 1.4 
 
Vehicle in ABH.Cnr1

-/-
          -    7/7    4.2 ± 0.2 4.2 ± 0.2           16.4 ± 1.1 

RWJ352303  in ABH.Cnr1
-/-
                     10mg/kg   8/8    3.8 ± 0.1 3.8 ± 0.1          16.0 ± 1.2 

____________________________________________________________________________________ 
 
 

 

 

 

EAE was induced with SCH in ABH mice on day 0 & 7. These were injected daily i.p. from day 10-22 with 

either RWJ352303, CB2 selective agonists JWH-133 or RWJ400065 or cannabinoid receptor selective 

antagonists SR141617A or SR144528. (n=6-8/group) in Tween PBS or DMSO:Cremophor:PBS. The 

results indicate the mean maximal clinical score of the whole group, the mean maximal score of animals 

that developed EAE and the day of onset of sign s or the daily clinical score ± SEM. P<0.05, **P<0.01, 

***P<0.001 compared to vehicle-treated controls. 
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Table 3.2 Immunosuppression in EAE by cannabinoids is mediated by CB1R- 

expressed in the CNS. 
 
 
______________________________________________________________________________________________ 
                                 CB1 Expression                    Group Score       EAE Score          Day of Onset 
Strain                 T cell CNS      Treatment  
                                                                                  Dose       No. EAE     ± SEM                   ± SEM                    ± SD 
______________________________________________________________________________________________ 
A. Generalised CB1 Knockout 
 
ABH.Cnr1

+/+  
+/+ +/+

 
untreated   6/6 4.0 ± 0.0  4.0 ± 0.2           16.3 ± 1.8 

ABH.Cnr1
+/-  

+/- +/-
 

untreated   9/9 4.2 ± 0.2  4.2 ± 0.2           15.4 ± 1.0 
ABH.Cnr1

-/-
   -/- -/- untreated  15/15 4.1 ± 0.1  4.1 ± 0.1           16.3 ± 1.8 

 
C57BL/6   +/+ +/+ untreated   1/10 0.1 ± 0.1  1.0 ± n/a           17.0 ± n/a 
C57BL/6/J.Cnr2-/-                 +/+ +/+ untreated   6/11 1.3 ± 0.4  2.4 ± 0.3           16.8 ± 1.7 
 
ABH.Cnr1

+/-  
+/- +/-

 
vehicle       9/9 4.2 ± 0.2  4.2 ± 0.2           15.9 ± 1.2 

ABH.Cnr1
+/-  

+/- +/-
 
     THC 20mg/kg   4/8 1.3 ± 0.6** 2.6 ± 0.6**         17.0 ± 0.8 

ABH.Cnr1
-/-
   -/- -/-      THC 20mg/kg   5/6 3.0 ± 0.8  3.6 ± 0.6           18.0 ± 1.8 

 
 
 
 
B. Conditional CB1 Knockout 
 
ABH wildtype  +/+ +/+ untreated   9/9 3.6 ± 0.1  3.6 ± 0.1              15.4 ± 1.1 
ABH.Cnr1

f/f  
+/+ +/+ untreated   6/6 3.3 ± 0.2  3.3 ± 0.2              15.0 ± 0.6 

ABH.Trpv1
-/-  

+/+ +/+  untreated  11/11 3.8 ± 0.1  3.8 ± 0.1              16.0 ± 1.0 
 
ABH.Cnr1

-/f
.Tg(Nes-cre)

-/-   
+/- +/- vehicle  19/21 3.5 ± 0.3  3.8 ± 0.2               15.5 ± 1.5 

ABH.Cnr1
-/f
.Tg(Nes-cre)

-/+  
+/- -/- vehicle 24/27 3.5 ± 0.2  3.9 ± 0.1              15.3 ± 1.3 

ABH.Cnr1
-/f
.Tg(Lck-cre)

-/+
  -/- +/- vehicle   6/8 2.9 ± 0.6  3.9 ± 0.1              16.2 ± 1.3 

ABH.Cnr1
-/f
.Tg(Lck-cre)

-/-
 +/- +/- vehicle    7/7 4.0 ± 0.0  4.0 ± 0.0              15.7 ± 1.3 

 
ABH.Cnr1

-/f
.Tg(cre)

-/- 
+/- +/-    THC  20mg/kg 6/11 0.8 ± 0.4*** 1.5 ± 0.5**            16.5 ± 1.3 

ABH.Cnr1
-/f
.Tg(Lck-cre)

-/+
 -/- +/-    THC 20mg/kg 7/16 0.8 ± 0.3** 1.8 ± 0.4**            16.7 ± 1.4 

ABH.Cnr1
-/f
.Tg(Nes-cre)

-/+ 
+/- -/-     THC 20mg/kg  7/9 2.7 ± 0.5  3.4 ± 0.2              15.0 ± 0.8 

 

 
 

Mice that were either homozygous for the null expressing CB1 construct (Cnr1-/-) or litter-mates from 

crosses between Cre transgene heterozygotes, CB1 null homozygous construct mice and mice 

homozygous for the "floxed" CB1 construct (Cnr1f/f) were injected with mouse spinal cord homogenate in 

Freund’s adjuvant on day 0 & 7. The CB1 genotype in T cells or the CNS is indicated for each strain. 

Animals were injected i.p. daily from day 10-22 with compounds dissolved in Ethanol:Cremophor:PBS. 

The results indicate the mean maximal clinical score of the whole group, the mean maximal score of 

animals that developed EAE and the day of onset of signs.  *P<0.05, **P<0.01, ***P<0.001 compared 

to relevant vehicle-treated controls. 
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Figure 3.4. Hypothermia induced by immunosuppressive doses of cannabinoids. 
 

T
e
m
p
e
ra
tu
re
 C
h
a
n
g
e
 (
o
C
)

-7

-6

-5

-4

-3

-2

-1

0

1

Wildtype 

Cnr1 -/- 

2 20 20 0.1 1 10 10

THC RWJ352303

-8

-7

-6

-5

-4

-3

-2

-1

0

1

10 5 20 20 20 20

RWJ40065 R(+) WIN55

20

T
e
m
p
e
ra
tu
re
 C
h
a
n
g
e
 (
o
C
)

Dose
 (mg/kg)

Dose
 (mg/kg)

**

**

**

**

**
Wildtype 

Cnr1 -/- 

Lck. Cnr1 -/- 

Nes. Cnr1 -/+ 

 Nes.Cnr1-/- 

 
 
Either: wildtype ABH (white box); ABH.Cnr1-/- (Black Box. Cnr1-/-) CB1 knockout; ABH.Cnr1-/f.Tg(Lck-cre)-

/+  (Hatched Box. Lck-/-) T cell CB1 knockout; ABH.Cnr1-/f.Tg(Nes-cre)-/- (Light Shaded Box. Nes-/+), CNS 

CB1 CB1 heterozygote expressing mice or ABH.Cnr1-/f. Tg(Nes-cre)-/+ (Light Shaded Box. Nes-/-) CNS CB1 

knockout or mice (n=4-5/group) were injected i.p. with either: THC, RWJ352303; RWJ40065 or R(+)-

WIN55. Body temperature was measured at baseline and 20 minutes after injection. P<0.01 compared 

to baseline by paired t test analysis. 
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Figure 3.5. Low dose R(+) Win-55 treatment fails to inhibit the development of 

acute or relapsing EAE, but slows the accumulation of neurological deficits due to 

inflammatory attack. 
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EAE was induced with either: (A) MOG peptide in C57BL/6 mice, using B. pertussis toxin as co-adjuvant 

or (B-F) SCH in ABH mice in Freund's adjuvant on day 0 and 7. These were injected daily i.p. with 

5mg/kg R(+)WIN55 or S(-)WIN55 in Tween PBS or DMSO:Cremophor:PBS  on (A) day 11-15 

(n=8/group) (B) day 10-25 (n=6-7/group) or (C-F) During the post-acute, remission period (RM1) from 

day 32 onwards (n=10-12/group). Mean ± SEM daily clinical scores, during (A, B) acute or (C) relapsing 

EAE. Four-vehicle treated animals were removed from the study due to the neurological deficit 

accumulated and were not included in further (D-F) analysis. (D) The maximum clinical score during 

acute phase paralysis (AP) or relapses (RL) and minimal clinical score during each remission (RM) of 
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animals remaining at the termination of the experiment on day 85 p.i. (E) The movement activity over 5 

minutes in an open field activity chamber before and after treatment on day 65 and 82 p.i. (n=8-

10/group). This level of protection by WIN-55 was reproduced in one additional experiment. * P<0.05 

compared to vehicle treated controls (F) The total neurofilament content of spinal cords in normal (n=4), 

vehicle or R(+)WIN55 (n=8-10/group). * P<0.05 compared to normal animals on day 85p.i. 

 

Figure 3.6. Low dose R(+)WIN-55 fails to slow the accumulation of neurological 

deficit in ABH/CB1 knockout mice. 
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EAE was induced with SCH in ABH/CB1 knockout mice in Freund's adjuvant on day 0 and 7. Animals were 

injected with 5 mg/kg WIN-55 in ECP i.p. or ECP alone. Neurological impairment was assessed by the 

mean clinical score ± SEM at the remission phase of disease at day 27 n= 8 animals per group. Due to 

the severity of the residual neurological deficits it was not possible to assess rotarod performance in 

these animals. 
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Figure 3.7. Low-dose THC and cannabidiol therapy in relapsing EAE slows the 

development of neurological deficit during the relapse phase of disease in ABH 

mice. 
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EAE was induced with SCH in ABH mice in Freund's adjuvant on day 0 and 7. Animals were allowed to 

undergo acute phase inflammatory attack and relapse was induced by re-immunisation with SCH in 

Freund’s adjuvant at day 28. Animals were injected i.p. with 2.5 mg/kg THC, 10 or 5 mg/kg CBD in ECP,  

n= 7-9 animals per group. Results are mean ± SEM for the post-acute remission phase and relapse. 
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Figure 3.8. THC and CBD treatment slows the development of neurological deficit 

due to relapsing EAE in ABH mice.  
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EAE was induced with SCH in ABH mice in Freund's adjuvant on day 0 and 7. Animals were allowed to 

undergo an acute phase inflammatory attack and relapse was induced by re-immunisation with SCH in 

Freud’s adjuvant at day 28. Animals were injected i.p. with 2.5 mg/kg THC, 10 or 5 mg/kg CBD or a 

combination of both, n= 7-9 animals per group. Neurological impairment was assessed by rotarod 

performance measurement post acute phase remission at day 27 and post-relapse remission phase at 

day 48. * P<0.05, ** P<0.01, ***P<0.001 compared to vehicle treated animals. +++ P<0.001 

compared to pre-relapse levels. 
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Figure 3.9. Cannabidiol treatment slows the development of neurological deficit 

due to relapsing EAE in ABH mice.  
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EAE was induced with SCH in ABH mice in Freund's adjuvant on day 0 and 7. Animals were allowed to 

undergo an acute phase inflammatory attack and relapse was induced by re-immunisation with SCH in 

Freund’s adjuvant at day 28. Animals were injected i.p. with 0.25 mg/kg THC, 1 or 10 mg/kg CBD or a 

combination of both. n= 5-9 animals per group. Neurological impairment was assessed by Rotarod 

performance measurement post acute phase remission at day 27 and post-relapse remission phase at 

day 48. * P<0.05 compared to vehicle treated animals. + P<0.05 compared to pre-relapse levels. 
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3.3. DISCUSSION 

 

There is increasing evidence that MS is, at least in part, a neurodegenerative 

disease, which is associated with the development of neurological deficits in MS 

(Compston and Coles, 2002; 2008). There are a number of routes for 

neuroprotection and this can be achieved by preventing the immune response from 

either being generated or from entering the CNS. This will prevent direct CNS 

damage by the immune system. Another route is to slow nerve damage that occurs 

as a consequence of the immune attack. Cannabinoids have the potential to inhibit 

both of these pathways, suggesting that cannabinoids could influence the 

development of progressive MS, which has so far been refractory to treatment 

(Compston and Coles, 2002; 2008). 

 

This study demonstrates that some cannabinoids have immunosuppressive 

potential as shown by recent studies in MS models using synthetic cannabinoids 

and THC (Lyman et al., 1989; Wirguin et al., 1994; Ni et al., 2004; Cabranes et al., 

2005; Sanchez et al., 2006; Maresz et al., 2007; Palazuelos et al., 2008; Zhang et 

al., 2009). However, further evidence is provided here that this is mediated by the 

actions of CB1R receptors. This results in downstream immunomodulatory actions 

that suppress T cell activity and prevent the accumulation of inflammatory cells 

within the CNS during EAE. Our studies have focused on the administration of 

agents once T cell priming had been initiated and thus therapy was targeted to 

effector T cell function. Encephalitogenic cells including the Th17 subset appear to, 

produce proinflammatory gamma interferon and tumour necrosis factor (Karin et 

al., 1994; Suryani et al., 2007), whose production was reduced in cannabinoid 

treated animals.  However, as immunosuppression using exogenous agonists 

appears to be CB1R-mediated and secondary to neuronal stimulation of release of 

immunosuppressive agents such as glucocorticoids, changes in cytokine production 

are downstream of the immunosuppressive mechanism. 

 

Based on studies in CB2R deficient animals that can show augmented EAE 

susceptibility, as shown here and in other studies (Maresz et al., 2007; Palazuelos 

et al.’ 2008), the action of CB2R-selective agonists in EAE have been investigated 

and currently, any immunosuppressive effect via CB2R receptors in C57BL/6 or ABH 

mice has not been demonstrated. It has been reported previously that R(+)WIN-55 

inhibits leukocyte migration into the CNS of C57BL/6 mice by a CB2R-dependent 

mechanism (Ni et al., 2004; Xu et al., 2007). Recently, S(-) WIN55 has been 

reported to exhibit low potency pharmacological activity as a CB2 

antagonist/inverse agonist (Savinainen et al., 2005), but this failed to inhibit EAE. 

However, others have found that CB2R inverse agonists inhibit leukocyte diapedesis 
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into tissues (Lunn et al., 2006; Oka et al., 2006).  Similarly, it has also been 

reported recently that contact dermatitis is augmented in CB1R and CB2R deficient 

mice but similar to this study, exogenous CB2R agonism failed to inhibit or even 

augment disease (Karsak et al., 2007). Thus, the role of CB2R in the control of T 

cell autoimmunity is controversial. The myelin-specific T cell receptor transgenic 

mice used for CB2R knockout studies in EAE, exhibited weak EAE-susceptibility 

compared to marked EAE susceptibility induced here in ABH mice. It is possible that 

the CB2R-deficiency acted to produce greater numbers of encephalitogenic T cell 

precursors during lymphoid development, which could become of less significance if 

strong sensitizing signals are used for sensitization, rather than by influencing 

effector T cell function that would be therapeutically targeted here.  Thus, the 

failure of exogenous agonists to inhibit disease may relate to timing of drug 

administration, such that drug-responsive elements during the sensitization process 

were not targeted. Furthermore, there could be problems in the pharmacokinetic 

profiles of the agents examined such that insufficient amounts were administered 

or that receptor tolerance following stimulation occurred that could account for the 

lack of efficacy. However, we have failed to find evidence for immunomodulatory 

effects of CB2R agonists or antagonists at doses that have shown biological activity 

in other systems (Baker et al., 2000; Arevalo-Martin et al., 2003; Pryce and Baker, 

2007; Xu et al., 2007). Importantly, the immunosuppressive activity of a 

CB1R/CB2R agonist (RWJ 352303) that could give long-term cannabimimetic effects, 

suggesting that it was bioavailable, was lost in CB1R-deficient mice. This suggests 

that CB2R may offer limited potential to induce immunosuppression. Furthermore, 

as THC and cannabidiol bind but exhibit limited or no agonism at CB2R (Bayewitch 

et al., 1996; Thomas et al., 2007), this suggests that cannabis will be of limited use 

as an immunosuppressive agent via CB2R. Furthermore, some cannabinoids have 

been reported to inhibit acute EAE via TRPV1 vanilloid receptor activation (Cabranes 

et al., 2005). Thus, cannabinoids may have additional biological properties, possibly 

as yet unrecognised, which may account for their activity in vivo. Due to the lack of 

specificity of available pharmacological agents, we combined a pharmacological and 

gene knockout approach to investigate the nature of the cannabinoid receptor 

mediating immunosuppression in EAE. 

 

The efficacy of THC was largely lost in CB1R-deficient animals and was subsequent 

to stimulation of CB1R expressed by nerves. Hypothalamic stimulation of CB1R 

influences the regulation of neuropeptides that modulate hormonal systems such 

as; leptin, sex hormones and glucocorticosteroids that can influence susceptibility 

to EAE (Bolton et al., 1997; Murphy et al., 1998; Matarese et al., 2001; van den 

Broek et al., 2005). Glucocorticosteroid responses tonically control EAE 

susceptibility and are stimulated by doses of cannabinoids that cause suppression 
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of cytokine responses and immunosuppression (Pertwee, 1974; Wirguin et al., 

1994; Bolton et al., 1997). However, demonstrating a causal link in vivo is 

technically challenging as genetic disruption of the glucocorticosteroid receptor is 

lethal and genetic inhibition of the lymphoid glucocorticosteroid receptor expression 

inhibits the development of T cells and prevents EAE from being induced (Tonche et 

al., 1999; Marchetti et al., 2002). Furthermore, we have shown that chemical 

adrenalectomy or the pharmacological blockage of glucocorticosteroid receptors 

markedly augments the sedating properties of cannabinoids, including marked and 

long-lasting CB1R-dependent hypothermia, to such an extent that it prevents the 

appropriate experiments being undertaken in EAE (Pryce et al., 2003b).  

 

The results concerning CB1R mediated immunosuppression with synthetic 

cannabinoid receptor agonists and THC were totally consistent and show that 

immunosuppression was only evident at doses of THC and synthetic cannabinoids 

that induced significant cannabimimetic effects including sedation and hypothermia. 

Even allowing for the enhanced metabolic potential of rodents, the 

immunosuppressive doses of cannabinoids in animals are significantly greater than 

those achieved by recreational or medicinal use in humans (Lyman et al,, 1989; 

Grotenherman 2003; Zajicek et al., 2003). This suggests that irrespective of the 

mechanism(s) of immunosuppression, it is probably irrelevant to human medicinal 

use of cannabinoids where doses are titrated to avoid cannabimimetic effects. This 

provides another example where it is possible to demonstrate control of disease 

elements in animal models that are unlikely to be relevant to clinical use in human 

disease (Baker and Jackson, 2007). As such, although there have been instances of 

reported increased bronchial infections following smoking cannabis, there is 

essentially no good evidence that cannabinoids induce a serious, relevant 

immunosuppression in humans (Rachelefsky et al., 1976; Kraft and Kress 2004) 

and immunological studies of peripheral blood of patients in MS trials have so far 

failed to indicate any marked immune perturbations, including skewing of the T cell 

cytokine response (Killestein et al., 2003; Katona et al., 2005). Whilst the current 

cannabis trials in MS for symptom control have not been designed for the 

identification of immunosuppression, despite early indications, they have so far 

failed to demonstrate a reduction of relapses, indicative of an immunosuppressive 

effect (Zajicek et al., 2003; 2005). Similarly, a patient developed fulminant MS 

whilst taking SR141617A, during anti-obesity trials, suggesting that inverse 

agonism does not appear to inhibit disease (van Oosten et al., 2004). Importantly, 

THC is licensed for the treatment of wasting in acquired immune deficiency 

syndrome, where further immunosuppression is undesirable and would have 

hampered drug development if cannabinoids exhibited significant 

immunosuppressive potential.  
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However, it is increasingly being realised that neurodegeneration in progressive MS 

is the major cause of disability (Compston and Coles, 2002; Coles et al., 2006; 

Confavreux and Vukusic, 2006). Studies in CB1R deficient mice indicate that such 

mice accumulate nerve loss as a result of inflammatory insults (Pryce et al., 2003a; 

Jackson et al., 2005). This has been attributed in part due to the development of a 

deficiency of endocannabinoids, with neuroprotective potential, during immune 

attack in some EAE studies (Cabranes et al., 2005; Witting et al., 2006; Centonze 

et al., 2007) and in support of this, Faah-/- mice, which have elevated levels of 

anandamide, accumulate less nerve damage as a consequence of EAE (Webb et al. 

2008).  Although a lower dose of R(+)WIN-55 failed to inhibit relapsing EAE, 

consistent with the lack of immunosuppression, it slowed the accumulation of 

neurological deficits and nerve loss resulting from inflammatory attack. This 

suggests that cannabinoid receptor stimulation may be more important in 

mediating neuroprotection rather than immunosuppression.  

This has also been reported in EAE studies in DA rats where high dose (10 and 20 

mg/kg) R(+)WIN 55 treatment had immunomodulatory effects on relapse, whereas 

low dose (5 mg/kg) treatment had no influence on relapse severity but did produce 

a significant reduction in axonal degeneration (Hasseldam and Johansen, 2010). It 

has been shown previously that R(+)WIN-55 can inhibit the development of 

autoimmune-independent neurodegeneration in models of motor neuron disease as 

shown by a number of outcomes such as histology and neurophysiology (Bilsland et 

al., 2006). Furthermore, we have demonstrated that R(+)WIN-55 can induce 

neuroprotection in acute neuroinflammation of the eye (Pryce et al., 2003a) and 

show here that chronically administered cannabinoids can inhibit chronic, 

autoimmune-dependent neurodegeneration, which is lost in CB1 receptor deficient 

animals. In addition, low dose (2.5 mg/kg) administration of the phytocannabinoid 

THC, a dose which does not produce immunosuppression of disease, is also 

effective in reducing neurological impairment during the relapse phase of EAE, both 

alone and in combination with the non-psychoactive non-cannabinoid receptor 

binding cannabinoid constituent CBD. The observation that CBD also has 

neuroprotective properties is intriguing as it has no overt activity at either CB1 or 

CB2 receptors and does not have the psychoactive properties of THC. The 

neuroprotective action of CBD may result from firstly; anti-oxidant properties 

protecting neurons from the toxic effect of reactive oxygen species release by 

inflammatory cells (Hampson et al., 1998), secondly, restoration of neuronal 

mitochondrial Ca2+ homeostasis and inhibition of apoptosis (Ryan et al., 2009), or 

as a Na+ channel antagonist (D. Selwood, unpublished observations), which may be 

reflected in the ability of CBD to reduce epileptiform activity and seizures in vitro 

and in vivo (Jones et al., 2010). In addition, it has been recently reported that 



 95 

cannabidiol can inhibit synaptic transmission in both hippocampal slices and 

cultures in vitro in a CB1 indirect manner by the presumed augmentation of 

endocannabinoid levels and also in a direct 5HT1A receptor dependent manner which 

can be abolished by B. pertussis toxin, which may provide futher evidence for the 

neuroprotective properties of this compound (Ledgerwood et al., 2010). 

These results provide support for the notion that cannabinoids may offer a 

neuroprotective potential in MS (Zajicek et al., 2005). This is currently being 

investigated in trials of long-term administration of THC in progressive MS 

(http://www.pms.ac.uk/cnrg/cupid.php). 

Currently Sativex® contains a 1:1 mixture of cannabidiol, but it is feasible that the 

concentration of CBD could be increased to improve the neuroprotective capacity. 

 

These data are consistent with the ability of cannabinoids to inhibit a number of cell 

death pathways (Howlett et al., 2003). While CB1R-deficient animals may more 

rapidly develop neurodegeneration during EAE (Pryce et al., 2003a), which is 

resistant to cannabinoid therapy as shown here, suggesting a CB1R-dependent 

mechanism that may include: control of excitotoxic glutamate activity; metabolic 

failure and toxic ion influxes, CB2R-mediated control of microglial function in 

neurodegeneration in vivo, as well as CB1/2-independent effects requires further 

elucidation (Howlett et al., 2002; Pryce et al., 2003a; Walter et al., 2003; Kim et 

al., 2006).  Current cannabinoid receptor antagonists are cross-reactive with other 

receptors making interpretation of pharmacological blockade of therapeutic 

compounds more difficult (Baker et al., 2000; Howlett et al., 2002) and further 

studies combining pharmacological agents with CB receptor deficient mice are 

warranted to more precisely determine the neuroprotective role of the cannabinoid 

system. However, although cannabinoids have the potential for modulating immune 

responses, results here and elsewhere indicate that their effects on aspects of 

neuroscience relating to neuroprotection and symptom control are of more 

relevance to the control of MS. 
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CHAPTER FOUR 

 

CONTROL OF SPASTICITY IS CB1, NOT CB2 RECEPTOR MEDIATED. 
 

4.1. INTRODUCTION 

 

There has been recent interest in the therapeutic potential of cannabis for the 

control of a number of symptoms, notably spasticity that often develops as a 

consequence of multiple sclerosis (MS. Consroe et al., 1997; Pertwee, 2003).  Using 

cannabinoid agonists and antagonists, we were the first group to provide objective, 

experimental evidence for the tonic control of spasticity by the cannabinoid system 

in the EAE model of MS (Baker et al., 2000; Baker et al., 2001). This supported 

patient claims for the use of medicinal cannabis (Consroe et al., 1997) and has 

been validated by the modest improvements of symptoms in more recent clinical 

trials of cannabinoids in MS (Zajicek et al. 2003; Wade et al.,  2004; Brady et al., 

2004; Vaney et al., 2004; Zajicek et al., 2005; Freeman et al., 2006; Collin et al., 

2007). Although the exact cause of spasticity is not definitively known, it is clear 

that this results from alterations in the balance, possibly secondary to selective 

neuronal loss, between excitatory and inhibitory neural circuits (Brown, 1994; 

Dutta et al., 2006). This results in the loss of control of neurotransmission between 

the muscles and the central nervous system resulting in uncontrolled spastic 

movements, which in some instances can be treated using GABA receptor agonists 

(Brown, 1994; Ivanhoe and Reistetter, 2004). Since the initial observations in EAE 

(Baker et al., 2000), the CB1 receptor and endocannabinoid system has been shown 

to regulate synaptic neurotransmission (Wilson and Nicoll, 2001; Howlett et al., 

2002) and this action would be consistent with cannabinoid control of spasticity.  

 

In contrast to CB1, there is limited evidence to indicate that normal nerve tissues 

express CB2 receptors and they appear to be restricted to leucocytes (Howlett et al. 

2002, Van Sickle et al. 2005), although they are expressed by glial cells and may 

be unregulated in inflamed brain tissue (Wotherspoon et al. 2005, Maresz et al. 

2005) and therefore may not be anticipated to control problems of 

neurotransmission. Surprisingly however, a CB2 agonist ameliorated and an 

antagonist transiently worsened spasticity in EAE (Baker et al., 2000), suggesting 

that CB2 agonists could provide therapies that avoid the psychoactive effects 

associated with CB1 agonism (Baker et al., 2000; Howlett et al., 2002; Varvel et al., 

2005). In animals, cannabimimetic potential is determined by activity in "tetrad" 

(hypomotility, hypothermia, ring catalepsy and analgesia) tests, which show no 

response due to CB2 stimulation (Howlett et al., 2002). However, currently there 

are no absolutely specific cannabinoid reagents (agonists or antagonists) available, 

which solely act on either of the CB1 or CB2 receptors and although they may be 
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selective to one or other of the cannabinoid receptors in vitro, at the doses used in 

vivo, there is the potential for cannabinoids to cross-react with the other CB 

receptor(s) (Pertwee, 1999; Howlett et al., 2002). Furthermore, there is increasing 

evidence for additional receptors that mediate cannabimemetic effects (Hajos et al., 

2001; Howlett et al., 2002; Friede et al., 2002; Begg et al., 2005; Baker et al., 

2006), which further complicates the interpretation of pharmacological data. 

Therefore, receptor-deletion using transgenic technology (Zimmer et al., 1999; 

Brooks et al., 2002) provides a level of certainty of the role of the CB receptor 

subtype that is not provided by CB receptor antagonism alone. This was used to re-

evaluate CB2-mediated control of spasticity during EAE.  

 

4.2. RESULTS 

 

In an attempt to validate our previous studies, which showed an anti-spastic 

activity of CB2 agonists (JWH133 [Receptor Affinity. Ki CB1=680nM CB2 =3nM.), 

(Baker et al., 2000), additional compounds were investigated. Surprisingly, 

10mg/kg i.v. JWH056, which is less potent at CB2, but with a lower affinity for CB1 

(Ki > 8µM) than JWH133, failed to inhibit spasticity at 10-60 minutes after injection 

i.v. (Figure 4.1A), whereas RWJ352303, a potent non-selective CB1 agonist 

inhibited spasticity (Figure 4.1 A). However, a dose-dependent anti-spastic activity 

was detectable following injection i.v. of a potent CB2 agonist RWJ400065 (Figure 

4.1B). This compound has similar binding affinities to JWH133 and failed to induce 

observable catalepsy, ptosis and hypothermia (Figure 4.2), indicative of CB1 

receptor-mediated effects (Figure 4.2). In contrast RWJ352303 had the potential to 

induce “tetrad-like” effects (Figure 4.2), but was still active as an anti-spastic agent 

(Figure 4.1A), at doses that did not induce "tetrad-type" effects, shown here by 

hypothermic responses (Figure 4.2). However, when 10mg/kg i.v. RWJ400065 was 

injected into ABH.Cnr1-/- mice; there was no apparent anti-spastic activity (Figure 

4.1B). To clarify this further, commonly used high affinity CB1/CB2 non-selective 

agonists were examined. However, there was no evidence of inhibition of spasticity 

in CB1-deficient mice with either CP55,940 or R(+)WIN-55, 212-2 compared to 

significant (P<0.001) inhibitory activity in wildtype mice (Figure 4.3). This 

suggested that CB1 and not the CB2 receptors were actually mediating the inhibitory 

effects of some CB2 agonists. 
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Figure 4.1.  Inhibition of spasticity with CB1/2 agonists is CB1-mediated.  

Following the development of spasticity ABH mice were injected i.v. with either: (A) the non-selective 

agonist RWJ353203 or the CB2-selective agonist JWH056 or (B) the CB2-selective RWJ400065 agonist. 

These received 0.2mg/kg (n=17 limb), 0.01 mg/kg (n=13 limbs) RWJ353203 or 10 mg/kg JWH056 (n=7 

limbs) or 0.01 mg/kg (n=12 limbs), 1 mg/kg (n=16 limbs) or 10 mg/kg (n=16limbs) RWJ400065 in 

wildtype or CB1-deficient mice (n=12 limbs) in intralipid. The resistance to flexion was measured against 

a strain gauge. **P<0.01, ***P<0.001 compared to baseline. 
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 Figure 4.2. Hypothermia induced by cannabinoids. 

 

 

 

Wildtype or CB1-deficient mice were injected either i.v. or i.p. with the non-selective agonist RWJ353203 

or CB2-selective agonist RWJ400065 in intralipid. The change in body temperature (mean ± SEM) 20 

minutes following injection compared to baseline was assessed. **P<0.01, ***P<0.001 compared to 

baseline by paired t tests.  

 

Figure 4.3. Spasticity is controlled by the CB1 receptor.  
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Wildtype or CB1-deficient mice (Cnr1 -/-) were injected intraperitoneally with the full CB1/CB2 agonists 

CP-55,940 (n=8/group) or R(+)WIN-55,212-2 (n=14/group).   To facilitate visualisation of differences 

between groups, results are expressed as the mean ± SEM percentage change in the resistance to 

hindlimb flexion compare to baseline, 10 minutes after the injection of compound. ***P<0.001 

compared to baseline by paired t tests.  
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4.3. DISCUSSION 

 

Whilst, this study confirms our previous observation (Baker et al., 2000) that 

"tetrad inactive", apparent CB2 agonists can show anti-spastic activity, this does not 

appear to be due to the direct activity of CB2 receptors. This most likely occurs 

because CB2 agonists/antagonists (Baker et al., 2000), or possibly their in vivo 

metabolites, have some affinity for CB1 receptors that may actually mediate the 

inhibitory effects. The biology of cannabis and the cannabinoid system now 

indicates that both tetrahydrocannabinol and CB1 receptors are the major mediators 

for both therapy in spasticity and also the adverse side-effects (Howlett et al., 

2002; Wilkinson et al., 2003; Varvel et al., 2005). It will be virtually impossible to 

truly dissociate these two effects, using cannabis. Clinical studies indicate that there 

is a substantial variability of individuals to tolerate cannabis and 

tetrahydrocannabinol (Zajicek et al., 2003; Wade et al., 2004; Brady et al., 2004). 

The apparent therapeutic window, prior to psychoactive effects, appears to be very 

small and is consistent with the modest effects in symptom control observed so far 

(Zajicek et al., 2003; Wade et al., 2004; Brady et al., 2004; Zajicek et al., 2005; 

Freeman et al., 2006), which nevertheless validate our original observations in 

animal models (Baker et al., 2000; 2001; Wilkinson et al., 2003). This variability of 

individuals to tolerate cannabinoids means that it will be difficult to adequately 

dose-titrate with potent CB1 agonists and that weak CB1 agonists, such as at the 

level found with some CB2 agonists may be preferable for clinical use.  

 

Currently there are two recognised cannabinoid receptors, but there is 

pharmacological evidence (Howlett et al., 2002; Breivogel et al., 2001; Hajos et al., 

2002; Baker et al., 2006; Oz, 2006; Brown, 2007), some of which is disputed 

(Kawamura et al., 2006; Takahashi and Castillo, 2006), for additional receptors or 

pathways that mediate cannabimimetic effects.  Although the use of gene knockout 

technology is not without its own limitations, it provides an important tool in target 

validation. The loss of anti-spastic activity of R(+) WIN55,212-2 and CP55,940, 

both full CB1/CB2 agonists, in CB1-deficient mice supports the indication that CB1 

and not CB2 is mediating the therapeutic anti-spastic effect. Nevertheless anti-

spastic control is feasible in CB1-deficient animals as shown previously with arvanil 

(Brooks et al., 2002). Arvanil, a potent transient receptor potential vanilloid type 1 

(TRPV1) receptor and weak CB1 agonist, can also inhibit spasticity in the presence 

of CB1/CB2 antagonists and high doses of the TRPV1 antagonist capsazepine 

(Brooks et al., 2002). It can also induce cannabimemetic "tetrad"-type responses, 

such as hypothermia, hypomotility, in wildtype and Cnr1-/- mice (Brooks et al., 

2002). However, capsazepine is a weak TRPV1 antagonist in mice (Correll et al., 

2004) and the hypothermia and the marked hypomotility induced by 0.5mg/kg i.v. 
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Arvanil is lost in Trpv1-/- mice, further indicating the value of receptor knockout 

animals in target validation. However, cannabinoid receptors can exist as 

homodimers and novel heterodimer formations between CB1 receptors and other G 

Protein coupled receptors are assumed or are generated (Wager-Miller et al., 2002; 

Kearn et al., 2005; Rios et al., 2006). Therefore CB1/CB2 receptor heterodimers or 

heterodimers between CB1R and any other molecule to which the CB2R agonists 

may bind would not exist in Cnr1 -/- mice and this may have accounted for the loss 

of activity of RWJ400065 in CB1R-deficient mice. Therefore similar studies in Cnr2-

/- mice will be required to definitively exclude a role for CB2R in the control of 

spasticity. 
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CHAPTER FIVE 

 

CONTROL OF SPASTICITY BY TARGETING THE DEGRADATION OF 

ENDOCANNABINOIDS BY FATTY ACID AMIDE HYDROLASE AND 

MONOACYLGLYCEROL LIPASE. 

 

5.1. INTRODUCTION 

 

Based on the results in previous chapters, there is a suggestion that our previous 

data showing control of spasticity with endocannabinoid degradation inhibitors 

(Baker et al., 2001) may need to be more cautiously interpreted. Many of these 

pharmacological inhibitors, often based on the structural modifications of 

anandamide, have low affinity for CB1 receptors and are inactive in "tetrad" tests, 

just as CB2-selective agonists appear to be. Previously, it has been shown that 

compounds believed to inhibit the putative anandamide transporter, including; 

AM404, VDM11 (Baker et al., 2001), OMDM-1, OMDM-2 (de Lago et al., 2004), 

UCM707 (de Lago et al., 2006), 0-2093 and 0-3246 (Ligresti et al., 2006), all 

exhibit anti-spastic activity. However, many of these agents have activity on 

additional molecules such as TRPV1 vanilloid receptors and the cannabinoid 

degrading enzyme: fatty acid amide hydrolase (FAAH), which could account for 

their biological activity (Ralevich et al., 2001; Fowler et al., 2004). Although a site 

for membranous diffusion of endocannabinoids has been suggested (Moore et al., 

2005), the existence of a specific transporter for anandamide, independent of 

FAAH, has been questioned (Glaser et al., 2003; Ortega-Gutierrez et al., 2004; 

Kaczocha et al., 2006) and is probably unlikely to exist (Di Pasquale et al., 2009; 

Kaczocha et al., 2009). Therefore, until the putative endocannabinoid 

transporter(s) are identified and cloned, it must be considered likely that the 

therapeutic, anti-spastic effect of cannabinoid re-uptake inhibitors may be 

explained by alternative mechanisms.  The lack of the true understanding of the 

diversity of the cannabinoid system and importantly the lack of absolute specificity 

of current cannabinoid agonists and antagonists (Pertwee, 1999), means that it 

may be difficult to correctly interpret results, particularly in vivo, if using a purely 

pharmacological approach.  

 

Although there has been recent progress in elucidating the biosynthetic and 

breakdown pathways of 2-AG (Blankman et al., 2007; Yates and Barker, 2009), few 

specific compounds have been generated until recently (Long et al,, 2009). Few 

genetic knockouts involving targets regulating 2-AG production and degradation 

have been reported until recently, where Diacylglycerol lipase α and β knockout 
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mice have been generated (Gao et al., 2010, Tanimura et al., 2010). These mice 

reveal that the major biosynthetic pathway for 2-AG is DAGLα and that retrograde 

endocannabinoid-mediated signaling is lost in DAGLα knockout animals, whilst 

being relatively unaffected in DAGLβ knockout mice, which display a lower 

reduction in 2-AG generation. In addition, adult neurogenesis in both DAGLα and β 

knockout mice is reduced, compared to wild type animals (Gao et al., 2010). Also 

recently, inhibitors of MAG lipase, the enzyme responsible for the majority of the 

degradation of 2-AG have been developed, which elevate CNS levels of 2-AG 8 fold 

in mice (Long et al., 2009) and a MAG lipase knockout mouse strain has recently 

been reported which displays significantly elevated levels of 2-AG in the CNS 

(Chanda et al., 2010). The ability of this additional endocannabinoid pathway to 

influence the treatment of spasticity is examined here. 

 

The mechanism(s) for anandamide production is unclear compared to its 

breakdown (Yates & Barker, 2009). Whilst it had been suggested that NAPE would a 

major player in anandamide biosynthesis, the observation that genetic depletion of 

NAPE does not particularly influence anandamide levels (Leung et al., 2006; Simon 

& Cravatt, 2006), suggests that there are other compensatory pathways for 

anandamide production and so this molecule may not be particularly “drugable”. In 

contrast, the observation that genetic depletion of FAAH results in elevated levels of 

anandamide but not 2-AG suggests that this may be an important target for control 

of anandamide-sensitive functions (Cravatt et al., 2001; Saario et al., 2006). We 

have previously reported that AM374, which is an inhibitor of FAAH can inhibit 

spasticity (Baker et al. 2001). Using Faah gene knockout mice (ABH.Faah -/-) it will 

be possible to verify the activity of some FAAH inhibitors (Boger et al., 2000) as 

anti-spastic agents.  

 

5.2. RESULTS 

 

5.2.1. Amelioration of experimental spasticity by inhibition of anandamide 

degradation by FAAH inhibitors. 

 

A number of FAAH reversible and irreversible FAAH inhibitors have been described 

(Boger et al. 2000). To date the most potent inhibitor is CAY10402 (Ki hFAAH = 

0.0001µM Boger et al. 2000. Figure 5.1). This and CAY10400 ((Ki hFAAH = 

0.001µM Boger et al. 2000. Figure 5.1) both inhibited spasticity (Figure 5.2A,B) at 

doses that did not induce any hypothermia (Table 5.1). On a dose/weight basis 

CAY10402 was marginally more potent than CAY10400 which is reflective of the 

increased potency of CAY10402 at inhibiting FAAH (Boger et al. 2000).  
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Figure 5.1. Structure of Fatty Acid amide hydrolase inhibitors. 

 

 

CAY10400                  CAY10402 

            

         

URB 597 

                                             

 

 

 

 

Table 5.1.  Fatty Acid Amide Hydrolase Inhibitors do not induce “tetrad” effects at 

therapeutic doses compared to the fully CNS penetrant CB1 agonist SAB722. 

 

 

_____________________________________________________________________________ 

                                                              Temperature Change°C         
  

Compound   Dose    n            Mean ±  SD    p 
__________________________________________________________________ 

CAY10402 1.0mg/kg  7   0.47 ±0.57             n.s. 
0.1mg/kg  7   0.27 ±0.23           n.s. 

 
CAY10400 1mg/kg  7  -0.36 ± 0.40 

0.1mg/kg  7   0.10 ± 0.15  n.s. 
 
SAB722 1mg/kg  7  -3.66 ± 0.84  P<0.001 

0.1mg/kg  7   0.63 ± 1.25  n.s. 
5mg/kg in Cnr1-/- 4           - 0.38 ± 0.25  n.s. 

__________________________________________________________________ 
 

The temperature was measured under the hindlimb and then the compound was injected and the body 

temperatures of ABH mice were measured 20minutes later. The change in temperature was assessed 

using paired t tests. 
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Figure 5.2. Inhibition of Spasticity with Fatty Acid Amide Hydrolase Inhibitors. 
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Following the development of spasticity ABH mice were injected i.v. with either: (A, B) CAY10400 or 

(C,D) CAY10402. These received (A) 0.1mg/kg (n=10 limbs from 7 animals), (B) 1.0 mg/kg (n=10 

limbs from 7 animals) CAY10400 or (C) 1.0mg/kg (n=12 limbs from 7 animals) or (D) 0.1mg/kg (n=12 

limbs from 7 animals) CAY10402 in intralipid. The resistance to flexion was measured against a strain 

gauge.*P<0.05, **P<0.01, ***P<0.001 compared to baseline. 

 

Fatty acid amide hydrolase-deficient animals were used to verify whether FAAH was 

a realistic target for the control of spasticity. C57BL/6.Faah-/- were backcrossed 

with ABH mice to produce ABH.Faah-/-. These mice demonstrated over an 8 fold 

increase in the levels of anandamide in the brains of ABH.Faah-/- mice as shown by 

liquid crystallography mass spectroscopic analysis (Baker et al. 2001) of the 

endocannabinoid anandamide (AEA) levels (Figure 5.3). Levels of 2-AG were 

unchanged. (Figure 5.3).  Interestingly, there was a further increase in anandamide 

levels following the injection of AM404 (10mg/kg i.v.), a putative anandamide re-

uptake inhibitor. This demonstrates that AM404 has a biological activity that is 

independent of FAAH, even if there is no specific transport molecule. However, 

there appeared to be compensation at the level of the CB1 receptor as there was; 
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(a) no evidence of altered CB1 receptor expression as assessed by ligand binding 

(Table 5.2) or in situ hybridization (Table 5.3 and importantly (b) little evidence of 

altered CB1 receptor signaling (Table 5.4) in the brains of FAAH-deficient mice.  

 
Figure 5.3. Anandamide levels are elevated in FAAH deficient mice.  
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Endocannabinoid levels were measured in the spinal cords (expelled from the spinal column using 

hydrostatic pressure and frozen in liquid nitrogen within 60s from death) of wildtype and FAAH 

(ABH.Faah-/-) knockout mice.  This was performed as described previously (Baker et al. 2001). Mice 

were injected with 0.1ml of vehicle (ECP) or with 10mg/kg i.v. of the anandamide re-uptake inhibitor 

AM404 (Tocris, Bristol, UK) 30 minutes earlier. The results represent the mean ± SEM (n=4-5/group). 

This demonstrates that AM404 has a biological activity that is independent of FAAH and that knockout of 

the Faah gene enhances anandamide, but not 2-AG, levels. *** P<0.001 compared to vehicle treated 

FAAH knockout mice. Analysis was performed by Tizania Bisogno and Vincenzo Di Marzo, 

Naples, Italy. 
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Table 5.2. CB1 receptor mRNA levels (arbitrary units of optical density) in several 

brain regions of wildtype and FAAH knockout mice. 

_____________________________________________________________________ 
                                                    Relative CB1 Expression (AU) 

Brain Region            Anatomical Location            Wildtype         ABH.Faah-/- 
__________________________________________________________________ 
Cerebral cortex Superficial layer (II-III)  0.149 ± 0.008         0.179 ± 0.019 

Deep layer (V-VI)   0.108 ± 0.006         0.105 ± 0.006 
 
Basal ganglia   Lateral caudate-putamen 0.325 ± 0.021         0.349 ± 0.019 

Medial caudate-putamen 0.168 ± 0.011         0.182 ± 0.014 
 
Hippocampus  Ammon’s horn  0.157 ± 0.012         0.177 ± 0.011 
   Dentate gyrus   0.231 ± 0.015         0.236 ± 0.013 
Cerebellum  Granular layer  0.555 ± 0.015         0.589 ± 0.032 
_____________________________________________________________________ 
 
Radioactive in situ hydridization to detect [35S]-labeled oligonucleotide reactive with Cnr1 mRNA was 

performed on coronal 20µm brain sections from either wildtype (WT) or FAAH knockout mice as 

described previously (Cabranes et al. 2006). Values are means ± SEM of 6-7sections per group. Data 

were assessed by Student’s t-test. This was performed by Anna Cabranes, Madrid, Spain.  

 
 
Table 5.3. CB1 receptor binding (fmol/mg of tissue), analyzed by [3H]CP55,940 

autoradiography   in several brain regions of wildtype and FAAH knockout mice. 

_____________________________________________________________________ 
                                         CB1 Expression (fmol/mg of Tissue) 

Brain Region  Anatomical Location                         Wildtype   ABH.Faah-/- 
__________________________________________________________________ 
Cerebral cortex Superficial layer (I)   111.4 ± 5.5    115.1 ± 6.5 

Deep layer (VI)     82.7 ± 4.6  73.9 ± 4.1 
 
Basal ganglia   Lateral caudate-putamen 153.8 ± 9.0  166.2 ± 7.5 

Medial caudate-putamen 120.5 ± 8.0  135.1 ± 6.6 
Globus pallidus  206.8 ± 7.0  212.6 ± 5.7 
Entopeduncular nucleus 204.8 ± 21.6  218.1 ± 15.2 
Substantia nigra  426.5 ± 22.0  438.4 ± 21.0 
 

Hippocampus  Ammon’s horn  127.9 ± 5.2  123.3 ± 5.4 
   Dentate gyrus   102.9 ± 4.8  95.6 ± 4.1 
 
Cerebellum  Molecular Layer  217.5 ± 4.1  224.0 ± 7.6 
_____________________________________________________________________ 
 
Autoradiography of  [3H]CP55,940 ligand binding was performed on coronal 20µm brain sections from 

either wildtype (WT) or FAAH knockout mice as described previously (Cabranes et al. 2006). Values are 

means ± SEM of 6-7sections per group. Data were assessed by Student’s t-test. This was performed 

by Anna Cabranes, Madrid, Spain. 
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Table 5.4. WIN-55,212-2- Stimulated [35S]GTPγS binding (% of stimulation over 

basal binding) in several brain regions of wildtype and FAAH knockout mice. 

_____________________________________________________________________                                      
                                                    Relative CB1 Expression (AU) 

Brain Region  Anatomical Location                        Wildtype   ABH.Faah-/- 
__________________________________________________________________ 
Cerebral cortex Superficial layer (I)   163.4 ± 18.0  156.9 ± 7.6
  

Deep layer (VI)   150.4 ± 8.2  141.2 ± 7.7
  

 
Basal ganglia   Lateral caudate-putamen 174.0 ± 12.6        154.6 ± 6.0 

Medial caudate-putamen 166.7 ± 9.8        154.0 ± 5.9 
Globus pallidus  203.5 ± 5.0        185.9 ± 12.4 
Entopeduncular nucleus 377.2 ± 23.9        374.1 ± 28.6 
Substantia nigra  403.8 ± 20.0        334.5 ± 10.4*

   
 
Hippocampus  Ammon’s horn  190.5 ± 7.9        195.6 ± 13.2 
   Dentate gyrus   180.1 ± 11.0        180.4 ± 14.5 
 
Cerebellum  Molecular Layer  252.9 ± 13.3        222.7 ± 4.5*  
_____________________________________________________________________ 
 
WIN-55,212-2-stimulated autoradiography of  [35S]GTPγS binding was performed on 20µm coronal brain 

sections from either wildtype (WT) or FAAH knockout mice as described previously (Cabranes et al. 

2006).  GTPγS binding was assessed in the presence and absence of the cannabinoid receptor agonist. 

Values are means ± SEM of 6-7sections per group. Data were assessed by Student’s t-test. *P,0.05 

compared to wildtype controls. This was performed by Anna Cabranes, Madrid, Spain. 

 

 

 

5.2.2 Anti-spastic activity of CAY10402 is lost in FAAH deficient mice whilst 

the anti-spastic activity of URB 597 is retained.  

 

It was found that the anti-spasticity activity of CAY10402 was lost when the same 

dose of compound was injected into FAAH-deficient mice (Fig 5.4A).  This validated 

FAAH as a target for therapy. However, CAY10400 and CAT10402 are unlikely to be 

developed as therapeutic drugs because these drugs exhibit poor pharmacokinetics 

(Iain Janes, Novartis London. Personal Communication to D.Baker). URB597 is also 

a potent (IC50 = 4.6 µM FAAH) FAAH inhibitor which exhibits good pharmacokinetics 

(Piomelli et al. 2006). However whilst this compound also inhibited spasticity (Fig 

5.4B) at a dose of 5mg/kg i.v. it was also active in FAAH deficient mice (Fig 5.4B), 

indicating that this compound had additional off-target specificites. This further 

demonstrated the importance of the use of knockout mice in validating targets for 

therapy. 
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Figure 5.4. Inhibition of Spasticity with FAAH Inhibitors in wildtype and FAAH-

deficient mice. 
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Wildtype or FAAH-deficient mice (Faah -/-) were injected with (A) 1mg/kg CAY10402 i.v. in intralipid or 

(B) 5mg/kg i.v. URB597 in Ethanol:Cremophor:PBS (1:1:18) and the resistance to hindlimb flexion was 

assessed using a strain gauge at baseline and following injection of drug (n=12-14/group).   To facilitate 

visualization of differences between groups, results are expressed as the mean ± SEM percentage 

change in the resistance to hindlimb flexion compare to baseline and 10-60 minutes after the injection of 

compound. ***P<0.001 compared to baseline by paired t tests.  
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5.2.3 2-AG-mediated inhibition of spasticity by inhibition of 2-AG 

degradation by MAG Lipase inhibition. 

Inhibition of spasicity in CREAE mice was also seen with the administration of the 2-

AG degradation inhibitor JZL184, which targets the 2-AG degradation enzyme MAG 

Lipase, to animals displaying spastic hind limbs. This anti spastic effect persisted for 

at lest 60 minutes after administration and identifies the 2-AG pathway as another 

potential therapeutic taget for therapeutic intervention in spasticity in addition to 

targeting anandamide degradation pathways (Fig 5.5). 

 

 

Figure 5.5. Inhibition of Spasticity with the MAG lipase inhibitor JZL184. 
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Following the development of spasticity ABH mice were injected i.v. with 5 mg/kg JZL184 in vehicle 

Ethanol:Cremophor:PBS (1:1:18) and the resistance to hindlimb flexion was assessed using a strain 

gauge at baseline and following injection of drug (n=16 hind limbs from 8 animals). The resistance to 

flexion was measured against a strain gauge.*P<0.05, **P<0.01, ***P<0.001 compared to baseline. 
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5.3. DISCUSSION 

 

Although it has been previously shown that endocannabinoid degradation inhibitors 

can limit spasticity during EAE (Baker et al. 2001, de Lago et al 2006, Ligresti et al 

2006), using FAAH-deficient mice it has been possible to provide definitive evidence 

that pharmacological manipulation of the FAAH degradative enzyme for 

endocannabinoids resulting in increased endocannabinoid levels such as 

anandamide, can be a target for symptom control such as spasticity.  

 

It has previously been shown that there are elevated levels of anandamide in the 

spinal cord during spastic EAE and that CB1 receptor antagonism transiently 

increased the level of spasticity (Baker et al. 2000, 2001). This may indicate that 

receptor tolerance may operate in the lesional areas or the endogenous elevated 

levels of anandamide in these areas are still not sufficient to control spasticity but it 

also suggested that the endocannabinoids were providing an endogenous tonic 

control mechanism. Anandamide levels are increased in a number of experimental 

models of CNS pathological events such as traumatic brain injury, cerebral 

ischaemia, seizure, Parkinson’s disease and multiple sclerosis (Baker et al, 2001, 

Hwang et al 2009) and have been implicated as an endogenous neuroprotective 

mechanism in conditions of CNS insult. Genetic deletion of FAAH in SOD-1 mice, a 

model of motor neurone disease, results in a delayed onset of signs of disease in 

these animals (Bilsland et al 2006). Furthermore, FAAH knockout mice showed an 

improved clinical outcome after EAE induction with a reduction in clinical score in 

remission despite equivalent levels of inflammatory infiltrates compared to wild 

type controls, indicating the protective effect of elevated anandamide levels on 

neuronal survival during CNS inflammation (Webb et al 2008). 

 

Whereas the degradative pathway for anandamide appears to be mediated almost 

exclusively by the enzyme FAAH, it appears that the situation for the 

endocannabinoid 2-AG appears more complex. Although FAAH can degrade 2-AG in 

vitro, 2-AG levels were essentially unaltered in FAAH-deficient mice in vivo.  It 

appears that FAAH is responsible for only less than 1% of degradation of 2-AG 

(Blankman et al.2009), whereas monoacylglycerol (MAG) lipase appears to be 

responsible for approximately 85% of 2-AG degradation with the remaining 15% 

mediated by the uncharacterised enzymes ABHD6 and ABHD12 (Blankman et al., 

2009).  These three enzymes are reported to display distinct, subcellular profiles, 

possibly indicatiing that different pools of 2-AG are controlled in the CNS by these 

enzymes (Blankman et al., 2009). Whilst the tools such as selective inhibitors and 

knockout mice are available to investigate the actions of anandamide have been 

generated as shown here, specific inhibitors of MAG lipase are only beginning to be 
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reported (Long et al. 2009). However, in contrast to the lack of cannabimimetic 

effects following inhibition of FAAH and elevation of anandamide (Baker et al 2000; 

2001), the observation that the concomitant increase in brain 2-AG levels following 

inhibition of MAG lipase was accompanied by cannabimimetic effects, which were 

blocked by CB1 receptor antagonism, in the mouse tetrad tests, showing significant 

hypothermia and hypomotility (Long et al., 2009). Tetrad effects have not been 

reported for FAAH inhibitors, except for analgesia (Cravatt and Lichtman,  2003).  

This may reflect the observation that anandanide is a partial agonist at the CB1 

receptor with a lower intrinsic efficacy than 2-AG, which is a full agonist at CB1 

receptors and the fact that 2-AG is about a thousand fold more abundant in the 

brain  than anandamide (Gonsiorek et al.,2000; Baker et al., 2001). Furthermore, 

repeated augmentation of 2-AG by MAG-lipase inhibition resulted in; cannabinoid 

receptor tolerance, loss of analgesic activity, impaired endocannabinoid-dependent 

synaptic plasticity and physical dependence which is not observed with the 

inhibition of FAAH and the elevation of anandamide levels (Schlosburg et al., 2010).  

CB1 receptor desensitization and a reduction in cannabimimetic activity of CB1 

receptor agonists is also seen in mice with genetic deletion of MAG lipase and a 

concomitant increase in 2-AG levels in the CNS (Chanda et al., 2010). These results 

suggest that pharmacological elevation of 2-AG levels may have similar drawbacks 

to the use of CB1 receptor agonists in patients, including psychoactive effects 

resulting from CB1 receptor agonism, which may limit their usefulness as a clinically 

therapeutic target. 

 

Compound CAY10402 was selected for these studies as it was reported to be the 

most potent FAAH inhibitor (Boger et al., 2000). Other compounds such as OL-135 

and URB597 also display potent FAHH inhibitory activity, OL-135 is reversible 

(Boger et al, 2005), whereas URB597 binds irreversibly to FAAH (Kathuria et al, 

2003).  The submaximal efficacy of reversible FAAH inhibitors with transient 

increases of anandamide such as Ol-135 in vivo may reflect rapid metabolism of 

these compounds, which must be coupled with the observation that approximately 

85% inhibition of FAAH is required for sustained anandamide elevation (Fegley et al 

2005). Whilst poor pharmacokinetics will limit the utility of CAY10402 (Personal 

communication Iain James, Novartis, London UK to D. Baker) using i.v. 

administration it was possible to demonostrate that both CAY10402 and CAY10400 

inhibited spasticity in a FAAH-dependent manner. URB597 is an orally-active, 

potent inhibitor of FAAH that gives long term elevation of anandamide (Kathuria et 

al, 2003). Whilst this compound could inhibit spasticity it was also active in FAAH-

deficient mice indicating that this compound has off-target specificity. This is 

further evidenced by reported analgesic effects of URB597 via PPAR α nuclear 

receptor stimulation via increased endocannabinoid levels (Sagar et al, 2008)). 
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Whilst OL-135 and CAY-10402 have also been reported to have off target effects by 

the reported inhibition of serine hydrolases in peripheral tissues (Ahn et al., 2009) 

but experiments in FAAH-deficent mice allows the confirmation of the value of FAAH 

as a target for control of spasticity. The observation that URB597 reduces limb 

stiffness in FAAH knockout mice indicates that this compound also has effects on 

targets other than FAAH. In contrast the anti spastic effects of CAY10402 are lost in 

FAAH deficient animals suggesting a much greater selectivity for FAAH than 

URB597.  FAAH inhibitors can also increase the levels of other fatty acid amides 

such as oleoylethanolamide (OEA) and N-palmitoyl ethanolamine (PEA), which act 

on non-cannabinoid receptors such as GPR119 and may act to enhance or 

antagonise the effects of anandamide (Farrell and Merkler, 2008; Godlewski et al., 

2009). 

 

It is interesting that whilst FAAH-deletion results in elevated levels of anandamide 

as shown here and in previous studies (Cravatt et al., 2001), it is clear that this 

triggers compensatory mechanisms as the CB1 receptors do not signal substantially 

more than wild type animals despite the presence of about ten-fold elevated levels 

of anandamide. However, the role of anandamide in control of synaptic 

transmission may be more important during pathology. Whilst short term synaptic 

signalling appears to regulate synaptic transmission via iontrophic induction of 2-AG 

production, chronic glutamate release as occurs during pathology leads to 

stimulation of metabotrophic glutatemate receptors and anandamide control of 

synaptic neurotransmission (Maejima et al., 2001). This suggests that FAAH and 

anandamide may be more important therapeutic targets than 2-AG in pathological 

events in the CNS, although elevation of 2-AG by MAG Lipase inhibition, shown 

here is also effective in the amelioration of spasticity in mice, indicating that this 

pathway is also a potential therapeutic target for the development of anti-spastic 

agents. However, the reported central role of 2-AG in retrograde inhibition of 

synaptic transmission suggests that the therapeutic elevation of 2-AG levels may 

come with significant cannabimimetic side effects (Long et al., 2009), which may 

limit their therapeutic usefulness. 

 Despite caveats as to the potential side-effects such as fertility problems resulting 

from the inhibition of FAAH (Maccarone et al., 2002a; 2002b; Wang et al., 2006; 

Sun et al., 2009), drug induced increases in anandamide levels shows a potential 

therapeutic benefit not only in the treatment of neurological resulting from nerve 

damage, but also may limit this damage via the neuroprotective properties of the 

endogenous cannabinoid system. Therefore, FAAH degradation inhibitors may prove 

to be a novel class of compounds that can be used for the therapy of human 

disease. 
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CHAPTER SIX 

 

CONTROL OF SPASTICITY BY CNS-EXCLUDED CB1 RECEPTOR 

AGONISTS: PRODUCTION OF VSN16- A NOVEL PUTATIVE GPR55 

MODULATOR. 

 

6.1. INTRODUCTION 

 

Using experimental allergic encephalomyelitis (EAE) models of MS, we have shown 

that the cannabinoid system exhibits tonic control of spasticity (Baker et al., 2000; 

2001). Tetrahydrocannabinol (THC) and CB1R are the important mediators for the 

control of spasticity by cannabis (Wilkinson et al., 2003; Chapter 4). Unfortunately, 

THC also mediates the unwanted, psychotrophic effects of cannabis due to CB1R 

stimulation in certain cognitive-control centres in the brain (Howlett et al., 2002; 

Varvel et al., 2005). Plant-derived cannabinoid compounds are extremely 

hydrophobic molecules and rapidly enter the CNS. Therefore, as cannabis has no 

mechanism with which to selectively target the motor-centres that control 

spasticity, its use will be invariably be associated with psychoactive effects. Whilst 

these may be avoided through dose-titration, it means that these doses will be 

suboptimal and that cannabis will have a narrow therapeutic window in terms of its 

effect versus side-effect profile. This may in part account for the modest clinical 

effects of medicinal cannabis in trials, where the drug was dose-titrated to limit 

psychoactive effects (Zajicek et al., 2003; Wade et al., 2004; Zajicek et al., 2005). 

This therapeutic window may be greatly enlarged if CB1R stimulation in cognitive-

control centres of the brain is avoided. 

 

The blood:brain barrier (BBB) excludes molecules from entering the CNS and this is 

formed from the actions of astrocytes and specialized CNS endothelial cells 

(Colabufo et al., 2009; Wolburg et al., 2009). These endothelial cells have tight 

junctions, which exclude hydrophilic molecules, and a number of multi-drug 

resistance exclusion pumps (Feher et al,, 2000; Dallas et al., 2006; Colabufo et al., 

2009; Wolburg et al., 2009). Exclusion of cannabinoids from the brain therefore, 

may be achieved by synthesizing compounds that are polar and/or targeted to ABC 

transporters.  
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6.2. RESULTS 

 

6.2.1. VSN16 is a hydrophilic water soluble compound which does not 

induce CNS cannabimimetic effects.  

 

In an attempt to make CNS-excluded, CB1R agonists, a number of compounds 

based around monocyclic alkyl amide cannabinoid receptor ligands were made 

(Berglund et al., 2000; Hoi et al., 2007).  These were synthesised by Cristina 

Visintin and David Selwood at the Wolfson Institute, University College London, to 

contain polar elements that would promote exclusion from the CNS via the 

blood:brain barrier (Feher et al., 2000). One of these compounds, VSN16 was 

found to be water soluble (at least 30mg/ml. Figure 6.1).  

 

Figure 6.1. Chemical Structure of VSN15 and VSN16. 
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The CB1R affinity of VSN16 (racemate) was first assessed using the mouse vas 

deferens contraction assay (Pertwee et al., 1992). VSN16 exhibited potent 

inhibitory activity with a IC50 in the low nM range, which compared favourably with 

the potent CB1R/CB2R agonist R(+)WIN55-212 (Figure 6.2A,B). The activity of 

VSN16 was inhibited by incubation with the CB1R antagonist SR141617A (Figure 

6.2B).  The in vivo activity of VSN16 was assessed in “tetrad tests” to detect 

cannabimimetic effects (Howlett et al. 2002). Initially, the intravenous route was 

used as this avoids any issues of first pass metabolism. Although VSN16 was at 

least as potent as R(+)WIN55-212 in the vas deferens assay (Figure 6.2), it failed 

to induce any visible signs of sedation and did not induce significant hypomotility or 

hypothermia (Figure 6.3) that are indicative of cannabimimetic effects in rodents 

(Howlett et al. 2002).  Further behavioural testing, performed by MDS Pharma, 

Taiwan indicated that rats treated with 120mg/kg p.o. did not display any adverse 

behavioural (Alertness, Passivity, Stereotypy, Vocalizations, Transfer Reactivity, 

Touch, Escape, Tail-Pinch, Toe-Pinch, Pinna Reflex, Corneal Reflex, Startle 
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Response, Visual Placing responses); neurological (Body Elevation, Limb Position, 

Tail Elevation, Limb Tone, Grip Strength, Body Tone, Abdominal Tone, Change in 

Gait, Catalepsy, Righting Reflex, Twitches, Convulsion (Clonic, Tonic)) or autonomic 

(Palpebral Size,  Excretion (Urination, Diarrhea), Secretion (Salivation, 

Lacrimation),  Piloerection,  Body Temperature,  Skin Colour (Blanch, Flush, 

Cyanosis),  Respiration (Fast, Slow, Deep, Irregular) or  Death effects.  

 

The chemical structure can be used to predict brain permeability, where a logBB 

brain:blood coefficient of -1.0 would indicate that compounds are excluded from the 

brain [Feher et al., 2000]. VSN16 has a logBB of -0.66, which would predict 

approximately 80% CNS exclusion and pharmacokinetic studies demonstrated a 

plasma:blood ratio at Cmax of 0.16 (Figure 6.4). This suggested initially that VSN16 

may represent a CNS-excluded, CB1R agonist. 

 

Figure 6.2. Inhibition of contractions in the vas deferens by VSN16 racemate. 

 

The mouse vas deferens were isolated and contractions were monitored (Pertwee et al., 1992) following 

incubation with various concentrations of either: (A) R(+)WIN55,212 or (B) VSN16. In some instances 

tissues were pretreated 30min earlier with either dimethylsulphoxide vehicle or 31.6nM SR141617A in 

DMSO. The results represent the mean ± SEM of 5-6 replicates. The studies were performed by the 

group of Prof. Roger Pertwee, University of Aberdeen. 
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Figure 6.3. Absence of cannabimimetic effects induced by VSN16.  

M
e

a
n

 T
e

m
p

e
ra

tu
re

 C
h

a
n

g
e

 ±
 S

E
M

 (
O
C

) 

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

***

Vehicle VSN16 R(+)WIN55,212-2

Hypothermia

Baclofen

***

M
e

a
n

 D
is

ta
n

c
e

 T
ra

v
e

ll
e

d
/5

m
in

 ±
 S

E
M

 (
c

m
) 

0

250

500

750

1000

1250

1500

1750

2000

2250

***
Vehicle VSN16 R(+)WIN55,212-2

Mobility

***
Baclofen

 

ABH mice were injected iv. with either 1mg/kg VSN16 racimate or 1mg/kg i.v. R(+)WIN55,212-2 or ECP 

vehicle or 5mg/kg i.v. of Baclofen in PBS. Mobility in an open field activity chamber and temperature 

change were assessed 20min after injection. The results represent the mean ± SEM (n=5) distance 

traveled and the degree of temperature change. ***P<0.001 compared to vehicle. 20mg/kg i.v. VSN16 

likewise failed to induce hypothermia. 
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Figure 6.4. Pharmacokinetics of VSN16R.  
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Blood (plasma) and in some instances brain samples were obtained prior to and following intravenous 

and oral administration of VSN16R into mice (CD-1®) and rats (Sprague Dawley). The results represent 

the mean ± SEM (n=3) amount of VSN16R is tissues as assessed using liquid chromatography-mass 

spectrometric assays. This study was performed by Inpharmatica, Cambridge, UK. 

 

As CB1R agonists can inhibit the spasticity that develops as a result of nerve 

damage caused by autoimmune attack of the CNS (Baker et al. 2000), it was 

investigated whether VSN16 could inhibit spasticity during EAE. It was found that 

VSN16 (racemate) inhibited spasticity in EAE at doses that failed to induce 

cannabimimetic effects (Figure 6.5A).  Both of the S(-) and R(+) enantiomers of 

VSN16 were synthesised and both were found to be active in the inhibition of 

spasticity, although VSN16R appeared slightly more active than VSN16S  (Figure 

6.5B). Likewise, VSN16R appeared slightly more active than VSN15R (Figure 6.5C), 

which is consistent with the in vitro data in arteriole relaxation (Hoi et al., 2007). 

Baclofen is a GABAB receptor agonist that is an anti-spastic therapeutic agent used 

in humans. This inhibited spasticity (Figure 6.5D), however just as can occur in 

people, this dose of baclofen tended to cause flaccidity in the animals, hypomotility 

and hypothermia (Figure 6.3), probably due to neurotransmitter inhibitory effects. 

Therefore VSN16 induced a comparable inhibition of spasticity as Baclofen but 

exhibited a better side-effect profile, which is the chief reason for non-compliance 

with many anti-spastic agents in patients. 
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6.2.2. VSN16 inhibits spasticity associated with chronic EAE 

 

Figure 6.5. Intravenous VSN15 and VSN16 inhibit spasticity in CREAE.  
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ABH mice were immunized with spinal cord antigens in Freund’s adjuvant to induce relapsing EAE. 

Following the development of spasticity, animals were injected intravenously with (A) 1mg/kg VSN16 

racimate (n=6 animals, n=11 limbs), (B) 5mg/kg of either the VSN16R or VSN16S enantiomers (n=7 

animals, n=13 limbs) or (C) 5mg/kg VSN15R or VSN16R (n=7 animals, n=13 limbs). The results 

represent the mean ± SEM forces to bend hindlimbs to full flexion against a strain gauge.  * P<0.05, ** 

P<0.01, ***P<0.001 compared to baseline. 

 

The metabolic stability of VSN16 was assessed first in vitro (Table 6.1) and then in 

vivo (Table 6.2.). The compounds VSN15, VSN16R, VSN16S were stable against 

degradation by liver microsomes and plasma compared to positive controls (Table 

6.1). When the in vivo pharmacokinetic responses were assessed in both mice and 

rats, clearance of compound administered via the intravenous route was relatively 

fast (Half-life of 7-11min. Table 6.2) compared with delivery via the oral route 

(Half-life of 43-89min. Table 6.2). Oral absorption was rapid and CMax was detected 

within 15min from administration in mice (Figure 6.2), indicating good absorption 

from the gastrointestinal tract and good oral bioavailability was evident (Table 6.2).  

Therefore the action of oral VSN16R was analysed (Figure 6.6).  
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Table 6.1.  In vitro pharmacokinetic stability of VSN16-related compounds. 

 

_____________________________________________________________________ 

               Half-life (min) of Compound 
Compound       Liver microsomes  Plasma 
__________________________________________________________________ 
VSN16R     >100   >100min 
VSN16S     >100   >100min 
VSN15R     >100   >100min 
Midazolam            17             n.t. 
Bisacodyl            n.t.                           2 
__________________________________________________________________ 
 
The metabolic stability of 1µM VSN15 and VSN16 to hepatic and plasma degradation was assessed in 

vitro. Compounds with poor stability have a half life of less than 25 min. The upper limit for assessment 

is 100min. n.t. =not tested. This study was performed by MDS Pharma, Taiwan. 

 
 
 
Table 6.2. In vivo pharmacokinetic profile of VSN16R in Mice and Rats. 

 
 

__________________________________________________________________ 
              Species     Route of Administration (Dose)      Cmax               Half-Life              Oral  
                                                                                                                 Bioavailability 
__________________________________________________________________ 
 Mouse i.v.  (2mg/kg)           1335ng/ml  7min  n.a. 
 Rat i.v.  (5mg/kg)         7018ng/ml 42 min  n.a. 
 
 Mouse p.o. (5mg/kg)                   304ng/ml 89min  22% 
 Rat p.o. (5mg/kg)          869ng/ml 43min  31% 
_____________________________________________________________________ 
 
 

VSN16R was administered to outbred laboratory mice and rats via the oral and intravenous route and 

the amount of VSN16 in plasma was assessed. The maximum concentration (Cmax) was present at the 

first time point assessed 5min for i.v. and 15-30min for the oral route (Figure 6.4). The half-life and oral 

bioavailability by comparing areas under plasma concentration/time curves were assessed using PK 

solutions software.  This study was performed by Inpharmatica, Cambridge, UK. 

 

Whilst 0.5mg/kg p.o. VSN16R failed to produce muscular relaxation and inhibition 

of spasticity (Figure 6.6A), therapeutic activity was evident within 10min following 

administration of 5mg/kg VSN16R p.o. (P<0.001. Figure 6.6B). This activity was 

long-lasting following a single dose of 40mg/kg p.o. where inhibition of spasticity 

lasted over 6 hours (Figure 6.6C).  Following single administration of cannabinoids, 

the level of spasticity returns to baseline levels with hours (de Lago et al. 2006). 

The therapeutic effect was sustained after repeated daily 40mg/kg p.o. VSN16R 

administration for 7 days, suggesting the lack of significant receptor tolerance and 

even suggested some cumulative benefit as following repeated administration there 

was a reduced spasticity (P<0.001) compared to starting values.  However, when 
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the level of spasticity was assessed 2 weeks after the cessation of treatment the 

level of spasticity was not different from the initial levels of spasticity prior to 

treatment (Resistance to Flexion Force Baseline 0.174 ± 0.033N. 1 week later, 24 

hour after last treatment with VSN16R 0.127 ± 0.045N (P<0.001 compared to 

baseline); 3 weeks later 0.157 ± 0.045N P>0,05 compared to baseline and P<0.02 

compared to week 1. n=10 limbs, 6 animals. Therefore VSN16R is a water-soluble, 

orally-active agent that is well tolerated (no toxicity has been noted when tested up 

to 50mg/kg i.v. and 150mg/kg p.o.) that can inhibit spasticity in experimental 

models of MS.  

 

6.2.3. VSN16 does not influence all signs associated with chronic EAE. 

Animals with limb spasticity also tend to exhibit neuropathic bladder abnormalities, 

which are associated with voiding problems (Al-Izki et al. 2009). Ultrasonic 

detection of urine volume demonstrated that anti-spastic doses of VSN16 (40mgkg 

p.o.) and R(+) WIN55,212 (5mgkg i.p.) did not influence urine volume within 60 

minutes of drug administration in contrast to the significant voiding induced by 

bethanecol chloride administration (20mg/kg i.p.and p.o) (Figure 6.7). This 

indicated a selectivity of action on signs during EAE. Likewise daily treatment of 

mice with 40mg/kg VSN16 p.o. did not inhibit the development of paralysis EAE 

(Figure 6.8), indicating that the VSN16, at this dosing schedule was not inducing 

immunosuppressive responses (Figure 6.8). However, that this treatment regime 

was well tolerated indicated that repeated long-term dosing of animals with 

VSN16R was not toxic.  

 

Gut motility is reported to show hypomotility following peripheral CB1R agonism 

(Fride et al.  2006). Gut motility as assessed by number and weight of faecal pellets 

was inhibited following the administration of a centrally-active (R(+) WIN55,212. 

Figure 6.9A.B) and peripherally-active (CT3 Figure 6.9 C,D) CB1R agonist (see 

chapter 7). This was shown to be dependent on CB1R expression on peripheral 

nerves as the inhibitory effect of R(+) WIN55,212 on gut motility was substantially 

reduced in mice lacking CB1R in central and peripheral nerves following cre-

mediated deletion under control of the nestin gene promoter and was of a 

comparable level to peripheral nerve deletion using the peripherin gene promoter. 

(Figure 6.9.A.B).  Doses of VSN15 and VSN16R that inhibit spasticity failed to 

influence normal gut motility (Figure 6.10 A,B). Therefore, VSN16 did not behave in 

a similar manner to a CB1R agonist in this assay. 
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Figure 6.6.  Oral VSN16R inhibits spasticity in EAE.  
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ABH mice were immunized with spinal cord antigens in Freund’s adjuvant to induce relapsing EAE. 

Following the development of spasticity, animals were received a single oral administration of: (A) 

0.5mg/kg p.o. VSN16R (B) 5mg/kg p.o.VSN16R or (C) 40mg/kg p.o. VSN16R in water or (D) repeated 

daily administrations of 40mg/kg p.o. VSN16R for one week (n=8 animals n=15 limbs) and spasticity 

was assessed at day 0 and on day 7, 24 hours after the previous treatment. Analysis of available 

animals (n=10) two weeks after the cessation of treatment reveal a level of spasticity that was not 

significantly different from that at day 0 of VSN16 treatment. The results represent the mean ± SEM 

forces to bend hindlimbs to full flexion against a strain gauge.  * P<0.05, ** P<0.01, ***P<0.001 

compared to baseline. 
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Figure 6.7.  Neither VSN16R or a CB1 Receptor agonist promote voiding of an 

underactive (detrusor hyporeactive) bladder during EAE. 

 A                B 

         

C             D 

 

 

 

 

 

 

 

 

E          F 

  

 

 

 

 

 

 

 

 

Ultrasonogram of a bladder from a (A) normal animal (volume= 0.21cm3) and a (B) animal with 

EAE (day 60 p.i. Volume = 0.63cm3). The volume of the bladder was assessed before and 60 

minutes after anti-spastic doses of (C) 40mg/kg. p.o. VSN16R (n=7), (D) 5mg/kg. i.p. 

R(+)WIN55,212-2 (n=5). The bladder did respond to muscarinic receptor agonism using oral (E) 

20mg/kg p.o. and intraperitoneal injection (F) 20mg/kg i.p. of bethanecol chloride (n=7 /group). 

This study was performed in collaboration with Dr.Sarah Al-Izki, QMUL, London, UK. 
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Figure 6.8.  Oral VSN16R does not inhibit the development of autoimmunity. 
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__________________________________________________________________ 

B                                     Untreated               Vehicle                       VSN16            

                           (H20)                    (40mg/kg p.o.) 

________________________________________________________________ 

Complete Paralysis              12                   8                                10 

Partial Paralysis                   -         -                                    - 

Impaired Right Reflex          -                              -                                   - 

Limp Tail                            1         -                                    - 

Normal                            -         1                                    - 

________________________________________________________________ 

No. EAE/Total                   13/13                   8/9                   10/10        

Mean Group Score ±SEM  3.7 ± 0.2   3.5 ± 0.4                   4.0 ± 0.0 

Mean EAE Score ±SEM     3.7 ± 0.2   3.9 ± 0.1            4.0 ± 0.0 

Day of Onset ±SD           14.6 ± 2.8  15.0 ± 1.7               13.6 ± 1.5 

__________________________________________________________________ 

ABH mice were injected with 1mg spinal cord homogenate in Freund’s adjuvant on day 0 & 7. 

Animals were treated daily with 40mg/kg p.o. VSN16R in water. (A) The results represent the 

mean daily clinical score of animals ± of susceptible animals, excluding one VSN16 treated animal 

which developed disease on day 10p.i. (B). The clinical scores during EAE. This was performed in 

collaboration with Sofia Sisay, QMUL, London, UK. 
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Figure 6.9.  Cannabinoid Control of Gut Motility. 
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ABH mice or CB1R conditional knockout mice were injected with (A,B) vehicle or 1mg/kg i.p. R(+) 

WIN55,212-2  (n=7-8/group) or (C,D) vehicle or 1-10mg/kg i.v. CT3 in ECP (n=8/group). in DCP, 

VSN15 racimate (n=8) or VSN16R (n=9) intravenously in ECP. The (A, C) weight and (B, D) number of 

faecal pellets was assessed after 3 hours. The differences in weights were assessed by students t tests 

and the faecal number was assessed by Mann Whitney U statistics. *P<0.05, **P<0.01, P<0.001 

compared to control. 
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Figure 6.10. VSN16 does not affect normal gut motility.   

 

ABH mice were injected with vehicle (n=9), VSN15 racemate (n=8) or VSN16R (n=9) intravenously in 

ECP. The (A) weight and (B) number of faecal pellets was assessed after 3 hours. The differences in 

weights were assedd by students t tests and the faecal number was assessed by Mann Whitney U 

statistics. 

 

 

6.2.4. The target for VSN16 is not the CB1 Receptor. 

To establish whether the action of VSN16 was mediated via the CB1 receptor, 

spasticity was assessed in CB1R-deficient mice. Whilst the anti-spastic effect of the 

CB1R/CB2R agonists CP55,940 and R(+)WIN55, 212 was not evident at 10min  

(Chapter 4) or 30minutes after treatment, surprisingly VSN16 still displayed anti-

spastic activity (Figure 6.11), indicating efficacy via a non-CB1R-dependent 

mechanism.  This also indicated that VSN16 could induce comparable anti-spastic 

activity as cannabinoids and Baclofen (Figure 6.11), but exhibited a much better 

side-effect profile (Figure 6.3). 

 

Importantly, VSN16 does not directly bind to CB1R in vitro. VSN16 (tested up to 

300µM) failed to inhibit binding of 3H-CP55,940 (Positive control Ki=0.36nM) to rat 

cerebellar membranes and demonstrated (tested up to 100µM) no appreciable CB1R 

agonist activity in human CB1R transfected cells as demonstrated by GTPγS-binding 

activity (Positive control CP55,940. EC50 = 24nM Table. 6.3). The in vitro activity of 

relaxation of the vas deferens was still present in CB1 and CB2 (C57BL.Tm1.Cnr2Delt) 

deficient mice (Figure 6.12). In addition to a lack of significant binding to CB2R, 

TRPV1 vanilloid receptors, VSN16 (tested to 10µM) failed to exhibit affinity for a 

number of other receptors including; human A1, A2A, A3, α1(non-selective), 

α2(non-selective), β1, AT1, BZD, β2, CCKA, D1, D2S, ETA, GABA (non-selective), 

GAL2, CXCR2, CCR1,  H1, H2, MC4, ML1, M1, M2, M3, NK2, NK3, Y1, Y2,NT1,δ2, κ, 

µ, ORL1, 5-HT1A, 5-HT1B, 5-HT2A, 5-HT3, 5-HT5A, 5-HT6, 5-HT7,  sst(non-

selective), VIP1, V1a, Ca2+ channel (L verapamil site), K+  V channel, SK+ Ca 
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channel,  Na+ channel (site 2), Cl- channel,  NE transporter, DA transporter, Nav 

1.5 Na+ channel, hERG Kv11.1 K+ channel,  GPR3, GPR6, GPR12, and GPR119. 

There was some weak agonist activity on (EC50 1-10µM) on LPA1, LPA2, LPA3, 

LPA4, and LPA5 receptors (D. Selwood, Multispan Inc, CA, USA; J. Chung, Scripps 

Institute USA. Unpublished) 

 

 

 

Figure 6.11. The anti-spastic effect of VSN16 is not dependent on the expression 

of the CB1 receptor.  

 

 

 

Wildtype or CB1-deficient mice (ABH.Cnr1 -/-) were injected intraperitoneally with the full CB1/CB2 

agonists CP-55,940 (n=8/group) or R(+)WIN-55,212-2 (n=14/group) or intravenously with 5mg/kg i.v. 

of VSN16 racemate.  To facilitate visualisation of differences between groups, results are expressed as 

the mean ± SEM percentage change in the resistance to hindlimb flexion compare to baseline, 30 

minutes after the injection of compound. ***P<0.001 compared to baseline by paired t tests.  
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Table 6.3. VSN16 is not a cannabinoid receptor binding compound. 

 
_____________________________________________________________________________________________________________________________ 
 
Receptor                 Activity of VSN16R Positive Control   CRO  

           (Maximum dose tested) 
_____________________________________________________________________________________________________________________________ 
CB1 RECEPTOR 
 
rCB1 Receptor      (Cerebellar membranes) No Activity   CP55,940 

                                                                           (>300µM)   (IC50 =  0.36nM competitive Ligand Binding)  C.R. Hiley, Cambridge 
 
hCB1 Receptor     (CHO.CNR1)  No Activity  CP55,940                    CEREP 

    (>10µM)  (EC50 =24nM cAMP Assay) 
 
hCB1 Receptor   (HEK293.CNR1)  No Activity   Anandamide    MDS Pharma 

    (>10µM)                             (IC50 =344nM GTPγS Binding assay) 
      
      (R)+WIN55,212           MDS Pharma 

(IC50 =32nM GTPγS Binding assay) 
 
CB2 RECEPTOR          
hCB2 Receptor    (HEK293T.CNR2)  No Activity      CP55,940    Multispan Inc. 

     (>10µM)           (EC50 =1nM cAMP assay) 
 
hCB2 Receptor    (CHO-K1.CNR2)   No Activity  (R)+WIN55,212           MDS Pharma 

     (>10µM)  (IC50 =5.2nM GTPγS Binding assay) 
      
      CP55,940                    MDS Pharma 
                            (IC50 =2.37nM GTPγS Binding assay) 
 
_______________________________________________________________________________________________________________________________ 

Cell Lines that were stably transfected with mouse (m), human (h) or rat (r) cannabinoid 

receptors were incubated with various concentrations of VSN16R and functional activity was 

assessed using a variety of different read-outs by Contract Research Organizations (CRO) or 

collaborators.  

 

 

Figure 6.12. VSN16R induces relaxation of the mouse vas deferens, independent 

of CB1R. 

 

The mouse vas deferens was isolated and contractions were monitored following incubation with various 

concentrations of VSN16R in water. The results represent the mean ± SEM of 5-6 replicates. The study 

was performed by Carolyn Tanner and Prof. Ruth Ross, University of Aberdeen. 
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6.2.5. VSN16 is a modulator of GPR55. 

 

The pharmacological activities of VSN16 in rat and mouse mesenteric or retinal 

arterial beds are inhibited by AM251, SR141617A and 0-1918, the antagonist of the 

receptor stimulated by abnormal cannabidiol and lysophosphoinositol (LPI) receptor 

currently known as GPR55 (Baker et al., 2006; Hoi et al., 2007; Ross, 2009).  

Although it has been reported that the Multispan C1113 (stably human GPR55 

transfected HEK cells) cell line gave a calcium response to 10µM VSN16, that was 

inhibited by SR141617A (Hoi et al., 2007), this result was not reproduced in 

calcium influx assays in the same Multispan C1113 cell line (LPI Response EC50 

=2.73µM. Performed by Chris Henstridge and Andrew Irving, University of Dundee) 

or three other HEK293T.GPR55 cells lines (Henstridge et al., 2009). LPI response 

EC50 =2.99µM. Performed by Chris Henstridge and Andrew Irwing, University of 

Dundee; (Johns et al., 2007). LPI response EC50 =49nM performed by Glaxo Smith 

Kline, (A. Brown Personal communication to D.Baker) and the multispan H1113 cell 

line performed by Multispan Inc, USA. Figure 6.13). Likewise VSN16 (up to 10µM) 

did not stimulate a cell line transfected with mouse GPR55 (Nephi Stella, University 

of Washington, Seattle USA. Personal communication to. D. Baker). However, 

VSN16 did modulate the calcium response induced by AM251 at 1 and 10µM (Figure 

6.14) suggesting that it can modulate GPR55 responses. This was definitively 

shown using Gpr55 gene deficient mice, where it was found that the vas deferens 

responses of both LPI (D. Baker. Personal communication) and importantly VSN16 

were attenuated in GPR55-deficient mice (Figure 6.15). Therefore, it suggests that 

VSN16 may be a modulator of GPR55.  
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Figure.6.14. VSN16R does not stimulate GPR55, but can modify the activity of 

AM251 on the GPR55 receptor. 

 

 

. 

                                E                                                                     F 

 

HEK 293 cells, which expresss lysophophotidyl acid (LPA) receptors were transfected with a 

haemagglutinin protein tagged hGPR55 and stable lines were selected (Henstridge et al. 2009). These 

cells demonstrated calcium signalling following incubation with (A, B) lysophosphoinositol (LPI) and 

(C,D,E) AM251. (C, D) The calcium signalling induced by AM251 could be augmented by co-incubation 

with 10µM VSN16, although (C,E) it did not produce any calcium responses by itself. It did not promote 

(F) GPR55 receptor internalization detected by immunoassaying for haemagglutinin protein (Henstridge 

et al. 2009), which is evident following GPR55 agonism with AM251. This study was performed by A. 

Irving, University of Dundee, UK. 
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Figure.6.15. VSN16R is a modulator of GPR55. 

 

 

 

 

 

 

 

 

 

 

The vas deferens from C57BL/6 wildtype and C57BL/6.Tm1Cnr1Zim, C57BL.6.Tm1Cnr2Delt, and 

C57BL/6.Tm1Gpr55Lex knockout mice were isolated and contractions were monitored following incubation 

with various concentrations of VSN16R in water. The results represent the mean ± SEM of 5-6 

replicates. The study was performed by Carolyn Tanner and Ruth Ross, University of Aberdeen, 

UK. 
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 6.3. DISCUSSION 

 

In an attempt to generate a CNS excluded CB1 receptor agonist VSN16 was 

synthesised. This is an: orally-active, bioavailable, water soluble and seemingly 

safe, CNS-excluded compound that modulated GPR55 function that inhibited 

spasticity in chronic EAE. This exhibited anti-spastic activity but did not induce any 

sedative effects associated with central CB1R or GABAB receptor stimulation.  No 

form of toxicity has been detected and the compound was tolerated up to doses of 

120mg/kg and whilst it did not inhibit the autoimmune response in EAE, it was 

safely administered repeatedly for over 3 weeks. Although active, all current anti-

spastic agents can induce marked adverse effects which limit their clinical use 

(Shakespeare et al. 2003). This will tend to favour poor compliance in drug use and 

favour use only in late stages of disease. A drug that lacks such side-effects may be 

used earlier in disease course, during the day and thus could have commercial 

advantages over competitor compounds in the treatment of limb spasticity in MS 

and other diseases such as occurs in spinal cord injury. 

 

Although the pharmacological activity of VSN16 can be inhibited by SR141617A and 

AM251 (Hoi et al., 2007), which can antagonise the CB1R, the compound failed to 

bind or agonize the CB1R and drug activities were maintained in CB1R-deficient 

mice. However, the pharmacological profile, in terms of antagonistic compounds 

that inhibit VSN16, notably 0-1918, was suggestive that GPR55 may be the target 

for VSN16 (Baker et al., 2006; Ryberg et al., 2007; Johns et al., 2007). This was 

supported by some initial studies in GPR55-transfected HEK239 cells (Ho et al., 

2009). However, repetition of these data has proved elusive and a number of 

independent-laboratories using different cell lines have been unable to show any 

agonistic or antagonistic effect of VSN16 at human and mouse GPR55. Whilst it is 

relatively consistent that LPI behaves as an agonist at GPR55, there is much 

contradiction over in vitro responses of GPR55 to endogenous and exogenous 

cannabinoids in over-expressing, GPR55 transfected cell lines (Johns et al. 2007; 

Ota et al. 2007; Ryberg et al., 2007; Lauckner et al. 2008; Godlewski et al. 2009; 

Henstridge et al. 2009; Ota et al. 2009; Ross 2009; Yin et al. 2009). This may 

relate to the lack of appropriate or sufficient signalling molecules in the transfected 

cells. VSN16 induces responses in the low nM range in tissue based assays such as 

relaxation of the vas deferens and mesenteric artery bed (Hoi et al., 2007) and 

using GPR55-deficient mice, that delete the whole coding region of Gpr55, it was 

possible to demonstrate that GPR55 modulates the response of VSN16.  Although 

AM251 antagonises the effect of VSN16 in tissue assays (Hoi et al., 2007), VSN16 

appeared to augment the GPR55-mediated response to AM251. This could suggest 

that this difference is due to the use of GPR55 over-expressing cells, or 
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alternatively VSN16 may be stimulating another receptor such as the LPA receptors 

expressed by HEK293 cells, which mediate the augmentation. As such this could 

account for the loss of this activity below 1µM in vitro, compared to activity of 

VSN16 is active in tissue assays at concentrations in the low nM range. Whilst 

studies may argue against direct activity at GPR55, the activity of VSN16 was 

markedly attenuated in relaxation of the vas deferens in GPR55 deficient mice. This 

suggests that VSN16 may be a modulator of GPR55. This could result from binding 

to an allosteric site, as occurs with some CB1 receptor binding compounds (Griffin 

et al., 1999), or VSN16 may stimulate a co-receptor such as seen with CB1 receptor 

dimerisation with dopamine D2 receptors (Kearn et al., 2005) and may account for 

the inability to detect direct binding to GPR55-transfected cell lines. However, the 

lack of direct agonism at the GPR55 may limit receptor internalisation and tolerance 

and account for the consistent, repeated therapeutic activity following repeated 

administration. 

 

Currently the function of GPR55 remains enigmatic. It has been suggested that 

GPR55 may be involved in fat metabolism and blood pressure (Baker et al., 2006; 

Brown, 2007), although the blood pressure in GPR55 knockout mice is normal 

(Johns et al., 2007, http://www.informatics.jax.org/external/ko/lexicon/261.html) 

and VSN16 does not induce significant changes in either normotensive (Hoi et al. 

2007) or spontaneously hypertensive rats (D. Selwood & D. Baker Personal 

Communication). This adds further to safety data for the compound. More recently 

it has been reported that GPR55 may modulate pain pathways (Staton et al., 2008) 

and GPR55-deficient mice do not appear to develop mechanical hyperalgesia 

following inflammatory and neuropathic pain stimuli (Staton et al., 2008). Following 

administration of VSN16, no obvious pain behaviours such as vocalisations, freezing 

or locomotor reduction have been detected despite high doses of VSN16 

administration and there is no influence on Freund’s adjuvant-induced hyperalgesia 

in rats even up to 120mg/kg p.o. was noted (Figure 6.16).  Further studies will be 

needed to assess further whether VSN16 has any value in analgesia. 

 

To date VSN16 has been associated with relaxation in spasticity of limbs, the vas 

deferens and the mesenteric and retinal artery bed (Hoi et al., 2007, Dong et al., 

2009) and it is perhaps not surprising that VSN16, and CB1R agonism, did not 

induce enhanced gut motility or voiding of the bladder during chronic EAE, as this 

latter function required detrusor contraction, which was stimulated by muscarinic 

acetyl choline receptor stimulation. Whilst urine retention may be treated by 

catheterization, incontinence due to detrusor hyperactivity is also a problem in MS 

and spinal injury (McCombe et al., 2009). Rodents do not have the social restraints 

concerning incontinence and have no need to control urination as occurs with 
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humans. Rodents frequently urinate, often when handled, therefore studies on 

incontinence in EAE, although possible (Altuntas et al., 2008) may be less 

amenable to study than studies on lack of voiding. However, cystometric 

investigations in conscious normal, female Sprague-Dawley rats has indicated that 

systemic (8mg/kg i.v.) and intravesical (100µM) VSN could increase the micturition 

interval, micturation volume and bladder capacity by up to about 50%, without 

affecting bladder pressure (Gratzke et al., 2009). GPR55 was detected in the 

urothelium and it was suggested that VSN16 may modulate afferent pathways of 

the micturition reflex (Gratzke et al., 2009). This suggests that VSN16 may be 

useful for the control of limb and bladder (hyperactivity) spasticity.  

 

Figure.6.16. VSN16R does not inhibit the development of mechanical hyperalgesia 

during inflammatory pain. 
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Male Sprague Dawley rats were injected in the plantar surface of the foot with 0.1 ml of Freund’s 

complete adjuvant and 24 hrs later mechanical hyperalgesia to pressure from a #12 supertip was 

measured using an ITC electronic von Frey anaesthesiometer model 2390 (ITC, USA). The foot 

withdrawal response was measured at baseline and 60 minutes after drug administration. The results 

represent the mean ± SEM (n=5/group). This study was performed by MDS Pharma Services 

Taiwan. 

 

 

Although VSN16 is largely excluded from the CNS, probably due to its polarity, it is 

not clear if the mechanism of action of VSN16 is at central or peripheral sites. 

Whilst CNS-exclusion was thought to be important to limit potential cannabimimetic 

effects, as GPR55 modulation does not seem to induce behavioural effects even at 
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high doses, where some CNS penetration will be likely, especially during chronic 

EAE where blood:brain barrier dysfunction and interference with drug exclusion 

mechanisms may occur. This suggests that this CNS permeability is unlikely to 

represent an issue in drug development. The fact that VSN16 is water soluble 

however, offers a considerable advantage over the hydrophobic cannabinoids in 

relation to drug formulation for clinical delivery. GPR55 has been found to be 

expressed within the CNS and within the dorsal root ganglion (Sawzdargo et al., 

1999; Baker et al., 2006; Lauckner et al., 2008) and can be co-localised with and 

modify the function of the CB1 receptor (Waldeck-Weiermair et al., 2008) and may 

be ideally placed to modify altered neurotransmission during spasticity and 

therefore the activity may be both central and peripheral, as hypothesized to occur 

with the cannabinoid receptor agonists. However should central activation of GPR55 

receptors be required for activity, it may be possible to investigate this using VSN 

compounds which display low aqeous solubility and thus likely to be CNS penetrant. 

 

VSN16 represents a novel class of compounds, which modulate GPR55 function that 

may have therapeutic utility in the control of spasticity. This compound fails to bind 

to CB1 receptors and thus different compounds will need to be employed to examine 

the role of peripheral CB1 receptors in the control of spasticity.   
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CHAPTER SEVEN 

 

CONTROL OF SPASTICITY BY CNS EXCLUDED CB1 RECEPTOR 

AGONISTS. 

 

7.1. INTRODUCTION 

 

Exclusion of cannabinoids from the brain may be achieved by synthesizing 

compounds that are polar and/or targeted to ABC drug-exclusion transporters. 

Some CNS-excluded, CB1R agonists have been generated and recently there has 

been an increasing amount of data that indicates that both inflammatory and 

neuropathic pain can be controlled within the peripheral compartment of the 

nervous system (Fox et al., 2001; Fride et al., 2004; Agarwal et al., 2007; 

Dziadulewicz et al., 2007; Worm et al., 2007; Yu et al., 2007).  Similarly, although 

bladder hyper-reflexia is usually controlled by micturation centres within the brain, 

reflex arcs between the bladder and spinal cord become more prominent following 

spinal transections (Kalsi and Fowler, 2005). These pathways may both be 

controlled by cannabinoids, which can limit bladder dysfunction (Brady et al., 2004; 

Freeman et al., 2005). Thus, although muscle spasticity has been thought to be 

controlled at spinal and supraspinal sites within the CNS (Brown, 1994; Nielson et 

al., 2007) this may also occur with in the periphery. This is supported by the 

observations that spinal motor outputs that signal through efferent nerves via 

neuromuscular junctions to the muscle and sensory inputs that signal via the dorsal 

root ganglia, both traverse nerves expressing CB1R (Howlett et al., 2002; Sanchez-

Pastor et al., 2007). Indeed, peripheral CB1R-mediated control of spasticity was 

indicated using novel synthetic cannabinoid receptor agonists. 

 

7.2. RESULTS 

 

7.2.1. Modelling of CNS permeability.  

 

Chemical structure can be used to predict CNS permeability. Using one such 

algorithm a logBB brain:blood coefficient of -0.5 would predict compounds to be 

excluded from the CNS (Feher et al, 2000). This was performed by Dr. Cristina 

Visintin, UCL, London. To date (+)-cannabidiol 1,1-dimethylheptyl (logBB 0.488) 

and recently SAB378 have been reported to be CNS-excluded, CB1R agonists that 

exhibit analgesia in inflammatory and neuropathic pain models (Fride et al., 2004; 

Dziadulewicz et al., 2007).  SAB378 (Figure 7.1) exhibits marked hydrophobic 

properties with a logBB of 0.837, compared to logBB of 0.18 for R(+)WIN-55212-2, 
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which is a  well known CNS-penetrant cannabinoid (Dyson et al., 2005; Adam-

Worrall et al., 2007). This suggested that SAB378 must be targeted to a CNS-

exclusion pump to avoid CNS penetration. CT3 (Figure 7.1) has been reported be 

an analgesic agent without the "high" (Burstein et al., 2004). This has a logBB of -

0.44 and has been reported to be 70% excluded from the CNS (Dyson et al., 

2005). As this molecule has significant CB1R affinity (Rhee et al. 1987; Dyson et al. 

2005), it was hypothesized that this agent may also be a CNS excluded, CB1R 

agonist.  However, through examination of the patent literature, SAD448 (Figure 

7.1) was identified (Brain et al., 2003; Adam-Worrall et al. 2007). This may be one 

of the most CNS-excluded, CB1R agonist yet described. This highly polar molecule 

has a logBB of -2.76 and exhibits some water solubility (Adam-Worrall et al., 

2007). This is 98% excluded from the CNS following administration of 1.6mg/kg i.v. 

SAD448 (Adam-Worrall et al., 2007). This compound was synthesised and its 

capacity to inhibit spasticity in EAE was examined.  

 

Figure 7.1. Structure of CNS-Excluded CB1R Agonists. 
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7.2.2. Peripheralized CB1 receptor agonists inhibit spasticity. 

 

7.2.2.1. SAD488.  

 

It has been reported that the tail-flick response to noxious stimuli is a centrally-

controlled, CB1R-dependent activity (Howlett et al., 2002; Fride et al., 2004). 

Although active in inflammatory and neuropathic pain at doses of less than 

0.5mg/kg i.v., SAD448 has been reported to inhibit tail-flick responses at doses 

≥16mg/kg i.v. (Adam-Worrall et al., 2007). This is suggestive of a central effect 

and indeed a CB1R-dependent mild, transient, hypothermia was evident following 

injection of 10mg/kg i.v. in ABH mice (Figure 7.2). These mice demonstrated a 

significant (P<0.001) reduction (-1.58 ± 0.22°C n=5) in temperature 20 minutes 

post administration, which was not was evident 1 hour after administration (-0.06 

± 0.29°C SAD488 vs. 0.02 ± 0.32°C vehicle control). Likewise, no hypothermic 

response was detected following administration of 1mg/kg i.v. SAD448, which was 

consistent with previous data showing CNS exclusion of the compound at this dose 

and route (Adam-Worrall et al., 2007).  Delivery of SAD448 either via the 

intravenous (0.1mg/kg (Figure 7.3A), 1mg/kg (Figure 7.3B) or oral route (Figure 

7.3C) inhibited spasticity in EAE in the absence of marked cannabimimetic effects. 

As would be predicted the rate of action was faster following i.v. delivery (Figure 

7.2), but within 60min after administration both i.v. and oral routes of delivery had 

induced a similar reduction, which was probably the maximum achievable with 

those animals (Brooks et al., 2002), in the force required to bend the limb (-36.5% 

for intravenous (Figure 7.2A) and -37.6% for oral administration (Figure 7.3C) 

compared to 0.09% for 0.1ml i.v. of ECP vehicle. Mass spectrometric analysis of 

tissues from orally treated mice demonstrated that the compound was not detected 

in 5/6 (sensitivity 5ng/ml) brain lysates of spastic animals within 2 hours following 

oral administration where it was detectable in the 6/6 plasma samples (Dr.T.Hart, 

Personal communication to D.Baker, Novartis, London). This study suggests that 

polar cannabinoids, which are excluded from the CNS, can be used to inhibit 

spasticity. In addition, the observation that the anti-spastic activity of SAD448 was 

lost in animals where the CB1 receptor was conditionally deleted from peripheral 

nerves, using Peripherin1-promoter-driven excision of CB1 genes, provides futher 

evidence for the therapeutic potential of peripherally active CNS excluded CB1 

agonists in the treatment of spasticity (Figure 7.3D). A further observation of 

interest was that the anti-spastic activity of the CNS-penetrant CB1 receptor 

agonist, WIN 55 was maintained in peripherally-deleted CB1 receptor knockout mice 

(Figure 7.3D), in contrast to a global CB1 receptor knockout, where the anti-spastic 

activity of WIN 55 is lost (Figure 4.3), indicating that the control of spasticity can 

be achieved both centrally and peripherally by therapeutic agents.  
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Figure 7.2. Hypothermic effects of CNS-excluded cannabinoids.  
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The temperature of wildtype (n=5-7) or CB1 receptor-deficient (n=4-5) mice was measured before and 

after the intravenous administration of: SAD448, SAB378 or SAB722 and CT3 in 

Ethanol:Cremophor:PBS. The results represent the mean ± SEM temperature (ºC) change from baseline 

20minutes after cannabinoid administration. ***P<0.001 compared to baseline. 

 

 

 



 140 

Figure 7.3. SAD448 inhibits spasticity in CREAE and inhibition is lost in peripherally 

deleted CB1 deficient spastic CREAE mice.   
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ABH mice were immunized with spinal cord antigens in Freund’s adjuvant on day 0 and 7 to induce 

relapsing EAE. Following the development of spasticity, ABH mice were treated with: (A) 0.1mg/kg i.v 

SAD488 (14 limbs, 8 animals) (B) 1mg/kg i.v. SAD448 (8 limbs from 6 animals) or (C) 10mg/kg p.o. 

SAD488 supplied by Novartis (8 limbs from 6 animals) in ECP and limb stiffness was assessed. (D)  

0.1mg/kg i.v SAD448 was injected into wildtype (7 limbs, 6 animals) or peripheral nerve CB1-deficent 

mice (13 limbs, 7 animals) or 5mg/kg i.p. WIN55 in ECP (11 limbs, 6 animals). The results represent the 

mean ± SEM forces to bend hindlimbs to full flexion against a strain gauge.   * P<0.05, ** P<0.01, 

***P<0.001 compared to baseline. 
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7.2.2.2. SAB378. 

 

 Recently it has been reported that SAB378 is a CNS-excluded, CBR agonist 

(Dziadulewicz et al., 2007).  The CNS-penetrant CB1R agonist, SAB722 exhibits 

comparable CB1R affinity to SAB378, yet induced CB1R-dependent hypothermic 

effects at least 10 times lower doses than that observed with SAB378 (Figure 7.2). 

Both SAB722 (Figure 7.4A) and SAB378 (Figure 7.4B, C) inhibited spasticity at 

doses that did not induce hypothermia, but the efficacy profile of 0.1mg/kg i.v. 

SAB722 appeared less significant than that seen with 0.1mg/kg SAB378 (Figure 

7.4B, C).  The capacity of SAB378 to affect spasticity following oral dosing was 

assessed, at doses (3mg/kg p.o.) used previously in pain without adverse 

physiological effects (Dziadulewicz et al., 2007). SAB378 was active for many hours 

after oral administration (Figure 7.4D).  

 

7.2.2.3. CT3 (Ajulemic Acid).   

Although the mode of action has been under debate (Burstein et al., 2004; Vann et 

al., 2007), it appears that CT3 is likewise a CB1/CB2 agonist that is CNS excluded 

(Dyson et al., 2005). Therefore, the ability of CT3 to inhibit spasticity and to induce 

hypothermia was assessed. CT3-induced hypothermia was not evident 20min after 

injection of 2, 10 or even 20mg/kg i.v. in ABH mice (Figure 7.2). A CB1R-dependent 

hypothermia was detectable at 40mg/kg and 100mg/kg i.v. (Figure 7.2) and a 

small but significant (-0.88 ± 0.31°C. P<0.05. n=5) hypothermia was evident 2 

hours after injection of 20mg/kg i.v.  However, as low doses (0.1-1mg/kg i.v.) of 

CT3 could inhibit hindlimb and tail spasticity without obvious signs of 

cannabimimetic effects (Figure 7.5A). This indicated that the therapeutic dose can 

be observed at least a 200 fold dose lower than marginal cannabimimetic effects in 

normal mice.  Furthermore, the anti-spastic activity of CT3 was lost in animals 

where the CB1 receptor was conditionally deleted from peripheral nerves (Figure 

7.5B). Therefore the “peripheralization” of CB1 receptor agonists may increase the 

therapeutic window compared to fully CNS-penetrant compounds. 
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Figure 7.4 SAB378 inhibits spasticity in CREAE.  
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ABH mice were immunized with spinal cord antigens in Freund’s adjuvant on day 0 and 7 to induce 

relapsing EAE. Following the development of spasticity, ABH mice were treated with: (A) 1mg/kg i.v. 

SAB722 (11 limbs from 7 animals), (B) 0.1mg/kg i.v. SAB722 (11 limbs from 7 animals), (C) 0.1mg/kg 

i.v. SAB378 (14 limbs from 7 animals) or (D) 3mg/kg p.o. SAB378 (n=12 limbs from 6 animals) in ECP 

and limb stiffness was assessed. The results represent the mean ± SEM forces to bend hindlimbs to full 

flexion against a strain gauge. * P<0.05, ** P<0.01, ***P<0.001 compared to baseline. 
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Figure 7.5. CT3 inhibits spasticity in CREAE and inhibition is lost in peripherally 

deleted CB1 deficient spastic CREAE mice.   
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ABH mice were immunized with spinal cord antigens in Freund’s adjuvant on day 0 and 7 to induce 

relapsing EAE. Following the development of spasticity, ABH mice were treated i.v. with CT3 (16 limbs 

from 8 animals/group) in ECP and limb stiffness was assessed. The results represent the mean ± SEM 

forces to bend hindlimbs to full flexion against a strain gauge. In some instances mice exhibited a 

spastic tail and leg crossing and poor limb posture that prevented them being used in strain gauge 

analysis (insert). These signs could be seen to be relieved following CT3 administration (insert). (B)  

0.1mg/kg i.v. CT3 in ECP was injected into either wildtype (n= 10 limbs n=8 animals) or peripherin 

conditional CB1 receptor deficient mice (n= 12 limbs. n =6 mice) and the degree of spasticity was 

assessed before and following drug treatment. The results represent the mean ± SEM percentage 

change compared to baseline. *** P<0.001 compared to baseline. 
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 7.2.3. Exclusion pumps limit the entry of “peripheralised” cannabinoids 

into the CNS. 

 

As SAB378 and to some extent CT3 were sufficiently hydrophobic to necessitate the 

use of ECP to get the compounds into solution for in vivo dosing and should 

therefore penetrate the CNS, it suggested to us that they must be targeted to a 

CNS-exclusion pump. The most documented pump is P-glycoprotein, which can be 

inhibited in vivo following injection of 50mg/kg i.v. CsA (Hendrikse et al., 1998).  

Whilst CsA induced a mild and transient hypothermia, which was not greater than -

2.0°C over 40-60min period, this was markedly and significantly (P<0.001) 

augmented with subsequent administration of cannabinoid compounds (Figure 

7.6A,B). In contrast to the cannabinoid compounds the hypothermia induced by 

CsA was independent of the CB1 receptor as it was also evident in CB1R-/- mice 

(Figure 7.6A). In addition to hypothermia, animals treated with sub-cannabimimetic 

doses of CT3, SAB378 and SAD448 were visibly sedated following CsA 

pretreatment, which was consistent with a marked cannabimimetic effect. Whilst 

CsA augmented CNS penetration of CT3 and SAB378, it also induced 

cannabimimetic effects of SAD448 to induce a marked hypothermia (Figure 7.6A). 

Therefore targeting cannabinoids to CNS-exclusion pumps is an additional and 

perhaps more important approach than enhancing polarity, for excluding 

cannabinoid compounds from the CNS.  Interestingly CsA pretreatment also 

augmented the cannabimimetic effects of tetrahydrocannabinol (THC. Figure 7.6C), 

suggesting that CNS-exclusions pumps influence the CNS penetration of plant-

based cannabinoid compounds. 

 

Although it was initially thought that the cannabinoid exclusion pump was likely to 

be P-glycoprotein (Abcb1). It was found that CT3 (10nM-100µM) did not inhibit the 

exclusion of rhodamine 123, a Abcb1/p-glycoprotein substrate in CMEC/D3 human 

brain endothelial cells (Carl et al. 2010) in vitro. (Figure 7.7A). Furthermore, no 

CT3-induced hypothermia occurred in P-glycoprotein-deficient, FVB.Abcb1a/b-/- or 

FVB wildtype mice (0.7 ± 0.2°C and 0.5 ± 0.1°C respectively n=3). Likewise, THC 

did not induce hypothermia in P-glycoprotein knockout mice in vivo (2.5mg/kg i.p.), 

in contrast to that seen following CsA pretreatment (Figure 7.6C. -0.7 ± 0.1°C and 

-0.5 ± 0.2°C respectively n=3). This indicated that the exclusion pump associated 

with cannabinoid exclusion was surprisingly not P-glycoprotein. 

 

However, Cyclosporin A is reported also to influence breast cancer resistance 

protein one (BCRP1/ABCG2) and multidrug resistance protein one (MRP1/ABCC1), 

in addition to effects on P-glycoprotein (Pawarode et al., 2007). Injection i.p. with 

5mgkg mitoxantrone (ABCG2 substrate/inhibitor) induced a transient hypothermia, 
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but in contrast to the effect with CsA, no additional hypothermia was induced by 

subsequent administration of CT3 (Figure 7.7B). This suggested that CT3 was not 

an ABCG2 inhibitor. However, in vitro analysis indicated that high concentrations 

(10µM) of CT3 had a small inhibitory influence on casein AM accumulation in brain 

endothelial cells, suggestive of a weak activity on ABCC2 (Figure 7.7A). However, 

the in vivo inhibition of this, and ABCC1/ABCG4, with 20mg/kg i.p. MK571 failed to 

induce hypothermia by itself (n=8) or when administered in conjunction with 

10mg/kg CT3 (n=8) suggesting that ABCG2 may not be the major mechanism of 

CNS-exclusion of CT3 (Figure 7.7B). As MRP1/ABCC1 expression is reported to be 

at the basolateral side of mouse brain endothelial cells, it is unlikely to have a role 

in resistance to drug entry to the CNS in mice (Löscher and Potschka, 2005).  

Therefore the nature of the CT3-exclusion pump is unclear. 
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Figure 7.6. Cannabimimetic effects of CNS-excluded cannabinoids following 

blockade of CNS-exclusion pump function with cyclosporin A. 
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The temperature of ABH (n=5-7) or ABH.CB1R-deficient (n=4-5) mice was measured before and after 

the intravenous administration of (A) SAD448, SAB378 or CT3 in ECP. The results represent the mean ± 

SEM temperature (ºC) change from baseline 20minutes after cannabinoid administration. In some 

instances these mice were treated with 50mg/kg i.v. CsA 30min previously and the influence on 

temperature following administration of sub-hypothermic doses of (B) 10mg/kg i.v. CT3  or (C) 

2.5mg/kg i.p. THC was assessed. * P<0.05, **P<0.01, ***P<0.001 compared to baseline.  
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Figure 7.7. CNS exclusion pumps influence permeability of cannabinoids into the 

CNS.                                               
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(A) Human brain endothelial cells were incubated for 45min with 2µM of either rhodamine 123 or 

calceine AM fluorescent substrates of ABC transporters. This was performed 60 minutes after incubation 

of the cells with CT3 or positive control, reservin 121 and MK571, inhibitor compound. The results 

represent the mean ± SEM ratio of influx of reporter compound with and without test inhibitor 

compound. n=5/group.  This was performed by Gijs Kooij and Helga De Vries. Free University 

Amsterdam, NL. Alternatively (B), ABH mice were injected with either 50mg/kg i.v. CsA in ECP, 

5mg/kg i.p. mitoxantrone or 20mg/kg i.p. MK571 in saline 30 minutes before the administration of 

10mg/kg i.v. CT3 in ECP. Temperature was measured 20minutes later. The results represent the mean 

± SEM temperature change compared to pre-drug treatment levels (n=8). 
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7.2.4. CNS exclusion pump expression during multiple sclerosis and EAE. 

 

Whilst disease in both MS and EAE is associated with blood:brain barrier 

dysfunction that facilititates entry of cells and plasma proteins into the CNS (Butter 

et al., 1991a; Compston and Coles, 2002). The nature of this dysfunction is not 

well documented and at the time of undertaking the study, surprisingly there were 

no reports of alterations in ABC transporter expression in either MS or EAE.  

Therefore, immuohistochemical expression of the three CsA sensitive ATP 

transporters was investigated.  ABCB1 and ABCG2 expression could be detected in 

blood vessels in both normal appearing white matter in MS and normal mouse 

tissue (Figure 7.8 A, B, C).  Although ABCC1 is present on the CMEC/D3 human 

brain endothelial cells used in vitro (Carl et al., 2010), ABCC1 is not expressed on 

the lumen of blood vessels in human tissue (Aronica et al., 2004) and was weakly 

expressed in mice (Figure 7.9). ABCB1 expression was decreased and lost on blood 

vessels within mononuclear cell-rich lesions in chronic active MS lesions (Figure 

7.8A) and in both acute and relapsing ABH mouse EAE lesions (Figure 7.8B). 

Consistent with loss of cell cuffing during remission in mice, ABCB1 expression was 

evident as found in normal white matter. In chronic MS lesions, although ABCB1 

expression on blood vessels decreased, there was increased expression in astrocytic 

cells (Figure 7.8A). In contrast to that seen with ABCB1, there was no apparently 

loss of ABCG2 protein in both MS and EAE lesions (Figure 7.10C). Work to address 

the expression of other ABC transporters is ongoing. However, the status of the 

pumps during EAE are of functional significance as administration of 10mg/kg i.v. of 

CT3 into mice with chronic EAE resulted in the development of hypothermia (Figure 

7.10), which will serve to reduce the therapeutic window of some CNS-excluded 

cannabinoids. 
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Figure 7.8. Brain endothelial cell expression of CNS exclusion pumps during 

multiple sclerosis and EAE.    

                        A 

B    

C  

 

 

 

Immunoperoxidase staining of chronic active MS lesions and acute EAE lesion with an (A) mouse IgG2a 

ABCB1/Abcb1 (p-glycoprotein) or (B) Rat IgG ABCG2/Abcg2 (BCRP) specific antibodies in paraffin 

embedded tissue, counterstained with haematoxylin. Endothelial cells within lesions and normal 

appearing white matter (NAWM) express ABCG2/Abcg2. In contrast there is relative loss of 

ABCB1/Abcb1 on blood vessels in lesion areas in both MS and EAE lesions compared to normal appearing 

white matter and control non-MS tissue. In contrast there is a relative increase in astrocytic expression 

of p-glycoprotein in MS lesions. Staining was performed by Wouter Gerritson and Sandra Amor, 

Amsterdam, The Netherlands. Use of human material was ethically reviewed in accordance with the 

both the NL and UK law. 
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Figure 7.9.  Spinal cord expression of CNS exclusion pumps in the mouse.  
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ABCC3 (MRP3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Immunoperoxidase staining of normal mouse spinal cord tissue with rat antibodies specific for ABCC1 

and ABCC3. 

Staining was performed by Wouter Gerritson, Victoria Perkins and Sandra Amor, Amsterdam, 

The Netherlands. Bar = 10µm. 
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Figure 7.10. CT3 is excluded less from the CNS in chronic stage spastic ABH 

CREAE mice. 
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Following the development of spasticity in animals induced to develop EAE using spinal cord homogenate 

in Freunds adjuvant, animals were injected with 10 mg/kg CT3 i.v. in ECP, a dose which does not 

produce hypothermia in normal control ABH. The temperature was measured 20, 40 and 60 minutes 

after CT3 administration using a thermocouple placed under the hindlimb. The results represent the 

mean ± SEM temperature change from baseline over the monitoring period.  

 

 

7.2.5. The Cannabinoid (CT3) Exclusion pumps are polymorphic in mice.  

  

7.2.5.1. Polymorphic responses to CT3 in CD-1® mice. 

 

Recently, it has been reported that CT3 exhibits marked cannabimimetic effects 

within its therapeutic dose range (Vann et al., 2007). Yet in contrast to that 

previously reported in outbred ICR mice from Harlan USA (Vann et al., 2005), as 

shown here, comparable doses of CT3 did not induce hypothermia in ABH mice. 

This suggested to us that CT3 could be a substrate for a polymorphic CNS-exclusion 

pump. Indeed some outbred Crl:CD-1®/ICR mice developed hypothermic effects 

following administration of 10mg/kg i.v. CT3 whereas, similar to ABH mice, other 

Crl:CD-1® mice did not (Figure 7.11A). The sedating effect of 10mg/kg i.v. CT3 

was confirmed in another set (n=5/10) of CD-1® mice bred at QMUL from founders 

obtained from commercial (Charles Rivers UK) stock three years apart. CT3-induced 

hypothermia was present in Crl:CD-1® ex-breeders animals (n=1/10) and with 
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high frequency n=13/13 in Hsd:ICR(CD-1®) mice (Harlan UK) obtained directly 

from commercial sources within the UK. This is consistent with the hypothermic 

effects of CT3 in Hsd:ICR(CD-1®)  from the USA (Vann et al., 2007).    

 

7.2.5.2. CD-1® mice do not express the Abcb1amds genotype. 

 

A P-glycoprotein deficiency has been reported to occur in Crl:CF-1 mice (Lankas et 

al., 1997). Genotyping of CD-1® mice that developed hypothermia following CT3 

administration, failed to demonstrate evidence for the either the presence of the 

recessive mutant Abcb1amds allele or the long terminal repeat of mouse leukaemia 

virus within Abcb1amds (Figure 7.11B,C), which has been previously associated with 

loss of P-glycoprotein function in Crl:CF-1 mice (Lankas et al., 1997; Jun et al., 

2000; Pippert and Umbenhauer, 2001). This excluded the possibility that the albino 

CD-1® stock had been contaminated by albino CF-1 mice. 

 

7.2.5.3. Microarray analysis of mice susceptible and resistant to the 

hypothermic effect of CT3.  

 

Microarray analysis of intestinal expression of ten CD-1®) mice  suggested that 

there may be variation in ABC transporters such as Abcb1b and Abcc7, as the 

deviation of expression was as large as the mean suggesting that some mice 

express the protein where others do not (Mutch et al., 2004). Analysis of Illumia® 

ref 8 microarrays hybridized with message from the whole brains of 4 different CT3 

responder and 4 CT3-non-responder mice demonstrated some differences in the 

expression of ABC transport message with a significant under-expression of Abcc8 

and an over expression of Abcf1 when comparing responder to non-responder mice 

(Table 7.1). However, the gene difference between the two groups of mice resulted 

in the detection of 514 probes that were over expressed and 575 probes that were 

under expressed (P<0.05 of false positive) and 2 probes over expressed and 5 

probes under expressed (P<0.01 of false positives,Table 7.2) between non-

responder and responder mice.  The under-expression of keratin 12 was the most 

differentially expressed gene product (Table 7.2). However, the differences 

between ABC transporter message were marginal and thus the nature of the gene 

which controls exclusion of cannabinoids (CT3) from the CNS may reside in one of 

the about 1100 genes, whose expression was altered. There were seven loci (Odgh, 

Chst10, C2, Rpl38, Ccdc117, Rapgefl1, Krt12) that detected significant (P<0.01) 

differences between responder and non-responder mice. However, based on the 

limited information of the function of most of these genes it is unclear how they 

may be involved in drug transport, such as keratin 12 which is a keratin present in 

corneal epithelium. Interestingly many of the most differentially expressed loci 
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were on chromosome 11 (Table 7.2). Therefore, it is feasible that the CT-3 induced 

hypothermia gene was localized on this chromosome and had co-segregated with 

the detected loci. 

 

7.2.5.4. Polymorphic responses to CT3 in mice. 

 
 

The CD-1® mice strain originated from two male and seven female mice imported 

from Switzerland to the USA (Chia et al 2005). These Swiss mice have given rise to 

a variety of different: outbred (Hds:ICR(CD-1®), Hds:NIH(S), Hds:ND4, Swiss 

Webster); inbred (NOD, NIH, FVB, SJL, SWR) and inbred then outbred (Crl:CFSW, 

NIH:PI to Hds:NIMR) lines of mice (Beck et al., 2000; Chia et al., 2005). That the 

hypothermic phenotype was detected with high frequency in lines that have been 

divergent for many years indicates that the cannabinoid–induced hypothermia 

genotype is highly endemic in outbred, albino, Swiss (USA) laboratory mice (Figure 

7.12). Interestingly, although BALB/cJ did not develop hypothermia (n=0/5), 

C57BL/6 mice developed a transient hypothermia (C57BL/6J n=4/4, -2.5 ± 0.3°C 

and C57BL/6JOlacHsd. n=3/3 -1.7 ± 0.3°C at 20min after 10mg/kg i.v. CT3. This 

indicates that the cannabinoid CNS-exclusion pump deficiency was also present in 

other mouse lines in addition to Swiss mice. 

 

To determine the mode of inheritance of the CNS-exclusion pump deficiency, a 

single CD-1® male, which exhibited CT-3-induced hypothermia, was mated with a 

number of female ABH mice and the resultant F1 offspring (a single male and 

multiple females) were backcrossed with their parents. It was found that 10/18 

(CD1® x ABH)F1, 14/20 male and female CD1® x (CD1® x ABH)F1  backcross and 

6/18 male and female (CD1® x ABH)F1 x ABH backcross mice developed 

hypothermia (>1°C over 20 min) following injection of 10mg/kg i.v. CT3. This 

suggests that the male CD1® parent was heterozygous for a single autosomal 

dominant allele (χ2 = 2.07. 5.d.f (N.S.) for these 3 sets of data) that excludes 

cannabinoids from the CNS. This should be amenable to genetic mapping in further 

studies (Table 7.3).  
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Figure 7.11. CD-1® mice do not express the Abcb1amds genotype. 

 

 

 

 

 

 

CD-1® mice were injected with 10mg/kg i.v. CT3 and the temperature was assessed 20 minutes later 

and (A) mice that developed hypothermic (>1.5ºC temperature drop) responses (responder) were 

separated from non-responder, non-hypothermic mice. (B, C) DNA was prepared and PCR and gel 

electrophoresis performed to detect the (B) wild type Abcb1a or mutant Abcb1amts or (C) the pro viral 

integration in Abcb1amts. Prof. Alison Hardcastle, UCL, London, UK is thanked for primer design. 
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Table 7.1. Differential expression of ABC transporter RNA in the brains of CD-1® 

mice, which were either responders or non-responders to the hypothermia-inducing 

properties of CT3.  

                                                                Mean Expression Level ± SD   
PROBE   Locus  Non-Responders  Responders     
__________________________________________________________________ 
ILMN_1226851  Abca1    51.13 ± 1.88          54.54 ± 4.04  
ILMN_1216987  Abca2               159.44 ± 23.08     152.67 ± 10.16  
ILMN_3150233  Abca3               382.12 ± 36.14     374.59 ± 21.07  
ILMN_2829604  Abca4   54.18 ± 3.45          53.77 ± 2.60  
ILMN_2998335  Abca5   54.47 ± 1.61          55.15 ± 2.76  
ILMN_2965613  Abca6   50.68 ± 2.19          51.81 ± 3.07  
ILMN_2716039  Abca7   52.12 ± 1.36          53.82 ± 5.93  
ILMN_2896639  Abca7   67.49 ± 3.26          61.44 ± 3.06  
ILMN_2686700  Abca8a    66.61 ± 8.86          56.54 ± 2.88    
ILMN_2956871  Abca8b    54.74 ± 1.29          55.07 ± 2.13  
ILMN_1253984  Abca9   61.26 ± 1.40          63.02 ± 4.85  
ILMN_1228438  Abca12    48.96 ± 4.77          52.00 ± 2.37  
ILMN_2931277  Abca13    49.42 ± 1.91          53.49 ± 2.48  
ILMN_1258096  Abca14    58.80 ± 1.92           56.07 ± 3.40  
ILMN_2598661  Abca15   55.55 ± 5.47          54.04 ± 1.15  
ILMN_1228982  Abca16   52.33 ± 2.41          56.03 ± 2.50  
ILMN_3153157  Abca17   53.59 ± 1.87           52.63 ± 3.73  
ILMN_2768563  Abcb1a   51.14 ± 3.41          52.50 ± 3.43  
ILMN_2918499  Abcb1b   49.42 ± 3.84          50.30 ± 2.08  
ILMN_1250409  Tap1(Abcb2)        58.17 ± 2.18          61.99 ± 7.81  
ILMN_2686721  Tap2(Abcb3)   99.86 ± 5.28          92.06 ± 7.10  
ILMN_2648742  Abcb4   97.93 ± 2.48          85.87 ± 6.84  
ILMN_2833596  Abcb6  100.70 ± 10.72       98.63 ± 6.44  
ILMN_2864834  Abcb8  188.88 ± 23.71     189.67 ± 18.13  
ILMN_1239687  Abcb9   57.14 ± 4.30          60.16 ± 3.29  
ILMN_3142789  Abcb10    58.71 ± 1.00          57.07 ± 2.14  
ILMN_2758509  Abcb11    54.89 ± 2.24          56.22 ± 1.97  
ILMN_1248173  Abcc1   56.35 ± 3.40          60.04 ± 3.22  
ILMN_2606719  Abcc2   54.89 ± 1.28          54.26 ± 0.64  
ILMN_2685157  Abcc3   53.94 ± 6.90          54.69 ± 2.07  
ILMN_2702171  Abcc5   54.09 ± 3.59          55.10 ± 2.96  
ILMN_2934941  Abcc6   54.32 ± 2.47          57.64 ± 1.73  
ILMN_2645526  Abcc8   86.84 ± 7.86          73.10 ± 5.91*  
ILMN_3104271  Abcc9   54.98 ± 1.72          54.51 ± 4.99  
ILMN_2660048  Abcc10   61.50 ± 6.20           63.04 ± 3.72  
ILMN_1246917  Abcc12   48.84 ± 2.66          50.53 ± 1.98  
ILMN_1245447  Abcd1   70.75 ± 4.32          71.76 ± 7.53  
ILMN_1245831  Abcd2   60.99 ± 4.08          59.50 ± 3.41  
ILMN_2925281  Abcd3  366.69 ± 29.01     389.07 ± 32.77  
ILMN_2607474  Abcd4   61.40 ± 1.06          59.08 ± 6.11  
ILMN_2982652  Abce1   73.88 ± 6.10          73.13 ± 3.24  
ILMN_2760415  Abcf1   72.77 ± 2.20          84.93 ± 5.19* 
ILMN_2768926  Abcf1  694.49 ± 22.54     754.00 ± 40.47   
ILMN_2789544  Abcf2  600.43 ± 75.87     602.05 ± 40.58  
ILMN_2677696  Abcf3  471.58 ± 92.81     430.34 ± 41.89  
ILMN_2441335  Abcg1  139.92 ± 12.56     130.37 ± 19.12  
ILMN_2728879  Abcg2   50.65 ± 2.49          52.76 ± 0.87  
ILMN_2649306  Abcg3   51.97 ± 2.81          54.39 ± 4.75  
ILMN_1225587  Abcg4  474.16 ± 31.13     499.66 ± 98.31  
ILMN_2725781  Abcg5   60.24 ± 4.29          61.55 ± 2.87  
ILMN_2789904  Abcg8   47.33 ± 1.86          47.73 ± 1.05 
          

CD-1® mice were injected with 10mg/kg i.v. CT3 and the temperature was assessed 20 minutes later 

and mice that developed hypothermic (>1.5ºC temperature drop) responses (responder) were separated 

from non-responder, non-hypothermic mice. At least two weeks later the brains were rapidly dissected 

from the mice following euthanasia and RNA prepared. This level of gene expression was assessed using 

Illumia Ref 8 microarrays. The results represent the mean ± SD signal of n=4/group. * = P<0.05 of a 

false positive result. This was performed by the Genome Centre, QMUL, London, UK by Lia de 

Faveri and Charles Mein. 
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Table 7.2. Differential expression of RNA in the brains of CD-1® mice, which were 

either responders or non-responders to the hypothermia-inducing properties of 

CT3.  

 

 
                                                                                Mean Expression ± SD 
                                                                  ______________________________________ 
Probe               Locus    Chromosome   Non-Responder    Responder            Difference                     Gene 
_______________________________________________________________________________________________ 
Over expression in CT3 responder mice 
 
ILMN_2639805     Ogdh    11           386.13 ± 28.34       541.30 ± 21.56        82.30783             Oxoglutarate        
dehydrogenase (lipoamide) nuclear gene encoding mitochondrial protein 
  
ILMN_2595863     Chst10     1            88.04 ± 17.76         154.85 ± 17.46        66.49313          Carbohydrate                                   
sulfotransferase 10     
  
ILMN_3161626     Prkag2     4            61.03 ± 2.97           113.80 ± 19.31        64.36749       Protein kinase, AMP-
activated, gamma 2 non-catalytic subunit 
 
Under expression in CT3 responder mice 
 
ILMN_2603581     Aurkaip1   19             2066.25 ± 316.34       1126.94 ± 196.55     -63.39143      Aurora kinase A 
interacting protein 1  
  
ILMN_2612895     C2     17         151.07 ± 7.64    110.23 ± 6.66           -70.85784      Complement 
component 2  
  
ILMN_2594971     Rpl38     11         513.67 ± 42.49     341.05 ± 45.83         -73.99739     Ribosomal protein 
L38, transcript variant 1 
  
ILMN_1259355     Ccdc117   11                 134.07 ± 8.64      74.44 ± 10.86          -128.9300      Coiled-coil domain 
containing 117 
 
ILMN_1250569     Rapgefl1   11                701.51 ± 43.47     405.28 ± 41.46         -156.5910      Rap guanine 
nucleotide exchange factor (GEF)-like 1 
   
ILMN_2865527     Krt12     11           413.47± 39.57     177.67 ± 15.24         -273.1947      Keratin 12  
_______________________________________________________________________________________________ 
 

 

CD-1® mice were injected with 10mg/kg i.v. CT3 and the temperature was assessed 20 minutes later 

and mice that developed hypothermic (>1.5ºC temperature drop) responses (responder) were separated 

from  non-responder, non-hypothermic mice. At least two weeks later the brains were rapidly dissected 

from the mice following euthanasia and RNA prepared. This level of gene expression was assessed using 

Illumia Ref 8 microarrays. The results represent the mean ± SD signal of n=4/group. Differences of 

more than 65 had a  P<0.01 of being a false positive result. This was performed by the Genome 

Centre, QMUL, London, UK by Lia de Faveri and Charles Mein. 
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Figure 7.12. Polymorphic response in the hypothermic effects of CT3 in laboratory 

mice. 
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The genealogy of mouse strains and their hypothermic response to injection with 10mg/kg i.v. CT3 in 

ECP. The (>0.5°C) hypothermic response was assessed in a variety of mouse laboratory strains that 

were derived from founder Swiss albino mice imported to the USA by Carla Lynch in 1926. The date and 

researcher or Institution when sublines were generated are indicated as mice became commercial stock 

at companies such as the Jackson laboratories (J) or Olac (Ola) that became Harlan Sprague Dawley 

(Hsd). 
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Table 7.3. Mode of Inheritance of CT3-induced hypothermia. 

 

 

                                                              Expected Result for Mode of Inheritance 

Strain   Recessive Trait    Dominant Trait    Dominant Trait         (Responders/Total) 

                                               (cep/cep)             (Cep/Cep)        (Cep/Wt) 

 

CD-1®               100%  100%             100%  100% (1/1) 

ABH          0%       0%       0%       0% (0/4) 

(CD-1 x ABH)F1  F1                   0%  100%        50%  56% (10/18) 

CD-1 x (CD1 x ABH)F1   50%  100%        75%  70% (14/20) 

(CD1 x ABH)F1 x ABH    N1           0%    50%  50%   50% (9/18) 

ABH x (CD1 x ABH)N1    N2          0%    50%  50%   50% (9/18) 

(CD1 x ABH)N2 x ABH    N3          0%    50%  50%   44% (8/18) 

(CD1 x ABH)N3 x ABH    N4          0%    50%  50%   41% (7/17) 

____________________________________________________________________________ 

 

 

 

 

The mode of inheritance of 10mg/kg i.v. CT3-induced hypothermia was assessed in selective crosses 

between a single CD-1 male and Biozzi ABH mice. The F1 mice used for breeding were CT3-responder 

mice and these were backcrossed with their parents. For N2 backcrosses ABH male mice were used to 

mate with female (CD1 x ABH) x ABH N2 to eliminate CD-1-derived sex chromosomes from the gene 

pool.  The frequency of responder mice was estimated based on the male CD-1 parents harboring either 

recessive cannabinoid exclusion pump (cep) genes or being either homozygous (Cep/Cep) or 

heterozygous (Cep/Wt-wildtype (wt) for dominant cannabinoid exclusion pump genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 159 

7.3. DISCUSSION 

 

Spasticity in EAE is controlled by the binding of ∆9THC within the cannabis plant to 

neuronal CB1R receptors, which also induce the adverse behavioural and 

physiological affects of cannabis (Wilkinson et al., 2003; Varvel et al., 2007). 

Although the adverse effects are associated with activation of CB1R receptors in 

brain (Howlett et al., 2002), CNS-excluded, CB1R agonists can inhibit spasticity as 

shown here and can inhibit inflammatory and neuropathic pain (Fox et al., 2001; 

Fride et al., 2004; Agarwal et al., 2007; Dziadulewicz et al., 2007; Worm et al., 

2007; Yu et al., 2007). Although SAD448 (Brain et al., 2003; Adam-Worrall et al., 

2007), SAB378 (Dziadulewicz et al., 2007) and CT3 (Rhee et al., 1997) bind and 

have some selectivity towards CB2R, there is no good evidence that CB2R plays a 

role in the control of spasticity (Chapter 4). This study demonstrates that by 

excluding CB1R-stimulating chemicals from the brain, using their physicochemical 

properties, it is possible to increase the therapeutic window at least 10-100 fold, of 

CB1R agonists. This study also shows that spasticity may be controlled both 

centrally and peripherally by CB1 receptor stimulation. This probably occurs in the 

CNS and at peripheral nerve terminals at the neuromuscular junction. This may 

allow the exploitation of the medicinal properties that the cannabinoid system has 

to offer whilst limiting the well known adverse effects. 

 

Polar molecules that are CNS-excluded can inhibit spasticity. Although SAD448 is a 

polar molecule that is less sedative than some CNS-penetrant compounds, such as 

SAB722, some water-soluble compounds can induce significant cannabimimetic 

effects (Pertwee et al., 2000; Martin et al., 2006). These include 0-1057 (Pertwee 

et al., 2000), a water-miscible compound that forms micelles in aqueous solution 

(Billy Martin. Virginia Commonwealth University, USA. Personal communication to 

D. Baker) and the water-soluble compound, 0-2545 (logBB=-0.08 Martin et al., 

2006).  Thus, limiting entry of compounds to the CNS may best be achieved by 

targeting compounds to exclusion pumps as was also evident following 

administration of SAD448. This activity was found to be a mechanism for exclusion 

from the CNS of CT3 and SAB378. Whilst SAB378 is reported to be a CB1R agonist 

(Dziadulewicz et al., 2007; Cluny et al., 2010), there has been controversy 

concerning the cannabimimetic effects of CT3 (Burstein et al., 2004; Karst, 2007). 

Recently it has been suggested that CT3 exhibits analgesia within the dose range 

that exhibits adverse cannabimimetic effects (Vann et al., 2007). These are 

detected in rodents using a tetrad of tests, including the capacity to induce 

hypothermia within 15-20min following injection of the test compound (Howlett et 

al., 2002; Vann et al., 2007). CT3 failed to induce hypothermia within 60min 

following administration of up to 10mg/kg CT3 p.o. in ICR mice (Vann et al., 2007) 
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and Sprague Dawley rats at a time when CT3 exhibited analgesia at 1mg/kg p.o via 

a CB1R dependent mechanism (Dyson et al., 2005). However, 10mg/kg p.o. CT3 

did induce tetrad effects three hours after administration in rats (Dyson et al., 

2005). This suggested that either a metabolite of CT3 was mediating the 

cannabimimetic effects or that it took a significant amount of time for sufficient CT3 

to accumulate within the CNS. Similarly, high doses (>10mg/kg p.o. in rats) of 

SAB378 (Dziadulewicz et al., 2007) and (+)CBD-DMH could induce tetrad effects 

but their onsets were significantly delayed compared to their analgesic actions 

(Raphael Mechoulam personal communication, Hebrew University, Jerusalem, 

Israel). Although doses of around 30mg/kg p.o. CT3 or greater were required to 

induce hypothermia within 15min of administration in ICR mice, hypothermic 

effects of CT3 were detected at doses as low as 0.3mg/kg CT3 i.v. and were 

marked at 3mg/kg i.v. (Vann et al., 2007). This dose-response was distinctly 

different from that observed here in ABH mice. Although it has been suggested that 

CT-3 mediates actions via the peroxisome proliferator-activated receptor gamma 

(Ambrosio et al., 2007), these differences can be reconciled by the hypothesis that 

CT-3 is a CNS-excluded, CB1R agonist. As such the actions of CT3 in vivo have been 

consistently inhibited by CB1R antagonists (Dyson et al., 2005; Hiragata et al., 

2007; Vann et al., 2007,). CT3 is a substrate for a polymorphic exclusion pump 

expressed at the blood:brain barrier. CNS exclusion pumps such as P-glycoprotein 

are also present in gut epithelial cells, which can result in poor oral bioavailability 

(Sparreboom et al., 1997). However, as both CT3 and SAB378 are orally 

available/active in rodents and humans there is sufficient discrimination between 

intestinal and CNS exclusion to allow therapeutic concentrations of drug to be 

achieved (Dyson et al., 2005; Dziadulewicz et al., 2007; Karst, 2007; Gardin et al., 

2009).  

 

This current study used CD-1®/ICR (caesarian-derived (CD)) mice which originated 

from a colony of outbred mice from the Institute of Cancer Research (ICR) mice 

(Chia et al., 2005) CD-1 mice are routinely used for toxicology studies as they are 

inexpensive and considered to be heterogeneous, which is confirmed by a genome-

wide analysis of gene variation (Aldinger et al., 2009), and support a previous 

observation that i.v. administration of CT3 induces cannabimimetic events in ICR 

mice (Vann et al., 2007).  However, ABH mice required significantly greater doses 

to induce such effects, unless pretreated with CsA. This is known to target the 

multi-drug resistance exclusion pumps that block drug entry into the CNS and other 

tissues (Hendrikse et al., 1998). Some CD-1/ICR mice used in these studies lacked 

a pump that excludes CT3 from the CNS. Outbred mice are seldom genetically 

monitored and variation exists between CD-1® colonies (Inoue et al., 1999). It is 

possible that the incidence of the hypothermic phenotype in CD-1® mice was high 



 161 

in QMUL-derived mice compared to the many closed colonies of commercially-

derived CD-1 mice. Importantly however, the CT3-sedating phenotype was evident 

in animals derived from commercial stock years apart. Furthermore, as the CT3-

sedating phenotype also appears to be detected in a colony of ICR mice derived 

from Harlan Olac, USA (Dyson et al., 2005), whose founders originated from 

Charles Rivers, Willmington, Mass, USA, this suggests that there may be 

widespread expression of a polymorphism that can exclude drugs from the CNS in 

CD-1® mice.  As ICR/CD-1®, other albino outbred Swiss mouse strains and 

presumably obese C57BL/6  such as the Pound MouseTM (C57BL/6NCrl-Leprdb-lb/Crl) 

and other C57BL/6 transgenic mice are often used by the pharmaceutical industry 

in toxicological and pharmacokinetic studies, it provides a warning that drug-

studies in these strains may need to be interpreted with caution. Ivermectin is a p-

glycoprotein substrate that have been used to treat onchocerciasis in over 40 

million humans and endo and ecto-parasitic infestations in over five billion livestock 

and pets [Omura 2008]. Had ivermectin been first screened in vivo in mice (CF1) 

that lacked p-glycoprotein, therapeutic doses would have caused fatalities due to 

neurotoxicity and may have hampered or terminated drug development (Lankas et 

al., 1997). It is conceivable, especially as inbred NIH mice were generated at 

Burroughs Wellcome UK, that the development of some compounds may have been 

halted, due to pharmacokinetic and importantly toxicity issues following initial 

screening in such mouse strains 

 

The CD-1® mice strain originated from two male and seven female mice imported 

in 1926 to the USA, by Carla Lynch at the Rockefeller Institute, from Lausanne, 

Switzerland (Chia et al., 2005). That the hypothermic phenotype was detected in 

many mouse strains that were derived from these Swiss mice and have been 

divergent since 1932 suggested that this phenotype was endemic in many albino 

Swiss laboratory mice and was probably present in the original Swiss mouse stock 

imported into the USA. This phenotype is controlled by a single dominant gene and 

provides a good explanation why the presence of this phenotype has remained high 

in outbred CD1® mouse stocks. Microarray of intestinal expression of ten CD-1®)  

suggested that there may be variation in ABC transporters such as Abcb1b and 

Abcc7, as the deviation of expression was as large as the mean suggesting that 

some mice express the protein where others do not (Mutch et al., 2004). However, 

the CT3-exclusion pump appeared not to be P-glycoprotein and Abcc7 was not 

detected in brain microarray of CT-3 responder and non-responder mice. Analysis 

of expression ABC transporters in brains did detect differences between CT-3 

responder and non-responder mice, however ABCC7 has not been reported to be a 

drug efflux pump and ABCF1, has no transmembrane domains and so unlikely to 

behave as a drug efflux pumps. However, the expression of the causative gene may 
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have been masked by differential expression of CNS cells types, as whole brain and 

not endothelia was analyzed. Furthermore the observed differences between CT3-

responder and non-responder mice may be dysregulated due to the consequences 

of the lack of function of the drug pump. As the inheritance of the genetic effect is 

dominant it may be that there is a loss of function of the protein due to interference 

of the normal translated protein via the products of the mutant allele down stream 

from RNA producton and would account for lack of any obvious difference in known 

ABC transporters between the normal and mutant line. Interestingly, the most 

significant over represented (Ogdh) and 4 most significant under represented 

(Rpl38, Ccdc117, Rapgefl, Krt12) RNA species between CT-3 responder and non-

responder mice were coded by genes on chromosome 11.  Although physical 

mapping indicates that these five genes are located in very different locations on 

chromosome 11, it is possible that the CT3-induced hypothermia gene may be 

located on chromosome 11 and co-segregate with the above genes. This could be 

supported by genomic mapping of the hypothermic trait using microsatellites or 

single nucleotide polymorphisms (SNP) in future studies.     

 

Although, P-glycoprotein deficiency has been investigated and has not been 

detected in outbred CD-1 mice (Lankas et al., 1997), a recessive mutant 

(Abcb1amds) causing the loss of Abcb1a function had been identified in outbred CF-1 

(Lankas et al., 1997; Jun et al., 2000; Pippert and Umbenhauer, 2001). However, 

no evidence for the expression of Abcb1amds was found in the CD-1 mice exhibiting 

CT3-induced hypothermia and it is clear that p-glycoprotein was not the target for 

the exclusion of cannabinoids based on in vitro data and the lack of influence of P-

glycoprotein deficiency on CT3-induced “tetrad” responses in vivo. For many years 

it has been recognised that neuroinflammation is associated with blood brain barrier 

dysfunction, yet it is surprising that the nature of the drug pumps, even in 

microarray analysis, has not been investigated. This is particularly surprising as 

drug exclusion could be central to therapeutic activity. Cyclosporin A, which is so 

effective at preventing tissue rejection, had a very limited efficacy in MS (The 

Multiple Sclerosis Study Group 1990; Steck et al., 1990), because it is excluded 

from the CNS by a number of drug efflux pumps. Mitoxantrone is an MS drug, 

which has the properties of an ABCG2 substrate. Mitoxantrone is an 

immunomodulatory drug that is more immunosuppressive if it enters the CNS 

during EAE (Baker et al., 1992; Cotte et al., 2009). However, mitoxantrone can be 

potentially neurotoxic, when delivered to the CNS (Siegal et al., 1988). Therefore it 

is of interest that ABCG2 expression was maintained in lesions during MS and EAE. 

However, the level of CNS permeability may vary between individuals as it has 

been shown that ABCG2 genotypes influence levels of drug efflux (Cotte et al., 

2009). The activity of ABCG2 has also been reported to be inhibited in vitro by 
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cannabinoids THC, cannabidiol and cannabinol, leading to an increase in the 

accumulation of mitoxantrone (Holland et al., 2007).  The same group also reported 

the inhibition of the mutidrug transporter ABCC1 (MRP1) with an order of efficacy: 

cannabidiol>cannabinol>THC as measured by the accumulation of the ABCC1 

substrates Fluo3 and vincristine in ovarian cancer cells overexpressing ABCC1 

(Holland et al., 2008). There are many polymorphisms in ABC transporters with 

functional consequences on drug uptake (Cascorbi, 2006). These undoubtedly 

influence response to therapy and probably influence the variability in the capacity 

of individuals to tolerate cannabinoid administration such as the reported 

association between a polymorphism in the drug pump ABCB1 (p-glycoprotein) and 

cannabis dependence (Benyamina et al., 2009). In contrast to effects on ABCG2, 

expression of P-glycoprotein was lost from vessels in active lesions in both active 

lesions in MS and mouse EAE. Others such as as ABCC2 (MRP-2) and ABCC6 (MRP-

6) may likewise be down regulated in MS lesions (Victoria Perkins, QMUL 

unpublished). Likewise, the CT3-cannabinoid drug pump is down regulated during 

chronic EAE. Although this may limit the therapeutic value of some cannabinoids, 

lesions are often not in cognitive centres during MS and therefore psychoactivity 

may not occur during blood-brain barrier leakage elsewhere in the CNS. This may 

be used to selectivity target drugs to lesions using ABCB1 substrates. This 

observation has been recently confirmed, where it appears that as lymphocytes 

penetrate the CNS endothelium, and crosslink intracellular adhesion molecule one 

(ICAM-1,CD54) on the endothelial surface, an N-FAT mediated signalling cascade is 

triggered that induces the down-regulation of ABCB1 (Kooji et al., 2010). Whilst the 

loss of ABC transporters has been linked to the process of infiltration (Kooij et al., 

2010), this persists in chronic-inactive MS lesions and in chronic EAE lesions.  As 

these lesions are in areas of progressive neurodegeneration (Pryce et al., 2005), 

through the use of drugs that are substrates for ABC transporters missing in 

lesions, it may be possible to selectively deliver drugs to areas where therapy is 

required.  We have demonstrated that THC is partially excluded by CNS drug 

pumps. Although the p-glycoprotein shows limited action of THC in vitro (Holland et 

al., 2006),  in vivo P-glycoprotein has been shown to exclude about 50% of the 

THC using wildtype and P-glycoprotein-deficient CF-1 mice (Bonhomme-Faivre et 

al. 2008). In addition, the cannabinoids THC, cannabidiol and cannabinol are a 

substrate for ABCG2 and ABCC1 in vitro (Holland et al., 2007; Holland et al., 2008).  

Potential polymorphisms in these genes may explain the variation in the tolerability 

of cannabis-based therapeutics in some patients. 

As THC is a neuroprotective agent (Pryce et al., 2003,. and Chapter 3), it may 

deliver neuroprotective and symptom control benefit at lesion sites, due to loss of 

p-glycoprotein function. Further studies are warranted to systematically investigate 

drug pump function during MS and EAE.  Although elegantly shown in models of 
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pain (Agarwal et al., 2007), a definitive demonstration that SAD448, SAB378 and 

CT3 have a solely peripheral mode of action in spasticity is difficult. This is because 

of disease-related events that affect BBB function and that the actions of exclusion 

pumps are not absolute. As such they may only produce 10-100 fold exclusion of 

compounds (Schinkel and Jonker, 2003). Therefore, small amounts of compounds 

may enter the CNS, as seen with the increased CNS penetrance of a normally sub 

hypothermic dose of CT3 in chronic CREAE mice. This may reflect the 

downregulation of drug-efflux pumps responsible for the exclusion of CT3 at the 

blood:brain barrier as a result of disease pathology in these animals. However, 

results suggest that for certain compounds such as SAD448, deletion of the CB1 

receptor from peripheral nerves is sufficient to nullify the anti-spastic properties of 

this compound, indicating that selective targeting of CB1 agonists to peripheral 

nerves can be efficacious in the amelioration of experimental spasticity. 

Furthermore, disease-related pathologies can cause the CNS-expression of 

molecules, such as Nav 1.8 sodium channels and peripherin (as used in this study), 

which can be used to conditionally deplete CB1R from peripheral nerves (Troy et al., 

1990; Mathew et al., 2001; Zhou et al., 2002; Craner et al., 2003; Agarwal et al., 

2007).  However, irrespective of whether the action of these compounds is solely 

peripheral, or peripheral and central, this study indicates that by excluding 

cannabinoids from the CNS it is possible to increase the therapeutic window of CB1R 

agonists, such that they may be suitable for clinical development for the treatment 

of spasticity in MS.  
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CHAPTER EIGHT 

 

FINAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

This study and abundant experimental data from other groups indicate the 

important and pleiotropic roles that the cannabinoid system plays in the 

maintenance of physiological processes under normal physiological conditions, but 

also in pathological processes. In the CNS, the neuroprotective nature of the 

cannabinoid system in events of CNS damage such as; neuroinflammation, 

ischaemia, brain trauma and neurodegenerative disease is becoming increasingly 

well established. That these conditions may be ameliorated by CB1 receptor 

stimulation over and above endogenous levels via the endocannabinoid system, 

further points to a central role for cannabinoids as neuroprotective agents in 

episodes of CNS damage. 

 

In experimental models of MS both in this study and elsewhere, exogenous CB1 

receptor stimulation can significantly slow the rate of disease progression and the 

development of disability that arises from the degeneration of axons. This is 

particularly the case in the spinal cord, where the pathology leads to the worsening 

of disability and the concomitant development of spasticity, tremor and bladder 

dysfunction, which are common symptoms associated with progressive disease in 

MS. This has lead to recent licensing of cannabis-based drugs for the treatment of 

MS and ongoing clinical investigations (CUPID), within the University and 

elsewhere, to study the potential benefits of cannabinoids (THC) as neuroprotective 

agents to slow the rate of disability development in progressive MS. Although, we 

have been unable to find a role for CBD for the inhibition of autoimmunity or control 

of spasticity (Baker et al., 2000), we have demonstrated the neuroprotective 

properties of the CBD, which is the non-psychoactive cannabis constituent of 

Sativex®. The mechanism(s) of the neuroprotective properties of cannabidiol have 

yet to be established, but merit further study as cannabidiol does not have any of 

the psychoactive properties of cannabinoid agonists such as THC, which make their 

clinical therapeutic use problematic. Our experimental systems could be used to 

investigate the optimum ratio of THC:CBD in medicinal cannabis extracts as there is 

no compelling evidence that a 1:1 mixture as in Sativex® is optimum. The data 

presented here support our previous studies indicating a neuroprotective role for 

the cannabinoid system (Pryce et al., 2003). In contrast we can find less compelling 

evidence for a role of cannabinoid therapy in autoimmunity. 
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A definitive explanation of the role of CB1 versus CB2 receptors in this process 

remains to be elucidated. Whilst CB2-deficient mice in this study showed an 

enhanced level of susceptibility to the induction of EAE, no immunosuppressive 

effect on the development of autoimmunity by CB2 receptor agonists has yet been 

demonstrated. In contrast, a robust immunosuppression of EAE is seen with CB1 

receptor agonists but only at doses that produce significant cannabimimetic effects 

in treated animals that would preclude their use in a clinical setting. The ability of 

CB1 agonists to induce immunosuppressive effects is lost in global CB1 receptor-

deficient mice and also in mice where the CB1 receptor is conditionally deleted from 

(CNS) nerve cells, but is absent using CNS-excluded agonists. This indicated that 

CB1 receptor stimulation in the CNS is necessary for the immunosuppressive 

properties of cannabinoid receptor agonists, which may be as a result of 

downstream production of inflammation-suppressing mediators such as 

glucocorticoids, which are produced in response to CNS, CB1 receptor stimulation. A 

clearer picture as to the role of the CB2 receptor as an immune-modulator may be 

provided by the administration of immunosuppressive compounds into CB2 deficient 

mice bred onto the ABH background.  To date, all studies purporting to 

demonstrate and influence of CB2 receptor on autoimmune function, have used 

transgenic mice on the C57BL/6 mouse background. This is a low EAE susceptibility 

strain compared to ABH mice and disease in C57BL/6 mice is highly variable in 

incidence and severity. EAE induction on the ABH background strain is, in contrast, 

highly reproducible with high incidence and of consistent disease severity. As such 

it may be more difficult to inhibit disease in ABH mice with weakly 

immunosuppressive compounds, compared to that induced in C57BL/6 mice. We 

expect that immunosuppressive cannabinoids such as high-dose THC will still 

produce downregulation of EAE in these ABH.CB2 deficient mice. This will indicate 

further that the immunosuppressive properties of CB1 agonists are mediated by 

CNS-expressed CB1 receptors. Unfortunately, the N6 ABH.Cnr2-/- backcross colony 

of mice that I had generated for such studies were lost due to mistakes by our 

animal technicians. The backcrossing into the ABH mouse background to perform 

this experiment is currently ongoing such that these experiments can be performed 

in the future. 

 

In summary, I believe that the use of cannabinoids as potential modulators of 

autoimmunity in the CNS will be precluded in human disease due to the high doses 

of agonists needed to produce this effect, leading to unacceptable psychotropic 

side-effects. In contrast, low dose cannabinoid-mediated CB1 receptor stimulation 

can produce a significant neuroprotective benefit in inflammatory CNS disease at a 

level where the side-effect profile may be more acceptable to MS patients. Although 
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disease modification of MS is research for the future, cannabinoid therapy for 

symptom control of MS is now a reality. 

The amelioration of spasticity and licensing of medicinal cannabis for the treatment 

of symptoms of MS has translated our earlier observations in chronic EAE (Baker et 

al., 2000) into the clinic. Unfortunately, our work shown here using CB1 receptor 

knockout animals and THC-deficient cannabis (Wilkinson et al., 2003) indicate that 

the mediators of therapy are also the same components that mediate the adverse 

effects of cannabis use (Varvel et al. 2007). We therefore seek to utilise knowledge 

of the cannabinoid system to exploit the therapeutic benefits that the cannabinoid 

system has to offer, whilst limiting the adverse effects.  

 

Although CB2 agonists were shown to inhibit spasticity due to their weak cross-

reactivity with the CB1 receptor, future work should demonstrate that these agents 

are active during spasticity in CB2-deficient mice. However, as CB2 agonists have 

low affinity for the CB1 receptor it may be easier to dose-titrate such agents in 

clinical use. We believe that high affinity CB1 agonists are unlikely to be of 

therapeutic use due to the potential for psychoactivity, receptor tolerance 

considering the wide variety of the capacity of individuals to tolerate cannabis. 

Amelioration of spasticity can also be achieved by modulation of the 

endocannabinoid system by administration of inhibitors of the degradative enzymes 

for the endocannabinoids anandamide (FAAH inhibition) and 2-AG (MAG-lipase 

inhibition). The reduction in spastic tone in the hind limbs of CREAE mice was 

significantly reduced by FAAH inhibition although subsequent analysis in spastic 

FAAH-deficient mice revealed that whilst the anti-spastic activity of CAY10402 was 

lost in these animals, the anti-spastic activity of URB597 was retained. This 

indicates that either URB597 has additional off-target effects at other components 

of the endocannabinoid system or its metabolites also target these components.  

However, because the full extent of the endocannabinoid system remains to be 

discovered and the fact that essentially no cannabinoid-related agent is specific for 

its target, a combination of drug with cannabinoid system knockout mice has 

proved invaluable in defining therapeutic targets. A significant reduction of spastic 

hind-limb tone was also seen by the inhibition of MAG-lipase by JZL-184 and 

enhancement of 2-AG levels in CREAE mice.  The specificity of the anti-spastic 

effects of JZL-184 at MAG-lipase cannot be confirmed until access to a MAG-lipase 

knockout mouse strain is obtained. Whilst the administration of FAAH inhibitors 

produced no obvious cannabimimetic effects in CREAE mice, (as seen with 

conventional CB1 receptor agonists) and CB1
 receptor desensitisation has not been 

reported, the observation that repeated MAG-lipase inhibition produces 

cannabimimetic effects and rapid CB1 receptor desensitisation suggests that 

therapeutically, in the clinical situation, FAAH inhibitors will have more utility than 
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MAG-lipase inhibitors. The inhibition of FAAH may not be without negative 

consequences however, as this enzyme is widely expressed throughout the body 

and particularly in the liver where it may be important for lipid metabolism and thus 

may have negative hepatotoxic consequences. It is of interest that some FAAH-

deficient mice bred in this laboratory have fatty livers at post mortem (unpublished 

observation). 

 

The negative side-effect profile of CNS-penetrant CB1 receptor agonists is well 

established and the use of such agents to treat symptoms such as spasticity will 

always be accompanied, if used optimally, by a degree of cannabimmetic effects 

due to the stimulation of these receptors in the CNS. This will limit the use of these 

agents as some patients will find these psychotropic effects intolerable and the 

therapeutic window of symptom relief before the development of negative side-

effects is narrow.  It has been long-held neurological dogma that limb spasticity is a 

purely CNS-mediated problem and thus CNS-penetrant agents (such as baclofen) 

are required for its treatment. It is shown here, that this is probably not the case 

and in experimental MS at least, it is possible to reduce hind limb spastic tone by 

the stimulation of peripherally-expressed CB1 receptors using cannabinoid receptor 

agonists that are not CNS-penetrant and which will not have psychoactive side-

effects.  We have identified novel cannabinoid agents that form this new class of 

agents and have defined mechanisms of drug-exclusion. It has also become clear 

during this study that CNS drug-resistance pumps operating at the endothelial cells 

of the blood:brain barrier are responsible for the non-penetrance of peripheralised 

cannabinoids to the CNS in addition to influencing the CNS-penetrance of 

conventional cannabinoids such as THC. Genetic polymorphisms in these pumps 

may influence drug-responsiveness and the capacity to tolerate cannabinoid drugs. 

Interestingly, we have identified the presence of a dominant cannabinoid drug 

exclusion pump with mice strains commonly used in pharmacological and 

toxicological drug studies. The identity of this locus is currently being examined in 

genome wide screens of CT-3 responder and non-responder mice. Once a 

chromosome location is indicated, gene sequencing, transfection of mutants into 

brain endothelial cells to block transport of substrates, expression profiling in 

EAE/MS will be performed and studies in knockout mice can be performed to 

identify the causative gene. 

 

A further novel observation of interest, which could influence current and future 

treatment modalities, is the observation that there is drug pump dysregulation 

during MS and EAE. The level of expression of drug-resistance pumps can be 

influenced not only by ongoing neuroinflammation but also in chronic inactive 

lesions where inflammation has long resolved. Downregulation of drug-resistance 
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pumps at these lesional areas can facilitate the entry of potentially neuroprotective 

compounds such as cannabinoids, which may be normally excluded by the 

blood:brain barrier. This situation may also allow the penetrance of peripheralised 

cannabinoid agonists to these lesional areas which, as the drug entry will be focal 

may not produce global cannabimimetic effects seen with CNS-penetrant CB1 

agonists.  

 

VSN16 was developed to be a peripheralised CB1 receptor agonist, based on early 

pharmacology studies. However, intriguingly although it is: hydrophilic, water 

soluble, excluded from the CNS, inhibited by CB1 receptor antagonist compounds 

and has a robust anti-spastic activity both via intravenous and oral routes with 

good pharmacokinetics, it has no activity at the CB1 receptor. The target for the 

anti-spastic activity of VSN16 at present remains elusive, although VSN16 can 

modulate the actions of a GPR55 receptor agonist. To determine whether the anti-

spastic activity of VSN16 is mediated via the GPR55 receptor, experiments will be 

performed to determine if spasticity reduction is observed in spastic, GPR55-

deficient CREAE mice, which are currently ongoing. Furthermore, in contrast to 

cannabinoids, the expression profile of GPR55 is unclear and the mechanisms of 

symptom control need explanation.  Nevertheless, VSN16 represents a novel class 

of compounds with a novel target. Although, it is as active as current anti-spastic 

agents, it appears to lack the side-effect potential of competitor compounds, such 

as baclofen or CNS-penetrant cannabinoids. Therefore, due to an apparent superior 

side-effect profile it could compete favourably with current anti-spastic drugs and 

could be prescribed earlier in the disease course as VSNB16 appears to lack the 

intolerable side-effects of current anti-spastic compounds. VSN16 has been 

patented and is in development for clinical use. 
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FUTURE AIMS 

 

 
Chapter 3: Autoimmunity suppression/neuroprotection 

 

(a) Test the ability of THC to modulate EAE in CB2 knockout mice on ABH 

background (ongoing). 

(b)  Further investigate mechanisms of CBD-mediated neuroprotection. 

 

Chapter 4: Anti-spastic effects of CB1-mediated agonists 

Determine whether the anti-spastic activity of CB1/CB2 active compounds is 

maintained in CB2-deficient spastic mice on ABH background (ongoing). 

 

Chapter 5: FAAH Inhibition 

(a)  Test lower doses of UCM579 in FAAH knockout mice to demonstrate specificity. 

(b) Test competitive and non-competitive FAAH inhibitors compounds.  

 

Chapter 6: VSN16 

(a) Antagonise the action of VSN16 with compounds reported to have GPR55 

antagonist activity such as cannabidiol. 

(b) Test VSN16 in spasticity in GPR55 knockout mice. 

(c) Further identify the target for VSN16 action. 

 

Chapter 7: Peripheral CB1 receptor agonisits. 

(a) Further identify the CT3 Drug exclusion pump using gene mapping/sequencing. 

(b) Identify the nature of drug exclusion pumps in chronic EAE. 

(d) Examine expression of ABCB1(MDR-1), ABCC1 (MRP1) and ABCC3 (MRP3) in 

EAE and MS. 

 

Additional study. 

Investigate the role of the novel putative cannabinoid receptor GPR18 in the 

modulation of immune responses with particular respect to the role of microglial 

activation on neuroinflammation in the CNS and whether stimulation or antagonism 

of this receptor can influence the development of EAE in the ABH mouse. 
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