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Abstract 
 

This thesis includes work on the genetics of intestinal inflammatory disorders, concentrating 

on coeliac disease and Crohn’s disease.  It explores how common genetic variants influence 

risk of complex phenotypes including immunological intolerance to gluten (coeliac disease) 

and intolerance to therapeutic agents (azathioprine and mercaptopurine) used in the 

treatment of intestinal inflammatory diseases.  Finally it presents work aiming to move from 

genetic associations with complex phenotypes to understanding of how these variants 

modulate immunological processes. 

 

Results of a large genome wide association study that identified more than 13 new genetic risk 

regions influencing susceptibility to coeliac disease are presented. Results of a genome wide 

association study of azathioprine and 6-mercaptopurine-induced pancreatitis in inflammatory 

bowel disease-affected individuals are presented. Finally, a cell cytokine release assay for the 

prostaglandin EP4 receptor was developed, with a view to investigating how SNPs associated 

with Crohn’s disease in the 5p13.1 region influence EP4 receptor signalling and contribute to 

disease pathogenesis.  This work highlights some of the challenges in moving from SNP-disease 

associations identified in GWASs to understanding how genetic variants change biological 

processes. 
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Chapter 1  Genetics of complex traits 
 

Over the last five years research in complex disease genetics has been dominated by the 

publication of more than 600 genome wide association studies (GWASs), leading to the 

identification in many complex traits of tens of independent susceptibility loci (Hindorff 2010).  

These studies represent a culmination of several key international collaborative research 

efforts.  The sequencing and assembly of a reference human genome, published in 2001, set 

the foundations for efforts to build databases of common genetic variation mapped to the 

human genome (Lander, Linton et al. 2001; Venter, Adams et al. 2001). The International 

HapMap project, in particular, genotyped a reference set of common single nucleotide 

variants, initially in 4 human populations,  and showed which combinations of these variants 

were commonly inherited together (The International HapMap Consortium 2005).  This key 

advance demonstrated that common haplotype variation could be captured by (inferred from) 

a much reduced set of haplotype-tagging SNPs.  Thus, while there are an estimated 8 million 

SNPs with minor allele frequency greater than 5% in humans, a set of just 550,000 SNPs are 

highly correlated with 88% of these SNPs in individuals of northern European descent (Frazer, 

Murray et al. 2009).  The ability to genotype hundreds of thousands (and currently millions) of 

SNPs, in parallel, became possible with advances in genotyping microarray technologies over a 

similar time period.  Thus, by 2005 genome-wide ascertainment of a substantial fraction of 

common genetic variation became available with genotyping arrays that included assays for 

hundreds of thousands of SNPs.  First generation GWASs had immediate success in identifying 

novel susceptibility loci (Klein, Zeiss et al. 2005; Duerr, Taylor et al. 2006). An early realisation 

was that for many disorders GWAS findings would lead to radical re-evaluations of the 

pathogenesis of these conditions.  Thus one of the very first GWASs associated variants in the 

complement factor H gene with age-related macular degeneration (Klein, Zeiss et al. 2005).  

This was a startling insight, suggesting that complement mediated inflammation was involved 

in the pathogenesis of a condition previously thought to occur through non-inflammatory 

pathways.  Many of the loci identified by these early studies have been called the low hanging 

fruit: these are typically the disease loci harbouring common variants with the largest effect 

sizes. Subsequently, GWASs and meta-analyses using more samples and more genetic markers 

have penetrated more deeply to reveal a long tail of genetic susceptibility variants of 

progressively weaker effect size in many complex diseases. 
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Despite their tremendous insights, the limits of GWASs as tools for understanding complex 

diseases have become clear.  Many researchers have expressed disappointment that the 

fraction of the genetically determined component of complex diseases that is accounted for by 

GWAS discoveries is low, up to 20% at best. This has been framed as a problem of “missing 

heritability”, with several explanations mooted.  GWASs have been designed to assay common 

genetic variation and as such may be blind to disease-causing rare variants. What is clear is 

that currently our understanding of the genetic basis of complex diseases remains far from 

complete. Strategies to move towards a more complete understanding are discussed in this 

chapter.  In many cases GWASs have robustly identified a region of association, but have been 

unable to identify causal variants or even the causal genes. This is a clear current limitation on 

the biological interpretation of GWAS findings. SNPs directly assayed in genome wide 

association studies are a small fraction of all human genetic variations and therefore in most 

cases causal variants have not been directly assayed.  Association studies have so far proven 

limited in their ability to differentiate between hundreds or thousands of variants in a genomic 

susceptibility region.  This is mainly a consequence of the strong linkage disequilibrium that 

exists within regions identified by GWASs.   This chapter discusses some of the genetics 

approaches that may advance this area, allowing the identification of causal genetic variants. 

 

This thesis presents research that has applied genome wide association methods and 

functional approaches to investigate common genetic variants in two intestinal inflammatory 

disorders, Crohn’s disease and coeliac disease.  Both are classic, heritable complex disorders.  

In both diseases, known environmental factors are necessary for intestinal inflammation- 

dietary gluten in coeliac disease and the intestinal microbiota in Crohn’s disease, but genetic 

factors are critical in determining the host response.  Thirdly, a genome wide association study 

of azathioprine-induced pancreatitis is presented.  Here also an environmental factor, the 

drug, triggers inflammation, and though the heritability of this condition is unknown, it was 

hypothesized that genetic variation would be an important determinant of the risk.  
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1.1  The causes of complex disorders 

 

For the simplest genetic and environmentally determined traits (e.g. single gene disorders, 

drug overdose) a minimal set of conditions that constitute the complete and sufficient causes 

of the trait can be identified.  However, most human traits and most common diseases are 

complex, arising from multiple genetic and environmental causes.  It has been proposed that 

the complete set of causal mechanisms for complex disorders consists of not one or a few but 

many distinct combinations of risk factors that lead to disease development, with major risk 

factors emerging in multiple of these combinations.   Under this model, there would exist 

combinations of environmental and genetic risk factors that in each case inevitably lead (i.e. 

are sufficient for) the development of disease (Rothman and Greenland 2005). The number of 

these possible combinations is likely to be extremely large, as indicated from the tens of 

genetic loci already implicated in many common disorders (Janssens and van Duijn 2008). For 

example, 12 hypothetical bi-allelic genetic loci that could form causal combinations, each with 

3 genotypes produce 3
12

 combinations (531,441).  As the number of genetic and 

environmental factors scales, it becomes unlikely that individuals sharing a complex phenotype 

also share exactly the same combination of causal factors (Janssens and van Duijn 2008).  Thus, 

complex diseases are likely to be manifestations of multiple, only partially shared 

combinations of genetic and environmental causes. This heterogeneity and the large number 

of causal factors greatly complicate efforts to arrive at a complete understanding of the causes 

of complex diseases. This will particularly be true if, as seems likely, the effects of causal 

factors on risk are not always independent.  For example, specific HLA-DQ gene combinations 

and gluten exposure are both necessary factors for coeliac disease (Karell, Louka et al. 2003).  

Multiple non-HLA susceptibility variants have also been identified, but logically their effects on 

disease causation are contingent on the presence of the necessary factors.  When interactions 

between putative causal factors are not understood, the power to detect these factors will be 

reduced. 

 

In the absence of knowledge of the causal combinations for complex diseases, we can hope 

instead to begin by identifying those factors that emerge in multiple causal combinations, i.e. 

those that show greatest differentiation between individuals with the disease and those 

without.  These sorts of recurring genetic factors can reveal important pathogenetic 

mechanisms that can inform strategies to develop new and better treatments for complex 
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diseases.  Thus insights into disease biology and pathogenesis are the major motivation for 

research into the causes of complex diseases.   

 

In contrast, as discussed further below, the predictive value of genetic risk factors in complex 

diseases is much less certain.  Already several authors have warned that even a complete 

understanding of the heritable fraction of complex diseases would in most cases not enable 

very impressive risk prediction (Janssens and van Duijn 2008; Clayton 2009; Daly, Donaldson et 

al. 2009; Kraft, Wacholder et al. 2009).  On the other hand, the value of genetic risk profiling 

may be greater in certain settings (e.g. prediction of drug responses) and is also determined by 

the nature and effectiveness of available interventions.  Thus for certain conditions (e.g. some 

cancers) even a modest improvement in prediction may be sufficient to warrant changes in 

practice (e.g. starting surveillance programs at an earlier age).  Prospective evaluation of 

genetic risk models will be required in multiple independent populations to establish the value 

of these applications.  
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1.2  Searching for the causes of complex disorders 

 

1.2.1  Theoretical advantages of studying genetic causes over environmental 

causes 

 

Environmental variation (the differences in all environmental factors to which individuals are 

exposed from the point of formation of the zygote) is practically infinite. Study of the 

environmental causes of diseases therefore has the potential to remain forever incomplete, 

with researchers seeking to form and test hypotheses without ever being able to 

comprehensively assay all of the environmental variation to which individuals are exposed.  

Many environmental variables can not be easily measured (e.g. in utero variables) and are not 

constant over time.  Furthermore, the study of the environmental causes of disease is also 

limited by the difficulty of performing prospective studies of sufficient duration, particularly for 

diseases that may develop over many years.   

 

In contrast genetic variation is both finite and knowable.  Inherited (germline) genetic 

variations precede even the earliest developmental events and remain almost entirely 

constant throughout life.  Thus, even in adulthood we can assay genetic variants and know 

that these exposures have occurred prior to and throughout the development of the 

individual.  This fact confers a significant advantage to researchers, enabling us to infer 

causality for genetic variants that correlate with disease phenotypes, as it avoids completely 

those retrospective biases that are prevalent in many environmental studies.  Genetic variants 

also conveniently manifest as quantum measures (0,1,2 or more copies of an allele) enabling 

the testing of dose-response relationships (as well as other models of inheritance): this further 

strengthens the test of causality.  Thus purely as a tool for identifying causal factors in complex 

diseases, the study of genetics has many attractions and may be the most efficient strategy for 

diseases where aetiological factors are largely unknown. 

 

1.2.2  The benefits of genetic discoveries in complex diseases 

 

By identifying genes involved in disease, biological processes that underlie these disorders may 

be highlighted; in this way hitherto unsuspected biological processes may sometimes be 

implicated in a disease.  Such discoveries advance understanding of disease pathogenesis and 

also cast new light on the interpretation of existing functional (e.g. immunological) 
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observations about a disease.  For example, the association of genetic variants in the IRGM 

and ATG16L1 genes with Crohn’s disease focussed attention on autophagy, a biological process 

that had not previously been implicated in Crohn’s pathogenesis (Mathew 2007).   Crohn’s-

associated autophagy gene variants have since been linked to defective innate immune 

capture of intracellular pathogens and other defective innate immune responses, thereby 

supporting previous immunological observations of defective innate immunity in Crohn’s 

disease (Nakagawa, Amano et al. 2004; Cadwell, Liu et al. 2008; Kuballa, Huett et al. 2008; 

Rahman, Marks et al. 2008).   

 

Discoveries of genetic risk variants in complex diseases have also led to greater understanding 

of shared pathogenic factors in distinct diseases.  For example, autoimmune diseases show 

appreciable overlap in genetic susceptibility variants (Smyth, Plagnol et al. 2008; Zhernakova, 

van Diemen et al. 2009). The patterns of overlap offer insights into shared autoimmune and 

disease –specific processes.  More surprising have been examples of genetic risk variants 

identifying biological processes common to disorders thought previously to have completely 

distinct causes and not known to show epidemiological overlap.  For example, genetic variants 

in leucine rich repeat kinase 2 (LRRK2) confer susceptibility to Parkinson’s disease and Crohn’s 

disease, although the function of this gene in both disorders is uncertain (Paisan-Ruiz, Jain et 

al. 2004; Barrett, Hansoul et al. 2008). 

 

Identifying genetic risk variants also has the potential to point to environmental factors that 

are important in disease causation.  This may prove to be a particularly valuable application, 

overcoming the problem of infinite environmental candidate causes.  A striking example was 

the discovery of genetic variants in an enteroviral response gene, IFIH1, that predispose to 

type 1 diabetes, implicating enteroviral infections in diabetes pathogenesis (Smyth, Cooper et 

al. 2006; Nejentsev, Walker et al. 2009).  Research presented in this thesis (chapter 3) similarly 

suggests a role for RNA viruses in coeliac disease pathogenesis. Cadwell et al. provided an 

example of how a very common susceptibility allele could contribute to a much less common 

disease by interacting with an environmental factor (Cadwell, Patel et al. 2010).  The ATG16L1 

T300A SNP has a risk allele frequency ~ 0.5 in European populations. Cadwell et al. previously 

showed that mutant mice engineered to have hypomorphic ATG16L1 protein expression 

displayed Paneth cell abnormalities and that Crohn’s patients with the ATG16L1 risk allele 

showed similar abnormalities (Cadwell, Liu et al. 2008). In the more recent study they used the 

hypomorphic ATG16L1 mouse model to demonstrate that Paneth cell abnormalities and 
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increased ileal inflammation in response to dextran sodium sulphate occurred only in the 

context of intestinal infection with a specific strain of murine norovirus (Cadwell, Patel et al. 

2010). This insight demonstrates how a common risk allele and a specific environmental factor 

can interact to contribute to intestinal inflammation.  It shows that while common genetic risk 

alleles might only have weak effect sizes when assessed in unselected populations, stronger 

effects may be contingent on the presence of environmental exposures that occur only in a 

subset of the population.  Such interactions have been proposed as one of the explanations for 

the ‘missing heritability’ of complex diseases. 

  

Finally genetic risk variants in complex diseases have the potential to identify novel targets for 

drug development.  These translational benefits will, in most cases, take many years to reach 

clinical practice.  However, evidence that risk variants can identify genes that constitute 

efficacious targets for drug therapies already exists. PPARG and KCNJ11 gene variants have 

been associated with type 2 diabetes and encode proteins that are targets of 

thiazoledinediones and sulphonylureas respectively.  IL12B variants predispose to psoriasis 

(Nair, Duffin et al. 2009). IL12B encodes a subunit of the interleukin-12 and interleukin-23 

cytokines and an antibody against this protein has already shown efficacy in a phase II trial in 

psoriasis (Krueger, Langley et al. 2007).    These examples illustrate the possibilities and it is 

notable that even genetic variants with modest effect sizes may map to genes which when 

targeted by drugs have large therapeutic effects. 

 



23 

 

1.3  Personalized medicine 

 

There has been hope that the identification of genetic risk variants in complex diseases will 

herald an era of personalized medicine.  By understanding the genetic component of inter-

individual variation in diseases, in disease sub-phenotypes and in drug responses, it may be 

possible to tailor preventive and therapeutic interventions to individuals based on their 

genetic profiles. Personalized medicine already exists for single gene disorders, for example 

familial adenomatous polyposis (FAP) where genetic testing provides a basis for near-perfect 

prediction of the phenotype and motivates the recommendation of colectomy and gastro-

intestinal surveillance in affected individuals.  In single gene disorders, the genetic screening 

test has very high sensitivity and specificity, characteristics which limit the number of false 

negatives and false positives.   In contrast, for complex diseases, prediction accuracy is limited 

by a number of factors, notably the fact that these diseases are only partially heritable. 

  

1.3.1  Genetic risk modelling 

 

Given a set of genetic risk variants, ideally the predictive value of the genotypes of these 

variants could be determined by calculating the percentage of individuals with each genotype 

combination who get the disease.  This would require a very large population study given that 

even for 10 variants there would be 3
10

 (59,049) genotype combinations.  Instead researchers 

have opted to take one of two approaches, both of which overcome the exponential rising 

number of combinations problem by assuming gene-gene interactions have negligible effects 

on risk.  The first strategy assigns a score to each individual, for example based on the number 

of risk alleles present.  This therefore assumes that each allele has additive and equal effects 

on risk.  The second strategy uses either logistic or Cox proportional hazards regression 

analyses to assign risk scores for each variant weighted according to effect size. Again this 

strategy assumes no gene-gene interaction effects.  In theory, both these methods can be used 

to assign risk scores, which can then be evaluated for their predictive performance.  Ideally, 

this should be performed in an independent cohort to that used for risk variant discovery or 

else predictive value is likely to be overestimated.  Similarly, risk estimates for genetic scores 

ought ideally to be presented in terms of absolute risk as this is the measure most valuable to 

the individual.  Very few studies have evaluated absolute risk, in part because of the use of 

case control data, where absolute risk can only be estimated with assumptions about disease 

incidence.  Similarly, very few studies have conducted external validation, i.e. validation in an 
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specificity for all possible thresholds for the prediction score (Figure 1.2).  A good prediction 

model would show a high proportion of those developing the disease in individuals with the 

highest risk scores.  The area under the receiver operating characteristic curve (AUC) is one 

commonly used summary measure of the discriminative power of the model.  AUC ranges 

from 0.5 (no discriminative power) to 1 (perfect prediction).  An AUC of 0.75 has been 

suggested as a lower limit for a useful test screening individuals already at increased risk of 

disease with an AUC of 0.99 for screening population individuals (Janssens, Moonesinghe et al. 

2007).  

 

Early attempts at risk prediction models using variants discovered in genome wide association 

studies have shown limited predictive value.  For example, a model using 18 variants in type 2 

diabetes had an AUC of 0.60 (van Hoek, Dehghan et al. 2008).  For Crohn’s disease the AUC for 

a similar prediction model was estimated at 0.73 using 30 known variants (Daly, Donaldson et 

al. 2009). This latter study estimated an upper limit for the performance of a risk model in 

Crohn’s disease corresponding to an AUC of 0.966, assuming all heritable variation was 

incorporated.  In a scenario that is achievable with current resources, Park et al. estimated that 

a model incorporating 142 independent Crohn’s variants, hypothesized to be identifiable with 

larger GWASs, would have an AUC of 0.792 (Figure 1.2). This may still fall short of a useful 

prediction model for Crohn’s disease, particularly in the absence of known preventive 

interventions.  In general the predictive value of these models is limited fundamentally by the 

heritability and prevalence of the disease – less heritable and less common diseases are harder 

to predict from genetic profiles even if all causal genetic variation is known.  Using known 

heritability and prevalence estimates, several authors have predicted that for most common 

disorders risk prediction models will never be very accurate and will only approach 

performance of models using traditional risk factors (Janssens and van Duijn 2008; Clayton 

2009; Daly, Donaldson et al. 2009). It is also relevant that existing models have used data from 

GWASs that have selected cases using stringent criteria and therefore may tend towards the 

more extreme examples of the phenotype under study (this improves power to detect 

variants, but overestimates the effect size of discovered variants). Thus the performance of 

models using these variants may overestimate performance in the real world (Janssens and 

van Duijn 2009).  

 

Despite these reservations it should be noted that even a test with relatively weak overall 

prediction performance, as assessed by AUC, may nevertheless for some conditions be of 
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The value of genetic risk prediction for personalized medicine also depends on what 

preventive measures are available.  Thus for some diseases, it is already of proven value for 

individuals of average risk to undergo preventive measures (e.g. screening in colorectal 

cancer).  The addition of genetic profiling to existing risk factors (e.g. age, family history), might 

in these cases be sufficient to warrant subtle changes in the age at which screening begins or 

in the frequency of surveillance investigations for most individuals. However, in other diseases, 

e.g. Crohn’s disease, there are few known protective interventions (stopping smoking is one) 

and it is unclear whether being assigned a high risk would be of real clinical value. 

 

 

1.3.2  Pharmacogenomics 

 

Another area where genomics shows promise is in the prediction of drug responses and drug 

adverse effects.  Early experience suggests that common genetic variants, sometimes 

conferring large effects on risk, account for an important fraction of variation in drug 

responses.  Certainly human populations have not been exposed to most drugs for periods of 

time sufficient to allow negative selection of deleterious variants.  Genome wide association 

studies have recently begun to identify common variants with large effects that may in time 

form the basis of pharmacogenetic testing (Link, Parish et al. 2008; Daly, Donaldson et al. 

2009; Ge, Fellay et al. 2009).  Pharmacogenomics is discussed more fully in Chapter 4. 

 

The potential benefits outlined above provide some of the principal motivations for the search 

for genetic risk variants in complex diseases.   This search has produced spectacular successes 

over the last five years, with the pace of discovery showing no sign of abating.   The 

methodological and technological advances in genetics, the attendant expansion in our 

knowledge of human genetic variation and the theoretical (e.g. population genetics) 

considerations that impact profoundly on the design and interpretation of studies aiming to 

identify genetic risk variants are now discussed.
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1.4  Complex disease genetics 

 

 One can describe a spectrum for human diseases between the extremes of those whose risk is 

almost entirely genetically determined and those who risk is almost entirely environmentally 

determined.  The former include chromosomal disorders (e.g. trisomy 21, Turner’s syndrome) 

and single gene disorders (e.g. cystic fibrosis, sickle cell anaemia).   Single gene (Mendelian) 

disorders are the simplest of genetic characters and occur where the genotypes at a single 

locus are sufficient to account for the character, given a normal environmental and genetic 

background.  Mendelian diseases are rare in the population, due to low mutation rates and the 

negative or balancing selection pressures on single gene variants that have highly deleterious 

effects on reproductive fitness.  These disorders produce characteristic pedigree patterns 

(autosomal dominant, autosomal recessive etc) and are therefore easily recognized.  The 

discovery of genetic variants causing Mendelian disorders has had relative success, exploiting a 

variety of strategies (linkage, positional cloning, identification of homologues from model 

organisms, functional candidacy) that culminate in the testing of candidate gene variants in 

individuals with the disorder (Strachan 2004).   

 

In contrast, complex disorders fall further along the spectrum of genetic vs. environmental 

susceptibility. Most have heritabilities estimated to be greater than 50% and usually exhibit 

familial clustering but do not manifest characteristic pedigree patterns (Boomsma, Busjahn et 

al. 2002).   One of the first geneticists to outline the genetic characteristics of complex 

disorders was Cedric Carter, who wrote in 1969 that “the genetic element in most common 

disorders, is neither chromosome abnormality nor mutant gene of large effect, but very 

probably an underlying polygenically determined and continuously distributed genetic 

predisposition with a threshold beyond which individuals are at risk.” (Carter 1969). The key 

distinction is the need to invoke a polygenic inheritance, where disease-predisposing genetic 

variants at many independent loci act together to determine risk.  Carter’s quote alludes to 

R.A. Fisher’s observation that a number of independent genetic factors, each inherited in a 

Mendelian fashion would produce continuously distributed quantitative traits, and to 

Falconer’s use of Sewell Wright’s threshold model to show that dichotomous complex traits 

may manifest where an underlying continuous trait reaches a critical liability threshold (Fisher 

1918; Wright 1934; Falconer 1965).   
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It was realised that in contrast to Mendelian disorders, a polygenic inheritance for complex 

disorders could include common variants (polymorphisms) since their relatively weak 

individual effects on risk protect them from strong negative selection.  However, the true 

nature of the allelic spectra at common disease susceptibility loci can not be inferred from 

patterns of disease in the population (in contrast to single gene disorders).  This question has 

been the subject of much conjecture, but can only be answered by empirical data.  We are 

now on the cusp of answering these questions in complex diseases with the advent of an era 

of whole genome sequencing of large numbers of individuals. 

 

1.4.1  Evidence of heritability in complex disorders 

  

Familial clustering in complex diseases is the primary evidence of their heritable basis.  Twin 

studies enable an estimation of the relative importance of genetic and environmental factors. 

Monozygotic twins share all germline genetic variants whereas dizygotic twins share only half 

of their genetic variants (identical by descent). In contrast both monozygotic and dizygotic 

twins are expected to share similar proportions of their environments. Thus higher phenotypic 

concordance in monozygotic twins than dizygotic twins is evidence that genetic variants 

contribute to disease risk. Conversely, diseases that are dominated by environmental risk 

factors show similar monozygotic and dizygotic concordance.  

 

The sibling relative recurrence risk (λs) is the risk in a disease sibling relative to that of the 

general population disease risk. It provides an estimate of familial clustering independent of 

population prevalence and therefore enables comparisons of the degree of heritability 

between diseases. 

 

 

1.4.2   Common and rare variant hypotheses for complex diseases 

  

Two polarised hypotheses illustrate the possibilities for the allelic spectra of complex disease 

loci. The common disease – common variant hypothesis proposes that the genetic basis of 

complex (common) disease is conferred by multiple common variants with individually weak 

effects on disease susceptibility (Lander 1996).  The common disease – rare variant hypothesis 

proposes that common disease susceptibility is accounted for by a large number of variants 

that each occur only rarely within the population (Bodmer and Bonilla 2008; Schork, Murray et 

al. 2009).  Thus two unrelated individuals with the same disease will tend to share fewer 
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disease-causing variants in this model.  It is hypothesised that rare disease-predisposing 

variants will have stronger effects on susceptibility. This is so far supported by the few 

available data that have identified common and rare variants in complex diseases (Figure 1.3).   

 

Importantly, both these hypotheses have implications for the choice of strategy for variant 

discovery in complex diseases.  Genome-wide association studies have been designed 

primarily to test the common variant hypothesis and typically do not assay variants with 

population minor allele frequencies less than 5%.  The capacity to test the rare variant 

hypothesis for common diseases is less mature.  In contrast to the comprehensive catalogues 

of common variants (e.g. International HapMap project), cataloguing of rare variants in human 

populations is in a relatively early stage (e.g. 1000 Genomes project). 

 

In time, the rapidly decreasing cost of whole genome sequencing will enable comprehensive 

ascertainment of all forms of genetic variation in individuals with common disease. As an 

intermediate strategy to look for rare variants, researchers have begun to focus resequencing 

efforts on genome regions most likely to be enriched for causal variants.  These include regions 

identified by common variant associations in GWASs and the 30Mb protein- coding portion of 

the genome (the exome).  An example of this approach was the re-sequencing of 10 type 1 

diabetes candidate genes identified by common variant associations (Nejentsev, Walker et al. 

2009).  This study identified causal rare variants in one of these genes, IFIH1, providing support 

for the idea that the allelic spectra at at least some disease loci will include both common and 

rare variants.  Similarly resequencing of the NOD2 gene identified an allelic spectrum in which 

3 protein-changing variants with allele frequencies between 1.2 and 4.3% in European ancestry 

populations accounted for 80% of Crohn’s associated variants, with many additional rare 

variants in the NOD2 gene also contributing to diseases risk (Hugot, Chamaillard et al. 2001; 

Ogura, Bonen et al. 2001; Hugot, Zaccaria et al. 2007). 

 

Hirschprung’s disease, a complex (though not very common) disease with known oligogenic 

inheritance also illustrates this point.  A recent study examined multiple disease-predisposing 

variants of both common and rare frequencies in a single gene (receptor tyrosine kinase-RET) 

(Emison, Garcia-Barcelo et al. 2010).  Hirschprung’s disease (congenital intestinal 

aganglionosis) is phenotypically sub-divided into short segment (extending to upper sigmoid), 

long segment (extending to splenic flexure) and total colonic forms.  Firstly the common 

variants were less penetrant and associated with lower disease recurrence rates in relatives 
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compared to the rare variants they identified, consistent with predictions of higher effect sizes 

for rare variants.  Secondly, the profiles of RET variants differed between sub-phenotypes, with 

coding variants more frequent in the more extensive forms of the disease and a common 

regulatory variant found more frequently in the short segment form.  It may be anticipated 

that other diseases that exhibit distinct sub-phenotypes such as Crohn’s disease, may similarly 

have a genetic basis determined partly by the allelic spectrum at disease loci, with   rare, as yet 

undiscovered, coding variants contributing to more severe and extensive forms of disease. 

 

 

 

 

Figure 1.3  Distribution of odds ratios for common and rare variants (Reproduced from 

Bodmer and Bonilla, 2008) 

 

 

 

 

61 rare and 217 common variants from the literature used in the analysis 
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Many complex disorders include a subset that follows Mendelian or near-Mendelian 

inheritance.  For example, BRCA1 and BRCA2 mutations cause strongly familial forms of breast 

cancer, but do not contribute substantially to sporadic breast cancer.  Loss-of-function 

mutations in the IL10RA and IL10RB genes encoding subunits of the interleukin 10 receptor 

have been shown to cause early, severe familial cases of inflammatory bowel disease (Glocker, 

Kotlarz et al. 2009).   Again, common genetic variation in these genes has not been associated 

with sporadic forms of inflammatory bowel disease in large association studies (Barrett, 

Hansoul et al. 2008).  Extending from these near-Mendelian examples, it is possible that 

complex disorders contain further subsets of individuals with distinct oligogenic aetiologies.  

Studies of multiply-affected families offer the best opportunity of identifying the next tiers of 

such genetic variants. 

 

 

It is likely that novel study designs will be helpful in the identification of rare variants in 

complex diseases. For example, family-based and extreme-trait study designs may have power 

advantages compared to simple case-control designs (Cirulli and Goldstein 2010).  Additional 

novel analytic techniques are also being developed to help overcome the fall-off in power to 

detect genetic risk variant associations that occurs as minor allele frequency falls. Thus, 

weighting according to predicted functional effects of variants or pooling of rare variants 

within genes for combined association testing may be helpful  (Price, Kryukov et al. 2010). 

 

 

1.4.3   Using intermediate traits in complex disease genetics 

 

Disease definitions at their most basic begin with an observation of symptoms and signs that 

recur together in a recognizable pattern (co-vary) in different individuals.  When knowledge of 

the cause(s) of these phenotypes is lacking, the disease is defined according to what is 

observable (symptoms, signs, supporting tests) and what is of clinical relevance (for purposes 

of prognosis or treatment).   Thus since aetiologies are poorly understood for many common 

(complex) diseases, their classifications are at best only loosely rooted in an understanding of 

the underlying biology.  This poses a potential problem for efforts to investigate the causes of 

these diseases.    

For example ileal Crohn’s disease appears to have at least partly distinct causation to colonic 

Crohn’s disease, with some genetic variants only conferring risk to ileal Crohn’s and vice versa 
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(Barrett, Hansoul et al. 2008).  Conversely, many autoimmune diseases have been shown to 

share a surprising number of genetic susceptibility variants raising the possibility that these 

disorders might be better understood as alternative manifestations of a common autoimmune 

tendency (Zhernakova, van Diemen et al. 2009). 

 

It has been argued that investigation of complex traits would be aided by the definition and 

measurement of continuous traits (so-called intermediate phenotypes or endophenotypes) 

that more closely correlate with polygenic liability (Plomin, Haworth et al. 2009).  This follows 

the liability threshold model of complex disease traits.  It has been argued that relying on 

clinical disease definitions of dichotomous disorders may limit our power to uncover the 

relevant genetic susceptibility factors.   Certainly, if common dichotomous disorders are 

manifestations of single continuous traits, comparing individuals affected by disease with 

those who are unaffected means the unaffecteds will include some individuals who have a 

liability that is close to the threshold for disease (near-diseased individuals).  The inclusion of 

such individuals in a case-control design study would be expected to reduce power to detect 

the genetic variants responsible for the disease liability compared to study designs that either 

sampled individuals from both extremes of the liability distribution or identified an appropriate 

endophenotype for quantitative trait analysis.  However, the little available data that exist 

have not provided great support for the superiority of either approach compared to traditional 

case-control designs.  For example the use of cognitive traits, considered excellent 

endophenotypes for schizophrenia, has not been more successful in helping discover genetic 

risk variants for schizophrenia liability than studies of schizophrenia itself (Cirulli, 

Kasperaviciute et al. 2010). Moreover, for many disorders it is far from clear whether an 

appropriate and measurable endophenotype could be identified.  Use of an endophenotype 

risks missing some of the important liability that contributes to the dichotomous trait. It may 

be that intermediate phenotypes will prove of greatest value in testing their correlation with 

genetic variants that have firstly been identified in case-control studies.  This will be a step 

towards testing hypotheses about the biology and pathogenesis of a disorder.  For example, in 

Crohn’s disease, the correlation of Crohn’s associated genetic variants with intermediate traits 

such as macrophage function or innate immune clearance of bacteria may reveal hitherto 

under-appreciated roles for Crohn’s genes.  Crohn’s disease-associated NOD2 variants for 

example were associated with defects in autophagy induction, bacterial trafficking and antigen 

presentation (Cooney, Baker et al. 2010).  In coeliac disease, one could envisage testing gene 

variants for correlation with T cell responses.  For example, it has been shown that healthy HLA 
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DQ2+ individuals show T cell Ifni responses to gliadin peptides that are intermediate between 

individuals with coeliac disease and healthy individuals lacking HLA DQ2 or DQ8 (Anderson, van 

Heel et al. 2005).  Many coeliac disease-associated genes are strongly expressed in T cells, but 

have poorly defined functions (Dubois and van Heel 2008). Therefore correlation of coeliac-

associated variants in these genes with T cell responses may be instructive. 
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1.5  Human Genetic Variation 

 

1.5.1  Origins of human genetic diversity   

 

Mutation (change in DNA sequence) is the origin of all genetic variation. This wellspring of new 

variation occurs continuously and when affecting the germline can be passed on to the next 

generation.  Mutations occur spontaneously, as a result of inherent instabilities of DNA 

chemistry and the mechanism of replication (see table) but may also be facilitated by exposure 

to environmental factors (e.g. viruses, radiation- ultraviolet light and ionizing radiation, 

chemicals).  Defective DNA repair is also an important source of replication errors. 

 

 

 

 

 

 

 

 

 

 

 

 

Mutation rates (the number of mutations occurring per base per generation) vary between 

species, due to multiple factors including differences in the efficiency of DNA repair 

mechanisms.  In humans, a widely cited mutation rate estimate of 2.5 x 10
-8

 was based on a 

comparison of sequence data from humans and chimpanzees, using assumptions of ancestral 

population size and time to species divergence(Nachman and Crowell 2000). Recently, the 

mutation rate was directly observed at a lower rate of 1.1 x 10
-8

 from whole genome 

sequences of a family quartet (2 parents and 2 children) corresponding to 70 new mutations 

per diploid genome (Roach, Glusman et al. 2010).  

 

Rates of mutation also vary across the genome. For example, there is an approximately 10fold 

higher mutation rate for CpG dinucleotides observed both in humans and chimpanzees 

(Chimpanzee-Sequencing-and-Analysis-Consortium 2005; Roach, Glusman et al. 2010).  Highly 

Causes of spontaneous mutation 

• Chemical instability 

o Tautomerism 

o Depurination 

o Deamination 

• Replication errors 

o Slipped strand mispairing 

o Non-homologous recombination 

o Mismatch repair failures 

• Transposable elements 
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repetitive sequences (e.g. Alu repeats and segmental duplications) are more prone to non-

allelic homologous recombination events, which can lead to multi-nucleotide mutations, 

including copy number variations spanning thousands to millions of nucleotides(Cooper, 

Nickerson et al. 2007; de Smith, Walters et al. 2008). 

 

Mutation therefore introduces genetic variation, but how the frequencies of these variants 

change through generations depends on at least two other major factors.  Natural selection 

operates to increase or reduce the frequencies of variants that have non-neutral effects on 

fitness (i.e. confer a reproductive advantage or disadvantage).  However, the majority of 

mutations produce variants that have weak or neutral effects on fitness and so are not 

affected by natural selection.  Genetic drift is the process whereby random allocation of alleles 

from parents to offspring causes changes in allele frequencies over time. These chance effects 

mean that even neutral mutations may show changes in allele frequencies over time.  In 

smaller breeding populations genetic drift has a larger effect on allele frequencies than in 

larger populations as sampling error is proportionately greater. Thus in human populations, 

when small founding populations (population bottlenecks) have occurred, genetic drift initially 

dominates natural selection in changing allele frequencies, but as populations become larger 

the reverse is true and natural selection predominates. 

 

1.5.2    Human population ancestry and effects on current population genetic 

variation 

 

Non-African human populations originated from a small founding population migrating from 

east Africa to the Arabian peninsula c. 60-100,000 years ago (the recent single origin 

hypothesis) (Liu, Prugnolle et al. 2006).  This has well-known consequences including a reduced 

genetic diversity of non-African populations compared to African populations.  Indeed genetic 

diversity in human populations decreases with geographical distance from Africa (Coop, 

Pickrell et al. 2009).  Moreover linkage disequilibrium is lower in African than non-African 

populations, consistent with non-African populations arising from a founder population(s) that 

contained only a subset of African human genetic variation.  The different haplotype structure 

in different populations, may potentially allow susceptibility regions discovered in GWASs of 

European ancestry to be narrowed-down, by comparison with GWASs in, for example, African 

populations. 
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Genome wide SNP data from 3 of the 4 human HapMap phase II populations (CEU,YRI,CHB)  

and the CEPH-Human Genetic Diversity Panel  (53 human populations)  confirms the reduced 

genetic diversity seen with geographical distance from Africa (Coop, Pickrell et al. 2009).  This 

study also examined signatures of selection in the genome and the global patterns of these 

signatures.  One finding was that the global pattern of most putatively selected (highly 

population differentiated) SNPs was in fact predicted by ancestry, with three broad regions 

(Africa, West Eurasia and East Asia) capturing most of the differences.  This suggests that 

neutral processes such as population migration and genetic drift play a large part in 

determining the distribution of population differentiated alleles.  For example, the geographic 

distribution of alleles at a skin pigmentation locus, SLC24A5,  that show high between 

population differentiation, nevertheless follow geographical patterns predicted by ancestry 

rather than latitude or climate(Coop, Pickrell et al. 2009). 

 

This data therefore illustrates the balance between selection and neutral factors that have 

shaped genetic diversity within and between populations.  It also demonstrates that for most 

SNPs, ancestry, rather than selection is the dominant determinant of differences in allele 

frequencies between populations.   

 

 

1.5.3  Forms of DNA sequence variant 

 

Human genetic variation is observable at all scales from single nucleotides to whole 

chromosomes. Genetic variation in humans has so far been most comprehensively defined at 

both extremes of this size spectrum. Karyotyping and fluorescent in situ hybridization (FISH) 

have identified most germ-line variants affecting genomic segments > ~3Mb (Feuk, Carson et 

al. 2006). These variants typically arise as de novo mutations in the germ line and due to 

strongly deleterious effects on fitness do not persist in the germ line for many generations.  

Well known examples include trisomy 21 (Down’s syndrome), monosomy X (Turner’s 

syndrome) and a 3 megabase deletion on chromosome 22q11.2 (diGeorge syndrome). 

Advances in molecular biology (especially PCR amplification and Sanger DNA sequencing) have 

facilitated the discovery of fine scale variants, particularly well catalogued at the single 

nucleotide level.  Heritable variation at the intermediate, sub-microscopic scale (1kb-~ 3Mb) 

has not been as well defined, historically suffering from the relative inferiority of assays 

available to study these forms of variation.   
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1.5.3.1  Single Nucleotide Polymorphisms 

 

A single nucleotide polymorphism refers to a nucleotide substitution that occurs in more than 

1% of the population.  The National Centre for Biotechnology Information (NCBI) in the United 

States provides a repository for the deposition of new SNP sequences (database of SNPs- 

dbSNP). dbSNP does not restrict variants based on allele frequency and therefore includes 

single base substitution variants with less than 1% minor allele frequency (i.e. not technically 

polymorphisms).  dbSNP also records short insertion/deletion variants.  In total, 23.6 million 

reference single nucleotide variants are included in the latest database release (dbSNP Human 

Build 131) of which 14.6million are validated.  It is estimated that there are around 10 million 

common SNPs (MAF > 0.05) in most human populations, so that on average 1 of every 300 

bases is expected to be polymorphic in the ~3 Gigabase haploid human genome.  Over 7 

million reference SNPs in dbSNP have so far been identified with minor allele frequency 

greater than 5% (Frazer, Murray et al. 2009). Short (<10bp) insertion/deletions (indels) appear 

to be surprisingly poorly catalogued despite their amenability to discovery by similar 

PCR/Sanger sequencing methods as used with SNPs.  For example, sequencing and assembly of 

the diploid genome from an Asian individual showed that 86.4% of SNPs were present in 

dbSNP whereas only 40.9% of short indels (</= 3bp) were present in dbSNP (Wang, Wang et al. 

2008). Similar results were observed for the Watson and Venter genomes (Levy, Sutton et al. 

2007; Wheeler, Srinivasan et al. 2008). 

 

 

1.5.3.1.1 The origin of SNPs and haplotypes 

  

SNPs exist because of ancestral mutations that have usually occurred only once in human 

history. New single base variants are generated infrequently (the new mutation rate is roughly 

10
-8

 per generation per base or 30 new variants per haploid gamete) (Manolio, Brooks et al. 

2008). As only around 10
4
 generations separate currently living individuals and their most 

recent common ancestor, the low mutation rate makes it likely that a SNP allele shared by 

apparently unrelated individuals actually has the same ancestral origin. In general the more 

common a variant is within a population, the more ancient it is, since with each generation the 

number of descendents carrying the variant allele can potentially increase.  Genetic drift and 

natural selection are important processes influencing changes in variant frequency over time 
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in populations, but do not detract from the principle that the frequency of a variant correlates 

with the age of the founding mutation.   

 

Haplotypes refer to combinations of variant alleles that occur together.  They arise as a 

consequence of sexual reproduction and the history of the species.  During meiosis, crossing 

over and recombination of segments of the maternal and paternal chromosome occurs leading 

to a hybrid chromosome in the gamete.  These crossing over events occur non-randomly in the 

genome, with much greater probability in small regions called recombination hotspots.  80% of 

allelic recombination is confined to hotspots covering 10%–20% of the genome (Myers, 

Bottolo et al. 2005). The consequence is that the boundaries of the segments of chromosomes 

that are swapped during recombination vary mostly only between these hotspots, with 

intervening segments usually preserved en bloc. Over generations, due to repeated shuffling of 

segments by recombination events occurring at different hotspots, the segments of 

chromosome shared between the last descendant and the original ancestors get smaller.  

Similarly the lengths of these segments (haplotypes) that are shared between individuals 

within the descendant population are smaller when the founding ancestors were ancient 

compared to when they were recent.   Indeed the presence of extended shared haplotypes 

between two individuals is a sign of recent shared ancestry.  For this reason, non-African 

populations, which underwent a population bottleneck during migration of the founders from 

Africa, have longer haplotypes than African populations where founding populations were 

larger and have had more time for recombination. 

 

By understanding the haplotype structure of common genetic variants in human populations, 

it was anticipated that SNPs could be selected from each common haplotype that would tag 

(be highly correlated with) other common variants on the haplotype.  In this way common 

genetic variation could be summarised by a much smaller set of tag SNPs, enabling researchers 

to assay a large fraction of common genetic variation by assaying only a much proportion of 

the 10 million or so common SNPs. This was one of the principle motivations for the 

International HapMap project (section 1.5.4.2).  Another benefit that has emerged is SNP 

imputation, where haplotypes containing dense sets of SNP alleles defined in the HapMap 

populations allow imputation of missing (non-genotyped) SNPs by reconstructing the 

haplotypes from those SNPs in the region that have been genotyped.  
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 In many regions of the human genome, common variation comprises only a small number of 

different haplotypes.  This means that SNP alleles within such regions tend to be highly 

correlated when examined in individuals from a single population.   Linkage disequilibrium 

refers to this non-random association of SNPs in the population.  By correlating SNP alleles 

within the HapMap populations, it has been possible to define these linkage disequilibrium 

blocks.  This has greatly facilitated the design of genetic association studies by allowing the 

selection of a single tag SNP from each of these LD bins. Phase II of the HapMap Project 

determined that the vast majority of SNPs with a MAF of at least 5% could be tagged by single 

SNPs from each of ~550,000 LD bins in CEU/CHB/JPT populations or 1,100,000 LD bins for the 

more ancient YRI(Frazer, Murray et al. 2009).   

 

1.5.3.2   Beyond SNPs- multinucleotide genetic variants 

 

For simplicity, human genetic variation can be divided into single nucleotide sequence 

variation (base substitutions) and structural variation (affecting >1 contiguous base) (Figure 

1.4) (Frazer, Murray et al. 2009; Conrad, Pinto et al. 2010).  Other authors have preferred to 

further distinguish fine scale variants (<1 kb) from structural variants (>1kb) (Feuk, Carson et 

al. 2006; Redon, Ishikawa et al. 2006).  Either classification has the virtue of being non-

redundant and is largely agnostic to the mechanisms causing these variations.  In contrast 

other descriptions of structural variants have reflected historical factors such as the techniques 

used for discovery, or the evolutionary origins of variants.  For example many fine scale 

polymorphisms were discovered through the search for linkage markers (Nakamura, Leppert et 

al. 1987; Weber and May 1989).  Variable number of tandem repeats (VNTRs) are one such 

class of polymorphism, and can be sub-classified into microsatellites (tandem repeats of less 

than 5 base pairs) and minisatellites (>5bp).  Retrotransposon elements are common and 

include short and long interspersed nuclear elements (SINEs and LINEs) which are 

insertions/deletions in the 0.3kb and 6kb length range. 

 

Structural variant discovery has lagged behind the discovery of SNPs and short indels (<~10bp).  

At the sub-microscopic scale (~<3Mb) this has been limited by a historic inferiority of 

techniques for both discovery and genotyping.  This is rapidly changing with the advent of 

whole-genome sequencing of multiple individuals and other structural variant discovery 

strategies (Levy and Strausberg 2008; Conrad, Pinto et al. 2010; Pang, MacDonald et al. 2010).  

The sequencing of the first four diploid human genomes (Craig Ventner, James Watson, an 
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expected to enable comprehensive ascertainment of all forms of variation, but with current 

sequencing technologies and computational approaches and even with deep sequence 

coverage, annotation of structural variants remains very challenging (Pang, MacDonald et al. 

2010).  The most extensive array-based survey of copy number variation used comparative 

genomic hybridisation microarrays comprising 42 million tiled probes that covered almost all 

the assayable genome (median spacing 56bp) (Conrad, Pinto et al.).  The dense probe coverage 

was designed to enable sensitive detection of CNVs greater than 500 bp in length.    Conrad et 

al. screened 41 individuals from the CEU and YRI HapMap populations and identified 8,599 

validated copy number variations (CNVs) of greater than 443 base pairs (Conrad, Pinto et al. 

2010).  The majority of these CNVs were intergenic, with a paucity overlapping genes relative 

to random permutations, suggesting genic CNVs can have deleterious effects on fitness.  On 

average per comparison of two diploid genomes, they found around 1000 CNVs > 500bp.  They 

observed that these CNVs led to alterations in the coding sequence of 1.2% of all gene 

messenger RNAs on average between two diploid genomes. Thus, the potential for alterations 

in gene function and contributions to disease susceptibility is clear.   

 

Most recently Pang et al. sought to combine array-based and whole genome sequencing 

approaches to more fully annotate structural variants in a single diploid human genome.  This 

study showed that a previous de novo assembly of a diploid genome sequence using Sanger 

sequencing failed to detect many structural variants (especially larger variants, ~ > 1kb).  

However by applying additional computational and the array-based techniques they observed 

thousands of additional variants, confirming a relatively smooth inverse correlation between 

the size of variants and their frequency in an individual (Pang, MacDonald et al. 2010).  Thus, in 

this study, which is to date the most comprehensive survey of genetic variation in a single 

individual, nearly 50Mb (1.6%) of sequence in the haploid genome was structurally variant and 

only 3 Mb (0.1%) were single nucleotide variants.  

 

 Both the Conrad et al. and Pang et al. studies estimated that around 75% of structural variants 

were imputable from SNPs.  As such if copy number polymorphisms and other structural 

variants contribute to complex disease traits most should generate association signals in 

GWASs. The Wellcome Trust Case Control Consortium (WTCCC) directly assayed 3,432 copy 

number polymorphisms in 16,000 cases from eight common diseases and 3,000 shared 

controls (Craddock, Hurles et al. 2010).  They estimated that these CNPs constitute 

approximately half of all autosomal CNVs > 500 bp long with minor allele frequency > 0.05 and 
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had 80% power to detect CNPs conferring odds ratios > 1.4 in their study.  Association was 

observed for only 3 loci (IRGM-Crohn’s disease, HLA-Crohn’s, Rheumatoid arthritis and type 1 

diabetes and TSPAN8 for type 2 diabetes), compared to the 24 loci identified in the similarly 

sized SNP GWAS of seven diseases (Wellcome Trust Case Control Consortium 2007).  

Association at all of these loci had been previously identified by genome wide association 

studies using SNP arrays.  Thus while this was a less complete survey of CNP variation (~50% of 

CNPs) compared to most SNP GWASs (typically >70% common SNP variation assayed) it 

nevertheless confirmed that CNPs are unlikely to account for a large fraction of the genetic 

basis of common diseases. It further confirms that causal CNPs are usually effectively tagged 

by SNPs included on currently available SNP genotyping platforms used for genome wide 

association studies.  An efficient approach (for common genetic variants) may therefore be to 

search genomic regions showing association in SNP GWASs for structural variants present in 

genomic variation databases, and to consider direct genotyping only where structural variants 

are found.  In time, comprehensive catalogues of structural variants and knowledge of their 

population frequencies and correlations with SNP haplotypes will further help this process. 

 

1.5.4  Cataloguing human genetic variation 

 

1.5.4.1   The Human Genome Project 

 

In 2001 the first draft sequences of the human genome were published (Lander, Linton et al. 

2001; Venter, Adams et al. 2001). Both of these draft sequences were haploid, approximately 3 

billion bases in length and assembled from multiple donors. In 2004 a near-complete sequence 

of the human genome was reported, containing > 99% of euchromatic regions (Economou, 

Trikalinos et al. 2004). The remaining 1% consists of ~300 small gaps, many close to recently 

duplicated sequence and containing DNA that can not easily be propagated in bacteria prior to 

Sanger sequencing (Bentley 2006). Furthermore, ~ 200Mb of heterochromatic regions were 

not sequenced, again due to highly repetitive sequence. Much of this sequence is located in 

centromeres.     

 

1.5.4.2  The International HapMap Project 

 

The International HapMap project was designed to provide a public resource that would 

advance medical genetic research (The International HapMap Consortium 2005). In particular 

the initial aims have been to determine the frequencies and population correlations (linkage 
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disequilibrium) of common SNPs in 4 human populations of diverse ancestry.  270 individuals 

were initially selected, 30 mother, father, child Yoruban trios of from Ibadan, Nigeria (YRI), 30 

trios from Utah, USA (CEU), 45 unrelated Han Chinese from Beijing (CHB) and 45 unrelated 

Japanese from Tokyo (JPT).  In Phase I, approximately 1.3 million evenly distributed SNPs 

(approximately 1 every 5 kilobases) were genotyped in 269 individuals (1 JPT individual 

excluded with low quality DNA)  leading to the publication of the first human haplotype map in 

2005 (The International HapMap Consortium 2005).  Phase 2 extended this to 3.4 million SNPs 

(~1 every kilobase) in the same individuals (Frazer, Ballinger et al. 2007).  In some regions of 

the genome SNP genotyping assays are more difficult to design (segmental duplications, 

centromeres, telomeres, gaps in genome sequence – the “unSNPable genome”) and therefore 

the HapMap has poor coverage in these regions.  A follow-on from this is that current genome 

wide association studies also have relatively low coverage of variants in these regions.  The 

HapMap phase III is now genotyping individuals from 7 additional populations, including 2 

Kenyan populations, Gujarati in Houston, Texas, Mexican ancestry in California, Chinese in 

Denver, Colorado, Tuscans in Italy and African ancestry in South-west USA (Altshuler, Gibbs et 

al. 2010).  Phasing of haplotypes was achieved by the inclusion of parent-offspring trios and 

also computational methods that take advantage of the fact that due to LD only relatively few 

of the large number of possible haplotypes consistent with the genotype data actually occur in 

population samples (The International HapMap Consortium 2005). By sequencing ten 500 kb 

regions in 48 individuals and genotyping all discovered SNPs in all the HapMap samples, it was 

observed that even though a high percentage  of SNPs (46% MAF <0.05) are rare in any given 

individual 90% of heterozygous sites are due to common variants.  Thus, the majority of SNP 

variation between individuals is indeed due to common variants.   The HapMap project has 

enabled this variation to be summarized by a limited fraction of the 10 million or so common 

SNPs that tag haplotypes defined by the project.  Furthermore, other forms of common 

genetic variation such as copy number polymorphisms (see section 1.5.3.2) appear to be 

inherited on these common haplotypes and can therefore also be tagged by common SNPs 

(McCarroll 2008). 

 

1.5.4.3  The 1000 Genomes Project 

 

The goal of the 1000 Genomes Project is to find most genetic variants that have frequencies of 

at least 1% in a selection of diverse human populations (www.1000genomes.org).  To achieve 

this, the project is employing a variety of whole-genome sequencing strategies to maximize 
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the efficiency of variant discovery.  Sequencing costs scale with the number of bases 

sequenced.  If the aim is to accurately sequence an individual’s diploid genome, this requires 

an average read depth of around 28 times (28x) using currently available sequencing 

platforms.  However, if the goal is to discover all variants (with frequency > 1%) in the 

population rather than all variants in a single individual, a more efficient strategy is to 

sequence large numbers of individuals at low read depth (e.g. 4x).  This therefore, is the 

principal strategy planned for the 1000 Genomes project.  Pilot projects that have been 

completed and that have helped optimize sequencing methods included the sequencing of two 

mother-father-child trios at high read depth and 180 individuals at low read depth.  The full 

project aims to sequence 2,500 individuals from 27 populations at low read depth.   

 

The 1000 Genomes project will build on the catalogue of human genetic variation from the 

International HapMap project that has proved so valuable in the design of genome wide 

association studies.  In two respects the 1000 genomes project is expected to advance the 

catalogue of human genetic variation.  Firstly, it will identify less common variants (down to a 

minor allele frequency of 1%).  Secondly, it will significantly advance the catalogue of structural 

variants compared to currently available databases (e.g. database of genomic variants).  This 

data will allow incorporation of new variants on the next generation of genotyping platforms 

for association studies.  In rare diseases, it will provide a valuable database to determine 

whether putative disease-causing mutations are disease-specific or in fact found in the wider 

population.  For the more immediate purposes of building on the findings presented in 

Chapters 3 and 4 in this thesis, it will help the search for causal variants in regions of the 

genome associated with complex diseases.  These regions can be screened for structural and 

sequence variants with obvious or predicted functional effect and such variants may be 

imputable in the GWAS data. 
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1.6 Approaches for identifying causal genetic variants in 

complex diseases  

  

 

Two main methods have been used to identify genetic risk variants in complex diseases: 

association and linkage studies (Table 1.1). 

 

 Genetic association studies test correlations between genetic variants and the phenotype of 

interest.  Correlations of quantitative traits with genotypes or alleles at a locus (quantitative 

trait loci) can be tested using linear regression or analysis of variance (Arking, Pfeufer et al. 

2006; Weedon, Lettre et al. 2007).  Association studies for dichotomous traits like coeliac 

disease and Crohn’s disease have most frequently used a case-control design.  These simply 

compare the frequencies of genetic variants (e.g. alleles or genotypes) in cases and controls 

(e.g. using Fisher’s exact test, Pearson’s chi-square, and Cochran-Armitage genotypic trend 

test).  Variant alleles or genotypes that differ in frequency between cases and controls more 

than expected by chance show evidence of disease association.  Candidate gene studies, for 

example, select a few variants close to or within a gene hypothesized to play an important role 

in disease pathogenesis, either as a result of known biological function or because the gene 

maps to an interval implicated in the disease by a linkage study.  More recently, the HapMap 

project and advances in high throughput SNP genotyping methods have enabled the design of 

genome wide association studies.  These studies assay hundreds of thousands of SNPs 

distributed across the genome and aim to assay a large proportion of common genomic 

variation (Pearson and Manolio 2008).   

 

The second method employed is genetic (non-parametric) linkage analysis.  This technique 

studies multiply affected families, testing co-segregation of polymorphic genetic markers (e.g. 

microsatellites) with disease.  Markers that reside close to a disease-causing variant will tend 

to co-segregate with disease in multiply affected families.  Co-segregation will tend to occur 

more frequently if the disease-causing variant has a strong effect on susceptibility.  Rare 

variants of large effect ought to therefore be more tractable to linkage analysis than 

association studies. A single disease-causing variant may be rare in the general population and 

in sporadic cases, but within a single multiply affected family it may be common. Thus family-

based studies offer advantages to detect rare variants compared to association studies.
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Table 1.1  Gene finding approaches in complex disease 

 

Study type Method Advantages Disadvantages 

    

Linkage studies Test co-segregation of genetic 

markers with disease 

phenotype in affected relatives 

to establish broad regions of 

genome within which causal 

variants reside 

 

Able to detect rare 

variants, and structural 

variants, if highly 

penetrant 

Low power to 

detect weakly 

penetrant alleles 

 

Low genomic 

resolution 

 

Require large 

numbers of 

affected families 

 

Candidate gene 

association studies 

Compare frequencies of 

variants in candidate genes 

chosen on biological grounds or 

from knowledge of linkage 

regions 

 

May pinpoint genes 

from regions of linkage  

 

Greater power to 

detect weakly 

penetrant alleles 

 

Low power to 

detect rare 

variants 

 

Historically 

generated many 

false positives 

 

Genome wide 

association studies 

Compare frequencies of ~10
5
 

single nucleotide 

polymorphisms distributed 

throughout the genome 

between cases and controls 

High resolution- able to 

pinpoint small region of 

genome 

 

Power to detect weakly 

penetrant alleles 

Low power to 

detect rare alleles   

 

 

Low power to 

detect structural 

variants 

 

Expensive 

 

 

 

 

A further advantage of linkage and family-based studies is that they effectively control for 

population stratification, a potential confounder of association studies.  Genomic regions 

identified by linkage studies are however typically large, limited by the size of families (number 

of meioses) available for study.  Such regions typically span several megabases.  Moreover, in 

practice, for complex diseases, obtaining sample sizes great enough to resolve associated 

regions has proven difficult. 
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In Crohn’s disease and coeliac disease, candidate gene and linkage studies have had only 

modest success in identifying disease genes.  Many reported associations have failed 

replication in follow-up studies.  The failures of these approaches reflect a number of 

limitations.  Linkage studies have lacked power to detect all but the most highly penetrant 

variants (e.g. NOD2 in Crohn’s disease). Candidate gene studies are limited to testing a single 

hypothesis of association for one gene and are prone to type 1 errors. Moreover even in 

instances where the gene of interest has subsequently been confirmed in large GWASs (e.g. 

CTLA4 in coeliac disease), the original studies were underpowered, making them susceptible to 

type 2 errors and inconsistent results (van Heel, Hunt et al. 2005).   

 

1.6.1  Genome wide association studies 

 

A genome-wide association study is an association study that assays a major fraction of 

common variation across the genome.  For SNP GWASs this requires upwards of 100,000 

markers at a bare minimum (see Table 1.1).  A case-control design is commonly used for 

dichotomous traits.  Genotyping in SNP GWASs uses SNP microarrays that incorporate assays 

for SNPs that have been chosen either to be evenly spaced across the genome (e.g. Affymetrix 

microarrays) or based on haplotype-tagging efficiency using HapMap data (e.g. some Illumina 

microarrays). The Illumina microarrays used in research presented in this thesis consist of 

millions of 2 or 3 micron silica beads each coated with SNP-specific oligonucleotide probes and 

a coding oligonucleotide probes.  These beads are randomly assembled into microwells on a 

glass slide, forming the array. The positions of each bead are determined by a sequential 

hybridization of the coding oligonucleotides, which enables decoding of the SNP assay 

positions.  Each SNP assay is represented by 20-30 beads. The Illumina technology involves 

hybridization of amplified whole genomic DNA fragments to the glass beads, with single base 

extension at the polymorphic nucleotide position using chain-terminating dideoxynucleotides 

incorporating either a biotin or 2,4 dinitrophenol (DNP).  Fluorescently labelled antibodies to 

the biotin and DNP-modified nucleotides are used to generate and amplify an allele specific 

signal.  The array is then scanned and intensity measurements for each SNP allele generated 

and normalised using an Illumina proprietary algorithm.  Raw data is therefore available in the 

form of normalized intensity measurements (XNorm , YNorm) corresponding to each allele. 

 

Genotype calling: Genotype assignment from normalised intensities is usually performed by 

automated calling algorithms that seek to assign each individual to one of three genotype 
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cluster positions.  While these procedures are efficient and help control for variables specific 

to the study data, visual inspection of SNP cluster plots (e.g. plot XNorm vs. YNorm for all samples) 

is recommended for SNPs showing evidence of association to help exclude genotyping bias.  

 

Genotyping quality controls: The success of these studies relies on accurate genotyping and a 

low rate of missing data.  Stringent quality controls are necessary to ensure that genotype data 

from individual samples is of high quality, with low probability of genotyping error. Individuals 

are therefore excluded if systematic differences in assay intensity characteristics are observed 

across many SNPs.  This is most readily determined from the SNP call rate, the proportion of all 

SNPs for which genotypes can be assigned for an individual. After removal of low quality 

samples, individual SNP assays must also be assessed for genotyping quality.  Commonly used 

quality assessment steps include the proportion of samples for which genotype can be 

assigned, for example required to be >95%.  Similarly some investigators assess differential 

SNP genotype missingness between cases and controls, a step which is particularly important if 

cases and controls have been genotyped under different conditions (e.g. different platforms).  

The distribution of genotypes and in particular deviation from hardy-weinberg equilibrium 

occurs when genotyping bias is present, but can occur for disease-associated variants for 

example under recessive or dominant inheritance models.  Extreme deviations from hardy-

weinberg equilibrium in controls are therefore commonly used to exclude SNPs as another 

indicator of genotyping bias.  

 

Relatedness: Individuals that share recent ancestors will tend to share more genetic variants 

than unrelated individuals.  Relatives within a case or control cohort can therefore increase or 

decrease the frequency of some variants compared to an equivalent unrelated cohort.  Thus 

relatedness can produce spurious genetic associations.  Close relatives and duplicate samples 

are relatively easily identified and excluded.  More distant relatives are more difficult to 

identify and pose a problem of cryptic relatedness. The presence of cryptic relatedness may be 

suggested by general inflation of association test statistics.  Genomic control – adjustment of 

individual SNP association test statistics for the degree of overall statistic inflation, is 

sometimes used to attempt to correct for this. 

 

Population stratification:  This occurs due to the presence of individuals from multiple source 

populations in the sample collection.  When allele frequency differences between cases and 

controls arise due to differences in population origins, population stratification is said to exist 
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(Cardon and Palmer 2003).  Allele frequencies may vary widely between populations 

independently of disease status, as noted previously due to unique population histories, 

founder effects, the effects of genetic drift and natural selection. Population stratification is 

one of the most common and problematic confounders of genome wide association studies. 

Nevertheless, consideration of this problem usually permits effective controls.  A variety of 

methods for controlling for population stratification have been advocated, including genomic 

control, principal components correction and population-stratified analysis.  Many researchers 

include parent-child trios, assessing non-random transmission of putative disease alleles to 

affected versus unaffected offspring (transmission disequilibrium test).  This test is free from 

relatedness and population stratification confounding. Replication of positive associations in 

independent sample collections also provides some re-assurance that these effects are not 

driving the associations. 

 

1.6.1.1  Genetic variation assayed by SNP genotyping chips 

 

SNP genotyping platforms have progressively increased SNP content. For example, the Illumina 

Hap300 beadchip, a genotyping platform used in some earlier GWASs included more than 

300,000  SNPs with minor allele frequency (MAF) > 0.05 that together tag  77% of SNPs (r
2
 > 

0.8) present in the HapMap CEU samples (Phase I and II). Thus a further ~23% of independent 

common variation discovered in HapMap CEU samples, is not well captured by this platform. 

Furthermore the HapMap project has not generated a complete survey of common variants, 

due to difficulty designing reliable SNP assays in certain genomic regions (centromeres, 

telomeres, gaps in genome sequence and segmental duplications)(Manolio, Brooks et al. 

2008). Therefore the amount of true common variation captured is likely to be lower and 

moreover biased against variants in these genomic regions.  

 

Newer genotyping platforms incorporate more SNPs and therefore provide greater coverage 

(see Table 1.2).   

 

Available SNP genotyping platforms used in GWASs do not directly assay rare single nucleotide 

variants, even though rare variants can contribute to common disease susceptibility (Hugot, 

Chamaillard et al. 2001; Bodmer and Bonilla 2008; Ji, Foo et al. 2008).   

Future platforms will supplement common SNPs with SNPs with lower minor allele 

frequencies, drawing from the expanding catalogues of these variants (e.g. 1000 Genomes 

Project).  
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Table 1.2  Common SNP coverage for commercially available SNP genotyping 

platforms. Data represent % of HapMap Phase II SNPs tagged at r
2
 > 0.8. adapted from 

Manolio et al. JCI 2008 (Manolio, Brooks et al. 2008) 

 

 

 HapMap population sample 

Genotyping platform CEU YRI CHB + JPT 

Affymetrix GeneChip 500k 68 46 67 

Affymetrix SNP Array 6.0 82 66 81 

Illumina HumanHap300 77 33 63 

Illumina HumanHap550 88 55 83 

Perlegen 600k 92 47 84 

Illumina 1M 93 73 92 
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1.7  Glossary of genetics terms   

 

Allelic spectrum: The number and population frequency of disease-predisposing alleles at a 

locus 

 

Common, rare and private variants: These define ranges for the minor allele frequencies of 

variants, though consensus on precise frequencies is lacking.  Approximately, common variants 

include those with minor allele frequency (MAF) greater than 1-5%, rare variants those with 

MAF between ~0.1% and 1-3% and private variants those restricted to probands and 

immediate relatives.   

 

Complex disease: Synonyms include common disease, polygenic disease and multifactorial 

disease. Refers to diseases that, in contrast to single gene disorders, are typically common in 

the population and whose susceptibility is determined by both environmental factors and 

genetic factors. The genetic component of susceptibility for these disorders is polygenic, i.e. 

determined by disease-predisposing variants at multiple independent loci. 

 

Copy number variant (and polymorphism):  A form of structural variant, where a 

multinucleotide sequence varies in number between individuals. Usually used to refer to 

variants of this type, of size greater than 1 kilobase or 500 bp.  Polymorphism indicates that 

the variant is common (minor allele frequency > 1%) 

 

Effect size: The increase in risk conferred by a causal genetic variant 

 

Genome wide association study:  Genetic association study which tests for association 

between a phenotype and hundreds of thousands of genetic variants mapping across the 

genome.  Variants are selected with the intent to capture a major proportion of population 

genetic variation, minimizing bias towards or against any particular genomic region.  Most 

studies have genotyped hundreds of thousands of SNPs on commercially available SNP 

genotyping microarrays.  Microarrays vary in SNP numbers (the latest chips include millions of 

SNPs) and in SNP selection, with some arrays taking advantage of HapMap determined 

patterns of linkage disequilibrium between SNPs to minimize redundancy and others seeking 

even spacing across the genome 
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Human Genome: This is the genetic information (DNA sequence) inherited by humans.  It can 

be represented as a template or reference sequence formed of 22 autosomes, 2 sex 

chromosomes and mitochondrial DNA   

 

Haplotype: A combination of alleles at different loci on a chromosome that are inherited 

together 

 

Heritability:  The proportion of phenotypic (trait) variation that is due to genetic variation. This 

is usually calculated by comparing phenotype correlations in individuals of varying degrees of 

relatedness (e.g. monozygotic and dizygotic twins) 

 

Indel: A small insertion or deletion of nucleotides compared to a reference sequence 

 

Linkage disequilibrium: Non-random association of alleles at different loci.  Occurs when some 

combinations of alleles (haplotypes) occur more or less frequently in a population than would 

be expected based on formation of random haplotypes from their allele frequencies alone 

 

Mendelian Disease: A disease transmitted through generations in a family in a dominant or 

recessive manner, typically determined by variants of large effect in a single gene. 

 

Minor allele frequency: In the population studied, this is the proportion of alleles at a locus 

that are the less frequent allele (ranges from 0-50%)  

 

Odds ratio: A relative measure of risk.  In the case of an allelic odds ratio as used in genetic 

case-control studies this is calculated from a 2 x 2 contingency table as the ratio of allele 1 in 

cases versus controls (Allele 1 countcases/Allele 1 countcontrols)  divided by the ratio of allele 2 in 

cases versus controls (Allele 2 countcases/Allele 2 countcontrols).  The odds ratio is not a 

particularly intuitive measure, but approximates relative risk when the value is close to 1  

 

Personalized medicine: Tailoring of preventive and therapeutic interventions for diseases on 

the basis of genetic profiles 

 

Pharmacogenomics: The study of the effects of genome-wide genetic variation on drug 

responses. 
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Polymorphism: Variant with minor allele frequency greater than 1%.  This threshold 

distinguishes polymorphisms from clearly deleterious mutations (as found in single gene 

disorders) which usually have frequencies less than 0.1% and even in completely recessive 

models rarely exceed 2-3% 

 

Single Nucleotide Polymorphism: A nucleotide substitution that occurs in more than 1% of the 

population 
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Chapter 2  Immunogenetics and clinical aspects of coeliac disease 

and Crohn’s disease  
 

 

2.1  Coeliac Disease 

 

The content in this section reviews publications up to November 2009, prior to the full 

analysis and results of the research reported in chapter 3.  Part of the text is adapted from 

two review publications  (Dubois and van Heel 2008; Dubois, Trynka et al. 2010). 

 

Coeliac disease is a common (~1% prevalence) inflammatory disorder of the small intestine 

occurring in both children and adults. Specific proteins in dietary wheat, rye and barley 

(gliadin, secalins, hordeins, usually referred to as “gluten”) induce T cell responses restricted 

by HLA-DQ2 or -DQ8.  These responses are central to the intestinal inflammation and loss of 

villous architecture that characterizes the disease (Figure 2.1). Now that serological testing is 

widespread, symptoms observed in diagnosed individuals vary greatly and are often absent. 

Classical malabsorption is now infrequent, and only the most florid of the spectrum of 

presentations seen in coeliac disease.  Strict avoidance of dietary wheat, rye and barley (a 

gluten-free diet) usually induces remission. Disease reappears on re-challenge and dietary 

treatment is lifelong. 

 

Many of the immunological mechanisms by which dietary wheat (and to a lesser extent rye 

and barley) induce coeliac disease are now understood (Sollid 2002).  Wheat gluten is partially 

digested, but key toxic protein sequences are resistant to intestinal proteases - in part due to 

high proline (P) and glutamine (Q) content. Tissue transglutaminase in the intestinal epithelium 

deamidates critical peptide sequences such as the dominant HLA-DQ2 restricted wheat 

epitope sequence PQPQLPY to PQPELPY, and (cross-linked to critical wheat peptides during the 

deamidation step) is the antigen detected by current diagnostic serological tests such as the 

anti-endomysial or tissue transglutaminase antibody assays. It is unclear if these antibodies 

have a pathological role in coeliac disease. Work using intestinal T cell clones, intestinal biopsy 

culture, and peripheral blood T cells in wheat antigen challenged coeliac patients, has shown 

that wheat peptides are presented by HLA-DQ2 (or in a few patients –DQ8) to CD4+ helper T 

cells. Immuno-dominant wheat (and rye, barley) epitopes that are capable of inducing T cell 

responses in almost all coeliac patients have been defined, and the crystal structure of these 

epitopes bound to HLA-DQ2 or  -DQ8 has been elucidated. Activated T cells secrete interferon-
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gamma, and other cytokines. Interleukin-15, expressed by intestinal epithelial cells and lamina 

propria macrophages, appears to activate intra-epithelial lymphocytes and leads to epithelial 

cell killing. Multiple pathways lead to intestinal inflammation, villous atrophy and subsequent 

malabsorption. 

 

 

Figure 2.1  Model of gluten induced immune response in coeliac disease, and the sites 

of action of coeliac susceptibility genes. 

The most likely gene from each region is shown, although note that causality 

of a genetic variant in any one gene has not yet been proven. 

 

 

 

 

The full HLA-DQ2 heterodimer (encoded at the DNA level by the combination of HLA-

DQA1*0501 and DQB1*0201) is found in ~90% of coeliac disease patients, compared to ~30% 

of white European population controls. The remaining 10% of coeliac disease individuals either 

carry HLA-DQ8, or part of the HLA-DQ2 heterodimer. Carriage of one of these HLA types is 

therefore necessary but not sufficient to develop coeliac disease. 
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The HLA only explains around 30% of the heritable risk of coeliac disease, other genetic and 

environmental risk factors play a major role.  Genetic risk variants on chromosome 4 (in a 

region containing the genes for the T cell cytokines interleukin-2 and interleukin-21) as well as 

variants in other immune system genes have been identified more recently (van Heel, Franke 

et al. 2007; Hunt, Zhernakova et al. 2008).  Several of these have independently been shown to 

influence risk to other autoimmune diseases, especially type 1 diabetes mellitus (Smyth, 

Plagnol et al. 2008).  The timing of the introduction of wheat during infant feeding is probably 

important, some studies suggesting that continued breastfeeding whilst weaning is protective 

(Ivarsson, Hernell et al. 2002; Ivarsson 2005). Whether gastrointestinal infections (e.g. 

rotavirus) in infancy are important triggers remains unclear (section 2.1.1). 

 

2.1.1 Epidemiology 

 

Serological screening of populations in Europe and regions with a high proportion of European 

descendents (North and South America, Australasia) suggests a coeliac disease prevalence of 

approximately 0.5-1% in adults (West, Logan et al. 2003; van Heel and West 2006).  More 

limited data from North Africa and South West Asia suggest similar high prevalence of coeliac 

disease in these areas(Accomando and Cataldo 2004). In central Africa and the Far East there 

have been no large seroprevalence studies but overt coeliac disease is extremely rare 

(Bonamico, Mariani et al. 1994; Fasano, Berti et al. 2003; Freeman 2003). A study from Burkina 

Faso screened 600 individuals, all of whom ate wheat, but found no individuals with positive 

coeliac serology. Furthermore no  individuals carried HLA-DQ2 and only one HLA-DQ8 (Cataldo, 

Lio et al. 2002).  The Saharawi population of North Africa have the highest reported prevalence 

of coeliac disease worldwide(5.4%) mirrored by a very high carriage of the coeliac 

susceptibility marker HLA DQ2, whereas the prevalence of HLA DQ2 is very low in the far east 

(Catassi, Doloretta Macis et al. 2001; Fasano and Catassi 2001). Genetic differences across 

populations (particularly in HLA types) clearly contribute to the different observed population 

prevalences.  

 

Some human populations have been exposed to gluten for around 10,000 years (Accomando 

and Cataldo 2004). Regions of the world where indigenous people have cultivated wheat, rye 

and barley (North Africa, Europe, South West Asia) paradoxically have higher population 

frequencies of coeliac disease-predisposing HLA-DQ alleles than regions where people have 

cultivated other grains (e.g. central Africa- millet and sorghum, South East Asia – rice, America 
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– maize).  The reason is unknown.  However, coeliac diseases and other autoimmune diseases 

appear to have become common relatively recently with incidence still clearly on the increase.  

This rapid increase can only be due to changing environmental factors, and implies that coeliac 

disease and other autoimmune diseases may not have been common for enough time to allow 

negative selection of deleterious HLA alleles. 

 

Grain consumption broadly parallels coeliac prevalence, being  low in the far east and sub-

Saharan Africa(Fasano and Catassi 2001).  Furthermore there is some evidence that the dose of 

gluten, particularly in early childhood, may be an important determinant of lifetime 

susceptibility.  Countries in which infant gluten consumption is low (Denmark, Estonia, Finland) 

report a lower infant (and adult) incidence of coeliac disease than countries with a high infant 

gluten consumption (Sweden) (Weile, Cavell et al. 1995; Mitt and Uibo 1998).   

 

Adult coeliac disease prevalence has been increasing over the last few decades (van Heel and 

West 2006). Improved clinical ascertainment contributes  (especially in the USA), although 

some studies suggest a true increase in seroprevalence (Lohi, Mustalahti et al. 2007).  Similar 

increases in prevalence have occurred in other chronic immune-mediated diseases, 

particularly type 1 diabetes, implicating recent changes in shared environmental factors 

(EUORDIAB ACE Study Group 2000).  These factors remain unknown, although interest has 

focused logically on exposures occurring in early childhood, which might be critical in 

determining lifetime autoimmune disease risk.  In coeliac disease, onset can occur at any age 

but the peak incidence is between 9 and 24 months, following the introduction of gluten into 

the diet (van Heel and West 2006).  Breast feeding during gluten introduction has been shown 

to reduce susceptibility, suggesting that tolerance to gluten can be influenced by factors in 

breast milk(Ivarsson, Hernell et al. 2002). Tolerance to gluten might also be influenced by the 

context in which it is encountered by the mucosal immune system in early life. Childhood 

intestinal infections have been proposed as a factor that could promote loss of tolerance to 

gluten, possibly due to disrupted intestinal epithelial barrier function. Furthermore, 

inflammation up-regulates tissue transglutaminase, a key enzyme in coeliac disease required 

for the generation of immunogenic epitopes from gluten (Ientile, Caccamo et al. 2007). There 

are no animal models of coeliac disease to test this hypothesis and direct evidence for the role 

of intestinal infections is lacking. However, epidemiological studies have shown that coeliac 

disease  is more common in children born in summer months, possibly due to the higher 

incidence of viral enteritis in winter months when these children start eating gluten(Ivarsson, 
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Hernell et al. 2003)  Case-control studies have also suggested that increased exposure to infant 

enteral infections may confer modest increased susceptibility  (odds ratios of 1.4-1.5) 

(Sandberg-Bennich, Dahlquist et al. 2002; Ivarsson 2005).  Finally, one prospective study 

measured episodes of rotavirus infection by serology and found a modest increase in coeliac 

autoantibody incidence in infants exposed to multiple infections (Stene, Honeyman et al. 

2006).  

 

Although the development of coeliac disease has been considered a permanent gluten 

sensitive enteropathy, needing life-long treatment, recent reports suggest some children can 

at least partially resolve this intolerance when kept on a gluten-containing diet (Matysiak-

Budnik, Malamut et al. 2007; Simell, Hoppu et al. 2007). These children may have normal small 

intestinal histology in adulthood, suggesting that coeliac disease can remit or enter a quiescent 

phase, with immunological tolerance to gluten, following initial clinically overt disease. How 

frequently this phenomenon occurs is unclear, much more research in this area is necessary – 

including whether such remission might be therapeutically induced.  

 

 

2.1.2 Evidence for genetic susceptibility 

 

The largest twin study, from Italy, reported that monozygotic twins have disease concordance 

rates of 75% compared to 11% in dizygotic twins (Greco, Romino et al. 2002).   The authors 

note that the monozygotic twin concordance is likely in fact to be an underestimate, due to 

the fact that some of the discordant twin pairs were children and may therefore become 

concordant as they age.  Interestingly, in 90% of concordant twin pairs the age at diagnosis 

differed by less than 2 years (median 1 month) (Nistico, Fagnani et al. 2006). If this does indeed 

reflect the timing of disease onset rather than just the timing of testing, the lack of difference 

between MZ and DZ twins would be consistent with age of onset being determined by 

environmental exposures rather than genetic factors.  For coeliac disease, the best estimates 

have used modern serological screening for coeliac disease antibodies (endomysial antibodies, 

tissue transglutaminase antibodies) and confirmatory biopsy in siblings of coeliac index cases. 

In European ancestry populations sibling risk is around 10%, with a recurrence ratio (λs) of 10-

20 based on population prevalence estimates of 0.5-1% (Bourgey, Calcagno et al. 2007; Rubio-

Tapia, Van Dyke et al. 2008).  This is similar to other polygenic immune mediated disorders 



60 

 

such as type 1 diabetes (λs=15), rheumatoid arthritis (λs=2-8) and Crohn’s disease (λs=27) 

(Lewis, Whitwell et al. 2007). 

 

 The heritability of coeliac disease has been estimated as 87% using the Italian twin study data 

cited above and assuming a disease prevalence of around 1% (Nistico, Fagnani et al. 2006).  As 

of 2009, prior to research presented in this thesis, it was estimated that  around 40% of the 

heritable fraction of coeliac disease risk could be accounted for by known genetic variants,  

around 35% attributable to HLA DQ variants alone (Hunt, Zhernakova et al. 2008). 

 

 

2.1.3 Immunogenetics of the HLA 

 

The Human Leukocyte Antigen (HLA) complex is a highly polymorphic 4 Mb region on 

chromosome 6p21, containing more than 200 genes and over 3000 known alleles (Robinson, 

Waller et al. 2003). HLA class II genes (DP, DQ, and DR) are involved in exogenous peptide 

antigen presentation to T cells. The first reports of association with coeliac disease used 

serological methods to identify B8 and later DR3 as susceptibility variants (Falchuk, Rogentine 

et al. 1972; Keuning, Pena et al. 1976).  The B8 and DR3 molecules are encoded by alleles on a 

6Mb extended haplotype (A1-B8-DR3-DQ2) present in 10 % of Northern Europeans(Price, Witt 

et al. 1999).  Interestingly, other autoimmune diseases are associated with this haplotype, 

including type 1 diabetes and autoimmune thyroid disease.  Subsequent studies have 

pinpointed DQ2 and in particular the combination of HLA-DQA1*0501 and DQB1*0201 

encoding the HLA-DQ2 (α1*0501,β1*0201) heterodimer as the cause of the coeliac disease 

association (Tosi, Vismara et al. 1983). This heterodimer can be encoded both in cis (by alleles 

on the same haplotype) or in trans (one subunit each from paternal and maternal haplotypes) 

(Table 2.1, Figure 2.2).  Moreover several studies show that homozygosity for the cis 

haplotype or possessing a second DQB1*02 allele increases coeliac disease susceptibility 

further (Louka, Nilsson et al. 2002; van Belzen, Koeleman et al. 2004).  The second B1*02 allele 

is usually inherited on the DR7-DQ2 haplotype carrying DQB1*0202 and DQA1*0201 (DQ2.2) 

but possession of this haplotype alone does not confer coeliac susceptibility (Table 2.1). 

 

An explanation for the HLA gene-dosage effect was provided by an in vitro study 

demonstrating that the level of proliferation and cytokine responses of gluten-reactive T cell 

clones depends on DQ type and gene dose (Vader, Stepniak et al. 2003). Vader et al. used 

allogeneic peripheral blood mononuclear cells to present gluten epitopes to gluten-specific T 
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cell clones and showed that T cell responses were highest for DQ2.5 homozygotes, 

intermediate for DQ2.5/2.2, lower for DQ2.5/x heterozygotes and lowest for DQ2.2. Thus 

DQ2.2 in the presence of DQ2.5 can augment T cell stimulation through DQ2 mediated antigen 

presentation. Interestingly DQ2.2 alone, which is not associated with coeliac disease, was able 

to elicit strong T cell responses but only through presentation of a restricted subset of the 

gluten epitopes tested. This suggests that the DQ2 contribution to coeliac disease depends on 

its ability to present multiple closely related gluten epitopes- the ability of DQ2.2 molecules to 

present a small subset of epitopes exerts effects too weak to cause disease.  

 

The HLA-DQ2.5 molecule encoded either in cis or in trans is present in around 90% of coeliac 

patients of Northern European origin(Sollid, Markussen et al. 1989). The majority of the 

remainder carry HLA-DQ8 (genetically DQA1*03, DQB1*0302) (Spurkland, Sollid et al. 1992; 

Karell, Louka et al. 2003). A large European collaborative study found that of those that lack 

both DQ2 and DQ8, only 4 of 1008 coeliac patients had neither the alpha or beta chain of the 

DQ2 heterodimer (Karell, Louka et al. 2003)  This has led to a model of coeliac disease 

pathogenesis in which HLA DQ2/8 is necessary but not sufficient, since HLA-DQ2 is present  in 

30% of healthy Caucasian populations(Sollid, Markussen et al. 1989).  The proportion of sibling 

relative risk attributable to known HLA variants is estimated to be between 30 and 40%, 

indicating non-HLA DQ variants contribute to coeliac disease susceptibility (Petronzelli, 

Bonamico et al. 1997; Bevan, Popat et al. 1999; Hunt, Zhernakova et al. 2008).  Within the HLA 

complex itself there are many other genes with immune functions which might also contribute 

to the observed association signal.  However, the high linkage disequilibrium (LD) that exists 

between genetic variants in this region is an obstacle to teasing out the true causal 

associations (Louka and Sollid 2003). Two studies that have controlled for LD to DQ have not 

found evidence of additional HLA risk variants, although statistical power was limited (Karell, 

Louka et al. 2003; Louka, Moodie et al. 2003).   
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Table 2.1  Classical HLA DQ genotypes associated with coeliac disease and gene dosage 

effects 

 

 

Serological type Chromosome 

Copy 

DQ2 Genotype DQ type  Coeliac 

susceptibility  

DR3-DQ2/ 

DR3-DQ2  

 

i 

ii 

DQA1*0501-DQB1*0201/ 

DQA1*0501-DQB1*0201 

DQ2.5cis 

homozygote 

High 

DR3-DQ2/ 

DR7-DQ2 

i 

ii 

DQA1*0501-DQB1*0201/ 

DQA1*0201-DQB1*0202 

DQ2.5cis + 

DQ2.2 

High 

     

DR3-DQ2/ 

Other 

 

i 

ii 

DQA1*0501-DQB1*0201/ 

Other 

DQ2.5cis 

heterozygote 

Moderate 

DR5-DQ7/ 

DR7-DQ2 

 

i 

ii 

DQA1*0501-DQB1*0301/ 

DQA1*0201-DQB1*0202 

DQ2.5trans Moderate 

DR7-DQ2/ 

Other 

i 

ii 

DQA1*0201-DQB1*0202/ 

Other 

DQ2.2 Nil 

 

DR4-DQ8/ 

other 

 

i 

ii 

 

DQA1*0301- DQB1*0302/ 

Other 

 

DQ8 

 

Moderate 

 

Disease causing alleles highlighted (see also Figure 2.2) 

Adapted from van Heel et al. 2005 (van Heel, Hunt et al. 2005) 

DQ2 type naming after Vader et al. (Vader, Stepniak et al. 2003) 
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The genetic loci harbouring variants that account for the remaining 70% or so of unexplained 

familial clustering in coeliac disease are the targets of gene finding studies. Two 

complementary approaches have been used: genetic linkage and association studies (Table 

2.1).  

 

In general, findings from linkage and candidate gene studies in coeliac disease, with the 

exception of the HLA region, have not been replicated consistently. Linkage regions identified 

include 5q31-33 and 19p13.1, although these remain tentative and lack robust replication 

(Greco, Babron et al. 2001; Van Belzen, Meijer et al. 2003). MYO9B, encoding the myosin IXB 

protein has emerged as a candidate gene from further studies of the 19p13.1 linkage region, 

although replication of this finding has been inconsistent (Monsuur, de Bakker et al. 2005; 

Amundsen, Monsuur et al. 2006; Hunt, Monsuur et al. 2006; Sanchez, Alizadeh et al. 2007).  A 

candidate gene approach identified an association in the CTLA4 region, a gene on chromosome 

2q encoding cytotoxic T lymphocyte antigen 4 (Djilali-Saiah, Schmitz et al. 1998). CTLA-4 is 

expressed on T cells and is a receptor for B7 molecules that inhibit T cell activation. Replication 

studies of the CTLA4 association have been somewhat  inconclusive (van Heel, Hunt et al. 

2005). Therefore, prior to the first genome wide association study in 2007, despite intensive 

efforts, no genetic susceptibility loci other than HLA DQ had been definitively identified. 

 

 

2.1.4 HLA-DQ restricted T cells  

 

Coeliac disease has multi-systemic features, but the predominant lesion mirrors the exposure 

of the small intestine to dietary gluten.  Several lines of evidence implicate a T cell-

orchestrated immunopathogenesis.  Upon gluten challenge of small intestinal biopsies from 

treated (i.e. on a gluten-free diet) coeliac disease patients, infiltration of the lamina propria 

with (predominantly CD4+ αβ) T cells occurs within hours, followed by crypt hyperplasia and 

villous atrophy(Anand, Piris et al. 1981).  This temporal sequence alludes to the central 

importance of T cells in coeliac disease.  In untreated disease Th1 cytokines are highly 

expressed in the intestinal mucosa, particularly interferon (IFN)-γ, supporting the concept of a 

Th1 driven T cell mediated disorder (Nilsen, Jahnsen et al. 1998).  Analysis of lamina propria 

(LP) infiltrating lymphocytes confirms not only IFN-γ expression in a high proportion, but also 

expression of the Th1 transcription factor T-bet (Monteleone, Monteleone et al. 2004).  The 

Th1 bias of CD4+ T cells probably depends less on IL-12 in coeliac disease than in other 

inflammatory conditions. IL-12 is present in very low levels in coeliac disease mucosa (Salvati, 
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MacDonald et al. 2002; Di Sabatino, Pickard et al. 2007) although other Th1 inducing cytokines 

(IL-18 and IFN-α) are increased (Monteleone, Pender et al. 2001; Salvati, MacDonald et al. 

2002; Leon, Garrote et al. 2006). Dendritic cells isolated from the intestinal mucosa in coeliac 

disease also express increased levels of IL-18 and IFN-α but lack IL12p40 (Di Sabatino, Pickard 

et al. 2007). Immunophenotyping of DQ2+ antigen presenting cells in treated versus untreated 

coeliac disease intestinal biopsies suggest a large increase in CD11+ myeloid dendritic cells in 

active disease (Raki, Tollefsen et al. 2006; Di Sabatino, Pickard et al. 2007). These cells 

efficiently present gluten peptides to CD4 T cells inducing proliferation and IFN-γ responses 

(Raki, Tollefsen et al. 2006).  

 

The gluten-responsiveness of CD4 T cells in coeliac disease was first demonstrated in T cell 

lines and clones isolated from intestinal mucosa (Lundin, Scott et al. 1993; Lundin, Scott et al. 

1994).  These cells are not found in non-coeliac DQ2- or DQ8- controls but in coeliac disease 

proliferate and secrete IFN-γ when co-cultured with antigen presenting cells in the presence of 

a variety of peptides derived from gluten.   These studies show that gluten peptides activate T 

cells in the intestinal mucosa exclusively through presentation by the disease-associated DQ 2- 

or DQ8- αβ heterodimers (Lundin, Scott et al. 1993; Lundin, Scott et al. 1994).    

 

 

2.1.5 Gluten epitopes and the role of tissue transglutaminase 

 

While there is heterogeneity between patients with coeliac disease in the gluten epitopes to 

which their T cells respond, some epitopes are immunodominant and elicit T cell activation in 

almost all coeliac individuals (Anderson, Degano et al. 2000; Arentz-Hansen, Korner et al. 

2000). These responses have been demonstrated both in intestine-derived T cell lines or clones 

and in primary T cells isolated from peripheral blood following gluten challenge, supporting 

their contribution to disease in vivo(Anderson, Degano et al. 2000; Anderson, van Heel et al. 

2005). T cell epitopes identified to date are derived from various gluten proteins, including α-

gliadins, γ-gliadins and low molecular weight glutenins (Sjostrom, Lundin et al. 1998; Arentz-

Hansen, Korner et al. 2000; Arentz-Hansen, McAdam et al. 2002; Vader, Kooy et al. 2002). The 

peptide binding groove structure of DQ2 and DQ8 dimers has been characterized and some of 

the constraints this places on selection of epitopes for binding DQ2 or 8 is known (Tollefsen, 

Arentz-Hansen et al. 2006) Both DQ2 and DQ8 dimers have preferences for negatively charged 

residues at key positions in the core peptide binding groove(Vartdal, Johansen et al. 1996; 

Godkin, Friede et al. 1997; van de Wal, Kooy et al. 1997).  Negatively charged residues are 
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uncommon in gluten peptide sequences, but deamidation of glutamine residues to negatively-

charged glutamate can drastically increase the immunogenicity of gliadin peptides (Sjostrom, 

Lundin et al. 1998). X-ray crystallographic analysis of DQ2- peptide interactions supports the 

importance of selective deamidation of glutamine residues in favouring peptide binding for 

gluten peptides (van de Wal, Kooy et al. 1998; Kim, Quarsten et al. 2004). Tissue 

transglutaminase (tTG), an enzyme first linked to coeliac disease by the discovery that it is the 

target of autoantibodies used in diagnosis, can catalyse this deamidation (Dieterich, Ehnis et al. 

1997; Molberg, McAdam et al. 1998).  tTG is likely to perform this function in vivo as it highly 

expressed in the small intestine, up-regulated in inflammation and favours deamidation of 

glutamine residues rather than transamidation under the acidic conditions which exist in the 

proximal small intestine (Fleckenstein, Molberg et al. 2002).  For example, the 

immunodominant gluten peptide epitope PQPQLPY is deamidated to PQPELPY by tissue 

transglutaminase (Arentz-Hansen, Korner et al. 2000).  More recently, a direct pathogenic 

contribution of tTG antibodies has been proposed, with in vitro studies suggesting that these 

antibodies can both activate monocytes by binding toll-like receptor 4 and inhibit angiogenesis 

by altering tTG function   (Zanoni, Navone et al. 2006; Myrsky, Kaukinen et al. 2008).  Such 

effects, if substantiated, may be a mechanism driving extra-intestinal manifestations in coeliac 

disease, since tTG autoantibody deposits have been observed in affected organs (e.g. liver, 

brain) remote from the site of gluten exposure in the intestine (Korponay-Szabo, Halttunen et 

al. 2004; Hadjivassiliou, Maki et al. 2006).  

 

A further important characteristic of gluten epitopes is a high proline content(Arentz-Hansen, 

McAdam et al. 2002). This reflects the inability of human digestive enzymes to break amide 

bonds between proline residues and adjacent bulky hydrophobic amino acids, such that gluten 

peptides can reach the intestinal mucosa intact (Arentz-Hansen, McAdam et al. 2002; Hausch, 

Shan et al. 2002)  

 

 

2.1.6 The innate immune system in coeliac disease 

 

Both in vivo studies and studies of gluten challenge of intestinal biopsies have shown that 

effects on the mucosa begin within a few hours (Sturgess, Day et al. 1994; Maiuri, Picarelli et 

al. 1996; Fraser, Engel et al. 2003).  This rapid onset cannot easily be accounted for by the 

(presumably slower) mechanism of gluten peptide presentation to CD4+ T lymphocytes and 
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has led to interest in a role for the innate immune system in coeliac disease.  Further support 

for this hypothesis came from the observation that some gliadin peptides (p31-p43 α gliadin) 

that do not elicit classical DQ-restricted CD4+ T cell responses, can exert toxic effects on the 

epithelium (Maiuri, Ciacci et al. 2003). Interleukin-15 (IL-15), which is highly expressed in 

lamina propria macrophages and intestinal epithelium, appears to be a crucial intermediary of 

these effects. IL-15 enhances intraepithelial lymphocyte (IEL) proliferation, cytotoxicity (vs. 

epithelial cells) and cytokine release, with increases in IFN-γ and granzyme B (Mention, Ben 

Ahmed et al. 2003; Di Sabatino, Ciccocioppo et al. 2006) Furthermore, exogenous application 

of IL-15 partly reproduces the effects of gliadin challenge whereas anti-IL-15 antibodies 

abrogate the effects of gliadin (Mention, Ben Ahmed et al. 2003). 

 

A feature of coeliac disease is expansion of the IEL population, as well as an inflammatory cell 

infiltrate deeper in the intestinal lamina propria. The IELs in coeliac disease comprise increased 

populations of both CD8+ TCRαβ lymphocytes as well as γδ (CD4-CD8- or CD8+) T cells that can 

directly induce enterocyte apoptosis (Jabri, de Serre et al. 2000).  Some intra-epithelial T cells 

have been shown to demonstrate aberrant expression of NK lineage receptors and can 

perform NK-like functions including T cell receptor- independent killing of enterocytes in active 

coeliac disease (Jabri, de Serre et al. 2000; Hue, Mention et al. 2004; Meresse, Curran et al. 

2006).  These effects are stimulated by gluten peptides including p31-43 α-gliadin and include 

the induction of expression of the cell surface stress molecule MICA on enterocytes and its 

receptor NKG2D on IELs (Hue, Mention et al. 2004).  Mechanistic details of the recognition of 

these apparently ‘innate’ peptides are unclear. 

 

2.1.7 Genetic risk variants in coeliac disease 

 

The first GWAS in coeliac disease tested 310,605 SNPs for association in 778 individuals with 

coeliac disease and 1422 controls (van Heel, Franke et al. 2007). Coeliac cases were recruited 

from hospital outpatient clinics in the United Kingdom and genotyped on the Illumina Human 

Hap300 v1 Beadchip (Illumina inc., San Diego, USA). Control data was obtained from 

individuals within the 1958 birth cohort who had been genotyped on the Illumina Human 

Hap550 v1 Beadchip as part of a collaboration with the Wellcome Trust Case Control 

Consortium (WTCCC).  Association (strongest for the HLA DQ2.5cis tagging SNP rs2187668, P < 

10
-19

) mapping to the HLA region was confirmed. Outside of the HLA, a 480 kilobase region of 

strong linkage disequilibrium on chromosome 4q27 showed the strongest association 
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(rs13119723, p = 2.0 x 10
-7

). Replication was confirmed for SNPs in this region in Dutch and 

Irish cohorts totalling 991 coeliacs and 1489 controls.  A follow-up study tested 1020 of the 

most strongly associated SNPs in the GWAS in a further 1643 cases and 3406 controls, 

comprising additional UK cases and controls, as well as Dutch and Irish collections(Hunt, 

Zhernakova et al. 2008).  This study identified a further 7 genomic risk regions harbouring SNPs 

with strong evidence of association (P < 5 x 10
-7

) (table 1). Of eight non-HLA regions identified 

in these studies, seven regions harbour genes with known immune functions. These genes 

implicate T cell signalling (IL2/IL21, IL18RAP, IL12A, TAGAP, SH2B3) and the control of 

lymphocyte trafficking (CCR gene region, RGS1) (Figure 1).   

 

A second follow-up study to the first coeliac GWAS, tested 458 SNPs showing more modest 

association in the GWAS in the same UK, Dutch and Irish cohorts used in the first follow-up 

study(Trynka, Zhernakova et al. 2009).  This study identified two new coeliac susceptibility 

regions, 6q23.3 (OLIG3-TNFAIP3) and 2p16.1 (REL), both of which reached genome-wide 

significance in the combined analysis of all 2987 

cases and 5273 controls (rs2327832 p = 1.3x10-08, and rs842647 p = 5.2x10-07).  

 

A number of the coeliac susceptibility regions contain variants influencing susceptibility with 

other autoimmune diesases, particularly type 1 diabetes (Table 1).  SNPs from 18 loci 

associated with type 1 diabetes were tested in 2560 UK individuals with coeliac disease and 

9339 controls(Smyth, Plagnol et al. 2008).  In this study new evidence for association with 

coeliac disease of type 1 diabetes variants at the CTLA4 (p=1.26 x 10
-6

) and PTPN2 (p=2.61 x 10
-

4
) loci was observed.  

 

Finally in a follow-up study of the coeliac GWAS data in indviduals from the United States, 

strongly suggestive evidence for a further new coeliac risk locus on chromosome 2q31.3 that 

includes the ITGA4  (integrin alpha 4) gene was observed (Garner, Murray et al. 2009). 

 

Thus, as of June 2009, the coeliac loci with strong evidence of disease association include HLA-

DQ, eight loci from the first GWAS and follow-up, 3 loci from 2 further follow-up studies and 2 

loci from the type 1 diabetes- coeliac study.  This is a current total of 14 genomic regions in 

which variants influence susceptibility to coeliac disease.  
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2.1.8 Function of non-HLA coeliac genes 

 

2.1.8.1 IL2-IL21 region 

 

 Outside of the HLA region, the strongest marker from the first UK coeliac disease GWAS 

mapped to chromosome 4q27 (P =2 x 10
-7

), a finding replicated in further UK, Dutch and Irish 

cohorts (Hunt, Zhernakova et al. 2008). The associated SNP tags a ~700kb linkage 

disequilibrium (LD) block encompassing 4 genes (ADAD1, KIAA1109, IL2 and IL21); the genetic 

association signal cannot differentiate between these genes. This region is emerging from 

other studies as a common autoimmune disease locus, with association to type 1 diabetes, 

Rheumatoid arthritis, psoriasis and Graves’ disease (Todd, Walker et al. 2007; Liu, Helms et al. 

2008; Raychaudhuri, Remmers et al. 2008; Barrett, Clayton et al. 2009). The most compelling 

biological candidates within the LD block are IL2 and IL21. 

 

Interleukin-2 and interleukin-21 are members of the same cytokine family, sharing the same γ 

chain subunit in their receptors (Waldmann 2006).  These cytokines have multiple and diverse 

roles in the immune response, posing a challenge in identifying the precise biological 

mechanisms relevant to coeliac disease. Interleukin-2 has a well defined autocrine function in 

stimulating T cell activation and proliferation, but can also stimulate natural killer (NK) cell 

proliferation and immunoglobulin production from B cells.  This cytokine has a unique role in 

activation induced cell death, a process that eliminates self-reactive T cells, and in 

maintenance of CD4+ CD25+ regulatory T (TReg) cells (Lenardo 1996; Fontenot, Rasmussen et 

al. 2005; Maloy and Powrie 2005).  In the non-obese diabetic (NOD) mouse model the region 

syntenic to human 4q27 determines susceptibility to multiple autoimmune diseases through 

an IL2-dependent mechanism (Yamanouchi, Rainbow et al. 2007).  In this model, the murine 

risk variants were associated with reduced IL2 gene expression, lower proportions of CD4+ 

CD25+ TReg cells in mesenteric lymph nodes and impaired function of these cells (Yamanouchi, 

Rainbow et al. 2007).  It is thus possible that the IL2-IL21 region risk variants in human coeliac 

disease might also exert their susceptibility effects through the CD4+ CD25+ TReg  cell subset, 

for example by impairing tolerance to gluten peptides.  However, in humans, there is as yet no 

comparable data of the effects of variants on gene expression or function.  IL21 remains a 

candidate gene in this region and expression is known to be increased in the small intestinal 

mucosa in untreated coeliac disease (Fina, Sarra et al. 2007). IL-21 is secreted mainly from 

CD4+ T cells and has proinflammatory effects including enhancement of B, T and NK cell 
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proliferation (Leonard and Spolski 2005). Anti-IL-21 antibodies in an ex-vivo intestinal biopsy 

culture model reduced T-bet and IFN-γ expression suggesting that interleukin-21 may be 

important in sustaining Th1 activity in coeliac disease (Fina, Sarra et al. 2007).  The disease-

predisposing SNP of rs6822844 (the most strongly associated SNP in the region) is correlated 

with serum IL-21 and is associated with induction of Graves’ disease, suggesting it may play a 

role in induction of autoimmunity(Jones, Phuah et al. 2009).  

 

The largest follow-up study of the first coeliac GWAS tested over 1000 of the most strongly 

associated non-HLA SNPs from the original UK GWAS in a large independent cohort (1643 new 

coeliac cases and 3406 controls) (Hunt, Zhernakova et al. 2008). The added power of this study 

yielded strong evidence (P<5*10
-7

) for a further 7 new genomic regions, six of which harbour 

genes with immune functions (Table 3.1 –chapter 3, Figure 2.1).  It was estimated in this 

follow-up study that the newly identified variants accounted for only 3-4% of the genetic 

susceptibility of coeliac disease, suggesting that many other true associations remain 

undetected.  Effect sizes of the SNPs on disease susceptibility are modest in line with findings 

from genome wide association studies in other complex diseases (Figure 2.3) (Mathew 2007; 

Todd, Walker et al. 2007). The allele that is more frequent in cases can confer either protective 

or risk effects with odds ratios of all detected variants between 0.7 and 1.4.  Given that there 

are an estimated 8 million SNPs with MAF > 5% in the human genome and only 300,000 SNPs 

were tested in the original GWAS, in most cases associated SNPs are unlikely to be causal, but 

instead will show variable levels of correlation with the true causal variants.  Identification of 

the true causal variants is a priority of further research and will depend on fine-mapping 

and/or deep re-sequencing of the regions identified. Indications from other diseases suggest 

discovery of the true causal variants may lead to a significant upwards revision of both effect 

sizes and the estimated proportion of genetic susceptibility accounted for (Mathew 2007).  In 

the interim, the primary significance of the genome wide association study findings is in 

providing new insights into the biological pathways relevant to the pathogenesis of coeliac 

disease. 

 

All 8 non-HLA regions identified in the first coeliac GWAS and a large follow-up were identified 

by SNPs showing association and a Wellcome Trust Case Control Consortium advocated 

significance genome-wide threshold of P<5 x 10
-7

 (Wellcome Trust Case Control Consortium 

2007).  Causal variants in these regions are unknown. 



 

 

Figure 2.3 Estimate

identifie

Allelic od

the most

effect of

 

 

 

2.1.8.2 RGS1 region 

 

The strongest associatio

8kb distal to the 5’ end o

selective expression in

conventional splenic or t

et al. 2008).  fRGS1 regul

chemokine receptor sign

 

2.1.8.3 3p21 

 

 Another strong associat

CCR1, CCR2, CCRL2, CCR

receptor signalling and r

in coeliac disease. The

pathways. 

ates of effect size conferred by coeliac disease ass

tified from the first GWAS and follow-up study (Ma

ic odds ratios are shown for the best tag markers fro

ost likely candidate gene(s) from each region.  It is 

ct of the causal variants at non-HLA loci, once identif

ation (p=2.58 x 10
11

) outside of the HLA region and 

nd of RGS1. RGS1 is of particular interest in coeliac 

 in the intestinal intra-epithelial lymphocyte co

 or thymic T cells (Pennington, Silva-Santos et al. 20

egulates G protein signalling activity and is implicate

 signalling and B cell trafficking to lymph nodes (Han,

ciation mapped to a chemokine receptor gene clus

 CCR3, CCR5 and XCR1 again hinting at the impor

nd recruitment of effector immune cells to sites of in

The disease associated genetic variants may su

71 

 associated risk variants 

(March 2008). 

s from GWAS, along with 

It is probable that the 

ntified, will be larger.  

 

nd IL2-IL21 was for a SNP 

liac disease because of its 

 compartment, but not 

l. 2003; Hunt, Zhernakova 

cated in mice in regulating 

an, Moratz et al. 2005).  

 cluster on 3p21 including 

portance that chemokine 

of inflammation may have 

y subtly influence these 



 

72 

 

 

2.1.8.4 IL12A and IL18RAP 

 

Strong association (p=10
-9

) of SNPs in a 70Kb LD block immediately 5’ of IL12A implicate this 

gene, which encodes IL12p35, the subunit that forms one half of the interleukin 12 

heterodimer with IL12p40. Interleukin-12 is expressed by antigen presenting cells and has a 

broad range of biological activities including induction of interferon-γ secreting Th1 cells.  

Although coeliac disease is characterized by a strong Th1 response, surprisingly IL12p40 is not 

expressed in coeliac disease mucosa after gluten challenge and both IL12p40 and IL12p35 

expression were not found to be increased in dendritic cells isolated from untreated coeliac 

disease mucosa (Nilsen, Jahnsen et al. 1998; Di Sabatino, Pickard et al. 2007). It might well be 

in coeliac disease that IL12 signalling is important at an alternative site (mesenteric lymph 

nodes?) – attempting to make sense of these findings really highlights our limited knowledge 

of the primary underlying immunopathogenic mechanisms. 

 

 There is evidence for the importance of IFN-α and IL-18 in promoting a Th1 phenotype in CD4 

T cells in coeliac disease (see below). IL18 transcripts are very strongly expressed in the human 

small intestine. In this regard, another candidate gene identified from the GWAS (IL18RAP) 

encodes the β chain of the IL-18 receptor.  Hunt et al. showed that the coeliac disease 

associated SNPs correlated with IL18RAP gene expression in peripheral blood. The risk alleles, 

found more commonly in individuals with coeliac disease, correlated with lower levels of 

IL18RAP mRNA suggesting that variants reduce gene expression. This might suggest a loss of 

function of IL-18 receptor signalling, a puzzling finding given the up-regulation of IL-18 and 

strong Th1 bias in coeliac disease.  Again, these findings underline the limitations of current 

immunological models of coeliac and other immune mediated diseases, but also provide clues 

to inform the design of new functional studies.  

 

2.1.8.5 SH2B3 region 

 

SH2B3 is expressed in immune cells, up-regulated in coeliac mucosa and thought to function in 

regulation of T cell receptor, growth factor and cytokine receptor mediated signalling (Li, He et 

al. 2000; Velazquez, Cheng et al. 2002). A non-synonymous SNP (rs3184504) in SH2B3 was 

associated with coeliac disease in the follow-up study. The same SNP is associated with type 1 

diabetes, accounting entirely for the association in the latter disease (Todd, Walker et al. 
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2007).  This SNP, in exon 3 of SH2B3 leads to an amino acid substitution (R262W) in the 

pleckstrin homology (PH) domain of the SH2B3 protein. Pleckstrin homology domains are 

involved in targeting proteins to plasma membranes through binding phosphoinositides 

(Lemmon 2008). Mutations in PH domains in other proteins have been associated with disease 

by impairing phosphoinositide binding and membrane localisation (X-linked 

agammaglobulinaemia) or through causing constitutive membrane association (breast, 

colorectal and ovarian cancers) (Lindvall, Blomberg et al. 2005; Carpten, Faber et al. 2007).  

Functional studies of the effects of the R262W variant are needed to determine how this 

impacts on the biology of coeliac disease.  

 

2.1.8.6 TAGAP and LPP 

 

T cell activation GTPase activating protein-TAGAP  is a gene expressed in activated T cells, 

whose function in immune cells is not well characterized but may modulate cytoskeletal 

changes (Mao, Biery et al. 2004).  LPP   is strongly expressed in the small intestine but the 

significance in relation to coeliac disease is unknown. LPP has more recently been associated 

with rheumatoid arthritis and vitiligo (Coenen, Trynka et al. 2009; Jin, Birlea et al. 2010). 

 

 

2.1.8.7 Other coeliac candidate genes 

 

Further follow-up studies and a study of type 1 diabetes SNPs in coeliac disease have provided 

support for a further 5 disease regions, some at lesser levels of statistical significance.  

Candidate genes in these regions include CTLA4, PTPN2, REL, TNFAIP3 and ITGA4. 

 

CTLA4 was originally postulated as a coeliac susceptibility gene in candidate gene studies. 

More convincing evidence has since been acquired from testing of type 1 diabetes-associated 

SNPs in the CTLA4  gene region in 2560 UK individuals with coeliac disease and 9339 controls 

(P = 1.26 x 10
-6

) (Smyth, Plagnol et al. 2008). Cytotoxic T lymphocyte protein 4 has an essential 

role in Treg cell function in mice and may be implicated in loss of tolerance in autoimmunity 

(Wing, Onishi et al. 2008).  Analysis of CTLA4 haplotypes conferring risk to type 1 diabetes has 

shown correlation with reduced expression of the soluble splice isoform of CTLA-4 (Ueda, 

Howson et al. 2003).  PTPN2 association with coeliac disease was also through testing of type 1 

diabetes associated SNPs in UK coeliacs (Smyth, Plagnol et al. 2008).  This gene encodes T-cell 
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protein tyrosine phosphatase, little studied but thought to be important in T cell activation 

(Ounissi-Benkalha and Polychronakos 2008)  

 

 

TNFAIP3 (Tumour necrosis factor, alpha-induced protein 3) implicated in the study by Trynka 

et al. is a strong autoimmune disease candidate, required for termination of NF-κB signalling 

(Boone, Turer et al. 2004). Gene knockout in mice leads to multi-organ inflammation (Lee, 

Boone et al. 2000).  The other candidate gene identified in this study was REL, a component of 

the NF-κB transcription complex (Trynka, Zhernakova et al. 2009). 

 

 

A region on chromosome 2q31 showed association in an American follow-up study that 

successfully genotyped 975 of the SNPs genotyped by Hunt et al. in 928 American coeliac cases 

and compared them to Illumina genotype data on 3905 European controls (Illumina 

iControlDB). 5 of the eight regions identified in Hunt et al showed strong association in this 

study.  In addition, rs6433894 showed the strongest association in the 2q31 region (P=0.00066; 

PHunt_combined=1.32 x 10
-5

).  The closest gene to this SNP is UBE2E3, an ubiquitin-conjugating 

enzyme involved in ubiquitinization a mechanism that targets abnormal or short-lived proteins 

for degradation.  ITGA4 maps ~325kb from the associated SNPs in this region.  This gene 

encodes integrin alpha 4, an integrin subunit that contributes to the alpha4-beta7 integrin 

implicated in targeting T cells to the intestine.   
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2.2       Crohn’s Disease 

 

Crohn’s disease is a chronic relapsing-remitting intestinal inflammatory disease with a median 

population prevalence of in 140 per 100,000 (range 10-199) in populations of European 

ancestry (Loftus 2004).  Inflammation may affect any part of the gastrointestinal tract, but 

most commonly affects the ileum and proximal colon.  Over time the natural history is of 

progression from an inflammatory phase, with chronic mucosal inflammation and ulceration, 

to stricturing and finally penetrating disease which can cause perforation, fistulation and 

abscesses (Cosnes, Cattan et al. 2002).   

 

Ulcerative colitis is the other main type of inflammatory bowel disease (IBD), with similar 

prevalence, again characterized by relapsing-remitting intestinal inflammation.  In contrast to 

Crohn’s disease, ulcerative colitis manifests with chronic rectal mucosal inflammation and may 

extend proximally in the colon.  For unknown reasons, inflammation in ulcerative colitis is 

confined to the mucosa, thus stricturing and penetration are not characteristic features. 

 

2.2.1 Epidemiology 

 

The highest incidence and prevalence rates of Crohn’s disease have been reported from 

Northern Europe, the United Kingdom and North America, with a north-south gradient of 

disease incidence within Europe and North America reported (Loftus 2004; Baumgart and 

Carding 2007).  However, incidence of Crohn’s disease is reported to be increasing in most 

areas of the world, including Southern Europe, Asia, Africa and Latin America with some 

narrowing of the incidence gap between European ancestry and developing world populations 

(Loftus 2004). Summarising these trends, Loftus observed that IBD incidence appears to be low 

in developing countries, but increases with development and westernization. Initially this 

increase is dominated by ulcerative colitis, but eventually Crohn’s disease incidence matches 

that of ulcerative colitis in developed nations (Loftus 2004).  While this may in part reflect 

ascertainment biases, the increase in IBD incidence and the relative increase in Crohn’s disease 

over the last few decades have been confirmed in well-studied population cohorts such as that 

from Olmsted County (North America). 

 

Crohn’s disease onset can occur at any age, with a median of around 30 years (Loftus, 

Silverstein et al. 1998).  Previous studies have suggested a peak in the second and third 
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decades, and another in later life, though this has not been a consistent finding from recent 

epidemiological studies (Loftus 2004). The male: female ratio is close to one for Crohn’s 

disease, with slight female preponderance particularly for disease diagnosed in late 

adolescence and early adulthood. 

 

Smoking confers a definite but modest increased risk (OR ~2) of Crohn’s disease, but the 

mechanism is uncertain (Calkins 1989; Garcia Rodriguez, Gonzalez-Perez et al. 2005).  Smoking 

is a protective factor for ulcerative colitis (Harries, Baird et al. 1982; Calkins 1989). 

Appendicectomy is a protective factor for ulcerative colitis, and most studies have suggested it 

acts as a risk factor for Crohn’s disease, though again mechanisms are unclear (Koutroubakis, 

Vlachonikolis et al. 2002; Radford-Smith 2008). The evidence for other environmental factors is 

relatively weak, but includes a suggestion of modestly increased risk of Crohn’s disease 

associated with oral contraceptive use (Godet, May et al. 1995). 

 

2.2.2 Treatment 

 

The clinical management of individuals with Crohn’s disease is complex and individualised, 

reflecting substantial inter-individual variation in clinical phenotype (Table 2.2) and disease 

severity and trade-offs between the therapeutic benefits and adverse effects of available 

interventions.  The mainstays of management of Crohn’s disease are medical therapies and 

surgery, neither of which are curative, but aim rather to limit the impact of the disease.  At 

least 50% of individuals require surgery within 10 years, rising to around 80% over much longer 

time periods, mostly for stricturing ileal disease (Bernell, Lapidus et al. 2000; Carter, Lobo et al. 

2004).  Multi-disciplinary management may also include dietetics (interventions either aimed 

at optimizing nutritional status or nutritional immunotherapy for reducing disease activity), 

psychological interventions (e.g. stress management, interventions to promote smoking 

cessation), pharmacist-led monitoring of drug toxicities and immunization programs in those 

exposed to immunosuppressants.   A full discussion of management is beyond the scope of this 

chapter.  However, medical therapies are briefly discussed, as one of these options, 

azathioprine, is the subject of investigation in chapter 4.  
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Table 2.2  Montreal classification of Crohn’s disease phenotype 

 

Age at diagnosis (years)
a 

<16  A1 

 17-40  A2 

>40  A3 

Location Ileal L1 

 Colonic L2 

Ileocolonic L3 

Upper gastrointestinal L4
a 

Behaviour Non-stricturing, non-

penetrating 

B1 

 Stricturing B2 

Penetrating B3 

Perianal P
b 

 
a
Early onset disease associated with a more severe disease course 

L4 can be added to L1-L3  
b’p’ 

is added to B1-B3 when concomitant perianal disease is present 

 

 

Medical therapies (e.g. corticosteroids) are initially reserved for disease flares, with 

maintenance therapies (e.g. azathioprine, methotrexate) added in those with frequent 

relapses.  However, there is increasing evidence that intervention with newer agents such as 

the anti-TNFα antibody infliximab as well as immunosuppressants may alter the progression of 

disease, with reduced rates of relapse and surgery (Markowitz, Grancher et al. 2000; Hanauer, 

Feagan et al. 2002; Lichtenstein, Yan et al. 2005; Vernier-Massouille, Balde et al. 2008).  This 

has helped drive a trend towards earlier use of immunosuppressants and biologics, particularly 

in those with prognostic markers suggestive of a more aggressive disease course (D'Haens 

2009; Dignass, J.F. Colombel et al. 2010).  However, these benefits must be weighed in each 

case against the toxicities of these drugs, which include increased rates of serious infections 

and lymphoma.  Better prognostic factors for disease behaviour and response to treatment 

would greatly aid Crohn’s disease management.  It is hoped that genetic risk variants in 

Crohn’s disease will offer better risk stratification than clinical risk factors alone. NOD2 

variants, which confer the greatest known effects of any genetic or environmental factors on 

Crohn’s disease risk (homozygote OR = 17), predict earlier onset of ileal structuring disease and 

need for surgery (Alvarez-Lobos, Arostegui et al. 2005; Annese, Lombardi et al. 2005). Risk 

profiling using multiple markers from recent genome-wide association studies, currently has 

weak prediction performance (chapter 1). Reports of associations between variants and 

selected disease outcomes should be interpreted with caution at this stage: multiple tests 
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require appropriate statistical significance threshold and validation in independent sample 

collections (Henckaerts, Van Steen et al. 2009; Weersma, Stokkers et al. 2009).  So far no 

studies have applied the new genome wide association methods to investigate genetic effects 

on drug response and adverse effects for any of the agents commonly used in Crohn’s disease. 

However, this area has considerable promise, with examples from other pharmacogenomic 

studies suggesting that genetic variants with large effects on risk may be identifiable (Link, 

Parish et al. 2008; Daly, Donaldson et al. 2009).  In chapter 4, results from a genome wide 

association study of azathioprine/mercaptopurine induced pancreatitis are presented. 

 

The thiopurine antimetabolites mercaptopurine and azathioprine are used as first line 

immunosuppressants, as steroid-sparing agents in active disease and for maintenance of 

remission.  Azathioprine is a prodrug of mercaptopurine and both drugs have similar efficacy 

and toxicities.  Both azathioprine and mercaptopurine have a slow onset of action, taking up to 

16 weeks to achieve their full therapeutic effect. The numbers needed to treat (NNT) to induce 

and maintain remission with azathioprine in Crohn’s disease are 5 and 3 respectively 

(Sandborn, Sutherland et al. 2000; Prefontaine, Sutherland et al. 2009).  Discontinuation of 

thiopurine treatment in individuals in remission is associated with high rates of relapse even 

after 5 years or more of treatment (Lemann, Mary et al. 2005; Treton, Bouhnik et al. 2009).  

The benefits of thiopurines are considered to outweigh their toxicities in most patients, a 

Cochrane review of clinical trial data estimating a number needed to harm of 14 (compared to 

NNT of 5) for induction of remission in Crohn’s disease (Sandborn, Sutherland et al. 2000).  A 4-

5fold increased risk of non-Hodgkin’s lymphoma is observed in individuals with inflammatory 

bowel disease exposed to azathioprine, although absolute incidence is low (1 per 1000 patient-

years) (Kandiel, Fraser et al. 2005; Beaugerie, Brousse et al. 2009).  10-20% of individuals 

discontinue thiopurines due to adverse effects, and careful monitoring is required for ~5% 

individuals experiencing severe adverse effects (e.g. neutropaenia, pancreatitis). The 

mechanisms and short-term toxicities of thiopurines are discussed more fully in chapter 4. 

 

2.2.3 Crohn’s disease aetiopathogenesis: the intestinal microbiota  

 

The intestinal microbiota appears to be a necessary factor in the pathogenesis of Crohn’s 

disease.  Evidence for this includes the fact that inflammation occurs most commonly in 

regions of the gastrointestinal tract with the highest concentrations of bacteria (ileum and 

colorectum).  Secondly, diversion of the faecal stream improves inflammation in the diverted 
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segment.  Thirdly, antibiotics have clinical benefit in reducing inflammation in some patients 

with Crohn’s disease, although benefits are usually not sustained.  Finally several animal model 

s of intestinal inflammation require the presence of commensal intestinal bacteria.  For 

example, the IL10 knockout mouse raised in a germ-free environment only develops colitis on 

re-colonisation with commensal bacteria (Sellon, Tonkonogy et al. 1998).  Thus intestinal 

microbes appear necessary for gut inflammation in Crohn’s disease. A different question is 

whether variation in the intestinal microbiota between individuals accounts for a proportion of 

Crohn’s disease susceptibility.   

 

2.2.4 Evidence for an abnormal microbiota in Crohn’s disease 

 

Many studies have attempted to compare the microbiota in patients with Crohn’s disease to 

normal healthy controls. A prevailing obstacle is the fact that most bacterial species residing in 

the human intestine cannot be cultured in vitro ((Suau, Bonnet et al. 1999; Tannock 2000)).  

Thus, culture-based studies are biased towards the around 30% of organisms that may be 

cultured.  For example, there have been reports of an increased prevalence of an adherent-

invasive strain of Escherichia Coli in Crohn’s disease ileal mucosa that is potentially pathogenic 

and invasive in in vitro studies (Darfeuille-Michaud, Neut et al. 1998).  However, the true 

prevalence of these strains in healthy individuals may in fact be closer to that seen in Crohn’s 

disease and appears to be similar in colon cancer patients (Martin, Campbell et al. 2004).  

Another body of research has explored the hypothesis that Mycobacterium Avium subspecies 

Paratuberculosis (MAP) may be a cause of Crohn’s disease. MAP causes a chronic 

granulomatous inflammatory disease of the intestine in cattle (Johne’s disease) and other 

mammals and has been identified in the intestine and mesenteric lymph nodes of some 

Crohn’s patients (Feller, Huwiler et al. 2007; Frank 2008). A subset of individuals with Crohn’s 

also shows T cell-reactivity to MAP (Olsen, Tollefsen et al. 2009). However, the association with 

Crohn’s is contentious and even if proven it is unclear whether the presence of MAP is a 

consequence of Crohn’s disease (impaired immunity) or a cause. A randomized trial of anti-

MAP chemotherapy did not show evidence of sustained benefit (Selby, Pavli et al. 2007). Thus 

there remains no convincing evidence of the role of this bacterium and indeed any other single 

strain in disease pathogenesis (Strober, Fuss et al. 2007).   

 

Metagenomic approaches aim to capture microbial diversity more fully through studying 

microbial genetic diversity. One approach involves sequencing or hybridization of microbial 
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ribosomal RNA from cloned DNA fragments derived from faeces or mucosal tissue. This 

enables a phylogenetic classification of the human microbiome.  In Crohn’s disease there is 

evidence of a reduced diversity and numbers among the phyla Bacteriodetes and Firmicutes 

(Manichanh, Rigottier-Gois et al. 2006; Frank, St Amand et al. 2007).  However, whether these 

differences in microbiota precede the development of Crohn’s disease and have a causal role is 

unknown.   

 

The intestinal mucosal immune system in health exists in a state of fine balance, exposed 

continually to high concentrations of intestinal bacteria. Sensory components of the innate 

immune system, including epithelial toll like receptors and cytoplasmic NOD-like receptors 

continuously sample microbial antigens. The factors that tip the balance of the intestinal 

immune response towards inflammation are many and various, but genetics has been helpful 

in highlighting some of the pathways which may be dysregulated. 

 

2.2.5 Defective innate immune responses in Crohn’s disease 

 

In this hypothesis defective innate immune responses to commensal bacteria disturb the 

normal homeostasis of the mucosal immune system (Marks, Miyagi et al. 2009). This might 

lead to defective clearance of normally sub-pathogenic bacteria and ensuing secondary 

immune responses (Smith, Rahman et al. 2009).  Functional studies have demonstrated 

impairment of neutrophil chemotaxis and acute inflammation both in the intestine and at 

extra-intestinal sites, providing some support for this hypothesis (Marks, Harbord et al. 2006). 

Moreover, the granulomatous inflammation of Crohn’s disease has similarities to the 

inflammation observed in the primary neutrophil immunodeficiency, chronic granulomatous 

disease (Marks, Miyagi et al. 2009).  Again, the question of whether these abnormalities are 

primary disturbances contributing to Crohn’s pathogenesis, or acquired abnormalities caused 

by the development of Crohn’s disease is unanswered. 

 

2.2.6 Evidence of for genetic susceptibility in inflammatory bowel disease 

 

Twin studies have reported concordance of 60-70% in monozygotic twins and ~10% in 

dizygotic twins (Orholm, Binder et al. 2000; Halfvarson, Bodin et al. 2003). Familial clustering is 

also evident in Crohn’s disease (Peeters, Nevens et al. 1996) with sibling relative risk (λs ) 

estimated at between 25 and 35 (Satsangi, Parkes et al. 1998; Lewis, Whitwell et al. 2007). 
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Ulcerative colitis (UC) is less heritable than Crohn’s disease (λs=10-15 UC) (Satsangi, Parkes et 

al. 1998).  Only a few extremely rare Mendelian forms of inflammatory bowel disease 

(autosomal recessive inheritance) have ever been reported but the phenotype appears distinct 

from both Crohn’s disease and ulcerative colitis, with onset of severe disease in the first few 

months of life (Fried and Vure 1974; Megarbane and Sayad 2007). Mutations in genes 

encoding the IL-10 receptor were identified as the cause of early-onset entero-colitis in two 

families (Glocker, Kotlarz et al. 2009).  Heritability in Crohn’s disease has been estimated as 

50% with 20% of this accounted for by known variants (Tysk, Lindberg et al. 1988; Barrett, 

Hansoul et al. 2008). Ulcerative colitis, a related inflammatory bowel disease is more frequent 

in relatives of Crohn’s disease, suggesting that some predisposing variants are shared in both 

diseases (Satsangi, Grootscholten et al. 1996).  

 

2.2.7 Susceptibility variants in Crohn’s disease 

 

The first susceptibility gene identified in Crohn’s disease was NOD2, discovered through 

linkage analysis and resequencing of the NOD2 gene in 2001 (Hugot, Chamaillard et al. 2001; 

Ogura, Bonen et al. 2001). The 3 major disease-causing mutants were identified in these 

studies after resequencing the NOD2 gene in only 62 individuals, with limited follow-up 

genotyping in cases and controls confirming association.  These variants include two amino-

acid substituting variants (R702W, G908R) and one frame-shift mutation (1007fs, which causes 

a truncated peptide) and account for 80 % of disease-causing variants (Aslan, Karaveli et al. 

2007).  Allele frequencies of these variants vary between 1.2 and 4.3 % in healthy controls with 

a meta-analysis showing that these variants confer odds ratios (ORs) for heterozygotes of 2.4 

(2.0-2.9) and homozygote/compound heterozygote 17.1 (10.7-27.2) (Economou, Trikalinos et 

al. 2004).  A notable feature of one of the original NOD2 reports was the enrichment of many 

additional rare variants in Crohn’s cases versus controls (Hugot, Chamaillard et al. 2001).  Thus 

NOD2 provides some support for both the common disease-common variant and common 

disease-rare variant hypotheses. 

 

2.2.8 Genome wide association studies in Crohn’s disease 

 

Eight single nucleotide polymorphism (SNP) GWASs have been performed since the discovery 

of NOD2 (Table 2.3).  These have collectively generated strong evidence for disease association 

for over 30 genomic regions (Barrett, Hansoul et al. 2008).  A further 18 susceptibility loci have 



 

82 

 

been reported from an extension of this meta-analysis by the International IBD Genetics 

Consortium, that analysed GWAS data from a total of 6,324 Crohn’s disease cases and 15,054 

controls of European ancestry (Parkes 2010).  In all cases the associated variants confer 

modest effects on disease risk with odds ratios less than those of the causal variants in NOD2, 

typically allelic odds ratios < 1.5 (Table 2.4). In rare instances these studies have identified 

genetic variants that are likely to be causal (IL23R, ATG16L1). Inferring causality is supported 

by SNPs with obvious predicted functional effects (e.g. amino-acid sequence changing SNPs), 

and where association of surrounding SNPs can be entirely accounted for by the candidate 

SNP.  However confirmation of causality relies also on functional studies demonstrating that 

these SNPs may directly alter biological processes in ways relevant to the disease.  

 

In most instances, regions of association encompass 10s or 100s of kilobases of sequence 

(median size of linkage disequilibrium blocks around the top regional Crohn’s disease-

associated SNP was 165 kilobases) and the causal variants are unknown (Barrett, Hansoul et al. 

2008).  These regions typically contain hundreds of known common variants across a block of 

high linkage disequilibrium (LD). The common variants are therefore highly correlated and 

determining which variants are responsible for the disease association has usually not been 

possible from analyses of GWAS data. Early fine-mapping studies of some of these regions 

performed by the WTCCC (data not yet published), in which much larger numbers of variants 

(including some rare variants discovered through regional resequencing) are genotyped in 

cases and controls, have achieved some successes either in narrowing the region of association 

or identifying causal variants, but most frequently this approach has been insufficient to 

identify causal variants. 

 

Some of the GWAS-identified Crohn’s loci contain many genes while others contain no known 

genes at all (gene deserts). At one extreme the 3p21 locus associated with Crohn’s disease, 

contains 35 genes while the 5p13.1 Crohn’s locus has no genes (Barrett, Hansoul et al. 2008). 

Thus, a primary challenge in understanding the new GWAS associations is to define the causal 

variants within these regions and a second is to move towards a functional understanding of 

the impact of these variants on disease pathogenesis.  These functional analyses are mostly in 

their infancy, but successes have been reported, particularly for genes where the causal 

variants have been identified (e.g. NOD2, ATG16L1).   
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Table 2.3  Genome Wide Association Studies in Crohn’s Disease published before June 

2010  

 

Year 

of 

public

ation 

Reference:  

first author 

Sample 

population 

Genotyping platform 

(no. SNPs post QC) 

GWAS Sample 

size: cases vs. 

controls (post QC) 

Novel risk loci
a 

Top SNP 

GWAS P 

value for 

each gene
 

2005 Yamazaki Japanese Multiplex PCR based 

(72,738) 

94 vs. 752 TNFSF15 1.71 x 10
-14

 

2006 Duerr North American 

(NIDDK) 

Illumina Hap300 

(308,332 SNPs ) 

547 vs. 548 IL23R 5.1 x 10
-9

 

2007 Hampe German SNPlex Genotyping 

System (19,779 

nsSNPs) 

735 vs. 368 ATG16L1 4.0 x 10
-8

 

2007 Rioux North American 

(NIDDK) 

Illumina Hap300 

(304,413) 

946 vs. 977 ATG16L1 6.4 x 10
-8 

2007 Libioulle French/Belgian Illumina Hap300 

(302,451) 

547 vs. 928 5p13.1 (PTGER4) 4.1 x 10
-8

 

2007 WTCCC United Kingdom Affymetrix 500K 

Genechip  (469,557 

SNPs) 

1748 vs. 2938 10q24 (NKX2-3) 

PTPN2 

IRGM 

10q21 (?ZNF365) 

 

1.4 x 10
-8

 

4.6 x 10
-8

 

5.1 x 10
-8

 

2.7 x 10
-7

 

2007 Franke German Affymetrix 100k 

Genechip (92,387 

SNPs) 

393 vs. 399 Nil  

2007 Raelson French-

Canadian 

Founder 

population 

Perlgen Platform 

(164,279 SNPs) 

382 Parent-

offspring trios 

Nil 

 

 

2010 McGovern United States Illumina 610Quad and 

Illumina 370Duo 

(304,825 SNPs post-

QC) 

896 vs. 3204 FUT2 

CCR6
b 

IL12B
b 

2 x 10
-8 

6 x 10
-8 

7 x 10
-8 

 

Studies listed in order of publication date. SNP number and sample size indicate post-Quality Control numbers. 

Studies with ~100,000 or more genome-wide SNPs considered as GWASs: note Hampe et al. study does not meet 

this criterion. WTCCC-Wellcome Trust Case Control Consortium. Association P value from GWAS, not including 

replication.  

 
a
Loci with SNPs showing association with CrD in the GWAS phase at P < 5 x 10

-7
.  Does not include loci identified in 

follow-up genotyping and combined analyses. Gene is the best candidate at each locus showing association.  NOD2 

and ‘IBD5’ loci were previously identified by linkage studies and were strongly replicated in these studies. 

 
b
CCR6 and IL12B previously identified in follow-up study and GWAS meta-analyses.  

Duerr et al. GWAS samples were ileal CrD only.  Samples were from the North American National Institute of 

Diabetes and Digestive and Kidney Diseases (NIDDK) IBD Genetics Consortium (IBDGC) 

 

Hampe et al. included a genome-wide set of non-synonymous SNPs, but genomic coverage does not constitute that 

usually accepted for a genome-wide association study 

 

Rioux et al. GWAS samples from the NIDDK-IBDGC, includes samples analysed in Duerr et al.   

 

Franke – cases selected for severe CrD phenotype (severe disease, onset < age 25, positive family history) 

 

Raelson – analysed both single SNPs and haplotypes of 3-9 adjacent SNPs. 
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 In general we may anticipate that both common and rare causal variants exist, but in the cases 

of common variants we should expect ORs will be lower and perhaps also that perturbations in 

biological function would be more subtle (Bodmer and Bonilla 2008).  Genetic variants 

identified in Crohn’s GWASs, that are causal, rather than just correlated with unknown causal 

variants, include the common allele (population frequency 0.93) of the IL23R missense SNP, 

rs11209026 (R381Q) and a missense SNP (rs2241880, T300A) in the autophagy gene ATG16L1 

(Duerr, Taylor et al. 2006; Hampe, Franke et al. 2007).  The ATG16L1 risk allele (frequency 

~0.45 in Caucasian populations) appears to account for all disease association in the region.  

Hampe et al. resequenced ATG16L1 exons, promoters and splice sites in 47 Crohn’s individuals 

and found no additional coding or splice site variants. They also performed conditional 

regression and haplotype analyses suggesting this variant accounted for the whole GWAS 

association signal (Cuthbert, Fisher et al. 2002).  A meta-analysis has estimated heterozygote 

and homozygote ORs for Crohn’s disease in Caucasian populations of 1.39 and 1.87 

respectively, confirming a more modest effect size than for NOD2 (Zhang, Qiu et al. 2009).  A 

genomic region associated with Crohn’s disease that contains the autophagy gene IRGM, 

contains a 20 kilobase deletion polymorphism upstream of IRGM, in perfect linkage 

disequilibrium with the most strongly associated GWAS SNP. This deletion polymorphism 

correlates with IRGM expression (McCarroll, Huett et al. 2008) and has been postulated as a 

causal variant.  In other GWAS-discovered Crohn’s disease regions, causal variants have not yet 

been convincingly demonstrated. 

 

A major finding from the first wave of genome wide association studies in Crohn’s disease has 

been the identification of independent loci implicating multiple genes within the same 

biological pathways. The two outstanding pathways to have emerged are Th17 cell/IL-23 

receptor signalling and autophagy. Genes linked to Crohn’s disease that participate in Th17 cell 

signalling include IL23R, IL12B, CCR6, STAT3 and JAK2 (Barrett, Hansoul et al. 2008). Crohn’s-

associated regions containing genes linked to autophagy include ATG16L1, IRGM and ATG5 

(Barrett, Hansoul et al. 2008). The significance of these pathways to Crohn’s pathogenesis is 

discussed below. 
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Table 2.4  Meta-analysis P values, risk allele frequencies and odds ratios for most 

strongly associated SNPs at loci reported in individual GWASs 

 

 

Locus P value Risk Allele Frequency Odds ratio (case-control) 

IL23R 6.66 x 10-63 0.933 2.50 

ATG16L1 2.36 x 10-32 0.533 1.28 

PTGER4 6.82 x 10-27 0.125 1.32 

10q21 (?ZNF365) 4.46 x 10-20 0.387 1.25 

5q31 2.32 x 10-18 0.425 1.25 

PTPN2 5.10 x 10-17 0.152 1.35 

NKX2-3 3.06 x 10-16 0.478 1.20 

IRGM 3.40 x 10-16 0.090 1.33 

MST1 1.15 x 10-12 0.271 1.20 

TNFSF15 2.60 x 10-10 0.677 1.22 

Adapted from Barrett et al. 2008(Barrett, Hansoul et al. 2008). Meta-analysis combined data from Duerr/Rioux, WTCCC and 

Libioulle GWASs. P values are for top SNP from each region calculated from GWAS meta-analysis and replication in 3664 cases and 

a mixture of population and family based controls.  NOD2 not shown (not assayed in all GWASs). A further 19 loci were identified 

in a combined follow-up genotyping and GWAS meta-analysis  

 

 

A further important feature is the recognition that current SNP associations account for only 

20% of disease risk due to genetic variation (Barrett, Hansoul et al. 2008).  Furthermore most 

of this risk remains dominated by NOD2 and IL23R variants.  Thus the remaining causal genetic 

variation in Crohn’s, as in other complex diseases, lies elsewhere in variants not well-captured 

by SNPs tested in GWASs (see chapter 6).   

 

2.2.9 Function of Crohn’s disease genetic variants  

 

2.2.9.1 NOD2 

 

 NOD2 is expressed strongly in Paneth cells (located at the base of intestinal crypts in the small 

intestine), as well as intestinal epithelial cells, macrophages and dendritic cells (Cho and 

Abraham 2007).  It functions as a bacterial pattern recognition receptor that can bind muramyl 

dipeptide (MDP) a component of bacterial peptidoglycan.  Disease-associated NOD2 mutations 

in humans lead to diminished cytokine responses to MDP (van Heel, Hunt et al. 2005) and are 

associated with reduced alpha-defensin production from Paneth cells (Wehkamp, Harder et al. 

2004).  NOD2 is required for MDP-induced autophagy in dendritic cells.  Dendritic cells from 

individuals with Crohn’s disease with NOD2 mutations (1007fsinsC, R702W, G908R) or the 

ATG16L1 T300A variant showed defective autophagy induced by MDP and defective antigen 

presentation to CD4+ T cells (Cooney, Baker et al. 2010). This study links NOD2 with autophagy 

which has emerged as a key mechanism for bacterial handling and immune clearance in the 

intestine in Crohn’s disease. 
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2.2.9.2 Autophagy genes: ATG16L1, IRGM 

 

Genome wide-association studies in Crohn’s disease have implicated autophagy proteins 

(IRGM and ATG16L1).  Autophagy is an evolutionarily conserved process, originally described 

as having a role in the clearance of degraded organelles and long-lived proteins.  The process 

of autophagy involves the cytoplasmic formation of a double-membrane bound vacuole, the 

autophagosome, which then fuses with lysosomes leading to the degradation of its contents 

(Xie and Klionsky 2007).  Autophagy also exists as a mechanism for clearance of microbes, and 

has immune functions including defence against intracellular bacteria such as salmonella typhi 

(Birmingham, Smith et al. 2006; Singh, Davis et al. 2006) and a role in delivery of microbial 

peptides to MHC class II loading compartments (Schmid, Pypaert et al. 2007).  The Crohn’s 

disease gene IRGM has specifically been implicated in induction of autophagy and is required 

for autophagic clearance of mycobacteria (Singh, Davis et al. 2006).  Human IRGM variants 

correlated with those associated with Crohn’s disease have also been associated with 

susceptibility to pulmonary tuberculosis, suggesting that these variants may both cause 

defective innate immunity to tuberculosis and promote Crohn’s disease (Intemann, Thye et al. 

2009).  However, autophagy has extremely diverse immune functions, including functions in 

adaptive immunity (Deretic 2010). It plays a key role in positive and negative selection during 

CD4 T cell development in the thymus, most likely through endogenous antigen presentation 

by thymic stromal epithelial cells and has been proposed to be critical in tolerance induction 

(Nedjic, Aichinger et al. 2008). 

 

The ATG16L1 protein is a core autophagic protein and the Crohn’s disease genetic variants 

have been linked to impaired autophagic internalisation of Salmonella typhi (Kuballa, Huett et 

al. 2008). More recently, the Crohn’s disease ATG16L1 variant was linked to defective granule 

exocytosis in Paneth cells (Cadwell, Liu et al. 2008; Cadwell, Patel et al. 2009). This group were 

able to differentiate Paneth cells from patients with the ATG16L1 variant from those without it 

on the basis of granule abnormalities visible in standard haematoxylin and eosin stained ileal 

sections (Cadwell, Liu et al. 2008).  More recently, Cadwell et al. demonstrated that Paneth cell 

abnormalities in mice expressing hypomorphic ATG16L1, only emerged in the presence of 

infection with a specific strain of murine norovirus (Cadwell, Patel et al. 2010).   
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2.2.9.3 IL23R 

 

IL23R variants were first linked to Crohn’s disease by a north American GWAS but replicated 

strongly in subsequent GWASs with the strongest association of all genomic regions in the 

Barrett GWAS meta-analysis (though NOD2 disease-causing variants were not directly 

tested)(Rioux, Xavier et al. 2007; Barrett, Hansoul et al. 2008). The most strongly associated 

SNP in the original study was rs11209026, a missense SNP (Arg381Gln) where the risk variant 

had a frequency of 0.93 in controls and 0.98 in cases.  This is likely to be one of the causal 

variants but more than one association signal exists in the region.  

 

 IL23R is a compelling functional candidate for Crohn’s disease, expressed in memory, but not 

naive T lymphocyte and NK cells.  IL-23 receptor signalling promotes Th17 effector subtype 

differentiation, of relevance as this T cell subset plays a critical role in causing inflammation in 

animal models of intestinal inflammation and other autoimmune disease(Hue, Ahern et al. 

2006; Uhlig, Coombes et al. 2006; Annunziato, Cosmi et al. 2007) .  So far, there has been 

minimal published progress linking Crohn’s IL23R variants with IL23-receptor function. A small 

study investigating serum levels of the Th17 cell secreted cytokine IL-22, found higher levels in 

Crohn’s patients carrying IL23R risk alleles, suggesting that these variants may be cause gain of 

function with respect to IL23R signalling (Schmechel, Konrad et al. 2008).  However, studies in 

individuals without the potential confounder of ongoing inflammation, specifically testing 

individual cell subset cytokine production are required to confirm these findings. 
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2.3 Ulcerative colitis susceptibility variants and overlap with 

Crohn’s disease 

 

Prior to genome wide association studies in inflammatory bowel disease, no susceptibility 

variants for ulcerative colitis had been identified.   However, in the last year 4 GWASs have 

been completed (Silverberg, Cho et al. 2009; Franke, Balschun et al. 2010; McGovern, Gardet 

et al. 2010).  A meta-analysis of 3 of these studies, comprising 2693 cases and 9791 controls of 

European descent identified around 30 susceptibility loci, with common risk variants of modest 

effect (McGovern, Gardet et al. 2010).  The authors also tested SNPs from 30 Crohn’s loci and 

together found that around half of Crohn’s susceptibility loci are shared in ulcerative colitis. 

Notably Th17-IL23 receptor pathway genes (IL23R, JAK2, IL12B, STAT3, IL17REL) confer 

susceptibility in ulcerative colitis but autophagy genes (ATG16L1, IRGM, ATG5) and NOD2 do 

not and appear therefore to be specific to Crohn’s disease.    
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Chapter 3 Genome wide association study in coeliac disease 
 

3.1  Introduction  

 

 

Prior to the first coeliac disease genome wide association study (GWAS) in 2007, only specific 

alleles of the HLA-DQA1 and HLA-DQB1 genes had been convincingly identified as influencing 

coeliac disease susceptibility (van Heel, Hunt et al. 2005; Dubois and van Heel 2008). Positive 

reports of non-HLA genomic regions discovered through linkage and candidate gene 

association studies proved inconsistent in follow-up studies (van Heel, Hunt et al. 2005; Dubois 

and van Heel 2008).  The first GWAS in coeliac disease and 3 follow-up studies that tested the 

most strongly associated SNPs in further independent sample collections identified a total of 

11 new non-HLA coeliac risk regions (van Heel, Franke et al. 2007; Hunt, Zhernakova et al. 

2008; Garner, Murray et al. 2009; Trynka, Zhernakova et al. 2009).  Strong support for a further 

two risk loci was reported in a large association analysis of type 1 diabetes risk variants in 

coeliac disease (Smyth, Plagnol et al. 2008).  Early replication studies of these new variants 

support the robustness of the coeliac disease associations in further independent European 

populations (Adamovic, Amundsen et al. 2008; Dema, Martinez et al. 2009; Koskinen, 

Einarsdottir et al. 2009; Romanos, Barisani et al. 2009; Amundsen, Rundberg et al. 2010). 

Together these studies have identified SNP variants at 14 loci (including the HLA) with 

convincing or strongly suggestive association to coeliac disease in populations of European 

ancestry (Table 3.1). 

 

These findings have provided strong validation of the GWAS method for identifying new 

susceptibility variants in coeliac disease.  In line with other early GWAS results in common 

diseases, newly identified risk variants conferred modest effects on disease risk, with odds 

ratios between 1.19 and 1.41 (Table 3.1).  Other features of the GWAS-derived findings include 

a bias towards higher minor allele frequencies among these newly identified variants, again 

consistent with findings from GWASs in other common diseases(McCarthy, Abecasis et al. 

2008).  This skew towards higher minor allele frequency SNPs could reflect a genuine 

enrichment for very common variants in the underlying coeliac genetic architecture, but is 

more probably explained by reduced power to detect SNPs with low minor allele frequencies 

(Figure 3.1).  Finally, new variants accounted for a small minority of non-HLA related 

heritability.  The eight non-HLA variants identified from the first GWAS and a large follow-up 
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study were estimated to add only 5% to the 35% of heritability accounted for by known HLA 

risk variants (Hunt, Zhernakova et al. 2008).   

 

A larger GWAS was therefore designed to increase statistical power to discover additional 

common genetic variation contributing to the around 60% of unexplained heritability in coeliac 

disease. The earlier GWAS findings, including those from other common diseases hinted at a 

genetic architecture in which the contribution of common variant risk was distributed across 

10s or hundreds of loci of weaker effect (Cooper, Nickerson et al. 2007).  The previous GWAS 

(778 cases and 1422 controls) had > 99% power to detect common variants (MAF>0.05) of 

large effect (OR > 3) but almost zero power to detect variants with the magnitude of effect 

sizes seen in the follow-up studies (ORs 1.19-1.41), using a Wellcome Trust Case Control 

Consortium (WTCCC)-advocated genome-wide-significance threshold of P<5 x 10
-7

(Korbel, 

Urban et al. 2007).  A large increase in power was therefore desirable for a new GWAS to 

facilitate the discovery of further common variants of modest effect. 
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3.2  Power considerations 

 

Increasing both sample size and genome-wide marker content enables an increase in power to 

detect common genetic variants(Balding 2006).  At the time of study design the largest GWAS 

in common diseases (around 2000 cases and 3000 controls for each of 7 diseases) provided 

some validation of this approach, with the discovery of multiple common variants of weak 

effect (PGWAS<5 x 10
-7

, median odds ratio = 1.34) (Wellcome Trust Case Control Consortium 

2007). During the current study, other large GWASs in chronic immune-mediated diseases 

reported tens of new loci in single diseases (Barrett, Hansoul et al. 2008; Barrett, Clayton et al. 

2009).  In considering how to maximize power in a second generation GWAS, statistical 

modelling suggested that increasing sample size would be of relatively greater importance 

than increasing marker density beyond the approximately 300,000 SNPs used in the first GWAS 

(Burton, Clayton et al. 2007; Spencer, Su et al. 2009). 

 

In the study reported here, a sevenfold increase in overall sample size (n= 15,283) compared 

to the first GWAS in coeliac disease (n=2,200) was achieved.  To assay additional common 

genetic variation not captured by the Illumina Hap300 platform used in the first GWAS, new 

samples were genotyped to a minimum Illumina Hap550 density (562,495 SNPs, capturing 

~88% of known HapMap CEU SNPs with MAF>0.05 at r
2 

> 0.8).  To assay common copy number 

polymorphisms an additional 97,952 monomorphic CNV probes were included, designed to 

capture 5,000 common heritable CNVs on the Illumina Human 670Quad-Custom chip.  CNV 

probes were designed by Illumina in collaboration with Matthew Hurles at the Wellcome Trust 

Sanger Institute using deCode, Database of Genomic Variants, and Wellcome Trust Sanger 

Institute data. 

 

Figure 3.1 illustrates power considerations for the study and highlights the limits of power in 

the current study with respect to SNP minor allele frequency and variant relative risk.  It was 

apparent that there was rapid loss of power for SNPs with minor allele frequencies less than 

approximately 0.05 and relative risk less than 1.2 in a study of this size.   
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3.3  Study Design 

 

The study was performed in two stages (Table 3.2).  In stage 1, GWAS, after quality controls 

4,533 coeliac disease cases and 10,750 controls from four populations of European ancestry (2 

collections from the UK, 1 each from the Netherlands, Italy and Finland) were included for 

analysis.  Case-control association analysis was performed independently for 295,453 SNPs 

passing quality controls in all 5 sample collections, and a further set of 231,516 SNPs 

genotyped only in UK2, Dutch, Italian and Finnish collections (3,796 cases and 8,154 controls). 

 

 In stage 2, follow-up, after quality controls, 3,796 coeliac disease cases and 8,154 controls 

from 7 populations of European ancestry were analysed for 131 SNPs from 94 genomic loci, 

selected from the stage 1 analysis (Table 3.2).  

 

3.3.1   Stage 1 – GWAS genotyping and SNP-calling 

 

Cases from the first coeliac GWAS (coeliac GWAS1) were integrated in the stage 1 analysis, 

contributing to the UK1 collection (Table 3.2).  The 1958 birth cohort individuals that had been 

used as controls in coeliac GWAS1, had since been genotyped at a higher marker density 

(1,252,158 markers) on the Illumina 1.2M-DuoCustom platform by the Wellcome Trust Case 

Control Consortium (WTCCC).  These samples (labelled 1958bc-WTCCC) were selected instead 

as controls for the second UK coeliac collection (UK2) to make use of the fact that they had 

been genotyped for all markers genotyped in UK2 cases (660,447 markers present on the 

Illumina 670-Quadcustom beadchip).  UK1 cases were instead paired with 2,596  additional 

population controls from the 1958 birth cohort (labelled 1958bc-T1DGC) who had been 

genotyped on the Illumina Human Hap550 platform, originally for the type 1 diabetes genetics 

consortium (T1DGC)(Barrett, Clayton et al. 2009).    

 

All new case samples (UK2, Dutch, Italian, and Finnish) included in the GWAS were genotyped 

on the Illumina 670-Quadcustom platform.   Dutch and Italian controls were also genotyped 

using the Illumina 670-Quadcustom platform.  However, Finnish controls had been genotyped 

for another study, using the Illumina 610-Quad platform.  This platform has nearly identical 

SNP content to the Quad670 platform, but has reduced CNV marker content. 
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3.3.1.1   Genotyping bias considerations 

 

A variety of factors may introduce systematic differences in genotyping between cases and 

controls (genotyping bias).  Batch effects result from differences in assay performance 

under different conditions (e.g. different laboratories, different users, protocol variations, 

different assay batches or assay expiry times).  Platform-specific biases may arise if assays 

for the same genetic marker perform differently on different genotyping platforms.   This 

source of bias was observed in preliminary analyses of the data, arising from differences in 

SNP assay probe intensities between platforms and between versions of the same platform 

(see 3.4.1.1, Figures 3.2 & 3.3).  Genotype calling biases can arise also for low minor allele 

frequency SNPs when sample numbers are low.  This is a consequence of difficulty 

assigning the correct genotype to the minor allele homozygote which may have only a few 

or no observations if the sample size is small.  

 

 In order to minimize genotyping bias, taking account of these considerations, genotype 

calling from normalized SNP assay probe intensity data was performed in matched pools 

with the following objectives (Table 3.3). 

 

1. Ensure samples within a calling pool have similar assay intensity data 

characteristics. 

- It was aimed to match genotype calling assay chemistries, platforms and 

genotyping facility.  Random SNP intensity plots from each cohort were 

inspected to determine whether SNP intensity characteristics were similar 

for pooled cohorts. 

 

2. Ensure sufficient sample numbers for reliable calling of low minor allele frequency 

SNPs. 

- It was estimated that reliable SNP calling would require a minimum of 5 

samples per genotype.  Assuming perfect hardy-weinberg equilibrium, 

2000 samples are required to observe 5 minor allele homozygotes for a 

SNP with a minor allele frequency of 0.05 (number of minor all 

homozygotes = 0.05
2 

x 2000). 
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Figure 3.2   SNP genotyping error arising from automated genotype-calling.  Differences in SNP 

assay probe intensity characteristics (R and theta
a
) between UK1 cases (Illumina 

Hap300_v1 array) and UK1 controls (Illumina Hap550_v3 array) cause non-overlap of 

genotype cluster positions 

 
 

 
 
 

 

a
R = sum of normalised intensities of assay probes corresponding to the two alleles (Xnorm and 

Ynorm).   

Theta (“copy angle”) = ratio of Xnorm and Ynorm normalised to between 0 and 1 (theta = (2/pi) x 

arctan2 (Ynorm ,Xnorm)) 

Xnorm and Ynorm are normalised Cy3 and Cy5 probe intensities corresponding to the 2 SNP alleles 

 

Automated calling of this SNP (rs7976650) generated MAFcases = 0.51, MAFcontrols = 0.09, Passoc = 2.9 x 10
-290

.  

SNP intensity data from the UK1 cases and controls were called separately to avoid this bias.  
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3. Call genotypes on cases and controls together. 

- This was designed to minimize systematic differences in genotype calling 

between cases and controls.   

 

 

Automated genotype calling was performed for each pool using a custom SNP genotype calling 

algorithm as used in coeliac GWAS1 (van Heel, Franke et al. 2007).  A modification of the 

algorithm was introduced (Lude Franke – personal communication) such that SNP assay probes 

would be consistently identified with SNP alleles called in a standardised labelling format 

(“Illumina TOP“).  This modification resolved potential inconsistencies in allele labelling for 

data generated at different facilities.  The earlier version of the algorithm called alleles from 

normalised intensity data in the format provided in the output file (FinalReport file) from 

BeadStudio.   Using the earlier version, inconsistencies arose frequently due to a lack of 

consensus on preferred allele labelling format in the FinalReport files generated for data from 

collaborating genotyping facilities.  For example, 1958bc-T1DGC genotype data was available 

with alleles labelled only in “dbSNP forward strand” format.  Attempting to merge data called 

in this format with datasets in other formats, led to difficulties assigning the DNA strand 

correctly for each SNP across all datasets.   To validate automated genotype calling, cluster 

plots for all SNPs showing case-control association in the GWAS at a P value of less than 10
-4

 

were generated and inspected in each sample collection (Figure 3.3 for examples). 
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3.4   Results 

 

Quality control steps and SNP association results for stage 1, GWAS are first discussed in 

sections 3.4.1 and 3.4.2.  Follow-up genotyping results for 131 selected SNPs showing 

association in stage 1 and combined (stage 1 and stage 2) association results are discussed in 

section 3.4.3.   

 

3.4.1  Stage 1- GWAS quality controls 

 

 

Bead intensity data was processed and normalized for each sample in BeadStudio v3.2, an 

Illumina software application for visualizing and analyzing genotype data from SNP arrays.  

Samples showing call rate < 0.95 in BeadStudio using default (empirically determined on 

HapMap samples by Illumina) genotype cluster positions were excluded. R and theta values 

were exported for remaining samples and genotype calling performed using a modified 

algorithm (van Heel, Franke et al. 2007; Franke, de Kovel et al. 2008).  R and theta describe the 

normalized 2-channel (Cy3 and Cy5) probe intensity data for each SNP assay (see Figure 3.2 for 

detail).  

 

Further quality control steps were performed in the following order: CNV markers 

(monomorphic assays) were excluded.  For the UK1 collection alone, where SNP intensity 

characteristics differed significantly between cases and controls and genotypes were called in 

separate pools, low (<0.95) call-rate SNPs were first excluded separately from cases and 

controls. All subsequent quality controls were performed on merged case and control datasets 

for each case-control sample collection.  Samples were excluded for call rate <98%, 

incompatible recorded gender and genotype inferred gender, duplicates and first degree 

relatives and ethnic outliers (identified by multi-dimensional scaling plots of samples merged 

with HapMap Phase II data) (Table 3.4).  SNPs were excluded for call rates less than 95% or 

deviation from Hardy-Weinberg equilibrium (P<0.0001) in controls (Table 3.5). 
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After performing quality control steps within each sample collection, data from all 5 collections 

were merged for association analyses. Association analyses were performed separately for 

SNPs passing quality controls in all five collections (295,453 SNPs – “Hap300k”) and for an 

additional set of 231,516 SNPs (“Hap250k”) passing quality controls in UK2, Dutch, Italian and 

Finnish collections.  22 of 417 SNPs showing association (PGWAS <10
-4

) were excluded after 

visual inspection of R theta plots in each sample collection suggested possible bias (Figure 3.3). 

 

Figure 3.4 shows the allele frequency distribution of SNPs passing quality controls. 

 

3.4.1.1   Exclusion of duplicate and closely related samples 

 

The genome wide average proportion of alleles shared identical by state (IBS) can be used in 

homogeneous samples to estimate the proportion of alleles shared identical by descent (IBD).  

This analysis was implemented in PLINK v1.05 (Purcell, Neale et al. 2007). The “PI_HAT” metric 

estimates for each sample pair, the proportion of all SNPs where both alleles are shared 

identical by descent.  This analysis has good sensitivity for detection of duplicates (PI_HAT = 1) 

and first degree relatives (PI_HAT = 0.5), though loses sensitivity to detect more distant 

relatives (Figure 3.5). Duplicates and first degree relatives were excluded from all datasets. 

 

Table 3.4   Sample exclusions by sample collection 

 

Sample 

collection 

 Inferred 

sex- gender 

incompatibi

lity
a 

Call 

rate 

<0.98 

Ethnic 

outlier 

Related samples 

Total (%) Duplicates 1
st

 degree 

relative 

UK1  Cases
b 

0 6 0 14 10 30 (3.91%) 

Controls
c 

0 0 0 0 0 0 

UK2 Cases 0 36 5 15 17 73 (3.80%) 

Controls 8 61 18 0 47 134 (2.64%) 

Dutch Cases & 

controls
d 3 1 97 54 155 (8.44%) 

Italian Cases & 

controls
d 6 0 8 58 72 (6.42%) 

Finnish Cases 0 0 0 6 12 18 (2.67%) 

Controls
 

0 0 8 1 1 10 (0.54%) 

All 

samples 

 
17 75 136 235 492(3.11%) 

a
Sex inferred from X chromosome genotype was compared to gender documented in sample 

records 
b
Where related sample pairs were found between UK1 and UK2 collections, UK1 sample 

was removed 
c
Data for UK1 controls had undergone prior quality controls for the Type 1 diabetes 

genetics consortium 
d
Quality controls performed by Gosia Trynka, Netherlands. Breakdown by case 

and controls not available.  Breakdown of relateds (duplicates versus 1
st

 degree relatives not 

available) 
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Table 3.5   SNP exclusions by sample collection 

 

Sample 

collection 

 SNPs 

genotyped in 

cases & 

controls and 

included for QC
 

Call rate < 

95%
 

Hardy 

Weinberg P 

< 10
-4

 in 

controls
a 

Suspected 

genotyping 

error (SNP 

plot 

inspection for 

SNPs Passoc 

<10
-4

)
b 

UK1  Cases
 

307,798
c 1,416 

1,073 29 (31.2%) 
Controls

 
676 

UK2 Cases 
562,831

d 23,658 
4,165 44 (25.6%) 

Controls 24,019 

Dutch Cases & controls
 

562,831
d 

21,642 
3,891 Not done 

Italian Cases & controls
 

562,831
d 

3,791 Not done 

Finnish Cases 
562,831

d 
12,790 2,399 43 (28.9%) 

Controls
 

 

a
Indicates deviation of observed genotype frequencies from hardy-weinberg equilibrium 

b
Additional inspection of SNP plots for each sample collection was carried out for SNPs with PGWAS < 

10
-4

.  This led to exclusion of a further 22 out of 417 SNPs (5.27%). 
c
SNPs genotyped in both cases and controls.  

d
SNPs genotyped in UK2,Dutch,Italian and Finnish collections and common to the genotyping 

platforms used (670Quad-Custom_v1, 1.2MDuo-Custom_v1, 610Quad_v1) 

 

 

Figure 3.4   Minor allele frequency distributions of SNPs passing quality controls in the Hap300k 

SNP set (all collections) and Hap250k SNP set (UK2,Dutch, Italian, Finns only) 
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3.4.1.3  Identifying and controlling for population structure in cases and controls 

 

Where relatedness within cases and within controls is greater than between cases and 

controls, case-control allele frequency differences can occur due to ancestry differences, 

independently of affectation status.  In order to identify genetic variants that are causally 

associated with the disease, it is therefore important to ensure that ancestry differences 

between cases and controls are minimized since such differences can otherwise confound 

genetic association studies.   

 

As a first step, cases and controls were matched for geographical region (by country of origin, 

Table 3.2).  Association analyses were performed independently within these strata, to avoid 

confounding by ancestry differences between countries.  The importance of this step was 

explored by comparing genome-wide SNP allele frequencies between control cohorts from 

each of the four countries (UK, Netherlands, Italy and Finland).  Figure 3.7 illustrates these 

differences by plotting control samples from each country on the first two multi-dimensional 

scaling dimensions.  These first two dimensions capture genome-wide variation in SNPs due to 

ancestry, for example enabling easy distinction of the HapMap phase II populations (Figure 

3.6) (Wellcome Trust Case Control Consortium 2007).  To determine the extent to which the 

genetic differences observed between cohorts from different countries might confound case-

control association analyses, control cohorts from each country were compared pairwise by 

genome-wide SNP association testing.  In this analysis, the genomic inflation factor (lambdaGC), 

calculated as the observed median association test statistic / expected median association test 

statistic under the null hypothesis of no association, provides an indication of the genome-

wide average degree  of confounding present.  Inflation (lambdaGC > 1) suggests genome-wide 

allele frequency differences.  Table 3.6 presents lambdaGC for between-country control cohort 

comparisons.  As expected, and in line with differences illustrated in Figure 3.7 Italy and 

Finland appear as relative outliers, with the UK and Netherlands much more similar.  The 

inflation of LambdaGC increases with sample size, since association test statistic values increase 

for the same absolute allele frequency difference as sample size increases.  For this reason, in 

Table 3.6, lambdaGC 1000 (lambdaGC scaled for a sample size of 1000) is presented to aid 

comparison of genetic differences between association sample sets of varying size.   
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Figure 3.6 Ethnic outliers visualised through multi-dimensional scaling plots.  A. UK1 collection. 

B. UK2 collection   

A. 

 

 

B. 
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Figure 3.6 (cont.) Ethnic outliers visualised from multi-dimensional scaling plots. C. Finnish collection 
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The comparisons between controls from the different countries also provide some insight into 

whether genome-wide allele frequency differences occur generally in the data due to 

genotyping bias or ancestry differences.  If genotyping bias is prevalent, inflation of test 

statistics should be expected for comparisons of cohorts genotyped and called in differing 

ways (e.g. distinct genotyping platforms, genotyping facility, calling pool etc), even if ancestry 

is known to be similar. UK1 and UK2 controls, of known similar ancestry, offer this comparison 

since they were genotyped on different platforms and called independently. Thus the 

observed minimal inflation is re-assuring that no major genotyping bias exists.   Conversely, 

ancestry differences should be expected to inflate test statistics in line with known differences 

between populations and this is also observed with the greatest inflation for comparisons 

between Italians and Finns and lesser inflation between UK and Dutch.   

 

As a second step towards reducing confounding by relatedness and ancestry, duplicates, first 

degree relatives and ethnic outliers were removed.  However, the analysis used to detect 

relatives lacks sensitivity for individuals of 2
nd

 degree and lower relatedness (Figure 3.5).  To 

determine whether hidden relatedness within each case- control collection might confound 

association analysis, lambdaGC was calculated again, this time for cases versus controls.  Since 

disease-causing variants were expected to be a small fraction of all assayed genomic variants, 

particularly after excluding the HLA region, significant inflation of the median chi-square 

statistic (lambdaGC) is not expected to occur due to disease causing variants alone(Balding 

2006). Table 3.7 presents lambdaGC values before and after adjustment for the top ten 

principal components (section 3.4.1.3.1) 
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3.4.1.3.1  Principal Components Analysis  

 

Principal components analysis (PCA) is a method that seeks to describe variation in a dataset 

along independent (orthogonal) axes (principal components). Principal components are ranked 

such that the first principal component describes the largest proportion of variation, the 

second describes the next largest proportion, and so on. With regard to SNP genotype data 

this method has been used to identify components of ancestry variation in the data(Price, 

Patterson et al. 2006).  Where adjustment of allele frequencies using principal components 

causes lambda to fall back towards neutral (i.e. 1), this is evidence that inflation of lambda in 

the uncorrected data is due largely to correlated differences in SNP allele frequencies.   

Although theoretically genotyping bias (e.g. batch effects) can contribute to such correlated 

differences, population structure was a greater concern in the current GWAS analysis (see 

3.4.1.3).   Principal components were calculated for each sample collection separately and the 

genomic inflation factor calculated from association test statistics both before and after 

adjustment for the first 10 principal components (Table 3.7).  The HLA region was excluded 

prior to these association analyses to avoid confounding by multiple strong coeliac associations 

mapping to this region.  Inflation of association test statistics was modest in all collections, 

with the exception of the Finnish collection (Table 3.7). 

 

 

 

3.4.1.3.2  Controlling bias due to population stratification 

 

The genomic inflation factor (λGC) for the GWAS meta-analysis calculated for 15,288 samples 

was 1.11, suggestive of modest overall inflation and consistent with other studies of this size 

(Barrett, Hansoul et al. 2008; Barrett, Clayton et al. 2009).  However, appreciable inflation was 

observed within the Finnish collection (lambda = 1.14, sample size = 2,503, Table 3.7).  Finnish 

population substructure is well-known and has been observed in genome wide SNP data, 

reflecting population migrations from both the east and south/west into Finland during its 

settlement history (Jakkula, Rehnstrom et al. 2008; McEvoy, Montgomery et al. 2009).  In the 

Finnish sample collection cases were mainly from southern Finland around Helsinki. Controls 

comprised two cohorts – Finrisk, mainly from southern Finland and Health 2000 from all over 

Finland.  However, even within a region such as southern Finland, substantial ancestry-related 

genetic differences have been observed (Jakkula, Rehnstrom et al. 2008).  The geographical 
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origins of the Finnish samples therefore did not provide re-assurance that cases and controls 

were well-matched for ancestry. 

 

To further characterize genetic differences between Finnish cases and controls, principal 

components were calculated using a subset of 12,898 SNPs showing low linkage disequilibrium 

in the HapMap CEU population(Yu, Wang et al. 2008). Since linkage disequilibrium is a source 

of SNP allele correlations, and mostly reflects distant, including pre-human ancestry, 

application of principal components analysis to SNP data without prior LD-pruning tends to 

extract principal components partly capturing these patterns of local linkage disequilibrium. 

Longer distance SNP correlations, informative of more recent ancestry are therefore 

confounded by local linkage disequilibrium when performing principal components analysis on 

unfiltered genome-wide SNP data. 

 

 After exclusion of the HLA region 12,366 SNPs were used for analysis.   In the Finnish dataset, 

cases and controls were strongly differentiated along the top four principal components (P < 

0.001, ANOVA).  However, most of the case-control variation is captured by the top two 

principal components.  Figure 3.8 plots eigenvalues for the first two principal components for 

each sample in the Finnish sample collection. 

 

In order to control this variation, which was a confounding factor for the Finnish case-control 

association analysis, three methods were explored. 

 

1) Removal of 70 individuals that were outliers on either of the first two eigenvectors (E1> 0.35, 

E2 > 0.40). After these exclusions lambdaGC was unchanged (1.14), suggesting that significant 

structure remained. 

 

2) Using a pairwise identity by state (IBS) matrix, samples were sequentially clustered, based on 

pairwise genetic similarity, to form 100 clusters.  Association testing was repeated stratifying 

the analysis within each cluster.  LambdaGC was again 1.14 suggesting that this method could 

not adjust for population structure. 

 

3) Principal components were used as covariates to adjust association test statistics on the whole 

SNP dataset.  Applying this method, using the top 10 eigenvectors, lambdaGC fell to 1.028 

(Methods). This demonstrated that principal components, calculated from the LD-filtered 



 

 

115 

 

12,366 SNP set, captured the majority of case-control SNP allele variance in the genome-wide 

SNP data.  This is further evidence for underlying population structure and indicates that this 

may be controlled using a principal components based method.   

 

Principal components-adjusted association test statistics for the GWAS meta-analysis are 

presented in Table 3.11, calculated using a sample size weighted Z score method.    

 

3.4.2 SNP association results in the GWAS (Stage 1) 

 

SNP association analysis was performed independently for the human “hap300k” marker set 

(295,453 SNPs), genotyped in all five sample collections and for the human “hap250k” set (an 

additional 231,516 SNPs) genotyped only in UK2, Dutch, Italian and Finnish collections.  After 

performing analyses of the HLA region, all subsequent case-control association analysis was 

performed after exclusion of SNPs within the broad HLA region (Chr 6, 20-40Mb-Methods). 

 

3.4.2.1   HLA association with coeliac disease 

 

Strong association with coeliac disease was observed within the HLA region, the strongest 

overall association obtained for rs2187668, which is a near-perfect tag SNP for HLA-DQ2.5cis 

(the HLA-DQA1*0501-HLA-DQB1*0201 haplotype encoding the DQ2 heterodimer)(Monsuur, 

de Bakker et al. 2008). Table 3.8 shows inferred DQ2.5cis carriage rates for each of the five 

GWAS sample collections.  These frequencies are consistent with reported data, including a 

known lower DQ2 frequency in Italian coeliacs, and an overall north-south  European gradient 

in DQ2 frequencies in coeliac disease (Karell, Louka et al. 2003).   

 

Comparing the two UK coeliac collections, UK2 DQ2.5cis frequency (0.844) was lower than UK1 

DQ2.5cis frequency (0.883).  This difference could reflect chance sampling variation from the 

same UK coeliac population (PFisher = 0.0002).  However, differences in recruitment of UK1 and 

UK2 coeliacs may also have increased the chances of individuals without coeliac disease being 

inadvertently included in the UK2 coeliac cohort.   Among UK2 coeliacs, 1415 out of 1849 

individuals had been recruited by direct advertisement through Coeliac UK.  For these 

individuals, hospital records were not readily available and diagnostic criteria could not be 

independently verified.  Case status was established on the basis of Coeliac UK membership, 
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self-confirmed coeliac disease diagnosis and self-confirmed intestinal biopsy or coeliac 

antibody test.   

 

Figure 3.8  Ancestry differences between Finnish cases and controls, visualised by plotting 

eigenvalues for the first two principal components 

 

 

 
 

Principal components were calculated using 12,366 ancestry-informative SNPs.  The first two principal 

components capture the majority of nationwide ancestral variation in Finland (Jakkula, Rehnstrom et al. 2008).  

Cases and controls were significantly differentiated on both eigenvector 1 (PANOVA= 5.94 x 10
-04

) and eigenvector 2 

(PANOVA = 1.67 x 10
-15

). 

 

 

 

 

 As HLA-DQ2.5cis is the most strongly differentiated genetic marker between coeliacs and 

controls, its frequency can be used as a surrogate marker of the relative purity of a coeliac 

cohort.   UK coeliacs recruited using standard objective criteria including intestinal biopsy from 

hospital outpatients (n= 1171) and UK coeliacs recruited by direct advertisement (n=1415) 

were compared directly. Inferred HLA-DQ2.5cis frequency was lower in direct advertisement-

recruits (0.835), than in UK hospital recruits (0.873; PFisher – 0.0063).  Assuming a true UK 

coeliac DQ2.5cis frequency of 0.873 and a UK control frequency of 0.266 (UK1 and UK2 control 
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combined DQ2.5cis frequency), the number of non-coeliacs among the direct advertisement 

recruits was estimated as 89 (6.3%).  As such the effect on overall association results is likely to 

be small.  The allelic case-control odds ratio for rs2187668, for example, is 6.58 (95% CI: 5.79-

7.49) in the UK1 collection and 6.20 (95% CI: 5.65-6.80) in direct advertisement-recruited 

coeliacs versus UK2 controls.   

 

Tag SNPs allowing imputation of other common coeliac-associated DQ types (HLA-DQ2trans, 

HLA-DQ8) were not available and so the frequencies of these heterodimers were not assessed 

(Monsuur, de Bakker et al. 2008). 

 

3.4.2.1.1  Non-HLA-DQ coeliac disease associations in the HLA gene region 

 

Extensive linkage disequilibrium within the HLA region has confounded previous attempts to 

test for HLA associations that are independent of known coeliac disease associated alleles 

(Louka, Moodie et al. 2003).  In order to control for HLA-DQ association with coeliac disease, 

HLA SNP association analysis was performed in a GWAS subset of 764 cases and 196 controls 

homozygous for the DQ2.5cis tagging SNP rs2187668 (TT homozygotes). Association analysis 

was performed using Cochran-Mantel-Haenszel (sample collection-stratified) chi-square test of 

SNP allele counts and stratified logistic regression, after excluding SNPs with minor allele 

frequency < 0.05.    Low MAF SNPs were excluded due to poor performance of the chi-square 

test for low allele counts, which was relevant in this small case-control sample.  Residual 

association signal was observed within the region containing the HLA-DQA1 and HLA-DQB1 

genes.  The peak association in this region (within a 1 megabase window around rs2187668) 

was at rs3117582 (PCMH= 1.35 x 10
-4

, PLogistric = 1.08 x 10
-4

), with multiple SNPs showing modest 

association (P<10
-3

) throughout this region. Since multiple immune genes are located within 

this region (e.g. HLA-DRB1, HLA-DRB5) residual association signals may indicate independent 

non-DQ association.  Alternatively, it was considered whether rs2187668 TT homozygotes 

imperfectly inferred DQ2.5cis homozygotes in the GWAS samples, leading to a residual HLA-DQ 

association signal in this analysis.  For example, if linkage disequilibrium between the 

rs2187668 T allele and the DQ2.5cis haplotype varied between different European 

populations, this might occur.  However,  rs2187668 was originally established as a near-

perfect tag for DQ2.5cis in each of UK, Dutch, Italian and Spanish populations (sensitivity 

1.000, specificity 0.999) (Monsuur, de Bakker et al. 2008). Furthermore rs2187668-inferred 

DQ2.5cis frequencies in the GWAS coeliac collections were consistent with known DQ2 
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frequencies in these populations (Table 3.8, (Karell, Louka et al. 2003)).  Finally there was no 

evidence of heterogeneity of odds ratios between sample collections for associated SNPs in 

the region, including for the most strongly associated SNP, rs3117582 (PBreslow-Day = 0.46).  

Inspection of rs2187668 cluster plots in GWAS collections did not suggest genotyping bias.  No 

adequate proxy SNPs for rs2187668 (SNP in strongest LD was rs3129763, r
2
 = 0.586 in 4936 

UK2 controls) were available to perform an alternative selection of DQ2.5cis homozygotes.  

These factors provided re-assurance that HLA-DQ association was controlled in the analysis. 

 

 Within the broad HLA region (chromosome 6, 20-40 Mb), 20 SNPs were associated with 

coeliac disease in the DQ2.5cis homozygote analysis at a significance threshold of PCMH or Plogistic 

<10
-4

.  All 20 SNPs mapped to either of two distinct loci within the more narrowly defined HLA 

region (chromosome 6, 29-34Mb (Howson, Walker et al. 2009)). The most strongly associated 

SNP was rs9277554 (PCMH = 9.27 x 10
-6

, Plogistic = 8.62 x 10
-6 

Table 3.9).  This SNP lies within a 

region containing the MHC class II genes, HLA-DPB1 and HLA-DPA1. Genetic variants in the 

HLA-DPB1 gene region were recently associated with type 1 diabetes in a large analysis of HLA-

DQ-, HLA-DRB1- independent associations.  Association with another, closely related 

autoimmune disease increases the probability that variants identified in this region also 

independently influence susceptibility to coeliac disease (Howson, Walker et al. 2009).  The 

SNP reported in type 1 diabetes, rs439121, was not genotyped on the Human 670-Quad 

custom chip and no adequate proxy SNP (r
2
 > 0.7) was available in the GWAS data.  However, 

rs439121 had been genotyped in UK2 controls on the Illumina 1.2MDuo-custom beadchip.  

Therefore pairwise SNP LD was estimated in 4936 UK2 controls between rs439121 and 

rs9277554 (r
2
 = 0.395, D’ = 0.698).  These two SNPs map only 137kb apart, but with the current 

data, it is unclear whether the association signal is caused by the same variants in these two 

diseases. 

 

The second most strongly associated SNP within the HLA region, rs9263715 (PCMH = 1.42 x 10
-5

,  

PLogistic =  3.86 x 10
-5

 Table 3.9) identified a region containing the class I MHC gene HLA-C .  

Association in the HLA-C gene region is also observed in type 1 diabetes, but in this disease is 

attributable to HLA-DRB1and HLA-DQA1 alleles (Howson, Walker et al. 2009).   Whether HLA-

DRB1 alleles contribute to coeliac disease risk is unknown.  Figure 3.9 displays association 

results across the HLA region (Chr 6, 29-34Mb). 
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Table 3.8   Estimated DQ2.5cis frequencies in each sample collection 

 

Sample 

collection 

DQ2.5cis
a
 in 

cases (%) 

DQ2.5cis
a
 in 

controls (%) 

Allelic odds ratio (95 % 

Confidence Interval)
b 

UK1 88.3 26.8 6.58 (5.79 - 7.49) 

UK2 84.4
c 

26.4 6.29 (5.77 - 6.85) 

Dutch 86.7 29.0 6.77 (5.75 – 7.98) 

Italian 61.6 16.4 6.46 (5.03 – 8.30) 

Finnish 87.3 18.8 9.19 (7.86 – 10.72) 

Overall 50.55 13.38 6.77 (6.38 – 7.18)
 

 

a
inferred from carriage of rs2187668 T allele 

b
odds ratio for rs2187668 T vs C (allelic chi-square test) 

c
DQ2.5cis 83.5% in individuals recruited through advertisement in Coeliac UK (n=434), 85.7% in individuals recruited 

from hospital outpatients (n=1415).Pfisher = 0.019. 

 

 

 

Table 3.9  Strongest SNP associations in the HLA region in DQ2.5cis homozygotes 

 

Position
a 

SNP Minor 

Allele
b 

Minor 

Allele 

Frequency
b 

PGWAS-CMH
c 

PGWAS-logistic
d 

Odds ratio [95% 

CI]
e 

33163516 rs9277554
f 

G 0.4421 9.27 x 10
-6

  8.62 x 10
-6

  0.60 [0.47-0.75] 

31203780 rs9263715 T 0.0844 1.42 x 10
-5

  3.86 x 10
-5

  0.40 [0.26-0.61] 

 

a
NCBI build 36 coordinates on chromosome 6 

b
Minor allele in all samples in the combined dataset, odds ratios (shown for combined dataset) defined with respect 

to the minor allele in all controls. 
c
 Cochran-Mantel-Haenzel test of allelic chi-square test  

d
Logistic regression performed on posterior genotype probabilities, with group membership included as a factorized 

covariate 
e
Odds ratio calculated with respect to minor allele in controls 

f
rs9277554 was not genotyped in UK1 individuals.  Association P values are for 622 cases and 140 controls from 

UK2,Dutch,Italian and Finnish collections. 
g
rs9263715 genotyped in all samples (764 cases and 196 controls from the 5 GWAS sample collections 
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3.4.2.2   Non-HLA associations in stage 1 

 

After exclusion of HLA SNPs there were 292,387 SNPs from the Illumina Hap300 marker  (“Hap 

300k”) set available for association testing in 4,533 celiac disease cases and 10,750 controls of 

European descent (Table 3.2). A further 231,362 additional non-HLA markers from the Illumina 

Hap550 marker (“Hap250k”) set were tested for association in a subset of 3,796 celiac disease 

cases and 8,154 controls. All markers were from autosomes or the X chromosome.  

 

Genotype call rates were >99.9% in both datasets. Findings were not substantially altered by 

imputation of missing genotypes for 737 coeliac disease cases genotyped on the Hap300 

BeadChip and corresponding controls (Table 3.2, UK1 collection, imputation performed by Dr 

Jeff Barrett, Wellcome Trust Sanger Institute). In addition only directly genotyped data was 

analysed as around half the additional Hap550 markers cannot be accurately imputed from 

Hap300 data(Anderson, Pettersson et al. 2008). 

 

All 13 previously reported non-HLA coeliac disease risk loci showed evidence for association in 

stage 1.  Among these, 10 of 10 loci previously reported as meeting the WTCCC 2007 

advocated genome-wide significance threshold (PGWAS < 5 x 10
-7

) met the more conservative 

recently advocated genome wide significance threshold  of P<5x10
-8

 in stage 1 (Table 

3.10)(Dudbridge and Gusnanto 2008; Pe'er, Yelensky et al. 2008).  The 3 other previously 

reported loci, containing the CTLA4/ICOS,  PTPN2  and ITGA4 genes had previously met less 

stringent significance thresholds (i.e. P<10
-4

  for regions having been convincingly associated in 

another autoimmune disease(Smyth, Plagnol et al. 2008) or P<10
-3

 for a strong functional 

candidate gene, ITGA4 (Garner, Murray et al. 2009)). One of these regions met the P<5 x 10
-8

 

threshold (ITGA4) in stage 1 while the other 2 showed strong association PGWAS = 8.80 x 10
-8 

(CTLA4/ICOS) and PGWAS = 5.53 x 10
-7

 (PTPN2) below this threshold.   

 

 Examination of the quantile-quantile plots of association test statistics in Hap300k (used in 

coeliac GWAS1) and Hap250k (unique to coeliac GWAS2) marker sets, showed that there was 

residual inflation of the tail of SNP association test statistics after removing 14 previously 

identified loci (Figures 3.10 & 3.11).  However, applying this filter, only 3 SNPs, mapping within 

the ETS1 gene locus, met criteria for genome-wide significance (PGWAS<5x10
-8

).  Furthermore 

these SNPs were only present within the Hap250k set, and indeed no good Hap300 tag SNP for 

this locus exists.  This result is an example of the value of denser genome-wide marker sets in 
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the identification of common disease variants. Indeed, of 13 new coeliac risk regions with SNPs 

meeting criteria for genome-wide significance in the final (stage 1 and stage 2 combined) 

analysis, three loci (regions containing PLEK, CCR4 and CD80) would not have met this criterion 

if genotyping had been restricted to Illumina Hap300 SNPs.  Applying, the less stringent WTCCC 

2007 P<5 x 10
-7

 threshold, 7 new loci were identified in the GWAS phase.  These include loci 

containing the TNFRSF14, CD247, MYNN, ZMIZ1, ETS1 and YDJC genes (Table 3.10).  

 

395 SNPs, from 113 non-HLA loci met a lower significance criterion of PGWAS<10
-4

, representing 

an excess of associated SNPs compared to the null distribution (Figures 3.10 & 3.11). SNPs 

from these loci were chosen for follow-up genotyping in a further 7 independent sample 

collections comprising 4,918 celiac disease cases and 5,684 controls of European descent.  

Within genotyping platform and cost constraints, it was possible to design assays for 144 SNPs, 

available on a 144-plex Illumina custom SNP genotyping array (Methods). The aim was to test 

SNPs from each of 89 regions with PGWAS<5 x 10
-5

, following the use of this threshold in a 

successful GWAS meta-analysis of similar size performed in Crohn’s disease (Barrett, Hansoul 

et al. 2008). Additionally, selected loci with 5x10
-5

< PGWAS <10
-4

 were chosen for the remaining 

SNP assays on the 144-plex array, according primarily to the presence of immune genes within 

these regions.  Two SNPs were selected per region for: regions with stronger association; 

regions with possible multiple independent associations; and/or containing genes of obvious 

biological interest. 

 

Markers that passed design and genotyping quality control included:  

a) 18 SNPs from all 14 previously identified celiac disease risk loci (including a tag SNP for the 

major celiac disease associated HLA-DQ2.5cis haplotype(van Heel, Franke et al. 2007)) 

b) 13 SNPs from all 7 novel regions with PGWAS<5x10
-7

 

c) 86 SNPs from 59 of 68 novel regions with 5x10
-7

> PGWAS >5x10
-5

 in stage 1 

 d) 14 SNPs from 14 of 30 novel regions with 5x10
-5

> PGWAS >10
-4

 in stage 1. 

 

  

3.4.3  Combined stage 1 and stage 2 association results 

 

131 SNPs were successfully genotyped in the 7 follow-up sample collections. Genotype call 

rates were >99.9% in each collection. The regions most strongly associated with coeliac disease 

are presented in Table 3.10.   Complete follow-up association results are shown in Table 3.13.  
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All 18 SNPs from 14 previously reported coeliac risk regions were associated with coeliac 

disease in the follow-up collections (PFollow-up<0.01, Table 3.10) and all 14 regions met the 

criterion for genome-wide significance (Pcombined< 5 x 10
-8

).   A further 35 SNPs from 23 of 80 

(28.8%) putatively new coeliac risk regions also showed evidence of coeliac disease association 

in follow-up collections (Pfollow-up<0.01, Table 3.13).   

 

Primary association analyses of the combined GWAS and follow-up data were performed with 

a two-sided 2x2x12 Cochran-Mantel-Haenszel test.  13 new coeliac risk regions obtained 

overall genome-wide significant evidence (Pcombined <5x10
-8

) of association, further supported 

by both evidence of association in stage 1 (PGWAS<10
-4

) and stage 2 (Pfollow-up<0.01).  These 

regions included those containing the BACH2, CCR4, CD80, CIITA/SOCS1/CLEC16A, ETS1, 

ICOSLG, RUNX3, THEMIS, TNFRSF14, and ZMIZ1 genes which have known immunological 

function (Table 3.10). A further 13 regions met ‘suggestive’ criteria for association (either 10
-6

> 

Pcombined >5x10
-8

 and/or PGWAS<10
-4

 and Follow-up<0.01). These regions also contain multiple genes 

of obvious immunological function, including CD247, FASLG/TNFSF18/TNFSF4, IRF4, 

TLR7/TLR8, TNFRSF9 and YDJC. Four of the 39 non-HLA regions show evidence for the presence 

of multiple independently associated variants in a conditional logistic regression analysis 

(Table 3.12). 

 

40 SNPs with the strongest association (Table 3.10) from each of the known genome-wide 

significant, new genome-wide significant, and new suggestive loci, were tested for evidence of 

heterogeneity across the 12 collections studied. Only the HLA region was significant (Breslow-

Day test P<0.05 / 40 tests, rs2187668 P=4.8x10
-8

) which is consistent with the well described 

North-South gradient in HLA allele frequency in European populations, and more specifically 

for HLA-DQ in celiac disease(Karell, Louka et al. 2003). 

 

There was no evidence of epistasis assessed by deviation from a model of multiplicative effects 

(P<10
-4

) for any of the non-HLA SNPs (Table 3.10) meeting genome wide significance criteria.  
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3.4.3  Functional relatedness analysis 

 

The boundaries of the genomic risk regions identified in the above analysis could not be 

defined precisely on the basis of the data obtained. Follow-up genotyping was restricted to 

one or two SNPs at each locus, so fine-mapping of the association signal in the combined 

dataset was not possible.  However, since each true SNP association is expected to occur 

through linkage disequilibrium with one or more causal variants, regions can be broadly 

defined according to the boundaries of the linkage disequilibrium block within which the 

associated SNP resides. Following this, coeliac risk regions were defined by extending 

0.1centiMorgan to the left and right of the most strongly associated SNP (LD region 

calculations performed by Jeff Barrett, Wellcome Trust Sanger Institute) (Dubois, Trynka et al. 

2010). In most instances these boundaries corresponded to recombination hot spots in the 

genome, as defined in the HapMap Phase II data (Myers, Bottolo et al. 2005; Myers, Bowden 

et al. 2010).  The mean size of genomic regions defined in this way was 281.1 kilobases (range 

38.5Kb – 1.33Mb). The number of validated RefSeq genes mapping within these intervals 

ranged between 0 and 13 (mean =3).    

 

Most coeliac risk regions contain genes with known immunological functions and some are 

clearly strong biological candidates for coeliac disease (e.g.  CD247, ICOSLG, CD80, TNFRSF14).  

In some regions multiple genes of possible immunological relevance are found (e.g.  SOCS1-

CIITA, UBE2L3-YDJC) and in others no obvious immune candidate genes exist (e.g. chr1-

rs296547, chr8-rs9792269).  To obtain more insight into the genes of relevance in these 

regions and to explore the functional relatedness  of the coeliac loci, a statistical tool that 

utilizes text mining of PubMed abstracts  (GRAIL) was used to annotate candidate genes from 

loci associated with common disease risk(Raychaudhuri, Plenge et al. 2009; Raychaudhuri, 

Thomson et al. 2009).  

 

In the GRAIL analysis each of the 27 genome-wide significant coeliac disease loci (including 

HLA-DQ) was tested for functional relatedness to the other 26 regions using the other 26 

regions as seed.  GRAIL scores of Ptext<0.01 (suggesting text-based functional relatedness of a 

gene within the locus to other coeliac loci genes – Methods) were obtained for 9 loci (33.3% 

sensitivity, Table 3.10). Factors that limit the sensitivity of GRAIL include biological pathways 

being both known (a 2006 dataset is used to avoid GWAS era studies), and published in the 

literature. 
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 GRAIL analysis was then used, using the 27 known regions as a seed, to all 49 regions (49 

SNPs) with 10
-3

 >Pcombined >5x10
-8

 and obtained GRAIL Ptext <0.01 for 9 regions (18.4%). As a 

control, only 5.5% (279 of 5033) of randomly selected Hap550 SNPs reached this threshold. In 

addition to the five ‘suggestive’ loci shown in Table 3.2, GRAIL annotated four further 

interesting gene regions of lower significance in the combined association results:  

rs944141/PDCD1LG2 (Pcombined=4.4x10
-6

), rs976881/TNFRSF8(Pcombined =2.1x10
-4

), 

rs4682103/CD200/BTLA(Pcombined=6.8x10
-6

) and rs4919611/NFKB2 (Pcombined=6.1x10
-5

). There 

appeared to be further enrichment for genes of immunological interest which are not GRAIL 

annotated in the 10
-3

>Pcombined>5x10
-8

 significance window, including rs3828599/TNIP1 

(Pcombined=1.55x10
-4

), rs8027604/PTPN9 (Pcombined=1.4x10
-6

), rs944141/CD274 (Pcombined=4.4x10
-6

). 

Some of these findings, for which neither genome-wide significant nor suggestive association is 

achieved, are likely to comprise part of a longer tail of disease predisposing common variants, 

of weaker effect sizes. Definitive assessment of these biologically plausible regions would 

require genotyping and association studies using much larger sample collections than the 

present study. 

 

3.4.4   Autoimmune disease overlap 

 

The extent to which new coeliac risk regions had been reported as risk regions in other 

autoimmune diseases was assessed.  By searching two databases, ‘A Catalog of Published 

Genome Wide Association Studies’ (18 Nov 2009)(Hindorff, Sethupathy et al. 2009) and the 

HuGE database(Yu, Clyne et al. 2009) and using a threshold of P<10
-5

 in other diseases, 18 of 

27 genome-wide significant coeliac risk regions showed association with other autoimmune 

diseases.  At only three of the 18 shared regions were associations across all diseases with the 

same SNP or a proxy SNP in r
2
>0.8 in HapMap CEU.   Nine regions appeared coeliac disease 

specific at the time of writing, including the regions containing rs296547 and rs9792269, and 

the regions around CCR4, CD80, ITGA4, LPP, PLEK, RUNX3 and THEMIS. This may point to 

distinct coeliac pathogenetic factors in these regions. However, sharing with other 

autoimmune diseases is probably greater, due to both random variation in results between 

studies contingent on sample size limitations, and regions with a genuinely stronger effect size 

in one disease and weaker effect size in another. 
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3.5  Discussion 

 

3.5.1  Advancing understanding of the genetic architecture of coeliac risk 

 

This study extends the number of convincingly identified coeliac risk regions from 14 to 27. In 

addition, there was strongly suggestive evidence for a substantial further tail of non-HLA risk 

regions.  In the above analysis, a tier of the most convincing of these probable coeliac 

associations is highlighted (“suggestive evidence”, Table 3.10).  Within the HLA region, an 

analysis controlling for HLA-DQ association, suggested a further two possible new coeliac risk 

regions, one of which has been associated with type 1 diabetes.  Neither of these regions 

obtained genome-wide significance and larger studies are planned, including denser fine-

mapping of the region to help determine whether HLA-DQ independent HLA associations with 

coeliac disease are real.   More sophisticated statistical methods to control for DQ coeliac 

association may also be useful to take advantage of the full case-control dataset: the analysis 

reported here excluded 96% of GWAS samples on the basis of non-homozygosity for DQ2.5cis.   

 

After excluding all 40 convincing and “suggestive” loci, including the HLA, the distribution of 

association test statistics shows a small persisting excess of positive associations compared to 

the null distribution (Figure 3.12).  This suggests additional coeliac risk loci among the long tail 

of positive associations.  Complementary evidence for further loci is provided by the GRAIL 

analysis, which annotated an excess of loci in the 10
-3

 >Pcombined >5x10
-8

 range.  Indeed applying 

a Ptext threshold of <0.05, GRAIL annotates 201 loci obtaining 0.01 >PGWAS > 10
-4

, with locus by 

locus inspection confirming obvious enrichment for immune pathway genes.   Confirmation of 

disease association for a further swathe of these loci is feasible with further increases in 

sample size or combined analysis with similar large, but independent sample sets.  To this end, 

SNPs from all loci obtaining 
 
PGWAS < 10

-4
, SNPs from 201 GRAIL-annotated loci  obtaining 0.01 

>PGWAS > 10
-4

 and 19 SNPs from non-GRAIL annotated selected loci containing immune genes 

were submitted for SNP assay design and inclusion on the Illumina Immunochip, a 

collaboratively designed genotyping array with SNP content contributed from multiple 

immune disease investigators.  This will enable relatively inexpensive follow-up genotyping of 

a large portion of the tail of positive associations in the GWAS.  This experiment is currently 

underway, with genotyping extended to an additional roughly 5000 new Coeliac UK-recruited 

case samples.   
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Figure 3.12   Quantile-quantile plot of GWAS case-control association P values for all SNPs 

(“Hap300k” and “Hap250k” SNP marker sets combined) after exclusion of SNPs from 

2 Megabase regions around the most strongly associated SNP from each of 40 

coeliac regions identified in the study (table 9) 

 

 

 

 

 

 

Despite these advances, it appears likely than some common genetic variants exert effects on 

risk too weak to be within the power of currently achievable association studies.  In the 

current study, among genome-wide significant loci, odds ratios for non-HLA risk alleles varied 

between 1.12 and 1.36.  Among newly identified risk alleles, odds ratios (including those in the 

suggestive evidence category) ranged between 1.10 and 1.21.  As expected, there was under-

representation of lower minor allele frequency SNPs (MAF < 0.10) among these associations 

(8.1% SNPs obtaining PGWAS < 10
-4

 had MAF < 0.10 compared to 17.5% SNPs included for 

analysis), likely reflecting lower power to detect these associations compared to higher MAF 

SNPs.  Thus it is probable that the allelic risk spectrum in coeliac disease extends to include 

both further high frequency alleles with even lower odds ratios and lower frequency alleles 

with risk effect sizes extending across a broader range.   
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Together with previously reported variants, known variants can now explain around half of 

coeliac heritability (Dubois, Trynka et al. 2010).  The 3% contributed by new SNP associations 

identified in this study is likely to be an underestimate since, in most cases, SNPs showing 

association in this study will not be perfectly correlated with the causal variants that drive the 

association signal detected in the GWAS. For example, the best tag NOD2 SNP (rs17221417) in 

the WTCCC GWAS of seven common diseases observed a heterozygote odds ratio of only 1.29, 

whereas a NOD2 causal variant (rs2066847) analysed in a large Crohn’s disease meta-analysis  

was observed to have an allelic odds ratio of 3.99 (Wellcome Trust Case Control Consortium 

2007; Barrett, Hansoul et al. 2008). 

 

3.5.2  Function of Coeliac risk variants 

 

The functional interpretation of complex disease association signals arising from GWASs is 

difficult.  In the current study there were only four non-synonymous SNPs with evidence for 

coeliac disease association (PGWAS<10
-4

) from the 26 genome-wide significant associated non-

HLA regions (rs3748816/MMEL1, rs3816281/PLEK, rs196432/RUNX3, rs3184504/SH2B3). 

Comprehensive regional resequencing is required to fully ascertain genetic variation in these 

regions and to test the possibility that coding variants contribute to the observed association 

signals.   However, it is uncertain, even with this information, whether pure genetic association 

studies can resolve causal variants from a set of highly correlated candidates.    

Complementary approaches, that test intermediate phenotypes such as gene expression, 

protein expression or some aspect of gene function, offer an opportunity to compare disease 

association signals within a risk region, with genetic variants affecting the intermediate 

phenotype in the same interval (Barrett, Clayton et al. 2009; Dendrou, Plagnol et al. 2009).   By 

exploiting knowledge of the local correlation structure of the genomic risk region, methods are 

being developed that test whether elimination of the genetic effect of a GWAS SNP lead to 

elimination of putative causal variant- intermediate phenotype correlations(Plagnol, Smyth et 

al. 2009; Nica, Montgomery et al. 2010). Teasing out these relationships is difficult and it 

appears that use of simple measures of LD (r-square and D’) will often be inadequate in 

determining whether a local variant contributes to the association signal (Nica, Montgomery et 

al. 2010). 
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Effects of genetic variation on gene expression have been proposed as more likely to explain 

complex disease association signals than coding variants(Cookson, Liang et al. 2009).  Indeed, 

an excess of cis-eQTLs has been reported mapping within complex disease gene loci, above 

that expected by chance (Nica, Montgomery et al. 2010).  In order to investigate these effects 

in coeliac disease, a meta-analysis of expression quantitative trait loci datasets obtained from 

whole blood (PAXgene) samples was performed in collaboration with the GWAS.  This work 

was performed by Dr Lude Franke (University Medical Center and Groningen University).  In 

this analysis, Illumina Hap300 genotype data was available for 1,469 human whole blood 

samples comprising 7 sample collections, for which whole-genome gene expression array data 

was also available (Illumina Ref8 and HT12 arrays).  For 34 of 39 coeliac loci, the top coeliac 

risk SNP had been genotyped (Hap300 SNP). For 4 of the 5 other loci, a proxy SNP (r-square > 

0.5 in HapMap CEU) was available. For 6 loci showing evidence of a second independent 

association signal (Table 3.12), a second SNP was also assessed.  In total, 44 SNPs from 38 loci 

were assessed for correlation with cis gene expression within a 1Mb window. After correction 

for multiple testing by controlling the false discovery rate at 5% (equating to Spearman rank 

correlation P<0.0028), SNPs from 20 of 38 (52.6%) non-HLA coeliac loci obtained significant 

eQTLs (Table 3.14).  Since eQTL SNPs had a substantially higher average MAF than non-eQTL 

SNPs in the 294,767 Hap300 SNPs tested, 44 random SNPs of equal MAF distribution were 

selected to determine the frequency of eQTLs detected in random SNPs.  This analysis found 

that coeliac SNPs were highly enriched for eQTLs (22 observed eQTL SNPs vs. 7.8 expected by 

chance eQTL SNPs; P=9.3 x 10
-5

, 10
6 

permutations).  Thus it appears that a significant 

proportion of coeliac risk variants influence coeliac disease susceptibility through a mechanism 

of altered gene expression.  The eQTL analysis was extended to map the co-localization of the 

GWAS case-control association signal and eQTL signals in the region (Figure 3.13).  Where the 

peak eQTL and case-control association signals are similar, it is more likely that the genetic 

association signal is caused by the observed regulation of gene expression (Plagnol, Smyth et 

al. 2009).  This co-localisation was observed for a number of biologically plausible candidate 

genes including CD247, IL18RAP (previously reported (Hunt, Zhernakova et al. 2008)), PARK7, 

PLEK, TAGAP and ZMIZ1.  However, in other instances co-localisation of eQTL and genetic 

association signals highlighted what was considered a less plausible candidate gene 

(rs3748816-MMEL1 in a region containing TNFRSF14, rs4077924-UBE2E3 in region containing 

ITGA4).  In other regions, eQTL and genetic association signals showed poor co-localisation 

(e.g. CCR3 gene region) suggesting that overlap of eQTL in this region might be co-incidental.  

Methods (such as those referred to above) that can fully account for the local LD structure in 
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these regions will need to be applied to further determine the relevance of eQTLs in each of 

these regions.  It is currently unclear whether SNPs tagging coding variants would be more 

likely to fall within regions showing eQTLs, since, for example, they may be more likely to have 

greater proximity to genes and therefore regulatory regions.  Thus comparison of eQTL 

frequencies in coeliac regions with random genomic SNPs may not control for this factor.  

Disentangling the contributions of coding variants from gene expression regulatory variants 

remains a big future challenge.  Further genetic association analyses, informed by regional 

resequencing of coeliac regions, studies testing association of genetic variants with 

intermediate biological phenotypes and studies aiming to understand the function of regional 

genes in immune pathways relevant to coeliac disease will all be required. 
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Table 3.13    Association results for 131 SNPs from 94 genomic regions genotyped in stage 2 

 

Lo

cu

s 

nu

m

be

r
a
  

C
h 
r 

SNP BP M
i
n
o
r 
a
l
l
e
l
e
b 

Minor 
allele 
freque
ncy

b 

PGWAS PFollow-up PCombined OR Gene(s) of 
interest 

Previously reported coeliac risk 

regions 

       

1 1 rs2816316 190803436 C 0.171 1.45 x 10-
12

 1.56 x 10-
6
 2.20 x 10

-17
 0.80 RGS1 

2 2 rs842647 60972975 G 0.325 4.40 x 10
-7

 7.97 x 10
-3

  2.88 x 10
-8

 0.89 REL, PUS10 

2 2 rs13003464 61040333 C 0.385 4.92 x 10-
8
 1.57 x 10

-6
 3.71 x 10

-13
 1.15 REL, PUS10 

3 2 rs917997 102437000 A 0.222 5.97 x 10
15

 7.83 x 10
-4

 1.11 x 10
-15

 1.19 IL18RAP 

4 2 rs13010713 181704290 C 0.439 2.02 x 10-
8
 3.21 x 10

-4
 4.74 x 10

-11
 1.13 UBE2E3, ITGA4 

4 2 rs4667121 181758779 T 0.331 8.88 x 10-
7
 5.95 x 10

-3
 3.91 x 10

-8
 0.89 UBE2E3, ITGA4 

5 2 rs4675374 204510823 A 0.210 8.80 x 10-
8
 4.94 x 10

-3
 5.79 x 10

-9
 1.14 ICOS, CTLA4 

6 3 rs13098911 46210205 T 0.089 2.53 x 10-
11

 1.96 x 10
-7

 3.26 x 10
-17

 1.30 CCR1,CCR2, 

CCR5 

6 3 rs6441961 46327388 T 0.307 4.81 x 10-
9
 1.18 x 10

-7
 2.93 x 10

-15
 1.17 CCR3 

7 3 rs17810546 161147744 G 0.114 4.56 x 10-
18

 9.57 x 10
-12

 3.98 x 10
-28

 1.36 IL12A 

8 3 rs1464510 189595248 T 0.464 9.49 x 10-
24

 3.63 x 10-
18

 2.98 x 10
-40

 1.29 LPP 

9 4 rs13151961 123334952 C 0.156 6.31 x 10-
18

 4.45 x 10
-11

 2.18 x 10
-27

 0.74 IL2,IL21 

9 4 rs13119723 123437763 G 0.143 3.05 x 10-
16

 3.75 x 10-
10

 1.02 x 10
-24

 0.74 IL2,IL21 

10 6 rs2187668 32713862 T 0.134 <10
-50

 <10
-50

 <10
-50

 6.23 DQ2.5cis 

11 6 rs2327832 138014761 C 0.205 1.41 x 10-
14

 1.97 x 10
-6

 4.46 x 10-
19

 1.23 TNFAIP3 

12 6 rs1738074 159385965 T 0.423 3.14 x 10
-8

 1.56 x 10
-8

 2.94 x 10
-15

 1.16 TAGAP 

13 12 rs653178 110492139 C 0.476 6.03 x 10-
14

 1.47 x 10
-8

 7.15 x 10
-21

 1.20 SH2B3 

14 18 rs1893217 12799340 C 0.160 5.52 x 10-
7
 1.04 x 10

-4
 2.52 x 10-

10
 1.17 PTPN2 

New PGWAS <5x10-7       

1 1 rs3748816 2516606 C 0.352 4.93 x 10-
7
 1.17 x 10

-3
 3.28 x 10

-9
 0.89 MMEL1, 

TNFRSF14 

1 1 rs3890745 2543484 G 0.331 8.16 x 10-
7
 1.43 x 10

-3
 6.40 x 10

-9
 0.89 MMEL1, 

TNFRSF14 

2 1 rs864537 165678008 C 0.398 1.01 x 10
-7

 9.25 x 10
-2

 3.80 x 10
-7

 0.91 CD247 

2 1 rs2056626 165687049 C 0.400 9.93 x 10-
7
 6.85 x 10

-2
 1.19 x 10

-6
 0.91 CD247 

3 3 rs10936599 170974795 A 0.246 2.99 x 10-
7
 6.63 x 10

-2
 4.57 x 10

-7
 1.12 MYNN 

3 3 rs1997392 170992346 T 0.267 1.20 x 10-
5
 0.29 7.80 x 10

-5
 1.09 LRRC34 

4 10 rs1250552 80728033 C 0.482 5.80 x 10-
8
 1.81 x 10

-3
 9.09 x 10-

10
 0.89 ZMIZ1 

4 10 rs1250539 80707235 T 0.480 7.03 x 10-
6
 9.44 x 10

-3
 3.76 x 10

-7
 0.91 ZMIZ1, PPIF 

5 11 rs11221332 127886184 A 0.222 4.74 x 10-
11

 9.98 x 10
-7

 5.28 x 10
-16

 1.21 ETS1 

5 11 rs11221335 127891116 C 0.222 4.16 x 10-
11

 2.27 x 10
-6

 1.23 x 10
-15

 1.21 ETS1 

5 11 rs4245079 127926136 T 0.441 7.88 x 10-
7
 1.49 x 10

-4
 5.34 x 10-

10
 0.89 ETS1 

6 22 rs2298428 20312892 T 0.195 2.49 x 10
-7

 4.13 x 10
-2

 1.84 x 10
-7

 1.13 YDJC 

7 23 rs12687129 3659902 G 0.315 4.48 x 10-
7
 0.65 4.98 x 10

-5
 1.10 PRKX 

PGWAS<5x10-5         

1 1 rs12122754 4598419 A 0.175 4.94 x 10-
6
 8.29 x 10

-2
 4.79 x 10

-2
 0.95 AJAP1 

1 1 rs16839450 4637391 T 0.206 2.50 x 10-
6
 1.55 x 10

-2
 0.11 0.96 AJAP1 
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2 1 rs12727642 7969259 T 0.182 3.06 x 10-
5
 8.21 x 10

-4
 9.11 x 10

-8
 1.14 PARK7, 

TNFRSF9 

3 1 rs976881 12156341 T 0.321 1.57 x 10
-5

 0.36 2.05 x 10
-4

 0.92 TNFRSF1B, 

TNFRSF8, 

VPS13D 

3 1 rs6679088 12596858 C 0.223 1.36 x 10-
5
 0.71 8.43 x 10

-4
 0.92 DHRS3 

3 1 rs3010928 12601328 A 0.235 1.61 x 10-
5
 0.31 1.61 x 10

-4
 0.91 DHRS3 

4 1 rs195712 24691086 A 0.492 8.30 x 10-
5
 3.59 x 10

-2
 1.95 x 10

-5
 0.92 RCAN3(DSCR1L

2), NPAL3 

4 1 rs10903122 25176163 A 0.491 3.21 x 10-
5
 8.44 x 10

-7
 1.73 x 10-

10
 0.89 RUNX3, CLIC4 

5 1 rs12081664 60278068 A 0.116 1.36 x 10-
5
 0.93 1.78 x 10

-3
 1.10 C1orf87 

6 1 rs10489912 61539729 A 0.429 2.98 x 10-
5
 4.90 x 10

-3
 6.16 x 10

-7
 0.91 NFIA 

6 1 rs6691768 61564451 G 0.385 2.63 x 10-
5
 1.16 x 10

-3
 1.19 x 10

-7
 0.90 NFIA 

7 1 rs2094219 91897051 G 0.025 4.66 x 10-
5
 0.92 5.30 x 10

-3
 1.19 HSP90B3P 

8 1 rs17021444 104695375 C 0.156 4.63 x 10-
6
 0.97 8.92 x 10

-4
 0.91 RP11-364B6.3, 

gene desert 

9 1 rs1772415 157269402 T 0.169 3.15 x 10-
5
 4.87 x 10

-2
 1.57 x 10

-5
 1.12 IFI16 

9 1 rs1061511 158456124 C 0.433 4.18 x 10-
5
 0.45 1.73 x 10

-2
 1.05 PEA15, COPA, 

WDR42A,PEX20 

10 1 rs12041565 243839664 A 0.184 3.50 x 10
-5

 0.43 4.68 x 10
-4

 0.91 KIF26B 

11 2 rs1355208 30298826 A 0.372 2.91 x 10-
5
 9.49 x 10

-2
 2.43 x 10

-5
 1.09 AC104698.2,YP

EL5 

12 2 rs17035378 68452459 G 0.287 1.34 x 10-
5
 1.41 x 10

-4
 7.79 x 10

-9
 0.88 PLEK 

12 2 rs3816281 68461451 A 0.260 2.85 x 10-
5
 1.05 x 10

-3
 1.13 x 10

-7
 0.89 PLEK 

13 3 rs655754 32432202 T 0.384 6.64 x 10-
5
 9.39 x 10

-2
 4.10 x 10

-5
 0.92 CMTM7(CKLFSF

7) 

13 3 rs13314993 32990473 G 0.445 6.87 x 10-
6
 1.09 x 10

-4
 3.27 x 10

-9
 1.13 KRT5;CCR4 

13 3 rs12167 33013187 G 0.288 6.30 x 10-
5
 5.74 x 10

-3
 1.34 x 10

-6
 0.90 GLB1 

14 3 rs1050592 39281788 C 0.275 1.90 x 10-
5
 0.44 1.37 x 10

-2
 1.06 CX3CR1, CCR8 

14 3 rs3732379 39282260 T 0.277 4.68 x 10-
5
 0.45 1.22 x 10

-2
 1.05 CX3CR1, CCR8 

15 3 rs6806528 69335589 A 0.091 4.84 x 10-
5
 7.66 x 10

-4
 1.46 x 10

-7
 1.19 FRMD4B, 

UBE1C 

16 3 rs13081814 97031445 G 0.129 2.79 x 10-
6
 4.67 x 1001 1.45 x 10

-4
 1.12 AC117432.4, 

EPHA6 

17 3 rs4682103 113538483 A 0.471 1.57 x 10-
5
 5.39 x 10

-2
 6.76 x 10

-6
 1.09 CD200, BTLA 

17 3 rs9842650 113552082 G 0.357 2.04 x 10-
5
 0.20 8.78 x 10

-5
 0.92 CD200, BTLA 

18 3 rs11712165 120601486 G 0.386 5.40 x 10-
7
 1.72 x 10

-3
 8.03 x 10

-9
 1.13 CD80 

18 3 rs3755579 120697239 C 0.268 2.95 x 10-
5
 3.62 x 1001 1.97 x 10

-4
 1.08 KTELC1, CD80 

18 3 rs1599796 120726624 A 0.198 7.82 x 10-
6
 8.12 x 10

-3
 3.42 x 10

-7
 1.13 CD80 

19 3 rs4679166 126118202 A 0.295 4.06 x 10-
5
 1.93 x 10

-2
 5.16 x 10

-6
 0.90 MUC13 

20 4 rs3774867 5805016 A 0.090 2.45 x 10-
5
 0.51 7.47 x 10

-4
 1.12 EVC 

21 5 rs9324871 141535699 C 0.088 1.11 x 10-
5
 0.89 1.22 x 10

-3
 1.11 NDFIP1, SPRY4, 

RNF14 

21 5 rs2961693 141544829 C 0.077 3.70 x 10-
5
 0.37 1.16 x 10

-2
 1.09 NDFIP1, SPRY4, 

RNF14 

22 5 rs3828599 150381989 A 0.245 9.39 x 10-
5
 0.18 1.55 x 10

-4
 1.09 GPX3 

22 5 rs2303038 150515206 T 0.221 1.10 x 10-
5
 0.12 1.57 x 10

-5
 1.10 ANXA6 

23 6 rs1033180 328546 A 0.076 9.14 x 10-
6
 1.48 x 10

-3
 5.58 x 10

-8
 1.21 N/A 

23 6 rs872071 356064 A 0.489 7.22 x 10-
5
 2.27 x 10

-2
 8.22 x 10

-7
 0.91 IRF4 

23 6 rs1933650 694311 A 0.106 4.65 x 10-
5
 0.29 1.56 x 10

-4
 0.89 EXOC2 

24 6 rs3734665 14244352 G 0.211 4.73 x 10-
5
 0.74 8.55 x 10

-3
 0.94 CD83 

25 6 rs207270 90885603 G 0.446 1.65 x 10-
5
 5.94 x 10

-2
 1.19 x 10

-5
 1.09 BACH2, CX62, 

CASP8AP4 

25 6 rs10806425 90983333 A 0.385 9.46 x 10-
6
 9.25 x 10

-6
 3.89 x 10-

10
 1.13 BACH2, CX62, 

CASP8AP5 

26 6 rs9386829 110065962 C 0.234 8.04 x 10-
5
 0.26 3.14 x 10

-2
 0.95 C6orf199 
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27 6 rs802734 128320491 G 0.301 1.36 x 10-
6
 1.70 x 10

-9
 2.62 x 10

-14
 1.17 PTPRK 

27 6 rs7738609 128337195 T 0.148 1.94 x 10-
5
 2.51 x 10

-6
 2.88 x 10-

10
 0.84 PTPRK 

28 6 rs9403998 149275688 C 0.041 4.09 x 10-
5
 0.93 2.24 x 10

-3
 0.85 UST 

28 6 rs7761698 149483938 G 0.200 4.13 x 10-
5
 0.79 4.19 x 10

-3
 1.07 RP11-365H23.1 

29 7 rs10215905 36769488 T 0.128 7.95 x 10-
5
 0.12 1.13 x 10

-4
 1.12 AOAH 

29 7 rs6974491 37341035 A 0.165 1.37 x 10-
5
 2.63 x 10

-3
 1.56 x 10

-7
 1.14 ELMO1 

30 7 rs17664027 49899465 C 0.243 8.17 x 10-
5
 0.42 7.83 x 10

-4
 0.92 VWC2 

31 7 rs874355 50205347 T 0.249 3.68 x 10-
5
 0.28 1.52 x 10

-4
 0.92 AC020743.7 

32 8 rs10093096 65070255 C 0.431 3.56 x 10-
5
 0.98 2.

-14
 x 10

-3
 1.06 AC013492.5 

33 8 rs893225 97047924 A 0.141 4.86 x 10-
6
 0.99 8.37 x 10

-4
 0.91 AC007992.12 

34 8 rs9792269 129333771 G 0.243 8.14 x 10-
6
 1.00 x 10

-4
 3.28 x 10

-9
 0.88 AC007860.6 

35 9 rs540909 263160 T 0.232 1.02 x 10-
5
 8.17 x 10

-2
 1.24 x 10

-5
 1.11 DOCK8, FOXD4 

36 9 rs944141 5480522 T 0.229 6.20 x 10-
6
 6.80 x 10

-2
 4.41 x 10

-6
 1.11 CD274 

37 9 rs10908921 91511109 C 0.260 2.28 x 10-
6
 0.48 1.12 x 10

-4
 1.09 GADD45G, 

SEMA4D 

37 9 rs11265889 91532610 A 0.275 8.53 x 10-
5
 1.00 3.38 x 10

-3
 1.06 GADD45G, 

SEMA4D 

38 9 rs4743150 99779945 A 0.222 1.48 x 10-
5
 0.21 4.76 x 10

-5
 0.91 ANP32B,HEMG

N, FOXE1 

38 9 rs874610 99822516 A 0.222 2.05 x 10-
5
 0.25 7.79 x 10

-5
 0.91 ANP32B, 

HEMGN 

39 10 rs10823120 69390088 A 0.330 3.10 x 10-
5
 0.88 2.57 x 10

-3
 1.06 HERC4 

40 10 rs4919611 103884929 G 0.112 2.29 x 10-
5
 0.17 6.08 x 10

-5
 1.12 PPRC1, HPS6, 

LDB1, ELOVL4 

41 11 rs11043097 11092371 G 0.165 2.60 x 10-
5
 0.81 9.96 x 10

-4
 1.09 GALNTL4 

42 11 rs1354329 16441877 T 0.303 8.72 x 10-
7
 0.12 2.57 x 10

-6
 1.10 SOX6, SMAP, 

PLEKHA7 

42 11 rs11024021 16692067 A 0.416 2.37 x 10-
5
 0.31 1.31 x 10

-4
 1.08 SOX6, SMAP, 

PLEKHA10 

43 11 rs224619 32021832 T 0.486 4.55 x 10-
5
 0.18 8.62 x 10

-5
 1.08 AL078612.8 

44 11 rs12788589 132881660 C 0.183 4.37 x 10-
5
 0.99 3.63 x 10

-3
 0.93 OPCML 

45 13 rs9316483 21079334 T 0.276 4.39 x 10-
5
 0.49 6.36 x 10

-4
 0.92 EFHA1 

46 13 rs2305100 43346934 T 0.100 3.96 x 10-
5
 0.73 6.52 x 10

-3
 0.92 CCDC122 

47 13 rs2762051 49733716 A 0.179 3.35 x 10-
5
 5.06 x 10

-3
 6.64 x 10

-7
 1.13 RP11-480P3.1 

48 14 rs11851414 68329255 G 0.218 5.53 x 10-
6
 8.51 x 10

-3
 4.40 x 10

-7
 1.13 ZFP36L1, ACTN1 

48 14 rs4899260 68347957 T 0.252 4.55 x 10-
5
 2.21 x 10

-3
 3.92 x 10

-7
 1.12 C14orf181 

49 14 rs1667515 84763657 C 0.365 8.71 x 10-
6
 0.94 8.06 x 10

-4
 0.94 AL357172.3 

50 15 rs4411464 61782476 G 0.138 9.34 x 10-
6
 0.71 4.37 x 10

-4
 0.90 HERC1, USP3 

51 15 rs8027604 73234826 C 0.350 4.70 x 10
-6

 3.24 x 10
-2

 1.37 x 10
-6

 1.10 AC113208.5 

52 16 rs6498114 10871619 G 0.257 9.41 x 10-
5
 1.95 x 10

-2
 1.02 x 10

-5
 1.11 CIITA 

53 16 rs12928822 11311394 A 0.171 1.07 x 10-
5
 7.59 x 10

-4
 3.12 x 10

-8
 0.86 SOCS1 

53 16 rs12927773 11311464 A 0.168 2.53 x 10-
5
 9.43 x 10

-4
 9.78 x 10

-8
 0.86 SOCS1 

54 17 rs11078559 5203473 T 0.484 3.82 x 10-
5
 0.18 7.27 x 10

-5
 1.08 RABEP1 

55 18 rs1394466 49159204 A 0.461 2.47 x 10-
6
 8.48 x 10

-2
 1.81 x 10

-2
 1.05 DCC 

56 20 rs1535253 19630909 A 0.349 2.11 x 10-
6
 0.42 7.54 x 10

-5
 0.92 SLC24A3, RIN2 

57 21 rs2822590 14633438 G 0.151 2.42 x 10-
5
 0.16 3.44 x 10

-2
 1.06 ABCC13 

58 21 rs4819388 44471849 T 0.284 3.42 x 10-
5
 1.66 x 10

-5
 2.46 x 10

-9
 0.88 ICOSLG 

59 23 rs1947953 12877811 C 0.298 1.08 x 10-
5
 2.21 x 10

-3
 1.05 x 10

-7
 0.88 TMSB4X;TMSL2

;TMSL1, TLR8 

59 23 rs5979785 12881445 G 0.270 6.32 x 10-
6
 2.18 x 10

-3
 6.36 x 10

-8
 0.88 TMSB4X;TMSL2

;TMSL1, TLR8 

PGWAS<10-4         

1 1 rs6684553 58775554 G 0.096 7.28 x 10-
5
 0.91 5.35 x 10

-3
 0.91 OMA1, 

TACSTD2, JUN 
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2 1 rs859637 170977623 A 0.484 8.15 x 10-
5
 5.68 x 10

-3
 1.75 x 10

-6
 1.10 FASLG 

3 1 rs2274065 181826327 C 0.081 9.73 x 10-
5
 0.18 1.30 x 10

-4
 0.87 NCF2;p67-PHOX 

4 1 rs296547 199158760 A 0.367 6.46 x 10
-5

 1.34 x 10
-5

 4.11 x 10
-9

 0.89 C1orf106 

5 2 rs1429248 155060456 T 0.153 9.94 x 10
-5

 4.03 x 10
-2

 2.12 x 10
-5

 0.89 GALNT13 

6 5 rs1020388 55595784 G 0.474 7.23 x 10
-5

 0.65 1.11 x 10
-3

 0.94 AC016638.9, 

ANKRD55 

7 6 rs4446534 92886209 A 0.358 7.97 x 10
-5

 0.12 6.18 x 10
-2

 1.04 AL590814.5 

8 10 rs1539234 6316749 G 0.420 8.89 x 10
-5

 5.38 x 10
-2

 2.61 x 10
-5

 1.08 PFKFB3, IL2RA 

9 10 rs10857580 49356390 A 0.098 8.67 x 10
-5

 0.16 1.36 x 10
-4

 0.88 ARHGAP22, 

MAPK8 

10 12 rs10466829 9767358 C 0.487 8.78 x 10
-5

 0.31 3.95 x 10
-2

 1.04 CLECL1 

11 12 rs988606 66767678 A 0.220 8.37 x 10
-5

 0.59 1.66 x 10
-3

 1.08 IFNG, IL26, IL22 

12 16 rs477639 87517011 A 0.320 5.41 x 10
-5

 0.53 9.37 x 10
-4

 1.07 CBFA2T3 

13 17 rs2074404 42220599 G 0.252 5.03 x 10
-5

 5.96 x 10
-3

 1.23 x 10
-6

 0.90 WNT3 

14 18 rs3809983 54353748 G 0.488 8.71 x 10
-5

 0.70 7.86 x 10
-3

 1.05 ALPK2, MALT1 

 
a
Regions numbered within each GWAS association category, as defined for follow-up SNP selection 

b
Minor allele in all samples in the combined dataset, odds ratios (shown for combined dataset) defined with 

respect to the minor allele in all controls. 
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3.5.2.1  Function of coeliac loci candidate genes 

 

As with previously reported coeliac risk loci, new loci identified in the GWAS mostly contain 

genes with known immune function.  However, the larger number of immune genes now 

implicated is enabling the definition of specific pathways in the immune system that alter 

coeliac disease susceptibility.   

 

3.5.2.1.1 T and B cell co-stimulation/ co-inhibition 

  

Immunological studies suggest that coeliac disease is a Th1 –driven disorder, in which gluten 

peptides presented on DQ2 or DQ8 heterodimers activate CD4
+
 T cells.  The importance of 

HLA-DQA1 and HLA-DQB1  gene variants is well understood.  The current study adds to this 

understanding, highlighting the role of T and B cell co-stimulatory molecules 

(CTLA4/ICOS/CD28, TNFRSF14, CD80, ICOSLG, TNFRSF9, TNFSF4) in addition to CD247, 

encoding the zeta subunit of the T cell receptor.  Since DQ2 is carried by 30% of the 

population, and is therefore not sufficient to explain gluten toxicity, a model in which the 

threshold for T cell activation by gluten peptides depends also on inherited variation in T cell 

co-stimulatory molecules is attractive. 

 

3.5.2.1.2 T cell development in the thymus 

 

The thymus is implicated in coeliac disease pathogenesis by association signals mapping to 4 

regions containing genes with prominent known roles in T cell development in the thymus 

(THEMIS, RUNX3, ETS1, and TNFRSF14).  The thymus gland’s key role in establishing tolerance 

to self-antigens through thymocyte selection makes it a prime candidate for involvement in 

autoimmune disease pathogenesis, but it has not previously been implicated in coeliac 

disease.  Coeliac disease onset occurs at all ages, but the disposition appears to be present 

from childhood, since the prevalence in children is as high as in adults(van Heel and West 

2006).  Thymic T cell development and output to the periphery is most prodigious before 

adolescence, and therefore selection events at this stage are strong candidates for 

determining loss of tolerance to gluten early in life.  Indeed, exogenous antigen presentation 

and selection can occur in the thymus via migratory dendritic cells – this has been 

demonstrated for skin and hypothesized for food antigens (Bonasio, Scimone et al. 2006; Klein, 

Hinterberger et al. 2009).    In type 1 diabetes, disease associated genetic variation in the 
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insulin gene INS causes altered thymic insulin expression and subsequent T cell tolerance for 

insulin as a self-protein (Vafiadis, Bennett et al. 1997).   

 The rs802734 LD block contains the recently identified gene THEMIS ‘THymus-Expressed 

Molecule Involved in Selection’.  This gene shows relatively selective expression in the thymus, 

especially in immature double positive thymocytes, compared to peripheral lymphoid tissues 

and is not expressed at all in non-lymphoid tissues (Fu, Vallee et al. 2009; Patrick, Oda et al. 

2009). THEMIS plays a key role in T-cell selection during late thymocyte development, such 

that its elimination leads to profound defects in T cell development (Fu, Vallee et al. 2009; 

Johnson, Aravind et al. 2009; Lesourne, Uehara et al. 2009; Patrick, Oda et al. 2009). The most 

prominent of these defects is impaired differentiation of both CD4
+ 

and CD8
+ 

T cells, through 

impaired positive selection.  The role of THEMIS appears contingent on T cell receptor 

signalling, although T cell receptor stimulation can reverse some of the defects observed 

(Lesourne, Uehara et al. 2009).  RUNX3, mapping within the rs10903122 LD block has been 

proposed to play a role as a master regulator of CD8
+
 T lymphocyte development in the 

thymus since it potentiates CD8 and abrogates CD4 expression through binding to the CD8 

gene enhancer and CD4 silencer regions, respectively (Woolf, Xiao et al. 2003; Sato, Ohno et al. 

2005).  ETS1 (rs11221332 LD block) has also been shown to play a key role in thymic CD8
+
 

lineage differentiation in part through promoting RUNX3  expression (Zamisch, Tian et al. 

2009). Finally, TNFRSF14 (LIGHTR, rs3748816 LD block) has a critical role in promoting 

thymocyte apoptosis in response to HLA/self-peptide TCR interactions (negative thymocyte 

selection) (Wang and Fu 2003).   

 

Distinguishing the relative importance of these genes in thymocyte development versus 

peripheral leucocyte function, where all of these genes have also been shown to function, will 

require further immunological studies.  Of the genes highlighted, THEMIS is most selectively 

thymus-expressed and clearly plays a critical role in thymocyte selection.  RUNX3 and ETS1  are 

transcription factors that control a variety mature T cell processes in addition to their 

thymocyte functions ,such as regulation of expression of T cell receptor alpha and beta  (ETS1 

(Ho, Bhat et al. 1990; Wotton, Prosser et al. 1993)) and co-stimulatory molecules (Arman, 

Aguilera-Montilla et al. 2009).  TNFRSF14 has well-defined roles in T cell co-stimulation and co-

inhibition (see 3.5.2.1.1).  Nevertheless, together these findings have suggested new pathways, 

particularly involved in thymocyte development and selection, with important roles in 

autoimmune disease pathogenesis.   
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3.5.2.1.3  Innate immune detection of viral RNA. 

 

TLR7 and TLR8 map within a coeliac risk region tagged by rs5979785 (Pcombined=6.36x10
-8

). Both 

these genes encode endosomal toll-like receptors that are activated by viral single stranded 

RNA (Diebold, Kaisho et al. 2004; Krieg and Vollmer 2007). The GRAIL analysis annotates TLR7 

whereas as TLR8’s relevance to the association signal is supported by a strong cis effect on 

gene expression of rs5979785 in whole blood (Dubois, Trynka et al. 2010). At face value these 

associations suggest that TLR responses to viral infection may play a role in coeliac 

pathogenesis and provide some support for epidemiological evidence that viral infections are a 

pre-disposing environmental trigger (Sandberg-Bennich, Dahlquist et al. 2002; Ivarsson, 

Hernell et al. 2003; Ivarsson 2005) .  The recent observation of rare loss of function mutations 

in the enteroviral response gene IFIH1 in type 1 diabetes, provide additional support for the 

role of viral infection (and the nature of the host response to infection) as a putative 

environmental trigger common to these autoimmune diseases (Nejentsev, Walker et al. 2009).  

However, an alternative explanation for TLR7/TLR8 gene involvement in coeliac disease is that 

genetic variation influencing these molecules alters the usually muted TLR7 or TLR8 responses 

to host nucleic acids, driving autoimmunity (Krieg 2002; Leadbetter, Rifkin et al. 2002; Viglianti, 

Lau et al. 2003). 

 

 

3.5.2.1.4 Cytokines, chemokines and their receptors 

 

Genes in this category include the previously reported 2q11-12 interleukin receptor cluster 

(IL18RAP,IL18R1,iL1R1,IL1R2,IL1RL1,IL1RL2), the 3p21 chemokine receptor cluster (CCR3,CCR5 

etc), the IL2-IL21 region and IL12A (Hunt, Zhernakova et al. 2008). Loci containing CCR4 and the 

cytokine TNFRSF18 can now be added to this.  These genes, together with ITGA4, which 

encodes the integrin alpha 4 subunit expressed on gut-homing T cells as one half of the α4β7 

integrin, suggest variation affecting recruitment of immune cells to and within the intestinal 

mucosa is important in coeliac disease.   
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Figure 3.13   Co-localization of case-control association and genotype-expression correlation 

(eQTL) signals within coeliac risk regions.  A. Region containing MMEL1  and 

TNFRSF14.  B. Region containing CD247. Figure created by Lude Franke, reproduced 

from Dubois et al. (Dubois, Trynka et al. 2010) 

 

 

A. 

 
B. 

 

 

PGWAS values (black points and black line) from 4,533 cases and 10,750 controls. Pcombined values (red points) from 

9,451 cases and 16,434 controls.  Genotype-expression correlation P values for SNP positions across the genome 
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at each tested eQTL are shown in a different colour for each probe (annotated with Illumina ArrayAddressID and 

gene name). 

Figures made by Lude Franke and reproduced from Dubois et al. (Dubois, Trynka et al. 2010).  

 

Figure 3.13 (cont). C. Region containing CCR3 
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3.6  Methods 
 

Details of genotyping and analysis methods are given in general methods.  However, methods 

specific to this study are presented below. 

 

3.6.1  Ethical approval 

 

Written informed consent was obtained for all subjects participating in the study with local 

Ethics Committee / Institutional Review Board approval (3.9.2 provides more detail).  Unless 

stated, affected coeliac individuals were diagnosed according to standard clinical, serological 

and histopathological criteria including small intestinal biopsy.  DNA samples were from blood, 

saliva or lymphoblastoid cell lines. 

 

3.6.2  Study participants 

3.6.2.1  Study participants: GWAS (stage 1) 

 

UK1 

 

 Coeliac disease patients were recruited from adult outpatient clinics at seven UK hospital 

sites (Barts and the London, London; Derbyshire Royal Infirmary, Derby; Hammersmith 

Hospital, London; John Radcliffe Hospital, Oxford; Leeds University Hospitals, Leeds; 

Llandough Hospital, Cardiff; Sheffield University Hospitals, Sheffield). Inclusion criteria 

were based on presence of villous atrophy at diagnosis and (since test introduction) 

positive anti-endomysial/tissue transglutaminase antibody (van Heel, Franke et al. 2007). 

Population-based controls were analysed from the 1958 British Birth Cohort. Ethics 

committee (Oxfordshire REC B) and local approval were obtained for all cohorts. Genomic 

DNA was extracted from peripheral blood, or from immortalised peripheral blood 

lymphocyte cell lines (1958 British Birth Cohort). All individuals were unrelated and of 

white northern European ethnic origin. 

 

UK2 

 

Coeliac disease cases were recruited from adult outpatient clinics as described for UK1 

(434 individuals) and by advertisement through Coeliac UK (1415 individuals).  Screening 
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questionnaires were used to verify coeliac disease status in Coeliac UK members 

responding to advertisement placed in the quarterly magazine, Crossed Grain. For 

inclusion individuals were required to report that they had been diagnosed with coeliac 

disease and had either had a positive coeliac antibody test or intestinal biopsy.  Genomic 

DNA was extracted from peripheral blood (individuals recruited from hospital outpatients) 

and saliva (Oragene) or from immortalised peripheral blood lymphocyte cell lines (1958 

British Birth Cohort). 

 

Dutch 

795 unrelated Dutch individuals with coeliac disease were diagnosed according to the 

revised
 
ESPGAN criteria (UEGW Working Group 2001).  The cohort encompassed individuals 

that
 
showed a Marsh II or Marsh III lesion in the initial diagnostic

 
small-bowel biopsy 

specimens upon re-evaluation by one of two
 
experienced pathologists, or presented with 

dermatitis herpetiformis
 
and were HLA-DQ2 positive. The control cohort comprised Dutch 

blood bank donors (n
 
= 833) and NELSON controls (n = 850). The NELSON project—an ongoing 

population-based, randomized
 
multi-centre lung cancer screening trial recruits male smokers 

(van Iersel, de Koning et al. 2007). These controls were collected from the north and centre
 
of 

the Netherlands (Groningen, Utrecht and Drenthe, The Netherlands).  All the control subjects 

were heavy smokers or ex-smokers (a
 
minimum of 16 cigarettes/day for 25 years or 11 

cigarettes/day
 
for 30 years), but did not develop airway obstruction or emphysema

 
suggesting 

chronic obstructive pulmonary disease (COPD) until
 
the end of a 4 year observation period. The 

current study was approved by the local ethics committees
 
and all the patients and controls 

gave their written informed
 
consent. 

Italian 

 

DNA isolated from whole blood was available from 538 patients diagnosed by a referral centre 

for coeliac disease (Centro per la prevenzione e diagnosi della malattia celiaca, Fondazione 

IRCCS Ospedale Maggiore Policlinico) and from 593 healthy controls from the north of Italy. 

The average age of onset was 24.7 years (range 1–78 years). All the affected individuals were 

diagnosed according to the revised ESPGHAN criteria showing a Marsh III lesion (UEGW 

Working Group 2001). In addition, patients’ serum samples tested positive for both anti-

transglutaminase and anti-endomysium antibodies. Only 1.3% of the affected individuals had 

no HLA-DQ2 and/or HLA-DQ8 risk alleles, which is in accordance with published data (Louka, 
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Moodie et al. 2003). Written informed consent was obtained from all individuals before 

enrolment in the study. The study was approved by the ethics committee of the Fondazione 

IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy. 

 

Finnish 

 

Finnish affected individuals (sporadic cases, or unrelateds from affected families across 

Finland) were recruited at the Universities of Tampere and Helsinki (Koskinen, Einarsdottir et 

al. 2009; Koskinen, Einarsdottir et al. 2009). Finnish population controls comprised 904 

samples from Finrisk (Corogene, excluding coronary heart disease) and 925 samples from 

Health 2000 (excluding metabolic syndrome and positive coeliac disease serology). Finrisk 

controls (912 individuals without coronary artery disease) come mainly from a broad area of 

southern Finland of mixed ancestry that captures the ancestral mix of the whole country 

(Jakkula, Rehnstrom et al. 2008; Kathiresan, Voight et al. 2009).  The Health2000 cohort: a 

subset of 2138 individuals (out of the full ~6000 cohort) with metabolic syndrome (n=1213) or 

clearly without metabolic syndrome (n=925) was available. These samples were geographically 

from the whole of Finland. 

The study was approved by the ethical committees of the Tampere and Helsinki University 

Hospitals 

 

3.6.2.2  Study Participants:  Follow-up (stage 2) 

 

Follow-up: USA comprised 525 coeliac cases and 340 controls from the Mayo Clinic 

(Minnesota), and 448 coeliac cases and 215 controls from the University of California 

Irvine(Garner, Murray et al. 2009). Polish coeliac cases were diagnosed in hospital clinics, and 

controls from donors at the Children’s Memorial Health Institute (Warsaw), excluding coeliac 

serology positive samples. Italian samples comprised 377 coeliac cases and 94 controls from 

Rome, and 637 coeliac cases and 711 coeliac serology negative controls from Naples(Megiorni, 

Mora et al. 2008). Irish coeliac cases and controls were as described, with additional samples 

(Hunt, Franke et al. 2007). 259 Finnish coeliac cases were recruited similarly to GWAS samples, 

and controls were an additional 653 population controls from the Finrisk study. 965 Hungarian 

coeliac cases were collected from Budapest and Debrecen children clinic, and 1067 controls 

representative of the Hungarian population were selected from an epidemiological study. Part 

of the Hungarian cohorts have been described earlier(Koskinen, Einarsdottir et al. 2009). 
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Spanish coeliac cases were recruited in Madrid hospitals, controls were  donors and hospital 

employees(Dema, Martinez et al. 2009). 

 

 

3.6.3  DNA extraction and quantification 

3.6.3.1  DNA extraction from blood samples 

For samples processed at Barts and the London School of Medicine and Dentistry, genomic 

DNA was obtained from whole blood, collected in EDTA Vacuette tubes (17U/10ml)(Greiner 

Bio-one, Gloucestershire UK, 455036) and stored at -80
0
C, using Puregene

TM
 (Flowgen, 

Nottingham, UK, D50K1 D50K2, D50K3) DNA extraction solutions according to manufacturer’s 

instructions.  Briefly 9ml of thawed EDTA blood was added to 27ml of red blood cell lysis 

solution.  Sample was inverted to mix and incubated for 5 minutes at room temperature 

before undergoing centrifugation (Mistral 3000i centrifuge, MSE, UK) for 5mins at 3100rpm 

(2000g).  Supernatant was poured away and pellet re-suspended in 9ml cell lysis solution 

before shaking using a vortex (Vortex Genie 2, Scientific Industries, New York, USA).  3ml 

protein precipitate solution was added and sample vortexed for 20 seconds before re-

centrifuging for 5 mins at 3200rpm (2000g).  Supernatant was poured into a clean tube 

containing 9mls propan-2-ol, after which 9ml of 70% ethanol (VWR, Leicester UK, 10107) were 

added to pellet. The tube was inverted once and centrifuged.  Supernatant was poured away 

and tube inverted on absorbent paper until the pellet was dry, The pellet was re-suspended in 

1ml deionised, DNase and RNase free water (Sigma Aldrich, Dorset UK, W4202) 

 

3.6.3.2  DNA extraction from saliva samples 

 

Saliva samples were collected using Oragene
TM

 DNA Self-Collection kits (OG-250, DNA Genotek 

Inc, Canada). Saliva is collected into an Oragene collection container and DNA preserving 

solution is added on sealing the container.  This allows long-term storage of samples at room 

temperature without DNA degradation.   

 

DNA was purified from 0.5ml of saliva/Oragene DNA purifying solution according to the 

Oragene laboratory protocol for manual purification of DNA (Issue 3.7).  Briefly, samples were 

incubated at 50
0
C for 1 hour to release DNA from cells and inactivate nucleases.  500μl sample 

was transferred to a 1.5ml microcentrifuge tube and 20μl of Oragene DNA purifier (OG-L2P) 

added.  Samples were mixed by vortexing for 5 seconds and incubated on ice for 10 minutes. 
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Samples were centrifuged at room temperature for 5 minutes at 15,000g (12,700rpm) using an 

Eppendorf Centrifuge 5415D.  The clear supernatant was transferred using a pipette into a 

fresh 1.5ml microcentrifuge tube containing 500μl of 97-100% ethanol (Ethanol, absolute, 

Fisher Scientific, E/650DF/P17).  The mixture was mixed by gently inverting 10 times and then 

incubated at room temperature for 10 minutes to allow DNA precipitation.  Samples were then 

centrifuged at room temperature for 2 minutes at 15,000g (12,700rpm).  The supernatant was 

carefully removed and 250μl of 70% ethanol added and left for 1 minute to wash.  The ethanol 

was carefully removed and DNA pellet left to air dry for 5 minutes.  20μl of DNase and RNase 

free water (Sigma Aldrich,  Dorset UK, W4202) was added to dissolve the DNA pellet and 

samples were left an orbital shaker (KCH-Vibrax VXR, Kinematic, Switzerland) for 12 hours 

(overnight) to ensure complete re-hydration of DNA.  DNA samples were stored at -80
0
C.  

 

3.6.3.3  DNA quantification 

 

DNA was quantified for genotyping microarray experiments using a Quanti-iT PicoGreen 

dsDNA assay kit (Invitrogen, UK, P11496) according to the manufacturer’s instructions. DNA 

samples were assayed in duplicate in 96 well plate format (40 samples per plate).  Briefly, DNA 

was diluted by adding 1μl of DNA sample to 999μls Tris-EDTA (1x)(Sigma Aldrich, Dorset UK, 

T9285) in a deep (1.2ml) 96well plate (ABgene, Epsom, UK, AB-0564). Plates were sealed using 

adhesive PCR films (Thermo Scientific, AB-0558) and shaken for 5 seconds using a vortex 

(Vortex Genie 2, Scientific Industries, New York, USA). Plates were then also inverted twice to 

mix. Lambda DNA was serially diluted in 1x Tris-EDTA. Stock lambda (100μg/ml) DNA, supplied 

with the Quanti-iT
TM

 PicoGreen dsDNA assay kit and stored at -20
0
C, was thawed to room 

temperature and 20μl was transferred into a 1.5ml tube containing 980μl  Tris-EDTA solution 

(Sigma Aldrich, Dorset UK, T9285). Serial 1 in 4 dilutions were performed y transferring 250μl 

from the top standard to a second 1.5ml tube containing 750μl Tris-EDTA. The tube was 

shaken for 2 seconds using a vortex and further serial dilutions continued in the same way. 

100μl of duplicate sample and standards were transferred to corresponding wells of a 96 well 

Pico plate (Costar
TM

 3610 96 well assay plate, Corning Inc., USA). Fluorescent dye solution was 

prepared by transferring 50μl fluorescent dye to 11 ml of Tris-EDTA (1x) solution in a foil-

covered 15 ml tube. The tube was shaken on a vortex for 10 seconds to mix. 100μl fluorescent 

dye solution was added to each well of the Pico plate containing DNA samples, and the plate 

was then loaded onto the fluorometer (BMG Labtech FLUOstar OPTIMA, Germany). Filter 

settings were 485nm(excitation) and 520nm(emission) for fluorescence measurement.  Sample 
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DNA concentrations were calculated from the mean of measurement from the pair of sample 

duplicates by fitting a standard curve.  Samples showing poor sample pair measurement 

concordance were re-assayed from the stock solution.  

 

 

3.6.4  Genotyping 

3.6.4.1  GWAS  genotyping  

 

Genotyping platforms used in the study are listed in Table 3.8. The locations where genotyping 

was performed are listed in Table 3.8.  Genotyping assay protocols for each platform are 

described in general methods. 

UK cases were genotyped at The Genome Centre, Barts and the London School of Medicine 

and Dentistry.  200ng DNA diluted at 50ng/μl for each sample was used.  Genotyping on 

Illumina Human 670-Quad Customv1 BeadChips was performed according to the Illumina 

Infinium
TM

 HD Assay Super Protocol Guide Revision C (Illumina Inc, San Diego, USA).  Briefly, 

DNA was whole-genome amplified, fragmented and resuspended in hybridization buffer prior 

to loading onto Beadchips. After hybridization, BeadChips were washed and single base 

extension and staining performed. BeadChips were loaded onto the BeadArray Reader, a two 

channel high resolution laser imager, using an Illumina Autoloader. 

Normalized raw intensities for red and green channels corresponding to each SNP allele is 

performed using Illumina’s proprietary normalization procedure.  Data was outputted as XNorm 

and YNorm or R (XNorm + YNorm) and theta (“copy angle”), the ratio of Xnorm and Ynorm normalised to 

between 0 and 1 (theta = (2/pi) x arctan2 (Ynorm, Xnorm)) using Illumina BeadStudio 2.0 

software.  Genotype calling was performed using R and theta data, merging datasets for calling 

in 5 calling pools as described in section 3.3.3.1.  A modified version of a custom-designed 

algorithm created by Lude Franke (Groningen and Barts and the London) was used to call 

genotypes for all SNPs (van Heel, Franke et al. 2007; Franke, de Kovel et al. 2008).  This 

algorithm seeks to assign samples to one of three biallelic SNP genotypes by comparing sample 

intensity values (corresponding to R-theta position on a SNP cluster plot) with the mean and 

standard deviations of the three genotype clusters. SNP cluster plots for individual SNPs were 

generated by plotting R versus theta for all samples.   
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3.6.4.2  Follow-up genotyping 

 

Finnish controls (12) were genotyped on the Human 610-Quad BeadChip at the Wellcome 

Trust Sanger Institute. All other samples were genotyped using the Illumina GoldenGate assay 

on the Veracode/BeadXpress platform at Barts and The London Genome Centre; King's College 

London; and University Medical Centre Groningen.  

 

Genotyping was performed using 144 SNPplex custom designed Illumina VeraCode
TM

 

GoldenGate assays. The genotyping was performed following the VeraCode Assay Guide 

(Revision A).  Briefly, in the Illumina GoldenGate Assay, DNA is activated through biotinylation.  

Assay oligonucleotides (oligos) are added and hybridized to the sample DNA and the mixture 

bound to streptavidin-conjugated magnetic particles. After oligo hybridization, mis- and non- 

hybridized oligos are washed off and allele-specific extension of hybridized oligos is performed.  

The extended and ligated products form a template that is transferred to a PCR reaction and 

amplified.  The strand containing the fluorescent signal in the PCR products is isolated and 

hybridized to the VeraCode beads via the address sequence.  After the hybridization, the 

VeraCode beads are washed and scanned on the Illumina  

BeadXpress Reader, a two channel laser fluorometer.  

 

Genotype calling was performed in BeadStudio by visual inspection of SNP cluster plots and 

manual adjustment of genotype cluster positions.  Calling was performed separately for 

combined cases and controls in each collection, with the exceptions of the Finnish collection, 

and whole genome amplified samples (89 Irish cases and 106 Spanish controls).  Finnish 

samples were called from Human 670-Quad-custom data together with samples used in the 

GWAS.  Whole genome amplified samples were called manually in BeadStudio separately from 

non-WGA samples due to observed differences in assay intensities.  Sample and SNP quality 

control steps were performed as for the GWAS (with the exception of ethnic outlier analysis 

which was not possible with only 144 SNPs). 131 of 144 SNPs passed quality controls. 
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3.7  Statistical analysis 

 

3.7.1  Case-control association analysis 

 

Most analyses were performed using PLINK v1.05(Purcell, Neale et al. 2007).  

 

Quality control steps performed using PLINK included sex-estimation for X chromosome SNP 

zygosity and hardy-weinberg equilibrium testing.  A subset of 12,344 non-HLA SNPs, selected 

due to low pairwise linkage disequilibrium as informative of ancestry were used for ethnic 

outlier detection and relatedness detection analyses in PLINK(Yu, Wang et al. 2008).   These 

analyses were performed using pairwise SNP identity by state calculations, multi-dimensional 

scaling analyses and identity by descent estimation for detection and exclusion of relatives.  

Linkage disequilibrium estimation (r-square and D’) for putatively independent SNPs at a single 

risk locus was calculated in PLINK using 4936 UK2 controls.  Determination of linkage 

disequilibrium among 395 SNPs with evidence of association in stage 1 (PGWAS <10
-4

), was 

facilitated by use of Haploview (http://www.broadinstitute.org/haploview/haploview) to aid 

selection of SNPs tagging putatively independent associations within a single genomic region. 

4936 UK2 controls were used as input for this analysis. 

 

Quantile-quantile plots were made using the R statistical package (http://www.r-project.org/). 

SNPs from non-HLA coeliac risk loci were excluded for some plots, by removing SNPs 

within a 2 megabase window centred on the most strongly associated SNP from each 

region. 

 

The Cochran-Mantel-Haenszel extension of the chi-square test of SNP allele counts (1 degree 

of freedom) was used for most association analyses. Logistic regression analyses were used to 

define the independence of association signals within the same linkage disequilibrium block, 

with group membership included as a factorized covariate. LambdaGC was estimated for the 

GWAS meta-analysis from the Cochran-Mantel-Haenszel allelic chi-square test statistics. The 

broad HLA region, excluded in most SNP association analyses, was defined as chromosome 6: 

20,000,000 to 39,999,999 base pairs (Human Genome NCBI build 36 coordinates). 

 

Pairwise SNP epistasis was assessed in PLINK utilizing a logistic regression model. 
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Principal components analysis was performed using Eigensoft v3.0 software 

(http://genepath.med.harvard.edu/~reich/Software.htm)(Price, Patterson et al. 2006).  

12,344 non-HLA ancestry-informative SNPs were used for calculation of the top ten principal 

components in each GWAS sample collection.  Case-control difference on each of the principal 

components was calculated using an ANOVA, 2 degrees of freedom test with the Eigensoft 

smartPCA application. Estimates of lambdaGC for individual collections before and after 

adjustment for the top ten principal components was calculated for Cochran-Armitage trend 

association statistics using EIGENSTRAT software application(Price, Patterson et al. 2006).  A 

weighted Z score method, using z scores obtained from Cochran-Armitage trend p values 

(adjusted and unadjusted) in each collection was used to calculate a stratified meta-analysis P 

value before and after EIGENSTRAT correction for principal components.  This method weights 

the z scores according to sample collection size as recommended by de Jager et al. (De Jager, 

Jia et al. 2009). 

 

The proportion of the total genetic variance of coeliac disease accounted for by non-HLA SNPs 

identified in the study was estimated using the logistic regression method implemented with 

the INPower software tool of Park et al. (http://dceg.cancer.gov/bb/tools/INPower) (Park, 

Wacholder et al. 2010). Effect sizes for SNPs were estimated from the stage 2 sample 

collections. The total genetic variance for coeliac disease was estimated from a sibling 

recurrence risk of 10, based on a log-normal distribution of genetic risk for polygenic traits 

(λsibling
2
 =  e

variance
) (Pharoah, Antoniou et al. 2002).   

 

3.7.2    GRAIL analysis 

 

Gene Relationships Among Implicated Loci (GRAIL) analysis 

(http://www.broadinstitute.org/mpg/grail/grail.php) was performed using HG18 and Dec2006 

PubMed datasets, default settings for SNP reference sequence (rs) number submission, and 

the 27 genome-wide significant celiac disease risk loci (most associated SNP) as 

seeds(Raychaudhuri, Plenge et al. 2009). As a query we used either associated SNPs, or 101 x 

50 randomly chosen Hap550 SNP datasets (5050 SNPs, of which 5033 mapped to the GRAIL 

database).  

 

 Briefly, the GRAIL method first defines the boundaries of the linkage disequilibrium block 

around the submitted SNP and identifies genes mapping within this region.  All other human 
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genes are then ranked for text-based similarity with each gene in the region using pre-2006 

Pubmed abstracts.  The region is then compared to other disease (seed) regions, calculating a 

score based on the number of seed regions with related genes.  The score of the most related 

gene in the region is used to calculate the significance of the region (Ptext) and to annotate the 

most related gene in the region. 
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3.8  Bioinformatics and software resources 

 

Bioinformatics resources and software used extensively in this chapter and throughout this 

thesis include: 

 

University of California at Santa Cruz Genome Browser  

Available at:  http://genome.ucsc.edu/cgi-bin/hgGateway 

 

NCBI dbSNP (Sherry, Ward et al. 2001) 

Available at: http://www.ncbi.nlm.nih.gov/projects/SNP/ 

 

NCBI Gene 

Available at: http://www.ncbi.nlm.nih.gov/gene 

 

The Human HapMap project (Consortium 2005) 

Available at: http://hapmap.ncbi.nlm.nih.gov/ 

 

Haploview v4.0 (Barrett, Fry et al. 2005) 

Available from: http://www.broadinstitute.org/haploview/haploview 

 

Genetics Power Calculator (Purcell, Cherny et al. 2003) 

Available at: http://pngu.mgh.harvard.edu/~purcell/gpc/ 

 

Power for Genetic Association Analyses (PGA) (Menashe, Rosenberg et al. 2008) 

Available from: http://dceg.cancer.gov/bb/tools/pga 

 

WGA Viewer: software for genomic annotation of whole genome association studies (Link, 

Parish et al. 2008) 

Available from: http://people.genome.duke.edu/~dg48/WGAViewer/ 

 

PLINK v1.05 Whole genome association analysis toolset (Purcell, Neale et al. 2007) 

Available from: http://pngu.mgh.harvard.edu/~purcell/plink/ 

 

Eigensoft: Eigenstrat and smartPCA applications (Price, Patterson et al. 2006) 
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Available from: http://genepath.med.harvard.edu/~reich/Software.htm 

  

R statistical package  

Available from:  http://www.r-project.org/ 

 

Gene Relationships Among Implicated Loci (GRAIL) (Raychaudhuri, Plenge et al. 2009) 

Available at:  http://www.broadinstitute.org/mpg/grail/grail.php 

 

INPower (Park, Wacholder et al. 2010) 

R package available from: http://dceg.cancer.gov/bb/tools/INPower 
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Chapter 4 Genome wide association study (GWAS) of 

azathioprine and mercaptopurine-induced 

pancreatitis 
 

4.1   Introduction 

 

The thiopurines, 6-mercaptopurine and azathioprine, are used in clinical practice as 

immunosuppressants and anti-leukaemic agents.  As treatments for intestinal inflammatory 

diseases, their principal indications are in maintaining remission in ulcerative colitis and 

Crohn’s disease (Timmer, McDonald et al. 2007; Prefontaine, Sutherland et al. 2009).  

Azathioprine is also less commonly used treat individuals with refractory coeliac disease 

(Maurino, Niveloni et al. 2002; Goerres, Meijer et al. 2003; Rubio-Tapia and Murray 2010).  The 

undoubtedly valuable efficacy of these drugs is offset by both dose-dependent (type A) and 

idiosyncratic (type B) adverse effects.  10-20% of exposed individuals experience adverse 

effects leading to drug discontinuation (Present, Meltzer et al. 1989; de Jong, Derijks et al. 

2003; Warman, Korelitz et al. 2003).  Discontinuation occurs most frequently for mild, dose-

dependent effects including nausea, malaise, myalgias, arthralgias and headache.  In addition, 

dose-dependent myelo- and hepato-toxicity necessitate regular monitoring blood tests during 

both initiation and maintenance of thiopurine therapy. Mild leucopoenia is common but 

clinically significant myelosuppression requiring dose reduction or discontinuation occurs in 

around 2% of individuals (Present, Meltzer et al. 1989; Warman, Korelitz et al. 2003). Dose-

dependent hepatotoxicity occurs in between 3-10% of individuals, though this includes mild, 

asymptomatic elevations in liver biochemistry tests that rarely require drug discontinuation 

(Present, Meltzer et al. 1989; Bastida, Nos et al. 2005; Gisbert, Gonzalez-Lama et al. 2007).  

Dose-independent reactions occur in less than 5% of individuals and include a hypersensitivity-

like syndrome with fever, rash and diarrhoea (Present, Meltzer et al. 1989; de Jong, Derijks et 

al. 2003).  Acute pancreatitis is a clinically important risk, occurring as an idiosyncratic reaction 

in around 3% of thiopurine-exposed individuals in the setting of inflammatory bowel disease 

(Haber, Meltzer et al. 1986; Bermejo, Lopez-Sanroman et al. 2008). There is some evidence 

that pancreatitis occurs less frequently in other disease settings (for unknown reasons).  

However,  an increase in the risk of pancreatitis for all disease indications is supported by a 

large population-based case-control study where the overall risk of pancreatitis was increased 

approximately 8fold in users of azathioprine for any indication, even after adjustment for 
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inflammatory bowel disease diagnosis and other known causes of pancreatitis (Floyd, 

Pedersen et al. 2003).  The investigations presented in this chapter aimed to determine 

whether common genetic variants are a major cause or contributor to pancreatitis risk in 

thiopurine-exposed individuals. 

 

4.1.1  History and clinical uses of thiopurines 

 

Thiopurines are purine compounds that have been modified by the substitution of sulphur for 

oxygen atoms (Figure 4.1).  6-mercaptopurine and azathioprine are the two thiopurines in 

common clinical use today. Thioguanine, while still used as a treatment for leukaemia, is rarely 

used as an immunosuppressant - its use has been abandoned in inflammatory bowel disease 

due to concerns over hepatotoxicity and in particular nodular regenerative hyperplasia which 

may cause irreversible portal hypertension (Dubinsky, Vasiliauskas et al. 2003). The major 

clinical indications for thiopurines are as immunosuppressants in the treatment of chronic 

inflammatory diseases and after allograft transplantation and as cytotoxic agents in the 

treatment of haematological malignancies, particularly acute lymphoblastic leukaemia (Table 

4.1).  

 

 The development of thiopurines arose from a search for purine antimetabolites in the 1950s, 

where the substitution of the oxygen by sulphur at the carbon 6 position of hypoxanthine and 

guanine was found to produce compounds (6-mercaptopurine and 6-thioguanine) that 

inhibited purine utilization and were active against tumours and leukaemias (Elion, Hitchings et 

al. 1951).  This discovery led to the first clinical trial of 6-mercaptopurine (6-MP) in acute 

leukaemias in 1953 (Burchenal, Murphy et al. 1953).  Azathioprine was subsequently 

developed from efforts to synthesize thiopurines that were protected from some of the 

metabolic inactivating steps that were recognized to occur for 6-MP (Elion 1989).  Azathioprine 

was subsequently shown to act as a pro-drug of 6-MP, reacting with glutathione in red cells to 

release 6-MP.  It was found to have similar anti-leukaemic efficacy and toxicity to 6-MP. 

 

The immunosuppressive effects of thiopurines, distinct from direct myelotoxicity, were first 

demonstrated for 6-MP, after it was shown to suppress the antibody response to foreign 

antigen in rabbits in 1958 (Schwartz, Stack et al. 1958). The first direct comparison of 

azathioprine and 6-MP as immunosuppressants showed superior graft survival in dogs after 

renal transplant for azathioprine (Calne 1960).  This led to the first successful trial of 
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Table 4.1  Clinical indications for azathioprine and mercaptopurine 

 

Indications Reference 

Childhood Acute lymphoblastic leukaemia (Chessells, Bailey et al. 1995) 

Solid organ transplantation (Ponticelli, Tarantino et al. 1999; Germani, 

Pleguezuelo et al. 2009) 

Crohn’s Disease (Sandborn, Sutherland et al. 2000; 

Prefontaine, Sutherland et al. 2009) 

Ulcerative Colitis (Timmer, McDonald et al. 2007) 

Refractory coeliac disease (Goerres, Meijer et al. 2003) 

Autoimmune hepatitis (Pratt, Flavin et al. 1996) 

Rheumatoid arthritis (Heurkens, Westedt et al. 1991) 

Systemic lupus erythematosus (Abu-Shakra and Shoenfeld 2001) 

Atopic eczema (Meggitt, Gray et al. 2006) 

 

 

4.1.2   Metabolism and mechanism of action of azathioprine and 6-MP.   

 

The metabolism and pharmacology of thiopurines is complex and the mechanisms of efficacy 

and toxicity remain only partly understood.  Thiopurines are inactive pro-drugs that exert their 

cytotoxicity and immunosuppressive effects after they have been metabolized intra-cellularly.  

The cytotoxic effects are mediated by metabolites, principally thioguanine nucleotides which, 

by incorporation into DNA trigger cell cycle arrest and apoptosis. This mechanism may also 

mediate some of the immunosuppressive effects of azathioprine and mercaptopurine by 

inhibiting lymphocyte proliferation (Lennard 1992).  In activated T cells, thioguanine 

nucleotides inhibit the expression of genes involved in inflammation such as TRAIL (TNF-

related apoptosis-inducing ligand), TNFRS7 (TNF-receptor superfamily 7) and ITGA4 (alpha4 

integrin) (Thomas, Myhre et al. 2005). Moreover 6-thio-GTP generated from azathioprine can 

block Rac1 GTPase activation that occurs on CD28-mediated T co-stimulation.  This can 

promote T cell apoptosis or inhibit antigen-presenting cell-T cell conjugation (Tiede, Fritz et al. 

2003; Poppe, Tiede et al. 2006).  An alternative mechanism of immunosuppression is through 

the generation of 6-methyl-thioinosine 5’ monophosphate (Figure 4.2) which acts as a potent 

inhibitor of de novo purine biosynthesis.  The immunosuppressive effects of this action include 

blockade of lymphocyte proliferation. 
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4.2  Pharmacogenetics of drug adverse effects 

 

In contrast to common diseases, sufficiently large family and in particular twin studies of drug 

adverse effects to enable estimates of heritability have not been reported.  Nevertheless there 

have been a few reports of familial clustering of idiosyncratic drug reactions (though none 

specifically for thiopurine-induced pancreatitis) (Gennis, Vemuri et al. 1991; Pellicano, 

Silvestris et al. 1992; Johnson-Reagan and Bahna 2003). Monozygotic twin concordance for 

carbamazepine hypersensitivity has also been reported (Edwards, Hubbard et al. 1999).  

Together these limited reports provide some support for a heritable component to at least 

some idiosyncratic drug reactions.   

 

A distinction between dose-dependent and dose-independent adverse effects may be helpful 

in considering the likely genetic contributions to these effects.  Dose-dependent toxicities are 

likely to be influenced mainly by genetic variation in genes involved in the drug metabolic or 

transportation pathways (affecting pharmacokinetics). Conversely dose-independent, 

idiosyncratic adverse effects are likely to be influenced mainly by genetic variation outside 

these pathways, influencing drug and drug metabolite interactions with target organs or the 

immune system (pharmacodynamics) (Daly, Donaldson et al. 2009).  As such, focussing on 

genetic variation within the key metabolic enzyme genes of thiopurine metabolism may be the 

most efficient approach to identify variants influencing dose-dependent effects.  In contrast, 

for dose-independent effects, a much broader (ideally whole-genome) assay of genetic 

variation should be considered.  In the case of thiopurine-induced pancreatitis the evidences 

cited for dose-independence include the observations that pancreatitis can occur at low as 

well as high doses, that pancreatitis does not correlate with other dose-dependent toxicities 

and that once established, it does not reverse on dose reduction.  Furthermore pancreatitis 

recurs on re-exposure even at low doses (Haber, Meltzer et al. 1986; Sandborn, Sutherland et 

al. 2000; Weersma, Peters et al. 2004).   However, while these observations separate 

pancreatitis from typical dose-dependent thiopurine toxicities (e.g. myelosuppression, 

hepatotoxicity) they do not entirely preclude dose (and pharmacokinetics) being an important 

factor influencing risk.  This possibility has not been systematically investigated and is an 

unresolved question.   At least some other idiosyncratic drug reactions  occur more frequently 

at higher doses (e.g. statin-induced myopathy) (Pirmohamed 2010).  Thus, pharmacokinetic 

mechanisms might still play a lesser role in the pathogenesis of idiosyncratic reactions 

including thiopurine-induced pancreatitis. 
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4.2.1 Pharmacogenetics of thiopurine dose-dependent toxicity: the example of 

TPMT polymorphisms 

 

Genetic variation affecting activity of thiopurine methyl transferase (TPMT) is an important 

cause of dose-dependent adverse effects. TPMT is a cytosolic enzyme which can catalyse S-

methylation of 6-MP and 6-TG as well as other aromatic and heterocyclic thio compounds 

(Figure 4.2).   Erythrocyte TPMT activity, which mirrors activity in leucocytes and other tissues, 

follows a trimodal distribution, with approximately 1 in 300 individuals showing 

low/undetectable activity and 10% showing intermediate activity(Weinshilboum and Sladek 

1980).  This activity distribution is primarily determined by TPMT gene polymorphisms (Tai, 

Krynetski et al. 1996).  In 80-95% of Caucasians, reduced TPMT activity is attributable to 3 

common polymorphisms: TPMT*2(238 G > C), TPMT*3A (460 G > A, 719A>G) and TPMT*3C 

(719A > G) (Schaeffeler, Fischer et al. 2004; Sahasranaman, Howard et al. 2008).   

 

TPMT activity is an important determinant of azathioprine and mercaptopurine toxicity. Low 

activity is associated with increased production of thioguanine nucleotides and increased 

cytotoxicity including myelosuppression (Chocair, Duley et al. 1992; Soria-Royer, Legendre et 

al. 1993).  Activity is also a predictor of clinical response, with high activity associated with 

lower response rates and lower TGN levels (Cuffari, Dassopoulos et al. 2004).  However, TPMT 

activity and genetic polymorphisms do not correlate well with other adverse effects including 

the most commonly encountered effects (nausea, myalgias and arthralgias, rash, abdominal 

pain and pancreatitis) (Marinaki, Ansari et al. 2004).  
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4.3   Thiopurine-induced acute pancreatitis 

 

Acute pancreatitis has been reported in between 1.4 and 5% of individuals with inflammatory 

bowel disease during treatment with azathioprine or 6-mercaptopurine, usually within the first 

few weeks after initiation of therapy (Haber, Meltzer et al. 1986; Present, Meltzer et al. 1989; 

Kirschner 1998; Fraser, Orchard et al. 2002; Floyd, Pedersen et al. 2003; Weersma, Peters et al. 

2004). 6-thioguanine appears to be exempt from this risk and individuals experiencing 

pancreatitis on azathioprine or mercaptopurine do not develop pancreatitis after switching to 

6-thioguanine (Bonaz, Boitard et al. 2003; Dubinsky, Feldman et al. 2003).  This suggests that 

the risk of pancreatitis is due to mercaptopurine or one of its unique metabolites, rather than 

on the thioguanine nucleotides (generated via 6-thioguanosine-5’-monophosphate) that are 

shared end products of all three drugs.   

 

Azathioprine and mercaptopurine-induced pancreatitis is a potentially serious adverse effect, 

usually necessitating hospital admission. However, in contrast to acute pancreatitis in other 

settings, where mortality is around 5%, thiopurine-induced pancreatitis is relatively mild and 

cases of severe or life-threatening pancreatitis are very rare (Pitchumoni, Rubin et al. 2010). In 

one of the largest series of 46 cases of azathioprine or mercaptopurine induced pancreatitis, 

all were mild (Bermejo, Lopez-Sanroman et al. 2008).   

 

The risk of pancreatitis does not appear to be related to dose and is not correlated with other 

dose-dependent toxicities (liver injury, bone marrow suppression) (Weersma, Peters et al. 

2004). Pancreatitis recurs rapidly on re-exposure, even at lower doses (Haber, Meltzer et al. 

1986; Cappell and Das 1989; Present, Meltzer et al. 1989). These features have been cited as 

evidence that the mechanism may involve an immune-meditated hypersensitivity reaction.   

 

The risk of pancreatitis appears to be elevated in all individuals exposed to thiopurines, 

regardless of disease indication (Floyd, Pedersen et al. 2003).  However, there is evidence that 

thiopurine-induced pancreatitis risk is higher in individuals with Crohn’s disease than in other 

autoimmune conditions and indeed it has been very rarely reported in studies of azathioprine 

use in other autoimmune diseases and after renal transplantation (Weersma, Peters et al. 

2004).  At The Royal London hospital’s renal unit, a search of the renal transplant database 

revealed no documented cases of azathioprine-induced pancreatitis (personal 

communication).  A possible explanation for the elevated risk in Crohn’s disease is that the risk 
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of acute pancreatitis is elevated generally in individuals with inflammatory bowel disease, 

independent of thiopurine exposure.  In this model, thiopurine exposure might elevate further 

the risk of the “idiopathic” component of increased pancreatitis observed in inflammatory 

bowel disease.  The largest case-control study to examine this question found 4-fold and 8-fold 

increased risks in ulcerative colitis and Crohn’s disease respectively (Rasmussen, Fonager et al. 

1999).  It has been hypothesized that low-grade pancreatic inflammation may exist in Crohn’s 

disease and interact with thiopurine risk to explain the increased risk in Crohn’s disease in 

particular (Weersma, Peters et al. 2004).  Pancreatic autoantibodies have been observed in 

around 30% of individuals with Crohn’s disease but in only 0-3.7% of controls (Seibold, Hufnagl 

et al. 1999; Joossens, Vermeire et al. 2004; Koutroubakis, Drygiannakis et al. 2005). A single 

study measuring these autoantibodies in individuals with a history of Crohn’s disease-

associated azathioprine-induced pancreatitis found 2/8 (25%) individuals with autoantibodies, 

this was a higher frequency and at higher titres than in unaffected Crohn’s patients (7.7%) in 

this study(Weersma, Batstra et al. 2008). Whether these autoantibodies play a role in 

pathogenesis is uncertain, but it is an intriguing possibility that a subset of Crohn’s patients 

may have immune-sensitized or mildly inflamed pancreas prior to thiopurine exposure and 

may therefore be most at risk of pancreatitis on exposure. 

 

 

4.3.1  Genetics of thiopurine-induced pancreatitis 

 

Only a few small candidate gene studies have been reported in the field of azathioprine or 

mercaptopurine induced pancreatitis.  These studies have focused on genes encoding enzymes 

catalyzing the conversion of potentially toxic thiopurine metabolites.  Thiopurine 

methyltransferase (TPMT) gene polymorphisms influence the production of cytotoxic 

thioguanine nucleotides and affect the risk of thiopurine-induced myelotoxicity (Weinshilboum 

and Sladek 1980; Lennard, Lilleyman et al. 1990; Schaeffeler, Fischer et al. 2004). However, 

TPMT polymorphisms do not influence the risk of pancreatitis (Marinaki, Ansari et al. 2004).  

One UK study has suggested that polymorphisms in the inosine triphosphate pyrophosphatase 

(ITPA) gene, encoding an enzyme that converts the mercaptopurine metabolite, 6-thio-ITP to 

6-thio-IMP, may influence the risk of pancreatitis. Deficiencies in this enzyme are predicted to 

cause accumulation of the potentially toxic metabolite, 6-thio-ITP (Figure 4.2).  In this study a 

polymorphism, 94A>C, present in 4% of controls and associated with reduced levels of ITPA 

activity was associated with an increased risk of pancreatitis (OR 6.2, CI 1.1–32.6) (Marinaki, 
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Ansari et al. 2004; Marinaki, Duley et al. 2004). However this analysis included only 8 patients 

with pancreatitis and the association has not been replicated in other studies (Gearry, Roberts 

et al. 2004; van Dieren, van Vuuren et al. 2005). As discussed, genes involved in the thiopurine 

metabolic pathways are good candidates for dose-dependent toxicities (e.g. myelotoxicity, 

hepatotoxicity) but are less plausible candidates for dose-independent toxicities like 

pancreatitis.  The sensitization that occurs (rapid recurrence on drug re-exposure) with 

thiopurine-induced pancreatitis has given rise to the hypothesis that the mechanism involves 

an immune-mediated hypersensitivity reaction.  Whatever the mechanism, the rapid 

resolution after drug withdrawal suggests that continued drug exposure is required to drive 

pancreatic toxicity.  It is possible that one or more thiopurine metabolites are directly toxic to 

the pancreas, but that genetic variation influences susceptibility to these metabolites, for 

example through variation in membrane solute transporters expressed in the pancreas.  Given 

the relative lack of understanding of the pathogenesis of thiopurine-induced pancreatitis, a 

comprehensive and well-powered genome-wide survey of genetic variation offered the 

opportunity to derive new insights into mechanisms driving this clinical outcome. 
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4.4   Genome-wide association studies of drug adverse effects 

 

Human populations have not been exposed to most drugs, including azathioprine, over 

sufficient time to enable the negative selection of genetic variants that reduce fitness in the 

context of drug exposure. Therefore variants which are highly deleterious in the context of 

thiopurines may have reached significant population frequencies by chance or due to selection 

favouring other functions (Cirulli and Goldstein 2010). Thus, in contrast to common disease, 

where nearly all risk variants identified confer modest effects on disease risk and have 

therefore required very large association studies for their identification, much smaller studies 

may have sufficient power to detect risk variants influencing susceptibility to drug adverse 

effects.  

 

Thiopurine-induced pancreatitis is common and therefore a common genetic variant 

conferring a substantially increased risk of pancreatitis might form the basis of a useful 

screening test.  Proof of principle for this idea has come from the example of abacavir 

hypersensitivity.  Abacavir is a human immunodeficiency virus-1 (HIV-1) reverse transcriptase 

inhibitor.  A hypersensitivity syndrome of skin rash, gastrointestinal symptoms (nausea, 

vomiting, diarrhoea, abdominal pain) and respiratory disturbance (cough, pharyngitis, 

dyspnoea) occurs in around 4% of abacavir treated individuals (Hetherington, McGuirk et al. 

2001).  In 90% of cases the syndrome occurs within the first 6 weeks of therapy with the 

median time to onset 11 days in a large retrospective review of 1803 cases (Hetherington, 

McGuirk et al. 2001).  Moreover, symptoms resolve on drug withdrawal and return (often with 

greater severity) on re-exposure.  Thus the frequency and phenotype has some similarities to 

thiopurine-induced pancreatitis.  In 2002, the MHC class 1 allele HLA-B*5701 was identified as 

a strong risk factor for abacavir hypersensitivity (odds ratio = 117) in an investigation of MHC 

alleles in hypersensitivity cases versus drug-tolerant controls (Mallal, Nolan et al. 2002).  The 

HLA-B*5701 allele occurs in around 6% of Caucasian individuals.  The mechanism of this effect 

may involve HLA-B*5701-restricted CD8 T cell activation by an abacavir metabolite (Chessman, 

Kostenko et al. 2008).   A randomized controlled trial of HLA-B*5701 screening in HIV infected 

individuals prior to treatment with abacavir showed that screening could reduce the incidence 

of immunologically-confirmed hypersensitivity  from  3.1 % to 0%(Mallal, Phillips et al. 2008).  

This test had a 100% negative predictive value and 47.9% positive predictive value in this trial 

and is now mandatory in Europe prior to commencing treatment with abacavir (Mallal, Phillips 

et al. 2008; Daly, Donaldson et al. 2009).  A variant of this effect size in thiopurine-induced 
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pancreatitis would clearly be identifiable in a genome-wide association study including only a 

small numbers of cases.  Nelson et al. estimated that a GWAS genotyping 500,000 SNPs would 

need only 15 cases and 200 population controls to detect the HLA-B*5701 effect (Nelson, 

Bacanu et al. 2009). 

 

Two recent reports have provided further support for the GWAS approach, successfully 

identifying common genetic variants with large effects on susceptibility to idiosyncratic drug 

toxicities (Link, Parish et al. 2008; Daly, Donaldson et al. 2009).  The first of these studies 

genotyped 316,184 SNPs in 85 individuals who developed myopathy while taking the 

cholesterol-lowering medication simvastatin and 90 controls. Statin-induced myopathy occurs 

in around 1 person per 10,000 per year, but the risk is increased at higher statin doses (Daly, 

Donaldson et al. 2009). While most cases occur within the first year of statin exposure, a 

significant proportion can occur later.  Thus, while statin-induced myopathy has features of an 

idiosyncratic reaction (rare, severe, unpredictable), dose-dependency is observed. A genome-

wide association study was performed between the myopathy cases and the drug-exposed but 

unaffected controls. This study identified a single genome-wide significant SNP (rs4363657).  

No other SNPs showed association at PGWAS<10
-5

.  The myopathy-associated SNP risk allele had 

a frequency of 0.46 in myopathy cases and 0.13 in drug-exposed, non-myopathy controls (0.15 

in the healthy population controls) conferring an increased risk of myopathy (allelic odds ratio 

4.5, PGWAS-genotypic trend =2.5 x 10
-8

) )(Link, Parish et al. 2008).  The finding was replicated in a 

smaller sample collection that included 21 myopathy cases.  Rs4363657 maps to an intron in 

the SLCO1B1 gene and is in strong linkage disequilibrium with a non-synonymous SNP in 

SLCO1B1 (rs4140956), which accounted for the association in this study.  SLCO1B1 encodes the 

organic anion–transporting polypeptide OATP1B1, which mediates the hepatic uptake of 

various drugs, including most statins.  The myopathy risk allele is associated with lower uptake 

and higher serum statin concentrations (Konig, Seithel et al. 2006).   

 

The second study genotyped 866,399 SNPs in 51 individuals with flucloxacillin induced liver 

injury and 282 unaffected controls. Flucloxacillin-induced liver injury is rare with incidence 

estimated at 8.5 per 100,000 new users in the United Kingdom (Russmann, Kaye et al. 2005). 

As with thiopurine-induced pancreatitis, flucloxacillin-induced liver injury occurs within the 

first few weeks after drug exposure (mean 25 days) (Daly, Donaldson et al. 2009). This study 

identified a SNP whose risk allele conferred an allelic odds ratio in favour of liver injury of 45. 

This variant is present in 5% of healthy controls and 84% of cases and was reported to be in 
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complete linkage disequilibrium with HLA-B*5701, a human leucocyte antigen class I gene 

variant, suggesting that this HLA variant plays a critical role in facilitating the immune 

mediated liver injury.  The mechanism here is currently unknown, although the same allele is 

associated with abacavir hypersensitivity.  Since flucloxacillin lacks structural similarity to 

abacavir and its metabolites, it has been postulated that the shared association may rather be 

due to a missense SNP (rs2395029) in HCP5, which is in complete linkage disequilibrium with 

the HLA-B*5701 allele.  This gene is expressed in immune cells - the drug-hypersensitivity 

associated SNP is associated with protection against HIV infection.  Thus the mechanism of 

flucloxacillin-induced liver injury could depend on the immune modulatory effects of this gene 

rather than a classical HLA-B: CD8 interaction(Daly, Donaldson et al. 2009).    

Certainly the phenotype here, although much rarer than thiopurine-induced pancreatitis, is 

similar in time of onset and dose-independence.  This study further raised the possibility that 

variants with very large effects on risk of thiopurine-induced pancreatitis might also exist, 

tractable to a study of similar size. 
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4.5  Aims and power calculations 

 

It was hypothesized that the risk of thiopurine-induced pancreatitis is influenced by common 

genetic variants of large effect.  The current study was powered based on the odds ratios and 

population frequencies of variants discovered in the abacavir, flucloxacillin and simvastatin 

studies.  A primary motivation was to ensure sufficient power to detect variants that would be 

useful in a screening test (cf. abacavir).   Thus, this study was not powered to detect moderate 

or low-effect size variants.  For example, assuming an incidence of pancreatitis of 3% in 

azathioprine-exposed individuals, there is 80% power to detect a common variant allele (MAF 

>/= 0.05 in controls) conferring an odds ratio of 4 or more in an additive genetic model, with 

55 cases and 5000 unselected controls, with alpha=5x10
-7

(Purcell, Cherny et al. 2003).  For 

more common variants (MAF>0.25), this study has 80% power to detect variants with ORs>/= 3 

with alpha =5x10
-7

.  However, as variant effect size or minor allele frequency fall, power rapidly 

tails off.  For example the same sized study would only have 80% to detect a variant with 

MAF=0.05 and OR=3 at an alpha = 10
-3

.  Thus we have good power to detect common variants 

conferring allelic odds ratios greater than 4, a reasonable threshold for a clinically useful 

variant. 
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4.6  Study populations 

 

Genotyping and analyses were performed for two sample collections, one from the 

Netherlands and one from the United Kingdom (Table 4.2).   

 

Cases were recruited from collaborators in the United Kingdom and the Netherlands 

(Groningen).  Cases were individuals with a diagnosis of azathioprine or mercaptopurine-

induced acute pancreatitis (Table 4.3- Clinical characteristics).  All cases were screened using a 

phenotype questionnaire (Appendix 1).  For inclusion, a diagnosis of pancreatitis was 

established through the presence of typical clinical features (including severe upper abdominal 

pain) together with biochemical or radiological supporting features (raised serum or urine 

amylase, radiological features of acute pancreatitis).  The likelihood that the thiopurine was 

the cause of pancreatitis was assessed on a case by case basis by participating 

gastroenterologists. This included an assessment of the timing of thiopurine exposure, 

resolution on drug withdrawal and exclusion of other common causes of pancreatitis.  In 

addition, phenotyping questionnaires were completed by contributing investigators and 

independently assessed by PCAD to validate or refute case inclusion.  In total 15 cases were 

identified and included from the Netherlands and 42 cases were identified from 9 centres in 

England and Scotland.  All cases were of documented European ancestry. 

 

Population controls were used for both sample collections.  For the Netherlands and United 

Kingdom collections, population controls used in the coeliac genome wide association study 

(chapter 3) were included (Dubois, Trynka et al. 2010).  It was considered that the theoretical 

advantages of matching controls for disease (Crohn’s disease or Ulcerative Colitis) or 

thiopurine exposure would be offset by reduced power arising from lower available sample 

size.  Power estimates using thiopurine-exposed, but tolerant controls, suggested only modest 

improvement in detectable odds ratios.  For example, even assuming a pancreatitis incidence 

in thiopurine exposed individuals of 5%, detectable odds ratio for a 5% MAF SNP would 

improve only from 4 to 3.8 using assumptions as stated above and a control sample size of 

2000.  

 

 Our study was powered only to detect variants of large effect (up to allelic OR >3 for more 

common SNPs).    IBD disease-associated SNPs discovered in large genome wide association 

studies have much more modest effects and are therefore unlikely to confound the detection 
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of large effect variants.  It was considered very unlikely that variants reaching thresholds for 

statistical significance in this study could be caused by association with inflammatory bowel 

disease (due to modest effects of known IBD risk variants).  It was anticipated that in instances 

where putative thiopurine-induced pancreatitis SNPs fall within known IBD-associated regions, 

methods to test for confounding by association to known IBD SNPs could be used (e.g. 

conditional logistic regression).  Similarly, SNPs mapping to regions not previously associated 

with inflammatory bowel disease were even more unlikely to be confounded by IBD 

association.   In general, it was anticipated that not matching controls for disease or thiopurine 

exposure would have negligible effects on allele frequency differences between cases and 

controls and minimal effects on type 1 and type 2 error rates. 
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Table 4.2  Sample collections and genotyping platforms 

 Cases Controls No. SNPs 

post-QC 

 Sample size Platform Sample size (pre-

QC) 

Platform SNPs 

(post-QC)
a 

United Kingdom 

(UK)   

40 (41 pre-

QC) 

Illumina 

1Mv3 

4936 (5069 pre-

QC) 

Illumina 

1.2Mv1 

920,266 

Netherlands (NL)  15 (15 pre-

QC)
 

Illumina 

670-Quad 

846 (960 pre-QC) Illumina 

670-Quad 

535,753 

 

a
Number of SNPs genotyped in both cases and controls and passing quality controls 

 

 

Table 4.3  Case clinical characteristics 

 

 UK
a 

Netherlands
b 

All cases
c 

Total case number 40 15 55 

Crohn’s disease 8 (62%) 14 (93%) 22 (79%) 

Ulcerative colitis 5 (38%) 1 (7%) 6 (21%) 

Male 7 (54%) 4 (27%) 11 (39%) 

Female 6 (46%) 11 (73%) 17 (61%) 

Azathioprine 13 (100%) 15 (100%) 28 (100% 

Mercaptopurine 0 0 0 

Azathioprine dose- 

median mg (range)
d 

125 (100-150)
 

138 (75-175)
 

138 (75-175) 

Serum amylase - 

median xULN (range)
e 

7.4 (1.9-21.8) 3.3 (1.2-24.5) 5.6 (1.2-24.5) 

Mean age at 

diagnosis (range) 

45.4 (21-74) 29.4 (17-67) 37.7 (17-74) 

 

a
data available from 13 of 40 UK samples unless stated (missing or incomplete for 27 UK samples) 

b
data available from 15 of 15 NL samples 

c
data available from 28 of 55 samples 

d
data only available for 6 UK and 14 NL samples 

e
data only available for 12 UK and 13 NL samples
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4.7   Results 

 

4.7.1   Quality control steps 

 

Genotypes were called directly from the Illumina SNP intensity data using the same genotype-

calling algorithm used in the coeliac GWAS (chapter 3).  Genotypes were called separately for 

Dutch (cases and controls) and UK (cases and controls) samples.  Controls failing quality 

controls in the coeliac GWAS were excluded. 

 

GWAS quality control filters included: removing related samples (1
st

 degree relatives or 

duplicates), ethnic outliers, and samples with genotype call rate <98%, SNPs with call rate 

<95% or hardy-weinberg p<0.0001 in controls as applied in Chapter 3. Since case numbers 

were small relative to controls, application of a SNP call rate filter was applied separately to 

cases and controls to ensure that SNP assays performing badly only in cases (for example due 

to batch effects or genotyping platform differences) were excluded.  In addition, a differential 

missingness filter to exclude SNPs with lower call rate in either cases or controls was assessed 

but did not lead to exclusion of any of the top associated SNPs (PGWAS<10
-4

).  SNP intensity 

cluster plots were inspected to assess genotype-calling accuracy for all SNPs showing 

association at PGWAS<10
-4

.  SNPs were excluded using a low threshold for possible calling bias. 

Sample exclusions: 1 individual was excluded from the UK collection as an ethnic outlier. All 

other individuals passed quality controls. 

 

SNP exclusions: 204,344 SNPs were excluded from the UK data. 26,742 SNPs were excluded 

from the Dutch data (Table 4.4) 

 

 

Table 4.4  SNP numbers passing quality controls in the GWAS 

 

 UK Netherlands 

Pre- quality controls 1,124,600 562,495 

Genotype call rate < 0.95 934,629 (189,971) 541,250 (21,245) 

Hardy-weinberg P < 0.0001 920,266 (14,363) 535,753 (5,497) 

 



 

 

181 

 

 

4.7.2  Primary association analysis and identification of false positive SNP 

associations 

 

After application of quality controls, case-control association analysis was performed.  SNP 

case-control association was assessed primarily by comparison of SNP allele frequencies 

between cases and controls using Fisher’s exact test.  This test is appropriate in the absence of 

knowledge of the model of inheritance of risk variants (additive, dominant or recessive) and is 

relatively unbiased in favour of any one model (Balding 2006).  Moreover Fisher’s exact test is 

superior to Pearson’s chi-square test when the numbers of observations in one or more 

category are small.  This arises for rare SNPs and low sample numbers.  Association testing for 

SNPs between UK and Dutch controls indicated significant genome-wide allele frequency 

differences between UK and Dutch population samples (genomic inflation factor 2.15; see also 

chapter 3). Case-control association testing stratified by UK and Dutch collections was 

therefore performed to minimize confounding by known ancestry differences.  Meta-analysis 

of association test statistics within each sample collection was performed using a sample size-

weighted z score method(de Bakker, Ferreira et al. 2008).   

 

Allelic tests of association, while being relatively unbiased towards any one mode of 

inheritance, have less power to detect associations compared to tests that fit the model of 

inheritance appropriately (Balding 2006).   Thus, in the absence of knowledge of the mode of 

inheritance, another suggested approach has been to select the test (modelling additive, 

dominant and recessive effects) that gives the highest association test statistic for each SNP 

(Balding 2006).  Fisher’s exact test can be used to assess not only differences in allele counts, 

but also binary comparisons modelling dominant and recessive effects.  Under additive 

assumptions, a Cochran-Armitage trend test is widely used and has greater power in this 

scenario than the allelic comparison.   By calculating association test statistics using case-

control tests that model dominant, recessive and additive inheritance, the best model of 

inheritance was estimated for each SNP showing allelic association < 10
-4

 (Table 4.5).  This 

analysis was primarily undertaken to test whether any SNPs showed much more compelling 

evidence of case-control association under these models than had been identified by applying 

the conservative allelic Fisher’s exact test.
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Preliminary association results showed no detectable overall inflation of test statistics in both 

Dutch (λ= 1.000) and UK (λ=1.000) collections, suggesting results are unlikely to be majorly 

confounded by genotyping bias or population stratification.  Inspection of SNP (R vs. theta) 

cluster plots led to exclusion of 8 out of 69 SNPs with PGWAS<10
-4

 (Fisher’s exact test of allele 

counts, meta-analysis of 2 sample collections by weighted z score method).  7 SNPs obtained 

genome-wide significant evidence of association after standard quality controls.  However, for 

each of these SNPs no other SNPs within a broad genomic interval around the SNP were 

observed with PGWAS<10
-4

.   Four of the seven SNPs had been genotyped in both Dutch and UK 

collections; for each of these SNPs, case (but not control) allele frequencies were discordant 

between Dutch and UK.  For all seven SNPs association was driven by the UK data.  These 

features suggested that genotyping error in the UK cases may have caused spurious 

associations.  The low numbers of samples genotyped on the Illumina 1M-Duov3 platform (40 

UK cases) meant that standard quality controls (including inspection of SNP cluster plots) may 

have been inadequate to reliably detect bias in UK cases for some SNPs.   In contrast, all other 

samples had been genotyped as part of large collections on a single platform and were 

therefore more amenable to quality assessment (Table 4.2).  

 

 These 7 top SNP associations were designated “singleton SNP associations”.  Although 

genotyping error was suspected, genuine case-control association could not yet be excluded.  

For example, in the simvastatin myopathy study, the only positive (and subsequently 

replicated) association was for a similar singleton SNP.  In an effort to assess SNP assay quality 

on the Illumina 1M-Duov3 platform, assay intensity data for 170 unrelated human HapMap 

samples genotyped on the Illumina 1M-Duov3 platform was obtained from Illumina for 

assessment.  This data was used to generate SNP cluster plots for all SNPs showing association 

in the GWAS at P<10
-4

.  Using this approach only one (rs7503953) of the seven singleton SNPs 

showing genome-wide significant association appeared prone to probable genotype-calling 

bias.  All SNPs included in the final association results (Table 4.5) had well-separated genotype 

clouds amenable to accurate automated calling and this provided some re-assurance that 

genotyping bias was not prevalent among these SNPs.  

 

 As a second approach, a search for proxy (i.e. highly correlated) SNPs was undertaken for each 

of the 7 singleton SNPs.  For each SNP, the best proxy (highest r-square) SNP was identified 

with LD calculations performed using 4936 UK controls in PLINKv1.07.  2 SNPs had excellent 

proxies (r-square > 0.99), 1 SNP a more modest proxy (r-square = 0.766), and the other 4 SNPs 



 

 

185 

 

only weakly correlated SNPs (r-square 0.356-0.685) that were considered inadequate to serve 

as proxies for association testing.  Each of the 3 adequate proxy SNPs showed no evidence of 

case-control association (PGWAS> 0.05), suggesting that the associations in these regions were 

false positives.  However, these approaches were still considered inadequate to rule out 

genuine case-control association for at least 4 of these SNPs (those without proxies).  

Genotyping was therefore repeated for all 7 singleton SNPs using an alternative SNP 

genotyping assay.  Custom-designed KASPar SNP genotyping assays (KBioscience, Herts) were 

obtained for all seven singleton SNPs and a further non-singleton positive control SNP 

(rs7788583).  Repeat genotyping was performed in 54 of 55 cases for which DNA was available 

and an additional 94 new controls.  Since DNA was not readily available for controls used for 

GWAS genotyping, controls were randomly chosen individuals with coeliac disease, for which 

DNA was easily available.   

 

SNP genotype calling on KASPar intensity data was performed from inspection of intensity 

cluster plots. The mean SNP call rate for 149 genotyped samples was 99.0%, with individual 

SNP call rates ranging from 98.0% to 100%. All SNP assays showed adequate separation of 

genotype clouds to enable calling, as assessed independently by two individuals.   

 

Genotypic concordance for samples with non-missing data was 100% for all 8 SNPs genotyped 

in Dutch cases (Human 670Quad-customv1 vs. KASPar).  Genotypic concordance for the 

positive control SNP (rs7788583) in UK cases (Human 1M-Duov3 vs. KASPar) was 100%.  

However, for the 7 singleton SNPs, concordance was 49.3% (Human 1M-Duov3 vs. KASPar), 

suggesting genotyping error in the Illumina 1M-Duov3 UK case data for these SNPs.  Using 

KASPar assayed genotypes, there was no evidence of association between UK cases and 

controls (P>0.05) for any of the 7 singleton SNPs (Table 4.6).   These SNPs were therefore 

excluded from further consideration and analysis. 
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After exclusion of singleton SNPs whose associations did not withstand KASPar assay re-

genotyping, and SNPs (PGWAS<10
-4

) with suspected genotyping error, the distribution of test 

statistics for all SNPs closely followed the distribution expected under the null hypothesis 

(Figure 4.3, Q-Q plot), with no excess of positive associations.  

 

 

 

 

 

Figure 4.3 Quantile-quantile plot of GWAS case-control association P values after 

removal of SNPs with suspected genotyping bias 

 

 

 

 

In total, 73 SNPs from 39 loci showed association at a threshold of PGWAS<10
-4

.  None of these 

associations reached the threshold of genome-wide significance (PGWAS <5 x 10
-8

) and the 

number of SNPs with PGWAS<10
-4 

does not constitute a significant excess compared to that 

expected under the null hypothesis of no association.  The study had approximately 80% 

power to detect variants with MAF >/= 0.05 and OR>/=4 and therefore variants of this 
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frequency and magnitude are unlikely to have been missed. Certainly variants conferring 

effects on risk of strength similar to those identified for abacavir hypersensitivity or 

flucloxacillin liver injury have not been identified in this study and are unlikely to exist for 

thiopurine-induced pancreatitis.   However, the study was not well powered to detect 

common genetic variants of intermediate or modest effect (SNPs with ORs <3).  Such variants, 

although less likely to be of immediate clinical relevance for genetic screening might 

nevertheless offer insights into thiopurine pancreatitis pathogenesis.   Examination of the 

function of genes in the regions around SNPs with PGWAS<10
-4

 was undertaken to identify genes 

of possible functional relevance to azathioprine/mercaptopurine-induced pancreatitis. Possible 

candidate genes are discussed in section 4.9.  Of note, the strongest association in the GWAS 

was for rs4943552 (PGWAS=2.46 x 10
-6 

OR= 2.59) mapping 60 kilobases from the closest gene, 

TRPC4, a calcium channel expressed in the pancreas.  Multiple SNPs showed association in the 

HLA gene region on chromosome 6 and this was the 12
th

 most strongly associated locus overall 

(Figure 4.4). 

 

4.7.3  Supplementary case-control association analyses 

  

Genetic risk variants identified in previous pharmacogenomic genome wide association studies 

have mostly fitted an additive mode of inheritance.  This is true for the simvastatin SCOL1B 

SNP and the HLA-B*5701 tagging variant identified in the flucloxacillin drug-induced liver injury 

study (Link, Parish et al. 2008; Daly, Donaldson et al. 2009).  In addition, TPMT polymorphisms 

associated with azathioprine and mercaptopurine myelotoxicity also show additive effects on 

risk.  Thus, although any of the three modes of inheritance could in principle most closely 

model a true thiopurine-induced pancreatitis variant, it was considered that additive modes 

were most likely. The allelic Fisher’s exact test used in the primary association analysis is 

conservative compared to tests that fit the mode of inheritance appropriately.  Thus, 

association test statistics for additive, recessive and dominant modes of inheritance were 

examined for all SNPs showing PGWAS<10
-4

.  In this analysis, a single SNP (rs11744322, PGWAS-

recessive = 1.43 x 10
-9

) showed genome-wide significant evidence of association under a recessive 

model of inheritance. 

 

This SNP had been genotyped in the UK collection only (Figure 4.5). Genotyping error must be 

considered a possible cause of this association, even though this SNP assay showed good 

cluster characteristics assessed in 170 HapMap individuals.  There were no other regional SNPs 
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with association, but none of the genotyped SNPs were in strong linkage disequilibrium to 

rs11744322 (r-square> 0.5).  Rs11744322 maps to a genomic region on chromosome 5 that has 

no known genes close by (within 500kb up or downstream) and no genes of good biological 

candidacy in the broader region.  Assessment of this association will require genotyping in 

additional sample collections and/or re-genotyping in UK cases. 

 

All other SNPs analysed under dominant, recessive and additive assumptions did not reach the 

genome-wide significance threshold of PGWAS= 5 x 10
-8 

(Table 4.5) 

 

 

 

 

Figure 4.4   GWAS SNP associations within the HLA gene region (Chr 6, 29-34Mb) 
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4.7.4  Association in known Inflammatory Bowel Disease risk regions 

 

Data was also inspected to determine whether known IBD loci showed evidence of association 

in the GWAS.  Regions containing SNPs reaching genome-wide significance in the largest 

Crohn’s and Ulcerative colitis meta-analyses were searched for case-control association in the 

current GWAS.  There was no inflation of association statistics for SNPs within 30 known 

Crohn’s disease loci (Barrett, Hansoul et al. 2008)) or 12 known ulcerative colitis loci, excluding 

the HLA (McGovern, Gardet et al. 2010). This finding was consistent with the fact that genetic 

variants associated with inflammatory bowel disease were below the power of this study to 

detect.  Genetic variation within the HLA region has been associated with both colonic Crohn’s 

disease and ulcerative colitis.  The strongest HLA association in the largest Crohn’s disease 

meta-analysis was for rs3763313. This SNP is also weakly associated with ulcerative colitis 

(McGovern, Gardet et al. 2010).  This SNP showed no association in the current study 

(PGWAS=0.710). Similarly, rs2395185, which was the most strongly ulcerative colitis-associated 

SNP within the HLA region in the McGovern et al. meta-analysis, showed no association in the 

current study (PGWAS=0.679). The HLA associations in the current study are for variants of 

putatively much greater risk effect (odds ratio = 2.69), than those influencing the risk of 

inflammatory bowel disease (e.g. rs3763313 - OR for Crohn’s disease = 1.19).  Thus the allelic 

distribution of HLA variants in the thiopurine-induced pancreatitis samples was not expected 

to be significantly altered by Crohn’s disease of ulcerative colitis status and cannot explain the 

current moderate HLA association observed in this study. 

 

4.7.5  Association in TPMT and ITPA gene regions 

 

Association with common SNPs in regions around the TPMT and ITPA genes was assessed.  

TPMT*3A (rs1800460), the commonest polymorphism associated with low TPMT enzyme 

activity in Caucasian populations, showed no association (PGWAS=0.586). Similarly, rs6909725, a 

proxy for TPMT*3C (r-sq = 0.316, D’ = 1) showed no association (PGWAS=1).  TPMT*2 was not 

genotyped and had no adequate proxies in the GWAS data.  In a 1Mb window around the 

TPMT gene region, there was mild overall test statistic inflation for 336 SNPs, with peak 

association for rs2842938 (PGWAS= 0.00201), a synonymous SNP in TPMT.  Definitive 

assessment of common SNP association in and around the TPMT gene with pancreatitis would 

require replication genotyping in a much larger sample collection.  
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The ITPA IVS2+21A>C polymorphism (rs7270101) showed no association (PGWAS=0.252).  The 

ITPA 94 C>A polymorphism was not genotyped in the GWAS or in HapMap phase II and 

therefore proxies could not be assessed.  Within the ITPA gene region (1Mb window, 

331SNPs), there was no overall inflation of test statistics and no association for SNPs within the 

ITPA gene (PGWAS>0.05).  Again, genotyping of common SNPs in larger sample collections would 

be required to determine whether any real association with azathioprine or mercaptopurine-

induced pancreatitis is present.  

 

 

4.7.6  Association in known idiopathic and hereditary pancreatitis risk regions 

 

Genetic studies in thiopurine-induced pancreatitis have been small, few in number and 

restricted to investigating gene candidates of the thiopurine metabolic pathway (TPMT and 

ITPA).  In hereditary and idiopathic acute and chronic pancreatitis, variants in several genes 

with known pancreatic function affect risk.  These genes have not been tested in thiopurine-

induced pancreatitis but implicate pathways that may be common to all forms of pancreatitis 

(Whitcomb; Whitcomb 2004). 

 

Hereditary pancreatitis is an autosomal dominant condition, characterized by early onset 

recurrent acute pancreatitis that progresses to chronic pancreatitis in around 50% of cases.  A 

combination of linkage and candidate gene approaches led to the identification of mutations in 

the PRSS1 gene, encoding cationic trypsinogen, as the main cause of this disorder (Gorry, 

Gabbaizedeh et al. 1997).  The PRSS1 associations have been replicated and cause gain-of-

function with increased activation of trypsinogen (Witt, Luck et al. 1999; Rebours, Boutron-

Ruault et al. 2009).  PRSS1 gene mutations have also been associated with some cases of 

idiopathic chronic pancreatitis in the absence of the classical hereditary pancreatitis 

phenotype (Gorry, Gabbaizedeh et al. 1997; Liu, Gao et al. 2008).  It has been suggested that 

chronic pancreatitis occurs through recurrent episodes of acute pancreatitis and that the 

mechanisms causing both acute and chronic pancreatitis are mostly shared(Whitcomb 2004).  

Thus, it is possible that some of the mechanisms underlying thiopurine-induced pancreatitis 

are also shared with those underlying idiopathic or hereditary pancreatitis.  Candidate gene 

studies in familial and idiopathic forms of chronic pancreatitis have implicated a number of 

genes in the broader trypsin activity pathway.  Most implicated genes either promote 

trypsinogen activation or impair clearance of trypsin suggesting that trypsin activation and 
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clearance mechanisms are central to the pathogenesis of pancreatitis(Whitcomb) . Table 4.7 

lists the genes implicated in different forms of pancreatitis to date. 

 

 Indirect support for the idea that these genes could play a role in the risk of thiopurine-

induced pancreatitis comes from studies of analogous patient groups at high risk of acute 

pancreatitis from other well-defined causes. For example, protein coding-variants in the cystic 

fibrosis transmembrane regulator (CFTR) were strongly associated (P<0.0001) with acute 

pancreatitis in an association study of 126 individuals with hypertriglyceridaemia (Chang, 

Chang et al. 2008).  Hypertriglyceridaemia may be a reasonable model for the genetics of drug-

induced pancreatitis.  In both cases most individuals at risk (due either to 

hypertriglyceridaemia or thiopurine exposure) do not develop acute pancreatitis.  The CFTR 

gene association in hypertriglyceridaemic suggests that risk factors could combine 

independently to determine pancreatitis risk.  Thus, it is possible that thiopurine-induced 

pancreatitis risk is also determined not by genes interacting with thiopurines or their 

metabolites, but by factors that independently increase the risk of acute pancreatitis.     

 

For this reason, SNPs in 1Mb windows around each of the known pancreatitis genes (Table 4.7) 

were assessed for association in the current study.  Modest inflation of association test 

statistics was observed for 1889 SNPs from these 5 regions (PRSS1 and PRSS2 within same 

region, Figure 4.6). The strongest associations (10
-3

<PGWAS<10
-2

) mapped to the CFTR gene 

region (PGWAS = 0.00139), the PRSS1 and PRSS2 gene regions (PGWAS = 0.00410) and the CTRC 

region (PGWAS = 0.00313) all between 125 and 212kb from any of the genes of interest.  
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Table 4.7  Genes associated with pancreatitis in candidate gene studies 

 

Gene Condition (references) 

PRSS1 (Cationic trypsinogen) Hereditary pancreatitis and idiopathic chronic 

pancreatitis (Liu, Gao et al. 2008; Rebours, Boutron-

Ruault et al. 2009)  

PRSS2 (Anionic trypsinogen) Idiopathic chronic pancreatitis(Witt, Sahin-Toth et al. 

2006; Santhosh, Witt et al. 2008) 

CTRC (Chymotrypsin C) Hereditary  and idiopathic chronic pancreatitis (Masson, 

Chen et al. 2008; Rosendahl, Witt et al. 2008) 

CASR (Calcium sensing receptor) Hereditary  and idiopathic chronic pancreatitis 

(Felderbauer, Hoffmann et al. 2003; Felderbauer, Karakas 

et al. 2008; Muddana, Lamb et al. 2008) 

SPINK1 (Serine protease 

inhibitor, Kazal type 1) 

Chronic pancreatitis, recurrent acute pancreatitis (Aoun, 

Chang et al. 2008; Aoun, Muddana et al. 2010) 

CFTR (Cystic fibrosis 

transmembrane regulator) 

Chronic pancreatitis, recurrent acute pancreatitis, 

hypertriglyceridaemic acute pancreatitis (Whitcomb; 

Audrezet, Dabricot et al. 2008; Chang, Chang et al. 2008; 

Segal, Yaakov et al. 2008) 

 

 

Figure 4.6 Quantile-quantile plot of association tests statistics in the GWAS for SNPs 

within 6 pancreatitis gene regions 
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4.8 Selection of SNPs for follow-up genotyping in an 

independent sample collection 

 

A strategy that prioritized SNPs showing the strongest evidence of association in the GWAS for 

replication in independent samples was considered to be the most economical and effective 

strategy to detect any truly associated variants.    

 

With this in mind, SNPs from loci with PGWAS < 10
-4

 were selected for inclusion on the Illumina 

Immuno- Beadchip.  The Illumina Immuno Beadchip (“Immunochip”) is a custom designed SNP 

genotyping array that uses the same Illumina Infinium HD and BeadArray technologies that are 

the basis of the Quad670-custom, 1M-Duo and 1.2M-Duo-custom BeadChips used in the 

GWAS.  The Illumina Immunochip incorporated assays for 196,524 SNPs submitted by 

investigators for 8 chronic immune mediated diseases.  The deadline for SNP submissions for 

Immunochip design occurred very soon after completion of GWAS genotyping.  Consequently, 

SNPs were selected for inclusion based on a preliminary association analysis.  This analysis was 

performed on pooled UK and Dutch samples, without stratification by sample collection.  In 

addition, genotypes were called using default Illumina cluster positions in BeadStudio for the 

UK case collection.  Thus SNPs with PGWAS < 10
-4

 in this analysis differed slightly from those in 

the final, stratified meta-analysis.  SNP associations were considered to be non-independent 

(tagging the same associated LD block) if they fell within 1 Mb of each other.  Where multiple 

SNPs were observed at the same locus, the two most strongly associated SNPs were selected 

for Immunochip.  92 SNPs from 50 loci showed association in the GWAS (PGWAS-preliminary<10
-4

).  

In total 79 SNPs from 50 loci showing PGWAS-preliminary <10
-4

 were selected for Immunochip 

submission.  72 of these 79 SNPs passed Immuno Beadchip design quality controls.   After 

exclusion of bad SNPs through automated genotype calling, full GWAS quality controls and 

KASPar genotyping, 62 Immunochip-included SNPs remained for re-assessment in the final 

association analysis. 

 

 In the final GWAS association analysis, 73 SNPs from 39 loci showed association PGWAS <10
-4 

(sample collection-stratified meta-analysis of allelic Fisher’s exact test, using weighted Z score 

method).  Of the 62 Immunochip SNPs 39 SNPs from 29 of 39 loci had PGWAS <10
-4

.  A further 3 

of the submitted SNPs with lesser PGWAS mapped to 2 regions obtaining PGWAS<10
-4

.  In addition, 

exploring all SNPs present on Immunochip identified a SNP showing modest association in the 

GWAS (PGWAS=0.0083) for one other PGWAS<10
-4 

region. Thus in total, SNPs showing association 

in the GWAS from 32 of 39 loci (PGWAS<10
-4

) are present on Immunochip.   Of the other 20 SNPs 
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showing PGWAS-preliminary<10
-4

 that mapped to other loci, only 2 showed no association in the final 

analysis after automated calling and full quality controls.  The other 18 SNPs submitted and 

passing design quality controls on Immunochip mapped to 16 regions of lesser significance (10
-

4
<PGWAS<0.0073), with the majority showing 10

-4
< PGWAS<10

-3 
.  Exploring  additional content 

submitted by other researchers for other phenotypes, a total of 941 Immunochip SNPs had 

been genotyped in the GWAS and mapped within non-HLA regions showing PGWAS<10
-4

 

(defined by extending 500kb from the first and last SNP with PGWAS<10
-4

 in each region). Within 

the HLA region (Chr 6, 29Mb-34Mb), there are a total of 10,082 SNPs on Immunochip, 

potentially enabling fine-mapping of the most compelling candidate region identified in the 

GWAS.  Table 4.5 lists loci with SNPs showing evidence of association P<10
-4

 and SNPs available 

for follow-up genotyping on Immunochip.  

 



  

 

197 

 

4.9  Discussion 

 

All loci, with SNPs PGWAS<10
-4

, were searched for genes with good functional candidacy for 

thiopurine-induced pancreatitis.  Specifically, genes with known roles in thiopurine 

metabolism, immune system genes, and genes with known roles in pancreatic function or 

pancreatitis were searched for (Table 4.7).  No genes with known roles in thiopurine 

metabolism or pancreatic function were identified.  The top SNP, rs4943552 (PGWAS=2.46 x 10
-6 

OR= 2.59) mapped to an intergenic region on chromosome 13. The closest gene is TRPC4, 60 

kilobases downstream.  Transient receptor potential cation channel 4 (TRPC4), is known to be 

expressed in the pancreas.  It functions as a calcium channel in other tissues, although within 

the pancreas its role and cellular expression is unknown.  Genes regulating calcium entry to 

pancreatic acinar cells are good candidates for thiopurine-induced pancreatitis.  Acinar cell 

calcium entry promotes trypsinogen activation and has been implicated in the pathogenesis of 

pancreatitis(Whitcomb). CASR, which plays an important role in regulating calcium influx in 

pancreatic  acinar cells has been associated with hereditary and sporadic forms of chronic 

pancreatitis (Table 4.7)(Felderbauer, Hoffmann et al. 2003).   Thus, although little is known 

about TRPC4 in the pancreas, it is here considered a possible candidate gene for thiopurine-

induced pancreatitis, and is the strongest association in the current GWAS. 

 

Among other associations, the strongest biological candidates for a role in thiopurine-induced 

pancreatitis are the multiple HLA genes within the HLA region on chromosome 6 (Figure 4.3).  

The strongest association here was for rs2647087 (PGWAS=2.34 x 10
-5 

OR=2.69).  HLA gene 

variants are strong candidates for causative roles in idiosyncratic drug reactions and have been 

associated with abacavir hypersensitivity and flucloxacillin and co-amoxiclav induced liver 

injury (Mallal, Nolan et al. 2002; Daly, Donaldson et al. 2009; Pirmohamed 2010).  An HLA-

restricted immunopathogenesis for thiopurine-induced pancreatitis is consistent with onset a 

few days to weeks after drug exposure and rapid recurrence on drug re-exposure.  The peak 

association in the HLA region, maps between several HLA genes, the closest of which is HLA-

DQA2. Extensive linkage disequilibrium in the region has prevented more precise 

understanding of the HLA alleles that might cause this putative association. 
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4.10   Conclusion 

 

A genome-wide association study was performed to test the hypothesis that common genetic 

variants of large effect (OR>/=4) influenced the risk of azathioprine and mercaptopurine-

induced pancreatitis.  The findings do not support this hypothesis, suggesting that any 

common genetic contributions to risk are more modest and therefore differ from the large 

effect variants seen for some other idiosyncratic drug reactions (abacavir hypersensitivity, 

flucloxacillin-induced liver injury).  Among the most significant SNP associations in this study, 

variants in the HLA gene region showed moderate association and warrant further study, 

particularly since HLA variants have been associated frequently with other idiosyncratic drug 

reactions.  Follow-up genotyping of the top SNP associations in this study (PGWAS<10
-4

) is 

planned in a similar sized case-control collection. It is anticipated that this will provide 

adequate power to test the validity of SNP associations within the HLA and within other 

moderately associated gene regions. These experiments will take place after this thesis is 

submitted. 
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4.11  Methods 

 

4.11.1  Study participants 

 

UK:  Cases were recruited from 6 centres in England and 2 in Scotland.  All individuals had been 

prescribed azathioprine or mercaptopurine for Crohn’s disease or ulcerative colitis.  The 

diagnosis of azathioprine or mercaptopurine-induced pancreatitis was determined by the 

recruiting physician using standard clinical, biochemical and radiological criteria for acute 

pancreatitis.  Controls were population individuals genotyped for the Wellcome Trust Case 

Control Consortium recruited from the National Blood Service or 1958 birth cohort and passing 

quality controls in a coeliac GWAS as described in chapter 3.  

 

Dutch:  Cases were recruited by Dr Rinse Weersma at the University of Groningen, the 

Netherlands.  Azathioprine or mercaptopurine-induced pancreatitis was determined by the 

recruiting physician using standard clinical, biochemical and radiological criteria for acute 

pancreatitis. All individuals had been prescribed azathioprine for either Crohn’s disease or 

ulcerative colitis. The control cohort comprised Dutch blood bank donors and NELSON controls 

passing quality controls for a GWAS in coeliac disease as described in chapter 3. The NELSON 

project—an ongoing population-based, randomized
 
multi-centre lung cancer screening trial 

recruits male smokers (van Iersel, de Koning et al. 2007). These controls were collected from 

the north and centre
 
of the Netherlands (Groningen, Utrecht and Drenthe, The 

Netherlands).All the control subjects were heavy smokers or ex-smokers (a
 
minimum of 16 

cigarettes/day for 25 years or 11 cigarettes/day
 
for 30 years), but did not develop airway 

obstruction or emphysema
 
suggesting chronic obstructive pulmonary disease (COPD) until

 
the 

end of a 4 year observation period. The study was approved by the local ethics committees
 
and 

all the patients and controls gave their written informed
 
consent. 

 

4.11.2  Genotyping  

 

4.11.2.1 GWAS genotyping 

 

GWAS genotyping was performed using Illumina Human 1M-Duo version 3 Beadchips.  800ng 

genomic DNA (50ng/μl) was used as input and samples genotyped in accordance with the 

Infinium
TM

 HD Gemini Assay Guide (Revision A).  Briefly, samples were whole genome 

amplified, fragmented, precipitated and re-suspended in hybridization buffer. Re-suspended 
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samples were hybridized to 1M-Duo Beadchips. Beadchips were washed. Single base extension 

and staining steps were performed. Beadchips were loaded onto an Illumina iScan System, 

containing a two channel laser imager and intensity data subsequently generated using 

Illumina BeadStudio 2.0 software.  All steps other than scanning were performed at The 

Genome Centre (Barts and the London School of Medicine and Dentistry).  Scanning was 

performed at the University College London Microarray centre (institute of Child Health, 

London). 

 

4.11.2.2 Singleton SNP repeat genotyping 

 

Genotyping of 7 “singleton SNPs” was performed using fluorescence-based allele specific 

(KASPar
TM

) custom-designed SNP genotyping assays (KBiosciences, Hoddeston, UK).    SNP DNA 

sequences were submitted to KBiosciences for SNP assay design.  The KASPar SNP genotyping 

system is a competitive allele specific PCR assay.  The assay uses allele specific primer pairs, 

with one common (reverse) primer shared for both SNP alleles (i.e. 3 primers in total). The 

primers are used in a PCR reaction with FAM and VIC fluor labelling of the allele-specific PCR 

products. PCR amplification was performed with a PTC-225 Peltier Thermal Cycler (MJ 

Research, USA) with thermocycler conditions as specified in the KASPar SNP Genotyping 

System Reagent Manual (KBioscience, UK).    A total of 25ng DNA was used as input (5μl at 

2.5ng/μl for each duplicate reaction).  An ABI Prism 7900HT Sequence Detection System plate 

reader was used to measure fluorescence data, with excitation and emission values as stated 

in the KASPar SNP Genotyping System Reagent Manual (KBioscience, UK). KASPar genotyping 

was performed at The Genome Centre (Barts and the London School of Medicine and 

Dentistry) according to the manufacturer’s instructions (KASP genotyping QuickStart Guide).   

Control samples used for KASPar genotyping were blood-extracted DNA samples from 94 

individuals with coeliac disease that had been included in the UK1 sample collection for the 

coeliac GWAS Chapter 3). Samples were arrayed in 384 well plates and assayed in duplicate.  

Genotypes were called by visual inspection of SNP cluster plots (plotting intensities from both 

fluor- labelled PCR products) and manual adjustment of genotype cluster positions.   

 

 

4.11.3  Statistical analysis and bioinformatics resources 

 

Quality controls and most case-control association analyses were performed in PLINKv1.07 

(Purcell, Neale et al. 2007).  Meta-analysis of association p values from UK and Dutch 
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collections was performed using METAL software designed by Gonzalo Abecasis and colleagues 

(www.sph.umich.edu/csg/abecasis/metal/). 

Exact P values for Cochran-Armitage trend tests were calculated using StatXactv9 (Cytel Inc., 

Cambridge, MA, USA), which uses a proprietary permutation-based method to determine 

exact test statistics.   

Proxy SNPs genotyped in HapMap CEU samples were explored using the SNP annotation and 

search facility (SNAP v2.1, Broad Institute, Boston, MA, USA; 

http://www.broadinstitute.org/mpg/snap/). Other bioinformatics resources are listed in 

Chapter 3.8. 
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Chapter 5   Functional investigation of Crohn’s disease-associated 

single nucleotide polymorphisms at 5p13.1 
 

This work was started in December 2007 and completed in September 2008. 

5.1  Introduction 

 

5.1.1 SNPs in a gene desert on chromosome 5 (5p13.1) are associated with Crohn’s 

disease, ulcerative colitis and multiple sclerosis 

 

SNPs in a 250 kilobase (kb)region of strong linkage disequilibrium on chromosome 5p13.1 were 

first reported to show association with Crohn’s disease in a genome wide-association study 

(GWAS) of 547 Crohn’s disease (CrD) cases and 928 controls from Belgium and France 

(Libioulle, Louis et al. 2007).  The association was strongly replicated in later European and 

North American Crohn’s disease GWASs (Hampe, Franke et al. 2007; Rioux, Xavier et al. 2007; 

WTCCC 2007).  In the largest meta-analysis of Crohn’s disease GWASs reported to date, SNPs in 

this region showed the third strongest association with Crohn’s disease after the IL23R and 

ATG16L1 gene regions (top SNP = rs4613763, MAFcontrols 0.125, OR 1.32, PCombined= 6.82 x 10
-27

) 

(Barrett, Hansoul et al. 2008).  McGovern et al. found moderate association for rs4613763 with 

ulcerative colitis (UC) in a meta-analysis and replication study of 4702 UC cases and 8371 

controls (PCombined= 4.2 x 10
-4

).  While this suggests that the 5p13.1 locus may be a shared IBD 

susceptibility region, effects are currently more clearly established for Crohn’s disease than 

UC.  Of interest, McGovern et al. observed ulcerative colitis association in a region on 

chromosome 1p36, containing PLA2G2E, a secretory form of phospholipase A2 involved in 

prostaglandin synthesis, providing additional indirect support for the importance of 

prostaglandin signalling in inflammatory bowel disease.  Crohn’s disease associated SNPs at 

5p13.1 have also been associated with multiple sclerosis susceptibility in a GWAS meta-

analysis, indicating that this is not a Crohn’s disease or IBD-specific locus (rs9292777 PMS-

meta=2.2 x 10
-7

) (De Jager, Jia et al. 2009). This suggests that the relevant biological 

perturbations are in (probably immune) pathways common to the pathogenesis of both 

multiple sclerosis and Crohn’s disease.   

 

No known genes map within the 250 kb linkage disequilibrium block showing disease 

association- this was one of the first observations that genetic variants in regions devoid of 

known genes could be associated with common diseases.  A hypothesis that has been widely 
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advanced to explain disease associations in these so-called gene deserts is that the causal 

variants driving these associations affect regulatory elements in the genome that alter local or 

distant gene expression (McCarthy, Abecasis et al. 2008).  Regulatory sequences in the human 

genome are relatively poorly annotated, despite ongoing efforts (e.g. ENCODE) and therefore 

bioinformatic approaches are not yet robust in predicting whether SNPs will impact on 

regulatory functions in the  way that protein-coding alterations can be predicted from exonic 

SNPs (Birney, Stamatoyannopoulos et al. 2007).  Libioulle et al. tested for correlations between 

SNPs in the 5p13.1 linkage disequilibrium block and local gene expression in lymphoblastoid 

cell lines generated from 378 individuals.  Prostaglandin E Receptor 4 (PTGER4) is the closest 

known gene in the region, 270kb away from the association peak, although several other 

genes reside nearby, including some with other known immune functions (CARD6, C5, C6, C7) 

(Figure 5.1). A strong cis-expression Quantitative Trait Locus (cis-eQTL) with PTGER4 

expression was observed for several SNPs in the region including some of the most strongly 

Crohn’s disease-associated SNPs.  Precise co-localisation of the peak Crohn’s disease 

association and peak expression correlation association was not observed.  The top cis-eQTLs 

in the region were observed for rs7720838 and rs4495224, 55.7 Kb distant and 46.3 Kb distant 

from rs1373692, the strongest CrD-associated SNP. Rs7720838 and rs4495224 show only 

modest LD with rs1373692, the top CrD associated SNP in this study (rs7720838 r-sq=0.24; 

rs4495224 r-sq=0.45).  However the two top eQTL SNPs did show evidence of CrD association 

(rs4495224 PGWAS =2.2 x 10
-7

) and are correlated (r-square= 0.67, D’= 0.85 HapMap CEU). 

Correlation of CrD-associated 5p13.1 SNPs with the expression of other genes in the region 

was not observed.    

 

These observations supported the hypothesis that the 5p13.1 Crohn’s disease association was 

due to regulation of expression of PTGER4 and the assignment of PTGER4 as the causal gene 

influencing Crohn’s disease susceptibility in this region has been widely adopted (Van 

Limbergen, Wilson et al. 2009; Perdigones, Martin et al. 2010). However, while this evidence 

was suggestive, it was also clear that correlations of SNP genotypes with local gene expression 

are much more prevalent in the human genome than was previously appreciated and affect 

around 30% of loci in the human genome (Ge, Pokholok et al. 2009; Pastinen 2010). In a large 

eQTL analysis of human peripheral blood samples (discussed in Chapter 3) 18% of randomly 

selected hap300 SNPs had evidence of correlation with local gene expression (Dubois, Trynka 

et al. 2010).  Furthermore, it has been recently proposed that GWAS associations may arise 

from rare protein-coding causal variants residing in genes at distances >1Mb away, beyond the 
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boundaries of local linkage disequilibrium of the GWAS association (Dickson, Wang et al. 

2010).  The proposed mechanism is that GWAS associations could arise due to ‘loading’ of rare 

variants on an extended haplotype (sometimes spanning one or two megabases) of recent 

ancestry.  While this proposal is controversial and awaits empirical confirmation, clearly the 

possibility that the PTGER4 cis-eQTL reflects a causal mechanism driving the 5p13.1 Crohn’s 

disease association requires further evidence.  Such evidence should include firstly, a 

demonstration that PTGER4 is a compelling biological candidate for Crohn’s disease 

pathogenesis; secondly a demonstration that the disease-associated SNP risk alleles correlate 

with changes in prostaglandin E receptor 4 signalling that promote intestinal inflammation and 

Crohn’s disease and thirdly the identification of the causal genetic variants, and understanding 

of how these influence regulatory mechanisms causing changes in expression.  As a first step 

towards testing these suppositions, the experiments presented in this chapter aimed to test 

whether CrD SNPs in the region correlated with prostaglandin E receptor 4 signalling activity in 

primary human immune cells.    
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5.1.2  Crohn’s disease associated SNPs correlate with expression of PTGER4 

 

It was hypothesized that CrD-associated variants in this region exert susceptibility effects by 

increasing expression of PTGER4 and augmenting prostaglandin E2 – EP4 mediated signalling in 

immune cells. 

 

Gene expression correlations with Crohn’s disease associated SNPs were assessed in an 

independent publically available dataset of array-based gene expression data from 

lymphoblastoid cell lines (LCLs) generated from 90 HapMap CEU individuals (Stranger, Nica et 

al. 2007).  Several of the most strongly associated SNPs identified in Crohn’s disease GWASs 

correlate with PTGER4 expression levels, with the CrD risk allele associated with higher gene 

expression (Figure 5.2).  There was no evidence of correlation of these variants with levels of 

expression of the other genes in the region (data not shown).   
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A meta-analysis dataset of whole-genome (array-assayed) gene expression measurements for 

1,469 whole blood samples (reflecting mainly leucocyte gene expression) was also searched 

(Dubois, Trynka et al. 2010).  Genotypes were available for 18 SNPs in the 260Kb CrD-

associated LD block (Chr 5, 40.32-40.48Mb as defined in Barrett et al. (Barrett, Hansoul et al. 

2008)). These SNPs had been genotyped in all 1,469 samples on the Illumina Hap300 platform.  

This analysis dataset included gene expression measurements from primary human leucocytes 

and may therefore be less susceptible to artefacts present in immortalised cell lines. Such 

artefacts can arise due to variables in the immortalisation of B cells used to generate cell lines: 

the subpopulation of B cells chosen may influence cell line phenotype including gene 

expression, the amount of and individual response to EBV virus varies, as can the history of cell 

culture conditions for each cell line.  This has led to concern that increased variability in gene 

expression between cell lines may arise from these factors and confound efforts to assess and 

detect QTLs (Choy, Yelensky et al. 2008). The peripheral blood meta-analysis dataset had 

substantially higher sample size than the LCL datasets which ought to confer much greater 

power to detect eQTLs in the region.   

 

This eQTL meta- analysis was performed by Lude Franke (University of Groningen, the 

Netherlands). Within this dataset SNP genotype - cis gene expression correlations for genes 

residing within 500 kb of each tested SNP were calculated using Spearman’s rank correlation.  

After correction for multiple testing (equal to false discovery rate of 0.05), 5 out of 18 SNPs in 

the region showed significant correlations with PTGER4 expression (Table 5.1).  However, SNPs 

did not show correlation with expression of any other genes within 500kb. 

 

The strongest eQTL was observed for rs12514679 with PTGER4 (P=8.06 x 10
-7

; Spearman rank 

correlation meta-analysis P value; Table 5.1).  The second strongest eQTL was observed for 

rs10512734 (P=9.39 x 10
-5

), which shows moderate linkage disequilibrium with the top 

disease-associated SNP reported by Libioulle et al. (rs1373692, r-square = 0.75, D’=1.00 in 

HapMap CEU) and strong association in a recent updated meta-analysis of Crohn’s GWASs 

(Table 5.1).  Rs1373692 itself showed moderate correlation with PTGER4 expression (P= 

0.00659), that just fails correction for multiple testing (FDR=0.05).  The most strongly 

associated Crohn’s disease SNP from the Barrett et al. meta-analysis (rs4613763) showed no 

correlation with expression of PTGER4 (P= 0.68) or any other genes within 500kb in this 

analysis supporting the finding observed in the Stranger data.    The peripheral blood eQTL 

meta-analysis data therefore support the LCL data of CrD SNPs at 5p13.1 correlating with 
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PTGER4 expression.  Moreover they add weight to the observation that not all of the CrD SNPs 

correlate with PTGER4 expression.  These features underline the potential complexity of 

genetic effects on gene expression.  The absence of precise co-localisation of the expression 

correlation and disease association signals may be indicative of the independence of these two 

phenomena (i.e. the observed partial co-localisation of these associations is co-incidental and 

disease association is actually driven by mechanisms other than regulation of PTGER4 

expression).  Alternatively, stochastic variation in the association signals (generated from two 

different sets of individuals) might cause variation in peak associations.  Such complexity 

reinforces the value of looking beyond gene expression at gene function.  By assaying PTGER4 

gene function, effects of disease associated SNPs on function could be tested more directly.    

 

 

Table 5.1  Illumina Hap300 SNPs from the 250 kb region on 5p13.1 associated with 

Crohn’s disease showing significant correlation with PTGER4 expression in 

whole blood samples from 1469 individuals (Dubois, Trynka et al. 2010). 

 

SNP SNP position
a 

Probe centre 

position
b 

CrD risk allele 

expression 

effect
c 

eQTL P 

value
d 

CrD assoc 

P value
e 

rs12514679 40402560 2940438 unknown 8.06 x 10
-7 

unknown 

rs10512734 40429362 2940438 Increase 5.39 x 10
-5 

2.9 x 10
-29 

rs1002922 40422312 2940438 Increase 1.23 x 10
-4 

5.4 x 10
-29 

rs7725523 40407980 2940438 Increase 5.06 x 10
-4 

3.5 x 10
-18 

rs6880934 40464949 2940438 Increase 6.11 x 10
-4 

0.023 

 
a
Base pair coordinates on chromosome 5, NCBI build 36 

b
 Probe centre position was determined by re-mapping probe sequences to the human transcriptome and 

calculated from the mid-point of the transcript start and transcript end positions in genomic co-ordinates 
c
Direction of effect of Crohn’s disease risk allele on PTGER4 expression 

e
Crohn’s disease case-control association p value from updated meta-analysis of 3 GWASs (personal 

communication, Jeff Barrett & (Barrett, Hansoul et al. 2008)) 

 

 

 

5.1.3   Overview of prostaglandins 

 

Prostaglandins are so-called following their original identification in 1935 in seminal fluid, 

believed at the time to represent secretions of the prostate gland (Goldblatt 1935).  

Prostaglandins are a family of lipid mediators within the broader class of eicosanoids.   All 

eicosanoids are formed by the oxidation of 20-carbon essential fatty acids released from 

plasma and nuclear membranes by the action of phospholipases.  The oxygenation step is 
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and macrophages can produce large quantities of PGE2, moderate amounts are released from 

neutrophils in response to inflammatory stimuli, but no PGE2 was detected from lymphocytes 

despite expression of COX isoenzymes in these cells (Pablos, Santiago et al. 1999; Simmons, 

Botting et al. 2004).  PGE2  is also synthesized throughout the gastrointestinal tract (Simmons, 

Botting et al. 2004). Prostaglandin signalling depends both on the pattern of tissue expression 

of terminal prostaglandin synthases and prostanoid receptors (Figure 5.3).  Prostaglandin E2 is 

the endogenous ligand of the prostaglandin E receptor 4 (EP4), one of four G-protein coupled E 

prostanoid receptors.  Prostaglandin E2 (PGE2) can have both pro- and anti-inflammatory 

effects depending on receptor expression and cell type(Hata and Breyer 2004).  

 

5.1.4  Prostanoid receptors 

 

5.1.4.1  Prostaglandin EP receptors - pharmacology 

  

PTGER4 encodes the prostaglandin EP4 receptor, one of four human prostaglandin E2 

receptors (EP1-4).  The EP4 receptor is a 488 amino acid, plasma membrane localised, G-

protein coupled receptor linked to adenylate cyclase.  Both Gs and Gi  can couple the EP4 

receptor to adenylate cyclase although the most frequent effect in most cell types studied is 

coupling via Gs  with stimulation of adenylate cyclase and an intracellular rise in cyclic AMP 

(Narumiya, Sugimoto et al. 1999).    Some studies have also shown that the EP4 receptor can 

activate an alternative second messenger enzyme, phosphatidylinositol 3 kinase (Fujino, Xu et 

al. 2003).  

 

Of the endogenous prostanoids, prostaglandin E2 has by far the strongest affinity (receptor 

association constant < 1nM) for the EP4 receptor (Abramovitz, Adam et al. 2000). The relative 

potencies of other endogenous prostanoids (PGD2, PGI2, PGF2α)  at the EP4 receptor are around 

1000-10,000fold lower (Wilson, Rhodes et al. 2004).  However, PGE2 is not a selective EP4 

agonist since it binds all EP receptors (EP1-4) with high affinity.    Radioligand binding assays 

using human embryonic kidney stem cells selectively expressing EP receptor subtypes show 

that PGE2 binds all human EP receptor subtypes with high affinity in the low nanomolar range 

(Abramovitz, Adam et al. 2000).  The affinity of PGE2 for EP receptors is in the following order 

EP3>EP4>EP2>EP1 (Abramovitz, Adam et al. 2000).   Pharmacological assays of EP4 function 

(cAMP assays) in similar receptor-subtype specific expressing cell lines suggest that the full 

range of pharmacological response occurs over 10
-11

-10
-9 

Molar range of PGE2 concentrations 

(Wilson, Rhodes et al. 2004). In this study the potency of PGE2 at the EP4 receptor (EC50: 
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concentration at which 50% of maximal pharmacological response is observed) was 5 x 10
-11

 

Molar.  At the EP2 receptor, PGE2 had a 1000 fold lower potency (3 x 10
-8 

Molar).   Whether 

these pharmacological data from recombinant expressed receptors in embryonic stem cells 

hold in primary human cells is uncertain.  While these data suggest that PGE2 is a more potent 

agonist of the EP4 receptor than the EP2 receptor, the degree to which the physiological 

effects of PGE2 are mediated by EP4 versus other EP receptors in primary human cells may be 

influenced by many other factors, including cell type and importantly the relative expression 

levels of different EP receptor subtypes.  Of the other EP receptors, the most important 

potential confounder of EP4 signalling is the EP2 receptor.  This receptor also couples to 

adenylate cyclase, leading to increased cAMP on receptor activation (Narumiya, Sugimoto et 

al. 1999).  This contrasts with the second messenger signals for EP1 (increased calcium) and 

EP3 (reduced cAMP).    Of all the EP receptor subtypes, the EP2 receptor shows the most 

similar pattern of tissue expression compared to the EP4 receptor and is co-expressed in many 

of immune cells (see below).  

 

5.1.4.2  Prostaglandin EP receptor: tissue expression 

  

PTGER4 is expressed in myeloid and lymphoid cell lineages and intestinal epithelium (Figure 

5.4) (Cosme, Lublin et al. 2000; Su, Wiltshire et al. 2004).  PTGER4 is moderately expressed in 

PBMCs (Mori, Tanaka et al. 1996).   It is also expressed in intestinal cells throughout the 

gastrointestinal tract, and is thought to be the subtype responsible for intestinal chloride 

secretion in response to PGE2 (Bukhave and Rask-Madsen 1980; Narumiya, Sugimoto et al. 

1999).  PTGER4 is the only EP receptor gene showing significant expression in intestinal 

epithelium.  PTGER1 and PTGER3 are not strongly expressed in leucocytes or intestine and are 

therefore unlikely to contribute to PGE2  signalling in inflammation (Su, Wiltshire et al. 2004).  

In contrast, PTGER2 is co-expressed with PTGER4 in leucocytes (Figure 5.4), and is therefore 

the likely major alternative E-prostanoid signalling mechanism in immune cells.  PTGER4 is 

basally expressed at higher levels in most immune cell types than PTGER2 (Takayama, Garcia-

Cardena et al. 2002). In human lamina propria mononuclear cells (LPMCs) and intestinal 

epithelial cells EP4, but not EP1-3, is present by immunostaining and northern blot (Cosme, 

Lublin et al. 2000). EP receptor expression is also influenced by inflammatory stimuli.  For 

example in intestinal epithelium, PTGER4 expression was higher in ulcerative colitis inflamed 

colonic tissue than in uninflamed controls (Cosme, Lublin et al. 2000). Conversely, EP2 receptor 

expression has been shown to increase in mouse peritoneal macrophages in response to 
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lipopolysaccharide, while EP4 expression was suppressed by LPS (Ikegami, Sugimoto et al. 

2001).   

 

As PGE2 can act as an agonist of all EP receptor subtypes, and as (at least) EP4 and EP2 

receptors are co-expressed in primary human immune cells, the effects of PGE2 on these cells 

are likely to represent a combination of EP2- and EP4- mediated signals.  Moreover both 

receptors signal through adenylate cyclase with increased cAMP as a second messenger and 

might therefore mediate similar cell responses.  Selective EP4 receptor agonists and 

antagonists should offer advantages over PGE2 in assaying specific EP4 receptor-mediated 

functions.   
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5.1.4.3  Prostaglandin EP4 Receptor Function 

 

PGE2 has historically been considered a predominantly a pro-inflammatory mediator 

(Narumiya, Sugimoto et al. 1999; Simmons, Botting et al. 2004).  In rheumatoid arthritis, PGE2 

is present in synovial fluid, and has pro-inflammatory effects at least in part dependent on the 

EP4 receptor (McCoy, Wicks et al. 2002; Karouzakis, Neidhart et al. 2006; Sheibanie, Yen et al. 

2007). Anti-PGE2 antibodies suppress inflammation in a rat model of arthritis (Portanova, 

Zhang et al. 1996).  In humans COX inhibitors (non-steroidal anti-inflammatory drugs- NSAIDs) 

are established therapies that reduce joint inflammation, partly through reduction in PGE2 

(Simmons, Botting et al. 2004).   However, NSAIDs are relatively contra-indicated in 

inflammatory bowel disease due to concerns that they can exacerbate intestinal inflammation.  

This suggests that PGE2  may have predominantly anti-inflammatory effects in the intestine 

(Wang and Dubois 2010). Reconciling these opposing effects has proved difficult, but there is 

evidence that the EP4 receptor may mediate pro- or anti- inflammatory effects depending on 

the tissue cellular context.  

 

Mouse studies highlight the potential for both pro- and anti- inflammatory effects of EP4 

receptor activation.  EP4 knockout mice show disrupted intestinal epithelial repair with 

increased susceptibility to DSS colitis(Kabashima, Saji et al. 2002). Similarly, EP4 agonists 

appear to protect against epithelial disruption in the DSS model suggesting that EP4 signalling 

may be necessary for the maintenance and repair of intestinal epithelium(Jiang, Nieves et al. 

2007). 

 

 In contrast, selective EP4 agonists in wild-type mice can exacerbate the TNBS colitis model of 

intestinal inflammation (Sheibanie, Yen et al. 2007).   TNBS does not directly damage the 

colonic epithelium, but rather induces a chronic immune cell infiltration of colonic mucosa, 

and it may be that the key effects here are on immune cells rather than mechanisms for 

maintaining intestinal epithelial integrity.  In an important study by Sheibanie et al., EP4 

receptor stimulation in LPS-treated dendritic cells promoted interleukin 23 (IL-23) secretion 

and inhibited IL-12/IL-27 secretion. This was observed to lead to induction of IL-17 in activated 

T cells (Sheibanie, Yen et al. 2007).  More recently Yao et al. found that PGE2-EP4 signalling can 

promote Th-17 cell amplification via IL-23, but also that EP4 agonists could promote Th1 

differentiation(Yao, Sakata et al. 2009). In this study the administration of EP4 antagonists 

suppressed disease progression in experimental autoimmune encephalitis.  Chen et al. 

observed similar effects of EP4 stimulation on Th1 differentiation, IL-23 secretion from 
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dendritic cells and Th17 cell expansion (Franke, de Kovel et al. 2008).  A novel selective EP4 

antagonist suppressed these effects and suppressed disease in mouse model of rheumatoid 

arthritis. Together these studies suggest both a possible link to IL-23/Th17 signalling, clearly of 

high relevance to Crohn’s disease and also a mechanism of pro-inflammatory effect for EP4 

signalling.  Other pro-inflammatory effects attributed to EP4 signalling include stimulation of 

release of the pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8) from 

macrophages and monocytes and T cells by EP4 agonists (Standiford, Kunkel et al. 1992; 

Caristi, Piraino et al. 2005; Maloy and Powrie 2005). 

 

Countering the reported pro-inflammatory effects of EP4 signalling in human leucocytes have 

been observations that EP4 agonists can suppress production of pro-inflammatory cytokines 

from peripheral blood mononuclear cells (PBMCs), monocytes and macrophages in certain 

settings.  These reports have demonstrated suppression of cytokines from lipopolysaccharide 

co-incubated PBMCs, monocytes and macrophages (TNFα, IFNγ, IL-12, IL-18) by both PGE2 and 

selective EP4 agonists (van der Pouw Kraan, Boeije et al. 1995; Meja, Barnes et al. 1997; 

Takayama, Garcia-Cardena et al. 2002; Takahashi, Iwagaki et al. 2005; Takahashi, Iwagaki et al. 

2005). Selective EP4 agonists used in these experiments reproduce part of the effect of PGE2 

though EP2 and IP agonists also reproduced the effect (Figure 5.5).  With regard to T cells, 

Okano et al. showed that both EP2 and EP4 agonists suppressed T cell proliferation and 

cytokine release in antigen-stimulated CD4 T cell lines (Okano, Sugata et al. 2006). 

 

It was hypothesized that the dominant pathogenic effects of CrD genetic variants on EP4 

signalling occur in immune cells rather than intestinal epithelium or other tissues.  This 

hypothesis has been supported (since design of the study) by the finding that 5p13.1 Crohn’s 

disease associated SNPs are also associated with multiple sclerosis (De Jager, Jia et al. 2009).  

This shared disease risk implicates mechanisms common to both disorders (i.e. the immune 

system).  Therefore, the (mainly anti-inflammatory) effects of EP4 signalling on intestinal 

epithelium are less likely to be relevant to the genetic association.    The link of EP4 receptor 

signalling to the IL23R pathway and Th17 cell pathways also suggests this is the key 

mechanism, since multiple Crohn’s disease variants are known to affect this pathway (Barrett, 

Hansoul et al. 2008).  Finally, the risk alleles of 5p13.1 SNPs correlate with increased PTGER4 

expression.  If this confers an increase in EP4 signalling, as hypothesized here, the pro-

inflammatory effects of EP4 signalling on immune cells via Th1/Th17 promotion provide a 

comparatively attractive model for Crohn’s disease as opposed to the promotion of intestinal 
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epithelial repair anticipated for increased EP4 signalling in the intestinal epithelium.   

Mechanisms of EP4 signalling are clearly complex and not yet well understood, and 

furthermore gain of EP4 receptor function in immune cells could promote pro or anti- 

inflammatory effects depending on factors such as immune cell type, cellular differentiation 

and cytokine environment.  Thus teasing out the relevant effects for Crohn’s disease is a 

formidable challenge.  

 

 

 

Figure 5.5  PGE1, PGE2 and selective prostanoid receptor agonists suppress TNF-α from 

PBMCs incubated with Lipopolysaccharide. Figure reproduced from 

Takahashi et al. Eur J. Pharm 2005 

 

 

 
 

 

Prostanoid concentration on x axis.  TNF-α concentration in cell supernatants assayed by ELISA (y axis). ONO-AE1-

329 was used as the EP4 agonist.  PBMCs (1 x 10
6
/well) incubated for 48 hours with LPS (1ng/ml) and prostanoid 

agonists. 

 

 

 

The first aim of this study was to develop a cytokine assay of EP4 function in human peripheral 

blood mononuclear cells (PBMCs).  The aim was not to model precisely EP4 receptor signalling 

events as they might contribute to Crohn’s pathogenesis, but rather to develop as selective an 

assay of EP4 receptor function in primary human immune cells as possible. Once optimized, 

this assay could be used to measure EP4 function in PBMCs from healthy individuals and 
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stratify responses by CrD-associated SNP genotype.  This would enable a test of the hypothesis 

that Crohn’s disease-associated 5p13.1 SNPs correlate not only with increased PTGER4 

expression but also with PTGER4 function. A comparison of the CrD-associated SNPs at 5p13.1 

that correlate with PTGER4 expression with the 5p13.1 CrD-associated SNPs that do not should 

aid this investigation and help determine whether non-expression correlated SNPs are 

associated with any alteration in EP4 function. The absence of such an effect could suggest 

that the CrD association in this region is driven by effects on other genes than PTGER4. 

 

5.1.5  Sample size calculation for SNP genotype-EP4 receptor function correlation 

experiments 

  

The number of randomly selected population individuals required to test the hypothesis that 

CrD-associated 5p13.1 SNPs correlated with EP4 receptor function was considered prior to the 

study. The sample size calculation depends particularly on the frequencies of genotypes for the 

CD- associated SNPs and the expected effect size of the variants on function in this assay.  

rs9292777 had the second strongest association in the largest GWAS in CrD (the Welcome 

Trust Case Control Consortium- WTCCC) and has also been associated with multiple sclerosis.  

This SNP is a near-perfect proxy for the top SNP in the Libioulle et al. GWAS (rs1373692, r-

square = 1 in 90 HapMap CEU samples), but is in weak LD (r-square = 0.13) with the top 5p13.1 

SNPs from the WTCCC GWAS (rs17234657) and Barrett et al. meta-analysis (rs4613763). The 

CrD-associated SNPs appear to tag two distinct regions of LD, with the former rs1373692-

rs9292777 association being that which is correlated with PTGER4 expression.  The minor allele 

frequency for rs9292777 was 0.394 in British population controls used in the WTCCC study 

(Parkes, Barrett et al. 2007).  The second region of LD associated with CrD comprises the peak 

associations at rs17234657 and rs4613763, which are in perfect LD in the HapMap CEU 

collection and have minor allele frequencies of 0.125 in the WT British population controls.  

Since the rs1373692-rs9292777 SNPs correlate with PTGER4 expression, these SNPs were of 

major interest for the PTGER4 functional assay experiments.  Assuming Hardy-Weinberg 

equilibrium the frequencies of genotypes aa, Aa and AA (a= minor allele, A = major allele) are 

0.155, 0.478 and 0.367 respectively.  Thus, a minimum sample size for the study was 

determined by considering how many minor allele homozygote individuals for this SNP would 

be required to detect a genotype effect on EP4 function.  Rs9292777 was reported to have an 

odds ratio for Crohn’s disease of 1.34 (Parkes, Barrett et al. 2007).  However, the size of the 

odds ratio was not expected to be a good predictor of the size of the effect on gene function.  

The NOD2 1007fs variant confers an allelic odds ratios of 4 for disease, but produced almost 
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100% abrogation of PBMC cytokine responses in a similar assay to that proposed here (van 

Heel, Ghosh et al. 2005).  For the purposes of estimating sample size here, a 30% difference in 

EP4 assay measurements between rs9292777 minor allele (aa) homozygotes and major allele 

(AA) homozygotes was assumed.  Under conservative assumptions of within-group assay 

variation (standard deviation = 25%), 11 individuals in each group would be needed for 80% 

power to detect a 30% difference (t test of means between aa and AA homozygotes).  Under 

assumptions of hardy Weinberg equilibrium, 71 individuals would be required to obtain 11 

minor allele homozygotes.   Given the uncertainty of the underlying assumptions, the power 

and sample size calculations necessarily have wide confidence intervals.  However, it was 

estimated that around 100 randomly selected British population individuals would provide 

sufficient power to detect 30% differences in EP4 assay responses.  Under Hardy-Weinberg 

equilibrium this sample collection would be expected to include 16 minor allele homozygotes, 

48 heterozygotes and 37 major allele homozygotes.    For the less common CrD associated 

SNPs (rs17234657-rs461376, MAF 0.125) 100 samples would be expected to include 2 minor 

allele homozygotes, 22 heterozygotes and 76 major allele homozygotes.   
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5.2  Results 

  

5.2.1  PTGER4 expression in PBMCs and monocyte-enriched subsets 

 

PTGER4 gene expression in peripheral blood mononuclear cells (PBMCs) and PBMC subsets, 

separated using CD14 antibody-coated magnetic beads was assessed using qPCR.  As PBMCs 

were obtained from several sources (leucofilters and buffy coats from the National Blood 

Service, fresh blood from volunteers) PTGER4 expression was assessed in cells from each of 

these sample sources.     PTGER2 expression, which has been reported to be expressed in some 

PBMC subsets, has similar pharmacological function (increased cAMP) and may mediate 

similar effects on PBMC cytokine production (Figure 5.5) was also assayed (Fedyk, Ripper et al. 

1996; Mori, Tanaka et al. 1996; Narumiya, Sugimoto et al. 1999; Sugimoto and Narumiya 

2007).  Figure 5.6 shows results from these experiments and confirms PTGER2 and PTGER4 

expression in PBMCs. Similar expression was observed for PTGER2 and PTGER4 in monocyte 

enriched (CD14+) and depleted (CD14-) subsets (data not shown, from three individuals). 

Expression did not differ significantly between monocyte-enriched and depleted fractions.  

CD14 +ve cells were selected using a positive antibody selection method (methods).  

Expression relative to housekeeping genes was calculated from the mean of 3 biological 

replicates. 

 

 

Figure 5.6  PTGER2 and PTGER4 expression in PBMCs  
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5.2.2  Cytokine assays 

 

5.2.2.1  Prostaglandin E2 Pilot assays 

 

To determine the feasibility of a cell supernatant cytokine assay for measuring biological 

responses to prostaglandins, pilot experiments were conducted with PGE2, the major 

endogenous ligand of the EP4 receptor.  These experiments were performed prior to obtaining 

selective EP4 agonists and antagonists that were used in later experiments.  In these assays 

fresh PBMCs (2 x 10
5
 cells/well unless stated) from healthy volunteers were incubated with 

PGE2. Cytokine concentrations in cell supernatants were measured by enzyme-linked 

immunosorbent assay (ELISA).  Conditions were varied to determine the optimum conditions 

under which the PGE2 dose-response was maximal.  Cell numbers, incubation times and PGE2 

concentrations were all tested over different ranges. In some experiments cells were co-

incubated with lipopolysaccharide, following reports that PGE2 and EP4 agonists can suppress 

LPS-induced secretion of some cytokines (TNFα, IFNγ,  IL-18) (Takahashi, Iwagaki et al. 2005; 

Takahashi, Iwagaki et al. 2005).  Similar effects have also been demonstrated in monocytes and 

macrophages with PGE2 (Takayama, Garcia-Cardena et al. 2002; Takahashi, Iwagaki et al. 

2005). These assays were tested at a range of LPS concentrations (0.1-100 ng/ml).   

 

Dose-dependent suppression of TNFα release by PGE2 from PBMCs incubated with 

lipopolysaccharide was observed (Figure 5.7).  PGE2 at 10
-6

 Molar concentration produced 90% 

suppression of TNFα in supernatants from PBMCs incubated for 24 hours with LPS (1ng/ml).  

These effects were optimum at LPS 1ng/μl and at 24h (earlier time points showed less 

pronounced effects).  Similar effects were observed for PGE2 on IFNγ production, with 10
-6

 

Molar PGE2 producing 85% suppression of IFNγ in supernatants from PBMCs incubated for 24 

hours with LPS (1ng/ml) (Figure 5.7).    

 

A modest increase in IL-1β in supernatants from PBMCs incubated with LPS (1ng/ml) for 24 

hours was observed with increasing doses of PGE2 (Figure 5.8). LPS 1 ng/ml was the best 

concentration to observe a dose-response to PGE2   IL-1β was not detectable in the absence of 

LPS, and at a higher dose (100 ng/ml) IL-1β concentrations appeared saturated across the 

range of PGE2 concentrations. 

TNFα, IFNγ and IL-1 β were not detectable in cell supernatants incubated with PGE2 in the 

absence of LPS.  While these cytokines exhibited strong PGE2 dose-dependence in cells 

incubated with LPS, cytokines released in response to PGE2 in the absence of LPS or other 
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stimuli were sought, due to concerns over the effects of LPS on EP receptor expression and 

inter-individual variability in LPS responsiveness.  Bothe IL-8 and particularly IL-6 showed dose-

dependent release with increasing PGE2 concentration (Figure 5.9). IL-6 was of particular 

interest as a candidate cytokine for EP4 responsiveness, due to the wide IL-6 concentration 

range observed with increasing physiological concentrations of PGE2.  There have not been 

previous reports of IL-6 release from PBMCs, though IL-6 up-regulation in response to PGE2 has 

been observed in macrophages.  Moreover the EP4 receptor is thought to mediate these 

effects (Fiebich, Schleicher et al. 2001; Maloy and Powrie 2005).   

 

 

IL-17A was present at very low levels or was undetectable by ELISA in PBMC supernatants in 

similar experiments with PGE2 and LPS. 
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Figure 5.8  PGE2 augments lipopolysaccahride induced IL-1β release from PBMCs  

 
 

 
 
 

 
 

 
Cytokine concentrations measured in PBMC supernatants after 18-24 hours incubation in media with LPS 1 

ng/ml and PGE2. 2 x 10
5 cells in 200 µl volume per well. Error bars indicate standard error. data from n=2 

individuals 
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5.2.2.2   Assays using selective EP4 agonists/antagonists 

 

As PGE2 is a non-selective agonist at all prostaglandin EP subtypes, any of the EP receptors may 

mediate PGE2 responses in the above experiments.  EP4-selective agonists were therefore 

obtained to improve the specificity of this assay for EP4.  No commercially available EP4 

agonists are available.  The development of selective agents has proved difficult despite efforts 

from major pharmaceutical companies (e.g. Merck, GlaxoSmithKline) and the field has been 

limited by a lack of truly selective agonists and antagonists (Wilson, Rhodes et al. 2004). Most 

published studies in humans have used an EP4 agonist developed by ONO pharmaceuticals 

(ONO-AE1-329, Osaka, Japan) (Yamamoto, Maruyama et al. 1999).  Other prostanoid agonists 

and antagonists, showing some selectivity for the EP4 receptor have been developed by Merck 

and GlaxoSmithKline (Billot, Chateauneuf et al. 2003).  All three of these companies were 

approached for use of these agents in the current study.   A GlaxoSmithKline (GSK) EP4 agonist 

(GSK324202A) and antagonist (GW627378X) were obtained, as gifts, in January 2008.  

Pharmacological data have been published for GW627378X, but not for GSK324202A (Wilson, 

Giblin et al. 2006).  In May 2008 the ONO EP4 agonist (ONO-AE1-329) and an antagonist (ONO-

AE3-208) were obtained as gifts from ONO Pharmaceuticals Co. (Osaka, Japan). 

 

5.2.2.3  Experiments using GSK324202A (EP4 agonist) and GW627378X (EP4 

antagonist) 

 

 

The effect of GSK324202A was tested in parallel with PGE2 in the PBMC cytokine assays. 

GSK324202A did not reproduce the effect of PGE2 on PBMC cytokine secretion in experiments 

with 6 individuals.  This EP4 receptor agonist did not have any discernible effect on IL-6, IL-8 

(without LPS) or TNFα production (figures 5.10, 5.11) across a large dose range (10
-12

M to 10
-

5
M).  GSK have not tested this agent in primary human cells and have only limited data 

showing partial efficacy for EP4 receptors in transfected human embryonic kidney cells 

expressing recombinant human EP4 (intrinsic activity versus PGE2 of 62% using cAMP and 

calcium influx assays, unpublished data).   While these studies also suggested that 

GSK324202A showed selectivity as an EP4 agonist compared to other EP receptor subtypes 

(pEC50 7.5 for EP4 vs. <5 for EP1-EP3) the concern is that as GSK324202A is a partial EP4 

agonist, it is uncertain whether it has sufficient efficacy at human EP4 receptors to generate 

observable effects on cytokine release from PBMCs.  GSK324202A was therefore abandoned 

for use in subsequent experiments. 
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 GW627378X is an effective EP4 antagonist, devoid of antagonist activity at EP2 and EP3 

receptors, but with modest EP1 antagonism and significant antagonist activity at prostanoid TP 

receptors (Wilson, Giblin et al. 2006).  Effects on EP1 and TP receptors were not thought to be 

relevant to the cytokine responses in the current assay, due to low expression in PBMCs and 

therefore this agent was thought to be an adequate antagonist of the EP4 receptor-mediated 

component of prostanoid modulation of cytokine responses in these assays.  

 

 PBMCs were first incubated with variable doses of GW627378X in the absence of LPS or PGE2 

to determine whether this agent reversed possible endogenous PGE2 effects on cytokine 

release.  GW627378X (up to 10
-5

M) had no effect on LPS-induced TNFα or basally released IL-8 

in PBMC supernatants (data not shown).  These results suggested that basal or LPS-induced 

prostanoids did not contribute a major component of the observed TNFα or IL-8 production via 

EP4 receptor signalling.   Secondly TNFα responses to PGE2 were assayed with and without the 

addition of GW627378X (at 10
-6

M at 10
-5

M) to determine whether this produced the expected 

rightward displacement of the PGE2 dose response curve.  This was not observed, suggesting 

either that the PGE2 dose-response effects were non-EP4 mediated or that GW627278X lacked 

EP4 receptor antagonism in these experiments.   GW627378X produced modest rightward 

displacement of PGE2- induced IL-6 release in one individual, consistent with the PGE2-induced 

IL-6 being a partially EP4 receptor dependent effect (Figure 5.12). 

 

The most likely explanations for these results were either that GSK324202A and GW627368X 

do not have significant efficacy at the EP4 receptor at the concentrations tested or that the 

effects on cytokine production observed for PGE2 are mediated by non-EP4 receptor 

mechanisms. 
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5.2.2.4    Experiments using ONO-AE1-329 (EP4 agonist) 

 

Prostanoid agonist PBMC incubation experiments with and without LPS were repeated using 

ONO-AE1-329, using PGE2 as a positive control.  ONO-AE1-329 is a selective EP4 agonist (EC50 

3.1nM (Yamamoto, Maruyama et al. 1999)).  Moreover, ONO-AE1-329 has been reported to 

suppress LPS- induced TNFα secretion from PBMCs (Takahashi, Iwagaki et al. 2005).    This 

observation was replicated in fresh blood derived PBMCs (Figure 5.11).  The finding was 

replicated also in mononuclear cells separated (by Ficoll density gradient centrifugation) from 

leucofilters (n=4) obtained from the National Blood Service (data not shown).   

 

ONO-AE1-329 had no effect on IL-6 secretion from resting PBMCs and did not mimic the 

stimulation seen with PGE2 (Figure 5.10). No consistent effects on IL-8 release were observed.   

For some individuals dose-dependant increases in IL-8 were observed for both PGE2 and ONO-

AE1-329 whereas for others no or a reverse effect was observed.  It was considered that these 

opposite effects might be consistent with opposing effects of prostaglandins on different 

PBMC cell types.  There have been reports that PGE2 suppresses IL-8 production from 

monocytes(Standiford, Kunkel et al. 1992) but up-regulates IL-8 in T cells, though at much 

lower levels than produced by monocytes(Caristi, Piraino et al. 2005). 
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In order to determine whether a PBMC subset would provide a more consistent ONO-AE1-329 

dose response, experiments were performed using monocytes, B cells and T cells separated by 

RosetteSep
TM

 (Stem Cell Technologies, Canada), an antibody-based negative selection 

technique, from leucofilter-derived PBMCs.  The purity of the enriched cell populations is 

reported to be 91% for (CD4) T cells, 89% for B cells and 73% for monocytes (Stem Cell 

Technologies, product information).  

 

Results from these experiments suggested that IL-8 in PBMC supernatants is accounted for by 

monocyte secretion.  IL-8 secretion from T cells was undetectable (data not shown). There was 

very little or undetectable IL-8 in B cell supernatants (Figure 5.13).  Thus, cell subset separation 

was considered unhelpful for improving variation in the PGE2 or ONO_AE1-329 induced IL-8 

response.  As such the IL-8 response was considered too variable to form the basis of a PTGER4 

specific assay. 

 

The above experiments suggested that the most promising assay to observe a dose-response 

for the EP4 receptor agonist ONO-AE1-329 was that of TNFα in supernatants from LPS-treated 

PBMCs or monocytes, as previously reported by Takahashi et al. (Takahashi, Iwagaki et al. 

2005). The data in these experiments suggested under optimum conditions a maximum 50% 

suppression of TNFα with ONO-AE1-329 could be observed.  However, the usefulness of this 

assay was limited by significant inter-individual variability in cell supernatant TNFα 

concentrations and it was considered unlikely that the hypothesized genotype effects (30% 

differences) would be detectable in this assay.  A major concern was that these assays required 

LPS co-incubation, introducing inter-individual variation due to LPS responsiveness.  Moreover 

previously reported EP2 expression up-regulation and EP4 down-regulation by LPS could 

contribute further variation and increases the possibility of EP2 receptors mediating some of 

the observed effects of ONO-AE1-329 (Ikegami, Sugimoto et al. 2001). LPS also stimulates PGE2 

release from macrophages and monocytes, raising concerns that PGE2 release from monocytes 

might confound these experiments (Ikegami, Sugimoto et al. 2001; Simmons, Botting et al. 

2004).  ONO-AE1-329 has 400fold lower agonist activity at EP2 receptors compared to EP4 

receptors, and therefore significant EP2 agonism would be expected at the higher ONO-AE1-

329 concentrations studied.  In conclusion, none of the cytokine assays tested were thought to 

offer a sufficiently accurate and selective assay of PTGER4 (EP4) function to take forward to 

assay in 100 individuals for genotype comparisons of EP4-mediated cytokine responses. 
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Figure 5.13  IL-8 in cell supernatants from PBMC subsets 
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Cytokine concentrations measured in PBMC supernatants after 42h using 7.5 x 10
4
 cells/well in 200 μl volume.  IL-8 

undetectable in T cells – data not shown 

 

 

 

 

5.2.3   Whole genome gene expression 

 

The cytokines measured in supernatants from PBMCs incubated with ONO-AE1-329 were 

selected based on cytokines that had previously been reported to be modulated by PGE2 and 

EP4 agonists in PBMCs and immune cell subsets.   However, in order to undertake an unbiased 

survey of the effects of the EP4 receptor agonist ONO-AE1-329 on PBMCs, whole genome gene 

expression profiling was undertaken using gene expression microarrays.  It was hypothesized 

that genes, particularly cytokine genes, showing several fold differences in expression in 

response to ONO-AE1-329 would be suitable for testing in the PBMC cytokine assay. 

 

 

This experiment (n=2 healthy individuals) compared gene expression in PBMCs cultured with 

ONO-AE1-329 (10
-7 

Molar) or medium alone for 3 hours (without LPS).  Whole genome gene 
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expression was assayed using the Illumina Human WG-6 chip, which assays 48,000 transcripts 

from > 24,000 known genes.  

 

No genes in this experiment showed greater than 50% differential expression (Figure 5.14).  

Only 5 genes showed differential expression after Bonferroni correction (Table 5.2). The top 

differentially expressed cytokine was CCL22 (32% differential gene expression, P = 7.37 x 10
-8

 

Table 5.2), ranked as the 3
rd

 most strongly differentially expressed gene overall.  In general the 

lack of genes showing large differential gene expression at 3 hours with ONO-AE1-329 

suggested that this agent has only weak effects on gene expression in PBMCs. 

 

Although 32% differential expression is modest, the up-regulation of CCL22 in unstimulated 

PBMCs prioritized it as the most attractive candidate for assessment in the cytokine assay 

experiments.  CCL22 (C-C Chemokine motif 22) is chemotactic for monocytes, dendritic cells, 

natural killer cells and activated T lymphocytes.  It binds chemokine receptor 4 and has a role 

in trafficking activated T lymphocytes to inflammatory sites. Chemokine receptor 4 is found 

mainly on Th2 cells and is predominant on these cells in individuals with autoimmune diseases 

including Crohn’s disease (Jo, Matsumoto et al. 2003). Furthermore PGE2 dose-dependently 

up-regulates CCL22 in monocyte derived dendritic cells, supporting the claim that the observed 

effects of ONO-AE1-329 on CCL22 expression are prostaglandin EP-receptor mediated 

(McIlroy, Caron et al. 2006). 

CCL22 was assayed by ELISA in PBMC supernatants after incubation of PBMCs for 18 hours 

with PGE2 and ONO-AE1-329 (Figure 5.15).  This experiment did not confirm any effect of 

either PGE2 or ONO-AE1-329 on CCL22 release from PBMCs. 
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Table 5.2  Significantly differentially expressed genes in PBMCs withstanding 

Bonferroni correction 

 

Gene Differential 

expression 

P Value
a 

Bonferroni 

corrected 

Diff exp P 

value
a 

Norm 

expression 

(media 

only) 

Norm 

expression 

(ONO-AE1-

329 10
-7
M) 

 Gene name &description 

BX105338 1.38 x 10
-14

 6.72 x 10
-10

 361.30 237.38 Function unknown 

ZFP36L1 1.13 x 10
-08

 5.50 x 10
-04

 1328.63 1839.11 Zinc finger protein 36, a 

putative nuclear transcription 

factor 

CCL22 7.37 x 
-08

 3.59 x 10
-03

 259.13 177.29 Chemokine (C-C motif) 

ligand 22  

LOC644931 1.59 x 10
-07

 7.76 x 10
-03

 186.84 138.53 Hypothetical gene, unknown 

function 

RPL7 6.08 x 10
-07

 2.97 x 10
-02

 691.01 876.90 Ribosomal protein L7  

RBPJ 8.50 x 10
-07

 4.15 x 10
-02

 557.39 705.76 Homo sapiens recombination 

signal binding protein for 

immunoglobulin kappa J 

region, transcript variant 4. 
a
P values calculated on Illumina BeadStudio gene expression module v3.3.8 using Illumina’s proprietary expression 

analysis algorithms  

PBMCs (3 x 10
6
 cells/well) were cultured for 3 hours at 37 

0
C prior to RNA extraction. Data from 2 individuals. 
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Figure 5.15  CCL22 concentrations in PBMC supernatants after culture with PGE2 or ONO-

AE1-329 
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Cytokine concentrations measured in PBMC supernatants after 18 hours incubation in media using 2 x 10
5 

cells in 

200 μl volume per well with prostanoids added. Error bars indicate standard error. Data from n= 1 individual, each 

prostanoid tested in parallel in the same experiment. 
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5.3  Discussion and Conclusion 

 

5.3.1  Limitations of available EP4 agonists 

 

Of the two selective EP4 agonists investigated, only ONO-AE1-329 showed clear prostaglandin 

E2-like effects in the PBMC assays.  In particular ONO-AE1-329 produced around 50% 

suppression of TNFα in supernatants from PBMCs incubated with LPS (1ng/ml) for 24 hours at 

a dose of 10
-8 

Molar (Figure  5.11).  At this concentration, pharmacological data using 

recombinant human EP receptor subtypes suggest that ONO-AE1-329  (EC50 = 3.1 x 10
-9

 Molar) 

acts as a selective EP4 agonist with negligible agonist activity at other EP receptors 

(Yamamoto, Maruyama et al. 1999).  In contrast, GSK324202A was unable to suppress TNFα in 

similar PBMC experiments, despite testing over a wide range of dose concentrations.  The lack 

of effect of GSK324202A in all of the assays may reflect the lower efficacy of this compound at 

EP4 receptors (intrinsic activity 62% compared to PGE2- unpublished data supplied by 

GlaxoSmithKline).   

 

The most promising results in the PGE2 pilot experiments had shown a strong dose-response 

effect on IL-6 production from non-LPS treated PBMCs (Figure 5.10).  This was not reproduced 

by either EP4 agonist.  In some other cell types studied (e.g. astrocytes, macrophages) PGE2-

induction of IL-6 appears to be EP4 receptor mediated (Fiebich, Schleicher et al. 2001; Ma and 

Quirion 2005).  However, in mouse EP4 receptor deficient neutrophils PGE2 can augment IL-6 

release, an effect replicated with EP2 agonists. In contrast ONO-AE1-329 was unable to 

reproduce this effect in EP2 knockout mouse-derived neutrophils (Yamane, Sugimoto et al. 

2000).  These observations raise the possibility that PGE2-dependent IL-6 release in PBMCs 

may also be EP2-dependent, although this has not been studied.  An EP2-mediated mechanism 

for PGE2 induced IL-6 production from PBMCs would be consistent with the data we observed 

for ONO-AE1-329 and GSK324202A.  On the other hand, the modest rightward displacement of 

the PGE2 –IL-6 dose response curve observed with the addition of the EP4 antagonist 

GW627378X is at odds with this, apparently indicating a component of EP4 receptor 

dependency of the IL-6 response.  The lack of any effect of GW627378X on PGE2 mediated 

suppression of TNFα from LPS-treated PBMCs does not necessarily suggest that this agent 

lacks EP4 antagonist efficacy as PGE2 is known also to suppress TNFα through other EP receptor 

subtypes (Takahashi, Iwagaki et al. 2005). Thus while the available EP4 agonists were 

ineffective for the purposes of generating a strong IL-6 response in PBMCs that would be 
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suitable for an EP4-selective assay, further studies of PBMCs are required to determine the 

mechanism of PGE2-induced IL-6.  These experiments could include repeat experiments with 

EP2 and other EP receptor subtype agonists and antagonists or with small interfering RNA 

(siRNA) knockdown of EP4 and other EP receptor expression in PBMCs. 

 

The search for the ideal cytokine for measurement in a simple PBMC cell culture assay was 

expanded through the use of array-based whole genome gene expression profiling.  However, 

only modest differential gene expression was observed for ONO-AE1-329, suggesting that in 

unstimulated PBMCs this agent has little activity.  Thus, if EP4 receptor mediated effects in 

unstimulated PBMCs are  modest and only become prominent in modulating the response to 

other inflammatory stimuli, the prospects for a selective EP4 assay, where extraneous 

variables are minimized (e.g. LPS or other inflammatory stimulus inter-individual variation) 

would appear to be bleak.  Testing of the most strongly differentially expressed cytokine, 

CCL22 showed that the small differential effects on gene expression did not translate to large 

effects on protein levels assayed by ELISA in cell supernatants.  

 

The development of a truly selective EP4 assay, in a biological context relevant to the 

pathogenesis of Crohn’s disease has proven a major challenge.  Currently, we may be limited 

by a lack of agents that act as potent but selective EP4 agonists.   The opposing pro and anti-

inflammatory effects of PGE2 – EP4 signalling in different cell types and biological contexts adds 

further complexity.  Moving from an observation that Crohn’s Disease associated variants 

correlate with PTGER4 gene expression to understanding the functional contribution of this 

increased expression may require better understanding of PGE2 – EP4 signalling in 

inflammation in general.  Based on these data, it was decided not to pursue these experiments 

further in this thesis. 

 

5.3.2  Limitations of correlating gene function with GWAS SNP associations 

 

Moving from GWAS associations to understanding the mechanisms by which genetic variants 

alter gene function and contribute to disease susceptibility has proven difficult not just in 

Crohn’s disease, but in all common diseases studied.  There have only been rare exceptions.  In 

Crohn’s disease the ATG16L1 T300A variant has been associated with impaired autophagic 

control of salmonella typhimurium in intestinal epithelial cells and with secretory granule 

exocytosis abnormalities in Paneth cells (Cadwell, Liu et al. 2008; Kuballa, Huett et al. 2008).  
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Similarly NOD2 protein-altering SNPs have been shown to have loss of function effects in 

human immune cells (van Heel, Ghosh et al. 2005).  It may not be coincidental that the genes 

for which successes have been observed have so far been those where causal genetic variants 

had been identified in the primary genetic studies.  Unfortunately, for the vast majority of 

GWAS SNP associations, the causal variants are currently unknown.  This adds uncertainties to 

attempts to correlate SNP genotypes with gene function.  Firstly, as for the 5p13.1 SNPs here, 

the gene(s) whose function is altered is often uncertain. Secondly, the SNPs showing disease 

association are likely to be only partially correlated with the causal variants under study.  This 

not only weakens the strength of the case-control GWAS association but is likely to dilute the 

strength of SNP-gene function correlations, since only some individuals carrying the GWAS SNP 

risk allele will carry a causal variant risk allele.  The most extreme scenario that may mitigate 

against the discovery of GWAS SNP- gene function associations is that in which GWAS 

associations arise from rare variants, potentially in genes that reside megabases from the peak 

GWAS association.   In this scenario even if the studied gene turns out to be the correct one, 

only a small proportion of individuals carrying the common GWAS SNP risk allele may harbour 

the (more highly penetrant) rare variant(s).  Nevertheless, it is also currently far from clear 

whether pure genetic approaches (e.g. genetic fine mapping and re-sequencing efforts with 

subsequent case-control association testing) will have sufficient discriminatory power to 

define causal variants, particularly for regulatory variants which may be difficult to recognize. 

Indeed early experiences of these approaches have not been promising (ref-WTCCC?).  It is 

therefore likely that functional experiments, that link genetic variants to alterations in 

biological functions will have to be embarked upon in many cases without the prior knowledge 

of causal variants and these approaches indeed may be critical for identifying the causal 

variants driving GWAS associations in common diseases.    
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5.4   Methods 

 

Ethical approval for recruitment of healthy volunteers and use of fresh blood samples for the 

experiments below was granted by the EAST LONDON & THE CITY RESEARCH ETHICS COMMITTEE 

(REC number: P/03/229). Informed consent was taken and documented for each participant. 

 Leucofilters and buffy coat fractions were obtained anonymously from the British National Blood 

Service and were used for cell culture experiments and genetic research with approval from the 

Oxfordshire REC (05/Q1605/89).  

 

 

5.4.1  Isolation of peripheral blood mononuclear cells by density gradient 

centrifugation. 

 

50-60ml peripheral venous blood was collected from healthy volunteers into 10 ml Lithium-

heparinised tubes (Becton Dickinson, UK, 367874). In some experiments leucofilter or buffy 

coat fractions were obtained from the National Blood Service (Tooting, London, UK) as a 

surplus blood product for research. Cell separation was performed on the same day as blood 

collection. 

 

Per 30 ml blood/ blood product: 15 ml Lymphoprep (Axis-Shield Diagnostics) was added to a 

50ml LeucoSep tube (Greiner Labs) and centrifuged for 30 seconds at 1000g (2200 rpm) using a 

Heraeus Megafuge 10R with a BS4402/A (3360) bucker rotor at room temperature. 30ml blood 

from Li-Heparin tubes was added to the Lymphoprep in the LeucoSep tube and centrifuged at 

1000g for 10 mins at room temperature without the brake engaged. The mononuclear cell 

monolayer suspension above the LeucoSep filter was removed to a separate 50ml Falcon tube, 

and washed by addition of 30ml Phosphate Buffered Saline and centrifugation at 250g 

(1100rpm) for 10 mins. Supernatant was discarded, and the cell pellet resuspended and 

incubated in 20ml of red cell lysis solution  (155mM NH4Cl (Sigma Aldrich, UK, A0171), 10mM 

KHCO3 (Sigma Aldrich, UK, P7682), 0.1mM EDTA (Gibco, Invitrogen, UK, 155575-038), tissue 

culture grade H2O (Sigma Aldrich, UK) was added and left for 10 minutes before centrifuging 

for 250g (1100rpm) for 10 minutes.  Red cell lysis buffer was removed the cell pellet and re-

suspended in 50 ml sterile PBS. This was re-centrifuged at 250g for 10 minutes and the wash 

repeated once. Pelleted cells were resuspended in 1ml of X-Vivo-15 serum free media (Lonza 
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Group, Switzerland, 04-418). Cells were counted using a standard method with Trypan Blue 

staining and manual laboratory haemocytometer. 

 

5.4.2 Cell culture experiments with Prostaglandin E2, EP4 agonists/antagonists and 

lipopolysaccharide (LPS). 

 

Prostaglandin E2 was obtained from Cayman Chemicals (Michigan, USA, 14010). GSK324202A 

(EP4 agonist) and GW627368X (EP4 antagonist) were gifts from Glaxo-SmithKline (Stevenage, 

UK).  ONO-AE1-329 (EP4 agonist) was a gift from ONO Pharmaceuticals (Osaka, Japan). X-Vivo-

15 serum free media (Lonza Group, Switzerland, 04-418) was used for reagent dilution, cell 

suspension and culture. 

 Cells were cultured in triplicate at a density varied between 7.5 x 10
4
/ml and 3 x 10

6
/ml in 96 

well cell culture plates suspended in 250μl total volume, including media and ligands at 37 
0
C

. 

After culture, 150μl of cell culture supernatant was removed from each well and transferred to 

a separate 96 well cell culture plate and frozen at -80
0
C.  

 

5.4.3  Enzyme linked immunosorbent assay (ELISA) for quantification of cytokines 

and chemokines in cell supernatants 

 

Sandwich ELISA was performed on cell supernatants.   

IL-1β,TNFα, IL-8 and IL-6 ELISAs were performed using matched monoclonal antibodies  at 

1:2000 dilutions (Immunotools, Friesoythe, Germany), streptavidin-horseradish peroxidise 

(R&D systems, Abingdon, UK) and TMB-H202 (BD Bioscience, Oxford, UK). IFNγ and IL-17A 

ELISAs were performed using Human Interferon-γ and IL-17A ELISA Ready-Set-GO kits 

(Ebioscience, Hatfield, UK 88-7316, 88-7176). CCL22 ELISA was performed using matched 

antibody pairs and recombinant human CCL22 protein for standards from R&D, UK (catalogue 

no. DY336). Recombinant proteins for standards used in ELISA assays with matched antibody 

pairs were obtained from Immunotools (IL-8: catalogue number 11340080; TNFα: 11343013; 

IL-6 11340060) and Firstlink, UK (IL-1β, catalogue number hrIL-1β).  

 

Cell culture supernatants were diluted at part 1 in 4 for TNFα, part 1 in 4 for IL1-β, part 1 in 20 

for IL-8, part 1 in 4 for IL-17A, part 1 in 4 for IFNγ, part 1 in 10 for CCL22, part 1 in 4 for IL-6 in 

assay buffer (5%BSA (Sigma Aldrich, UK, A7030), 0.05% Tween (Sigma Aldrich, UK, P1379), PBS) 

to make a total volume of 100μl.   
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For ELISA experiments using matched monoclonal antibody pairs, the capture antibody was 

diluted in 0.05mM carbonate-bicarbonate buffer (Sigma Aldrich, UK, C3041) according to 

manufacturer’s instructions and 100μl added to a 96 well plate (Nunc Immuno
TM

 F96 Maxisorp, 

VWR, 442404) for 24 hours at 
 
4

0
C.  The plate was washed 5 times with >200μl of ELISA wash 

solution (PBS, 0.05% Tween) using a 12 channel wash station (Nunc Immuno
TM

 Wash, VWR, 

735-0057).  The plate was patted dry, and cell culture supernatants added. 

 

A recombinant protein, serially diluted 1:2 in assay buffer, was added in duplicate to plates to 

create a standard curve. Samples were incubated for one hour on a shaking platform (KCH-

VIBRAX).  After washing samples five times with >200μl of ELISA wash, 100μl of secondary 

biotinylated antibody from the matched pair, diluted in assay diluents at appropriate dilutions 

according to manufacturer’s instructions was added, followed by a 1 hour incubation at room 

temperature on a shaking platform.  After five further washes 100μl of streptavidin conjugated 

HRP (R&D Systems, UK, DY998) diluted 1:200 in assay diluents was added and incubated for 30 

minutes at room temperature on a shaking platform. After five final washes, 100μl of mixed BD 

OptEIA
TM

 TMB-H2O2 substrate (BD Bioscience, UK, 555214) was added to each well and 

incubated at room temperature for 15-20 minutes on the shaking platform.  The reaction was 

terminated with 50μl of 1mM H4PO4 (Sigma Aldrich, UK, P6560) followed by dual absorbance 

measurement at 450nm and subtraction of 570nm background (680 Microplate Reader, 

BioRad).  For IL-17A and IFNγ the same principle was followed using pre-formed kits according 

to manufacturer’s instructions 

 

5.4.4  Cell subset separation 

 

PBMC fractions were separated using the BD Biosciences IMag
TM

 cell separation system (BD 

Biosciences, Oxford, UK) for qPCR experiments according to the manufacturer’s instructions. 

Briefly, PBMCs were washed and re-suspended at 10
7
 cells/ml in BD IMag

TM 
Buffer.  50μl BD 

anti human CD14 antibody coated magnetic particles were added  per 10
7
 cells of the PBMC 

suspension, mixed by pipetting up and down and incubated at room temperature for 30 

minutes.  The PBMC/magnetic particle mixture was placed in a magnetic field using the BD 

IMagnet
TM

 for 10 minutes; CD14 -ve cell suspension mixture was transferred to a second tube 

while the PBMC/magnetic particle mixture was in the magnetic field- to generate the CD14 -ve 

cell/ supernatant mix. CD14+ve cells were retained in the original tube and resuspended after 

2 washes with BD IMag buffer. 
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Rosette-Sep (StemCell Technologies, Sheffield, UK) was used for Monocyte (RosetteSep Human 

Monocyte enrichment cocktail, 15068) and B cell (RosetteSep Human Monocyte enrichment 

cocktail, 15024) fraction separation from PBMC/leucofilter samples for ELISA and microarray 

experiments. Briefly the Rosette-Sep monocyte or B cell enrichment cocktail was added at 

50ul/ml of whole blood or leucofilter sample prior to addition of Lymphoprep and density 

gradient centrifugation (DGC). A modified DGC protocol was followed where LeucoSep tubes 

were not used and enriched cells were isolated from the plasma-Lymphoprep interface by 

Pasteur pipette following the recommended Rosette-Sep protocol. 

 

5.4.5  RNA extraction 

 

Cells were cultured at a density of 3x10
6
/well per condition in 24 well cell culture plates (VWR, 

UK, 734-0020). After 22 hours of culture at 37
o
C, 5% CO2, cell culture supernatants were 

removed and spun down in 1.5ml microcentrifuge tubes (Axygen, VWR,UK, 525-0231) on a 

Heraeus Biofuge Pico with a PP1/96 rotor (Heraeus, VWR, UK). Supernatants were discarded 

and 1ml of TRIzol reagent (Invitrogen UK, 15596-018) added to the pellet. After a 5 minute 

incubation and agitation by pipetting, the 1ml of TRIzol solution was added to the cell culture 

well and incubated for a further 5 minutes.  The TRIzol and cell lysate solution was pipetted up 

and down to ensure all cells were lysed, transferred to a microcentrifuge tube and stored at -

80
o
C.   Once thawed, 200ml of chloroform (Sigma-Aldrich, UK, C2432) was added to the lysate 

mixture and vortexed vigorously (Genie2, Scientific Industries, USA) for 15 seconds.   The 

solution was spun at 11,000 rpm at 4
o
C using an Eppendorf 5417R MiniCentrifuge (Eppendorf, 

UK). The aqueous layer was transferred to a microcentrifuge tube containing 500μl 100% 2-

propanol (Propan-2-ol AnalaR, VWR, UK, 102246L) and incubated at room temperature for 15 

minutes to precipitate the nucleic acids, followed by a 15 minute spin at 15,000 rpm (4
o
C) on 

the Eppendorf MiniCentrifuge.  The supernatant was discarded, 1 ml 70% ethanol added and 

the tube spun at 12,000 rpm for 5 minutes (at 4
o
C).  The supernatant was discarded and the 

pellet allowed to air dry.  The RNA pellet was re-suspended in 25μl RNase free molecular 

biology grade H2O (Sigma Aldrich, UK, W4502) at 60
o
C for 5 minutes. RNA was quantified by 

absorbance 280nm on a Nanodrop
*
 ND 1000 Spectrophotometer (Nanodrop technologies, 

USA).  RNA was stored at -80
o
C. 
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5.4.6   RNeasy RNA cleanup 

 

For use on the gene expression microarray, RNA extracted by TRIzol was purified on Qiagen 

Spin RNeasy Mini Columns (Qiagen, UK, 74104) with the on-column DNase digestion (Qiagen, 

UK, 79254). 100 μl TRIzol isolated RNA in RNase free H2O (Sigma Aldrich, UK, W4502) was 

combined with 350 μl of Buffer RLT ( Qiagen, UK) and 250 μl ethanol (VWR, UK, 10107) and 

added to an  RNeasy Mini Spin Column (Qiagen, UK). The column was spun at 9000g on an 

Eppendorf 5418 centrifuge with a FA-45-18-11 rotor at room temperature. 350 μl of Buffer 

RW1 (Qiagen, UK) was added to the column and spun for 15 seconds at 9000g for 15 seconds 

followed by the addition of 15 μl DNase (Qiagen, UK) in 70μl  Buffer RDD (Qiagen, UK) for 10 

minutes. 350 μl of Buffer RW1 was added to the column and spun for a further 15 seconds. 

500μl Buffer RPE (Qiagen, UK) was added to the membrane for 1 minute followed by a further 

spin for 15 seconds.  This process was repeated with an additional two minute spin and a 

further 2 minute spin without addition of a buffer to dry the membrane. RNA was eluted into a 

1.5ml microcentrifuge tube with 30μl molecular biology grade water and spun for 1 minute at 

9000g.  RNA was stored at -80
o
C. 

  

5.4.7  Reverse transcription PCR (RT-PCR) 

 

Complementary DNA (cDNA) was generated from total RNA using the cDNA High Capacity 

Reverse transcription kit (Applied Biosystems, USA, 4368814) according to manufacturer’s 

instructions.  Briefly, a master mix, comprising 2.0μl 2x RT Buffer (ABI, USA), 0.8μl 25x dNTPs 

(100mM) (ABI, USA), 1μl RNase inhibitor (Roche, Ambion, USA, AM2682), 3.2μl Nuclease-free 

water per reaction (plus 10% overage) was made. 10μl of master mix was added to 10xl 

(50ng/ml) RNA in 0.2ml PCR tubes (VWR, UK, 732-0548) and mixed by pipetting. Tubes were 

briefly spun (Mini Galaxy, VWR, UK) prior to reverse transcription under the following 

conditions on a MJ Research DNA Tetrad 2 PCR Machine (MJ Research, USA): 

 

25
o
C – 10 minutes 

37
o
C – 120 minutes 

85
o
C – 5 seconds 

 

cDNA was stored at -20C prior to use in PCR reactions. 

 



  

 

247 

 

Double dye quantitative PCR assays 

 

Quantitative PCR Taqman (qPCR) primers and probes were obtained from Applied Biosystems 

for PTGER4, PTGER2, ACTB (Beta actin) and GUSB (Glucuronidase beta). Probes contained a 

FAM reporter dye and a non-fluorescent quencher (TAMRA). A qPCR master mix was 

constructed with 2x absolute QPCR Rox Mix (ABGene, UK AB-1139), 40x Taqman primers and 

Probe Mix and deionized H2O up to the required volume. Reactions were set up in 96 well 

optical plates (Applied Biosystems, USA, N8010560). 96 well PCR was performed on an Applied 

Biosystems 7500 Real Time PCR machine (Applied Biosystems, USA), under the following 

conditions: 

 

 Denature for 20 seconds at 95
o
C 

40 cycles of: 

 95
o
C – 15 seconds 

 60
o
C – 60 seconds 

 Detection range was from cycles 1-40 

 

Results were visualised in SDS software v2.3 (7900HT) or v1.4 (7500) (Applied Biosystems, 

USA). 

 

qPCR data is expressed relative to a housekeeping gene based on the ΔCT method.  The 

geometric mean of triplicate measurements with standard deviations (SD) less than 0.3 (or 

from duplicates if one measurement outside 0.3 SD) was calculated.  Values were considered 

usable if duplicate values with <0.3SD and Ct values <35 were obtained. 

 

5.4.7.1   qPCR Calculations 

 

qPCR calculations were performed relative to housekeeping genes using the ΔΔCT method as 

recommended by Applied Biosystems User Bulletin #1 guide to Performing Relative 

Quantification of Gene expression using real-time Quantitative PCR.  The geometric mean of 

triplicate values of the target was subtracted from the geometric mean of the endogenous 

control to give ΔCT.  ΔΔCT values were calculated by comparison to a reference group.  

Expression of PTGER2 and PTGER4 was calculated by deltaCT method as a percentage of mean 

ACTB/GUSB expression. 
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5.4.8   Expression Microarrays 

 

Gene expression microarray experiments were carried out using the Illumina Sentrix Gene 

expression System (Illumina Inc, San Diego, USA; WG-6 v3.0 expression Beadchip). 1μg of RNA 

was supplied for the assay, quantified using Nanodrop (Nanodrop Technologies, USA) and 

subsequently RNA integrity and quantity assessed using the 2100 BioAnalyzer (Agilent 

Technologies, Santa Clara, USA). Briefly, RNA was reverse transcribed and amplified, labelled, 

hybridized to the Human WG-6 v3.0 expression Beadchip, stained and Beadchip was scanned 

using Illumina’s BeadArray Reader.  These experiments were performed as a service by Barts 

and the London Genome Centre (London, UK). Data was analysed using Illumina BeadStudio 

2.0 software (gene expression module). 
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Chapter 6 Discussion 
 

6.1  Summary of research 

 

This thesis has investigated the contributions of common genetic variants to common disease 

susceptibility and pathogenesis.  The focus of the research has been the intestinal 

inflammatory disorders, coeliac disease and Crohn’s disease together with an inflammatory 

adverse effect (pancreatitis) of one of the major drug classes used in their treatment.  Each 

phenotype arises from interactions between the host immune system and environmental 

factors present in the gut.  In coeliac disease, the intestinal immune system interacts with well-

defined dietary gluten peptides to cause inflammation. In Crohn’s disease the immune system 

interacts with resident intestinal microbiota to cause inflammation. Finally, reports emerging 

during the period of this PhD regarding genetic susceptibility to idiosyncratic drug reactions, 

stimulated interest in pancreatitis occurring in response to azathioprine or 6-mercaptopurine, 

drugs used in the treatment of intestinal inflammatory disorders.  For this phenotype, the 

environmental exposure is precisely defined; pancreatitis is hypothesized to occur through 

interaction of the immune system with the drugs, their metabolites or with a neo-autoantigen 

formed by the interaction of these drugs with pancreatic tissues.  Genetic risk variant discovery 

has been the focus of the research into coeliac disease and azathioprine-induced pancreatitis 

in this thesis whereas investigations into the mechanisms by which DNA sequence variants 

alter cell immunobiology were the subject of research in Crohn’s disease.  Together the work 

uses complementary genetics approaches to understand the genetic basis of these complex 

gastrointestinal phenotypes. 

 

6.1.1  New genetic risk variants in coeliac disease 

 

 The largest part of the work identified multiple new genetic risk variants in coeliac disease, 

providing insight into how genetic liability is distributed across multiple genomic loci.  This 

research has also added detail to the immunogenetic understanding of the causes of coeliac 

disease, by confirming the importance of some well known coeliac immunological pathways, 

but also by drawing attention to others whose role was previously not appreciated.  This large 

collaborative study included 4,533 cases and 10,750 controls in a genome wide association 

study (GWAS) phase and 4,918 cases and 5,684 controls in a follow-up phase, comprising a 
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total of 12 sample collections from 10 nations, all of European ancestry.  The study replicated 

associations in all 14 coeliac susceptibility regions reported in a prior UK coeliac GWAS and 

follow-up studies.  In addition, genome-wide significance (PCombined<5 x 10
-8

) was observed in 

the combined analysis (GWAS + follow-up) for SNPs from 13 susceptibility regions.  In 10 of 

these 13 regions strong candidate genes are found, with known roles in the immune system 

and mostly with T cell functions. In the other 3 regions, no genes mapped to the associated 

linkage disequilibrium block in one case and in the other two cases genes mapping in the 

region do not have proven immune or intestinal functions.  A further 13 risk regions were 

identified from the combined analysis with lesser significance (10
-6

<Pcombined<5x10
-8

  and/or 

PGWAS<10-4 and Pfollow-up<0.01).  Again these regions mostly contain genes with known immune 

functions.  While these regions represent the next tier of associations in the GWAS, a number 

of findings point to additional coeliac risk variants among regions obtaining significance levels 

below this cut-off.  Firstly, after excluding 40 coeliac loci including those reported for the first 

time in this study, there was residual, albeit modest inflation of the tail of the distribution of 

association test statistics in the GWAS data (Figure 3.12).  Secondly, a PubMed abstract mining 

algorithm (GRAIL), using the 27 genome-wide significant regions as a seed, suggested 

enrichment for coeliac loci among SNPs of lesser significance.  Among 49 regions (49 SNPs) 

with 10
-3

 >Pcombined >5x10
-8

 GRAIL Ptext <0.01 was observed for 9 regions (18.4%). As a control, 

only 5.5% (279 of 5033) of randomly selected Hap550 SNPs reached this threshold.  Moreover, 

201 loci (~10%) have GRAIL Ptext <0.05 among loci showing lesser GWAS phase association (10
-

4
<PGWAS<0.01).  The vast majority of these GRAIL-annotated loci contain genes with known 

immune functions, including some known to be associated with other autoimmune diseases. 

 

The 39 non-HLA variants with genome-wide or suggestive levels of significance as defined in 

the study were estimated to account for around 6% of coeliac heritability, supplementing the 

35-40% of heritability accounted for by HLA alleles.  Thus this research provides major insight 

into the genetic risk architecture of coeliac disease.   Risk is determined by large effect variants 

in the HLA, necessary for coeliac disease and tens or more likely hundreds or thousands of 

variants at non-HLA loci.   

 

6.1.1.1  Missing heritability in coeliac disease 

 

HLA and non-HLA coeliac risk variants identified in the GWAS are estimated to account for up 

to 50% of the heritable fraction of coeliac disease occurrence.  However, this is dominated by 
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the contribution of HLA alleles.  39 non-HLA loci account for only around 6% of the total 

genetic variance of coeliac disease (Figure 6.1).    In Crohn’s disease less than 20% of genetic 

variance is explained by known variants using a similar estimation method (Park, Wacholder et 

al. 2010).   Even when restricting the definition of heritability of complex traits to that 

percentage of phenotypic variation due to additive genetic effects, there is a clear “missing 

heritability” problem (Yang, Benyamin et al. 2010). Under this definition, non-additive effects 

(e.g. gene-gene or gene-environment interactions) are excluded.  The explanation for the 

missing additive genetic effects is either that many genetic variants have such weak effects on 

phenotypic variation that they have been below the power of genome wide association studies 

to detect, or that GWAS SNPs are in incomplete linkage disequilibrium with causal variants 

(Yang, Benyamin et al. 2010). By considering the collective effects on phenotypic variation of a 

much larger proportion of GWAS SNPs, including those that do not reach conservative levels of 

significance (e.g. all GWAS SNPs or SNPs with PGWAS<0.5), variants of very weak effect can be 

included in estimating the proportion of total genetic variance accounted for by GWAS SNPs. 

Purcell et al., for example, showed that around a third of schizophrenia liability was accounted 

for by several thousand GWAS SNPs, selected using very liberal association statistic thresholds 

(PGWAS<0.5).  These SNPs predicted schizophrenia liability in independent GWAS sample 

collections but not in GWAS data from other (non-psychiatric) common diseases (Purcell, Wray 

et al. 2009).  Similarly, 45% of human height variance (more than half of the heritable fraction) 

could be accounted for by considering all ~300,000 SNPs in an analysis of height GWAS data, 

compared to just 5% explained by 40 genome wide significant loci (Yang, Benyamin et al. 

2010).  Both studies suggest that the remaining variance could be accounted for by incomplete 

linkage disequilibrium between SNPs that have been genotyped in the GWASs and causal 

variants.  A major implication of these studies is that genetic liability to common diseases 

consists of thousands, rather than tens or hundreds of susceptibility loci.  The true number of 

susceptibility loci with SNPs in the range of effect sizes identified in the coeliac GWAS (Chapter 

3) can be estimated based on the distribution of effect sizes of SNPs already identified, and on 

the power to detect these associations in the original studies.  This analysis was performed for 

Crohn’s disease by Park et al., who estimated that 142 independent loci exist within the range 

of effect sizes seen in current GWASs, accounting for 20% of genetic variance for the trait 

(Park, Wacholder et al. 2010).  Applying the same analysis to coeliac disease here, 253 non-HLA 

loci are here estimated to exist accounting for 16% of the genetic variance of coeliac disease.  

In this analysis, effect sizes for coeliac SNPs were calculated from logistic regression of the 

4,918 follow-up cases and 5,684 controls with sample collection membership as a factorized 
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covariate.  The follow-up collections were used here to avoid potential over-estimation of 

effect sizes in the GWAS discovery data set (“winner’s curse”).  The total genetic variance for 

coeliac disease was estimated from a sibling recurrence risk of 10, based on a log-normal 

distribution of genetic risk for polygenic traits (λsibling
2
 =  e

variance
) (Pharoah, Antoniou et al. 

2002).   

 

The modest effect sizes of individual variants reflect the effect size averaged across the study 

population as a whole.  Each of these variants accounts for tiny proportions of the heritable 

basis of the disease, but could nevertheless, in the right environmental and genetic context 

contribute much more substantially to disease risk in the individual.   It is possible that many of 

these factors will therefore prove to have larger effects on risk in combination with other 

relevant genetic or, particularly environmental factors.  The potential for such effects is 

illustrated by Cadwell et al.’s study of ATG16L1 effects on mouse intestinal inflammation, 

contingent on infection with specific murine norovirus (Cadwell, Patel et al. 2010). An 

alternative is that genetic risk factors act largely independently, contributing truly small effects 

on risk in the individual, with disease arising once a liability threshold is crossed through the 

accumulation of sufficient genetic and environmental risk factors. This is Sewall Wright’s 

liability threshold model of the polygenic basis of binary traits (Wright 1934).  The truth 

perhaps, will lie somewhere in between for diseases like coeliac disease and Crohn’s disease.  

In coeliac disease, it is plausible that multiple genes influencing T cell activation and the 

immunological synapse will act additively, but these effects can only translate to disease if the 

correct HLA-DQ molecule is present on antigen presenting cells.  
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6.1.1.2   Strategies for resolving the allelic spectra in GWAS-identified regions 

 

The above studies have little bearing on the nature of the allelic spectra at GWAS-identified 

loci.  GWAS associations might arise from multiple variants of both rare and more common 

frequencies (Dickson, Wang et al. 2010).  Firstly, genetic variation in these regions will be more 

comprehensively defined by ongoing sequencing projects, including the 1000 Genomes 

Project.  In addition, array-based or in-solution sequence capture and amplification methods 

can enrich genomic DNA for regions of interest (e.g. regions showing GWAS association or the 

exome).  Resequencing of these regions in cases is hoped to be an efficient strategy for the 

discovery of novel, and in particular, rare sequence variants.  Exome sequencing has already 

proven valuable in identifying causal variants in rare Mendelian disorders, with filtering of 

candidate variants based on DNA segments shared by between affected individuals, by 

functional weighting of variants and by exclusion of common variants (Ng, Bigham et al. 2010; 

Ng, Buckingham et al. 2010).  

 

Recently, sequencing of GWAS-identified genes associated with hypertriglyceridaemia led to 

the discovery of an excess of rare variants in all 4 tested genes in cases compared to controls 

(Johansen, Wang et al. 2010).  For this phenotype a model incorporating both common and 

rare variants at the GWAS loci was best able to account for phenotypic variation.  This study 

adds to previous examples of common and rare disease-causing variants occurring in GWAS-

associated genomic regions (e.g. NOD2 – Crohn’s, IFIH1- type 1 diabetes) and provides hope 

that rare causal variants may be discovered by sequencing of coeliac GWAS-identified genes. 

 

Fine mapping, where a much increased marker density in GWAS-identified regions is used to 

genotype samples in an effort to refine the region of association, has not proven to be of great 

value so far. Unpublished data from the WTCCC, where fine-mapping was undertaken for 

GWAS-identified regions originally identified in the WTCCC SNP GWAS in 2007, found that for 

most regions, the region of association could not be significantly reduced (unpublished data 

presented at Genomics of common diseases conference, Boston, 2008).  Imputation of 

markers not directly genotyped in association studies may similarly allow some refinement of 

association signals and testing of whether untyped variants could account for GWAS 

associations. The 1000 Genomes project is providing phased data in some HapMap 

populations for variants with lower minor allele frequencies (down to ~1%) thus potentially 
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enabling imputation of rare variants and testing of whether these variants account for GWAS 

associations.  

 

An alternative approach is to test for association in populations of different ancestry to the 

original GWASs, where the linkage disequilibrium patterns between SNPs differ from the 

discovery GWAS populations.  Most GWASs to date have used European ancestry populations; 

use of African ancestry populations, where linkage disequilibrium blocks are on average 

smaller, may help refine associations.  This strategy would be expected to offer a modest 

reduction in the size of the region of association.  Helgason et al., for example, refined the 

association signal for common variants in the type 2 diabetes TCF7L2 gene region, by 

replication in a West African sample collection (Helgason, Palsson et al. 2007).  Another benefit 

of this approach arises from the fact that variants with similar effect sizes in different 

populations may have markedly different allele frequencies, leading to differences in power to 

detect risk variants.  Thus variants in KCNQ1, a gene that encodes the target of sulphonylureas, 

were detected in two type 2 diabetes GWASs of East Asians (Unoki, Takahashi et al. 2008; 

Yasuda, Miyake et al. 2008).  A meta-analysis of European GWASs showed that these variants 

confer similar risk in Europeans, but due to lower minor allele frequencies of these SNPs in  

Europeans the SNPs did not obtain genome-wide significance (Rosenberg, Huang et al. 2010). 

Thus studies in non-European populations may increase power to detect risk variants that have 

low allele frequencies in Europeans but higher frequencies in non-Europeans. 

 

 

6.1.1.3  Beyond GWAS- alternative strategies for finding coeliac disease variants 

 

For some common diseases, particularly quantitative traits, selection of samples from the 

extreme ends of a trait distribution (super-cases) may be helpful in enriching for disease-

causing variants.  For binary traits like coeliac disease and Crohn’s, defining super cases and 

super controls is more difficult. For these traits, multiply affected families may offer the richest 

hunting ground for novel variant discovery, since extreme familial clustering implies disease 

risk variants of higher penetrance (Bodmer and Bonilla 2008).  Exome or whole-genome 

resequencing in multiply affected families and comparison of the most distantly related 

affected individuals, on the assumption that they will share rare disease-causing variants, is an 

attractive approach, enabling exclusion of large parts of the genome not shared by these 

relatives.  This reduces the set of candidate variants, but additional filters are still needed to 
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reduce the still very large number of variants identified by this approach.  For example, 

selection of variants at sites that show high evolutionary conservation, or variants predicted to 

have functional (e.g. amino acid changing) effects could be used. Exclusion of known common 

variants (e.g. SNPs present in dbSNP) might also be used.  Multiply affected families allow 

testing of co-segregation of candidate variants with disease and offer a potentially powerful 

approach for testing disease association for these variants (Cirulli and Goldstein 2010).  

However, the small numbers of individuals in even the largest multiply affected families mean 

that prior filtering of candidate variants will be necessary.  As yet the power of these strategies 

to identify variants in common diseases is unproven. 

  

 

6.1.1.4  Implications for understanding the immunopathogenesis of coeliac disease 

 

New GWAS-identified coeliac risk regions have provided greater detail of the biological 

pathways involved in the pathogenesis of this disorder by highlighting candidate genes.  The 

dominant theme remains T cell function, re-emphasizing current immunological models of the 

disease, where the key event is presentation of gluten peptides by HLA-DQ2 or -DQ8 

expressing antigen presenting cells to CD4+ T cells.  A number of genes in coeliac risk regions 

are well-placed to modulate this interaction, with roles in T cell co-stimulation and co-

inhibition (CTLA4/ICOS/CD28, TNFRSF14, CD80, ICOSLG, TNFRSF9, TNFSF4) (Table 6.1).   

However, also of interest are pathways notably absent from GWAS findings.  These include the 

IL-15/NK cell mediated responses to gluten peptides and regulation of tight junctions and 

intestinal permeability (e.g. zonulin) highlighted in some frequently cited immunological 

studies (Clemente, De Virgiliis et al. 2003; Maiuri, Ciacci et al. 2003).   The lack of genes 

participating in these processes may indicate that these pathways are of less importance than 

previously supposed or that they have secondary roles that occur after the induction of loss of 

adaptive immune tolerance to gluten.  It is theoretically possible that population genetic 

variation affecting the function of these processes is relatively limited and therefore does not 

translate to variation in coeliac susceptibility, at least within the power of the current study to 

detect. In this scenario, these processes may still have causal roles in coeliac pathogenesis if 

more significant perturbations are driven by environmental factors.  For example, viral 

enteritis causes increased intestinal permeability and this might be an important event in 

coeliac pathogenesis.  However, despite these caveats the genetic evidence should be 

interpreted as indicating that coeliac susceptibility is determined primarily by perturbations in 
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T cell function, presumably affecting immunological tolerance to gluten peptides. Coeliac 

disease requires antigen presenting cells to express DQ2- or DQ8- together with factors that 

permit loss of immunological tolerance to gluten. The site of T cell gluten encounter that leads 

to loss of tolerance in coeliac disease is unknown.  However, this research has drawn attention 

to the thymus, the site of T cell development and tolerance induction for auto reactive T cells.  

THEMIS and RUNX3 are genes with key roles in T cell development in the thymus.  Several 

other coeliac-associated genes are expressed by developing thymocytes (e.g. ETS1, TNFRSF14) 

but also function in mature peripheral T cells.  Understanding the tissue context in which these 

genes contribute to coeliac disease risk is a challenge that will require immunological study 

and a challenge that is currently hampered by the lack of a satisfactory animal model of coeliac 

disease. 
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Table 6.1  T cell co-stimulatory and co-inhibitory genes from the immunoglobulin and 

TNFR superfamilies and associations with coeliac disease (chapter 3).  Genes 

with genome-wide significant or suggestive evidence of association 

highlighted in bold. Table adapted from (Murphy, Nelson et al. 2006) 

 

Molecule (gene 

name) 

Top SNP 

association
a
 

(PGWAS, 

PCombined) 

Expression Ligand (gene 

name) 

Top SNP 

association 

(PGWAS, 

PCombined) 

Expression 

Co-stimulatory immunoglobulin domain containing receptors 

CD28 8.8 x 10
-8

; 

5.79 x 10
-9 

T cells 

(constitutively 

expressed) 

CD80, CD86 5.4 x 10
-7

; 

 8.03 x 10
-9 

B cells, 

monocytes, T 

cells, inducible 

somatic tissues 

ICOS 8.8 x 10
-8

; 

5.79 x 10
-9

 

Activated T cells, 

activated DCs 

ICOSL 3.42 x 10
-5

; 

2.46 x 10
-9 

B cells, 

monocytes, T 

cells, inducible 

somatic tissues 

Inhibitory immunoglobulin domain containing receptors 

CTLA4 8.8 x 10
-8

; 

5.79 x 10
-9

 

Activated T cells CD80, CD86 5.4 x 10
-7

;  

8.03 x 10
-9 

B cells, 

monocytes, T 

cells, inducible 

somatic tissues 

PD1 (CD279) >0.01; nd Activated T cells, 

activated B cells, 

activated DCs 

PDL1 (CD274) 6.20 x 10
-6

; 

4.41 x 10
-6 

B cells, T cells, 

some somatic 

tissues, 

inducible in 

monocytes and 

DCs 

PDL2 >0.01  

BTLA (CD272) 1.57 x 10
-5

; 

6.76 x 10
-6 

T cells, B cells, 

DCs, myeloid cells 

HVEM 

(TNFRSF14) 

4.93 x10
-7

; 

3.28 x 10
-9

 

T cells, B cells, 

NK cells, DCs, 

myeloid cells, 

inducible in 

somatic tissues 

Co-stimulatory TNFRs 

4-1BB 

(TNFRSF9) 

3.06 x 10
-5

; 

9.11 x 10
-8 

Activated T cells, 

activated B cells, 

activated DCs 

4-1BBL 

(TNFSF9) 

>0.01; nd Activated T 

cells, activated B 

cells, activated 

DCs and 

activated 

monocytes 

OX40 

(TNFRSF4) 

1.65 x 10
-3

; 

nd 

Activated T cells, 

activated B cells, 

activated DCs 

OX40L 

(TNFSF4) 

8.15 x 10
-5

; 

1.75 x 10
-6 

Activated T 

cells, activated B 

cells, activated 

DCs and 

activated 

monocytes 
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CD27 

(TNFRSF7) 

1.16 x 10
-3

; 

nd 

T cells, activated 

B cells 

CD70 

(TNFSF7) 

>0.01; nd Activated T 

cells, activated B 

cells, activated 

DCs and 

activated 

monocytes 

CD30 

(TNFRSF8) 

1.36 x 10
-5

; 

8.43 x 10
-4 

Activated T cells, 

activated B cells, 

activated DCs 

CD30L 

(TNFSF8) 

7.51 x 10
-4

; 

nd 

Activated T 

cells, activated B 

cells, activated 

monocytes 

CD40 

(TNFRSF5) 

2.51 x 10
-3

; 

nd 

B cells, DCs CD40L 

(TNFSF5) 

>0.01; nd Activated T 

cells, activated 

DCs 

HVEM 

(TNFRSF14) 

4.93 x10
-7

; 

3.28 x 10
-9

 

T cells, B cells, NK 

cells, DCs, 

myeloid cells, 

inducible in 

somatic tissues 

LIGHT 

(TNFSF14) 

>0.01; nd Immature DCs, 

monocytes, 

activated T cells 

a
 SNP with strongest association in gene region 

nd- not done. No SNPs from locus genotyped in follow-up sample collections 

 

 

Another intriguing finding has been the coeliac GWAS association implicating genes with roles 

in innate immune responses to viruses (TLR7, TLR8, BACH2). BACH2, associated also with type 

1 diabetes, encodes a B cell-specific transcription factor and has been shown to be important 

in mediating innate immune responses to viral nucleic acids, though whether this is the 

important pathway for autoimmune disease pathogenesis is unclear (Hong, Kim et al. 2008; 

Todd 2010). The TLR7/TLR8 association with coeliac disease, however, more clearly points 

towards a role for RNA viruses in coeliac disease.    Epidemiological data exist suggesting that 

rotavirus infection is more common in children developing coeliac disease (Stene, Honeyman 

et al. 2006).  Rotavirus infection and enteroviruses have been implicated in type 1 diabetes and 

recent data implicate viruses in Crohn’s disease (Ballotti and de Martino 2007; Cadwell, Patel 

et al. 2010; Hober and Sauter 2010). This includes the observation that mice expressing 

hypomorphic ATG16L1 have abnormal intestinal inflammatory responses contingent on 

infection with a specific murine norovirus strain. This has provided an example of how 

common variant: environmental interactions may work to generate intestinal inflammatory 

(Cadwell, Patel et al. 2010).   Investigating how the viral response genes that have been 

associated with these diseases (e.g. IFIH1, TLR7/TLR8, BACH2) function on viral interaction is 

likely to be informative in understanding the pathogenesis of these conditions.  It may be 

possible to identify specific viruses that are important in causing coeliac disease by serological 

testing of monozygotic twins who are discordant for coeliac disease for viruses known to infect 

Table 6.1 (cont.) 
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the human gastrointestinal tract.  Viral exposures segregating with disease-affection status in 

twins would be strong candidates for disease causation.  Prospective follow-up of the 

unaffected twin with further interval serology, might identify viral exposures preceding onset 

of the disease and by using monozygotic twins, genetic variation is controlled.   Alternatively, 

viral exposures have also been postulated to be protective against the development of 

autoimmunity (‘the hygiene hypothesis’) and in this model would be expected to cluster in 

unaffected twins. 

 

6.1.2  Function of 5p13.1 genetic variants in Crohn’s disease 

 

A second phenotype investigated in this thesis was Crohn’s disease (Chapter 5).  In this work, a 

genetic risk region previously identified in genome wide association studies was explored.  

Here the aim was to move beyond the association of genetic variants with disease to 

understanding how variants altered gene function and contributed to disease susceptibility. 

The region of Crohn’s disease association on 5p13.1 was devoid of genes. Similar associations 

with gene deserts have been frequent in GWASs for complex disease traits but causal variants 

accounting for these associations have not been identified.  The work here sought to explore 

the hypothesis that the association was caused by cis-acting regulatory sequence variants that 

influenced expression of nearby genes and in particular PTGER4.  The work also aimed to 

determine whether these variants caused changes in the function of the PTGER4 gene product, 

the prostaglandin EP4 receptor and how this might contribute to Crohn’s pathogenesis.   

 

This work validated published observations that Crohn’s disease-associated SNPs correlated 

with expression of the closest known gene, PTGER4, in immune cells.  This has now been 

shown in larger datasets of both lymphoblastoid cell lines and primary human leucocytes.  It 

may in future be helpful to examine cis effects of Crohn’s SNPs on PTGER4  expression in 

immune cell subsets, since it has previously been shown that quantitative trait loci can exert 

tissue-specific effects with opposite positive and negative expression correlations in different 

tissues (McCarroll, Huett et al. 2008). However, since expression quantitative trait loci are 

prevalent in the human genome, such correlations could be co-incidental rather than 

indicating that the Crohn’s association is due to the presence of expression regulatory variants.  

Thus a further aim was to test whether 5p13.1 Crohn’s variants influenced PTGER4 function in 

a biological context relevant to Crohn’s disease.  This is a crucial step in proving that PTGER4 is 

the causal gene in the region.  A pharmacological approach aiming to develop a PTGER4-
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specific assay in primary human immune cells was used here.  Experiments under a variety of 

conditions, assaying a variety of prostanoid-induced cytokine responses, showed the 

limitations of this approach.  The available pharmacological agents appear to lack sufficient 

potency and/or receptor selectivity to assay the prostaglandin EP4 receptor effectively.  

Secondly, cell cytokine responses showed major variation that can not be attributed simply to 

5p13.1 genetic variation.  This variation was sufficient to prevent use of the assay in genetic 

variant – cytokine response correlation studies.   

 

These experiments have illustrated some of the difficulties of moving from genetic associations 

in GWASs to biological interpretations of these associations.  Subtle effects on function are 

very difficult to distinguish in the context of large background variation in responses.  This 

variation is commonly observed in human studies, in contrast to studies of highly inbred 

murine strains.  Controlling this variation, while retaining a biological context that is relevant to 

the disease in question, is extremely challenging.  Large variation in prostanoid responses (with 

PGE2 and EP4 agonists) was observed between individuals, but also between experiments on 

cells from the same individual obtained on different days.  Within-individual variation includes 

unintended variation in experimental conditions (e.g. cell numbers, relative proportions of cell 

subsets in mixed cell populations, cell viability and receptor expression).  Between-individual 

variation also includes genetic variation in genes and pathways that contribute to prostanoid 

responses apart from PTGER4 variation (e.g. LPS responses, EP receptor second messengers, 

cytokine genes etc).  To overcome this variation, one future approach would be to use very 

large numbers of individuals to increase power to detect subtle effects.  Investigating the 

relationship between the 5p13.1 Crohn’s SNPs, PTGER4 expression and EP4 function in the 

same individuals may help to determine whether the genetic risk variants do indeed act 

through increased expression and a proportionate increase in EP4 signalling.   However, the 

true causal relevance of this mechanism would require identification of causal regulatory 

variants that influence transcription factor binding and activation. Moreover, the possibility 

that rare, protein-altering variants in PTGER4 or other local genes are responsible for the 

Crohn’s GWAS association cannot be excluded.  Until a fuller ascertainment of the allelic 

spectrum at this locus has been undertaken, this possibility can not be discounted.   Thus, 

proceeding without knowledge of causal variants at a locus is likely to leave many questions 

unanswered.  Experiments attempting to correlate gene function with tag SNP genotype, 

where causal variants are unknown, are not recommended on the basis of the experience 

presented in this thesis.  Finding causal variants in GWAS regions remains a high priority. 
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6.1.3 Common genetic risk variants for azathioprine/6-mercaptopurine-induced 

pancreatitis 

 

The third phenotype investigated in this thesis was acute pancreatitis triggered by azathioprine 

or 6-mercaptopurine, drugs used in the treatment of intestinal inflammatory disorders.  There 

are both theoretical reasons and emerging empirical data to suggest that some drug-induced 

idiosyncratic reactions have a unique genetic risk architecture that includes common, highly 

penetrant causal variants. Such variants are found infrequently for common diseases, since 

deleterious variants have usually been kept at low frequencies in populations by natural 

selection.  Exceptions may occur where environmental exposures in human populations 

change rapidly, limiting the time for selection to operate, or where balancing selection occurs. 

Thus HLA risk alleles in autoimmune diseases like coeliac disease and type 1 diabetes are 

common and confer substantial relative risks (ORs > 5 for some alleles) (Cucca, Lampis et al. 

2001; Margaritte-Jeannin, Babron et al. 2004).  These alleles are highly population 

differentiated, variation perhaps indicative of natural selection on populations exposed to 

different and rapidly changing patterns of infections.    

 

Drug-induced idiosyncratic reactions offer an extreme model for this process.  Here 

introduction of a novel environmental agent to a naive population can reveal genetically-

determined variation in the host response.  HLA-B*5701 –restricted abacavir hypersensitivity 

represents an extreme example that has led to pre-treatment genetic screening. For 

azathioprine-induced pancreatitis, moderate HLA region association was observed, but will 

require follow-up in additional case and control samples to test whether it is a true 

association. It is possible to conclude already that, even assuming that causal alleles may have 

effects on risk exceeding those of tag SNPs assayed in the GWAS, common predisposing 

variants will have only moderate effects on risk (allelic ORs less than ~ 5).  This falls well short 

of the odds ratios observed for abacavir and flucloxacillin variants and is likely to limit the 

utility of HLA genotyping for clinical prediction of pancreatitis in individuals considered for 

azathioprine or mercaptopurine therapy.  This alone is an important implication of the 

research and constitutes evidence against the hypothesis that common variants of very large 

effect influence the risk of this idiosyncratic reaction.  Thus, it is anticipated that the main 

benefit of this research will be in identifying important biological pathways causing a 

phenotype whose pathogenesis has hitherto been unknown.
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6.2 Prospects for genetic risk modelling of common human 

phenotypes 

 

Risk prediction for complex diseases using GWAS-identified genetic risk variants is currently of 

modest value.  Simple models that assume multiplicative effects of risk variants are likely to 

fall short for accurate disease risk prediction, even if all heritable genetic variation was 

identified (Clayton 2009). Understanding how genetic and environmental factors combine to 

cause disease in individuals may eventually lead to more sophisticated models that 

incorporate these interactions and have greater prediction accuracy, but such models are 

currently a distant prospect. Arguably the greatest area of promise for personalized medicine 

is pharmacogenomics. Several recent examples have identified common genetic variants 

conferring large effects on risk of drug responses. The next few years are likely to see a wealth 

of genomics studies of drug responses and it is anticipated that some variants identified will 

have sufficiently large effects on risk that they can be used in clinical practice. Those areas of 

clinical practice where severe drug toxicities and sub-optimal effectiveness are currently 

accepted because of a lack of alternatives and the severity of the underlying disease may 

benefit most from pharmacogenomic insights. Genetic variation influencing treatment 

responses to pegylated interferon-alpha and ribavirin in individuals chronically infected with 

hepatitis C virus has provided an early illustration of such benefits.  This treatment is 

prolonged, of variable effectiveness and associated with substantial limiting adverse effects.  

Common genetic variation in IL28B affecting sustained clearance of hepatitis C following 

pegylated Interferon-α and ribavirin treatment was identified by genome wide association 

studies (Ge, Fellay et al. 2009).  Prospective replication confirms that the effect size is 

sufficiently large that it may be clinically useful in predicting treatment response (Thompson, 

Muir et al. 2010).  More recently still, an inosine triphosphatase (ITPA) inactivating gene 

variant was found to be protective for ribavirin induced haemolytic anaemia (Fellay, Thompson 

et al. 2010).  At present, these genetic findings have not yet reached clinical practice and we 

can only speculate on their eventual utility.  Individuals with poor response IL28B genotypes 

might benefit from more intensive pegylated interferon and ribavirin, alternative treatments 

or an earlier discontinuation of therapy in the absence of an early virological response.  

Ribavirin dose might also be usefully adjusted according to ITPA genotype.  It may prove 

possible to pharmacologically inhibit inosine triphosphatase to protect against haemolytic 

anaemia in individuals with functional ITPA receiving ribavirin.  These findings illustrate the 

promise of pharmacogenomics. It is hoped that in inflammatory bowel disease, larger 
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pharmacogenomic studies of azathioprine and other immunosuppressant and biologic 

therapies will identify similarly helpful genetic risk variants influencing drug efficacy and 

adverse effects. 

6.3 Overlap between genetic risk variants in intestinal 

inflammatory diseases and between autoimmune diseases 

 

Extensive sharing of genetic risk regions between chronic immune mediated diseases has been 

a major finding of the genome wide association study era.  The true extent of sharing is not yet 

clear. Sampling variation between studies undoubtedly contributes to variation in loci reaching 

defined levels of significance.  This can be illustrated by retrospectively estimating the power 

of an  association study to detect the SNP associations identified the original discovery study, 

using the effect sizes (odds ratio) observed in an independent collection.  For coeliac disease, 

for example, two new loci approached genome-wide significance in the GWAS phase 

(rs11221335-ETS1 PGWAS= 4.16 x 10
-11

; rs1250552-ZMIZ1 PGWAS=5.80 x 10
-8

). Using odds ratios 

from the follow-up collections, it was estimated that the power to detect these associations at 

genome-wide significance was 0.97 for ETS1 but only 0.27 for ZMIZ1 in a study of the size of 

the combined GWAS and follow-up (25,000 samples).   This, and differences in the importance 

of individual loci in one disease versus another is likely to contribute to underestimation of the 

true degree of genetic sharing between autoimmune diseases.  Instances where regions 

showing association in one disease have been systematically tested in a second disease offer 

the best opportunity to estimate the degree of sharing.  Using this approach in a coeliac 

disease-type 1 diabetes study, around half of 28 risk regions studied showed strong or 

suggestive evidence of association in both diseases (Smyth, Plagnol et al. 2008).  Similarly, 

testing Crohn’s disease SNPs in ulcerative colitis led to an estimate of sharing at around half of 

the loci tested (McGovern, Gardet et al. 2010).  In both cases the degree of sharing is greater 

than the degree of epidemiological overlap, suggesting perhaps that environmental variation 

plays a relatively greater role in determining disease type than genetics.  Under this model 

genetics may contribute core autoimmune/chronic immune disease susceptibility, with 

additional mainly environmental factors determining which disease(s) develop.   

 

A further interesting finding emphasized in the type 1 diabetes-coeliac study, was that 

associated variants at risk regions quite often differed between diseases and in some cases a 

SNP allele conferring risk to one disease conferred protection to the other (e.g. rs917997-

IL18RAP and rs1738074-TAGAP).  This adds further complexity, suggesting that while genetic 
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variation at a locus may influence more than one disease, the mechanism may be different, 

perhaps again relating to different environmental exposures interacting with the gene in the 

different diseases.  Such opposite effect associations may arise from a causal variant 

conferring risk or protection of disease depending on environmental exposure or may be due 

to different causal variants in each disease being tagged by the same SNP.  

 

In coeliac disease examples of truly coeliac specific genetic risk regions have not been easy to 

identify.  For example, the LPP gene region which seemed to be coeliac disease specific 

following the first wave of autoimmune disease GWASs, has recently been strongly associated 

with vitiligo (same SNP- rs1464510) with additional suggestive evidence of association in 

juvenile and rheumatoid arthritis since the publication of the coeliac GWAS (chapter 3) 

(Coenen, Trynka et al. 2009; Hinks, Martin et al. 2010; Jin, Birlea et al. 2010).  Nearly all regions 

examined contain genes that function in the immune system, with no genes with obvious 

intestinal specificity.  Even the region containing ITGA4 encoding alpha 4 integrin, one half of 

the α4β7 gut-homing T-cell expressed integrin, does not appear specific to intestinal diseases.  

This region has been associated with ankylosing spondylitis and it is also notable that ITGA4 is 

not necessarily the causal gene in the region (Reveille, Sims et al. 2010).  These findings 

therefore support the idea that the non-HLA component of the genetic predisposition to 

coeliac disease contributes a T-cell orientated general autoimmune tendency, with specific 

HLA alleles and environmental factors (gluten, viruses, breastfeeding) required to trigger the 

coeliac phenotype.  Understanding of the precise causal variants in GWAS regions and their 

effects in different diseases may in future allow refinement of this model and show important 

differences in the way causal variants at shared risk regions act in the pathogenesis of different 

autoimmune diseases. 

 

6.4  Sex bias in coeliac disease. 

 

The cause of the female preponderance of coeliac disease is unknown and has not been 

explained by the genetic findings presented in this thesis.  A female preponderance of HLA-

DQ2/-DQ8 has previously been reported, but was not observed in our data (Megiorni, Mora et 

al. 2008; Dubois, Hunt et al. 2009).  Female sex hormones are known to modulate immune 

responses and this may explain increased female coeliac incidence after puberty does not 

easily explain the childhood female coeliac excess seen in population based studies (Bingley, 

Williams et al. 2004; Fish 2008). 
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6.5  Epigenetics 

 

Epigenetics refers to heritable non-DNA sequence variations. This includes changes that persist 

across cell replications and less commonly trans-generationally. Such changes include 

methylation of CpG dinucleotides and histone modifications that affect DNA folding and 

availability for transcription factor binding.  CpG islands are 0.5 to 5kb long sequences of GC 

dinucleotide repeats, often found in gene promoters.  Methylation of CpG islands  correlates 

negatively with gene expression (Feil and Berger 2007). Human diseases can result from 

heritable epigenetic modifications, the classic examples involving specific gene methylations 

and aberrant transcription in Beckwith-Wiedemann, Prader-Willi and Angelman syndromes.  

However, in common diseases, the importance of epigenetics is less certain. 

 

There has been discussion in the literature as to whether heritable epigenetic changes might 

contribute to the ‘missing heritability’ discussed above.  However, most epigenetic changes are 

not inherited across generations, and indeed those that do and persist for several generations 

ought to be highly correlated with genetic markers used in GWASs and therefore would not be 

‘missing’ from heritability estimates (McCarthy and Hirschhorn 2008). On the other hand 

epigenetic changes that decay rapidly across generations ought not to contribute significantly 

to overall heritable risk (Slatkin 2009). Thus, it seems unlikely that trans-generational 

epigenetic modifications contribute a large part of the missing heritability observed from 

GWAS data. 

 

6.6  Concluding remarks 

 

New tools and bioinformatics resources in genetics have enabled a leap forward in the study of 

complex human phenotypes.   These advances extend not just to increased understanding of 

the genetic basis of these disorders, but to fundamental insights into their biology and 

pathogenesis.  The introduction of whole-genome assays has led to a shift away from 

hypothesis driven experiments, to relatively unbiased screening approaches.  Human genetic 

variation is finite and not rapidly changing.  For the first time we have had tools to assay a 

significant proportion of this variation in large numbers of individuals using whole genome SNP 

genotyping microarrays. These technologies continue to advance, with newer platforms 

containing millions rather than hundreds of thousands of SNP assays.  Using Park et al.’s 

INPower method, extrapolating from the number of loci detected in the current coeliac GWAS, 
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it was estimated that 105 loci would obtain genome wide significance (P < 5 x 10
-8

) in a 50,000 

sample GWAS or 197 loci in a 100,000 sample GWAS (Park, Wacholder et al. 2010).  Larger 

GWASs in coeliac disease (and IBD) are therefore likely to enable further new variant 

discovery, but achieveable sample size inevitably will be a major factor limiting the 

identification of further susceptibility loci through the GWAS approach. 

 

Over the time period of the research presented in this thesis, rapid improvements in DNA 

sequencing technologies and reductions in cost have steered geneticists towards experiments 

that offer the hope of much more comprehensively assaying genetic variation contributing to 

common diseases.  Initially, these efforts will be restricted to high yield targets in the genome 

(e.g. GWAS-identified regions, the exome), but eventually whole genome sequencing will 

become a viable strategy for disease association studies.  One hope is that these approaches 

will identify causal genetic variants with larger effect sizes than those observed in GWASs and 

therefore will overcome some of the power limitations imposed by foreseeable sample sizes.  

In some cases, sequence level data is expected to reveal obvious causal variants that affect, for 

example, amino acid sequence and protein function. However, in other cases, we can 

anticipate that causal variants will not be easily recognized from DNA sequence alone.  The 

consequences of sequence variation in regulatory elements, for example is not easily 

predicted. Inevitably therefore, researchers will need to again employ hypothesis driven 

approaches to identify the mechanisms by which sequence variants influence cell biology. At 

present, there are few obvious short cuts to the goal of understanding how genes change 

biology to cause complex diseases. Successes so far have employed a variety of molecular 

biology techniques based on hypotheses pertinent to the genes and diseases in question 

(Cadwell, Liu et al. 2008; Saitoh, Fujita et al. 2008; Cadwell, Patel et al. 2010; Cooney, Baker et 

al. 2010). 

 

Future studies will explore the function of GWAS region candidate genes in a variety of 

models.  Gene knockout and gene manipulation studies in mice can allow rapid evaluation of 

loss of gene function in a variety of tissues including the intestine (more difficult to study in 

humans).  Inbred mice strains enable precise control of genetic variation that can confound 

studies in humans. On the other hand experience with NOD2, for example, cautions that 

functional interpretations of these mouse models does not always readily translate to humans:  

opposing effects have been observed in humans versus mice (Maeda, Hsu et al. 2005; van 

Heel, Ghosh et al. 2005).   Thus, complementary approaches in humans will be critical in 
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supporting mouse findings.  These studies may include gene silencing through siRNA both in 

the simplest models (e.g. human cell lines) and more biologically relevant, but complex 

settings (e.g. primary human immune cells, ex vivo intestinal mucosa).  Non-diseased 

individuals offer the opportunity to study the function of these genes without the confounding 

effects of inflammation.  However, in some cases it may be preferable to use tissues or cells 

from disease-affected individuals.  For example, in coeliac disease, peripheral T cells and 

intestine-derived T cell lines and clones respond to stimulation with gluten peptides presented 

by antigen presenting cells (Lundin, Scott et al. 1993; Gjertsen, Sollid et al. 1994; Anderson, 

Degano et al. 2000).  An immunodominant gluten peptide could be used to evaluate non-HLA 

coeliac gene function in this model, ensuring that HLA types are matched.  In the absence of 

the knowledge of causal variants such studies could employ gene silencing (siRNA) or inhibition 

of gene products (e.g. monoclonal antibodies).   

 

There is much work to be done.  History shows that the journey from genetic association to full 

understanding of function may take many years: the HLA association with coeliac disease was 

first identified in 1972, but it was only in the last decade that the interaction between gluten 

peptides and HLA DQ2 and DQ8 heterodimers was been fully solved (Falchuk, Rogentine et al. 

1972; Sollid 2002). Efforts to identify genetic variants causing the new disease associations and 

efforts to understand the function of implicated genes should proceed in parallel.  This 

research presented here offers many new avenues for future enquiry in both these directions.  

There is real hope that, with serendipity no doubt playing its part, this will lead to a more 

thorough understanding of causes of these complex human disorders.
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Summary

Recent advances in immunological and genetic research in coeliac disease

provide new and complementary insights into the immune response driving

this chronic intestinal inflammatory disorder. Both approaches confirm the

central importance of T cell-mediated immune responses to disease patho-

genesis and have further begun to highlight other relevant components of the

mucosal immune system, including innate immunity and the control of lym-

phocyte trafficking to the mucosa. In the last year, the first genome wide

association study in celiac disease led to the identification of multiple new risk

variants. These risk regions implicate genes involved in the immune system.

Overlap with autoimmune diseases is striking with several of these regions

being shown to confer susceptibility to other chronic immune-mediated dis-

eases, particularly type 1 diabetes.
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Introduction

Coeliac disease is a common intestinal inflammatory condi-

tion with prevalence estimates of 0·5–1% in populations of

European ancestry [1].Dietary prolamins (storage proteins in

grain) from wheat, rye and barley trigger inflammation in the

small intestine in susceptible individuals. Heritable genetic

variation is a major determinant of this susceptibility, with a

greater genetic contribution than for many common complex

diseases. Until very recently, human leucocyte antigen DQ

(HLA-DQ) gene variants have dominated our understanding

of this genetic susceptibility and their identification has led to

an immunological appreciation of how DQ heterodimers

present gluten epitopes and drive T cell reactivity in coeliac

disease. The identification of non-HLA susceptibility genes

has accelerated dramatically in the past year, following the

first genome-wide association study (GWAS) in coeliac

disease. This study and a follow-up identified at least eight

new genomic regions with robust levels of disease association

[2,3]. Seven of these regions harbour genes with known

immune functions and many are also implicated in confer-

ring susceptibility to other autoimmune diseases.

This review is a synthesis of our current understanding

of the genetics and immunology of coeliac disease. Major

advances have been achieved in coeliac disease, in part

because the antigen is well defined (cereal gluten), target

organ (small intestine) samples are readily obtained and a

strong genetic component to susceptibility has enabled

disease gene identification. These advances have many

general relevant findings for other human chronic immune-

mediated diseases.

Epidemiology

Serological screening of populations in Europe and regions

with a high proportion of European descendents (North and

South America, Australasia) suggests a coeliac disease preva-

lence of approximately 0·5–1% in adults [1,4]. More limited

data from North Africa and South-west Asia suggest a similar

high prevalence of coeliac disease in these areas [5]. In

central Africa and the Far East there have been no large

seroprevalence studies, but overt coeliac disease is extremely

rare [6–8]. A study from Burkina Faso screened 600 indi-

viduals, all of whom ate wheat, but found no individuals

with positive coeliac serology. Furthermore, no individuals

carried HLA-DQ2 and only one HLA-DQ8 [9]. The Sawa-

hari population of North Africa have the highest reported

prevalence of coeliac disease worldwide (5·4%) mirrored by
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a very high carriage of the coeliac susceptibility marker HLA

DQ2, whereas the prevalence of HLA DQ2 is very low in the

Far East [10,11]. Genetic differences across populations

(particularly in HLA types) clearly contribute to the different

observed population prevalences.

Grain consumption also broadly parallels coeliac preva-

lence, being low in the Far East and sub-Saharan Africa [11].

Furthermore, there is some evidence that the dose of gluten,

particularly in early childhood, may be an important deter-

minant of lifetime susceptibility. Countries in which infant

gluten consumption is low (Denmark, Estonia, Finland)

report a lower infant (and adult) incidence of coeliac disease

than countries with a high infant gluten consumption

(Sweden) [12,13].

Adult coeliac disease prevalence has been increasing over

the last few decades [1]. Improved clinical ascertainment

contributes (especially in the United States), although some

studies suggest a true increase in seroprevalence [14]. Similar

increases in prevalence have occurred in other chronic

immune-mediated diseases, particularly type 1 diabetes,

implicating recent changes in shared environmental factors

[15]. These factors remain unknown, although interest has

focused logically upon exposures occurring in early child-

hood, which might be critical in determining lifetime

autoimmune disease risk. In coeliac disease, onset can occur

at any age but the peak incidence is between 9 and 24

months, following the introduction of gluten into the diet

[1]. Breast feeding during gluten introduction has been

shown to reduce susceptibility, suggesting that tolerance to

gluten can be influenced by factors in breast milk [16]. Tol-

erance to gluten might also be influenced by the context in

which it is encountered by the mucosal immune system in

early life. Childhood intestinal infections have been pro-

posed as a factor that could promote loss of tolerance to

gluten, possibly because of disrupted intestinal epithelial

barrier function. Furthermore, inflammation up-regulates

tissue transglutaminase (tTG), a key enzyme in coeliac

disease required for the generation of immunogenic epitopes

from gluten [17]. There are no animal models of coeliac

disease to test this hypothesis and direct evidence for the role

of intestinal infections is lacking. However, epidemiological

studies have shown that coeliac disease is more common in

children born in summer months, possibly because of the

higher incidence of viral enteritis in winter months when

these children start eating gluten [18] Case–control studies

have also suggested that increased exposure to infant enteral

infections may confer modest increased susceptibility [odds

ratios (ORs) of 1·4–1·5] [19,20]. Finally, one prospective

study measured episodes of rotavirus infection by serology

and found a modest increase in coeliac autoantibody inci-

dence in infants exposed to multiple infections [21].

Although the development of coeliac disease has

been considered a permanent gluten-sensitive enteropathy,

needing lifelong treatment, recent reports suggest that some

children can resolve this intolerance at least partially when

kept on a gluten-containing diet [22,23]. These children may

have normal small intestinal histology in adulthood, suggest-

ing that coeliac disease can remit or enter a quiescent phase,

with immunological tolerance to gluten, following initial

clinically overt disease. How frequently this phenomenon

occurs is unclear; much more research in this area is neces-

sary – including whether such remission might be induced

therapeutically.

Evidence for genetic susceptibility

Closely related individuals with coeliac disease have a higher

disease concordance than unrelated individuals (familial

clustering). Monozygotic twins have disease concordance

rates of 75% compared with 11% in dizygotic twins [24].

Sibling relative risk ratios (ls) provide the best estimates of

familial clustering, controlling for population prevalence.

For coeliac disease, sibling relative risk ratios of between 20

and 60 have been reported [25–27]. This is higher than for

most other polygenic immune-mediated disorders such as

type 1 diabetes (ls = 15), rheumatoid arthritis (ls = 2–8) or

Crohn’s disease (ls = 27) [28].

Immunogenetics of the HLA

The HLA complex is a highly polymorphic 4 Mb region on

chromosome 6p21, containing more than 200 genes and over

3000 known alleles [29]. HLA class II genes (DP, DQ and DR)

are involved in exogenous peptide antigen presentation to T

cells. The first reports of association with coeliac disease used

serological methods to identify B8 and later DR3 as suscepti-

bility variants [30,31]. The B8 and DR3 molecules are

encoded by alleles on a 6Mb extended haplotype (A1-B8-

DR3-DQ2) present in 10% of northern Europeans [32].

Interestingly, other autoimmune diseases are associated with

this haplotype, including type 1 diabetes and autoimmune

thyroid disease. Subsequent studies have pinpointed DQ2

and in particular the combination of HLA-DQA1*0501 and

DQB1*0201 encoding the HLA-DQ2 (a1*0501,b1*0201)

heterodimer as the cause of the coeliac disease association

[33]. This heterodimer can be encoded both in cis (by alleles

on the same haplotype) or in trans (one subunit each from

paternal and maternal haplotypes) (Table 1, Fig. 1). More-

over several studies show that homozygosity for the cis hap-

lotype or possessing a second DQB1*02 allele increases

coeliac disease susceptibility further [37,38]. The second

B1*02 allele is usually inherited on the DR7-DQ2 haplotype

carrying DQB1*0202 and DQA1*0201 (DQ2·2), but posses-

sion of this haplotype alone does not confer coeliac suscepti-

bility (Table 1).

An explanation for the HLA gene-dosage effect was pro-

vided by an in vitro study demonstrating that the level of

proliferation and cytokine responses of gluten-reactive T cell

clones depends on DQ type and gene dose [35]. Vader et al.

used allogeneic peripheral blood mononuclear cells to
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present gluten epitopes to gluten-specific T cell clones

and showed that T cell responses were highest for

DQ2·5 homozygotes, intermediate for DQ2·5/2·2, lower for

DQ2·5/x heterozygotes and lowest for DQ2·2. Thus DQ2·2 in

the presence of DQ2·5 can augment T cell stimulation

through DQ2-mediated antigen presentation. DQ2·2 alone,

which is not associated with coeliac disease, was able to elicit

strong T cell responses but only through presentation of a

restricted subset of the gluten epitopes tested. This suggests

that the DQ2 contribution to coeliac disease depends upon its

ability to present multiple closely related gluten epitopes – the

ability of DQ2·2 molecules to present a small subset of

epitopes exerts effects too weak to cause disease.

The HLA-DQ2·5 molecule encoded either in cis or in trans

is present in around 90% of coeliac patients of northern

European origin [39]. The majority of the remainder carry

HLA-DQ8 (genetically DQA1*03, DQB1*0302) [40,41]. A

large European collaborative study found that of those that

lack both DQ2 and DQ8, only four of 1008 coeliac patients

had neither the alpha nor beta chain of the DQ2 heterodimer

[41] This has led to a model of coeliac disease pathogenesis

in which HLA DQ2/8 is necessary but not sufficient, as HLA-

DQ2 is present in 30% of healthy Caucasian populations

[39]. The proportion of sibling relative risk attributable to

known HLA variants is estimated to be between 30 and 40%,

indicating that non-HLA DQ variants contribute to coeliac

disease susceptibility [3,25,26]. Within the HLA complex

itself there are many other genes with immune functions

which might also contribute to the observed association

signal. However, the high linkage disequilibrium (LD) that

exists between genetic variants in this region is an obstacle to

teasing out the true causal associations [42]. Two studies that

have controlled for LD to DQ have not found evidence of

additional HLA risk variants, although statistical power was

limited [41,43].

The genetic loci harbouring variants that account for the

remaining 70% or so of unexplained familial clustering in

coeliac disease are the targets of gene finding studies. Two

complementary approaches have been used: genetic linkage

and association studies (Table 2).

In general, findings from linkage and candidate gene

studies in coeliac disease, with the exception of the HLA

Table 1. Classical human leucocyte antigen (HLA) DQ genotypes associated with coeliac disease and gene dosage effects.

Serological type Chromosome copy DQ2 genotype DQ type Coeliac susceptibility

DR3–DQ2/ i DQA1*0501–DQB1*0201/ DQ2·5 cis homozygote High

DR3–DQ2 ii DQA1*0501–DQB1*0201

DR3–DQ2/ i DQA1*0501–DQB1*0201/ DQ2·5 cis + DQ2·2 High

DR7–DQ2 ii DQA1*0201–DQB1*0202

DR3–DQ2/

other

i DQA1*0501–DQB1*0201/

other

DQ2·5 cis heterozygote Moderate

ii

DR5–DQ7/ i DQA1*0505–DQB1*0301/ DQ2·5trans Moderate

DR7–DQ2 ii DQA1*0201–DQB1*0202

DR7–DQ2/

other

i

ii

DQA1*0201–DQB1*0202/

other

DQ2·2 Nil

DR4–DQ8/

other

i DQA1*0301–DQB1*0302/

other

DQ8 Moderate

ii

Disease causing alleles highlighted (see also Fig. 1). Adapted from van Heel et al. [34]; DQ2 type naming after Vader et al. [35].

DQ2

β1*02 α1*0501

DQ2·5cis DQ2·5trans

DR5–DQ7DR3–DQ2

or

0201 0501 0301 0501

Other

0202 0201

DR7–DQ2

β1*0302

DQ8

α1*0301

DR4–DQ8

0302 0301

Fig. 1. Classical haplotype combinations encoding the human

leucocyte antigen (HLA)-DQ2 and -DQ8 heterodimers. Adapted from

Sollid [36]. HLA proteins at the cell surface, and structure of the

protein encoding DNA region, are shown.
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region, have not been replicated consistently. Linkage

regions identified include 5q31–33 and 19p13.1, although

these remain tentative and lack robust replication [44,46].

MYO9B, encoding the myosin IXB protein, has emerged as a

candidate gene from further studies of the 19p13.1 linkage

region, although replication of this finding has been incon-

sistent [48–51]. A candidate gene approach identified an

association in the CTLA4 region, a gene on chromosome 2q

encoding cytotoxic T lymphocyte antigen 4 [47]. CTLA-4 is

expressed on T cells and is a receptor for B7 molecules that

inhibit T cell activation. Replication studies of the CTLA4

association have been somewhat inconclusive [34]. There-

fore, prior to the first GWAS in 2007, despite intensive efforts,

no genetic susceptibility loci other than HLA DQ had been

definitively identified.

Human leucocyte antigen-DQ-restricted T cells

Coeliac disease has multi-systemic features, but the predomi-

nant lesion mirrors the exposure of the small intestine to

dietary gluten. Several lines of evidence implicate a T cell-

orchestrated immunopathogenesis. Upon gluten challenge of

small intestinal biopsies from treated (i.e. on a gluten-free

diet) coeliac disease patients, infiltration of the lamina

propria (LP) with (predominantly CD4+ ab) T cells occurs

within hours, followed by crypt hyperplasia and villous

atrophy [52]. This temporal sequence alludes to the central

importance of T cells in coeliac disease. In untreated disease T

helper 1 (Th1) cytokines are highly expressed in the intestinal

mucosa, particularly interferon (IFN)-g, supporting the

concept of a Th1-driven T cell-mediated disorder [53].Analy-

sis of LP infiltrating lymphocytes confirms not only IFN-g

expression in a high proportion, but also expression of the

Th1 transcription factor T-bet [54]. The Th1 bias of CD4+ T

cells probably depends less on interleukin (IL)-12 in coeliac

disease than in other inflammatory conditions. IL-12 is

present in very low levels in coeliac disease mucosa [55,56]

although other Th1-inducing cytokines (IL-18 and IFN-a)

are increased [56–58]. Dendritic cells isolated from the intes-

tinal mucosa in coeliac disease also express increased levels of

IL-18 and IFN-a but lack IL12p40 [55]. Immunophenotyp-

ing of DQ2+ antigen-presenting cells in treated versus

untreated coeliac disease intestinal biopsies suggest a large

increase in CD11+ myeloid dendritic cells in active disease

[55,59]. These cells efficiently present gluten peptides to CD4

T cells inducing proliferation and IFN-g responses [59].

The gluten-responsiveness of CD4 T cells in coeliac

disease was first demonstrated in T cell lines and clones

isolated from intestinal mucosa [60,61]. These cells are not

found in non-coeliac DQ2- or DQ8- controls but in coeliac

disease proliferate and secrete IFN-g when co-cultured with

antigen-presenting cells in the presence of a variety of pep-

tides derived from gluten. These studies show that gluten

peptides activate T cells in the intestinal mucosa exclusively

through presentation by the disease-associated DQ2- or

DQ8- ab heterodimers [60,61].

Gluten epitopes and the role of tTG

While there is heterogeneity between patients with coeliac

disease in the gluten epitopes to which their T cells respond,

some epitopes are immunodominant and elicit T cell

activation in almost all coeliac individuals [62,63]. These

responses have been demonstrated both in intestine-derived

T cell lines or clones and in primary T cells isolated from

peripheral blood following gluten challenge, supporting

Table 2. Gene-finding approaches in coeliac disease.

Study type Method Advantages Disadvantages Examples

Linkage studies Test co-segregation of

genetic markers with

disease phenotype in

affected relatives to

establish broad regions

of genome within which

causal variants reside

Able to detect rare variants,

and structural variants,

if highly penetrant

Low power to detect weakly

penetrant alleles

5q31–33 [44,45]

19p13.1 (?MYO9B) [46]

Low genomic resolution

Require large numbers of

affected families

Candidate gene

association studies

Compare frequencies of

variants in candidate

genes chosen on biologi-

cal grounds or from

knowledge of linkage

regions

May pinpoint genes from

regions of linkage

Low power to detect rare

variants

CTLA4 [47]

Greater power to detect

weakly penetrant alleles

Historically generated

many false positives

Genome-wide

association studies

Compare frequencies of

~105 single nucleotide

polymorphisms dis-

tributed throughout the

genome between cases

and controls

High resolution: able to

pinpoint small region of

genome

Low power to detect rare

alleles

IL2–IL21 region, RGS1,

IL18RAP, SH2B3 [2,3]

Power to detect weakly

penetrant alleles

Low power to detect

structural variants

Expensive
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their contribution to disease in vivo [63,64]. T cell epitopes

identified to date are derived from various gluten proteins,

including a-gliadins, g-gliadins and low molecular weight

glutenins [62,65–67]. The peptide-binding groove structure

of DQ2 and DQ8 dimers has been characterized and some

of the constraints this places on selection of epitopes for

binding DQ2 or DQ8 are known [68]. Both DQ2 and DQ8

dimers have preferences for negatively charged residues at

key positions in the core peptide-binding groove [69–71].

Negatively charged residues are uncommon in gluten

peptide sequences, but deamidation of glutamine residues to

negatively charged glutamate can increase drastically the

immunogenicity of gliadin peptides [67]. X-ray crystallo-

graphic analysis of DQ2-peptide interactions supports the

importance of selective deamidation of glutamine residues

in favouring peptide binding for gluten peptides [72,73].

tTG, an enzyme first linked to coeliac disease by the

discovery that it is the target of autoantibodies used in diag-

nosis, can catalyse this deamidation [74,75]. tTG is likely to

perform this function in vivo, as it highly expressed in the

small intestine, up-regulated in inflammation and favours

deamidation of glutamine residues rather than transamida-

tion under the acidic conditions which exist in the proximal

small intestine [76]. More recently, a direct pathogenic con-

tribution of tTG antibodies has been proposed, with in vitro

studies suggesting that these antibodies can both activate

monocytes by binding Toll-like receptor 4 and inhibit angio-

genesis by altering tTG function [77,78]. Such effects, if

substantiated, may be a mechanism driving extra-intestinal

manifestations in coeliac disease, because tTG autoantibody

deposits have been observed in affected organs (e.g. liver,

brain) remote from the site of gluten exposure in the

intestine [79,80].

A further important characteristic of gluten epitopes is a

high proline content [65]. This reflects the inability of

human digestive enzymes to break amide bonds between

proline residues and adjacent bulky hydrophobic amino

acids, such that gluten peptides can reach the intestinal

mucosa intact [65,81].

The innate immune system in coeliac disease

Both in vivo studies and studies of gluten challenge of intes-

tinal biopsies have shown that effects on the mucosa begin

within a few hours [82–84]. This rapid onset cannot be

accounted for easily by the (presumably slower) mechanism

of gluten peptide presentation to CD4+ T lymphocytes and

has led to interest in a role for the innate immune system in

coeliac disease.Further support for this hypothesis came from

the observation that some gliadin peptides (p31–p43 a

gliadin) that do not elicit classical DQ-restricted CD4+ T cell

responses can exert toxic effects on the epithelium [85]. IL-15,

which is highly expressed in LP macrophages and intestinal

epithelium, appears to be a crucial intermediary of these

effects. IL-15 enhances intra-epithelial lymphocyte (IEL)

proliferation, cytotoxicity (versus epithelial cells) and cytok-

ine release, with increases in IFN-g and granzyme B [86,87]

Furthermore, exogenous application of IL-15 partly repro-

duces the effects of gliadin challenge, whereas anti-IL-15

antibodies abrogate the effects of gliadin [87].

A feature of coeliac disease is expansion of the IEL popu-

lation, as well as an inflammatory cell infiltrate deeper in the

intestinal LP. The IELs in coeliac disease comprise increased

populations of both CD8+ TCRab lymphocytes as well as gd

(CD4-CD8- or CD8+) T cells that can induce enterocyte apo-

ptosis directly [88]. Some intra-epithelial T cells have been

shown to demonstrate aberrant expression of natural killer

(NK) lineage receptors and can perform NK-like functions

including T cell receptor-independent killing of enterocytes

in active coeliac disease [88–90]. These effects are stimulated

by gluten peptides including p31–43 a-gliadin and include

the induction of expression of the cell surface stress molecule

major histocompatibility complex class I chain related gene A

on enterocytes and its receptor NKG2D on IELs [90]. Mecha-

nistic details of the recognition of these apparently ‘innate’

peptides are unclear.

Genome-wide Association Studies in coeliac disease

Current models of complex disease estimate that that the

majority of genetic variation contributing to disease suscep-

tibility is carried by multiple variants of weak effect size.

Variants with modest effects are below the threshold of detec-

tion of even large linkage studies and candidate gene associa-

tion studies have rarely proved successful as a primary

approach to gene finding. GWAS offer major advantages both

in power to detect variants with modest effects and in defining

smaller genomic regions in which causal variants reside [91].

Nevertheless, the power of GWAS depends upon many vari-

ables including sample size, number of single nucleotide

polymorphisms (SNPs) tested, ORs conferred by associated

SNPs, model of inheritance (e.g. dominant, recessive) and the

minor allele frequency. The Wellcome Trust Case Control

Consortium GWAS estimated power of 80% to detect SNPs

with minor allele frequencies (MAFs) > 5% and OR = 1·5

using 2000 cases and 3000 controls [92]. Rare alleles with

important effects may be missed, even in large studies, par-

ticularly as more than half of SNPs in the human genome are

estimated to have MAFs < 5% [93]. Furthermore, structural

variation, which may also account for a large proportion of

human genetic variation, is not well captured by the first

generation SNP arrays used in recent GWAS, which tag

mainly common haplotypes [94,95].

The first GWAS in coeliac disease tested over 300 000

SNPs in 778 UK coeliac cases and 1422 controls [2]. This

study confirmed the known association of coeliac disease

with the HLA region, with the strongest association at a SNP

tagging HLA DQ2·5 cis. There was weak evidence of associa-

tion in the previously reported CD28–CTLA4–ICOS region

(P = 0·007), but not the MYO9B region.
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New coeliac disease genes

IL2–IL21 region

Outside HLA, the strongest marker from the recent UK

coeliac disease GWAS mapped to chromosome 4q27

(P = 2 ¥ 10-7), a finding replicated in further UK, Dutch

and Irish cohorts [3]. The associated SNP tags a ~700 kb LD

block encompassing four genes (ADAD1, KIAA1109, IL2 and

IL21), such that variants in any of these genes could explain

the genetic association. This region is emerging from other

studies as a common autoimmune disease locus (see below).

The most compelling biological candidates within the LD

block are IL2 and IL21.

Interleukin-2 and IL-21 are members of a cytokine family,

sharing the same g chain subunit in their receptors [96].

These cytokines have multiple and diverse roles in the

immune response, posing a challenge in identifying the

precise biological mechanisms relevant to coeliac disease.

IL-2 has a well-defined autocrine function in stimulating T

cell activation and proliferation, but can also stimulate NK

cell proliferation and immunoglobulin production from B

cells. This cytokine has a unique role in activation-induced

cell death, a process that eliminates self-reactive T cells, and

in maintenance of CD4+ CD25+ regulatory T (Treg) cells

[97–99]. In the non-obese diabetic mouse model the region

syntenic to human 4q27 determines susceptibility to

multiple autoimmune diseases through an IL2-dependent

mechanism [100]. In this model, the murine risk variants

were associated with reduced IL2 gene expression, lower pro-

portions of CD4+ CD25+ Treg cells in mesenteric lymph nodes

and impaired function of these cells [100]. It is thus possible

that the IL2–IL21 region risk variants in human coeliac

disease might also exert their susceptibility effects through

the CD4+ CD25+ Treg cell subset, for example by impairing

tolerance to gluten peptides. However, in humans, there are

as yet no comparable data of the effects of variants on gene

expression or function. IL21 remains a candidate gene in this

region and expression is known to be increased in the small

intestinal mucosa in untreated coeliac disease [101]. IL-21 is

secreted mainly from CD4+ T cells and has proinflammatory

effects including enhancement of B, T and NK cell prolifera-

tion [102]. Anti-IL-21 antibodies in an ex-vivo intestinal

biopsy culture model reduced T-bet and IFN-g expression,

suggesting that IL-21 may be important in sustaining Th1

activity in coeliac disease [101].

The follow-up study from the first coeliac GWAS was

reported recently [3]. This tested over 1000 of the most

strongly associated non-HLA SNPs from the original UK

GWAS in a large independent cohort (1643 new coeliac cases

and 3406 controls). The added power of this study yielded

strong, genome-wide significant results (P < 5 ¥ 10-7) for a

further seven new genomic regions, six of which harbour

genes with immune functions (Table 3, Fig. 2). It was esti-

mated in this follow-up study that the newly identified vari-

ants account for only 3–4% of the genetic susceptibility of

coeliac disease, suggesting that many other true associations

remain undetected. Effect sizes of the SNPs on disease

susceptibility are modest, in line with findings from

GWAS in other complex diseases (Fig. 3) [103,104]. The

allele that is more frequent in cases can confer either protec-

tive or risk effects with ORs of all detected variants between

0·7 and 1·4. Given that there are an estimated 8 million SNPs

with MAF > 5% in the human genome and only 300 000

SNPs were tested in the original GWAS, in most cases asso-

ciated SNPs are unlikely to be causal, but instead will show

variable levels of correlation with the true causal variants.

Identification of the true causal variants is a priority of

further research and will depend on fine-mapping and/or

deep resequencing of the regions identified. Indications from

other diseases suggest that discovery of the true causal vari-

ants may lead to a significant upwards revision of both effect

sizes and the estimated proportion of genetic susceptibility

accounted for [103]. In the interim, the primary significance

of the GWAS study findings is in providing new insights into

the biological pathways relevant to the pathogenesis of

coeliac disease.

RGS1 region

The strongest association (P = 2·58 ¥ 1011) outside the HLA

region and IL2–IL21 was for a SNP 8 kb distal to the 5′ end

Table 3. Non-human leucocyte antigen (HLA) susceptibility loci for coeliac disease from recent Genome-Wide Association Study [2,3].

Locus

Tag SNP with

strongest association Odds ratio (CI) Candidate genes

Other diseases associated

with the same region

4q27 rs6822844 0.71 (0.63–0.80) IL2, IL21 Type 1 diabetes, rheumatoid

arthritis, Graves’ disease, psoriasis

1q31 rs2816316 0.71 (0.63–0.80) RGS1

2q11–2q12 rs917997 1.27 (1.15–1.40) IL1RL1, IL18R1, IL18RAP, SLC9A4 Crohn’s disease

3p21 rs6441961 1.21 (1.10–1.32) CCR1, CCR2, CCRL2, CCR3, CCR5, XCR1 Type 1 diabetes

3q25–3q26 rs17810546 1.34(1.19–1.51) IL12A, SCHIP1

3q28 rs1465150 1.21 (1.11–1.31) LPP

6q25 rs1738074 1.21 (1.11–1.31) TAGAP

12q24 rs653178 1.19 (1.10–1.30) SH2B3 Type 1 diabetes

CI, confidence interval; SNP, single nucleotide polymorphism.
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of RGS1. RGS1 is of particular interest in coeliac disease

because of its selective expression in the intestinal IEL com-

partment, but not conventional splenic or thymic T cells

[3,105]. RGS1 regulates G protein signalling activity and is

implicated in mice in regulating chemokine receptor signal-

ling and B cell trafficking to lymph nodes [106].

3p21

Another strong association mapped to a chemokine receptor

gene cluster on 3p21 including CCR1, CCR2, CCRL2, CCR3,

CCR5 and XCR1, again hinting at the importance that

chemokine receptor signalling and recruitment of effector

immune cells to sites of inflammation may have in coeliac

disease. The disease associated genetic variants may influ-

ence these pathways subtly.

IL12A and IL18RAP

Strong association (P = 10-9) of SNPs in a 70 Kb LD block

immediately 5′ of IL12A implicate this gene, which encodes

IL12p35, the subunit that forms one-half of the IL-12

heterodimer with IL-12p40. IL-12 is expressed by antigen-

presenting cells and has a broad range of biological activities,

including induction of IFN-g-secreting Th1 cells. Although

coeliac disease is characterized by a strong Th1 response,

surprisingly IL12p40 is not expressed in coeliac disease

mucosa after gluten challenge and both IL-12p40 and

IL-12p35 expression were not found to be increased in den-

dritic cells isolated from untreated coeliac disease mucosa

[53,55]. It might well be in coeliac disease that IL-12 signal-

ling is important at an alternative site (e.g. mesenteric lymph

nodes) – attempting to make sense of these findings really

Fig. 2. Model of gluten induced immune

response in coeliac disease, and the sites of

action of coeliac susceptibility genes. The most

likely gene from each region is shown, although

note that causality of a genetic variant in any

one gene has not yet been proved.

Fig. 3. Current estimates of effect size

conferred by the coeliac disease-associated risk

variants. Allelic odds ratios are shown for the

best tag markers from the Genome-Wide

Association Study, along with the most likely

candidate gene(s) from each region. It is

probable that the effect of the true causal

variants, once identified, will be larger.
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highlights our limited knowledge of the primary underlying

immunopathogenic mechanisms.

There is evidence for the importance of IFN-a and IL-18

in promoting a Th1 phenotype in CD4 T cells in coeliac

disease (see above). IL18 transcripts are expressed very

strongly in the human small intestine. In this regard, another

candidate gene identified from the GWAS (IL18RAP)

encodes the b chain of the IL-18 receptor. Hunt et al. showed

that the coeliac disease associated SNPs correlated with

IL18RAP gene expression in peripheral blood. The risk

alleles, found more commonly in individuals with coeliac

disease, correlated with lower levels of IL18RAP mRNA sug-

gesting that variants reduce gene expression. This might

suggest a loss of function of IL-18 receptor signalling, a

puzzling finding given the up-regulation of IL-18 and strong

Th1 bias in coeliac disease. Again, these findings underline

the limitations of current immunological models of coeliac

and other immune-mediated diseases, but also provide clues

to inform the design of new functional studies.

SH2B3 region

SH2B3 is expressed in immune cells, up-regulated in coeliac

mucosa and thought to function in regulation of T cell

receptor, growth factor and cytokine receptor-mediated sig-

nalling [107,108]. A non-synonymous SNP (rs3184504) in

SH2B3 was associated with coeliac disease in the follow-up

study. The same SNP is associated with type 1 diabetes,

accounting entirely for the association in the latter disease

[104]. This SNP, in exon 3 of SH2B3, leads to an amino acid

substitution (R262W) in the pleckstrin homology (PH)

domain of the SH2B3 protein. PH domains are involved in

targeting proteins to plasma membranes through binding

phosphoinositides [109]. Mutations in PH domains in other

proteins have been associated with disease by impairing

phosphoinositide binding and membrane localization

(X-linked agammaglobulinaemia) or through causing con-

stitutive membrane association (breast, colorectal and

ovarian cancers) [110,111]. Functional studies of the effects

of the R262W variant are needed to determine how this

impacts on the biology of coeliac disease.

TAGAP and LPP

T cell activation GTPase activating protein-TAGAP is a gene

expressed in activated T cells, whose function in immune cells

is not well characterized but may modulate cytoskeletal

changes [112]. LPP is strongly expressed in the small intestine

but the significance in relation to coeliac disease is unknown.

Some coeliac disease-associated regions also
influence susceptibility to other chronic
immune-mediated conditions

An unexpected finding from the recent coeliac disease

genetic studies was the identification of gene regions that

have been associated with other chronic immune-mediated

conditions (Table 3). Coeliac disease is associated with an

increased prevalence of several autoimmune conditions,

including type 1 diabetes, autoimmune thyroid disease and

rheumatoid arthritis [113]. Comparison of GWAS data sets

of coeliac disease and autoimmune diseases implicate a novel

shared disease association between coeliac disease and type 1

diabetes in the SH2B3 gene, 3p21 CCR gene region and

IL2–IL21 region, whereas variants in the IL18RAP region

have also been identified in Crohn’s disease [92,104]. IL2–

IL21 variants have been associated with Graves’ disease,

rheumatoid arthritis and psoriasis in addition to type 1 dia-

betes, suggesting that this may be a common autoimmune

disease locus [104,114,115]. The association of at least four

independent gene regions with both type 1 diabetes and

coeliac disease (HLA DQ, IL2–IL21, SH2B3 and CCR region)

is particularly striking and points to shared mechanisms in

the immunopathogenesis of these two conditions. These

genes all have putative roles in CD4+ T cell activation or

recruitment, reinforcing the central importance of this cell

in both diseases. Type 1 diabetes and coeliac disease have

both shown rising incidence in recent years, with tanta-

lizing, although still inconclusive, evidence for the role of

early childhood intestinal infections, particularly rotavirus

[19–21,116]. Thus a model emerges in which common

genetic and environmental factors might drive a shared type

1 diabetes/coeliac predisposition, with further disease-

specific genes or environmental factors biasing individuals

towards one or both diseases.

Therapeutic prospects arising from coeliac
gene discovery

Human leucocyte antigen-DQ remains the only coeliac

disease locus in which the causal variants are known and their

contribution to disease pathogenesis is understood (Box 1).

Identification of causal variants within the new coeliac disease

regions and functional investigation of these new candidate

genes is a priority for future research. Therapeutic manipula-

tion of the pathways identified in these studies may also prove

fruitful. Despite modest effect sizes of the genes identified,

more profound modulation of function can have important

clinical benefits. In type 2 diabetes, where genetic variants

in peroxisome proliferator-activated receptor-g (PPARG)

confer modest susceptibility (OR 1·1), thiazoledinediones,

which act as agonists of PPAR-g, have significant clinical

benefit [117]. A variant in the ATP-sensitive potassium

channel (KCNJ11), which is the pharmacological target of

another class of type 2 diabetes medication (sulphonylureas),

again shows a modest susceptibility effect,with a heterozygote

versus homozygote ORs of only 1·1 [118]. Perhaps the most

exciting prospect, given that a safe and effective treatment for

coeliac disease already exists, is the possibility that these genes

may reveal pathways that can be exploited for long-lasting

immunomodulation in the prevention of coeliac and other
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related immune-mediated conditions such as type 1 diabetes.

Any such strategies must be safe, with minimal toxicity.

Concluding remarks

Our understanding of the immunogenetic pathogenesis of

coeliac disease is well advanced in comparison with most

other chronic immune-mediated conditions. The antigen

(gluten) and many of the immunodominant epitopes that

drive T cell responses in coeliac disease have been identified.

The role of tTG in enhancing the immunogenicity of gluten

peptides by deamidation of glutamine residues is known. The

major causal variants in the HLA region are identified and this

has led to functional understanding of how these molecules

select and present immunogenic gluten peptides. Other

aspects of the mucosal immune response in coeliac disease

have been characterized, including the roles of IEL and non-T

cell receptor-dependent mechanisms of gluten toxicity.

Genome-wide association studies are now rapidly adding

information on primary genetic predisposing factors in

coeliac disease, with eight new loci now identified, seven

of which contain genes influencing immune function. Thus

the genetic factors are directly relevant to, and may guide

further, our immunological understanding of the disease

(Box 2). Several of the coeliac risk loci are also implicated in

type 1 diabetes, suggesting far greater similarity in the

immunopathogenesis of these conditions than suspected

previously. These new loci promise to provide insights into

why not all individuals with HLA-DQ2 or DQ8 develop

coeliac disease and point to factors that subtly modulate T

cell activation and effector cell (Th1) differentiation. The

precise causal variants remain to be determined, but their

identification and functional studies will, in time, provide

further insights into the pathogenesis of coeliac disease and

related immune-mediated conditions.
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Celiac disease is a common heritable chronic inflammatory condi-

tion of the small intestine induced by dietary wheat, rye and barley,  

as well as other unidentified environmental factors, in susceptible 

individuals. Specific HLA-DQA1 and HLA-DQB1 risk alleles are nec-

essary, but not sufficient, for disease development1,2. The well-defined 

role of HLA-DQ heterodimers encoded by these alleles is to present 

cereal peptides to CD4+ T cells, activating an inflammatory immune 

response in the intestine. A single genome-wide association study 

(GWAS) has been performed in celiac disease, which identified the 

IL2-IL21 risk locus1. Subsequent studies probing the GWAS informa-

tion in greater depth have identified a further 12 risk regions. Most of 

these regions contain a candidate gene that functions in the immune 

system, although only in the case of HLA-DQA1 and HLA-DQB1 have 

the causal variants been established3–5. Many of the known celiac 

disease–associated loci overlap with those of other immune-related 

diseases6. To identify additional risk variants, particularly those with 

smaller effect sizes, we performed a second-generation GWAS using 

more than six times as many samples as the previous GWAS and a 

denser genome-wide SNP set. We followed up promising findings in 

a large collection of independent samples.

RESULTS
Overview of study design
The GWAS included five European celiac disease case and control 

sample collections, including the celiac disease dataset reported  

previously1. We performed stringent data quality control (see Online 

Methods), including calling genotypes using a custom algorithm on 

both large sample sets and, where possible, cases and controls together 

(see Online Methods). We tested 292,387 non-HLA SNPs from the 

Illumina Hap300 marker set for association in 4,533 individuals 

with celiac disease and 10,750 control subjects of European descent 

(Table 1). A further 231,362 additional non-HLA markers from the 

Illumina Hap550 marker set were tested for association in a subset of 

3,796 individuals with celiac disease and 8,154 controls. All markers  
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immune gene expression
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were from autosomes or the X chromosome. Genotype call rates 

were >99.9% in both datasets. The overdispersion factor of associa-

tion test statistics, GC = 1.12, was similar to that observed in other 

GWASs of this sample size7,8. Findings were not substantially altered 

by imputation of missing genotypes for 737 cases with celiac disease 

genotyped on the Hap300 BeadChip and corresponding controls 

(Table 1, collection 1). Here we present results for directly geno-

typed SNPs, as around half the additional Hap550 markers cannot be  

accurately imputed from Hap300 data9 (including the new ETS1 locus 

reported in this study). Results for the top 1,000 markers are available 

in Supplementary Data 1; however, because of concerns regarding 

the detection of individuals’ identities10, results for all markers are 

available only on request to the corresponding author.

For follow-up, we first inspected genotype clouds for the 417 

non-HLA SNPs that met PGWAS < 10−4, being aware that top GWAS 

signals might be enriched for genotyping artifact, and excluded 22 

SNPs from further analysis using a low threshold for possible bias. 

We selected SNPs from 113 loci for replication. Markers that passed 

design and genotyping quality control included (i) 18 SNPs from 

all 14 previously identified celiac disease risk loci (including a tag 

SNP for the major celiac disease–associated 

HLA-DQ2.5cis haplotype1); (ii) 13 SNPs 

from all 7 newly discovered regions with 

PGWAS < 5 × 10−7; (iii) 86 SNPs from 59 of 

68 newly discovered regions with 5 × 10−7 < 

PGWAS < 5 × 10−5 in stage 1; and (iv) 14 SNPs  

from 14 of 30 newly discovered regions with 

5 × 10−5 < PGWAS < 10−4 in stage 1 (for this 

last category, we mostly chose regions with 

immune system genes). Two SNPs were 

selected per region for regions with stronger 

association, regions with possible multiple 

independent associations and/or regions 

containing genes of obvious biological  

interest. We successfully genotyped 131 SNPs  

in 7 independent follow-up cohorts com-

prising 4,918 individuals with celiac disease 

and 5,684 control subjects of European 

descent (Table 1). Genotype call rates were 

>99.9% in each collection. Primary associa-

tion analyses of the combined GWAS and 

follow-up data were performed with a two-

sided 2 × 2 × 12 Cochran-Mantel-Haenszel 

test. Finally, we examined associated risk loci 

for cis expression-genotype correlations; a 

summary of subjects used for expression 

quantitative trait locus (eQTL) analyses is 

reported in Supplementary Table 1.

Celiac disease risk variants
The HLA locus and all 13 other previously 

reported celiac disease risk loci showed evi-

dence for association at a genome-wide sig-

nificance threshold (Pcombined < 5 × 10−8; 

Table 2 and Supplementary Fig. 1). We note 

that some loci were previously reported 

using less stringent criteria (for example, the  

P < 5 × 10−7 recommended by the 2007 WTCCC 

study11); however, in the current, much larger 

sample set, all known loci meet recently pro-

posed P < 5 × 10−8 thresholds12,13.

We identified 13 new risk regions with genome-wide significant 

evidence (Pcombined < 5 × 10−8) of association, including regions con-

taining the BACH2, CCR4, CD80, CIITA-SOCS1-CLEC16A, ETS1, 

ICOSLG, RUNX3, THEMIS, TNFRSF14 and ZMIZ1 genes, which have 

obvious immunological functions (Table 2 and Supplementary Fig. 1).  

A further 13 regions met ‘suggestive’ criteria for association (10−6 >  

Pcombined > 5 × 10−8 and/or PGWAS < 10−4 and Pfollowup < 0.01;  

Table 2 and Supplementary Fig. 1). These regions also contain  

multiple genes with immunological functions, including CD247, 

FASLG-TNFSF18-TNFSF4, IRF4, TLR7-TLR8, TNFRSF9 and YDJC. 

Six of the 39 non-HLA regions show evidence for the presence of 

multiple independently associated variants in a conditional logistic 

regression analysis (Supplementary Table 2).

We tested the 40 SNPs with the strongest association (Table 2) from 

each of the known genome-wide significant, new genome-wide significant 

and new suggestive loci for evidence of heterogeneity across the 12 col-

lections studied. Only the HLA region was significant (Breslow-Day test  

P < 0.05 per 40 tests, rs2187668 P = 4.8 × 10−8), which is consistent with the 

well-described North-South gradient in HLA allele frequency in European 

populations, and more specifically for HLA-DQ in celiac disease14.

Table 1 Sample collections and genotyping platforms

Collection Country

Celiac disease cases Controls

Sample size 

(pre-QC)a
Sample size 

(post-QC)b Platformc

Sample size 

(pre-QC)a

Sample 

size (post-

QC)b Platformc

Stage 1: Genome-wide association

1d,e UK 778 737 Illumina  

Hap300v1-1

2,596i 2,596 Illumina  

Hap550-2v3

2d,f UK 1,922 1,849 Illumina 670- 

QuadCustom_v1

5,069i 4,936 Illumina 1.2M-

DuoCustom_v1

3d Finland 674 647 Illumina 670- 

QuadCustom_v1

1,839i 1,829 Illumina  

610-Quad

4g The Netherlands 876 803 Illumina 670- 

QuadCustom_v1

960 846 Illumina 670-

QuadCustom_v1

5d Italy 541 497 Illumina 670- 

QuadCustom_v1

580 543 Illumina 670-

QuadCustom_v1

Analysis of Hap300 

markersc

4,533 10,750

Analysis of additional 

Hap550 markersc

3,796 8,154

Stage 2: Follow-up

6 USA 987 973 Illumina  

GoldenGate

615 555 Illumina  

GoldenGate

7 Hungary 979 965 Illumina  

GoldenGate

1,126 1,067 Illumina  

GoldenGate

8h Ireland 653 597 Illumina  

GoldenGate

1,499 1,456 Illumina  

GoldenGate

9 Poland 599 564 Illumina  

GoldenGate

745 716 Illumina  

GoldenGate

10 Spain 558 550 Illumina  

GoldenGate

465 433 Illumina  

GoldenGate

11d Italy 1,056 1,010 Illumina  

GoldenGate

864 804 Illumina  

GoldenGate

12d Finland 270 259 Illumina  

GoldenGate

653j 653 Illumina  

610-Quadj

Subtotal 4,918 5,684

Analysis of Hap300 

markers and follow-up 

(91 SNPs)c

9,451 16,434

Analysis of additional 

Hap550 markers and 

follow-up (40 SNPs)c

8,714 13,838

aSample numbers attempted for genotyping, before any quality control (QC) steps were applied. bSample numbers after all quality control (QC) 

steps (used in the association analysis). cAll platforms contain a common set of Hap300 markers; the Hap550, 610-Quad, 670-Quad and 1.2M 

contain a common set of Hap550 markers. dAs an additional quality control step, we performed case-case and control-control comparisons 

for collection 1 versus 2, and collection 3 versus 12, for the 40 SNPs in Table 2 and observed no markers with P < 0.01. We did observe (as 

expected) differences for collection 5 versus 11, from northern and southern Italy, respectively. eAll 737 post-QC cases reported in a previous 

GWAS1. f690 of the post-QC cases and 1,150 of the post-QC controls were included in previous GWAS follow-up studies22,32. g498 of the post-

QC cases and 767 of the post-QC controls were included in previous GWAS follow-up studies22,32. h352 of the post-QC cases and 921 of the 

post-QC controls were included in previous GWAS follow-up studies22,32. iSome of these data were generated elsewhere, and some prior quality 

control steps (information not available) had been applied. jFinnish stage 2 controls were individuals within the Finrisk collection for whom 

Illumina 610-Quad genotype data became available after the completion of stage 1.
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We observed no evidence for interaction between each of the 26 genome-

wide significant non-HLA loci, which is consistent with what has been 

reported for other complex diseases so far. However, we did observe weak 

evidence for lower effect sizes at non-HLA loci in high risk HLA-DQ2.5cis 

homozygotes, similar to what has been observed in type 1 diabetes7.

To obtain more insight into the functional relatedness of the 

celiac disease risk loci, we applied GRAIL, a statistical tool that uses 

text mining of PubMed abstracts to annotate candidate genes from 

loci associated with common disease risk15,16. To assess the sensi-

tivity of this tool (using known loci as a positive control), we first  

Table 2 Genomic regions with the strongest association signals for celiac disease

Chr.

Position 

(bp) SNP

LD blocka,b 

(Mb)

Minor 

allele

Minor  

allele 

freqc

PGWAS 

4,533 cases, 

10,750  

controls

Pfollow-up 

4,918 cases, 

5,684  

controls

Pcombined  

9,451 cases, 

16,434 

controls

Odds ratioc  

(95% CI)

Multiple  

independent 

association 

signalsd Refs.

RefSeq 

Genes in 

LD block

Genes of 

interest and 

GRAIL  

annotatione

Previously reported risk variants

1 190803436 rs2816316 190.73–190.81 C 0.160 1.45 × 10−12 1.56 × 10−6 2.20 × 10−17 0.80 (0.76–0.84)  22 1 RGS1

2 61040333 rs13003464 60.78–61.74 G 0.401 4.92 × 10−8 1.57 × 10−6 3.71 × 10−13 1.15 (1.11–1.20) Yes  32 8 REL, AHSA2

2 102437000 rs917997 102.22–102.57 A 0.236 5.97 × 10−15 7.83 × 10−4 1.11 × 10−15 1.19 (1.14–1.25)  22 5 IL18RAP, 

IL18R1, IL1RL1, 

IL1RL2

2 181704290 rs13010713 181.50–181.97 G 0.448 2.02 × 10−8 3.21 × 10−4 4.74 × 10−11 1.13 (1.09–1.18)  33 1 ITGA4, UBE2E3

2 204510823 rs4675374 204.40–204.52 A 0.223 8.80 × 10−8 4.94 × 10−3 5.79 × 10−9 1.14 (1.09–1.19)  17 2 CTLA4, ICOS, 

CD28

3 46210205 rs13098911 45.90–46.57 A 0.097 2.53 × 10−11 1.96 × 10−7 3.26 × 10−17 1.30 (1.23–1.39) Yes  22 11 CCR1, CCR2, 

CCRL2, CCR3, 

CCR5, CCR9

3 161147744 rs17810546 161.07–161.23 G 0.125 4.56 × 10−18 9.57 × 10−12 3.98 × 10−28 1.36 (1.29–1.44) Yes  22 1 IL12A

3 189595248 rs1464510 189.55–189.62 A 0.485 9.49 × 10−24 3.63 × 10−18 2.98 × 10−40 1.29 (1.25–1.34)  22 1 LPP

4 123334952 rs13151961 123.19–123.78 G 0.142 6.31 × 10−18 4.45 × 10−11 2.18 × 10−27 0.74 (0.70–0.78)  1 4 IL2, IL21

6 32713862 rs2187668 Gene identified A 0.258 <10−50 <10−50 <10−50 6.23 (5.95–6.52) (Yes)  1,3 6 HLA-DQA1,  

HLA-DQB1

6 138014761 rs2327832 137.92–138.17 G 0.216 1.41 × 10−14 1.97 × 10−6 4.46 × 10−19 1.23 (1.17–1.28)  32 0 TNFAIP3

6 159385965 rs1738074 159.24–159.45 A 0.434 3.14 × 10−8 1.56 × 10−8 2.94 × 10−15 1.16 (1.12–1.21)  22 2 TAGAP

12 110492139 rs653178 110.19–111.51 G 0.495 6.03 × 10−14 1.47 × 10−8 7.15 × 10−21 1.20 (1.15–1.24)  22 13 SH2B3

18 12799340 rs1893217 12.73–12.91 G 0.165 5.52 × 10−7 1.04 × 10−4 2.52 × 10−10 1.17 (1.12–1.23)  17 1 PTPN2

New loci with genome-wide significant evidence (Pcombined < 5 × 10−8)

1 2516606 rs3748816 2.40–2.78 G 0.339 4.93 × 10−7 1.17 × 10−3 3.28 × 10−9 0.89 (0.85–0.92) 4 TNFRSF14, 

MMEL1

1 25176163 rs10903122 25.11–25.18 A 0.480 3.21 × 10−5 8.44 × 10−7 1.73 × 10−10 0.89 (0.85–0.92) 1 RUNX3

1 199158760 rs296547 199.12–199.31 A 0.357 6.46 × 10−5 1.34 × 10−5 4.11 × 10−9 0.89 (0.86–0.92) 2 ?

2 68452459 rs17035378f 68.39–68.54 G 0.278 1.34 × 10−5 1.41 × 10−4 7.79 × 10−9 0.88 (0.84–0.92) 2 PLEK

3 32990473 rs13314993f 32.90–33.06 C 0.464 6.87 × 10−6 1.09 × 10−4 3.27 × 10−9 1.13 (1.08–1.17) 2 CCR4

3 120601486 rs11712165f 120.59–120.78 C 0.394 5.40 × 10−7 1.72 × 10−3 8.03 × 10−9 1.13 (1.08–1.17) 5 CD80, KTELC1

6 90983333 rs10806425 90.86–91.10 A 0.397 9.46 × 10−6 9.25 × 10−6 3.89 × 10−10 1.13 (1.09–1.17) 1 BACH2, MAP3K7

6 128320491 rs802734 127.99–128.38 G 0.311 1.36 × 10−6 1.70 × 10−9 2.62 × 10−14 1.17 (1.12–1.22) Yes 2 PTPRK, THEMIS

8 129333771 rs9792269 129.21–129.37 G 0.238 8.14 × 10−6 1.00 × 10−4 3.28 × 10−9 0.88 (0.84–0.91) 0 ?

10 80728033 rs1250552 80.69–80.76 G 0.466 5.80 × 10−8 1.81 × 10−3 9.09 × 10−10 0.89 (0.86–0.92) 1 ZMIZ1

11 127886184 rs11221332f 127.84–127.99 A 0.237 4.74 × 10−11 9.98 × 10−7 5.28 × 10−16 1.21 (1.16–1.27) Yes 1 ETS1

16 11311394 rs12928822 11.22–11.39 A 0.161 1.07 × 10−5 7.59 × 10−4 3.12 × 10−8 0.86 (0.82–0.91) 4 CIITA, SOCS1, 

CLEC16A

21 44471849 rs4819388 44.42–44.47 A 0.280 3.42 × 10−5 1.66 × 10−5 2.46 × 10−9 0.88 (0.84–0.92) 2 ICOSLG

New loci with suggestive evidence (either 10−6 > Pcombined > 5 × 10−8 or PGWAS < 10−4 and Pfollow-up < 0.01)

1 7969259 rs12727642 7.84–8.13 A 0.185 3.06 × 10−5 8.21 × 10−4 9.11 × 10−8 1.14 (1.09–1.20) 4 PARK7, TNFRSF9

1 61564451 rs6691768 61.52–61.62 G 0.378 2.63 × 10−5 1.16 × 10−3 1.19 × 10−7 0.90 (0.87–0.94) 1 NFIA

1 165678008 rs864537 165.43–165.71 G 0.391 1.01 × 10−7 9.25 × 10−2 3.80 × 10−7 0.91 (0.87–0.94) 1 CD247

1 170977623 rs859637 170.87–171.20 A 0.486 8.15 × 10−5 5.68 × 10−3 1.75 × 10−6 1.10 (1.06–1.14) 1 FASLG, 

TNFSF18, 

TNFSF4

3 69335589 rs6806528f 69.27–69.37 A 0.097 4.84 × 10−5 7.66 × 10−4 1.46 × 10−7 1.19 (1.12–1.27) 1 FRMD4B

3 170974795 rs10936599 170.84–171.09 A 0.252 2.99 × 10−7 6.63 × 10−2 4.57 × 10–7 1.12 (1.07–1.16) 3 ?

6 328546 rs1033180g 0.32–0.40 A 0.080 9.14 × 10−6 1.48 × 10−3 5.58 × 10−8 1.21 (1.13–1.29) Yes 1 IRF4 g

7 37341035 rs6974491 37.32–37.41 A 0.170 1.37 × 10−5 2.63 × 10−3 1.56 × 10−7 1.14 (1.09–1.20) 1 ELMO1

13 49733716 rs2762051 49.63–49.96 A 0.184 3.35 × 10−5 5.06 × 10−3 6.64 × 10−7 1.13 (1.08–1.18) 0 ?

14 68347957 rs4899260 68.24–68.39 A 0.263 4.55 × 10−5 2.21 × 10−3 3.92 × 10−7 1.12 (1.07–1.16) 2 ZFP36L1

17 42220599 rs2074404 41.40–42.25 C 0.250 5.03 × 10−5 5.96 × 10−3 1.23 × 10−6 0.90 (0.86–0.94) 10 ?

22 20312892 rs2298428 20.14–20.35 A 0.201 2.49 × 10−7 4.13 × 10−2 1.84 × 10−7 1.13 (1.08–1.19) 6 UBE2L3, YDJC

X 12881445 rs5979785 12.82–12.93 G 0.263 6.32 × 10−6 2.18 × 10−3 6.36 × 10−8 0.88 (0.84–0.92) 1 TLR7, TLR8

aThe most significantly associated SNP from each region is shown. bLD regions were defined by extending 0.1 cM to the left and right of the focal SNP as defined by the HapMap3 recombination map. All chromosomal 

positions are based on NCBI build-36 coordinates. cMinor allele in all samples in the combined dataset, odds ratios (shown for combined dataset) defined with respect to the minor allele in all controls. dEvidence from 

logistic regression at a genome-wide significant or suggestive level of significance after conditioning on other associated SNPs (see Supplementary Table 2). HLA region not tested, but previously known. eSelected  

named genes within or adjacent to the same LD block as the associated SNPs; causality is not proven. In particular, other genes and other causal mechanisms may exist. Gene names underlined are identified from 

GRAIL15,16 analysis (see Online Methods) with Ptext < 0.01. fThese markers were present on the Hap550 but not Hap300 SNP sets, and are not genotyped for 737 cases and 2,596 controls in the stage 1 GWAS,  

and combined dataset analyses. Only minor changes in P values were observed when these genotypes were imputed and included in analysis. gThe IRF4 region (specifically rs9738805, r 2 = 0.08 with rs1033180 in 

HapMap CEU) was previously identified as showing strong geographical differentiation11. Association with celiac disease was still observed after correction for population stratification using either a structured association  

approach34 (corrected PGWAS = 5.16 × 10−6, 478 × 2 × 2 CMH test) or principal components correction (uncorrected PGWAS = 7.05 × 10−6, corrected PGWAS = 2.28 × 10−5, Cochran-Armitage trend tests combined using 

weighted Z scores; see Online Methods). However, definitive exclusion of population stratification would require family-based association studies.
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performed a ‘leave-one-out’ analysis of the 27 genome-wide signifi-

cant celiac disease loci (including HLA-DQ). GRAIL scores of  

Ptext < 0.01 were obtained for 12 of the 27 loci (44% sensitivity; Table 2). 

Factors that limit the sensitivity of GRAIL include biological pathways 

being both known (a 2006 dataset is used to avoid GWAS-era studies)  

and published in the literature. We then applied GRAIL analysis, 

using the 27 known regions as a seed, to all 49 regions (49 SNPs) 

with 10−3 > Pcombined > 5 × 10−8 and obtained GRAIL Ptext < 0.01 for  

9 regions (18.4%). As a control, only 5.5% (279 of 5,033) of randomly  

selected Hap550 SNPs reached this threshold. In addition to the five 

Table 3 Celiac risk variants correlated with cis gene expression

SNPa Chr. SNP positionb Probe center positionb Illumina ArrayAddressID Expression datasetc Gene name eQTL P d

Loci with genome-wide significant evidence (Pcombined < 5 × 10−8)

rs3748816 1 2516606 2412221 650452 HT-12 PLCH2 1.66 × 10−5

rs3748816 1 2516606 2482955 6520725 Ref-8v2 + HT-12 TNFRSF14 1.30 × 10−3

rs3748816 1 2516606 2510429 6250338 Ref-8v2 C1orf93 1.16 × 10−4

rs3748816 1 2516606 2533115 2070246 Ref-8v2 + HT-12 MMEL1 1.03 × 10−20

rs296547 1 199158760 198880146 1300279 Ref-8v2 + HT-12 DDX59 2.45 × 10−5

rs842647 2 60972975 61263810 1170220 Ref-8v2 + HT-12 AHSA2 3.30 × 10−10

rs13003464e 2 61040333 61263810 1170220 Ref-8v2 + HT-12 AHSA2 6.39 × 10−11

rs3816281f 2 68461451 68461957 4810020 Ref-8v2 + HT-12 PLEK 7.97 × 10−26

rs917997 2 102437000 102418571 6520180 Ref-8v2 + HT-12 IL18RAP 7.35 × 10−87

rs13010713 2 181704290 181593865 1780433 HT-12 UBE2E3 4.93 × 10−5

rs13098911 3 46210205 45964449 6550333 Ref-8v2 + HT-12 CXCR6 9.66 × 10−6

rs13098911 3 46210205 46255176g 2190671 HT-12 CCR3 5.50 × 10−10

rs13098911 3 46210205 46255176g 7570670 Ref-8v2 CCR3 5.69 × 10−4

rs6441961d 3 46327388 46255176h 2190671 HT-12 CCR3 2.87 × 10−19

rs6441961d 3 46327388 46255176h 7570670 Ref-8v2 CCR3 1.02 × 10−4

rs11922594f 3 120608512 120683364i 6550288 Ref-8v2 + HT-12 KTELC1 5.09 × 10−17

rs11922594f 3 120608512 120683364i 3850161 Ref-8v2 + HT-12 KTELC1 7.34 × 10−6

rs10806425 6 90983333 90878075 3520349 HT-12 BACH2 1.92 × 10−3

rs1738074 6 159385965 159380068 5890739 Ref-8v2 + HT-12 TAGAP 1.99 × 10−3

rs1738074 6 159385965 159381094j 5360364 HT-12 TAGAP 3.23 × 10−4

rs1738074 6 159385965 159381094j 4860242 HT-12 TAGAP 2.18 × 10−3

rs1250552 10 80728033 80622540 2450131 Ref-8v2 + HT-12 ZMIZ1 1.80 × 10−3

rs653178 12 110492139 110399552 6560301 Ref-8v2 + HT-12 SH2B3 9.24 × 10−12

rs653178 12 110492139 110710447 840253 Ref-8v2 + HT-12 ALDH2 1.44 × 10−4

rs653178 12 110492139 110894406k 2070736 HT-12 TMEM116 3.68 × 10−4

rs653178 12 110492139 110894406k 3190129 Ref-8v2 TMEM116 1.51 × 10−3

rs12928822 16 11311394 11335627 4540072 Ref-8v2 + HT-12 C16orf75 1.02 × 10−8

rs4819388 21 44471849 44049567 7200373 Ref-8v2 RRP1 2.62 × 10−3

Loci with suggestive evidence (either 10−6 > Pcombined > 5 × 10−8 or PGWAS < 10−4 and Pfollow-up < 0.01)

rs12727642 1 7969259 7956138 610193 Ref-8v2 + HT-12 PARK7 9.76 × 10−15

rs864537 1 165678008 165710482l 6290400 Ref-8v2 + HT-12 CD247 1.77 × 10−9

rs864537 1 165678008 165710482l 3890689 HT-12 CD247 2.93 × 10−7

rs6974491 7 37341035 37157761 2750154 Ref-8v2 + HT-12 ELMO1 5.40 × 10−6

rs2074404 17 42220599 41824345 3520672 Ref-8v2 + HT-12 LRRC37A 1.17 × 10−4

rs2074404 17 42220599 42106695m 5260138 Ref-8v2 + HT-12 NSF 1.20 × 10−5

rs2074404 17 42220599 42106695m 1410484 HT-12 NSF 4.28 × 10−4

rs2074404 17 42220599 42223012 4070615 HT-12 WNT3 2.77 × 10−3

rs2074404 17 42220599 42485154 4880037 HT-12 LOC388397 1.78 × 10−9

rs2298428 22 20312892 20308188 1230242 Ref-8v2 + HT-12 UBE2L3 1.96 × 10−90

rs5979785 X 12881445 12842944n 6480360 Ref-8v2 + HT-12 TLR8 3.88 × 10−13

rs5979785 X 12881445 12842944n 3390612 Ref-8v2 + HT-12 TLR8 1.07 × 10−7

See Supplementary Figures 2 and 3 for detailed results and Supplementary Table 3 for more details of Illumina expression probes.  
aWe tested the SNP with the strongest association from 34 of 39 non-HLA loci (Pcombined < 10−6, Table 2), Hap300 proxy SNPs for 4 further loci, and a second independently associated SNP from 6 loci, for correlation with gene 

expression in PAXgene blood RNA in up to 1,349 individuals. One locus (containing ETS1) where an adequate proxy SNP was not available was not included for the eQTL analysis. SNP-gene expression correlations were tested 

for probes within a 1-Mb window. Results are presented for SNPs showing significant correlations with cis gene expression after controlling false-discovery rate at 5% (corresponding to P < 0.0028). bAll chromosomal positions 

are based on NCBI build-36 coordinates. Probe center position was determined by re-mapping probe sequences to the human transcriptome and calculated from the midpoint of the transcript start and transcript end positions in 

genomic coordinates. c‘HT-12’ comprise 1,240 individuals with blood gene expression assayed using Illumina Human HT-12v3 arrays; ‘Ref-8v2’ comprise 229 individuals with blood gene expression assayed using Illumina  

Human-Ref-8v2 arrays (see Online Methods). dSpearman rank correlation of genotype and residual variance in transcript expression. Meta-analysis eQTL P value shown if both datasets had identical probes. eSecond, independently 

associated SNP from this locus. fProxy SNP, r2 = 0.61 in HapMap CEU with most associated SNP rs11712165. g–nDifferent Illumina probe sequences with the same probe center position.
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‘suggestive’ loci shown in Table 2, GRAIL annotated four further 

interesting gene regions with lower significance in the combined 

association results: rs944141-PDCD1LG2 (Pcombined = 4.4 × 10−6), 

rs976881-TNFRSF8 (Pcombined = 2.1 × 10−4), rs4682103-CD200-

BTLA (Pcombined = 6.8 × 10−6) and rs4919611-NFKB2 (Pcombined = 

6.1 × 10−5). There appeared to be further enrichment for genes of  

immunological interest that are not GRAIL-annotated in the  

10−3 > Pcombined > 5 × 10−8 significance window, including rs3828599-

TNIP1 (Pcombined = 1.55 × 10−4), rs8027604-PTPN9 (Pcombined =  

1.4 × 10−6) and rs944141-CD274 (Pcombined = 4.4 × 10−6). Some of these  

findings, for which neither genome-wide significant nor suggestive 

association is achieved, are likely to comprise part of a longer tail 

of disease-predisposing common variants with weaker effect sizes. 

Definitive assessment of these biologically plausible regions would 

require genotyping and association studies using much larger sample 

collections than the present study.

We previously showed that there is considerable overlap between 

risk loci for celiac disease and type 1 diabetes17, as well as between risk 

loci for celiac disease and rheumatoid arthritis18, and more generally, 

there is now substantial evidence for shared risk loci between the com-

mon chronic immune-mediated diseases6. To update these observa-

tions, we searched ‘A Catalog of Published Genome Wide Association 

Studies’ (accessed 18 November 2009)19 and the HuGE database20. 

We found some evidence (requiring a published association report 

of P < 1 × 10−5) of shared loci with at least one other inflammatory 

or immune-mediated disease for 18 of the current 27 genome-wide 

significant celiac disease risk regions. We defined shared regions as the 

broad linkage disequilibrium block; however, different SNPs are often 

reported in different diseases, and at only 3 of the 18 shared regions are  

associations across all diseases with the same SNP or a proxy SNP in 

r2 > 0.8 in HapMap CEU. Currently, nine regions seem to be specific 

to celiac disease and might reflect distinctive disease biology, includ-

ing the regions containing rs296547 and rs9792269 and the regions 

around CCR4, CD80, ITGA4, LPP, PLEK, RUNX3 and THEMIS. In 

fact, locus sharing between diseases is probably greater because of 

both stochastic variation in results from sample size limitations and 

regions that have a genuinely stronger effect size in one disease and 

weaker effect size in another.

Genetic variation in ETS1 has recently been reported to be associ-

ated with systemic lupus erythematosus (SLE) in the Chinese popula-

tion, although it is not associated with SLE in European populations21. 

The most strongly associated celiac disease (European population) 

SNP, rs11221332, and the most strongly associated SLE (Chinese pop-

ulation) SNP, rs6590330, map 70 kb apart. Inspection of the HapMap 

phase II data shows broadly similar linkage disequilibrium patterns 

between Chinese (CHB) and European (CEU) populations in this 

region, with the two associated SNPs in separate nonadjacent linkage 

disequilibrium blocks. Thus, distinct common variants within the 

same gene can predispose to different autoimmune diseases across 

different ethnic groups.

Exploring the function of celiac disease risk variants
Celiac disease risk variants in the HLA genes alter protein structure 

and function4. However, we identified only four nonsynonymous 

SNPs with evidence for association with celiac disease (PGWAS < 

10−4) from the other 26 genome-wide significant associated 

regions (rs3748816-MMEL1, rs3816281-PLEK, rs196432-RUNX3, 

rs3184504-SH2B3). Although comprehensive regional resequencing  

is required to test the possibility that coding variants contrib-

ute to the observed association signals, more subtle effects of 

genetic variation on gene expression are the more likely functional  

mechanism for complex disease genes. With this in mind, we  

performed a meta-analysis of new and published genome-wide 

eQTL datasets comprising 1,469 human whole blood (PAXgene) 

samples reflecting primary leukocyte gene expression. We applied 

a new method, transcriptional components, to remove a substantial 

proportion of inter-individual nongenetic expression variation and 

performed eQTL meta-analysis on the residual expression variation  

(Online Methods).

We assessed 38 of the 39 genome-wide significant and suggestive 

celiac disease–associated non-HLA loci (Table 2) for cis expression-

genotype correlations. We tested the SNP with the strongest associa-

tion from each region. However, for five regions the most associated 

SNP was not genotyped in the eQTL samples (Hap300 data); instead, 

for four of these, we tested a proxy SNP (r2 > 0.5 in HapMap CEU). 

In addition, for six loci showing evidence of multiple independent 

associations in conditional regression analyses, we tested a second 

SNP that showed independent association with celiac disease for 

eQTL analysis. In total, we assessed 44 independent non-HLA SNP 

associations in peripheral whole blood samples genotyped on the 

Illumina Hap300 BeadChip and either Illumina Ref8 or HT12 expres-

sion arrays, correlating each SNP with data from gene probes mapping 

within a 1-Mb window.

We identified significant (Spearman P < 0.0028, corresponding to 

5% false-discovery rate) eQTLs at 20 of 38 (52.6%) non-HLA celiac 

loci tested (Table 3 and Supplementary Figs. 2 and 3). Some loci had 

evidence of eQTLs with multiple probes, genes or SNPs (Table 3). 

We assessed whether the number of SNPs with cis-eQTL effects out 

of the 44 SNPs that we tested was significantly higher than expected. 

On average, eQTL SNPs had a substantially higher minor allele fre-

quency (MAF) than non-eQTL SNPs in the 294,767 SNPs tested. To 

correct for this, we selected 44 random SNPs that had an equal MAF 

distribution and determined for how many of these MAF-matched 

SNPs eQTLs were observed. There were a significantly higher number 

of eQTL SNPs (P = 9.3 × 10−5, 106 permutations) among the celiac 

disease–associated SNPs than expected by chance (22 observed eQTL 

SNPs versus 7.8 expected eQTL SNPs). Therefore, the celiac disease–

associated regions are greatly enriched for eQTLs. These data indicate 

that some risk variants might influence celiac disease susceptibility 

through a mechanism of altered gene expression. Candidate genes 

with a significant eQTL where the peak eQTL signal and peak case-

control association signal are similar (Supplementary Fig. 3) include 

MMEL1, NSF, PARK7, PLEK, TAGAP, RRP1, UBE2L3 and ZMIZ1.

We also assessed the coexpression of genes that mapped within 500 kb  

of SNPs that showed the strongest case-control association from  

the 40 genome-wide significant and suggestive celiac disease loci in an 

analysis of the 33,109 human Affymetrix Gene Expression Omnibus 

dataset. This analysis loses power to detect tissue-specific correlations 

from the use of numerous tissue types, but it greatly gains power 

from the large sample size. We detected several distinct coexpression 

clusters (Pearson correlation coefficient between genes >0.5), includ-

ing four clusters of immune-related genes that contain at least one 

gene from 37 of the 40 genome-wide significant and suggestive loci  

(Fig. 1). These data further demonstrate that genes from celiac disease 

risk loci map to multiple distinct immunological pathways involved 

in disease pathogenesis.

DISCUSSION
We previously reported that most celiac genetic risk variants mapped 

near genes that are functional in the immune system22, and this 

remains true for the 13 new genome-wide significant and 13 new 

suggestive risk variants from the current study. We can now refine 
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these observations and highlight specific immunological pathways 

that are relevant to the pathogenesis of celiac disease.

One key pathway worth highlighting is T-cell development in 

the thymus. The rs802734 linkage disequilibrium block contains 

the recently identified gene THEMIS (thymus-expressed molecule 

involved in selection). THEMIS has a key regulatory role in both 

positive and negative T-cell selection during late thymocyte devel-

opment23. Furthermore, the rs10903122 linkage disequilibrium block 

contains RUNX3, a master regulator of CD8+ T lymphocyte devel-

opment in the thymus24,25. TNFRSF14 (LIGHTR, rs3748816 linkage 

disequilibrium block) has widespread functions in peripheral leuko-

cytes and a crucial role in promoting thymocyte apoptosis26. The 

ETS1 transcription factor (rs11221332 linkage disequilibrium block) 

is also active in peripheral leukocytes; however, it is also a key player 

in thymic CD8+ lineage differentiation, acting in part by promoting 

RUNX3 expression27.

The importance of the thymus in the pathogenesis of autoimmune 

diseases has been previously emphasized by the established role of 

thymectomy in the treatment of myasthenia gravis. In type 1 diabetes, 

disease-associated genetic variation in the insulin gene INS causes 

altered thymic insulin expression and subsequent T-cell tolerance 

for insulin as a self-protein28. However, the importance of thymic 

T-cell regulation in the etiology of celiac disease has not been previ-

ously recognized. It is conceivable that the associated variants might 

alter biological processes before thymic MHC-ligand interactions. 

Alternatively, it is now clear that exogenous antigen presentation and 

selection occurs in the thymus through migratory dendritic cells; this 

has been demonstrated for skin and has been hypothesized for food 

antigens29,30. These findings suggest that it would be worthwhile to 

investigate immunological and pharmacological modifiers of T-cell 

tolerance more generally in autoimmune diseases.

A second pathway worth noting is the innate immune detection of 

viral RNA. Although the association signal at rs5979785 (Pcombined = 

6.36 × 10−8) in the TLR7-TLR8 region is just outside our genome-

wide significance threshold, we observe a strong effect of rs5979785 

on TLR8 expression in whole blood. Both TLRs recognize viral RNA. 

Taken together with the recent observation that rare loss-of-function  

mutations in the enteroviral response gene IFIH1 are protective against 
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Figure 1 Coexpression analysis of genes mapping to 40 genome-wide significant and suggestive celiac disease regions in 33,109 heterogenous human 

samples from the Gene Expression Omnibus. Genes mapping within a 1-Mb window of associated SNPs (Table 2) were tested for interaction with genes from 

other loci. Interactions with Pearson correlation > 0.5 are shown (P < 10−100). Only the genes known to contain causal mutations (HLA-DQA1, HLA-DQB1) 

were analyzed from the HLA region; HLA-DQB2/HLA-DQB1 is a single expression probeset mapping to both genes. No probe for THEMIS was present on the 

earlier version of the U133 array; however, in a subset analysis of U133 Plus2.0 data, THEMIS is coexpressed in the major immune gene cluster.
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type 1 diabetes31, these findings implicate viral infection (and the 

nature of the host response to infection) as a putative environmental 

trigger that could be common to these autoimmune diseases.

A third pathway involves T- and B-cell co-stimulation (or co- 

inhibition). This class of molecules controls the strength and nature 

of the response to T-cell or B-cell (immunoglobulin) receptor activa-

tion by antigens. We observe multiple regions with genes (CTLA4-

ICOS-CD28, TNFRSF14, CD80, ICOSLG, TNFRSF9, TNFSF4) from 

this class of ligand-receptor pairs, indicating that fine control of the 

adaptive immune response might be altered in individuals at risk of 

celiac disease.

A final pathway involves cytokines, chemokines and their receptors. 

Our previous report discussed the function of the 2q11–12 interleukin 

receptor cluster (IL18RAP and so on), the 3p21 chemokine receptor 

cluster (CCR5 and so on) and the loci containing IL2-IL21 and IL12A22. 

We now report additional loci containing TNFSF18 and CCR4.

We estimate that the current celiac disease variants, including the 

major celiac disease-associated HLA variant, HLA-DQ2.5cis, less com-

mon celiac disease–associated haplotypes in the HLA (HLA-DQ8; 

HLA-DQ2.5trans; HLADQ2.2), and the additional 26 definitively 

implicated loci explain about 20% of total celiac disease variance, 

which would represent 40% of genetic variance, assuming a herit-

ability of 0.5. A long tail of common variants with low effect size, 

along with highly penetrant rare variants (both at the established loci 

and elsewhere in the genome), might contribute substantially to the 

remaining heritability.

We observed different haplotypes within the ETS1 region associ-

ated with celiac disease in Europeans and SLE in the Chinese popu-

lation. For some autoimmune diseases studied in European origin 

populations, although the same linkage disequilibrium block has been 

associated, the association is with a different haplotype. In some cases, 

the same variants are associated, but the direction of association is  

opposite (for example, rs917997-IL18RAP in celiac disease versus type 1  

diabetes). We believe further exploration of these signals might reveal 

critical differences in the nature of the immune system perturbation 

between these diseases.

Previously, investigators have observed that only a small propor-

tion of GWAS signals involve coding variants and have suggested that 

these variants might instead influence regulation of gene expression. 

Here we show that over half the variants associated with celiac disease 

are correlated with expression changes in nearby genes. This mecha-

nism is likely to explain the function of some risk variants for other 

common, complex diseases. Further research is needed to definitively 

determine at each locus both the variants that can cause celiac disease 

and their functional mechanisms.

METHODS
Methods and any associated references are available in the online  

version of the paper at http://www.nature.com/naturegenetics/.

Accession numbers. Expression data are available in GEO (http://

www.ncbi.nlm.nih.gov/geo/) as GSE20142 and GSE20332.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Subjects. Written informed consent was obtained from all subjects, with Ethics 

Committee/Institutional Review Board approval. All individuals are of European 

ancestry. Affected celiac individuals were diagnosed according to standard clinical, 

serological and histopathological criteria, including small intestinal biopsy. DNA 

samples were from blood, lymphoblastoid cell lines or saliva. A more detailed 

description of subjects is provided in a Supplementary Note.

GWAS genotyping. For an overview, see Table 1. UK(1) case and control geno-

typing has been described1,7. Illumina 670-Quad and 1.2M-Duo (custom chips 

designed for the WTCCC2 and comprising Hap550/1M and common CNV 

content) and 610-Quad genotyping was performed in London, Hinxton and 

Groningen. Bead intensity data was normalized for each sample in BeadStudio, 

R and theta values exported and genotype calling performed using a custom 

algorithm1,35. A detailed description of genotype calling steps is provided in a  

Supplementary Note.

Quality control steps were performed in the following order. First, very 

low call rate samples and SNPs were excluded. SNPs were excluded from all 

sample collections if any collection showed call rates <95% or deviation from 

Hardy-Weinberg equilibrium (P < 0.0001) in controls. Samples were excluded 

for call rate <98%, incompatible recorded gender and genotype-inferred  

gender, ethnic outliers (identified by multi-dimensional scaling plots of samples  

merged with HapMap Phase II data), duplicates and first-degree relatives. We 

excluded 22 of 417 SNPs showing apparent association (PGWAS < 10−4) after 

visual inspection of R theta plots suggested possible bias.

The over-dispersion factor of association test statistics (genomic control 

inflation factor), GC, was calculated using observed versus expected values 

for all SNPs in PLINK.

Follow-up genotyping. For an overview, see Table 1. Finnish controls (12) 

were genotyped on the 610-Quad BeadChip; other samples were genotyped 

using Illumina GoldenGate BeadXpress assays in London and Groningen. 

Genotyping calling was performed in BeadStudio for combined cases and con-

trols in each separate collection, with the exception of the Finnish collection, 

and whole genome amplified samples (89 Irish cases and 106 Spanish con-

trols). Quality control steps were performed as for the GWAS. In total, 131 of 

144 SNPs passed quality control and visual inspection of genotype clouds.

SNP association analysis. Analyses were performed using PLINK v1.07 (ref. 36),  

mostly using the Cochran-Mantel-Haenzel test. Logistic regression analy-

ses were used to define the independence of association signals within the 

same linkage disequilibrium block, with group membership included as a  

factorized covariate.

Genotype imputation was performed for samples genotyped on the 

Hap300 using BEAGLE and CEU, TSI, MEX and GIH reference samples 

from HapMap3. Association analysis was performed using logistic regression 

on posterior genotype probabilities, with group membership included as a  

factorized covariate.

Structured association tests were performed using PLINK as described 

using genetically matched cases and controls within collections identified by 

identity by state similarity across autosomal non-HLA SNPs34 (settings–ppc 

0.001–cc, clusters constrained by the five collections). Principal components 

analysis was performed using EIGENSTRAT and a set of 12,810 autosomal 

non-HLA SNPs chosen for low LD and ancestry information37,38; association 

tests were corrected for the top 10 principal components and combined using 

weighted Z scores.

The fraction of additive variance was calculated using a liability threshold 

model39 assuming a population prevalence of 1%. Effect sizes and control 

allele frequencies were estimated from the combined replication panel. Genetic 

variance was calculated assuming 50% heritability.

GRAIL analysis. We performed GRAIL analysis (http://www.broadinstitute.

org/mpg/grail/grail.php) using HG18 and Dec2006 PubMed datasets, default 

settings for SNP rs number submission, and the 27 genome-wide significant 

celiac disease risk loci (most associated SNP) as seeds. As a query, we used 

either associated SNPs or 101 × 50 randomly chosen Hap550 SNP datasets 

(5,050 SNPs, of which 5,033 mapped to the GRAIL database).

Identification of transcriptional components. We noted that the power 

of eQTL studies in humans is limited by substantial observed inter- 

individual variation in expression measurements due to nongenetic factors, 

and therefore developed a method, ‘transcriptional components’, to remove 

a large component of this variation (manuscript in preparation). Expression 

data from 42,349 heterogeneous human samples hybridized to Affymetrix  

HG-U133A (GEO accession number: GPL96) or HG-U133 Plus 2.0 (GEO accession  

number: GPL570) Genechips were downloaded40. Samples missing data for 

>150 probes were excluded, and only probes available on both platforms  

were analyzed, resulting in expression data for 22,106 probes and 41,408 samples.  

We performed quantile normalization using the median rank distribution41  

and log2 transformed the data, ensuring an identical distribution of expres-

sion signals for every sample, discarding previous normalization and  

transformation steps.

Initial quality control (QC) was performed by applying principal com-

ponent analysis (PCA) on the sample correlation matrix (pair-wise Pearson 

correlation coefficients between all samples). The first principal component 

(PC), explaining ~80–90% of the total variance42,43, describes probe-specific 

variance. 6,375 samples with correlation R < 0.75 of the sample array with this 

PC were considered outliers of lesser quality and excluded from analysis. We 

excluded entire GEO datasets where >25% of the samples were outliers (prob-

ably expression ratios versus a reference, not absolute data). The final dataset 

comprised 33,109 samples (17,568 GPL96 and 15,541 GPL570 samples), and 

we repeated the normalization and transformation on the originally deposited 

expression values of these post-quality control samples.

We next applied PCA on the pairwise 22,106 × 22,106 probe Pearson cor-

relation coefficient matrix assayed on the 33,109 sample dataset (our fast C++ 

tool, MATool, is available upon request), attempting to simplify the structure of 

the data. Here, PCA represents a transformation of a set of correlated probes  

into sets of uncorrelated linear additions of probe expression signals (eigen-

vectors) that we name transcriptional components (TCs). Each TC is a 

weighted sum of probe expression signals and eigenvector probe coefficients. 

These TC scores can be calculated for each observed expression array sample 

(reflecting the TC activity per sample).

Subjects for expression-genotype correlation. We obtained peripheral 

blood DNA and RNA (PAXgene) from Dutch and UK individuals who were 

disease cases or controls for GWAS studies (Supplementary Table 1). All 

samples had been genotyped for a common SNP set on Illumina platforms. 

Analysis was confined to 294,767 SNPs that had a MAF  5%, call-rate  

 95% and exact HWE P > 0.001. RNA from the samples was hybridized to 

either Illumina HumanRef-8 v2 arrays (229 samples, Ref-8v2) or Illumina 

HumanHT-12 arrays (1,240 samples, HT-12), and raw probe intensity 

extracted using BeadStudio. The Ref-8v2 samples were jointly quantile 

normalized and log2 transformed, as were the HT-12 samples. Subsequent 

analyses were also conducted separately for these datasets, up to the even-

tual eQTL mapping, which uses a meta-analysis framework, combining 

eQTL results from both arrays. HT-12 and Ref-8v2 arrays are different, but 

share many probes with identical probe sequences. Illumina sometimes use 

different probe identifiers for the same probe sequences; in meta-analysis 

and Table 3, the label HT-12 was used if both HT-12 and Ref-8v2 had the  

same sequence.

Re-mapping of probes. If probes mapped incorrectly or cross-hybridized to 

multiple genomic loci, it might be that an eQTL would be detected that would 

be deemed a trans-eQTL. To prevent this, we used a mapping approach versus 

a known reference that we developed for high-throughput short sequence 

RNAseq data44. We took the DNA sequence as synthesized for each cDNA 

probe and aligned it against a transcript masked gDNA genome combined 

with cDNA sequences. A more detailed description of probe re-mapping is 

provided in a Supplementary Note. Probes that did not map or that mapped 

to multiple different locations were removed.

Affymetrix transcriptional components applied to Illumina expression data. 

TC scores can be inferred in new (non-Affymetrix) datasets for every new 

individual sample. For the Illumina samples (used for the cis-eQTL mapping), 

only Illumina probes that could be mapped to any of our 22,106 Affymetrix 
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probes were used (www.switchtoi.com/probemapping.ilmn). The TC score 

of sample i for the jth TC is defined as: TCscore a vij ti tj
t

t n

1

,  where vtj is 

defined as the tth Affymetrix probe coefficient for the jth TC; ati is the Illumina 

expression measurement for the tth mapped probe for sample i. We inferred 

the Illumina TC scores for the top 1,000 TCs.

Removal of transcriptional component effects from Illumina expression 

data. Because our Illumina eQTL dataset (n = 1,469) is much less hetero-

geneous than the Affymetrix dataset (n = 33,109), we expect that some TCs 

will hardly vary. We therefore performed a PCA on the covariance matrix 

of the top 1,000 inferred TC scores for the Illumina dataset to effectively 

compress the TC data into a small set of ‘aggregate TCs’ (aTCs). As aTCs 

are orthogonal, we used linear regression to eliminate the effect of the top  

50 aTCs. We correlated the TC-scores for each peripheral blood sample  

with probe expression levels. We then used the resulting residual gene  

expression data for subsequent cis-eQTL mapping.

cis-eQTL mapping. We used the residual gene expression data in a meta-

analysis framework, as described45,46. In brief, analyses were confined to  

those probe-SNP pairs for which the distance from probe transcript mid-

point to SNP genomic location was less than 500 kb. To prevent spurious 

associations due to outliers, a nonparametric Spearman’s rank correlation 

analysis was performed. When a particular probe-SNP pair was present in both 

the HT12 and H8v2 datasets, an overall, joint P value was calculated using a 

weighted Z-method (square root of the dataset sample number). To correct  

for multiple testing, we controlled the false-discovery rate (FDR). The  

distribution of observed P values was used to calculate the FDR, by permuting  

expression phenotypes relative to genotypes 1,000 times within the HT12 and 

H8v2 dataset. Finally, we removed any probes from analysis which contained 

a known SNP (1000Genomes CEU SNP data, April 2009 release).
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      Other treatments   

 Prolonged antibiotic therapy poses potential clinical problems 

including diarrhoea, enterocolitis, patient intolerance, and bacte-

rial resistance. A prokinetic agent that could help clear the small 

intestine of the overgrowth fl ora would be an attractive therapy, 

and experimental animal studies suggest that this might be helpful. 

There have been two small studies of these agents in patients with 

SBBO, one utilizing cisapride and one using octreotide, both lead-

ing to positive results. Another study utilizing octreotide and 

erythromycin in patients with scleroderma and SBBO attained 

positive responses. Large controlled trials of prokinetic therapy in 

patients with SBBO have yet to be completed. 

 Since the days of Metchkinoff, it has been thought that one could 

manipulate the intestinal fl ora by giving live ‘probiotic’ microbial 

supplements that would change the balance in the intestinal fl ora. 

Studies to date with probiotic therapy in subjects with SBBO have 

been disappointing. A placebo-controlled, randomized crosso-

ver trial compared norfl oxacin, amoxicillin–clavulanic acid, and 

 Saccharomyces boulardii  in 10 symptomatic patients with SBBO. 

Both antibiotic treatments led to signifi cant decreases in symptoms 

and a substantial improvement in the results of hydrogen breath 

testing, but the probiotic treatment did not result in any improve-

ment in these parameters. 

 Nutritional support is an important part of treatment of SBBO 

and may be needed despite attempts to control the bacterial over-

growth by antimicrobial agents because of irreversible damage 

to the enterocytes. A lactose-free diet and substitution of a large 

proportion of dietary fat by medium-chain triglycerides may 

be necessary. Patients with cobalamin malabsorption should 

receive monthly injections of cobalamin (1000  µ g). Defi ciencies 

of other nutrients such as calcium and vitamin K should also be 

corrected.   
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      15.10.3    Coeliac disease  

  Patrick C. Dubois and David A. van Heel     

      Essentials   
 Coeliac disease is a common disorder of the small intestine in which 

specifi c proteins in dietary wheat, rye, and barley (gliadin, secalins, 

hordeins, usually referred to as ‘gluten’) induce T-cell responses 

restricted by HLA DQ2 or DQ8 that are central to the subsequent 

intestinal infl ammation and loss of villous architecture that charac-

terize the disease. 

 The condition presents most commonly either in early childhood 

or in the third or fourth decade of life. A ‘classical’ malabsorption 

syndrome characterized by diarrhoea, steatorrhoea, weight loss, 

fatigue, and anaemia may occur in severe cases, but is now rare: 

most patients have a milder constellation of symptoms such as 

abdominal discomfort, bloating, indigestion or nongastrointestinal 

symptoms (e.g. dermatitis herpetiformis), and many have no symp-

toms at all. 

 Diagnosis is made by serological testing for antitissue transglutami-

nase/antiendomysial antibodies, which have excellent sensitivity 

and specifi city. About 1 %  of the (white European origin) population 

have positive coeliac serology, but many are undiagnosed. Positive 

serological tests should be followed by small intestinal biopsy, whilst 

a normal (gluten containing) diet is continued, looking for histo-

logical features of intraepithelial lymphocytosis, chronic immune 

cell infi ltration of the lamina propria, loss of villous height (villous 

atrophy), and crypt hyperplasia. 

 Treatment is by strict avoidance of dietary wheat, rye, and barley 

(a gluten-free diet), which is safe and usually effective, but consti-

tutes a major challenge for some people. Most patients (but not all) 

can eat pure oats. Screening for osteoporosis, vitamin D defi ciency, 

and osteomalacia is advised, with treatment if indicated. 

 Intestinal complications include enteropathy-associated T-cell lym-

phoma, which should be considered particularly in older patients 

experiencing a clinical relapse in symptoms, despite effective 

gluten exclusion, after a prolonged period of clinical response. 

The overall prognosis of coeliac disease is excellent, but requires 

lifelong commitment to a gluten-free diet to reduce the risk of 

 complications.     

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

20

1

2

3

4

5

6

7

8

9

30

1

2

3

4

5

6

7

8

9

40

1

2

3

4

5

6

7

8

9

50

1

2

3

4

5

6

7

8

59

OTM Section 15.10.indd   137 8/25/2009   4:01:29 PM



SECTION 15 gastroenterology138

      Introduction   
 Coeliac disease is a common ( c. 1 %  prevalence) infl ammatory dis-

order of the small intestine occurring in both children and adults. 

Specifi c proteins in dietary wheat, rye, and barley (gliadin, secalins, 

hordeins, usually referred to as ‘gluten’) induce T cell responses 

restricted by HLA DQ2 or DQ8. These responses are central to the 

subsequent intestinal infl ammation and loss of villous architecture 

that characterizes the disease ( Fig.  15.10.1  ). Now that serological 

testing is widespread, symptoms observed in diagnosed individuals 

vary greatly and are often absent. Classical malabsorption is now 

infrequent, and only the most fl orid of the spectrum of presenta-

tions seen in coeliac disease. Strict avoidance of dietary wheat, rye, 

and barley (a gluten-free diet) usually induces remission. Disease 

reappears on re-challenge and dietary treatment is lifelong.   

      Historical perspective   
 Aretaeus (2nd century  ad ) gave the fi rst recognizable account of 

coeliac disease (Greek:  koiliakos , abdominal) describing steator-

rhoea, that disease occurred in both children and adults, and that it 

was more common in women than men. Samuel Gee presented the 

fi rst clear modern description of coeliac disease in 1888. Willem 

Dicke (1950) in his doctoral thesis entitled ‘Investigation of 

the harmful effects of certain types of cereal on patients suffering 

from coeliac disease’ outlined the modern treatment of a gluten-

free diet. Dicke came to these observations in part by noticing that 

when wheat flour (i.e. bread) became scarce in the wartime 

Netherlands, children with coeliac disease paradoxically improved. 

John Paulley (1954) demonstrated using surgical operative speci-

mens that villous atrophy occurs in the small-intestinal mucosa in 

coeliac patients. A technique enabling small-bowel biopsy by the 

oral route was fi rst developed by Margot Shiner (1956), refi ned as 

the ‘Crosby capsule’ (1957), and subsequently replaced in the 1980s 

by fi bre optic endoscopy. Shiner and Doniach (1960) were then 

able to show using light and electron microscopy the identical 

 histology of adult idiopathic steatorrhoea and childhood coeliac 

disease. Marsh described the sequence of changes in small-intesti-

nal histology, and a classifi cation system. Duhring (1884) was the 

fi rst to describe dermatitis herpetiformis, and the often coexisting 

coeliac small bowel changes were described by Marks and Watson 

(1966). 

 The cultivation of wheat in Europe began about 5000 years 

ago, and (with rye) it became more common in the diet with the 

introduction of crop rotation in the Middle Ages. Serological diag-

nostic tests became available in the 1960s (antigliadin antibodies) 

and 1970s (antireticulin antibodies), although they lacked spe-

cifi city until the development of the antiendomysial antibody test 

(1984). The HLA association was recognized in 1972. Dieterich and 

colleagues (1997) identifi ed tissue transglutaminase as the endog-

enous target of antiendomysial antibodies and the key autoantigen 

in coeliac disease.  

      Aetiology   
 Many of the immunological mechanisms by which dietary wheat 

(and to a lesser extent rye and barley) induce coeliac disease are 

now understood. Wheat gluten is partially digested, but key toxic 

protein sequences are resistant to intestinal proteases—in part due 

to high proline (P) and glutamine (Q) content. Tissue transglutam-

inase in the intestinal epithelium deamidates critical peptide 

sequences such as the dominant HLA DQ2 restricted wheat epitope 

sequence PQPQLPY to PQPELPY, and (cross-linked to critical 

wheat peptides during the deamidation step) is the antigen detected 

by current diagnostic serological tests such as the antiendomysial 

or tissue transglutaminase antibody assays. It is unclear if these 

antibodies have a pathological role in coeliac disease. Work using 

intestinal T cell clones, intestinal biopsy culture, and peripheral 

blood T cells in wheat antigen challenged coeliac patients, has 

shown that wheat peptides are presented by HLA DQ2 (or in a few 

patients DQ8) to CD4+ helper T cells. Immunodominant wheat 

(and rye, barley) epitopes that are capable of inducing T cell 

responses in almost all coeliac patients have been defi ned, and the 

crystal structure of these epitopes bound to HLA DQ2 or DQ8 has 

been elucidated. Activated T cells secrete interferon- γ , and other 

cytokines. Interleukin-15, expressed by intestinal epithelial cells 

and lamina propria macrophages, appears to activate intraepithe-

lial lymphocytes and leads to epithelial cell killing. Multiple path-

ways lead to intestinal infl ammation, villous atrophy and subsequent 

malabsorption. 

     Figure 15.10.3.1  Model of gluten 

toxicity in coeliac disease. Toxic 

peptides in gluten are resistant 

to human digestive enzymes. 

Deamidation of key glutamine 

residues by mucosal tissue 

transglutaminase creates gluten 

epitopes with enhanced affi nity for 

the peptide-binding groove of HLA 

DQ2. These gluten peptides are taken 

up by antigen presenting cells and 

presented by HLA DQ2 heterodimers 

to CD4+ T cells. Upon activation 

CD4+ T cells secrete interferon- γ  

and other cytokines and drive the 

intestinal infl ammatory response.    
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 The full HLA DQ2 heterodimer (encoded at the DNA level by 

the combination of HLA DQA1*0501 and DQB1*0201) is found in 

around 90 %  of coeliac disease patients, compared to around 30 %  

of white European population controls. The remaining 10 %  of coe-

liac disease individuals either carry HLA DQ8, or part of the HLA 

DQ2 heterodimer. Carriage of one of these HLA types is therefore 

necessary but not suffi cient to develop coeliac disease. 

 The HLA only explains around 30 %  of the heritable risk of coe-

liac disease; other genetic and environmental risk factors play a 

major role. Genetic risk variants on chromosome 4 (in a region 

containing the genes for the T-cell cytokines interleukin-2 and 

interleukin-21) as well as variants in other immune system genes 

have recently been identifi ed. Several of these have independently 

been shown to infl uence risk to other autoimmune diseases, espe-

cially type 1 diabetes mellitus. The timing of the introduction of 

wheat during infant feeding is probably important, some studies 

suggesting that continued breastfeeding while weaning is protec-

tive. Whether gastrointestinal infections (e.g. rotavirus) in infancy 

are important triggers remains unclear.  

      Epidemiology   
 Prevalence estimates of clinically diagnosed coeliac disease (i.e. 

where symptoms lead to diagnostic testing) should be distinguished 

from population prevalence studies that employ serological screen-

ing. Most studies have been performed in populations of mainly 

white European origin, and used combined serological and intesti-

nal biopsy testing. In these studies the prevalence of clinically diag-

nosed disease is around 0.1 %  (range 0.05 %  to 0.3 % ), whereas 

seroprevalence (including previously undiagnosed cases) in the 

general population is around 0.5 to 1 %  in both children and adults. 

Prevalence is even higher in close relatives of affected individuals; 

about 10 %  in fi rst degree relatives. A large proportion of coeliacs in 

most populations remain undiagnosed—recently estimated at four 

out of fi ve affected individuals in the United Kingdom. The highest 

population prevalence of 5 %  was found in Saharawi refugees living 

in Algeria. Coeliac disease occurs in Asians, but is extremely rare in 

individuals of tropical African, Japanese, and Chinese descent. 

 The similar United Kingdom population seroprevalence found 

in studies of children (1.0 %  in 5470 7-year olds) and adults (1.2 %  

in 7550 over-45-year olds), suggests the coeliac trait is present from 

childhood in all cases, even those subsequently diagnosed as adults. 

Environmental trigger factors resulting in breakdown of oral toler-

ance to wheat, rye, and barley are therefore likely to occur in the 

fi rst few years of life. The clinical observation that some adults sud-

denly develop symptoms in later life remains unexplained, but may 

refl ect a later event in the control of immunological tolerance.  

      Clinical features   
 Although coeliac disease can be diagnosed at any age, it presents 

most commonly either in early childhood (between 9 and 24 

months) or in the third or fourth decade of life. Coeliac disease is 

more common in females, with an approximately 2:1 sex ratio. 

Although the ‘classical’ gastrointestinal malabsorption syndrome 

characterized by diarrhoea, steatorrhoea, weight loss, fatigue, 

and anaemia may occur in severe cases, most patients nowadays 

have a milder constellation of symptoms such as abdominal dis-

comfort, bloating, indigestion, or nongastrointestinal symptoms 

(or no symptoms at all). The clinical manifestation appears to be 

changing, with increasing numbers being diagnosed as a result 

of the investigation of iron defi ciency (anaemia), fatigue and/or 

‘nonclassical’ symptoms ( Box  15.10.3.1  ).  

 Although the natural history of the disease may be changing 

(possibly due to environmental factors), a more likely explanation 

for the current clinical manifestations is that the ability to make 

the diagnosis has improved (both better tests, and greater test 

accessibility) throughout the last 20 years with the development 

of accurate serological markers of the disease and increasing use 

of endoscopic biopsy techniques. Therefore a much broader spec-

trum of individuals are being investigated for coeliac disease and 

consequently being diagnosed ( Fig.  15.10.3.2  ).   

    Box 15.10.3.1    Clinical presentations in coeliac disease    

 With the advent of highly sensitive serological tests, coeliac 

 disease is diagnosed in several settings.  

   u    Classical: symptoms and clinical features of intestinal 

 malabsorption—a relatively infrequent presentation in the 

developed world  

   u    Atypical: minimal or no gastrointestinal symptoms. Coeliac 

disease suspected due to presence of associated features or 

conditions. Examples include iron and folate defi ciencies, 

raised hepatic transaminases, osteoporosis, infertility, or 

short stature  

   u    Silent: asymptomatic with no clinical manifestations of  coeliac 

disease, diagnosed by serological screening or  intestinal biopsy 

performed for another reason  

   u    Latent: patients who may later develop coeliac disease, but 

who currently have normal intestinal mucosa on a gluten-

containing diet. These include individuals with positive 

 coeliac serology but normal intestinal biopsies      

     Fig. 15.10.3.2  Contemporary and classical diagnosis of coeliac disease. In the 

past, coeliac disease was mainly diagnosed after clinical presentation. Nowadays, 

many more patients are referred on the basis of positive serological tests. 

Endoscopy and ‘routine’ duodenal biopsy (without prior suspicion of coeliac 

disease) may also lead to diagnosis.
    Adapted from Green PH, Rostami K, Marsh MN (2005). Diagnosis of coeliac disease.  Best Pract 

Res Clin Gastroenterol   19 , 389–400, and van Heel DA, West J (2006). Recent advances in coeliac 

disease.  Gut ,  55 , 1037–46.    
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      Intestinal complications   

      Refractory coeliac disease   

 This term is used for the small minority of patients (<5 % ) 

who show persistent histological features of coeliac disease with 

villous atrophy, despite apparently strict exclusion of gluten. 

In some individuals, this occurs due to the development of an 

 aberrant, premalignant intraepithelial lymphocyte population. 

Immunohistochemistry is helpful in distinguishing these patients 

(see below) from those with persistent villous atrophy without 

aberrant lymphocytes, who have a very low risk of progression to 

lymphoma.  

      Enteropathy-associated T cell lymphoma (EATL)   

 This is a rare complication of coeliac disease but should be consid-

ered particularly in older patients experiencing a clinical relapse in 

symptoms, despite effective gluten exclusion, after a prolonged 

period of clinical response. Symptoms may include anorexia, 

weight loss, abdominal pain, fever, night sweats, and diarrhoea.  

      Ulcerative jejunitis   

 This presents with small intestinal ulcerations and stricturing—

a high index of suspicion should be maintained for the presence 

of an EATL, as lymphoma may also cause similar appearances, 

including benign-appearing ulcerations.  

      Small-bowel adenocarcinoma   

 The risk of small-bowel adenocarcinoma is increased in coeliac 

disease, but the absolute risk of this rare cancer is still very small.   

      Extraintestinal manifestations and 
associated conditions   
 Coeliac disease shares similarities with autoimmune diseases, even 

though the trigger for infl ammation in the intestine is not an 

autoantigen, but dietary gluten. Coeliac disease may have multisys-

temic effects, thought to be immune-mediated phenomena, 

although the pathophysiology is unproven in most cases. 

      Skin   

 Dermatitis herpetiformis is an infl ammatory skin condition char-

acterized by pruritic papules and vesicles over extensor surfaces 

and IgA deposition in the dermal papillae adjacent to lesions. 

Histological features of coeliac disease are present on intestinal 

biopsy in nearly all patients, but only 20 %  have intestinal symp-

toms. Dermatitis herpetiformis responds to gluten exclusion, but 

this may take months to years. Dapsone provides relief of the 

intense pruritus associated with dermatitis herpetiformis within 

2 or 3 days and can lead to healing of the skin lesions, but not cure, 

as lesions recur rapidly on discontinuation of therapy.  

      Liver   

 Mild elevations of hepatic transaminases are common in untreated 

coeliac disease, which resolve in most cases within 6–12 months of 

starting a strict gluten-free diet. Separately, there are also associa-

tions between coeliac disease and autoimmune liver disorders 

including autoimmune hepatitis and primary biliary cirrhosis. 

The progression of these autoimmune disorders in the presence 

of coeliac disease is unaffected by subsequent gluten exclusion. 

Although accounting for a small minority of coeliac patients with 

abnormal liver function tests, these diagnoses should be consid-

ered in patients whose abnormal liver function tests do not improve 

despite prolonged gluten exclusion.  

      Neurological   

 Malabsorption may rarely lead to neurological sequelae from vita-

min defi ciency: vitamin B 12  defi ciency may cause peripheral neu-

ropathy and myelopathy; vitamin E defi ciency can cause cerebellar 

ataxia or myopathy. Tetany may be seen with severe hypocalcae-

mia or hypomagnesaemia. Associations with coeliac disease have 

also been reported for several neurological disorders, notably cer-

ebellar ataxia, peripheral neuropathy, and epilepsy, although most 

studies have been small or inconsistent. A large Swedish study 

that retrospectively compared the frequency of several neurologi-

cal diseases in 14 000 coeliac cases and population controls, found 

an increased risk of polyneuropathy, but not of other neurological 

diseases including ataxia.  

      Other immune-mediated diseases   

 There is an approximately fi vefold increased risk of autoimmune 

disorders in coeliac disease. Defi nite associations include type 1 dia-

betes mellitus, autoimmune thyroid disease, Sjögren’s syndrome, 

and Addison’s disease.  

      Miscellaneous   

 Several cross-sectional studies have shown that the prevalence of 

coeliac disease is increased (approximately fi vefold) in individuals 

with Down’s syndrome. In untreated coeliac disease, rates of mis-

carriage and infertility are increased, possibly due to undernutri-

tion, but rates return to near normal following diagnosis and 

institution of a gluten-free diet.   

      Differential diagnosis   
 Several other small-intestinal diseases can cause villous atrophy 

( Box  15.10.3.2  ). However, most conditions bear only partial resem-

blance to coeliac disease and can usually be distinguished either 

through the clinical history or histologically on careful review. 

Response to treatment (gluten exclusion) plays an important part 

in confi rming the diagnosis of coeliac disease and excluding other 

causes. Patients who do not show a clinical or histological response 

to a strict gluten-free diet warrant consideration of alternative 

diagnoses and complications of coeliac disease. As well as other 

causes of villous atrophy, many comorbid conditions may mimic 

symptoms of coeliac disease and other causes of malabsorption 

should be excluded. Conditions occurring more frequently in 

coeliac disease, that may have similar symptoms, include small 

intestinal bacterial overgrowth, secondary lactase deficiency, 

microscopic colitis, Crohn’s disease, and ulcerative colitis.   

      Clinical investigation   

      Pathology   

 The coeliac lesion occurs predominantly in the proximal small 

intestine, refl ecting the distribution of gluten encounter. Changes 

may be mild and patchy and for this reason it is recommended that 

multiple ( > 4) biopsies are taken from separate sites, usually by 
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upper gastrointestinal endoscopy from the second part of the 

 duodenum. The classic histological features are intraepithelial 

 lymphocytosis, chronic immune cell infi ltration of the lamina pro-

pria, loss of villous height (villous atrophy), and crypt hyperplasia. 

These features may be graded according to a commonly used 

 classifi cation proposed by Marsh. Intraepithelial lymphocytosis 

is the earliest change, but specifi city for the diagnosis of coeliac 

 disease increases with the presence of the other accompanying 

 features, particularly villous atrophy. 

 Immunohistochemistry for T-cell markers (CD3, CD8) and the 

epithelial integrin CD103 are of value in refractory coeliac disease 

in detecting an aberrant intraepithelial T cell population that can 

precede the development of overt lymphoma.  

      Haematological abnormalities   

 A variety of haematological abnormalities may occur, arising 

from haematinic defi ciencies, hyposplenism, and autoimmune 

phenomena. IgA defi ciency (2–3 % ) and non-Hodgkin’s lymphoma 

(see below) are also more common in coeliac disease. 

 Anaemia occurs frequently with microcytosis due to iron 

 defi ciency, but folate defi ciency is also common and may cause 

macrocytosis. Vitamin B 12  levels are usually preserved, except in 

severe, long-standing disease with involvement of the whole small 

intestine. Pancytopenia may occur in these cases as a result of folate 

or vitamin B 12  defi ciency. 

 Leucopenia and thrombocytopenia may also occur rarely as an 

autoimmune phenomenon. 

 Thrombocytosis is common in coeliac disease and can occur as a 

result of iron defi ciency or hyposplenism, but usually resolves with 

gluten exclusion. 

 Morphological red cell changes characteristic of functional hypo-

splenism (Howell–Jolly bodies, target cells, acanthocytosis) may be 

apparent on blood fi lm. Hyposplenism (based on sensitive research 

techniques, such as pitted red cell counting) is common in adult 

coeliac disease, but is rare in children and may be more frequent 

in patients with associated autoimmune disorders. The cause of 

hyposplenism in coeliac disease is unknown. Most studies suggest 

hyposplenism does not revert after treatment with a  gluten-free 

diet. The risk of infection due to hyposplenism in coeliac dis-

ease is likely to be increased, but to date there have been only a 

few studies. A modest increased risk of infections in all patients 

with coeliac disease has been suggested by a large Swedish cohort 

study examining hospital inpatient episodes. The increased risk is 

partly accounted for by a 2.5-fold increase in the rate of pneumo-

coccal infections. Immunization against the encapsulated organ-

isms  Haemophilus infl uenza  type b,  Streptococcus pneumonia , and 

 Neisseria meningitidis  should be considered in those with blood 

fi lm evidence of hyposplenism. However, as yet no studies evaluat-

ing the effectiveness of this approach in coeliac disease have been 

performed. Immunization against infl uenza should also be con-

sidered in older patients because of the risk of secondary bacterial 

infections.  

      IgA defi ciency   

 This occurs more commonly in coeliac disease, affecting 2 to 3 %  of 

patients. Conversely, the prevalence of coeliac disease in IgA defi -

ciency is also increased and may be as high as 8 % . IgA defi ciency is 

important in coeliac disease as it may be a cause of false negative 

IgA endomysial or tissue transglutaminase tests.  

      Biochemistry   

 Fat malabsorption occurs in classical coeliac disease, leading to 

steatorhoea and malabsorption of vitamins A, D, E, and K. 

Hypocalcaemia and hypomagnesaemia may occur due to vitamin D 

defi ciency. Rarely coagulopathy with prolonged prothrombin time 

is seen due to vitamin K malabsorption. Serum albumin can be low 

in the setting of intestinal infl ammation, but systemic infl amma-

tory markers such as C-reactive protein or ESR are not usually 

raised.  

      Antibody tests   

 Antiendomysial antibody (EMA) and human recombinant tissue 

transglutaminase (TTG) antibody tests have about 95 %  sensitivity 

and specifi city in untreated coeliac disease. These tests have super-

seded both antigliadin and antireticulin antibody tests which have 

much lower diagnostic accuracy. The sensitivity and specifi city 

estimates for EMA and TTG antibody tests were obtained in stud-

ies with patients with classical histological changes on biopsy 

including villous atrophy. Diagnostic diffi culties therefore may 

arise in patients with mild disease, who may have negative serology 

and only mild infl ammatory (infi ltrative) changes on biopsy. Such 

patients may still have clinical manifestations that respond to 

 gluten exclusion. Intestinal biopsy should therefore be obtained 

in all patients with unexplained features consistent with coeliac 

disease even if antibody tests are negative. EMA is assayed by indi-

rect immunofluorescence (most commonly against monkey 

oesophagus) whereas TTG antibody titres are measured by ELISA 

and provide a quantitative measure that may be useful in assessing 

patients’ compliance with a gluten-free diet.  

      Radiology   

 Barium radiology (barium follow-through, enteroclysis) lacks sen-

sitivity in coeliac disease and is rarely used in diagnosis, but is of 

value when complications are suspected (lymphoma, ulcerative 

jejunitis) or alternative diagnoses such as Crohn’s disease need to 

    Box 15.10.3.2    Non-coeliac-related causes of villous atrophy    

      u    Autoimmune enteropathy  

   u    Chronic ischaemic enteritis  

   u    Common variable immunodefi ciency  

   u    Crohn’s disease  

   u    Eosinophilic gastroenteritis  

   u    Giardiasis  

   u    Graft vs host disease  

   u    HIV enteropathy  

   u    Nonsteroidal anti-infl ammatory drug enteropathy  

   u    Peptic duodenitis  

   u    Post-chemotherapy intestinal mucositis  

   u    Radiation enteritis  

   u    Tropical sprue      
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be excluded. Intestinal lymphoma usually has a diffuse pattern of 

bowel involvement and can be particularly diffi cult to diagnose. 

Barium studies in uncomplicated disease may show thickening 

of mucosal folds and fl occulation, segmentation or clumping of 

barium. CT or MR cross-sectional imaging with enteroclysis is 

superior when complications are suspected, enabling assessment of 

the intestinal wall but also regional lymphadenopathy and extra-

intestinal disease.  

      Wireless capsule enteroscopy   

 This technique has good sensitivity and specifi city for the diagnosis 

of coeliac disease and may be considered where upper gastrointes-

tinal endoscopy and duodenal biopsies are nondiagnostic, but 

 suspicion of small-bowel pathology remains (e.g. iron defi ciency). 

Wireless capsule enteroscopy also has a role in investigation of 

patients with refractory sprue to help exclude complications such 

as lymphoma, small-bowel adenocarcinoma, and ulcerative  jejunitis. 

This may lead on to targeted biopsies of suspicious areas by lapar-

oscopy or double balloon enteroscopy.  

      HLA DQ typing   

 Genetic testing for HLA DQ2/8 is valuable, but only as an exclu-

sionary test. The absence of genes encoding subunits of the HLA 

DQ2 or DQ8 heterodimers has almost 100 %  negative predictive 

value. However, local laboratories vary greatly in the format in 

which results are reported, making this a confusing area, and clini-

cians without experience are advised to refer back to the laboratory 

to ensure correct interpretation. The test is particularly useful in 

those in whom the diagnosis remains uncertain after serological 

testing and intestinal biopsy.   

      Criteria for diagnosis   
 Defi nitive diagnosis is based on intestinal biopsy and the fi nding of 

characteristic histological features of coeliac disease, together with 

clinical improvement on a gluten-free diet. Published guidelines 

on diagnosis and treatment are listed below (see ‘Further reading’). 

Upper gastrointestinal endoscopy and distal duodenal biopsy can 

be undertaken as an outpatient with local throat anaesthetic spray 

or intravenous sedation. An improvement in symptoms and nutri-

tional parameters, including micronutrient defi ciencies, occurs in 

most patients within months after commencing a gluten-free diet 

and provides important confi rmatory support for the diagnosis. 

Repeat intestinal biopsy after gluten exclusion to observe recovery 

of the intestinal mucosa is no longer considered necessary for diag-

nosis in adults, provided other objective indicators of response 

to gluten exclusion are observed (e.g. disappearance of positive 

coeliac antibody titres). 

 In patients with suspected coeliac disease who have commenced 

a gluten-free diet before a small-intestinal biopsy has been obtained 

and in whom serological tests and biopsies are nondiagnostic, 

biopsy after prolonged gluten challenge (equivalent to 4 slices 

of bread per day for at least 2 weeks) is helpful to confi rm the 

 diagnosis.  

      Treatment   
 Strict, lifelong gluten exclusion is the cornerstone of therapy and 

is effective in most individuals. The gluten-free diet is safe and 

 usually effective, but constitutes a major challenge for some people 

because of the pervasiveness of these grains in modern diets and 

the paucity of palatable alternatives. Resolution of symptoms and 

nutrient defi ciencies are the earliest markers of response. Bone 

density and other nutritional parameters such as body mass index 

and fat mass also increase, predominantly in the fi rst year after 

starting a gluten-free diet. Subjective indices of well-being, such as 

self-reported vitality, may also improve. In children histological 

recovery is usually complete within a few months, but recovery in 

adults may be slower.  Box  15.10.3.3   summarizes a typical course of 

treatment and additional investigation after diagnosis of coeliac 

disease.  

 Resolution of positive EMA and TTG antibody titres provides a 

useful objective marker of response to gluten exclusion and usu-

ally occurs within 6 to 12 months. However, it should be remem-

bered that these antibodies are commonly negative in the presence 

of low-grade histological abnormalities and are therefore limited 

markers of the extent of disease response. Monitoring of antibody 

tests, particularly quantitative TTG antibodies, is useful in patient 

follow-up to assess compliance. Major dietary indiscretions can 

lead to a rise in antibody levels, and can be helpful to reinforce 

efforts to improve compliance. 

 Compliance is also aided by joining a local coeliac society and 

by review with a dietitian with coeliac expertise. In the United 

Kingdom, Coeliac UK provides direct patient support and a com-

prehensive directory of gluten-free and gluten-containing food 

products. In general, wheat, rye, and barley should be avoided 

entirely. Feeding studies have established that pure oats are safe 

for most patients, but contamination of oat products with wheat 

gluten during harvesting or production is a common problem. 

A small number of patients appear to have a true coeliac intolerance 

to gluten-related avenins in oats. T-cell lines reactive to avenins in 

    Box 15.10.3.3    Action after diagnosis of coeliac disease    

      Initiate gluten-free diet   

      u    Referral to a dietitian with suitable expertise  

   u    Membership of a coeliac support society  

   u    (In the United Kingdom: prescription of gluten-free foods)      

      Possible investigations for comorbid conditions   

      u    Full blood count  

   u    Iron studies, vitamin B 12 , and folate  

   u    Calcium, phosphate, patathyroid hormone, vitamin D  

   u    Liver function tests  

   u    Thyroid function tests  

   u    Bone densitometry scan      

      Additional therapy   

      u    Correct iron, vitamin B 12 , folate defi ciency  

   u    Calcium and vitamin D supplements  

   u    Pneumococcal, meningococcal, and  Haemophilus infl uenza  

type b immunization in patients with hyposplenism       
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15.10.3 coeliac disease 143

oats can be generated from the intestinal mucosa of some of these 

patients. 

 It is unclear whether there is a safe amount of gluten that may be 

consumed without adverse effects, although for the majority even 

small amounts of gluten (50 mg/day) appear suffi cient to cause 

ongoing intestinal infl ammation. Individuals appear to vary con-

siderably in their sensitivity to gluten. A few are exquisitely sensitive 

and even minimal amounts of gluten may provoke gastrointestinal 

symptoms and histological abnormalities. At the opposite end of 

the spectrum, some patients have no symptoms despite a normal 

gluten-containing diet. 

 Patients with coeliac disease show a modestly increased risk 

of osteoporosis and fractures. Hip fractures are increased nearly 

twofold, a signifi cant concern given the high incidence of these 

fractures in ageing populations. The most effective interven-

tion is the gluten-free diet, which improves bone density in 

 coeliac  disease, predominantly in the fi rst year. Patients should 

be encouraged to undertake regular weight-bearing exercise, and 

advised on consuming adequate dietary calcium ( c. 1000 mg/day). 

Calcium supplements may be prescribed to meet these  targets. 

Screening for osteoporosis with bone densitometry scanning 

should be  considered, particularly in older patients who have 

the greatest risk of fractures and in those with other risk factors 

(low body mass index, weight loss, poor adherence to gluten-

free diet). Patients at high risk of fractures, with osteoporo-

sis  determined by bone densitometry scanning, should receive 

 appropriate supplementary therapies for osteoporosis including 

bisphosphonates. 

 Patients should be screened for vitamin D defi ciency and osteo-

malacia. This may be suggested by hypocalcaemia, hypophospha-

taemia and raised alkaline phosphatase and is confi rmed by serum 

25-hydroxyvitamin D (calcidiol) assay. The British Society of 

Gastroenterology have produced guidelines on the management 

of low bone mineral density in coeliac disease. These guidelines 

 recommend screening for secondary hyperparathyroidism as a 

surrogate marker of vitamin D defi ciency, by measuring serum 

 calcium and parathyroid hormone. Patients with a high parathy-

roid hormone level and normal calcium should receive supple-

mentation with calcium and vitamin D (800–1000 units/day).  

      Persistent clinical symptoms   
 The commonest reason for recurrent or persistent clinical manifes-

tations in coeliac disease is inadequate adherence to a gluten-

free diet. This may be inadvertent, and a careful dietary review 

should be undertaken to assess presence of gluten in the diet. 

Symptoms may also commonly persist or recur due to the presence 

of comorbidities, which should be carefully sought and treated (see 

above). 

 Rarely patients have true refractory coeliac disease, if symptoms 

and histological features persist despite strict gluten exclusion 

over several months. Intestinal complications of coeliac disease, 

including enteropathy-associated T-cell lymphoma, should be 

considered and excluded in these patients (see above). It is worth 

remembering that the incidence of several gastrointestinal condi-

tions that are not connected to coeliac disease, e.g. sporadic color-

ectal carcinoma greatly exceeds that of enteropathy-associated 

T-cell lymphoma and should also be excluded in patients with 

 persisting symptoms.  

      Prognosis   
 Prognosis in coeliac disease is excellent, provided a prompt diag-

nosis is made and treatment instituted with strict adherence to a 

gluten-free diet. In long-term treated coeliac disease mortality is 

comparable to that of population controls. 

 The largest cohort studies point to an increased risk ( c. twofold) 

of malignancy and mortality occurring within the fi rst 2 or 3 years 

after diagnosis, although there is evidence for a sustained ( c. sixfold) 

increased risk of lymphoproliferative disorders beyond this. It 

should be noted that absolute risks (i.e. at an individual patient 

level) of malignancy are small ( Table  15.10.3.1  ). The increased risk 

appears to correlate with disease severity as it is highest in those 

with overt malabsorption but not detected in studies of patients 

with asymptomatic disease.   

      Screening   
 Screening for coeliac disease in asymptomatic individuals (includ-

ing those at higher risk, e.g. with a family history or coexisting type 1 

diabetes) remains controversial. The natural history of disease 

(especially risk of complications) in asymptomatic screening-

detected cases is currently unknown, hence clear guidance on 

whether such individuals should commence a gluten-free diet 

cannot be given.  

      Likely developments over the next 
5 to 10 years   
 Understanding of the heritable genetic risk factors predisposing to 

coeliac disease is rapidly increasing, driven by advances in genetics. 

Several new approaches to therapy are currently being developed 

or in early clinical trials. These include oral peptidase supplements 

designed to breakdown toxic cereal peptides, small molecules to 

inhibit various steps in pathogenesis (e.g. directed against trans-

glutaminase, HLA DQ2, zonulin), and cereals genetically modifi ed 

to reduce antigenicity.  

      Further reading    
 Halfdanarson TR, Litzow MR, Murray JA (2007). Hematologic 

manifestations of celiac disease.  Blood ,  109 , 412–21.   

      Table 15.10.3.1  Estimates of relative and absolute risks in coeliac 
disease   

 Relative risk  Absolute risk (incidence per 100 000 

person-years)  

 General population  Coeliac  

 Any sepsis  2.6  58  139  

 Hip fracture  2.2  128  197  

 Any fracture  1.5  444  600  

 Lymphoma  5.9  8  45  

 Comparisons of events in the cohort of coeliacs ( > 10 000 cases) in the Swedish inpatient 

register with the general population. Includes fi rst year after diagnosis. 

 Adapted from the analysis of Walters JRF,  et al.  (2008). Coeliac disease and the risk of 

 infections.  Gut ,  57 , 1034–5. 
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SECTION 15 gastroenterology144

      Introduction   
 The lymphomas that may arise in the gastrointestinal tract are 

listed in  Box  15.10.4.1  . Two of these, namely B-cell lymphoma of 

mucosa-associated lymphoid tissue (MALT) and enteropathy- 

associated T-cell lymphoma (EATL), do not arise in peripheral 

lymph nodes and will be discussed in more detail in this section. 

Any of the lymphomas that normally arise in lymph nodes 

may present as a primary gastrointestinal tumour, the most 

 frequent being diffuse large B-cell lymphoma which, in fact 

accounts for the majority of primary gastrointestinal lymphomas, 

and mantle-cell lymphoma, which typically manifests in the gut as 

lymphomatous polyposis. Burkitt’s lymphoma, is the commonest 

childhood  gastrointestinal lymphoma, and is an especially  common 

primary small intestinal lymphoma in the Middle East. The increas-

ingly important group of B-cell lymphoproliferative conditions 

 Hill ID,  et al . (2005). Guideline for the diagnosis and treatment of celiac 

disease in children: recommendations of the North American Society 

for Pediatric Gastroenterology, Hepatology and Nutrition.  J Pediatr 

Gastroenterol Nutr ,  40 , 1–19. [Provides paediatric guidance including 

information on presentation of disease in infancy and childhood, 

diagnostic and therapeutic approaches in children.]   

 Hunt KA,  et al . (2008). Newly identifi ed genetic risk variants for celiac 

disease related to the immune response.  Nat Genet ,  40 , 395–402.   

 Kagnoff, MF (2006). AGA Institute Medical Position Statement on the 

Diagnosis and Management of Celiac Disease.  Gastroenterology ,  131 , 

1977–80. [Provides practical clinical guidance for management of 

adults and children including internationally oriented dietary advice 

and list of useful websites.]   

 Ludvigsson JF,  et al . (2008). Coeliac disease and risk of sepsis.  Gut ,  57 , 

1074–80.   

 Rostom A, Murray JA, Kagnoff MF (2006). American Gastroenterological 

Association (AGA) Institute technical review on the diagnosis and 

management of celiac disease.  Gastroenterology ,  131 , 1981–2002. 

[Provides guidance in adults with coeliac disease. Strong focus on 

diagnosis, including diffi culties encountered by physicians and use of 

serological tests.]   

 Scott, BB, Lewis NR (2007).  Guidelines for osteoporosis in infl ammatory 

bowel disease and coeliac disease . British Society of Gastroenterology 

( http://www.bsg.org.uk ). [Provides practical guidance on targeted 

screening and treatment of osteoporosis in coeliac disease.]   

 Sollid LM (2002). Coeliac disease: dissecting a complex infl ammatory 

disorder.  Nat Rev Immunol ,  2 , 647–55.   

 van Heel DA, West J (2006). Recent advances in coeliac disease.  Gut ,  55 , 

1037–46.   

 WGO Celiac Disease Review Team (2007).  World Gastroenterology 

Organization Practice Guideline: celiac disease .  http://www.

worldgastroenterology.org/assets/downloads/en/pdf/guidelines/04_

celiac_disease.pdf                    

      15.10.4    Gastrointestinal 
lymphoma  

  P.G. Isaacson     

      Essentials   
 Primary gastrointestinal lymphoma, which is the commonest 

extranodal lymphoma and almost exclusively of non-Hodgkin’s 

type, is defi ned as lymphoma that has presented with the main 

bulk of disease in the gastrointestinal tract, with or without involve-

ment of contiguous lymph nodes, and necessitating direction of 

treatment to that site. 

 MALT lymphoma describes a group of low-grade B-cell lymphomas 

whose histology recapitulates the features of mucosa-associated 

lymphoid tissue (MALT). It most commonly affects the stomach, 

presenting with nonspecifi c dyspepsia. Endoscopy typically shows 

infl amed or eroded mucosa rather than tumour mass. Many if 

not all cases appear to be driven by  Helicobacter pylori , with 75 %  

regressing following eradication of the organism with appropriate 

antibiotics. Deeply invasive lymphomas and those with adverse 

 histological or cytogenetic features are unlikely to respond. 

 Enteropathy-associated T-cell lymphoma (EATL) is an intestinal 

tumour of intraepithelial T-lymphocytes that occurs most com-

monly in the jejunum or ileum and is sometimes associated with 

coeliac disease. It presents with abdominal pain, often due to intes-

tinal perforation, and in some cases there is a prodromal period 

of refractory coeliac disease (sometimes accompanied by ulcera-

tive jejunitis). The prognosis is usually poor, with death frequently 

resulting from abdominal complications in patients already weak-

ened by uncontrolled malabsorption. 

 Burkitt’s lymphoma is the most frequent childhood gastrointestinal 

lymphoma and is particularly common in the Middle East. B-cell 

lymphoproliferative conditions associated with immunodefi ciency 

commonly present in the gastrointestinal tract and are increasingly 

important.     

    Box 15.10.4.1    Primary gastrointestinal non-Hodgkin’s lymphoma    

      B cell   

      u    MALT lymphoma (including IPSID) with or without  evidence 

of high-grade transformation  

   u    Mantle-cell lymphoma (lymphomatous polyposis)  

   u    Burkitt’s lymphoma  

   u    Other types corresponding to lymph node equivalents:  

       follicular lymphoma  

       lymphocytic lymphoma  

       Diffuse large B-cell lymphoma    

   u    Immunodefi ciency-related lymphomas:  

       post-transplant  

       acquired (AIDS)  

       congenital        

      T cell   

      u    EATL  

   u    Other types not associated with enteropathy      

      Rare types   

 (including conditions that may simulate lymphoma)   
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