
Expression studies on PPAR in pancreatic neuroendocrine tumours
Hanson, Matthew Richard

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

https://qmro.qmul.ac.uk/jspui/handle/123456789/710

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

https://qmro.qmul.ac.uk/jspui/handle/123456789/710


 1 

 

Expression Studies on PPARγγγγ in 

Pancreatic Neuroendocrine 

Tumours 

 

Thesis submitted as requirement 

for MD (Res) 

 
 
 
 
 
Matthew Richard Hanson 2010 

Barts and the London School of medicine 

Queen Mary, University of London 



 2 

Abstract 

Pancreatic NETs occur with an annual incidence of around 5 per 1,000,000 population 

per year, with survival rates of between 30 – 97% at 5 years depending on the tumour 

subtype. The PPARs (peroxisomal proliferator-activated receptors) are members of the 

nuclear receptor superfamily that includes receptors for thyroid, steroid and retinoid 

hormones. PPARγ protein is also thought to be expressed in human pancreatic islet cells 

and has been shown to be a negative regulator of islet β cell mass both in vivo and in 

vitro. Its emerging function in controlling cell proliferation, differentiation and 

apoptosis, both in vivo and in vitro, has suggested a putative role as a tumour suppressor 

gene.  

 

I postulated that PPARγ is expressed in pancreatic neuroendocrine tumours and that 

agonism with a thiazolidinedione will cause an anti-proliferative effect. Three different 

types of tissue/cells were available to me: frozen human pancreatic neuroendocrine 

tumours following surgical resection, paraffin-embedded samples held in the 

histopathology archives, and human neuroendocrine tumour cell lines CM, BON and 

QGP1 (insulinoma, carcinoid and somatostatinoma respectively). 

 

PPARγ RNA was shown to be present in the majority of frozen surgical samples. 

Immunohistochemistry for PPARγ protein on the paraffin-embedded samples, however, 

revealed a lack of positive staining. These samples were then subjected to further 

immunohistochemistry for detection of other potentially important proteins involved 

with cellular proliferation including p27, phospho-p27, JAB1, PTEN and phospho-

AKT. In the tumour cell models, PPARγ RNA and protein was present in both BON 

and QGP1. Proliferation studies following treatment doses of PPARγ agonist 
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rosiglitazone show a significant anti-proliferative effect. Recovery of cells was shown 

following removal of treatment. However, inhibition of the effect was not achieved with 

the use of PPARγ antagonists raising the possibility that the anti-proliferative effects of 

thiazolidinediones may be independent of PPARγ. 
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1.1 Tumours of the neuroendocrine system 

Neuroendocrine cells may either co-localise within glands (for example the pituitary, 

parathyroid, and adrenal medulla), or may be found scattered amongst other non-

endocrine cells throughout the body making up the diffuse neuroendocrine system. 

Initially thought to derive from a common origin within the neural crest, it appears that 

neuroendocrine cells have diverse embryological origins and acquire similar properties 

during cell differentiation (Duerr et al 2007, Andrews et al 1998). Tumours arising from 

neuroendocrine cells, neuroendocrine tumours (NETs) thus comprise a heterogeneous 

group of disorders that have defied easy classification. The majority of NETs associated 

with the diffuse neuroendocrine system arise from the gastro-enteropancreatic (GEP) 

system, although up to 30% may develop in the bronchopulmonary system, with 

occasional tumours arising within tissues including the urogenital system, thyroid and 

thymus (Modlin et al 2003, Rindi et al 1998). The annual incidence of these tumours is 

around 5 per 1,000,000 per year and is thought to have increased in recent years – 

probably reflecting both greater awareness and improved diagnostic modalities. 

Predicted frequencies from autopsy series suggest that they remain under-diagnosed 

(Gustaffson et al 2008).  

 

The term “carcinoid” has in the past been widely applied to NETs in general, but was 

first coined by Oberndorfer (Karzinoide Tumoren des Dünndarmes. Frankfurter 

Zeitschrift für Pathologie, 1907, 1: 426-429) to describe “cancer like” tumours with 

apparently low malignant potential identified in the small bowel (Modlin et al 2004). 

The classical symptoms of “carcinoid syndrome” include flushing, hypotension, 

wheezing and diarrhoea, and may be related, at least in part, to serotonin released from 

tumours derived from the EC (Kultchitsky) cells of the gastrointestinal tract or bronchi, 

although vasoative substances are also involved.  
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Early categorisation divided neuroendocrine tumours according to the embryological 

site of origin. Thus foregut tumours included those arising from the lung, stomach, 

duodenum and upper jejunum and pancreas, midgut tumours comprising lower jejunum, 

ileum, appendix and caecum, and hindgut tumours describing those found within the 

colon and rectum. However, this classification failed to take into account the diversity 

of neuroendocrine cell types from which these tumours arise, a distinction that is more 

relevant to the syndromes encountered clinically than the embryological site of tumour 

origin (reviewed by Kloppel 2004). To add further complexity, eponymous terms such 

as Zollinger-Ellison syndrome and Verner-Morrison syndrome are still frequently used 

in the context of NETs, as are descriptive terms such as Watery Diarrhoea 

Hypokalaemia Achlorhydra (WDHA) syndrome.  

 

A recent classification system introduced by the World Health Organisation has 

attempted to clarify the nomenclature applied to GEP-NETs, although it is not relevant 

to tumours arising elsewhere. The term carcinoid has been replaced (to a large extent) 

by the term neuroendocrine tumour. Such tumours are described histologically as either 

a well differentiated tumour (confined to mucosa/submucosa, non-angio-invasive), a 

well differentiated carcinoma, (with invasion of the lamina propria or identifiable 

metastases) or a poorly differentiated carcinoma with high malignant potential. There is 

also a mixed-exocrine-endocrine carcinoma. Tumours may then be further subclassified 

according to their anatomical site of origin and secretory profile (Kloppel 2007).  

 

Pancreatic NETs have survival rates of between 30 – 97% 5 year survival depending on 

the tumour subtype (Modlin et al 2003). 50–60% of pancreatic NETs are hormonally 

active, with the remainder being hormonally silent. The numbers of hormonally silent 
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pancreatic NETs diagnosed has risen over recent years, probably as a result of improved 

imaging rather than a true increase in incidence. Functioning tumours are associated 

with the secretion of a large variety of hormones including insulin (insulinoma), 

glucagon (glucagonoma), gastrin (gastrinoma), and vasoactive intestinal peptide 

(VIPoma). They may rarely secrete adrenocorticotropic hormone (ACTH), or growth 

hormone.  A single tumour may be associated with the secretion of more than one 

hormone (Belchetz et al 1973). Pancreatic NETs are usually solitary (but may be 

multiple in familial disease) and well-demarcated, measuring between 1 – 4 cm in 

diameter. Although insulinomas are usually histologically benign (the clinical 

consequences of uncontrolled insulin release may however be catastrophic), the 

remainder of the pancreatic NETs frequently show malignant features. Evidence of 

microangioinvasion, high mitotic rate and a size greater than 2 cm give cause for 

concern (Kloppel 2007). Interestingly, the organ of origin of NETs appears to play a 

part in the clinical progression of disease – for example pancreatic gastrinomas are in 

general more aggressive that those arising in the duodenum (Modlin et al 2005). 

 

1.2 Pancreatic development and cellular differentiation 

The pancreas is an organ containing two distinct populations of cells, the exocrine cells 

that secrete enzymes into the digestive tract and the endocrine cells that secrete 

hormones into the bloodstream. During early embyrogenesis (28 days in the human) the 

ventral and dorsal buds of the early pancreas develop as evaginations of the embryonal 

foregut. Arising opposite each other, the ventral bud moves round to form the posterior 

part of the pancreatic head and uncinate process while the remainder of the organ 

develops from the dorsal bud (reviewed Peters et al 2000). The longstanding hypothesis 

that pancreatic exocrine and endocrine cells are derived from different cell pools (gut 

endoderm and neural crest respectively) has been refuted with a number of cell lineage 
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experiments and molecular studies. Pancreatic NETs are likely to originate from cells of 

the primitive gut endoderm that ultimately give rise to all the cell types of the mature 

pancreas - the ductal cells, acinar cells and endocrine cells. 

 

The exocrine pancreas is a lobulated, branched, acinar gland. The acini are pyramidal in 

shape with basal nuclei, regular arrays of rough endoplasmic reticulum, a prominent 

golgi complex and numerous secretory granules containing the digestive enzymes, of 

which there are at least 22 including proteases, lipases, amylases and nucleases. Often, 

these are precursors which are activated within the gut following secretion. Control of 

secrtetion is by hormonal stimulation including secretin, cholecystokinin and gastrin. 

Neural stimulus is also involved.  

 

The endocrine cells are mainly grouped into Islets of Langerhans, which are compact 

spherical clusters of cells embedded within the exocrine pancreas. They form by 

aggregation of polyclonal endocrine cells. This seems to occur when they start to 

express cell adhesion molecules such as N-CAM and cadherins. There are four principal 

types of endocrine cell. The β cells secrete insulin and also Islet Amyloid Polypeptide 

(IAPP) or amylin. These are the most common cells in the islets. The α cells secrete 

glucagon, the δ cells secrete somatostatin and the PP cells secrete pancreatic 

polypeptide. A proportion of the adult islet cells make peptide YY in addition to their 

principal product. Ghrelin, an endogenous ligand of the growth hormone secretagogue 

receptor (GHS-R) is also thought to be expressed by the endocrine pancreas. Wierup et 

al. (2002) identified ghrelin secreting cells (upto 10% of all endocrine cells) in the fetus 

from mid gestation to post natally. In the adult the cells were few and seen at the 

periphery of the islets, exocrine tissue, ducts and ganglia. They were not co-expressed 

and therefore a new islet cell type was proposed. Controversy has surrounded this issue, 
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Volante et al (2002), again confirmed the presence of ghrelin in the islets but it was 

confined to the β cell population. Date et al (2002) on the other hand confirmed ghrelin 

to be present at the periphery of the islets in humans and rats but only co-expressed with 

glucagon suggesting localisation in the α cells. Furthermore, Prado et al (2004) 

identified that mice lacking Nkx2.2, a homeodomain protein known to be essential for β 

cell differentiation, have normal sized islets but the resulting cells produce ghrelin. They 

postulated that insulin and ghrelin cells share a common progenitor and that the lack of 

β cell stimulus leads to preferential ghrelin cell differentiation.  

 

In the developing pancreatic buds, the endocrine cells start to differentiate before the 

exocrine cells and co-expression of different hormones by the same cell is possible at 

early stages. In humans, the first identifiable endocrine cells develop at around the 7th 

week of gestation and are found scattered amongst ductal cells. These cells express 

somatostatin and pancreatic polypeptide (PP). This is followed by the development of 

glucagon-producing cells, then insulin-producing cells. The embryonal pancreas also 

appears able to express gastrin, gastrin inhibitory peptide, serotonin, catecholamines and 

prostaglandins, expression of which is lost in the adult pancreas. This pattern of 

hormone expression is different to that seen in mice, where the first hormone expressed 

is insulin, then somatostatin and PP. Interestingly, mouse studies have suggested that 

cells of the foregut, not destined to form the pancreas, are also able initially to express 

pancreatic hormones including insulin, glucagon, PP, and somatostatin in chronological 

order. It may be that this expression of endocrine hormones heralds the development of 

neuroendocrine cells of the bowel and confirms that they have the potential to express a 

variety of endocrine hormones (reviewed Peters et al 2000). 

 



 22 

By the twelfth week of human embryogenesis, small groups of endocrine cells begin to 

bud out from pancreatic ducts and become vascularised. These are the precursors to 

islets recognised in the adult pancreas. They loose contact with the ducts by about 

weeks 17-20 at which point total islet cell tissue has increased to 8-13% of total 

pancreatic mass. The foetal pancreas also contains a large number of cell aggregates 

which decreases with gestation but can still be present in the adult pancreas and maybe 

associated with ductules. This accumulation is concomitant with the expression of 

certain transcription factors including the neural cell adhesion molecules (N-CAM) and 

cadherins. The majority of endocrine cells are contained within such islets, although a 

few β cells remain scattered amongst the ductal cells of the pancreas (reviewed by 

Peters et al 2000). In rodents there is segregation of cell types within the islets so that β 

cells lie in the centre and the other types at the periphery. In humans, this segregation 

does occur but it is less pronounced. All the types of islet cells also express a number of 

gene products characteristic of neuroendocrine cells such as neuron-specific enolase. 

 

It has been shown that in the developing pancreatic diverticula, exocrine and endocrine 

cells originate from epithelial cells with features of ductal cells (Pictet and Rutter, 

1972). This suggests that the ductal cells harbour the stem cell compartment from which 

acinar or islet cells originate. The phenotype of this pancreatic stem cell is yet to be 

fully defined but various studies have suggested possible markers such as tyrosine 

hydroxylase (Teitelman et al, 1993), glucose transporter (GLUT-2) (Pang et al, 1994), 

cytokeratins (Bouwens et al, 1994), and PDX-1 (Jonsson et al, 1994). Regarding 

endocrine differentiation, Upchurch et al. (1994) found cells of all 4 main endocrine cell 

types to co–express peptide YY at the early stages and thus suggested a common 

peptide YY producing progenitor cell for all the endocrine cell types. 
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The differentiation of islet cells from pluripotent ductal cells appears to be dependent 

upon the influence of mesenchymal factors that induce the expression of transcription 

factors such as pancreas duodenum homeobox 1 (PDX1) and islet1 (ISL1) within the 

embryonic pluripotent cell (Peters 2000). PDX1 also known as IPF-1 is a transcription 

factor important in regulating the expression of insulin and somatostatin that is initially 

expressed throughout the embryonic pancreas and duodenum. Mouse knock-out models 

suggest that PDX1 is important in the initial organ commitment of the pancreas while 

the differentiation of cells into pancreatic endocrine cells is reliant upon the subsequent 

expression of pax genes. Indeed, PDX1 probably has one of the most critical roles in 

early pancreatic development because when it is removed from mice by targeted 

mutagenesis, the embryos completely lack a pancreas (Jonsson et al 1994). In later life 

this gene is thought to be expressed only in the β cells and acts as a transcription factor 

for insulin. Other transcription factors expressed in the early pancreas, as well as in 

other parts of the body, are prox-1 (Oliver et al 1993), Tlx-1 (Raju et al 1993) and pax6 

(Turque et al 1994) which all belong to the homeobox gene group. The whole early 

rudiment of the pancreas also expresses the enzyme L-amino acid decarboxylase 

(AADC), which becomes confined to the islet cells postnatally (Teitelman et al 1987). 

 

Epithelial- mesenchyme interactions have been thought to be important for some time. 

In the absence of mesenchyme it is thought that isolated pancreatic epithelium is unable 

to differentiate into exocrine or endocrine tissue. This role was further defined by Kim 

et al, 1997, who reported that removing the notochord (representing early mesenchymal 

tissue) from the endoderm essentially stops pancreatic development, thus suggesting 

that signals from the mesenchyme are essential for the differentiation of the primitive 

gut endoderm into pancreatic cells. 
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ISL1 is also important in the initial organ commitment of the pancreas and the 

differentiation of islet cells (Peters et al 2000). ISL1 is expressed in all classes of islet 

cells in the adult. It is also expressed in the mesenchymal cells that surround the dorsal 

but not the ventral evagination of the gut endoderm. Ahlgren et al (1997) analysed 

acinar and islet cell differentiation in the developing pancreas in mice deficient in ISL1 

to define its role. They found that dorsal pancreatic mesochyme did not form in the 

ISL1 mutants and that there is an associated failure of exocrine cell differentiation in the 

dorsal but not the ventral pancreas. There was also a complete lack of differentiated islet 

cells. In vitro, the provision of mesochyme derived from the wild type resulted in 

exocrine but not endocrine cell differentiation. They argued that ISL1 by virtue of its 

requirement for dorsal mesenchyme formation is necessary for the formation of the 

dorsal exocrine pancreas. ISL1 expression in pancreatic epithelial cells was also shown 

to be required for the differentiation of islet cells. It would appear that the development 

of the pancreas is controlled by sequential activities of distinct classes of transcription 

factors. PDX1 specifies the early pancreatic epithelium, permitting its proliferation and 

differentiation. Other factors, such as neuroD/BETA2 which are expressed in pancreatic 

endocrine cells, may also act upstream of ISL1 in the islet cell differentiation sequence. 

 

Growth factors are important in the induction of endocrine cell growth and functional 

differentiation. Insulin-like growth factor (IGF-1 and IGF-2) may exert diverse effects 

including mitogenic effects, insulin like action, stmulation of chemotaxis and induction 

of cell differentiation. IGF-1 binds to the IGF receptor, a tyrosine kinase which has 

considerable similarity to the insulin receptor (Ullrich et al, 1990). IGF-1 and -2 plus 

IGF binding proteins have been shown to be present and have developmental patterns 

which vary during early pancreatic life (Hogg et al, 1994).  
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Transforming Growth Factor (TGF) α exerts its effects through binding to the 

Epidermal Growth Factor (EGF) receptor. It has been identified that when the 

pancreatic duct is ligated, TGF-α protein levels in the cells of tubular complexes and 

ducts is elevated as remodelling of the pancreatic parenchyma occurs. As its expression 

co-incides with increased duct cell proliferation and the formation of new β-cells, it has 

been postulated that it is involved in islet cell neogenesis (Wang et al, 

1997).Transforming Growth Factor (TGF) β1-3 has been shown to be present in islet, 

acinar and ductal cells in the human pancreas (Hogan et al, 1994). Transgenic mice 

which are TGF-β type 2 receptor negative have aberrant ducts and ductal cells 

suggesting TGF-β has an inhibitory growth effect on these cells (Bottinger et al, 1997). 

TGF-β may also induce the regression of the acinar compartment of the developing 

pancreas and promote endocrine tissue development (Sanvito et al, 1994).  

 

Other growth factors that have been implicated include Hepatocyte Growth Factor 

(HGF), levels of which increase during proliferation induced by partial pancreatectomy 

(Bonner-Weir et al, 1997), Nerve Growth Factor (NGF), whose high affinity receptor 

Trk-A is seen in islet cells and ductal cells during late fetal life of the rat but only β-islet 

cells in the adult (Kanaka Gantenbein et al, 1995), Betacellulin, an EGF family member 

which converts pancreatic acinar cells into insulin secreting cells (Mashima et al, 1996), 

Vascular Endothelial Growth Factor (VEGF) which stimulates the proliferation of 

ductal but not endocrine cells in vitro (Rooman et al, 1997) and Gastrin which is 

expressed at the mRNA and protein level during the period of cellular differentiation 

into ductal, acinar or endocrine cells but which disappears rapidly from the pancreas in 

the post natal period (Pictet et al, 1972). 
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1.3 Diagnosis of GEP neuroendocrine tumours  

NETs may cause symptoms simply by virtue of their physical presence, for example 

luminal obstruction, or as a consequence of hormones released from the tumour cells. 

Tumours not associated with hormone release are termed “silent” or “non-functioning” 

while the early symptoms associated with hormonally-active NETs are often non-

specific and frequently defy early recognition.  

 

1.3.1 Serum and immunohistochemical markers 
Secretory tumours may be detected through a combination of clinical symptoms and 

specific hormone measurements. NETs of the pancreas may be associated with the 

secretion of a variety of biologically active hormones including pancreatic polypeptide, 

insulin, glucagon, gastrin, vasoactive intestinal peptide (VIP) and rarely ACTH or 

growth hormone. Some tumours may be associated with the secretion of more than one 

hormone. The predominant hormone produced, for example insulin (insulinoma), 

glucagon (glucagonoma) or VIP (VIPoma) characterises the tumour. The most 

frequently encountered secretory NET is the insulinoma, perhaps reflecting the distinct 

clinical consequences of fasting hypoglycaemia that can quickly impact on quality of 

life. Diagnosis relies upon the demonstration of confirmed hypoglycaemia in 

conjunction with inappropriately raised insulin (and C-peptide) levels and the exclusion 

of exogenous drug ingestion. Such tumours tend to be benign, but may be multiple 

when occurring in the context of familial disease such as MEN1 (see below). Raised 

fasting peptide levels specific to the other tumour types can aid diagnosis, although such 

tests, in particular fasting gastrin levels, may be complicated by concomitant disease or 

medications reducing its sensitivity (in particular proton pump inhibitors). Fluctuating 

hormone secretion and unusual symptoms may also complicate diagnosis. Tumours may 

be multifunctional, secreting more than one hormone (frequently PP in addition to 
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another hormone), although not all will be associated with clinical consequences. Non 

insulinoma NETs of the pancreas often show malignant behaviour and have frequently 

metastasised at the time of diagnosis (Modlin et al 2008, Kloppel et al 2007).   

 

Serum chromogranin A levels are raised in 60-80% NETS and may be used as a general 

marker of both functioning and non-functioning neuroendocrine tumours (reviewed by 

Modlin et al 2008). However, they are non-specific markers, being positive tumour 

markers in other malignancies, and levels may also be raised in renal failure, or with 

enterochromaffin-like (ECL) cell hyperplasia seen in atrophic gastritis and with proton 

pump inhibitor therapy (Modlin et al 2008, Gustaffson et al 2008). Chromogranin B is 

more specific to insulinomas (Kaltsas et al 2004). Other general markers of NETs 

include neuron specific enolase (NSE) which may be raised in other pancreatic 

malignancies, chorionic gonadotrophin and pancreatic polypeptide, which is raised in 

up to 80% pancreatic NETs (Modlin et al 2008, Kloppel 2007). None, however, can 

reliably diagnose all pancreatic NETs and are thus suboptimal as tumour markers.  

 

Some immunohistochemical markers can be used to aid tissue diagnosis of presumed 

NETs. Cells of the diffuse neuroendocrine system may be identified by the expression 

of both endocrine and neuronal features. Production of neurotransmitter, 

neuromodulators or neuropeptides from small clear vesicles (40-80nm diameter), the 

presence of dense core secretory granules that release hormones by exocytosis (>80nm 

diameter), and the absence of axons, identify such cells histologically. In addition, the 

expression of molecular markers including chromogranin A (large granule associated), 

synaptophysin (small granule associated) and NSE can be used to confirm 

neuroendocrine cell origin. The majority of NETs express somatostatin receptors, and 

confirmation of this can also aid diagnosis of such tumours (Modlin et al 2008). 
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Although a high mitotic rate, nuclear atypia and few secretory granules may identify 

poorly differentiated, highly malignant neuroendocrine tumours, there are few 

histological clues as to predicting malignant behaviour in well-differentiated tumours 

(Kloppel 2004, 2007). The proliferation marker Ki-67 may be used to assess the rate of 

cell proliferation and thus suggest malignant potential (Modlin et al 2008), but an 

improved understanding of the biology of these tumours is required to aid diagnosis and 

prognostic predictions.   

 

1.3.2 Imaging 
Several imaging modalities are employed in localising pancreatic NETs and associated 

metastases, although the primary tumour may never be found. Imaging techniques may 

identify tumours by physical presence alone or by functionality. Imaging is important 

not only in initial tumour localisation and staging, but also in treatment planning and 

assessing response to therapy.  

 

Standard transabdominal ultrasound alone offers limited value in the management of 

pancreatic NETs, although endoscopic ultrasound and intraoperative ultrasound 

techniques have proven valuable in the assessment of disease – particularly in cases 

such as MEN1 where pancreatic lesions may be small and multiple. Endoscopic 

ultrasound has been developing over the past decade as an alternate form of imaging for 

diagnosis and localisation of tumours, with the added benefit of guided biopsies. It has 

been seen to be sensitive in up to 93% of proven pancreatic neuroendocrine tumours 

(Anderson et al. 2000), but is heavily operator-dependent. Multidetector CT scanning 

and MRI offer complementary aspects to the identification of mass lesions, the presence 

of metastases and subsequent response to treatment. MRI provides a good assessment of 

liver metastases but may also localise lesions not found on CT images (Rockall et al 
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2007). A review of MRI in the detection of pancreatic neuroendocrine tumours 

identified the fat saturated T1 weighted spin echo sequence as the most useful in the 

detection of these tumours (Owen et al 2001). Newer CT scanning techniques allow the 

detection of smaller pancreatic NETs, and sensitivities of up to 100% may be achieved 

when this imaging technique is used in conjunction with other modalities such as MRI 

and endoscopic ultrasound of the pancreas. 

 

Functional imaging of NETs provides a further means by which the physical presence 

of disease may be detected, but may also identify suitable candidates for targeted 

treatment in the form of labelled radionuclide therapy. Neuroendocrine cells are 

characterised by their ability to take up and concentrate amine precursors and to 

produce amines or peptides; they may also express peptide hormone receptors on the 

cell surface which together make functional imaging of these tumours possible. 

Somatostatin receptors (types 1-5) are widely expressed on neuroendocrine cells. This 

may be targeted in pancreatic NETs using radiolabelled somatostatin analogues, 

typically indium-labelled octreotide. The sensitivity of this technique in localising 

lesions may be further improved by its combination with CT.  MIBG, a catecholamine 

analogue, may be useful in the detection of some carcinoid tumours, which have been 

reported to take up and concentrate MIBG, in addition to paragangliomas and 

phaeochromocytomas. Its use is, however, limited in pancreatic NETs (Kaltsas et al 

2004). Positron Emission Tomography (PET) scanning again utilises the ability of NET 

cells to take up and concentrate substances that may then be identified if they have been 

labelled, in this case by positron emitting radionuclides. Uptake of fluorodeoxyglucose 

(FDG, a glucose analogue), L-hydroxyphenylalanine (L-DOPA) and 5 hydroxy-L-

tryptophan (5HTP) have all been used in imaging NETs with variable success. FDG-

PET uptake is not specific to NETs but is used widely in the diagnosis of oncological 
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disease processes. It is mainly helpful in detecting poorly differentiated lesions with a 

high proliferative rate. L-DOPA-PET has proven successful in detecting carcinoid type 

tumours, phaeochromocytomas and possibly medullary carcinoma of the thyroid, but 

has limited value in other subtypes of NET. Initial results using HTP-PET are promising 

but require further evaluation (Sundin 2007), and both of these require a cyclotron 

nearby as the isotopes have very short half-lives. As an alternative, more invasive 

procedures may be of value in difficult cases, for example, the direct injection of 

calcium gluconate into the arteries supplying the pancreas can stimulate insulin release 

and aid the diagnosis of insulinomas (Kaltsas et al 2004).  

1.4 Treatment 

1.4.1 Surgery 
Surgical management of pancreatic NETs depends on the primary diagnosis. 

Insulinomas are usually small and rarely metastatic. Thus, they may be surgically 

enucleated with good results. The exceptions are those associated with MEN1 that may 

be multiple and where identification of the principle secretory lesion should be 

attempted preoperatively. Insulinomas are frequently palpable at the time of surgery but 

the use of intraoperative ultrasound can complement this in identifying lesions. 

Malignant insulinomas are associated with multiple distal metastases and poor 

prognosis. The management of the other pancreatic NETs includes surgical resection 

and lymph node clearance, since the malignant potential of these tumours is high. 

Limited resection of hepatic metastases may also be attempted (Ackerstrom et al 2007). 

 

1.4.2 Hepatic embolisation 
Hepatic metastases may be managed with surgical resection where disease is limited. 

Localised hepatic embolisation either with or without additional chemotherapeutic 
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agents provides an alternative method. Since hepatic metastases receive most of their 

blood supply via the hepatic artery, while the liver itself receives part of its blood 

supply from the portal vein, occlusion of the branch of the hepatic artery feeding the 

tumour is a viable therapeutic option. Cells are thought to be more sensitive to 

chemotherapeutic agents when ischaemic, thus a local injection of chemotherapy may 

be used in addition (Toumpanakis et al 2007).   

 

1.4.3 Somatostatin analogues 
The majority of neuroendocrine tumours express somatostatin receptors and this can be 

used therapeutically. Somatostatin reduces hormone secretion from the anterior 

pituitary, gastrointestinal tract and pancreas. In general, NETs express a high density of 

such receptors, but the receptor subtype expressed can vary between tumours and within 

the same tumour. Somatostatin analogues including both short-acting and the long-

acting formulations have been successful in reducing the clinical burden associated with 

tumour hypersecretion syndromes, although tumour regression has not been a common 

result of therapy. Although somatostatin therapies could be used for all tumour 

subtypes, in general better symptom control is achieved in gastrinomas with proton 

pump inhibitors, and using diazoxide to manage insulinomas. Some stabilisation of 

tumour progression may be achieved using somatostatin analogues, but ultimately the 

effect of therapy wanes over time with tachyphylaxis. Interferon therapy may be 

associated with a reduction in tumour growth, but the side effect profile is more 

significant than that seen with somatostatin analogues (Plockinger et al 2007).   

 

1.4.4 Radiolabelled somatostatin analogues 
Tumour expression of somatostatin receptors has been exploited for the delivery of 

radiolabelled somatostatin analogues directly to the tumour bulk. Indium, yttrium, and 
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lutetium are the main radionuclides available for such therapy, and their effects vary 

according to the emitted particles that vary in terms of tissue penetration. Yttrium, a β-

emitter, has the most far reaching range which has benefits in terms of tumour 

management, but increases the risk of damage to other organs such as the kidneys 

(Forrer et al 2007).  

 

1.4.5 Chemotherapy 
The use of systemic chemotherapy on the management of NETs remains under 

evaluation. As slow growing malignancies they tend to respond poorly to such regimes. 

Streptozocin-based chemotherapy including either fluoruoracil or doxorubicin has been 

used in metastatic pancreatic NETs, although the optimal time to offer such therapies 

remains unclear. A combination of cisplatin and etoposide can be used in poorly 

differentiated NETs (Toumpanakis 2007). 

 

1.5 Models of tumour formation 

Disruption of the process of cell differentiation may result in malignant transformation 

of a cell. Abnormal cell cycle progression and tumour formation can be consequent on 

inappropriate gene expression (oncogenes) or a failure of tumour suppresser gene 

activity that would normally prevent uncontrolled progression through the cell cycle. 

Mutation of a single dominant oncogene can result in uncontrolled cell growth; 

however, recessive oncogenes are also recognised, where functional deletion of two 

copies of the same gene is required for tumour formation. Spontaneous mutations 

affecting both genes in the somatic cell would be relatively unusual, and thus sporadic 

forms of such tumours are rare. However, if a single autosomal recessive mutation in an 

oncogene is inherited at the germ cell level and a second gene deletion or mutation 
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occurs within the somatic daughter cell, tumour formation will result. This is the basis 

for Knudson’s “two-hit hypothesis” where a silent genetic fault is unveiled by a second 

deletion. Thus a recessive genotype becomes a dominant phenotype, where the second 

genetic “hit” is inevitable given the vast number of cells expressed in the target tissue. 

Such genetic abnormalities can be identified using loss of heterozygosity studies that 

confirm heterozygosity for a certain gene in non-tumour tissue (typically leucocytes) 

that is lost in tumour tissue (LOH). Genetic gain or loss may also be detected by 

comparative genomic hybridization (CGH) a technique that may be used to complement 

LOH studies or other more recent developments such as multiplex ligation-dependent 

probe amplification (MLPA) or single nucleotide polymorphisms (SNP) analysis. 

 

Genes may also be silenced through epigentic phenomena such as abnormal methylation 

patterns that would not be detected by LOH or CGH methods. DNA methylation, 

important in X chromosome inactivation and parental gene imprinting, is the transfer of 

a methyl group to the cytosine of a cytosine-guanine (CpG) nucleotide. CpG nucleotides 

tend to cluster as “islands” particularly at gene promoter regions, reflecting their role in 

control of gene expression. 

 

The process by which cells replicate DNA and divide is a tightly regulated cycle 

requiring input and facilitation from a variety of mitogens and growth factors. 

Activation mutations of oncogenes or loss of tumour suppressor genes may be 

implicated in many models of tumorigenesis, but so far none appear to be sufficient in 

explaining pancreatic NET formation. Studying inherited conditions in which NETs 

commonly occur has facilitated analysis of important molecular events in the 

differentiation of neuroendocrine cells. Familial diseases such as multiple endocrine 

neoplasia 1 (MEN1) and Von Hippel-Lindau disease (VHL) are typified by the 
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occurrence of neuroendocrine tumours within the context of complex disease that may 

also include the presence of other non-endocrine malignancies.  

 

MEN1 is an autosomal dominant disorder typified by the formation of multiple 

endocrine tumours affecting the parathyroids, anterior pituitary, and endocrine pancreas. 

The MEN1 gene is located on chromosome 11q13 and its gene product menin probably 

has functions in both genome stability and transcriptional control. Up to 600 mutations 

have been identified in the MEN1 gene, including nonsense mutations, deletions or 

insertions, and splice variants. Although only 20% of sporadic foregut NETs (including 

pancreatic NETs) harbour an identifiable mutation in the MEN1 gene, up to 60% of 

sporadic pancreatic NETs exhibit LOH at chromosome 11, suggesting the presence of 

alternative genetic mutations at that locus (reviewed by Leotlela 2003, Duerr 2007). 

 

VHL disease is associated with pancreatic NETs occurring in conjunction with renal 

cell carcinomas, retinal/cerebellar haemangioblastomas and phaeochromocytomas. The 

VHL gene, located on chromosome 3p25-26 encodes a tumour suppresser gene 

important in hypoxia-induced cell proliferation and angiogenesis. Although the majority 

of VHL-associated pancreatic NETs exhibit LOH in the VHL gene, studies including 

both sporadic and VHL-associated pancreatic NETs suggest that a critical genetic defect 

may lie proximal to the VHL gene locus on chromosome 3, independently contributing 

to the development of such tumours (Lott 2002). Indeed, up to 30% of sporadic 

pancreatic NETs show LOH on chromosome 3p, an area that encodes many important 

genes including VHL, Retinoic acid receptor b (RARb), peroxisomal proliferator-

activated receptor (PPAR), RASSF1A (see below) and p51 (a member of the p53 

tumour suppresser family).  Interestingly, no mutations in the VHL gene were identified 
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within this group of tumours, suggesting that its role is limited in explaining the 

pathogenesis of pancreatic NETs (Chung 1997, Zicusoka 2005).  

 

Pancreatic NETs are frequently associated with chromosomal changes, and these seem 

distinct from those identified as important in gastrointestinal NETs. Different 

chromosomal losses or gains may themselves be identified at distinct stages of disease, 

and may also predict tumour behaviour. Genetic aberrations may have a cumulative 

effect, some being important in early cell hyperplasia and dysplasia, others playing a 

role in the loss of cell differentiation and metastases (Baracat et al 2004). Pancreatic 

NETs may be either oligoclonal or monoclonal in origin, suggesting that more than one 

mechanism may result in tumour formation in a single individual (Katona et al 2006). 

Genomic gains have been identified on 4p, 4q, 7p, 7q, 9q, 12q, 14q, 17pq, 18q and 20q, 

while genomic losses have been identified on 1p, 3p, 6q, 10p, 11p, 11q, X and Yq. 

Efforts to identify specific genetic aberrations predictive of tumour behaviour have 

failed, although loss of 11q and gain of 7q appear most consistently to associate with 

pancreatic NETs, while malignancy may be predicted by gains on chromosomes 4, 7, 14 

and X or losses on 3, 21 and 6 (Zicusoka et al 2005).  

 

Non-functioning pancreatic NETs are associated with more genomic alterations, as 

compared to functioning tumours, in particular losses of 3p and MEN1 (reviewed Duerr 

2007). The pattern of allelic loss may also predict the type of pancreatic NET, 

functioning tumours associating with LOH of chromosomes 3, 11, 16 and 22, while 

non-functioning pancreatic NETs associate with LOH of 6 and 11 (reviewed by Rigaud 

et al 2001). LOH of chromosome 1 has been identified in one third of pancreatic NETs 

and appears to predict hepatic metastases (Ebrahimi et al 1999). Similarly, LOH studies 

have shown that chromosome 3q may play a critical role in the development of a more 
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malignant pancreatic NET phenotype (Guo et al 2002). CGH studies have identified 

loss of chromosome 6q in 100% of malignant insulinomas, possibly reflecting genetic 

influences specific to β-cell neoplasia. High expression of neuroendocrine secretory 

pepetide 55 (NESP55), a chromogranin gene product of chromosome 20, may be used 

to distinguish pancreatic NETS from gastric carcinoid tumours, a potentially useful tool 

in the evolution of metastatic disease of unknown origin (reviewed by Zicusoka 2005).  

 

1.6 Pancreatic neuroendocrine tumours and the cell cycle 

Several cell cycle regulators have been studied in the context of pancreatic NETs. The 

cyclin D proteins are critical in permitting a cell to advance through the cycle of DNA 

replication and division, and are of interest in many tumour models. Cyclin D1 allows 

progression through G1 and into the S phase of DNA synthesis by activating cyclin 

dependent kinases (CDK). These phosphorylate retinoblastoma protein (Rb - see 

below), thereby reducing its anti-proliferative effect (reviewed Musat et al 2004). The 

cyclin D1 gene (CCND1) is one of the most frequently amplified genes in human 

tumours and is associated with increased cyclin D1 protein expression (reviewed 

Hibberts et al 1999).  Increased nuclear expression of cyclin D1 has been shown in 50% 

pancreatic NETs as compared to non-neoplastic islet cell tissue, and is found regardless 

of tumour type or malignancy. This would suggest that it is an important factor early in 

development of the disease, and relevant to all tumours irrespective of the cell of origin 

(Chung et al 2000). 

 

Activation of the p53/MAPK and Akt/protein kinase B pathways have also been 

identified in pancreatic NETS, and may also influence progression through the cell 

cycle through increased cyclin D levels (reviewed Zicusoka et al 2006). Frequent 

activation of the p38/MAPK and Akt pathways but down regulation of the ERK 
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pathway in cyclin D1 over-expressing pancreatic neuroendocrine tumours has been 

reported (Guo et al, 2003). Hypermethylation of RASSF1A, a tumour suppresser that 

induces cell cycle arrest by interaction with cyclin D, has been identified in a subset of 

pancreatic NETs (Duerr 2007). 

 

Rb is a tumour suppressor gene that prevents progression of the cell cycle from G1 

through to the S phase of DNA replication. Phosphorylation of Rb by cyclin D1 and its 

associated kinases (CDKs) reduces the ability of Rb to prevent progression through the 

cell cycle. Although p53 and Rb deficient mouse models show a propensity towards 

developing neuroendocrine tumours, including pancreatic malignancies (Harvey 1995), 

there has not been conclusive evidence to implicate Rb in the pathogenesis of human 

pancreatic NETs to a date (Chung 1997).  

 

The cell cycle is regulated at various stages by the combined actions of cyclins, CDKs, 

and cyclin dependent kinase inhibitors (CDKIs). There are two main groups of CDKIs, 

the INK4 group comprising p15INK4B, p16INK4A, p18INK4C, p19INK4D, and the CIP/KIP 

group comprising p21CIP1, p27KIP1 and p57KIP2. The CDKI p27 maintains cells in a 

quiescent state by binding to and inactivating cyclin/CDK complexes to prevent entry 

into S phase (reviewed Musat et al 2004) and is negatively correlated to Ki-67 in 

pancreatic NETs, suggesting that it may reduce the proliferative rate in such tumours 

(reviewed Zicusoka et al 2006). Down regulation of p27 has also been identified in 

MEN1 knock-out mice that develop β cell hyperplasia within a phenotype that 

resembles MEN1 (reviewed by Duerr 2007). In mice lacking p27, created by gene 

targeting in embryonic stem cells, an increase in body size is noted with substantial 

increases in thymus, pituitary, adrenal and gonadal organ size, suggesting an important 

role for p27 in a variety of endocrine tissues (Nakayama et al, 1996). Reduced 
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expression of p27 has been associated with poor prognosis in most human cancers, 

including pancreatic adenocarcinoma (Lu et al 1999).  

 

Regulation of p27 within the cell is thought to occur at two levels, the rate of protein 

synthesis and, probably more importantly, the rate of protein degradation, in particular 

by the ubiquitin/proteasome pathway. Several studies have indicated that that 

phosphorylation of p27 is an important primary trigger for p27 degradation and is cell 

cycle-dependent, peaking in late G1 phase (Sheaff et al 1997, Vlach et al 1997, 

Montagnoli et al 1999). It appears that phosphorylation-mediated p27 degradation 

facilitates transition from G1 into S phase and thus enhanced phosphorylation has been 

implicated in over-proliferation of cells and many cancers. 

 

Jun activation domain-binding protein 1 (JAB1), an activator protein (AP-1) coactivator 

implicated in p27 degradation and transportation, is over-expressed in various tumours 

and correlates with low p27 expression. JAB1 interacts with p27 shuttling it from the 

nucleus to the cytoplasm; it has been shown that JAB1 binds directly to the C-terminal 

part of p27 in the nucleus and over-expression of JAB1 causes translocation of p27 into 

the cytoplasm (Tomoda et al, 1999). An inverse relationship in expression levels of p27 

and JAB1 has been reported in various cancer tissues, including ovarian (Sui et al, 

2001), invasive breast carcinoma and their adjacent normal breast tissue (Kouvaraki et 

al, 2003) and anaplastic large cell lymphoma (Rassidakis et al, 2003). High expression 

of JAB1 has also been shown in medullary cell carcinomas with a concomitant 

reduction in p27 expression (Ito et al 2005). Increased JAB1 expression was seen in 

pancreatic carcinoma samples and forced expression of JAB1 in pancreatic cell lines 

was associated with decreased p27 expression (Kouvaraki et al, 2006).  
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The protein Ki-67 was originally defined by the prototype monoclonal antibody Ki-67 

generated by immunising mice with nuclei of a Hodgkin lymphoma cell line (Gerdes et 

al 1983). The name is derived from the city of origin (Kiel) and the number of the 

original clone in the 96-well plate. When the antigen was found to be a protein, it was 

found that there was no homology to any known polypeptide. The function therefore 

remained indistinct and the name was kept. It has been well documented over the years 

that Ki-67 is associated with cell proliferation, being present during all active phases of 

the cell cycle but being absent in quiescent or resting cells in G0 (Gerdes et al, 1984).  

Ki-67 labelling index in neuroendocrine tumours of the pancreas have been shown to be 

independent predictors of survival in two separate studies showing reduced survival 

with values of >4% (Perret et al, 1998) and >5% (Pelosi et al, 1996). 
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Figure 1.1 Diagram showing the mechanism of p27 degradation within the cytoplasm 

following phosphorylation and nuclear export by JAB 
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Figure 1.2 Diagram showing some of the pathways that influence p27 synthesis and degradation
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1.7 The peroxisomal proliferator-activated receptor 

The PPARs (peroxisomal proliferator-activated receptors) are members of the nuclear 

receptor superfamily that includes receptors for thyroid, steroid and retinoid hormones. 

They were first identified in rodents following the observation that certain chemicals 

(peroxisome proliferators) could augment the size and number of hepatic and renal cell 

peroxisomes, thereby increasing their capacity for fatty acid metabolism (reviewed in 

Kliewer 1994). Natural ligands include long-chain polyunsaturated fatty acids, 

metabolites of the arachidonic and lipoxygenase pathways, oxidised low-density 

lipoproteins and prostaglandins. The major synthetic ligands of PPARs are the anti-

diabetic agents, thiazolidinediones, and non-steroidal anti-inflammatory agents 

including indomethacin and ibuprofen (reviewed in Wang et al 2006).  

 

Consistent with other members of the nuclear hormone receptors the PPARs comprise 

an N-terminal ligand-independent transcriptional activation domain (AF1), a central 

DNA-binding domain, and a C-terminal ligand binding and ligand dependent 

transcriptional activation domain (AF2).  Ligand binding results in a conformational 

change, releasing corepressors and recruiting coactivators to allow gene transcription 

(reviewed Knouff et al 2004). The PPARs form heterodimers with members of the 

retinoid X receptor (RXR) superfamily to initiate transcription of target genes 

(Thompson 2007). Preformed PPAR/RXR heterodimers interact with corepressor 

proteins such as retinoblastoma (Rb) in the basal state, which may then be released 

following ligand binding and consequent conformational change (reviewed Knouff et al 

2004). PPARs may also influence gene transcription independently of ligand binding, 

probably through phosphorylation of the AF1 domain by kinases; for example 

alterations in PPARγ phosphorylation by ERK- and JNK- MAPK can affect both ligand 

dependent and ligand independent effects on gene transcription (Burns et al 2007). 
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Three main isoforms have been identified, PPARα, PPARγ and PPARβ/δ. All have a 

similar structure but are coded for by different genes, on chromosomes 22, 3 and 6 

respectively (reviewed in Theocaris 2004). The PPARs are widely expressed throughout 

many tissues. PPARα, the first PPAR to be identified, is expressed in tissues with high 

oxidative capacity including cardiomyocytes, hepatocytes, enterocytes and the renal 

proximal tubule. PPARβ/δ, the least studied of the PPAR family, is expressed almost 

ubiquitously (Burns et al 2007). PPARγ, intensively investigated for its role in lipid 

metabolism, is expressed in adipose tissue as well as intestine, liver, prostate, colon, 

pneumocytes and cells of the immune system including T and B cells, natural killer 

cells, dendritic cells and macrophages (Theocaris et al 2004, Wang et al 2006). PPARγ 

protein is also highly expressed in human pancreatic islet cells including the α, β and δ 

cell subtypes (Dubois 2000) and has been shown to be a negative regulator of islet β cell 

mass both in vivo and in vitro (Rosen 2003). Four isoforms of PPARγ (PPARγ1-4) have 

been identified thus far and are generated by alternate splicing of a single gene, located 

on chromosome 3, band 3p25 (Beamer et al 1997, Wang et al 2006). The majority of 

biological actions of PPARγ are mediated by the widely expressed PPARγ1. PPARγ2 

expression is limited to adipose tissue; the protein product comprises 30 additional 

amino-acids in comparison to PPARγ1, with a consequent increase in ligand-

independent activation. PPARγ3 and 4 are identical in terms of protein product to 

PPARγ1, but PPARγ3 expression is restricted to macrophages, adipose tissue and colon, 

while the tissue distribution of PPARγ4 remains unclear (reviewed Knouff et al 2004).  

 

PPARγ has been implicated not only in adipocyte differentiation and insulin sensitivity, 

but also in atherosclerosis and inflammation. Its emerging function in controlling cell 

proliferation, differentiation and apoptosis, both in vivo and in vitro, has suggested a 
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putative role as a tumour suppresser gene, although an anti-tumour effect is not 

universal (Muellar et al 2000, Yang et al 2005, Wang et al 2006). In particular, there 

have been concerns that the TZD agents may predispose to colonic neoplasia in an in 

vivo mouse model (Yang et al 2005). PPARγ is highly expressed in a variety of solid 

malignancies including prostate, breast, colon and gastric carcinoma, and may be 

associated with pancreatic adenocarcinoma, with a possible prognostic value in 

identifying the more malignant cases (Kristiansen 2006). PPARγ has been shown to 

induce terminal differentiation in a variety of cancer models, including the upregulation 

of markers of cell differentiation carcinoembryonic antigen, E-cadherin and alkaline 

phosphatase in pancreatic cell lines (reviewed Wang et al 2006). One study has shown 

differential anti-tumour effects of TZDs in breast cancer cell lines, rosiglitazone being 

associated with reduced cell proliferation and promotion of cell differentiation while the 

agent KR-62980 only induced a reduction in cell proliferation. Thus, the effects of each 

single TZD should not be regarded as indicative of the potential action of the whole 

group (Kim et al 2006).  

 

Interestingly, LOH studies of human pancreatic neuroendocrine tumours have indicated 

allelic loss at the chromosomal site corresponding to 3p25 in up to 30% patients, also 

with a possible predictive role of outcome in advanced disease (Chung et al 1997). 

Despite this, no mutation affecting the PPARγ gene was identified in a series of 23 

pancreatic neuroendocrine tumours (including insulinomas, gastrinomas, glucagonomas 

and non-functioning tumours). This may suggest that either epigentic phenomena occur 

to affect gene function (for example hypermethylation) or that an alternative candidate 

gene exists at the chromosomal locus (Costa-Guda 2005).  
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PPARγ agonists have been associated with an up-regulation of CDKIs including p18, 

p21 and p27. These inhibitors are critical in preventing phosphorylation and inactivation 

of Rb. Rb in the unphosphorylated form exists as a “gatekeeper” preventing 

uncontrolled progression through the cell cycle from G1 to S. Upregulation of p21 and 

p27 with associated cell cycle arrest in G1 has been described in pancreatic tumour cell 

lines following treatment with glitazones (Motamura et al 2000, Kawa 2002). PPARγ 

agonists have also been shown to reduce activation of CDKs in a variety of tumour cell 

lines including the pancreas by reducing the expression of cyclin D1, an important 

activator of CDKs (Toyota et al 2002).  

 

PPARγ agonists have also been implicated in attenuating Ras (a commonly altered 

oncogene in human malignancy)-dependent phosphatidylinositol 3-kinase (PI3K) 

activity (Bos et al 1989). Growth factor signalling via tyrosine kinase receptors leads to 

up-regulation of Akt via phosphorylation and activation of PI3K. PPARγ has been 

associated with up-regulation of the PI3K inhibitor Phophatase and tensin homologue 

(PTEN), a lipid phosphatase that is critical in controlling cell cycle arrest and apoptosis.  

 

PTEN is a tumour suppressor gene which encodes a multifunctional phosphatase which 

is expressed almost ubiquitously and regulates the cell cycle, apoptosis and possibly cell 

adhesion. It is linked to cell cycle control through the retinoblastoma gene (Paramio et 

al, 1999) and promotes cell death. Deletions and mutations to PTEN occur in a range of 

cancers including breast (Perren et al, 1999), endometrial (Mutter et al, 2000), brain and 

prostate (Li et al, 1997). PTEN is thought to negatively control the PI3K-Akt pathway 

by dephosphorylating the 3 position of phosphoinositide. A mutation in the PTEN gene 

on arm 10q that causes loss of the protein's function result in excessive proliferation of 

cells, resulting in hamartomatous growths in a syndrome called Cowdens disease. 
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Loss of PTEN has been implicated in the development of metaplasia in pancreatic 

ductal cells, which may herald the early genesis of pancreatic adenocarcinoma (Stanger 

et al 2006). Akt over expression has been shown in pancreatic adenocarcinoma cells, 

with associated loss of PTEN expression (Schleiman 2003, Altomare 2002). Putative 

PPARγ response elements have been identified within the promoter region of the PTEN 

gene, and a dose-dependent upregulation of PTEN protein expression has been 

confirmed following treatment of macrophages with rosiglitazone. This increase in 

PTEN was associated with a down regulation of PI3K activity (Patel et al 2001). PTEN 

expression has been shown to be raised in pancreatic cancer cells following treatment 

with the TZD rosiglitazone. Levels of phosphorylated Akt decreased as PTEN levels 

increased, indicating inhibition of PI3K. Antagonism of rosiglitazone by GW966 

abolished these effects (Farrow et al, 2003). 

 

Malignant progression of cancers relies upon breakdown of the extracellular matrix by 

proteinases allowing access of cells to lymphatics, the blood stream and invasion of 

local tissues. This process depends upon proteases such as the serine proteinase 

urokinase type plasminogen activator (uPA) and its receptor, which may be upregulated 

in a variety of malignancies including pancreatic cancer. Glitazones are known to 

reduce uPA activity and to increase levels of plasminogen activator inhibitor (PAI) in 

pancreatic cell lines (Sawai 2006). 

 

Altered function of PPARγ may be associated with tumorigenesis. Sporadic loss of 

function mutations of PPARγ have been identified in human colonic cancer (Sarraf et al 

1999), as have dominant negative splice variants of the gene product (Sabatino et al 

2005). A dominant negative fusion protein combining the thyroid transcription factor 
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PAX-8 and PPARγ has also been identified in a subset of thyroid follicular carcinomas 

(Kroll et al 2000). However, screening of 159 samples of various human tumours 

including breast, colon, lung, prostate and haematological malignancies failed to 

identify mutations of PPARγ suggesting that these are rare events in malignancy (Ikezoe 

2001).  

 

An increased understanding of the molecular basis of pancreatic NETs is critical to 

explaining the diverse biological behaviour of this group of tumours. At present, 

diagnosis can be complicated and prediction of malignancy impossible making 

therapeutic decisions and monitoring of disease progress difficult. Modulation of cancer 

outcomes using nuclear hormone receptors has also gained interest recently through the 

use of retinoic acid in the treatment of a variety of malignancies including leukaemia, 

melanoma and cervical cancer (reviewed by Wang 2006). 

 

1.8 Human Pancreatic Neuroendocrine Cell Lines 

There are a large number of human pancreatic adenocarcinoma cell lines available 

commercially e.g., AsPC-1, BxPC-3, CAPAN-1, CAPAN-2, FA6, MIA PaCa-2, JF305 

and PANC-1, amongst others. These have allowed a significant amount of research 

work to be performed on pancreatic adenocarcinoma, the processes involved and 

potential treatment models. Pancreatic endocrine cell lines are less common. Animal 

insulinoma cell lines such as Ins-1, RINm5F and HIT have been available for some time 

and have been used extensively to study the physiology and pathophysiology of the 

mechanisms involved in glucose homeostasis.  

 

Human pancreatic neuroendocrine tumour cell lines are rare, and at the time of study the 

cell lines CM, BON and QGP1 represented the only tumour cell lines held in culture 
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and described in the literature. The CM cell line is a human pancreatic insulinoma cell 

line that was established from peritoneal ascites of a patient affected by a primary 

pancreatic insulinoma (Gueli, et al 1987). It grows spontaneously in vitro as an adherent 

semiconfluent monolayer. The CM line has been studied mainly for its antigenic 

properties with the purpose of establishing an in vitro model to investigate the immune 

mechanisms leading to β-cell destruction in IDDM (Cavallo et al. 1996). Studies on 

early-passaged cells provided evidence that insulin and C peptide were detectable in the 

supernatants of CM cell culture (Cavallo et al. 1992). Baroni et al (1999) showed that 

CM cells from an early passage express specific β-cell genes in response to glucose 

stimulation. In particular the insulin and glucose transporter (GLUT 1 And GLUT 2) 

genes are expressed. In insulin dependent diabetes, it has been postulated that β cells are 

subject to cytokine mediated cytotoxicty. Cavallo et al. (1996) showed that CM cells are 

subject to TNF-α mediated toxicity and that glutathione has a dose dependent protective 

effect. CM remains one of the very few human β-cell lines in existence due to the 

difficulties in obtaining and culturing them for long periods.   

 

 

The BON cell line was established from a lymph node metastasis of a human pancreatic 

carcinoid tumour and was first described by Parekh et al (1994). The operative 

specimen of a peripancreatic lymph node was obtained in 1986 from a 28 year old man 

who presented with obstructive jaundice and diarrhoea from a metastatic carcinoid 

tumour of the pancreas. The node was washed and minced and tumour fragments were 

placed in cell medium. All fibroblasts were removed and the resulting cells frozen at 

passage 5. Evers et al. (1994) showed that BON cells contain serotonin, chromogranin 

A, neurotensin and pancreastatin and have a predictable pattern of growth. They possess 

receptors for gastrin, somatostatin and acetylcholine. They also showed that BON 
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tumours could be sensitive to a somatostatin analogue and INF-α. Both BON and CM 

cell lines were used in an investigation of the effects of gefitinib, an inhibitor of 

epidermal growth factor receptor-sensitive tyrosine kinase (Hopfner et al, 2003), which 

showed significant growth inhibition, increased apoptosis and cell cycle arrest.  

 

The cell line QGP1 represents a human pancreatic somatostatinoma that was isolated 

and cultured by Kaku et al in 1980. QGP1 cells grow as a confluent monolayer of 

epithelioid cells. They express carcinoembryonic antigen (CEA). Iguchi et al, (1990) 

showed that they secrete somatostatin in keeping with a somatostatinoma. Implanting 

QGP1 cells into nude mice caused a tumour consisting of islet cells which secreted CEA 

and somatostatin. Doihara et al. (2009) showed that QGP1 cells expressed 

enterochromaffin cell markers such as tryptophan hydroxylase, chromogranin A, 

synaptophysin, ATP-dependent vesicular mono-amine transporter 1 (VMAT1), 

metabotrophic glutamate receptor 4 (mGluR4), β adrenergic receptor, muscarinic 4 

acetylcholine receptor (ACM4), substance P, serotonin transporter (SERT) and 

guanylin. They also identified expression of transient receptor potential ankyrin1 

channel (TRPA1) and showed that agonists of these channels increase intracellular 

calcium and release of 5-HT. Both BON and QGP1 cell lines were used in a study 

looking at the potential anti-proliferative effect of interferon alpha (Detjen et al, 2000). 

It found that interferon alpha directly inhibited growth by delaying progression through 

the S phase and into G2/M. More recently QGP1 and BON cell lines have been used to 

investigate the role of the PI3K/AKT/mTOR pathway during cell adhesion. Src kinase 

inhibitors reduced the activation of the mTOR pathway during QGP1 cell adhesion (Di 

Florio et al. 2008) 
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1.9 Aims 

 

The aim of this project was identify the expression characteristics of PPARγ in human 

pancreatic neuroendocrine tumours in three different types of samples: resected freshly 

frozen specimens, archived paraffin-embedded specimens and cell cultures. Secondly, if 

PPARγ is present, I aim to explore whether proliferation is altered by the administration 

of an agonist at this receptor. 

 

Additional aims include: 

 

An examination of p27 and phospho-p27 expression  

An examination of JAB1, p-Akt, and PTEN proteins implicated in p27 function 

An examination of somatostatin receptor expression in cell cultures. 
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2.1 Laboratory consumables 

Pipette tips, plastic and glassware were purchased and used as according to normal 

laboratory protocol. Solutions were autoclaved where appropriate. Heat labile solutions 

(e.g. foetal calf serum, FCS) were filtered through 0.22µm syringe filters prior to use. 

Standard tissue culture techniques were followed to maintain sterility.  

 

2.2 Human tissue samples 

2.2.1 Homogenization 
Frozen tissue samples held at -800C were retrieved and placed in liquid nitrogen whilst 

waiting cutting to give a sample size of up to 30mg. Homogenization was performed 

mechanically using a mounted Sigma-Aldrich Ultra Turrax 8 devise. Care was taken to 

decontaminate and clean the blades, including immersion in hydrogen peroxide for 30 

minutes prior to usage and thorough washings between samples with 1 x 100% ethanol 

and 2 x RNase free water. 

 

2.2.2 RNA extraction 
Promega SV Total RNA Isolation System 

RNA isolation requires four essential steps: effective disruption of cells of tissue, 

denaturisation of nucleoprotein complexes, inactivation of endogenous ribonuclease 

(RNase) activity and removal of contaminating DNA and proteins. The technique 

allows the homogenisation of tissue within a buffered solution containing guanidine 

thiocyanate and β-mercaptoethanol to inactivate the ribonucleases present in cell 

extracts. Addition of dilution buffer and heating to 700C allows selective precipitation 

of cellular proteins to occur whilst the RNA remains in solution. The debris was 

removed with centrifugation and the RNA is precipitated out of solution by ethanol and 
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bound to silica glass fibres found in a manufactured ‘spin basket’. Contaminating DNA 

is then digested by the direct application of RNase-free DNase. Further washing steps 

help to improve the purity of the RNA. The RNA product is then eluted from the basket 

by the addition of nuclease free water. 

 

2.2.3 Spectrophotometry 
Quality and concentration of RNA can be estimated by the measurement of absorbance 

of light at wavelengths of 260nm and 280nm.  

 

Following adequate calibration of the spectrophotometer, 5µl of prepared RNA solution 

is added to 495µl of TE (TRIS-EDTA buffer) and the absorbance at 260nm and 280nm 

were documented. Care was taken to prevent contamination between samples. 

 

The yield of total RNA obtained is determined by the absorbance at 260nm where 1 

absorbance unit equals 40µg of single stranded RNA/ml. The quality or purity can be 

estimated by the ratio of absorbance 260nm/280nm where pure RNA will exhibit a ratio 

of 2.0. Acceptable ratios are between 1.8 and 2.1. 

 

2.2.4 RNA gel 
Integrity of purified RNA can be estimated by agarose gel electrophoresis. The ratio of 

28S to 18S eukaryotic ribosomal RNAs should be approximately 2:1 by ethidium 

bromide staining, indicating that no gross degradation of RNA has occurred. With 

degradation the ratio is reversed as 28S characteristically degrades into an 18S-like 

species. 

 



 54 

2.2.5 Preparation of Agarose Gel for RNA electrophoresis 
Stock TAE (x50) 

242 g Tris base dissolved in approximately 750 ml deionized water. 

Add 57.1 ml glacial acid and 100 ml of 0.5 M EDTA (pH 8.0). 

Adjust the solution to a final volume of 1l 

 

Working Solution of TAE (x1)  

The working solution of 1x TAE buffer is made by simply diluting the stock solution by 

50x in deionized water.  

Final solute concentrations are 40 mM Tris acetate and 1 mM EDTA.  

 

Gel 

1% Agarose gel for RNA 

0.5g agarose added to 50 ml 1x TAE (Tris-acetate-EDTA) buffer and heated in 

microwave for 2 minutes. 

Add 1µl ethidium bromide (carcinogen) 

Place combs and allow gel to set prior to transfer to running chamber and loading of 

sample. 

Load 2µl RNA solution plus 8µl water plus 2µl loading dye and run at 150 Volts for 30 

minutes. 

 

Visualizing the RNA 

The gel is placed on the transilluminator (UV light of wavelength 254 nm). Ethidium 

bromide is a fluorescent dye that intercalates between the bases of DNA and RNA. 

Photos taken as required. 
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Example of RNA gel showing 18S and 28S bands 

 

 

2.2.6 Reverse Transcription and production of cDNA 

Applied Biosystems (ABI) TaqMan standard protocols. This produces 50µl of cDNA 

from 1µl of  totalRNA. 

 

Following calculation of the concentration of RNA by spectrophotometry, the volume 

for 1µg of RNA is pipetted and made upto 19.25µl in TE in a 0.2ml microtube. 

A mastermix was prepared with the following constituents: 

 5µl 10x RT Buffer 

 11µl 25mM MgCl2 

 10µl deoxyNTPs (10nM) 

 2.5µl Random Hexamers 50µM 

 1µl Rnase Inhibitor (20U/µl) 

 1.25µl Multiscribe RT enzyme (50U/µl) 

Total 30.75µl  

 

The 30.75µl is added to the RNA solution to make a total solution of 50µl which was 

gently mixed. The mixed solution was then placed in the GeneAmp 970 thermal cycler 

programmed with the settings below. 

← 28S 
← 18S 
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 25oC  10mins  1cycle 

 48oC  30mins  1cycle 

 95oC  5mins  1 cycle 

 

Subsequent cDNA was frozen immediately at -20oC. 

 

2.2.7 Polymerase Chain Reaction (PCR) for GAPDH 
The standard Polymerase Chain Reaction (PCR) amplifies genes of interest, determined 

by the choice of primers introduced to the PCR mixture. Following a DNA denaturing 

step, these primer sequences bind to the template DNA allowing amplification of the 

subsequent DNA sequence with a DNA polymerase in the presence of excess dNTPs. 

 

Primers used were standard laboratory primers. 

 

GAPDH Genebank M33197 

Primers 

 

SHORT 

 GAPDH F  5' CCATGGAGAAGGCTGGGG 

 GAPDH R  5' CAAAGTTGTCATGGATGACC 

 

LONG 

 GAPDH Long F 5' GAGTCAACGGATTTGGTCGT 

 GAPDH Long R 5' GGTGCTCCAGGGGTCTTACT 

Product =486bp 
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Promega PCR protocol 

Primers, dNTP and DNA polymerase were kept on ice during working time. A 

‘mastermix’ of the components below was made up and added to 2.5µl of cDNA 

 

H2O   16.875µl 

x10 Taq buffer 2.5µl 

25mM MgCl2  1.5µl 

20mM dNTP  0.25µl 

0.5 µmol S primer 0.625µl 

0.5 µmol AS primer 0.625µl 

Taq enzyme  0.125µl 

Total   22.5µl 

 

Samples were mixed thoroughly and 3 drops of mineral oil were added to the surface. 

Samples were then placed in the thermal cycler and run with the program below: 

 

Stage 1   95oC  5mins  1 cycle  Denaturing 

Stage 2   94oC  1mins  

   55oC  1mins  26 cycles Annealing 

   72oC  1mins    Extension 

Stage 3   72oC  10mins  1 cycle  Poly A tail 

2.2.8 DNA gel 
To assess the adequacy of the PCR products, samples were run on a 2% agarose gel 

with ethidium bromide, as described for the RNA gel above. 10µl of PCR product was 

mixed with 2µl loading dye. PhiX 174 HinF I digest (Promega G1751) molecular size 

markers were run alongside PCR products in each gel. Positive and negative controls 
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were used as appropriate. Electrophoresis was performed for 30-45 minutes at 150V 

depending on the size of gel. Bands were visualised by ethidium bromide fluorescence 

using a UV transilluminator and photographs taken. 

 

2.2.9 PPARγγγγ PCR 

Tissue samples were assessed to identify the presence of PPARγ by standard Quiagen 

PCR protocols with conditions optimised within the laboratory by previous 

experimental work (Dr C Merulli). 

 

Primers (Sigma-Genosys) 

PPARγ sense   5’ TCTCTCCGTAATGGAAGACC 

PPARγ antisense  5’ GCATTATGAGACATCCCCAC 

Product = 474bp 
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A mastermix of the following components was made up and added to 2.5µl of cDNA. 

H20     13.5µl 

Qiagen x10 buffer   2.5µl 

Q solution    5µl 

dNTP     0.25µl 

0.4 µmol PPARgamma S  0.5µl 

0.4 µmol PPARgamma AS  0.5µl 

Q hotstart Taq    0.25µl  

Total     22.5µl  

 

Samples were mixed thoroughly and 3 drops of mineral oil were added to the surface. 

Samples were then placed in the thermal cycler and run with the program below: 

 

Stage 1   95oC  15mins  1 cycle   

Stage 2   94oC  1mins  

    55oC  1mins  40 cycles  

    72oC  1mins     

Stage 3   72oC  10mins  1 cycle  

 

DNA gels were run on ethidium bromide agarose gels as previously described and 

visualised by UV transillumination. 



 60 

2.3 Immunohistochemistry 

 

2.3.1 Immunohistochemistry Objectives 
Two objectives were set for this work. Firstly, the location and quantification of the 

strength of staining in each tissue type (insulinoma, gastrinoma, islet and exocrine 

pancreas). Secondly, a comparison of the tissues against each other, using total positive 

counts for both nuclear and cytoplasmic compartments, was determined.  

 

In particular, interest was focused on differences between insulinoma and normal islets, 

which were considered its control. Although the number of gastrinomas was small (n=3) 

it was felt worthwhile to see if there were any significant differences between these and 

the insulinomas. Exocrine pancreas was included to highlight differences between the 

endocrine and exocrine pancreas. 

 

2.3.2 Case selection 
A trust wide search for pancreatic neuroendocrine tumours through histopathology 

records, endocrine department records and surgeons logbooks was performed. All 

paraffin embedded sections available were retrieved and closely inspected for suitability 

of usage.  

 

Representative slides of each case were stained with haematoxylin and eosin and all 

were reviewed for suitability of study with consultant histopathologist Dr Diaz-Cano. 

Where possible, tumour, normal exocrine pancreatic tissue and islets were identified on 

each slide and marked to allow standardisation of slide assessment. The first and last 
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slides prepared from each block were checked to ensure that all contained the same 

components. 

 

When multiple samples were present for a case, all underwent immunohistochemistry 

and were counted individually. The resulting counts were then combined to give an 

average result for that case. 

 

2.3.3 Optimisation of Antibodies 
With the exception of Ki-67, which has previously been widely used within the 

laboratory, all antibodies underwent optimisation studies. Starting points were guided 

by manufacturer advice and standard laboratory protocols with help from consultant 

histopathologist Dr S Diaz-Cano. Variations in antibody dilution and incubation times, 

blocking times, and staining times for DAB and Gills Haematoxylin were explored to 

identify optimal conditions of all antibodies. 
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2.3.4 Summary of antibodies 
       DILUTION 

PPARγ (E-8): c-7273     1:50 

Santa Cruz Biotechnology 

 

p27 (SX53G8)      1:300 

 Gift from Dr X Lu, 

 (Ludwig Institute for Cancer Research, St Marys Hospital, London.) 

 

Phospho-p27 (71-7700)    1:250 

Zymed laboratories Inc. 

 

JAB 1 (37-1400)     1:250 

Zymed laboratories Inc.  

 

Phospho-Akt (Ser473)     1:100 

Cell Signaling Technology.  

 

PTEN  (NCL-PTEN)     1:100 

Novocastra Laboratories Ltd. 

 

Ki-67 (NCL-Ki67-MM1)    1:200 

Novocastra  Laboratories Ltd 
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2.3.5 Control Samples 
For all immunohistochemistry experiments positive and negative controls were run 

simultaneously. Tonsil sections were used as positive controls for all antibodies with the 

exception of PPARγ, where skin samples containing sebaceous glands were found to be 

effective. Photographic examples of positive controls for each antibody are shown in the 

results section. Negative controls were constantly included where the primary antibody 

was excluded. 

 

2.3.6 Supervision of Counting 
Counting cells can be open to variability due to the subjective nature of interpretation of 

staining. We hoped that by separating the strength of staining out into strong, medium 

and weak would help highlight those which may be may difficult to classify. With little 

previous personal experience, it was felt imperative that expert instruction with the 

techniques of immunohistochemistry, cell counting and interpretation of results was 

gained. This was kindly provided by Dr S Diaz-Cano (Royal London Hospital). 

Subsequent review of all the slides and an estimation of Ki-67 index were performed by 

Dr E Carlson (St Bartholomew’s Hospital). External quality control was therefore 

gained by 2 separate sources but it is accepted that no internal control studies were 

performed to confirm reliability and repeatability of my own counting on different days. 
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2.3.7 Vectastain Universal Elite ABC (kit code pk-6200) 
All immunohistochemistry methods were based on the standard ABC method, the 

standard laboratory protocol being highlighted below. 

 

Procedure 

1. The following controls should be used. 

2. Positive control section for each primary antibody used. 

3. Negative control section [omitting primary antibody] 

4. Dewax sections in xylene. 

5. Dehydrate sections in alcohol. 

6. Place sections in endogenous peroxidase block for 15 minutes. 

7. Wash sections in tap water for 2 minutes. 

8. If antigen retrieval is required, go to the appropriate procedure. 

9. Transfer to tap water and wash for 2 minutes. 

10. Soak sections in a trough of TBS for 3 minutes. 

11. Wipe around the sections and apply the PAP pen. 

12. Apply normal horse Serum for 3 minutes. 

13. (Add 1 drop (50µl) of yellow labelled bottle to 5ml of antibody dilutant) 

14. Tip off the horse serum. 

15. Apply primary antibody at the appropriate dilution in antibody dilutant for 40 

minutes. 

16. Apply only antibody dilutant to the negative control section. 

17. Wash off the antibody with TBS x 2 and flick slide to remove excess. 

 

18. Apply the universal biotinylated secondary antibody (from the kit) for 20 

minutes. 
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19. (Add 2 drops (100µl) of normal horse serum (yellow label) to 5ml of TBS, then 

add 2 drops (100µl) of biotinylated secondary antibody (blue labelled bottle). 

Vortex solution.) 

20. Make up the Avidin Complex Solution. This must stand for 30 minutes before 

use. 

21. (Add 2 drops (100µl) of Reagent A (grey label A) to 5ml of TBS, then add 2 

drops (100µl) of Reagent B (grey label B). Vortex solution. Leave to stand. 

22. Wash off the antibody with TBS x 2 and flick slide to remove excess. 

23. Apply the avidin complex solution for 20 minutes. 

24. Wash off with TBS x 2 and flick slide to remove excess. 

25. Apply DAB solution for 3 – 5 minutes. 

26. Wash in running tap water for 5 minutes. 

27. Counterstain in Gills Haematoxylin for 60 seconds. 

28. Wash in water bath for 2 mins (Blue) 

29. Dip in acid-alcohol x 2  (Differentiate) 

30. Wash in water again (Blue) 

31. Dehydrate and clear (2 mins each in alcohol, alcohol, xylene, xylene)  

32. Mount. 
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2.3.8 Antigen Retrieval 
Antigen retrieval was performed using a microwave technique. Slides were placed in 

citrate buffer during treatment before continuing with step 7 above. 

 

Microwave Buffers 

Citrate buffer stock 

  Citric acid  7.56g 

  Trisodium citrate 47.56g 

  Distilled water  2000ml 

  Stored at 4°C 

 

Citrate buffer working solution 

  Citrate buffer stock 100ml 

  Distilled water    900ml 

  1M Sodium hydroxide  to bring pH to 6.0 
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2.3.9 Preparation of Immunohistochemistry Reagents 
Antibody Dilutant 

  Sodium chloride   4.1g 

Tris     0.3g 

  Bovine albumin   0.2g 

  Sodium azide    0.2g 

  1M Hydrochloric acid   2ml 

  Casein     50µl 

  Distilled water    500ml 

0.1M Sodium hydroxide  to bring pH to 7.6 

  Stored at 4ºC 

  

Endogenous Peroxidase Block 

  100 vol. Hydrogen peroxide 3ml 

  Methanol 97ml 

 

0·05M Tris Buffered Saline (TBS)     pH7·6 

  Sodium Chloride   8.76g 

  Tris     6.06g 

  1M Hydrochloric acid   36ml 

  Distilled water    800ml 

  1M HCl    to bring pH to 7.6 

  Made up to 1 litre with distilled water 
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2.3.10 Cell counting 
Counting was performed using a grid overlying a 40x powered magnified field of view 

and reviewed on a computer screen. For each case and antibody, approximately 500 

cells (approx 100 cells per high power field x 5) were counted for insulinoma, 

gastrinoma, islet and exocrine pancreas. Each was assessed for both nuclear and 

cytoplasmic staining. Staining was described as strong, moderate, weak or negative.  

 

The total number of cells counted in each group (insulinoma, gastrinoma, islet or 

exocrine) was tabulated in Microsoft excel spreadsheets and calculation of a percentage 

and standard error of the mean for each strength of staining was performed. To allow for 

easier comparison between groups, it was felt that a single value for positive staining 

would be helpful.  Due to the nature of counting in immunohistochemistry it was 

debated whether the positive count should be calculated by adding all stained cells 

(strong, moderate and weak) together or by adding the strong and moderately stained 

cells together, excluding the weakly stained cells as inconclusive. Both methods were 

used for all data: I found that the outcome was similar in nearly every case. For all 

results, the data shown uses positive count equal to strong + moderate + weak staining.  

 

On occasion and where appropriate, data using positive count equal to strong plus 

moderate staining has been additionally used to illustrate patterns. This is highlighted in 

the text. 
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 2.4 Cell culture work 

2.4.1 Cell lines 
All 3 cell lines were generously donated by Professor Nicolas Lemoine (Institute of 

Cancer, Barts and The London, Queen Mary's School of Medicine and Dentistry). 

CM  - Human insulinoma cell line isolated from ascites 

QGP1  - Human pancreatic somatostatinoma 

BON  - Human pancreatic carcinoid 

 

2.4.2 Culture media and conditions 
CM  - RPMI 1640 with L-glutamine (Gibco 21875) 

QGP1  - RPMI 1640 with L-glutamine (Gibco 21875) 

BON  - DMEM high glucose (Gibco41966) 

 

To all media, 10% foetal bovine serum (Gibco 10106) was added along with 

penicillin/streptomycin antibiotics (Gibco 15140) and fungizone (Gibco 15290). Cells 

were incubated in T-75 flasks with culture medium at 37ºC with 95% air, 5% CO2. 

Media was freshened every two to three days by discarding old media and adding 10-

15mls new culture medium, warmed to 37ºC. Cells were passaged once they reached 

60-80% confluence. Medium was removed and the cells washed with 5ml warm (37ºC) 

PBS. 1ml trypsin/EDTA was added per flask and the cells incubated for approximately 

5 minutes until all had detached from the flask. Trypsin activity was terminated by the 

addition of 5ml culture medium and the suspension mixed by gentle trituration.  

 

Cells were counted using a Trypan Blue method, whereby dead cells stain deep blue 

while live cells remain translucent, since viable cells do not take up dye. 25µl of 0.4% 
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trypan blue (Sigma) was added to 75µl PBS. The addition of 100µl cell suspension gave 

a final concentration of 0.05% trypan blue. The suspension was mixed by gentle 

pipetting and 100µcl transferred to a haemocytometer. Cells falling within the 

boundaries of two squares were counted and the mean total for one square (volume 

0.1mm3) was used to calculate the concentration of cells per ml of original suspension: 

 

Cells/ml = average cell count x 2 (dilution factor) x 10000 

 

Approximately 2 million cells were plated per fresh T-75 flask and 10-15ml culture 

medium added. Flasks were returned to the incubator.  

 

2.4.3 Cell freezing 
Medium was removed and the cells washed with 5ml warm (37ºC) PBS. 1ml 

trypsin/EDTA was added per flask and the cells incubated for approximately 5 minutes 

until all had detached from the flask. Trypsin activity was terminated by the addition of 

5ml culture medium followed by gentle titration. Cells were centrifuged at 1000 rpm for 

5 minutes then medium discarded. Cells were washed in PBS, centrifuged as before, and 

the pellet resuspended in cell freezing medium (90% fetal calf serum, 10% DMSO).  

 

Cells were transferred to a cryotube and placed on ice for 20 minutes, then at -20ºC for 

approximately 2 hours, transferred to -70ºC for a further 2 hours prior to storage in 

liquid nitrogen.  

 

2.4.4 RNA extraction 
Cells were trypsinised, harvested, washed and counted prior to RNA extraction. 

Extraction was performed using standard Promega SV Total RNA Isolation System 
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protocols for lysis of cultured cells. A maximum of 5 x 106 cells were washed and 

centrifuged prior to addition of lysis buffer. Vigorous vortexing and passage through a 

20 gauge needle aided DNA shearing prior to the addition of dilution buffer and 

preparation for RNA purification by centrifugation. 

 

2.4.5 RNA spectrophotometry and electrophoresis 
Quality of RNA was assessed by spectrophotometry and agarose gel electrophoresis as 

previously described for every RNA extraction. 

 

2.4.6 Reverse transcription  
Extracted RNA from cell lines were subject to reverse transcription using ABI standard 

protocols as described previously. 

 

PCR for GAPDH 

cDNA recovered following reverse transcription, underwent conventional PCR for 

GAPDH using Promega standard protocols as described previously. Electrophoresis on 

ethidium bromide agarose gel was performed for identification of products 

 

2.4.7 Expression of PPARγγγγ 

Expression of PPARγ in each of the cell lines was assessed by conventional PCR using 

Quiagen kit and protocols as described previously. Products were run on ethidium 

bromide agarose gel for identification. 

 

Primers (Sigma-Genosys)  Product = 474bp 

PPARγ sense   5’ TCTCTCCGTAATGGAAGACC 

PPARγ antisense  5’ GCATTATGAGACATCCCCAC 
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2.4.8 Expression of Somatostatin Receptors (SSTR1-5)  
Widespread expression of somatostatin receptors in endocrine tissues and tumours led 

us to investigate the expression of SSTR’s 1-5 in our cell lines. Previously extracted 

samples from all three cell lines were subject to conventional PCR using Promega 

materials and protocols as described earlier. 

Thermal cycling conditions were: 

 

Stage 1   95oC   5 minutes 

Stage 2   94oC   1 minute 

   60oC   1 minute  35 cycles 

   72oC   1 minute 

Stage 3   72oC   10 minutes 

 

SSTR Primers 

SSTR1: 5’-GCTACGTGCTCATCATTGCTA-3’ 

5’-GGACTCCAGGTTCTCAGGTTG-3’  product 401 bp 

SSTR2:  5’-TTGGTACACAGGGTTCATCAT-3’ 

5’-GTCTCCGTGGTCTCATTCAGC-3’   product 459 bp 

SSTR3:  5’-CTGGGTAACTCGCTGGTCAT-3’ 

5’-CAGGCAGAATATGCTGGTGC-3’,  product 225 bp 

SSTR4: 5'-AACGGAGGCGCTCAGAGAAGAAGA-3'  

  5’-AGGCGAGGTGAGGGAGGGTAAAAT-3’ product 451 bp 

SSTR5:  5’-TCATCTGCCTGTGCTACCTG-3’  

5’-GGAGAGGATGACCACGAAGA-3’  product 233 bp 

 

Products were subject to ethidium bromide agarose gel electrophoresis for identification 

of products.  Photographs are shown in the Results section. 
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2.4.9 PPARγγγγ Protein Expression 
Untreated cells from all cell line cultures were subjected to protein extraction, 

performed using cytobuster reagent (Novagen 71009). Cytobuster is a formulation of 

detergents optimised for extraction of soluble proteins from mammalian cells. All 

protein extraction procedures were performed under strict laboratory protocols within 

the cell culture hood 

 

Procedure 

The below reagents were added together 

•  3ml Cytobuster Protein Extraction Reagent  

•  30µl Phosphatase Inhibitor 1 (Sigma P-2850)  

•  30µl Phosphatase Inhibitor 2 (Sigma P-5726)  

 

Spent media was removed from the cell wells and cells were washed briefly with ice 

cold PBS. PBS was removed. Then, 250µl of the above solution was added to each cell 

well to coat the wells and left in place for 5 minutes. After 5 minutes the wells were 

scraped and the resulting suspension was pipetted into a separate eppendorf tube.  The 

suspension was then centrifuged at 13000 rpm for 5 minutes at 4oC and the supernatant 

removed to a separate tube prior to protein assay or freezing. 
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2.4.10 Protein Assay Protocol 
Initial assays were performed with Bradford reagents which is in general use in the 

laboratory. However, it became apparent that cytobuster is not compatible with 

Bradford reagents, and a different method of protein assay was applied – BCA Protein 

Assay Kit (Pierce 23225). 

 

The BCA assay relies upon the formation of a copper (II) – protein complex under 

alkaline conditions, followed by reduction of the copper (II) to copper (I) which is 

associated with a colour change that can be measured. The amount of reduction is 

proportional to the amount of protein present. Generation of a BSA (Bovine serum 

albumin) standard curve allows for quantification of protein samples. 

 

To allow direct comparison with the protein samples, BSA was diluted in Cytobuster. A 

known concentration of BSA, 1mg/ml, was made by dilution of 0.01g BSA in 10ml 

total volume made up of 8mls sterile water and 2mls Cytobuster. From this 1mg/ml 

solution further dilutions achieved concentrations of BSA ranging between 0 – 1mg/ml 

for generation of a standard curve. 25µl of each known BSA dilution or diluted sample 

was placed in triplicate into wells of a 96 well plate. 200µl of BCA/Copper mix was 

added to each well. Samples were left at 37˚C for 30 minutes and the colour change 

read on a Wallac “Victor” 1420 Multilabel Counter. An example standard BSA curve is 

shown in figure 2.1. The regression co-efficient was calculated to assess the suitability 

of the standard curve generated. 

 

From this standard curve, concentrations of each protein sample can be estimated from 

their measured absorption at 595nm. Samples were then normalised for protein content, 

to the sample with the least amount of protein, prior to loading into SDS-PAGE gel. 
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Standard Curve BCA

y = 0.5513x + 0.149

R2 = 0.9854

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.2 0.4 0.6 0.8 1 1.2

Prot Conc mg/ml

59
5n

m
 a

b
so

rb
an

ce

 

Figure 2.1 Example of a protein standard curve using BCA reagents. 
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2.5 Western Blotting Protocol 

 

2.5.1 Materials Required 

• Tris base (Tris hydroxymethyl methylamine) (VWR; 103156X) 

• Tris acid (Tris hydroxymethyl aminoethane hydrochloride) (Sigma T-3253) 

• Glycine (Sigma; G7126) 

• SDS (sodium dodecyl sulfate) (Sigma; L-4509) 

• Methanol (VWR; 101586B) 

• Sodium chloride (NaCl) (Sigma) 

• Hydrochloric acid (HCl) (Sigma) 

• Tween-20 (polyoxyethylene (20) sorbitan monolaurate) (VWR; 66368-B) 

• 2-mercaptoethanol (Sigma M-3148) 

• Skimmed (no fat) milk powder; Tesco 

• SDS-PAGE Ready Gels 10% Tris/HCl 10 wells (Bio-

Rad; 161-1155) 

• Kaleidoscope Protein Marker (Bio-Rad; 161-0324)   

• Electrophoresis Tank (Bio-Rad; 165-3126) 

• Transfer Kit (Bio-Rad) 

2 pieces of sponge cut to size of gel 

4 pieces of blotting paper (Biorad; 170-3932) 

Transfer cassette and tank (Bio-Rad; 170-390) 

 

• Detection Reagent ECL Plus Western Blotting System (Amersham; RPN2132) 

• PVDF (polyvinylidene difluoride) Membrane (Amersham; RPN303F) 

210 
135 
 
82 
 
38.7 
 
31.9 
 
18.1 
7.4 
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• Kodak Scientific Imaging Film X-OMAT (VWR no. 165-1579) 

• Antibodies: primary and secondary 

• Saran Wrap (VWR) 

• Aluchef foil (VWR; 236401001) 

 

2.5.2 Buffers and Reagents 
SDS Loading Buffer 

1.514g Tris base (125mM), 4g SDS (4% w/v), 16 ml Glycerol (20% w/v), 0.02g 

Bromophenol Blue (0.002% w/v) 

 

Dissolve Tris base in 100 ml of ddH2O and adjust pH to 6.8. Then add the remaining 

reagents and store at 40C.  

 

Running Buffer 

30.25g Tris base, 144.13g Glycine, 10g SDS. 

Make up to 1 litre with ddH20, gives 10X Tris/Glycine/SDS 

Use 1 in 10 (i.e. 100 ml in 1000 ml ddH2O) 

 

Transfer Buffer 

3.04g Tris base, 14.14g Glycine, 800 ml ddH2O, 200 ml Methanol 

 

Dissolve Tris and glycine in H2O. Add methanol, total 1000 ml. Stir well with magnetic 

stirrer. Store at 40C. 

 

Washing Buffer 1X TBS-Tween 

10X TBS (Tris-buffered saline): 
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To prepare 1 litre of 10X TBS: 24.2g Tris base, 80g NaCl, Adjust pH to 7.6 with HCl 

(use at 1X). 

 

To make 1XTBS-Tween (wash buffer): 1X TBS, 0.1% Tween (i.e. 500 µl Tween to 500 

ml 1X TBS). 

 

Blocking Buffer 

2.5g Skimmed (no fat) milk, 50 ml 1X TBS-Tween 

Gives 5% milk solution. 

 

Stripping Buffer 

0.985g Tris hydrochloride, 2g SDS, 781 µl 2-mercaptoethanol 

 

Add 100 ml ddH20 to SDS and Tris, then add 2-mercaptoethanol. 

 

2.5.3 Antibodies 

Anti-PPARγ (E-8): c-7273 Santa Cruz Biotechnology 

A mouse monoclonal IgG antibody raised against a peptide mapping to the carboxy 

terminus of PPARγ of human origin. Used at a dilution of 1:50 at 4oC overnight 

Secondary antibody: Goat anti-mouse 1:10000 

 

Anti-PPARγ (Calbiochem 516555) 

A rabbit polyclonal antibody raised to a peptide found in mouse PPARγ2. Used at a 

dilution of 1:2000 for 90 minutes at room temperature 

Secondary antibody: Goat anti-rabbit 1:10000 
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β-actin (Cell Signalling Technology) 

Affinity purified rabbit polyclonal antibody raised against a synthetic peptide 

corresponding to the amino terminal of human β actin. Used at a dilution of 1:5000 at 

4oC overnight 

Secondary antibody: Goat anti-mouse 1:10000 

 

2.5.4 Method 
Protein samples were normalised to the samples with the lowest protein concentration. 

The volumes required for each sample were calculated and aliquoted into 0.5ml tubes. 

Kaleidoscopic marker was also pipetted at this time. Equal volumes of SDS loading 

buffer were added to the samples and to the marker. Samples were heated for 5 minutes 

at 950C on thermal cycle to denature proteins and moved to ice immediately afterwards.   

 

SDS-PAGE Electrophoresis Preparation 

Following denaturing, a 10% Tris-HCl gel was inserted into a gel chamber which was 

placed into an electrophoresis tank ensuring that the chamber is balanced correctly. The 

tank was filled with 1x Running Buffer. The samples were then dispensed into the wells 

and run gel at 100V for 1 hour or until the samples reach the wire at the bottom of the 

gel chamber. 

 

Electroblotting Protein to PVDF Membrane 

A piece of polyvinylidene difluoride membrane (PVDF) (Amersham Biosciences) was 

soaked in methanol for 10 seconds then water for 5 minutes prior to use, to activate. Gel 

and membrane were compressed between blotting paper and sponges soaked in transfer 

buffer and proteins electro-transferred for 45 minutes at 90V.  
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The PVDF membrane was then washed twice in 1x TBS-Tween for 10 minutes. The 

blocking buffer was prepared and 30 mls was added to the membrane for 90 minutes at 

room temperature on a roller to block non specific protein binding sites. Blocking buffer 

was then removed and 5ml blocking buffer with primary antibody at the correct dilution 

added overnight at 4oC (or otherwise specified).  

Following 3 washes of 10 minutes with 15ml 1x TBS-Tween buffer the peroxidase 

conjugated (HRP) secondary antibody was added, at an appropriate dilution in 5ml 

blocking buffer. This was left for a further 90 minutes on a roller and then washed once 

more as above.  

 

Detection of Proteins 

Protein bands were visualised using a chemiluminescence detection system. Two 

different kits where used. 

 

ECL Plus Western Blotting Detection Reagents Kit (Amersham Biosciences) 

This system is based on the enzymatic generation of an acridium ester and numerous 

luminescent intermediates, the emissions of which can be detected on X-ray film. The 

kit was used in accordance with the manufacturer’s recommendations.  

 

In brief, 2ml of ECL Solution A was mixed with 25µl of ECL solution B and added to 

the membrane, the tube was wrapped with foil to shield it from light and it was mixed 

on a roller for 5 minutes to develop. The membrane was then wrapped in Saran Wrap 

and placed in a developing cassette. A sheet of X-OMAT x-ray film was placed over the 

membrane for varying exposure times and developed on a Compact X4 (Xograph 

Imaging Systems). 
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LumiGLO (Cell Signaling Technology 7003) 

This is a luminol-based system. In the presence of hydrogen peroxide, horseradish 

peroxidase converts luminol to an excited intermediate which emits light on its return to 

ground state. 0.5ml of Reagent A and 0.5ml of reagent B were added to 9ml of water. 

This was then added to the membrane for 1 minute and then the membrane was 

prepared for x-ray in the same fashion as above. 

 

Stripping PVDF Membrane and Reprobing  

The membrane can be stripped of antibodies to allow further reprobing with different 

antibodies. This was done by washing twice on a roller with 10-15 ml TBS-Tween for 5 

minutes each. Then 50 ml of Stripping Buffer was added and left for 30 minutes in a 

waterbath set to 500C. A further two washes on a roller with 10-15 ml TBS-Tween for 5 

minutes each was performed and the membrane either stored (in TBS-Tween at 4°C) or 

re-probed. 

 

β-actin 

To confirm equal sample loading, the PVDF membrane was stripped and reprobed with 

a β-actin primary antibody at a dilution of 1:5000 at 4oC overnight following the same 

procedures as above. 
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2.6 Cell proliferation studies  

To assess whether cellular proliferation could be affected by interaction with PPARγ 

agonists, a series of experiments were set up to assess a cell lines proliferation with 

varying concentrations of treatments applied. The PPARγ agonist rosiglitazone 

(GlaxoSmithKline, UK) was chosen as the PPARγ agonist and stock solutions were 

made up by dissolving in dimethylsuphoxide (DMSO) to give a stock concentration of 

10-2M. Subsequent dilutions were done using H2O. Cellular proliferation was assessed 

by thymidine incorporation. An example of the protocol used is detailed below. 

 

2.6.1 Method 
1. Culture cells until confluent according to standard protocol. 

 

2. Harvest cells and centrifuge to give a pellet of cells. Re-suspend in normal culture 

medium of known volume. 

 

3. Count cells using haemocytometer. 

 

4. Pipette out the correct volume of cell suspension to each well to the required density 

e.g. 50,000 cells/well and add normal media up to a volume of 500-1000 µl. 

 

5. Place cells into incubator for 24 hours to allow adhesion. 

 

6. Make up treatment solutions e.g. rosiglitazone at 10-3, 10-4, 10-5, 10-6, 10-8 

concentrations. Note that these will be diluted by a factor of 10 when added to the wells 

containing media giving treatment concentrations of 10-4, 10-5, 10-6, 10-7 and 10-9. 
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7. Remove normal media from wells and replace with 900µl of serum free media (plus 

antibiotics), and add 100µl of the treatment solutions to each well to give final volume 

of 1ml containing the required concentration treatment. 

 

(Note: BON cells did not survive well in serum starved media, instead, DMEM media 

with 2% (charcoal stripped) fetal calf serum was used.) 

 

Example – 24 well plate 

 1 2 3 4 5 6 

1 Media Only Rosiglit (10-4M) Rosiglit (10-5M) Rosiglit (10-6M) Rosiglit (10-7M) Rosiglit (10-9M) 

2 Media Only Rosiglit (10-4M) Rosiglit (10-5M) Rosiglit (10-6M) Rosiglit (10-7M) Rosiglit (10-9M) 

3 Media Only Rosiglit (10-4M) Rosiglit (10-5M) Rosiglit (10-6M) Rosiglit (10-7M) Rosiglit (10-9M) 

4 Media Only Rosiglit (10-4M) Rosiglit (10-5M) Rosiglit (10-6M) Rosiglit (10-7M) Rosiglit (10-9M) 

 

8. Incubate the plate at 37°C in a humidified, 5% CO2 atmosphere for 48 hours.  

 

9. Six hours prior to the end of the experiment, add 2µCi (curie) of [3H]-thymidine 

(Amersham) to each well (i.e. add 50µl [3H]-thymidine to 2.5ml culture media and then 

add 100µl of this to each well).  

 

10. At 24 hours, aspirate the media from the wells and briefly wash with 1ml ice-cold 

PBS.  

 

11. Add 1ml of scintillant (Amersham) to each well and incubate the plate for 5 

minutes.   
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12. Collect the fluid from each well into separate labelled scintillation vials and vortex 

thoroughly.  

 

13. Incorporation of thymidine, in units of counts per minute (CPM), can then be 

measured using a scintillation counter. 

 

Charcoal Stripping 

50mls   fetal calf serum (FCS) 

2g  charcoal 

Left on rollers overnight at 4oC 

 

Optimisation of Treatment Duration 

Experimental plates were set up as described and treatments were left on for variable 

durations i.e. 24, 48 72 and 96 hours. Tritiated thymidine was added to the wells 6 hours 

prior to the completion of the experimental period. Scintillation counting was then 

performed and raw data collated on an excel file. Outcomes for the three cell lines are 

shown the results section. In all three cell lines, it was felt that treatment duration of 48 

hours gave the best results. 

 

2.6.2 Combined proliferation studies 
All cell lines, CM, BON and QGP1, were then subjected to repeated experimentation 

and the results collated to give combined proliferation studies for treatment with 

rosiglitazone at concentrations of 10-4M, 10-5M, 10-6M, 10-7M and 10-9M. Average 

counts for each group were calculated along with the standard error of the mean. 

Statistical significance was assessed by non-parametric Kruskal-Wallis test, followed by 

Conover-Inman if significance was achieved. 
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2.6.3 Proliferation studies with DMSO 
Rosiglitazone was supplied in concentrated form and dissolved in dimethylsuphoxide 

(DMSO). Subsequent dilutions to treatment dose levels in H2O reduced the effective 

concentration of DMSO in the wells during the treatment periods. This means that at 

higher concentrations of rosiglitazone there will also be higher concentrations of DMSO 

present. We felt that a toxic effect of DMSO on the cells should be excluded. 

 

Proliferation studies were set up in exactly the same way except that rosiglitazone was 

not added. Instead equivalent ‘treatments’ containing H2O and DMSO at the same 

concentration was added. This ‘treatment’ was left for 48 hours and subject to 

thymidine incorporation and scintillation counting in exactly the same way as 

previously performed. Again, repeated experiments were performed and results were 

combined prior to statistical analysis and graphical representation. 

 

2.6.4 Rosiglitazone versus DMSO treatments in QGP1 cells 
At the highest concentration of DMSO it appeared that there may be a toxic effect on 

the QGP1 cell line. A single experiment was performed where two plates were set up to 

allow direct comparison of the effects seen by rosiglitazone and DMSO. On one plate 

QGP1 cells were treated with varying rosiglitazone concentrations, as per previous 

experiments. On the second plate cells were treated with equivalent concentrations of 

DMSO. The results were subject to the same analysis and results are shown in the 

results section. 

 

2.6.5 Recovery studies 
As with all treatments, the effects seen may simply be due to a toxic effect which is 

undesirable if it leads ultimately to cell death. Recovery of cells following removal of 

treatment was therefore felt to be important. To assess this, experiments were set up at 
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the same time and date and from the same harvest of cell cultures to minimise error 

between groups. 

• First set was treated with rosiglitazone for 48 hrs and harvested 

• Second set was treated with rosiglitazone for 48 hrs then washed and left in 

normal media for a further 48 hours prior to harvesting. 

• Third set was treated with rosiglitazone for 96 hrs and harvested at the same 

time as set 2. 

 

The first set is essentially a control to make sure that we see the expected effects of 

rosiglitazone treatment. The second set is the experimental group. The third set is 

another control group to identify that there is a continued effect of rosiglitazone 

treatment and that the cells do not spontaneously recover or escape from treatment 

effects. 

 

2.6.6 Antagonist studies  

To complete the PPARγ cell proliferation experiments we decided to try and prevent the 

effect of rosiglitazone by blocking the PPARγ receptors irreversibly, thereby attempting 

to prove that the effects seen are mediated by the PPARγ. 

 

A PPARγ antagonist was purchased from Calbiochem (Calbiochem-Novabiochem 

Corp., La Jolla, CA, USA) identified as T0070907 antagonist (2-Chloro-5-nitro-N-(4-

pyridyl)benzamide)  

 

T0070907 is a potent, specific, irreversible, and high-affinity antagonist of PPARγ  with 

a Ki of 1nM. It also displays >800-fold greater selectivity for PPARγ over PPARα and 

PPARδ (Ki = 0.85µM and 1.8µM, respectively). 
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A second anatagonist was obtained through a colleague (Dr D B Bailey, St 

Bartholomews Hospital) identified as GW9662 antagonist (2-Chloro-5-nitro-N-phenyl-

benzamide) (Sigma, St Louis, Missouri, USA). 

 

GW9662 is an irreversible PPARγ antagonist. GW9662 binds PPARγ with IC50 in 

nanomolar range, and is 10- and 600-fold less potent in binding PPARα and PPARδ, 

respectively. 

 

For both antagonists, a 1µM concentration was used. Plating was performed with a 

control group (no antagonist), antagonist on its own, plus cells treated with rosiglitazone 

at 10-4M, 10-5M and 10-6M concentrations. Cells were pre-treated with the antagonist for 

90 minutes prior to the addition of rosiglitazone. Incorporation of thymidine, harvesting 

and assessment of proliferation were performed as for previous experiments. 

 

2.6.7 Direct comparison studies 
So far all antagonist experiments had been run without a comparative rosiglitazone 

treated group. It was felt that if the antagonist was having any effect then there should 

be a significant difference seen when cells treated with rosiglitazone are compared 

directly with cells treated with antagonist and rosiglitazone. Thus direct comparison 

studies were performed. Cells were plated in two lines. Following cell adhesion, one 

line was treated with rosiglitazone at a concentration of 10-4M, the second line being 

treated with rosiglitazone at a concentration of 10-4M plus 1µM antagonist. This was 

repeated for rosiglitazone concentrations of 10-5M and 10-6M. 
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Repeated experiments were performed for QGP1 and BON cell lines at the above 

concentrations for 48 hours and subject to the same thymidine incorporation, harvesting 

and scintillation counting. 

2.7 Statistical analysis 

Statistical analysis was performed with StatsDirect software package. Data for 

immunohistochemistry and cell culture groups was not normally distributed as assessed 

by Shapiro-Wilk testing. The majority of comparisons were performed using Kruskal-

Wallis analysis of variance test. If P<0.05 subgroup analysis was performed using the 

Conover-Inman test. Alternatively, Mann-Whitney test was performed to compare 2 

groups following subgroup analysis by Ki-67 index. When appropriate, graphs have 

been generated to help present the data.  
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CHAPTER 3  

 

RESULTS I  

 

Human Frozen Tissue Samples 
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3.1 Human tissue Samples  

A selection of pancreatic neuroendocrine tumours was held in the -80oC freezer within 

the Academic Department of Endocrinology at St Bartholomew’s Hospital. Ethical 

consent for collection and experimentation had been gained prior to the commencement 

of this project by Professor A. Grossman through the North East London Research 

Ethics Committee (Ref. P/02/069). Details of the diagnosis and histopathology were 

held on database. 

 

SAMPLE SEX AGE 
DATE OF 

SURGERY 
DIAGNOSIS 

1 F 42 1997 Gastrinoma 

2A F 26 1997 MEN-Insulinoma 1 

2B F 26 1997 MEN-Insulinoma 2 

2C F 26 1997 MEN-Insulinoma 3 

3A M 57 1995 Insulinoma 

3B M 57 1995 Lymph node met 

4 F 44 1994 Gastrinoma 

5 M 51 1998 MEN-Insulinoma 

6A M 34 1998 Normal pancreas 

6B M 34 1998 Insulinoma 

7 F 67 2001 Gastrinoma 

8 F 61 2001 Insulinoma 

 

Table 1 Tumour bank samples and clinical details 
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3.1.1 RNA Extraction. 
Work done on tissue samples: 

Example – Sample 2C 

3 X Homogenisation and RNA extraction (Promega SV Total RNA Isolation System) 

3 X Spectrophotometry 

2 X RNA gels 

GAPDH PCR  4 X SHORT  (repeated at 26 and 35 cycles) 

   1 X LONG 

1 X PPARγ PCR 

SAMPLE         2B   2C   3B    4    8 

 

 

Figure 3.1 Example of a typical RNA gel result 

← 28S 
 
← 18S 
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3.1.2 GAPDH PCR 
 
SAMPLE             H2O  SM    2A  2B   2C    3B     4     8     6A   

 

Figure 3.2 Example of short GAPDH results 

 

SAMPLE               SM     2A   2B    2C    3B      4      8     6A  H2O 

 

Figure 3.3 Example of long GAPDH results 

 

SM = SIZE MARKER PROMEGA φX174 HAE III 

← SHORT GAPDH 
 
 
← PRIMER DIMERS 

 
 
← PRIMER DIMERS 
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SAMPLE 260/280 

RATIO 

RNA GEL SHORT GAPDH LONG  

GAPDH 

1 2.1 No bands Present-weak Absent 

2A 2.1 No bands Present-weak Absent 

2B 2.3 Good bands Present-good Absent 

2C 1.9 No bands Present-weak Absent 

3A 1.6 No bands Present-weak Absent 

3B 1.9 No bands Present-good Absent 

4 2.1 No bands Present-good Absent 

5 3.0 No bands Present-good Absent 

6A 2.0 No bands Absent Absent 
 

6B 2.1 No bands Present-good Present-good 

7 3.1 Good bands Present-good Present-weak 

8 2.3 Good bands Present-good Absent 

 

 

Table 2 Summary of best results obtained for human tissue samples  
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3.1.3 PPARγγγγ EXPRESSION 
We wanted to look at PPARγ expression in fresh tumour samples at the RNA level and 

subjected the extracted RNA to Qiagen PCR, using the primers described. 

 

SAMPLE TUMOUR PPARγγγγ EXPRESSION 

1 Gastrinoma Absent 

2A Insulinoma Absent 

2B Insulinoma Present - good 

2C Insulinoma Absent 

3A Insulinoma Absent 

3B Lymph node met Present – good 

4 Gastrinoma Present – good 

5 Insulinoma Present – weak 

6A Normal pancreas Absent 

6B Insulinoma Absent 

7 Gastrinoma Present – good 

8 Insulinoma Present - good 

 

Table 3 Summary of PPARγγγγ expression in human tumour samples 

 

RNA extraction from previously frozen tissue samples was hampered by issues with the 

quality and quantity of samples available. Despite multiple procedures, reliable high 

quality RNA was not re-producible. PPARγ PCR was performed on all samples of RNA 

extracted. Although few conclusions can be made, given the limitations, PPARγ 

expression was seen in 6 out of the 8 patient samples. PPARγ expression was seen in 4 

out of 5 insulinomas (1 insulinoma LN metastasis), and 2 out of 3 gastrinomas. For 
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those samples that had better RNA quality results, there is a more favourable outcome 

in terms of PPARγ expression. 

 

PPARγ PCR products - examples 

 

SAMPLES         SM   2B  2C  3B   4    8    6A  +VE  H2O 

 

Figure 3.4 DNA gel showing PCR products for PPARγ 

 

SAMPLES          SM   7    6B    1   3A     5   +VE  H2O 

 

Figure 3.5 DNA gel showing PCR products for PPARγ 

  SM = SIZE MARKER PROMEGA φX174 Hinf I 

  +VE = POSITIVE CONTROL (ADRENAL TUMOUR TISSUE) 

← PPARγγγγ 

← PPARγγγγ 
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RESULTS II  

 

Immunohistochemistry 
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3.2.1 Immunohistochemistry 

A trust-wide search for pancreatic neuroendocrine tumours through histopathology 

records, endocrine department records and surgeons logbooks revealed a total of 44 

potential subjects going back over 20 years.  

 

In total 25 cases were identified as having good quality specimens that could be used. In 

several cases there was more than 1 specimen available for the same patient – these 

were annotated A, B or C as seen in table 4. 

 

Of the 25 cases, further information is noted to allow better understanding of the results:  

 

1 patient only had tissue from a lymph node metastasis of a gastrinoma (Case 24). This 

was included as a gastrinoma in the tumour results series. 

 

2 cases were removed from the 25 before final analysis. 

Case 16 - equivocal diagnosis being undecided between an endocrine tumour and 

a papillary and solid epithelial neoplasm (PSEN). 

Case 21 - identified as a lymph node metastasis of the gastrinoma in case 22. 

 

Insufficient islets were available in cases 3, 19, 22 and 24. 

Insufficient exocrine pancreas was seen in cases 4, 22 and 24. 

 

Treated in this way the results could be generated in a standard format for all antibodies 

tested. In total, therefore, there are 20 insulinomas and 3 gastrinomas in the tumour 

series, 19 results for the islet series and 20 results for the exocrine series. These 

numbers are the same for all antibodies. 
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For all immunohistochemistry graphical illustrations therefore:- 

 

Insulinomas  n=20 

Gastrinomas  n=3 

Islets   n=19 

Exocrine  n=20 

 

3.2.2 Cell counting 

As described in the methods section, counting was performed using a grid system 

overlying a magnified field of view viewed on a computer screen. For each case and 

antibody, approximately 500 cells were counted for insulinoma, gastrinoma, islet and 

exocrine pancreas. Each was assessed for both nuclear and cytoplasmic staining. 

Staining was described as strong, moderate, weak or negative.  
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Table 4 Cases identified as suitable for immunohistochemistry 

 

ID SEX AGE DIAGNOSIS 

1 M 24 INSULINOMA 

2A/B M 24 INSULINOMA 

3A/B F 69 INSULINOMA 

4 F 58 GASTRINOMA 

5 F 41 INSULINOMA 

6 M 65 INSULINOMA 

7 M 27 INSULINOMA 

8 M 54 INSULINOMA 

9 F 71 INSULINOMA 

10 F 26 INSULINOMA 

11 M 42 INSULINOMA 

12 M 51 INSULINOMA 

13 F 58 INSULINOMA 

14A/B F 39 INSULINOMA 

15A/B F 51 INSULINOMA 

16 F 29 ENDO/PSEN 

17 F 61 INSULINOMA 

18A/B M 21 INSULINOMA 

19A/B F 61 INSULINOMA 

20 M 78 INSULINOMA 

21 M 35 GASTRINOMA LN 

22A/B/C M 35 GASTRINOMA 

23 F 55 INSULINOMA 

24A/B M 69 GASTRINOMA LN 

25 M 37 INSULINOMA 
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3.2.3 PPARγγγγ Immunohistochemistry 

A mouse monoclonal IgG antibody to PPARγ was obtained from Santa Cruz 

Biotechnology. The antibody is raised against a peptide mapping to the carboxy 

terminus of PPARγ of human origin. Optimisation of the antibody was performed on 

normal skin samples which acted as the positive control. A dilution of 1:50 was 

identified as the optimal dilution. Very good staining of the control was observed 

(Figure 3.6) 

 

 

 

Figure 3.6 PPARγγγγ positive control – skin sample with prominent sebaceous glands. 

The sebaceous glands can be seen staining strongly positive (red/brown colour). 

 

From the results tables in the Appendix, it can be seen that only limited PPARγ staining 

was identified in any of the series for tumour, islet or exocrine, despite good positive 

control staining. All samples underwent repeat immunohistochemistry with similar 

results. Examples of staining seen are shown in the figures. 
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Figure 3.7 Only weak nuclear PPARγγγγ staining can be seen here in sample 2 

 

 

Figure 3.8 Stronger nuclear PPARγγγγ staining can be seen in sample 15 
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It is clear that there is little evidence to suggest the nuclear or cytoplasmic presence of 

PPARγ within insulinoma, gastrinoma, islets or exocrine tissue in our samples.  
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Figure 3.9 Graph showing the location and strength of PPARγγγγ staining in insulinoma 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.10 Graph representing total positive nuclear PPARγγγγ staining in each group. 

Non parametric Kruskal-Wallis testing revealed no statistical difference. 
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3.2.4 p27 Immunohistochemistry 

 

p27 is an inhibitor of both cyclin E-Cdk2 and cyclin A-Cdk2, two CDK complexes 

involved in the regulation of the G1/S transition. p27 has been found to be expressed at 

high levels in quiescent cells, playing an important role in maintaining cells in G0 

through the inhibition of CDKs.  

 

p27 was stained for using anti-p27 antibody from clone SX53G8 (gift from Dr X Lu, 

Barts and the London). After optimisation the antibody was used at a dilution of 1:300 

with very good staining seen with tonsil sections acting as positive control.  

 

 

 

Figure 3.11 p27 positive control (tonsil) showing strong nuclear positive staining in 

the mantle zone 

 

GERMINAL CENTRE 
→        

MANTLE ZONE → 
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In the human tonsil there are multiple follicles which have both a germinal centre 

(consisting of predominantly proliferating T-lymphocytes) and a mantle zone 

(consisting of predominantly quiescent B-lymphocytes). In this control slide we see a 

predominantly unstained germinal centre (blue/purple) and a heavily stained 

(red/brown) mantle zone. For p27 this is an expected finding as cells with higher 

proliferation rates would be expected to show less nuclear p27. 

 

 

 

 

 

Figure 3.12 A lower powered slide of sample 6 showing islet, exocrine and tumour 

portions and the differences seen in staining 

 

 

At lower magnification, the differences often seen in the staining patterns of tumour, 

exocrine tissue and islets can be seen on the same slide. 

 

←TUMOUR 

 
EXOCRINE→ 

ISLET→ 
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Figure 3.13 p27 staining of the insulinoma portion of sample 6, showing both nuclear 

and cytoplasmic staining  
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3.2.5 p27 Staining in insulinoma, gastrinoma, islet and 

exocrine pancreas 

It can be seen from figures 3.14 – 3.17, that p27 is expressed in all the tissues in both 

the nuclear and cytoplasmic compartments. With the exception of exocrine pancreas, 

p27 expression shows a broad distribution of strong, moderate and weak staining. It also 

appears that p27 is expressed slightly higher in the cytoplasm than the nucleus of all 

three endocrine tissues.  

 

In the insulinoma group no significant difference was seen between the nuclear and 

cytoplasmic localisation of p27 with positive nuclear staining seen in 68.7 +/- 6.81% 

and cytoplasmic staining seen in 74.6 +/- 5.6% (figure 3.18) 

 

 A significant difference is, however, seen in the case of gastrinoma (figure 3.19) and 

islets (figure 3.20). Nuclear staining in gastrinoma is 77.3 +/- 13.2% whereas 

cytoplasmic staining is 94 +/- 0.4% (p<0.05). Similarly, in islets, positive nuclear 

staining is 65.5 +/- 8.3% and cytoplasmic staining is 92.6 +/- 1.8% (p<0.001) 

 

In exocrine tissue there is substantially less p27 expression with a trend towards higher 

nuclear localisation (figure 3.21). Positive nuclear staining was seen in 26.9 +/- 2.1% 

and cytoplasmic staining in 18.7 +/- 4.3% (p=0.07) 
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Figure 3.14 Graph showing the location and strength of p27 staining in insulinoma 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.15 Graph showing the location and strength of p27 staining in gastrinoma 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Nuclear/Cytoplasmic p27 Staining in Islet Cells
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Figure 3.16 Graph showing the location and strength of p27 staining in islet  samples 

(S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.17 Graph showing the location and strength of p27 staining in exocrine 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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p27 POSITIVE CELLS INSULINOMAS
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Figure 3.18 Graph showing the total positive (S+M+W) p27 nuclear and cytoplasmic 

staining in insulinoma samples. 
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Figure 3.19 Graph showing the total positive (S+M+W) p27 nuclear and cytoplasmic 

staining in gastrinoma samples. 
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p27 POSITIVE CELLS ISLETS
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Figure 3.20 Graph showing the total positive (S+M+W) p27 nuclear and cytoplasmic 

staining in islet samples. 
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Figure 3.21 Graph showing the total positive (S+M+W) p27 nuclear and cytoplasmic 

staining in exocrine samples. 



 112 

3.2.6 Comparison of p27 Nuclear Staining 

Comparing nuclear p27 reveals the similarities in the pattern of staining in insulinoma, 

gastrinoma and islets. This is in contrast to the pattern of exocrine pancreas staining 

suggesting a significant difference in nuclear p27 expression of exocrine pancreatic 

tissue compared to endocrine tissues. 
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Figure 3.22 Graph comparing the relative strength of p27 nuclear staining for all 

tissue types 

 

Comparing total positive counts confirms that there is no significant difference in the 

nuclear expression of p27 in insulinoma compared to islets, nor compared to 

gastrinoma. All three, however, are significantly different compared to exocrine 

pancreas (figure 3.23). 
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Figure 3.23 Graph comparing total positive p27 nuclear staining for all tissue types 

 

Kruskal-Wallis  P = 0.0005 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)    

INSULINOMA and EXOCRINE   P < 0.0001 

GASTRINOMA and EXOCRINE   P = 0.0097 

ISLET and EXOCRINE    P = 0.0005 
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3.2.7 Comparison of p27 Cytoplasmic Staining 

Trends in the pattern of cytoplasmic staining are less clear when looking at the strength 

of staining. The small numbers of gastrinomas with varying counts leading to large 

error. 
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Figure 3.24 Graph comparing the relative strength of p27 cytoplasmic staining for all 

tissue types 

 

On comparing the total positive counts (figure 3.25), there is a significant difference 

between insulinoma (74.6 +/- 5.6%) and islets (92.6 +/- 1.8%). Gastrinoma show a very 

similar level of positive staining to islets (94.1 +/- 0.4%), again, with a significant 

difference compared to insulinoma. Exocrine pancreas has significantly less p27 

staining (18.7 +/- 4.3%) compared to insulinoma, gastrinoma or islets.  
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Figure 3.25 Graph comparing total positive p27 cytoplasmic staining for all tissue 

types 

 

Kruskal-Wallis test  P < 0.0001  

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)    

INSULINOMA and GASTRINOMA   P = 0.0054   

INSULINOMA and ISLET    P < 0.0001 

INSULINOMA and EXOCRINE   P < 0.0001 

GASTRINOMA and EXOCRINE   P < 0.0001 

ISLET and EXOCRINE    P < 0.0001 
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These differences are enhanced when weak staining is excluded when calculating a 

value for positive staining. Clearly, the significant difference between insulinoma and 

gastrinoma has disappeared but there is a strengthening of the finding that insulinoma 

and islets are significantly different. 
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Figure 3.26 Graph comparing p27 positive staining (where positive = strong 

+moderate staining) for all tissue types. 

 

Kruskal-Wallis test  P < 0.0001    

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)     

INSULINOMA and ISLET    P < 0.0001 

INSULINOMA and EXOCRINE   P < 0.0001 

GASTRINOMA and ISLET    P = 0.0005 

ISLET and EXOCRINE    P < 0.0001 
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3.2.8 Phospho-p27 immunohistochemistry 

p27 plays an important role in maintaining cells in G0 through the inhibition of CDKs. 

When cells re-enter the cell cycle, p27 protein levels but not mRNA levels decrease, this 

is thought to be due to an increase in p27 ubiquitin-mediated degradation. 

Phosphorylation of p27 on threonine 187 is thought to be an important step for the 

widespread ubiquitination of p27. 

 

Slides were treated with an anti-phospho-p27 antibody obtained from Zymed 

laboratories. It is a polyclonal IgG antibody purified from rabbit antiserum. It detects 

threonine 187-phospholylated p27 peptide derived from the C-terminus of the human 

p27 protein. It does not cross react with non-phosphorylated p27 or related CDK 

inhibitor proteins. Optimisation led to an antibody dilution of 1:250 giving good 

staining as can be seen in the tonsil positive control section below. 
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Figure 3.27 Positive control for phospho-p27 (tonsil). Stronger staining can be 

identified in the central germinal centre compared to the slide for p27 

 

 

 

Figure 3.28 Positive phospho-p27 cytoplasmic staining seen in tumour sample 20 
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Figure 3.29 Positive phospho-p27 cytoplasmic staining seen in islet sample 20 
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3.2.9 Phospho-p27 staining in insulinoma, gastrinoma, islet 

and exocrine pancreas  

Looking at the pattern of staining, the vast majority of phospho-p27 staining is seen in 

the cytoplasm of all tissue types (figures 3.30 – 3.33). 

 

In insulinomas (figure 3.34), positive nuclear phospho-p27 staining was seen in only 1.5 

+/- 0.8% compared to cytoplasmic staining of 78.9 +/- 6.2% (p<0.001). With 

gastrinomas (figure 3.35), nuclear staining was 6.8 +/- 4.3% compared to cytoplasmic 

staining of 86.2 +/- 11.6% (p<0.05). Similarly, islets (figure 3.36) show nuclear staining 

in only 3.6 +/- 2.1% but cytoplasmic staining in 87.4 +/- 4.2% (p<0.001).  

 

Exocrine tissue had the highest positive nuclear count of 7.9 +/- 4.5% and the lowest 

cytoplasmic count of 41.5 +/- 4.5% (figure 3.37), but this is still a significant difference 

(p<0.001) in favour of cytoplasmic localisation of phospho-p27. 
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Figure 3.30 Graph showing the location and strength of phospho-p27 staining in 

insulinoma samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.31 Graph showing the location and strength of phospho-p27 staining in 

gastrinoma samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.32 Graph showing the location and strength of phospho-p27 staining in islet 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.33 Graph showing the location and strength of phospho-p27 staining in 

exocrine samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.34 Graph showing the total positive (S+M+W) phospho-p27 nuclear and 

cytoplasmic staining in insulinoma samples. 

NUCLEAR/CYTOPLASMIC Phospho-p27 STAINING IN GASTRINOMA

0

20

40

60

80

100

NUCLEAR CYTOPLASMIC

%
 P

O
S

IT
IV

E

P<0.05

*

 

Figure 3.35 Graph showing the total positive (S+M+W) phospho-p27 nuclear and 

cytoplasmic staining in gastrinoma samples. 
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Figure 3.36 Graph showing the total positive (S+M+W) phospho-p27 nuclear and 

cytoplasmic staining in islet samples. 
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Figure 3.37 Graph showing the total positive (S+M+W) phospho-p27 nuclear and 

cytoplasmic staining in exocrine samples. 
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3.2.10 Comparison of phospho-p27 Nuclear Staining 

 

In all tissues there was little phospho-p27 nuclear staining seen, as indicated by figure 

3.38. Unsurprisingly, there is no significant difference between any of the tissue types. 

 

 

 

Phospho-p27 NUCLEAR STAINING

0

20

40

60

80

100

120

S M W -VE

STRENGTH OF STAINING

%
 O

F
 C

E
L

L
S

INSULINOMA

GASTRINOMA

ISLETS

EXOCRINE

 

Figure 3.38 Graph comparing the relative strength of phospho-p27 nuclear staining 

for all tissue types 
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3.2.11 Comparison of phospho-p27 Cytoplasmic Staining  

The pattern of phospho-p27 cytoplasmic staining was predominantly moderate to weak 

with only a few staining strongly positive (figure 3.39).  
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Figure 3.39 Graph comparing the relative strength of phospho-p27 cytoplasmic 

staining for all tissue types 

 

On comparison of total counts (figure 3.40), cytoplasmic staining was seen in a high 

proportion of insulinoma (78.9 +/- 6.2%), gastrinoma (86.2 +/- 11.6%) and islets (87.4 

+/- 4.2%). Exocrine pancreas samples, in comparison, had the lowest positive 

cytoplasmic count at 41.5 +/- 6.2%, predominantly due to the reduction in moderate 

staining compared to the other tissues. It is clear that there is no statistical difference in 

the cytoplasmic staining of insulinoma and islets or that of gastrinoma. All three 

endocrine tissues are, however, significantly different from the exocrine pancreas. 
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Figure 3.40 Graph comparing total positive phospho-p27 cytoplasmic staining for all 

tissue types 

 

Kruskal-Wallis test  P < 0.0001 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)     

INSULINOMA and EXOCRINE   P < 0.0001  

GASTRINOMA and EXOCRINE   P = 0.0028 

ISLET and EXOCRINE    P < 0.0001 
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3.2.12 JAB1 (Jun activation domain-binding protein 1) 

immunohistochemistry 

p27 degradation is related to its export from the nucleus and the protein that appears to 

be responsible is JAB1, which is a coactivator of the c-jun transcription factor. JAB1 

binds to the C-terminal part of p27 in the nucleus and over-expression causes 

translocation of p27 into the cytoplasm. This decreases the amount of p27 in the cell by 

up-regulating its degradation. 

 

Slides were treated with an anti-JAB1 IgG monoclonal antibody purified from mouse 

ascites and supplied from Zymed laboratories. It reacts with a peptide from the N-

terminal region of JAB1. Optimisation was achieved with an antibody dilution of 1:250. 

Tonsil sections were used as positive controls, an example of which is shown below. 

 

 

Figure 3.41 Slide showing a positive control slide (tonsil) for JAB1 with 

predominantly nuclear staining seen. 
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Figure 3.42 Slide showing predominantly cytoplasmic JAB1 staining in tumour 

sample 8 

 

 

Figure 3.43 Slide showing typical strong cytoplasmic staining for JAB1 in islet 

sample 8 
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3.2.13 JAB1 staining in insulinoma, gastrinoma, islet and 

exocrine pancreas  

In our series the pattern of JAB1 staining in all tissues is overwhelmingly cytoplasmic, 

with either no or negligible nuclear staining seen (figures 3.44 – 3.47). 

 

Insulinoma, gastrinoma and islet series had essentially no nuclear staining identified, 

but significant cytoplasmic staining levels at 75.3 +/- 7.6% (p<0.0001), 41.4 +/- 28.3% 

(p<0.05) and 98.4 +/- 0.8% (p<0.0001) respectively (figures 3.48 – 3.50). In the 

exocrine series (figure 3.51), there was 2.1 +/- 0.9% nuclear staining compared to 27.3 

+/- 6.95% cytoplasmic staining (p<0.001).  

 

The pattern of cytoplasmic staining is varied between the tissues with insulinoma 

showing a broadly equal distribution in strength of staining whereas islets show 

increasingly strong staining. In contrast, gastrinoma and exocrine pancreas samples 

show a pattern of decreasing strength of staining.  
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Figure 3.44 Graph showing the location and strength of JAB1 staining in insulinoma 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.45 Graph showing the location and strength of JAB1 staining in gastrinoma 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.46 Graph showing the location and strength of JAB1 staining in islet 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.47 Graph showing the location and strength of JAB1 staining in exocrine 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.48 Graph showing the total positive (S+M+W) JAB 1 nuclear and 

cytoplasmic staining in insulinoma samples. 
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Figure 3.49 Graph showing the total positive (S+M+W) JAB1 nuclear and 

cytoplasmic staining in gastrinoma samples. 
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Figure 3.50 Graph showing the total positive (S+M+W) JAB1 nuclear and 

cytoplasmic staining in islet samples. 
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Figure 3.51 Graph showing the total positive (S+M+W) JAB1 nuclear and 

cytoplasmic staining in exocrine samples. 
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3.2.14 Cytoplasmic JAB1 Staining 

Looking at all tissues together, reveals the varied patterns of JAB1 cytoplasmic staining 

(figure 3.52). 
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Figure 3.52 Graph comparing the relative strength of JAB1 cytoplasmic staining for 

all tissue types 

 

 

Comparing the total positive counts for each tissue simplifies the picture considerably. 

It is seen that there is significantly less cytoplasmic expression of JAB1 in insulinoma 

compared to islets. Also, despite the large SEM in the gastrinoma group, there is still a 

significant difference between it and the islet group. Exocrine tissue is shown to have 

the least cytoplasmic expression of JAB1, and this is significantly lower than that of 

islets or insulinoma. 
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Figure 3.53 Graph comparing total positive JAB1 cytoplasmic staining for all tissue 

types 

 

Kruskal-Wallis test   P < 0.0001     

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)     

INSULINOMA and ISLET    P < 0.0001 

INSULINOMA and EXOCRINE   P < 0.0001  

GASTRINOMA and ISLET    P = 0.0002 

ISLET and EXOCRINE    P < 0.0001 
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As the pattern of staining is varied between groups, the differences are highlighted 

further when weak staining is excluded from total positive counts.  
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Figure 3.54 Graph comparing JAB1 positive staining (where positive = strong 

+moderate staining) for all tissue types. 

 

Kruskal-Wallis test   P < 0.0001 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)   

INSULINOMA and GASTRINOMA   P = 0.0165 

INSULINOMA and ISLET    P < 0.0001 

INSULINOMA and EXOCRINE   P < 0.0001  

GASTRINOMA and ISLET    P < 0.0001  

ISLET and EXOCRINE    P < 0.0001 
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3.2.15 Phospho-Akt (p-Akt) Immunohistochemistry 

Cells were treated with phospho-Akt (Ser473) antibody from cell Signaling 

Technology. It is a polyclonal antibody isolated from rabbits following immunisation 

with mouse phospho-Akt. It detects Akt1 only when phosphorylated at serine 473. It 

also detects Akt2 and Akt3 when phosphorylated at equivalent sites. Tonsil was used as 

a positive control and optimal staining was achieved with an antibody dilution of 1:100. 

 

Immunohistochemistry with p-Akt proved the most problematic to optimise and 

interpret. Overnight incubation with primary antibody at 4oC gave the best results but 

interpretation could be difficult as cytoplasmic staining may be confused with 

background staining. Extra care and optimisation was required to give the results 

obtained.  
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Figure 3.55 Slide showing p-AKT positive control (tonsil) with nuclear staining 

 

 

Figure 3.56 Slide showing diffuse cytoplasmic staining and minimal background 

staining for p-AKT in tumour sample 5 



 140 

 3.2.16 p-AKT staining in insulinoma, gastrinoma, islet and 

exocrine pancreas 

Widespread nuclear and cytoplasmic staining for p-Akt was seen in all four tissue types 

with cytoplasmic staining being predominant (figures 3.57 – 3.60). 

 

Insulinoma (figure 3.61) showed positive nuclear staining in 58.2 +/- 8.6% compared to 

a substantially higher cytoplasmic staining of 90.3 +/- 3.9% (p<0.001).  

 

Gastrinoma (figure 3.62) nuclear staining was lower at 37.3 +/- 22.2% compared to 

cytoplasmic staining of 92.2 +/- 1.7% (p<0.05).  

 

Islets (figure 3.63) had a higher level of p-Akt nuclear staining than any other tissue at 

82.3 +/- 5.2% but cytoplasmic staining was higher still at 98.1 +/- 0.7% (p<0.001).  

 

Exocrine pancreas (figure 3.64) shows both the lowest nuclear staining and cytoplasmic 

staining but the pattern is still the same with nuclear staining at 35.6 +/- 7.5% and 

cytoplasmic staining at 83.9 +/- 6% (p<0.0001) 
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Figure 3.57 Graph showing the location and strength of p-Akt staining in insulinoma 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.58 Graph showing the location and strength of p-Akt staining in gastrinoma 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.59 Graph showing the location and strength of p-Akt staining in islet 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.60 Graph showing the location and strength of p-Akt staining in exocrine 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.61 Graph showing the total positive (S+M+W) p-Akt nuclear and 

cytoplasmic staining in insulinoma samples. 
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Figure 3.62 Graph showing the total positive (S+M+W) p-Akt nuclear and 

cytoplasmic staining in gastrinoma samples. 
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Figure 3.63 Graph showing the total positive (S+M+W) p-Akt nuclear and 

cytoplasmic staining in islet samples. 
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Figure 3.64 Graph showing the total positive (S+M+W) p-Akt nuclear and 

cytoplasmic staining in exocrine samples. 
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3.2.17 Comparing nuclear p-Akt staining 

Comparing positive nuclear staining (figures 3.65 and 3.66), reveals that there is 

significantly lower expression of p-Akt within the nuclei of insulinomas compared to 

islets. A similar finding is seen with gastrinomas. Furthermore, exocrine pancreas shows 

significantly lower expression than either insulinomas or islets. 
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Figure 3.65 Graph comparing the relative strength of p-Akt nuclear staining for all 

tissue types 
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Figure 3.66 Graph comparing total positive p-Akt nuclear staining for all tissue types 

 

Kruskal-Wallis test   P = 0.0003 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)  

INSULINOMA and ISLET    P = 0.0216 

INSULINOMA and EXOCRINE   P = 0.0106 

GASTRINOMA and ISLET    P = 0.0335 

ISLET and EXOCRINE    P < 0.0001 
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3.2.18 Comparing cytoplasmic p-Akt staining 

There was widespread cytoplasmic staining in all tissues. Staining was predominantly 

weak to moderate with islets showing the strongest levels of staining. 
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Figure 3.67 Graph comparing the relative strength of p-Akt cytoplasmic staining for 

all tissue types 
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Figure 3.68 Graph comparing total positive p-Akt cytoplasmic staining for all tissue 

types 

 

Kruskal-Wallis test   P = 0.0017 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)  

INSULINOMA and ISLET    P = 0.0175 

GASTRINOMA and ISLET    P = 0.0092 

ISLET and EXOCRINE    P = 0.0002 

 

 

All tissues have stained highly positive. We noted however, that a pattern becomes 

apparent when positive staining is considered as strong and moderate only.  
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Figure 3.69 Graph comparing cytoplasmic p-Akt positive staining (where positive = 

strong +moderate staining) for all tissue types. 

 

Kruskal-Wallis test   P < 0.0001    

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)    

INSULINOMA and ISLET    P = 0.0263  

INSULINOMA and EXOCRINE   P = 0.0005   

GASTRINOMA and ISLET    P = 0.0026 

ISLET and EXOCRINE    P< 0.0001  
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3.2.19 PTEN immunohistochemistry 

PTEN was stained for using a mouse monoclonal IgG antibody which reacts with a 

protein corresponding to a 200 amino-acid C-terminal region of the PTEN molecule. 

Tonsil sections were used as a control and an antibody dilution of 1:100 was found to 

give best optimisation. 

 

 

Figure 3.70 Slide showing strong nuclear staining for PTEN in the tonsil positive 

control 
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Figure 3.71 Slide showing good nuclear PTEN staining in tumour sample 8 

  

Figure 3.72 Lower powered slide showing the difference in PTEN staining between 

the different tissue types in sample 8 

TUMOUR→ 

        ↑ 
   ISLET 

←EXOCRINE 
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3.2.20 PTEN staining in insulinoma, gastrinoma, islet and 

exocrine pancreas 

The pattern of PTEN staining seen is clearly seen in all tissues (figures 3.73 – 3.76). 

There is very high degree of positive nuclear staining and very little cytoplasmic 

staining. 

 

Insulinoma show positive nuclear staining in 95.6 +/- 2.1% of cells compared to 

cytoplasmic staining of 5.6 +/- 2.9%. Gastrinoma are even more black and white with 

99.6 +/-0.4% positive staining and 0% cytoplasmic staining seen. Islets show 97.8 +/-

0.7% positive nuclear staining compared to10 +/- 6.9% cytoplasmic staining. Exocrine 

showed the lowest nuclear staining at 73.2 +/- 3.2% but clearly showed no cytoplasmic 

staining at all.  

 

There is no significant difference between insulinoma and islets nor gastrinoma. All 

three endocrine tissues show significantly more nuclear PTEN expression than exocrine 

pancreas. 



 153 
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Figure 3.73 Graph showing the location and strength of PTEN staining in 

insulinoma samples (S=strong, M=moderate, W=weak, -VE=negative) 
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Figure 3.74 Graph showing the location and strength of PTEN staining in 

gastrinoma samples (S=strong, M=moderate, W=weak, -VE=negative) 
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NUCLEAR/CYTOPLASMIC PTEN STAINING IN ISLETS
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Figure 3.75 Graph showing the location and strength of PTEN staining in islet 

samples (S=strong, M=moderate, W=weak, -VE=negative) 

NUCLEAR/CYTOPLASMIC PTEN STAINING IN EXOCRINE 
PANCREAS

0

20

40

60

80

100

S M W -VE

STRENGTH OF STAINING

%
 O

F
 C

E
L

L
S

NUCLEAR

CYTOPLASMIC

 

Figure 3.76 Graph showing the location and strength of PTEN staining in exocrine 

samples (S=strong, M=moderate, W=weak, -VE=negative) 
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3.2.21 Comparing nuclear PTEN staining 

When comparing the nuclear staining of PTEN across the different tissues it is clear that 

there is a similar staining pattern with heavy strong and moderate staining seen. 

 

Looking at total positive counts for the tissues there is no difference between 

insulinoma, gastrinoma or islets. All three, however, show significantly more staining 

than exocrine tissue. 
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Figure 3.77 Graph comparing the relative strength of PTEN nuclear staining for all 

tissue types 
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Figure 3.78 Graph comparing total positive PTEN nuclear staining for all tissue types 

 

 

Kruskal-Wallis test    P < 0.0001    

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)    

INSULINOMA and EXOCRINE   P < 0.0001 

GASTRINOMA and EXOCRINE   P = 0.0007 

ISLET and EXOCRINE    P < 0.0001 

 

When positive staining is considered as strong plus moderate staining, there is no 

change in the pattern seen. 
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3.2.22 Comparing cytoplasmic PTEN staining 

 

No differences are seen when comparing the cytoplasmic staining of any of the tissues. 
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Figure 3.79 Graph comparing the relative strength of PTEN cytoplasmic staining for 

all tissue types 
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 3.2.23 Ki-67 immunohistochemistry 

 

A rabbit anti-human polyclonal antibody to Ki-67 protein was used (AO47, Dako, 

Cambridgeshire, UK).  This antibody had been previously optimised in the laboratory 

and good staining was seen with standard dilutions of 1:200.  

 

 

Figure 3.80 Slide showing good nuclear Ki-67 staining in tonsil positive control 

 

An estimation of the percentage of positive Ki-67 staining for insulinomas and 

gastrinomas was performed in the laboratory by a consultant histopathologist (Dr E 

Carlsen). 
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Table 5 Ki-67 staining for insulinoma samples 

 Ki-67 STAINING (% POSITIVE) 

ID TUMOUR ISLET EXOCRINE 

1 <1 <1 <1 

2 <1 <1 <1 

3 <1 <1 <1 

5 <1 <1 <1 

6 <1 <1 <1 

7 <1 <1 <1 

8 <1 <1 <1 

9 <1 <1 <1 

10 <5 <1 <1 

11 <5 <1 <1 

12 <1 <1 <1 

13 <5 <1 <1 

14 <1 <1 <1 

15 <5 <1 <1 

17 <1 <1 <1 

18 <1 <1 <1 

19 <1 <1 <1 

20 <1 <1 <1 

23 <1 <1 <1 

25 <1 <1 <1 

 

Table 6 Ki-67 staining for gastrinoma samples 

 Ki-67 STAINING (% POSITIVE) 

ID TUMOUR ISLET EXOCRINE 

4 <1 <1 <1 

22 <5 <1 <1 

24 <1 <1 <1 
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3.2.24 Insulinoma proliferation sub group analysis 

Within the insulinoma group there were 4 tumours that may have been proliferating at a 

higher rate as shown by the Ki-67 Index (ID 10, 11, 13 and 15). To identify whether 

these are acting differently to less proliferative tumours, they were separated out for 

comparison. 

 

Although not statistically significant, probably due to the small sample size, there was a 

trend for the less proliferative tumours to express less nuclear PPARγ (% positive 

staining, 2.6 +/- 1.9% vs 31.1 +/- 20.1%). 
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Figure 3.81 Graph showing total positive nuclear PPARγ in insulinomas split into 

two groups based on their Ki-67 index. 
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With p27 staining it was noted that there was a trend for reduced nuclear and 

cytoplasmic p27 expression. On testing this reached statistical significant in the 

cytoplasmic group. 

 

 

Figure 3.82 Graph showing total positive nuclear p27 in insulinomas split into two 

groups based on their Ki-67 index. (% positive = 72.4 +/- 7.7% (for insulinomas <1%) 

vs 53.8 +/- 13.4% (for insulinomas <5%)) 
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CYTOPLASMIC p27 EXPRESSION IN INSULINOMA
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Figure 3.83 Graph showing total positive cytoplasmic p27 in insulinomas split into 

two groups based on their Ki-67 index. (% positive = 79.5 +/- 5.9% (for insulinomas 

<1%) vs 54.9 +/- 12.5% (for insulinomas <5%)) 

 

Mann-Whitney test   P = 0.0499 
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With phospho-p27, there was little difference between the nuclear staining but there was 

lower cytoplasmic staining in those tumours with a higher Ki-67 index, (86.9 +/- 5% vs 

46.5 +/- 16.7%). This did not reach statistical significance. 
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Figure 3.84 Graph showing total positive cytoplasmic phospho-p27 in insulinomas 

split into two groups based on their Ki-67 index. 
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Assessing JAB1 staining revealed a significant difference in the cytoplasmic staining. It 

was found that tumours with the higher Ki-67 index showed lower JAB1 expression in 

the cytoplasm, (85.9 +/- 5.8% vs 33.2 +/- 20.6%). 

 

CYTOPLASMIC JAB1 IN INSULINOMA

0

20

40

60

80

100

<1% <5%

Ki-67 INDEX

%
 P

O
S

IT
IV

E
 S

T
A

IN
IN

G

n=4

*

n=16
p<0.05

 

Figure 3.85 Graph showing total positive cytoplasmic JAB1 in insulinomas split into 

two groups based on their Ki-67 index. 

 

Mann-Whitney test   P = 0.0293 

  

No obvious differences were noted in the staining patterns with phospho-Akt or PTEN 

series. 
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3.2.25 Summary of immunohistochemistry 

Immunohistochemistry was performed using seven different antibodies: PPARγ, p27, 

phospho-p27, JAB1, phospho-Akt, PTEN and Ki-67. With the exception of Ki-67 (see 

below), we wanted to identify the location of these proteins (nuclear or cytoplasmic) 

and to identify any pattern of differences between the tissue types. 

 

Regarding PPARγ expression in the whole series, we were unable to demonstrate any 

significant nuclear or cytoplasmic expression, despite good staining of positive controls. 

 

In the p27 series, good staining was seen in both the nucleus and cytoplasm. In fact, 

there was significantly more cytoplasmic than nuclear staining seen with gastrinoma 

and islet cells. On comparing the tissues, no difference was found in the nuclear 

expression of p27 between insulinoma, gastrinoma or islets, but there was significantly 

lower expression of p27 in the cytoplasm of insulinomas compared to islets. Nuclear 

and cytoplasmic staining in insulinomas, gastrinomas and islets was significantly higher 

than that seen in exocrine tissue. 

 

In the phospho-p27 series, the expression is overwhelmingly within the cytoplasm of all 

tissue types. Very little nuclear staining was identified and there were no differences 

between tissue types. Despite the high levels of cytoplasmic staining there was no 

difference in expression between insulinomas, gastrinomas or islets. All three tissues 

showed significantly higher cytoplasmic expression compared to exocrine tissue. 

 

In the series of JAB1 staining, all tissues overwhelmingly showed cytoplasmic 

expression, with either no or negligible nuclear staining seen. Although there is a 
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variation in the pattern of staining, overall there was a significantly lower cytoplasmic 

expression of JAB1 in insulinomas and gastrinomas compared to islets. Both 

insulinomas and islets showed significantly higher expression compared to exocrine 

tissue.  

 

In the phospho-Akt series, widespread nuclear and cytoplasmic staining was seen in all 

four tissue types, with cytoplasmic expression being significantly higher than nuclear in 

all tissues. There was significantly lower nuclear expression of p-Akt in insulinomas 

and gastrinomas compared to islets. Exocrine pancreas shows significantly lower 

nuclear expression than either insulinoma or islets. Despite very high levels of 

cytoplasmic staining there was significantly less expression in insulinomas and 

gastrinomas compared to islets. Again, exocrine expression was lower than either 

insulinoma or islets. 

 

PTEN staining was similar in all tissues. There was very high degree of positive nuclear 

staining and very little cytoplasmic staining. No significant differences were identified 

between insulinoma, gastrinoma and islets. All three show significantly more nuclear 

PTEN expression than exocrine pancreas. 

 

Regarding the Ki-67 subgroup analysis, tumours with a higher Ki-67 index had 

significantly less cytoplasmic p27 and JAB1.  Trends were noted towards higher nuclear 

expression of PPARγ, lower nuclear expression of p27 and lower cytoplasmic phospho-

p27. 
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RESULTS III 

Cell Cultures 
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3.3.1 Cell Culture Work  

Three cell lines were obtained by kind permission of Professor N Lemoine (Institute of 

Cancer, Barts and The London, Queen Mary's School of Medicine and Dentistry). The 

cell lines denoted as CM, BON and QGP1 represent human insulinoma, carcinoid and 

somatostatinoma cell lines respectively. 

 

The three cells lines were successfully transferred and cultured in our laboratory under 

the conditions explained in the methods section. 

 

Work with these cells can be divided into three main sections, RNA/DNA, protein 

expression and proliferation studies 
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3.3.1.1 RNA Extraction 
Cells were harvested, washed in PBS and separated by centrifuging. RNA was then 

extracted using standard Promega extraction protocol as described. RNA was then 

subjected to spectrophotometry and RNA gel electrophoresis with good results. 

 

Example of RNA 1% agarose gel 

         CM       CM      BON     BON      QGP       QGP 

 

Samples were subject to reverse transcription using ABI standard protocols as 

described. To check quality, cDNA were subjected to PCR using standard Promega 

protocols to check for short GAPDH.  

 

SHORT GAPDH 

     SM    H2O +VE   CM  CM  BON BON QGP QGP 

 

Size marker = phix 174 Hinf 1  +VE = positive control 

←GAPDH 
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Samples were considered to be of a reasonable quality to proceed with further 

investigation. 

 

3.3.1.2 Expression of PPARγγγγ  

To check for the expression of PPARγ mRNA in our cell lines, cDNA samples were 

subjected to PCR for PPARγ using Qiagen standard PCR protocols 

PPARγ primers were obtained from Sigma-Genosys as described in the methods 

section. 

 

  SM  H2O +VE   CM  CM   BON  BON  QGP QGP QGP 

 

Size marker phix 174 Hinf 1   +VE = positive control 

Figure 3.86 Gel showing the products of PCR for PPARγ on mRNA extracted from 

cell lines CM, BON and QGP1 

The duplicate samples had been extracted on separate days and therefore the negative 

PPARγ results with CM cell line were thought to be a true finding. 

 

3.3.1.3 Repeat PPARγγγγ PCR 

In view of the unusual finding that the cell line CM did not express PPARγ mRNA but 

PPARγ protein was apparently being detected in my Westerns blots, it was felt that the 

cell lines should be subjected to further RNA extraction, RT and repeated PPARγ PCR. 

←PPARγγγγ 
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       CM       BON      QGP1 

RNA 1% agarose gel of repeated extractions of cell lines CM BON and QGP1 

REPEATED PPARγ PCR 

           SM   H2O  +VE    A      B       C      D      E       F      G 

 

Size marker phix 174 Hinf 1   +VE = POSITIVE CONTROL 

Figure 3.87 Gel showing the products of repeat PCR for PPARγ on mRNA extracted 

from cell lines CM, BON and QGP1 

 

SAMPLES A BON  (previous sample with positive result) 

  B QGP1  (previous sample with positive result) 

  C CM  (1st previous sample with negative result) 

  D CM  (2nd previous sample with negative result) 

  E CM  (Newly prepared sample as above on RNA gel) 

  F BON (Newly prepared sample as above on RNA gel) 

  G QGP1 (Newly prepared sample as above on RNA gel) 

 

←PPARγγγγ 
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From the gel it can be confirmed that the previous samples give the same results with 

this new PCR i.e. both previous CM samples do not express PPARγ mRNA whereas 

both BON and QGP1 do. This has been confirmed again with the newly extracted 

samples represented by E, F and G. 
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3.3.2 Somatostatin Receptor PCR 

It is widely accepted that a large proportion of neuroendocrine tumours express 

somatostatin receptors and clinical therapy often utilises somatostatin analogues. It was 

felt worthwhile to identify whether these cell line expressed these somatostatin 

receptors (SSTR’s). Somatostatin is thought to act through five membrane receptors 

which are expressed variably in tissues and tumours. The somatostatin analogue 

octreotide for example activates SSTR receptor subtype 2 (SSTR2), and to a lesser 

extent receptor subtype 5 (SSTR5). The inhibition of cellular proliferation attributed to 

somatostatin analogues may involve several signal transduction pathways including the 

MAP Kinase pathway and stimulation of the cyclin dependent kinase inhibitor p27 

 

Previously extracted RNA from all 3 cell lines was subjected to PCR for receptors 1-5 

using Promega PCR standard protocols, previously optimised in our laboratory. 

 

3.3.2.1 PCR FOR SSTR 1 
 

  SM  H2O   +VE    X     CM   CM  BON  BON  QGP  QGP  QGP 

Figure 3.88 Gel showing the products of PCR for SSTR1 on mRNA extracted from 

cell lines CM, BON and QGP1 

 

←SSTR1 
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SM = phix 174 Hinf 1   SSTR 1 product 401 bp 

X = pituitary tumour tested to see if it could be used in the future as a positive control 

Repeat labels represent samples extracted on different days 

 

3.3.2.2 PCR FOR SSTR 2 AND 3 
 

              SSTR2                  SSTR3   

 SM     H2O  +VE     X    CM    BON  QGP  +VE   X      CM   BON  QGP 

 

SM = phix 174 Hinf 1  SSTR 2 product 459 bp SSTR 3 product 225bp 

Figure 3.89 Gel showing the products of PCR for SSTR2 and 3 on mRNA extracted 

from cell lines CM, BON and QGP1 

 

←SSTR 2 
 
←SSTR 3 
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3.3.2.3 PCR FOR SSTR 4 AND 5 
 

              SSTR4          SSTR5         

 SM  H2O  +VE   X   CM    BON  QGP  +VE   X    CM   BON  QGP 

 

SM= phix 174 Hinf 1  SSTR 4 product 451 bp SSTR 5 product 233 bp 

Figure 3.90 Gel showing the products of PCR for SSTR4 and 5 on mRNA extracted 

from cell lines CM, BON and QGP1 

 

Despite repeated experimentation, we concluded that cell lines CM, BON and QGP1 do 

not express any of the somatostatin receptors 1-5 mRNA.  

 

Regarding the PCR for SSTR4, it is acknowledged that the +ve control sample was 

negative and therefore interpretation of our findings for this receptor could be in doubt. 

Given that the experiment was repeated with the same results and given the lack of 

other SSTR’s within our cell lines. It is probable that these cell lines do not express 

SSTR4 either. It is likely that our positive control actually is inappropriate and does not 

express SSTR4 itself. As a side note, sample X, a pituitary tumour (growth hormone 

secreting) added to see if it could be used as a positive control in the future, was positive 

for receptors 3 and 5 

 
←SSTR 5 
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3.3.3 PPARγγγγ Protein Expression 

Proliferating cells from all three cell lines were harvested using cytobuster protein 

extraction reagent (Novagen) as described in methods and subjected to protein assay to 

determine concentration. Samples were held -800C awaiting experimentation. 

 

3.3.3.1 Western Blotting To Assess PPARγγγγ Protein Presence  

Following protein denaturing, 20µg protein samples were loaded into a 10% Tris-HCL 

gel and subject to electrophoresis. Electroblotting onto a PVDF membrane (Hybond-P, 

Amersham) was then performed and the resultant membrane washed and treated with 

5% non fat milk to prevent non specific binding of the antibody. 

 

A PPARγ mouse monoclonal IgG antibody from Santa Cruz (sc-7273) was obtained and 

optimised in the laboratory. A 1:50 dilution of this 1st antibody diluted in non fat milk 

was applied to the membrane and left on motion rollers overnight at 40C. 

Following washing a 1:10000 dilution of a goat antimouse 2nd antibody was applied for 

90 minutes. 

 

The resultant washed membrane was treated with LumiGLO reagent and peroxidise 

(Cell Signalling Technology) – a chemiluminescent detection system – and light 

emission was recorded by optimising exposure to X-Ray film. 
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3.3.3.2 PPARγγγγ Western Result 
 

1st PPARγ  (Santa Cruz)  1:50  40C overnight 

2nd Goat anti-mouse  1:10000 90 mins 

Lumiglow 5 mins     Exposure 8 mins 

 

        CM      BON     QGP1 

 

 

Kaleidoscope pre stained standards (Bio-Rad) – shown to scale. 

Figure 3.91 Western blot result for PPARγ in the cell lines CM, BON and QGP1 

 

The PPARγ protein is 67 kD in weight. Double bands were unexpected and although the 

top line of bands would most likely be the correct weight, the strength of the lower 

bands made us question which was correct. 

 

To help answer the question, the membrane was stripped and re-probed with a different 

PPARγ antibody (Calbiochem-Novabiochem Corp., La Jolla, CA, USA). 

10 PPARγ  (Calbiochem)  1:2000  room temp 90 mins 

20 Goat anti-rabbit  1:10000 90 mins 

Lumiglow 5 mins     Exposure 2 mins 

←PPARγγγγ ? 
 
 
 
 
←PPARγγγγ ? 
 

82 kD→ 
 
 
 
 
 
 
 
 
 
 
 
32 kD→ 
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        CM      BON     QGP1 

 

 

Figure 3.92 Repeat western blot result for PPARγ in the cell lines CM, BON and 

QGP1 following administration of a different PPARγ antibody. 

 

The figures are both to the same scale. Clearly, the lower line has disappeared with the 

second antibody confirming that with the Santa Cruz antibody the upper band was the 

correct band for PPARγ. 

 

The same membrane was probed for β-actin (43 kD) 

 

 

           CM              BON           QGP1 

 

 

Figure 3.93 Western blot result for β-actin on the same membrane as above 

82 kD→ 
 
 
 
 
 
 
 
 
 
 
 
32 kD→ 

←PPARγγγγ 
 
 
 
 
 

82 kD→ 
 
 
 
 
 
 
 
 
 
 
 
32 kD→ 

←β ACTIN 
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The expression of PPARγ protein in the CM cell line was unexpected, as repeated PCR 

for PPARγ cDNA was negative. I thought it best to repeat the Western experiments 

again using the protein samples from the above experiment (OLD), and newly extracted 

protein from all three cell lines (NEW). 
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3.3.3.3 Repeat Western for PPARγγγγ 

Conditions as above for Santa Cruz PPARγ antibody 

 

         CM     BON     QGP     CM      BON     QGP 

 

                  OLD         NEW   

 

 

Figure 3.94 Repeat western blot for PPARγ in the cell lines CM, BON and QGP1 

following re extraction of proteins 

 

The membrane was stripped and re-probed for β-actin using the same conditions as 

above 

 

 

 

 

         CM       BON     QGP     CM      BON     QGP 

 

Figure 3.95 Western blot result for β-actin on the same membrane as above 

82 kD→ 
 
 
 
 
 
 
 
 
 
 
 
32 kD→ 

←PPARγγγγ 

82 kD→ 
 
 
 
 
 
 
 
 
 
 
 
32 kD→ 

←β ACTIN 
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3.3.4 Proliferation Studies  

Cells were harvested and counted as described to calculate concentration of cells per ml 

of media. The correct volume of cell suspension was then pipetted into plate wells to 

give 50 000 cells per well. Cells were left for 8 hours to allow for cell adhesion prior to 

experimentation 

 

3.3.4.1 Rosiglitazone (PPARγγγγ agonist) studies 
 

Optimising the duration of treatments 

Experimental plates were set up as described in methods. Tritiated thymidine was added 

to the wells 8 hours prior to the completion of the experimental period. Scintillation 

counting on completion of the time period allowed for assessment of the proliferation or 

inhibition of cell lines. Preliminary experiments were set up to assess the most suitable 

time period for treatments. 

 

Rosiglitazone treated QGP1 cells at 24, 48, 72 and 96 hours 

 

Example of results generated and tabulated in Excel. 

QGP1 ROSI 24HOURS
Molar Conc ROW 1 ROW 2 ROW 3 ROW 4 AVERAGE SD
CONTROL 20822.40 62214.40 49836.50 103434.70 59077.00 17142.175
x10--4 1734.90 8867.80 6561.50 11723.70 7221.98 2111.8414
x10--5 58615.50 54805.50 42751.00 50589.80 51690.45 3400.7971
x10--6 58266.50 90781.00 47548.80 46016.20 60653.13 10405.719
x10--7 53239.20 72567.20 68966.90 68694.40 65866.93 4300.7517
x10--9 73149.30 77005.50 60652.60 56186.80 66748.55 4957.1984
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Rosiglitazone Treated QGP1 cells 48 hours
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Rosiglitazone treated QGP1 cells 72 hours
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Rosiglitazone treated QGP1 cells 96 hours
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Figure 3.96 Graphs A-D showing thymidine scintillation counts as a marker of 

cellular proliferation versus molar concentration in QGP1 cells following treatment 

of rosiglitazone for, 24, 48, 72 and 96 hours. 
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Preliminary treatment series were performed for all cell lines and it was felt that 48 

hours was the best time frame for treatments. It appeared that at 72 and 96 hours some 

of the cells were becoming detached or dying. 

 

Example of length of treatment leading to variability of counts 

 

Rosiglitazone treated BON cells at 96 hours
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Figure 3.97 Graph showing variability in thymidine scintillation counts in BON cells 

following treatment of rosiglitazone for 96 hours probably due to cell death.  
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3.3.4.2 Combined results of proliferation studies with Rosiglitazone treated QGP1 
cells 
 

Proliferation of QGP1 After 48Hrs Treatment With 
Rosiglitazone (n=16, * P at least <0.002)
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Figure 3.98 Graph showing a reduction in proliferation of QGP1 cells after 48 hours 

at higher concentrations of rosiglitazone 
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3.3.4.3 Combined results of proliferation studies with Rosiglitazone treated BON 
cells 
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Figure 3.99 Graph showing a reduction in proliferation of BON cells after 48 hours 

at higher concentrations of rosiglitazone 

 



 187 

3.3.4.4 Combined results of proliferation studies with Rosiglitazone treated CM 
cells 
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Figure 3.100 Graph showing a reduction in proliferation of CM cells after 48 hours 

of treatment at only the highest concentration of rosiglitazone 
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3.3.4.5 Proliferation studies with Dimethyl Sulfoxide (DMSO) 
Dimethyl sulfoxide (DMSO) is a colourless liquid that is an important solvent 

dissolving both polar and non-polar compounds. Use of DMSO in medicine increased 

when it was discovered it could penetrate the skin and other membranes without 

damaging them carrying other compounds into a biological system. It is often used in 

PCR reactions and has been used as a cryoprotectant. It is thought to have a low 

toxicity. 

 

Rosiglitazone was supplied in concentrated form and dissolved in DMSO. Subsequent 

dilutions to treatment dose levels in H2O reduced the effective concentration of DMSO 

in the wells during the treatment periods, but we felt that an effect of the DMSO on the 

cells should be excluded. 
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Figure 3.101 Graph showing the proliferation versus increasing DMSO dilutions of 

QGP1 cells after 48 hours of treatment. It can be seen that there is a significant 

reduction in proliferation at the highest concentration. 
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Proliferation of BON cells following 48 hours 
treatment with DMSO (n=8)
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Figure 3.102 Graph showing the proliferation of BON cells after 48 hours of 

treatment with DMSO dilutions. 
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Figure 3.103 Graph showing the proliferation of CM cells after 48 hours of treatment 

with DMSO dilutions. 
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3.3.4.6 Rosiglitazone versus DMSO treatments on QGP1 cells 

As it appeared that there might be an effect by DMSO on the QGP1 cells at the highest 

concentration, I was concerned that the effect seen could be solely due to the DMSO 

rather than the rosiglitazone. An experiment was set up where a comparison could be 

made. From the same harvest of cells two plates of QGP1 cells were set up. To one, 

treatment doses of rosiglitazone were added, to the other, comparative concentrations of 

DMSO. The cells were treated in exactly the same way and subjected to tritiated 

thymidine incorporation prior to the end of the experiment. 
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Figure 3.104 Graph showing direct comparison of the effects of DMSO compared to 

Rosiglitazone treatment 

     Rosiglitazone  DMSO 

Concentrations (M):  A 1x10-4   1x10-2 

    B  1x10-5   1x10-3 

    C 1x10-6   1x10-4  

    D 1x10-7   1x10-5 

    E 1x10-9   1x10-7 
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Kruskal-Wallis test    P =0.0075 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)  

CONTROL and x10-4M Rosi    P < 0.0001  

CONTROL and x10-4M DMSO    P = 0.0011  

CONTROL and x10-5M Rosi    P = 0.0035 

 

In this experiment the expected pattern of inhibition of proliferation by the addition of 

rosiglitazone is seen in the 10-4M and 10-5M groups, with the 10-6M group just missing 

statistical significance. With the DMSO group it is seen that there is no significant 

effect of DMSO in any of the treatment groups B to E. DMSO, therefore, maybe 

contributing partially to the anti-proliferative effects seen with rosiglitazone at 10-4M 

concentrations in the QGP1 cell line. 



 192 

3.3.5 Recovery studies 

To ensure that the effects seen by rosiglitazone were reversible and not toxic to the 

cells, I decided to show recovery of cellular proliferation following removal of 

rosiglitazone. 

 

Initial experiments were performed on the CM cell line. CM cells were treated with 10-

4M and 10-5M concentration of rosiglitazone and treated for 48hrs as per usual 

protocols. Treatments were then washed off and the cells left in normal media for a 

further 48 hrs. As can be seen in figure 3.105, CM cells at 10-4M concentration did not 

recover. 
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Figure 3.105 showing no recovery of CM cells following treatment and subsequent 

removal of 10-4 M rosiglitazone 

 

The non recovery of the CM cell line, at the only concentration at which reduction in 

proliferation was seen with rosiglitazone treatment, led to significant concern that the 

anti-proliferative effects being seen were due to toxicity. I therefore set up more robust 
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experiments for BON and QGP1 cell lines to see whether the effects seen in these cell 

lines was due to toxicity of rosiglitazone. 

 

The experiments were set up at the same time and date and from the same harvest of 

cell cultures to minimise error between groups. 

First set was treated with rosiglitazone for 48 hrs and harvested 

Second set was treated with rosiglitazone for 48 hrs then washed and left in 

normal media for a further 48 hours prior to harvesting. 

Third set was treated with rosiglitazone for 96 hrs and harvested at the same time 

as set 2. 

 

The first set is essentially a control to make sure that we see the expected effects of 

rosiglitazone treatment. The second set is the experimental group. The third set is 

another control group to identify that there is a continued effect of rosiglitazone 

treatment and that the cells do not spontaneously recover or escape from treatment 

effects. 

 



 194 

 

 

Proliferation of BON after 48hrs Treatment with 
Rosiglitazone (n=4)

0

20

40

60

80

100

120

140

CONTROL 10--4 10--5 10--6

Rosiglitazone concentration

%
 o

f 
co

n
tr

o
l

 

A 

 

 

Proliferation of BON 48 hrs after removal of 
Rosiglitazone Treatment (n=4)

0
20
40
60
80

100
120
140
160
180

CONTROL 10--4 10--5 10--6

Initial Rosiglitazone Conc 

%
 o

f c
on

tr
ol

 

B 

 



 195 

Proliferation of BON after 96 hrs of Treatment 
with Rosiglitazone (n=4)
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Figure 3.106 Graph A-C showing the expected pattern of proliferation in BON cells 

after 48 hours of rosiglitazone treatment (A) followed by full recovery following 

removal (B) and the continued reduction in proliferation if the treatment is left on for 

96 hours (C) 
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Proliferation of QGP1 after 96hrs Treatment with 
Rosiglitazone (n=4)

0

50

100

150

200

250

300

CONTROL 10--4 10--5 10--6

Rosiglitazone concentration

%
 o

f c
on

tr
ol

 

C 

Figure 3.107 Graph A-C showing the expected pattern of proliferation in QGP1  cells 

after 48 hours of rosiglitazone treatment (A) followed by full recovery following 

removal (B) and the continued reduction in proliferation if the treatment is left on for 

96 hours (C) 

 

From the recovery studies it is seen that there is good recovery of both BON and QGP1 

cells following removal of treatments. However, it appears that a toxic effect of 

rosiglitazone on CM cells cannot be ruled out. CM cells were therefore excluded from 

anatgonist experiments. 
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3.3.6 Antagonist Studies  

We have shown that by adding rosiglitazone to cell lines BON and QGP1 at various 

concentrations, the proliferation of these cells can be reduced. We have also established 

that at the highest concentration of these treatments, the solvent in which the 

rosiglitazone is dissolved may also be having an additive effect. We have shown that by 

removing the treatments, washing and adding normal media to the treated cell lines 

normal cellular proliferation returns after 48 hours. To complete the PPARγ cell 

proliferation experiments I decided to try and prevent the effect of rosiglitazone by 

blocking the PPARγ receptors irreversibly, thereby confirming that the effects seen are 

mediated by PPARγ. 

 

3.3.6.1 Results for QGP1 and BON with Antagonist T0070907 
 

T0070907 antagonist (2-Chloro-5-nitro-N-(4-pyridyl)benzamide)  

(Calbiochem-Novabiochem Corp., La Jolla, CA, USA). 

 

T0070907 is a potent, specific, irreversible, and high-affinity antagonist of PPARγ  with 

a Ki of 1 x10-9M. It also displays >800-fold greater selectivity for PPARγ over PPARα 

and PPARδ (Ki = 0.85 x10-6M and 1.8 x10-6M, respectively). 

 

A 1 x10-6 M concentration of antagonist was used. Following standard plating and 

preparation, cells were pre-treated with the antagonist for 90 minutes prior to the 

addition of rosiglitazone. Incorporation of thymidine, harvesting and assessment of 

proliferation were performed as for previous experiments. 
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With antagonist treatment, there was still a significant effect on proliferation of QGP1 

by the higher concentration of rosiglitazone. Effects of rosiglitazone at concentrations of 

10-5M and 10-6M did however appear to be reduced. 
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Figure 3.108 Graph showing the effects on proliferation of QGP1 cells following 

treatment with T0070907 antagonist and combinations of antagonist and 

rosiglitazone (n=4 for all groups) 

 

Kruskal-Wallis test   P=0.0104 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)  

CONTROL and ANTAG  P = 0.1454 

CONTROL and A+10-4M  P = 0.002 

CONTROL and A+10-5M  P = 0.1235 

CONTROL and A+10-6M  P = 0.6382 
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Similar findings were seen when BON cells were treated in the same manner with 

possible inhibition at lesser concentrations. A strong anti-proliferative effect was 

however still seen at the higher concentration of rosiglitazone. 

BON AT 48 HRS FOLLOWING ROSI + 
ANTAGONIST 1uM

0
20
40
60
80

100
120
140

CONTROL ANTAG A+10--4 A+10--5 A+10--6

TREATMENT

%
 O

F
 C

O
N

T
R

O
L P<0.05

*

 

Figure 3.109 Graph showing the effects on proliferation of BON cells following 

treatment with T0070907 antagonist and combinations of antagonist and 

rosiglitazone (n=4 for all groups) 

 

Kruskal-Wallis test   P=0.0176 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)  

CONTROL and ANTAG  P > 0.999 

CONTROL and A+10-4M  P = 0.0007 

CONTROL and A+10-5M  P = 0.0535 

CONTROL and A+10-6M  P = 0.3114 

 

It was felt that antagonism by T0070907 had not been fully successful. Further 

investigation was deemed necessary and a different antagonist was sought. 
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3.3.6.2 Results for QGP1 and BON with Antagonist GW9662 
 

GW9662 antagonist (2-Chloro-5-nitro-N-phenyl-benzamide) 

(Sigma, St Louis, Missouri, USA). 

 

GW9662 is an irreversible PPARγ antagonist. GW9662 binds PPARγ with IC50 in 

nanomolar range, and is 10- and 600-fold less potent in binding PPARα and PPARδ, 

respectively. 

 

Exactly the same methods were used as for previous treatments with antagonist 

T0070907. Following pre-treatment of QGP1 cells with GW9662, rosiglitazone was 

added at the concentrations shown. Cells were harvested at 48 hours and proliferation 

assessed by tritiated thymidine uptake. 
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Figure 3.110 Graph showing the effects on proliferation of QGP1 cells following 

treatment with GW9662 antagonist and combinations of antagonist and rosiglitazone 

(n=8 for all groups) 

 

Kruskal-Wallis test   P=0.0018 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)  

CONTROL and ANTAG  P = 0.5474 

CONTROL and A+10-4M  P < 0.0001 

CONTROL and A+10-5M  P = 0.2114 

CONTROL and A+10-6M  P = 0.4359 

 

 

Again only partial antagonism was seen with the anti-proliferative effect of the highest 

dose of rosiglitazone not being abolished. Experiments were repeated for BON and 

again only partial antagonism was seen. 
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Figure 3.111 Graph showing the effects on proliferation of BON cells following 

treatment with GW9662  antagonist and combinations of antagonist and rosiglitazone 

(n=8 for all groups) 

 

Kruskal-Wallis test   P=0.0005 

Kruskal-Wallis: all pairwise comparisons (Conover-Inman)     

CONTROL and ANTAG  P = 0.0799 

CONTROL and A+10-4M  P = 0.0019 

CONTROL and A+10-5M  P = 0.0521 

CONTROL and A+10-6M  P = 0.6757 
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3.3.6.3 Direct comparison studies 
So far all antagonist experiments had been run without a comparative treated group at 

the same concentration of rosiglitazone. It was felt that if the antagonist was having a 

true effect then there should be significant difference seen when cells treated with 

rosiglitazone are compared directly with cells treated with antagonist and rosiglitazone. 

Thus direct comparison studies were performed at rosiglitazone concentrations of 10-

4M, 10-5M and 10-6M. 

 

For QGP1, there was no significant effect seen when the antagonist was added to the 

treatment group. At concentrations of 10-5M and 10-6M there was a possible trend seen 

towards antagonism with increased proliferation. Proliferation as a percentage of the 

non antagonised group was 109.7 +/- 12.6% in the 10-5M group and 117.7 +/- 9% for 

the 10-6M group. Neither was statistically significant from the treatment only group. 
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C 

Figure 3.112 Graph A-C showing a direct comparison of proliferation of QGP1 cells 

treated with rosiglitazone at 10-4M (A), 10-5M (B) and 10-6M (C) when one group is 

pre treated with the antagonist GW9662 (n=8, all groups) 

 

A similar picture is seen with BON cells treated in the same way. There is a trend for 

increased proliferation on addition of the antagonist but the difference is not statistically 

significant. In the 10-4 M group, proliferation as a percentage of the non antagonised 

group was 127.3 +/- 11.8%. In the 10-5 M group, proliferation was 120.5 +/- 12.7%. 
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Figure 3.113 Graph A-B showing a direct comparison of proliferation of BON cells 

treated with rosiglitazone at 10-4M (A) and 10-5M (B) when one group is pre treated 

with the antagonist GW9662 (n=8, all groups) 
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At 1µM (1x10-6M) concentration of GW9662 full antagonism of PPARγ receptors 

should be occurring. To remove any doubts regarding inadequate antagonist 

concentration the direct comparison experiments were repeated again for both QGP1 

and BON with a concentration of 10µM GW9662 (results not shown). Again, 

proliferation was not significantly increased with addition of the antagonist. 

 



 209 

 

 

CHAPTER 4 

 

DISCUSSION 
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4.1 Human Pancreatic Tumours 

At the outset of the project, there was a selection of pancreatic neuroendocrine tumours 

held in the ‘tumour bank’ within the Academic Department of Endocrinology at St 

Bartholomew’s Hospital. My initial aim was to use these tumour samples for extraction 

of RNA and subsequent PCR work to look at PPARγ expression. Further studies 

planned involved PCR (conventional ± real time) to identify any variations in other cell 

cycle markers. Unfortunately, it was found that there were too few samples that gave 

good quality reliable RNA for any substantial results to be gained. Attempts at gaining 

further fresh tissues samples led to the submission for ethical approval for collection 

and work on fresh tissue samples from two sites, including The Hammersmith Hospital 

(with the help of Professor A Grossman and Mr John Lynn respectively). Although 

agreement was gained in principle the incidence of resection was too low, even across 

two sites, for this to become viable given the time constraints of the project. Further 

work on human tissue samples was therefore halted. 

 

All human tissue samples available to us were subjected to RNA extraction, reverse 

transcription and PCR for GAPDH and PPARγ. Of the eight subjects (5 insulinomas 

and 3 gastrinomas) PPARγ expression was identified variably in the majority. The 

simple interpretation of this finding is that PPARγ is expressed in the majority of 

insulinomas and gastrinomas. This suggests that the majority of insulinomas and 

gastrinomas may be susceptible to the effects of ligands of this receptor such as the 

thiazolidinediones. Ultimately, proliferation could be affected by interaction with this 

receptor. There is good evidence to suggest that the thiazolidinediones, such as 

rosiglitazone, can reduce the proliferation of certain types of cancers of adipose tissue 

(Tontonoz et al, 1997), colon (Sarraf et al, 1998), breast (Mueller et al, 1998), prostate 
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(Mueller et al, 2000), liver (Rumi et al, 2001), lung (Tsubouchi et al, 2000), and 

pancreatic acinar tissue (Elnemr et al, 2000). Most of these models are non-human but 

there is also evidence extending into human tumours such as liposarcoma (Demetri et al, 

1999) and prostate cancer (Mueller et al, 2000).  

 

A further aspect of the tissue collection also has to be considered: as samples were taken 

prior to the start of the project, there is no way that I can guarantee that samples were 

harvested correctly and only contain tumour, i.e. it is possible that samples could 

inadvertently contain normal pancreas along with tumour taken at the time of resection. 

This contamination would weaken the power of the study.   

 

4.2 Immunohistochemistry 

The aims of the immunohistochemistry work were multiple. Firstly, I wanted to confirm 

the presence of PPARγ within the chosen samples, then identify its cellular location, and 

quantify the strength of staining for each tissue type (insulinoma, gastrinoma, islet and 

exocrine pancreas). Subsequently, I wished to compare the different tissues types 

against each other, using total positive counts for both nuclear and cytoplasmic 

compartments. This procedure was then repeated using antibodies for p27, phospho-

p27, JAB 1, phospho-Akt and PTEN, all previously implicated in the development of 

endocrine tumours (Lidhar et al 1999, Kouvaraki et al 2006, Stanger et al 2006, 

Schleiman et al 2003, Altomare et al 2002) and compare the expression of these 

proteins with PPARγ levels. 

 

Regarding PPARγ expression in exocrine tissue and islets, I was unable to demonstrate 

any significant nuclear or cytoplasmic expression. This was confirmed with repeated 
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experiments. Good staining of positive controls suggested that the antibody was 

working correctly and staining had been optimised appropriately. That we could not 

show significant PPARγ expression in the islets is in contradiction to previous reports of 

high expression (Dubois et al 2000). Significant islet cell hyperplasia has been shown in 

mice models in which the expression of the PPARγ gene in β cells has been eliminated 

(Rosen et al 2003) suggesting both presence and a significant anti proliferative effect. 

PPARγ expression has also been shown in human pancreatic cancer cell lines Capan-1, 

AsPC-1, BxPC-3, PANC-1 and MIA PaCa-2. My results, therefore, were unexpected. 

 

My expectation that PPARγ would be widely expressed in these tissues was not 

supported by my findings. In the absence of significant previously published data in this 

area, my preliminary conclusions are that PPARγ is only expressed at very low levels in 

these tissues. 

 

Following Ki-67 analysis of the samples, it was clear that there were several tumours 

that were proliferating at a higher rate. I thought it was of interest to separate these 

tumours out from the lesser proliferating tumours to see if there was any difference in 

the expression of PPARγ. Although statistical significance was not achieved in the 

PPARγ  group, due to the low numbers, there was certainly a trend showing that higher 

proliferating tumours express PPARγ in greater proportion. 

 

The CDK inhibitor p27 is a tumour suppressor protein that acts in the nucleus to enforce 

cell cycle checkpoints. p27 inhibits and binds to many cyclin/CDK complexes, 

including cyclin D/CDK4, cyclin E/CDK2, and cyclin A/CDK2. This inhibition can 

block progression through different phases of the cell cycle. The known actions of p27 

are thus predominantly nuclear with expectation that localisation is similar. It has been 
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documented, however, that translocation of p27 from the nucleus to the cytoplasm and 

loss of p27 through proteasomal degradation can occur in certain cancers, including 

breast, prostate, gastric, lung, ovarian, pancreatic, and hepatocellular carcinomas. The 

status of p27 may be a predictor of patient outcomes in these cancers (Viglietto et al, 

2002 , Nikoleishvili et al, 2008, Claudio et al, 2002, Gamboa-Dominguez et al, 2007, 

Pateras et al, 2006, Qin et al, 2001).  

 

In this p27 series, staining was seen in both the nucleus and cytoplasm. p27 staining was 

predominantly cytoplasmic in all three endocrine tissues (insulinoma, gastrinoma and 

islets - significantly so in gastrinoma and islets). Exocrine pancreas showed slightly 

higher nuclear than cytoplasmic expression, but both at much lower levels than that of 

the endocrine tissues. There are two main points of note with these results. Firstly, it 

appears that there is significantly higher expression of p27 within all three endocrine 

tissues compared to exocrine pancreas, suggesting a more significant role for p27 within 

these tissue types. Secondly, the expected p27 expression is, in general, nuclear and 

although my findings show that there is a high level of nuclear expression of p27 there 

is also a high level of cytoplasmic staining.  

 

As mentioned above, re-localisation of p27 into the cytoplasm has been seen in various 

cancers, with the assumption that the inhibitory effects of p27 on cell cycle progression 

are reduced. Is it possible that we are seeing a re-localisation in our samples? This is 

unlikely for two reasons. Cytoplasmic staining does not appear to be high at the expense 

of nuclear staining – both show high levels. It may also be expected, that on direct 

comparison of the tissues, there would be lower nuclear and higher cytoplasmic 

expression in neoplastic tissues compared to benign tissues. This was not the case, with 

no difference found in the nuclear expression of p27 between insulinoma and islets, and 
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conversely, there was significantly lower expression of p27 in the cytoplasm of 

insulinoma.  

 

It has previously been reported that p27 is inversely related to Ki-67 index in a number 

of endocrine tissues (Lloyd et al 1997). With separation of the insulinoma group by Ki-

67 labelling, lower p27 expression was seen in both the nucleus and cytoplasm of 

samples with a higher Ki-67 index. This finding concurs with the idea that p27 is 

reduced in more highly proliferating tumours.  

 

In a study by Canavese et al (2001), immunohistochemical p27 expression in 109 

endocrine tumours of the pancreas and gastro-intestinal tract (pancreas tumours 

included 17 insulinoma, 10 gastrinoma and 5 glucagonoma) was compared with Ki-67. 

They too concluded that p27 expression was inversely related to Ki-67 labelling. 

Interestingly, however, they also found that the vast majority of pancreatic 

neuroendocrine tumours, both benign and malignant, were highly expressing p27 

(usually between 70-100%) and no difference in p27 expression could be seen between 

normal (islets), hyperplastic and corresponding tumours. Similarly, in a study by Guo et 

al (2001), increased p27 expression was seen in both benign and malignant 

neuroendocrine tumours of the pancreas and four pancreatic islet tumour cell lines as 

assessed by Western analysis. No difference was seen between benign and malignant 

tumours.  

 

Other investigators have reported anomalous over-expression of p27 in human tumour 

tissues. This includes Burkitt’s lymphoma and diffuse large B-cell lymphoma (Sanchez-

Beato et al, 1999), thyroid tumours (Baldassarre et al 1999), oesophageal squamous cell 

carcinoma (Anayama et al, 1998), and node-negative breast carcinoma (Reed et al 
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1999). Some of the possible mechanisms proposed by the authors include inactivation 

of p27 by cyclin D3, abnormal sequestration of p27 in the cytoplasm and dysregulation 

of cyclin D1 expression. 

 

Phosphorylation is a key mechanism which p27 undergoes prior to transport out of the 

nucleus and degradation. If p27 deactivation was a significant feature of pancreatic 

neuroendocrine tumours, enhanced transport out of the cell and increased phospho-p27 

levels in the cytoplasm may be expected. In this study, phospho-p27 expression has 

been shown to be overwhelmingly cytoplasmic in all tissue types. Very little nuclear 

staining was identified and there were no differences between the three endocrine 

tissues. In our JAB1 series, all tissues overwhelmingly showed cytoplasmic expression, 

with negligible nuclear staining seen. Interestingly, normal islets showed the strongest 

positive cytoplasmic staining for JAB1, significantly higher than either insulinoma or 

gastrinoma, quite the opposite to the idea that neoplastic tissues would have enhanced 

p27 transport into the cytoplasm. Interpretation of my results would therefore not 

support enhanced p27 phosphorylation and shuttling out of the nucleus in the aetiology 

of pancreatic neuroendocrine tumours. 

 

The protein kinase Akt, also known as protein kinase B (PKB), plays a pivotal role in 

tumourigenesis (Testa et al, 2001). Akt is activated by phospholipid binding and 

phosphorylation at threonine 308 by PDK1 and phosphphorylation within the C-

terminus at serine 473. Through the phosphorylation and relocalisation of key 

regulatory molecules such as Bad (Datta et al, 1997), caspase-9 (Cardone et al, 1998), 

forkhead transcription factors (Brunet et al, 1999), p21 (Zhou et al, 2001) and p27 (Shin 

et al, 2002), phospho-Akt (p-Akt) functions to promote cell survival by inhibiting 

apoptosis. Cytoplasmic relocalisation of p27 secondary to Akt mediated 
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phosphorylation at threonine 157 has been shown in human primary breast cancer 

(Viglietto et al, 2002, Shin et al 2002). In the pancreas, transgenic mice that express a 

constitutively active Akt/PKB have been shown to have a significant increase in islet 

cell mass, due largely to proliferation of insulin containing β cells (Bernal-Mizrachi et 

al, 2001).  

 

In all four tissue types, both nuclear and cytoplasmic staining was seen for p-Akt. 

Cytoplasmic expression was significantly higher than nuclear expression in all tissues. 

On comparing the tissues, there is significantly lower nuclear and cytoplasmic 

expression of p-Akt in insulinoma and gastrinoma compared to islets. This is contrary to 

the expected finding that neoplastic tissues will have higher levels of the pro-survival p-

Akt, and suggests that the phosphoinositide-3-kinase (PI3K)-Akt pathway is unlikely to 

play a major role in pancreatic neuroendocrine tumours 

 

PTEN is a tumour suppressor gene and is thought to negatively control the PI3K-Akt 

pathway. Over-expression of PTEN with subsequent influence on the expression of p-

Akt would identify this pathway as important in tumourigenesis of pancreatic 

neuroendocrine tumours. Although there is a high degree of nuclear expression seen, no 

significant difference was identified between the neoplastic cells of insulinoma and 

gastrinoma, and that of normal islets. 

 

Regarding exocrine tissue, there appears to be a fundamental difference compared to the 

endocrine tissues. Although, the pattern of staining has been similar, there are 

significantly reduced levels of expression of nearly all the cell cycle markers tested. 

With the exclusion of PPARγ, where no tissue showed significant expression, exocrine 

tissue has consistently shown lower expression of p27, phospho-p27, JAB 1, Phospho-
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Akt and PTEN compared to all three endocrine tissues whether benign or neoplastic. 

Higher levels of expression in the endocrine tissues suggest that these cell cycle 

participants are more important in the cell cycling of the endocrine tissues 

 

Despite the potential of these cell cycle participants in dysregulation, the results have 

not been able to support a significant role for p27, its phosphorylation or mislocalisation 

in the tumourigenesis of these tumours. Cellular p27 effects can be modulated by cell 

cycle pathways involving PTEN and PI3K/Akt, which have been previously implicated 

in tumourigenesis. My evidence again, does not support direct involvement of these 

pathways in our series. The high levels of expression without evidence of direct 

involvement may suggest increased expression secondary to alternate pathways as yet 

unclarified. 

 

During the course of the experimental work, insulinomas have been compared to the 

islets, being considered its control. This has been widely accepted as pancreatic islet cell 

tumours show marked cytological similarity to pancreatic islets and are therefore 

believed to originate from the endocrine pancreas. It is of interest therefore that 

Vortmeyer et al (2004) et al, have suggested that pancreatic islet cell tumours do not 

necessarily originate from islets. In MEN 1 patients with characteristic allelic deletions, 

microdissection of the tumour, surrounding acinar/ductal pancreas and islets revealed 

similar abnormalities present in the acinar/ductal samples but not in the islets, 

concluding therefore that the islets are not the origin. Use of islets as control could 

therefore be called into question. My immunohistochemical findings showed a high 

degree of similarity and behaviour between these two tissue types and comparison is 

still valid, in that, differences noted may be indicative of differences between neoplastic 

and benign behaviour. The importance of this potential embryological difference is, 
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however, noted. Methodological and theoretical difficulties in harvesting nearby 

acinar/ductal tissue and justifying its use as control material, maybe difficult to 

overcome and it is felt that this was beyond the time constraints of this project. 

 

4.3 Cell Proliferation 

Human neuroendocrine tumour cell lines CM (insulinoma), BON (carcinoid) and QGP1 

(somatostatinoma) were made available to us due to the kindness of Professor N 

Lemoine. As for the resected tumour and immunohistochemistry series, I initially 

investigated the expression of PPARγ within the cell lines. All cell lines gave good 

quality RNA and underwent conventional PCR for PPARγ. I confirmed that both BON 

and QGP 1 expressed PPARγ mRNA but CM cell line did not. All cell lines were, 

however, subject to Western blotting to confirm protein expression. Interestingly, all 

cells lines showed evidence of PPARγ protein expression including the CM cell line. 

Repeated RNA extraction and PCR, with similarly repeated protein extraction and 

Western blotting failed to clarify this inconsistency. The possibility of the discrepancy 

being due to a splice variant was considered. Splice variants have been identified and 

characterised (Chen Y, Jimenez A, Medh J, 2006). Personal communication with Dr J 

Medh confirms that the discrepancy is unlikely to be due to a splice variant. The primers 

are in the region of exons 1-6 which is common in all splice variants. On balance, it is 

the opinion of the author that CM cell line does not express PPARγ mRNA and 

consequently should not express PPARγ protein. 

 

It is also of interest that the validity of the CM cell line as a true insulinoma cell line has 

recently been called into question (Gragnoli, 2008), as various severe and consistent 

chromosomal aberrations were identified including chromosome 11 tetraploidy and 
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translocation abnormalities. Jonnakuty and Gragnoli (2007) karyotyped the CM celll 

line and confirmed its human origin but also identified 64 chromosomes with structural 

abnormalities. This information may have significant bearing on the reliability of this 

study as it has to be acknowledged that the cell lines are not truly immortalised and 

therefore are subject to potential phenotypic instability over time. 

 

Somatostatin inhibits cell proliferation and growth hormone secretion through 

interaction with SSTRs. Five SSTRs have been cloned in the human, mouse, and rat; 

and many studies have investigated the tissue distribution, expression, binding affinity 

to somatostatin, and downstream signal transduction pathways of these five receptors 

(Benali et al 2000, Fisher et al, 1998). My cell lines were subjected to RNA extraction 

and PCR for all 5 SSTRs to identify expression patterns. The results failed to confirm 

expression of any of the SSTRs in any of the cell lines. Plans for cellular proliferation 

studies following treatment of somatostatin analogues was therefore excluded from the 

project. One possible explanation for lack of expression may be that the cell lines have 

undergone too many passages and they have lost normal expression patterns. 

 

In fact, loss of SSTRs in pancreatic cancers is not unique. Although both in vitro and in 

vivo studies have shown that SSTRs mediate strong growth inhibition in many cancer 

types including pancreatic cancer, previous clinical trials of somatostatin analogues in 

the treatment of advanced pancreatic cancer have failed (Canobbio et al, 1992). A 

review of the current knowledge of somatostatin, its receptors and pancreatic cancer has 

been published by Li et al (2005). They suggested that further detailed studies are 

needed to determine the reason why functional SSTRs are not expressed or not 

sufficient in pancreatic cancer cells. 
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PPARγ agonists have been shown to have anticancer activity against a variety of 

neoplastic cells in vitro. Liposarcoma, colon, breast, prostate, thyroid, myeloid 

leukaemia, lymphoma, lung, oesophageal, gastric, glioblastoma and pancreatic cancer 

cells have all variably been shown to have reduced growth in the presence of PPARγ 

ligands.  In vivo studies are much less common. Originally, the identification that 

ligands of PPARγ could induce terminal differentiation in normal preadipocytes lead to 

attempts to induce differentiation of human liposarcoma cells, both in vitro and in vivo. 

Demitri et al (1999) gave the TZD troglitazone to a series of patients with liposarcoma 

which resulted in a retardation of growth and induction of differentiation in these 

tumours. Additionally, treatment of patients with advanced prostate cancer with 

troglitazone has shown to cause a high incidence of stabilization of prostate- specific 

antigen (Mueller et al. 2000). Sarraf et al (1998) showed that trogligazone decreased the 

growth of colon cells in vitro as well as when growing as xenographs in nude mice.  

 

In contrast to PPARα knockout mice, PPARγ ablation is lethal. Initial attempts to 

generate a PPARγ knockout mouse model showed that null embryos die at about day 10 

from impaired placental development (Barak et al, 1999). Subsequently the 

heterozygous state and tissue specific models have been developed (Review by Gray et 

al 2005). Rosen et al. (2003) generated a tissue specific β-islet cell mouse model in 

which the expression of the PPARγ gene in β-cells was eliminated (βγKO mice). These 

mice were found to have significant islet cell hyperplasia compared to control. 

Interestingly, the islets did not proliferate indefinitely suggesting that other growth 

regulating factors eventually come into play. This may also explain why tumour 

formation in the islet tissue of βγKO mice was not observed.  
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Most research has, of course, been directed at the metabolic consequences of PPARγ 

knockout models but several studies have concentrated on the potential effects on 

tumour formation. Heterozygous germ line deletions of PPARγ (PPARγ+/-) have been 

shown to be more susceptible to the formation of colonic tumours. After the injection of 

the colon specific carcinogen azoxymethane, all of the PPARγ +/- mice but only 50% of 

the wild type were dead from colonic cancer by 36 weeks (Girnun et al. 2001). 

Heterozygous PPARγ+/- mice have also been shown to have a greater susceptibility to 

develop both breast and ovarian cancers after exposure to the carcinogen 7,12 

dimethylbenzanthracene suggesting a potential protective effect of PPARγ. Lu et al 

(2005), utilisised heterozygous PPARγ+/- mice to show a significant increase in 

susceptibility to N-methyl-N-nitrosourea induced gastric cancer compared to the wild 

type at 10 weeks (89.5% vs 55.5%). In the same experiments, simultaneous 

administration of troglitazone showed a significant reduction in incidence of gastric 

cancer in the wild type (55.5% to 9%) with a reduced effect seen in the heterozygous 

PPARγ+/- group (89.5 to 80%). They concluded that PPARγ suppresses gastric 

carcinogenesis, troglitazone is chemopreventative and dependent on the PPARγ 

receptor.  

 

Methods of examining overexpression of PPARγ have been developed. Garcia-Bates et 

al. (2008) used a lentiviral vector for PPARγ gene delivery and transduced multiple 

myeloma cells. Overexpression decreased multiple myeloma cell proliferation and 

induced spontaneous apoptosis even in the absence of an external ligand. The cells were 

also much more sensitive to ligand induced apoptosis. Bren Mattison et al (2008) 

developed transgenic mice after construction and administration of SP-C/PPARγ 

transgene. Mice were then subjected to injection of a standard intraperitoneal dose of 

urethane, a lung carcinoma carcinogen. After 20 weeks there was a 75% reduction in the 
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number of tumours identified in the PPARγ over expressing mice. In contrast to the 

predominantly protective effects seen with PPARγ, a transgenic mouse model has 

shown breast cancer tumours with accelerated kinetics. Saez et al. (2003) generated a 

transgenic mouse model that expressed a constitutionally active form of PPARγ by 

fusing the activation domain of herpes simplex virus Vp16 protein to PPARγ1. The 

effect of mammary specific VpPPARγ expression was evaluated by generating 

transgenic mice expressing it under the control of mouse mammary tumour virus 

(MMTV) promoter. These MMTV-VpPPARγ mice were morphologically identical to 

the wild type. On breeding with a known breast cancer mouse (MMTV-PyV), 

PyV/VpPPARγ females developed tumours with greatly accelerated kinetics and 

reduced survival. 

 

Currently, I am unaware of any reported cellular proliferation studies on human 

neuroendocrine tumour cell lines investigating the effects of PPARγ agonists. Following 

a period of optimisation all three cell lines were treated with varying doses of 

rosiglitazone. Effects on CM cell line were limited to the highest concentration (10-4M) 

of rosiglitazone. Effects on BON were seen at the two highest concentrations (10-4M 

and 10-5M) whereas QGP1 cells are shown to be the most sensitive been affected upto 

concentrations of 10-6M. The potential role of DMSO having a toxic effect on the cell 

lines that would explain the findings was excluded, except at the highest concentration 

of rosiglitazone treated QGP1 cells. BON and QGP1 cell lines (CM not being tested) 

recovered following a period of treatment with rosiglitazone confirming that the effects 

were mediated by the treatment and that treatment effects were not ultimately life 

threatening to the cells. There is no toxicity data published on the antagonists T0070907 

and GW9662 by the manufactures and an internet search has not revealed any evidence 

that the antagonists have a direct toxic effect on cell cultures. 
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PPARγ antagonist studies were performed on BON and QGP1 to identify whether the 

effects of rosiglitazone on these cell lines could effectively be blocked, thus confirming 

that the effects seen are mediated by the PPARγ receptor. Unexpectedly, the effects 

could only be partially blocked. This was then confirmed by treatment with a second 

antagonist and subsequent direct comparison studies. These studies did not show any 

significant increased proliferation in the group pretreated with the PPARγ antagonist. I 

conclude therefore that the PPARγ agonist rosiglitazone has a significant anti-

proliferative effect on both BON and QGP1 cell lines but it appears that this effect may 

not be mediated by the PPARγ receptor. Similar findings have been reported in pituitary 

cell lines treated with rosiglitazone (Emery et al, 2006) and pancreatic adenocarcinoma 

(Galli et al, 2004). Indeed, evidence that the anti-proliferative effects of TZDs are 

independent of PPARγ receptor has been published (Palakurthi et al 2001) where 

tumour bearing mice injected with either PPARγ -/- or PPARγ+/+ embryonic stem cells 

were treated with troglitazone. Tumour suppression was seen similarly in both mouse 

models suggesting an anti-proliferative effect of troglitazone, but one that is 

independent of the PPARγ receptor. 

 

Explanations for this independent action are speculative, Galli et al, identified 

significant inhibition of matrix metallopeptidase 2 (MMP 2) gene expression. Proteins 

of the MMP family are involved in the breakdown of extracellular matrix in normal 

physiological processes, such as embryonic development, reproduction, and tissue 

remodeling, as well as in disease processes such as arthritis and metastasis. The same 

group identified that TZD treatment inhibits fibrinolytic activity in both PPARγ 

expressing and non-expressing cells and that this effect was correlated with 

upregulation of plasminogen activator inhibitor (PAI-1), a major physiological inhibitor 

of fibrinolysis. Another finding of TZD treatment which is independent of the PPARγ 
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receptor is the activation of 5' adenosine monophosphate-activated protein kinase 

(AMPK) (Lebrasseur et al 2006, Boyle et al, 2006). AMPK is mainly involved in 

cellular metabolism and acts as a switch regulating several intracellular systems 

including the cellular uptake of glucose, the β-oxidation of fatty acids and the 

biogenesis of glucose transporter 4 (GLUT 4) and mitochondria. It also has some effects 

on pathways involved in cellular cycling through molecules such as PI3K, Akt and 

mTOR.  

 

Interestingly, Han and Roman (2006) reported that rosiglitazone reduced the 

phosphorylation of Akt and increased PTEN protein expression in non–small cell lung 

carcinoma (NSCLC) cells and this was associated with inhibition of proliferation. These 

effects were blocked or diminished by GW9662 (PPARγ antagonist, as used in this 

thesis). When the cells underwent transfection with a CMX-PPARγ over-expression 

vector, the effects of rosiglitazone on Akt, PTEN, and cell growth were restored even in 

the presence of GW9662. They also noted that rosiglitazone increased the 

phosphorylation of AMP-activated protein kinase (AMPK), whereas it decreased 

phosphorylation of p70 ribosomal protein S6 kinase (p70S6K), a downstream target of 

mTOR. Of note, GW9662 did not affect the phosphorylation of AMPK and p70S6K 

protein and the inhibitory effect of rosiglitazone on NSCLC cell growth was enhanced 

by the mTOR inhibitor rapamycin. Their conclusion was that rosiglitazone can inhibit 

NSCLC growth through PPARγ-dependent signals that inhibit Akt and stimulate PTEN. 

Also, through PPARγ-independent signals, rosiglitazone up-regulates AMPK, thereby 

down-regulating the mTOR/p70S6K pathway, which further contributes to growth 

inhibition. 
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Taken together, it would appear that the PPARγ independent actions maybe modulated 

through AMPK and mTOR pathways. Investigation of these pathways using the cell 

lines pre and post treatment with rosiglitazone would be of considerable interest. 
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4.4 Summary  

The main aim of the project was to identify the expression of PPARγ in various 

pancreatic neuroendocrine tumour tissue types. I conclude that PPARγ is expressed to 

variable degrees in pancreatic neuroendocrine tumours. This is based on the evidence 

presented from the human tissue samples expressing in the majority of samples, despite 

poor quality, and that there was good evidence PPARγ was being expressed in the 

human neuroendocrine tumour cell lines BON and QGP1. These findings unfortunately, 

cannot be substantiated by the immunohistochemical results which failed to show 

widespread PPARγ expression.  

 

Further aspects of the project have identified that it is unlikely that cyclin dependent 

kinase p27 is directly responsible for proliferation of these tumours. Phosphorylation 

and transport by JAB1 do not appear to be playing a vital role. Also, modulators of the 

cell cycle that influence p27 including p-Akt and the PI3K/Akt pathway influenced by 

PTEN do not appear to playing a primary vital role. 

 

The PPARγ agonist rosiglitazone does have an anti-proliferative effect on human 

neuroendocrine cell lines BON and QGP1 at higher concentrations, but the evidence 

suggests that this action may not be mediated by the PPARγ receptor. 
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4.5 Future Work Considerations 

There are various aspects of this project that could be expanded upon to take the work 

done so far further. Firstly, regarding frozen tissue samples, I have found significant 

difficulties utilising previously harvested samples. This may have been due to the 

inherent difficulties in working with pancreatic tissue because of the digestive enzymes 

it produces, the harvesting technique or the conditions of storage. To optimise future 

work, samples must be resected by a surgeon understanding the tissue requirements and 

the samples would have to undergo either RNA extraction or be frozen and held at -

80oC immediately. To obtain enough samples, a multicentre collection strategy would 

have to be employed with ethical consent gained over several areas. If a reasonable 

tumour series could be gained then I would firstly repeat the PPARγ expression studies 

and investigate p27 expression. Further studies would depend on the results but due to 

the clinical importance of somatostatin analogues in neuroendocrine tumours, I would 

also like to study the expression of the somatostatin receptor subtypes. Real time PCR 

would be employed rather than conventional and results would ideally be related to the 

clinical aspects of the tumour. 

 

A surprising aspect of the immunohistochemical work was the low level of expression 

of PPARγ in either exocrine, endocrine or cancerous tissues, despite good positive 

control staining. It would be interesting to repeat this series with alternative PPARγ 

antibodies. 

 

With the cell proliferation studies, there are multiple possibilities for further work as 

very little work has been published in this area. The first set of studies that I would 

perform would be to assess the effects on proliferation of different PPARγ agonists such 



 228 

as pioglitazone. The relative efficacies could then be determined. Further studies would 

be aimed at determining which cell cycle markers are being affected by the reduction in 

proliferation. Given the emphasis of the MD on the expression of p27 and its regulatory 

proteins, we would investigate the effects on p27 following treatment of the cell lines 

with PPARγ agonists. If significant effects were found, further investigation into the 

effect on p27 modulators such as JAB1, p-Akt and PTEN would be performed.  

 

As the findings of the immunohistochemistry, did not suggest a significant role for p27 

involvement in pancreatic neuroendocrine tumour development, it would be of interest 

to investigate alternative cell cycle pathways such as p21 and its related regulatory 

proteins. As discussed earlier, the PPARγ-independent anti-proliferative effects of 

rosiglitazone maybe due to pathways involving AMPK and mTOR, both of which 

would be targets for future work. 
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Immunohistochemistry counting sheet 
 
Immuno grid explanation: 

The grid is split into 5 large squares each representing one high powered field as seen 

on the computer screen. 

 

Each large square is split into columns representing: 

nuclear staining  

cytoplasmic staining  

 

There are 5 rows to each large square. The first four represent strength of staining: 

strong 

moderate 

weak 

negative 

The fifth row contains the total number of cells that has been counted in each field. This 

will be a number out of approximately one hundred 

 

            Nuclear           Cytoplasmic 

strong   

moderate   

weak   

negative   

No. of cells counted   
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Working sheet 
 

ANTIBODY:      DATE: 

SLIDE NUMBER:     TUMOUR/NORM/ISLET: 

 

 

          

          

          

          

     

 

 

 

Total cells counted =  

 

 NEGATIVE WEAK MEDIUM STRONG 

NUCLEAR     

CYTOPLASMIC     

 

Comments: 
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Immunohistochemistry data tables 
PPARγγγγ - TUMOUR SAMPLES - INSULINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 0 100 0 0 0 0 0 100 0 0 

2 0 0 30 70 30 0 0 0 0 100 0 0 

3 0 0 0 100 0 0 0 0 0 100 0 0 

5 0 0 0 100 0 0 0 0 0 100 0 0 

6 0 0 0 100 0 0 0 0 0 100 0 0 

7 0 0 0 100 0 0 0 0 0 100 0 0 

8 0 0 0 100 0 0 0 0 0 100 0 0 

9 0 0 0 100 0 0 0 0 0 100 0 0 

10 0 0 0 100 0 0 0 0 0 100 0 0 

11 0 0 0 100 0 0 0 0 0 100 0 0 

12 0 0 0 100 0 0 0 0 0 100 0 0 

13 0 0 39.7 60.3 39.7 0 0 0 0 100 0 0 

14 0 0 0 100 0 0 0 0 0 100 0 0 

15 12.3 38.6 33.6 15.5 84.5 50.9 0 0 0 100 0 0 

17 0 0 0 100 0 0 0 0 0 100 0 0 

18 0 0 0 100 0 0 0 0 0 100 0 0 

19 0 0 1 99 1 0 0 0 0 100 0 0 

20 0 0 2.4 97.6 2.4 0 0 0 0 100 0 0 

23 0 0 0 100 0 0 0 0 0 100 0 0 

25 0 0 8.3 91.7 8.3 0 0 0 9 94 9 0 

AV 0.62 1.93 5.75 91.71 8.30 2.55 0.00 0.00 0.45 99.70 0.45 0.00 

SEM 0.62 1.93 2.82 4.68 4.68 2.55 0.00 0.00 0.45 0.30 0.45 0.00 
 
GASTRINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

4 0 0 0 100 0 0 0 0 0 100 0 0 

22 0 0 5.6 94.4 5.6 0 0 0 0 100 0 0 

24 0 0 0 100 0 0 0 0 0 100 0 0 

AV 0 0 1.87 98.13 1.87 0 0 0 0 100 0 0 

SEM 0 0 0.72 0.72 0.72 0 0 0 0 0 0 0 
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PPARγγγγ - ISLET SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 0 100 0 0 0 0 0 100 0 0 

2 0 0 6.3 93.7 6.3 0 0 0 0 100 0 0 

4 0 0 0 100 0 0 0 0 0 100 0 0 

5 0 0 0 100 0 0 0 0 0 100 0 0 

6 0 0 0 100 0 0 0 0 0 100 0 0 

7 0 0 0 100 0 0 0 0 0 100 0 0 

8 0 0 0 100 0 0 0 0 0 100 0 0 

9 0 0 0 100 0 0 0 0 0 100 0 0 

10 0 0 0 100 0 0 0 0 0 100 0 0 

11 0 0 0 100 0 0 0 0 0 100 0 0 

12 0 0 0 100 0 0 0 0 0 100 0 0 

13 0 0 0 100 0 0 0 0 0 100 0 0 

14 0 0 0 100 0 0 0 0 0 100 0 0 

15 0 0 8.5 91.5 8.5 0 0 0 0 100 0 0 

17 0 0 0 100 0 0 0 0 0 100 0 0 

18 0 0 0 100 0 0 0 0 0 100 0 0 

20 0 0 7.8 92.2 7.8 0 0 0 0 100 0 0 

23 0 0 0 100 0 0 0 0 0 100 0 0 

25 0 0 7 93 7 0 0 0 0 100 0 0 

AV 0 0 1.56 98.44 1.56 0 0 0 0 100 0 0 

SEM 0 0 0.70 0.70 0.70 0 0 0 0 0 0 0 
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PPARγγγγ - EXOCRINE PANCREAS SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 0 100 0 0 0 0 0 100 0 0 

2 0 0 3.5 96.5 3.5 0 0 0 0 100 0 0 

3 0 0 0 100 0 0 0 0 0 100 0 0 

5 0 0 0 100 0 0 0 0 0 100 0 0 

6 0 0 0 100 0 0 0 0 0 100 0 0 

7 0 0 0 100 0 0 0 0 0 100 0 0 

8 0 0 0 100 0 0 0 0 0 100 0 0 

9 0 0 0 100 0 0 0 0 0 100 0 0 

10 0 0 0 100 0 0 0 0 0 100 0 0 

11 0 0 0 100 0 0 0 0 0 100 0 0 

12 0 0 0 100 0 0 0 0 0 100 0 0 

13 0 0 0 100 0 0 0 0 0 100 0 0 

14 0 0 0 100 0 0 0 0 0 100 0 0 

15 0 0 7 93 7 0 0 0 0 100 0 0 

17 0 0 0 100 0 0 0 0 0 100 0 0 

18 0 0 0 100 0 0 0 0 0 100 0 0 

19 0 0 3.2 96.8 3.2 0 0 0 0 100 0 0 

20 0 0 0 100 0 0 0 0 0 100 0 0 

23 0 0 0 100 0 0 0 0 0 100 0 0 

25 0 0 0 100 0 0 0 0 0 100 0 0 

AV 0 0 0.69 99.32 0.69 0 0 0 0 100 0 0 

SEM 0 0 0.40 0.40 0.40 0 0 0 0 0 0 0 
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p27 - TUMOUR SAMPLES 
INSULINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 2.8 97.2 2.8 0 0 34.9 46.6 18.5 81.5 34.9 

2 0 1 33.2 65.8 34.2 1 0.2 3 78.7 18.1 81.9 3.2 

3 0 0 10.3 89.7 10.3 0 15.3 65.5 9.3 9.9 90.1 80.8 

5 10.5 39.5 15.3 34.7 65.3 50 8.2 67.8 7.7 16.3 83.7 76 

6 4.6 20.2 51.1 24.1 75.9 24.8 2.5 22.4 64.6 10.5 89.5 24.9 

7 2.5 14.3 39.7 43.5 56.5 16.8 0.8 6 49.8 43.4 56.6 6.8 

8 7.1 32.2 46.4 14.3 85.7 39.3 0 7.5 61 31.4 68.5 7.5 

9 56.5 30 7.7 5.8 94.2 86.5 0 0 0 100 0 0 

10 2.1 10.3 56.9 30.7 69.3 12.4 0 0.9 53.6 48.6 54.5 0.9 

11 2.9 9.1 19.5 68.5 31.5 12 1.7 6.5 18.9 72.9 27.1 8.2 

12 11.4 35.4 39.5 13.7 86.3 46.8 0.6 8.9 72.3 18.2 81.8 9.5 

13 2.6 9 19.2 69.2 30.8 11.6 2.4 19.8 28.2 49.6 50.4 22.2 

14 16 73.7 7.3 3 97 89.7 0.9 6.6 82.7 9.8 90.2 7.5 

15 16 37 30.4 6.6 83.4 53 4.2 16.6 66.8 12.4 87.6 20.8 

17 44.1 36.6 14.6 4.7 95.3 80.7 6.3 73.7 15.3 4.7 95.3 80 

18 17.4 75.8 4.6 2.2 97.8 93.2 2.8 76.2 16.6 4.4 95.6 79 

19 30.1 41 16.9 12 88 71.1 4.3 39.8 46.7 9.2 90.8 44.1 

20 23.7 42.1 28.1 16.1 93.9 65.8 1.2 27.5 64.9 6.4 93.6 28.7 

23 18.9 22.2 41.1 17.8 82.2 41.1 1.1 9.4 72.8 16.7 83.3 10.5 

25 31.6 42.5 20.2 5.7 94.3 74.1 2.6 46.1 40.4 10.9 89.1 48.7 

AV 14.90 28.60 25.24 31.27 68.74 43.50 2.76 26.96 44.85 25.60 74.56 29.71 

SEM 3.51 4.84 3.64 6.81 6.81 7.22 0.83 5.80 5.86 5.66 5.63 6.41 
 
 
GASTRINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

4 16.8 39.6 31.1 12.5 87.5 56.4 0 1.1 92.7 6.2 93.8 1.1 

22 9.8 40.2 43.3 6.7 93.3 50 0 73.2 20.3 6.5 93.5 73.2 

24 3.1 10.2 37.8 49 51.1 13.3 0 2 92.9 5.1 94.9 2 

AV 9.90 30.00 37.40 22.73 77.30 39.90 0.00 25.43 68.63 5.93 94.07 25.43 

SEM 3.96 9.90 3.53 13.24 13.21 13.43 0.00 23.88 24.17 0.43 0.43 23.88 
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p27 - ISLET SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 6.7 34.4 58.9 41.1 6.7 9.1 23.4 32 35.5 64.5 32.5 

2 0 0 10.7 89.3 10.7 0 48 38.7 10.7 2.6 97.4 86.7 

4 0 0 4.4 95.6 4.4 0 56.9 24.4 12.1 6.6 93.4 81.3 

5 0 0 5 95 5 0 12.2 82.3 5 0 99.5 94.5 

6 0 0 3.4 96.6 3.4 0 50.7 33.8 13.2 2.3 97.7 84.5 

7 2.5 9.9 15.5 82.1 27.9 12.4 37.7 47 14.4 0.9 99.1 84.7 

8 7.3 25.1 49.8 17.8 82.2 32.4 21.1 51.8 21.6 5.5 94.5 72.9 

9 5.5 16.5 57.7 20.3 79.7 22 20.2 60.3 17.2 2.3 97.7 80.5 

10 7.3 13 60.1 19.6 80.4 20.3 10.3 13 60.1 16.6 83.4 23.3 

11 5.8 33.9 44.5 15.8 84.2 39.7 30.6 45.8 14.5 9.1 90.9 76.4 

12 4.9 28 51.1 16 84 32.9 12.4 37.1 41.4 9.1 90.9 49.5 

13 23.6 40.2 24.7 11.5 88.5 63.8 2.7 32.6 56.2 8.7 91.5 35.3 

14 53.6 24.3 14.5 7.6 92.4 77.9 41.7 35.1 14.9 8.3 91.7 76.8 

15 63.5 25.3 7 4.2 95.8 88.8 17.9 60.7 14.2 7.2 92.8 78.6 

17 27.6 36.2 29.1 7.1 92.9 63.8 15.1 58.1 22.2 4.6 95.4 73.2 

18 33.1 41.2 22.1 3.6 96.4 74.3 17.8 60.2 18.9 3.1 96.9 78 

20 44.7 42.4 8.3 4.6 95.4 87.1 9.4 64.3 20.7 5.6 94.4 73.7 

23 29.8 37.6 22.9 9.7 90.3 67.4 9.4 59.6 24.5 6.5 93.5 69 

25 12.2 20.4 57.6 9.8 90.2 32.6 17.6 51 25 6.4 93.6 68.6 

AV 16.92 21.09 27.52 35.01 65.52 38.01 23.20 46.27 23.09 7.42 92.57 69.47 

SEM 4.56 3.50 4.63 8.46 8.32 7.29 3.70 3.94 3.40 1.79 1.78 4.53 
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p27 - EXOCRINE PANCREAS SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 8 16.8 75.2 24.8 8 0 0 0 100 0 0 

2 0 5.6 18.4 76 24 5.6 0 3.3 11.9 84.8 15.2 3.3 

3 0 1 6 93 7 1 0 0 4.8 95.2 4.8 0 

5 0 0 11.3 88.7 11.3 0 0 0 5.6 94.4 5.6 0 

6 0 5.8 17.2 77 23 5.8 0 1.3 6 92.7 7.3 1.3 

7 6.6 10.5 13.5 69.4 30.6 17.1 0 0 0 100 0 0 

8 2.4 6.4 19.8 71.4 28.6 8.8 0 0 0 100 0 0 

9 6.8 14.3 19.3 59.6 40.4 21.1 0 0 0 100 0 0 

10 0.3 7.4 20.3 72 28 7.7 0 0 0 100 0 0 

11 1.5 10.6 31.5 56.4 43.6 12.1 0 0.2 29 70.8 29.2 0.2 

12 0.8 4.2 20.2 74.8 25.2 5 0.6 4 31.4 64 36 4.6 

13 3 4 19 74 26 7 0.4 4 64.1 31.5 68.5 4.4 

14 4.1 8.6 13.1 74.2 25.8 12.7 0 2.5 33.8 63.7 36.3 2.5 

15 1.9 3.9 8.2 86 14 5.8 0.2 4.5 23.3 72 28 4.7 

17 2.4 5.7 23.6 68.3 31.7 8.1 0.4 3.9 41.9 53.8 46.2 4.3 

18 4.4 9.4 21.2 65 35 13.8 1.4 4.4 32.4 61.8 38.2 5.8 

19 5.2 8.2 14.7 71.9 28.1 13.4 1 4 21.9 73.1 26.9 5 

20 0 3.6 15 81.4 18.6 3.6 0 0 8.4 91.6 8.4 0 

23 4.4 14.4 18.4 59.2 37.2 18.8 0 1.6 14.8 83.6 16.4 1.6 

25 3.7 12.1 18.7 65.5 34.5 15.8 0 0 6.5 93.5 6.5 0 

AV 2.38 7.19 17.31 72.95 26.87 9.56 0.20 1.69 16.79 81.33 18.68 1.89 

SEM 0.51 0.89 1.24 2.13 2.08 1.30 0.09 0.42 3.92 4.29 4.29 0.49 
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Phospho-p27 - TUMOUR SAMPLES 
INSULINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 6.7 93.3 6.7 0 0 27.7 60.7 11.6 88.4 27.7 

2 0 0 0 100 0 0 4.1 69.6 25.6 0.7 99.3 73.7 

3 0 0 0 100 0 0 6.1 57.9 26.3 9.7 90.3 64 

5 0 0 6.7 93.3 6.7 0 1.1 28.9 63.2 6.8 93.2 30 

6 0 0 0 100 0 0 4.3 24.8 58.9 12 88 29.1 

7 0 0 0 100 0 0 0 56.4 29.4 14.2 85.8 56.4 

8 0 0 0 100 0 0 5.6 54.1 39.1 1.2 98.8 59.7 

9 0 0 0 100 0 0 5 84.6 4.6 5.8 94.2 89.6 

10 0 0 0 100 0 0 1.2 4.8 33.4 60.6 39.4 6 

11 0 0 0 100 0 0 6.7 37.9 50.3 5.1 94.9 44.6 

12 0 0 0 100 0 0 18.4 76.4 5.2 0 100 94.8 

13 0 0.1 5 94.9 5.1 0.1 0 3.2 16.1 80.7 19.3 3.2 

14 0 0 0 100 0 0 3.4 82.4 13.4 0.8 99.2 85.8 

15 0 0 12 88 12 0 0 2.3 30 67.7 32.3 2.3 

17 0 0 0 100 0 0 0 11.4 76.4 12.2 87.8 11.4 

18 0 0 0 100 0 0 1.5 12.5 61.9 24.1 75.9 14 

19 0 0 0 100 0 0 0 2.4 14.2 83.4 16.6 2.4 

20 0 0 0 100 0 0 0 8.9 75.2 15.9 84.1 8.9 

23 0 0 0 100 0 0 1.2 75.2 15.2 8.4 91.6 76.4 

25 0 0 0 100 0 0 2.3 74.2 21.4 2.1 97.9 76.5 

AV 0 0.01 1.52 98.48 1.53 0.01 3.05 39.78 36.03 21.15 78.85 42.83 

SEM 0 0.01 0.75 0.75 0.75 0.01 0.96 6.82 5.18 6.18 6.18 7.37 
 
 
GASTRINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

4 0 0 0 100 0 0 5.1 85.4 9.5 0 100 90.5 

22 0 2.3 12 85.7 14.3 2.3 2.1 42 19.1 36.8 63.2 44.1 

24 0 0 6.1 93.9 6.1 0 3.4 52.4 39.5 4.7 95.3 55.8 

AV 0 0.77 6.03 93.20 6.80 0.77 3.53 59.93 22.70 13.83 86.17 63.47 

SEM 0 0.77 3.46 4.14 4.14 0.77 0.87 13.08 8.85 11.56 11.56 13.93 
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Phospho-p27 - ISLET SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 6.7 93.3 6.7 0 0 31.4 45.7 22.9 77.1 31.4 

2 0 0 5.3 94.7 5.3 0 0 4.2 71.2 24.6 75.4 4.2 

4 0 0 0 100 0 0 44.9 35.2 14.2 5.7 94.3 80.1 

5 0 0 0 100 0 0 0 28.7 61.2 10.9 89.9 28.7 

6 0 0 0 100 0 0 0 17.5 72.3 11.2 89.8 17.5 

7 0 0 0 100 0 0 0 8.4 80.4 11.2 88.8 8.4 

8 0 0 0 100 0 0 0 7.1 84.3 8.6 91.4 7.1 

9 0 0 0 100 0 0 0.4 11.2 83.5 4.9 95.1 11.6 

10 0 0 0 100 0 0 27.2 51.4 15.2 6.2 93.8 78.6 

11 0 0 5.4 94.6 5.4 0 3.8 56.4 35.4 4.4 95.6 60.2 

12 0 0 0 100 0 0 11.5 40.5 37.4 10.1 89.4 52 

13 0 9.7 30.1 60.2 39.8 9.7 4.4 76.4 14.1 5.1 94.9 80.8 

14 0 0 0 100 0 0 4.5 73.4 16.4 5.7 94.3 77.9 

15 0 0 6.4 93.6 6.4 0 0 28.4 61.4 10.2 89.8 28.4 

17 0 0 0 100 0 0 0 0 15.5 84.5 15.5 0 

18 0 0 0 100 0 0 2.8 70.8 24.8 1.6 98.4 73.6 

20 0 0 0 100 0 0 2.3 18.4 72.5 6.8 93.2 20.7 

23 0 0 4.3 95.7 4.3 0 0 11.4 85.1 3.5 96.5 11.4 

25 0 0 0 100 0 0 5.3 80.1 12.3 2.3 97.7 85.4 

AV 0 0.51 3.06 96.43 3.57 0.51 5.64 34.26 47.52 12.65 87.42 39.89 

SEM 0 0.51 1.61 2.10 2.10 0.51 2.64 6.10 6.53 4.23 4.23 7.20 
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Phospho-p27 - EXOCRINE PANCREAS SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 34.1 44.6 21.3 78.7 34.1 0 15.7 35.1 49.2 50.8 15.7 

2 0 0 5.2 94.8 5.2 0 0 4.6 35.2 60.2 39.8 4.6 

3 0 0 0 100 0 0 0 17.4 25.7 56.9 43.1 17.4 

5 0 0 0 100 0 0 0 15.2 75.2 9.6 90.4 15.2 

6 0 0 0 100 0 0 24.5 55.4 15.4 4.7 95.3 79.9 

7 0 0 0 100 0 0 0 0 10.2 89.8 10.2 0 

8 0 0 0 100 0 0 0 2.3 14.3 83.4 16.6 2.3 

9 0 0 0 100 0 0 0 1.2 33.4 65.4 34.6 1.2 

10 0 0 0 100 0 0 1.2 16.4 17.4 65 35 17.6 

11 0 0 9.4 90.6 9.4 0 0 10.4 33.4 56.2 43.8 10.4 

12 0 0 0 100 0 0 0 0.5 21.5 78 22 0.5 

13 0 24.2 26.7 49.1 50.9 24.2 0 0 11.5 88.5 11.5 0 

14 0 0 0 100 0 0 0 1.3 16.7 82 18 1.3 

15 0 0 9.4 90.6 9.4 0 1.2 19.7 32.4 46.7 53.3 20.9 

17 0 0 0 100 0 0 0 0 11.2 88.8 11.2 0 

18 0 0 0 100 0 0 0 20.2 42.6 37.2 62.8 20.2 

19 0 0 0 100 0 0 0.4 5.3 81.2 13.1 86.9 5.7 

20 0 0 0 100 0 0 0 0 2.5 97.5 2.5 0 

23 0 0 4.2 95.8 4.2 0 0 6.4 61.4 32.2 67.8 6.4 

25 0 0 0 100 0 0 2.1 11.3 20.1 66.5 33.5 13.4 

AV 0 2.92 4.98 92.11 7.89 2.92 1.47 10.17 29.82 58.55 41.46 11.64 

SEM 0 2.04 2.53 4.52 4.52 2.04 1.22 2.89 4.79 6.23 6.23 3.97 
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JAB1 - TUMOUR SAMPLES 
INSULINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 0 100 0 0 0 8.4 61.3 30.3 69.7 8.4 

2 0 0 3.7 96.3 3.7 0 4.1 21.4 32.8 41.7 58.3 25.5 

3 0 0 0 100 0 0 17.85 73.45 7.9 0.8 99.2 91.3 

5 0 0 0 100 0 0 78.2 8.5 7.4 5.9 94.1 86.7 

6 0 0 0 100 0 0 53.2 30.6 11.1 5.1 94.9 83.8 

7 0 0 0 100 0 0 13.5 24.6 39.7 22.2 77.8 38.1 

8 0 0 0 100 0 0 0 14.7 81.2 4.1 95.9 14.7 

9 0 0 0 100 0 0 10.4 11.5 69.9 8.2 91.8 21.9 

10 0 0 0 100 0 0 0 0 15.4 84.6 15.4 0 

11 0 0 0 100 0 0 7.3 6.2 3.1 83.4 16.6 13.5 

12 0 0 0 100 0 0 84.3 14.2 1.5 0 100 98.5 

13 0 0 0 100 0 0 0 0 6.2 93.9 6.2 0 

14 0 0 0 100 0 0 1.2 19.7 76.4 2.7 97.3 20.9 

15 0 0 0 100 0 0 42.3 34.9 17.3 5.6 94.5 77.2 

17 0 0 0 100 0 0 5.6 82.9 10.2 1.3 98.7 88.5 

18 0 0 0 100 0 0 12.9 61.8 22.2 3.3 96.8 74.7 

19 0 0 0 100 0 0 19.3 42.3 25.7 2.7 87.3 61.6 

20 0 0 0 100 0 0 0 14.8 85.2 0 100 14.8 

23 0 0 0 100 0 0 7.1 86.4 6.5 0 100 93.5 

25 0 0 0 100 0 0 0 0 12.4 87.6 12.4 0 

AV 0 0 0.19 99.82 0.19 0 17.86 27.81 29.67 24.17 75.34 45.68 

SEM 0 0 0.19 0.18 0.19 0 5.79 6.16 6.42 7.66 7.60 8.34 
 
 
GASTRINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

4 0 0 0 100 0 0 0 15.2 81.2 3.6 96.4 15.2 

22 0 0 0 100 0 0 0 0 25.3 74.7 25.3 0 

24 0 0 0 100 0 0 0 0 2.4 97.6 2.4 0 

AV 0 0 0 100 0 0 0 5.07 36.30 58.63 41.37 5.07 

SEM 0 0 0 0 0 0 0 5.07 23.40 28.30 28.30 5.07 
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JAB1 - ISLET SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 0 100 0 0 87.3 9.4 3.3 0 100 96.7 

2 0 0 0 100 0 0 77.55 15.55 6.9 0 100 93.1 

4 0 0 0 100 0 0 85.4 11.3 3.3 0 100 96.7 

5 0 0 0 100 0 0 86.4 6.4 3.2 4 96 92.8 

6 0 0 0 100 0 0 65 20.4 11.7 2.9 97.1 85.4 

7 0 0 0 100 0 0 71.4 24.6 4 0 100 96 

8 0 0 0 100 0 0 81.2 8.4 6.5 3.9 96.1 89.6 

9 0 0 0 100 0 0 76.4 15.4 7.4 0.8 99.2 91.8 

10 0 0 0 100 0 0 63.7 29.5 4.7 2.1 97.9 93.2 

11 0 0 0 100 0 0 83.8 12.3 3.9 0 100 96.1 

12 0 0 0 100 0 0 91.4 8.4 0.2 0 100 99.8 

13 0 0 0 100 0 0 53.9 46.1 0 0 100 100 

14 0 0 0 100 0 0 42.6 24.4 18.1 14.9 85.1 67 

15 0 0 0 100 0 0 15 81.3 3.7 0 100 96.3 

17 0 0 0 100 0 0 10.5 73.4 16.1 0 100 83.9 

18 0 0 0 100 0 0 34.3 50.8 13.1 1.9 98.2 85.1 

20 0 0 0 100 0 0 81.1 13.5 5.4 0 100 94.6 

23 0 0 0 100 0 0 11.2 82.4 6.4 0 100 93.6 

25 0 0 0 100 0 0 0 72.4 26.7 0.9 99.1 72.4 

AV 0 0 0 100 0 0 58.85 31.89 7.61 1.65 98.35 90.74 

SEM 0 0 0 0 0 0 6.99 6.19 1.55 0.80 0.80 2.00 
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JAB1 - EXOCRINE PANCREAS SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 0 100 0 0 0 0 12.9 87.1 12.9 0 

2 0 0 5.3 94.7 5.3 0 0 11.7 44.4 43.9 56.1 11.7 

3 0 0 0 100 0 0 0 0 5.6 94.4 5.6 0 

5 0 0 0 100 0 0 0 0 2.3 97.7 2.3 0 

6 0 0 0 100 0 0 0 0 6.7 93.3 6.7 0 

7 0 0 0 100 0 0 0 0 2.4 97.6 2.4 0 

8 0 0 0 100 0 0 0 0 0 100 0 0 

9 0 0 0 100 0 0 0 32.1 35.4 32.5 67.5 32.1 

10 0 0 0 100 0 0 0 0 0 100 0 0 

11 0 0 0 100 0 0 0 0 53.4 46.6 53.4 0 

12 0 0 0 100 0 0 0 0 2.3 97.7 2.3 0 

13 0 0 13.6 86.4 13.6 0 0 0 17.6 82.4 17.6 0 

14 0 0 0 100 0 0 0 0 0 100 0 0 

15 0 0 0 100 0 0 0 7.2 30.0 62.9 37.1 7.2 

17 0 0 0 100 0 0 0 36.4 51.1 12.5 87.5 36.4 

18 0 0 0 100 0 0 0 23.0 69.1 8.0 92.0 23.0 

19 0 0 0 100 0 0 0 0 30.7 69.3 30.7 0 

20 0 0 12.4 87.6 12.4 0 0 0 8.1 91.9 8.1 0 

23 0 0 4.2 95.8 4.2 0 0 24.3 35.7 40 60 24.3 

25 0 0 6.4 93.6 6.4 0 0 0 3.6 96.4 3.6 0 

AV 0 0 2.10 97.91 2.10 0 0 6.73 20.56 72.71 27.29 6.73 

SEM 0 0 0.94 0.94 0.94 0 0 2.69 4.80 6.95 6.95 2.69 
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p-AKT - TUMOUR SAMPLES 
INSULINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 0 0 100 0 0 3.1 78.2 18.7 0 100 81.3 

2 0 6.75 66.55 26.7 73.3 6.75 0 20.75 72.9 6.35 93.65 20.75 

3 0 6.0 80.9 13.2 86.9 6.0 0.0 44.5 47.4 8.2 91.9 44.5 

5 0 20.3 74.8 4.9 95.1 20.3 8.4 81.2 7.5 2.9 97.1 89.6 

6 5.3 39.6 46.2 8.9 91.1 44.9 8.9 76.4 12.8 1.9 98.1 85.3 

7 0.8 58.2 35.6 5.4 94.6 59 0 44.3 52.1 3.6 96.4 44.3 

8 0 0 21.5 78.5 21.5 0 0 16.2 75.4 8.4 91.6 16.2 

9 0 9.7 86.4 3.9 96.1 9.7 2.3 86.2 11.5 0 100 88.5 

10 3.2 47.2 24.4 21.2 74.8 50.4 4.3 83.7 10.2 1.8 98.2 88 

11 0 0 19.7 80.3 19.7 0 13.2 78.5 8.3 0 100 91.7 

12 0 46.4 50.1 3.5 96.5 46.4 5.4 86.4 8.2 0 100 91.8 

13 0 26.1 23.5 50.5 49.5 26.1 0.0 2.1 31.7 66.3 33.8 2.1 

14 0 0 6.8 93.2 6.8 0 0 9.2 86.1 4.7 95.3 9.2 

15 7.4 73.5 12.7 6.4 93.6 80.9 24.3 63.4 11.2 1.1 98.9 87.7 

17 0 0 3.2 96.8 3.2 0 0 4.2 92.5 3.3 96.7 4.2 

18 0 0 14 86 14 0 0 13.9 77.9 8.3 91.7 13.9 

19 9.6 18.3 31.2 41 59 27.8 0 10.7 37.7 1.7 48.4 10.7 

20 0 0 7.6 92.4 7.6 0 0 5.4 85.4 9.2 90.8 5.4 

23 0 35.3 45.8 18.9 81.1 35.3 2.4 36.3 45.2 16.1 83.9 38.7 

25 3.1 64.7 31.7 0.5 99.5 67.8 34.2 36.2 29.6 0 100 70.4 

AV 1.47 22.60 34.13 41.61 58.19 24.06 5.33 43.88 41.11 7.19 90.32 49.21 

SEM 0.63 5.52 5.89 8.60 8.58 5.86 2.04 7.22 6.86 3.25 3.92 8.13 
 
 
GASTRINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

4 0 12.4 68.9 18.7 81.3 12.4 0 24.9 64.2 10.9 89.1 24.9 

22 0 0 10.15 89.85 10.15 0 0 6.55 88.3 5.15 94.85 6.55 

24 0 0 20.3 79.7 20.3 0 0 5 87.5 7.5 92.5 5 

AV 0 4.13 33.12 62.75 37.25 4.13 0 12.15 80 7.85 92.15 12.15 

SEM 0 4.13 18.13 22.22 22.22 4.13 0 6.39 7.90 1.67 1.67 6.39 
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p-AKT - ISLET SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 20.4 53.4 26.2 73.8 20.4 12.6 73.4 13.1 0.9 99.1 86 

2 0 6.8 52.4 40.9 59.2 6.8 0.0 8.5 81.6 10.0 90.1 8.5 

4 6.1 31.7 38.4 23.8 76.2 37.8 10.4 73.8 13.7 2.1 97.9 84.2 

5 0 38.3 53.2 8.5 91.5 38.3 0 85.2 10.6 4.2 95.8 85.2 

6 25.4 50.4 16.2 8 92 75.8 43.6 36.2 19.3 1.9 99.1 79.8 

7 45.3 45.2 9.5 0 100 90.5 82.8 12.7 4.5 0 100 95.5 

8 0 29.4 69.4 1.2 98.8 29.4 6.1 86.2 7.7 0 100 92.3 

9 0 8.9 83.4 7.7 92.3 8.9 42.7 54.1 3.2 0 100 96.8 

10 0 3.2 15.4 81.4 18.6 3.2 0 9.1 82.3 8.6 91.4 9.1 

11 46.8 40.7 12.5 0 100 87.5 51.2 46.7 2.1 0 100 97.9 

12 0 9.9 21.3 68.8 31.2 9.9 8.6 75.1 16.3 0 100 83.7 

13 0 10 75.4 14.6 85.4 10 2.1 89.4 8.5 0 100 91.5 

14 4.6 64.5 24.1 6.8 93.2 69.1 4.8 83.7 11.1 0.4 99.6 88.5 

15 19.4 38.9 41.2 0.5 99.5 58.3 11 68.4 18.4 2.2 97.8 79.4 

17 0 11.3 75.2 13.5 86.5 11.3 13.2 82.3 4.5 0 100 95.5 

18 0 17.4 67.7 14.9 85.1 17.4 3.7 83.9 9.4 3 97 87.6 

20 8.6 45.3 40 6.1 93.9 53.9 0 11.2 87.6 1.2 98.8 11.2 

23 4.3 59.3 35 1.4 98.6 63.6 0 78.3 20.4 1.3 98.7 78.3 

25 0 13.7 74.8 14.5 88.5 13.7 6.3 70.7 22.5 0.5 99.5 77 

AV 8.45 28.70 45.18 17.83 82.33 37.14 15.74 59.41 22.99 1.91 98.14 75.16 

SEM 3.45 4.37 5.59 5.23 5.24 6.76 5.20 6.75 6.36 0.66 0.66 6.85 
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p-AKT - EXOCRINE PANCREAS SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 0 61.2 24.3 14.5 85.5 61.2 0 9.9 85.1 5 95 9.9 

2 0 0 0 100 0 0 0 3.7 28.7 67.6 32.4 3.7 

3 0 7.2 24.7 68.1 31.9 7.2 0 7.5 85.4 7.1 92.9 7.5 

5 0 0 6.3 93.7 6.3 0 0 3.2 93.2 3.6 96.4 3.2 

6 0 19.4 53.1 27.5 72.5 19.4 0 28.1 69.3 2.6 97.4 28.1 

7 0 19.2 51.2 29.6 70.4 19.2 24.1 54.3 20.2 1.4 98.6 78.4 

8 0 0 5.6 94.4 5.6 0 0 4.2 87.9 7.9 92.1 4.2 

9 0 0 13.2 86.8 13.2 0 1.9 68.5 29.6 0  100 70.4 

10 0 0 3.2 96.8 3.2 0 0 0 5.7 94.3 5.7 0 

11 0 5.3 32.5 62.2 37.8 5.3 0 0 31 69 31 0 

12 0 0 4.3 95.7 4.3 0 0 6.4 91.2 2.4 97.6 6.4 

13 0 4.4 74.2 21.4 78.6 4.4 0 10.2 82.1 7.7 92.3 10.2 

14 0 11.4 59.7 28.9 71.1 11.4 0 14.2 82.4 3.4 96.6 14.2 

15 0 6.7 23.7 69.6 30.4 6.7 0 26.8 66.1 7.1 92.9 26.8 

17 0 0 7.4 92.6 7.4 0 0 12.8 83.2 4 96 12.8 

18 0 5.2 67.3 27.5 72.5 5.2 0 16.1 76.7 7.2 92.8 16.1 

19 0 0 6.7 93.3 6.7 0 0 8.1 83.4 8.5 91.5 8.1 

20 0 0 5 95 5 0 0 8.7 78.4 12.9 87.1 8.7 

23 0 5.1 87.4 7.5 92.5 5.1 0 4.9 91.5 3.6 96.4 4.9 

25 0 0 16.3 83.7 16.3 0 0 10.3 83.7 6 94 10.3 

AV 0 7.26 28.31 64.44 35.56 7.26 1.30 14.90 67.74 16.91 83.94 16.20 

SEM 0 3.15 6.10 7.49 7.49 3.15 1.20 3.96 6.19 6.11 6.01 4.76 
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PTEN - TUMOUR SAMPLES 
INSULINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 17.3 21.2 24.2 37.8 62.7 38.5 0 2.1 11.4 86.5 13.5 2.1 

2 9.4 65.8 24.1 0.7 99.3 75.2 0 0 15.7 84.3 15.7 0 

3 33.6 54.3 12.2 0.0 100.0 87.9 0.0 0.0 8.5 91.6 8.5 0 

5 48.6 20.9 9.9 20.6 79.4 69.5 0 0 14.3 85.7 14.3 0 

6 73.4 16.5 10.1 0 100 89.9 0 0 0 100 0 0 

7 69.4 11.3 6.2 13.1 86.9 80.7 0 0 3.4 96.6 3.4 0 

8 83.2 6.4 4.9 5.5 94.5 89.6 0 0 0 100 0 0 

9 21.6 53.8 16.4 8.2 91.8 75.4 0 0 0 100 0 0 

10 13.4 79.6 7 0 100 93 0 0 0 100 0 0 

11 23.1 67.5 9.4 0 100 90.6 0 0 0 100 0 0 

12 76.8 18.6 4.6 0 100 95.4 0 0 0 100 0 0 

13 0 40.0 58.5 1.6 98.4 40.0 0 0 0 100 0 0 

14 61.3 35.4 3.3 0 100 96.7 0 0 0 100 0 0 

15 38.3 51.4 10.3 0 100 89.7 0 0 56.2 43.8 56.2 0 

17 93.4 6.6 0 0 100 100 0 0 0 100 0 0 

18 29.4 63.1 7.5 0 100 92.5 0 0 0 100 0 0 

19 16.4 72.4 10.8 0.4 99.6 88.8 0 0 0 100 0 0 

20 15.4 81.4 3.2 0 100 96.8 0 0 0 100 0 0 

23 72.7 15.6 11.7 0 100 88.3 0 0 0 100 0 0 

25 51.2 45.6 3.2 0 100 96.8 0 0 0 100 0 0 

AV 42.40 41.37 11.87 4.40 95.63 83.76 0 0.11 5.47 94.42 5.58 0.11 

SEM 6.36 5.67 2.83 2.14 2.12 3.84 0 0.11 2.91 2.93 2.93 0.11 
 
GASTRINOMA 
 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

4 46.3 41.6 11 1.1 98.9 87.9 0 0 0 100 0 0 

22 21.9 70.2 8.0 0.0 100.0 92.1 0 0 0 100 0 0 

24 24.1 42.4 33.5 0 100 66.5 0 0 0 100 0 0 

AV 30.77 51.38 17.48 0.37 99.63 82.15 0 0 0 100 0 0 

SEM 7.79 9.39 8.06 0.37 0.37 7.92 0 0 0 0 0 0 
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PTEN - ISLET SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 18.7 64.8 16.5 0 100 83.5 0 0 0 100 0 0 

2 6.4 84.7 9.9 0 101 91.1 0 0 0 100 0 0 

4 65.6 21.7 10.7 2 98 87.3 0 47.4 50.2 2.4 97.6 47.4 

5 75.5 14.3 5.7 4.5 95.5 89.8 0 10.7 81.6 7.7 92.3 10.7 

6 79.9 9.6 6.1 4.4 95.6 89.5 0 0 0 100 0 0 

7 12.3 70.2 8.7 9.8 91.2 82.5 0 0 0 100 0 0 

8 55.3 32.5 4.8 7.4 92.6 87.8 0 0 0 100 0 0 

9 24.9 53.8 16.5 4.8 95.2 78.7 0 0 0 100 0 0 

10 19.8 61.7 13.2 5.3 94.7 81.5 0 0 0 100 0 0 

11 71.8 26.4 1.8 0 100 98.2 0 0 0 100 0 0 

12 81.6 16.9 1.5 0 100 98.5 0 0 0 100 0 0 

13 79.2 20.8 0 0 100 100 0 0 0 100 0 0 

14 31.5 39.2 28.6 0.7 99.3 70.7 0 0 0 100 0 0 

15 75.3 14.3 10.4 0 100 89.6 0 0 0 100 0 0 

17 78.4 20.4 1.2 0 100 98.8 0 0 0 100 0 0 

18 42.2 29.8 23.4 4.6 95.4 72 0 0 0 100 0 0 

20 51.4 46.1 2.5 0 100 97.5 0 0 0 100 0 0 

23 85.4 14.6 0 0 100 100 0 0 0 100 0 0 

25 82.1 17.4 0.5 0 100 99.5 0 0 0 100 0 0 

AV 54.59 34.69 8.53 2.29 97.82 89.29 0.00 3.06 6.94 90.01 9.99 3.06 

SEM 6.33 5.15 1.88 0.70 0.68 2.14 0.00 2.53 4.92 6.87 6.87 2.53 
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PTEN - EXOCRINE PANCREAS SAMPLES 

 

 NUCLEAR CYTOPLASMIC 

ID S M W -VE +VE S+M S M W -VE +VE S+M 

1 3.3 35.1 31.2 30.4 69.6 38.4 0 0 0 100 0 0 

2 7.7 38.7 24.3 29.3 70.7 46.4 0 0 0 100 0 0 

3 18.3 48.6 12.4 20.4 79.3 66.9 0 0 0 100 0 0 

5 45.7 5.9 8.3 40.1 59.9 51.6 0 0 0 100 0 0 

6 11.7 24.6 28.3 35.4 64.6 36.3 0 0 0 100 0 0 

7 0 32.4 16.4 51.2 48.8 32.4 0 0 0 100 0 0 

8 9.6 39.1 11.7 39.6 60.4 48.7 0 0 0 100 0 0 

9 26.7 21.5 10.7 41.1 58.9 48.2 0 0 0 100 0 0 

10 0 50 21.4 28.6 71.4 50 0 0 0 100 0 0 

11 0 35.5 24.5 40 60 35.5 0 0 0 100 0 0 

12 10.8 30.1 25.7 33.4 66.6 40.9 0 0 0 100 0 0 

13 9.7 50.9 15.4 24 76 60.6 0 0 0 100 0 0 

14 15.4 25.3 26.4 32.9 67.1 40.7 0 0 0 100 0 0 

15 34.5 36.1 25.7 3.7 96.3 70.6 0 0 0 100 0 0 

17 65.3 17.4 14.1 3.2 96.8 82.7 0 0 0 100 0 0 

18 37.6 34.2 21.4 6.8 93.2 71.8 0 0 0 100 0 0 

19 18.6 64.7 16.7 0 100 83.3 0 0 0 100 0 0 

20 7.4 43.2 27.4 22 78 50.6 0 0 0 100 0 0 

23 21.3 29.4 18.4 30.9 69.1 50.7 0 0 0 100 0 0 

25 28.7 29.7 18.4 23.2 76.8 58.4 0 0 0 100 0 0 

AV 18.62 34.62 19.94 26.81 73.18 53.24 0 0 0 100 0 0 

SEM 3.80 2.93 1.48 3.16 3.16 3.39 0 0 0 0 0 0 
 
  
 


