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Abstract

In this thesis some aspects of temperature corrections in string theory are analyzed: in

particular, we study the thermal contributions to the 4 dimensional effective potential

arising from string theory compactifications.

String theory predicts that the spacetime has more than 4 dimensions; in particular,

supersymmetric string theories are consistent only if the spacetime has 10 dimensions,

1 time plus 9 space directions. In order to describe the physics of our Universe

with string theory we make 6 spatial directions very small, namely, we curl them

into a 6-dimensional space. The resulting 4-dimensional theory depends on a large

number of parameters which are massless scalar fields called moduli. The different

values that the moduli can take represent both the possible deformations of the 6-

dimensional compact space and the values of the coupling constants and masses in

the 4-dimensional spacetime. Allowing them to have arbitrary values leads to a lack

of predictability of various 4D physical quantities, to a huge vacuum degeneracy and

to unobserved long range fifth forces.

In the thesis we review some methods established in the literature in order to fix

the moduli values and hence to fix a particular geometry and we investigate how

the inclusion of temperature corrections alter their values and affect the geometry

of the compact space. The analysis seems to suggest that at least in the specific

compactification scenarios considered in this thesis, temperature corrections do no

alter substantially the zero temperature results.

In the final part of this work, we analyze instead an example in which the inclusion

of temperature corrections alters dramatically the picture at zero temperature. In

particular, we study an unstable system constituted by a pair of Dirichlet (D) and

anti-D brane that, although being unstable at zero temperature, it can become stable

once finite temperature corrections are switched on.
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1 Foreword

We live in a very cold Universe. Away from stars and galaxies, the average tempera-

ture of the radiation has a thermal black body spectrum with a temperature of about

2.7 degrees Kelvin above the absolute zero temperature. Called the cosmic microwave

background (CMB), this relict radiation released by the expansion and cooling of the

early Universe is constant in all directions to within 1 part in 100,000. This radiation

was emitted by the hot plasma that filled the Universe a mere 380,000 years after the

big bang, which took place an estimated 13.7 billion years ago.

In fact, one of the profound observations of the 20th century is that the Universe is

expanding. This expansion implies the Universe was smaller, denser and hotter in the

distant past. When the visible Universe was one hundred millionth its present size,

its temperature was 273 million degrees above absolute zero and the density of matter

as comparable to the density of air at the Earth’s surface. It seems natural then to

address the issue of temperature corrections in every model, scenario or theory that

attempts to describe the physics of the early Universe.

In this thesis, we do so by analyzing the consequences of the inclusion of tempera-

ture effects in two different aspects of string theory: moduli stabilization and tachyon

condensation.

String theory is one of the most studied candidates as a theory of quantum gravity

and of high-energy physics. It should be viewed, therefore, as a natural framework to

study the physics of the early Universe. Furthermore, it could represent for cosmology

the underlying theory it needs to approach the basic questions such as the initial

singularity, (if there was any), the origin of inflation and of the density perturbations

in the CMB. It has an extremely rich structure both from the mathematical, and the

theoretical point of view. In fact, the attempt to try to understand it in depth, has

led to many profound results, like the discovery of mirror symmetry [5, 6] an exact

microscopic calculation of the Bekenstein-Hawking black hole entropy [7], a smooth

description of space-time topology change [8–11] and the AdS/CFT correspondence

[12]. Despite these successes, it has to be said that, at present, the theory still lacks

any experimental evidence and a decisive low-energy test of string theory does not

11



Chapter 1. Foreword

seem possible. However, there is hope in the community, as the forthcoming years

are expected to be characterised by a new set of experimental data coming from

two crucial experiments for fundamental physics: the PLANCK satellite, which was

launched by the European Space Agency in May 2009, and the Large Hadron Collider

at CERN in Geneva which started operation in September 2009.

The work presented in this thesis is not at all exhaustive and much more work

needs to be done to understand the inclusion of temperature corrections in string

theory models. Different approaches could have also been taken or will probably be

taken in the future once that more light is shed on the theory.1

I have tried to make it as much as self-contained as possible, however, I have decided

not to include too much review material because that would go beyond the scope of

the present work. The review material which I have consulted the most is [13, 14]

for flux compactification, [15, 16] for the large volume scenarios and finally [17] for

tachyon condensation.

As for the references, I have tried to cite all the relevant works where appropriate,

but it is inevitable that there are omissions: apologises in advance to the authors of

those papers. The work contained in this thesis is based on the papers [1] (chapter 2

and 3), [3] (chapter 2 and 4) and [4] (chapter 5). Once again, I would like to express my

gratitude to my collaborators: Lilia Anguelova, Michele Cicoli and Steven Thomas.

Vincenzo Calò

December 21, 2010

1 For example, in the case of moduli stabilization, one would like to understand corrections, that
are due to taking into account higher derivative terms appearing in effective supergravity actions
or even better, the case of thermal corrections in a moduli stabilization setup that requires going
beyond the supergravity approximation so that one has to use string theory at finite temperature.
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2 Moduli stabilization with thermal

corrections

2.1 Introduction

Moduli stabilization is a major problem on the road to relating string theory com-

pactifications with phenomenology. It stems from the fact that the internal geometry

of the compactified extra-dimensions of higher dimensional theories1 can have various

deformations, which manifest themselves as scalar fields with effective gravitational

coupling but without a potential energy in the four extended dimensions. These scalar

fields are called moduli. Since the four dimensional (4D) effective action depends on

those moduli, allowing them to have arbitrary values leads to a lack of predictability

of various 4D coupling constants and masses, to a huge vacuum degeneracy and to

unobserved long range fifth forces2.

The problem of moduli stabilization is hence intertwined with the existence of extra

dimensions, an old idea that dates back to the works of Kaluza and Klein [20,21] at the

beginning of the last century. Their generalization of Einstein’s General Relativity

to five dimensions is a good starting point to understand the problem of moduli

stabilization. To this purpose, consider the Einstein-Hilbert action in five dimensions:

S =
1

2k2
0

∫
d5x
√
−det g5 R5 . (2.1)

Now wrap the fifth dimension on a circle of radius R. The five dimensional metric gmn,

with m = 0, . . . 4, regarded as a field in four dimensions, has new non-metric degrees

of freedoms: in particular, it has four components labeled as gµ4 with µ = 0, . . . 3,

which transform as a vector field and one additional degree of freedom g44 which

parametrize the radius of the extra-dimensional circle. This can be shown explicitly

1Theories with more than 3 spatial directions. Superstring theories have 9 spatial extended direc-
tions, 6 of which must be compactified.

2For a review on fifth force phenomenology see [18], for more recent experimental bounds see [19].
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Chapter 2. Moduli stabilization with thermal corrections

by writing the five dimensional metric gmn in the following way

ds2 = gmndx
mdxn = gµνdx

µdxν + e2σ
(
dx4 +Aµdx

µ
)2

(2.2)

where we defined g44 = e2σ. In four dimensions the previous action becomes

S =
πR

k2
0

∫
d4x
√
−det g4 e

σ

(
R4 −

1

4
e2σFµνF

µν

)
. (2.3)

This theoretical result is of fundamental importance since it shows that the unification

of the fundamental forces, in this case gravitation and electromagnetism, may be

related to the existence of extra dimensions of spacetime. However, the problem

of moduli stabilization is already present at this level: in order to disentangle the

graviton kinetic term from the scalar field σ, we should perform a Weyl rescaling. If

we set gµν = e−
1
2 (σ−σ0)g?µν and define σ̃ = σ−σ0 which has zero vacuum expectation

value, by expanding around σ0 the previous action becomes

S ∼ πReσ0

k2
0

∫
d4x
√
−det g4

(
R?4 −

3

2
∂µσ̃∂

?µσ̃ − 1

4
e8σ0FµνF

?µν

)
(2.4)

where ? have been inserted to remind that indices are raised with g?µν , for example

∂?µ = g?µν∂ν . The Weyl transformation has given a kinetic term to the field σ̃ which

obeys the equation of motion of a scalar field without potential energy, hence the field

σ̃ is a modulus of the theory. The invariant radius ρ = Reσ0 depends on the vacuum

expectation value σ0 and since there is no potential energy, the field equations do not

determine the radius of the compact dimensions, namely, there is no preferred value of

σ0. Notice that also the U(1) gauge coupling depends on σ0 and again since there is no

preferred value for it, there is no preferred value for the gauge coupling and the theory

lacks of predictability. The different values of σ0 label degenerate configurations or

states in the quantum theory. Moduli stabilization consists therefore in the process of

finding a potential for the moduli of the theory and thus selecting a preferred state

in the quantum theory as a minimum of the potential.

In superstring theory, the last decade has seen a lot of progress towards the reso-

lution of this problem. A major ingredient in these developments was the realization

that non-zero background fluxes induce a potential for some of the moduli [22–24].

Roughly speaking, background fluxes are gauge fields in higher dimensional theories

which depend on the coordinates of the compactified internal space. At this point,

another simple example can be useful to understand better the principles of moduli

14



Chapter 2. Moduli stabilization with thermal corrections

stabilization with fluxes. The following one is based on the model by Freund and

Rubin [25]. Consider a six dimensional Einstein-Maxwell theory: the Einstein and

the Maxwell field equations admit as a solution a factorized spacetimeM4×R2 where

R2 is a two-dimensional Riemann surface with a non-vanishing 2-form on it

Fmn ∼ fεmn , (2.5)

where f has the dimension of a mass squared and m,n = 4, 5. We can write the

Einstein-Hilbert action as

S =

∫
d6x
√
−g6 (R6 − FmnFmn) , (2.6)

and reduce it to four dimensions by taking R2 to be, for example, a two-dimensional

sphere of radius R

ds2 = gµνdx
µdxν +R2(x)gmn(y)dymdyn , (2.7)

where gmn is the metric on a two-sphere of unit radius. Reducing the previous action

to 4D we find that R2(x) multiplies the Ricci tensor R4

S ∼
∫
d4x
√
−g4

(
R2(x)R4 + 2−R2(x)

∫
S2

FmnF
mndy2

)
, (2.8)

We now turn N units of fluxes on the internal sphere S2,∫
S2

Fmndy
m ∧ dyn = N (2.9)

and perform a Weyl rescaling to untangle the graviton kinetic term from the field

R(x). This can be achieved by setting gµν = 1
R2 g?µν to obtain

S ∼
∫
d4x
√
−g?4

(
R?4 − 6gµν? ∂µR∂νR+

2

R4
− N2

R6

)
. (2.10)

In this case there is a potential for the radius of the compact space that is given by

V (R) ∼ N2

R6
− 1

R4
(2.11)

and it admits a minimum for R ∼ N . The modulus R is therefore stabilized. In the

previous example, the minimum of the potential is the result of two different sources:
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Chapter 2. Moduli stabilization with thermal corrections

one comes from the flux term and scales as N2/R6 and the other one comes from

the curvature R2 which being positive makes a negative contribution, −1/R4, to the

potential.

Both the internal geometry and the background field strengths contribute to the

vacuum energy of the system. In general, we shall see that they are only the leading

contributions in a systematic expansion of the quantum vacuum energy, to be sup-

plemented by both perturbative and nonperturbative contributions. All these effects

can be summarized in a 4D effective potential, defined as the total vacuum energy,

considered as a function of the moduli fields. This effective potential is defined in

precise analogy to the effective potentials of conventional quantum field theory and

can be used in a very similar way, namely, to determine the possible vacua of the

theory, as the local minima of the effective potential.

Before we conclude this section, we shall describe the approach that we shall use to

compute the effective potential in superstring theory compactifications. At energies

low compared to the string tension, denoted as α′ (the fundamental string scale),

superstring theory is well described by 10D supergravity, a supersymmetric extension

of general relativity, coupled to Yang-Mills theory. The dimensional reduction of

classical 10D supergravity (supplemented by branes and fluxes) to 4D yields a tree

approximation to the effective potential as a function of the moduli fields. In most of

the cases that we shall study later, this classical potential will be supplemented with

quantum corrections which are computed in the string coupling gs or string tension

α′ expansions, or with known non-pertubative results.

In addition, the new results presented in this thesis are about the computation,

beside perturbative and non-pertubative corrections, of finite temperature corrections

to the 4D effective potential.

The rest of this chapter is organized as follows. In Section 2.2 we present the main

results of type IIB flux compactification emphasizing the resulting four dimensional

effective description and in Section 2.3, we recall the general form of the effective

potential at finite temperature and discuss in detail the issue of thermal equilibrium

in an expanding Universe and the cosmological moduli problem.

2.2 Type IIB flux vacua

We now start to add some quantitative material to the previous discussion. This

is not going to be a fully-fledged review of flux compactification and we remind the

reader of some excellent reviews on the subject [13,14].
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Chapter 2. Moduli stabilization with thermal corrections

The most studied case of flux compactification involves type IIB vacua. They are

better understood, compared to the type IIA ones, because there is a class of solutions

in which the internal space is conformally Calabi-Yau and the back-reaction of the

fluxes on the internal geometry is entirely encoded into warp factors3 [13]. More

specifically, we will be interested in type IIB Calabi-Yau orientifold compactifications

with background fluxes, which preserve N = 1 supersymmetry in 4D. The bosonic

part of the IIB 10D supergravity action in the Einstein frame is given by (M =

0, . . . , 9)

SIIB =
1

k2
10

∫
d10x(−GE)1/2

{
R− ∂MS∂

M S̄

2(Re S)2
− G3 · Ḡ3

12ReS
− F̃ 2

5

4 · 5!

}

+
1

8ik2
10

∫
C4 ∧G3 ∧ Ḡ3

ReS
+ Slocal (2.12)

The theory has Neveu-Scharwz (NS) field strengthsH3 with potentialB2 and Ramond-

Ramond (RR) strengths F1,3,5 with corresponding potential C0,2,4. We have defined

the combined RR-NS three-flux

G3 = F3 + iSH3 , (2.13)

where S is the axio-dilaton defined as

S = iC0 + e−φ (2.14)

and

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (2.15)

The 5-form F̃5 is self-dual and one must impose the constraint4 F̃5 = ?F̃5 by hand

when solving the equations of motion. Finally, Slocal in (2.12) allows for the possibility

that we include the action of any localized sources in our background; in string theory

possible sources are D-branes and O-planes.

We are interested in the vacua of the action (2.12) that lead to maximally super-

symmetric four-dimensional spacetimes. These have Poincaré, SO(1,4) and SO(2,3)

invariance and are called respectively Minkowski, anti-de Sitter space (AdS) or de

Sitter (dS) spacetimes. The most general ten-dimensional metric consistent with

3As opposed to considering internal spaces manifolds with SU(3)× SU(3) structure.
4We will use the standard convention for the Hodge operator ?: for a k-form η in a n-dimensional

spacetime, (?η)i1,i2,...,in−k = 1
k!

√
|detg|εj1,...,jk,i1...,in−kη

j1,...,jk where ε is the Levi-Civita tensor.
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Chapter 2. Moduli stabilization with thermal corrections

four-dimensional maximal symmetry is

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)g̃mndy

mdyn (2.16)

with µ, ν = 0, . . . , 3 and m,n = 4, . . . 9 and we have allowed for the possibility of a

warp factor A(y). In order not to spoil the Lorentz invariance of the theory after

compactification, we are allowed to turn on only those fluxes which have either no

components or four components along space-time. Therefore the flux G3 can only be

internal, i.e.,

G3 ≡
1

3!
GMNP dxM ∧ dxN ∧ dxP =

1

3!
Gmnp dy

m ∧ dyn ∧ dyp (2.17)

whereas F5 is allowed to have also non-compact components: Poincarè invariance and

the Bianchi identity allow in fact a five-form flux of the form

F̃5 = (1 + ?10) ∂mα(y)
{
dym ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

}
. (2.18)

Einstein’s equation, trace reversed, is

RMN = κ10
2

(
TMN −

1

8
gMNT

)
, (2.19)

where TMN = T sugra
MN + T loc

MN is the total stress tensor of the supergravity fields and

the localized objects. The noncompact components take the form

Rµν = −gµν

(
GmnpḠ

mnp

48 Im τ
+
e−8A

4
∂mα∂

mα

)
+ κ10

2

(
T loc
µν −

1

8
gµνT

loc

)
. (2.20)

From the metric ansatz (2.16), one computes the Ricci components

Rµν = −ηµνe4A∇̃2A = −1

4
ηµν

(
∇̃2e4A − e−4A∂me

4A∂m̃e4A
)
. (2.21)

(A tilde denotes use of the metric g̃mn.) Using this and tracing (2.20) gives

∇̃2e4A = e2AGmnpḠ
mnp

12 Im τ
+ e−6A

[
∂mα∂

mα+ ∂me
4A∂me4A

]
+
κ10

2

2
e2A(Tmm − Tµµ )loc .

(2.22)

These equations serve as stringent constraints on flux/brane configurations that can

lead to warped solutions on compact manifolds. To see this, note that the integrals of

their left sides over a compact manifoldM6 vanish, whereas the flux and warp terms
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on the right-hand side are positive definite. Thus, in the absence of localized sources

there is a no-go theorem [26]: the fluxes must vanish and the warp factor must be

constant. For a warped solution the stress terms on the RHS must be negative, which

can only be true under certain circumstances.

For example, consider a p-brane wrapped on a (p− 3)-cycle Σ of the manifoldM6.

One has [24]

(Tmm − Tµµ )loc = (7− p)Tpδ(Σ) . (2.23)

Eq. (2.23) tells us that for p < 7, in order to have the required negative stress on

the RHS of the constraint (2.22), the compactification must involve negative tension

objects. String theory does have such objects, and so evades the no-go theorem. O3

planes are a simple example.

We have been discussing constraints from the integrated Einstein equation. The

Bianchi identity/equations of motion for the 5-form flux is [24]

dF̃(5) = H(3) ∧ F(3) + 2κ10
2T3ρ

loc
3 (2.24)

where ρloc
3 is the D3 charge density form from localized sources; this includes the

contributions of the D7-branes or O3 planes, and also of mobile D3-branes that may

be present. The integrated Bianchi identity

1

2κ10
2T3

∫
M6

H(3) ∧ F(3) + Qloc
3 = 0 (2.25)

states that the total D3 charge from supergravity backgrounds and localized sources

vanishes.

With general negative tension sources, the constraints from the integrated field

equations appear to be rather weak. However, in the special case that

1

4
(Tmm − Tµµ )loc ≥ T3ρ

loc
3 (2.26)

for all localized sources, the global constraints determine the form of the solution

completely. In fact, the inequality (2.26) holds for all of the localized sources consid-

ered in this thesis. For D3-branes and O3 planes, whose integrated ρ3 is respectively

+1 and −1
4 , the stress tensor is

T 0
0 = T 1

1 = T 2
2 = T 3

3 = −T3ρ3 , Tmm = 0 , (2.27)

and so the inequality is actually saturated. Anti-D3-branes satisfy the inequality but
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do not saturate it. D5-branes wrapped on collapsed cycles also satisfy the inequality,

as their tension comes entirely from their induced D3 charge. D7-branes saturates the

inequality too [24]. There are objects that do violate the inequality (2.26). O5-planes

make a negative contribution to the LHS and zero contribution to the RHS. Anti-O3

planes make a negative contribution to the LHS and a positive contribution to the

RHS.

In terms of the potential α the Bianchi identity (2.24) becomes

∇̃2α = ie2AGmnp(∗6Ḡmnp)
12 Im τ

+ 2e−6A∂mα∂
me4A + 2κ10

2e2AT3ρ
loc
3 , (2.28)

where ∗6 is the dual in the transverse directions. Subtracting this from the Einstein

equation constraint (2.22) gives

∇̃2(e4A−α) =
e2A

6 Im τ

∣∣∣iG(3)−∗6G(3)

∣∣∣2+e−6A|∂(e4A−α)|2+2κ10
2e2A

[
1

4
(Tmm−Tµµ )loc−T3ρloc3

]
.

(2.29)

The LHS integrates to zero, while under the assumption (2.26) the RHS is nonnega-

tive. Thus, if the inequality (2.26) holds, then

• The 3-form field strength is imaginary self-dual,

∗6G(3) = iG(3) . (2.30)

• The warp-factor and 4-form potential are related,

e4A = α . (2.31)

• The inequality (2.26) is actually saturated.

In summary, assuming that the localized sources satisfy (2.26), the necessary and

sufficient conditions for a solution are closed 3-form fluxes F(3) and H(3) such that

G(3) is imaginary self-dual, and vanishing total D3 charge.

The simplest examples of such solutions are perturbative IIB orientifolds. At lead-

ing order, the metric on the internal space is conformally Calabi-Yau, (CY) namely is

given by e−2AgCY. For this reason, these flux vacua are often described as Calabi-Yau

compactifications with fluxes.
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2.2.1 4D effective description

The effective description in 4D is given by a N = 1 supergravity characterised by a

Kähler potential K, a superpotential W and a gauge kinetic function fab, where the

indices a, b run over the various vector multiplets. In particular, the scalar potential

of this theory has the standard form:

V = eK/M
2
P

(
Kij̄DiWDj̄W̄ − 3

|W |2

M2
P

)
, (2.32)

where i, j run over all moduli of the compactification. Generically, the latter consist

of the axio-dilaton (2.14), h1,1 Kähler (T -moduli) and h2,1 complex structure moduli

(U -moduli). The tree level Kähler potential has the following form:

Ktree

M2
P

= − ln
(
S + S̄

)
− 2 lnV − ln

−i ∫
CY

Ω ∧ Ω̄

 , (2.33)

where V is the Einstein frame CY volume, in units of the string length ls = 2π
√
α′,

and Ω is the CY holomorphic (3,0)-form. Note that the the T -moduli enter Ktree only

through V and the U -moduli only through Ω. For later purposes, it will be useful to

recall a couple of relations regarding the Kähler moduli. Expanding the Kähler form

J =
∑h1,1

i=1 t
iDi in a basis {Di} of H1,1(CY,Z) and considering orientifold projections

such that5 h−1,1 = 0 ⇒ h+
1,1 = h1,1, we obtain:

V =
1

6

∫
CY

J ∧ J ∧ J =
1

6
kijkt

itjtk , (2.34)

where kijk are related to the triple intersection numbers of the CY and the ti are

2-cycle volumes. The volumes of the Poincarè dual 4-cycles are given by:

τi =
∂V
∂ti

=
1

2

∫
CY

Di ∧ J ∧ J =
1

2
kijkt

jtk . (2.35)

Finally, the scalar components of the chiral superfields, corresponding to the Kähler

moduli, that enter the 4D effective action are Ti = τi+ ibi, where the axions bi are the

components of the RR 4-form C4 along the 4-cycle Poincarè dual to Di. Obviously,

5The cohomology groups Hp,q split into two eigenspaces under the orientifold projection, Hp,q =
H+
p,q ⊕H−p,q. Considering orientifold projections such that h−1,1 = 0 projects out all the two-form

moduli arising from the 10-dimensional reduction of N = 1 supergravity to the 4-dimensional
N = 2 supergravity.
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from (2.34) and (2.35) one can express V in (2.33) as a function of τi = 1
2(Ti + T i).

Now, turning on background fluxes G3 = F3 + iSH3, generates an effective super-

potential of the form [22]6:

Wtree ∼
∫
CY

G3 ∧ Ω. (2.36)

As a result, one can stabilise the axio-dilaton S and the U -moduli. However, the

Kähler moduli Ti do not enter Wtree and therefore remain massless at leading semi-

classical level.

One can obtain an effective description for these fields by integrating out S and U .7

Then the superpotential is constant, W = 〈Wtree〉 ≡ W0, and the Kähler potential

reads K = Kcs − ln (2/gs) +K0 with

K0 = −2 lnV and e−Kcs =

〈
−i
∫
CY

Ω ∧ Ω̄

〉
. (2.37)

Before concluding this subsection, let us make a couple of remarks. First, note that the

background flux G3 may or may not break the remaining 4D N = 1 supersymmetry,

depending on whether or not DαW = ∂αW + W∂αK vanishes at the minimum of

the resulting scalar potential. Second, the Kähler potential K0 satisfies the no-scale

property Ki̄
0 ∂iK0∂̄K0 = 3, which implies that the scalar potential for the Kähler

moduli vanishes in accord with the statement above that the fluxes do not stabilise

those moduli.

2.2.2 Leading order corrections

As we recalled in the previous subsection, at leading classical order the scalar potential

for the T -moduli vanishes. So, unlike the situation for the S and U -moduli, in order

to stabilise Ti one has to consider the leading order corrections to the tree level action.

The first such corrections to be studied were non-perturbative contributions to W .

Recall that there is a non-renormalisation theorem forbidding W to be corrected

perturbatively. On the other hand, the Kähler potential K does receive perturbative

corrections both in α′ and in gs. Therefore, non-perturbative effects are subleading

in K and we shall neglect them in the following. Let us now review briefly all these

kinds of corrections.

6At this point, we neglect the effect of warping, generated by non-zero background fluxes, since we
will be considering CY compactifications with large internal volume.

7See [27–29] for more details on the consistent supersymmetric implementation of this procedure.
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Non-perturbative corrections

Non-perturbative corrections to the superpotential can be due to Euclidean D3 brane

(ED3) instantons wrapping 4-cycles in the extra dimensions, or to gaugino conden-

sation in the supersymmetric gauge theories located on D7 branes that also wrap

internal 4-cycles. The superpotential that both kinds of effects generate is of the

form:8

W =
M3
P√

4π

(
W0 +

∑
i

Aie
−aiTi

)
, (2.38)

where the coefficients Ai correspond to threshold effects and, in principle, can depend

on U and D3 position moduli, but not on Ti. The constants ai are given by ai = 2π

for ED3 branes, and by ai = 2π/N for gaugino condensation in an SU(N) gauge

theory9. Note that one can neglect multi-instanton effects in (2.38), as long as τi

are stabilised such that aiτi � 1. From (2.32), the above superpotential leads to

the following Ti-dependent contribution to the scalar potential (up to a numerical

prefactor and powers of gs and MP , that we will be more precise about below):

δV(np) = eK0Kjı̄
0

[
ajAj aiĀie

−(ajTj+aiT i)

−
(
ajAje

−ajTjW∂ı̄K0 + aiĀie
−aiT iW∂jK0

)]
. (2.39)

α′ corrections

The Kähler potential receives corrections at each order in the α′ expansion. In the

effective supergravity description these correspond to higher derivative terms. The

leading α′ contribution comes from the R4 term and it leads to the following Kähler

potential [31]:

K

M2
P

= −2 ln

(
V +

ξ

2g
3/2
s

)
' −2 lnV − ξ

g
3/2
s V

. (2.40)

8The prefactor in (2.38) is due to careful dimensional reduction, as can be seen the Appendices
of [30]. However, the authors of [30] define the Einstein metric via gµν,s = e(φ−〈φ〉)/2gµν,E , so
that it coincides with the string frame metric in the physical vacuum. On the contrary, we opt for
the more traditional definition gµν,s = eφ/2gµν,E , which implies no factor of gs in the prefactor of
W .

9The 4D gauge coupling of the SU(N) Yang-Mills theory on the i-th wrapped brane satisfies

8π2

gYM2
= 2π

M4

gs
= 2πτi

.
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Here ξ is given by ξ = − χζ(3)
2(2π)3 , where χ = 2 (h1,1 − h2,1) is the CY Euler number,

and the Riemann zeta function is ζ(3) ' 1.2. Denoting for convenience ξ̂ ≡ ξ/g
3/2
s ,

eq. (2.40) implies to leading order the following contribution to V (again, up to a

prefactor containing powers of gs and MP ):

δV(α′) = 3eK0 ξ̂

(
ξ̂2 + 7ξ̂V + V2

)
(
V − ξ̂

)(
2V + ξ̂

)2W
2
0 '

3ξW 2
0

4g
3/2
s V3

, (2.41)

where V � ξ̂ > 1 in order for perturbation theory to be valid.

gs corrections

The Kähler potential receives also string loop corrections. At present, there is no

explicit derivation of these corrections from string scattering amplitudes for a generic

CY compactification. Nevertheless, it has been possible to conjecture their form

indirectly [16,32,33]:

δK(gs) = δKKK
(gs)

+ δKW
(gs)

, (2.42)

where

δKKK
(gs)
∼

h1,1∑
i=1

gsCKKi (U, Ū)
(
ailt

l
)

V
, (2.43)

and

δKW
(gs)
∼
∑
i

CWi (U, Ū)

(ailtl)V
. (2.44)

In (2.42), δKKK
(gs)

comes from the exchange of closed strings, carrying Kaluza-Klein

momentum, between D7 and D3-branes. The expression (2.43) is valid for vanishing

open string scalars and is based on the assumption that all the h1,1 4-cycles of the CY

are wrapped by D7-branes. The other term δKW
(gs)

in (2.43) is due, from the closed

string perspective, to the exchange of winding strings between intersecting stacks of

D7-branes.

In addition, in (2.43) the linear combination
(
ailt

l
)

of the volumes of the basis

2-cycles is transverse to the 4-cycle wrapped by the i-th D7-brane, whereas in (2.44)

it gives the 2-cycle where two D7-branes intersect. The functions CKKi (U, Ū) and

CWi (U, Ū) are, in principle, unknown. However, for our purposes they can be viewed

as O(1) constants10 since the complex structure moduli are already stabilised at the

10In the T 6/ (Z2 × Z2) orientifold case, where these constants can be computed explicitly [34], they
turn out to be, in our conventions, of O(1) for natural values of the complex structure moduli:
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classical level by background fluxes.

Comparing (2.43) with (2.40), we notice that δKKK
(gs)

is generically leading with

respect to δK(α′) due to the presence of the linear combination
(
ailt

l
)

in the numerator

of (2.43) and the fact that each 4-cycle volume τi = 1
2kijkt

jtk has to be fixed larger

than the string scale in order to trust the effective field theory. However, in ref. [33]

it was discovered that for an arbitrary CY background, the leading contribution of

(2.43) to the scalar potential is vanishing, so leading to an extended no-scale structure.

This result renders δV(gs) generically subleading with respect to δV(α′) and the final

formula can be expressed as(neglecting a prefactors with powers of gs and MP ):

δV 1−loop
(gs)

=
[(
gsCKKi

)2
aikaijK

0
k̄ − 2δKW

(gs)

]W 2
0

V2
. (2.45)

Notice that for branes wrapped only around the basis 4-cycles the combination ap-

pearing in the first term degenerates to aikaijK
0
k̄ = K0

īı. The fact that δV(gs) is

generically subleading with respect to δV(α′) can be easily seen by recalling the generic

expression of the tree-level Kähler metric for an arbitrary CY: K0
ij̄

= titj̄/(2V2) −
(kij̄kt

k)−1/V ∼ 1/(Vt). Therefore the ratio between δV(α′) given by (2.41) (with

ξ ∼ O(1) for known CY three-folds) and the expression (2.45) for δV(gs), scales as

δV(α′)/δV(gs) ∼ g
−3/2
s t � 1 due to the fact that the size of each two-cycle has to be

fixed at a value larger than 1 (in string units) in order to trust the effective field

theory and, in addition, the string coupling has to be smaller than unity in order to

be in the perturbative regime.

Effective potential at zero temperature

Combining (2.39), (2.41) and (2.45), we obtain the final form of the Kähler mod-

uli effective scalar potential at zero temperature, that contains all the leading order

corrections to the vanishing tree-level part (with all prefactors included):

VT=0 = Vtree + δV(np) + δV(α′) + δV 1−loop
(gs)

=

=
gse

KcsM4
P

8πV2

{
Kjı̄

0 ajAj aiĀie
−(ajTj+aiT i) + 4W0

∑
i

aiAiτi cos(aibi)e
−aiτi

+

[
3ξ

g
3/2
s

+
∑
i

(
g2
s

(
CKKi

)2(1

2

t2i
V
−Aii

)
− 8

CWi
(ailtl)

)]
W0

2

4V

}
, (2.46)

Re(U) ∼ Im(U) ∼ O(1). Note that [34] uses conventions different from ours.
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Figure 2.1: The plot shows the effective potential V at zero temperature versus the volume
modulus φ for a typical type IIB flux compactification. On the left, the minimum
is AdS. On the right, the same effective potential after the inclusion of an uplifing
sector. The minimum is now metastable and describes a dS spacetime.

where Aij ≡ ∂τi
∂tj

= kijkt
k.

The previous potential has at least one minimum that describes an AdS spacetime

that may or may not break supersymmetry. See Figure 2.1.

Uplifiting sector

Uplifiting of the AdS minimum to the present nearly Minkowski vacuum occurs by

adding to the potential a term of the form ε/Vn, where ε is a parameter that can

be tuned to the cosmological constant and n = 3 for a generic compactifications and

n = 2 for the highly warped throat geometry.

The resulting potential after uplifiting is shown in figure Figure 2.1. In the original

KKLT model [35], the uplifting was obtained by adding a positive potential generated

by the tension of anti-D3 branes which goes like

δV ∼ T3

V3
. (2.47)

Unfortunately, adding by hand anti-D3 branes breaks explicitly supersymmetry and

it is problematic to describe this setup in supergravity. An improvement that does

not require anti-D3 branes was proposed in [36]. There, the uplifting is achieved by

having nonzero D-terms from world-volume fluxes on D7 branes that wrap a three-

cycle in the CY 3-fold. However, because of the relationship between D- and F- terms

in supergravity, this scenario turned out to be difficult to realize [37, 38]; although,

there have been some progresses, see for example [39, 40]. The above difficulties

can be circumvented by coupling the KKLT sector to a sector like the Intrilligator-
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Seiberg-Shi (ISS) model [41] or, more generally, to a field theory sector that exhibits

dynamical supersymmetry breaking to a metastable state (for brevity, MDSB) [42]11.

In this way, one has a natural uplifting that is also completely under control in the

effective 4d N = 1 supergravity description.12

In the next section we will discuss temperature corrections to the previous uplifted

4D effective potential.

2.3 Thermal corrections and moduli stabilization

In the previous section we have seen that string compactifications with stabilised mod-

uli typically admit a slightly de Sitter metastable vacuum that breaks supersymmetry

along with a supersymmetric minimum at infinity. The two minima are separated by

a potential barrier Vb, whose order of magnitude is very well approximated by the

value of the potential at the AdS vacuum before uplifting.

The modulus related to the overall volume of the Calabi-Yau couples to any pos-

sible source of energy, due to the Weyl rescaling of the metric needed to obtain a

4D supergravity effective action in the Einstein frame. Thus, in the presence of

any source of energy, greater than the height of the potential barrier, the system

will be driven to a dangerous decompactification limit. For example, during infla-

tion the energy of the inflaton ϕ could give an additional uplifting term of the form

∆V (ϕ,V) = V (ϕ)/Vn for n > 0, that could cause a run-away to infinity [55]. Another

source of danger of decompactification is the following. After inflation, the inflaton

decays to radiation and, as a result, a high-temperature thermal plasma is formed.

This gives rise to temperature-dependent corrections to the moduli potential, which

could again destabilise the moduli and drive them to infinity, if the finite-temperature

potential has a run-away behaviour. The decompactification temperature, at which

the finite-temperature contribution starts dominating over the T = 0 potential, is

very well approximated by Tmax ∼ V
1/4
b since VT ∼ T 4. Clearly, Tmax sets also an

upper bound on the reheating temperature after inflation. The discussion of this

paragraph is schematically illustrated on Figure 2.2. On the other hand, if, instead of

having a run-away behaviour, the finite-temperature potential develops new minima,

then there could be various phase transitions, which might have played an important

role in the early Universe and could have observable signatures today. The presence

11Since the work of [41], many more examples were found in the literature [43–53], thus showing that
the phenomenon of MDSB is quite generic in supersymmetric field theories.

12An earlier proposal for F-term uplifting was considered in [54].
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Φ

V

Figure 2.2: The effective potential V versus the volume modulus φ for a typical potential
of KKLT or LARGE Volume compactifications. The different curves show the
effect of various sources of energy that, if higher than the barrier of the potential,
can lead to a decompactification of the internal space.

of minima at high T could also have implications regarding the question of how nat-

ural it is for the Universe to be in a metastable state at T = 0. More precisely,

recent studies of various toy models [56–60] have shown that, despite the presence

of a supersymmetric global minimum, it is thermodynamically preferable for a sys-

tem starting in a high T minimum to end up at low temperatures in a (long-lived)

local metastable minimum with broken supersymmetry. Similar arguments, if appli-

cable for more realistic systems, could be of great conceptual value given the present

accelerated expansion of the Universe.

Therefore, for cosmological reasons it is of great importance to understand the full

structure of the finite temperature effective potential. We investigate this problem in

great detail for the O’KKLT model [61] in chapter 3 and for the of LARGE Volume

Scenario of [62] in chapter 4.

2.3.1 Effective potentials at finite temperature

At nonzero temperature, the effective potential receives a temperature-dependent

contribution. In this Section, we review the general form of the finite temperature

effective potential and discuss in detail the establishment of thermal equilibrium in

an expanding Universe. In particular, we elaborate on the relevant interactions at

the microscopic level.
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The general structure of the effective scalar potential is the following one:

VTOT = V0 + VT , (2.48)

where V0 is the T = 0 potential and VT the thermal correction. As discussed in

Section 2.2.2, V0 has the general form:

V0 = δV(np) + δV(α′) + δV(gs), (2.49)

where the tree level part is null due to the no-scale structure (recall that we are study-

ing the scalar potential for the Kähler moduli), δV(np) arises due to non-perturbative

effects, δV(α′) are α′ corrections and the contribution δV(gs) comes from string loops.

On the other hand, the finite temperature corrections VT have the generic loop

expansion:

VT = V 1−loop
T + V 2−loops

T + ... . (2.50)

The first term V 1−loop
T is a 1-loop thermal correction describing an ideal gas of non-

interacting particles. It has been derived for a renormalisable field theory in flat space

in [63], using the zero-temperature functional integral method of [64], and reads:

V 1−loop
T = ± T 4

2π2

∫ ∞
0

dxx2 ln
(

1∓ e−
√
x2+m(ϕ)2/T 2

)
, (2.51)

where the upper (lower) signs are for bosons (fermions) and m(φ) is the background

field dependent mass parameter. At temperatures much higher than the mass of the

particles in the thermal bath, T � m(ϕ), the 1-loop finite temperature correction

(2.51) has the following expansion:

V 1−loop
T = −π

2T 4

90
α+

T 2m(ϕ)2

24
+O

(
Tm(ϕ)3

)
, (2.52)

where for bosons α = 1 and for fermions α = 7/8. The generalisation of (2.52) to

supergravity, coupled to an arbitrary number of chiral superfields, takes the form [65]:

V
(1−loop)
T (χ̂) = −π

2T 4

90

(
gB +

7

8
gF

)
+
T 2

24

[
TrM2

s (χ̂) + TrM2
f (χ̂)

]
+O(T ), (2.53)

where gB and gF are, respectively, the numbers of bosonic and fermionic degrees of

freedom. Here {χA} denotes collectively all fields in the theory (the Kähler moduli

in our case) and the quantities TrM2
s and TrM2

f are traces over the mass matrices of
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all scalar and fermion fields respectively in the classical background {χ̂A}. 13 They

are given by [66]:

TrM2
s = 2 〈KCD̄ ∂2V0

∂χC∂χ̄D̄
〉, (2.54a)

TrM2
f = 〈eG

[
KAB̄KCD̄(∇AGC +GAGC)(∇B̄GD̄ +GB̄GD̄)− 2

]
〉, (2.54b)

where V0 is as in (2.32) and G = K + ln |W |2. We should also stress that the high

temperature expansion (2.53) is only valid in the regime, in which all masses are much

smaller than the energy scale set by the temperature.

If the particles in the thermal bath interact among themselves, we need to go

beyond the ideal gas approximation. The effect of the interactions is taken into

account by evaluating higher thermal loops. The high temperature expansion of the

2-loop contribution looks like:

V 2−loops
T = α2T

4

(∑
i

fi(gi)

)
+ β2T

2
(
TrM2

b + TrM2
f

)(∑
i

fi(gi)

)
+ ... , (2.55)

where α2 and β2 are known constants, i runs over all the interactions through which

different species reach thermal equilibrium, and the functions fi are determined by

the couplings gi and the number of bosonic and fermionic degrees of freedom. For

example, for gauge interactions f(g) = const× g2, whereas for the scalar λφ4 theory

one has that f(λ) = const× λ.

Now, since we are interested in the moduli-dependence of the finite temperature

corrections to the scalar potential, we can drop the first term on the RHS of (2.53)

and focus only on the T 2 term, which indeed inherits moduli-dependence from the

bosonic and fermionic mass matrices. However, notice that in string theory the various

couplings are generically functions of the moduli. Thus, also the first term on the

RHS of (2.55) depends on the moduli and, even though it is a 2-loop effect, it could

compete with the second term on the RHS of (2.53), because it scales as T 4 whereas

the latter one scales only as T 2. This issue has to be addressed on a case by case

basis, by studying carefully what particles form the thermal bath.

2.3.2 Thermal equilibrium

The Universe has for much of its history been very nearly in thermal equilibrium.

Needless to say the departures from equilibrium have been very important: without

13In (2.53), TrM2
f is computed summing over Weyl fermions.

30



Chapter 2. Moduli stabilization with thermal corrections

them the past history of the Universe would be irrelevant as the present state would

be merely that of a system at 2.75 K. On general grounds, in an expanding Universe,

a particle species is in equilibrium with the thermal bath if its interaction rate, Γ,

with the particles in that bath is larger than the expansion rate of the Universe. The

latter is given by H ∼ g
1/2
∗ T 2/MP , during the radiation dominated epoch, with g∗

being the total number of degrees of freedom. Thermal equilibrium can be established

and maintained by 2↔ 2 interactions, like scattering or annihilation and the inverse

pair production processes, and also by 1↔ 2 processes, like decays and inverse decays

(single particle productions). Let us now consider each of these two cases in detail.

2↔ 2 interactions

In this case the thermally averaged interaction rate can be inferred on dimensional

grounds by noticing that:

〈Γ〉 ∼ 1

〈tc〉
, (2.56)

where 〈tc〉 is the mean time between two collisions (interactions). Moreover

tc ∼
1

nσv
, (2.57)

where n is the number density of the species, σ is the effective cross section and v

is the relative velocity between the particles. Thus 〈Γ〉 ∼ n〈σv〉. For relativistic

particles, one has that 〈v〉 ∼ c (≡ 1 in our units) and also n ∼ T 3. Therefore

〈Γ〉 ∼ 〈σ〉T 3 . (2.58)

The cross-section σ has dimension of (length)2 and for 2 ↔ 2 processes its thermal

average scales with the temperature as:

1. For renormalisable interactions:

〈σ〉 ∼ α2 T 2

(T 2 +M2)2 , (2.59)

where α = g2/(4π) (g is the gauge coupling) and M is the mass of the particle

mediating the interactions under consideration.

a) For long-range interactions M = 0 and (2.59) reduces to:

〈σ〉 ∼ α2T−2 ⇒ 〈Γ〉 ∼ α2T. (2.60)
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This is also the form that (2.59) takes for short-range interactions at en-

ergies E >> M .

b) For short-range interactions at scales lower than the mass of the mediator,

the coupling constant becomes dimensionful and (2.59) looks like:

〈σ〉 ∼ α2 T
2

M4
⇒ 〈Γ〉 ∼ α2 T

5

M4
. (2.61)

2. For processes including gravity:

a) Processes with two gravitational vertices:

〈σ〉 ∼ d T
2

M4
P

⇒ 〈Γ〉 ∼ d T
5

M4
P

, (2.62)

where d is a dimensionless moduli-dependent constant.

b) Processes with one renormalisable and one gravitational vertex:

〈σ〉 ∼
√
d
g2

M2
P

⇒ 〈Γ〉 ∼
√
d
g2T 3

M2
P

, (2.63)

where d is the same moduli-dependent constant as before.

Let us now compare these interaction rates with the expansion rate of the Universe,

H ∼ g1/2
∗ T 2/MP , in order to determine at what temperatures various particle species

reach or drop out of thermal equilibrium, depending on the degree of efficiency of the

relevant interactions.

1.a) Renormalisable interactions with massless mediators:

〈Γ〉 > H ⇔ α2T > g
1/2
∗ T 2M−1

P ⇒ T < α2g
−1/2
∗ MP . (2.64)

QCD processes, like the ones shown in Figure 2.3, are the main examples of

this kind of interactions. The same behaviour of σ is expected also for the

other MSSM gauge groups for energies above the EW symmetry breaking scale.

Therefore, MSSM particles form a thermal bath via strong interactions for tem-

peratures T < α2
sg
−1/2
∗ MP ∼ 1015 GeV [67].

1.b) Renormalisable interactions with massive mediators:

〈Γ〉 > H ⇔ α2 T
5

M4
> g

1/2
∗

T 2

MP
⇒

(
g

1/2
∗ M4

α2MP

)1/3

< T < M. (2.65)
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Figure 2.3: QCD scattering process qq̄ → gg through which quarks and gluons reach thermal
equilibrium.

Figure 2.4: Weak interaction between electrons and neutrinos through which they reach ther-
mal equilibrium.

Examples of interactions with effective dimensionful couplings are weak inter-

actions below MEW . In this case, the theory is well described by the Fermi

Lagrangian. An interaction between electrons and neutrinos, like the one shown

in Figure 2.4, gives rise to a cross-section of the form of (2.61):

〈σw〉 ∼
α2
w

M4
Z

〈p2〉 ∼ α2
w

M4
Z

T 2, (2.66)

where αw is the weak fine structure constant and p ∼ T . Thus, neutrinos are

coupled to the thermal bath if and only if

T >

(
g

1/2
∗ M4

Z

α2
wMP

)1/3

∼ 1 MeV. (2.67)

2. Gravitational interactions:

a) 〈Γ〉 > H ⇔ d
T 5

M4
P

> g
1/2
∗

T 2

MP
⇒ T > g

1/6
∗

MP

d1/3
. (2.68)
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Figure 2.5: Scattering process Φg → gg through which the modulus Φ and gluons can reach
thermal equilibrium.

b) 〈Γ〉 > H ⇔
√
d
g2T 3

M2
P

> g
1/2
∗

T 2

MP
⇒ T >

g
1/2
∗ MP

g2
√
d
. (2.69)

As before, case (a) refers to 2 ↔ 2 processes with two gravitational vertices,

whereas in case (b) one vertex is gravitational and the other one is a renor-

malisable interaction. A typical Kähler modulus of string compactifications

generically couples to the gauge bosons of the field theory, that lives on the

stack of branes wrapping the cycle whose volume is given by that modulus.

Scattering processes, annihilation and pair production reactions, that arise due

to that coupling, all have cross-sections of the form (2.62) and (2.63). In gen-

eral, for all the Kähler moduli in type IIB compactifications d ∼ O(1) and so

〈Γ〉 is never greater than H for temperatures below the Planck scale, for both

cases (a) and (b). Therefore, those moduli will never thermalise through 2↔ 2

processes. However, we shall see in Section 4.4 that the situation is different for

the LARGE volume scenarios, since in that case d ∼ V2 � 1. A typical 2↔ 2

process of type (b), with a modulus Φ and a non-abelian gauge boson g going

to two g’s, is shown in Figure 2.5.

1↔ 2 interactions

In order to work out the temperature dependence of the interaction rate for decay and

inverse decay processes, recall that the rest frame decay rate Γ
(R)
D does not depend on

the temperature. For renormalisable interactions with massless mediators or mediated

by particles with mass M at temperatures T > M , it takes the form:

Γ
(R)
D ∼ αm, (2.70)
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where m is the mass of the decaying particle and α ∼ g2, with g being either a

gauge or a Yukawa coupling. On the other hand, for gravitational interactions or

for renormalisable interactions mediated by particles with mass M at temperatures

T < M , we have (M ≡MP in the case of gravity):

Γ
(R)
D ∼ Dm3

M2
, (2.71)

with D a dimensionless constant (note that in the case of gravity D =
√
d, where d

is the same moduli-dependent constant as in Subsection 2.3.2).

Now, the decay rate that has to be compared with H is not Γ
(R)
D , but its thermal

average 〈ΓD〉. In order to evaluate this quantity, we need to switch to the ‘laboratory

frame’ where:

ΓD = Γ
(R)
D

√
1− v2 = Γ

(R)
D

m

E
, (2.72)

and then take the thermal average:

〈ΓD〉 = Γ
(R)
D

m

〈E〉
. (2.73)

In the relativistic regime, T & m, the Lorentz factor γ = 〈E〉/m ∼ T/m, whereas in

the non-relativistic regime, T . m, γ = 〈E〉/m ∼ 1.

Notice that, by definition, in a thermal bath the decay rate of the direct process

is equal to the decay rate of the inverse process. However, for T < m the energy of

the final states of the decay process is of order T , which means that the final states

do not have enough energy to re-create the decaying particle. So the rate for the

inverse decay, ΓID, is Boltzmann-suppressed: ΓID ∼ e−m/T . Hence, the conclusion is

that, for T < m, one can never have ΓD = ΓID and thermal equilibrium will not be

attained. Let us now summarize the various decay and inverse decay rates:

1. Renormalisable interactions with massless mediators or mediated by particles

with mass M at T > M :

〈ΓD〉 '

{
g2m2

T , for T & m

g2m, for T . m ,
(2.74)

〈ΓID〉 '

{
g2m2

T , for T & m

g2m
(
m
T

)3/2
e−m/T , for T . m .

(2.75)

Therefore, particles will reach thermal equilibrium via decay and inverse decay
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processes if and only if

〈Γ〉 > H ⇔ g2m
2

T
> g

1/2
∗

T 2

MP
⇒ m < T <

(
g2m2MP

g
1/2
∗

)1/3

. (2.76)

2. Gravity or renormalisable interactions mediated by particles with mass M at

T < M :

〈ΓD〉 '

{
D m4

M2T
, for T & m

Dm3

M2 , for T . m ,
(2.77)

〈ΓID〉 '

{
D m4

M2T
, for T & m

Dm3

M2

(
m
T

)3/2
e−m/T , for T . m

(2.78)

with M ≡ MP in the case of gravity. Therefore, particles will reach thermal

equilibrium via decay and inverse decay processes if and only if

〈Γ〉 > H ⇔ D
m4

M2T
> g

1/2
∗

T 2

MP
⇒ 1 <

T

m
<

(
D

mMP

g
1/2
∗ M2

)1/3

. (2.79)

In the case of gravitational interactions, (2.79) becomes

1 <
T

m
<

(
D

m

g
1/2
∗ MP

)1/3

. (2.80)

In general, in string theory constructions, D ∼ O(1) and m ∼ m3/2. So (2.80)

can never be satisfied and hence moduli cannot reach thermal equilibrium via

decay and inverse decay processes. However, we shall see in Section 4.4 that

in LVS one has D ∼ V � 1 and so 1 ↔ 2 processes could, in principle, play a

role in maintaining thermal equilibrium between moduli and ordinary MSSM

particles.

2.3.3 Cosmological moduli problem

In the previous section we saw that in general moduli have couplings to the observable

sector that are suppressed by powers of the Planck scale and masses of the order of the

gravitino mass14 that is expected to be around 1 TeV in order to solve the hierarchy

problem. The previous properties are quite generic and independent of the particular

14This is unavoidable in the conventional picture of gravity-mediated supersymmetry breaking, where
moduli obtain masses comparable to the supersymmetry breaking scale mφ ∼ m3/2.
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string theory compactification considered and particles with these properties and

masses are problematic for cosmology [68].

Let us briefly review the source of the problem. The moduli fields are expected

to be initially shifted from their zero-temperature minimum at some initial value

φin either due to the effect of thermal fluctuation or quantum fluctuations during

inflation. In a Friedmann-Robertson-Walker Universe, the evolution of a modulus

field φ, canonically normalized, is determined by

φ̈+ (3H + Γφ)φ̇+ V ′(φ) = 0 (2.81)

where the dots above φ denote derivatives with respect to time and the prime denotes

the derivative with respect to φ. Furthermore, H = ȧ
a is the Hubble parameter, a

the scale factor, V the scalar potential and Γφ ∼ m3
φ/M

2
P the φ decay rate. While

t < tin ∼ m−1
φ and H > mφ the friction term 3Hφ̇ dominates the time evolution

of φ, causing it to remain at φ ∼ φin. The modulus begins to oscillate around its

minimum at a temperature Tosc where the mass mφ(T ) is comparable to the overall

Hubble parameter H ∼ T 2/MP . Coherent oscillations of the field after this time will

come to dominate the energy density of the universe since the initial energy density

ρφ(Tin) ∼ m2φ2
in decrease with temperature as ρφ ∼ T−3, whereas radiation decreases

faster ρr ∼ T−4. Therefore we can write:

ρφ(T ) = ρφ(Tin)

(
T

Tin

)3

∼ m2
φφ

2
in

(
T0√
mφMP

)3

(2.82)

where T0 is the temperature today. If the field φ is stable, these oscillations will

dominate the energy density of the universe and may overclose it. Imposing that

ρφ(T0) < ρcritical = 3H2
0M

2
P ∼ (10−3eV)3 puts a constraint on φin:

φin < 10−10
( mφ

100GeV

)−1/4
MP

that is, for φin ∼MP , a stable scalar field of mass

mφ > 10−26eV (2.83)

will overclose the Universe.

However, in general φ decays. If it decays late, as often happens since the field

couples with gravitational strength, it can dilute or alter the light elements abundance
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thus destroying the good predictions of the standard Big-Bang nucleosynthesis (BBN).

This can be quantified as follows. The scalar field φ decays at a temperature TD for

which H(TD) ∼ Γφ. Using Γφ ∼ m3
φ/M

2
P and the FRW equation for H we find

Γ2
φ ∼

(
m3
φ

M2
P

)2

∼
ρφ(TD)

M2
P

=
ρφ(Tin)

M2
P

(
TD
Tin

)3

(2.84)

Using this and ρφ(Tin) ∼ m2
φφ

2
in, T 2

in ∼ mφMP we find the decay temperature

TD ∼
m

11/6
φ

M
1/6
P φ

2/3
in

. (2.85)

At a temperature TD the energy density ρφ(TD) gets converted into radiation of

temperature

TRH ∼ (ρφ(TD))1/4 ∼ (MPΓφ)1/2 ∼

(
m3
φ

MP

)1/2

. (2.86)

The decay of φ causes an increase in entropy given by:

∆ =

(
TRH
TD

)3

∼ φ2
in

mφMP
(2.87)

which for φin ∼ MP gives a very large entropy increase washing out any previously

generated baryon asymmetry. However, another possibility is provided if the late-time

decay of the moduli reheat the universe to temperatures greater than a few MeV. Such

reheating will then allow BBN to proceed as usual. Requiring that TRH & 10 MeV

puts a bound on mφ of

mφ & 10TeV . (2.88)

Therefore, the standard cosmological moduli problem forbids gravity coupled scalars

in the range mφ . 10 TeV.

There are two main solutions to this problem: dilution of the unwanted relics

by a late period of low-energy inflation caused by thermal effects, namely, thermal

inflation [69, 70] or by the entropy released by the non-thermal decay of a heavier

modulus which is dominating the energy density of the Universe [71, 72]. We will

discuss the cosmological moduli problem and its possible solutions in chapter 4 in the

context of the LARGE volume compactifications.
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3 Finite temperature corrections to the

KKLT model

Summary. In this chapter, we study whether finite temperature corrections decom-

pactify the internal space in Kachru-Kallosh-Linde-Trivedi (KKLT) compactifications

with an uplifting sector given by a system that exhibits metastable dynamical super-

symmetry breaking. More precisely, we calculate the one-loop temperature correc-

tions to the effective potential of the volume modulus in the KKLT model coupled to

the quantum corrected O’Raifeartaigh model. We prove that for the original KKLT

model, namely with one exponent in the non-perturbative superpotential, the finite

temperature potential is runaway when at zero temperature there is a dS minimum.

On the other hand, for a non-perturbative superpotential of the race-track type with

two exponents, we demonstrate that the temperature-dependent part of the effective

potential can have local minima at finite field vevs. However, it turns out that these

minima do not affect the structure of the full effective potential and so the volume

modulus is stabilized at the local minimum of the zero temperature potential for the

whole range of validity of the supergravity approximation.

Although we use a different approach, the results presented here are in agreement

with those in [73] where the authors showed that the inclusion of thermal corrections

do not decrease dramatically the region of initial conditions for which the field would

end up at the zero temperature minimum.

3.1 Introduction

In the previous chapter we discussed the reasons why it is important to give a vacuum

expectation value (VEV) to all moduli in string compactifications and that the reso-

lution of this problem requires the inclusion of background fluxes. This leads, in type

IIB, to the stabilization of all the complex structure moduli [24] whereas the remain-

ing Kähler moduli are stabilized by taking into account non-perturbative effects [35]

or a combination of perturbative and non-perturbative corrections [30,62].
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The first low-energy string theory model in the literature to achieve moduli stabi-

lization was the KKLT proposal of [35] in which the inclusion of background fluxes

and non-perturbative effects in the superpotential leads to a 4D effective supergrav-

ity theory with all moduli stabilized at an AdS vacuum. Unfortunately, the need to

add by hand anti-D3 branes in order to lift the original AdS vacuum to dS makes it

problematic to describe this setup in supergravity.

As discussed in the previous chapter, the above difficulties can be circumvented

by coupling the KKLT sector to a field theory sector that exhibits MDSB. In this

way, one has a natural uplifting that is also completely under control in the effective

4D N = 1 supergravity description. In fact, one can capture the essential features

of F-term uplifting due to MDSB in the KKLT setup by taking the uplifting sector

to be the O’Raifeartaigh model. The reason is that many theories with dynami-

cal supersymmetry breaking can be approximated near the origin of field space by

this model [74].1 The O’Raifeartaigh-uplifted KKLT, termed O’KKLT, model was

first proposed and studied in [61]. It was pointed out there that the original KKLT

proposal, i.e., with one exponent in the superpotential, leads to a tension between

low scale supersymmetry breaking and the standard high scale cosmological inflation.

This undesirable situation can be resolved by considering a racetrack-type superpo-

tential with two exponentials [55,61,77].

We will study here thermal corrections to the effective potential of the O’KKLT

model with both one or with two exponentials. We will make the assumptions, fol-

lowing [65], that the moduli sector is in thermal equilibrium with the MDSB sector

for temperature ranges in-between MGUT < T < MP . Temperature corrections to a

model with MDSB (more precisely, the ISS model) were considered in [57, 58]. The

motivation there was to address the question how natural is it for the system to be in

a local minimum with broken susy, given that it has global supersymmetric minima.

It turned out that the metastable minimum is thermodynamically preferable. More

precisely, [58] showed that if one starts from a local minimum of the effective potential

at finite temperature and considers what happens as the temperature decreases, then

one finds that the system rolls towards the metastable, and not towards a global, vac-

uum of the zero-temperature potential. This picture persists upon coupling the ISS

model to supergravity [59]. Unfortunately though, including the volume modulus and

considering the full KKLT-ISS model in thermal equilibrium at high temperatures,

is rather complicated technically. The main reason is that the Kähler potential for

volume modulus is not canonical, unlike the Kähler potential for the ISS fields. This

1More precisely, this is true for the theories that realize DSB via the mechanism of [75,76].

40



Chapter 3. Finite temperature corrections to the KKLT model

leads to rather intractable expressions for the effective potential at nonzero temper-

ature. Initial steps in analyzing the latter were discussed in [59] and a more detailed

analysis can be found in [60] where the computations were done in the approxima-

tion in which the moduli act as background fields, thus not contributing to thermal

loops. The authors of [78, 79] studied finite temperature corrections to the KKLT

with D-term or anti-D3 uplifting in the same approximation in which the moduli are

not in thermal equilibrium. All the approaches agree on the existence of a maximal

temperature above which the zero temperature dS vacuum is destabilized. However,

the analysis of the equation of motions for the moduli fields in the presence of ther-

mal corrections [73] shows that the initial conditions for which the field would end

up at the minimum do not change in a dramatic way upon the inclusion of thermal

corrections.

We also obtain here similar results when considering the static O’KKLT model.

The latter is tractable enough to enable us to study the phase structure of the finite

temperature effective potential for the volume modulus in thermal loops. At the same

time, as already mentioned above, it captures all the main features of the MDSB-

uplifted KKLT scenario; see [61]2.

We shall restrict our considerations to the tree level and one-loop contributions

to the O’KKLT effective potential at nonzero temperature. So we shall make use

of the general finite temperature results of [65, 66] for chiral multiplets coupled to

supergravity at one-loop. As is well-understood by now, the nonrenormalizability of

this theory is not an issue since it is not supposed to be viewed as a fundamental

theory, but rather as an effective low-energy description.3

The organization of this chapter is the following. In Section 3.2 we briefly review

the O’KKLT model and the relevant properties of its zero-temperature potential. We

also introduce useful notation and give a clear derivation of an order of magnitude

relation between parameters, that is necessary for the existence of dS vacua when the

non-perturbative superpotential contains a single exponent (as in the original KKLT

proposal). In Sections 3.3 and 3.4 we compute the zero and finite temperature contri-

bution, V0 and VT respectively, to the effective potential at one loop. In Subsection

2Clearly, for nonzero temperature this statement includes the assumption that the starting point at
high T is the minimum of the MDSB-uplifted KKLT potential, which is near the origin of field
space of the MDSB sector.

3For more details on one-loop computations in nonrenormalizable theories (supergravity coupled
with various matter multiplets) see [80–86]. As was shown there for the zero-temperature case,
there are many subtleties that one has to be careful about when considering arbitrary curved
backgrounds. It is undoubtedly of great interest to achieve the same level of understanding for
T 6= 0 as well, but this goes well beyond the scope of our thesis.
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3.4.1 and Appendices 3.A and 3.B we show that VT does not have any minima at

finite field vevs for the one-exponential case. In Section 3.5 we study the case of a

race-track type superpotential with two-exponentials. We find various sets of param-

eters for which VT has minima at finite vevs. However, it turns out that for these

parameters the minima of the total effective potential are still determined by those

of the zero-temperature part, as long as the temperature is much smaller than the

Planck mass (which is necessary for the reliability of the supergravity approximation).

Hence, there is a regime in which the zero-temperature dS minimum of the field ρ is

not destabilized by thermal corrections in the supergravity approximation. In view

of that, in Section 3.6 we reconsider the one-exponential case and find the conditions

under which the minimum of Veff is not destabilized by the runaway temperature

contribution, again for temperatures smaller than the Planck mass.

3.2 The O’KKLT model

The KKLT model of [61] is given by the following Kähler potential and superpotential

K = −2 lnV , W = W0 +Ae−aρ (3.1)

In the previous expression the volume depends on a single complex scalar field ρ as

follows

V = (ρ+ ρ̄)3/2 . (3.2)

The O’KKLT model of [61] is a combination of the original KKLT model and the

O’Raifeartaigh model. The latter has three scalar fields. However, [61] considered

the regime in which the two heavy ones are integrated out. One is then left with a

single field S with a superpotential and Kähler potential given by

WO′ = −µ2S , KO′ = SS̄ − (SS̄)2

Λ2
. (3.3)

The last term in KO′ is due to the leading contribution in the one-loop correction

in an expansion in λ2SS̄
m2 << 1, where m and λ are the remaining couplings in the

full O’Raifeartaigh superpotential: mφ1φ2 + λSφ2
1 − µ2S. The parameter Λ in KO′

denotes a particular combination of couplings, namely Λ2 = 16π2m2

cλ4 with c being a

numerical constant of order 1. As in [61], we will assume that m,µ,Λ << 1 (we work

in units MP = 1). Also, the validity of the approximation (3.3) requires small S, such

that SS̄ << m2/λ2 << 1.
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In fact, as explained in [61], for cosmological reasons it is valuable to consider a

modification of (3.1) with two exponentials:

W = W0 +Ae−aρ +Be−bρ . (3.4)

The reason is that this race-track type superpotential, unlike (3.1), allows one to

reconcile light gravitino mass with standard models of inflation.

Let us see in more detail the source of the cosmological problem. The depth of

the AdS vacuum in the KKLT scenario is given by VAdS = −3eK |W |2 = −3m2
3/2.

Here VAdS is the depth of the AdS minimum prior to the uplifting and m3/2 is the

gravitino mass after the uplifting. Uplifting creates a barrier which separates the

KKLT minimum form the 10D Minkowski Dine-Seiberg minimum. The height of the

barrier is somewhat smaller than the depth of the original AdS minimum prior to the

uplifiting:

Vb ∼ |VAdS| ∼ 3m2
3/2 . (3.5)

Inflation requires the existence of an additional contribution Vinfl to the scalar poten-

tial, but all such contributions in the effective 4D theory have the following general

structure: Vinfl = V (φ)
(ρ+ρ̄)3 , where φ is the inflation field. Such term destabilize the

potential for Vinfl � Vb ∼ m2
3/2. Since during inflation Vinfl = H2/3, one finds that

the following constraint on the Hubble constant during the last stage of inflation [55]

H . m3/2 . (3.6)

If the mass of the gravitino is light, e.g. m3/2 6 1 TeV, one would need to consider

non-standard low-scale inflationary models. Therefore, the constraint (3.6) is quite

restrictive and undesirable. The racetrack potential allows to make the barrier many

orders higher than m2
3/2.

For convenience, from now on we will call O’KKLT model the combined system:

K = −3 ln(ρ+ ρ̄) + SS̄ − (SS̄)2

Λ2
, W = W0 + f(ρ)− µ2S , (3.7)

where the function f is either

f(ρ) = Ae−aρ or f(ρ) = Ae−aρ +Be−bρ . (3.8)

Recall that, when the non-perturbative superpotential is due to gaugino condensation,

the parameters in the exponents are of the form a = 2π/n and b = 2π/m with integer
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n and m. In the following, however, we will only consider the effective model deter-

mined by (3.7)-(3.8), without being concerned with the microscopic physics behind

it.

3.3 Zero temperature potential

At zero temperature the KKLT model alone, (3.1), has a single AdS vacuum at finite

value of ρ. The O’Raifeartaigh model uplifts this minimum to a positive cosmological

constant vacuum. Similarly, the modified superpotential (3.4) leads to two AdS vacua

at finite ρ and the presence of the O’Raifeartaigh field lifts one of them to dS4. Our

goal will be to study the phase structure of the theory (3.7) at finite temperature

aiming to answer the question whether the fields roll towards the dS vacuum upon

cooling down. Let us first review some results about the zero temperature scalar

potential, that we will need in later sections.

At zero temperature the scalar potential of the system (3.7) is given by the standard

N = 1 supergravity expression given in eq. (2.32) that we rewrite here for convenience:

V0 = eK(KAB̄DAWDB̄W − 3|W |2) . (3.9)

One can show that its minima are obtained for vanishing imaginary parts of the

scalars ρ and S [61]. Let us denote the real parts by Reρ = σ and ReS = s. As

we only consider the moduli space region where S is small, we can expand (2.32) in

powers of s:

V0 = V
(0)

0 + V
(1)

0 s+ V
(2)

0 s2 +O(s3) . (3.10)

The value of s at the minimum is determined by ∂V0/∂s = 0 and so, up to O(s3), it

is [61]:

s = − V
(1)

0

2V
(2)

0

≈
√

3

6
Λ2 . (3.11)

It will be useful for the future to record here the general expressions for the first

4Of course, the Dine-Seiberg minimum at infinity is always there too.
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Figure 3.1: O’KKLT potential (multiplied by 1030) for the one exponential case without
MDSB sector. The parameter values: A = 1, a = 0.20, W0 = −10−11, µ4 =
28× 10−23 and Λ = 10−5.

three coefficients of the expansion with K and W as in (3.7) and ρ = ρ̄ = σ:

V
(0)
0 =

µ4

8σ3
− (3W0 + 3f − σf ′)f ′

6σ2
(3.12a)

V
(1)
0 = −µ

2 (W0 + f − 2σf ′)

4σ3
(3.12b)

V
(2)
0 =

1

8σ3

[(
4µ4

Λ2
+ 3µ4 +W 2

0

)
+ 2W0(f − 2σf ′) + f2 − 4σff ′ +

4

3
σ2(f ′)2

]
(3.12c)

where we have denoted f ′ ≡ ∂f/∂σ. Note that the constant term in the numerator

of V
(2)

0 , namely 4µ4

Λ2 + 3µ4 +W 2
0 , is really just 4µ4

Λ2 +W 2
0 since Λ << 1.

Let us now take a more careful look at the cases of a superpotential with one and

with two exponentials in turn. This will also enable us to introduce some useful

notation.

3.3.1 One exponential

In this case, we have (3.7) with

f(σ) = Ae−aσ . (3.13)

In Figure 3.1 we plotted the resulting effective potential. A good approximation for

the position of the dS vacuum is the position of the supersymmetric AdS minimum.
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The latter is determined by the solution of DρWKKLT = 0, which implies [35]:

W0 = −Ae−aσ
(

1 +
2

3
aσ

)
. (3.14)

It is easy to see that the requirement that the zeroth order, V
(0)

0 , in the expansion

(3.10) be small and positive at the dS minimum leads to:

W 2
0 ≈ µ4 , (3.15)

meaning that |W0| and µ2 are of the same order of magnitude. In order to show the

latter expression recall that at zeroth order the vacuum energy density is:

V
(0)

0 = VKKLT +
µ4

(ρ+ ρ̄)3
. (3.16)

Since at the AdS minimum VKKLT = −3|WKKLT |2 and also ρ = ρ̄ = σ, then the

condition V
(0)

0 |min ≈ 0 implies that

3(W0 +Ae−aσ)2 ≈ µ4 . (3.17)

Substituting in the latter equation Ae−aσ from (3.14), we find:

3W 2
0

(
2
3aσ

1 + 2
3aσ

)2

≈ µ4 . (3.18)

Obviously, the number 2
3aσ/(1+ 2

3aσ) is less than 1 for any finite aσ. In addition, it is

always of order 1 as we only consider aσ > 1 in order to have a reliable one-instanton

contribution to the non-perturbative superpotential. Hence, one concludes that W 2
0

and µ4 have to be of the same order of magnitude in order for a dS vacuum with

small cosmological constant to exist.

Now, it is clear that using f ′ = −af one can get rid of all derivatives in (3.12).

Then it is easy to notice that the parameter a becomes just an overall rescaling upon

introducing the new variable x = aσ. For example:

V
(0)

0 =
a3

2x3

[
µ4

4
+W0fx+ f2

(
x2

3
+ x

)]
(3.19)
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and hence
∂V

(0)
0

∂σ
= −a

4

x4

[
Q3(x) f2 +W0Q2(x)f +

3µ4

8

]
, (3.20)

where

Q2(x) = x+
1

2
x2 , Q3(x) = x+

7

6
x2 +

1

3
x3 . (3.21)

Clearly, varying a does not change the vacuum structure of the model; it only shifts

the positions of the extrema along the σ-axis. We will always choose a such that the

minima occur for σ ∼ O(100), so that the supergravity approximation is good. It

is also clear that the value of the parameter A does not affect the vacuum structure

either: one can reduce it to an overall rescaling of the scalar potential by redefining

W0 → AW0 and µ2 → Aµ2. So for convenience we will set A = 1 from now on. Thus,

in this case one is left with the following essential parameters: W0, µ and Λ5. Notice

that (3.20) has zeros only for W0 < 0, as all other terms in the bracket are positive

definite (recall that x ≥ 0).

Finally, notice that the O’Raifeartaigh model uplifts the AdS minimum with the

depth |VAdS| ∼ m2
3/2 by a3

2x3
µ4

4 , so that

a3

2x3

µ4

4
+ VAdS ∼ 10−120 ≈ 0 . (3.22)

This implies that

m3/2 ∼
µ2

2σ3/2
∼ |W0|
M2
PV

. (3.23)

where V is the overall volume of the extra dimensions. In KKLT models, one tunes

the values of the fluxes to yield a small value for the superpotential W0 � 1 and thus

the scale of SUSY breaking. In the next chapter, we will consider another class of

models, the LARGE volume models in which quite naturally one finds V ∼ 1014 and

thus W0 can take the natural value W0 ' 1.

3.3.2 Two exponentials

Now the function f in (3.7) is given by

f(σ) = Ae−aσ +Be−bσ . (3.24)

Realizing that again the parameter A can be reduced to an overall rescaling of the

scalar potential by redefining W0 → AW0, µ2 → Aµ2 and B → AB, we set A = 1 in

5Although Λ does not occur in V
(0)
0 , it is present in the total potential, see (3.12).
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Figure 3.2: The racetrack potential (multiplied by 1015) before and after the uplifting. The
parameter values: A = 1, B = −1.026, a = π

100 , b = π
99 , W0 = −2.4 × 10−4,

µ = 13× 10−3 and Λ = 10−2.

this case too. Introducing x = aσ as before and denoting p ≡ b/a, we can write V
(0)

0

of (3.12) as:

V
(0)
0 =

a3

2x3

[
e−2x

(
x2

3
+ x

)
+B2e−2p x

(
p2x2

3
+ p x

)
+Be−(p+1) x

(
2px2

3
+ (p+ 1)x

)
+ W0 e

−x
(

1 +Be−(p−1)xp
)
x+

µ4

4

]
. (3.25)

Clearly, the essential parameters now are W0, B, p, µ and Λ.

This potential has either one (AdS) or two extrema at finite x. Without uplifting,

the latter are either both AdS or one Minkowski and one AdS [55, 77]. Upon adding

the uplifting sector, the first of them (i.e., the one that occurs at smaller value of x)

becomes dS, see Figure 3.2.

As before, one can again argue that the position of this extremum is very close to

the position of the original supersymmetric vacuum and therefore the gravitino mass

is given by

m3/2 ∼
a3

2x3

µ4

4
. (3.26)

However, differently from the one exponential case studied above, now the potential

barrier separating the two minima is not uniquely linked to the gravitino mass but

also to other parameters in the superpotential such as B. This gives the freedom to

have a small gravitino mass while keeping the potential barrier high. Also, one again

finds that the field S is stabilized at S = S̄ =
√

3
6 Λ2 [61].
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3.4 One-loop effective potential at finite T

In the following we will be interested in the one-loop finite temperature effective

potential for the O’KKLT model. We will compute the effective potential in the

classical background:

〈ρ〉 = 〈ρ̄〉 = σ , 〈S〉 = 〈S̄〉 = s . (3.27)

As one can notice, we are using the same notation for the above vevs as for the

real and imaginary parts of the fields ρ and S. This is convenient since the classical

potential is always understood to be evaluated in a classical background which in our

case is (3.27). This abuse of notation should not cause any confusion; it will always

be clear from the context what we mean.

In the rest of this section we will concentrate on the temperature-dependent part,

VT , of the effective potential. The reason is that at high temperature it is expected

that VT dominates the behaviour of Veff .

As announced in the Introduction we will work in the approximation that the

moduli are in thermal equilibrium and postpone a detailed analysis about the issue

of moduli thermalization when we consider the more phenomenological appealing

LARGE Volume compactifications in the next chapter. For the time being, we recall

that, as discussed in section 2.3.2, quite generically the moduli fields are in thermal

equilibrium with matter until the temperature drops to T = MP . From then on,

the moduli decouple from the thermal bath. However, as argued in [65], because

gravitational interactions keep all species in equilibrium for T & MP , there is no

difference in temperature between moduli and matter fields from T = MP until there

is a substantial reheating of ordinary matter which in general takes place at T =

MGUT . For example, in the case of strong interactions, matter fields reach thermal

equilibrium for temperatures of the order of 1015 GeV. Thus for MGUT < T < MP ,

moduli fields and ordinary matter, although decoupled, are at the same temperature.

We now proceed to the study of the temperature-dependent potential describing

the self-interactions of the moduli fields. As before, we will confine our considerations

to the region of field space, in which s is small. So, similarly to (3.10), we can expand

the temperature-dependent part of the effective potential as:

VT = V
(0)
T + V

(1)
T s+ V

(2)
T s2 +O(s3). (3.28)
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Applying formulae (2.53) and (2.54) for K and W given by (3.7), one finds:

V
(0)
T =

T 2

24

1

σ3

[
µ4

Λ2
+

1

2
W 2

0 +W0

(
f − 13

3
σf ′ + 2σ2f ′′

)
+

f2

2
− 13

3
σff ′ + σ2

(
25

9
(f ′)2 + 2ff ′′

)
− 8

3
σ3f ′f ′′ +

2

3
σ4(f ′′)2

]
(3.29a)

V
(1)
T = −T

2

12

µ2

σ3

[
1

Λ2
(W0 + f)− 11

3
σf ′ + σ2f ′′

]
(3.29b)

V
(2)
T =

T 2

24

1

σ3

[
22

µ4

Λ4
+
W 2

0

Λ2
+W0

(
2

Λ2
f − 22

3
σf ′ + 2σ2f ′′

)
+

1

Λ2
f2 − 22

3
σff ′ + σ2

(
34

9
(f ′)2 + 2ff ′′

)
− 8

3
σ3f ′f ′′ +

2

3
σ4(f ′′)2

]
(3.29c)

Here, in expressions like 3 + 1/Λ2 we have kept only the last term since Λ2 << 1.

Also, it is understood that f ′ ≡ 〈 ∂f/ ∂ρ〉 and f ′′ ≡ 〈 ∂2f/ ∂ρ2〉 6. Note that, similarly

to Section 3.3, the value of s at the minimum is

smin = −
V

(1)
T

2V
(2)
T

∣∣∣∣
σ=σmin

, (3.30)

up to O(s3) in VT .

Let us now take a more careful look at the temperature-dependent effective po-

tential VT for each of the two cases in (3.8). We will concentrate on the leading

contribution V
(0)
T . At the end we will check that (3.30) gives |smin| << 1, as in the

zero-temperature case, and so the zeroth order of the s-expansion in (3.28) is indeed

a good approximation for VT .

3.4.1 One exponential

We consider first

f(ρ) = Ae−aρ , i.e. W = W0 +Ae−aρ − µ2S . (3.31)

Similarly to the T = 0 case, one can use f ′ = −af and f ′′ = a2f to get rid of all

derivatives. Then, after introducing the variable x = aσ, one has:

V
(0)
T =

T 2

24

a3

x3

[
P4(x)f2 +W0P2(x)f + C0

]
, (3.32)

6Obviously 〈 ∂f/ ∂ρ〉 = 〈 ∂f̄/ ∂ρ̄〉.
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where

P4(x) =
2x4

3
+

8x3

3
+

43x2

9
+

13x

3
+

1

2
,

P2(x) = 2x2 +
13x

3
+ 1 , (3.33a)

and

C0 ≡
µ4

Λ2
+
W 2

0

2
. (3.34)

So the extrema are determined by:

∂V
(0)
T

∂σ
= −T

2

24

a4

x4

(
C + P5(x)e−2x +W0P3(x)e−x

)
= 0 , (3.35)

where C ≡ 3C0 and

P5(x) =
3

2
+

29

3
x+

121

9
x2 +

86

9
x3 +

14

3
x4 +

4

3
x5 ,

P3(x) = 3 +
29

3
x+

19

3
x2 + 2x3 . (3.36)

As in the zero temperature case, the constant a is just an overall rescaling which

does not affect the presence or absence of minima. Also, the constant A can again be

reduced to an overall rescaling by redefining W0 → AW0 and µ2 → Aµ2. So again we

can set A = 1 without loss of generality. Of course, this is not a surprise; as we are

describing the same system at T = 0 and T 6= 0, we should have the same parameters

in both cases.

Looking at (3.35), one immediately sees that an obvious minimum of V
(0)
T is ob-

tained for x → ∞. However, we are interested in solutions at finite field vevs. In

other words, we would like to solve

C + P5(x)e−2x +W0P3(x)e−x = 0 , (3.37)

or equivalently:

e2x = −C−1(P5(x) +W0P3(x)ex) ≡ H(x) . (3.38)

Unfortunately, this equation cannot be solved analytically. Clearly though, its solu-

tions (and, in fact, the presence or absence of such) depend(s) on the values of the

parameters C and W0. In Appendix 3.B we use the method described in Appendix

3.A in order to show that (3.38) does not have any solutions for parameters such that

the zero-temperature potential has a dS minimum at finite x (equivalently, at finite
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σ). This is not trivial as removing the restriction for the existence of a dS minimum

at T = 0, for instance by taking µ = 0 and so completely turning off the uplifting,

one finds that V
(0)
T can have a minimum at finite σ. See Figure 3.3 for an explicit

example.

150 200 250
Σ

"4

"2

2

4

V

KKLT potential without MDSB

Figure 3.3: KKLT potential prior to uplifting (multiplied by 1015) for the parameter values

W0 = −10−4 and a = 0.1. One can see that, unlike the case with MDSB

sector, both the zero temperature potential (red continuous line) and the finite

temperature part (red dashed line) have a minimum for finite vev of σ. (For

convenience, the graph of the temperature-dependent part is actually a plot of

VT /(
T 2

24 ) vs σ.

3.4.2 Two exponentials

Now we turn to the second case in (3.8). Namely, we consider

f(ρ) = Ae−aρ +Be−bρ . (3.39)

In terms of x = aσ and p = b/a one has from (3.29):

V
(0)
T =

T 2

24

a3

x3

[
e−2xP4(x) +B2e−2p xP4(p x) +Be−(p+1)xQ4(x)

+ W0

(
e−xP2(x) + e−p xP2(p x)

)
+ C0

]
, (3.40)

where the polynomials P2, P4 were defined in (3.33) and

Q4(x) = P2(x) + P2(p x)− 1 +
2p x2

3

(
2p x2 + 4(1 + p)x+ 25

)
. (3.41)
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Figure 3.4: Temperature-dependent part of the effective potential (multiplied by 1015) in

the case of a race-track type superpotential for parameter values: a = π/100,

B = −1.028, p = 100
99 , W0 = −2.4 × 10−4, µ = 0.66 × 10−3, Λ = 10−3. One

can see that there are two local minima at finite σ; note also that the second

one (right) is significantly shallower than the first (left). As in Figure 3.3, for

convenience we have actually plotted VT /(
T 2

24 ) vs σ.

Unlike in the previous subsection, V
(0)
T of (3.40) can have finite σ minima for

parameters, for which V0 has a dS vacuum. This is examplified in Figure 3.4 for a

particular choice of parameters. Thus, in the next section we will concentrate on

investigating the phase structure of the system for the case of two exponentials in the

non-perturbative superpotential.

3.5 Phase structure at finite T

In this section we study the finite temperature phase structure of the O’KKLT model

with two exponentials in the superpotential. Let us first summarize the necessary

ingredients of the setup and the questions we would like to address.

As we reviewed in Subsection 3.3.2, the zero temperature potential generically has

two minima with finite field vevs. The same is true also for V
(0)
T (see Figure 3.4).

One naturally expects that at high temperature the system is in a local minimum

of the temperature-dependent part of the effective potential. We assume that this

starting point is the lower-x minimum of V
(0)
T

7. Then, as the temperature decreases,

a point will be reached at which a second order phase transition will occur and the

system will start rolling towards one of the zero temperature minima. The critical

7This is preferable than the other finite-x minimum, as the latter one is much shallower. Of course,
if one were to start from the global minimum, which is at infinity, then clearly there would be
nothing to discuss − the system would remain there at any temperature and so one would have
the undesirable situation of decompactified internal space at T = 0.
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temperature Tc for this to happen, as well as the relevant field space position xc, can

be found by solving the following set of equations:

V ′eff (Tc, xc) = 0 and V ′′eff (Tc, xc) = 0 , (3.42)

where ′ denotes d/dx. We would like to know whether as a result of this phase

transition the system will start rolling towards the zero-temperature dS vacuum or

in the opposite direction, i.e., towards the T= 0 supersymmetric vacuum 8. Clearly,

this would be determined by the sign of V ′′′eff (Tc, xc).

Note that for systems with x→ −x symmetry, as is the case for the ISS model for

example (see [58]), the origin of field space is a local minimum of Veff . If one takes

this as the starting point at high T , then the first equation in (3.42) is identically

satisfied. So, from the second equation, one is left with the familiar

V ′′T = −m2 (3.43)

as the condition that determines Tc of a second order phase transition. Recall that m2

here is the classical mass, clearly originating from V0, of the scalar field with nonzero

background vev. In our case however, none of the equations in (3.42) is trivial and

so we have to solve simultaneously both of them.

To facilitate our considerations, let us change variables to the real components of

the fields: ρ = Reρ + iImρ, ρ̄ = Reρ − iImρ. As in the background (3.27) one has

〈Reρ〉 = σ and 〈Imρ〉 = 0, clearly the field Reρ is the one that drives the phase

transition we are after. So (3.42) acquires the form:

∂VT
∂x

= −∂V0

∂x
,

∂2VT
∂x2

= −m2
Reρ, (3.44)

where in the second equation we have used that ∂2
xV0(x) = m2

Reρ(x). One can compute

the first and second derivatives of V0 and VT using (3.25) and (3.40), respectively.

Before turning to that however, let us first show that the variables Reρ and Imρ

diagonalize the classical mass matrix.

8As we will see below, the finite T minimum, that is our starting point, is always between the dS
and the susy T = 0 vacua.
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3.5.1 Mass matrix

From (2.32) one can easily find the tree-level mass-squared matrix in the background

(3.27)9. It is of the form:

M =

(
m2
ρρ m2

ρρ̄

m2
ρ̄ρ m2

ρ̄ρ̄

)
, (3.45)

where m2
ρρ̄ ≡ 〈∂ρ∂ρ̄V0〉 = ∂ρ∂ρ̄V0|ρ=ρ̄=σ, S=S̄=0 etc. with all matrix elements being

nonzero and m2
ρρ = m2

ρ̄ρ̄ , m2
ρρ̄ = m2

ρ̄ρ. It is clear then, that the real components of ρ

have diagonal mass matrix with masses10:

m2
Reρ = 2

(
m2
ρρ̄ +m2

ρρ

)
, m2

Imρ = 2
(
m2
ρρ̄ −m2

ρρ

)
. (3.46)

In terms of a generic function f(ρ) in (3.7), these expressions are:

m2
Reρ =

1

6σ5

[
9µ4 + 3W0

(
−6σf ′ + 4σ2f ′′ − σ3f (3)

)
−18σff ′ + 2σ2

(
7(f ′)2 + 6ff ′′

)
− σ3

(
13f ′f ′′ + 3ff (3)

)
+ 2σ4

(
(f ′′)2 + f ′f (3)

)]
(3.47a)

m2
Imρ =

1

6σ5

[
3W0 σ

3f (3) − 3σ3
(
f ′f ′′ − ff (3)

)
+ 2σ4

(
(f ′′)2 − f ′f (3)

)]
. (3.47b)

Specializing (3.47) to the case of two exponents and introducing x = aσ and p = b/a

as before, we can also write:

m2
Reρ =

a5

3x5

[
e−2xR4(x) +B2e−2p xR4(p x) +Be−(p+1)xS4(x)

+ W0

(
e−xR3(x) +Be−p xR3(p x)

)
+

9µ4

2

]
, (3.48)

where

R4(x) = 2x4 + 8x3 + 13x2 + 9x , R3(x) =
3x3

2
+ 6x2 + 9x ,

S4(x) = R3(x) +R3(p x) + px2

[
14 + (p+ 1)x

(
(p+ 1)x+

13

2

)]
, (3.49)

9As before, we only consider the zeroth order in the s-expansion.
10Obviously, the matrix M is diagonalized by the change of variables ρ+ = ρ+ρ̄√

2
and ρ− = ρ−ρ̄√

2
with

the corresponding eigenvalues being m2
ρ±= m2

ρρ ±m2
ρρ̄. On the other hand, ρ+ =

√
2 Reρ and so

m2
Reρ = 2m2

ρ+ ; similarly m2
Imρ = −2m2

ρ− .
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and

m2
Imρ = − a5

2x5

[
Be−(p+1)x(p− 1)2x2

(
(p+ 1)x+

2

3
p x2

)
+W0(e−x +Be−p xp3)x3

]
.

(3.50)

Recall that W0 < 0 and so, despite the overall minus in the above formula, m2
Imρ is

not negative definite.

3.5.2 Critical temperature

Let us now turn to solving (3.44) in order to find Tc. As we already mentioned, one

can compute the relevant derivatives of V0 and VT from (3.25) and (3.40). However,

the resulting equations are of the same type as (3.38), only significantly more com-

plicated. Thus, one cannot hope to analyze them analytically. So we will study them

numerically for various values of the parameters.

We should note first, that clearly there are many parameter values for which the

system does not exhibit the behaviour we described in the beginning of this section.

Namely, it could happen that even though V0 has a dS vacuum, the only minimum that

VT has is the Minkowski one at 〈ρ〉 =∞; or it could be that, instead of two minima

at finite 〈ρ〉, VT has only one. This is similar to the situation at zero-temperature:

There are many values of the parameters for which V0 does not have a dS minimum.

The important point, however, is that there are also many values for which a dS

vacuum does exist at T = 0 [61]; they are exactly the parameter values of interest

in the search for moduli stabilized dS vacua. Similarly, here we concentrate on the

regime for which VT does have at least one finite-vevs minimum when V0 has a dS

vacuum. The corresponding choices of parameters are exactly those for which the

internal space of a dS compactification has the chance of not being destabilized by

thermal effects. And that possibility is precisely what we want to explore.

Several sets of parameters, for which the system is in the desired regime, are given

in Table 3.1. This table suggests that the O’KKLT model exhibits the behaviour,

that we want to study, only at discrete points in parameter space. However, this is

not completely true: for some of the sets one can vary somewhat one (or more) pa-

rameter(s) without exiting the regime of interest. 11 Nevertheless, it is an interesting

observation that a more significant change of one parameter (with the exception of Λ)

11For example, in the first row µ can be anything between 8× 10−4 and 1× 10−3; in the third row Λ
can also be 10−3; another variation of the third row is for instance B = −1.031, W0 = −1.8×10−4,
µ = 10−3, Λ = 10−2 or 10−3; in the fifth row W0 can be anything between −3.532 × 10−4 and
−3.535× 10−4; in the seventh row Λ can be anything between 10−3 and 10−2 etc..
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B W0 µ Λ x
(0)
dS x

(0)
AdS x

(T )
min xc Tc

-1.040 −7.6× 10−5 8× 10−4 10−2 4.88 7.84 5.62 5.54 0.27

-1.036 −1.1× 10−4 2× 10−3 10−2 4.50 7.40 5.25 5.10 0.27

-1.032 −1.64× 10−4 10−3 10−2 4.11 6.92 4.83 4.73 0.30

-1.028 −2.4× 10−4 0.66× 10−3 10−3 3.73 6.44 4.44 4.31 0.30

-1.024 −3.533× 10−4 0.66× 10−3 10−3 3.34 6.00 4.04 3.91 0.33

-1.020 −5.21× 10−4 0.95× 10−3 10−3 2.96 5.52 3.64 3.47 0.34

-1.016 −7.67× 10−4 1.4× 10−3 10−2 2.55 5.02 3.20 3.08 0.38

Table 3.1: Each row of this table represents a set of parameters for which both V0 and VT
have minima at finite field vevs and the lower-x minimum of V0 is dS. In each set

p = 100/99 as in the examples of [61]. The positions of the minima are denoted

by x
(0)
dS and x

(0)
AdS for V0 and by x

(T )
min for the lower-x minimum of VT . Recall also

that x = aσ and so, taking a = π
100 for instance, the various minima occur for

σ ∼ O(100).

seems to require such a change in at least one other parameter. This pattern is there,

regardless of the (runaway or not) behaviour of VT , as long as one looks for parameter

values giving dS vacua of the zero temperature potential studied in [61]. Hence, the

O’KKLT model may be an example of how arguments of the kind of [87–89] might fail.

Namely, in those arguments one usually varies a single constant of nature (the cosmo-

logical constant, for instance) while keeping all other coupling constants fixed. And

one concludes that such variations lead to drastic changes in the resulting physics.

However, it might be that in order to get to a new background, that is quite similar

to the original vacuum, one has to change in a discrete way (as opposed to varying

continuously) more than one constant of nature at the same time. It is conceivable

then, that the above-mentioned anthropic/environmental arguments for the value of

the cosmological constant could break down under such more general variations. 12

This is certainly worth investigating in more depth and within more realistic models.

As one can see from Table 3.1, the VT minimum of interest is always between the

zero temperature dS and AdS vacua. So it might seem that a meaningful question

to ask is whether the system rolls towards the metastable or the supersymmetric

T = 0 vacua as it cools down. However, the critical temperature for the relevant

second order phase transition turns out to be always of order 0.1 (see Table 3.1; an

example is illustrated in Figure 3.513). Since we work in units in which MP = 1,

12See however [90] for arguments in favor of Weinberg’s argument in the case when only the cosmo-
logical constant and the Higgs mass are varied.

13The graph of Veff (the green continuous line) on this figure still does not include the term ∼ T 4
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Figure 3.5: Effective potential Veff (green continuous line), multiplied by 1015, as a function

of σ for the race-track type model compared to V0(σ) (red dot-dashed line) and

VT (σ) (blue dashed line) for T = 0.1 × Tc (left) and for T = Tc (right). The

values of the parameters are the following: a = π/100, B = −1.028, p = 100
99 ,

W0 = −2.4× 10−4, µ = 0.6× 10−3, Λ = 10−3; the resulting critical temperature

is Tc = 0.3.

this means that Tc ∼ O(0.1MP ). For such a high temperature the supergravity ap-

proximation is not reliable anymore and so we cannot make any statement about the

occurrence or not of a phase transition.14 Nevertheless, turning this around, we can

conclude that for the whole range of validity of the supergravity approximation (i.e.,

for T << MP )15 the extrema of the effective potential of the system are determined

by the zero-temperature part and not by VT .16

Hence at the level of supergravity, the T = 0 de Sitter minimum is not destabilized

by thermal effects. This is quite unexpected, not only because it turned out that VT

can have minima at finite field vevs (as opposed to having runaway behaviour dis-

cussed in [73,78]), but also because the potential barrier in Veff , that separates those

minima from the T = 0 ones, is many orders of magnitude smaller than the Planck

scale (more precisely, it is ∼ 10−15; see Figure 3.5 which is a typical representative for

all rows of Table 3.1) and so intuitively one might have expected thermal fluctuations

in (2.53); as the latter is x-independent, it only leads to an irrelevant for us overall shift of the
Veff plot down the vertical axis, which just makes it rather inconvenient to illustrate the main
features of the remaining graphs on the same figure.

14We should note that the Planck scale is the only cut-off of concern as long as one is studying the
field theory defined by (3.7) on its own, which is the viewpoint we take here. However, if one
wants to view it necessarily as the low-energy effective description of the O’Raifeartaigh model
that is obtained by integrating out the two heavy fields, which was the original motivation to
think about it, then there is another lower cut-off. Namely, this is the scale at which the single
field approximation to the full O’Raifeartaigh model stops being valid.

15Clearly then, this is even more so for the whole range of validity of the single field low-energy
approximation to the full O’Raifeartaigh model.

16Note that, because of the constant term ∼ T 4 that we are omitting, this does not mean that the
magnitude of Veff itself is determined by V0.
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to get the system over it at a temperature << MP .

The above behaviour could have implications for the early Universe, if one views

the O’KKLT model as a simple toy model for the latter. Namely, at the end of the

inflationary stage the universe is very cold and so it would be in a local minimum of

V0.17 Let us assume that this is the lower-x dS vacuum. Now, the exit from inflation

comes with the decay of the inflaton into various other particles and the subsequent

reheating of the universe to some temperature TR. If TR << MP , as one expects in

many phenomenological models, then after reheating the system will still be in the

metastable minimum; in other words, the dS vacuum will not be destabilized by the

thermal corrections.

Having in mind this new perspective, one may wonder whether the dS vacuum

remains a local minimum of Veff even when the temperature-dependent part of the

potential does not have other minima except the runaway one at infinity (of course, as

long as T << MP ). Indeed, our interest in finite-σ minima of VT was stemming from

the expectation that their presence would be the obstacle for decompactification of

the internal space (whose volume σ is proportional to). However, as we saw above, in

the range of validity of our considerations this obstacle turned out to be different. So

it is a legitimate question to ask whether the minima of V0 determine the minima of

Veff even for parameter values for which VT has runaway behaviour. One can easily

check that this is indeed the case for sets of parameters that are close to those in

Table 3.1, but such that V0 still has a dS vacuum while VT does not have any finite-x

minima.

Before concluding this section, let us note that one can easily verify from (3.48) and

(3.50) that m2
Reρ and m2

Imρ are quite small for all sets of parameters in Table 3.1. That

is, there is an appreciable interval for the temperature T , given by mReρ, mImρ <<

T << MP , in which the high-temperature expansion (2.53) is well-justified. Clearly, if

the minima of the effective potential are determined by V0 (instead of by VT ) in this

interval, they will remain determined by V0 at lower temperatures as well. Finally, one

can also check from (3.30) that, similarly to the zero-temperature case, the potential

VT (x, s) stabilizes the variable s at a value |s| << 1 and so the leading term in the

small-s expansion is indeed a good approximation for the full expression.

17Note that the volume modulus σ should not be confused with the inflaton field.
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3.6 One exponential revisited

As we saw in the previous section, in the case of two exponents the stabilization of the

zero temperature dS vacuum at finite temperatures is not due to the presence of a local

minimum of VT at finite field vevs. Rather, it comes from the fact that the minima

of Veff are determined by the T = 0 contribution, and not by the temperature-

dependent one, even at high T , as long as T << MP . Given that, it is worth to re-

examine the one-exponential case in order to see whether there is a range of parameter

values for which the same thing happens in this case too.

Since the T -dependent contribution to the effective potential has runaway be-

haviour (see Section 3.4.1), the dS minimum of V0 is completely washed out in the

total potential only when the magnitude of VT is much larger than the magnitude of

V0 at the position of this minimum xdS . Recall that in the O’KKLT model with one

exponential in the superpotential, the potential barrier separating the metastable dS

minimum from the 10D Minkowski vacuum at infinity is “coupled” to the value of the

gravitino mass at the AdS minimum: in particular it is given by Vb ∼ m2
3/2M

2
P . If

we examine the equation (3.32) that gives the leading finite temperature correction,

it is easy to see that around xdS the leading contribution is

V
(0)
T =

T 2

24

a3

x3
dS

µ4

Λ2
∼ T 2

24Λ2
m2

3/2M
2
P (3.51)

Requiring that V
(0)
T . Vb, we obtain that the maximal temperature is

Tmax . Λ . (3.52)

At this point it may useful to recall that Λ is a particular combination of parameters

in the O’Rafeartaigh sector, namely Λ ∼ 4πm
λ2 , where the parameters m and λ appear

in the superpotential WO′ = mϕ1ϕ2 + λSϕ2
1 − µ2S and we integrate out the heavy

fields φ1 and φ2.

Thus, when T < Λ the zero temperature minimum persists in Veff , whereas for

T > Λ the effective potential has the runaway behaviour of VT ; see Figure 3.6 for an

example.18 Clearly, for Λ ∼ O(10−2) the finite-x minimum of V0 is not washed out

by VT in the whole range of validity of supergravity. For any smaller Λ, though, this

is not the case; the critical temperature above which Veff has a runaway behaviour

is well within the range T << MP and so one can reliably conclude that there is a

18Recall that these inequalities are only order-of-magnitude estimates; the transition does not have
to happen precisely at T = Λ, only at T that is of O(Λ).
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Figure 3.6: Effective potential (multiplied by 1030) for the one exponential case (green con-

tinuous line) compared to V0 (red dot-dashed line) and VT (blue dashed line)

for T ≈ Λ (left) and T ≈ 10Λ (right). The values of the parameters are the

following: a = 0.2, W0 = −10−10, µ = 1.3× 10−5, Λ = 10−5.

phase transition towards the minimum at infinity.

The previous result should be compared to the maximal temperature computed

in [78]. There, it was assumed that the moduli are not in thermal equilibrium and

thus temperature corrections come from the thermal bath of radiation whose energy

density scales with temperature as T 4. In that case one obtains

Tmax .
√
m3/2MP . (3.53)

We learn already at this point that if the potential at high temperatures is runaway,

the maximal temperature above which the zero temperature metastable minimum is

washed away depends on the particular 4D effective Kähler potential and superpo-

tential and on whether or not the moduli are in thermal equilibrium. Both conditions

depend on the particular string compactification scenario considered and on the par-

ticular D-brane setup used to build the MSSM. We will study these issues in detail in

the context of the more “realistic” LARGE Volume compactifications in chapter 4.

3.7 Conclusions

In this chapter, we studied the one-loop temperature corrections to the effective po-

tential of the O’KKLT model in the hypothesis [65] that the moduli and the MDSB

sectors are in thermal equilibrium at high temperatures.

It turns out that, when the non-perturbative superpotential contains only one ex-

ponent, the temperature dependent part VT has runaway behaviour. For a superpo-

tential with two exponentials, on the other hand, VT can have minima at finite field
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vevs. Surprisingly however, the minima of Veff still turned out to be determined by

the minima of the zero-temperature contribution, in the range of validity of super-

gravity. So, although our initial motivation was to see how the system evolves as T

decreases, assuming that it started at a finite-vevs minimum of VT , we ended up with

a quite different interpretation of our results. Namely, that there is a regime in which

reheating does not destabilize the zero-temperature de Sitter minimum of the volume

modulus in the O’KKLT model (in the supergravity approximation). These results

agree with the dynamical analysis at finite temperature performed in [73].

Note that the existence of this regime is in stark contrast with the situation in [58]

(and the coupling of that model to supergravity [59]), where the relevant critical

temperature was found to be Tc �MP . The main differences between their model and

the one we studied here are that in our case the superpotential contains exponentials,

in addition to polynomials in the fields, and the Kähler potential is non-canonical. It

would be interesting to understand which of these two features is more essential, and

to what degree, in order to obtain the kind of result that we did.

In the next chapter, we will determine whether our conclusions about the finite

temperature behaviour of the O’KKLT model persist in more realistic cases, like the

LARGE volume compactifications of [30,62].

Appendix 3.A Counting solutions of ex = F (x)

In the main text, we will encounter on plenty of occasions equations of the type

ecx = F (x) , (3.54)

where x is a real variable, c is a constant and F (x) is an expression containing (ratios)

of polynomials and possibly other exponentials. In general, the analytic solution of

this equation is not known.19 Nevertheless, one can find an upper bound on the

number of its solutions, as we explain below.

For simplicity, let us take c = 1 in the rest of this appendix; the generalization

for arbitrary c will be obvious. Since ex is a monotonically increasing function, if F

were monotonically decreasing (and continuous, which will always be the case) then

clearly there could be only one or zero solutions depending on whether the value of F

is greater or smaller than the value of the exponential in the beginning of the interval

of interest. The difficult case to analyze is when F is also monotonically increasing;

19In the very simple case F = xm it is. However, we will have to deal with significantly more
complicated functions F .
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we will turn to it in a moment. Generically, in the cases of interest for us F will not

be monotonic. However, one can split the interval, that one wants to solve (3.54) in,

into subintervals in which it is monotonic by considering the equation20

F ′(x) = 0 , (3.55)

where ′ denotes d/dx. Let us denote by y1, ..., ym the solutions of (3.55), where for

convenience we have assumed the ordering yj < yj+1 for every j = 1, ...,m. In each

interval (yj , yj+1) the function F is monotonic: monotonically increasing if F ′ > 0 for

x ∈ (yj , yj+1) and monotonically decreasing if F ′ < 0 for x ∈ (yj , yj+1).21 As already

mentioned above, the intervals in which F is decreasing are trivial to analyze. So let

us from now on consider an interval (yk, yj+1) such that in it F ′ > 0.

To recapitulate, we are considering now the equation

ex = F (x) (3.56)

in an interval (yk, yk+1) such that

∀x ∈ (yk, yk+1) : F ′(x) > 0 . (3.57)

In other words, in the interval of interest the function F does not have any extrema or

inflection points (nor any divergences except possibly at the end points yk and yk+1)

and is monotonically increasing. Let us denote the solutions of (3.56) by x1, ..., xn.22

Again we assume the ordering xi < xi+1 ∀i = 1, ..., n. We should also mention that

we are considering only continuous functions, i.e. both F and F ′ are continuous.

Now, let us take two successive solutions, say x1 and x2. If at x1 the derivative of

one side of (3.56) is greater than the derivative of the other, say

F ′(x1) > ex1 , (3.58)

then clearly at x2 the opposite inequality, or at least equality, has to be satisfied, i.e.

F ′(x2) < ex2 or F ′(x2) = ex2 . (Think of the tangents to the curves that represent the

20Here we are assuming that F (x) does not diverge anywhere inside the interval of interest. Oth-
erwise an additional division into subintervals is necessary which, although complicating the
considerations, does not lead to anything new conceptually.

21In fact, in mathematics the term ’monotonic’ refers to functions for which F ′ ≥ 0 or F ′ ≤ 0. The
case when F ′ > 0 or F ′ < 0 is called ’strictly monotonic’. Since in our context it is clear what
we mean, we will drop the adjective ’strictly’ so as not to burden the language unnecessarily.

22Unless stated otherwise, from now on we mean solutions in the interval (yk, yk+1).
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Figure 3.7: Schematic depiction of the possible ways of intersection of two monotonically
increasing functions, f1(x) and f2(x), at two successive solutions of f1(x) = f2(x)
for the case when f ′1(x) = f ′2(x) has a single solution in the interval (x1, x2).

graphs of the functions at the two intersection points; see Figure 3.7.) Let us first

consider the case when

F ′(x2) < ex2 . (3.59)

Since F ′ is a continuous function, equations (3.58) and (3.59) imply that there has to

exist a point t ∈ (x1, x2) such that F ′(t) = et. In other words, between two successive

solutions of (3.56) there is at least one solution of

ex = F ′(x) . (3.60)

Although slightly less obvious, the same conclusion can be reached also for the

case when F ′(x2) = ex2 . Indeed, if F ′(x) > ex at x1 and at every point between x1

and x2, then it is not possible that at x2 the two functions are equal. (Think of two

points moving on a straight line, the vertical axes, with different velocities. If they

start from the same place at a moment of time x1 and one is always slower than the

other up until the moment x2, then it is not possible that they meet at the moment

x2.) It has to be true that at least in some part of the interval (x1, x2) the opposite

inequality F ′(x) < ex is satisfied in order for x2 to be a solution. Therefore, again

there has to be a point in between x1 and x2, in which the derivatives of the two

functions are equal.

So we conclude that between each two successive solutions of (3.56) there has to

be at least one solution of (3.60). Let us denote the number of solutions of the

latter equation by p. Then the above considerations are summarized by the following
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statement about the number of solutions, n, of (3.56):

n ≤ p+ 1 . (3.61)

One reason that the RHS of (3.61) is just an upper bound and not the exact number

of solutions of (3.56) is the possibility, that we already considered above, for a solution

xl of (3.56) to also be a solution of (3.60).23 Another is that the function F could

’wobble’ as in Figure 3.824 and so there could be more than one solution of (3.60)

between two successive solutions of (3.56).

It is clear now what is the algorithm for counting (or rather putting an upper

bound on) the number of solutions of ex = F (x). Namely, first find the solutions

{yj}mj=1 of F ′(x) = 0 and then in each interval (yj , yj+1), where y0 and ym+1 are

resp. the beginning and the end of the interval in which we are solving ex = F (x),

count the solutions of ex = F ′(x). If F ′ is still a complicated function, it may not

be immediately obvious that it is a significant improvement to consider the latter

equation rather than the original one. However, clearly one can develop a recursion,

i.e. as a next step view ex = F ′(x) as the starting point for the above considerations

and so find the solutions of F ′′(x) = 0. Then in each interval between two successive

ones look for the number of solutions of ex = F ′′(x) etc. until one reaches a rather

simple equation.25 This procedure is exactly the tool that enables us in Appendix B to

prove that there are no local minima of VT for finite ρ in the original KKLT proposal

(i.e., with a non-perturbative superpotential given by a single exponential) for the

range of parameters for which the zero temperature potential has a dS minimum.

Appendix 3.B No finite-ρ minima of VT for one-exponential

case

In this Appendix we show that the equation

e2x = −C−1 (P5(x) +W0P3(x)ex) ≡ H(x) (3.62)

does not have any solution whenever |W0| and µ2 are of the same order of magnitude,

which is the condition (3.15) for the presence of dS vacua with a small cosmological

23Clearly, if two successive solutions of (3.56) solve (3.60) too, then the inequality in (3.61) only gets
stronger.

24Recall that in general its second (and higher) derivative(s) is (are) also nontrivial function(s) of x.
25Of course, here we assume that all relevant derivatives of F are continuous.
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Figure 3.8: Schematic depiction of two monotonically increasing functions f1(x) and f2(x),

which exemplifies how the equation f ′1(x) = f ′2(x) can have more than one solu-

tion between two successive solutions of f1(x) = f2(x).

constant at zero temperature.

Following the logic of Appendix A, we consider as a first step the equation H ′(x) =

0, where ′ denotes differentiation w.r.t. x. The strategy is to split the half axes [0,∞)

into intervals in which the function H is monotonic (the intervals between successive

solutions of H ′ = 0 plus, of course, the interval to the left of the smallest solution

and the interval to the right of the largest one) and find bounds on the number of

solutions of (3.62) in each such interval.

Let us write the equation H ′ = 0 in the form:

ex = − 1

W0

29 + 242
3 x+ 86x2 + 56x3 + 20x4

38 + 67x+ 37x2 + 6x3
≡ − 1

W0

P4

P̂3

≡ h(x) . (3.63)

Clearly, we are again facing a transcendental equation of the type (3.54). Nevertheless,

things have improved significantly since now we have on the RHS a function that we

can fully analyze. As all coefficients of both polynomials P4 and P̂3 are positive (and

zero is obviously not a root of any of them), h(x) does not diverge anywhere in the

interval [0,∞) and is a monotonic function there. Hence (3.63) has a single solution

when h(x)|x=0 ≥ ex|x=0 = 1.26 So we find that −0.76 ≤ W0 < 0. Since for the

uplifting of the local zero-temperature minimum to dS one needs |W0| ≈ µ2 << 1,

clearly for the case of interest for us the equation H ′(x) = 0 has one solution. Let us

denote it by x0. One can find x0 numerically27 and one can verify that H ′(x) < 0 for

26For an arbitrary function h(x) this would only be true if it were monotonically decreasing, unlike
the case at hand. However, the rational function P4/P̂3 approaches the behavior of its asymptote,
10
3
x, around x ∼ 10 and so if it does not cross ex for smaller x it never does. One easily sees,

by plotting the two functions for x ∈ [0, 10], that they can intersect only if h(x) was the greater
function at x = 0.

27As equation (3.63) depends on the value of W0 so does x0. For |W0| = 10−1, 10−2, ..., 10−6 it is
x0 = 4.6, 7.5, 10.2, 12.7, 15.3, and 17.7 respectively. However, the conclusions of our subsequent
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x < x0 and H ′(x) > 0 for x > x0.

Hence we have determined that there are two intervals in which the function H(x) is

monotonic: [0, x0) and [x0,∞). In fact, we can discard the first of them immediately.

The reason is that H ′ < 0 in it and that in its beginning H(0) < 0 for any W0 in

the range of interest (as mentioned above, this means |W0| << 1). Therefore H(x)

remains negative throughout the whole interval and so cannot be equal to e2x at any

x there. So from now on we will only consider x ∈ [x0,∞) .28

According to Appendix A, we have to aim now at counting the number of solutions

of (e2x)′ = H ′(x) in this interval. However, this is still a rather complicated equation.

So we go to the next level of iteration by considering it as the starting point and

looking for the solutions of H ′′(x) = 0 in order to find the intervals in which H ′ is

monotonic. For that purpose, let us write H ′′(x) = 0 in the following way:

ex = − 1

W0

242
9 + 172

3 x+ 56x2 + 80
3 x

3

35 + 47x+ 55
3 x

2 + 2x3
≡ r(x) . (3.64)

It is obvious that, similarly to h(x), the function r(x) does not diverge anywhere in

the interval of interest and is monotonic in the whole of it. However, at the beginning

of this interval ex0 > r(x0) and hence (3.64) does not have any solution.29 Then one

easily verifies that H ′′(x) > 0 for any x ∈ [x0,∞). Unfortunately though, the equation

(e2x)′′ = H ′′(x) is still not simple enough for us to be able to count its solutions. So

we have to go to the next level, i.e. look for zeros of the third derivative, H(3)(x).

However, at this point it is clear how the iteration procedure will converge. Each

further derivative decreases the power of the polynomial in the numerator, until what

started as P5(x) completely disappears. At the level of H(6)(x) = 0 one finds the

equation 26e2x = exQ3(x), where Q3(x) is still a degree-three polynomial. Clearly

then this becomes 26ex = Q3 and after 3 more differentiations one finds ex = const,

which can have at most one solution. Also, at each step of the procedure the corre-

sponding derivative of H(x) is easily seen to be positive-definite in the whole interval

of interest. Therefore, from Appendix A it follows that for the moment we have

restricted the number of solutions of (3.62) to be at most 1+6+3=10.

At first sight this may not seem very encouraging. However, recall that at the last

step we arrived at an equation that can have at most one solution. More precisely, it

analysis are the same for any |W0| < 0.76.
28Clearly, we could shift upwards the lower end of the interval of interest by taking it to be the point

t at which H(t) = 0, since obviously t > x0. However, for our subsequent considerations it will
not matter whether we consider [x0,∞) or [t,∞). So we do not bother determining t.

29Similar remark as in footnote 26 applies here.
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is

26ex =
12|W0|
C

. (3.65)

Now, since

C = 3
µ4

Λ2
+

3

2
W 2

0 , (3.66)

it is easy to see that (3.65) does not have a solution neither for the uplifted case (in

which |W0| ≈ µ2 and so C >> W 2
0 ) nor for the case with no uplifting (for example, take

µ = 0 and so C ≈ W 2
0 )30. This in turn means that the equation (e2x)(8) = H(8)(x)

can have at most one solution. And since H(8) is monotonic in the whole interval

of interest, it is again very easy to verify that it too does not have any. Therefore

(e2x)(7) = H(7)(x) can have at most one solution etc.. Actually, we should mention

that the equation(e2x)(7) = H(7)(x) is the stage at which a difference appears between

the cases with and without uplifting. Namely, for the case with no uplifting the two

sides of this equation are of the same order of magnitude at the point x0; for the

lower derivative equations the side of the exponential is the smaller one and hence

we cannot decrease the bound on the number of solutions of e2x = H(x) any further.

On the other hand, for the uplifted case we find that there are no solutions at each

step until (e2x)′ = H ′(x) and finally e2x = H(x) itself.

30For instance, for W0 = −10−4 we have x0 = 12.7 (see footnote 27) and so the LHS of (3.65) is
26 × 3 × 105, whereas the RHS is 4 × 10−2 for the uplifted case with Λ = 10−3 and 8 × 104

for no uplifting with µ = 0. In fact, one can easily convince oneself that our considerations are
independent of the particular value of W0 (and the resulting value of x0). Namely, one can check
that although the ratio between the LHS and RHS of (3.65) varies for the six values of W0 in
footnote 27, its order of magnitude remains the same for all six values. (For example, for the
uplifted case one always finds that LHS/RHS ∼ 108.)
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4 Finite temperature corrections to the

LARGE Volume models

Summary. In this chapter we present a detailed study of the finite-temperature

behaviour of the so-called LARGE Volume type IIB flux compactifications [30, 62,

91]. These scenarios are phenomenologically interesting because, as we shall see,

the volume of the internal space being exponentially large allows to explain many

hierarchies observed in nature and guarantees that the low-energy effective field theory

is under good control.

The finite temperature analysis is motivated by the observation that in general the

scalar field associated to the overall CY volume mode is affected by the cosmological

moduli problem and that temperature effects such as thermal inflation and moduli

decay can provide a solution to the problem. In particular, we study in detail the issue

of moduli thermalization and show that certain moduli can be in thermal equilibrium

at high temperatures. Despite that, their contribution to the finite-temperature ef-

fective potential is always negligible and the latter has a runaway behaviour. We

compute the maximal temperature Tmax, above which the internal space decompact-

ifies, as well as the temperature T∗, that is reached after the decay of the heaviest

moduli. The natural constraint T∗ < Tmax implies a lower bound on the allowed

values of the internal volume V. We find that this restriction rules out a significant

range of values corresponding to smaller volumes of the order V ∼ 104l6s , which lead

to standard GUT theories. Instead, the bound favours values of the order V ∼ 1015l6s ,

which lead to TeV scale SUSY desirable for solving the hierarchy problem.

Finally, we pose a two-fold challenge for the solution of the cosmological moduli

problem [68] which these scenarios are affected by. First, we show that the heavy

moduli decay before they can begin to dominate the energy density of the Universe.

Hence they are not able to dilute any unwanted relics. Second, we argue that, in

order to obtain thermal inflation in the closed string moduli sector, one needs to go

beyond the present effective field theory (EFT) description.
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4.1 Introduction

LARGE Volume scenarios [62] are excellent examples of IIB compactifications with

stabilized moduli, which are very appealing both for particle physics phenomenology

and for cosmology. According to the general analysis of [91], in these compactifica-

tions, α′ and gs corrections are combined with non-perturbative effects to generate

a potential for the Kähler moduli which fixes the overall volume at exponentially

large values, whereas the background fluxes induce a potential for the dilaton and the

complex structure moduli. The exponentially large volume minimum of LVS is AdS

with broken SUSY, even before any uplifting. In contrast, in KKLT constructions

the AdS minimum is supersymmetric and the uplifting term is the source of SUSY

breaking. Furthermore, the moduli stabilisation is performed without fine-tuning of

the values of the internal fluxes, namely without fine-tuning W0. As a consequence,

one has a very reliable four-dimensional effective description, as well as a tool for the

generation of phenomenologically desirable hierarchies. For example, for V ∼ 1015l6s

the masses scales of LVS would look like

• Planck scale: MP = 2.4 · 1018 GeV,

• Majorana scale for right handed neutrinos: MνR ∼
MP

V1/3 ∼ 1014 GeV,

• String scale: Ms ∼ MP
V ∼ 1010 GeV,

• QCD axionic scale: fa ∼Ms ∼ 1010 GeV

• Kaluza-Klein scale: MKK ∼ MP

V2/3 ∼ 108 GeV,

• Blow-up modes: mτs ∼ m3/2 ln
(
MP /m3/2

)
∼ 106 GeV,

• Gravitino mass: m3/2 ∼ MP
V ∼ 104 GeV

• Complex structure moduli: mU ∼ m3/2 ∼ 104 GeV,

• Soft supersymmetry breaking terms: Msoft ∼
m3/2

ln(MP /m3/2)
∼ 103 GeV,

• Volume modulus: mτbig ∼
MP

V3/2 ∼ 1 MeV,

• Large fibration moduli: mτfib ∼
MP

V5/3 ∼ 10 KeV.

However, if the volume is set such that V ∼ 1015l6s , some shortcomings of these models

are the following:
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1. No gauge coupling unification, given that the string scale in this case is inter-

mediate, and so ruins the standard picture of the running of all three non-

gravitational coupling constants which merge around MGUT ∼ 1016 GeV.

2. Cosmological Moduli Problem for the overall volume mode given that their decay

would spoil the success of the Big-Bang nucleosynthesis.

We shall not address here the first problem since, in general, in all the five perturbative

string theories, it is extremely difficult to derive an explicit string model which is able

to reproduce the standard picture of gauge coupling unification.

In order to solve the second problem, namely the cosmological moduli problem, we

need to have either a trapping mechanism to keep the fields in or close to their minima

or alternatively a period of late entropy production that can dilute any unwanted

relics. The latter can be achieved either with a period of late inflation such as thermal

inflation [70] or with moduli decay. Both issues require studying the finite temperature

behaviour of the moduli sector in LVS.

Contrary to the traditional thought that moduli cannot thermalize due to their

Planck-suppressed couplings to ordinary matter and radiation, we show that in LVS

some of the moduli can be in thermal equilibrium with MSSM particles for tempera-

tures well below the Planck scale. The main reason is the presence of an additional

large scale, namely the exponentially large CY volume, which enters the various cou-

plings and thus affects the relevant interaction rates. The unexpected result, that

some moduli can thermalize, in principle opens up the possibility that the finite

temperature potential could develop new minima instead of just having a run-away

behaviour as, for example, in [78,79]. However, we show that this is not the case since,

for temperatures below the Kaluza-Klein scale, the T -dependent potential still has a

run-away behaviour. Although it is impossible to find exactly the decompactification

temperature Tmax, as it is determined by a transcendental equation, we are able to

extract a rather precise analytic estimate for it. As expected, we find that Tmax is

controlled by the potential barrier Vb = m3
3/2 giving Tmax ∼ m

3/4
3/2M

1/4
P between the

metastable dS minimum and the one at infinity. Therefore, on general analysis, the

maximal temperature in the LVS is lower than the maximal temperature in the KKLT

case that was examined in the previous chapter where the potential barrier is of order

of m2
3/2.

We also pose a challenge for the solution of the cosmological moduli problem, that

the overall breathing mode of LVS with V > 1010l6s is afflicted by [92]. This is so,

because we show that unwanted relics cannot be diluted by the entropy released

71



Chapter 4. Finite temperature corrections to the LARGE Volume
models

by the decay of the heaviest moduli of LVS, nor by a low-energy period of thermal

inflation. More precisely, we show that the heaviest moduli of LVS decay before they

can begin to dominate the energy density of the Universe and, also, that in order to

study thermal inflation in the closed string moduli sector, it is necessary to go beyond

our low energy EFT description.

The present chapter is organized as follows. In Section 4.2, we review the basic

features of the type IIB LVS. In Section 4.3, we derive the masses and the couplings

to visible sector particles of the moduli and modulini in LVS. Using these results,

in Section 4.4 we investigate moduli thermalization and show that, generically, the

moduli corresponding to the small cycles can be in thermal equilibrium with MSSM

particles, due to their interaction with the gauge bosons. In Section 4.5, we study the

finite temperature effective potential in LVS and show that it has a runaway behaviour

that allows us to find the decompactification temperature Tmax. Furthermore, we

establish a lower bound on the CY volume, which follows from the constraint that

the temperature of the Universe just after the small moduli decay should not exceed

Tmax. In Section 4.6 we discuss some open issues, among which the question why

thermal inflation does not occur within our approximations. Finally, after we give a

summary of our results in Section 4.7. (Appendix 4.A contains technical details on

the computation of the moduli couplings.)

4.2 Large Volume Scenarios

The distinguishing feature of the type IIB Large Volume Scenarios (LVS) of [62] is

that, in addition to the non-perturbative effects considered in [35], α′ corrections are

also taken into account, which lead to moduli stabilisation at an exponentially large

volume of the internal manifold. In [62], the Calabi-Yau 3-fold was assumed to have a

characteristic topology with one exponentially large cycle and several small del Pezzo

4-cycles. Including string loop corrections, as in [91], extends these scenarios to a

larger class of Calabi-Yau manifolds which can also have fibration structure.

In [91] the topological conditions that an arbitrary CY has to satisfy in order for the

general potential (2.46) to have a non-supersymmetric AdS minimum at exponentially

large volume were derived. These conditions can be summarised as follows:

1. h2,1 > h1,1 > 1⇔ ξ ∼ (h2,1−h1,1) > 0, where h2,1, h1,1 and ξ are defined in eq.

(2.40) and below,

2. The CY 3-fold has to have at least one Kähler modulus τs corresponding to
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a blow-up mode resolving a point-like singularity (the volume of a del Pezzo

4-cycle). τs must get non-perturbative corrections, W = W0 + Ase
−asτs , then

the overall volume can be fixed such that V ' √τseasτs .

Both conditions give rise to two different LVS. On the one hand, we have a CY

with a typical Swiss-cheese topological structure where there is just one LARGE

cycle controlling the size of the overall volume and all the other 4-cycles are blow-up

modes. The string loop corrections turn out to be negligible in this case. On the

other hand, we have a fibred CY manifolds with the presence of modes which do not

resolve point-like singularities or correspond to the overall volume modulus. In this

case gs corrections play a crucial role to lift the fibration moduli that are left unfixed

by δV(np) + δV(α′) (more precisely, the string loop corrections for these modes are

always dominant compared to non-perturbative effects). We will describe these two

cases in more detail in the next subsections.

4.2.1 Swiss-cheese Calabi-Yaus

The original example of LVS of [62], and the one we will study in most detail, is the

degree 18 hypersurface in CP 4
[1,1,1,6,9] whose volume is given by

V =
1

9
√

2

(
τ

3/2
b − τ3/2

s

)
, (4.1)

where τb and τs are the two Kähler moduli and the subscripts b and s stand for big

and small respectively. The general expression (2.46) for the scalar potential, in this

case takes the form1

V =
gse

KcsM4
P

8π

(
λ
√
τs
e−2asτs

V
− µτse

−asτs

V2
+

ν

V3

)
, (4.2)

with

λ = 24
√

2a2
sA

2
s, µ = 4asAsW0, ν =

3ξW 2
0

4g
3/2
s

, (4.3)

Also, in (4.2) the minimisation with respect to the axion bs has already been per-

formed. For natural values of the tree-level superpotential W0 ∼ O(1), the scalar

potential (4.2) admits a non-supersymmetric AdS minimum at exponentially large

volume due to the interplay of α′ and non-perturbative effects. This minimum is

1The string loop corrections can be safely neglected since they are subdominant relative to the other
corrections due to inverse powers of V and factors of gs.
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located at

V ∼W0 e
asτs � τs ∼ ξ̂2/3 � 1 . (4.4)

There are several ways to up-lift this minimum to Minkowski or dS: adding D3 branes

[35], considering D-terms from magnetised D7 branes [36] or F-terms from a hidden

sector [93] etc.

An immediate generalisation of the CP 4
[1,1,1,6,9] model is given by the so-called

‘Swiss-cheese’ Calabi-Yaus, whose volume looks like

V = α

(
τ

3/2
b −

Nsmall∑
i=1

λiτ
3/2
i

)
, α > 0, λi > 0 ∀i = 1, ..., Nsmall. (4.5)

Examples having this form with h1,1 = 3 are the the degree 15 hypersurface embedded

in CP 4
[1,3,3,3,5] and the degree 30 hypersurface in CP 4

[1,1,3,10,15] [94]. More generally,

in [95] it was showed how to build Swiss-cheese CY 3-folds with h1,1 = n + 2, 0 ≤
n ≤ 8. In this case, assuming that all the small cycles get non-perturbative effects,

the 4-cycle τb, controlling the overall size of the CY, is stabilised exponentially large,

V ' ατ3/2
b ∼W0e

aiτi , while the various 4-cycles, τi, controlling the size of the ‘holes’

of the Swiss-cheese, get fixed at small values τi ∼ O(10), ∀i = 1, ..., Nsmall.
2

4.2.2 Fibred Calabi-Yaus

The first examples of LVS with a topological structure more complicated than the

Swiss-cheese one, were discovered in [91]. The authors focused on a K3 fibred CY

with h2,1 > h1,1 = 3, obtained by adding a blow-up mode to the geometry CP 4
[1,1,2,2,6].

The volume reads:

V = α
(√

τ1τ2 − γτ3/2
s

)
= t1τ1 − αγτ3/2

s , (4.6)

where the constants α and γ are positive, and t1 is the volume of the CP 1 base

of the K3 fibration. Working in the parameter regime τ2 > τ1 � τs, where the

volume of the CY is large, while the blow-up cycle τs remains comparatively small3,

the general expression (2.46) for the potential at zero temperature becomes (having

2However, in ref. [96] it was discovered that the Swiss-cheese structure of the volume is not enough
to guarantee that all the rigid ‘small’ cycles τi can indeed be stabilised small. In fact, a further
condition is that each rigid ‘small’ cycle τi must be del Pezzo. In [96], there are 3 examples of
Swiss-cheese CY 3-folds with h1,1 = 4 where just one 4-cycle has the topology CP 2.

3In this limit t1 ∼ τ2/
√
τ1 >

√
τ1, corresponding to interesting geometries having the two dimensions

of the base, spanned by the cycle t1, larger than the other four of the K3 fibre, spanned by τ1.
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already minimised V with respect to the axion bs = ImTs):

V =
gse

KcsM4
P

8π

[
β
√
τs
e−2asτs

V
− µτse

−asτs

V2
+

ν

V3
+

(
A

τ2
1

− B

V√τ1
+
Cτ1

V2

)
W 2

0

V2

]
,

(4.7)

with λ, µ and ν as given in (4.3) and

β =
λ

9
√

2αγ
, A = (gsC

KK
1 )2 , B = 4αCW12 , C = 2(αgsC

KK
2 )2. (4.8)

It is evident that the leading δV(α′) +δV(np) part of the potential depends only on two

Kähler moduli, V and τs, instead of all three. In fact, it turns out to be of exactly

the same form as (4.2) above. Hence, viewing V, τs and τ1 as the three independent

moduli (instead of τ1, τ2 and τs), it is clear that, without taking into account the

subleading gs corrections, τ1 is a flat direction of the scalar potential. Also, it is

evident that at this order, V and τs are stabilised as in the CP 4
[1,1,1,6,9] model of

subsection 4.2.1:

〈τs〉 =

(
ξ̂

2αγ

)2/3

and 〈V〉 =

(
3αγ

4asAs

)
W0

√
〈τs〉 eas〈τs〉 . (4.9)

Obviously, loop corrections shift insignificantly the VEVs of these two moduli. How-

ever, gs corrections are crucial to generate a potential for τ1 that admits a minimum

at
1

τ
3/2
1

=

(
B

8AV

)[
1 + (signB)

√
1 +

32AC

B2

]
. (4.10)

Some concrete numerical choices for the various underlying parameters, without

any fine-tuning, are listed in Table 4.1. The ‘LV’ case gives very large volumes,

gs ξ W0 as As α γ CKK1 CKK2 CW12

LV 0.1 0.4 1 π 1 0.5 0.39 0.1 0.1 5

SV 0.3 0.9 100 π/5 1 0.13 3.65 0.15 0.08 1

〈τs〉 〈τ1〉 〈V〉
LV 10.5 106 3 · 1013

SV 4.3 9 1710

Table 4.1: Some model parameters and the resulting minima for the 4-cycles.

V ' 1013 and the modulus τ1 is stabilised at hierarchically large values, τ2 > τ1 � τs.
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The string scale and the gravitino mass turn out to be

Ms =
MP√
4πV

∼ 1011GeV, m3/2 = eK/2M
2
P
W

M2
P

=
g

1/2
s eKcs/2W0MP√

8πV
∼ 10TeV.

(4.11)

This gives a solution of the hierarchy problem but the huge value of the volume

destroys the standard picture of gauge coupling unification. The ‘SV’ case instead

has V ∼ 103 much smaller (and so with Ms ∼MGUT and a very high gravitino mass).

This set of parameter values is not chosen just in relation to GUT theories but also in

order to provide observable density fluctuations for the inflationary model of [97]. In

that model, the inflaton is the modulus τ1, whose potential is loop-generated, and the

main feature of the model is that it produces detectable gravity waves. More general

examples of this kind of LVS have been discovered in [95] whose volumes look like

V = V ol (Xn−r)−
r∑
i=1

λiτ
3/2
i , λi > 0 ∀i = 1, ..., r, (4.12)

where Xn−r is the resulting elliptical fibration over a dPn−r base. It is natural to

expect that the scalar potential for these examples has an AdS minimum at exponen-

tially large volume, together with (h1,1 −Nsmall − 1) = n− r flat directions that will

be lifted by gs corrections.

We should note that string loop corrections can play an important role for compact-

ifications on Swiss-cheese CY manifolds as well. Namely, they can be crucial, even in

this case, to achieve full moduli stabilisation when the topological condition, that all

rigid 4-cycles be del Pezzo, is not satisfied or when one imposes the phenomenologi-

cal condition that the 4-cycles supporting chiral matter do not get non-perturbative

effects [94].4

4.3 Moduli masses and couplings

The Universe has for much of its history been very nearly in thermal equilibrium.

However, the departures from equilibrium have been very important - without them

the past history of the Universe would be irrelevant. In order to compute the tem-

perature at which a thermal bath is established or some particles drop out of thermal

equilibrium we need to know the masses and the couplings of the particles in the ther-

mal bath. To determine the latter, one needs to use canonically normalised fields.

4Also D-terms could play a significant role as pointed out still in [94].
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In this section, we study the canonical normalisation of the Kähler moduli kinetic

terms and use the results to compute the masses of those moduli and their couplings

to visible sector particles.

4.3.1 Single-hole Swiss-cheese

We start by focusing on the simplest Calabi-Yau realisation of LVS, the ‘single-hole

Swiss-cheese’ case described in subsection 4.2.1 (i.e., the degree 18 hypersurface em-

bedded in CP 4
[1,1,1,6,9]). First of all, we shall review the canonical normalisation de-

rived in [92]. In order to obtain the Lagrangian in the vicinity of the zero temperature

vacuum, one expands the moduli fields around the T = 0 minimum:

τb = 〈τb〉+ δτb ,

τs = 〈τs〉+ δτs .

where 〈τb〉 and 〈τs〉 denote the VEV of τb and τs. One then finds:

L = Kij̄∂µ(δτi)∂
µ(δτj)− 〈V0〉 −

1

2
Vij̄δτiδτj +O(δτ3) , (4.13)

where i = b, s and 〈V0〉 denotes the value of the zero temperature potential at the

minimum. To find the canonically normalized fields Φ and χ, let us write δτb and δτs

as:

δτi =
1√
2

[(~vΦ)iΦ + (~vχ)iχ] . (4.14)

The conditions for the Lagrangian (4.13) to take the canonical form:

L = −1

2
∂µΦ∂µΦ− 1

2
∂µχ∂

µχ− 〈V0〉 −
1

2
m2

ΦΦ2 − 1

2
m2
χχ

2 (4.15)

are the following:

Kij̄(~vα)i(~vβ)j = δαβ and
1

2
Vij̄(~vα)i(~vβ)j = m2

αδαβ . (4.16)

These relations are satisfied when ~vΦ, ~vχ (properly normalised according to the first

of (4.16)) and m2
Φ, m2

χ are, respectively, the eigenvectors and the eigenvalues of the

mass-squared matrix
(
M2
)
ij
≡ 1

2

(
K−1

)
ik̄
Vk̄j .

Substituting the results of [92] for ~vΦ and ~vχ in (4.14), we can write the original
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Kähler moduli δτi as (for asτs � 1):

δτb =
(√

6〈τb〉1/4〈τs〉3/4
) Φ√

2
+

(√
4

3
〈τb〉

)
χ√
2
∼ O

(
V1/6

)
Φ +O

(
V2/3

)
χ(4.17a)

δτs =

(
2
√

6

3
〈τb〉3/4〈τs〉1/4

)
Φ√
2

+

(√
3

as

)
χ√
2
∼ O

(
V1/2

)
Φ +O (1)χ . (4.17b)

As expected, these relations show that there is a mixing of the original fields. Nev-

ertheless, δτb is mostly χ and δτs is mostly Φ in the LARGE volume approximation,

V � 1. On the other hand, the mass-squared are [92]:

m2
Φ ' Tr

(
M2
)
'
(
gse

Kcs

8π

)
24
√

2νa2
s〈τs〉1/2

V2
M2
P ∼

(
lnV
V

)2

M2
P (4.18a)

m2
χ '

det
(
M2
)

Tr (M2)
'
(
gse

Kcs

8π

)
27ν

4as〈τs〉V3
M2
P ∼

M2
P

V3 lnV
. (4.18b)

We can see that there is a large hierarchy of masses among the two particles, with Φ

being heavier than the gravitino mass (recall that m3/2 ∼MP /V) and χ lighter by a

factor of
√
V.

Using the above results and assuming that the MSSM is built via magnetised D7

branes wrapped around the small cycle, we can compute the couplings of the Kähler

moduli fields of the CP 4
[1,1,1,6,9] model to visible gauge and matter fields. This is

achieved by expanding the kinetic and mass terms of the MSSM particles around

the moduli VEVs. The details are provided in Appendix 4.A, where we focus on

T > MEW since we are interested in thermal corrections at high temperatures. This,

in particular, means that all fermions and gauge bosons are massless and the mixing

of the Higgsinos with the EW gauginos, that gives neutralinos and charginos, is not

present. We summarise the results for the moduli couplings in Tables 4.2 and 4.3.

Gauge bosons (FµνF
µν) Gauginos (λ̄λ) Matter fermions (ψ̄ψ) Higgsinos ( ¯̃HH̃)

χ 1
Mp lnV

1
VlnV No coupling 1

V lnV

Φ
√
V

Mp

1
V3/2lnV No coupling 1√

V lnV

Table 4.2: CP 4
[1,1,1,6,9] case: moduli couplings to spin 1 and 1/2 MSSM particles for T >

MEW .
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Higgs (H̄H) Higgs-Fermions (Hψ̄ψ) SUSY scalars (ϕ̄ϕ) χ2 Φ2

χ MP
V2(lnV)2

1
MPV1/3

MP
V2(lnV)2

MP
V3

MP
V2

Φ MP

V5/2(lnV)2
1

MPV5/6
MP

V5/2(lnV)2
MP

V5/2
MP

V3/2

Table 4.3: CP 4
[1,1,1,6,9] case: moduli couplings to spin 0 MSSM particles and cubic self-

couplings for T > MEW .

4.3.2 Multiple-hole Swiss-cheese

Let us now consider the more general Swiss-cheese CY three-folds with more than

one small modulus and with volume given by (4.5). In this case we find:

Lkin =
3

4〈τb〉2
∂µ(δτb)∂

µ(δτb) +
3

8

∑
i

λiεi
〈τb〉〈τi〉

∂µ(δτi)∂
µ(δτi)

−9

4

∑
i

λiεi
〈τb〉2

∂µ(δτb)∂
µ(δτi) +

9

4

∑
i<j

λiλjεiεj
〈τb〉2

∂µ(δτi)∂
µ(δτj) , (4.19)

where εi ≡
√

τi
τb
<< 1 and also we have kept only the leading (in the limit τb >> τi ∀i)

contribution in each term. Notice that the mixed terms are subleading compared to

the diagonal ones. So, to start with, one can keep only the first line in (4.19). Then at

leading order the canonically normalized fields χ and Φi, i = 1, ..., Nsmall, are defined

via:

δτb =

√
2

3
〈τb〉χ ∼ O

(
V2/3

)
χ , δτi =

2√
3λi
〈τb〉3/4〈τi〉1/4Φi ∼ O

(
V1/2

)
Φi .

(4.20)

As was to be expected, this scaling with the volume agrees with the behaviour of

δτb and δτs in (4.17). Now, let us work out the volume scaling of the subdominant

mixing terms since it is important for the computation of the various moduli couplings.

Proceeding order by order in a large-V expansion, we end up with:

δτb ∼ O
(
V2/3

)
χ+

∑
i

O
(
V1/6

)
Φi , (4.21a)

δτi ∼ O
(
V1/2

)
Φi +O (1)χ+

∑
j 6=i
O
(
V−1/2

)
Φj . (4.21b)
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This shows that the mixing between the small moduli is strongly suppressed by inverse

powers of the overall volume, in accord with the subleading behaviour of the last term

in (4.19). Furthermore, the fact that the leading order volume-scaling of (4.21) is the

same as (4.17), implies that all small moduli behave in the same way as the only

small modulus of the CP 4
[1,1,1,6,9] model. Hence, if all the small moduli are stabilised

by non-perturbative effects, the moduli mass spectrum in the general case will look

like (4.18), with (4.18a) valid for all the small moduli. In addition, if we assume that

all the 4-cycles corresponding to small moduli are wrapped by MSSM D7 branes, the

moduli couplings to matter fields are again given by Tables 4.2 and 4.3, where now

Φ stands for any small modulus Φi.

However, in general the situation may be more complicated. In fact, in [94] it was

pointed out that 4-cycles supporting MSSM chiral matter cannot always get non-

perturbative effects.5 A possible way to stabilise these 4-cycles is to use gs corrections

as proposed in [91]. In this case, the leading-order behaviour of (4.18a) should not

change: m2
Φi
∼ M2

P
V2 .6 However, the moduli couplings to MSSM particles depend on

the underlying brane set-up. So let us consider the following main cases:

1. All the small 4-cycles are wrapped by MSSM D7 branes except τnp which is

responsible for non-perturbative effects, being wrapped by an ED3 brane. It

follows that the MSSM couplings of Φnp are significantly suppressed compared

to the MSSM couplings of the other small cycles (still given by Tables 4.2 and

4.3). This is due to the mixing term in (4.21b) being highly suppressed by

inverse powers of V.

2. All the small 4-cycles are wrapped by MSSM D7 branes except τnp which is

supporting a pure SU(N) hidden sector that gives rise to gaugino condensation.

This implies that the coupling of Φnp to hidden sector gauge bosons will have

the same volume-scaling as the coupling of the other small moduli with visible

sector gauge bosons. However, the coupling of the MSSM 4-cycles with hidden

sector gauge bosons will be highly suppressed.

3. All the small 4-cycles τi support MSSM D7 branes which are also wrapped

around the 4-cycle responsible for non-perturbative effects τnp, but they have

5This is because an ED3 wrapped on the same cycle will have, in general, chiral intersections with
the MSSM branes. Thus the instanton prefactor would be dependent on the VEVs of MSSM
fields which are set to zero for phenomenological reasons. In the case of gaugino condensation,
this non-perturbative effect would be killed by the arising of chiral matter.

6It may be likely that m2
Φi

depends on subleading powers of (lnV) due to the fact that the loop
corrections are subdominant with respect to the non-perturbative ones (see [91]), but the main
V−2 dependence should persist.

80



Chapter 4. Finite temperature corrections to the LARGE Volume
models

chiral intersections only on the other small cycles. In this case, the coupling

of Φnp to MSSM particles would be the same as the other Φi. However, if τnp

supports an hidden sector that undergoes gaugino condensation, the coupling

of the MSSM 4-cycles with the gauge bosons of this hidden sector would still

be highly suppressed.

4.3.3 K3 Fibration

We turn now to the K3 fibration case described in Section 4.2.2. We shall consider

first the ‘LV’ case, in which the modulus related to the K3 divisor is fixed at a very

large value, and then the ‘SV’ case, in which the overall volume is of the order V ∼ 103

and the K3 fiber is small.

In order to compute the moduli mass spectroscopy and couplings, it suffices to

canonically normalise the fields just in the vicinity of the vacuum. The non-canonical

kinetic terms look like (with ε ≡
√
〈τs〉/〈τ1〉):

Lkin =
1

4〈τ1〉2
∂µ(δτ1)∂µ(δτ1) +

1

2〈τ2〉2
∂µ(δτ2)∂µ(δτ2)− 3γε

4〈τ2〉〈τ1〉
∂µ(δτ1)∂µ(δτs)

− 3γε

2〈τ2〉2
∂µ(δτ2)∂µ(δτs) +

γε3

2〈τ2〉2
∂µ(δτ1)∂µ(δτ2) +

3γε

8〈τ2〉〈τs〉
∂µ(δτs)∂

µ(δτs).

(4.22)

Large K3 fiber

In the ‘LV’ case where the K3 fiber is stabilised at large value, ε � 1. Therefore

at leading order in a large volume expansion, where 〈τ2〉 > 〈τ1〉 � 〈τs〉, all the

cross-terms in (4.22) are subdominant to the diagonal ones, and so can be neglected:

Lkin '
1

4〈τ1〉2
∂µ(δτ1)∂µ(δτ1) +

1

2〈τ2〉2
∂µ(δτ2)∂µ(δτ2) +

3γε

8〈τ2〉〈τs〉
∂µ(δτs)∂

µ(δτs).

(4.23)

Therefore, at leading order the canonical normalisation close to the minimum becomes

rather easy and reads:

δτ1 =
√

2〈τ1〉χ1 ∼ O
(
V2/3

)
χ1, (4.24a)

δτ2 = 〈τ2〉χ2 ∼ O
(
V2/3

)
χ2, (4.24b)

δτs =

√
4〈τ1〉1/2〈τ2〉〈τs〉1/2

3γ
Φ ∼ O

(
V1/2

)
Φ. (4.24c)
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However, in order to derive all the moduli couplings, we need also to work out the

leading order volume-scaling of the subdominant mixing terms in (4.24b) and (4.24c).

This can be done order by order in a large-V expansion and, after some algebra, we

obtain:

δτ1 = α1〈τ1〉χ1 + α2

√
〈τ1〉
〈τ2〉

〈τs〉3/2χ2 + α3
〈τ1〉3/4√
〈τ2〉
〈τs〉3/4Φ, (4.25a)

δτ2 = α4

√
〈τ1〉
〈τ2〉

〈τs〉3/2χ1 + α5〈τ2〉χ2 + α6

√
〈τ2〉

〈τ1〉1/4
〈τs〉3/4Φ, (4.25b)

δτs = α7
〈τ1〉
〈τ2〉
〈τs〉χ1 + α8〈τs〉χ2 + α9〈τ1〉1/4

√
〈τ2〉〈τs〉1/4Φ, (4.25c)

where the αi, i = 1, ..., 9 are O(1) coefficients. The volume-scalings of (4.25) are the

following:

δτ1 ∼ O
(
V2/3

)
χ1 +O

(
V−1/3

)
χ2 +O

(
V1/6

)
Φ, (4.26)

δτ2 ∼ O
(
V−1/3

)
χ1 +O

(
V2/3

)
χ2 +O

(
V1/6

)
Φ, (4.27)

δτs ∼ O (1)χ1 +O (1)χ2 +O
(
V1/2

)
Φ. (4.28)

This shows that, if we identify each of τ1 and τ2 with the large modulus τb in the

Swiss-cheese case, (4.26) and (4.27) have the same volume scaling as (4.17a), as one

might have expected. Moreover, the similarity of (4.28) and (4.17b) shows that also

the small moduli in the two cases behave in the same way. Therefore, we can conclude

that (4.18a) is valid also for the K3 Fibration case under consideration:

mΦ ∼
(

lnV
V

)
MP . (4.29)

On the other hand, we need to be more careful in the study of the mass spectrum of

the large moduli τ1 and τ2. We can work out this ‘fine structure’, at leading order in

a large-V expansion, first integrating out τs and then computing the eigenvalues of

the matrix. The latter are obtained by multiplying the inverse Kähler metric by the

Hessian of the potential both evaluated at the minimum. The leading order behaviour

of the determinant of this matrix is:

det
(
K−1d2V

)
∼ τ4

2

√
lnV
V9

, with V ∼
√
τ1τ2. (4.30)
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Because m2
χ2
� m2

χ1
, we have at leading order at large volume:

m2
χ2
' Tr

(
K−1d2V

)
∼
√

lnV
V3

M2
P (4.31)

m2
χ1
'

det
(
K−1d2V

)
Tr (K−1d2V )

∼ τ4
2

V6
M2
P ∼

M2
P

τ3
1 τ

2
2

. (4.32)

Identifying τ1 with τ2, (4.32) simplifies to m2
χ1
∼ V−10/3, confirming the qualitative

expectation that the τ1 direction is systematically lighter than V in the large-V limit.

Using the results of this Section and assuming that the MSSM branes are wrapped

around the small cycle7, it is easy to repeat the computations of Appendix 4.A for

the K3 fibration. Due to the fact that the leading order V-scaling of (4.25) matches

that of the single-hole Swiss-cheese model, we again find the same couplings as those

given in Tables 4.2 and 4.3, where now χ stands for any of χ1 and χ2.

Small K3 fiber

In the ‘SV’ case the K3 fiber is stabilised at small value, ε ' 1. Therefore at leading

order in a large volume expansion, where 〈τ2〉 � 〈τ1〉 > 〈τs〉, the first term in (4.22) is

dominating the whole kinetic Lagrangian. Hence we conclude that, at leading order,

the canonical normalisation of δτ1 close to the T = 0 minimum is again given by

(4.24a). However, now its volume scaling reads:

δτ1 ∼ O (1)χ1 + (subleading mixing terms) . (4.33)

To proceed order by order in a large volume expansion, note that the third and the

sixth term in (4.22) are suppressed by just one power of 〈τ2〉, whereas the second,

fourth and fifth term are suppressed by two powers of the large modulus. Thus, we

obtain the following leading order behaviour for the canonical normalisation of the

two remaining moduli:

δτ2 ∼ O (V)χ1 +O (V)χ2 +O (V) Φ, (4.34)

δτs ∼ O
(
V1/2

)
χ1 +O

(
V1/2

)
Φ + subleading mixing terms. (4.35)

Notice that the canonically normalised field χ1 corresponds to the K3 divisor τ1,

whereas Φ is a mixing of τ1 and the blow-up mode τs. Finally χ2 is a combination

7We also ignore the incompatibility between localising non-perturbative effects and the MSSM on
the same 4-cycle.
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of all the three states, and so plays the role of the ‘large’ field. The moduli mass

spectrum will still be given by (4.29), (4.31) and (4.32). However now the volume

scaling of (4.32) simplifies to m2
χ1
∼ V−2, confirming the qualitative expectation that

χ1 is also a small field with a mass of the same order of magnitude of mΦ.

The computation of the moduli couplings depends on the localisation of the MSSM

within the compact CY. As we have seen in subsection 4.2.2, the scalar potential

receives non-perturbative corrections in the blow-up mode τs. Therefore, in order

for the non-perturbative contributions to be non-vanishing, the MSSM branes have

to wrap either the small K3 fiber τ1 or the 4-cycle given by the formal sum τs + τ1

with chiral intersections on τ1. In both cases, we cannot immediately read off the

moduli couplings from the results of Appendix 4.A. This is due to the difference of

the leading order volume scaling of the canonical normalisation between the ‘SV’ case

for the K3 fibration and the Swiss-cheese scenario.8

However, as we shall see in the next section, in the Swiss-cheese case, the rele-

vant interactions through which the small moduli can thermalise, are with the gauge

bosons. As we shall see in section 4.4.3, these interactions will also be the ones that

are crucial for moduli thermalisation in the K3 fibration case. Therefore, here we

shall focus on them only. Following the calculations in subsection 4.A.1 of Appendix

4.A, we infer that if only τ1 is wrapped by MSSM branes, then the coupling of χ1

with MSSM gauge bosons is of the order g ∼ 1/MP without any factor of the overall

volume, while the coupling of Φ with gauge bosons will be more suppressed by inverse

powers of V. On the other hand, if both τ1 and τs are wrapped by MSSM branes,

then the couplings of both small moduli with the gauge bosons are similar to the ones

in the Swiss-cheese case: g ∼
√
V/MP . Moreover, if gaugino condensation is taking

place in the pure SU(N) theory supported on τs, then both χ1 and Φ couple to the

hidden sector gauge bosons with strength g ∼
√
V/MP .

We end this subsection by commenting on K3 fibrations with more than one blow-

up mode. In such a case, it is possible to localise the MSSM on one of the small

blow-up modes and the situation is very similar to the one outlined for the multiple-

hole Swiss-cheese. The only difference is the presence of the extra modulus related

to the K3 fiber, which will couple to the MSSM gauge bosons with the same strength

as the small modulus supporting the MSSM. This is because of the particular form

of the canonical normalisation, which, for example in the case of two blow-up modes

8We stress also that presently there is no knowledge of the Kähler metric for chiral matter localised
on deformable cycles.
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τs1 and τs2, looks like (4.33) and (4.34) together with:

δτs1 ∼ O
(
V1/2

)
χ1 +O

(
V1/2

)
Φ1 + subleading mixing terms, (4.36)

δτs2 ∼ O
(
V1/2

)
χ1 +O

(
V1/2

)
Φ2 + subleading mixing terms. (4.37)

4.3.4 Modulini

In this subsection we shall concentrate on the supersymmetric partners of the moduli,

the modulini. More precisely, we will consider the fermionic components of the chiral

superfields, whose scalar components are the Kähler moduli. The kinetic Lagrangian

for these modulini reads:

Lkin =
i

4

∂2K

∂τi∂τj
δ ¯̃τjγ

µ∂µ(δτ̃i) , (4.38)

where the Kähler metric is the same as the one that appears in the kinetic terms

of the Kähler moduli. Therefore, the canonical normalisation of the modulini takes

exactly the same form as the canonical normalisation of the corresponding moduli.

For example, in the single-hole Swiss-cheese case, we have:

δτ̃b =
(√

6〈τb〉1/4〈τs〉3/4
) Φ̃√

2
+

(√
4

3
〈τb〉

)
χ̃√
2
∼ O

(
V1/6

)
Φ̃ +O

(
V2/3

)
χ̃ , (4.39)

δτ̃s =

(
2
√

6

3
〈τb〉3/4〈τs〉1/4

)
Φ̃√
2

+

(√
3

as

)
χ̃√
2
∼ O

(
V1/2

)
Φ̃ +O (1) χ̃. (4.40)

We focus now on the modulini mass spectrum. We recall that in LVS the minimum

is non-supersymmetric, and so the Goldstino is eaten by the gravitino via the super-

Higgs effect. The Goldstino is the supersymmetric partner of the scalar field, which is

responsible for SUSY breaking. In our case this is the modulus related to the overall

volume of the Calabi-Yau, as can be checked by studying the order of magnitude of the

various F-terms. Therefore, the volume modulino is the Goldstino. More precisely,

in the CP 4
[1,1,1,6,9] case, χ̃ is eaten by the gravitino, whereas the mass of Φ̃ can be

derived as follows:

m2
Φ̃

= TrM2
f = 〈eGKij̄K lm̄(∇iGl +

GiGl
3

)(∇j̄Gm̄ +
Gj̄Gm̄

3
)〉, (4.41)

where the function G = K + ln |W |2 is the supergravity Kähler invariant potential,

and ∇iGj = Gij − ΓlijGl, with the connection Γlij = K lm̄∂iKjm̄. Equation (4.41) at
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leading order in a large volume expansion, can be approximated as

m2
Φ̃
' 〈eG|(Kss̄(∇sGs +

GsGs
3

)|2〉 (4.42)

where ∇sGs ' Gss−ΓsssGs and Γsss ' Kss̄∂sKss̄. In the single-hole Swiss-cheese case,

for asτs � 1, we obtain:

m2
Φ̃
' 〈

gse
KcsM2

P

π

(
36a4

sA
2
sτse

−2asτs − 6
√

2a2
sAsW0

V
√
τse
−asτs +

W 2
0

2V2

)
〉. (4.43)

Evaluating (4.43) at the minimum, we find that the mass of the modulino Φ̃ is of the

same order of magnitude as the mass of its supersymmetric partner Φ:

m2
Φ̃
' a2

s〈τs〉2W 2
0

V2
M2
P ∼

(
lnV
V

)2

M2
P ∼ m2

Φ. (4.44)

Similarly, it can be checked that, in the general case of multiple-hole Swiss-cheese

Calabi-Yaus and K3 fibrations, the masses of the modulini also keep being of the same

order of magnitude as the masses of the corresponding supersymmetric partners.

We now turn to the computation of the modulini couplings. In fact, we are in-

terested only in the modulino-gaugino-gauge boson coupling since, as we shall see in

section 4.4, this is the relevant interaction through which the modulini reach ther-

mal equilibrium with the MSSM thermal bath. This coupling can be worked out

by recalling that the small modulus τs couples to gauge bosons X as (see appendix

4.A.1):

Lgauge ∼
τs
MP

FµνF
µν . (4.45)

The supersymmetric completion of this interaction term contains the following

modulino-gaugino-gauge boson coupling:

L ∼ τ̃s
MP

σµνλ′Fµν . (4.46)

Now, expanding τ̃s around its minimum and going to the canonically normalised fields

Gµν and λ defined as (see appendices 4.A.1 and 4.A.2):

Gµν =
√
〈τs〉Fµν , λ =

√
〈τs〉λ′ , (4.47)
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we obtain:

L ∼ δτ̃s
MP 〈τs〉

σµνλGµν . (4.48)

Hence, by means of (4.40), we end up with the following dimensionful couplings:

Lχ̃X̃X ∼
(

1

MP lnV

)
χ̃σµνλGµν , (4.49)

LΦ̃X̃X ∼

(√
V

MP

)
Φ̃σµνλGµν . (4.50)

4.4 Study of moduli thermalisation

Using the general discussion of section 2.3.2 and the explicit expressions for the moduli

masses and couplings of section 4.3, we can now study in detail which particles form

the thermal bath. Consequently, in section 4.4 we will be able to write down the

general form of the finite temperature corrections in the LVS.

We shall start by focusing on the simple CP 4
[1,1,1,6,9] geometry, and then extend

our analysis to more general Swiss-cheese and fibred CY manifolds. We will show

below that, unlike previous expectations in the literature, the moduli corresponding

to small cycles that support chiral matter can reach thermal equilibrium with the

matter fields.

4.4.1 Single-hole Swiss-cheese

As we have seen in section 2.3.2, both 2 ↔ 2 and 1 ↔ 2 processes can establish and

maintain thermal equilibrium. Let us now apply the general conditions of section

2.3.2 to our case.

As we have already pointed out, scattering and annihilation processes involving

strong interactions will establish thermal equilibrium between MSSM particles for

temperatures T < 1015 GeV [67]. Let us now concentrate on the moduli.

Small modulus Φ

From section 4.3.1, we know that the largest coupling of the small canonical modulus

Φ is with the non-abelian gauge bosons denoted by X:

LΦXX = gΦXXΦFµνF
µν , gΦXX ∼

√
V

MP
∼ 1

Ms
. (4.51)
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Therefore according to (2.68), scattering or annihilation and pair production processes

with two gravitational vertices likeX+X ↔ Φ+Φ, X+Φ↔ X+Φ, orX+X ↔ X+X,

can establish thermal equilibrium between Φ and X for temperatures:

T > T
(1)
f ≡ g1/6

∗
MP

V2/3
, (4.52)

where T
(1)
f denotes the freeze-out temperature of the modulus. Taking the number

of degrees of freedom g∗ to be O(100), as in the MSSM, we find that (4.52) implies

T > 5× 108 GeV for V ∼ 1015, whereas T > 1016 GeV for V ∼ 104.9

In fact, for a typically large volume (V > 1010) a more efficient 2 ↔ 2 process is

X +X ↔ X + Φ with one gravitational and one renormalisable vertex with coupling

constant g. Indeed, according to (2.69), such scattering processes maintain thermal

equilibrium for temperatures:

T > T
(2)
f ≡ g

1/2
∗ MP

g2V
∼ 103MP

V
for g∗ ∼ 100 and g ∼ 0.1 , (4.53)

which for V ∼ 1015 gives T > 106 GeV while for V ∼ 104 it gives T > 1017 GeV.

Finally, let us investigate the role played by decay and inverse decay processes of

the form Φ ↔ X + X. We recall that such processes can, in principle, maintain

thermal equilibrium only for temperatures:

T > mΦ ∼
lnV
V

MP , (4.54)

because the energy of the gauge bosons is given by EX ∼ T and hence for T < mΦ it

is insufficient for the inverse decay process to occur. However, for T > mΦ the process

X + X → Φ does take place and so one only needs to know the rate of the decay

Φ→ X +X in order to find out whether thermal equilibrium is achieved. According

to (2.80) with D ∼ g2
ΦXX/4π ∼ V/4π, where we have also used (4.51), the condition

for equilibrium is that:

T < Teq ≡

(
VmΦ

4πg
1/2
∗ MP

)1/3

mΦ ∼

(
lnV

4πg
1/2
∗

)1/3

mΦ ≡ κmΦ . (4.55)

Hence thermal equilibrium between Φ and X can be maintained by 1↔ 2 processes

only if κ > 1.10 However, estimating the total number of degrees of freedom as g∗ ∼

9Recall that MP here is the reduced Planck mass, which equals (8πGN )−1/2 = 2.4× 1018 GeV.
10The exact value of κ can be worked out via a more detailed calculation, very similar to the one that
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O(100), and writing the volume as V ∼ 10x, we obtain that κ > 1 ⇔ x > 55. Such

a large value is unacceptable, as it makes the string scale too small to be compatible

with observations. Therefore, we conclude that in LVS the small modulus Φ never

thermalises via decay and inverse decay processes.

The final picture is the following:

• For V of order 1015 (1010), as in typical LVS, from (4.53) we deduce that the

modulus Φ is in thermal equilibrium with MSSM particles for temperatures

T > T
(2)
f ' 106 GeV (T > T

(2)
f ' 1011 GeV) due to X +X ↔ Φ +X processes.

• On the other hand, for V < 1010, as for LVS that allow gauge coupling unifica-

tion, the main processes that maintain thermal equilibrium of the modulus Φ

with MSSM particles are purely gravitational: X+X ↔ Φ+Φ, Φ+X ↔ Φ+X or

X+X ↔ X+X and the freeze-out temperature is given by (4.52). For example

for V ∼ 104 (⇔ Ms ∼ 1016 GeV), Φ is in thermal equilibrium for temperatures

T > T
(1)
f ' 5× 1015 GeV.

We stress that this is the first example in the literature of a modulus that reaches

thermal equilibrium with ordinary particles for temperatures significantly less than

MP , and so completely within the validity of the low energy effective theory. Note

that we did not focus on the interactions of Φ with other ordinary and supersymmetric

particles, since the corresponding couplings, derived in Appendix 4.A, are not large

enough to establish thermal equilibrium.

Large modulus χ

As summarised in section 4.3.1, the coupling of the large modulus χ with gauge bosons

is given by

LχXX = gχXXχFµνF
µν , gχXX ∼

1

MP lnV
. (4.56)

Consequently purely gravitational 2↔ 2 processes likeX+X ↔ χ+χ, X+χ↔ X+χ,

or X + X ↔ X + X, could establish thermal equilibrium between χ and X for

temperatures:

T > T
(1)
f ≡ g1/6

∗ MP (lnV)4/3 . (4.57)

we will carry out in section 4.5.4. It turns out that this value differs from the ‘∼’ estimate in (4.55)
just by a multiplicative factor c1/3 of O(1). More precisely, c = 18(π〈τs〉)−3/2eKcs/2W0

√
10gs and

so, for natural values of all the parameters: W0 = 1, gs = 0.1, 〈τs〉 = 5, Kcs = 3, we obtain
c1/3 = 1.09.
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On the other hand, scattering processes like X +X ↔ X + χ with one gravitational

and one renormalisable vertex with coupling constant g, could maintain thermal equi-

librium for temperatures:

T > T
(2)
f ≡ g

1/2
∗ MP

g2
(lnV)2 ∼ 103MP (lnV)2 , for g∗ ∼ 100 and g ∼ 0.1 . (4.58)

Clearly, both T
(1)
f and T

(2)
f are greater than MP and so we conclude that χ can never

thermalise via 2↔ 2 processes. It is also immediate to notice that thermal equilibrium

cannot be maintained by 1 ↔ 2 processes, like χ ↔ X + X, either. The reason is

that, as derived in [92], for typical LARGE values of the volume V ∼ 1010− 1015, the

lifetime of the large modulus χ is greater than the age of the Universe. Hence this

modulus could contribute to dark matter and its decay to photons or electrons could

be one of the smoking-gun signal of LVS.

Furthermore, as can be seen from section 4.3.1, the couplings of χ to other MSSM

particles are even weaker than its coupling to gauge bosons. So χ cannot thermalise

via any other kind of interaction. Finally, one can also verify that thermal equilibrium

between χ and Φ can never be maintained via 1 ↔ 2 and 2 ↔ 2 processes involving

only the moduli, which processes arise due to the moduli triple self-couplings com-

puted in Appendix 4.A.3. Therefore, χ behaves as a typical modulus studied in the

literature.

4.4.2 Multiple-hole Swiss-cheese

We shall now extend the previous results to the more general case of CY three-folds

with one large cycle and several small ones. We discuss only qualitatively the generic

behaviour of small moduli in the case of ‘multiple-hole Swiss-cheese’ CY manifolds

without focusing on explicit models.

As we have seen in Section 4.3.1, the couplings with MSSM particles of all the small

cycles wrapped by MSSM branes have the same volume scaling as the corresponding

couplings of the single small modulus in the CP 4
[1,1,1,6,9] case. Moreover, in the previous

section we have learned that Φ can thermalise via its interaction with gauge bosons.

Hence, we conclude that the same arguments as in Section 4.4.1 can be applied for

h1,1 > 2 and so all small cycles, that support MSSM chiral matter, reach thermal

equilibrium with the gauge bosons.

However, as we already pointed out in section 4.3.1, the situation may be more

complicated in concrete phenomenological models due to the possibility that non-
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perturbative effects may be incompatible with MSSM branes, which are localized on

the same 4-cycle [94] supporting non-perturbative corrections. Whether or not such an

incompatibility arises depends on the particular features of the model one considers,

including the presence or absence of charged matter fields with non-vanishing VEVs.

As a consequence of these subtleties, the issue of moduli thermalisation is highly

dependent on the possible underlying brane set-ups. To gain familiarity with the

outcome, let us explore in more detail several brane set-ups in the case of only two

small moduli. At the end we will comment on the generalization of these results to

the case of arbitrary h1,1 Kähler moduli.

We will focus on the case h1,1 = 3 with two small moduli τ1 and τ2, that give the

volumes of the two rigid divisors Γ1 and Γ2. The results of the previous section imply

the following for the different brane setups below:

1. If Γ1 is wrapped by an ED3 instanton and Γ2 is wrapped by MSSM branes:

• τ1 couples to MSSM gauge bosons with strength g ∼ 1/(
√
VMP ) ⇒ τ1

does not thermalise.11

• τ2 couples to MSSM gauge bosons with strength g ∼
√
V/MP ⇒ τ2 ther-

malises.

2. If Γ1 is wrapped by an ED3 instanton and Γ1 +Γ2 is wrapped by MSSM branes

with chiral intersections on Γ2:12

• τ1 couples to MSSM gauge bosons with strength g ∼
√
V/MP ⇒ τ1 ther-

malises.

• τ2 couples to MSSM gauge bosons with strength g ∼
√
V/MP ⇒ τ2 ther-

malises.

3. If Γ1 is supporting a pure SU(N) theory, that undergoes gaugino condensation,

and Γ2 is wrapped by MSSM branes:

• τ1 couples to MSSM gauge bosons with strength g ∼ 1/(
√
VMP ) and to

hidden sector gauge bosons with strength g ∼
√
V/MP ⇒ τ1 thermalises

via its interaction with hidden sector gauge bosons.

11The coupling g ∼ 1/(
√
VMP ) can be worked out by substituting the expression (4.21b) in (4.130).

As pointed out in point 1 at the end of subsection 4.3.2, the weakness of this coupling is due to
the mixing term in (4.21b) being highly suppressed by inverse powers of V.

12We assume that a single D7 brane is wrapping Γ2 in order to get chirality from the intersection
with the MSSM branes. The same assumption applies throughout the paper everywhere we use
the expression ‘chiral intersections on some divisor’.
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• τ2 couples to MSSM gauge bosons with strength g ∼
√
V/MP and to hidden

sector gauge bosons with strength g ∼ 1/(
√
VMP ) ⇒ τ2 thermalises via

its interaction with MSSM gauge bosons.

Hence in this case there are two separate thermal baths: one contains τ1 and the

hidden sector gauge bosons at temperature T1, whereas the other one is formed

by τ2 and the MSSM particles at temperature T2. Generically, we would expect

that T1 6= T2 since the two thermal baths are not in contact with each other.

4. If Γ1 is supporting a pure SU(N) theory, that undergoes gaugino condensation,

and Γ1 + Γ2 is wrapped by MSSM branes with chiral intersections on Γ2:

• τ1 couples both to MSSM and hidden sector gauge bosons with strength

g ∼
√
V/MP ⇒ τ1 thermalises.

• τ2 couples to MSSM gauge bosons with strength g ∼
√
V/MP and to hidden

sector gauge bosons with strength g ∼ 1/(
√
VMP ) ⇒ τ2 thermalises via

its interaction with MSSM gauge bosons.

Unlike the previous case, now there is only one thermal bath, which contains

both τ1 and τ2 together with the MSSM particles and the hidden sector gauge

bosons, since in the present case τ1 interacts strongly enough with the MSSM

gauge bosons.

We can now extend these results to the general case with h1,1 > 3 by noticing that

a small 4-cycle wrapped by MSSM branes will always thermalise via its interaction

with MSSM gauge bosons. On the other hand, for a 4-cycle that is not wrapped

by MSSM branes there are the following two options. If it is wrapped by an ED3

instanton, it will not thermalise. If instead it is supporting gaugino condensation, it

will reach thermal equilibrium with the hidden sector gauge bosons.

4.4.3 K3 Fibration

Let us now turn to the issue of moduli thermalisation for K3 fibrations. As we have

seen in subsection 4.3.3, there is an essential difference between the cases when the

K3 fiber is stabilized at a large and at a small value. Let us consider separately each

of these two situations.
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Large K3 fiber

As we have already stressed in subsection 4.3.3, in the case ‘LV’ where the K3 divisor

is stabilised large, the small modulus Φ plays exactly the same role as the small

modulus of the single-hole Swiss-cheese case, whereas both χ1 and χ2 behave as the

single large modulus. Hence we can repeat the same analysis as in subsection 4.4.1

and conclude that only Φ will reach thermal equilibrium with the MSSM particles

via its interaction with the gauge bosons.

Small K3 fiber

The study of moduli thermalisation in the case of small K3 fiber is more complicated.

We shall first focus on CY three-folds with just one blow-up mode and later on will

infer the general features of the situation with several blow-ups.

K3 fibrations with h1,1 = 3 are characterised by two small moduli: τ1 that gives the

volume of the K3 divisor Γ1, and τs which is the volume of the rigid divisor Γs. The

canonically normalised fields χ1 and Φ are defined by (4.33) and (4.35). We recall

that one has to be careful about the possible incompatibility of MSSM branes on Γs

with the non-perturbative effects that this cycle supports. Hence, to avoid dealing

with such subtleties, below we will assume that the MSSM branes are not wrapping

Γs. Again, using the results of Subsection 4.4.1, we infer the following for the different

brane set-ups below:

1. If Γs is wrapped by an ED3 instanton and Γ1 is wrapped by MSSM branes:

• χ1 couples to MSSM gauge bosons with strength g ∼ 1/MP ⇒ χ1 does

not thermalise.

• Φ couples to MSSM gauge bosons more weakly than χ1 ⇒ Φ does not

thermalise.

2. If Γs is wrapped by an ED3 instanton and Γs+ Γ1 is wrapped by MSSM branes

with chiral intersections on Γ1:

• χ1 couples to MSSM gauge bosons with strength g ∼
√
V/MP ⇒ χ1 ther-

malises.

• Φ couples to MSSM gauge bosons with strength g ∼
√
V/MP ⇒ Φ ther-

malises.

3. If Γs is supporting a pure SU(N) theory, that undergoes gaugino condensation,

and Γ1 is wrapped by MSSM branes:
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• χ1 couples to MSSM gauge bosons with strength g ∼ 1/MP and to hidden

sector gauge boson with strength g ∼
√
V/MP ⇒ χ1 thermalises via its

interaction with hidden sector gauge bosons.

• Φ couples to MSSM gauge bosons more weakly than χ1 and to hidden

sector gauge bosons with strength g ∼
√
V/MP ⇒ Φ thermalises via its

interaction with hidden sector gauge bosons.

In this case, two separate thermal baths are established: one contains χ1, Φ

and the hidden sector gauge bosons at temperature T1, whereas the other one is

formed by the MSSM particles at temperature T2. Generically, we expect that

T1 6= T2 since the two thermal baths are not in contact with each other.

4. If Γs is supporting a pure SU(N) theory, that undergoes gaugino condensation,

and Γs + Γ1 is wrapped by MSSM branes with chiral intersections on Γ1:

• χ1 couples both to MSSM and hidden sector gauge bosons with strength

g ∼
√
V/MP ⇒ χ1 thermalises.

• Φ couples both to MSSM and hidden sector gauge bosons with strength

g ∼
√
V/MP ⇒ Φ thermalises.

Now only one thermal bath is established containing χ1, Φ, the hidden sector

gauge bosons and the MSSM particles, since both moduli interact with equal

strength with the gauge bosons of the MSSM and of the hidden sector.

It is interesting to notice that both moduli χ1 and Φ thermalise in all situations,

except when the blow-up mode is wrapped by an ED3 instanton only. In this par-

ticular case, no modulus thermalises. It is trivial to generalise these conclusions for

more than one blow-up mode and the MSSM still localised on the K3 fiber.

On the other hand, if the MSSM is localised on one of the rigid divisors, then for the

case of more than one blow-up mode one can repeat the same general conclusions as

at the end of subsection 4.4.2, with in addition the fact that χ1 will always thermalise

as soon as one of the blow-up modes thermalises. This is due to the leading order

mixing between Φ and any other small modulus, as can be seen explicitly in (4.36)

and (4.37).

4.4.4 Modulini thermalisation

The study of modulini thermalisation is straightforward since, as we have seen in

subsection 4.3.4, the canonical normalisation for the modulini takes exactly the same
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form as the canonical normalisation for the moduli. This implies that, after supersym-

metrisation, the small modulino-gaugino-gauge boson coupling has the same strength

as the small modulus-gauge boson-gauge boson coupling. Given that this is the rel-

evant interaction for moduli thermalisation, we can repeat the same considerations

as those in subsections 4.4.1-4.4.3 and conclude that the modulini thermalise every

time, when their supersymmetric partners reach thermal equilibrium with the MSSM

thermal bath. Note however that, if for the moduli the relevant processes are 2↔ 2

interactions with gauge bosons, the crucial 2↔ 2 processes for the modulini are:

• 2↔ 2 processes with two gravitational vertices dominant for V < 1010: X̃+X̃ ↔
Φ̃ + Φ̃, X +X ↔ Φ̃ + Φ̃, X̃ + Φ̃↔ X̃ + Φ̃, X + Φ̃↔ X + Φ̃, X̃ + X̃ ↔ X +X,

X̃ +X ↔ X̃ +X.

• 2↔ 2 processes with one gravitational and one renormalisable vertex dominant

for V > 1010: X + Φ̃↔ X̃ + X̃, X̃ + Φ̃↔ X +X.

4.5 Finite temperature corrections in LVS

In this section we study the finite temperature effective potential in LVS. We show that

it has runaway behaviour at high T and compute the decompactification temperature

Tmax. We also investigate the cosmological implications of the small modulus decay.

By imposing that the temperature just after its decay be less than Tmax, in order to

avoid decompactification of the internal space, we find important restrictions on the

range of svalues of the CY volume.

4.5.1 Effective potential

We shall now derive the explicit form of the finite temperature effective potential

for LVS, following the analysis of moduli thermalisation performed in the previous

section. We will study in detail the behaviour of thermal corrections to the T = 0

potential of the simple CP 4
[1,1,1,6,9] model, and then realise that the single-hole Swiss-

cheese case already incorporates all the key properties of the general LVS.

Single-hole Swiss-cheese

As we have seen in Section 4.4.1, not only ordinary MSSM particles thermalise via

Yang-Mills interactions but also the small modulus and modulino reach thermal equi-

librium with matter via their interactions with the gauge bosons. Therefore, the
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general expression (2.53) for the 1-loop finite temperature effective potential, takes

the following form:

V 1−loop
T = −π

2T 4

90

(
gB +

7

8
gF

)
+
T 2

24

(
m2

Φ +m2
Φ̃

+
∑
i

M2
SOFT,i

)
+ ... . (4.59)

We recall that (4.59) is a high temperature expansion of the general 1-loop inte-

gral (2.51), and so it is valid only for T � mΦ,mΦ̃,MSOFT,i. The general moduli-

dependent expression for the modulino mass-squared m2
Φ̃

is given by (4.43) without

the vacuum expectation value. On the other hand, in the limit τb � τs, m
2
Φ can be

estimated as follows:

m2
Φ ' TrM2

b =
Kij

2

∂2V0

∂τi∂τj
' Kss

2

∂2V0

∂τ2
s

. (4.60)

For asτs � 1, the previous expression (4.60), at leading order, becomes:

m2
Φ '

Asa
3
sgse

KcsM2
P

π

(
72Asasτse

−2asτs − 3W0τ
3/2
s e−asτs√

2V

)
. (4.61)

It can be shown that the gaugino and scalar masses arising from gravity mediated

SUSY breaking13 are always parametrically smaller than mΦ and mΦ̃, and so we

shall neglect them. Moreover we shall drop also the O(T 4) term in (4.59) since it

has no moduli dependence. Therefore, the relevant 1-loop finite-temperature effective

potential reads:

V 1−loop
T =

T 2

24

(
m2

Φ +m2
Φ̃

)
+ ... , (4.62)

which using (4.43) and (4.61), takes the form:

V 1−loop
T =

T 2

24

(
gse

KcsM2
P

π

)[
λ1τse

−2asτs − λ2 (4 + asτs)

√
τse
−asτs

V
+
W 2

0

2V2

]
+ ... ,

(4.63)

with

λ1 ≡ 108A2
sa

4
s, λ2 ≡ 3a2

sAsW0/
√

2. (4.64)

Given that the leading contribution in (4.59), namely the O(T 4) term, does not

bring in any moduli dependence, we need to go beyond the ideal gas approximation

and consider the effect of 2-loop thermal corrections, as the latter could in principle

13The contribution from anomaly mediation is subleading with respect to gravity mediation as shown
in [98].
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compete with the terms in (4.63). The high temperature expansion of the 2-loop

contribution looks like:

V 2−loops
T = T 4

(
κ1g

2
MSSM + κ2g

2
ΦXXm

2
Φ + κ3g

2
Φ̃X̃X

m2
Φ̃

+ ...
)

+ ... , (4.65)

where the κ’s are O(1) coefficients and:

• the O(g2
MSSM ) contribution comes from two loops involving MSSM particles,

• the O(g2
ΦXX) contribution is due to two loop diagrams with Φ and two gauge

bosons,

• the O(g2
Φ̃X̃X

) contribution comes from two loops involving the modulino Φ̃, the

gaugino X̃ and the gauge boson X,

• all the other two loop diagrams give rise to subdominant contributions, and so

they have been neglected. Such diagrams are the ones with Φ or Φ̃ plus other

MSSM particles, the self-interactions of the moduli and of the modulini, and

two loops involving both Φ and Φ̃. For example, the subleading contribution

originating from the two-loop vacuum diagram due to the Φ3 self-interaction

takes the form: δV 2−loops
T = κ4T

4 g
2
Φ3

m2
Φ
∼ T 4 const

V(lnV)2 .

Note that in (4.65) we have neglected the O(T 2) term since it is subleading compared

to both the O(T 4) 2-loop term and the O(T 2) 1-loop one. Now, the relevant gauge

couplings in (4.65), have the following moduli dependence:

• g2
MSSM = 4π/τs since we assume that the MSSM is built via magnetised D7

branes wrapping the small cycle. In the case of a supersymmetric SU(Nc) gauge

theory with Nf matter multiplets, the coefficient κ1 reads [99]:

κ1 =
1

64

(
N2
c − 1

)
(Nc + 3Nf ) > 0. (4.66)

• g2
ΦXX ∼ g2

Φ̃X̃X
∼
√
V

MP
as derived in (4.50) and (4.131).

Adding (4.62) and (4.65) to the T = 0 potential V0, we obtain the full finite temper-

ature effective potential:

VTOT = V0 + T 4
(
κ1g

2
MSSM + κ2g

2
ΦXXm

2
Φ + κ3g

2
Φ̃X̃X

m2
Φ̃

)
+
T 2

24

(
m2

Φ +m2
Φ̃

)
+ ... .

(4.67)
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Despite the thermalisation of Φ and Φ̃, which in principle leads to a modification of

VTOT compared to previous expectations in the literature, we shall now show that

the thermal corrections due to Φ and Φ̃ are, in fact, negligible compared to the other

contributions in (4.67), everywhere in the moduli space of these models. In particular,

the 2-loop MSSM effects dominate the temperature-dependent term.14

Let us start by arguing that the O(T 4) corrections arising from the modulus Φ

and the modulino Φ̃ are subleading compared to the 1-loop O(T 2) term. Indeed, the

relevant part of the effective scalar potential (4.67) may be rewritten as:

T 4
(
κ2g

2
ΦXXm

2
Φ + κ3g

2
Φ̃X̃X

m2
Φ̃

)
∼ T 2

(
m2

Φ +m2
Φ̃

)
T 2 V
M2
P︸ ︷︷ ︸(

T
Ms

)2
�1

, (4.68)

where the << inequality is due to the fact that our effective field theory treatment

makes sense only at energies lower than the string scale Ms. Therefore, we can neglect

the effect of 2-loop thermal corrections involving Φ and Φ̃. So we see that, although

the interactions of Φ and Φ̃ with gauge bosons and gauginos are strong enough to

make them thermalise, they are not sufficient to produce thermal corrections large

enough to affect the form of the total effective potential. Let us also stress that this

result is valid everywhere in moduli space, i.e. for each value of m2
Φ and m2

Φ̃
, not just

in the region around the zero-temperature minimum.

We now turn to the study of the general behaviour of the 1-loop O(T 2) term arising

from Φ and Φ̃. We shall show that it is always subdominant compared to the zero-

temperature potential (4.2), and so it can be safely neglected. In fact, the two relevant

terms (4.2) and (4.63) can be written as (ignoring the subleading loop corrections in

V0):

V0 +
T 2

24

(
m2

Φ +m2
Φ̃

)
=
gse

KcsM4
P

8π

[
p1A1

√
τs
e−2asτs

V
− p2A2

τse
−asτs

V2
+ p3A3

1

V3

]
,

(4.69)

with

p1 = 36a4
sA

2
s, p2 = 4asAsW0, p3 = W 2

0 /6, (4.70)

14Note that this is consistent with the results of the previous chapter and with the ones of [1, 2] in
the context of the O’KKLT model, where it was also found that the T-dependent contribution of
moduli, that were assumed to be in thermal equilibrium, is negligible compared to the dominant
contribution of the rest of the effective potential.
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and

A1 ≡
2
√

2

3a2
s

+
T 2V√τs
M2
P︸ ︷︷ ︸(

T
MKK

)2
�1

, A2 ≡ 1+
a2
s

4
√

2

T 2V√τs
M2
P︸ ︷︷ ︸(

T
MKK

)2
�1

(
1 +

4

asτs

)
, A3 ≡

9ξ̂

2
+

T 2V
M2
P

.︸ ︷︷ ︸(
T
Ms

)2
�1

where the appearance of the Kaluza-Klein scale comes from the assumption that the

MSSM branes are wrapping the small cycle τs:

MKK ∼
Ms

τ
1/4
s

' MP√
Vτ1/4

s

. (4.71)

Therefore, we can see that the 1-loop O(T 2) thermal corrections can never compete

with V0 for temperatures below the compactification scale MKK < Ms, where our low

energy effective field theory is trustworthy. Once again, we stress that the previous

considerations are valid in all the moduli space (within our large volume approxima-

tions) and not just in the vicinity of the T = 0 minimum. We have seen that the only

finite-temperature contribution that can compete with V0 is the 2-loop T 4g2
MSSM

term, and so we can only consider from now on the following potential:

VTOT = V0 + 4πκ1
T 4

τs

= M4
P

(
gse

Kcs

8π

)[
λ
√
τse
−2asτs

V
− µτse

−asτs

V2
+

ν

V3
+

4πκ̃1
τs

(
T

MP

)4
]
, (4.72)

valid for temperatures T � MSOFT , and with the constants given in (4.3) and

(4.66)15. We realize that the leading moduli-dependent finite temperature contri-

bution to the effective potential comes from 2-loops instead of 1-loop. This, how-

ever, does not mean that perturbation theory breaks down, since 1-loop effects still

dominate when one takes into account the moduli independent O(T 4) piece that we

dropped.

Now, from (4.72) it is clear that the thermal correction cannot induce any new

T -dependent extremum of the effective potential. Its presence only leads to destabi-

lization of the T = 0 minimum at a certain temperature, above which the potential

has a runaway behaviour. Therefore, we are led to the following qualitative pic-

ture. Let us assume that at the end of inflation the system is sitting at the T = 0

minimum. Then, after reheating the MSSM particles thermalise and the thermal cor-

rection T 4g2
MSSM ∼ T 4/τs gets switched on. As a result, the system starts running

15For convenience, here we have redefined κ̃1 ≡ 8πκ1g
−1
s e−Kcs .
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away along the τs direction only, since VT does not depend on V. However, as soon

as τs becomes significantly larger than its T = 0 VEV, the two exponential terms in

(4.72) become very suppressed with respect to the O(V−3) α′ correction (the ν term).

Hence, the potential develops a run-away behaviour also along the V-direction, thus

allowing the Kähler moduli to remain within the Kähler cone.

In section 4.5.2, we shall compute the decompactification temperature, at which the

T = 0 minimum gets destabilised. Hence we shall focus on the region in the vicinity of

the zero-temperature minimum, where the regime of validity of the expression (4.72)

takes the form:

MSOFT � T �MKK ⇔ 1

V lnV
� T

MP
� 1
√
Vτ1/4

s

. (4.73)

In the typical LVS where V ∼ 1014 allows low energy SUSY, we get MSOFT ∼ 103

GeV and MKK ∼ 1011 GeV; thus, in that case, eq. (4.72) makes sense only for

energies 103 GeV � T � 1011 GeV. On the other hand, for LVS that allow GUT

string scenarios, V ∼ 104, which implies MSOFT ∼ 1013 GeV and MKK ∼ 1016 GeV;

thus, in that case, (4.73) becomes 1013 GeV � T � 1016 GeV.

General LARGE Volume Scenario

As we have seen in section 4.2, one of the conditions on an arbitrary Calabi-Yau to

obtain LVS, is the presence of a blow-up mode resolving a point-like singularity (del

Pezzo 4-cycle). The moduli scaling of the scalar potential, at leading order and in

the presence of Nsmall blow-up modes τsi , i = 1, ..., Nsmall, is still of the form (4.2)

(neglecting loop corrections):

V0 =

(
gse

KcsM4
P

8π

)[Nsmall∑
i=1

(
λ
√
τsie

−2asiτsi

V
− µτsie

−asiτsi

V2

)
+

ν

V3

]
. (4.74)

All the other moduli which are neither the overall volume nor a blow-up mode will

appear in the scalar potential at subleading order. Moreover, due to the topological

nature of τs,i, K
−1
sisi ∼ V

√
τsi ∀i = 1, ..., Nsmall [91].

As derived in section 4.3.1, these blow-up modes correspond to the heaviest moduli

and modulini, which play the same role as Φ and Φ̃ in the single-hole Swiss-cheese case.

Hence the leading order behaviour of the mass-squareds of the blow-up moduli τsi and

the corresponding modulini τ̃si are still given by (4.43) and (4.61) ∀i = 1, ..., Nsmall.

Therefore we can repeat the same considerations made in the previous paragraph and
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conclude that, for a general LVS, the 1-loop O(T 2) thermal corrections are always

subdominant with respect to V0 for temperatures below the compactification scale16.

The only finite-temperature contribution that can compete with V0 is again the 2-loop

T 4g2
MSSM term.

4.5.2 Decompactification temperature

As we saw in the previous subsection, the finite temperature corrections destabilize

the large volume minimum in a general LVS. In this subsection we will derive the

decompactification temperature Tmax, that is the temperature above which the full

effective potential has no other minima than the one at infinity.

Before performing a detailed calculation of Tmax, let us present a qualitative argu-

ment that gives a good intuition for its magnitude. Let us denote by Vb the height

of the potential barrier that separates the supersymmetric minimum at infinity from

the zero temperature SUSY breaking one. Now, in order for the moduli to overcome

the potential barrier and run away to infinity, one needs to supply energy of at least

the same order of magnitude as Vb. In our case, the source of energy is provided by

the finite-temperature effects, which give a contribution to the scalar potential of the

order VT ∼ T 4. Hence a very good estimate for the decompactification temperature

is given by Tmax ∼ V 1/4
b .

It is instructive to compare the implications of this estimate for the KKLT and

LVS cases. In the simplest KKLT models the potential reads:

VKKLT = λ1
e−2aτ

τ
− λ2W0

e−aτ

τ2
, (4.75)

where λ1 and λ2 are constants of order unity. The minimum is achieved by fine-tuning

the flux parameter W0 ∼ τe−aτ and so the height of the barrier is given by

Vb ∼ 〈VKKLT 〉 ∼
W 2

0

V2
M4
P ∼ m2

3/2M
2
P , (4.76)

where we have used the fact that V = τ3/2 and m3/2 = W0MP /V. Therefore the de-

compactification temperature becomes Tmax ∼
√
m3/2MP ∼ 1010 GeV, as estimated

in [78,79].

In the case of LVS, the height of the barrier is lower and so we expect a lower

16As we have seen in section 4.4.2, if all the τsi are wrapped by ED3 instantons then they do not
thermalise. Only the moduli corresponding to 4-cycles wrapped by MSSM branes would then
thermalise but, since they are lighter than the ED3 moduli, our argument is still valid. The same
is true for all the possible scenarios outlined for the K3 fibration case in section 4.4.3.
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decompactification temperature Tmax. Indeed, to leading order the potential is given

by

VLV S = λ1
√
τs
e−2asτs

V
− λ2W0τs

e−asτs

V2
+ λ3

W 2
0

V3
(4.77)

with λ1, λ2 and λ3 being constants of order one, as reviewed in section 4.2. The

minimum is achieved for natural values of the flux parameter W0 ∼ O(1) and at

exponentially large values of the overall volume V ∼ W0
√
τse

asτs . Hence the height

of the barrier can be estimated as:

Vb ∼ 〈VLV S〉 ∼
W 2

0

V3
M4
P ∼ m3

3/2MP , (4.78)

which gives a decompactification temperature of the order:

Tmax ∼
(
m3

3/2MP

)1/4
∼ MP

V3/4
. (4.79)

Let us now turn to a more precise computation. Without loss of generality, we

shall focus here on the effective potential (4.72), valid for the single-hole Swiss-cheese

case, and look for its extrema. Given that the thermal contribution does not depend

on the volume, the derivative of the potential with respect to V gives the same result

as in the T = 0 case:

∂VTOT
∂V

= 0 =⇒ V∗ =
µ

λ
A(τs)

√
τse

asτs , (4.80)

where17

A(τs) ≡ 1−

√
1− 3

4

(
〈τs〉
τs

)3/2

, (4.81)

and 〈τs〉 '
(
4λν/µ2

)2/3
is the T = 0 VEV of τs. Substituting (4.80) in the derivative

of VTOT with respect to τs and working in the limit asτs � 1, in which one can neglect

higher order instanton corrections, we obtain:

∂VTOT
∂τs

∣∣∣∣
V=V∗

= 0 =⇒ 4πκ̃1
µe3asτs

λ2asτ2
s

(
T

MP

)4

A(τs)
2 + 2A(τs)− 1 = 0. (4.82)

Notice that at zero temperature (4.82) simplifies to A(τs) = 1/2, which from (4.81)

correctly implies τs = 〈τs〉. Now, since equation (4.82) is transcendental, one can-

17We discard the solution with the positive sign in front of the square root in (4.81) since, upon its
substitution one finds that the other extremum condition, ∂VTOT /∂τs = 0, does not have any
solution.
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not write down an analytical solution, that gives the general relation between the

location of the τs extrema and the temperature. Nevertheless, we will see shortly

that it is actually possible to extract an analytic estimate for the decompactifica-

tion temperature. To understand why, let us gain insight into the behaviour of the

function on the LHS of (4.82) by plotting it and looking at its intersections with the

τs-axis. We plot the LHS of equation (4.82) on Figure 4.1 for several values of the

41.5 42.0 42.5 43.0 43.5
Τs

"5

5

10

15

#VTOT

#Τs
!Vol$

Figure 4.1: The LHS of eq. (4.82) is plotted versus τs. The temperature increases from right
to left. The straight line represents the zero temperature case. The other values
of the temperature are T/MP = 0.8 · 10−10, 1.0 · 10−10, 1.2 · 10−10, 1.4 · 10−10.
To obtain the plots we used the following numerical values: ξ = 1.31, As = 1,
W0 = 1, as = π/4, eKcs = 8π/gs, gs = 0.1, Nc = 5, Nf = 7. With these values
one has that 〈τs〉 = 41.55 and 〈V〉 = 7.02 · 1013, which implies that Tmax =
1.58 · 10−10MP ' 3.79 · 108 GeV according to (4.87). Note that the numerically
found value of the decompactification temperature is Tmax,num = 1.20·10−10MP .

temperature; T increases from right to left. From this figure it is easy to see that the

temperature-dependent correction to VTOT behaves effectively as an up-lifting term.

Namely, the finite-temperature contribution lifts the potential, giving rise to a local

maximum (the right intersection with the τs axis) in addition to the T = 0 minimum

(the left intersection). As the temperature increases, the maximum increases as well

and shifts towards smaller values of τs. On the other hand, the minimum remains very

close to the zero-temperature one at all temperatures. Clearly, the decompactification

temperature Tmax is reached when the two extrema coincide. The key observation

here is that this happens in a small neighborhood of the T = 0 minimum, located at

〈τs〉 '
(
4λν/µ2

)2/3
.

In view of the considerations of the previous paragraph, to find an analytic estimate
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for Tmax we shall utilize the following strategy. We will Taylor-expand the function

F (τs), defined by the LHS of equation (4.82), to second order in a small neighborhood

of the point τs = 〈τs〉. Then we will use the resulting quadratic function f(δ), where

δ ≡ τs − 〈τs〉, as an approximation of F (τs) in a larger neighborhood and will look

for the zeros of f(δ). Requiring that the two roots of f(δ) coincide, will give us an

estimate for the decompactification temperature. Clearly, this procedure is not exact.

In particular, the function F (τs) is better approximated by keeping higher orders in

the Taylor expansion. In our case, we have checked numerically that a really good

approximation is obtained by going to at least sixth order. However, in doing so

one again ends up with an equation that cannot be solved analytically. So the key

point is that the systematic error introduced by the quadratic approximation is rather

small (we have checked that the analytical results obtained by following the above

procedure are in very good agreement with the exact numerical values).

Now let us substitute τs = 〈τs〉+ δ in (4.82) and read off the terms up to order δ2.

The result is:

a δ2 + b δ + c = 0, (4.83)

where the corresponding coefficients, in the limit as〈τs〉 � 1, take the form:

a ' 9

2
T a2

s +
171

8
λ2as, b ' 3T as − 9λ2as〈τs〉, c ' T , (4.84)

and we have set

T ≡ 4πκ̃1

(
T

MP

)4

µe3as〈τs〉. (4.85)

Finally, to find the decompactification temperature, we require that the two solutions

δ1 and δ2 coincide: which, for as〈τs〉 � 1, gives:

Tmax = 3(
√

2− 1)λ2〈τs〉 ⇐⇒ T 4
max =

3(
√

2− 1)λ2〈τs〉
4πκ̃1µ

e−3as〈τs〉M4
P . (4.86)

Notice that we can rewrite the decompactification temperature in terms of V as:

T 4
max =

3(
√

2− 1)

32π

µ2

λκ̃1

〈τs〉5/2

V3
M4
P =⇒ Tmax ∼

(
m3

3/2MP

)1/4
∼ MP

V3/4
, (4.87)

where we have used the relation between the T = 0 VEV of the volume and 〈τs〉,
which is given by (4.80) with τs = 〈τs〉 and A = 1/2. It is reassuring that (4.87) is of

the same form as the result (4.79), obtained from the intuitive arguments based on

the height of the potential barrier.
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4.5.3 Small moduli cosmology

Clearly, the decompactification temperature (4.87) sets an upper bound on the tem-

perature in the early Universe, in particular on the reheating temperature, T 0
RH , at

the end of inflation. We will investigate now how this constraint affects the moduli

thermalisation picture studied in subsection 4.4.1.18 Before that, let us define here

for clarity the following temperatures:

• Tmax: the decompactification temperature;

• TSVf , TLVf : the freeze-out temperature for the modulus Φ in the small volume

and large volume scenario, respectively. Below those temperatures the Φ drops

out from the thermal bath;

• T 0
RH : the initial reheating temperature, namely the reheating temperature set

by the decay of the inflaton field;

• Tdom: the temperature at which the energy density of the modulus Φ dominates

over the radiation energy;

• TD: the decay temperature for the modulus Φ;

• TRH : the temperature at which the decay of Φ reheats the Universe.

Furthermore, recall that we derived the following freeze-out temperatures:

• For small values of the volume (V < 1010), the freeze-out temperature for the

small modulus Φ is given by (4.52): TSVf ∼MPV−2/3.

• For large values of the volume (V > 1010), the freeze-out temperature for Φ is

given by (4.53): TLVf ∼ 103MPV−1.

Note also that, in both cases, the condition Tf < T 0
RH < Tmax has to be satisfied in

order for the modulus to reach equilibrium with the MSSM thermal bath. Now, for

small values of V we have that:

Tmax

TSVf
∼ V

2/3

V3/4
= V−1/12 < 1, (4.88)

18Similar considerations apply for the more general multiple-hole Swiss-cheese and K3 fibration cases.

105



Chapter 4. Finite temperature corrections to the LARGE Volume
models

which implies that Φ actually never thermalises. On the other hand, for large values

of V we have that (writing V ∼ 10x):

Tmax

TLVf
∼ V

1/4

103
= 10x/4−3 > 1 ⇔ x > 12. (4.89)

Hence, for V > 1012, Φ can reach thermal equilibrium with the MSSM plasma, as long

as T 0
RH is such that TLVf < T 0

RH < Tmax. Let us stress, however, that if T 0
RH < TLVf

the modulus will never thermalise even though TLVf < Tmax. Note that, since the

temperature T 0
RH depends on the concrete realization of inflation and the details of the

initial reheating process, its determination is beyond the scope of the present work.

So we will treat it as a free parameter, satisfying only the constraint T 0
RH < Tmax.

We would like now to study the cosmological history of Φ which, in our case,

presents two possibilities:

1. The modulus Φ decays at the end of inflation and is the main responsible for

the initial reheating. After Φ decays, its energy density is converted into ra-

diation. The decay products thermalise rapidly and re-heat the Universe to a

temperature TRH = T 0
RH . The latter can be computed by noticing that the Φ

energy density ρΦ ∼ Γ2
Φ→XXM

2
P will be converted into radiation energy density

ρR ∼ g∗T
4. Hence T 0

RH can be obtained by comparing ΓΦ→XX with the value

of H, given by the Friedmann equation for radiation dominance:

ΓΦ→XX ' H ⇔
lnV
16π

m2
Φ

MP
∼ g1/2
∗

(
T 0
RH

)2
MP

⇔ T 0
RH '

(
lnV

16π
√
g∗

)1/2

mΦ =
(lnV)3/2

4
√
πg

1/4
∗

MP

V
. (4.90)

In order for this picture to be compatible with the presence of a decompactifi-

cation temperature (4.87), that sets the maximal temperature of the Universe,

we need to require that T 0
RH < Tmax. As we shall see in subsection 4.5.4, this

requirement can be translated into a constraint on the values that the internal

volume can take.

2. The modulus Φ is not the main source of initial reheating, which we suppose

to be the inflaton. After the inflaton decays, the Universe is re-heated to a

temperature T 0
RH and an epoch of radiation dominance begins. The modulus

Φ will only thermalise if V > 1012 and TLVf < T 0
RH . However, TLVf is rather

close to Tmax and so, even when Φ thermalises, it will drop out of equilibrium
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very quickly at TLVf . Then, for general values of V, the modulus Φ will decay

out of equilibrium at a temperature TD < T 0
RH . As we shall show below, this

decay will occur during radiation domination, since TD > Tdom, with Tdom being

the temperature at which the modulus energy density would dominate over the

radiation energy density. So the temperature TD at which Φ decays, is still

given by (4.90) upon replacing T 0
RH with TD:

TD '
(lnV)3/2

4
√
πg

1/4
∗

MP

V
. (4.91)

Note that the above expression satisfies TD < TSV,LVf , as should be the case

for consistency. Another important observation is that (4.91) is also the usual

expression for the temperature TRH , to which the Universe is re-heated by the

decay of a particle releasing its energy to the thermal bath. In other words, for

us TRH = TD since the modulus Φ decays during radiation domination. On the

contrary, if a modulus decays when its energy density is dominating the energy

density of the Universe, then TD < TRH and the decay produces an increase in

the entropy density S, which is determined by:

∆ ≡
Sfin
Sin

∼
(
TRH
TD

)3

. (4.92)

As already mentioned, since for us TRH = TD, the decay of Φ does not actually

lead to reheating or, equivalently, to an increase in the entropy density, given

that from (4.92) we have ∆ = 1. As a consequence, Φ cannot dilute any

unwanted relics, like for example the large modulus χ which suffers from the

cosmological moduli problem.19 To recapitulate, in the present case we have

the following system of inequalities among the different temperatures:

for V < 1012: Tdom < TD < T 0
RH < Tmax, (4.93)

for V > 1012: Tdom < TD < TLVf < T 0
RH < Tmax. (4.94)

In this case the condition TD < Tmax (similarly to the previous condition T 0
RH <

Tmax) implies a constraint on V, that we will derive in subsection 4.5.4. We

underline again that this condition is necessary but not sufficient, since for us

T 0
RH is an undetermined parameter when Φ is not the inflaton. In concrete

19This kind of solution of the cosmological moduli problem, i.e. dilution via saxion or modulus decay,
is used both in [72] and in [71].
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models, in which one could compute T 0
RH , the condition T 0

RH < Tmax might

lead to further restrictions.

Let us now prove our claim above that, when the modulus Φ is not responsible

for the initial reheating (case 2), it will decay before its energy density begins to

dominate the energy density of the Universe. Φ will start oscillating around its VEV

when H ∼ mΦ at a temperature Tosc given by:

Tosc ∼ g−1/4
∗

√
mΦMP . (4.95)

The energy density ρΦ stored by Φ and the ratio between ρΦ and the radiation energy

density at Tosc read as follows:

ρΦ|Tosc ∼ m
2
Φ〈τs〉2 ⇒

(
ρΦ

ρr

)∣∣∣∣
Tosc

∼
m2

Φ〈τs〉2

g∗T 4
osc

∼ 〈τs〉
2

M2
P

. (4.96)

By definition, the temperature Tdom, at which ρΦ becomes comparable to ρr and

hence Φ begins to dominate the energy density of the Universe, is such that:(
ρΦ

ρr

)∣∣∣∣
Tdom

∼ 1. (4.97)

Now, given that ρΦ redshifts as T 3 whereas ρr scales as T 4, we can relate Tdom with

Tosc:

Tdom

(
ρΦ

ρr

)∣∣∣∣
Tdom

∼ Tosc
(
ρΦ

ρr

)∣∣∣∣
Tosc

⇔ Tdom ∼ g
−1/4
∗
〈τs〉2

M2
P

√
mΦMP . (4.98)

We shall show now that Tdom < TD with TD being the decay temperature during

radiation dominance, which is obtained by comparing H with ΓΦ→XX :

TD ∼ g−1/4
∗

√
ΓΦ→XXMP . (4.99)

The ratio of (4.99) and (4.98) gives:

TD
Tdom

∼
√

ΓΦ→XX√
mΦ

M2
P

〈τs〉2
. (4.100)

Using that ΓΦ→XX ∼ Vm3
ΦM

−2
P and 〈τs〉 ∼ 10Ms ∼ 10MPV−1/2, the last relation

becomes:
TD
Tdom

∼ (lnV)
√
V

100
> 1 for V > 102.5. (4.101)
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Hence, we conclude that TD > Tdom and, therefore, Φ decays before it can begin to

dominate the energy density of the Universe. The main consequence of this is that Φ

cannot dilute unwanted relics via its decay.

4.5.4 Lower bound on V

As we saw in the previous subsection, there are two possible scenarios for the cos-

mological evolution of the small modulus Φ. However, since the RHS of (4.90) and

(4.91) coincide, in both cases the crucial quantity is the same, although with a dif-

ferent physical meaning. Let us denote this quantity by T∗ ∼ (ΓΦMP )1/2. We shall

impose that T∗ < Tmax and shall show below that from this requirement one can

derive a lower bound on the possible values of V in a general LVS. Before we begin,

let us first recall that:

1. If Φ is responsible for the initial reheating via its decay, then T∗ = T 0
RH .

2. If Φ decays after the original reheating in a radiation dominated era, then

T∗ = TD < T 0
RH .

Regardless of which of these two situations we consider, T∗ is the temperature of the

Universe after Φ decays. Then, in order to prevent decompactification of the internal

space, we need to impose T∗ < Tmax. In general, this condition is necessary but

not sufficient because in case 2 one must ensure also that T 0
RH < Tmax. This is a

constraint that we cannot address given that in this case T 0
RH is an undetermined

parameter for us.

Let us now compute T∗ precisely. We start by using the exact form of the decay

rate ΓΦ→XX :

ΓΦ→XX =
g2

ΦXXm
3
Φ

64πM2
P

, (4.102)

where

gΦXX =
25/4
√

3

〈τs〉3/4
√
V. (4.103)

The mass of Φ is given by:

mΦ =
√
P

2as〈τs〉W0

V
MP , (4.104)
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where we are denoting with P the prefactor of the scalar potential: P ≡ gseKcs/(8π).

From the minimisation of the scalar potential we have that

as〈τs〉 = ln (pV) = ln p+ lnV, (4.105)

where

p ≡ 12
√

2asAs
W0
√
τs
∼ O(1) ⇒ as〈τs〉 ' lnV, (4.106)

and so

mΦ =
√
P

2W0 lnV
V

MP . (4.107)

Therefore, the decay rate ΓΦ→XX turns out to be:

ΓΦ→XX = P 3/2 3W 3
0 (lnV)3

√
2π〈τs〉3/2

MP

V2
. (4.108)

Finally, in order to obtain the total decay rate, we need to multiply ΓΦ→XX by the

total number of gauge bosons for the MSSM NX = 12:

ΓTOTΦ→XX = P 3/2 36W 3
0 (lnV)3

√
2π〈τs〉3/2

MP

V2
. (4.109)

Now, we can find T∗ by setting 4
(
ΓTOTΦ→XX

)2
/3 equal to 3H2, with H read off from

the Friedmann equation for radiation dominance:

T∗ =

(
40

π2g∗

)1/4√
ΓTOTΦ MP = P 3/4 6

π

(
20

g∗

)1/4 (W0 lnV)3/2

〈τs〉3/4
MP

V
. (4.110)

We are finally ready to explore the constraint T∗ < Tmax. Recall that the maximal

temperature is given by the decompactification temperature (4.87):

Tmax =

(
P

4πκ1

)1/4
[

(
√

2− 1)

4
√

2

]1/4 √
W0〈τs〉5/8

V3/4
MP . (4.111)

Let us now consider the ratio Tmax/T∗ and impose that it is larger than unity (using

g∗(MSSM) = 228.75):

R ≡ Tmax
T∗

= c
V1/4

(lnV)3/2
with c ≡ J

[
(
√

2− 1)g∗

80
√

2

]1/4
π〈τs〉11/8

6W0
' 〈τs〉

11/8

2W0
,

(4.112)
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where we have defined:

J ≡
(
4πκ1P

2
)−1/4

=
8.42

κ
1/4
1

e−Kcs/2 for gs = 0.1, (4.113)

and in the last approximation in (4.112) we have set J = 1.20 Let us consider now

the maximum and minimum values that the parameter c can take for natural values

of 〈τs〉 and W0: {
〈τs〉max = 100

W0,min = 0.01
=⇒ cmax ' 104, (4.114){

〈τs〉min = 2

W0,max = 100
=⇒ cmin ' 10−2. (4.115)

Now writing V ' 10x, R becomes a function of x and c. Finally, we can make a 3D

plot of R with cmin < c < cmax and 2 < x < 15, and see in which region R > 1. This

is done in Figure 4.2. In order to understand better what values of V are disfavoured,

we also plot in Figure 4.3, as the shaded region, the region in the (x,c)-plane below

the curve R = 1, which represents the phenomenologically forbidden area for which

Tmax < T∗. We conclude that small values of the volume, which would allow the
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Figure 4.2: Plots of the ratio R ≡ Tmax/T∗ as a function of V = 10x and the parameter
cmin < c < cmax as defined in (4.112), (4.114) and (4.115). In the left plot, the
red surface is the constant function R = 1, whereas in the right plot the black
line denotes the curve in the (x,c)-plane for which R = 1.

20In fact, from (4.66), we find that in the case of SQCD with Nc = 3 and Nf = 6, κ1 = 2.625.
However for the MSSM we expect a larger value of κ1 which we assume to be of the order
κ1 = 10. Then for natural values of Kcs like Kcs = 3, from (4.113), we find J = 1.05.
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Figure 4.3: Plot of the R = 1 curve in the (x,c)-plane. The shaded region represents the
phenomenologically forbidden area, in which the values of x and c are such that
R < 1 ⇔ Tmax < T∗.

standard picture of gauge coupling unification and GUT theories, are disfavoured

compared to larger values of V, that naturally lead to TeV-scale SUSY and are thus

desirable to solve the hierarchy problem. In Table 4.4, we show explicitly how the

lower bound on the volume, for some benchmark scenarios, favours LVS with larger

values of V.

R > 1 ⇔
Tmax > T∗

c = 4 ∀x
c = 3 x > 2.1
c = 2 x > 3.8
c = 1 x > 5.9
c = 0.5 x > 7.6
c = 0.1 x > 11.3
c = 0.05 x > 12.8
c = 0.01 x > 16.1

Table 4.4: Lower bounds on the volume in the string frame Vs ∼ 10x−3/2 for some benchmark
scenarios.

From the definition (4.112) of the parameter c, it is interesting to notice that for

values of 〈τs〉 far from the edge of consistency of the supergravity approximation

〈τs〉 ∼ O(10), c should be fairly large, and hence the bound very weak, for natural
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values of W0 ∼ O(1), while c should get smaller for larger values of W0 that lead

to a stronger bound. In addition, it is reassuring to notice that for typical values of

V ∼ 1015, Tmax > T∗ except for a tiny portion of the (x,c)-space. It also important to

recall that the physical value of the volume as seen by the string is the one expressed

in the string frame Vs, while we are working in the Einstein frame where Vs = g
3/2
s VE .

Hence if we write VE ∼ 10x, then we have that Vs = 10x−3/2, upon setting gs = 0.1.

General LARGE Volume Scenario

Let us now generalise our lower bound on V to the four cases studied in subsections

4.4.2 and 4.4.3 for the multiple-hole Swiss-cheese and K3 fibration case (focusing on

the small K3 fiber scenario) respectively.

First of all, we note that, since in all the cases the 4-cycle supporting the MSSM

is stabilised by string loop corrections [91], we can estimate the actual height of the

barrier seen by this modulus as (see (4.7)):

Vb ∼
W 2

0

V3
√
τ
, (4.116)

where we are generically denoting any small cycle (either a blow-up or a K3 fiber

divisor) as τ , given that the values of the VEV of all these 4-cycles will have the same

order of magnitude. Then setting Vb ∼ T 4
max/τ , we obtain:

T 4
max ∼

√
τW 2

0

V3
. (4.117)

We notice that (4.117) is a bit lower than (4.87) but the two expressions for Tmax

share the same leading order V-dependence.

Let us now examine the 4 cases of subsection 4.4.2 in more detail, keeping the same

notation and denoting as Φ the small modulus of the single-hole Swiss-cheese scenario

studied above:

1. The relevant decay is the one of τ2 to MSSM gauge bosons. The order of

magnitude of the mass of τ2 is:

m2
τ2 ∼

(lnV)2W 2
0

V2τ2
, (4.118)

and so τ2 is lighter than Φ, and, in turn, T∗ will be smaller. In fact, plugging
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(4.118) in (4.102), we end up with (ignoring numerical prefactors):

T∗ ∼
(lnV)3/2W

3/2
0

Vτ9/4
. (4.119)

Hence we obtain

R(1) ≡ Tmax
T∗

= c(1) V1/4

(lnV)3/2
with c(1) ∼ τ19/8

W0
. (4.120)

Comparing this result with (4.112), we realise that R(1) ∼ Rτ and so the lower

bound on V turns out to be less stringent. The final results can still be read

from Table 4.4 upon replacing c with c(1).

2. The relevant decay is the one of τ1 to MSSM gauge bosons since mτ1 ∼ mΦ,

and so τ1 is heavier than τ2. Therefore T∗ will still be given by (4.110). Hence

we obtain

R(2) ≡ Tmax
T∗

= c(2) V1/4

(lnV)3/2
with c(2) ∼ τ7/8

W0
. (4.121)

Comparing this result with (4.112), we realise that R(2) ∼ Rτ−1/2 and so the

lower bound on V turns out to be more stringent. The final results can still be

read from Table 4.4 upon replacing c with c(2).

3. The relevant decay is the one of τ1 to hidden sector gauge bosons. Hence we

point out that the considerations of case 2 apply also for this case.

4. The relevant decay is the one of τ1 to MSSM gauge bosons, and so we can repeat

the same considerations of case 2.

The final picture is that for all cases the V-dependence of the ratio Tmax/T∗ is the same

as in (4.112). The only difference is a rescaling of the parameter c. Thus we conclude

that, as far as the lower bound on V is concerned, the single-hole Swiss-cheese case

shows all the qualitative features of a general LVS.

Finally, we mention that in the case of a K3 fibration with small K3 fiber, cases 2,

3, and 4 of subsection 4.4.3 have the same behaviour as case 2 of the multiple-hole

Swiss-cheese, so giving a more stringent lower bound on V. We should note though

that this lower bound does not apply to case 1 of subsection 4.4.3, since both of the

moduli have an MP -suppressed, instead of Ms-suppressed, coupling to MSSM gauge

bosons. However, these kinds of models tend to prefer larger values of V (due to the
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fact that as = 2π for an ED3 instanton) which are not affected by the lower bound

that we derived.

4.6 Discussion

In this section we shall discuss some of the possible applications of these results and

at the same time give some indications for future works on this subject. As we

have emphasized throughout the chapter, there are two kinds of LVS, depending on

the magnitude of the value of the internal volume V. We now outline their main

cosmological characteristics.

4.6.1 LV case

In this case the volume is stabilised at large values of the order V ∼ 1015 which allows

to solve the hierarchy problem yielding TeV scale SUSY naturally. Here are the main

cosmological features of these scenarios:

• The moduli spectrum includes a light field χ related to the overall volume.

This field is a source for the cosmological moduli problem (CMP) as long as

Ms < 1013 GeV, corresponding to V > 1010. In fact, in this case the modulus χ

is lighter than 10 TeV and, coupling with gravitational strength interactions, it

would overclose the Universe or decay so late to ruin Big-Bang nucleosynthesis.

There are two main possible solutions to this CMP:

1. The light modulus χ gets diluted due to an increase in the entropy that

occurs when a short-lived modulus decays out of equilibrium and while

dominating the energy density of the Universe [71,72];

2. The volume modulus gets diluted due to a late period of low energy infla-

tion caused by thermal effects [69,70].

Assuming this problem is solved, the volume modulus becomes a dark matter

candidate (with a mass m ∼ 1 MeV, if V ∼ 1015) and its decay to e+e− could

be one of the sources that contribute to the observed 511 KeV line, coming from

the centre of our galaxy.21 The light modulus χ can also decay into photons,

producing a clean monochromatic line that would represent a clear astrophysical

21However, recently it has been discovered with the INTEGRAL spectrometer SPI [100] that the 511
KeV line emission appears to be asymmetric. This distribution of positron annihilation resembles
that of low mass X-ray binaries, suggesting that these systems may be the dominant origin of the
positrons and so reducing the need for more exotic explanations, such as the one presented above.
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smoking-gun signal for these scenarios [92]. We point out that in the case of K3

fibrations, where the K3 fiber is stabilised large [91], the spectrum of moduli

fields includes an additional light field. This field is also a potential dark matter

candidate with a mass m ∼ 10 keV, that could produce another monochromatic

line via its decay to photons.

• At present, there are no known models of inflation in LVS with intermediate

scale Ms. However, the Fibre Inflation model of [97] can give rise to inflation for

every value of V. The only condition, which fixes V ∼ 103, and so Ms ∼MGUT ,

is the matching with the COBE normalisation for the density fluctuations. Such

a small value of V is also necessary to have a very high inflationary scale (close

to the GUT scale) which, in turn, implies detectable gravity waves. However,

in principle it is possible that the density perturbations could be produced by

another scalar field (not the inflaton), which is playing the role of a curvaton.

In such a case, one could be able to get inflation also for V ∼ 1015. In this way,

both inflation and TeV scale SUSY would be achieved within the same model,

even though gravity waves would not be observable. It would be interesting to

investigate whether such scenarios are indeed realisable.

• As derived in Section 4.5.2, if the volume is stabilised such that V ∼ 1015, the

decompactification temperature is rather low: Tmax ∼ 107 GeV.

4.6.2 SV case

In this case the volume is stabilised at smaller values of the order V ∼ 104, which

allows to reproduce the standard picture of gauge coupling unification with Ms ∼
MGUT . Here are the main cosmological features of these scenarios:

• Given that in this case V < 1013, all the moduli have a mass m > 10 TeV, and

so they decay before Big-Bang nucleosynthesis. Hence these scenarios are not

plagued by any CMP.

• As we have already pointed out in the LV case above, smaller values of V give

rise to the inflationary model presented in [97].

• Fixing the volume at small values of the order V ∼ 103, the decompactification

temperature turns out to be extremely high: Tmax ∼ 1015 GeV.

According to the discussion above, it would seem that cosmology tends to prefer

smaller values of V. The reason is that in the SV case there is no CMP and at least
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one model of inflation is known, whereas for V ∼ 1015 the light modulus suffers from

the CMP and no model of inflation has been found yet. Interestingly enough, the

lower bound on V, derived in this chapter, suggests exactly the opposite. Namely,

larger values of V are favoured since, writing the volume as V ∼ 10x and recalling the

definition (4.112) of the parameter c, the constraint T∗ < Tmax rules out a relevant

portion of the (x, c)-parameter space, that corresponds to the SV case.

We shall not discuss further the realization of inflation in the LV scenario, however,

we would like to comment on the cosmological moduli problem which is present in

this scenario for V > 1010. The results of this paper pose a challenge for the solution

of the problem. Indeed, as we have shown in subsection 4.5.3, the CMP cannot be

solved by diluting the volume modulus via the entropy increase caused by the decay

of the small moduli. The reason is that the latter decay before they can begin to

dominate the energy density of the Universe. So let us now discuss in more detail

the prospects of the other main possible solution of the CMP in LVS which was first

suggested in [92], namely, thermal inflation.

4.6.3 Thermal Inflation

Thermal inflation has been studied in the literature from the field theoretic point

of view [69, 70]. The basic idea is that a field φ, whose VEV is much larger than

its mass (and so is called flaton) can be trapped by thermal corrections at a false

vacuum at the origin of the field space. At a certain temperature, its vacuum energy

density starts dominating over the radiation one thus leading to a short period of

inflation. This period ends when the temperature drops enough to destabilise the

local minimum the flaton was trapped in.

Since the flaton φ has a VEV 〈φ〉 � mφ, it is assumed that the quartic piece in its

potential is absent. However, in this way, the 1-loop thermal corrections cannot trap

the flaton in the origin because they go like

VT ∼ T 2m2
φ = T 2d

2V

dφ2
, (4.122)

and there is no quartic term in V that would give rise to a term like T 2φ2. Instead, it

is usually assumed that there is an interaction of the flaton with a very massive field,

say a scalar ψ, of the form gψ2φ2, where g ∼ 1 so that ψ thermalises at a relatively

low temperature. At this point, a 1-loop thermal correction due to ψ would give the

required term

VT ∼ T 2m2
ψ = gT 2φ2. (4.123)
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The interaction term gψ2φ2 generates a mass term for ψ of the order mψ ∼ 〈φ〉.
Hence, when φ is trapped in the origin at high T , ψ becomes very light. Close to the

origin, the potential looks like:

V = V0 + (gT 2 −m2
φ)φ2 + ... , (4.124)

where V0 is the height of the potential in the origin. A period of thermal inflation takes

place in the temperature window Tc < T < Tin, where Tin ∼ V 1/4
0 is the temperature

at which the flaton starts to dominate the energy density of the Universe (beating

the radiation energy density ρr ∼ T 4) and Tc ∼ mφ/g is the critical temperature at

which the flaton undergoes a phase transition rolling towards the T = 0 minimum.

The number of e-foldings of thermal inflation is given by:

Ne ∼ ln

(
Tin
Tc

)
∼ ln

√
〈φ〉
mφ

. (4.125)

Let us see how the above picture relates to the LVS. In the case of V ∼ 1015,

the modulus τs has the right mass scale and VEV to produce Ne ∼ 10 e-foldings

of inflation, which would solve the CMP without affecting the density perturbations

generated during ordinary high-energy inflation. However, in subsection 4.5.1 we

derived the relevant 1-loop temperature corrections to the scalar potential and showed

that they are always subleading with respect to the T = 0 potential, for temperatures

below the Kaluza-Klein scale. Hence, since thermal inflation requires the presence of

new minima at finite-temperature, we would be tempted to conclude that it does not

take place in the LVS. In fact, this was to be expected also for the following reason.

According to the field theoretic arguments above, in order for thermal inflation to

occur, it is crucial that the flaton be coupled to a very massive field ψ. However, in

our model there is no particle, which is heavier than the flaton candidate τs.

Let us now discuss possible extensions of our model that could, perhaps, allow for

thermal inflation to occur, as well as the various questions that they raise.

1. Since in our case τs is the candidate flaton field, the necessary ψ field would

have a mass of the order mψ ∼ 〈τs〉Ms, and so it is likely to be a stringy mode.

In such a case, it is not a priori clear how to compute thermal corrections to VT

due to the presence of ψ in the thermal bath.

2. Even if we can compute VT , it is not clear why these corrections should trap

τs at the origin. Note, however, that this is not implausible, as the origin is a
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special point in moduli space, where new states may become massless or the

local symmetry may get enhanced. Any such effect might turn out to play an

important role.

3. Even assuming that VT does trap τs in the origin, one runs into another problem.

Namely, the corresponding small cycle shrinks below Ms and so we cannot trust

our low-energy EFT. For a full description, we should go to the EFT that applies

close to the origin. The best known examples of these are EFTs for blow-up

fields at the actual orbifold point. In addition, one should verify that V stays

constant when the τs cycle shrinks to zero size.

4. When τs goes to zero, the field ψ should become massless, according to the

comparison with the field theoretic argument (if this comparison is valid). So

possible candidates for the role of the ψ field could be winding strings or D1-

branes wrapping a 1-cycle of the collapsing 4-cycle.

5. If ψ corresponds to a winding string, the interaction of the flaton τs with ψ

cannot be seen in the EFT and it would be very difficult to have a detailed

treatment of this issue.

6. The field ψ could also be a right handed neutrino, or sneutrino, heavier than

τs. The crucial question would still be if it would be possible to see ψ in our

EFT description. In addition, one would need to write down mψ as a function

of τs and V. It goes without saying that this issue is highly dependent on the

particular mechanism for the generation of neutrino masses.

7. Besides the small modulus τs, another possible flaton candidate could be a

localised matter field such as an open string mode. However we notice that the

main contribution to the scalar potential of this field should come from D-terms,

and that a D-term potential usually gives rise to a mass of the same order of

the VEV. Hence it may be difficult to find an open string mode with the typical

behaviour of a flaton field.

In general, all of the above open questions are rather difficult to address. This poses a

significant challenge for the derivation of thermal inflation in LVS and the correspond-

ing solution of the CMP. However, let us note that the CMP could also be solved by

finding different models of low-energy inflation, which do not rely on thermal effects.
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4.7 Conclusions

In this chapter, we studied how finite-temperature corrections affect the T = 0 effec-

tive potential of type IIB LVS and what are the subsequent cosmological implications

in this context.

We showed that the small moduli and modulini can reach thermal equilibrium with

the MSSM particles. Despite that, we were able to prove that their thermal contribu-

tion to the effective potential is always subleading compared to the T = 0 potential,

for temperatures below the Kaluza-Klein scale. As a result, the leading temperature-

dependent part of the effective potential is due only to the MSSM thermal bath and

it turns out to have runaway behaviour at high T . We derived the decompactification

temperature Tmax, above which the T = 0 minimum is completely erased and the vol-

ume of the internal space starts running towards infinity. Clearly, in this class of IIB

compactifications the temperature Tmax represents the maximal allowed temperature

in the early Universe. Hence, in particular, it gives an upper bound on the initial

reheating temperature after inflation: T 0
RH < Tmax.22 The temperature T 0

RH is highly

dependent on the details of the concrete inflationary model and re-heating process,

and so in principle its determination is beyond the scope of our paper. Nevertheless,

we can compute the temperature of the Universe after the small moduli decay. They

are rather short-lived and their decay can either be the main source of initial reheat-

ing (in which case the temperature after their decay is exactly T 0
RH) or it can occur

during a radiation dominated epoch, after initial reheating has already taken place.

In both cases, the resulting temperature of the Universe T∗ has to satisfy T∗ < Tmax ,

which implies a lower bound on the allowed values of V. We were able to derive this

bound and show that it rules out a large range of smaller V values (which lead to

standard GUT theories), while favouring greater values of V (that lead to TeV scale

SUSY). Note though, that the condition T∗ < Tmax is both necessary and sufficient

in the case the decay of the small moduli is the origin of initial reheating, whereas it

is just necessary but not sufficient in the case the small moduli decay below T 0
RH .

Finally, we discussed possible cosmological applications of our work. In particular,

we argued that, to realize thermal inflation in this type of compactifications, one

needs to go beyond the current effective field theory description of the closed string

moduli sector.

22Note, however, that it may be possible to relax this constraint to a certain degree by studying the
dynamical evolution of the moduli in presence of finite temperature corrections, as in [73] for the
KKLT set-up.
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Appendix 4.A Moduli couplings

We shall now assume that the MSSM is built via magnetised D7 branes wrapping an

internal 4-cycle within the framework of 4D N = 1 supergravity. The full Lagrangian

of the system can be obtained by expanding the superpotential W , the Kähler po-

tential K and the gauge kinetic functions fi as a power series in the matter fields:

W = Wmod(ϕ) + µ(ϕ)HuHd +
Yijk(ϕ)

6
CiCjCk + ..., (4.126a)

K = Kmod(ϕ, ϕ̄) + K̃ij̄(ϕ, ϕ̄)CiC j̄ + [Z(ϕ, ϕ̄)HuHd + h.c.] + ..., (4.126b)

fi =
TMSSM

4π
+ hi(F )S. (4.126c)

In the previous expressions, ϕ denotes globally all the moduli fields, and Wmod and

Kmod are the superpotential and the Kähler potential for the moduli, which we have

discussed in depth in Section 4.2. Hu and Hd are the two Higgs doublets of the

MSSM, and the C’s denote collectively all the matter fields. In the expression for the

gauge kinetic function (4.126), TMSSM is the modulus related to the 4-cycle wrapped

by the MSSM D7 branes, and hi(F ) are 1-loop topological functions of the world-

volume fluxes F on different branes (the index i runs over the three MSSM gauge

group factors). Finally the moduli scaling of the Kähler potential for matter fields

K̃ij̄(ϕ, ϕ̄) and Z(ϕ, ϕ̄), for LVS with the small cycle τs supporting the MSSM, has

been derived in [101] and looks like:23

K̃ij̄(ϕ, ϕ̄) ∼ τ
1/3
s

τb
kij̄(U) and Z(ϕ, ϕ̄) ∼ τ

1/3
s

τb
z(U). (4.127)

4.A.1 Moduli couplings to ordinary particles

We now review the derivation of the moduli couplings to gauge bosons, matter par-

ticles and Higgs fields for high temperatures T > MEW . In this case all the gauge

bosons and matter fermions are massless.

Couplings to Gauge Bosons

The coupling of the gauge bosons X to the moduli arise from the moduli dependence

of the gauge kinetic function (4.126). We shall assume that the MSSM D7 branes are

23Note that, in the case of more than one small cycle supporting the MSSM, these expressions would
be more complicated.

121



Chapter 4. Finite temperature corrections to the LARGE Volume
models

wrapping the small cycle24, and so we identify TMSSM ≡ Ts. We also recall that the

gauge couplings of the different MSSM gauge groups are given by the real part of the

gauge kinetic function, and that one obtains different values by turning on different

fluxes. Thus the coupling of τs with the gauge bosons is the same for U(1), SU(2)

and SU(3). We now focus on the U(1) factor without loss of generality. The kinetic

terms read (neglecting the τs-independent 1-loop contribution)

Lgauge = − τs
MP

FµνF
µν . (4.128)

We then expand τs around its minimum and go to the canonically normalised field

strength Gµν defined as

Gµν =
√
〈τs〉Fµν , (4.129)

and obtain

Lgauge = −GµνGµν −
δτs

MP 〈τs〉
GµνG

µν . (4.130)

Now by means of (4.17b) we end up with the following dimensionful couplings

LχXX ∼
(

1

MP lnV

)
χGµνG

µν , (4.131a)

LΦXX ∼

(√
V

MP

)
ΦGµνG

µν . (4.131b)

Couplings to matter fermions

The terms of the supergravity Lagrangian which are relevant to compute the order

of magnitude of the moduli couplings to an ordinary matter fermion ψ are its kinetic

and mass terms25:

L = K̃ψ̄ψψ̄iγ
µ∂µψ + eK/2λHψ̄ψ, (4.132)

where H is the corresponding Higgs field (either Hu or Hd). The moduli scaling of

K̃ψ̄ψ is given in (4.127), whereas eK/2 = V−1. Expanding the moduli and the Higgs

24The large cycle would yield an unrealistically small gauge coupling: g2 ∼ 〈τb〉−1 ∼ 10−10.
25Instead of the usual 2-component spinorial notation, we are using here the more convenient 4-

component spinorial notation.
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around their VEVs, we obtain

L =
〈τs〉1/3

〈τb〉

(
1 +

1

3

δτs
〈τs〉
− δτb
〈τb〉

+ ...

)
ψ̄iγµ∂µψ

+
1

〈τb〉3/2

(
1− 3

2

δτb
〈τb〉

+ ...

)
λ (〈H〉+ δH) ψ̄ψ. (4.133)

We now canonically normalise the ψ kinetic terms (ψ → ψc) and rearrange the pre-

vious expression as

L = ψ̄c (iγµ∂µ +mψ)ψc +

(
1

3

δτs
〈τs〉
− δτb
〈τb〉

)
ψ̄c (iγµ∂µ +mψ)ψc

−
(

1

3

δτs
〈τs〉

+
1

2

δτb
〈τb〉

)
mψψ̄cψc + LδH , (4.134)

where

mψ ≡
λ〈H〉

〈τs〉1/3〈τb〉1/2
, (4.135)

and

LδH =

(
λ

〈τb〉1/2〈τs〉1/3

)
δHψ̄cψc −

(
3λ

2〈τb〉3/2〈τs〉1/3

)
δτbδHψ̄cψc. (4.136)

The second term of (4.134) does not contribute to the moduli interactions since Feyn-

man amplitudes vanish for on-shell final states satisfying the equations of motion.

Writing everything in terms of Φ and χ, we end up with the following dimensionless

couplings

Lχψ̄cψc ∼
(
mψ

MP

)
χψ̄cψc, (4.137a)

LΦψ̄cψc ∼

(
mψ

√
V

MP

)
Φψ̄cψc. (4.137b)

Moreover the first term in the Higgs Lagrangian (4.136) gives rise to the usual Higgs-

fermion-fermion coupling, whereas the second term yields a modulus-Higgs-fermion-
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fermion vertex:

LδHψ̄cψc ∼
(

1

V1/3

)
δHψ̄cψc, (4.138a)

LχδHψ̄cψc ∼
(

1

MPV1/3

)
χδHψ̄cψc, (4.138b)

LΦδHψ̄cψc ∼
(

1

MPV5/6

)
ΦδHψ̄cψc. (4.138c)

We notice that for T > MEW the fermions are massless since 〈H〉 = 0, and so the

two direct moduli couplings to ordinary matter particles (4.137a) and (4.137b) are

absent.

Couplings to Higgs Fields

The form of the un-normalised kinetic and mass terms for the Higgs from the super-

gravity Lagrangian, reads:

LHiggs = K̃H̄H∂µH∂
µH̄ − K̃H̄H

(
µ̂2 +m2

0

)
HH̄, (4.139)

whereH denotes a Higgs field (eitherHu orHd), and µ̂ andm0 are the canonically nor-

malised supersymmetric µ-term and SUSY breaking scalar mass respectively. Their

volume dependence, in the dilute flux limit, is [98]:

|µ̂| ∼ m0 ∼
MP

V lnV
. (4.140)

In addition to (4.139), there is also a mixing term of the form

LHiggs mix = Z
(
∂µHd∂

µHu + ∂µH̄d∂
µH̄u

)
− K̃H̄HBµ̂

(
HdHu + H̄dH̄u

)
, (4.141)

with

Bµ̂ ∼ m2
0. (4.142)

However given that we are interested only in the leading order volume scaling of the

Higgs coupling to the moduli, we can neglect the O(1) mixing of the up and down
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components, and focus on the simple Lagrangian:

LHiggs = K̃H̄H

(
∂µH∂

µH̄ −
M2
P

(V lnV)2HH̄

)
= −1

2
K̃H̄H

[
H̄

(
�+

M2
P

(V lnV)2

)
H +H

(
�+

M2
P

(V lnV)2

)
H̄

]
(4.143)

where we have integrated by parts. We now expand K̃H̄H and (V lnV)−2 and get:

LHiggs ' −1

2
K0

(
1 +

1

3

δτs
〈τs〉
− δτb
〈τb〉

)[
H̄

(
�+m2

H

(
1− 3

δτb
〈τb〉

))
H+

H

(
�+m2

H

(
1− 3

δτb
〈τb〉

))
H̄

]
, (4.144)

where K0 = 〈τs〉1/3〈V〉−2/3 and the Higgs mass is given by

mH '
MP

〈V〉 ln〈V〉
. (4.145)

Now canonically normalising the scalar kinetic terms H → Hc =
√
K0H, we obtain

LHiggs = −1

2

[
H̄c

(
�+m2

H

)
Hc +Hc

(
�+m2

H

)
H̄c

]
−1

2

(
1

3

δτs
〈τs〉
− δτb
〈τb〉

)[
H̄c

(
�+m2

H

)
Hc +Hc

(
�+m2

H

)
H̄c

]
+3

δτb
〈τb〉

m2
HH̄cHc.

The second term in the previous expression does not contribute to scattering am-

plitudes since Feynman amplitudes vanish for final states satisfying the equations of

motion. Thus the dimensionful moduli couplings to Higgs fields arise only from the

third term once we express δτb in terms of Φ and χ using (4.17a). The final result is

LΦH̄cHc ∼
(

m2
H

MP

√
V

)
ΦH̄cHc ∼

(
MP

V5/2(lnV)2

)
ΦH̄cHc, (4.146a)

LχH̄cHc ∼
(
m2
H

MP

)
χH̄cHc ∼

(
MP

V2(lnV)2

)
χH̄cHc. (4.146b)

4.A.2 Moduli couplings to supersymmetric particles

We shall now work out the moduli couplings to gauginos, SUSY scalars and Higgsinos.

Given that we are interested in thermal corrections at high temperatures, we shall
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focus on T > MEW . Thus we can neglect the mixing of Higgsinos with gauginos into

charginos and neutralinos, which takes place at lower energies due to EW symmetry

breaking.

Couplings to Gauginos

The relevant part of the supergravity Lagrangian involving the gaugino kinetic terms

and their soft masses looks like

Lgaugino '
τs
MP

λ̄′iσ̄µ∂µλ
′ +

F s

2

(
λ′λ′ + h.c.

)
, (4.147)

where in the limit of dilute world-volume fluxes on the D7-brane, the gaugino mass

is given by M1/2 = F s

2τs
, [98]. Now if the small modulus supporting the MSSM is

stabilised via non-perturbative corrections, then the corresponding F-term scales as

F s ' τs
V lnV

. (4.148)

Notice that the suppression factor lnV ∼ ln(MP /m3/2) in (4.148) would be absent

in the case of perturbative stabilisation of the MSSM cycle [91]. Let us expand τs

around its VEV and get:

Lgaugino ' 〈τs〉
[
λ̄′iσ̄µ∂µλ

′ +
1

2

MP

V lnV
(
λ′λ′ + h.c.

)]
+
δτs
MP

[
λ̄′iσ̄µ∂µλ

′ +
MP

〈V〉 ln〈V〉
(λ′λ′ + h.c.)

2

]
. (4.149)

We need now to expand also τb around its VEV in the first term of (4.149):

1

V lnV
' 1

τ
3/2
b lnV

' 1

〈V〉 ln〈V〉

(
1− 3

2

δτb
〈τb〉

+ ...

)
, (4.150)

and canonically normalise the gaugino kinetic terms λ′ → λ =
√
〈τs〉λ′. At the end

we obtain:

Lgaugino ' λ̄iσ̄µ∂µλ+
δτs
〈τs〉MP

λ̄iσ̄µ∂µλ

+
MP

〈V〉 ln〈V〉
(λλ+ h.c.)

2
+

(λλ+ h.c.)

2〈V〉 ln〈V〉

(
δτs
〈τs〉
− 3

2

δτb
〈τb〉

)
. (4.151)
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From (4.151) we can immediately read off the gaugino mass:

M1/2 '
MP

〈V〉 ln〈V〉
' F s

τs
∼

m3/2

ln
(
MP /m3/2

) . (4.152)

Let us now rewrite (4.151) as:

Lgaugino '
(

1 +
δτs
〈τs〉MP

)[
λ̄iσ̄µ∂µλ+

M1/2

2
(λλ+ h.c.)

]
− 3

4

δτb
〈τb〉

M1/2

MP
(λλ+ h.c.) .

(4.153)

We shall now focus only on the last term in (4.153) since it is the only one that

contributes to decay rates. In fact, Feynman amplitudes with on-shell final states

that satisfy the equations of motion, are vanishing. Using (4.17a), we finally obtain

the following dimensionless couplings:

LΦλλ ∼
(

M1/2

MP

√
V

)
Φλλ ∼

(
1

V3/2 lnV

)
Φλλ, (4.154a)

Lχλλ ∼
(
M1/2

MP

)
χλλ ∼

(
1

V lnV

)
χλλ. (4.154b)

Couplings to SUSY Scalars

The form of the un-normalised kinetic and soft mass terms for SUSY scalars from the

supergravity Lagrangian, reads:

Lscalars = K̃αβ̄∂µC
α∂µC̄ β̄ −

K̃αβ̄

(V lnV)2C
αC̄ β̄. (4.155)

Assuming diagonal Kähler metric for matter fields

K̃αβ̄ = K̃αδαβ̄, (4.156)

the initial Lagrangian (4.155) simplifies to

Lscalars = K̃α

(
∂µC

α∂µC̄ᾱ − 1

(V lnV)2C
αC̄ᾱ

)
= −1

2
K̃α

[
C̄ᾱ
(
�+

1

(V lnV)2

)
Cα + Cα

(
�+

1

(V lnV)2

)
C̄ᾱ
]
.(4.157)

We note that (4.157) is of exactly the same form as the Higgs Lagrangian (4.143).

This is not surprising since for temperatures T > MEW , the Higgs behaves effectively

as a SUSY scalar with mass of the order the scalar soft mass: mH ∼ m0. Thus we can
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read off immediately the dimensionful moduli couplings to the canonically normalised

SUSY scalars ϕ from (4.146a) and (4.146b):

LΦϕ̄ϕ ∼
(

m2
0

MP

√
V

)
Φϕ̄ϕ ∼

(
MP

V5/2(lnV)2

)
Φϕ̄ϕ, (4.158a)

Lχϕ̄ϕ ∼
(
m2

0

MP

)
χϕ̄ϕ ∼

(
MP

V2(lnV)2

)
χϕ̄ϕ. (4.158b)

Couplings to Higgsinos

The relevant part of the supergravity Lagrangian involving the Higgsino kinetic terms

and their supersymmetric masses looks like:

LHiggsino ' K̃ ¯̃HH̃

[
¯̃Huiσ̄

µ∂µH̃u + ¯̃Hdiσ̄
µ∂µH̃d + µ̂

(
H̃uH̃d + h.c.

)]
. (4.159)

After diagonalising the supersymmetric Higgsino mass term, we end up with a usual

Lagrangian of the form:

LHiggsino ' K̃ ¯̃HH̃

[
¯̃Hiσ̄µ∂µH̃ + µ̂

(
H̃H̃ + h.c.

)]
, (4.160)

where H̃ denotes collectively both the Higgsino mass eigenstates, which are the result

of a mixing between the up and down gauge eigenstates. We recall also that since we

are focusing on temperatures above the EWSB scale, we do not have to deal with any

mixing between Higgsinos and gauginos to give neutralinos and charginos. Expanding

the Kähler metric (4.127) and the µ-term (4.140), we obtain:

LHiggsino ' K0

(
1 +

1

3

δτs
〈τs〉
− δτb
〈τb〉

)[
¯̃Hiσ̄µ∂µH̃ +

mH̃

2

(
1− 3

2

δτb
〈τb〉

)(
H̃H̃ + h.c.

)]
,

(4.161)

where K0 = 〈τs〉1/3〈V〉−2/3 and the physical Higgsino mass is of the same order of

magnitude of the soft SUSY masses:

mH̃ '
MP

〈V〉 ln〈V〉
'M1/2. (4.162)
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Now canonically normalising the scalar kinetic terms H̃ → H̃c =
√
K0H̃, we end up

with:

LHiggsino =

(
1 +

1

3

δτs
〈τs〉
− δτb
〈τb〉

)[
¯̃Hciσ̄

µ∂µH̃c +
mH̃

2

(
H̃cH̃c + h.c.

)]
−3

4

δτb
〈τb〉

mH̃

(
H̃cH̃c + h.c.

)
. (4.163)

Writing everything in terms of Φ and χ, from the last term of (4.163), we obtain the

following dimensionless couplings:

LχH̃cH̃c ∼
(
mH̃

MP

)
χH̃cH̃c ∼

(
1

V lnV

)
χH̃cH̃c, (4.164a)

LΦH̃cH̃c
∼

(
mH̃

MP

√
V

)
ΦH̃cH̃c ∼

(
1

V3/2 lnV

)
ΦH̃cH̃c. (4.164b)

4.A.3 Moduli self couplings

In this section we shall investigate if moduli reach thermal equilibrium among them-

selves. In order to understand this issue, we need to compute the moduli self in-

teractions, which can be obtained by first expanding the moduli fields around their

VEV

τi = 〈τi〉+ δτi, (4.165)

and then by expanding the potential around the LARGE Volume vacuum as follows:

V = V (〈τs〉, 〈τb〉) +
1

2

∂2V

∂τi∂τj

∣∣∣∣
min

δτiδτj +
1

3!

∂3V

∂τi∂τj∂τk

∣∣∣∣
min

δτiδτjδτk + .... (4.166)

We then concentrate on the trilinear terms which can be read off from the third term

of (4.166). We neglect the O(δτ4
i ) terms since the strength of their couplings will be

subleading with respect to the O(δτ3
i ) terms since one has to take a further derivative

which produces a suppression factor. Taking the third derivatives and then expressing

these self-interactions in terms of the canonically normalised fields

δτb ∼ O
(
V1/6

)
Φ +O

(
V2/3

)
χ,

δτs ∼ O
(
V1/2

)
Φ +O (1)χ,
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we end up with the following Lagrangian terms at leading order in a large volume

expansion:

LΦ3 ' MP

V3/2
Φ3, LΦ2χ '

MP

V2
χΦ2, (4.167)

Lχ2Φ ' MP

V5/2
Φχ2, Lχ3 '

MP

V3
χ3. (4.168)
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5 D-anti-D branes at finite temperature

Summary. In this chapter we consider a pair of parallel Dp and anti-Dp branes in

flat space, with a finite separation d along some perpendicular spatial direction and

at finite temperature. If this spatial direction is compactified on a circle then by

T-duality, the system is equivalent to a D(p+1) anti-D(p+1) pair wrapped around

the dual circle with a constant Wilson line A ∼ d on one of the branes. We focus in

particular on the p = 8 case and compute the free energy of this system and study

the occurrence of second order phase transitions as both the temperature and Wilson

line (brane-antibrane separation) are varied. In the limit of vanishing Wilson line

we recover the previous results obtained in the literature, whereby the open string

vacuum is stabilized at sufficiently high temperature. For sufficiently large Wilson

line, we find new second order phase transitions corresponding to the existence of

two minima in the tachyon effective potential at finite temperature and tachyon field

value.

5.1 Introduction

In the previous chapters we considered type IIB flux compactification at finite tem-

perature and concluded that the inclusion of temperature corrections do no alter

significantly the zero temperature scenario. In this final chapter we study a system

in which the inclusion of thermal corrections modify the picture at zero temperature,

namely, we consider a pair of separated parallel brane-antibrane at finite tempera-

ture. This configuration is unstable to decay through the open string tachyon field T

rolling down to its minimum.Whilst the above behaviour of the open string tachyon

is true for a system at zero temperature, it can become stable once finite temperature

corrections are switched on. The study of such corrections is interesting because it is

possible that such brane configurations could survive in the early universe.

Separated brane-antibrane system at zero temperature have been considered in the

context warped type IIB flux compactification as a way of obtaining inflation [102],

see also [103,104] for a review on the subject.
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In this chapter we will work in flat space instead. There have been several pa-

pers discussing the situation if the brane-antibrane pair is considered as part of a

thermodynamic system at finite temperature [105–109].

In [106], Hotta investigated the phase structure of a finite temperature Dp and

anti-Dp brane pair where the branes were assumed to be coincident and in flat space.

Using the framework of boundary string field theory (BSFT) he showed that in the

p = 9 case, a phase transition occurs just below the string Hagedorn temperature,

whereas for p < 9 there is no phase transition. In the p = 9 case, the zero temperature

minimum of the tachyon effective potential was shown to shift from T →∞ towards

T → 0 as the temperature approached criticality. Thus the interpretation is that

the open string vacuum is stabilized at sufficiently high temperature (but below the

Hagedorn transition) in the case of D9-D9 whereas for pairs of lower dimensionality,

no such transition occurs and the point T = 0 remains unstable at high temperature.

These results are in broad agreement with those of Danielsson et al. [105] who

investigated the same system but rather than including the full set of string states,

in computing the free energy they focussed on the truncation to the tachyonic sector

only.

In this chapter we wish to generalize the results above to the case where the D(p-

1)-D(p − 1) pair is separated along some perpendicular spatial direction, but still

parallel and in flat space. We shall assume that the pair has a finite separation d

along a perpendicular spatial direction which is compactified on a circle S1. Then by

T-duality, the system is equivalent to a Dp-Dp pair wrapped around the dual circle

S̃1, with a constant Wilson line A ∼ d turned on one of the branes [108], [110].

At zero temperature, one may extend the BSFT results to include Wilson lines and

obtain an expression for the effective potential at 1-loop Veff (T,A) depending on T

and the Wilson line A. At tree level, the extrema of this potential depend on the size

of A: for A < 1√
2α′

the potential has a local maximum at T = 0 as in the case of

a coincident brane-antibrane. If A > 1√
2α′

, T = 0 becomes a local minimum and so

the open string vacuum is metastable [108]. We shall see that when we consider this

latter situation at finite temperature, we have an interesting situation whereby the

effective potential (in the canonical ensemble) has two local minima at finite values of

T . Thus we can ask the same question again, about what vacuum the tachyon field

will likely be found, i.e., which vacuum is thermodynamically favoured over the other.

Also, it is interesting to ask what is the likelihood of a first order phase transition

occurring since we anticipate that the two minima might well become degenerate at

some particular temperature, so that quantum tunnelling may become important.
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The structure of this chapter is as follows. In section 5.2 we review the two deriva-

tive BSFT action to studying the tachyon potential for coincident D(p-1)-D(p − 1)

system [111–117] and its extension to the case of finite separation. In section 5.3

we consider the 1-loop (annulus or cylinder) computations of the free energy of open

strings stretched between separated D(p-1)-D(p− 1) pair. In section 5.4 we then in-

vestigate the critical points of the free energy and determine the nature of the phase

transitions as the temperature approaches the Hagedorn temperature from below. In

particular we compare the situation when the Wilson line modulus A is greater than

or less than its critical value Acrit = 1√
2α′

. Finally in section 5.5 we draw some

conclusions from our results.

5.2 BSFT action for the D-anti-D brane pair

In string theory a pair of parallel Dp-Dp pair constitutes an unstable object. To

study the dynamics of unstable D-branes, the BSFT [111–117] is a useful tool and

it has provided a good understanding of tachyon condensation at the classical level.

It describes the off-shell dynamics of open strings in a fixed on-shell background of

closed strings in which an open string field configuration corresponds to a boundary

term in the world-sheet action of the string. Therefore, specifying a boundary term

means giving the background values of the various modes of the open string.

The BSFT action of a single D9-D9 brane pair was derived in [118, 119]. In the

case of vanishing gauge fields and linear tachyon profile, it is given by

S = 2T9

∫
d10X e−2πα′T T̄F (4πα′2∂µT∂

µT̄ ) (5.1)

where

F (x) =
4xxΓ(x)2

2Γ(2x)
(5.2)

As it is explained in [118, 119], the previous action is ambiguous in the sense that

any term with at least second derivatives action on T can be added. However, at

quadratic order the result is unambiguous:

S ∼ 2T9

∫
d10x e−2πα′T T̄

[
1 + 8πα′2 ln(2) ∂µT̄ ∂µT + . . .

]
(5.3)

where the expansion

F (x) = 1 + 2ln(2)x+O(x2), x→ 0 (5.4)

133



Chapter 5. D-anti-D branes at finite temperature

has been used. Now, consider the case where one of the spatial directions, y, is

wrapped on a circle of radius R̃ ≤
√
α′ and that we have a constant Wilson line A

wrapping the compact direction on say the D9-brane. Since the gauge field strength

vanishes, the only dependence on the gauge field comes from the covariant derivative

of the tachyon. We can lift the expression in (5.3) by simply changing the argument

of the function F to include the covariant derivative.

Applying a T-duality transformation along y, the gauge field is mapped to the Higgs

field which measures the distance d between a D8-D8 pair, separated along the dual

coordinate ỹ with d ∼ |A|.
Adopting the normalization of the tachyon field used in [108], the action (5.3)

becomes

S = 2T9

∫
d9x dy e−|T |

2 [
1 + 2α′|∂µT |2 + 2α′A2|T |2

]
(5.5)

The potential term is

V0(T ) = 2T9 e
−|T |2 [1 + 2α′A2|T |2

]
(5.6)

The extrema are

|T | = 0, |T | = +∞, and |T | =
√

2A2α′ − 1√
2α′A

(5.7)

To study the nature of these extrema, we need to compute the second derivative:

around |T | = 0 we have

∂2V0(T )

∂2|T |
||T |=0 = m2 = 4T9

(
2α′A2 − 1

)
. (5.8)

Therefore, we see that this potential has a minimum at |T | = 0 if A >
√

1
2α′ or it

has a true tachyonic instability if A <
√

1
2α′ . Figure 5.1 shows the different cases.

This behavior has a clear physical interpretation: recall that our model is equivalent

to the case of a parallel D8-D8 pair separated by a distance d. If the distance d is

“large enough”, then the tachyon mode between the two should go away, since the

tachyon field comes from the open string suspended between the two branes and thus

that string acquires a mass lift when two branes are distant.

Notice also that in order to get a canonical kinetic term in the BSFT action we must
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Figure 5.1: Left: Tachyon potential for 0 ≤ A < Acr. Right: A > 1√
2α′

. In all the plots

T9 = 0.1, α′ = 1/2.

perform the following redefinition of the tachyon field: T = T (φ) with

φ =
√

8α′T9

∫ |T |
0

ds e−s
2/2 (5.9)

With this redefinition, the action (5.5) becomes

S =

∫
d9x dy

(
1

2
(∂φ)2 + V0(T (φ))

)
(5.10)

and the tachyon vacuum at infinity is placed at a finite value of the new field φ.

Indeed, the two local minima are

φ0 = 0 , φ1 =
√

4πα′T9. (5.11)

This redefinition allows us to compute the mass of the tachyon. In the presence of a

Wilson line A it is given by

M2 =
∂2V (φ)

∂φ2
=

1

α′

[
|T |2 − 1

2
+ α′A2

(
|T |4 − 4|T |2 + 1

)]
(5.12)

whereas if A = 0 we have

M2
A=0 =

1

α′
|T |2 − 1

2
(5.13)

Notice that the same results were found in [120] but with different methods.

Henceforth, we will consider only the real part of the tachyon field: this is consistent

with the tachyon equations of motion and it is also a natural setup since we are not

interested in lower dimensional D-brane left after the tachyon condensation which
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needs complex tachyon configurations.

5.3 Free energy of open strings in between a D-anti-D brane

pair

Before we discuss the free energy of strings stretched between a Dp-Dp pair, let us

first comment on the issue, raised by Hotta in [106], concerning the microcanonical

ensemble versus the canonical ensemble framework for the computation of the tachyon

finite temperature potential. It was shown in [106] that whilst in principle, the mi-

crocanonical picture is more trustworthy as we approach the Hagedorn temperature,

in fact for the case of a coincident D9-D9 pair, the micro and canonical ensembles

agree in the nature and existence of the second order phase transition of the tachyon

effective potential near the origin. For the case p < 9 the case is less clear as the

predictions for phase transitions do not entirely overlap for the various values of ‘p’

in the two formalisms. In this case it is better to adopt the microcanonical ensemble

as in [106,107].

Since we wish to consider the case where we turn on constant Wilson lines around

a compact spatial S1 in the Dp-Dp system, we should consider how this affects the

predictions made in both frameworks. In fact in all cases, the additional terms in

the free energy (the singular part of which is used in [106,107] to extract the density

of states in the microcanonical ensemble) coming from the Wilson line A can be

computed. As we shall see below, the Wilson line only appears as an effective shift

in the tachyon mass term when one considers the sums over all states contributing

to the 1-loop partition. As such one can verify that at least in the p = 9 case, the

canonical and microcanonical formalism will agree with respect to the nature of the

phase transitions in the tachyon effective potential even with A 6= 0. For p < 9 and

A 6= 0 one should again adopt the microcanonical ensemble too. It is straightforward

to extend the techniques and results in [106] to include A but for brevity we will

simply use the canonical ensemble in this paper, in which the one-loop part of the

tachyon effective potential is given by the free energy of open strings.

Thus we will primarily focus on the p = 9 case and do all computations in the

canonical ensemble. By T-duality this is equivalent to separated D8-D8 pair with

separation d ∼ A. It is interesting to see whether the finite temperature could dras-

tically modify the tachyon potential: in the case of zero Wilson line this is motivated

by the fact that the tachyon field at T = 0 can become stable and there is no tachyon

condensation [105, 106]. In the presence of a brane separation, we might also be
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interested in the fate of the metastable minimum at T = 0 (see Figure 5.1).

Temperature corrections to the potential (5.6) come from the evaluation of the path

integral for the DD system over all connected graphs of strings on the space where

the Euclidean time direction is compactified on a circle of radius β proportional to

the inverse of the temperature. We will consider the weak coupling approximation in

which the strings can be thought as an ideal gas, that is to say, ignoring the interac-

tions of open strings. We take into account only one-loop amplitude by considering

only zero-genus oriented Riemann surfaces.

Let us first quickly review the situation for a coincident Dp-Dp pair (though

following our discussion above we will ultimately focus on the case p = 9). The

effective potential at finite temperature is given by

Veff (T, β) = V0(T ) + V1(T, β) (5.14)

where V1(T, β) is the one-loop finite temperature potential. Since we work in the

canonical ensemble the one-loop part of the effective potential above is related to the

free energy F (T, β) of open strings:

Veff (T, β) = V0(T ) + V−1F (T, β) (5.15)

where V is the volume of the system, the Dp-Dp pair in our case.

At this point, one immediately faces difficulties: in order to compute V1(T, β) or

F , we need to include quantum corrections to the BSFT. Since at tree level the

BSFT action is essentially given by the partition function on the disk, at one loop

one might expect that the first loop correction corresponds to the partition function

on a world-sheet of cylinder or annulus topology. However, because the boundary

interactions break conformal invariance this result would depend on the choice of the

Weyl factor. Nevertheless, there have been several attempts to generalize the BSFT

to the one-loop amplitude in the Dp-Dp system [121–126]. In [127], for example, the

partition function on the annulus and cylinder were computed in the presence of a

constant tachyon profile. To fix the problems coming from the breaking of conformal

invariance, they proposed to use a comparison with field theory results [128–130].

Indeed, given the partition function, one can in principle extract the contribution due

to the tachyon and fix the background by comparison with the corresponding field

theory results computed from the tree level effective action. This leads to equivalent

expressions for the partition functions computed for the annulus and cylinder. The
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one-loop amplitude on the cylinder in such background is given by

Z1 = −16 i π4Vp
(2πα′)

p
2

∫ ∞
0

dτ

τ
(4πτ)−

p+1
2 e−2πT 2τ

×

[(
θ3(0|iτ)

θ′1(0|iτ)

)4

−
(
θ2(0|iτ)

θ′1(0|iτ)

)4
]

(5.16)

where Vp is the volume of the Dp-brane. In [106], it was noted that the previous

one-loop amplitude (5.16) can be obtained by considering the free energy of strings

stretching between the coincident Dp-Dp pair1

F (β) = − Vp
(2πα′)

p+1
2

∫ ∞
0

dτ

τ
(4πτ)−

p+1
2

∑
M2

NS

∞∑
r=1

exp

(
−2πα′M2

NSτ − π
r2β2

β2
Hτ

)

+
Vp

(2πα′)
p+1
2

∫ ∞
0

dτ

τ
(4πτ)−

p+1
2

∑
M2

R

∞∑
r=1

(−1)rexp

(
−2πα′M2

Rτ − π
r2β2

β2
Hτ

)
(5.17)

with the following mass spectrum

M2
NS =

1

α′

(
NB +NNS +

T

2

2

− 1

2

)
(5.18)

M2
R =

1

α′

(
NB +NR +

T

2

2)
(5.19)

where MNS and MR are the masses of the Neveu-Schwarz and Ramond sectors,

respectively, whereas NB, NNS and NR are the oscillation modes of the bosons,

Neveu-Schwarz fermion and Ramond fermions. Notice that the lowest mode of the

NS sector (5.18) coincides with the mass of the tachyon field (5.13) of the coincident

Dp-Dp pair.

This suggests a straightforward generalization of eqs. (5.18) and (5.19) to the case

of separated D(p-1)-D(p − 1) . The only difference with the case described above

is that in our model we have a constant Wilson line turned on on a circle of radius

close to the string scale. Therefore, in general, we have to include quantized momenta

in the direction parallel to the Dp-Dp system, and winding modes in the direction

transverse to it. As for the presence of the Wilson line, notice that in the T-dual

picture, the dependence on the constant Wilson line A in the tachyon mass (5.12)

factorizes out, so we require that the lowest mode of the NS sector coincides with

the tachyon mass. In the general case of D toroidal-compactified directions and d

1We adopt the following definition for the Hagedorn temperature β2
H = 8π2α′.
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non-compact ones, the mass spectrum is given by [107]

M2
NS =

p−d∑
I=1

(
mI

RI

)2

+

D∑
i=p−d+1

(
niRi
α′

)2

+
1

α′

(
NB +NNS +

T

2

2

− 1

2
+M2

A

)
(5.20)

M2
R =

p−d∑
I=1

(
mI

RI

)2

+

D∑
i=p−d+1

(
niRi
α′

)2

+
1

α′

(
NB +NR +

T

2

2

+M2
A

)
(5.21)

where we have defined

M2
A = α′A2

(
T 4 − 4T 2 + 1

)
(5.22)

Inserting these two expressions into eq. (5.17) and expressing the sums in terms of

the θ-functions using the conventions of [106], the free energy can be written in the

following way:

F (T, β) = − 16π4Vd
(βH)d+1

∫ ∞
0

dτ

τ
d+3
2

exp−π[T 2+2M2
A]τ

p−d∏
I=1

θ3

(
0

∣∣∣∣2iα′τR2
I

) D∏
i=p−d+1

θ3

(
0

∣∣∣∣2iR2
i τ

α′

)

×

[(
θ3(0|iτ)

θ′1(0|iτ)

)4(
θ3

(
0

∣∣∣∣ iβ2

β2
Hτ

)
− 1

)

−
(
θ2(0|iτ)

θ′1(0|iτ)

)4(
θ4

(
0

∣∣∣∣ iβ2

β2
Hτ

)
− 1

)]
(5.23)

where Vd is the volume in the non-compact directions parallel to the Dp-Dp system.

This expression for the open string free energy will be our starting point in order to

compute the phase transitions in the model under consideration.

5.4 Phase transitions at finite temperature

Given the explicit form of the effective potential in eq. (5.15), it is interesting to see

whether temperature corrections could modify the tachyon potential. We expect that

at high temperature the system is in a local minimum of the temperature-dependent

part of eq. (5.15). Then, as the temperature decreases, a point will be reached at

which a second order phase transition will occur. The critical temperature Tc for this

to happen, as well as the relevant field space position Tc can be found by solving the

following set of equations:

V ′eff (Tc, Tc) = 0 and V ′′eff (Tc, Tc) = 0 (5.24)

where Veff is given in eq. (5.15), and the ′ denotes d/dTc.
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In particular, in the case A = 0 we expect that temperature corrections should

lead to an effective potential in which the location of the minimum has shifted away

from infinity. The physical reason for this is that moving towards T = 0 can be

thermodynamically favorable: it costs energy, but it also reduces the mass of the

tachyon and therefore increases the entropy of the tachyon gas [105, 106]. We will

show explicitly that for temperature near the Hagedorn temperature the minimum

will be shifted all the way to T = 0, in which case the open string vacuum would

be stable. In the presence of a separation, it is interesting to see whether as the

temperature decreases the system will start rolling towards one or other of the zero

temperature minima.

5.4.1 Low Temperature

As a warm up calculation and in order to check that our expression for the free energy

of open strings in eq. (5.23), reproduces known results in the limit of small separation

between the D(p-1)-D(p−1) pair (equivalently small A in the Dp-Dp T-dual system),

let us study the low temperature approximation of eq. (5.23).

In [105, 106] it is shown that starting at zero temperature with the minimum of the

potential at T =∞, as the temperature increases the vacuum is shifted from T =∞
to T = 0. In particular, it is shown that the position of the tachyon minimum, Tmin,

moves almost linearly towards T = 0 as the temperature increases.

In this subsection we will recover this result in the more general background in

which a Wilson line is present. In the large β limit, we can approximate the free

energy (5.23) by the large τ contributions to the integral. In this limit the θ-functions

become

θ′1(0|iτ) ∼ 2e−
πτ
4

θ2(0|iτ) ∼ 2e−
πτ
4

θ3(0|iτ) ∼ 1 + 2e−πτ

θ4(0|iτ) ∼ 1− 2e−πτ

Using the above expressions, the free energy becomes

F (T, β) ∼ −16π4Vd
βd+1
H

∫ ∞
0

dτ τ−
d+3
2 exp

[
−π
(
T 2 + 2α′A2

(
T 4 − 4T 2 + 1

)
− 1
)
τ − π β2

β2
Hτ

]
(5.25)
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This integral can be rewritten in terms of the modified K-Bessel function as

F (T, β) = −4Vd

(
π
√

2f(T,A)− 1

βHβ

) d+1
2

K d+1
2

(
2π
√

2f(T,A)− 1

βH
β

)
(5.26)

where we defined

f(T,A) =
T

2

2

+ α′A2
(
T 4 − 4T 2 + 1

)
In the limit in which both T and β are very large the free energy becomes

F (T, β) ∼ −2
d
2π

d+1
2 Vd

β
d
2
Hβ

d
2

+1
exp

(
−2πβ

βH

√
2f(T,A)

)
f(T,A)

d
2 (5.27)

Inserting this expression in the effective potential (5.15) and minimizing it w.r.t. T

leads to the following condition

T 2
min −

2πβ

βH

√
2f(Tmin, A) = 0 (5.28)

In the case A = 0 we simply have f(T,A = 0) = T
2

2
and therefore we get:

Tmin = 2π β
βH
. (5.29)

If A 6= 0, let’s assume that its absolute value is A < 1√
2α

: we are in the regime in

which T = 0 is a maximum of the potential and the tachyon has negative mass near

the origin. Then, if T is large but (A2 T 2) � 1, the minimum is found by requiring

that

T 2
min −

2πβ Tmin

βH

√
1 + 2α′A2T 2

min ∼ 0

and by expanding the square root

T 2
min −

2πβ Tmin

βH

(
1 + α′A2T 2

min +O(A4 T 4
min)

)
∼ 0. (5.30)

The solution of the previous equation is either Tmin = 0, which is not in the T � 1

approximation, or

T± ,min =
βH ±

√
β2
H − 16π2α′A2β2

4α′A2πβ
(5.31)

Again here we assume that β is large, but β A � 1 thus the square root can be

141



Chapter 5. D-anti-D branes at finite temperature

expanded in terms of (β2A2)

T− = 2π
β

βH
+ 8α′A2π3 β

3

β3
H

+O(α′2A4 β
4

β4
H

)

T+ =
βH

4πα′A2β
− 2πβ

βH
− 8A2π3β3

β3
H

+O(α′2A4 β
4

β4
H

) (5.32)

T− is the solution we announced at the beginning of this section and it is in agreement

with [105] and [106]. We see that, as the temperature increases, this minimum shifts

almost linearly towards T = 0.2

The other solution T+ has an opposite behaviour compared to the previous results,

namely, the minimum increases as the temperature increases. In fact, we see that this

solution violates the approximation we made, namely A2T 2 << 1 and β A� 1. For

example, for A = 10−7 and β ∼ O(103) we get T+ ∼ 1011 which gives A2T 2 >> 1.

At low temperature, no phase transition occurs regardless of the value of A. To see

this, expand eq. (5.28) around large T , this time taking A = O(1). Then

∂Veff (T, β)

∂T
= 0→ T ? =

(
2

α′

)1/4
√
πβ (1− 4A2α′)√

A
(
βH − 2

√
2Aβπ

√
α′
) (5.33)

Computing the second derivative of the potential in this point, we have:

∂2Veff (T, β)

∂T 2
|T=T ? = 0→ βcr = − βH

2
√

2α′πA
(5.34)

which is negative and clearly indicates the absence of a second order phase transition

at low temperature.

Finally, before moving on to consider the high temperature regime, notice that

these results can also be found by considering the tachyon field alone, ignoring the

contribution of all other open string modes to the free energy of the system [105].

The reason is that as long as the temperature is low compared to the Hagedorn

temperature, the tachyon has the lowest mass and its contribution is dominant.

In this setup, the effective potential, e.g. of a D9-D9 system is given by the sum of the

zero temperature tachyon potential and the free energy of the brane-antibrane system

at finite temperature T = β−1. The one-loop free energy density for the tachyonic

2Note that the coefficient of the linear term in β in eq. (5.31) differs from [106] due to the different
normalization we adopted in eq. (5.23).
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degree of freedom in 9 + 1-dimensional space is given by

F(T, β) =
1

β

∫
d9k

(2π)9
log
(

1− e−βuk
)

(5.35)

where uk =
√
k2 + M̃2

NS , and M̃NS is given by eq. (5.20) in which the bosonic degrees

of freedom NB and NNS are set to zero. Expanding the logarithm and performing

the integration one gets:

F(T, β) = −
∞∑
n=1

(βn)5π−52−4M̃5
NSK5(nβM̃NS) (5.36)

where K5(z) is the modified Bessel function. At low temperature (large β) we keep

only the first term in the previous sum, obtaining

F(T, β) ∼ −2(2π)−5(M̃NS/β)5K5(βM̃NS) (5.37)

which agrees with the free energy eq. (5.27) after we expand it in the limit in which

both T and β are very large.

5.4.2 High Temperature

We will now use the expression for the free energy eq. (5.23) in order to investigate

the behavior of the model at high temperature, that is to say, at a temperature close

to, but below, the Hagedorn temperature. As we discussed earlier in section 5.3, in

this case the canonical ensemble is generally not reliable and we should adopt the mi-

crocanonical description in order to compute thermodynamical quantities. However,

as we argued there, for the case of D9-D9 pairs with constant Wilson line, the canon-

ical ensemble agrees with the computations made in the microcanonical ensemble.

Thus we will focus our attention on the D9-D9 system with A 6= 0.

In contrast to the low temperature case discussed before, we now want to expand

the integral in eq. (5.23) near τ = 0. To facilitate this, it is convenient to introduce

the variable

t =
1

τ

and consider the large t region expansion.

Using the modular transformation of θ functions and extracting the leading term in
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the large t region near the Hagedorn singularity, we obtain from (5.23)

F (T, x) ∼ −α
′ d−p+D

2 Vd
2
D
2
−2βd+1

H

( ∏p−d
I=1 R

2
I∏D

i=p−d+1R
2
i

)
×

∫ ∞
Λ

dt t
D+d−9

2 exp

[
−
π
(
T 2 + 2M2

A

)
t

− π
(
x2 − 1

)
t

]
×

p−d∏
I=1

θ3

(
0

∣∣∣∣ iR2
It

2α′

) D∏
i=p−d+1

θ3

(
0

∣∣∣∣ iα′t2R2
i

)
(5.38)

where Λ is a cutoff and we have defined x = β
βH

. In (5.38) we have in mind the case

p = 9, d = 8, D = 1.

We are interested in the behaviour of the system at the origin of field space, namely

near T = 0, therefore, we expand the previous expression around this limit and we

keep only the lower order terms. As shown in [107], the additional contributions from

the quantized winding and momenta in (5.38) may modify the leading order Hagedorn

singularity if the compactification radii are much bigger than the string scale. In the

case where p = 9, d=8, D=1 there is only quantized momenta on the circle (since it

necessarily lies in a direction parallel to the D9). If the radius of this circle is close

to the string scale then as shown in [107] the Hagedorn singularity is dominant and

the expression (5.38) becomes

F (T, x) ∼ −CVp
βH

∫ ∞
Λ

dt exp

[
−π
(
x2 − 1

)
t− 2α′A2π

t

]
×

×
[
t
p−9

2 +−π
(
T 2 + 2α′A2

(
T 4 − 4T 2

))
t
p−11

2

]
(5.39)

where we have replaced p = d+D and defined

C =
α′ d−p+

D
2

2
D
2
−2βdH

∏D
i=p−d+1Ri

Vp = Vd
p−d∏
I=1

RI (5.40)

On the other hand the same will be true if we take the radius R1 ≤
√
α′ and assume

that the energy of our system is sufficient to excite the quantized momentum modes

along the S1. For the case p = 9, d=8, D=1 the latter condition means we may

consider small R1 and large t such that R2
1 t is still sufficiently large to allow us to

144



Chapter 5. D-anti-D branes at finite temperature

approximate θ3

(
0

∣∣∣∣ i R2
1t

2α′

)
by unity.

Under this assumption, we can expand the exponential containing A in the previous

expression, as long as A ∼ O(1). Keeping only the first two terms we find:

F (T, x) ∼ −CVp
βH

∫ ∞
Λ

dt e−π(x2−1)t
[
t
p−9

2 − π
(
2α′A2

(
T 4 − 4T 2 + 1

)
+ T 2

)
t
p−11

2

]
(5.41)

In the case in which p = 9 this integral can be easily done and the result is

F (T, x) ∼ −CVp
βH

[
1

π (x2 − 1)
− π

(
2α′A2

(
T 4 − 4T 2 + 1

)
+ T 2

)
Γ
(
0, π

(
x2 − 1

)
Λ
)]

(5.42)

We may fix the cutoff scale Λ by comparison with the free energy computed in the

microcanonical ensemble with A = 0, [106]. In particular, if we set Λ = (2π)−1, the

two results agree. We have now all the ingredients to write the effective potential

in eq. (5.15) for the D9-D9 pair with constant Wilson line A, in order to study the

phase transitions.

The critical temperature βcr and the value of the tachyon Tcr at which the phase

transition occurs can be found by finding the solutions of the equation:

∂Veff (T, β)

∂T
= V ′ = 0 (5.43)

∂2Veff (T, β)

∂T 2
= V ′′ = 0 (5.44)

We have:

V ′ = T9 e
−T 2

T
(
8A2α′ − 4

(
2A2α′T 2 + 1

))
+

Cπ

βH

(
2
(
4T 3 − 8T

)
α′A2 + 2T

)
Γ
(
0, π

(
x2 − 1

)
Λ
)

(5.45)

A clear critical point is Tcr = 0. Substituting this value in V ′′eff = 0 gives the following

condition

Γ
(
0, π

(
x2
cr − 1

)
Λ
)

=
2βHT9

(
2A2α′ − 1

)
Cπ (8A2α′ − 1)

(5.46)

This equation is important, because it allows us to compute an approximate ex-

pression for the critical temperature at the point Tcr = 0.3 However, we note that

3The divergence in the rhs of eq.(5.46) coming from the vanishing of the denominator is only
apparent since it is due to the truncation to the second order term in the expansion of eq. (5.39)
around large t. The full expression of the free energy (5.39) is not divergent for any value of A.
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whereas the lhs of eq. (5.46) is positive definite, the rhs is positive definite only when

0 ≤ A ≤ Acr
2 and A > Acr. Therefore there is no phase transition at T = 0 for

Acr
2 ≤ A ≤ Acr.
When 0 ≤ A ≤ Acr

2 or A > Acr we can expand the gamma function in eq.(5.46)

near x = 1 using the fact that

Γ(0, t) = −γ − log t+O(t)

and we find

βcr ∼ βH

[
1 + exp

(
− 16

π gs

(
2A2α′ − 1

)
(8A2α′ − 1)

− γ

)]
. (5.47)

where we have set Λ = 1
2π . For weak coupling, gs needs to be small, therefore,

the argument of the exponential in the previous equation is large and negative which

means that the critical temperature is very close the the Hagedorn temperature. (The

limit of A→ 0 of this expression gives the results that Hotta found in [106].) Let us

try now to find other solutions for the system of equations (5.43) and (5.44). Isolating

the gamma-function from the first equation and substituting it into the second one

gives the following condition for the presence of critical points:

8e−T
2
T 2T9

(
8
(
T 4 − 3T 2 + 3

)
α′2A4 + 2

(
3T 2 − 4

)
α′A2 + 1

)
4 (T 2 − 2)α′A2 + 1

= 0 (5.48)

Except for the point Tcr = 0, 4 other possible solutions to the previous equation are

T 2
± =

12α′2A4 − 3α′A2 ± α′A2
√
−48α′2A4 − 8α′A2 + 1

8A4α′2
(5.49)

The argument of the square root is positive definite only for 0 < A < 1
2
√

3α′
, but for

these values of A one can verify that T 2
± is negative, giving an imaginary T .

We conclude then that there is only a second order phase transition at T = 0.

5.4.3 Phase Structure

In order to study and understand the phase transitions within a system consisting

of a D9-D9 -pair at high temperature, standard thermal field theory reasoning can

be very useful: the minima of the effective potential at high temperature are located

around those values of T which minimize the tachyon mass at zero temperature and

4The point T = +∞ solves the equation (5.48) but it is out the range of our approximation, namely,
we have expanded the free energy around T = 0.
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hence increase the entropy of the tachyon gas.

Recall that the mass of the tachyon in the presence of a Wilson line was given in eq.

(5.12) which we rewrite here for our convenience in terms of real T :

M2 =
∂2V (φ)

∂φ2
=

1

α′

[
T 2 − 1

2
+ α′A2

(
T 4 − 4T 2 + 1

)]
(5.50)

The extrema of M2(T ) above are given by

T1 = 0 (5.51)

and

T2 = ±
√

8α′A2 − 1

2A
√
α′

(5.52)

The second derivative of eq. (5.50) evaluated at T1 is (1−8α′A2)/α′ which is positive

for A < 1
2Acr. Therefore, for A < 1

2Acr we expect that at high temperatures, T = 0

is a minimum of the effective potential. If instead A > 1
2Acr, the point T = 0 is a

local maximum, the minimum being T2 6= 0.

We will now investigate the phase structure of our system in the 3 cases where

0 ≤ A ≤ 1
2Acr,

Acr
2 < A < Acr or A > Acr respectively.

0 ≤ A ≤ 1
2Acr

In this case, we know that there is a phase transition at T = 0 which is also a minimum

at high temperature. Referring to Figure 5.2, we find that:

1. When the temperature is slightly above to the critical temperature and close

to the Hagedorn temperature, i.e. x ∼ 1, we expect that the system will be at the

minimum at T = 0. Therefore, for these temperatures and for 0 ≤ A ≤ 1
2Acr the

open string vacuum is stable.

We also see in Figure 5.2 that T = 0 is actually a global minimum of the effective

potential and the latter is negative around this point. To understand why this is the

case, consider for example when A = 0. The zero temperature potential becomes

V0|{T=0,A=0} = 2T9 and the finite temperature contribution can be obtained from eq.

(5.42)

F (0, x)|A=0 ∼ −
C V9

π βH (x2 − 1)
(5.53)
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Figure 5.2: Phase Transition for temperatures close to the Hagedorn temperature and sep-
aration, 0 < A < Acr

2 . The plots show the effective potential as derived from
eq. (5.6) and eq. (5.38) using numerical integration, for various values of the
temperature. We chose the values A = 0.3Acr, gs = 0.1, α′ = 1/2, Λ = 1

2π ,
p = 9, d = 8, D = 1 in these plots.

At the critical temperature, this expression can be rewritten using eq. (5.47) as

F (0, xcr) ∼ −
2C V9

πβH
exp

(
16

π gs
− γ
)

(5.54)

At weak coupling, gs is small and consequently the value of the free energy is much

larger than the zero temperature piece, resulting in the effective potential becoming

negative around T = 0.

2. When the temperature is equal to the critical temperature given by (5.46) the

minimum at T = 0 becomes flat and is uplifted so that the potential energy becomes

positive.

3. For temperatures lower than this critical temperature the point T = 0 is a global

maximum and the tachyon field will start rolling towards T =∞ and the system will

undergo tachyon condensation.

Moreover, we find that the value of the critical temperature for a second order

phase transition at the point T = 0 is proportional to the value of the Wilson line A:
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the greater the value of A, the closer the critical temperature βcr is to the Hagedorn

temperature. It therefore requires more energy to produce a separated D8-D8 than a

coincident one.

Acr
2 < A < Acr

In this case, we know from eq. (5.46) that there is no phase transition at T = 0, in fact

there is no second order phase transition at all. At high temperatures, thermodynamic

reasoning tells us that the system is in a global minimum of the effective potential

which is located at T ? ∼ T2 given in eq. (5.52) while the point T = 0 is a local

maximum. Then, when the temperature decreases this minimum is uplifted and

becomes shallower and shallower until it disappears at lower temperatures giving the

zero temperature potential as the effective potential. (See Figure 5.3.)

0.5 1.T! 1.5 2. 2.5 33
T

"0.0006

"0.0005

"0.0004

"0.0003

"0.0002

"0.0001

Veff

Acr
2
# A # Acr

0.5 1.0 1.5 2.0 2.5 3.0
T

0.00001

0.00002

0.00003

0.00004

Veff

Figure 5.3: Phase Transition for temperatures close to the Hagedorn temperature and sep-
aration, Acr

2 < A < Acr. The plots show the effective potential as derived
from eq. (5.6) and eq. (5.38) using numerical integration, for various values of
the temperature and for the choice A = 0.7Acr, gs = 0.1, α′ = 1/2, Λ = 1

2π ,
p = 9, d = 8, D = 1. The temperatures are the following: in the left hand plot,
β = 1.01βH ; In the right hand plot, β = (1.2, 1.3, 1.6, 2.8)βH for the sequence
of curves displayed from left to right.

A > Acr

In this case, referring to Figure 5.4 we find that:

1. At temperatures very close to the Hagedorn temperature, the system is in a global

and deep minimum of the effective potential, say T ?, which is not at the origin of the

tachyon space. The point T = 0 is a local maximum at this temperature.

2. When the temperature approaches the critical temperature, given by eq. (5.46),

the point T = 0 becomes flat and there is a second order phase transition in this
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Figure 5.4: Phase Transition for temperatures close to the Hagedorn temperature and sep-
aration, A > Acr. The plots show the effective potential as derived from eq.
(5.6) and eq. (5.38) using numerical integration and the following parameters
choices : A = 1.1Acr, gs = 0.1, α′ = 1/2, Λ = 1/2π, p = 9, d = 8, D = 1. The
temperature is the same in both plots: β = 1.01βH . The left plot is a zoom on
the region of the effective potential close to T = 0 whereas the right one shows
the deep minimum at T = T ?.

point. (see left plot of Figure 5.5). However, the second minimum continues to exist

and it is still deep.

3. For temperatures below this critical temperature, we have two minima T = 0

and T = T ?. (See right plot of Figure 5.5). As the temperature continues to decrease

the minimum T ? becomes shallow and eventually will disappear.

4. Eventually, close to zero temperature, the minimum T ? has disappeared and the

system will undergo tachyon condensation.

From our findings, it seems unlikely that at zero temperature the system will be

in the open string minimum T = 0 but rather in the closed string minimum at

T =∞. This is because, unless finite temperature tunneling effects happen between

the two minima when the separation barrier is short, the system will likely find itself

in the minimum T = T ? at high temperature and as the temperature decreases, this

minimum will become shallower and the tachyon field will eventually undergo tachyon

condensation in the closed string vacuum.

5.5 Conclusions

In this chapter we have investigated the phase structure of a Dp-Dp pair at finite

temperature, including a constant Wilson line A wrapping a spatial circle S1. By

T-dualizing along the S1, this system is mapped to a D(p-1)-D(p − 1) pair where

the branes are parallel but separated by a distance d along the dual circle S1 with
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Figure 5.5: Phase transition for temperatures below the critical temperature and separation,
A > Acr. The plots show the effective potential as derived from eq. (5.6) and
eq. (5.38) using numerical integration, with the following parameter choices:
A = 1.1Acr, gs = 0.1, α′ = 1/2, Λ = 1

2π , p = 9, d = 8, D = 1. The temperatures
are the followings: in the left plots β = (1.199, 2.4, )βH for the lower and upper
curves; in the right hand plot β = (7.8, 8.0, 8.6)βH for the three curves starting
from the lower.

d ∼ |A|. Due to the limitations of the canonical ensemble as we take the temperatures

close to the Hagerdorn transition, our results are mainly focused on the p = 9 case.

The extension to all other values of ‘p’ can be found by extending the microcanonical

ensemble calculations of [106, 107] with the inclusion of a non-vanishing Wilson line

A.

We found that the inclusion of A makes the effective potential acquire two minima

at finite temperature if A > Acr compared to the situation with A < Acr (which

includes the case A = 0 of coincident Dp-Dp branes studied in [105, 106]). This

raised the question concerning which of the two minima our system is likely to be

found. If we consider the case where we are at high temperatures, close to but below

the Hagedorn temperature, then there is a single minimum with T 6= 0, indicating

the open string vacuum is unstable. As the temperature drops a second order phase

transition occurs at the origin T = 0 where a new minimum develops which one can

interpret as a meta-stable open string vacuum. However unless there are very special

initial conditions it is unlikely that the system can be found in this metastable state

but rather the second minimum at T 6= 0. The latter coincides with the closed string

vacuum T →∞ as the temperature approaches zero.

If instead, A ≤ Acr, then we showed that there is a phase transition in T = 0 only

for 0 ≤ A ≤ Acr
2 . In particular if this condition is satisfied, T = 0 is a global minimum

of the effective potential which is negative at high temperature and the system of a

D9-D9 pair is stable. Then as the temperature decreases this minimum is uplifted
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and a second order phase transition occurs.

Notice that in the dual picture, this implies that the separated D8-D8 pairs undergo

a phase transition, even in the case that the branes become coincident. This might

appear at odds with the results of [106], where it was found that no phase transition

occurred in a coincident Dp-Dp pair with p < 9. However, recall that in the dual

system the D8-D8 pair have one perpendicular spatial direction compactified on a

circle, the branes span all non-compact directions. In [107], phase transitions for

a Dp-Dp pair were considered when some spatial dimensions are compactified on a

torus and it was shown that a phase transition will occur for a coincident Dp-Dp

pair even with p < 9 as long as the branes span all the non-compact directions. Thus

our results are consistent with those in [107].

For Acr
2 < A ≤ Acr we showed that there is no phase transition near T = 0. At high

temperature the system is in a minimum away from the origin. As the temperature

decreases this minimum eventually disappears.

Our analysis in this paper is directed mainly at separated D8-D8 pairs because of

the limitations of the canonical ensemble for high temperatures. To properly study the

case of separated Dp-Dp pairs with p ≤ 7 (where we assume separation along a single

compact direction) will require use of the microcanonical ensemble and extension of

the complex temperature techniques used in the case of coincident Dp-Dp pairs,

considered in [106].

Finally, even if the D8-D8 system were to find itself in the metastable minimum

at T = 0 as the temperature decreases, one should then consider the possibility

that quantum tunneling effects can lead to the nucleation of closed string vacua at

T 6= 0. In the zero temperature case, [131] considered the possibility of tachyon

tunnelling between the two minima of the effective potential when A > Acr. It would

be interesting to extend this analysis in the case of finite temperature since then the

barrier height and width between the two minima becomes a function of temperature

so that it is not a priori obvious if tunnelling effects will be suppressed or not.

152



Bibliography
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