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ABSTRACT 

 

Approximately one-third of the global population is infected with tuberculosis causing 

approximately 1.7 million deaths. Currently, the BCG vaccine is used to protect 

against TB, but it cannot prevent primary infection or reactivation of latent infection. 

Ideally a vaccine should protect against a diverse array of Mycobacterium 

tuberculosis strains and promote a strong, long-lasting TH1 cell-mediated immune 

response. Whilst evaluating the efficiency of novel vaccines using laboratory control 

strains (M. tuberculosis H37Rv, H37Ra and M. bovis-BCG), it is important to test 

efficacy against a representative panel of wild-type circulating strains. In England 

42.2% of TB cases are reported in London and the diversity of nationalities generates 

a diverse pool of strains consisting of globally representative TB strains. The aim of 

the study was to construct a representative panel of strains for vaccine evaluation 

studies and general TB research. 

 

Common M. tuberculosis strains were identified by performing molecular MIRU-

VNTR and spoligotyping on 2363 isolates from TB cases reported in London during a 

one-year period. Epidemiological analysis demonstrated there were representatives 

from 13 global regions, including high TB burden countries. An algorithm was 

designed to select strains for a preliminary panel based on associations between 

MTBC families in clusters of more common strains, the country of birth and VNTR 

sub-clusters. The preliminary panel contained 42 MTBC strains belonging to 10 

MTBC families from patients born in 17 countries. 

 

Results of phylogenetic analysis of all 2363 isolates was used to select a smaller panel 

of strains from the preliminary panel to represent MTBC lineages to investigate if 

wild-type strains were phenotypically similar.  The final panel included five strains 

from each of the Baker et al., 2004 M. tuberculosis lineages (M. tuberculosis Beijing, 

LAM10, two CAS, EAI5 strains representing lineage I, II, III, IV, respectively) and 

an M. africanum strain. 

 

In vitro tissue culture experiments demonstrated significantly higher growth of the 

Beijing strain compared to the other wild-type and laboratory strains. Higher growth 

rates of this strain were also observed in a cell-free culture system. Aerosol challenge 

of guinea pigs with wild-type strains showed a quicker dissemination of the EAI5 
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strain from the lung to the spleen 16 days post-challenge, but significantly higher 

c.f.u. count of the Beijing strain in the spleen 56 days post-challenge. Collectively, the 

data demonstrated that there are phenotypic differences between wild-type circulating 

MTBC strains. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 TUBERCULOSIS – THE DISEASE 

 

1.1.1 Epidemiology 

Globally, tuberculosis (TB) remains one of the major infectious causes of mortality 

resulting annually in 2 million deaths (WHO 2009). According to WHO reports, 

approximately one-third of the global population (nearly 2 billion people) is infected 

with the bacterium causing TB, with 9 million new cases reported annually leading to 

approximately 1.6 million to 1.7 million deaths (WHO 2007). Global rates of active 

TB are increasing at nearly 1 percent (%) per year (Dye 2006). The high TB burden 

areas include Asia (the South-East Asia and Western Pacific regions) and the African 

Region, which account for 55% and 31% of global cases (WHO 2009). The Americas, 

European and Eastern Mediterranean regions accounted for smaller proportions of the 

global cases. 

 

In the United Kingdom (UK), the Health Protection Agency (HPA) reported 8417 TB 

cases in 2007, which is a large increase from the 6726 cases reported in 2000 (HPA 

2008). The TB incidence varies significantly between regions, the lowest incidence 

being in Northern Ireland and the highest in England, which accounted for 7742 of the 

8417 cases; even more astoundingly, 42.2% of the cases reported in England were 

from patients living in London (HPA 2007). In 2007, 3265 cases were notified in the 

city giving an incidence of 43.2/100,000 in the population. 

 

A comparison of TB notifications in London showed that the highest proportions 

(20.6, 24.4, and 20.5%) of patients were from the North East, North West and South 

East areas of London, respectively (HPA 2007). Approximately 75% of people with 

TB in London were born abroad, mainly from high TB incidence countries within the 

Indian subcontinent and African regions (Anderson et al., 2007). With patients from 

so many different countries, it has previously been demonstrated that there are a 

plethora of M. tuberculosis strains circulating in London originating within migrant 

patients from different countries (Dale et al., 2005). 
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The most common causative bacterium of TB in humans is Mycobacterium 

tuberculosis, which belongs to the M. tuberculosis complex (MTBC) group. Other 

species within the group include M. bovis, M. caprae, M. africanum, M. microti, and 

M. canettii. The number of MTBC isolates reported by reference laboratories in the 

UK increased by over 50% between 1994 and 2003 (3264 isolates in 1994, to 4944 

isolates in 2003) (HPA 2008). 

 

1.1.2 Infection and immune response 

Tuberculosis is spread via aerosols, which contain TB bacilli, when infected 

individuals with pulmonary TB cough or sneeze and other individuals inhale the 

droplets containing bacteria. In order to cause infection only a small number of bacilli 

need to be inhaled. An individual with untreated active TB can infect 10 to 15 other 

people on average per year if untreated (WHO 2007). Transmission is more likely 

between members of a family, in schools, prisons and hospitals due to the prolonged 

exposure to the same infectious individuals. The disease is associated with poverty 

and it has been observed that the ideal conditions for rapid spread of TB are crowded 

working and living conditions, as are seen in institutions such as prisons, hospitals, 

crowded refugee shelters and camps (Drobniewski et al., 2000; Drobniewski et al., 

2002; Ruddy et al., 2005; Huang et al., 2007; Schmid et al., 2008). Improved social 

conditions, good institutional cross infection measures and successful treatment 

programmes aid in the reduction of TB incidence. Global migration from high 

incidence countries is a significant influential factor in the rapid spread of TB 

worldwide as approximately 50% of TB cases in industrialised countries are found in 

migrants or those born abroad (HPA 2006).  

 

Individuals who are latently infected with TB bacteria are asymptomatic; infection 

can be detected using tuberculin skin test (TST) or by ex-vivo interferon gamma 

release assays (IGRA). Approximately 10% of infected patients will go on to develop 

active disease, but up to half will develop active TB if severely immunocompromised 

such as co-infection with human immunodeficiency virus (HIV). 

 

M. tuberculosis infection is controlled by the cellular immune system; where this fails 

the patient develops the classic symptoms of fever, weight loss and persistent 

coughing with phlegm. In some cases, the immune system is able to destroy all TB 

bacilli, but in the majority of cases some of the TB bacilli will lay dormant for many 
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years whilst the immune system is able to keep them under control (Crofton et al., 

1992). Figure 1.1 illustrates the process of infection and the progression to disease. 

 

Wallgren, 1948, defined four stages in the infection with TB, the timescales involved 

and the outcomes (Wallgren 1948). Three to eight weeks after bacilli have been 

inhaled and enter the alveoli, the mycobacteria circulate via the lymphatic system to 

lymph nodes in the lung. This first stage marks the point at which tuberculin reactivity 

occurs. The second stage involves haematogenous dissemination of bacteria to other 

parts of the lung and to other organs. This can last for three months and may lead to 

TB meningitis or miliary TB that can be acute or fatal. The next stage, which can be 

delayed for up to two years, lasts for approximately three to seven months involving 

dissemination of bacteria into the pleural space and inflammation of the pleural 

surfaces causing severe chest pain. In the majority of people that are infected with TB, 

the disease does not progress to the final stage. 

 

The process of infection is now known to be much more complex involving 

components of the mycobacterial cell and the host immune system. The bacteria alone 

do not cause disease as the overall immunopathology is a combination of host and 

pathogen interactions. Evolution has not only allowed M. tuberculosis to survive the 

host immune system but to also persist for decades in many infected individuals with 

latent infection (Cole et al., 1998; Lillebaek et al., 2002; Hsu et al., 2003). 

  

Recent reviews by Smith, 2003 and Doherty and Andersen, 2005 describe current 

concepts of the process of infection (Smith 2003; Doherty et al., 2005). Figure 1.2 

illustrates the disease process described by Doherty and Andersen, 2005. The detailed 

events, including which cells and when they are involved, according to Smith, 2003, 

will be described in reference to points 1 to 4. When the TB bacilli in droplets enter 

the alveoli (point 1; Figure 1.2), macrophages are the first cells that the bacilli come 

into contact with, but it is also possible that bacilli are ingested by alveolar epithelial 

type II pneumocytes, which are more abundant than macrophages (Bermudez et al., 

1996; Mehta et al., 1996). Dendritic cells (DC) are of great importance as well 

because they have improved antigen presenting and migratory properties ideal for T 

cell activation with M. tuberculosis antigens and for bacterial dissemination, 

respectively, than macrophages. 
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Figure 1.1 The progression to disease after infection with TB bacilli. Taken from 
Crofton et al., 1992 (Crofton et al., 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, more is understood about the role of macrophages. The primary contact of 

TB bacilli with the host immune system is via the alveolar macrophages and 

surfactants. When bacterial cells come into contact with mannose and possibly 

complement receptors on macrophages, phagocytosis of bacteria takes place and key 

surfactant proteins affect this process in different ways. Phospholipids are a major 

component of surfactants, but there is also 5% to 10% protein present and the primary 

role of surfactants is to decrease the alveolar lining surface tension (Hawgood et al., 

1990). 

 

Surfactant proteins A (SP-A) and D (SP-D) are two surfactants that have been 

identified as being involved in host immunity (Tenner et al., 1989; Persson et al., 

1990; Voorhout et al., 1992; Haagsman 1994; Gaynor et al., 1995; Ferguson et al., 

1999). Both SP-A and SP-D are produced and secreted by alveolar type II epithelial 

cells (Hawgood et al., 1990; Voorhout et al., 1992). The major constituent of 

surfactant is the nonserum protein, SP-A, which is involved in surfactant lipid 

homeostasis, and oligosaccharides of SP-A come together to produce a binding site 
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with increased valency for various molecules including bacterial cell surface 

molecules and receptors on the surface of alveolar type II cells and macrophages 

(Hawgood et al., 1990; Haagsman 1994). Whilst SP-A can upregulate mannose 

receptor activity to enhance binding and phagocytosis of bacilli, SP-D blocks 

mannosyl oligosaccharide residues on the bacilli cell surface to attempt to stop any 

interactions with the macrophage mannose receptor, consequently inhibiting 

phagocytosis (Tenner et al., 1989; Persson et al., 1990; Gaynor et al., 1995; Ferguson 

et al., 1999). 

 

Once intracellular pathogens such as M. tuberculosis enter the macrophage, they exist 

in an endocytic vacuole known as a phagosome. However, whilst the phagosome 

usually fuses with lysosomes in an endocytic pathway to create unfavourable 

surroundings for the pathogen (for example by creating an acidic pH or producing 

toxic peptides, reactive oxygen intermediates and lysosomal enzymes), pathogenic M. 

tuberculosis prevent fusion of phagosomes with lysosomes that prevent the 

development of endosomes (Armstrong et al., 1975; Frehel et al., 1986). 

 

Normally after macrophages are infected and activated, proteases in the vesicles, 

which contain the bacteria, degrade proteins belonging to pathogens to produce 

fragments of peptides, which are transported to the cell surface via major 

histocompatibility complex class II (MHC-II) proteins so the peptides are presented to 

CD4+ T cells, which in their naïve state can differentiate into two types of T cells, TH1 

and TH2 cells, affecting the type of adaptive immune response elicited against the 

bacterial infection (Janeway et al., 2005). However, in the case of M. tuberculosis 

infection of macrophages, to support the studies which have demonstrated that the 

development of endosomes is inhibited, decreased MHC-II protein expression and 

decreased antigen presentation has been observed, meaning CD4+ T cells would not 

recognise infected macrophages (Noss et al., 2001).      

 

In the lungs, infected macrophages produce chemokines to attract cells such as 

neutrophils, lymphocytes and monocytes in their inactive forms (point 2; Figure 1.2), 

and in this form these cells are not sufficiently effective for eradication of bacteria 

(Fenton et al., 1996; van Crevel et al., 2002). Macrophage-derived giant cells and 

lymphocytes are components of granulomatous focal lesions that start to form, 

possibly aiding in the containment of the mycobacterial cells. A caseous centre of the 

 - 26 -



granuloma forms as cellular immunity develops and infected macrophages are killed. 

Around the caseous centre is a zone containing cells that were attracted to the infected 

macrophages (Fenton et al., 1996). There is decreased oxygen, an acidic pH and toxic 

fatty acids in the caseous tissue so bacteria are probably unable to multiply, but some 

bacilli may survive and remain dormant. At this point the infection is latent but can 

persist for the rest of the host’s life, with the host not displaying any symptoms or 

transmitting to other individuals. If the individual has efficient host immunity, 

infection may be permanently detained (point 3; Figure 1.2), leading to the eventual 

evolution of granulomas as small fibrous/calcified lesions (Fenton et al., 1996). 

 

On the other end of the scale, if an infected individual is not able to control the initial 

lung infection or the immune system of latently infected individuals becomes weaker 

(point 4; Figure 1.2) for various reasons, including HIV co-infection, treatment with 

immunosuppressive drugs, aging or malnutrition, the centre of the granuloma may 

liquefy providing revived mycobacterial bacilli with the rich medium required for 

replication (Converse et al., 1996). Active pulmonary or extrapulmonary TB can 

develop as bacteria escape the granuloma and spread to other regions of the lung or 

other tissues through the blood and lymphatic system, respectively. 

 

The exact mechanisms by which M. tuberculosis evade the host immune system are 

still not completely understood. Previous research has elucidated some of the key 

immunological defence mechanisms involved. Figure 1.3 shows some of the possible 

ways in which M. tuberculosis influences the immune system favouring its survival 

(Doherty et al., 2005). Macrophages serve as a habitat for TB bacilli over a long 

period of time and in order to make the environment within the cell more favourable, 

the bacteria influences gene expression within the macrophage. There is upregulation 

of genes encoding molecules that are essential for chemotaxis to attract other cells to 

the infection site, for example, interleukin (IL)-8, which aids in the recruitment of 

neutrophils, and IL-1β that plays a role in granulomatous inflammation (Volpe et al., 

2006). In their study, Volpe et al., 2006, also noted upregulation of macrophage-

derived chemokine (MDC), another chemoattractant that is important for many 

reasons including its influence on T helper type 2 cell activation, and functions of 

DCs and natural killer cells. 
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Figure 1.2 A diagram showing the events that take place within the lungs after an individual 
is infected with TB bacilli. The events occurring at each of the numbered points in the 
diagram are referred to in Section 1.1.2. Diagram adapted from Doherty and Andersen, 2005 
(Doherty et al., 2005). 
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Figure 1.3 A diagram showing how the immune system may kill M. tuberculosis via phagocytosis, and features that may interfere with the response. 
Taken from Doherty and Andersen, 2005 (Doherty et al., 2005). 
   

 

 

 

 

 

 

 

 

 

 

 

 



Whilst chemotaxis helps in the recruitment of cells to the site of infection, which 

would eventually lead to the formation of granulomas, a good inflammatory response 

is also essential. This was demonstrated by Sugawara et al., 2002, who showed that 

the inflammatory host response was strongly stimulated by long chain fatty acids 

expressed on the mycobacterium cell wall, such as mycolic acid (Sugawara et al., 

2002). These long chain fatty acids have multiple roles as they can encourage 

cytokine production, including those that regulate production of interferon-gamma 

(IFN)-γ, and can regulate apoptosis or survival of infected macrophages (Ryll et al., 

2001; Nuzzo et al., 2002). 

 

Increased production of IFN-γ is insufficient for eradicating mycobacterial cells as the 

downstream effects of IFN-γ are inhibited, by the bacteria or components on the 

bacterial cell wall, which modulate the effects of cytokine so it is advantageous for 

the bacteria (Ting et al., 1999). It seems that the necessary immune response to induce 

IFN-γ production is inhibited (Lienhardt et al., 2002). In the study by Lienhardt et al., 

2002, IFN-γ, which is produced by TH1 cells, and IL-4, produced by TH2 cells, were 

measured in vivo; there was a low Th1 and high Th2 response in TB patients 

demonstrating a Th1/ Th2 response imbalance that allows progression of TB to the 

disease state with a consequential poor clinical outcome. A Th1 immune response is 

vital for protection against TB infection and studies have shown that the cytokine IL-

12, which is secreted by infected DCs and macrophages, promote a Th1 response 

which leads to the secretion of other pro-inflammatory cytokines (Flynn et al., 1995). 

There is an increased production of pro-inflammatory cytokines, tumour necrosis 

factor-alpha (TNF-α) and IL-6, by macrophages after infection with virulent M. 

tuberculosis and these cytokines work to reduce mycobacterial burden (Ragno et al., 

2001; Volpe et al., 2006; Bhatt et al., 2007). The role of these two cytokines has been 

further discussed in Chapter 6 of the present study as cytokine production was 

investigated after infecting a tissue culture cell line with different MTBC strains. 

 

Other studies have shown that although a strong Th1 response may be elicited by M. 

tuberculosis this does not always lead to protection against the bacteria (Hovav et al., 

2003). Species within the MTBC specifically have a 27 kiloDalton (27-kDa) 

mycobacterial antigen and immune response to this lipoprotein induces secretion of 

IFN-γ, inducing a strong Th1 response. That there is no evident protective response 

seems to indicate that this lipoprotein is in fact a decoy that can be used to ultimately 



protect the pathogen. However there are lipoproteins that, whilst stimulating an 

immune response to protect the host, in fact have adverse effects. It has been 

suggested that the MTBC species specific 19-kDa antigen is expressed particularly to 

act as a competitive inhibitor; therefore, it would have a higher affinity for antigen 

presenting molecules than other antigens that would truly elicit an effective immune 

response (Yeremeev et al., 2000). Neyrolles et al., 2001 also found that trafficking of 

the 19-kDa lipoprotein within infected macrophages was completely isolated from 

live mycobacterial cells (Neyrolles et al., 2001). 

 

Mycobacterial cells need to be able to survive within the macrophage and obtain 

nutrients required for its survival. One mechanism by which mycobacterial cells 

survive is by disrupting maturation of the phagosome in which it resides, but fusion 

with other vesicles like lysosomes, membrane remodelling and trafficking can still 

take place (Russell et al., 1996). Therefore, M. tuberculosis bacteria can acquire 

essential nutrients, whilst exporting their own proteins. As well as disrupting 

maturation of phagosomes, DCs are specifically targeted by M. tuberculosis as 

interactions between dendritic cell-specific intercellular adhesion molecule-3-

grabbing non-integrin (DC-SIGN) and mycobacterial cell wall component, 

mannosylated lipoarabinomannan (ManLAM), means that the bacteria are internalised 

(Geijtenbeek et al., 2003). M. tuberculosis negatively influences DC maturation and 

positively influences production of IL-10, which is an anti-inflammatory cytokine that 

promotes immunosuppression, ultimately aiding in bacterial cell survival. 

 

Research so far has provided great insight into the process of infection by 

Mycobacterium species and its clinical progression. There is also increased 

understanding of how the mycobacteria are able to survive within the host and 

overcome the most challenging issues of the host immune system, even during its 

latent phase. It is highly possible that there are many other mechanisms and cytokines 

waiting to be discovered by which this pathogen is able to not only survive but to 

infect other individuals contributing to the potential virulence of MTBC strains. There 

are additional factors that play a role in the virulence of mycobacteria. 

 

1.1.3 Mycobacterial virulence factors  

As mentioned in Section 1.1.2, mycobacteria can direct an immune response to 

increase chances of survival (Russell et al., 1996; Geijtenbeek et al., 2003). The 
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degree to which particular strains are able to direct the immune response to self-

protect, therefore reflecting the virulence of strains, can potentially be measured by 

quantifying the amount of cytokines, such as IFN-γ, TNF-α, IL-2, -12 and -6, or 

monitoring the growth of mycobacteria in in vitro models such as monocytic THP-1 

cell line, therefore providing potential markers for virulence of mycobacterial strains 

(Fremond et al., 2004; Theus et al., 2004; Theus et al., 2005; Park et al., 2006; Lee et 

al., 2007; Sow et al., 2007). Identifying any differences in the virulence of M. 

tuberculosis strains, by monitoring the growth of strains in a THP-1 cell line model 

and in a cell-free culture system, and also measuring the production of TNF-α, IL-10, 

-1β and -6 have been demonstrated in the present study and is discussed in greater 

detail in Chapter 6. 

 

In vivo models have provided a good base for comparing virulence of mycobacterial 

strains and a common in vivo marker for virulence is extrapulmonary dissemination of 

TB bacilli as there are histological similarities between primary pulmonary lesions 

observed in guinea pigs and humans (Bhatia et al., 1961; Prabhakar et al., 1987). 

Many studies have used guinea pigs as models for comparing virulence of laboratory 

and wild-type, clinical strains and more importantly for evaluating the performance of 

novel vaccines after aerosol challenge of guinea pigs with TB culture (Bhatia et al., 

1961; Prabhakar et al., 1987; Williams et al., 2000; Williams et al., 2005; Williams et 

al., 2005; Vipond et al., 2006). One particular study by Williams et al., 2005 

demonstrated that the number of mycobacterial bacilli in the spleen at the early time 

point of 16 days post-challenge of guinea pigs with the TB culture provided a good 

marker of how virulent the strain is because an increased mycobacterial load in the 

spleen would indicate the faster dissemination of bacilli from the lungs (Williams et 

al., 2005). Virulence in this study was compared using the percentage weight gain 

data, lung and spleen mycobacterial load 16 and 56 days post-challenge and by 

observing the histopathology of lung and spleen tissue. The same protocol was 

adopted for the present study and is discussed in greater detail in Chapter 8.     

 

Other factors of virulence that have also been successfully identified, but not included 

in the present study, include differences in single-nucleotide polymorphisms (SNPs) 

between virulent M. bovis strains and all Bacillus Calmette–Guérin (BCG) strains 

(Garcia Pelayo et al., 2009). Garcia Pelayo et al., 2009 identified 115 nonsynonymous 

 - 32 -



SNPs (nsSNPs) which play a role in various functions affecting the virulence of 

strains, including central metabolism and transcriptional factors. 

 

M. tuberculosis bind selectively to fibronectin and this binding can be blocked by 

antibodies against members of the antigen 85 (Ag85) complex of fibronectin-binding 

proteins, which include Ag85A, Ag85B, and Ag85C, that are secreted and stored in 

the cell wall of M. tuberculosis (Abou-Zeid et al., 1988; Ratliff et al., 1988; Ratliff et 

al., 1993). Patti et al., 1994 demonstrated that the degree to which pathogens bind to 

fibronectin enhances the virulence of the pathogens as the specific binding could aid 

in the adherence and dissemination of the mycobacteria from the lungs to other organs 

and tissues (Patti et al., 1994). For this reason, proteins from the Ag85 complex 

family have been identified as potential virulence factors and mutating genes, fbpA, 

and fbpB, which express the proteins Ag85A and Ag85B, respectively, has helped to 

identify that fbpA has a function towards the pathogenesis of M. tuberculosis H37Rv 

as loss of expression led to decreased growth in human or mouse macrophage-like 

cell lines (Armitige et al., 2000). 

 

Further investigation of the mycobacterial cell wall chemistry has led to the 

identification of cell wall components that pose as factors of virulence. Microbial 

glycolipids, such as phenolic glycolipid-I from M. leprae, have a role in the virulence 

and pathogenicity by searching for toxic oxygen radicals (Neill et al., 1988; Chan et 

al., 1989). Lipoarabinomannan (LAM) is a complex cell wall-associated glycolipid 

produced abundantly by M. tuberculosis and M. leprae and is made up of mannose 

and arabinose saccharide units linked to a phosphatidylinositol moiety, which helps to 

attach LAM to the mycobacterial cell cytoplasmic membrane (Hunter et al., 1986). 

The LAM component is a suggested mycobacterial virulence factor as LAM provides 

protection against the antimicrobial activities of mononuclear phagocytes (Chan et al., 

1989). 

 

1.1.4 Current immunisation to TB and future novel vaccines  

The current vaccine against TB is the BCG vaccine, which has existed for over 80 

years, and which comes from the original M. bovis isolate at the Institut Pasteur in 

Lille after passaging numerous times from 1909 to 1921 to produce an attenuated 

vaccine strain (WHO 2004). Although reconstituted vaccines contain dead and viable 

M. bovis bacilli leading to variations between administered doses, the BCG vaccine is 
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currently the most widely used TB vaccine and in countries that are included in the 

national childhood immunization programme, the vaccine is administered to over 

80% of neonates and children. 

 

In the UK the BCG immunisation programme commenced in 1953 with the aim of 

protecting young people that just started working; the initial target of the vaccine was 

14 year old children that were just about to leave school (DofH 2006). By the 1960s, 

TB was commonly identified in immigrants from the countries of high TB prevalence 

so the BCG vaccine was administered to children of the new immigrants, even if they 

were born in the UK. The universal school immunisation programme continued until 

2005, when it was decided to suspend it as the TB rates in the British population had 

declined. Currently, the vaccination programme focuses on infants between the ages 

of 0 to 12 months that are born in a high incidence area or that have parents and 

grandparents that were born in a high incidence country (DofH 2006). 

 

Whilst the BCG vaccine provides protection in children against disseminated TB and 

meningitis, it has limited impact on TB transmission as the vaccine is not able to 

prevent primary infection with mycobacterial bacilli and more importantly, it cannot 

stop reactivation of latent pulmonary infection, which is the main source of 

transmission in communities (Rodrigues et al., 1993; WHO 2004). In vivo 

experiments in guinea pigs have demonstrated that the BCG vaccination may be more 

protective against M. bovis infection than infection with M. tuberculosis H37Rv 

(Williams et al., 2000). 

 

The global efficacy of BCG has varied from 0% to 80% in different studies with 

higher efficacy in industrialised countries compared to non-industrialised countries 

closer to the equator (Fine 1995; Fine et al., 1998; Brewer 2000). One reason 

proposed for the variation seen in vaccine efficiency was the difference in the 

exposure of individuals to environmental mycobacteria in the different countries 

because the bacilli in the environment might stimulate the immune system and 

thereby prevent an appropriate response to the BCG vaccine (Fine 1995; Fine et al., 

1998). There have also been variations in the effectiveness of the BCG vaccine 

amongst schoolchildren in the UK with protective levels ranging from 0% to between 

70 and 80% (Sutherland et al., 1987; Rodrigues et al., 1991). 
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The BCG vaccine provides protection for approximately 10 to 15 years after which 

protection may wane, although there is limited data on this (Sterne et al., 1998). As 

part of the BCG vaccination programme, it is not recommended to administer the 

vaccine to individuals over 16 years of age unless the person belongs to a high risk 

group, which includes laboratory and healthcare staff, or for the purposes of traveling 

abroad (DofH 2006). There is no evidence that repeat BCG vaccination increases or 

prolongs protection. 

 

Whilst the use of BCG vaccine is still recommended, there are advancements in 

research leading to a greater understanding of the complex interactions involved in the 

immunological response of the host and the bacteria, and subsequently increased 

research into novel vaccines against TB. Since the sequencing of M. tuberculosis 

H37Rv genome and its annotation by Cole et al., 1998, there has been a rapid 

expansion in the knowledge of the genetics involved in the survival and evolution of 

mycobacteria (Cole et al., 1998).  Ideally an effective vaccine should be able to 

protect individuals against all of the circulating M. tuberculosis strains and promote a 

strong and long-lasting TH1 cell-mediated immune response (refer to Section 1.1.2). 

 

Currently, there are major projects in operation to develop more effective TB 

vaccines. European collaborative projects, like the European Union (EU) TB Vaccine 

Cluster project, aim to develop new TB vaccines that are more effective than BCG. 

Such projects involve a step-wise evaluation of these novel vaccines starting by using 

mice, followed by evaluation in guinea pigs, and finally lead candidates may be tested 

in non-human primates, and/or humans. After observing the protection against 

virulent challenges and immunogenicity following the vaccination of mice with the 

novel vaccines, vaccine candidates that hold potential have been selected for 

evaluation in guinea pigs (Williams et al., 2005). Some of the vaccine candidates 

include recombinant protein (designed to over-express antigenic targets of M. 

tuberculosis that would elicit a protective immune response against TB infection), 

improved BCG strains expressing additional antigens, or the development of 

attenuated strains of M. tuberculosis and M. microti strains (Collins et al., 2001; 

Williams et al., 2005). Prime-boost vaccine strategies were also evaluated and 

involved immunising guinea pigs with BCG followed by a booster, which may be a 

sub-unit antigen expressed as a protein or delivered by a viral vector such as modified 

vaccinia virus Ankara (MVA) (McShane et al., 2004; McShane et al., 2005). 
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The prime-boost strategy, DNA prime MVA/Ag85A boost, which involved firstly 

immunising guinea pigs with DNA expressing Ag85A followed by MVA, provided 

significantly better protection in guinea pigs infected with M. tuberculosis H37Rv 

than in guinea pigs belonging to the saline control group (Williams et al., 2005). In 

this study, protection against TB infection had been determined in terms of prolonged 

survival of guinea pigs infected with TB after administering the DNA prime 

MVA/Ag85A boost, by the reduced number of mycobacterial bacilli in the spleen 

demonstrating slower dissemination of bacilli, and in terms of percentage lung 

consolidation demonstrating reduced lung pathology upon infection after being 

vaccinated using the prime-boost strategy.     

 

Other studies have investigated the potential of new vaccines, including attenuated, 

live vaccines, vaccines designed to increase the efficacy of the present BCG vaccine, 

subunit vaccines designed to supplement or boost the BCG vaccine, and 

deoxyribonucleic acid (DNA) vaccines (Hubbard et al., 1992; Olsen et al., 2003; Pym 

et al., 2003; Gupta et al., 2007). A summary of the different vaccines and their 

strategies have been summarised in Table 1.1, some of which have already been 

described previously in this section. 

 

Whilst live, attenuated vaccines offer great potential for protection against TB, it is a 

challenge to obtain a suitable balance between the level of attenuation and 

maintenance of immunogenicity (Gupta et al., 2007). Attenuated M. tuberculosis 

mutants present species-specific antigens, meaning these strains could potentially 

promote a more improved protection against TB infection than BCG 

(Sambandamurthy et al., 2002; Sambandamurthy et al., 2005). Protection against 

mycobacterial infection has been elicited by M. vaccae in mice as there are common 

antigens between M. tuberculosis and M. vaccae and a live, attenuated form of M. 

microti administered orally to mice provided better protection against infection with 

virulent M. tuberculosis than BCG (Hernandez-Pando et al., 1997; Manabe et al., 

2002).



Table 1.1 A table summarising the novel vaccine candidates that have been discussed in Section 1.1.4 
and additional vaccines that have been studied. Vaccines have been categorised as live, attenuated 
vaccines, recombinant BCG vaccines, subunit vaccines or DNA vaccines. Also included is a reference 
to the source and the study of the vaccines. The antigens described in the table are targets of M. 
tuberculosis that would elicit a protective immune response against TB infection. 
 

Type of 
vaccine Name of vaccine (brief description) Reference 

M. microti ATCC 19422  (Manabe et al., 2002) 

Heat inactivated M. vaccae  (Hernandez-Pando et al., 
1997) 

MVA expressing Ag85A (used as a booster after BCG 
vaccination) (McShane et al., 2004) 

MVA & fowlpox virus, FP9, 
both expressing Ag85A 

(used as a booster after BCG 
vaccination) (Williams et al., 2005) 

M. tuberculosis ΔRD1   (Hsu et al., 2003) 
M. tuberculosis ΔpurC  purine biosynthesis gene (Jackson et al., 1999) 
M. tuberculosis ΔmetB  methionine biosynthesis gene 
M. tuberculosis ΔproC  proline biosynthesis gene 
M. tuberculosis ΔtrpD  tryptophan biosynthesis gene 

(Smith et al., 2001) 

Live, 
attenuated 

M. tuberculosis ΔpanCpanD pantothenate biosynthesis gene (Sambandamurthy et al., 
2002) 

BCG :: RD1-2F9 expresses ESAT-6/CFP-10 (Pym et al., 2003) 
rBCG30 expressing Ag85A  (Horwitz et al., 2000) 

ΔureC hly+ rBCG (urease deficient mutant 
expressing listeriolysin O) (Grode et al., 2005) 

rBCG38 Tice (expresses the 38 kDa antigen 
of Ag85 complex)  

(Castanon-Arreola et al., 
2005) 

rBCG 19T (expresses the 19 kDa antigen 
of Ag85 complex)  

rBCG 38T (expresses the 38 kDa antigen 
of Ag85 complex)  

Recombinant 
BCG 

rBCG E6T (expresses ESAT-6)  

(Rao et al., 2003) 

pJI23 (DNA-64) (gene expressing MPT64 
antigen) 

pJI30 (DNA-85B) (gene expressing Ag85B) 
pJIE6 (DNA-E6) (gene expressing ESAT-6) 

(Kamath et al., 1999) 

Ag85B/ESAT-6 fusion 
protein  (Olsen et al., 2004; 

Langermans et al., 2005) 
Ag85B/TB 10.4 fusion 
protein  (Dietrich et al., 2005) 

Subunit 

single recombinant 
polyprotein Mtb72F 

(polyprotein made up of Mtb 
32 and Mtb 39 proteins) (Skeiky et al., 2004) 

Mtb72F DNA delivered as naked DNA (Skeiky et al., 2004) 

plasmid DNA Mtb 8.4 (expresses an immunoreactive 
T cell antigen) (Coler et al., 2001) 

MTB41-DNA (antigen eliciting a Th1 
response) (Skeiky et al., 2000) 

Ag85A DNA  (Tanghe et al., 2000) 
pE6/85 (expressing ESAT-6/Ag85B) (Derrick et al., 2004) 
MTB Ag ESat-6 
MTB Ag mpt64 
MTB Ag MPT63 
MTB Ag mpt8e 
MTB Ag Ag85b 
MTB Ag katG 
MTB Ag mtb12 
MTB Ag mtb8.4 
MTB Ag MTB39 

DNA 

MTB Ag 1818C 

all genes express M. 
tuberculosis antigens and were 
fused with tissue plasminogen 
activator (TPA) signal 
sequence & ubiquitin (Ub)  

(Delogu et al., 2002) 

 



Attempts to improve the efficacy of the BCG vaccine have been made by adding M. 

tuberculosis genes, which encode proteins known to mediate protection when used as 

subunit vaccines (Dietrich et al., 2006). The recombinant BCG vaccine, rBCG30, 

expresses and secretes the protein Ag85B and has improved protection against TB in 

guinea pig models (Horwitz et al., 2000). Increased protection was also observed in 

animal models administered with a recombinant vaccine expressing region of 

deletion-1 (RD1), but the disadvantage was that the vaccine strain became more 

virulent (Pym et al., 2003). The locus RD1 was selected because this locus contains 

the genes for Early Secreting Antigen Target-6 (ESAT-6) and Culture-filtrate 

proteins-10 (CFP-10), which are both immune targets. 

 

The subunit vaccines are based on the availability of proteins that are secreted by 

mycobacterial bacilli, for recognition of infected macrophages at an early stage in the 

immune response, thereby controlling growth and multiplication of mycobacterial 

cells (Dietrich et al., 2006). Similar targets to those used for preparing the 

recombinant BCG vaccines have also been adopted for some of the subunit vaccines 

being investigated. A significantly higher degree of protection is provided by ESAT-6 

as there is strong recognition of this protein by T cells and also by Ag85A and 

Ag85B, which are also secreted by M. tuberculosis and are crucial targets for a 

protective human T-cell response against the pathogen (Boesen et al., 1995; Kamath 

et al., 1999). In addition to subunit vaccines with single proteins, fusion protein 

subunit vaccines have also been evaluated, including a vaccine containing ESAT-6 

and Ag85B (Olsen et al., 2004; Dietrich et al., 2005; Langermans et al., 2005; 

Dietrich et al., 2006). Administration of this vaccine promoted a strong and highly 

protective immune response against TB. 

 

Promotion of CD4+ and CD8+ T cell responses against TB can be encouraged by 

using DNA vaccines and protection against TB infection has been observed after 

delivery of mycobacterial antigens, for instance Ag85 and ESAT-6, to mice in the 

form of naked DNA (Kamath et al., 1999; Britton et al., 2003; Olsen et al., 2003). 

Administration of chimeric DNA or co-delivery of multiple DNA plasmids has 

increased the effectiveness of DNA vaccines and proved to reduce the numbers of 

mycobacterial cells in the lungs of aerosol-challenged mice (Tanghe et al., 2000; 

Delogu et al., 2002; Derrick et al., 2004).     
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Whilst designing vaccines that positively influence the immune response, there have 

been attempts to design vaccines that would physically stop the maturation of 

phagosomes containing the mycobacterial bacilli. An example is a urease-deficient 

BCG mutant that would express the listeriolysin O gene from Listeria monocytogenes 

(a bacterium that cannot prevent phagosome maturation because of urease-deficiency) 

(Campos et al., 1996; Grode et al., 2005). There are also attempts to try and attenuate 

M. tuberculosis instead of genetically modified designs of BCG as more human TB 

infections are caused by the former species. 

 

The evaluation strategy for novel TB vaccine candidates is crucial. As well as testing 

the performance of vaccines using standard laboratory control strains like M. 

tuberculosis H37Rv and H37Ra (the avirulent laboratory strain) and M. bovis BCG, it 

is also important to test their efficiency against a representative panel of wild-type M. 

tuberculosis strains that are circulating in the population, as these are the strains that a 

vaccine should ideally protect populations against. 

 

1.2 MOLECULAR TYPING OF M. TUBERCULOSIS STRAINS 

 

1.2.1 The genome – conservation & variability 

The genome size of M. tuberculosis H37Rv is approximately 4.4x106 base pairs (b.p.) 

and is characterised by its very high guanine and cytosine content of 65.6% (Cole et 

al., 1998). In order to use information about the genome effectively it is important to 

identify and understand regions of conservation and variability. There is evolutionary 

conservation in the genome of MTBC and the species within MTBC are closely 

related genetically due to a high degree of DNA homology between strains (Imaeda 

1985). 

 

Frothingham et al., 1994, focused on the 16S-to-23S ribosomal DNA (rDNA) internal 

transcribed spacer (ITS), which has a high rate of nucleotide substitution. However, 

their studies demonstrated that strains from the different MTBC species and M. bovis 

BCG had the same ITS sequence showing that the 16S rDNA sequence was 

conserved, which was corroborated by the identification of conserved domains in the 

16S ribosomal ribonucleic acid (rRNA) molecule (Kirschner et al., 1993; 

Frothingham et al., 1994). Whilst this region remains conserved within the MTBC, 

there are a minimum of seven possible sites within the ITS that are specific for MTBC 
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(Frothingham et al., 1994). Another major factor that contributes to variability in the 

genome of most human pathogens is the degree of horizontal gene transfer, which is 

absent in modern M. tuberculosis strains (Alland et al., 2003). Conversely, it has been 

reported that the M. tuberculosis genome appears to be a composite assembly due to 

horizontal gene transfer that occurred prior to an evolutionary bottleneck 

approximately 35,000 years ago, after which there was a clonal expansion of M. 

tuberculosis strains (Supply et al., 2003; Gutierrez et al., 2005).  

 

Compared to other bacterial pathogens affecting humans, there is a significantly lower 

rate of mutations, more specifically silent nucleotide substitutions, in M. tuberculosis, 

suggesting that evolutionary change in this organism occurs slowly (Sreevatsan et al., 

1997). Although the M. tuberculosis genome is conserved, it does not mean that 

regions of variability or polymorphism do not exist. The polymorphic regions of most 

interest are those that include repeated units of identical sequence. There are 

interspersed repeats (IR), including direct and insertion sequence-like repeats, and 

tandem repeats (TR), including direct repeats that are uninterrupted head-to-tail 

(Mathema et al., 2006). Reorganisation of the genome is more commonly noted with 

unstable transposable elements leading to deletions, inversions, duplications and 

transpositions. Insertion sequences (IS) are transposable elements and although it has 

been identified as being a rare event, transposition of IS elements has been observed 

and these elements are a major contributing factor in producing polymorphisms in the 

genome, which would potentially aid in strain change and differentiation (van 

Soolingen et al., 1991; Cole et al., 1998). 

 

Hermans et al., 1991, identified that a particular IS, IS987, was positioned within a 

direct variable repeat (DVR) containing locus and that the sequence of this locus only 

seemed to be found exclusively in MTBC species (Hermans et al., 1991). This was 

when the true potential of the chromosomal direct repeat (DR) locus was recognised 

as it displayed polymorphism with regard to its length and composition. Each DVR is 

composed of a DR and a spacer region, which is a short non-repetitive sequence. The 

sizes of these are 36 b.p. and 35 to 41 b.p., respectively. Due to particular events 

involving rearrangement of the genes, some spacers may be deleted (van Embden et 

al., 2000). Two such events are homologous recombination between distant or 

adjacent chromosomal DRs, leading to variation in a single or a few DVRs, and 

transposition of an IS, IS6110, which is almost always present in the DR locus.  
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Supply et al., 1997, reported a new group of repeated sequences, within the 

intercistronic region of the senX3-regX3 mycobacterial two-component system 

encoding operon, called mycobacterial interspersed repetitive units (MIRUs) (Supply 

et al., 1997).  Following on from this identification, Magdalena et al., 1998, amplified 

the senX3-regX3 intergenic region (IR) on various MTBC strains and, based on the 

size of the polymerase chain reaction (PCR) fragment, found that the number of 

MIRUs varied between strains (Magdalena et al., 1998).  

 

Prior to molecular typing techniques, phage typing was the most commonly used 

method for differentiating between strains in the MTBC (Bates et al., 1967). 

However, whilst the technique was useful for typing strains involved in laboratory 

cross-contamination and from outbreaks, the technique was not sufficiently 

discriminative as phage types were limited and the procedure was difficult to perform. 

 

The variations within the M. tuberculosis genome, which have been described briefly, 

in combination with the rapid advancements in molecular techniques, provided the 

foundations for identifying genetic markers that show sufficient variation and 

polymorphism to differentiate between strains belonging to MTBC and broaden our 

understanding of the evolutionary and epidemiological patterns of species within the 

MTBC. 

 

Three molecular techniques, including one requiring prolonged cultivation, that are 

currently widely in use are discussed in detail along with applications of the 

techniques and the advantages and disadvantages of their use with regard to various 

applications. Molecular amplification-based methods seem to be more attractive than 

those requiring prolonged TB cultivation as minimal amounts of DNA are required.  

 

1.2.2 IS6110 restriction fragment length polymorphism 

The IS element, IS6110, which has a sequence of 1355 b.p., is the most commonly 

used element for analysis, usually in a restriction fragment length polymorphism 

(RFLP) format.  This element was first recognised by Thierry et al., 1990, when it 

was also concluded that this element was specific to species belonging to the MTBC 

(Thierry et al., 1990). Thierry et al., 1990 noticed that there were similarities between 

IS6110 and other elements belonging to the enterobacterial IS3 family, and this was 
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supported by McAdam et al., 1990, who identified IS986 as being part of the IS3 

family and noted the high degree of similarity between the sequences of IS986 and 

IS6110, therefore concluding that IS6110 belonged to the IS3 family (McAdam et al., 

1990).  

 

Strains from MTBC have varying numbers of IS6110 copies, ranging from 0 to 25 

copies, that are incorporated into the chromosome at different sites creating a 

combined polymorphism of copy number and position which makes IS6110 a useful 

element for fingerprinting (van Soolingen et al., 1991; van Soolingen et al., 1993). 

The possibility of random integration of the element has been investigated using the 

IS6110-RFLP technique described later in this section, and it was reported that the 

insertions were not completely random i.e. there were preferential insertion sites 

(McHugh et al., 1998). There have been many studies demonstrating that one of the 

preferential sites of integration is the DR region and a study by Legrand et al., 2001 

showed the insertion of an IS6110 copy in between spacers 31 and 32 in the DR 

region (Legrand et al., 2001). The DR region is not the only hotspot as other sites 

such as the genomic region between Rv1754c and Rv1762c and the dnaA-dnaN IR 

have also been recognised as preferential sites of integration (Kurepina et al., 1998; 

Sampson et al., 1999).  

 

The IS6110-RFLP method has been described in great detail by van Embden et al., 

1993 (van Embden et al., 1993). In brief, the method involves a single cleavage of 

each IS6110 element present on the genome using the restriction enzyme PvuII that 

cleaves at the 481 b.p. position of the 1355 b.p. element as shown in Figure 1.4. 

Agarose gel electrophoresis separates the resulting fragments with sizes ranging from 

0.9 to 10 kilobases (kb). Using an IS6110 probe allows visualisation of fragments as 

the probe hybridises to the right of the PvuII cleavage site, as indicated in Figure 1.4. 

This gives a fingerprint of the strain that can be compared to reference fingerprints 

with known band sizes. Currently, IS6110-RFLP remains the gold standard technique 

for typing MTBC strains, which is why it has been discussed in great detail even 

though this technique was not used in the present study. 

 



Figure 1.4 A map of the 1355 b.p. IS6110 region with the cleavage site for PvuII restriction enzyme at the 481 b.p. position and the position at which 
the IS probe hybridises. Taken from Embden et al., 1993 (van Embden et al., 1993).   
 

 

 

 

 

 

 

 

 



1.2.3 Spoligotyping 

As mentioned in Section 1.2.1, species from the MTBC contain a specific 

chromosomal region featuring multiple 36 b.p. DRs interspersed by 35 to 41 b.p. 

spacers, which are unique. The possibility of using the DR region as a tool for typing 

was first pursued by Groenen et al., 1993, using direct variable repeat-polymerase 

chain reaction (DVR-PCR) (Groenen et al., 1993). Their study showed that MTBC 

strains with no epidemiological link could be differentiated effectively using a single 

PCR procedure. Whilst DVR-PCR allowed detection of M. tuberculosis as well as 

typing of strains, another simpler procedure, which was designed for a similar 

purpose, was introduced. Kamerbeek et al., 1997, developed a technique based on the 

hybridization patterns, which were thought to be strain-dependent, of amplified PCR 

product with various spacer oligonucleotides and, for this reason, the method was 

called spacer oligotyping or, more commonly, spoligotyping (Kamerbeek et al., 

1997). 

 

DNA sequence comparison has ultimately led to the discovery of 94 different spacer 

sequences with sequences for each displaying no homology with DNA sequences 

external to the DR region (van Embden et al., 2000). However, only 43 spacers, 

which were identified originally, are used for spoligotyping as the addition of extra 

spacers does not markedly improve discrimination (van Embden et al., 2000; Sebban 

et al., 2002). The polymorphic nature of the DR region is probably due to 

homologous recombination or transposition of the IS6110 element (van Embden et 

al., 2000). Both events would lead to deletion of spacers, which provides the basis for 

spoligotyping. 

 

Spoligotyping as described by Kamerbeek et al., 1997 involves the use of membranes 

that have 43 lines of covalently bound oligonucleotides, to which amplified product 

from the DR region will hybridise depending on which spacers are present and absent 

in the region (Kamerbeek et al., 1997). The hybridisation patterns for each strain are 

visualised using chemiluminescence producing a profile with black rectangles or 

blank spaces representing presence and absence of spacers, respectively. According to 

their studies, Kamerbeek et al., 1997, found that spoligotyping patterns were unique 

for the majority of the strains used in their study and further to this, observations 

showed that strains from particular outbreaks had the same pattern showing the 

potential of spoligotyping. 



 

1.2.4 Variable Number Tandem Repeat, Exact Tandem Repeat & 

Mycobacterial Interspersed Repetitive Units  

Variable number tandem repeats (VNTRs) are minisatellites with 10 to 100 b.p. 

repeats and are found in great number in the genome of most bacteria (Mathema et 

al., 2006). VNTRs are found in regulatory and intergenic regions and within open 

reading frames and VNTRs in the human genome are particularly useful tools for 

forensic analysis, paternity testing and genetic mapping and identification. The 

polymorphic nature of this region meant that it would be useful for typing M. 

tuberculosis strains. 

 

Initially, Hermans et al., 1992, identified multiple copies of DNA sequences in the M. 

tuberculosis genome with a 10 b.p. sequence that was repeated tandemly and 

separated by distinctive spacers, 5 b.p. in length (Hermans et al., 1992). As there was 

slight variation in the sequence these repeats were called major polymorphic tandem 

repeats (MPTRs). The same study identified that the polymorphism would be 

especially useful for epidemiological studies as the location of MPTRs was very 

variable. The presence of MPTRs was confirmed by Frothingham and Meeker-

O'Connell, 1998, who reported the existence of 11 loci with tandem repeats in the 

genome of M. tuberculosis (Frothingham et al., 1998). These loci included 5 MPTRs 

and 6 exact tandem repeats (ETRs). The difference being that MPTRs contained 

repeats that were 15 b.p. in length but still had significant sequence variation between 

copies next to each other, whilst ETRs contained longer repeats and the sequences 

between adjacent repeats were identical. All ETR loci displayed length 

polymorphisms that were representative of deletions and insertions of tandem repeats, 

but this degree of polymorphism was not observed with MPTR loci. 

 

As mentioned in Section 1.2.1, MIRUs were found to exist in the region of the senX3-

regX3 mycobacterial two-component system encoding operon and in the study by 

Supply et al., 1997, it was observed that the sizes of MIRU tandem repeats varied 

(Supply et al., 1997; Magdalena et al., 1998). This is the main difference between the 

VNTRs and MIRUs (Mostrom et al., 2002). The length of MIRUs range from 40 to 

100 b.p. and 41 MIRUs have been identified as shown on the M. tuberculosis H37Rv 

genome in Figure 1.5 (Supply et al., 2000). Even though there are many MIRUS, only 

12 showed variations not only in the number of copies of tandem repeats but also in 
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the sequences between MIRUs. From the chosen 12 MIRUs, MIRU-4 and -31 were 

the same as ETR-D and -E, correspondingly, which were identified by Frothingham 

and Meeker-O'Connell, 1998. 

 

Further research into VNTRs yielded the identification of 7 new variable VNTR loci 

designated Queen’s University Belfast (QUB) 5, 11a, 11b, 15, 18, 23 and 26 (Skuce et 

al., 2002). As novel loci were discovered, in an attempt to simplify the situation a 

uniform nomenclature system was proposed by Smittipat et al., 2005 (Smittipat et al., 

2005). Table 1.2 shows the nomenclature system as defined by Smittipat et al., 2005, 

with the alternative names that are given to some of the VNTR loci by different 

researchers. Although not all loci have been included in the table, the selected loci are 

relevant to the present study. MTPRs have not been included in the original table by 

Smittipat et al., 2005, presumably because the original study by Frothingham and 

Meeker-O'Connell, 1998, showed that there was not a significant amount of 

polymorphism in the loci suitable for analysis (Frothingham et al., 1998; Smittipat et 

al., 2005). Table 1.3 shows the three sets of loci that were used along with the 

nomenclature that had been adopted for the present study. 

 

The use of various MIRU and VNTR loci means that the technique is widely known 

as MIRU-VNTR typing. Originally, MIRU-VNTR typing involved the determination 

of number of repeats by using primers specific to each locus to amplify the region in 

separate PCR reactions, after which agarose gel electrophoresis was performed to 

simultaneously confirm presence of PCR products and to determine the molecular 

weight. The number of repeats was calculated using previous knowledge of the 

molecular weight of expected products for various numbers of repeats in specific loci. 

 

The technique can be performed using an automated system, which involves the use 

of fluorescently labelled primers for amplification of loci making performance of 

multiplex PCR reactions possible and allowing large-scale genotyping (Supply et al., 

2001). Using the panel for 12 MIRU-VNTR (see Table 1.3) as an example, the 

number of repeats in each locus would be represented in a 12-digit format. The 

automated system involves the use of capillary electrophoresis (or comparable 

systems) instead of conventional agarose gel electrophoresis and for clustering studies 

capillary electrophoresis has proved to be more useful (Yokoyama et al., 2006). 

 



Figure 1.5 The M. tuberculosis H37Rv genome showing the positions of the 41 MIRU loci, where the black dots represent the 12 variable MIRUs. 
Taken from Supply et al., 2000 (Supply et al., 2000). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



1.2.5 Stability of genetic elements & discrimination power of IS6110-RFLP, 

spoligotyping and MIRU-VNTR typing 

The stability of genetic markers and their discriminatory power are two of the main 

factors influencing the application of IS6110-RFLP, spoligotyping and MIRU-VNTR 

for typing. 

 

Several studies have focused on the stability of IS6110 element with conflicting 

results. IS6110 elements are stable over a short time scale of a few months but when 

looking over longer periods of time, a significant rate of transposition is observed 

(Tanaka et al., 2000). Strains with a larger number of IS6110 copies are more 

polymorphic than strains with low copy number (Tanaka et al., 2000; Tanaka et al., 

2001; Maguire et al., 2002). 

 

In a detailed study carried out in the Netherlands by de Boer, et al., 1999, IS6110-

RFLP fingerprint profiles were different between initial and follow-up isolates; 

changes were more frequent in individuals with extrapulmonary TB than in people 

with both pulmonary and extrapulmonary TB (de Boer et al., 1999). From their study 

they calculated the half-life (t(½)) of IS6110 element as being 3.2 years. In a study, 

which focused on serial isolates (with a known time interval between isolates) from 

patients in San Francisco, the t(½) was 2 years (Yeh et al., 1998; de Boer et al., 1999). 

A suggested explanation for the difference between the results of the IS6110 element 

t(½) in the Netherlands and San Francisco studies was the lack of bias in the serial 

isolates included in the Netherlands study as there was no prior knowledge of the time 

interval between serial isolates. 

 

A study by Warren et al., 2002, showed that  the IS6110 t(½) was 8.74 years (Warren 

et al., 2002). Yeh et al., 1998, suggested that there was a rapid rate of transposition as 

IS6110-RFLP patterns changed in a 3 year time gap (Yeh et al., 1998). A possible 

explanation for the differences in the calculated t(½) between all of the studies is that 

rates were considerably affected by the period between TB onset and the point where 

sputum was sampled, and the potential for re-infection in a high incidence country 

indicated the complexity of estimating the true degree of stability. 



Table 1.2 The nomenclature for VNTR loci, along with the alternative names assigned by different 
researchers. (Produced using Table 2 in Smittipat et al., 2005 (Smittipat et al., 2005). 
 

Tandem repeat locus Alternative nomenclature 

ETR-A 
VNTR-2163A 
VNTR-2163B 
VNTR-1982 
MIRU-40 

loci not included in the table by Smittipat 
et al., 2005 but included in this table for 
the purposes of the present study 

VNTR-2059 MIRU-20 
VNTR-0154 MIRU-2 
VNTR-0577 ETR-C 
VNTR-0580 ETR-D, MIRU-4 
VNTR-0960 MIRU-10 
VNTR-1644 MIRU-16 
VNTR-2347  
VNTR-2461  ETR-B 
VNTR-2531 MIRU-23 
VNTR-2687 MIRU-24 
VNTR-2996 MIRU-26 
VNTR-3007 MIRU-27, QUB-5 
VNTR-3155 QUB-15 
VNTR-3192 ETR-E, MIRU-31 
VNTR-3232 QUB-3232 
VNTR-3239 ETR-F 
VNTR-3336 QUB-3336 
VNTR-4052 QUB-26 
VNTR-4348 MIRU-39 

 
Table 1.3 A table showing the three sets of loci with their nomenclature as used in the present study. 
 

MIRU-VNTR loci 12 MIRU 15 MIRU-ETR Extra 7 loci 

MIRU-2 D D  
MIRU-4 D D  
MIRU-10 D D  
MIRU-16 D D  
MIRU-20 D D  
MIRU-23 D D  
MIRU-24 D D  
MIRU-26 D D  
MIRU-27 D D  
MIRU-31 D D  
MIRU-39 D D  
MIRU-40 D D  
ETR-A  D  
ETR-B  D  
ETR-C  D  
VNTR-2163A   D 
VNTR-2163B   D 
VNTR-1982   D 
VNTR-2347   D 
VNTR-3232   D 
VNTR-3336   D 
VNTR-4052   D 
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Niemann et al., 1999, observed that whilst there was variation in IS6110-RFLP 

patterns between initial and follow-up isolates, there were no changes in the 

spoligotyping patterns indicating that the rate of change is much lower in the DR 

region making this genetic marker more stable than IS6110 (Niemann et al., 1999). A 

similar scenario was reported by Goguet de la Salmoniere et al., 1997, when the same 

spoligotyping pattern was obtained for all strains of M. bovis BCG used in their study 

(Goguet de la Salmoniere et al., 1997). Although rare, coexistence of strains with two 

different spoligotyping patterns in a patient has been observed: the second isolate 

differed from the initial isolate due to a deletion that had occurred during a single 

episode of TB within the patient (Kamerbeek et al., 1997; van Embden et al., 2000). 

However, except for this one deletion, spoligotypes were shown to be stable. The 

existence of an international spoligotyping database, SpolDB4, means that 

comparison studies using this typing technique are possible (Brudey et al., 2006). 

 

As is the case with spoligotyping, MIRU-VNTR is reliable for follow-up of patients, 

in particular in patients that have chronic infection over a long period of time (Savine 

et al., 2002). The in vivo stability of the 12 MIRU-VNTR loci has been observed and 

the estimated length of stability has been reported to be at least 18 months, whilst 

MIRUs are reasonably stable for 30 years in axenic culture environments where only 

one organism is present (Supply et al., 2000; Mazars et al., 2001). In a study 

involving typing of BCG strains that had been cultivated for more than 30 years, there 

was polymorphism in locus MIRU-4, whilst the remaining 11 loci were monomorphic 

indicating that there is slow evolution of these minisatellite-like structures (at least in 

BCG) (Supply et al., 2000). The polymorphisms due to repeat units being added and 

deleted are believed to lead to long term stability of loci. 

 

The MIRU-VNTR loci have a variable range of alleles; for instance, in MIRU-2 and -

24 mostly 1 or 2 copies are observed, therefore, these loci are not very polymorphic in 

comparison with VNTR-3232, -3820 and -4052 (Smittipat et al., 2005). More than 9 

allelic variants have been observed in these loci and VNTR-3820 had the highest 

variability with numbers of repeats varying from 3 to 32. There are external factors 

that influence the variability of particular MIRU-VNTR loci; for instance, MIRU-20 

appears to be more polymorphic in some studies and not in others (Smittipat et al., 

2005). Influential factors may include the source of samples geographically and 

possibly the inherent genetic diversity. Therefore when selecting the panel of loci, 
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factors such as the predominance of certain clones in specific geographical locations 

and the variability within different genetic groups of MTBC strains needs to be taken 

into account (Mathema et al., 2006). 

 

However, selecting different VNTRs for panels with different applications may not be 

ideal as this diminishes advantages of using a universal MIRU-VNTR panel for 

interlaboratory analysis and adopting a technique that is cost effective and 

manageable with regard to labour. An assessment of the reproducibility and 

interlaboratory variation of IS6110-RFLP patterns showed that patterns with smaller 

numbers of bands were reproducible but not for strains with higher numbers of 

IS6110 copies and complex patterns (Braden et al., 2002). In contrast, a comparative 

study showed high reproducibility using MIRU-VNTR demonstrating its potential for 

interlaboratory analysis (Kremer et al., 2005). 

 

There have been numerous studies to compare the results of different molecular 

typing methods and there are clear conclusions on the discriminative abilities of 

techniques (Goguet de la Salmoniere et al., 1997; Kremer et al., 1999; Barlow et al., 

2001; Lee et al., 2002; Hawkey et al., 2003; Gopaul et al., 2006). M. tuberculosis 

isolates with a low IS6110 copy number of 1 to 4 have been excluded because of the 

lower degree of discrimination and where there is a low copy number of IS6110, the 

degree of differentiation offered by spoligotyping is higher than it would be if there 

was a high IS6110 copy number (Goguet de la Salmoniere et al., 1997; Maguire et al., 

2002). Using both of these methods together gives greater discrimination for 

genotyping (Kremer et al., 1999).  

 

The loci included in the 12 MIRU-VNTR panel, described by Supply et al., 2000, 

have varying discriminatory powers with the most discriminative loci being MIRU-

10, -23, -26, -31, -40 and ETR-A (when compared to ETR-B and -C), whilst MIRU-4, 

-16, -24 and -39 were found to be moderately discriminative, and MIRU-2, -20 and -

27 were of poor discrimination (Sola et al., 2003). The discriminative power of 

MIRU-VNTR is proportional to the number of loci in a panel and is similar to that of 

IS6110-RFLP when there is a high copy number of IS6110, but more discriminatory 

when the IS6110 copy number is low (Barlow et al., 2001; Lee et al., 2002; Hawkey 

et al., 2003; Gopaul et al., 2006; Mathema et al., 2006). In a study by Mazars et al., 

2001, the use of 12 MIRU-VNTR yielded 2 to 8 MIRU-VNTR alleles, meaning there 
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were over 16 million different combinations showing that the resolution of MIRU-

VNTR was close to that of IS6110-RFLP (Mazars et al., 2001). However it has been 

reported that 12 MIRU-VNTR is less discriminatory than IS6110-RFLP typing of 

high copy number isolates. Combining 12 MIRU-VNTR and spoligotyping seems to 

provide more discrimination than IS6110-RFLP on its own (Roring et al., 2002). 

Some studies have shown that whilst patterns for 12 MIRU-VNTR are more distinct 

than those obtained by IS6110-RFLP and spoligotyping, specificity is maximised 

when multiple typing methods are used (Cowan et al., 2002).  

 

1.2.6 Deletion mapping 

Differences in the genomes of M. tuberculosis strains H37Rv and CDC1551 have 

been observed and are believed to be caused by SNPs, (i.e. differences in single base 

pairs), and large-sequence polymorphisms (LSPs) that show differences in sequences 

greater than 10 b.p. (Fleischmann et al., 2002). In addition to variation due to SNPs, 

LSPs have been identified as the source of most insertion-deletion events (Brosch et 

al., 2001). Various regions of variability due to insertion and deletion have been 

identified. These deletions occur in aggregations rather than randomly along the 

genome and the irreversible nature of deletions forms the basis of deletion mapping, 

which can be utilised for identifying strains within the MTBC (Brosch et al., 2002; 

Tsolaki et al., 2004).  

 

Such studies have already been performed and yielded very promising results. Brosch 

et al., 2002 investigated 20 variable regions in MTBC strains and results showed that 

these polymorphisms were not independent events but due to genetic occurrences that 

were irreversible in common ancestral strains (Brosch et al., 2002). The main region 

of interest from their study was the M. tuberculosis specific deletion 1 (TbD1). The 

presence or absence of this region was indicative of ancestral and modern strains, 

respectively. Also identified in this study were regions of differences (RDs), one of 

which includes RD9 and if a deletion is recognised in this region it determines that a 

strain is neither ancestral nor modern M. tuberculosis, but one of the other species in 

the MTBC, namely M. africanum, M. microti, and M. bovis. The presence or absence 

of other RD regions allows further sub-speciation within the MTBC as indicated in 

Figure 1.6 (Brosch et al., 2002). 

 
MTBC strain typing using the identified regions of possible deletion is very simple 

and straightforward to perform as it involves amplification of regions of interest using 
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specific primers and running the resulting products on an agarose gel. This reveals 

bands representing larger and lower molecular weights corresponding to the presence 

and absence of the region, respectively. Although deletion mapping was not included 

in the present study it is important to acknowledge its importance in MTBC 

phylogenetic analysis, which will be discussed in Section 1.3.2. 

 

1.3 APPLICATIONS OF MOLECULAR TYPING METHODS 

 

1.3.1 Epidemiological studies 

There are a large range of applications for IS6110-RFLP, spoligotyping and MIRU-

VNTR typing and now deletion mapping. These techniques can give a deeper insight 

into the epidemiology of M. tuberculosis (using IS6110-RFLP, spoligotyping and 

MIRU-VNTR typing) and its phylogeny (using IS6110-RFLP, spoligotyping and 

MIRU-VNTR typing and deletion mapping). The varying discriminatory power of the 

typing techniques makes certain methods more favourable than others for specific 

applications. With regard to MIRU-VNTR, there are applications that are especially 

useful for individual laboratories and will be discussed. 

 

Due to its high discriminatory power, IS6110-RFLP has been the most widely used 

approach for large scale national and international molecular epidemiology studies 

and outbreak investigations. IS6110-RFLP was favoured as the international standard 

procedure that was recognised by all laboratories especially for TB epidemiological 

studies and remains the gold standard technique due to the combination of a very high 

degree of polymorphism and stability of the IS6110 element (van Soolingen et al., 

1991; van Soolingen et al., 1993; Li et al., 2005; Kik et al., 2008; Devaux et al., 

2009). For large scale epidemiological studies, whilst interlaboratory comparison of 

IS6110-RFLP patterns is possible, quality control is essential and has to be carefully 

monitored.  

 

IS6110-RFLP has been used to understand epidemiological transmission of TB all 

over the world. One particular study of interest is that performed by Maguire et al., 

2002, in London to investigate recent transmission events of M. tuberculosis (Maguire 

et al., 2002). Isolates were typed using IS6110-RFLP and patient epidemiological data 

collated. This study demonstrated that TB occurrence in London, in comparison with 

the other cities, was not mainly due to recent transmission. The majority of TB in 
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London was due to either infection being imported by immigrants that moved to 

London recently or by reactivation of previous TB infections (Maguire et al., 2002). 

 

However, there are limitations to the uses of IS6110-RFLP as the fewer bands there 

are within strains the harder it is to interpret, compare patterns and discriminate 

between strains even when using computerised data image analysis. IS6110-RFLP is 

labour-intensive especially when typing large numbers of isolates, making 

spoligotyping and MIRU-VNTR more attractive, and only using IS6110-RFLP to 

confirm the identity of the organism (Kremer et al., 2002). A study investigating the 

potential of IS6110-RFLP and spoligotyping for epidemiological studies showed that 

the discriminatory power of spoligotyping was not sufficient to make it a method that 

could be used on its own and that IS6110-RFLP was more discriminatory for outbreak 

studies (Wilson et al., 1998). 

 

The potential of the loci included in MIRU-VNTR as genetic markers for 

epidemiological studies has been recognised and evaluated (Mazars et al., 2001). 

MIRU-VNTR profiles of isolates that are epidemiologically linked have been shown 

to cluster proving that stability of this genetic marker is sufficient for identifying 

outbreaks. The added advantages of using MIRU-VNTR are the high throughput of 

isolates that can be typed and the ease with which numerical profiles can be 

compared. In some epidemiology studies, a two-step approach has been used with 

IS6110-RFLP as the primary technique followed by MIRU-VNTR (Kwara et al., 

2003). It has even been suggested that using spoligotyping in conjunction with 

MIRU-VNTR would be appropriate for studying epidemiology of TB (Sola et al., 

2001). 

 

When used collectively, molecular typing techniques have proved useful for 

identifying possible sources of outbreaks, which were previously not known, in 

specific social scenarios (Yaganehdoost et al., 1999; Drobniewski et al., 2003). In 

another case study, strain typing was used to recognize and characterise strains, which 

had originated in hospitals, and their transmission. In this particular study molecular 

markers were identified to verify an outbreak of multi-drug resistance (MDR) TB and 

clarifying the history of the order in which drug resistance was acquired as the 

progress of the outbreak could be monitored by molecular typing (Bifani et al., 1996). 



Figure 1.6 A diagram showing the regions that would be deleted (in the boxes) from the genome to identify strains within the MTBC. Taken from 
Brosch et al., 2002 (Brosch et al., 2002). 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Epidemiology studies using molecular typing has helped to identify the source of 

infection in order to take the most appropriate measures to control TB infection. In 

New York, for instance, the continuous spread of the M. tuberculosis Beijing strain 

led to an escalation in incidence of multiple drug resistance strains of M. tuberculosis 

and as soon as this was recognised, appropriate measures were enforced to curb the 

spread of the strain (Bifani et al., 1996; Moss et al., 1997). Molecular typing is also 

valuable for detected sources of TB infection on a smaller scale, for instance, in 

hospitals as described by Allix et al., 2004 (Allix et al., 2004). This study described a 

scenario in which patients had visited the same hospital during a 1 year period and 

had TB infection in which isolates had identical IS6110-RFLP patterns and 

confirmation was obtained using MIRU-VNTR typing. Their visit to the hospital was 

traced back and it was discovered that they had been to the hospital pneumological 

surgery department for bronchoscopic examination on the same day. The TB infection 

was bronchoscopy-related. 

 

1.3.2 Phylogenetical studies 

Whilst molecular typing techniques are useful for studying the epidemiology of TB 

transmission, there is also significant potential for clarifying phylogenetic 

relationships of clinical isolates and numerous studies have been carried out in an 

attempt to decipher the phylogenetic structure and relationships within MTBC. Before 

continuing, a brief description of SNP has to be included as major breakthroughs in 

phylogenetic studies have resulted from the use of SNP analysis. 

 

M. tuberculosis genome comparisons have yielded polymorphisms at various 

nucleotides, which is a source of more genetic markers to distinguish between M. 

tuberculosis strains. There exists nsSNPs and synonymous SNPs (sSNPs), the main 

difference being that nsSNPs lead to changes in amino acids, whilst sSNPs do not i.e. 

they are neutral. It is the sSNPs that form the basis of studies into evolutionary 

relationships, as sequences of specific regions would help to identify these neutral 

polymorphisms between strains. 

 

Using IS6110-RFLP to assign M. tuberculosis isolates into lineages has shown that 

there are only two specific lineages determined by high and low IS6110 copy number 

(Mazars et al., 2001). Using sSNP has proved otherwise. In the study by Gutacker et 

al., 2002, the phylogenetic relationship of M. tuberculosis isolates from various global 



sources was investigated using 230 sSNP resulting in eight clear-cut lineages 

(Gutacker et al., 2002). Sreevatsan et al., 1997, assigned these eight lineages, I to 

VIII, into three principle genetic groups (Sreevatsan et al., 1997). The largest genetic 

group contained isolates from lineage III to VI, whilst the smallest group was M. 

bovis in a lineage on its own. 

 

Delving deeper into the matter of how important IS6110 copy number is for 

phylogeny studies, Gutacker et al., 2002 has shown that the association between 

IS6110 copy number and phylogenetic lineages is more complex and that the copy 

number alone is not useful for phylogeny studies (Gutacker et al., 2002). This was 

confirmed by Gutacker et al., 2006, which specifically looked at variations in IS6110-

RFLP, spoligotyping and MIRU-VNTR amongst lineages defined by sSNP (Gutacker 

et al., 2006).  

 

In their study, Gutacker et al., 2006, again found a similar phylogenetic trend except 

this time nine genetic lineages were identified, the extra one being II.A (Gutacker et 

al., 2006). When looking for associations between the nine lineages and the number 

of IS6110 copies, IS6110 elements that had been inserted in the mmpS1 gene could be 

genetically associated with lineage IV, showing that these particular strains were 

related by descent. Isolates with less than 6 copies could be associated with different 

lineages, whilst isolates with just 1 copy were distributed amongst lineages I, II.A, 

and IV. This again contradicts the definition of two lineages using the high copy 

number and low copy number categorisation. 

 

Comparison of spoligotypes with phylogenetic lineages shed some light on the genetic 

relationship between principle genetic groups (Gutacker et al., 2006). As a whole, 

population principal genetic group 2/3 isolates were genetically related but could be 

distinguished from principal genetic group 1 organisms as there was no overlap of 

spoligotypes between group 1 and group 2/3. A similar trend was observed when 

MIRU-VNTR profiles for isolates were compared with the phylogenetic lineages. 

This indicates that spoligotyping and MIRU-VNTR typing hold great potential for 

phylogenetic studies. When looking at the data using all three typing methods and 

sSNP, there was a strong indication that strains within the 9 lineages were clonally 

related by descent, as they had a common ancestor (Gutacker et al., 2006). The 

influence of various genetic markers in phylogenetic studies has been confirmed by 
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Warren et al., 2004, who suggested that clonal expansion occurred via sequential 

acquisition of additional IS6110 copies, deletions of specific DR sequences and 

VNTR sequence expansion and contraction (Warren et al., 2004). 

 

Baker et al., 2004, used various typing methods to investigate the phylogeny of 

MTBC including sSNP, TbD1 deletion mapping, IS6110-RFLP and spoligotyping. A 

phylogenetic tree, shown in Figure 1.7a, was produced from data obtained using 

sSNPs and the maximum parsimony method and the different branches of the tree 

represented unique sSNP combinations (Baker et al., 2004). Isolates were defined into 

four distinct M. tuberculosis lineages, I to IV, and a closely related M. bovis lineage. 

 

Correlations and discrepancies between this study and that performed by Gutacker et 

al., 2006 have been identified and reviewed by Mathema et al., 2006 (Mathema et al., 

2006). Lineage I in Baker et al., 2004, corresponds to lineage II in Gutacker et al., 

2006, lineage II is a combination of lineage III, IV, V and VI, lineage III is associated 

with II.A and lineage IV to lineage I. In both studies, M. bovis is a separate lineage. A 

study by Gagneux et al., 2006, showed agreement with lineages I, II, III and IV 

defined by Baker et al., 2004 (Gagneux et al., 2006). In addition to the four lineages, 

two lineages for M. africanum were identified by Gagneux et al., 2006 as there had 

been few M. africanum strains in the study by Baker et al., 2004.   

 
Baker et al., 2004 also looked at the association of the absence and presence of TbD1 

with particular lineages. TbD1 was present in lineage IV and M. bovis, M. microti and 

M. africanum whilst it was absent in the remaining lineages (Figure 1.7b) (Baker et 

al., 2004).  IS6110-RFLP and spoligotyping allowed the assignation of various strain 

families into lineages (Figure 1.7c). The various strains of M. tuberculosis agreed 

with the parsimony tree originally defined using sSNP. The introduction of the 

spoligotyping database, SpolDB4, will contribute greatly towards understanding the 

phylogeny of MTBC as it will allow better identification of isolates to then investigate 

the dissemination of a strain and its history (Brudey et al., 2006).  

 

The possibility of using 12 MIRU and 3 ETR as a rapid tool for phylogenetic 

classification of M. tuberculosis and M. bovis using the five lineages observed by 

Baker et al., 2004 was investigated by Gibson et al., 2005 (Gibson et al., 2005). This 

study generated specific panels of MIRU-VNTR loci that were specific for the 

lineages suggesting that MIRU-VNTR could be used for classification of M. 
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tuberculosis and M. bovis and investigating phylogeny and evolution, whilst 

providing information on sublineages and molecular clocks. 

 

Results from a study that combined MIRU-VNTR and spoligotyping methods 

confirmed a scenario that was proposed by Brosch et al., 2002, from results obtained 

from deletion analysis using TbD1 and various RD regions (Sola et al., 2003). This 

scenario involved a common MTBC ancestor from which the first divergence would 

have led to the species M. canettii followed by the separation of M. tuberculosis East-

African Indian (EAI) strains (Brosch et al., 2002; Sola et al., 2003). M. africanum and 

M. bovis would have been next to be separated proceeded by separation that would 

distinguish M. tuberculosis Beijing, which is distinctive from the Central Asian 1 

(CAS1) family, and non-Beijing strains. Latin-American and Mediterranean (LAM), 

X and Haarlem strains are thought to have deviated later. A similar scenario was 

proposed by Ferdinand et al., 2004, using spoligotyping and MIRU-VNTR, more 

specifically MIRU-24, which the study reported was the most appropriate for 

classification (Ferdinand et al., 2004). 

 

Even though there may be discrepancies between the results obtained from 

phylogenetical studies, it seems to be a general conclusion that distinct lineages can 

be defined and that M. tuberculosis is clonal where horizontal gene transfer does not 

occur. Mathema et al., 2006, suggested reasons for the differences in studies including 

evolutionary convergence that is specific to certain loci which would affect results 

particularly if only one genetic marker is used, or locus-specific transition, which 

would again affect results when using a single marker (Mathema et al., 2006). These 

potential problems can be overcome by using a combination of molecular methods, 

including sSNP, deletion mapping of more than one region, IS6110-RFLP, 

spoligotyping and MIRU-VNTR. 

 
Molecular typing techniques are of great value for phylogenetic analysis of MTBC 

strains as they add further resolution to lineages that have already been defined by 

sSNP. Phylogenetic analysis can help to identify and assign strains that have been 

identified in epidemiological studies to further the knowledge of the association 

between the MTBC strain genotypes. 
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1.3.3 Other applications 

Molecular typing techniques can be applied to clinical situations that are most 

commonly experienced in laboratories, including detection of laboratory cross-

contamination and mixed tuberculosis infection. In order to obtain results rapidly, but 

still ensuring that results are reliable, typing methods based on PCR amplification are 

more suitable. Using a combination of spoligotyping and MIRU-VNTR means that 

results are obtained quicker, whilst still having the discriminatory level of IS6110-

RFLP.  

 

Laboratory cross-contamination is a potential problem when diagnosing TB. Ideally 

the rate of cross-contamination in a laboratory should be less than 1%, but reports 

have shown contamination rates of 0.1 to 65%, i.e. in some laboratories it is a serious 

issue that needs to be addressed (Bhattacharya et al., 1998; de et al., 1999; Ruddy et 

al., 2002). This is where molecular typing techniques come into play as they allow 

reliable detection of cross-contamination. Identifying false-positive cultures of M. 

tuberculosis as early as possible ultimately means the prevention of inappropriate 

treatment of TB in the patient. Whilst IS6110-RFLP can be used to confirm results of 

spoligotyping and MIRU-VNTR, this method is not ideal as it is time consuming and 

would delay detection. 

 

For example, in a study on cross-contamination carried out at the Health Protection 

Agency, Mycobacterium Reference Unit (HPA, MRU), IS6110-RFLP was used to 

confirm results using another technique, rapid PCR-based epidemiological typing 

(RAPET) (Drobniewski et al., 2003). This study showed that there were three types of 

cross-contamination including laboratory cross-contamination, bronchoscopic-related 

and ward-based incidents. In another case study, specimens from 6 different patients, 

which had been decontaminated on the same day, were all positive for M. tuberculosis 

(Allix et al., 2004). Upon MIRU-VNTR typing it was suggested that there was 

possible laboratory contamination as profiles for the majority of isolates were 

identical, whilst isolates from patients that were smear negative had different MIRU-

VNTR profiles. 

 

Although mixed cultures can be detected using IS6110-RFLP and spoligotyping, the 

patterns can be complex to interpret (Pavlic et al., 1999; Allix et al., 2004). MIRU-

VNTR is more appealing for detecting mixed cultures as the simultaneous existence 
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of 2 alleles in individual loci can be more easily identified. In addition, the alleles can 

be distinguished from stutter peaks that are commonly observed. Mixed cultures can 

be differentiated from laboratory cross contamination especially if follow-up isolates 

are obtained from the patient in question (Allix et al., 2004). 

 

1.4 PROJECT AIMS 

 

The aims of the present study were to:- 

• identify the various common and unique clinical M. tuberculosis strains 

circulating within the ethnically diverse population in London 

(http://www.londonshealth.gov.uk/pdf/HINL2004/hilfullreport2004.pdf) by doing 

cluster analysis using molecular typing data for all MTBC isolates from TB cases 

reported within London during a one year time period from the 1st April 2005 to 

31st March 2006,  

• understand the global representation of M. tuberculosis strains in the study 

population of London by performing epidemiological analysis using molecular 

typing and country of birth data, 

• construct a preliminary panel of strains that would be as representative of the 

global population of TB strains as possible and include a broad spectrum of M. 

tuberculosis strains against which any vaccine should be effective; the strains in 

this panel of M. tuberculosis strains would be useful for selecting strains for future 

vaccine evaluation studies and general TB research, 

• understand if TB strains in the preliminary panel are indeed different from each 

other by testing the null hypothesis that strains are phenotypically similar by 

performing a series of initial in vitro experiments followed by in vivo experiments 

on a smaller panel of strains, representing the six MTBC phylogenetic lineages 

defined by Baker et al., 2004 and Gagneux et al., 2006, derived from the 

preliminary panel. 
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Figure 1.7 The phylogeny of M. tuberculosis, where (a) shows a maximum parsimony 
tree of M. tuberculosis and M. bovis lineages based on the combinations of sSNPS, 
(b) shows how absence and presence of TbD1 is related to the lineages, and (c) shows 
the relationship between the defined phylogenies and the various strains including 
Beijing, Harleem, Africa, Latin America-Mediterranean, Delhi, and East Africa-India 
(EA-I). Taken from Baker et al., 2004 (Baker et al., 2004).   
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CHAPTER 2 

 

MATERIALS & METHODS 

 

2.1 PREPARATION OF SOLUTIONS, MEDIA & REAGENTS 

 

2.1.1 Spoligotyping stock solutions 

20% sodium dodecyl sulphate (SDS) was prepared by dissolving 100 grams (g) SDS 

(BDH Laboratory Supplies, Poole, UK) in molecular grade water (Sigma-Aldrich, 

Poole, UK) to make a final volume of 500 millilitres (ml). 

0.5M Ethylenediaminetetraacetic acid disodium salt dihydrate 99+% (EDTA) (pH 

8.0) was prepared by dissolving 93.0g EDTA (Sigma-Aldrich) in distilled water to 

make a final volume of 500ml. The pH was adjusted to 8.0 using sodium hydroxide 

(NaOH) pellets (BDH Laboratory Supplies). 

All stock solutions were stored at room temperature. 

 

2.1.2 Solutions for spoligotyping that are made fresh each time  

2× saline sodium phosphate EDTA (SSPE)/0.1% SDS was prepared by adding 30ml 

20× SSPE buffer (Sigma-Aldrich), 1.5ml 20% SDS and distilled water to make a final 

volume of 300ml per membrane. SDS was not added to concentrated SSPE as this 

would cause it to precipitate. 

2× SSPE/0.5% SDS was prepared by adding 100ml 20× SSPE buffer, 25ml 20% SDS 

and distilled water to make a final volume of 1000ml per membrane. 

2× SSPE was prepared by diluting 50ml 20× SSPE in distilled water to make a final 

volume of 500ml per membrane.   

1% SDS was prepared by diluting 10ml 20% SDS in distilled water to make a final 

volume of 200ml per membrane. 

20 millimolar (mM) EDTA was prepared by diluting 4ml 0.5 molar (M) EDTA in 

distilled water to make a final volume of 100ml per membrane. 

 

2.1.3 Media for culturing M. tuberculosis strains 

Middlebrook 7H9 medium with 0.05% Tween-80 was prepared by dissolving 4.7g BD 

Difco Middlebrook 7H9 broth (Becton, Dickinson and Company, New Jersey, United 

States of America; USA) in 900ml distilled water and sterilising the medium by 

autoclaving at 121°C for 10 minutes (mins). Tween-80 solution was added after 
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autoclaving. In a Class II cabinet, 5ml 10% Tween-80 solution (Sigma-Aldrich) was 

added to the sterile medium at a final concentration of 0.05% in 1000ml. The 

Middlebrook 7H9 medium with 0.05% Tween was filter sterilised using a 0.2 

micrometre (μm) filter unit (Nalgene Labware, New York, USA) and stored at 20°C. 

Before use, depending on the volume of medium required for an experiment, BD BBL 

Middlebrook OADC Enrichment (Becton, Dickinson and Company) was added at a 

medium:OADC ratio of 9:1. OADC supplement was not added to media when it was 

made initially to give the media a longer shelf life. 

Middlebrook 7H11 agar plates were prepared by dissolving 20.5g Middlebrook 7H11 

Agar Base (Sigma-Aldrich) in 900ml distilled water and adding 5ml glycerol (Sigma-

Aldrich). The medium was sterilised by autoclaving and then left to cool down to 

50°C. Only then was 100ml OADC added to the medium and mixed using a magnetic 

stirrer. The liquid agar was dispensed into OPTILUX Petri Dishes 100×20 millimetres 

(mm) Style (Becton, Dickinson and Company) so that there was approximately 35ml 

medium per plate. 

 

2.1.4 Reagents for DNA extraction  

Tris-EDTA (TE) buffer (10mM Tris, 1mM EDTA pH8.0) was prepared by measuring 

200 microlitres (µl) Tris-EDTA Buffer (Sigma-Aldrich) and using molecular grade 

water to make the volume up to 20ml. This reagent was stored at room temperature. 

Lysozyme (100mg/ml) was prepared by dissolving 1g lysozyme from chicken egg 

white (Sigma-Aldrich) in 10ml molecular grade water, after which 1ml aliquots were 

prepared in 1.5ml microcentrifuge tubes (Alpha Laboratories Limited (Ltd.), 

Hampshire, UK), which were stored at -20°C. 

Buffer AW1 and AW2 from the DNeasy Blood & Tissue Kit (Qiagen, Hilden, 

Germany) were prepared by adding the volume of ethanol 96-100% (Sigma-Aldrich) 

specified on the bottle. These reagents were stored at room temperature. 

 

2.1.5 Media & solutions for tissue culture 

Complete Roswell Park Memorial Institute (RPMI) 1640 medium was prepared 

aseptically in a Class II safety cabinet with a final concentration of 10% Standard 

Quality Foetal Bovine Serum (FBS; PAA Laboratories, Wagram, Austria), 100 units 

(U) Penicillin/ 100 ug Streptomycin (Invitrogen Ltd., Paisley, UK), 20 mM L-

glutamine (Invitrogen), and 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
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acid (HEPES) (Gibco Invitrogen, California, USA). Media were stored at 20°C ready 

for use.  

1× DPBS was prepared by diluting 100ml 10× Dulbecco’s phosphate-buffered saline 

(DPBS) without calcium and magnesium (Gibco, Invitrogen) with 900ml distilled 

water. The full volume was filter sterilised using a 0.2μm filter unit and stored at 

20°C ready for use. 

 

2.2 MOLECULAR TYPING OF M. TUBERCULOSIS STRAINS 

 

2.2.1 Preparation of M. tuberculosis DNA extracts 

Culturing of M. tuberculosis specimens and DNA extraction was performed at the 

HPA, MRU. During a 12 month period, between 1st April 2005 and 31st March 2006, 

there were a total of 2363 isolates, which had been received from 30 hospitals and/or 

laboratories situated within the M25 region of London, and had been routinely 

identified as MTBC. 

 

Crude DNA extraction was performed in biological safety cabinets (BSC) within a 

Containment Level 3 laboratory, following all safety guidelines. In brief, 100µl of 

each culture was aliquoted into individually labelled 1.5ml microcentrifuge tubes. An 

equal volume of chloroform (VWR International, Leicestershire, UK) was added to 

each tube. After ensuring the cap was screwed on tightly, each tube was vortexed for 

30 seconds (secs). Tubes were not opened at this stage due to aerosol production 

during vortexing. Tubes containing culture/chloroform mixture were heated at 80°C 

for 20 mins after which tubes were stored at -20°C ready for use. 

 

2.2.2 DNA amplification for MIRU-VNTR typing 

Typing was performed on the crude DNA extracts from all isolates, analysing the 15 

MIRU and 3 ETR minisatellite regions spanning the M. tuberculosis genome and 

included the loci MIRU-2, -4, -10, -16, -20, -23, -24, -26, -27, -31, -39, -40, and ETR-

A, -B, -C. WellRED dye labelled forward primers (Sigma Proligo, Poole, UK) and 

unlabelled reverse primers (Invitrogen Ltd.) were already in use within the laboratory 

and were designed using previous studies by Frothingham and O’Connell, 1998 and 

Supply et al., 2001 with some modifications during optimisation (Frothingham et al., 

1998; Supply et al., 2001). Sequences of all primers and labelling dyes are included in 

Table 2.1. 



Table 2.1 The sequences for all primers used for MIRU-VNTR typing. 

 

Primer Forward sequence Reverse sequence Dye used for labelling 
MIRU-2  5’- CAG GTG CCC TAT CTG CTG ACG-3’ 5’-GTT GCG TCC GGC ATA CCA AC-3’ WellRED D3 
MIRU-4  5’-GTC AAA CAG GTC ACA ACG AGA GGA A-3’ 5’-CCT CCA CAA TCA ACA CAC TGG TCA T-3’ WellRED D2 
MIRU-10  5’-ACC GTC TTA TCG GAC TGC ACT ATC AA-3’ 5’- CAC CTT GGT GAT CAG CTA CCT CGA T-3’ WellRED D4 
MIRU-16  5’-CGG GTC CAG TCC AAC TAC CTC AAT-3’ 5’-GAT CCT CCT GAT TGC CCT GAC CTA-3’ WellRED D2 
MIRU-20  5’-CCC CTT CGA GTT AGT ATC GTC GGT T-3’ 5’-CAA TCA CCG TTA CAT CGA CGT CAT C-3’ WellRED D2 
MIRU-23  5’-CGA ATT CTT CGG TGG TCT CGA GT-3’ 5’-ACC GTC TGA CTC ATG GTG TCC AA-3’ WellRED D4 
MIRU-24  5’-GAA GGC TAT CCG TCG ATC GGT T-3’ 5’-GGG CGA GTT GAG CTC ACA GAA C-3’ WellRED D3 
MIRU-26  5’-GCG GAT AGG TCT ACC GTC GAA ATC-3’ 5’- TCC GGG TCA TAC AGC ATG ATC A-3’ WellRED D4 
MIRU-27  5’- TCT GCT TGC CAG TAA GAG CCA-3’ 5’-GTG ATG GTG ACT TCG GTG CCT T-3’ WellRED D3 
MIRU-31  5’-CGT CGA AGA GAG CCT CAT CAA TCA T-3’ 5’- AAC CTG CTG ACC GAT GGC AAT ATC-3’ WellRED D3 
MIRU-39  5’- CGG TCA AGT TCA GCA CCT TCT ACA TC-3’ 5’- GCG TCC GTA CTT CCG GTT CAG-3’ WellRED D2 
MIRU-40  5’-GAT TCC AAC AAG ACG CAG ATC AAG A-3’ 5’-TCA GGT CTT TCT CTC ACG CTC TCG-3’ WellRED D3 
ETR-A  5’-AAA TCG GTC CCA TCA CCT TCT TAT-3’ 5’-CGA AGC CTG GGG TGC CCG CGA TTT-3’ WellRED D2 
ETR-B  5’-GCG AAC ACC AGG ACA GCA TCA TG-3’ 5’-GGC ATG CCG GTG ATC GAG TGG-3’ WellRED D4 
ETR-C  5’-GTG AGT CGC TGC AGA ACC TGC AG-3’ 5’-GGC GTC TTG ACC TCC ACG AGT G-3’ WellRED D4 
VNTR 2163b  5’-CGT AAG GGG GAT GCG GGA AAT AGG-3’ 5’-CGA AGT GAA TGG TGG CAT-3’ WellRED D2 
VNTR 2347  5’-GCC AGC CGC CGT GCA TAA ACC T-3’ 5’-GCC AGC CGC CGT GCA TAA ACC T-3’ WellRED D2 
VNTR 3232  5’-CAC TAG TTG TTG CGG CGA TGG T-3’ 5’-AGC CAC CCG GTG TGC CTT GTA TGA C-3’ WellRED D3 
VNTR 2163a  5’-CCC GGG GCG CTC GTG ATG-3’ 5’-CAC TAG TTG TTG CGG CGA TGG T-3’ WellRED D4 
VNTR 1982  5’-GGA ATG GCT ACG GAA GGA ATA CTC-3’ 5’-AAG GGC GGC ATT GTG TTC C-3’ WellRED D2 
VNTR 3336  5’-GAT CGG GTG CAG TGG TTT CAG GTG-3’ 5’-CCC GGG GCG CTC GTG ATG-3’ WellRED D3 
VNTR 4052  5’-AAC GCT CAG CTG TCG GAT-3’ 5’-CGG CGG CAC CCT GGA GTC TGG-3’ WellRED D4 

All forward primers were labelled for capillary gel electrophoresis and unlabelled for agarose gel electrophoresis; reverse primers were unlabelled 
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A 10ml 2× reaction buffer was prepared using 10× ammonium (NH4) reaction buffer, 

50mM magnesium chloride (MgCl2) and 100mM deoxynucleotide triphosphates 

(dNTPs), (all from Bioline, London, UK) and molecular grade water. Final 

concentrations were 2× NH4 reaction buffer, 3mM MgCl2 and 0.4mM of each dNTPs. 

Aliquots of 1.5ml were stored at -20°C ready for use. 

 

PCR were set up as either simplex or duplex reactions so 9 primer sets, containing 

forward and reverse primers for each locus, were prepared using molecular grade 

water giving a final concentration of each primer of 0.5 µM. Primer set 1 contained 

MIRU-4 and -16 primers; set 2 contained MIRU-39 and ETR-A primers; set 3 

contained MIRU-20 primers; set 4 contained MIRU-2 and-24 primers; set 5 contained 

MIRU-31 and -40 primers; set 6 contained ETR-C primers; set 7 contained MIRU-10 

and -23 primers; set 8 contained MIRU-27 and ETR-B primers; set 9 contained 

MIRU-26 primers. Primer mixes were stored at -20°C ready for use. 

 

Amplification of the different loci in each DNA extract was conducted as follows: 

10µl PCR reactions were prepared in 0.2ml 96 well Thermal Cycler Plates (Alpha 

Laboratories), for each primer set, and contained 4.33µl 2× reaction buffer, 0.08µl 

99.9% dimethyl sulphoxide (DMSO) (Sigma-Aldrich), 4.50µl primer set, and 0.09µl 

5U/µl BIOTAQ DNA polymerase (Bioline). For optimisation and amplification of 

MIRU-4 and –16 loci, 0.27µl 50mM MgCl2 was added to each reaction. Crude DNA 

extracts were allowed to thaw and any debris was spun down by centrifugation at 

8050×g for 2 mins and then 1µl was mixed into each reaction by pipetting up and 

down. 

 

All reactions were spun down by centrifuging plates at 250×g for 1 minute in an IEC 

Centra CL3R (Thermo Life Sciences, Basingstoke, UK). A GeneAmp PCR System 

9700 (Applied Biosystems, Warrington, UK) was used to amplify each locus. The 

following cycle was used for amplification: 95°C for 180 secs; 35 cycles of 95°C for 

30 secs, 60°C for 30 secs, and 72°C for 60 secs; 72°C for 300 secs. During 

amplification, PCR fragments were labelled with dyes so fragment sizes could be 

detected using capillary electrophoresis. 
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For agarose gel electrophoresis, DNA amplification procedures were exactly the same 

except simplex PCR reactions were set up to amplify loci individually using 

unlabelled forward and reverse primers with the same primer sequences. 

 

2.2.3 Capillary gel electrophoresis 

Capillary gel electrophoresis allowed identification of amplified product according to 

their molecular weight and the dye with which products were labelled during 

amplification. Analysis of PCR products was performed using Beckman Coulter CEQ 

8000 Genetic Analysis System (Beckman Coulter, Fullerton, USA). MIRU and ETR 

loci were analysed together in three separate capillaries. For each DNA extract, 

amplified products from MIRU-2, -4, -10, -16, -23, -24 were analysed in capillary A, 

products from MIRU-27, -31, -39, -40, ETR-A and -B were analysed in capillary B 

and products from MIRU-20, -26 and ETR-C were analysed in capillary C. 

 

Due to the varying intensities of labelling dyes, PCR products were diluted and 

pooled so resulting intensities of peaks on the chromatogram, following 

electrophoresis, were similar. PCR products that were labelled with Dye 2 were 

diluted 1 in 10 using molecular grade water in the PCR plate. PCR products labelled 

with Dye 3 and 4 were diluted 1 in 100 using the diluted Dye 2 fragments as the 

diluent. Pooled PCR products were mixed by pipetting up and down and centrifuged 

for 1 minute at 250×g. 

 

A Sample Microtiter plate (Beckman Coulter) was prepared so each well contained 

25µl sample loading solution (Beckman Coulter) and 0.1µl DNA Size Standard 600 

(Beckman Coulter) for analysing MIRU and ETR loci. For each DNA extract, 1µl of 

pooled PCR product was added to separate wells. The prepared sample plate was 

loaded onto the analysis system according to the manufacturer’s instructions along 

with a Beckman Coulter 96 well plate filled with Separation buffer (Beckman 

Coulter) and a 10ml CEQ Separation gel cartridge (Beckman Coulter). 

 

After capillary gel electrophoresis was completed, the automatically generated raw 

data traces, displaying peaks for each locus, were analysed using the calling tables in 

Appendix 1 and 2, to generate corresponding traces displaying peaks that were 

annotated with the locus name, molecular weight and calculated number of repeats. 
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Manual agarose gel electrophoresis was performed if there was an absent peak for any 

of the loci. 

 

Reproducibility of data was verified by repeating MIRU-VNTR typing for all loci on 

randomly selected isolates. 

 

2.2.4 Agarose gel electrophoresis 

For those isolates with loci that had missing peaks after capillary gel electrophoresis, 

the loci were amplified from the isolate as described in Section 2.2.2, using unlabelled 

forward primers; DMSO was not used in the PCR reactions and a negative control for 

each locus primer set was included using 1µl molecular grade water instead of DNA 

template. 

 

A 1.2% weight/volume (w/v) agarose gel (Agarose LE Analytical grade; Promega, 

Southampton, UK) was used to resolve 5µl of each PCR product against a 1000 b.p. 

HyperLadder IV (Bioline). The gel was viewed on an ultraviolet transilluminator 

(UVP inc, Cambridge, UK) and an image captured using a digital camera (Canon 

PowerShot A620, Surrey, UK). Product sizes were determined by comparing bands 

with the ladder and using the calling tables (Appendix 1 and 2) to calculate the 

number of repeats in the locus of interest. 

 

In some cases, amplified ETR-A fragments had to be resolved against the 2000 b.p. 

ladder or a custom size ladder comprised of amplified ETR-A fragments as the 

molecular weight of some products exceeded 1000 b.p. Also, during capillary gel 

electrophoresis of amplified MIRU-4 fragments, there were peaks with molecular 

weights considerably lower than expected indicating that MIRU-4 was more 

polymorphic with possible deletions. Whilst these polymorphisms were detected by 

capillary electrophoresis, detection was not as easy with agarose gel electrophoresis as 

the latter method provides lower resolution. Therefore, a custom size ladder for 

MIRU-4 and another ladder for MIRU-4 with the various deletions was prepared. 

 

2.2.5 Preparation of custom size ladders for ETR-A and MIRU-4 

From the data obtained after capillary gel electrophoresis, extracts with a known 

number of repeats in ETR-A, MIRU-4 and MIRU-4 with the various deletions were 

identified. Seven extracts were selected for each of the three ladders with different 
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numbers of repeats to give a broad range of values and ensure that there were not too 

many bands close together during electrophoresis. 

 

The locus, MIRU-4 or ETR-A, was amplified from each isolate in separate 40µl 

reactions, containing 20µl 2× reaction buffer, 10µl unlabelled primer mix for either 

ETR-A or MIRU-4, 1µl BIOTAQ polymerase and 2µl DNA. Amplification 

conditions were as follows: 95°C for 180 secs; 30 cycles of 95°C for 30 secs, 55°C for 

30 secs, and 75°C for 60 secs; 72°C for 300 secs. After amplification, 5µl of each 

product was resolved against a 1000 b.p. ladder, as described in Section 2.2.4, to 

confirm the presence of PCR products and to approximate product sizes. The full 

volume of PCR product was combined to produce three separate custom size ladders 

for ETR-A, MIRU-4 and MIRU-4 with deletions that were stored at -20°C. When 

ladders were loaded onto gels, HyperLadder IV was also loaded in adjacent wells. 

 

2.2.6 MIRU-VNTR typing using more discriminative VNTR loci 

All MIRU-VNTR typing data was entered into a Microsoft Access database, which 

was designed by Dr. Tim Brown and Dr. Vladyslav Nikolayevskyy, HPA, MRU, and 

was directly linked to BioNumerics version 3.00. Firstly MIRU-VNTR profiles 

produced by capillary gel electrophoresis were exported directly into Microsoft Excel 

format. Scripts within BioNumerics were used to create a table with one row per 

extract and columns for extract identification and each locus. The table format was 

used to export data into a Microsoft Access database, where additional typing data 

from agarose gel electrophoresis were manually added. Cluster analysis was 

performed in BioNumerics, using the n-1 method, to identify all DNA extracts whose 

MIRU-VNTR profiles were identical and formed clusters, which by definition 

contained 2 or more isolates, and which would be typed using the additional 7 VNTR 

loci. 

 

The more discriminatory 7 VNTR loci which were evaluated included VNTR-2163B, 

-2347, -3232, -2163A, -1982, -3336 and -4052. Serial isolates were also typed using 

these VNTR loci as part of another smaller study investigating the reproducibility of 

the VNTR loci, which will be described in Section 2.2.8 and in Chapter 4. Each locus 

was amplified from the DNA extracts as described in Section 2.2.2 and six primer sets 

were prepared as follows. Set 1 contained VNTR-2163B and -2347 primers; set 2 

contained VNTR-3232 primers; set 3 contained VNTR-2163A primers; set 4 
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contained VNTR-1982 primers; set 5 contained VNTR-3336 primers; set 6 contained 

VNTR-4052 primers. Sequences of all primers and dyes used for labelling are 

included in Table 2.1. PCR reactions were set up as described previously, except 

Diamond DNA polymerase (Bioline) was used instead, as VNTR loci seemed to 

require a polymerase with higher specificity for effective amplification. The 

amplification cycle was: 95°C for 180 secs; 35 cycles of 95°C for 30 secs, 60°C for 

30 secs, and 72°C for 120 secs; 72°C for 300 secs. 

 

Capillary gel electrophoresis was performed as described in Section 2.2.3 and VNTR 

loci analysed in two separate capillaries where VNTR-2163B, -2347, -3232, -2163A 

were analysed in capillary A and VNTR-1982, -3336, -4052 were analysed in 

capillary B. When loading the Sample Microtiter plate, as well as using 0.1µl DNA 

Size Standard 600, 0.1µl MapMarker D1 labelled 640-1000 (BioVentures, Inc., 

Murfreesboro, USA) was added to each well as some VNTR fragment sizes were 

expected to exceed 600 b.p. As for MIRU and ETR loci, if there were any missing 

peaks after capillary gel electrophoresis, agarose gel electrophoresis was performed as 

described in Section 2.2.4, but using a 2000 b.p. HyperLadder II standard (Bioline) 

instead. The calling table for the VNTR loci can be found in Appendix 2. The 

additional typing data were entered into the same Access database.   

 

2.2.7 Spoligotyping  

Spoligotyping was performed on all of the 2363 crude DNA extracts as follows: 

firstly, 1ml mastermix containing 5% DMSO, 2× NH4 reaction buffer, 3mM MgCl2, 

0.4mM of each dNTP and 0.5nmol/ml of each primer, biotinylated DRa (5’-CCG 

AGA GGG GAC GGA AAC-3’) and DRb (5’-GGT TTT GGG TCT GAC GAC-3’) 

was prepared and stored at -20°C ready for use. Primers were obtained from Isogen 

Life Science, Maarssen, The Netherlands, and sequences were as described by Goguet 

de la Salmoniere et al., 1997 (Goguet de la Salmoniere et al., 1997). 

 

Spoligotyping was performed as described in Kamerbeek et al., 1997 (Kamerbeek et 

al., 1997). Each spoligo-membrane (Isogen Life Science) accommodated forty 

samples including two positive controls, M. tuberculosis strain H37Rv and M. bovis 

BCG P3 (Isogen Life Science), which were included for each membrane. PCR 

reactions, containing 18μl diluted mastermix and 2μl DNA, were set up in 0.2ml 96 

well Thermal Cycler Plates. The DR region was amplified using the following 
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conditions: 94°C for 300 secs; 30 cycles of 94°C for 30 secs, 55°C for 60 secs, and 

72°C for 60 secs; 72°C for 300 secs. As DNA was amplified, reverse strands were 

biotin labelled. During amplification, solutions required for hybridisation and 

detection steps were made up as described in Section 2.1.1 and 2.1.2. 

 

Hybridised DNA was detected using chemiluminescence: equal volumes of enhanced 

chemiluminescent (ECL) Detection Reagents 1 and 2 (Amersham Biosciences) were 

mixed to make a total volume of 20ml for each membrane. Membranes were 

incubated with ECL reagent for 1 minute before being transferred into clear plastic 

covers ensuring there were no air bubbles. A light sensitive Hyperfilm ECL 

(Amersham Biosciences) was exposed to the membrane for 2 mins, before it was 

developed and fixed using GBX developer and replenisher and GBX fixer and 

replenisher (Kodak, New York, USA). Depending on whether the intensity of the 

signal was faint or too dark, membranes were used again to expose another film for a 

longer or shorter period of time, respectively. 

 

Membranes were re-used for more spoligotyping by stripping PCR products from the 

previous analysis using stringent washing conditions. Membranes were washed twice 

in 100ml 1% SDS in the hybridisation bottles at 80°C for 30 mins and then once in 

100ml 20mM EDTA at room temperature on the rocker. Each membrane was stored 

in 100ml 20mM EDTA ready for the next hybridisation. Both solutions were prepared 

as described in Section 2.1.1 and 2.1.2. 

 

Each spoligotype profile was scanned into specifically formatted strips with 

corresponding black and white dots for present and absent spacers, respectively, and 

since BioNumerics was directly linked to the main Microsoft Access database, 

spoligotyping data automatically appeared in the Access database as a 43 digit binary 

code. In BioNumerics, the binary codes were converted into 15 digit octal codes using 

a script within BioNumerics, which was based on the study by Dale et al., 2001, to 

make the spoligotyping digital profiles easier to use for further analysis (Dale et al., 

2001). The octal codes,  were used to assign a spoligofamily to each isolate using an 

online tool (http://cgi2.cs.rpi.edu/~bennek/SPOTCLUST.html), based on the 

SpolDB3-based probabilistic approach described by Vitol et al., 2006 (Vitol et al., 

2006).  
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2.2.8 Evaluation of MIRU-VNTR typing using VNTR-1982 and -3232 

The stability of VNTR-1982 and -3232 and the reproducibility of typing data, under 

different amplification and fragment detection conditions, were investigated. The 

details of this study, including the optimised methodology, are described in greater 

detail in Chapter 4. In brief, DNA extracts from 16 MTBC isolates, which had been 

included for quality control purposes during MIRU-VNTR typing and had complete 

data for 12 MIRU, 3 ETR and 7 VNTR loci, were selected to cover a range of repeats 

in MIRU-26, ETR-B and VNTR-1982 and -3232 loci. These loci were amplified 

using different polymerases including Bioline BIOTAQ and Diamond polymerase and 

Qiagen HotStartTaq DNA polymerase and HotStartTaq Plus DNA polymerase. 

Products were resolved on a 1.2% (w/v) agarose gel to ensure PCR products were 

present, and then analysed using capillary gel electrophoresis. During this analysis the 

effect on detected fragment sizes was evaluated using different parameters that 

involved changes in capillary temperature and the time allowed for the denaturing and 

separation steps. 

 

Reproducibility of typing using all MIRU, ETR and VNTR loci, which were included 

for this study, was also investigated in a blinded study, by checking for consistency 

between MIRU-VNTR profiles of serial isolates (i.e. multiple isolates from the same 

patient taken at successive time intervals). 

 

2.3 SELECTING STRAINS OF PARTICULAR INTEREST 

 

2.3.1 Epidemiology  

Demographic data, including gender, date of birth and country of birth, was available 

from the London TB Register for the patients included in the present study. We had 

ethical approval to use the demographic data of patients for the purposes of research. 

To perform epidemiological analysis in the present study, the country of birth data 

was used and was available for the majority of extracts. In addition, the drug 

sensitivities for the first line drugs, including isoniazid, ethambutol, rifampicin, 

pyrazinamide and streptomycin, were available at the HPA, MRU. 

 

In order to understand the degree to which London TB isolates reflected the global TB 

burden, the number of isolates in each spoligofamily was plotted onto a global map 

using the country of birth data to assign region of origin for each patient. The global 
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regions were as defined by WHO; to avoid any bias, serial isolates were not taken into 

consideration i.e. one isolate per patient was included for analysis. 

 

2.3.2 Selection of strains for phenotypic analysis 

The molecular typing, cluster analysis and epidemiology data were used to select 

strains for Panel A. For further details of the selection analysis see Section 3.2.4. 

Clusters containing more than nine isolates were included for selection of strain and 

an algorithm was designed to select particular strains of interest and is shown in 

Figure 2.1. This algorithm selected strains based mainly on correlations, within the 

cluster, between the most common spoligofamily, the most common country of birth 

and the most common sub-cluster, which were identified using profiles for the more 

discriminatory 7 VNTR loci that split the MIRU and ETR clusters. 

 

Strains were also selected if they did not fit any general trends observed within the 

MIRU and ETR clusters. Should there be any isolates within the cluster that had a 

different spoligofamily to other isolates within the cluster, the MIRU and ETR profile 

of this isolate was compared to isolates of the same spoligofamily from other clusters. 

If the profiles differed by more than 2 copies in any of loci, the isolate was included in 

the panel. Isolates taken from patients that had a country of birth and did not fit the 

general country of birth and spoligofamily identification trend in the cluster, were also 

included in the panel. If isolates had the same spoligofamily identification as strains 

already selected for the panel but with a different country of birth, it was also included 

in the panel to broaden the range of different M. tuberculosis strains. 

 

Using the selection criteria described, 42 strains that had particular properties were 

selected. This panel will be referred to as Panel A from here onwards and details of 

the strains in this panel can be seen in Table 3.2. 
   
 

 



Figure 2.1 The algorithm that was applied to 12 MIRU and 3 ETR profile clusters to select particular strains of interest for inclusion in Panel A. 

Compare 15VNTR profiles, corresponding to family Y that has been identified as 
being different in cluster X, with another cluster where family Y represents the 
majority. Exclude isolates with no Country of Birth (COB) data. 
Are there subtle changes of 1 or 2 copies in the loci that differ? (Subtle 
differences may mean that the profile happened to fall into cluster X)  

 

 

 

 

 

 

Does the isolate come from the same 
COB/22VNTR cluster as an isolate that 
has already been included in the panel 
from cluster X? 

Yes No 

Exclude from 
further analysis 

Include in panel to 
compare with isolates 
from the same cluster 

Is the spoligofamily ID in 
cluster X the same or different? 

Isolates with different 
spoligofamily ID to the majority 

Include in panel to compare with isolates 
from same cluster with different family ID 

Is the strain in cluster X localised to a particular country/region to identify a possible source of the 
strain? 
To determine this, calculate number of patients 
a) in each country of birth (COB) within the cluster 
b) in the regions, based on COB, defined by World Health Organisation 
If there is insufficient data no conclusions can be drawn about the possible source of the strain. 

Identify the most common COB and 22VNTR cluster. 
Does most common COB correlate with the largest 22VNTR 
cluster? (If there is only 1 isolate with COB data then include in the 
panel) 

Yes No 
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those born in the niche (country/region) area 
to give indications of degree of success for 
local transmission of strain in UK. 
Low ratio: successful strain for transmission 
High ratio: not as successful strain  

May indicate a very successful 
strain in its transmission ability 
as it affects patients worldwide. Yes

No 

Include in panel 
Yes

No 
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There are no clusters with this spoligofamily ID
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YesAre there any isolates with the most common COB that are in the 
same 22VNTR cluster as the other isolates selected for the panel? 

Yes 

No 

End of analysis Include in panel to compare with 
isolates from the same cluster 

End of analysis 
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2.3.3 Phenotypic analysis 

The 42 Panel A strains were analysed in vitro for the following properties: immune 

response and growth of strains in tissue culture models and growth rates of strains in 

Middlebrook 7H9 culture systems. 

 

As part of the preparation of a panel of strains representing the maximum diversity 

against which a vaccine would provide protection, in vivo phenotypic experiments 

were planned in guinea pig models. So that sufficient reproducibility could be 

achieved to critically test the null hypothesis that TB strains were fundamentally the 

same, a smaller number of strains derived from the original 42 strains in Panel A were 

selected to create a core second panel (Panel B) based on the different phylogenetic 

lineages within MTBC. The selection of strains for Panel B is described in more detail 

in Section 3.3. Also included in Panel B was a wild-type M. africanum strain. 

Laboratory strains, included M. tuberculosis H37Rv (one from HPA, MRU and the 

other from HPA, Centre for Emergency Preparedness and Response; CEPR, Porton 

Down), M. tuberculosis H37Ra and the vaccine strain M. bovis BCG. All Panel B and 

laboratory strains were included for phenotypic experiments. 

 

2.4  PREPARATION OF MYCOBACTERIAL STOCK CULTURES 

 

2.4.1 Culturing M. tuberculosis strains 

In order to have sufficient uniform seed-stock for all phenotypic experiments, a stock 

of frozen cultures was prepared of the Panel B strains (obtained from the HPA, MRU 

archives), and all laboratory strains (both M. tuberculosis H37Rv strains, and M. 

tuberculosis H37Ra, and M. bovis BCG). All manipulations with cultures were carried 

out in Class I biological safety cabinets following safety guidelines. 

 

Using 1ml graduated sterile plastic pasteur pipettes (Alpha Laboratories) for each 

strain, a pyruvate and glycerol slope (Media for Mycobacteria, Cardiff, UK) and a 

50ml Falcon conical tube (Becton, Dickinson and Company) containing no more than 

10 sterile 5mm diameter glass beads (Sigma-Aldrich) and 10ml Middlebrook 7H9 

with 0.05% Tween-80 medium, were each inoculated with 2 drops of the original 

culture from archive. The medium was prepared as described in Section 2.1.3. Even 

though Tween would reduce clumping of the mycobacteria, the liquid cultures were 

vortexed so the glass beads would break up clumps as well (after vortexing, it was 
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important NOT to open the tubes as there was aerosol production during the process). 

All slopes and liquid cultures were incubated at 37°C. The liquid cultures were 

vortexed every 2 days to ensure that clumping was reduced as much as possible. 

 

After 2 weeks the liquid cultures were sub-cultured, except 15ml Middlebrook 7H9 

with 0.05% Tween-80 medium was used. The fresh liquid cultures were incubated at 

37°C for 3 weeks, vortexing the cultures every 2 days.   

 

2.4.2 Archiving M. tuberculosis cultures 

After 3 weeks, when mycobacterial cells should potentially still be in the logarithmic 

phase of the bacterial growth curve, the cultures were removed from incubation and 

1.5ml of each culture was transferred into labelled sterile 2.0ml cryovial tubes 

(Simport, Beloeil, Canada) so there were 10 cryovial tubes per strain, which were then 

stored at -80°C, ready for use in phenotypic experiments. 

  

2.5 QUANTIFICATION OF M. TUBERCULOSIS 

 

2.5.1 Developing a quantification assay for MTBC cultures 

The accuracy of quantification of MTBC cultures using colony forming units (c.f.u.) 

is compromised by the tendency for mycobacterial cells to form clumps; the process 

is also relatively slow but considered the gold standard quantification procedure. An 

alternative methodology was sought to accurately quantify MTBC cultures and the 

development of the MTBC DNA quantification assay is described in detail in Section 

5.2. 

 

The detailed procedure for preparation of the M. tuberculosis DNA standard is 

described in Section 5.2. Briefly, after 4 weeks, the mycobacterial growth on slopes 

inoculated with M. tuberculosis H37Rv was re-suspended in TE buffer and incubated 

in an 80oC waterbath for 50 mins to kill the mycobacteria. Bacterial cells were lysed 

with lysozyme. Proteinase K and Buffer AL (both provided in the Qiagen DNeasy 

Blood & Tissue kit) was added to the lysed bacterial cells, to help break down any 

cell debris, after which 96-100% ethanol (Sigma-Aldrich) was added to the tube. 

Purification of the extracted DNA was performed using the protocol and reagents 

provided with the Qiagen DNeasy Blood & Tissue kit. 

 

 - 77 -



The concentration of double-stranded DNA, in ng/μl, was calculated at 260nm, which 

was then used to calculate the number of genomes per μl in the DNA extract. Using 

this value, DNA standards containing 1×107, 1×106, 1×105, 1×104, 1×103, 1×102, 

1×101 genomes/μl were prepared and stored at -20°C ready for use. 

 

2.5.2 Comparing quantification methods for MTBC cultures 

Liquid cultures of 30ml volume were prepared, as described in Section 2.4.1, for the 

Panel B strains and incubated at 37°C. At regular intervals of 3 or 4 days, the optical 

density at 600nm (OD600) was measured for all cultures, and the number of 

mycobacteria was quantified using real-time PCR and c.f.u. The details of these 

procedures are described in Sections 5.3. For real-time PCR, primers amplifying the 

ribonucleic acid polymerase β-subunit-encoding gene (rpoB) region of the M. 

tuberculosis genome were used (refer to Section 5.2.2 for details on evaluation of 

primers that could be used for real-time PCR). The results of the comparison of these 

quantification methods is detailed in Section 5.3.4, but briefly, it was concluded that 

OD600 of 0.2 could be used to indicate mycobacterial cells being within the 

logarithmic phase of the growth curve and real-time PCR could be used as a more 

rapid method for quantifying MTBC cultures.       

 

2.6 IN VITRO TISSUE CULTURE EXPERIMENTS 

 

2.6.1 Preparation of mycobacteria cells for infection experiments 

Tissue culture experiments were performed using the ten Panel B strains selected in 

Section 2.3.3 (refer to details of strains in Section 3.3), including M. tuberculosis 

Beijing, M. tuberculosis LAM10, two M. tuberculosis CAS, M. tuberculosis EAI5, 

and M. africanum, M. tuberculosis H37Rv (MRU), M. tuberculosis H37Rv (Porton 

Down), M. tuberculosis H37Ra, and M. bovis BCG. These experiments were 

performed to provide some insight into how human macrophage-like cells are affected 

after infection with the different strains. 

 

Ten days before setting up a tissue culture infection experiment, one of the archived 

tubes of frozen cultures for each of the strains was thawed at room temperature and 

the full volume used to inoculate a 50ml falcon tube, containing 15ml Middlebrook 

7H9 with 0.05% Tween-80 media and beads. After vortexing, the cultures were 

incubated at 37°C for eight days, but every two days the cultures were vortexed. 
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Two days before the tissue culture infection experiment, the OD600 was measured for 

each of the cultures using the procedure described in Section 2.5.2 and detailed in 

Section 5.3.1 and recorded on the falcon tube. At the same time, a drop was placed on 

a section of Columbia blood agar (CBA) plate (Oxoid Ltd., Cambridge, UK) and 

spread using a plastic loop to ensure the purity of cultures. If OD600 was above 0.2 for 

any of the cultures, then an aliquot of the culture was diluted accordingly, using fresh 

media, in new 50ml falcon tubes containing glass beads, so that the final volume of 

sub-culture was 15ml (OD600 0.2). All cultures and CBA plates were incubated at 

37°C. 

 

After overnight incubation, the CBA purity plates were checked for contamination 

and then re-incubated. If there was contamination, a culture from any previous 

experiment was used to prepare 15ml culture at OD600 0.2. A drop of all cultures that 

had been diluted the previous day was also plated onto CBA plates. Cultures and 

plates were incubated until required for the infection experiment on the following day. 

 

2.6.2 Preparation of monocytic THP-1 cells for infection experiments 

The human monocytic cell line, THP-1, was obtained from the American Type 

Culture Collection (ATCC, Virginia, USA). All tissue culture procedures were carried 

out under aseptic conditions in a Class II safety cabinet, which was decontaminated 

with a 30-minute ultraviolet exposure before use and sprayed with 70% ethanol before 

and after use. All items, including safety gloves, were decontaminated by spraying 

70% ethanol before going inside the cabinet. Sterile consumables were used for all 

procedures including all 5ml, 10ml, and 25ml pipettes (Sarstedt Ltd., Nümbrecht, 

Germany), all 75ml cell culture flasks (Becton, Dickinson and Company), and 50ml 

falcon tubes. Cell culture flasks were sprayed carefully with ethanol ensuring no 

ethanol spray went on the vented cap.  

 

The THP-1 cells were thawed on arrival and cultured in complete RPMI 1640 

medium, pre-warmed to 37°C, in 75ml cell culture flasks. Complete RPMI medium 

was prepared as described in Section 2.1.5. Cells were incubated at 37°C, 5% carbon 

dioxide (CO2). The THP-1 cells were not activated therefore the cells were 

proliferative and non-adherent. Every 2 or 3 days, depending on the density of the 

cells in the culture flasks, the THP-1 cells were sub-cultured by firstly pooling all 

 - 79 -



THP-1 cells from all flasks by centrifuging cells down in a single 50ml polystyrene 

conical centrifuge tube (Becton, Dickinson and Company) for 5 mins at 1100×g and 

then resuspending cells in 10ml fresh complete RPMI medium. Five culture flasks 

containing 10ml fresh complete RPMI medium were inoculated aseptically with 2ml 

of the pooled THP-1 cells. 

 

Two days prior to setting up an infection experiment, THP-1 cells were counted, 

activated and plated. Firstly, all cells were pooled in a small volume of fresh complete 

RPMI medium as described above. For cell counting, 30µl of cell culture was diluted 

1 in 2 using Trypan blue solution (Sigma-Aldrich). After Trypan blue staining, live 

THP-1 cells looked bright, clear and round when observed under a Motic Inverted 

Microscope (Motic Incorporation Ltd., Richmond, Canada), whilst dead THP-1 cells 

took up the stain and were blue. Trypan blue/THP-1 cell mixture was transferred to 

fill one of ten chambers of a KOVA Glasstic Slide 10 with Grid Chamber (Hycor 

Biomedical, Ltd., Penicuik, UK), holding approximately 6.6µl. One well of the slide 

contained a large 3 by 3 grid and in each square of this grid was a smaller 3 by 3 grid. 

The full calculation for establishing the number of THP-1 cells per ml is detailed in 

Appendix 3. The calculated value was used to dilute or concentrate the THP-1 culture 

accordingly so there were 300,000 cells per ml. In this study, 6ml of THP-1 cells, at 

the correct concentration, were required for each of the ten strains, and for uninfected, 

lipopolysaccharide (LPS) and IFN-γ controls. 

 

THP-1 cells were activated by adding phorbol 12-myristate 13-acetate (PMA; Sigma-

Aldrich) at a final concentration of 500ng/ml, so the cells differentiated from 

monocytic, proliferative, non-adherent THP-1 cells into macrophage-like, non-

proliferative, adherent cells. A volume of 1ml PMA-activated THP-1 cells 

(corresponding to 300,000 cells) was plated into 12 wells in each of seven Costar 24-

well flat bottom cell culture plates (Corning, New-York, USA), leaving a column of 

empty wells between the two strains per plate to avoid cross-contamination during 

further experimental procedures. The plates were incubated at 37°C, 5% CO2 for 48 

hours (hrs). 
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2.6.3 Infection of THP-1 cells with M. tuberculosis 

On day 0, two days after the mycobacterial cultures and macrophage-like THP-1 cells 

were prepared, the THP-1 cells were infected with MTBC at a ratio of 1:1; numbers 

of MTBC were quantified using real-time PCR. 

 

The tubes containing the culture for each strain were vortexed, and left to stand for 5 

mins. The OD600 was measured for each of the cultures and two aliquots of 500µl 

from each culture were transferred into two labelled 1.5ml microcentrifuge tubes. The 

microcentrifuge tubes were centrifuged at 12,000×g for 10 mins, the supernatant from 

each tube safely discarded and the pelletted mycobacterial cells were resuspended in 

100µl TE buffer. DNA extraction and purification procedures were then performed as 

described in Section 2.5.2 and detailed in Section 5.2 and the volume of Buffer AE for 

eluting DNA was 40µl. 

 

Real-time PCR reactions were set up using rpoB primers, DNA standards (ranging 

from 1×101 to 1×107 genomes/μl) and the two DNA extracts of unknown 

concentration per strain, and then the number of genomes/ml culture was calculated 

(the detailed procedures for setting up PCR and calculating genomes/ml is described 

in Section 5.2.2, except DNA had been extracted from 500µl culture instead of 1ml). 

As there were duplicate DNA extracts per culture, the final number of genomes/ml 

was an average of the duplicates. In order to infect THP-1 cells with bacteria at a 

multiplicity of infection (MOI) of 1, the volume of each culture required to infect 

300,000 THP-1 cells with 300,000 mycobacterial cells was calculated. During the 

PCR step, Middlebrook 7H11 plates were inoculated with serial dilutions of each 

culture and all plates incubated at 37°C for 3 to 4 weeks, to obtain c.f.u. data (refer to 

Section 5.3.3 for the detailed procedures for the serial dilution and plating). 

 

Once the volume of culture required was established for each strain culture, the 

original cultures in the 50ml falcon tubes were vortexed and the tubes left to stand for 

5 mins. During this time, the 24-well tissue culture plates containing activated THP-1 

cells were observed under the inverted microscope to ensure that the cells had adhered 

to the bottom of the wells and that the RPMI medium was not contaminated. As there 

were 6 wells per strain, the appropriate volume of each of the 10 strain cultures was 

added to each of the 6 wells of the labelled 24-well plate aseptically. A drop of each 

culture was also plated onto CBA plates. 
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As well as infecting activated THP-1 cells with each of the ten different strains, three 

sets of controls were prepared. The first control was uninfected activated THP-1 cells. 

For this control, each of the 6 wells were inoculated with a volume of Middlebrook 

7H9 medium (with OADC) equivalent to the largest volume of culture that was used 

for infecting THP-1 cells. This control enabled the identification of any effects that 

the medium may have on the THP-1 cells. The second control was set up by adding 

25µl of 50µg/ml LPS from Escherichia coli 055:B5 (Sigma-Aldrich) to each of the 6 

wells. The third control was prepared by adding 25µl of 50µg/ml IFN-γ (Miltenyi 

Biotech, Bergisch Gladbach, Germany) to each of the 6 wells. Using LPS and IFN-γ 

to activate THP-1 cells can potentially act as positive controls as they induce the 

production of certain cytokines and these controls are particularly important for 

measuring cytokine production using assays such as Enzyme-Linked ImmunoSorbent 

Assay (ELISA). All of the plates were incubated at 37°C, 5% CO2, overnight, for 

infection of the THP-1 cells. 

 

The following morning, day 1 post-infection, any unincorporated mycobacterial cells 

were removed by washing the infected THP-1 cells. The RPMI medium from each 

well was transferred into separate sterile microcentrifuge tubes. Each well was 

washed by adding 500µl 1× DPBS (prepared as described in Section 2.1.5) gently 

against the side of the well and then transferring the full volume into corresponding 

microcentrifuge tubes containing the old RPMI medium. The infected THP-1 cells in 

the wells were kept wet by gently adding 1ml 1× DPBS to each well. 

 

Any THP-1 cells that may have become detached from the bottom of the well and 

aspirated were spun down by centrifugation at 300×g for 10 mins, (which avoids 

spinning down bacterial cells). The supernatant was discarded safely and the 1ml 1× 

DPBS was transferred from the 24-well plate and into corresponding microcentrifuge 

tubes. Again, THP-1 cells were spun down, during which time 1ml fresh complete 

RPMI was added to each of the wells. THP-1 pellets at the bottom of microcentrifuge 

tubes were resuspended by taking a small volume of RPMI, approximately 80µl, from 

the appropriate well and transferring the resuspended cells back in the well. The 24-

well plates were incubated for 5 to 6 hrs, allowing the intracellular mycobacteria to 

elicit an effect, if any, before samples were taken for the day 1 time point. 
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2.6.4 Sample collection of mycobacteria infected THP-1 cells  

Samples were taken at day 1, 4 and 7 post-infection. At every time point, for each 

strain and control, RPMI medium was transferred from two wells and into separate 

1.5ml microcentrifuge tubes. All THP-1 and mycobacterial cells were spun down by 

centrifugation at 8000×g for 10 mins, during which time 300µl 1× DPBS was added 

to each of the wells from which RPMI had been removed. After centrifugation, the 

supernatant was transferred into separate microcentrifuge tubes, which were then 

stored at -80°C ready for ELISA. 

 

The 300µl 1× DPBS was transferred from the wells and into the microcentrifuge tubes 

containing the pelletted cells. Addition of 100µl of 0.25% Trypsin, 0.25% (1×) with 

EDTA (Invitrogen Ltd.) for 3 mins allowed the THP-1 cells to detach from the bottom 

of the wells. The trypsin-EDTA was then inactivated by adding 500µl RPMI. The full 

volume was transferred into the appropriate microcentrifuge tubes and if some cells 

could still be seen at the bottom of the well, a small volume of liquid from the 

microcentrifuge tube was used to scrape the cells and aspirate them back into the 

microcentrifuge tubes. The cells in the microcentrifuge tubes were spun down by 

centrifugation, this time discarding the supernatant and centrifugation was repeated. 

The tubes containing the dried pellets of cells were stored at -80°C ready for analysis. 

 

The experimental procedures described in Sections 2.6.1 to 2.6.4 were repeated two 

more times so there were supernatants and pelletted cells, stored at -80°C, from three 

independent experiments. 

 

2.6.5 Measuring cytokine levels in supernatant 

The levels of human TNF-α, human IL-10, human IL-1β, and human IL-6 cytokines 

were measured in all of the supernatants, using ELISA Ready-SET-Go! Kits 

(eBioscience, California, USA). The assay was performed using the protocols 

provided with the kits, which included the 96-well ELISA plates and all reagents 

except wash buffer, which was a solution of 1× DPBS (without calcium and 

magnesium) with 0.02% Tween-20 solution (Sigma-Aldrich). 

 

In a single day, the assays for each of the 4 different cytokines could be performed 

using supernatant from one independent THP-1 infection experiment as the 96-well 

ELISA plate could accommodate these supernatants and all recommended standards. 
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The day before performing the assay, ELISA plates (one plate per cytokine) were 

coated with capture antibodies, which were diluted as directed in the protocols using 

Coating Buffer that was prepared as directed using the powdered buffer provided. 

Aliquots of 100µl diluted capture antibody were dispensed into each well of the 

plates, which were then sealed and incubated overnight at 4°C. If there was any 

cytokine in the supernatant that was complementary to the capture antibody it would 

specifically bind to it. 

 

The following morning, supernatant from one of the three independent experiments 

was left at room temperature to thaw. The capture antibody was aspirated from all of 

the plates, which were washed 5 times with 300µl Wash Buffer per well, allowing 1 

minute for soaking between washes to wash away excess capture antibody. All plate 

washes were performed using a plate washer (Wellwash 4 Mk2; Thermo Scientific). 

Afterwards, 200µl 1× Assay Diluent, prepared by diluting 5× Assay Diluent with 

distilled water, was added to each of the wells and all plates incubated at room 

temperature for 1 hour. The 1× Assay Diluent was aspirated from the wells and the 

plates washed as described previously. 

 

The top concentration of standards, which were specific to each cytokine assay, were 

prepared by diluting the stock standard from the kit with 1× Assay Diluent using the 

volumes detailed in the protocol, as these vary between cytokine assay and also 

between kits for the same cytokine. For the standard curve, six 2-fold serial dilutions 

of the top standards were prepared so the final volume of diluted standards was 400µl. 

For each cytokine plate, there were seven standards and a blank, which was the 1× 

Assay Diluent. 

 

One plate was set up at a time to minimise the time gap between the addition of 

standards and the last sample in the final well. Firstly, 100µl of the top standard was 

added to each of the top two wells of the first two columns, so there were duplicate 

wells for each standard. Two 100µl aliquots of the next dilution down from the top 

standard were added into the next two wells and so forth with the remaining 

standards. Aliquots of 1× Assay Diluent were added to the bottom two wells. In the 

remaining wells, 100µl of the supernatant was added with 1 well per sample, so all 

supernatants from one experiment could be analysed simultaneously. All plates were 
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sealed and incubated for 2 hrs at room temperature to allow any cytokine in the 

supernatant to bind to the capture antibody. 

 

After incubation, standards and supernatants were aspirated from the wells and 

washed 5 times as described previously to leave only the bound cytokine molecules. 

These molecules were detected by adding 100µl cytokine specific Detection antibody, 

which was diluted in 1× Assay Diluent as directed in the protocol, to each of the 

wells. ELISA plates were sealed and incubated for 1 hour at room temperature. The 

Detection antibody was then aspirated and the plates washed as before. 

 

A detection enzyme was added to each well to bind to the Detection antibody. For this 

assay Avidin-horseradish peroxidase (Avidin-HRP) was used and this reagent was the 

same for all cytokine assays. Avidin-HRP was diluted using 1× Assay Diluent and the 

volumes detailed in the protocol, after which 100µl was quickly added to each well, 

as the enzyme was light sensitive. The plates were sealed and incubated in the dark at 

room temperature for 30 mins. The Avidin-HRP was aspirated and washed as before 

except there were 7 washes instead of 5 to make sure any unbound Avidin-HRP was 

washed away completely. 

 

A volume of 100µl Substrate solution was added to each well and the plate incubated 

in the dark at room temperature for 15 mins. As any bound Avidin-HRP reacted with 

substrate it caused a colour change from colourless to blue if the cytokine was 

present. The extent to which there was colour development showed how much 

cytokine there was present initially. As the reaction between the Avidin-HRP and 

substrate is light sensitive, as soon as the 15 mins incubation was over, 50µl Stop 

Solution was added to each well to stop the reaction and to avoid false readings. The 

Stop solution caused a colour change from blue to yellow. The OD at 450nm (OD450) 

was measured for each well in all cytokine plates using a Multiskan Microplate 

Reader (Thermo Scientific). 

 

The logarithm (log) of OD450 values was calculated. The mean log OD450 value was 

taken for each of the standards, as there were duplicate readings, to produce the 

standard curve of log OD450 value of standards versus the corresponding log 

concentration values, which were calculated using the top standard concentration, in 

picogram/millilitre (pg/ml), provided in the kit’s protocol. The top standard 
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concentrations varied between cytokine assays and between kits. The log cytokine 

concentration in the supernatants was established by extrapolation against the 

standard curve and then the actual concentration calculated using 10log concentration. 

During the initial experiment, when samples were taken at each time point, there were 

duplicate samples per time point. Therefore, the mean cytokine concentration was 

taken. The cytokine concentrations for each of the ten strains and the three controls 

were plotted against days post infection to identify any trends. 

 

The ELISA assays were repeated using the same protocol for supernatant collected 

from the two repeated independent infection experiments described in Section 2.6.4. 

If there were any supernatants in which the calculated cytokine concentration was 

above the concentration of the top standard, the ELISA had to be repeated as the 

standard curve was only valid for the concentration stated in the protocol and any 

OD450 values above this could not be reliably extrapolated. The supernatants were 

diluted 1 in 4 using complete RPMI as the diluent before being added to the ELISA 

plate well. When calculating the cytokine concentration, the dilution factor was taken 

into account. 

 

2.6.6 Measuring fold enhancement and growth of mycobacteria in THP-1 cells 

Real-time PCR was used to calculate the growth of mycobacteria inside THP-1 cells 

at the three different time points. Firstly, DNA was extracted from the dried pellets of 

cells that were prepared during sample collection. The DNA extraction protocol 

differed from previous protocols, as DNA was extracted from both THP-1 and 

mycobacterial cells that had initially been taken up by THP-1 cells. 

 

The pellets of cells were resuspended in 200μl 1× DPBS by pipetting up and down 

gently after which 20μl proteinase K, 22μl 100mg/ml lysozyme and 200μl Buffer AL 

was added to the cells and mixed thoroughly by vortexing. The tubes were incubated 

in a 56oC waterbath for 15 mins, after which 200μl ethanol (96-100%) was added to 

each tube and mixed thoroughly to make a homogenous solution. The DNA 

purification steps were performed using the Qiagen DNeasy Blood & Tissue Kit and 

the procedures described in Section 5.2.1. The DNA was stored at -20°C ready for 

real-time PCR. 
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Real-time PCR reactions were set up using the volumes detailed in Section 5.2.2. The 

set up was slightly different because no DNA standards were used. For each DNA 

extract two sets of three reactions were set up, one set of reactions was prepared using 

rpoB primers and the other set of reactions was set up using primers for actin 

(forward: 5’-TCA CCC ACA CTG TGC CCA TCT ACG A-3’; reverse: 5’-CAG 

CGG AAC CGC TCA TTG CCA ATG G-3’). Setting up reactions with these primers 

meant that the threshold cycle (Ct) values could be used to calculate the amount of 

mycobacteria relative to the THP-1 cells present as it is not known to what extent the 

THP-1 cells would survive after infection with mycobacteria. However, it is important 

to note that as DNA levels are being assayed there would be no discrimination 

between viable and dead mycobacteria and also between dead or living THP-1 cells. 

 

After real-time PCR, the fold enhancement relative to day 1, for each strain, was 

calculated using the 2-ΔΔCt mathematical model (Pfaffl 2001): 

i. calculating ΔCt for each time point 

= Ct (rpoB) - Ct (actin) 

ii. calculating ΔΔCt between day 1 and all other time points 

= ΔCt (day 4) - ΔCt (day 1) and 

= ΔCt (day 7) - ΔCt (day 1) 

iii. calculating fold enhancement (the efficiency of both pairs of the primers is 2 

so this value was used for calculations) for each ΔΔCt 

= 2-[ΔΔCt(dy4 - dy1)] and 

= 2-[ΔΔCt(dy7 - dy1)]  

The fold enhancement at day 4 and 7 for each strain was plotted as a bar graph to 

make comparisons of the fold enhancements between strains. 

 
2.7 IN VITRO GROWTH EXPERIMENTS 

 

2.7.1 Inoculation of MGIT tubes 

As well as studying the growth of mycobacteria in tissue culture systems, the growth 

of the ten strains was investigated using another in vitro system, which allowed real-

time observation of growth curves. The MTBC cultures that were used for infecting 

activated macrophage-like THP-1 cells, had already been quantified using real-time 

PCR, therefore the BBL Mycobacteria Growth Indicator Tube (MGIT) 7ml tubes 

(Becton, Dickinson and Company) were inoculated with the same cultures on the 
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same day as the tissue culture experiments were set up. The MGIT tubes contained 

7ml modified Middlebrook 7H9 medium and, before inoculation, 800μl OADC was 

added to each of the tubes required for each experiment. 

 

As there were no previous data on the number of mycobacteria that should be used for 

inoculation, MGIT tubes were set up with 10 fold differences in the number of 

mycobacteria, with the highest number being 600,000 genomes and the lowest 6 

genomes. In order to inoculate a MGIT tube with 600,000 mycobacteria, two times 

the volume of culture required per well for the tissue culture experiments was added 

to the tube. The same volume of culture was then used to complete a set of five 10-

fold serial dilutions, before inoculating MGIT tubes with 60,000, 6,000, 600, 60 and 6 

mycobacteria. For each strain, two sets of six MGIT tubes were inoculated with the 

different number of mycobacteria so there were duplicate sets of MGIT tubes. 

Negative controls were set up in exactly the same way, using the same Middlebrook 

7H9 medium that had been used to inoculate the non-infected THP-1 cells. 

 

After inoculation, MGIT tubes were registered onto the EpiCenter that was the 

dedicated computer linked to the BACTEC MGIT 960 Mycobacterial Detection 

System (Becton, Dickinson and Company), which was an automated system into 

which the tubes were placed for incubation. The temperature inside the MGIT 960 

was controlled and maintained at 37oC to allow mycobacteria to grow. Fixed to the 

bottom of each tube was silicone, embedded with a fluorescent growth indicator, 

which was sensitive to dissolved oxygen in the medium. As the mycobacteria grew 

during incubation in the MGIT 960, the oxygen in the tubes was utilised and this 

oxygen depletion caused an increase in fluorescence. Every hour, the MGIT 960 took 

fluorescence readings from all of the tubes simultaneously. The algorithm within the 

software (TB eXiST version 5.53) automatically calculated the growth units in 

accordance to the detected fluorescence. Real-time growth curves displaying growth 

units versus time, in hrs, were automatically generated using the TB eXiST software. 

 

2.7.2 Analysis of growth curves 

Once all of the growth curves had reached a plateau, the raw growth unit data for all 

of the strains and negative controls, at each of the different inoculation sizes, was 

exported into Microsoft Excel, where growth curves were plotted again. These plots 

were used to identify the two time points between which the growth curve was at 
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logarithmic phase (i.e. the time point between which the diagonal line of the curve 

was the straightest). Once these time points had been established, the raw data for the 

relevant curve were used to find the exact growth unit at the two time points. 

 

The growth rate at mid-logarithmic phase was then calculated by dividing the 

difference in growth units at each time point by the difference between the two time 

points. In each experiment, for every strain, the mean growth rate of the duplicate 

values at the different inoculum sizes was calculated.      

 

2.8 AEROBIOLOGY STUDIES 

 

2.8.1 Preparation of cultures 

The stability of the core five Panel B M. tuberculosis strains as circulating aerosols 

was tested using an all-glass impinger-30 (AGI-30) sampling device. Cultures with 

1×107 c.f.u. were required. One frozen aliquot of archived culture for M. tuberculosis 

Beijing, M. tuberculosis LAM10, two M. tuberculosis CAS, and M. tuberculosis 

EAI5 was thawed at room temperature and the full volume used to inoculate a CBA 

plate to check for purity, and 50ml falcon tubes, containing 15ml Middlebrook 7H9 

medium with 0.05% Tween-80 media and glass beads. After vortexing, the cultures 

and CBA plates were incubated at 37°C. Every day the plates were checked for 

growth and the cultures were vortexed to break up the clumps. After a week, 

subcultures were prepared by inoculating fresh Middlebrook medium and CBA plates 

(to check for purity) and incubated for 10 days to ensure that the bacteria were in the 

exponential phase of growth. 

 

Instead of using c.f.u., quantification of mycobacteria in each culture was performed 

using real-time PCR procedures as previously described in Section 2.6.3. For each 

strain, two aliquots of the volume of culture required to obtain 1×107 mycobacterial 

genomes were transferred into 2.0ml microcentrifuge tubes and the bacterial cells 

pelletted by centrifugation at 12,000×g for 10 mins to remove media containing 

Tween. Tween is a detergent and may affect the aerosolisation of the cultures. For this 

reason, bacterial cells were resuspended in 1.5ml Middlebrook 7H9 media without 

Tween and without OADC, as the cultures were used immediately. All culturing 

procedures were performed at HPA, MRU. 
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2.8.2 AGI-30 sampling 

The AGI-30 sampling was performed in collaboration with HPA, CEPR, based in 

Porton Down, UK, and the procedures for actual AGI-30 sampling were performed by 

Simon Clark and colleagues in CEPR using a Class III flexible film isolator (Bell 

Isolation Systems Ltd, Scotland, UK).  

For each strain, the full volume of culture, was diluted 1 in 10 using sterile distilled 

water, so the final 15ml diluted culture contained 1×106 genomes. The cultures were 

aerosolized using a 3-jet collison nebulizer (BGI, Incorporated, Massachusetts, USA) 

and then fed through the Henderson apparatus (CEPR), through which air was 

circulated. The diameter of the aerosol particles was on average 2.0μm, with a range 

of 0.5-7.0μm. The aerosols traveled through the apparatus and whilst the Henderson 

apparatus is usually used to deliver aerosols to animals, for the purposes of this 

experiment the aerosols were delivered to four AGI-30 samplers (Ace Glass, 

Incorporated, New Jersey, USA), which were effectively glass vessels, containing 

5ml sterile distilled water, that draws air containing TB bacilli from the Henderson 

apparatus via an inlet and then captures the aerosols in the water. Each strain was 

tested separately and the apparatus was washed through with sterile distilled water 

between strains. Comparing the numbers of mycobacteria in the collison and the AGI-

30 samplers for each strain would allow to identify any differences in the stability of 

strains following aerosolisation. 

 

For safety reasons, all further procedures were conducted at the HPA, CEPR facilities. 

Therefore, to ensure all quantification was performed using the same method, 

colleagues at CEPR and I plated out mycobacteria from the collison and AGI-30 

samplers, a second aliquot of culture that had been prepared in Section 2.8.1 was also 

plated onto Middlebrook 7H11 agar plates (Biomerieux UK Ltd., Hampshire, UK). 

For all collison and AGI-30 samples, 100μl of neat and diluted samples were plated; 

two 10-fold serial dilutions in duplicate were prepared. All plates were incubated at 

37°C for four weeks after which the c.f.u. was counted. The number of c.f.u. per ml 

was calculated by multiplying the c.f.u. count by 10 (as 100µl was plated) and this 

value was multiplied by the dilution factor.   
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2.9 IN VIVO GUINEA PIG EXPERIMENTS 

 
2.9.1 Infecting guinea pigs with TB aerosol 

The phenotypes of core Panel B M. tuberculosis strains, were tested using an in vivo 

model of guinea pigs. Similar experiments had been performed previously at HPA, 

CEPR, using laboratory-adapted strains, so it was of particular interest to compare the 

effects of infecting guinea pigs with wild-type strains. Simon Clark and colleagues 

from CEPR carried out the procedures for infection of guinea pigs. 

 

Sixteen female Dunkin-Hartley guinea pigs, weighing between 650g and 750g 

(Harlan Laboratories, Inc., Loughborough, UK) were infected with each strain. For 

infection, the diluted cultures that had been used for aerobiology testing were used 

again. The AGI-30 sampler components were exchanged for a sow, which 

accommodated 8 guinea pigs per challenge. This meant there were 2 separate 

challenges per strain and between each challenge a sample of the collison was taken 

for c.f.u. counts to monitor the numbers of mycobacteria throughout the challenge. 

 

The diluted culture was aerosolised in the collison nebulizer and as the aerosols 

travelled through the Henderson apparatus, they were delivered straight to the snout 

of the guinea pigs. Guinea pigs were challenged for 5 mins under the controlled 

conditions of the apparatus; meaning approximately 10 mycobacteria should be 

retained in the lungs of the guinea pigs. After 16 guinea pigs had been infected with 

one strain, the apparatus was washed through with sterile distilled water before 

another 16 animals were infected with the second strain and so forth. 

 

After infection, all animals were kept under controlled and contained conditions. 

Their health was monitored and all guinea pigs were weighed every 5 days. Post-

challenge, guinea pigs were culled after 16 days post-challenge (8 guinea pigs per 

strain), and then 56 days post-challenge. All animals were euthanised with overdoses 

of sodium pentabarbitone. 

    

2.9.2 Tissue preparation for viable c.f.u. counts 

After culling, the lung and spleen were aseptically dissected. These procedures were 

performed by Simon and colleagues at CEPR. All other lungs and spleens were stored 

at -20°C immediately ready for processing, but day 56 lungs and spleens were 

weighed, in grams, and a small segment of the organs was removed prior to storage, 
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for histopathology. A rotating blade macerator system (MSE homogeniser; Ystral 

GmbH, Ballrechten-Dottingen, Germany) was used to homogenise lung tissue in 10ml 

sterile distilled water and spleen tissue in 5ml water, and colleagues at CEPR and I 

plated out 100μl aliquots of neat homogenized lung and spleen tissue onto 

Middlebrook 7H11 plates. Appropriate dilutions were plated for the day 16 and 56 

lung and spleen tissues. All plates were inoculated in duplicate. Plates were incubated 

at 37°C for four weeks after which the c.f.u. was counted. The number of c.f.u. per ml 

was calculated as described in Section 5.3.3.  

 

2.9.3 Tissue preparation for histopathology 

For histopathology, all slide preparation procedures were performed by colleagues at 

CEPR. Day 56 lung and spleen tissue segments, which had been removed before 

storing the rest of the tissue at -20°C, were fixed in 10% volume/volume (v/v) 

formalin (Surgipath Europe Ltd., Peterborough, UK). A 1cm3 section was taken from 

one end of each spleen and the top left, top right and bottom right lobe sections from 

each set of lungs were used for histopathological analysis. Tissue samples were 

processed to paraffin wax after which 5µm sections for all lung and spleen tissues 

were stained for routine examination with haematoxylin and eosin; encapsulated and 

calcified lesions were detected using van Giesen and Alizarin Red staining, 

respectively. All stains were provided by Surgipath Europe Ltd.  

 

The examination of slides was blinded and the extent to which lesions were present 

was objectively evaluated semi-quantitatively by a CEPR board-certified veterinary 

pathologist, Dr Graham Hall. The slides for all lung and spleen tissues were scored 

according to the size of the lesions present and the degree of consolidation. 

Consolidation was observed by microscopy and showed a specific change in the 

morphology of the lesion. The greater the number of areas of consolidation, the higher 

the score. The criteria for scoring were as detailed in Table 2.2. For tissues in which 

lesions were detected, the degree to which lymphocytes had infiltrated these lesions 

was also subjectively scored. Numerical data were obtained by recording the number 

of encapsulated lesions, the number of foci of caseation and the number of calcified 

lesions. 
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Table 2.2 The criteria used to score the histopathology slides taken from guinea pig lung and 
spleen after infection with M. tuberculosis.  

 
Score Lesion size Degree of consolidation 

0 lesions not detected 
1 very few or very small 0-10 % 
2 few or small 10-20 % 
3 medium sized 20-33 % 
4 moderate sized; areas of pneumonia 33-50 % 
5 large; moderately extensive pneumonia 50-80 % 
6 extensive pneumonia > 80 % 
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CHAPTER 3 

 

MOLECULAR TYPING, EPIDEMIOLOGY, PHYLOGENETIC ANALYSIS & 

SELECTION OF STRAINS FOR PHENOTYPIC EXPERIMENTS 

 

3.1 INTRODUCTION 

 

In 2007 there were 8417 reported cases of tuberculosis in the UK, with 92% of cases 

being reported in England alone (HPA 2008). London accounted for 39% of cases in 

England and 72% of TB patients in London were born outside of the UK, mainly in 

the Indian sub-continent and sub-Saharan Africa countries, with the highest TB rates 

being seen amongst the ethnic Pakistani, Indian and Bangladeshi groups and black 

Africans (HPA 2008). 

 

According to an earlier study by Dale et al., 2005, in London using IS6110 RFLP and 

spoligotyping data, there are clear differences in the distribution of MTBC families 

amidst patients from different countries (Dale et al., 2005). For instance, in patients 

originating from East Africa and East Asia, the M. tuberculosis African and Beijing 

strains were most common and strains observed in Indian and Pakistani patients were 

markedly different from those observed in patients from Bangladesh. Despite the 

noticeable differences in the M. tuberculosis strains, which seem to predominantly 

infect specific ethnic communities in London, previous studies revealed limited 

transmission from infected immigrants to individuals from other communities in the 

London population (Dale et al., 2005). It is hypothesised that higher transmission had 

occurred either in the country from the immigrant country of origin before entering 

London or within the communities where immigrants are in very close proximity to 

each other causing dissemination of particular strains within specific communities. 

 

The main aim of the present study was to construct a preliminary panel of strains 

(Panel A) representative of the global TB population which would span a broad 

spectrum of M. tuberculosis strains that would be useful for future vaccine evaluation 

studies and general TB research. In addition to designing an algorithm to select M. 

tuberculosis strains for the preliminary panel, the present study also aimed to test the 

null hypothesis that M. tuberculosis strains are phenotypically similar to each other 

using a smaller panel of strains (Panel B derived from the preliminary panel A) to 
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represent the six MTBC phylogenetic lineages defined by Baker et al., 2004 and 

Gagneux et al., 2006. This chapter focuses on the selection process of strains for the 

preliminary panel A and then goes into detail to describe the rationale used to select 

the smaller panel of strains for Panel B. 

 

3.2 MOLECULAR TYPING & EPIDEMIOLOGY 

 

3.2.1 MIRU-VNTR typing 

All cultures received by HPA, MRU between 1st April 2005 and 31st March 2006 

from 30 hospitals and/or laboratories situated within the M25 boundary of London, 

and which had been identified as belonging to M. tuberculosis complex, were 

included for initial MIRU-VNTR typing. Typing, which included the analysis of the 

15 MIRU and 3 ETR loci, was performed on crude DNA extracts from 2363 isolates, 

which all fitted the above criteria for selection. 

 

The 15 loci were amplified in each of the extracts, and molecular weights of amplified 

fragments were calculated as described in Section 2.2. Molecular weight data were 

displayed as a raw data trace, in which red peaks represented the size standard and 

blue, black or green peaks represented molecular weights of different loci according 

to the dye with which they were labelled during amplification. Figure 3.1a shows a 

raw data trace, as displayed by the Genetic Analysis System, from capillary A in 

which MIRU-2, -4, -10, -16, -23, -24 were analysed (refer to Section 2.2.3). Raw data 

were automatically analysed to produce a second trace, in which each peak was 

annotated with the locus and number of repeats corresponding to the detected 

molecular weight. The analysed data trace in Figure 3.1b corresponds to the raw data 

trace in Figure 3.1a. 

 

For some isolates, if after capillary gel electrophoresis no amplified product was 

detected and peaks were absent for certain loci; these loci were re-amplified 

individually and molecular weights identified manually by resolving products against 

a DNA ladder using agarose gel electrophoresis. The number of repeats was 

calculated using the calling tables in Appendix 1 and 2. 

 

The methodology was modified for certain loci: during capillary gel electrophoresis, 

there were missing peaks for ETR-A possibly because fragment sizes exceeded 640 
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b.p., which was the highest molecular weight of the size standard. Whilst extending 

the separation time for electrophoresis meant higher molecular weight peaks were 

included in traces, a locus specific custom size ladder was prepared in order to make 

analysis easier using agarose gel electrophoresis for those extracts in which ETR-A 

peaks were absent. A custom size ladder for MIRU-4 was also prepared because 

during data analysis, there were some MIRU-4 fragments with molecular weights that 

were lower than expected, indicating deletions at this locus.  

 

Extracts that had been successfully analysed by 15 MIRU-VNTR typing were used to 

select extracts that would be used to make locus specific custom size standards. For 

MIRU-4, seven extracts containing repeats ranging from 1 to 9, three extracts with 1, 

2 and 3 repeats and a 49 b.p. deletion, and an extract with 5 repeats with a 50 b.p. 

deletion were selected. Seven extracts containing repeats in ETR-A ranging from 1 to 

9 were selected. Loci were amplified and products were resolved on gels to ensure 

PCR product was present. PCR products were pooled to produce three custom size 

ladders, ETR-A, MIRU-4 and MIRU-4 with deletions. The ladders were used if it was 

difficult to determine the number of repeats when using commercial Hyperladders. 

 

All 15 MIRU-VNTR profiles were collated into a Microsoft Access database that was 

linked to BioNumerics version 3.00, which contained the program for cluster analysis. 

Isolates were analysed blinded and for 265 patients there were multiple isolates. Only 

one profile per patient was included, to avoid bias during analysis, by removing 

profiles of serial isolates (i.e. isolates taken from the same patient more than once). 

The profiles for serial isolates were included as part of another smaller study to 

investigate the reproducibility of particular loci (see Chapter 4). Similarly, during 

capillary gel electrophoresis, some extracts had been included more than once for 

quality control purposes. These profiles were also removed. A total of 102 profiles 

were removed to leave 2261 profiles for cluster analysis. From these 2261 profiles, 

there was complete data for 2046 isolates. 

 

The dendrogram produced after performing the cluster analysis is included as 

supplementary data on the compact disc. The dendrogram was produced using the 

profiles from 12 MIRU, 3 ETR and 7 VNTR typing (NOTE: MIRU-4 and -31 are 

referred to as ETR-D and –E in the dendrogram). Also included are the octal codes of 

isolates after spoligotyping along with the family identification. The dendrogram 
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revealed that 1225 profiles were placed into one of 235 clusters, whose cluster sizes 

varied from 2 to 53 profiles. There were 1036 profiles that did not fall into any cluster 

and were termed unique isolates. All isolates with 15 MIRU-VNTR profiles that fell 

into clusters were further analysed using the more discriminatory loci, including, 

VNTR-2163B, -2347, -3232, -2163A, -1982, -3336 and -4052 (see Section 4.1.5). 

The dendrogram in the supplementary data disc includes the results of cluster analysis 

using the profiles from 12 MIRU and 3 ETR typing and also from the 7 VNTR 

typing. 

 

3.2.2 Spoligotyping 

The crude DNA extracts from the 2363 isolates were subjected to spoligotyping and 

the resulting octal codes used to identify which family isolates of M. tuberculosis 

belonged to, as described in Section 2.2.7. Figure 3.2 shows a scanned image of a film 

after spoligotyping. Altogether, there were complete spoligotyping profiles for 2233 

isolates (94.5% of the total). From these profiles, 656 different spoligotypes were 

observed, and included 198 clustered spoligotypes, with cluster sizes varying from 2 

to 221 profiles, and 458 unique spoligotyping profiles. 

 

To identify which family the octal codes belonged to, profiles were entered into the 

online SPOTCLUST program, which was based on the SpolDB3 model. This model 

included profiles for M. africanum, M. bovis-BCG, M. microti, and nine main M. 

tuberculosis families. Within some M. tuberculosis family groups there were sub-

families denoted with a number after the family name. In total, there were 32 families 

in the SpolDB3 database and four additional groups, Family 33-36. Figure 3.2 shows 

a scanned image of a spoligotyping membrane with the corresponding family 

designations for spoligotyping profiles. From the 2233 profiles, all, except 4, were 

assigned to one or more of the families, with a probability greater than 0.5. From the 

assigned profiles, 88.4% were assigned to a single family with a probability of more 

than 0.9. Remaining profiles could not necessarily be assigned to a single 

spoligotyping family i.e. there was ambiguity leading to their assignment to more than 

one family with probabilities ranging from 0.5 to 0.9; 88% (n = 231) of these profiles 

were assigned to one of the following four groups: i) all profiles identified as M. 

tuberculosis Haarlem 3 all had secondary designations, ii) all strains assigned to M. 

tuberculosis LAM1 were also assigned to LAM9, iii) all profiles assigned to M. 

tuberculosis S family, except for 1, had secondary designations and iv) all profiles 
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assigned to M. tuberculosis X, except 1, were assigned to M. tuberculosis Tuscany-1 

(T1).  

  

Figure 3.3a shows a bar graph of the numbers of profiles that were assigned to each of 

the major MTBC families. There were no M. microti in this study population. From 

Figure 3.3a, it could be seen that the most prevalent family was the CAS family, 

which accounted for 24.7% of the total number of DNA extracts that were genotyped. 

Other major families included T, EAI, LAM and Haarlem. From those extracts 

identified as belonging to the T family, the majority, 84.7%, belonged to the T1 sub-

family, whilst 57.6% of isolates identified as belonging to EAI family were assigned 

to the EAI5 sub-family. From isolates identified as belonging to the LAM families, 

the predominant sub-family was LAM10 and the most predominant sub-family in the 

Haarlem family was Haarlem3. There was a lower prevalence of M. tuberculosis 

Beijing and X families, comprising 5.7% and 4.6% of the total number of isolates, 

respectively, and even fewer members of other families including M. tuberculosis 

H37Rv, S, M. bovis-BCG, M. africanum and the additional unclassified families 33-

36. 

 

3.2.3 Epidemiology 

There was country of birth data for 1381 patients, which constituted 61% of all 

patients included in the study. Apart from the UK, patients were born in 89 different 

countries, which were categorised into global regions, as defined by the WHO. Figure 

3.3b shows the proportions of patients that were born in each region. Altogether, there 

were 1157 patients born outside of the UK; one group of 501 patients was born in the 

African countries, with Somalia contributing the majority of cases (n = 179), and 463 

patients were born in the Indian subcontinent, with the majority of patients being born 

in India (n = 247). The remaining migrant TB patients were from Western Africa, 

Eastern and South East Asia, South-Central Asia, Middle Africa, Western, Northern 

and Southern Europe, and Southern Africa (7.3%, 5.0%, 2.9%, 2.6%, 2.5%, and 2.4%, 

respectively). Each of the other global regions contributed less than 2.0%. 

 
The geographical distribution of the major M. tuberculosis complex families, defined 

by spoligotyping, was investigated and the results are illustrated in Figure 3.4. From 

this diagram, geographical associations were seen between families such as M. 

tuberculosis CAS, EAI, and Beijing, and particular global regions. The patients born 

in the Indian subcontinent were infected mainly with M. tuberculosis CAS and EAI 
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families. The CAS strains isolated from patients born in the Indian subcontinent 

comprised approximately 60% of all CAS strains.  

 

From the 58 patients born in Eastern and South-East Asia, the majority were infected 

with M. tuberculosis Beijing (27 patients) and EAI (21 patients) families. The EAI 

family was also primarily found in immigrants to the UK originally born in the Indian 

Subcontinent and Eastern Africa. Isolates that had been identified as belonging to the 

M. africanum family were predominantly isolated from patients born in the Western 

African countries. 

 

There was no specific association of isolates identified as belonging to the M. 

tuberculosis T family and a particular global region as 40, 67 and 48 isolates (from 

the 366 isolates identified as M. tuberculosis T) were isolated from patients originally 

born in the UK, Eastern Africa and the Indian Subcontinent, respectively. There were 

fewer M. tuberculosis T isolates from patients born in South Africa (4 isolates), 

Western Asia (5 isolates), Northern Africa (2 isolates) and South-Central Asia (4 

isolates). There was underrepresentation of M. tuberculosis LAM and Haarlem 

families, first in the Indian Subcontinent with 4.5% and 3.4%, respectively, and 

secondly in South-East Asia comprising 5.4% and 6.9%, respectively. 

 

3.2.4 Selection of strains for preliminary Panel A 

As it was not possible to perform further phenotypic experiments on all 2363 isolates, 

a series of analyses were conducted to create preliminary panels of strains resulting in 

a final panel of MTBC strains that would be as representative of the global TB strain 

population as possible and against which any vaccine should prove effective. For this, 

we examined a number of genotypic and phenotypic criteria, selecting strains initially 

based on:  

1) frequency in an unselected metropolitan strain family population setting (London, 

UK), with an ethnically diverse population, with representatives from most of the 

global regions (refer to Section 1.4) 

2) supplemented with more infectious strains as demonstrated by greater success e.g. 

higher clustering rates, in unselected regional/national settings in London UK, 

Samara  Region (Russia) and Estonia (Kruuner et al., 2001; Ruddy et al., 2004; 

Drobniewski et al., 2005), and strains infecting individuals outside their typical 

ethnic groups. Our logic was that strains found commonly in a particular 
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population, e.g. Somalis, would tend to spread amongst other Somalis in their 

country of origin and where Somalis develop active TB in the UK any 

transmission would be more likely to spread within their own ethnic groups and so 

to other Somalis. Where such strains are seen to spill over into the host or other 

non-Somali migrant communities (e.g. into an East European patient) it may be 

more likely to be the consequence of more transient exposure and suggest that the 

strain might be more infectious 

3) strains were added from our population-based phylogenetic analysis (refer to 

Section 3.3) to ensure that all the globally-identified phylogenetic groups were 

fully represented  

4) strains were added if phylogenetic analyses suggested that strains were of 

enhanced virulence compared to standard laboratory strains or clinical isolates. 

 

An initial panel (A) reflecting the global population of strain families was selected to 

include a broad spectrum of M. tuberculosis strains. Firstly, in order to gain a better 

understanding of the most common profiles, cluster analysis was performed on all 

isolates (one isolate per patient) using only the MIRU and ETR profiles as described 

in Section 3.2.1 giving 235 clusters altogether, with cluster size varying from 2 to 53 

profiles (see supplementary data on disc). In clusters containing 9 isolates and less, 

the country of birth data was more limited and in some clusters there was only data 

for one or two of the patients, meaning no correlations would be identified when 

applying the algorithm in Figure 2.1. Following the application of this cluster 

inclusion criterion, there were 24 clusters from the initial 235 clusters containing 

more than 9 profiles. 

 

Using spoligotyping data, the proportion of each cluster accounted for by different 

strain families was determined. Many clusters were dominated by one spoligotype 

family. The proportions of isolates, in each cluster, with the family assignations are 

detailed in Table 3.1. In 21 of the 24 clusters over 80% of isolates belonged to a 

single M. tuberculosis spoligofamily. From these 21 clusters, there were 11 clusters in 

which all isolates came from a single strain family strongly supporting a common 

transmission among the individuals in the group at some time point. Five of the 24 

clusters, contained sub-families of the same family (e.g. cluster 18 comprised of T 

family strains, but there were sub-families of T1 and T3). For these 5 clusters 

containing sub-families, the design of the selection algorithm would be different to 
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that in Figure 2.1 because in order to have the ideal representative panel of strains, 

isolates from each sub-family would need to be selected. The algorithm in Figure 2.1 

was designed specifically to select a representative panel of strains from clusters that 

did not contain isolates from sub-families. 

 

An algorithm was constructed to select strains of interest from the 19 clusters (refer to 

Figure 2.1). The algorithm was designed to help select strains based on correlations 

between the most common family in a cluster, the most common country of birth and 

the most common sub-cluster, which was assigned using the 7 VNTR profiles within 

the initial clusters. The common patterns that were considered were family 

designations and country of birth within a cluster. 

 

Using the designed selection criteria, 42 strains of interest were selected from 16 of 

the 19 clusters (refer to Table 3.2). It was not possible to select strains from MRU 

clusters 8 and 38 as the initial cluster using 15 MIRU and ETR profiles were split by 

subsequent analysis using additional 7 VNTR profiles. When looking at the full 22 

VNTR profiles for isolates in Cluster 8 and 38, 53.1% and 46.2% of isolates had 

different profiles to other isolates in their cluster, respectively, and were unique. This 

meant there were no correlations between the most common country of birth and 22 

VNTR cluster designations in Cluster 8 and 38. Even though initially clusters with 

more than 9 isolates were included, there was country of birth data for only 1 of the 

11 isolates in Cluster 148, which meant an isolate from this cluster could not be 

selected. Cluster 28 had to be included for analysis as there was country of birth data 

for 50% of the 10 isolates in this cluster, which had all been identified as M. 

tuberculosis X2. These 42 strains formed the first step toward a globally 

representative panel (Panel A). 

 

The 42 strains selected for Panel A included 10 different families from patients born 

in 17 different countries. Two of the larger groups included in the panel were M. 

tuberculosis CAS (14 strains isolated from patients born in 8 countries) and Beijing (9 

strains also isolated from patients born in 8 countries although different countries to 

the CAS strains). Strains belonging to M. tuberculosis Haarlem or S families, M. 

africanum or Families 33-36 were not included in Panel A because clusters containing 

these families did not fit the initial criteria for inclusion. 
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Figure 3.1 (a) A raw data trace produced by the Beckman Coulter CEQ 8000 Genetic 
Analysis System, for capillary A, in which MIRU-2, -4, -10, -16, -23, -24 loci (identified by the 
labels) were analysed, and (b) a corresponding trace of analysed data in which the 
corresponding peaks to Figure 3.1a are labelled and which were automatically annotated 
with the molecular weight, locus name and number of repeats. 
(Red peaks represent the size standard) 
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Figure 3.2 A scanned image showing spoligotyping profiles that were obtained for the 
controls (profile 1 and 2) and 38 of the 2363 extracts (profiles 3 to 40). Absence and presence 
of spacers were displayed as empty spaces (binary code 0) and black squares (binary code 1), 
respectively. After converting binary codes to octal codes, the M. tuberculosis family for each 
profile was identified using an online SPOTCLUST program. Below are examples of some of 
the identifications that were made.  

 
Profile 1   M. tuberculosis  H37Rv control 
Profile 2   M. bovis BCG P3 control 
Profile 3, 7   M. tuberculosis  EAI5 
Profile 6, 17, 20   M. tuberculosis  EAI3 
Profile 8, 10, 11, 13, 15  M. tuberculosis  CAS 
Profile 12   M. tuberculosis  EAI4 
Profile 14   M. tuberculosis  LAM9 
Profile 16, 37   M. tuberculosis  Beijing 
Profile 18, 19, 22  M. tuberculosis  T1 
Profile 21   M. tuberculosis  LAM10 
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Figure 3.3 (a) Histogram showing the number of spoligotyping profiles that were 
assigned to each of the main families; the numbers for M. tuberculosis T, Haarlem, X, 
EAI and LAM includes all sub-families, and (b) the proportion of patients born in 
global regions defined by the World Health Organisation. 

a) 

b) 
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Figure 3.4 The geographical distribution, using the global regions, defined by the World Health Organisation, of the major M. tuberculosis complex families that had 
been assigned to isolates using spoligotyping. 
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If our underlying hypothesis was correct that these strains were more common or 

dominant in a population because of some underlying advantage compared to other 

strains of M. tuberculosis we would predict that in a range of experiments 

investigating different phenotypes we would be able to determine a difference or 

enhancement in the phenotype of one or more strain.  An alternative way of 

considering this was for us to take a statistical approach in stating a null hypothesis 

that all TB strains are the same phenotypically and to then prove or disprove this null 

hypothesis. 

 

The null hypothesis would be tested by comparing differences in phenotype or 

virulence in vivo. However, this could not be evaluated using all of the 42 strains in 

Panel A as this number would be impractical, too costly and was not necessary to 

prove or refute the underlying hypothesis.  Previous studies had shown that the global 

phylogeny of TB strains fell into 6 major groups (including M. bovis and M. 

africanum) and so we determined whether the 42 strains in Panel A included strains 

spanning all the 6 phylogenetic groups.  The in vivo experiments would need to 

include representatives of all of those groups. 

 

3.3 PHYLOGENETIC ANALYSIS & SELECTION OF STRAINS 

 

3.3.1 Phylogenetic analysis 

Globally, TB strains can be ordered into 6 phylogenetic lineages (if M. bovis and M. 

africanum are included) (Baker et al., 2004; Gagneux et al., 2006). A study by Gibson 

et al., 2005, demonstrated that MIRU and ETR codes could be used to classify M. 

tuberculosis and M. bovis strains into one of the five M. tuberculosis lineages (I, II, 

III, IV and M. bovis), initially defined by Baker et al., 2004, and subsequently 

validated by Gagneux et al., 2006. Phylogenetic analysis involved assigning each of 

the 2261 isolates into each of the lineages based on the number of repeats in specific 

loci as detailed in Table 3.3. The proportion of families identified by spoligotyping 

was calculated within each of the lineages to check for any correlations between 

lineage and family. The results from this analysis are displayed in Figure 3.5. 
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Table 3.1 The 24 clusters containing more that 9 profiles, after performing cluster analysis 
with MIRU and ETR profiles. The table includes details of the proportions of each of the M. 
tuberculosis families observed in each cluster. ∗ indicates the clusters containing sub-families 
and which were exempt from further analysis.             

MRU cluster number Cluster size MTBC spoligofamily % of cluster  
14 53 CAS 100 

CAS 87.8 
Family35 4.1 
Beijing 4.1 

Haarlem 1 2.0 
8 49 

S 2.0 
LAM10 95.3 

T1 2.3 1 43 
No identification 2.3 

T1 57.6 18 ∗ 33 
T3 42.4 

CAS 93.8 3 32 
No identification 6.2 

LAM8 87.1 
LAM9 9.7 27 ∗ 31 

T1 3.2 
Haarlem 1 21.4 
Haarlem 2 7.1 
Haarlem 3 60.7 

T1 3.6 
X1 3.6 

2 ∗ 28 

No identification 3.6 
LAM10 96.3 42 27 

X3 3.7 
CAS 87.0 

Beijing 8.7 6 23 
EAI5 4.3 

10 22 Beijing 100 
201 21 M. bovis BCG 100 

LAM1 95.0 125 20 
No identification 5.0 

36 17 LAM3 100 
100 16 T1 100 
41 15 Beijing 100 

Haarlem 1 28.6 
Haarlem 3 57.1 

T2 7.1 12 ∗ 14 

X1 7.1 
192 14 Beijing 100 
38 13 EAI3 100 
72 13 CAS 100 
112 13 LAM10 100 

LAM8 83.3 130 ∗ 12 
LAM9 16.7 
CAS 90.9 31 11 

No identification 9.1 
LAM3 81.8 148 11 

X2 18.2 
28 10 X2 100 
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Table 3.2 The 42 strains that were included in Panel A, and strains that were then included in 
Panel B. 

 
MRU Cluster /Sub-cluster M. tuberculosis spoligofamily Country of Birth Panel B 

/1 CAS Somalia D 
/unique CAS Bulgaria  14 

/5 CAS Hungary  
/1 T1 UK  
/1 LAM10 UK D 1 
/1 LAM10 Nigeria  
/1 CAS Jamaica  3 

/unique CAS Qatar  
/1 LAM10 Nigeria  
/2 X3 Nigeria  42 
/1 LAM10 UK  
/4 Beijing India  
/4 EAI5 India D 
/4 CAS Pakistan  

/unique CAS Somalia  
/6 CAS India  

6 

/unique CAS Mozambique  
10 /unique Beijing China  
201 /unique M. bovis-BCG UK  

/1 LAM1 India  
/1 LAM1 Poland  

/unique LAM1 Angola  
125 

/unique LAM1 Gambia  
/1 LAM3 UK  
/2 LAM3 Nigeria  36 
/1 LAM3 Iran  

100 /1 T1 Jamaica  
/1 Beijing UK  
/3 Beijing India  

/unique Beijing Poland  41 

/1 Beijing Uganda  
/unique Beijing Hong Kong  

/2 Beijing Jamaica  192 
/unique Beijing Malaysia  

/1 CAS India D 
/2 CAS Somalia  72 
/1 CAS Pakistan  

112 /1 LAM10 Pakistan  
/1 CAS Somalia  31 
/1 CAS India  
/1 X2 UK  28 

/unique X2 Nigeria  
  Beijing Estonia D 
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Table 3.3 The defined MIRU loci and number of repeats that would define isolates into the 
five lineages, M. tuberculosis lineage I, II, III, IV and M. bovis according to Gibson et al., 
2005. 

Lineage Locus associated with lineage (number of repeats) 
I MIRU-39 (3) ETR-A (4) ETR-C (4) 
II MIRU-16 (1, 2, 3) MIRU-39 (2) ETR-B (1, 2) 
III MIRU-23 (5) ETR-C (2)  
IV MIRU-24 (2) MIRU-26 (2)  
M. bovis MIRU-10 (2) MIRU-40 (2) ETR-C (5) 

 

 

In total, 1223 isolates were ordered into the 5 M. tuberculosis lineages (lineages I to 

IV, which corresponded to East Asian, Euro-American, East African-Indian, and 

Indo-Oceanic lineages, respectively, and the M. bovis lineage) and 210 isolates, 

constituting 14.7%, remained undefined using the algorithm by Gibson et al., 2005.  

From the 1223 isolates, 1174 isolates were assigned to a single lineage, whilst the 

remaining isolates were assigned to two lineages. Lineage II contained the largest 

proportion of isolates (38.5% of the total number of isolates), while lineage III and IV 

were assigned 20.4% and 18.6% of isolates, respectively. The smaller lineages, 

lineage I and M. bovis, had similar proportions of isolates, 2.2% and 2.3%, 

respectively. From those isolates assigned to two lineages, lineage II overlapped with 

three other lineages including lineage III (17 strains), lineage IV (7 isolates) and M. 

bovis lineage (2 strains), whilst 23 isolates were assigned to both lineage I and IV. 

Using the algorithm, isolates identified as M. africanum by spoligotyping could not be 

assigned to any of the five lineages.  

 

There was good correlation between families identified by spoligotyping and the 

lineages, especially for lineages I, III, IV, and the M. bovis lineage, which were 

primarily made up of isolates identified as M. tuberculosis Beijing, CAS, EAI and M. 

bovis-BCG, respectively. Lineage II was more diverse in the different families that 

were found in this lineage. Within lineage II were isolates belonging to T, LAM, 

Haarlem, X, and S families, which together constituted over 90% of isolates assigned 

to lineage II. 

 

As the approach identified in Gibson et al., 2005 was unable to ascribe the appropriate 

lineage in 259 isolates, lineage designations were completed by performing SNP 

analysis, using genes described by Baker et al., 2004, including oxyR C37T, katG 

C87A, rpoB T2646G, and rpoB C3243T. This was performed by colleagues in HPA, 

MRU. From the 49 isolates originally assigned to more that one lineage, all strains 
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were assigned to one of the two lineages using SNP analysis. From the 210 isolates 

that were not defined at all, isolates identified as M. tuberculosis Beijing, CAS, and 

M. bovis BCG by spoligotyping were assigned to lineage I, III and M. bovis, 

respectively, by SNP analysis. The recently evolved modern families, Haarlem, LAM, 

X, T, and S were assigned to lineage II, and all but 3 isolates identified as EAI family 

were assigned to lineage IV. All M. africanum isolates, except one, were assigned to 

lineage I. 

 

3.3.2 Selection of strains for Panel B 

After performing the phylogenetic analysis it was decided to select strains primarily 

from Panel A but also to include some strains of interest identified in the scientific 

literature. M. tuberculosis Beijing, CAS and EAI strains were selected to represent 

lineages I, III, and IV. A LAM strain was chosen to represent lineage II because it 

was one of the larger families within this lineage. The final strains included in Panel 

B, the details of which can also be found in Table 3.2, were: 

1) M. tuberculosis Beijing strain. Although Beijing strains had been included in 

Panel A, the Estonian Beijing IX strain was of more clinical significance as the 

MDR strain had appeared in the Estonian population and had come to dominate 

the population after a period of 10 years (data not published). A Beijing IX strain 

isolated from a patient in Estonia and fully sensitive to all first line drugs, 

isoniazid, streptomycin, rifampicin, ethambutol and pyrazinamide, was used to 

avoid bias if there are phenotypic changes related to resistance. This strain had the 

same MIRU and ETR profile as that of isolates in one of the larger clusters, cluster 

10 (refer to Table 3.1). 

2) M. tuberculosis LAM strain. A LAM10 strain, from Panel A, belonging to cluster 

1 that had been isolated from a patient born in the UK was selected. This strain 

had been shown to be responsible for the largest outbreak of isoniazid resistant TB 

in London and, subsequently, in the UK (Ruddy et al., 2004). The selected strain 

was resistant to isoniazid, but sensitive to streptomycin, rifampicin, ethambutol 

and pyrazinamide. 

3) M. tuberculosis CAS strain. The CAS strain constituted approximately 25% of the 

population that was studied and, therefore, was essential for inclusion in Panel B. 

After performing cluster analysis using only the MIRU and ETR profiles, the 

largest cluster was Cluster 14 with 53 isolates all belonging to CAS family. A total 

of 53.1% of patients, for whom country of birth data were available, were from 
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4) M. tuberculosis CAS strain. From epidemiology analysis (Section 3.2.3), it was 

observed that most patients from the Indian subcontinent were infected with M. 

tuberculosis CAS and EAI strains, and India was the country of origin for most 

patients in this region infected with CAS. Therefore, a CAS strain was selected 

from Panel A, belonging to Cluster 72, which apart from Cluster 14, was the only 

other cluster in which all isolates had been identified as belonging to the CAS 

family. In Cluster 72, 44.4% of patients were born in India. The selected strain 

was sensitive to all first line drugs. 

5) M. tuberculosis EAI strain.  An EAI strain was selected to represent lineage IV. 

This family is of epidemiological interest because this strain was also isolated 

from most patients that were born in the Indian subcontinent. In Panel A there was 

only one EAI5 strain, which belonged to cluster 6 and isolated from a patient born 

in India. This strain was fully sensitive to all first line drugs. 

6) Wild-type M. africanum. Besides lineages I, II, III and IV defined by Baker et al., 

2004, a separate key lineage for M. africanum had been defined by Gagneux et al., 

2006 (Baker et al., 2004; Gagneux et al., 2006). As the initial rationale for 

selecting Panel B was identifying a strain from each of the major MTBC lineage, a 

strain was selected at random from the study population of 41 M. africanum 

strains.   

 

Laboratory control strains M. tuberculosis H37Rv (supplied by HPA, MRU), M. 

tuberculosis H37Rv and M. bovis BCG (supplied by HPA, Porton Down), and M. 

tuberculosis H37Ra (HPA, National Collection of Type Cultures; NCTC) were 

included for phenotypic analysis. 
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Figure 3.5 The numbers of isolates assigned to each of the M. tuberculosis complex lineages, 
defined by Baker et al., 2004, and Gagneux et al., 2006, using MIRU and ETR codes defined 
by Gibson et al., 2005. The diagram also shows the proportions of families, identified by 
spoligotyping, which made up each lineage.  
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3.4 DISCUSSION 

 

The initial part of the present study involved identification of the various circulating 

strains and London provided the most appropriate setting with such an ethnically 

diverse population, so isolates from all 30 hospitals and/or laboratories situated in 

London were included prospectively for molecular typing. Patients were born in 89 

countries, which included some of the high-TB burden countries defined by the 

WHO, and provided a significant global biodiversity of M. tuberculosis strains. 

 

Isolates were typed using 12 MIRU and 3 ETR loci primarily, which grouped all 

profiles that were the same (clustered) and filtered all unique isolates. The clustered 

isolates were included for secondary analysis using the more discriminatory panel of 7 

additional VNTR loci to identify isolates that were truly identical to each other. The 

usefulness of the 7 VNTR loci was demonstrated by the reduction in clustering rates 

from 54.5%, when using the MIRU and ETR loci, to 22.2%.  

 

Although typing using the MIRU, ETR and VNTR loci allowed identification of the 

various common and unique molecular types circulating within London, 

spoligotyping was performed to identify which M. tuberculosis family each isolate 

belonged to and to understand the biodiversity of MTBC isolates. The online 

SPOTCLUST tool was used to assign spoligotyping profiles to MTBC families 

(Filliol et al., 2002) and all but four strains were assigned to one of 32 families in the 

database and four additional families, Family 33 to 36. 

 

During analysis of profiles it was observed that two different octal code profiles could 

be identified as the same M. tuberculosis family and it was determined that the 

recognition rules were based on deletions in specific spacers (Filliol et al., 2002). For 

some octal code profiles there were two family identifications and it was realised that 

the rules were sometimes not sufficiently specific to some families. For instance, 

strains that had been identified as belonging to M. tuberculosis LAM1 family were 

also given an identification of LAM9, but at a lower probability, as the recognition 

rules involved deletions in spacers 21 to 24 and 33 to 36 for both families, and the 

tool could not distinguish between the codes. 
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After all of the molecular typing was completed, the global representation of M. 

tuberculosis strains in the study population of London was investigated. This was 

fulfilled by performing epidemiological analysis, which involved plotting proportions 

of identified MTBC families on a global map using the country of birth data that was 

available for 1381 patients. There were strong associations between country of birth 

of patients and M. tuberculosis families: for example the Beijing family was 

associated with patients born in South and South-East Asia, whilst the CAS strains 

were more predominant amongst patients originally from the Indian subcontinent and 

South-Central Asia. The EAI strain was slightly more widespread as it was commonly 

found in patients from the Indian subcontinent, South-East Asia and Eastern Africa, 

whilst the M. africanum strains were significantly associated with patients born in 

Western Africa. 

 

Similar associations have been previously reported in recent studies and provide 

evidence of a clonal MTBC population in some high TB-burden countries and suggest 

higher TB transmission rates within these countries (Behr et al., 2004; Filliol et al., 

2002; Vitol et al., 2006; Gagneux et al., 2007). The lack of any definite association 

between country of birth and M. tuberculosis families S, T, Haarlem, and X, in this 

study, may suggest that the distribution of these families is fairly uniform globally. 

However, a more realistic explanation may be the poor definition of these families 

with the present recognition rules, as these families are still evolving and have a fairly 

recent origin, perhaps from the Indian subcontinent (Singh et al., 2004; Gutierrez et 

al., 2006; Vitol et al., 2006). This epidemiological analysis demonstrated that the 

population of isolates included representatives from all MTBC families and almost all 

global regions, although there were few representatives from North and South 

America. 

 

The clusters produced when using the MIRU and ETR profiles, along with the 

country of birth, family assignations and 7 VNTR profiles attached to the isolates 

within clusters, were used to select the strains for Panel A. The cluster analysis 

identified the more prevalent strains circulating within London and it seemed logical 

to base part of the selection of strains for vaccine evaluation on prevalence of strains 

as there is likely to be higher success in the transmission of these strains. The clusters 

that would be used for further analysis were selected by including clusters with more 

than 9 isolates. Whilst the main reason for these criteria was to include the more 
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prevalent strains, the decision was also influenced by limited country of birth data for 

clusters smaller than 10 isolates. 

 

As strain prevalence was a factor for selection, clusters containing sub-families were 

excluded. In order to select which particular isolate from each cluster would be 

selected, an algorithm was designed to take into account important factors such as the 

country of birth of patients and the most prevalent 7 VNTR cluster within the main 

MIRU and ETR profile based cluster.  

 

The country of birth data provided a very good indication of possible sources of 

strains and has been demonstrated previously by Dale et al., 2005 (Dale et al., 2005). 

The strong association between the MTBC family identification and country of its 

origin may offer valuable information for vaccine development because, whilst the 

ideal option would be to have one universal vaccine, a niche vaccine providing 

significant efficacy against certain TB families, like M. tuberculosis CAS and Beijing, 

in regions where they are found at high incidence may offer protection to a substantial 

proportion of the population. For the purposes of selecting strains for Panel A, the 

strain was selected if there was a correlation between the most common country of 

birth and the most prevalent 7 VNTR cluster. 

 

Using the algorithm, 42 strains of interest were selected. It was important to establish 

if there were any phenotypic differences between circulating M. tuberculosis strains 

using in vitro experiments initially, with the subsequent possibility of performing in 

vivo experiments. It was not possible to perform statistically valid in vivo experiments 

on all of the 42 strains in Panel A, so 6 wild-type strains were selected after 

performing phylogenetic analysis to represent the major M. tuberculosis lineages 

defined by Baker et al., 2004 and Gagneux et al., 2006 (Baker et al., 2004; Gagneux 

et al., 2006) (refer to Section 3.3). When assigning isolates into the lineages defined 

by MIRU and ETR codes, whilst the vast majority of isolates were assigned to a 

single lineage a small proportion were assigned to two lineages or not assigned at all 

(Gibson et al., 2005). Therefore, SNP analysis was used to complete the designation 

of isolates successfully. 

 

Phylogenetic analysis revealed families that made up the vast majorities of each of the 

lineages with M. tuberculosis Beijing, CAS and EAI strains representing lineages I, 
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III, and IV, respectively. Even though lineage II was made up of multiple families it 

was decided to select a LAM strain because it was one of the larger families within 

this lineage and, as mentioned previously, there was a LAM10 strain that was of 

particular interest. The final panel of strains comprised M. tuberculosis Beijing IX 

strain from a patient born in Estonia (this strain was selected as a result of 

unpublished data reporting its clinical significance as the strain has gone from first 

appearance to dominating the TB strains found in the Estonian population within a 

decade), M. tuberculosis LAM10 strain from a patient born in the UK (this isoniazid 

resistant strain was selected as it was responsible for the London TB outbreak), two 

M. tuberculosis CAS strains from clusters that contained isolates all identified as 

CAS, M. tuberculosis EAI5 strain isolated from a patient born in India, and a 

randomly selected M. africanum strain. 

 

In addition, laboratory control strains were included (two M. tuberculosis H37Rv 

strains, M. tuberculosis H37Ra, and M. bovis BCG). An M. tuberculosis H37Rv strain 

from HPA, Porton Down, was included as the data from in vivo experiments would be 

compared to data from similar experiments previously carried out using the H37Rv 

strain from Porton Down. Therefore, phenotypic in vitro experiments would be 

performed using H37Rv strains from both laboratories.  
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CHAPTER 4 

 

REPRODUCIBILITY OF NOVEL M. TUBERCULOSIS MINI-SATELLITE 

VNTR LOCI 

 

4.1 GENOTYPING USING VNTR LOCI 

 

4.1.1 Introduction 

Molecular genotyping can be used to investigate suspected outbreaks and detect 

laboratory cross-contamination in low to middle TB incidence areas. The highest level 

of discrimination is required for population-level genotyping when identifying 

clustered cases that are not apparently linked and if there is limited epidemiological 

data (Gopaul et al., 2006). In order to differentiate between re-infection and 

reactivation of infection, to detect laboratory cross-contamination and to establish 

epidemiological links between patients, IS6110-RFLP has been used routinely, 

sometimes in conjunction with spoligotyping (Supply et al., 2006). 

 

Typing using multiple VNTR loci, which had been previously proposed by 

Frothingham and Meeker-O'Connell, 1998, has been modified to increase 

discrimination by including additional loci (Frothingham et al., 1998; Supply et al., 

2001; Kwara et al., 2003; Supply et al., 2006). Discrimination, which is very 

important for prospective molecular epidemiological studies, depends considerably on 

the number of loci used and their selection. 

 

Despite the proposal of a standardised VNTR typing panel of 12 MIRU, 3 ETR and 9 

VNTR (VNTR-424, -2401, -3690, -4156, -2163B, -1955, -4052, -2347 and -3171) 

loci, it was not clear if this panel provided sufficient discriminatory power in regions 

where homogeneous MTBC families were prevalent (Kam et al., 2006; 

Nikolayevskyy et al., 2006; Supply et al., 2006; Oelemann et al., 2007). There are 

reports of additional VNTR loci with improved discrimination for prospective routine 

typing and to distinguish isolates within particular homogeneous groups of strains 

with highly conserved genes, such as the M. tuberculosis Beijing family (Gopaul et 

al., 2006; Kam et al., 2006; Nikolayevskyy et al., 2006). In the previous chapter, the 

additional seven VNTR loci had been useful due to their increased discriminatory 
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power to identify isolates that were the same as each other when applying the 

algorithm in Figure 2.1 to the 12 MIRU and 3 ETR clusters. 

 

Concerns about the stability and reproducibility of some hypervariable and 

discriminative loci such as VNTR-3232, -2163A, -3336, and -1982 have resulted in 

their exclusion from MTBC multilocus VNTR typing panels proposed for 

international standards (Kremer et al., 2005; Supply et al., 2006). For these reasons, it 

was decided to conduct a study to examine the stability of hypervariable loci and the 

parameters associated with reproducibility. 

 

4.1.2 Evaluation of conditions affecting analysis of VNTR loci 

Factors affecting reproducibility, including optimisation of enzyme choice, PCR and 

fragment analysis conditions to ensure reproducibility of results of the two 

hypervariable loci, VNTR-3232 and -1982, were analysed using a panel of 16 MTBC 

isolates, which had been previously characterised (refer to Section 2.2) and for which 

there was complete data for the 12 MIRU, 3 ETR and 7 VNTR loci. Isolates were 

selected to cover a range of repeats in MIRU-26, ETR-B and VNTR-1982 and -3232 

loci. 

 

As primers were labelled with the same dye, a single primer mix was prepared with 

forward and reverse primers for MIRU-26 and ETR-B so the final concentration of 

each primer was 0.5 µM. Separate mixes were prepared for VNTR-1982 and -3232 as 

they were labelled with different dyes. For each of the 16 extracts, MIRU-26, ETR-B, 

VNTR-1982 and -3232 were amplified exactly as described in Section 2.2.2 and 2.2.6 

using 0.2ml 8-strip tubes (Alpha Laboratories) instead. Each locus was amplified 

using BIOTAQ and Diamond polymerase, with their respective amplification cycles 

(refer to Section 2.2.2 and 2.2.6). Loci were also amplified using HotStartTaq DNA 

polymerase and HotStartTaq Plus DNA polymerase (both supplied by Qiagen). Each 

10µl reaction contained 1× PCR Buffer (Qiagen), 0.25U/µl of the relevant 

polymerase, 0.2µM dNTPs, 0.125µM of relevant primer, 5% DMSO. For HotStartTaq 

DNA polymerase, the DNA amplification cycle was as follows: 95°C for 15 mins; 

35 cycles of 94°C for 30 secs, 60°C for 30 secs, and 72°C for 60 secs; 72°C for 10 

mins. The amplification cycle was the same when using HotStartTaq Plus DNA 

polymerase, except the initial 95oC activation time was reduced to 5 mins. The 

number of repeats at loci in PCR products was calculated manually by resolving 4µl 
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of each product on a 1.2% (w/v) agarose gel as described in Section 2.2.4 against a 

2000 b.p. HyperLadder II standard. 

 

Molecular weights of PCR products and the corresponding number of repeats were 

then calculated by denaturing capillary electrophoresis. PCR products were pooled 

and resolved against DNA Size Standard 600 and MapMarker D1 labelled 640-1000 

as described in Section 2.2.3 and 2.2.6, except three different parameter sets were 

used to analyse fragments, as detailed in Table 4.1. Method 1 (Table 4.1) shows the 

original parameters used for MIRU-VNTR analysis and the other methods included 

variations of the different parameters, including changes in capillary temperature, and 

in durations of denaturation and separation steps. Raw data were automatically 

analysed and the peaks in analysed data traces were automatically annotated with the 

molecular weights, in base pairs, and the calling tables (Appendix 1 and 2) were used 

to manually calculate the number of repeats in each locus. 

 

Table 4.1 The parameters used to analyse each set of sixteen pooled PCR products on the 
Beckman Coulter CEQ 8000 Genetic Analysis System. 

  Method 1* Method 2 Method 3 

Capillary Temperature (oC) 60 60 50 
Temperature (oC) 90 90 90 Denature 
Duration (secs) 120 180 180 
Voltage (kV) 2.0 2.0 2.0 Inject Duration (secs) 30 30 30 
Voltage (kV) 6.0 6.0 6.0 Separate Duration (mins) 60 60 70 

* this was the original method used for 15 MIRU-VNTR 
 
 

Reproducibility of typing using all of the 12 MIRU, 3 ETR and 7 VNTR loci, which 

were used for the larger study, was also investigated in a blinded study, by checking 

for consistency between MIRU-VNTR profiles of serial isolates, within the 2363 

isolates that had been originally typed (refer to Section 2.2.6). There were 265 sets of 

serial isolates (i.e. multiple isolates from the same patient taken at successive time 

intervals), where each set contained 2 to 6 isolates from the same patients at different 

time points with intervals varying from 3 days to 11 months. 
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4.1.3 Optimised VNTR loci typing conditions 

The 16 isolates selected for this study had repeats in MIRU-26 ranging from 1 to 8; 

ETR-B ranging from 1 to 6; VNTR-1982 ranging from 2 to 13; VNTR-3232 ranging 

from 1 to 16. Factors potentially influencing the performance of hypervariable VNTR 

loci were evaluated by amplifying loci using four different polymerase enzymes and 

resolving PCR fragments under non-denaturing (agarose gel electrophoresis) and 

denaturing conditions (automated capillary electrophoresis using three different sets 

of separation conditions; Table 4.1). 

 

The ability to correctly amplify different VNTR loci was dependent on the enzyme 

used (Table 4.2). These results were the average of data from 2 repeated experiments. 

All polymerases were efficient for amplifying MIRU-26 and ETR-B, indicated by the 

presence of bands on agarose gels and peaks during capillary gel electrophoresis. All 

polymerases except Bioline BIOTAQ were able to amplify VNTR-1982 and longer 

fragments were amplified more efficiently by Bioline Diamond and QIAGEN 

polymerases. Effective amplification of VNTR-3232 was achieved only with Bioline 

Diamond (15/16 strains, i.e. 93.8%); therefore, Diamond polymerase was used for the 

amplification of additional VNTR loci. 

 

Table 4.2 The number of DNA extracts (out of the selected 16) for which peaks were detected 
by different conditions for capillary electrophoresis after amplifying the loci with different 
polymerases. The figures in brackets represent the number of extracts whose calculated 
number of repeats were [higher] and (lower) than the expected value. 

Bioline polymerases Qiagen polymerases Locus Method 
(Refer to Table 2.1) BIOTAQ Diamond HotStartTaq HotStartTaq Plus 

1 16 16 16 [1] 16 [1] 
2 15 16 16 [1] 16 [1] MIRU-

26 3 16 16 16 16 
1 16 16 16 (1) 16 (1) 
2 15 16 16 (1) 16 (1) ETR-B 
3 16 16 16 (2) 16 (2) 
1 8 13 14 14 
2 9 13 12 14 VNTR-

1982 
3 6 11 12 14 
1 11 15 13 14 
2 10 15 14 14 VNTR-

3232 
3 11 (3) 15 (7) 13 (6) 13 (4) 
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Three different methods were evaluated for capillary gel electrophoresis, including 

Method 1 (Table 4.1), which is normally used in the laboratory for analysis. Methods 

2 and 3 (Table 4.1) were included to investigate the effects of increasing the time for 

denaturing PCR products at 90°C and decreasing the capillary temperature. For each 

locus, the detected molecular weights of products, which had been amplified using 

each of the four polymerases and then resolved using the different capillary gel 

electrophoresis conditions, were plotted and compared with expected molecular 

weights, which were also plotted on the same graphs. The graphs for each locus, 

MIRU-26, ETR-B, VNTR-1982 and -3232 are shown in Figure 4.1a to 4.1d. 

 

Molecular weights of the MIRU-26 fragments were as expected for all but 2 repeats. 

For this allele, the molecular weight of fragments amplified using BIOTAQ and 

Diamond polymerases were approximately 344 b.p., as expected, but higher than 

expected when using the Qiagen polymerases meaning that the interpreted number of 

repeats was 1 repeat more than expected. The smaller ETR-B fragments with 1 and 2 

repeats all had molecular weights of expected sizes when using Methods 1 and 2, but 

were lower than expected when the capillary temperature was decreased (Method 3); 

this did not affect the interpreted number of repeats. For the higher number of repeats 

(4, 5 and 6 repeats), independent of the polymerase used to amplify them, molecular 

weights of fragments when resolved using capillary gel electrophoresis Method 3, 

were lower than expected, which in some cases affected the interpretation of the data. 

 

Irrespective of the polymerase used for amplification and the method used for 

capillary gel electrophoresis, the molecular weights of amplified VNTR-1982 

fragments were all similar to expected values as were the interpreted numbers of 

repeats. Analysis using Methods 1 and 2 for capillary gel electrophoresis generated 

the expected molecular weights for VNTR-3232 fragments, whilst lower molecular 

weights were detected when using Method 3. The lower molecular weights for 

VNTR-3232 fragments with an expected 1 to 6 repeats did not influence the 

interpreted number of repeats, but for fragments with more than 7 repeats, the lower 

molecular weights produced, gave a lower repeat number than expected. 



Figure 4.1 The detected molecular weights of (a) MIRU-26, (b) ETR-B, (c) VNTR-1982, and (d) VNTR-3232 fragments (amplified using different polymerases) when capillary gel 
electrophoresis analysis was performed under the different conditions outlined in Table 2.1. 
 640
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Figure 4.1 continued 
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Figure 4.1 continued  
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Figure 4.1 continued  
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4.1.4 Reproducibility of MIRU-VNTR typing 

The stability and reproducibility was further investigated by performing MIRU-

VNTR typing, using all 22 loci (12 MIRU, 3 ETR and 7 VNTR) on serial isolates 

(refer to Section 2.2.8). There were 265 sets of serial isolates with a total of 367 

isolates. MIRU and ETR loci had been amplified using Bioline BIOTAQ polymerase 

and VNTR loci had been amplified using Bioline Diamond polymerase. Fragment 

analysis was performed using the optimised capillary gel electrophoresis conditions 

detailed in Method 1 (Table 2.1). Analysis was blinded. 

 

There were no discrepancies in the MIRU-VNTR profiles between isolates in each set 

of serial isolates. In a proportion of serial isolates, genotyping results were validated 

by a colleague using both agarose and capillary gel electrophoresis and again no 

differences were found between different runs and different methods of fragment 

separation (Figures 4.2 and 4.3). 

 

4.1.5 Genotyping using the additional 7 VNTR loci 

Initially, for the main study, 2363 MTBC isolates were typed using 12 MIRU and 3 

ETR loci. Cluster analysis was performed using the 12 MIRU and 3 ETR profiles. A 

cluster was defined as containing two or more isolates with the same 12 MIRU and 3 

ETR profiles. All clustered isolates were then including for typing using the 7 

additional VNTR loci (refer to Section 2.2.6). There was a clustering rate of 54.5% 

when using the MIRU and ETR profiles (refer to Section 3.1.1 for details). This 

clustering rate suggested that high rates of active TB transmission might currently be 

occurring in London.  

 

From the 1225 isolates that had been clustered using MIRU and ETR profiles, 1196 

isolates were subjected to secondary typing using the additional 7 VNTR loci (VNTR-

2163B, -2347, -3232, -2163A, -1982, -3336 and -4052) and the optimised conditions 

described above. Improved resolution was achieved as strains that had been clustered 

initially were subdivided into new groups: 1730 isolates had unique genotyping 

patterns and the remaining 502 isolates were grouped into 158 clusters giving a new 

substantially lower clustering rate of 22.2% (see supplementary data on the disc for 

the dendrogram produced after cluster analysis). The addition of the 7 VNTR loci 

demonstrated that when using the 12 MIRU and 3 ETR loci there was an over-

estimation in the transmission rate of strains. 
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Figure 4.2 An agarose gel showing the stability of the locus VNTR-3336 and reproducibility 
of typing data by amplifying the locus in 2 serial isolates from 4 different patients, A, B, C 
and D, and then resolving products using non-denaturing agarose gel electrophoresis. 
 

 

1 – Patient A, Isolate 1, isolated 20/06/05; 8 copies 

2 – Patient A, Isolate 2, isolated 11/07/05; 8 copies 

3 – Patient B, Isolate 1, isolated 08/07/2005; 9 copies 

4 – Patient B, Isolate 2, isolated 08/08/2005; 9 copies 

5 – Patient C, Isolate 1, isolated 11/11/2005; 7 copies 

6 – Patient C, Isolate 2, isolated 16/11/2005; 7 copies 

7 – Patient D, Isolate 1, isolated 16/05/2005;  6 copies 

8 – Patient D, Isolate 2, isolated 25/05/2005; 6 copies 
 
 

       1   2    3    4    5    6     7   8  
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Figure 4.3 Analysed data traces produced by the Beckman Coulter CEQ 8000 Genetic 
Analysis System. All traces were produced after amplifying the additional 7 VNTR loci from 
two isolates taken from the same patient at different time points with an 11-month interval. 
Traces A and B are from the first isolate and traces C and D from the second isolate. The 
data demonstrate the stability of these VNTR loci in serial isolates from the same patient and 
the reproducibility of typing using the optimised protocol for amplification and fragment 
analysis. 
 

 
 
 
Traces A & C – peaks representing VNTR-2163B, -2347, -3232, -2163A  
Traces B & D – peaks representing VNTR-1982, -3336; -4052 
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The discriminative ability varied between all 22 loci with the Hunter-Gaston 

Discrimination Index (HGDI) values of MIRU loci ranged from 0.134 (MIRU-2 with 

4 allelic variants) to 0.727 (MIRU-40 with 11 allelic variants). The HGDI values were 

calculated manually for all MIRU, ETR and VNTR loci using the principles described 

by Hunter and Gaston, 1988 (Hunter et al., 1988). For the ETR loci, values ranged 

from 0.551 (ETR-B with 9 allelic variants) to 0.813 (ETR-A with 14 allelic variants). 

The HGDI values of VNTR loci were considerably more with values for VNTR-

2163B, -2347, -3232, -2163A, -1982, -3336, and -4052 being more than 0.900 (0.985, 

0.954, 0.994, 0.992, 0.989, 0.992, and 0.987, respectively). The allelic variants were 

higher for the VNTR loci indicative of their higher polymorphic nature (13, 6, 19, 18, 

14, 15 and 10, respectively). As expected, none of the 22 loci were monomorphic in 

the current study. Loci included in the additional panel displayed higher variability 

than the panel of 12 MIRU and 3 ETR loci indicating their potential usefulness for 

prospective molecular genotyping. 

 

4.2 DISCUSSION 

 

Polymorphisms in rapidly evolving repetitive sequences like minisatellite VNTR are 

usually considered a valuable tool for practical epidemiological studies providing a 

very high degree of discrimination, which is an essential pre-requisite for prospective 

epidemiology where there would be little prior epidemiological data available. There 

are conflicting views about using hypervariable VNTR loci for typing, even though 

VNTR-3232 has been reported to have a particularly high discriminatory power in 

comparison with most VNTR, MIRU and ETR loci (Roring et al., 2002; Gopaul et 

al., 2006; Nikolayevskyy et al., 2006). 

 

The converse argument against its use is supported by the study of Supply et al., 

2006, who experienced problems when using VNTR-3232, including amplification of 

multiple alleles, the absence of PCR amplification products, data interpretation and 

interlaboratory reproducibility; due to the hypervariability experienced, this locus was 

excluded from their panel (Supply et al., 2006). Amplification issues with this locus 

have also been reported by Kremer et al., 2005 (Kremer et al., 2005). Another locus 

with great potential for genotyping and for differentiating between strains is VNTR-

1982, but this locus was excluded for similar reasons (Nikolayevskyy et al., 2006; 

Supply et al., 2006). Therefore, by identifying the conditions giving good 
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discrimination and those responsible for lack of reproducibility, optimal conditions 

were defined, which would enable molecular epidemiologists to use VNTR-1982 and 

-3232. 

 

In the present study, the variability and reproducibility of these two loci was 

addressed, and MIRU-26 and ETR-B were included as controls because amplified 

fragments are stable during agarose and capillary gel electrophoresis and were also 

used as controls by Supply et al., 2006 in their inter-laboratory analysis (Supply et al., 

2006). 

 

The quality of bands and peaks for MIRU-26 and ETR-B were not affected by the 

polymerase used and the performance of all enzymes was 100%. However, peaks for 

VNTR-1982 and -3232 repeats were absent, particularly when using BIOTAQ 

polymerase and for fragments with an expected larger molecular weight. An improved 

performance was gained when using Diamond (VNTR-3232) and Diamond or Qiagen 

HotStart (VNTR-1982) polymerases (93.8% and 87.5%, respectively). For this 

reason, Bioline Diamond was recognised as the most suitable for amplifying the 

VNTR loci.  

 

The variations in performance of polymerases for amplifying specific loci can be 

explained by their properties. BIOTAQ polymerase is a standard Taq, normally used 

for a wide variety of templates, whereas Diamond polymerase is a modified enzyme 

with a point mutation in its active site meaning it can amplify regions such as 

microsatellites, secondary structures, and templates with expected high guanine-

cytosine percentage (G-C%) regions more effectively. The latter target for 

amplification is of particular interest when amplifying regions of the M. tuberculosis 

G-C rich genome. The Qiagen polymerases are chemically modified with a specificity 

similar to that of Diamond polymerase, which possibly explains their similar abilities 

in amplifying both VNTR loci. The buffer used with the Qiagen polymerases 

increases the specificity of binding of primers to the region of interest making these 

polymerases ideal for complex genomic DNA. HotStartTaq Plus polymerase is 

actually recommended by the supplier for typing studies. 

 

Conditions influencing the detected sizes of PCR fragments that would influence 

interpreted copy number during capillary electrophoresis, namely parameters 

 - 130 -



affecting denaturation of PCR products, were investigated. Capillary temperature and 

the duration for DNA denaturation were altered as it was hypothesised that these 

parameters would affect the separation of DNA strands, therefore influencing how 

linear the DNA was, ultimately affecting the accuracy to which molecular weights of 

fragments are detected. Increasing the duration of the separation step allowed time for 

fragments larger than 1000 b.p. to be detected. 

 

The parameters normally used for MIRU-VNTR analysis in the laboratory are 

detailed in Method 1 (Table 2.1). Method 2 was designed to examine the effects of 

increasing the time for denaturation. The molecular weights of fragments for each 

locus, obtained when using the original and modified Method 2, were similar and the 

offset values (differences between expected and experimental molecular weights) 

were similar. 

 

Differences were observed when capillary temperature was decreased (Method 3; 

Table 2.1). Independent of the locus investigated and polymerase used, molecular 

weights of fragments were lower than expected, with offset values significantly larger 

in some cases, to the point where the calculated number of repeats differed from the 

expected values. Proof that the decreased detected molecular weights were the effects 

of decreased capillary temperature was obtained by amplifying a single locus from the 

same extract using each polymerase and then visually inspecting the fragments on an 

agarose gel; bands were at the same level when compared to each other and had the 

same molecular weights when compared to the molecular weight markers. 

 

The denaturing conditions and capillary temperature were critical for reliable MIRU-

VNTR analysis. So whilst optimised amplification of MIRU and ETR loci was with 

BIOTAQ polymerase, and Diamond polymerase for amplifying the VNTR loci, 

optimised conditions for analysis of PCR product were as detailed in Method 1; Table 

2.1. The reproducibility and stability of the VNTR loci was also demonstrated by 

comparing 22 MIRU-VNTR profiles from serial isolates. The consistency between 

profiles of serial isolates from same patients showed that the amplification and 

fragment analysis conditions were indeed ideal for typing these loci and that these loci 

could be used for routine genotyping. 
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Using all 22 loci for typing gave the lowest clustering rate of 22.2% in MTBC strains 

obtained over one year from a single metropolitan setting (London), which is similar 

to proportions established in previous studies conducted in London in 1993 and 1995-

1997, and similar to population-based studies in areas of low to middle TB incidence 

where RFLP was used alongside molecular genotyping methods (Maguire et al., 

2002; Oelemann et al., 2007). This suggests, from the public health point of view, that 

TB transmission in London has remained stable over the last decade.  

 

This present study determined that the MIRU and ETR panel are not sufficiently 

discriminative for tracking TB transmission. The higher allelic variation in the VNTR 

loci has also been observed in a previous study by Roring et al., 2002 (Roring et al., 

2002). For the purposes of genotyping and epidemiological analysis, this particular 

study was of interest as it suggested that using VNTR and ETR loci in combination 

could increase the discriminative power of a panel of loci (Roring et al., 2002). The 

current observations regarding the applicability of the hypervariable VNTR loci, 

especially VNTR-3232, -3336, -2163A, and -1982, are in agreement with 

observations from previous studies, some of which demonstrated the use of VNTR 

loci for distinguishing between strains within the M. tuberculosis Beijing family 

(Drobniewski et al., 2005; Iwamoto et al., 2007; Wada et al., 2007). 

 

Our study suggests that hypervariable VNTR loci can be both discriminating and 

reproducible and, therefore, could be potentially be used successfully at multiple 

laboratories with consistent results providing that there is strict adherence to proposed 

reaction and PCR fragment separation conditions and the use of specific DNA 

polymerases. 
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CHAPTER 5 

 

DEVELOPMENT OF A RAPID PCR-BASED QUANTIFICATION ASSAY OF 

M. TUBERCULOISIS COMPLEX CULTURES 

 

5.1 INTRODUCTION 

 

In cultures, mycobacteria tend to grow as clumps and when plating out bacteria for 

c.f.u. there is no certainty that a single colony has grown from a single mycobacterial 

cell, as might be the case with Escherichia coli, for example. Hence, there could be a 

huge margin for error in knowing how many mycobacteria are being used in 

experiments. Although it is a gold standard method for quantifying bacteria, there is a 

disadvantage with performing a conventional c.f.u. count with slow growing 

mycobacteria as it takes at least 3 weeks for colonies to grow meaning there would be 

a delay in setting up experiments. Whilst waiting for these colonies to grow, cultures 

are frozen and after thawing there would be loss of viability meaning the c.f.u. data 

may not necessarily be accurate. If the cultures were used directly after thawing, 

mycobacteria may not be in the exponential phase of the growth curve, meaning there 

would be a lag in the growth of bacteria during experiments. 

 

For this reason it was decided to investigate the use of a potentially more accurate and 

quicker method to quantify the number of individual mycobacteria, so as to be able to 

set up phenotypic assays on the same day as quantification, without having to freeze-

thaw cultures. The method under investigation was real-time PCR. 

 

Real-time PCR is increasingly used because data are reproducible; it is a highly 

sensitive method and has the ability to perform quantification over a wide range 

(Chini et al., 2007). This method has many applications including quantifying gene 

expression as demonstrated by Chini et al., 2007, where the expression of the tst gene 

responsible for producing toxic shock syndrome toxin-1 in methicillin-resistant 

Staphylococcus aureus was investigated (Chini et al., 2007). This PCR assay has also 

been used for quantifying complementary DNA (cDNA) and measuring levels of 

various cytokines in a system (Whelan et al., 2003). 
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In M. tuberculosis, the melting points of end PCR product, which is a feature of the 

real-time PCR cycles, were used to detect mutations in rpoB and the katG gene that 

encodes for the catalase-peroxidase enzyme (Garcia de Viedma et al., 2002). In 

addition to genotyping assays already available for detecting rifampin and isoniazid 

resistance by focussing on the rpoB and inhA regions, the mutations in rpoB and katG 

genes conferred rifampin and isoniazid resistance, respectively, and real-time PCR 

have provided another genotypic system by which resistance to these drugs could be 

detected rapidly (Garcia de Viedma et al., 2002; Miotto et al., 2006; Miotto et al., 

2008).      

 

More importantly, for the purposes of this study, real-time PCR has great potential for 

calculating the initial DNA levels, which would be equivalent to bacterial load. The 

IS6110 region of the M. tuberculosis genome has been used to quantify bacteria in 

paraffin-embedded and formalin-fixed biopsy sections from lymph nodes and to 

positively prove that levels of M. tuberculosis DNA in sputum correlated with the 

numbers of acid-fast bacilli calculated by microscopy (Desjardin et al., 1998; Ishige et 

al., 1999). The use of other IS elements have been used to rapidly quantify 

mycobacterial DNA, including IS900, which enabled quantification of M. avium 

subspecies paratuberculosis in milk, and IS2404, which specifically quantified M. 

ulcerans in tissue excised from patients with Buruli ulcer (Rondini et al., 2003; 

O'Mahony et al., 2004). 

 

For quantification of mycobacteria at the HPA, MRU, it was decided to perform the 

real-time PCR assay using the rpoB and katG genes as they are present as single 

copies, and they have been used in such assays previously (Garcia de Viedma et al., 

2002). In addition, as the present study was including all isolates belonging to the 

MTBC, the rpoB gene would be of most use, as this gene is present in all MTBC 

strains and other PCR assays have demonstrated that this gene can differentiate 

between mycobacteria belonging to MTBC and non-tuberculous mycobacteria (Kim 

et al., 2004). The oxyS gene was also included in the analysis as this gene was not 

used as a target in any of the other PCR-based assays performed at the HPA, MRU, 

thereby reducing any chances of future cross-contamination problems. 

 

This small study attempted to validate real-time PCR quantification data by 

comparing the growth curves from real-time PCR data with growth curves from 
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OD600 and c.f.u. data. In order to use real-time PCR, a DNA standard, containing a 

known number of M. tuberculosis H37Rv genome copies, had to be prepared and the 

performance of different primers evaluated using the DNA standard as the template. 

 

5.2 DEVELOPMENT OF PCR-BASED QUANTIFICATION ASSAY 

 

5.2.1 Preparation of M. tuberculosis H37Rv DNA standard  

After 4 weeks, there was growth of mycobacteria on all pyruvate and glycerol slopes 

that had been inoculated whilst preparing frozen archive cultures (refer to Section 

2.4). Bacterial growth from one of the pyruvate slopes that had been inoculated with 

M. tuberculosis H37Rv was transferred into a 1.5ml microcentrifuge tube and re-

suspended in 100µl TE buffer (10mM Tris, 1mM EDTA pH8.0; prepared as described 

in Section 2.1.4). The re-suspended culture was incubated in an 80oC waterbath for 50 

mins to kill the mycobacteria. Even though this method of killing is effective, the 

remaining procedures for DNA extraction were still performed under the biological 

safety cabinet. 

 

Bacterial cells were lysed by adding 5µl 100mg/ml lysozyme (prepared as instructed 

in Section 2.1.4) to the tube, which was vortexed and incubated for 2 hrs in a 37oC hot 

block. After incubation, 25µl proteinase K and 200µl Buffer AL (both provided in the 

Qiagen DNeasy Blood & Tissue kit) was added to the lysed bacterial cells, to help 

break down any cell debris. The contents of the tube were mixed by vortexing and 

then the tube was incubated in a 56oC hot block for 30 mins. Before the purification 

of extracted DNA, 200µl 96-100% ethanol (Sigma-Aldrich) was added to the tube and 

it was important to make sure that the contents were thoroughly mixed together by 

vortexing. 

 

After this step it was safe to work with the extracted DNA on the bench. For the 

purposes of real-time PCR, DNA had to be as pure as possible. DNA purification was 

performed using the consumables, reagents, and protocol provided with the Qiagen 

DNeasy Blood & Tissue kit. Firstly, the DNA extract was transferred into a DNeasy 

Mini spin column that was resting in a 2ml collection tube. During centrifugation at 

6000×g for 1 min, the DNA bound to the membrane within the column, whilst the 

flow-through was collected in the collection tube. After centrifugation, the flow-

through was discarded and the column transferred into a new collection tube. 
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In order to purify the DNA, 500µl Buffer AW1, prepared as described in Section 

2.1.4, was added to the tube, which was then centrifuged at 6000×g for 1 min. Again 

the flow-through was discarded and the column transferred into another clean 

collection tube. The second purification step involved adding 500µl Buffer AW2, 

prepared as described in Section 2.1.4, and centrifuging at 6000×g for 3 mins to 

ensure that the membrane in the column was dry. After the flow-through was 

discarded, the column was transferred into a clean 1.5ml microcentrifuge tube and left 

open so any residual ethanol could evaporate as the ethanol could affect the 

performance of the PCR. The initial pellet of harvested cells was large; therefore, 

150µl Buffer AE was added directly onto the membrane and the tube was incubated 

for 1 min at room temperature. DNA was eluted and collected in the 1.5ml 

microcentrifuge tube by centrifugation at 6000×g for 1 min. Agarose gel 

electrophoresis was performed using 5µl DNA to ensure that extraction and 

purification was successful. The DNA could be seen as a smear when the agarose gel 

was viewed under the ultraviolet light.  

 

The resulting concentration of double-stranded DNA, in ng/μl, was calculated at 

260nm using a NanoDrop 1000 Spectrophotometer (Thermo Scientific) and its 

attached software. The number of genomes per μl in the DNA extract was calculated 

using the DNA concentration. The details of the calculation can be found in Appendix 

4. Once the number of genomes/μl was established, Buffer AE, which had been used 

to elute the DNA during purification, was used to dilute a small volume of the 

standard DNA to obtain a 1×107 genomes/μl standard. Still using Buffer AE as the 

diluent, 10-fold serial dilutions were prepared, resulting in standards containing 

1×106, 1×105, 1×104, 1×103, 1×102, 1×101 genomes/μl. The DNA standards were 

stored at -20°C ready for use. 

 

5.2.2 Evaluation of rpoB, katG and oxyS primers 

The simplest way to calculate the number of genomes in a DNA extract using real-

time PCR was to quantify the number of single copy genes in a sample. Unlabelled 

forward and reverse primers were designed for three different genes, spanning the M. 

tuberculosis genome, which existed as single copies. As all real-time PCR was 

performed using the iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad 

Laboratories, California, USA), primers were designed for rpoB, katG and oxyS genes 
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using the guidelines in the instruction manual. The primer sequences were: rpoB 

(forward: 5’-CCG CGA TCA AGG AGT TCT TC-3’; reverse: 5’-GCC GAT CAG 

ACC GAT GTT G-3’), katG (forward: 5’-GAC AAG GCG AAC CTG CTT AC-3’; 

reverse: 5’-CCC AGG TGA TAC CCA TGT C-3’) and oxyS (forward: 5’-CGA AGG 

TGC AAG TCT GTT CC-3’; reverse: 5’-CAT CAC TGT CTT GGG TCT CG-3’). 

Primers were supplied by Invitrogen Ltd. and their performance evaluated. 

 

The rpoB, katG and oxyS genes were amplified in separate reactions using the DNA 

standards, prepared in Section 5.2.1, ranging from 1×101 to 1×107 genomes/μl in 10-

fold increments, as the template. The reaction for each primer set and DNA standard 

was prepared in triplicate in iQ 96-Well PCR Plates (Bio-Rad Laboratories) at a final 

volume of 20µl, which contained 10µl 2× iQ SYBR Green Supermix (Bio-Rad 

Laboratories), 0.1µl each of 200µM forward and 200µM reverse primers, 1µl DNA 

and 8.9µl molecular grade water. The SYBR Green Supermix contained 100mM 

potassium chloride, 40mM Tris-hydrochloric acid (pH8.4), 0.4mM of each dNTP, 

iTaq DNA polymerase (50 units/ml), 6mM MgCl2, SYBR Green I, and 20nM 

fluorescein. Non-template controls were also set up for each primer set, using 1µl 

Buffer AE instead of DNA. 

 

Reproducibility of the values obtained from the replicates was optimised by preparing 

master mixes of reagents wherever possible to reduce the amount of pipetting. Also, 

when dispensing the reagents into the wells of the PCR plate, it was important not to 

produce bubbles as they would affect the fluorescence readings during real-time PCR. 

Evaporation during amplification was reduced, as the tiniest change in volume could 

affect the readings, by using a clear Microseal 'B' Adhesive Seal (Bio-Rad 

Laboratories) to seal the plate being careful not to get any fingerprints on the seal as 

the fluorescence is read from the top through the seal. The reactions in the wells were 

spun down by centrifuging the plate at 250×g for 1 minute. 

 

The following cycle was used for real-time PCR: 95°C for 180 secs; 50 cycles of 

95°C for 30 secs, 65°C for 30 secs; 55°C for 60 secs. The cycle was programmed so 

fluorescence readings were acquired at the end of each of the 50 cycles because as the 

DNA is amplified the number of fluorescent labelled PCR product increases and this 

increase can be plotted using the fluorescence values. After the 55°C step, an 

additional step was inserted to obtain a melt curve. This step involved a 0.5°C 
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increase from 55°C to 95°C and at each increment a fluorescence reading was 

acquired. 

 

After real-time PCR was complete the iQ5 Optical System Software version 2.0 (Bio-

Rad Laboratories) was used to analyse the fluorescence readings. Graphs were 

automatically plotted for the amplification and melt-curve steps. Threshold cycle (Ct) 

values were automatically calculated by the software for all reactions and indicated 

the point at which there was enough DNA amplification to produce a detectable 

amount of fluorescence from the PCR product. Hence, if there was a lot of DNA in 

the initial reaction the Ct value would be lower as fewer amplification cycles would 

be needed for fluorescence to reach the detectable level. Conversely, if the DNA 

concentration was initially lower it would take more cycles to produce the same 

detectable level of fluorescence. The melt-curve graphs indicated whether or not there 

was a single PCR product in the reactions, which would be indicated by a single peak 

at the temperature when the double-stranded DNA separated. The temperature at 

which this occurred was dependent on the size of the DNA. 

 

The graphs that were plotted during the amplification and melt-curve steps for each of 

the primers can be seen in Figure 5.1. There were clear differences in the quality of 

the primers that were used to amplify each of the genes. The replicates for rpoB were 

well defined so the average Ct value of replicates was calculated reliably. The curves 

representing the more concentrated DNA standards were separated from each other at 

regular intervals and this was corroborated numerically by the fact that there was a 

difference of 4 between Ct values for each DNA concentration. 

 

Although the difference between Ct values for the more concentrated DNA standards 

was similar for the katG and oxyS primers, the curves for the replicates were not 

grouped together as clearly as for rpoB. This meant that the calculated average Ct 

value when using katG and oxyS primers was not reliable. The replicates for the DNA 

standard containing 1×101 genomes/μl were not reproducible when using all of the 

primer sets for amplification. 

 

The graphs for melt-curves were good for all of the primer sets as there were clearly 

single peaks at the same temperature. The rpoB PCR products separated at 

approximately 92°C, katG products at approximately 89°C and oxyS products at 
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approximately 88°C. The differences in temperatures reflected the sizes of the PCR 

products as the amplified rpoB fragments were larger than the katG and oxyS 

products. The standard curves generated with the serially diluted standard DNA was 

linear over the data points with gradients of 3.79, 3.54, and 3.57 for primer sets rpoB, 

katG and oxyS, respectively, as shown in Figure 5.2. The efficiency of all primers was 

over 90%, which is supported by the coefficient of correlation (R2) values that were 

above 0.99 for all standard curves. Similar R2 values were observed in previous 

studies evaluating the use of real-time PCR using other primer targets (Desjardin et 

al., 1998; Rondini et al., 2003; O'Mahony et al., 2004).    

 

It was decided to use the forward and reverse primers for the rpoB gene for 

quantification of mycobacteria because the replicate reactions were more reproducible 

and the small difference in Ct values between the DNA concentrations meant that the 

assay would be more sensitive. Even though the replicates for lower DNA 

concentrations were not reproducible, the concentration of DNA that would be used 

for subsequent experiments would be higher, therefore this would not pose a problem. 

The quality of the standard curve, when using rpoB primers in the assay, further 

confirmed the decision to use these primers. 

 

Using primers to amplify a gene that was present in the M. tuberculosis genome as a 

single copy meant that quantifying the number of rpoB copies in a DNA extract 

would be equivalent to quantifying the number of genomes. However, before using 

real-time PCR for quantifying the number of mycobacteria in cultures that would be 

used in phenotypic experiments, the technique had to be validated against current 

quantification methods, OD600 and c.f.u., both of which are influenced by the 

clumping of mycobacteria. 

 

5.3 COMPARISON OF MTBC QUANTIFICATION METHODS  

 

5.3.1 Quantification of MTBC cultures using OD600 

An archive tube of frozen culture for each of the 5 M. tuberculosis strains in Panel B 

(refer to Section 2.4) was thawed at room temperature and 2 drops were used to 

inoculate two 50ml falcon tubes, containing 30ml Middlebrook 7H9 with 0.05% 

Tween-80 medium and beads in each, so there were duplicate liquid sub-cultures for 
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each strain (refer to Section 2.4.1). After vortexing, the cultures were incubated at 

37°C. 

 

The day of inoculation was day 0. At day 3, 1ml of each culture was transferred into 

separate disposable plastic cuvettes (Alpha Laboratories Ltd.) and OD600 was 

measured with a cell density meter (WPA Biowave, Cambridge, UK), using 1ml 

medium as the blank to tare the density meter. The OD600 was plotted on a graph of 

time (days) versus OD600 (Figure 5.3a). The OD600 was measured regularly, every 3 or 

4 days until the growth curves for each of the strains reached the stationary phase 

indicated by the plateux of the bacterial growth curve. 

 

5.3.2 Quantification of MTBC cultures using real-time PCR assay 

Each time the OD600 was measured at the various time points, a separate 1ml aliquot 

of each culture was transferred into a 1.5ml microcentrifuge tube. The bacterial cells 

were pelletted by centrifugation at 12,000×g for 10 mins and the supernatant was 

safely discarded. The pellet of mycobacteria was resuspended in 100µl TE buffer. The 

DNA extraction and purification procedure was as described in Section 5.2.1 except 

the volume of Buffer AE for eluting DNA was reduced to 30µl as the initial pellet of 

bacterial cells was much smaller. The DNA was stored at -20°C ready for 

quantification with real-time PCR. 

 

Using the standards prepared in Section 5.2.1, ranging from 1×101 to 1×107 

genomes/μl, and the DNA of unknown concentration, real-time PCR reactions were 

set up using the rpoB primers exactly as described in Section 5.2.2. Just like for the 

standards and non-template control, three replicate reactions were prepared for each 

of the unknown samples. After the PCR and melt curve was complete, iQ5 software 

automatically analysed the data to calculate the starting concentration of genomes/μl 

in the unknown samples by extrapolating the Ct value of unknown samples against 

those of the DNA standards. The DNA standards were included in each real-time PCR 

run, as the Ct value of DNA standards in a previous run could not be used for 

extrapolation in subsequent runs. 
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Figure 5.1a Graphs produced by the iQ5 Optical System Software after analysing 
fluorescence readings obtained during real-time PCR when using DNA standards ranging 
from 1×101 to 1×107 genomes/μl as templates and each of the three primer sets for the genes, 
i) rpoB, ii) katG and iii) oxyS. For each set of primers and DNA standards there were 3 
replicate reactions. The replicate curves for each of the DNA standards are grouped more 
pronouncedly when using rpoB primers than the katG and oxyS as indicated in Figure 5.1a i).   

e iQ5 Optical System Software after analysing 
fluorescence readings obtained during real-time PCR when using DNA standards ranging 
from 1×101 to 1×107 genomes/μl as templates and each of the three primer sets for the genes, 
i) rpoB, ii) katG and iii) oxyS. For each set of primers and DNA standards there were 3 
replicate reactions. The replicate curves for each of the DNA standards are grouped more 
pronouncedly when using rpoB primers than the katG and oxyS as indicated in Figure 5.1a i).   
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Figure 5.1b Corresponding melt curves, to the graphs in Figure 5.1a, produced by the iQ5 
Optical System Software, for PCR products, which had been amplified using DNA standards 
ranging from 1×101 to 1×107 genomes/μl in 10-fold increments as templates and each of the 
three primer sets for the genes, i) rpoB, ii) katG and iii) oxyS. 

 
three primer sets for the genes, i) rpoB, ii) katG and iii) oxyS. 

PCR product melting point = approximately 92°C 

i) 

PCR product melting point =  approximately 88°C 

PCR product melting point =  approximately 89°C 

ii) 
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Figure 5.2 The standard curves generated using Ct values after analysing DNA 
standards, containing known genome numbers, with real-time PCR assay using each 
primer pair for (a) rpoB, (b) katG and (c) oxyS. The standard curves also display the 
calculated regression line for each set of data points and the coefficient of correlation 
(R2) for each standard curve. 
 

 

 

a) 

b) 

c) 
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The number of genomes/ml culture was calculated by multiplying the number of 

genomes/μl by the volume Buffer AE used for DNA elution. As the DNA had been 

extracted from 1ml culture initially, the calculation provided the number of 

genomes/ml culture. The calculated values were plotted on a graph of time (days) 

versus number (No) of genomes/ml (Figure 5.3b).   

 

5.3.3 Quantification of MTBC cultures using c.f.u. 

In addition to the OD600 and number of genomes data, c.f.u. data were also collected 

at each time point. Whilst taking aliquots of culture for reading OD600 and for DNA 

extraction, two separate 30µl aliquots, from each culture were diluted 1 in 10 in 

separate 1.5ml microcentrifuge tubes each containing 270µl Middlebrook 7H9 with 

0.05% Tween-80 medium (without OADC). The contents of the tubes were mixed 

carefully by pipetting, before making five further 10-fold serial dilutions. As two 30µl 

aliquots were taken from each culture initially, there were two sets of dilutions and 

ultimately duplicate c.f.u. counts at every dilution for each culture. A volume of 50µl 

of each diluted culture was transferred onto half of a Middlebrook 7H11 agar plate 

and then carefully spread in that half of the plate. The agar plates had been prepared 

as described in Section 2.1.3. After inoculating the plates and letting them dry, all 

plates were sealed with parafilm, placed in a sealed bag and incubated at 37°C for 3 to 

4 weeks depending on when colonies could be seen. 

 

The colonies were counted on the plates and recorded. For each culture and each time 

point, the average number of c.f.u. was calculated using the data from a dilution factor 

at which there was the most reliable c.f.u. count (10-200 colonies). The number of 

colonies/ml culture was calculated by multiplying the average c.f.u. count by 20 (as 

50µl of diluted culture was plated) and this value was multiplied by the dilution 

factor. The resulting values were plotted on a graph of time (days) versus No of 

colonies/ml (Figure 5.3c).   

      

5.3.4 Results of comparing MTBC quantification methods  

The three growth curves produced when plotting OD600/ml culture, number of 

genomes/ml culture, and number of colonies/ml culture at each sampling day has been 

shown in Figure 5.3, for one of the Panel B strains, M. tuberculosis CAS, isolated 

from a patient born in India, as an example as the curves were similar for the other 

four strains in Panel B. 
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Figure 5.3 The growth curves produced for M. tuberculosis CAS strain, isolated from a patient 
born in India, using the three different quantification methods including (a) OD600, (b) number of 
genomes and (c) number of colonies. The blue and red curves represent each of the replicates, as 
there were two cultures per strain from which samples were taken. 
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As expected, the growth curve for OD600 for all of the strains followed the typical 

pattern with the lag phase at the beginning and then the exponential phase, followed 

by the plateaux indicating the mycobacteria had reached stationary phase. The same 

lag phase and exponential phase was seen when plotting the number of genomes/ml 

culture, but after plateaux, the typical horizontal line was not seen. Instead, just as the 

curve started to plateaux, the line became more haphazard with the points being up 

and down. This was observed with the genomes/ml culture growth curves for all of 

the M. tuberculosis strains. 

 

The c.f.u. data from this experiment did not produce the complete standard bacterial 

growth curves as was observed with the OD600 and real-time PCR data. For some 

sampling points the data did not fit into the typical growth curve pattern. This was the 

case for each set of duplicate cultures for each M. tuberculosis strain. According to 

the OD600 and real-time PCR data the mycobacterial cells reached exponential phase 

by day 8 or 9 for each set of duplicate cultures for each of the strains; but the c.f.u. 

data for all of the cultures did not reflect this. For M. tuberculosis Beijing strain, cells 

entered the exponential phase at day 16, and were still actively dividing at day 19, but 

after this time point there was a sudden decrease in c.f.u. count, which was not 

observed with the curves produced using OD600 and real-time PCR data. This seemed 

to be a general trend with the c.f.u. data for all of the strains as the M. tuberculosis 

LAM10 mycobacterial cells entered the exponential phase at day 18 and while at day 

23 the c.f.u. count increased, there was a sudden decrease at day 28 followed by 

another increase from day 36 to 49. 

 

The M. tuberculosis CAS mycobacterial cells (isolated from the patient born in 

Somalia and India) entered the exponential phase at a much later stage (day 28 and 

29, respectively) than the other strains. The cells were still actively dividing up until 

day 37 and 44, respectively, after which there was a decrease in the c.f.u. count. The 

growth curves produced using the c.f.u. data for M. tuberculosis EAI5 was similar to 

that of the M. tuberculosis CAS strain, isolated from a patient born in India, shown in 

Figure 5.3c, except mycobacterial cells entered the exponential phase slightly earlier 

at day 19 and continued to actively divide until day 29. After this time point there was 

a decrease in c.f.u. count instead of the typical plateaux seen with the growth curves 

produced using the OD600 and real-time PCR data.   
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For further validation of real-time PCR for mycobacterial quantification, any 

correlation between the genomes/ml culture data and the data from the other two 

quantification methods was investigated by plotting scatter graphs. The scatter graphs 

corresponding to the data for M. tuberculosis CAS, from the patient born in India, can 

be seen in Figure 5.4. There was good correlation between OD600/ml culture and 

genomes/ml culture, as there was a linear relationship between the two measurements 

that could be defined by an equation (Figure 5.4a). Although there were linear 

relationships between OD600 and genomes/ml for the other strains, the equations were 

slightly different. As expected, after the lack of the typical growth curve pattern with 

c.f.u. data, there was no correlation between number of colonies/ml culture and 

genomes/ml culture for any of the strains (Figure 5.4b). 

 

5.4 DISCUSSION 

 

As the present study was focused on comparing the effects of the Panel B 

mycobacterial cells in in vitro and in vivo models, it was important to ensure that the 

same numbers of mycobacterial cells of each strain was used for infections to obtain 

comparable data and to exclude mycobacterial cell numbers used for experiments as a 

variable. Usually, c.f.u. count is used to quantify the numbers of mycobacterial cells, 

but cells tend to clump together meaning individual bacilli are not necessarily 

quantified. In addition, as mycobacteria are slow growing bacteria, it would take at 

least 3 weeks for colonies to grow on plates therefore delaying the set-up of 

experiments. For the purposes of the present study, it was necessary for cells to be 

actively growing in the exponential phase of the bacterial growth curve. 

 

It was, therefore decided to investigate a more accurate and quicker method of real-

time PCR to quantify the number of individual mycobacteria and to be able to set up 

phenotypic assays on the same day as quantification. Cultures of the Panel B M. 

tuberculosis strains were prepared and at regular intervals aliquots of the culture were 

quantified using real-time PCR to quantify number of genomes, c.f.u. count by plating 

cultures onto Middlebrook 7H11 plates and finally by measuring OD600. The data 

from the latter two methods were used to validate the real-time PCR data against as 

these two methods have previously been used for quantifying bacteria. 
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 Figure 5.4 Graphs showing the correlation between (a) number of genomes/ml 
culture and OD600/ml culture and (b) number of genomes/ml culture and number of 
colonies/ml culture for M. tuberculosis CAS strain, isolated from a patient born in 
India. 
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The similarity between curves produced using the real-time PCR and OD600 data 

demonstrated that the lag phase and exponential phase of the bacterial growth curve 

could be followed using quantitative data from real-time PCR (Figure 5.3a and b). 

However, once mycobacteria reached the stationary phase, the growth curves 

produced using real-time PCR data, for all of the M. tuberculosis strains, did not 

follow the plateaux seen in typical growth curves. A possible explanation for this was 

that the cultures were getting old and there was mycobacterial cell death and 

degradation of mycobacterial DNA. For the purposes of carrying out phenotypic 

experiments in the present study, this was not significant, as actively growing and 

dividing mycobacteria, which would be in the exponential phase, would be required. 

 

For this particular experiment, it was not as easy to validate the real-time PCR data 

against the c.f.u. data, as it had been with the OD600 data, because there was a sudden 

decrease in the c.f.u. count for all of the M. tuberculosis strains at some time points 

during the experimental time course. A possible explanation for this could be loss of 

viable mycobacterial cells in the cultures, but this is not corroborated by the real-time 

PCR data, which quantified the number of genomes. There was an increase in the 

number of genomes during the exponential phase of the growth curve, which was 

reflected by the growth curves produced using the OD600 data. However, as mentioned 

in Section 2.6.6, it is important to note that as with OD600, quantifying the number of 

genomes does not discriminate between viable and dead mycobacteria therefore 

measuring DNA levels is not a measure of viability. 

 

In addition, whilst there was a decrease in c.f.u. count with the M. tuberculosis 

LAM10 strain, there was an increase in the number of c.f.u. at the next sampling time 

points, demonstrating that there was no loss of viability in this culture. Another 

explanation could be an insufficient concentration of growth supplement (OADC) in 

the Middlebrook 7H11 plates as fresh plates were prepared at each sampling point or 

a need to improve the techniques for c.f.u. counting of mycobacteria.     

 

There was good correlation between the OD600 and real-time PCR data for all of the 

M. tuberculosis strains and the growth curves produced using the real-time PCR 

quantification data followed the typical trend of a bacterial growth curve. When using 

OD600 and real-time PCR all viable and non-viable mycobacteria would have been 

included for quantification so both of these methods would be more ideal for bacterial 
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cells in the exponential phase of the bacterial growth curve. Converse to this, c.f.u. 

counting of bacterial cells only quantifies the viable cells in the culture. 

 

For the purposes of the present study, whilst an OD600 of 0.2 was used as a marker of 

mycobacterial cells entering the exponential phase of the growth curve, as can be seen 

in the OD600 growth curve in Figure 5.3a, real-time PCR was used as a concurrently 

more rapid method for quantifying MTBC cultures for further in vitro and in vivo 

experiments. In order to avoid introducing variables into the experiments it was 

ensured that exactly the same DNA extraction and real-time PCR protocols were used 

for every independent experiment.  
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CHAPTER 6 

 

IN VITRO PHENOTYPICAL ANALYSIS OF M. TUBERCULOSIS COMPLEX 

STRAINS 

 

6.1 INTRODUCTION 

 

Whilst the aim of the present study was to create a panel of M. tuberculosis strains for 

general TB research and vaccine evaluation studies, the preliminary panel A 

(containing 42 strains including a broad spectrum of M. tuberculosis strains and 

representatives from global population of strain families; refer to Sections 2.3.2 and 

3.2.4), would have been too large for vaccine evaluation studies, therefore a smaller 

number of strains were selected for final analysis. As the final panel should ideally 

contain strains of different ranges of phenotypes and virulence, it was important to 

initially establish if there were any phenotypic differences between various circulating 

strains and also if there were any differences between circulating strains and 

laboratory strains, which are currently used for vaccine evaluation studies (Williams 

et al., 2005; Vipond et al., 2006). 

 

A series of in vitro experiments were performed using six circulating strains (Panel B) 

selected from the five major lineages defined by Baker et al., 2004 and the M. 

africanum lineage identified by Gagneux et al., 2006, and four control strains 

including laboratory M. tuberculosis H37Rv from HPA, MRU and Porton Down, M. 

tuberculosis H37Ra from NCTC and vaccine M. bovis BCG (Baker et al., 2004; 

Gagneux et al., 2006). 

 

The in vitro phenotypic experiments aimed to investigate variation in growth of 

strains in cell-free and in vitro tissue culture systems and other parameters such as 

cytokine production. Depending on the data from the experiments, virulence factors 

might be identified that would eventually play a very influential role during selection 

of strains for vaccine evaluation studies. Growth rates of all ten strains were obtained 

using a higher throughput MGIT 960 system (which gives better reproducibility of 

viable growth) and this data was compared with growth in an in vitro tissue culture 

system. 
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Currently, in the HPA, MRU the protocol for the MGIT 960 system provided by the 

manufacturer involves inoculating MGIT tubes with a drop of culture calibrated 

visually using a McFarland turbidity standard and using Pasteur pipettes; however, 

this means that the exact number of bacilli being used for inoculation is unknown. So 

as well as using the growth rate data to identify any phenotypic differences between 

strains for the purposes of the present study, the data provided additional insight into 

the effects of inoculum sizes on the general growth rates of mycobacterial cells in a 

cell-free culture system. 

 

6.2 THE GROWTH RATES OF M. TUBERCULOSIS COMPLEX STRAINS 

IN MGIT 960 CULTURE SYSTEM 

 

6.2.1 The effect of inoculum sizes on growth rates 

In order to reliably relate growth rate data obtained when using the MGIT 960 culture 

system with results obtained from tissue culture experiments, the same cultures were 

used to set up both experiments on the same day. This meant there was growth rate 

data available from three independent experiments. For each strain, duplicate MGIT 

7ml tubes were inoculated with each of the inoculum sizes, ranging from 6 genomes 

(real-time PCR had been used to quantify mycobacteria hence denotation of inoculum 

size as genomes) to 600,000 genomes in 10-fold increments. The tubes were 

incubated in the MGIT 960 system, which automatically produced growth curves real-

time so it was easy to monitor when curves reached plateaux indicating that 

mycobacteria had reached the stationary phase. Figure 6.1a shows the growth curves 

produced by the MGIT 960 system automatically and Figure 6.1b shows the growth 

curves, produced using the raw numerical data from the MGIT 960 system, which 

were then used to calculate the growth rate at mid-logarithmic phase. 

 

The average growth rate of duplicates at each inoculum size was calculated for the 

laboratory control strain, M. tuberculosis H37Rv (HPA, MRU) to identify which 

inoculum size produced the most reliable growth curves according to the 

manufacturer’s recommendations. A graph showing the average growth rates at each 

of the inoculum sizes for M. tuberculosis H37Rv (HPA, MRU) is shown in Figure 

6.2. 
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As the inoculum size increased the growth rate increased, reaching a peak of 310 

growth units/hour at an inoculum size of 6,000 genomes, after which as the inoculum 

size increased further the growth rate decreased. The growth rates at the two extreme 

inoculum sizes of 600,000 and 6 genomes, was approximately three times slower than 

the peak growth rate. Ideally, the exponential phase of the growth curves generated by 

the MGIT 960 system should not commence too soon or too many days post-

inoculation. According to the manufacturer’s manual after inoculating MGIT tubes 

with M. tuberculosis culture, positivity should be achieved 6 to 10 days (144 to 240 

hrs) post-inoculation. Referring to the growth curves in Figure 6.1b, the recommended 

positivity was achieved at inoculum sizes of 6,000 and 600 genomes. For this reason, 

the growth rates for all of the Panel B, laboratory control and vaccine strains was 

calculated at inoculum sizes of  6,000 and 600 genomes. 

 

6.2.2 Growth rates of strains after inoculating MGIT tubes 

At both of the inoculum sizes, 6,000 and 600 genomes, the fastest growth rate was 

observed with the M. tuberculosis Beijing strain (approximately 450 and 350 growth 

units/hour, respectively) (Figure 6.3). The M. tuberculosis CAS strain, isolated from 

the patient born in Somalia, had the slowest growth rate at an inoculum size of 6,000 

genomes (the CAS strain grew approximately twice as slowly as the Beijing strain at 

6,000 genome inoculum size). At an inoculum size of 600 genomes, M. africanum 

had the slowest growth rate (2.3 times slower than the Beijing strain at 600 genome 

inoculum size). At each of the inoculum sizes, there was an approximate 50 growth 

units/hour difference in growth rate between both of the CAS strains (isolated from 

the patients born in India and Somalia) and between the laboratory control strain M. 

tuberculosis H37Rv (from HPA, MRU and Porton Down), with the faster growth 

rates being observed with the CAS strain from India and the H37Rv strain from 

Porton Down. 

 

 

 

 



Figure 6.1 Graphs showing (a) an example of the growth curves produced by the MGIT detection system after inoculating MGIT tubes with 60 000, 6 000, 600, 60 and 6 genomes of 
M. tuberculosis H37Rv culture as indicated on the graph and (b) growth curves that were produced using raw numerical data from the MGIT detection system, to illustrate the effect 
of different inoculum sizes (600 000, 60 000, 6 000, 600, 60 and 6 genomes) of M. tuberculosis H37Rv culture on the bacterial growth curves and the time taken for mycobacterial 
cells to reach the exponential and stationary phases of the growth curves after inoculating 2 MGIT tubes (represented by 2 separate curves) with each of the inoculum sizes. 
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Figure 6.1 continued 

b) 
 



Figure 6.2 The average growth rates (growth units/hour), of the three independent experiments, at the mid-logarithmic phase of growth curves produced by the MGIT 
960 after inoculating MGIT 7ml tubes with different inoculation sizes of 600,000, 60,000, 6,000, 600, 60 and 6 genomes for M. tuberculosis H37Rv (from HPA, 
MRU). 
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 Figure 6.3 The average growth rates (growth units/hour) for each of the Panel B, laboratory control and vaccine strains at inoculation sizes of 6,000 and 600 
genomes. 
 Figure 6.3 The average growth rates (growth units/hour) for each of the Panel B, laboratory control and vaccine strains at inoculation sizes of 6,000 and 600 
genomes. 
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6.3 INFECTION OF THP-1 CELLS WITH M. TUBERCULOSIS 

COMPLEX STRAINS 

 

6.3.1 Growth of TB strains in THP-1 cells after infection  

For all strains, cultures from the same passage (passage 2) were used for tissue culture 

experiments that involved infecting PMA-activated, non-differentiating, macrophage-

like THP-1 cells with mycobacteria, which had been grown to an OD600 0.2 to ensure 

that they were actively growing at the time of infection, at an MOI of 1. Therefore 

300,000 THP-1 cells were infected with 300,000 mycobacteria (quantified by real-

time PCR). A passage number close to the original archive cultures (passage 2) was 

used to avoid any loss of virulence during culturing. Controls were also set up in 

which THP-1 cells were non-infected (Middlebrook 7H9 media was added instead of 

mycobacteria) and controls in which THP-1 cells were stimulated with LPS and IFN-

γ. 

 

For each strain and control, enough infections were set up so duplicate samples could 

be collected at day 1, 4 and 7 post-infection. Before day 1 sampling, any 

unincorporated mycobacteria were washed away so the effects of only intracellular 

mycobacteria were measured. Sampling involved collecting pellets of infected THP-1 

cells (to measure the fold enhancement or multiplication of mycobacteria post-

infection) and supernatant (to measure levels of cytokine production using ELISA 

assays. Three independent tissue culture infection experiments were set up. 

 

DNA was extracted from all cells in the pellets and real-time PCR was performed 

using primers for actin to measure numbers of THP-1 cells and primers for rpoB gene 

to measure numbers of mycobacterial cells. These calculated levels, given by the Ct 

values during real-time PCR, were used to calculate the ratio of numbers of 

mycobacteria:THP-1 cells as apoptosis of PMA-activated THP-1 and human alveolar 

macrophages has been shown to differ between virulent and non-virulent strains 

(Keane et al., 1997; Balcewicz-Sablinska et al., 1998; Keane et al., 2000; Riendeau et 

al., 2003). Ratios of day 4:day 1 and day 7:day 1 were used as a statistic to 

demonstrate the fold enhancement or multiplication of mycobacteria after infecting 

THP-1 cells. Fold enhancement data was available from three independent 

experiments and is shown in Figure 6.4. 
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The lowest multiplication rate at both day 4 and 7 post-infection, relative to day 1 

post-infection, was observed in THP-1 cells infected with the avirulent laboratory 

control strain, M. tuberculosis H37Ra. The fold enhancement values of both of the M. 

tuberculosis H37Rv strains was similar at day 4 and 7 but in comparison with H37Ra, 

whilst the fold enhancement at day 4 was the same, at day 7 the value was 

approximately 2 times higher. The multiplication rate of the vaccine strain, M. bovis 

BCG, was slightly higher than H37Ra at day 4 and 7 post-infection (2 and 1.4 times 

higher, respectively) (Figure 6.4).   

 

There was clearly a higher multiplication rate of the Beijing strain in THP-1 cells than 

the other Panel B and laboratory control strains (Figure 6.4). Using the avirulent 

laboratory control strain as the baseline, at day 4 post-infection, the multiplication 

rate, relative to day 1 post-infection, was approximately 7 times higher, whilst at day 

7 the rate was approximately 16 times higher. The markedly higher multiplication rate 

of the Beijing strain was observed in all of the repeated independent experiments. The 

increased multiplication rate of the Beijing strain in comparison to the other Panel B 

M. tuberculosis strains was also observed in primary macrophages isolated from 

peripheral blood mononuclear cells (PBMC) (data not shown). 

 

The multiplication rates of the other Panel B M. tuberculosis strains were similar at 

both day 4 and 7 post-infection at an average fold enhancement of 2 and 13, 

respectively. Whilst the multiplication rate for M. africanum was the same as M. 

tuberculosis EAI5, LAM10 and both CAS strains at day 4 post-infection, the rate was 

two times higher than these four M. tuberculosis strains at day 7 post-infection 

(Figure 6.4). 

 

6.3.2 Cytokine production after infecting THP-1 cells 

 The supernatant, which was collected at each of the time points, day 1, 4 and 7, was 

used to measure levels of cytokine produced during infection and activation of THP-1 

cells. ELISA assays, to measure the amounts of human TNF-α, IL-10, IL-1β and IL-

6, were performed using commercial kits from eBioscience (refer to Section 2.6.5). 

The average cytokine levels, in pg/ml, from the three independent infection 

experiments, calculated from the OD450 values obtained after reading ELISA plates, 

were plotted onto graphs (refer to Figure 6.5). The graphs contain data from the Panel 

B strains, M. tuberculosis H37Rv (HPA, MRU), and non-infected THP-1 cells. 
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Results of cytokine production after infecting THP-1 cells with M. tuberculosis 

H37Rv (HPA, Porton Down), M. tuberculosis H37Ra (NCTC), M. bovis BCG and 

stimulating THP-1 cells with LPS and IFN-γ will be discussed in this section. 

 

In general, higher concentrations of human TNF-α production were observed with the 

largest amount being produced by THP-1 cells that had been activated by IFN-γ at 

day 1 (approximately 4500pg/ml). Generally, the lowest concentrations were 

observed with human IL-10 production, with the largest amount being produced by 

THP-1 cells infected with the laboratory strain, M. tuberculosis H37Rv from HPA, 

MRU at day 4 (approximately 14pg/ml). 

 

At day 1 there was twice as much production of TNF-α after infecting THP-1 cells 

with the clinical TB strains than the non-infected THP-1 cells, whilst at day 4 and 7 

TNF-α production was 1.3 times higher than the non-infected cells. In general, the 

lowest levels of TNF-α production was detected in non-infected THP-1 cells and cells 

activated by LPS; there was only a very slight decrease in TNF-α production from 

day 1 to 4 after which levels remained the same (Figure 6.5a). The Beijing strain 

produced the highest levels of TNF-α at day 1 post-infection, whilst THP-1 cells 

infected with M. africanum produced the lowest amount of TNF-α. At day 4 and 7 

post-infection the production of TNF-α by Beijing infected THP-1 cells was lower 

than the other Panel B strains. 

 

At day 1, the production of human IL-10 from non-infected THP-1 cells and THP-1 

cells infected and activated with the different mycobacterial strains and IFN-γ and 

LPS ranged from 5 to 6pg/ml (Figure 6.5b). During the whole time course of 7 days 

IL-10 production by non-infected THP-1 cells and IFN-γ and LPS activated THP-1 

cells was lower than the IL-10 production by THP-1 cells infected with the Panel B 

and laboratory control strains. 

 

At day 1 and 7 the highest and lowest production of IL-10 was observed when THP-1 

cells were infected with EAI5 and M. africanum strains, respectively (Figure 6.5b). At 

day 4, the highest IL-10 production was observed with both of the CAS strains. 

Between day 1 and 4 there was a general increase in IL-10 production, but the 

increase was more prominent (approximately 2.4 fold) in THP-1 cells infected with 

H37Rv (HPA, MRU) (Figure 6.5b). For the remaining strains the increase between 
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day 1 and 4 was 1.8 fold or less. Production of IL-10 between day 4 and 7 remained 

level for the majority of mycobacterial strains, except for H37Rv (MRU). For this 

strain, a slight decrease in IL-10 production was observed (0.8 fold). 

 

Whilst at day 1 similar amounts of IL-10 was produced by the non-infected THP-1 

cells and cells infected with the clinical TB strains, at day 4 and 7 1.6 times more IL-

10 was produced by THP-1 cells infected with the TB strains than the non-infected 

cells. It was important to note that the levels of IL-10 produced by THP-1 cells 

infected with both of the CAS strains (isolated from patients born in India and 

Somalia) was the same at each of the time points during the 7 day experimental period 

(Figure 6.5b).   

 

Production of human IL-1β by non-infected THP-1 cells and cells activated by LPS 

was notably lower than IL-1β production by THP-1 cells infected with each of the 

Panel B and laboratory control strains (Figure 6.5c). At day 1, 4 and 7 there was 7, 5 

and 2.3 times more IL-1β produced by the clinical TB strains than the non-infected 

THP-1 cells, respectively. Production of IL-1β by THP-1 cells activated by IFN-γ 

remained constant at day 1, 4 and 7 at approximately 350pg/ml. For some strains, 

there was an increase in IL-1β production between day 1 and 4 followed by a 

decrease between day 4 and 7. One such example was IL-1β produced by THP-1 cells 

infected with M. bovis BCG as production increased from 227 to 361pg/ml between 

day 1 and 4 but then decreased to 340pg/ml at day 7. As was observed with THP-1 

cells activated by IFN-γ, there was constant IL-1β production by THP-1 cells infected 

with H37Rv (HPA, MRU), but at approximately 400pg/ml. For some strains, like 

CAS (isolated from the patient born in India), production of IL-1β remained constant 

at approximately 420pg/ml between day 1 and 4 and then slightly decreased to 

370pg/ml by day 7. 

 

Comparing the production of IL-1β from THP-1 cells infected with the different Panel 

B strains showed that the CAS, isolated from the patient born in India, and M. 

africanum strains produced the highest and lowest levels of IL-1β, respectively, at day 

1 and 4 post-infection. At day 7 THP-1 cells infected with the CAS strain, from India, 

produced the lowest levels of IL-1β, whilst the highest levels were produced by the 

LAM10 strain. 
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At day 1 post-infection, human IL-6 production ranged from 25pg/ml (non-infected 

THP-1 cells) to 220pg/ml (THP-1 cells activated with IFN-γ). Non-infected THP-1 

cells produced the lowest levels of IL-6 at approximately 25pg/ml and remained at 

this level during the 7 day experiment period (Figure 6.5d). At day 1, 4 and 7 there 

was 2.5, 11.9 and 14.8 times more IL-6 produced by the clinical TB strains than the 

non-infected THP-1 cells, respectively. The highest levels of IL-6 production were 

observed at day 4 and 7 with THP-1 cells infected with the Beijing strain (839 and 

895pg/ml, respectively). With the exception of non-infected THP-1 cells, for the other 

infected and activated THP-1 cells, there was a general increase in IL-6 production 

between day 1 and 4. The most notable increase was observed when THP-1 cells were 

infected with the five Panel B M. tuberculosis strains, H37Rv (HPA, Porton Down) 

and M. bovis BCG with an approximate 6 to 7 fold increase. From day 4 to 7, IL-6 

production either remained constant or decreased. The levels remained constant for 

THP-1 cells infected with the Beijing, H37Rv (HPA, MRU) and EAI5 to name a few 

(Figure 6.5d). A decrease was observed in THP-1 cells infected with strains like M. 

bovis BCG, in which a 0.7 fold decrease was observed. At day 1, 4 and 7 post-

infection, the highest levels of IL-6 were produced by THP-1 cells infected with the 

Beijing strain and the lowest levels produced by M. africanum 

 

 



Figure 6.4 Graph showing the average fold enhancement (growth of mycobacteria relative to THP-1 cells present) from the three independent experiments when the mycobacterial 
cell:THP-1 cell ratio of day 4 and day 7 post infection was compared with the ratio at day 1. This statistic was calculated for THP-1 cells infected with M. tuberculosis strains, CAS 
(from patients born in India and Somalia), Beijing, EAI5, and LAM10, M. africanum, H37Rv (from HPA, MRU and HPA, Porton Down), H37Ra, and M. bovis BCG. 
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Figure 6.5 Graphs showing the average concentrations (from the three independent experiments) of human (a) TNF-α, (b) IL-10, (c) IL-1β and (d) IL-6 at day 1, 4 and 7 after 
infecting macrophage-like THP-1 cells with M. tuberculosis strains, CAS (from patients born in India and Somalia), Beijing, EAI5, LAM10, M. africanum, and H37Rv (from HPA, 
MRU). Also shown is data from the negative control, non-infected THP-1 cells.  

 and 7 after 
infecting macrophage-like THP-1 cells with M. tuberculosis strains, CAS (from patients born in India and Somalia), Beijing, EAI5, LAM10, M. africanum, and H37Rv (from HPA, 
MRU). Also shown is data from the negative control, non-infected THP-1 cells.  
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6.4 DISCUSSION  

 

As MTBC primarily infects alveolar macrophages before undergoing multiplication, a 

human macrophage-like model in vitro system (THP-1) was chosen to investigate 

variation in the phenotype of the different MTBC strains. Initially, THP-1 cells were 

proliferative and non-adherent but after activation with PMA, the cells changed from 

monocytes to macrophage-like cells, which were non-proliferative and adherent. 

Studies have demonstrated that activated THP-1 cells provided a reliable alternative 

to peripheral blood monocyte and bone-marrow derived macrophages to identify 

differences in the virulence of different M. tuberculosis strains (Theus et al., 2004; 

Sow et al., 2007). PMA-activated THP-1 cells have been used successfully for 

previous research into the effects of M. tuberculosis on macrophages and the various 

mechanisms involved in the survival of these bacilli once taken up by macrophages 

(Theus et al., 2005; Lee et al., 2007; Theus et al., 2007). 

 

Since mycobacterial cells are usually actively dividing during infection, THP-1 cells 

were infected with actively dividing mycobacterial cells. In addition, once activated, 

THP-1 cells survive for a week, reinforcing the importance of infecting THP-1 cells 

with actively dividing mycobacterial cells. From previous experiments and results, it 

was observed that mycobacteria were in the exponential phase of the bacterial growth 

curve, during which bacteria are actively dividing, at OD600 0.2 (refer to Section 5.3). 

Therefore, cultures were prepared at the appropriate OD600 two days prior to infecting 

THP-1 cells. Macrophage-like THP-1 cells were infected at an MOI of 1 so 300 000 

THP-1 cells were infected with an equal number of mycobacterial cells, which had 

been quantified using real-time PCR. The negative control was an equivalent volume 

of Middlebrook 7H9 medium. 

 

After infecting THP-1 cells with the ten strains and activating THP-1 cells with LPS 

and IFN-γ, supernatant and cells were collected at days 1, 4 and 7 to monitor the 

effect of the strains, but cells could be collected at day 3 instead of day 4 (data not 

published). The infected THP-1 cells were pelletted and after DNA extraction, real-

time PCR was performed to work out the fold enhancement of mycobacteria relative 

to the THP-1 cells present at day 4 and 7 post-infection when compared with day 1 

post-infection. In essence the fold enhancement data showed the multiplication and 

growth of the different strains in an in vitro model. 
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Primers that targeted the rpoB region of the M. tuberculosis genome were used to 

quantify the amount of mycobacteria present and primers for actin were used to 

quantify the amount of THP-1 cells. It was decided to calculate fold enhancement of 

mycobacteria in this way as apoptosis of PMA-activated THP-1 cells is dependent on 

the virulence of the strains (Keane et al., 1997; Balcewicz-Sablinska et al., 1998; 

Keane et al., 2000; Riendeau et al., 2003). The data from these previous studies 

demonstrated that virulent strains like M. tuberculosis H37Rv, Erdmann and wild-

type M. bovis induced decreased apoptosis of THP-1 and human alveolar macrophage 

cells in vitro than the low virulence strains like M. tuberculosis H37Ra, avirulent M. 

bovis BCG and M. kansasii. 

 

Levels of human TNF-α, IL-10, IL-1β and IL-6 in the supernatants were measured 

using ELISA assays. It was decided to measure levels of these particular cytokines 

because of the role that they play in the immune response to M. tuberculosis infection 

(Bogdan et al., 1991; Marques et al., 1999; Stenger et al., 2001; Fremond et al., 2004; 

Theus et al., 2005). 

 

The production of human TNF-α, IL-10, IL-1β and IL-6 was notably less with the 

negative controls than levels produced upon infection with the strains in all of the 

independent experiments. Theus et al., 2005 also observed that there was an 

undetectable level of TNF-α and IL-10 production from non-infected PMA-activated 

THP-1 cells (Theus et al., 2005). The data from the present study indicated that the 

medium used for culturing all of the strains did not affect the assay and that any 

differences seen in the production of cytokines was due to infection of THP-1 cells 

with the mycobacterial strain.  

 

The other controls included the addition of LPS and IFN-γ to THP-1 cells. These were 

potentially positive controls, but LPS and IFN-γ have been used for different purposes 

in previous studies and their effect on cytokine production varied according to which 

cytokine was being measured. Once alveolar macrophages are infected with 

mycobacterial cells, macrophages are activated to increase cell-mediated Th1-type 

response, which leads to an increase in production of IFN-γ, IL-2 and IL-12. In some 

studies IFN-γ has been used to stimulate macrophage-like cells before infection with 

M. tuberculosis strain instead of stimulating cells with IFN-γ on its own (Park et al., 
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2006; Sow et al., 2007). However, the object of this study was to test the hypothesis 

that there were no phenotypic differences between the strains so IFN-γ was not added 

along with the strains to avoid introducing a variable. 

 

LPS, a component of bacterial cell walls, has previously been used to compare levels 

of TNF-α and IL-6 after stimulating macrophages with medium, LPS and control 

strains, including M. tuberculosis H37Ra and H37Rv and vaccine M. bovis BCG 

strain (Fremond et al., 2004). In this study the levels of TNF-α were similar when 

macrophages were stimulated with LPS and M. tuberculosis H37Rv, whilst there were 

notably higher levels of IL-6 when comparing LPS stimulated macrophages with 

those infected with the vaccine strain and M. tuberculosis H37Rv.  However, whilst 

LPS was used as a potential positive control, the levels of all cytokines in the present 

study upon activating THP-1 cells with LPS were only slightly higher than the 

cytokine levels for non-infected THP-1 cells but markedly lower than cytokine levels 

when adding the different strains to the THP-1 cells. In another study by Marques et 

al., 1999 LPS proved to be a particularly strong inducer for TNF-α production 

(Marques et al., 1999). 

 

The data from the present study demonstrated that there was a markedly higher 

growth and multiplication of M. tuberculosis Beijing strain than the other Panel B, 

laboratory control and vaccine strains at day 4 and 7 indicating that there was 

continuously increased growth of the Beijing strain throughout the infection. The 

growth rate of a Beijing strain in vitro has been investigated previously by Theus et 

al., 2007. This study investigated any associations between intracellular growth of the 

M. tuberculosis Beijing strain and production of TNF-α and IL-10. It was concluded 

that there was an inverse relationship between TNF-α production and intracellular 

growth rate; hence the slower growing Beijing strains induced secretion of higher 

levels of TNF-α (Theus et al., 2007). Following this principle it would be expected 

that there would be lower levels of TNF-α after infecting THP-1 cells with the 

Beijing in comparison with TNF-α levels produced after infecting THP-1 cells with 

the other strains that had been evaluated in the present study. However, whilst the 

highest multiplication rates were observed after infection with the Beijing strain, 

higher levels of TNF-α were produced by the THP-1 cells infected with the Beijing 

strain than THP-1 cells infected with the other four Panel B MTBC strains (two M. 

tuberculosis CAS strains, M. tuberculosis EAI5, M. tuberculosis LAM10 and M. 
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africanum). In the study by Theus et al., 2007 there was an inverse relationship 

between production of TNF-α and IL-10, which was the same as what had been 

observed in the other studies previously discussed and also in the present study. 

 

Infection of alveolar macrophages with M. tuberculosis H37Rv and H37Ra induced 

IFN-γ production via the Th1 immune response pathway, enhancing the killing of 

intracellular mycobacteria by activating macrophages to become microbicidal and 

stimulating the recruitment of more macrophages which will eventually form 

granulomas (Bogdan et al., 1991; Fenton et al., 1997; Fremond et al., 2004; Bhatt et 

al., 2007). 

 

Autoregulation within macrophages occurs as IFN-γ production can be blocked by 

production of immunosuppressive and anti-inflammatory IL-10, which is induced by 

the Th2 pathway (Fenton et al., 1997; Bhatt et al., 2007). The findings from these 

studies correlate with the present study as THP-1 cells activated with IFN-γ produced 

very little IL-10 as levels were very similar to those produced by non-infected THP-1 

cells. Conversely, THP-1 cells activated with IFN-γ produced higher levels of TNF-α, 

IL-1β and IL-6. This inverse relationship in the production of these cytokines has 

been observed in previous studies and is discussed later.    

 

Whilst IL-10 inhibits the production of IFN-γ, IL-10 also down-regulates production 

of TNF-α, which is a crucial cytokine for eliciting a pro-inflammatory response, and 

both IFN-γ and TNF-α, in conjunction, are important for controlling TB infection 

(Bogdan et al., 1991; Marques et al., 1999; Stenger et al., 2001). Infection with M. 

tuberculosis generally leads to increased production of TNF-α by macrophages, 

which induces production of reactive nitrogen intermediates that work in synergy with 

IFN-γ to kill mycobacterial cells (Bhatt et al., 2007). On its own, TNF-α helps to 

control secretion of other cytokines and stimulate apoptosis of infected macrophages 

to reduce bacterial burden. 

 

In the present study, we focused on the analysis of the production of pro-

inflammatory cytokines, TNF-α, IL-1β and IL-6 which had been shown to vary 

during virulent infection of macrophages (Ragno et al., 2001; Volpe et al., 2006). 

This study demonstrated that these pro-inflammatory cytokines played a particularly 

important role in the immune response against M. tuberculosis infection and it had 
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already been demonstrated that IL-1β was involved in granulomatous inflammation. 

A pronounced reduced level of IL-10 production in comparison with the significantly 

higher detected levels of TNF-α, IL-1β and IL-6 was observed in the present study, 

which correlated to the previous literature. 

 

In the present study, the cytokine production data provided some insight into the 

possible immune response induced after infection of THP-1 cells with the Panel B 

wild-type strains. During the early stages in infection of THP-1 cells, at day 1, cells 

infected with the Beijing strain produced the highest levels of TNF-α and IL-6 

indicating that there is an early pro-inflammatory response to this strain. Based on the 

principles described by Ragno et al., 2001 and Volpe et al., 2006 virulent strains 

induce higher production of pro-inflammatory cytokines showing that the Beijing 

strain is more virulent than the other Panel B strains. 

 

Contrary to the production of TNF-α and IL-6 production observed with the Beijing 

strain, THP-1 cells infected with M. africanum produced the lowest levels of TNF-α 

and IL-6 indicating that this MTBC strain is not as virulent as the Beijing strain but 

this is not conclusive as more experiments need to be performed for confirmation. The 

lowest production of IL-1β was also observed with M. africanum further supporting 

the evidence that this strain is not as virulent as the other Panel B M. tuberculosis 

strains. 

 

In addition to growth in an in vitro cellular model, growth in a MGIT cell-free model 

was compared using an ideal inoculum of 600 and 6,000 TB genomes. At both of 

these inoculum sizes the fastest growth rate was observed with the M. tuberculosis 

Beijing strain. The M. tuberculosis CAS strain, isolated from the patient born in 

Somalia, and M. africanum had the slowest growth rate at inoculum size of 6,000 and 

600 genomes, respectively. Higher growth rates were observed with the Beijing strain 

in the tissue culture and cell-free culture system when compared to the Panel B 

strains.  

 

A study by Park et al., 2006 used M. tuberculosis H37Rv and clinical isolates of 

known virulence to demonstrate that the fast growth rate of strains in an intracellular 

environment was a virulence factor during the early stages of M. tuberculosis 

infection and relating the growth rate to TNF-α production profiles showed that the 
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more virulent strains induced increased levels of TNF-α production (Park et al., 

2006). Our study confirms that the Estonian Beijing isolate which over a decade has 

come to dominate the TB population in patients in Estonia grows more quickly than 

other clinical and laboratory strains tested and initially produced higher levels of 

TNF-α. 

 

Referring back to Section 3.2.4, one of the factors that had been used to select strains 

for Panel A had been partially based on the sizes of clusters. In the study by Theus et 

al., 2005, the element of cluster size was brought together with growth rate of strains 

and levels of cytokines produced after infecting activated THP-1 cells with clustered 

and unique clinical isolates (Theus et al., 2005). Whilst MIRU and ETR profiles were 

used for cluster analysis in the present study, the study by Theus et al., 2005 used 

IS6110 RFLP patterns. There was a more rapid intracellular growth of unique isolates 

with greater levels of TNF-α production and lower levels of IL-10 production in 

comparison with clustered isolates, therefore during early infection there was a 

positive correlation between clustered isolates and IL-10 production but a negative 

correlation with TNF-α production (Theus et al., 2005). Ultimately, the study 

determined that growth rate and production of IL-10 and TNF-α were good 

phenotypic markers for investigating epidemiologically relevant strains, whilst 

providing insight into virulence of M. tuberculosis strains as IL-10 antagonises the 

production of pro-inflammatory cytokines, IFN-γ, TNF-α and IL-12, disrupting the 

host immune defence against TB infection. 

 

The collective data from all of the in vitro experiments disproved the initial null 

hypothesis that there were no differences between the different M. tuberculosis strains 

as it was obvious that the M. tuberculosis Beijing strain behaved differently to the 

other strains in its intracellular growth rate and the growth rate in a cell-free culture 

system, showing that this is a potentially virulent strain based on previous literature 

(Theus et al., 2005; Park et al., 2006; Theus et al., 2007). The increased production of 

the pro-inflammatory cytokines, TNF-α and IL-6, compared to the other Panel B 

strains and the low levels of the anti-inflammatory cytokine, IL-10, produced after 

infecting THP-1 cells with the Beijing strain further demonstrated the potential 

virulent nature of the Beijing strain in comparison to the other Panel B strains.  
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CHAPTER 7 

 

THE STABILITY OF AEROSOLS DERIVED FROM THE M. 

TUBERCULOSIS COMPLEX STRAINS 

 

7.1 INTRODUCTION 

 

Data from in vitro tissue culture experiments indicated that there were differences in 

the phenotypes of the circulating clinical strains included for analysis. The M. 

tuberculosis Beijing strain was included because it differed from the other circulating 

clinical, laboratory control and vaccine strains due to its higher growth in the 

activated THP-1 model. The remaining strains were selected based on the four main 

M. tuberculosis lineages defined by Baker et al., 2004. The final panel of strains, 

included M. tuberculosis Beijing (lineage I), LAM10 (lineage II), both CAS strains 

isolated from patients born in India and Somalia (lineage III) and EAI5 (lineage IV). 

 

After performing in vitro experiments the next step would normally be to narrow 

down the panel of strains by selecting those of interest for analysis using low 

throughput in vivo experiments. For the purposes of this particular study, we tested 

the hypothesis that there were no differences in the phenotype or behaviour of the 

strains in in vivo experiments involving aerosol challenge of guinea pigs. During the 

preparation of the aerosols from cultures of each strain for guinea pig challenge 

studies, it was decided to perform All Glass Impinger-30 (AGI-30) sampling 

primarily to ensure that any differences seen between the M. tuberculosis strains, after 

infecting guinea pigs, were due to differences in virulence alone rather than 

differences in concentrations of delivered doses of mycobacteria and to validate that 

the Henderson apparatus, through which the aerosolised culture flowed, was working 

within the required parameters. However, these studies would also offer some insight 

into the stability of strains as aerosols because TB is transmitted via the respiratory 

route as aerosols produced whilst coughing and sneezing. As mentioned in Section 

2.8.2 the AGI-30 sampler jar drew up air through an inlet from the Henderson 

apparatus and dissolved the aerosols containing TB bacilli in the 5ml sterile distilled 

water in the AGI-30 sampling jar. 
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As part of our overall aim we sought to investigate whether the stability of aerosols 

produced by these strains contributed to overall differences in phenotype. In previous 

studies, guinea pigs have been challenged with standard laboratory strains of M. 

tuberculosis H37Rv and M. bovis; these data provide a foundation from which to 

investigate the in vivo effects of wild-type strains that were circulating within London 

and which have more relevance for public health (Williams et al., 2000; Williams et 

al., 2005). 

 

7.2 INVESTIGATION OF THE STABILITY OF AEROSOLS OF 

CIRCULATING M. TUBERCULOSIS COMPLEX STRAINS  

 

The stability of each strain as an aerosol was tested using an AGI-30 sampling device. 

Cultures containing 1×107 c.f.u. had been used for previous guinea pig challenge 

procedures performed at Porton Down. However, as mycobacteria had been 

quantified using real-time PCR for the tissue culture experiments, this quantification 

method was also used to obtain 1.5ml of culture containing 1×107 mycobacterial 

genomes for each of the five strains (refer to Section 5.3 for the comparisons between 

using real-time PCR and c.f.u. for MTBC quantification). After dilution, the final 

working concentration of cells was 1×106 mycobacterial genomes. Cultures contained 

actively growing mycobacterial cells. 

 

Cultures were aerosolised using a 3-jet collison nebulizer, after which aerosols were 

passed through the Henderson apparatus to be delivered to four AGI-30 samplers 

containing 5ml sterile distilled water into which the aerosols would be captured. 

Mycobacterial samples from the collison and AGI-30 samplers were serially diluted 

and plated onto Middlebrook 7H11 agar plates, incubated for 4 weeks and then 

colonies were counted. After taking into account the volume of culture plated and the 

dilution factor, the c.f.u./ml of mycobacteria in the collison were compared with 

c.f.u./ml from the AGI-30 samplers to identify if there were any differences in the 

survival of the strain in an aerosolised state. 

 

Figure 7.1 shows the number of viable mycobacterial cells at each of the stages of the 

experiment, i.e. colony forming units were monitored in the collison nebulizer prior to 

aerosolisation for AGI-30 sampling and before each of the guinea pig challenges. A 

sample of the stock culture was also plated onto agar plates to obtain c.f.u./ml data 
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primarily to verify the mycobacterial concentration of the stock cultures and to ensure 

that the 1 in 10 dilution of the 5 strains, to prepare cultures at a working concentration 

for the collison nebuliser, was performed as accurately as possible. 

 

From the plots for each of the five strains, the number of bacilli quantified using real-

time PCR was approximately one log10 higher than the viable c.f.u. count. The lowest 

and highest viable c.f.u./ml was observed for M. tuberculosis EAI5 and LAM10, 

respectively, and the difference between the stock culture counts for these strains was 

one log10 c.f.u./ml between approximately 1×106.5 c.f.u./ml and 1×105.5 c.f.u./ml. The 

c.f.u./ml for all of the other strains was either just above or below 1×106 c.f.u./ml. 

 

The viable c.f.u. count at 0 mins represented the number of c.f.u. after diluting stock 

cultures 1 in 10. Theoretically, the final number of c.f.u. should be 1×106 in 15ml with 

one log10 decrease between stock and diluted cultures. However, as the c.f.u. count of 

the stock culture was lower than 1×107 c.f.u. in 1.5ml, the c.f.u. counts at 0 mins were 

lower than expected. Whilst the expected decrease was observed for M. tuberculosis 

LAM10 strain, there was a two log10 drop in c.f.u./ml for M. tuberculosis CAS 

isolated from the patient born in Somalia and the decrease for all other strains was 

slightly more than one log10. 

 

The diluted cultures were firstly used for AGI-30 sampling in which cultures were 

aerosolised for 5 mins, during which time aerosols had been passed through the 

Henderson apparatus ready for collection in the AGI-30 samplers. After the AGI-30 

sampling was complete, an aliquot of culture in the collison was plated for c.f.u. count 

before carrying on to challenge two sets of eight guinea pigs by the aerosol route. The 

c.f.u./ml counts for all of the strains were similar to the counts in the diluted cultures 

pre-challenge. 

 

The final two points of each plot in Figure 7.1 represented the c.f.u./ml in the collison 

after each of the guinea pig challenges. For M. tuberculosis Beijing strain, the 

c.f.u./ml after each challenge was similar to that of the diluted culture and after AGI-

30 sampling. For all of the other strains the c.f.u./ml was either similar or slightly 

higher than the counts of diluted cultures and after AGI-30 sampling. These trends 

indicated that the starting concentrations of mycobacteria were similar between the 

AGI-30 sampling, first challenge and then the second challenge. 
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Figure 7.2 shows the c.f.u. counts of the five M. tuberculosis strains that had been 

collected in the AGI-30 sampler after aerosolised diluted culture had been passed 

through the Henderson nebulizer. For all strains, except M. tuberculosis LAM10 

strain, the c.f.u. counts in the four samplers were similar and on average there were 

approximately 1×102 c.f.u. in each of the samplers. For the LAM10 strain the number 

of c.f.u. varied between samplers, the largest difference being one log10 c.f.u./ml 

between approximately 1×103 c.f.u./ml, observed in replicate 3, and 1×102 c.f.u./ml, 

observed in replicates 2 and 4. The approximate average c.f.u. count from the LAM10 

replicates was 1×102.5 c.f.u./ml, which is marginally higher than counts for the other 

strains. This increase may be due to a higher mycobacterial concentration in the stock 

culture for LAM10 than the other strains. The higher concentration in the collison 

may mean more mycobacterial bacilli passed through the apparatus and delivered to 

the AGI-30 samplers. 

 

From these data, there is no indication that there is a difference in the ability of the 

five strains to survive in the aerosolised state, as a similar number of c.f.u. were 

recovered after being passed through the Henderson apparatus. Statistical analysis 

using the two sample t-test (p<0.05) confirmed that there was indeed no significant 

difference, between the M. tuberculosis strains, in the aerosols captured in the AGI-30 

samplers. Importantly, all 5 strains retained their viability during the period of 

aerosolisation, which would mean that all guinea pigs would be challenged with an 

equivalent dose enabling a direct comparison to be made of their virulence in this 

model. 

 

 

 

 

 



Figure 7.1 Log10 c.f.u./ml of mycobacteria in cultures for each of the strains including M. tuberculosis Beijing (Estonia), CAS (India), CAS (Somalia), EAI5 (India) 
and LAM10 (UK). The log10 c.f.u./ml was taken for stock culture, in diluted culture at 0 mins, and then in the collison, after aerosolisation for AGI-30 sampling after 
5 mins, and after aerosol challenge of each set of 8 guinea pigs at 10 and 15 mins. (b) Log10 c.f.u./ml of mycobacteria collected in the four AGI-30 samplers after the 
cultures for strains were aerosolised and passed through the Henderson apparatus. 
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Figure 7.2 Log10 c.f.u./ml of mycobacteria collected in the four AGI-30 samplers after the cultures for 
M. tuberculosis (a) Beijing (Estonia), (b) CAS (India), (c) CAS (Somalia), (d) EAI5 (India) and (e) 
LAM10 (UK) strains were aerosolised, passed through the Henderson apparatus and the aerosols were 
dissolved in 5ml distilled water. 
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Figure 7.2 continued 

d) 

e) 
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7.3 DISCUSSION 

 

TB bacilli are transmitted via aerosols and the prolonged stability of aerosols might 

aid in the successful transmission of certain strains, and be a potential property of 

more virulent strains. Whilst there are previous studies investigating the virulence of 

clinical strains in vivo, there was limited previous data showing correlations between 

aerosol stability and virulence of M. tuberculosis strains to prove or disprove this 

hypothesis (Williams et al., 2005; Palanisamy et al., 2009). 

 

For the purposes of this study, M. tuberculosis cultures had been used, but in reality 

aerosols are produced from saliva or sputum as an infected individual coughs or 

sneezes. In a study by Lever et al., 2000, the survival of aerosols generated from 

saline containing mycobacterial bacilli was compared with survival of aerosols from 

artificial saliva and revealed that there were no differences in the rate of aerosol 

survival whether saliva or broth cultures were used for experiments (Lever et al., 

2000). 

 

As AGI-30 sampling is a low throughput technique, and previous studies performed 

by staff at HPA, CEPR have produced historical aerosol survival data using M. 

tuberculosis H37Rv, strains were selected from those that had been included 

previously for tissue culture experiments. It was decided to compare the aerosol 

stability of cultures of circulating clinical strains from Panel B. After performing 

AGI-30 sampling using cultures for these five strains and analysing the data, there 

was no significant difference between strains in the c.f.u./ml collected in the AGI-30 

samplers relative to the initial c.f.u./ml in the cultures. This showed that there was no 

significant difference in the stability of the tested strains in their aerosolised state. 

There have been very few studies that have focused on the stability of aerosols alone, 

as most studies have used aerosol production for infecting mice and guinea pigs to 

investigate the effects of vaccines in vivo (Williams et al., 2000; Williams et al., 

2005; Williams et al., 2005; Vipond et al., 2006; Ordway et al., 2007). 

 

However, Lever et al., 2000, investigated the aerosol stability of different 

Mycobacterium species, as opposed to different M. tuberculosis strains, and 

demonstrated that despite the variation seen in human disease caused by these species, 

the survival of M. tuberculosis, M. avium and M. intracellulare in their aerosol state 
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was similar. These data partially support the results produced in the present study 

because despite the increased virulence of M. tuberculosis Beijing observed in the in 

vitro model, there were no differences in the stability of aerosols produced by the 

culture. 

 

A crucial point is that the procedures used in the present study were performed in a 

controlled environment and whilst the data may provide some insight, the controlled 

conditions are artificial. In reality there are a plethora of other factors and variables 

that might influence the stability of aerosols, for example, ultraviolet light, wind 

speed, and temperature. The effects of these factors would be hard to investigate in an 

artificial model, which may explain the limited data available surrounding this topic. 

Nevertheless any research into aerosol stability may explain the observed 

epidemiological trends in global TB, for instance the dominance of the M. 

tuberculosis CAS strain in the Indian subcontinent. Is it possible that the climate in 

this region supports the prolonged stability of this strain? As it stands at the moment, 

data show that successful transmission of Mycobacterium species or strains is due to 

the prolonged contact of TB patients with other individuals that are in close proximity 

(Lever et al., 2000). The similarities in the aerosol survival patterns for strains meant 

that any differences in virulence observed between strains during in vivo experiments 

was due to the strain and not due to the delivery of variable numbers of bacilli. 
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CHAPTER 8 

 

IN VIVO PHENOTYPICAL ANALYSIS OF M. TUBERCULOSIS COMPLEX 

STRAINS 

 

8.1 INTRODUCTION  

 

In Section 6.3, the clinical strains in Panel B (M. tuberculosis Beijing, CAS India, 

CAS Somalia, EAI5, LAM10 and M. africanum) and laboratory control strains (M. 

tuberculosis H37Rv from HPA, MRU and Porton Down, M. tuberculosis H37Ra, M. 

bovis BCG) were used for in vitro experiments, infecting activated macrophage-like 

THP-1 cells, to test the null hypothesis that all strains had the same phenotype and 

behaved in a similar manner during infection. This hypothesis had been disproved 

after in vitro analysis showed there was a marked increase in the growth of M. 

tuberculosis Beijing strain compared to the other circulating and control strains. 

 

The behaviour of strains in an in vitro assay may not necessarily resemble what would 

happen in vivo, therefore it was decided to test the same null hypothesis in an in vivo 

model. Mice have been used in previous TB studies, especially when investigating the 

in vivo immune response, as genetically engineered breeds can be more easily 

produced and there is a wider availability of immunological reagents for these animals 

(Lopez et al., 2003; Flynn 2006). However, there is a lack of similarity between 

mouse and human pathology, both pulmonary and extrapulmonary, after TB infection. 

There are also important differences between murine and human immunology. In 

contrast, there are strong histological correlations between primary pulmonary lesions 

observed in guinea pigs and humans and there is good similarity in the 

extrapulmonary dissemination of TB bacilli in the two models (Bhatia et al., 1961; 

Prabhakar et al., 1987). 

 

The extrapulmonary dissemination and pulmonary lesions are both crucial stages in 

human TB infection making guinea pigs a more attractive model for the purposes of 

the present study. Guinea pigs have successfully been used in previous in vivo studies 

for vaccine evaluation and investigating the infectivity and virulence of clinical and 

laboratory M. tuberculosis strains (Bhatia et al., 1961; Prabhakar et al., 1987; 
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Williams et al., 2000; Williams et al., 2005; Williams et al., 2005; Vipond et al., 

2006). 

 

Whilst all Panel B strains had been included in in vitro tissue culture experiments, 

they could not all be included in in vivo guinea pig experiments with a reasonable 

number of replicates as it would have been too costly with the limited numbers of 

guinea pigs available, it was decided to select M. tuberculosis LAM10, Beijing, EAI5 

and two CAS strains to represent the four M. tuberculosis lineages out of the six 

major phylogenetic lineages to prove or disprove the initial null hypothesis (Baker et 

al., 2004; Gagneux et al., 2006). The same strains had been included for the AGI-30 

sampling investigated in Chapter 7. 

 

8.2 BODY WEIGHT OF GUINEA PIGS INFECTED WITH M. 

TUBERCULOSIS COMPLEX STRAINS  

 

8.2.1 The effect on total body weight 

In order to have a suitable number of replicates for each of the two time points at 

which guinea pigs would be culled, five groups of sixteen guinea pigs were aerosol 

challenged with each of the five clinical M. tuberculosis strains. Cultures for each of 

the M. tuberculosis strains were aerosolised using nebulizers and passed through a 

Henderson apparatus, but whereas for AGI-30 sampling aerosols were captured in 

sampling jars containing water, on this occasion aerosols were delivered straight to 

the snout of the guinea pigs so approximately 10 mycobacterial bacilli would be 

retained in the lungs of guinea pigs. 

 

Post-challenge, guinea pigs were kept under controlled conditions and the body 

weight for all guinea pigs was assessed at regular intervals, which was possible as 

there was 100% survival of guinea pigs prior to culling. The average percentage 

weight change, for guinea pigs infected with the different strains, was plotted over 

time post-challenge and results of this analysis can be seen in Figure 8.1a. Variation 

in weight gain is linked to variation in pathogenicity of infecting strains. The area 

under the plotted curves for each of the strains was calculated using SigmaPlot 

(version 10.0) to represent the data more clearly and to visualise the effect of infecting 

guinea pigs with the different strains; results of this analysis can be seen in Figure 

8.1b. 
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In general, there was an increase in the body weights of guinea pigs irrespective of 

which strain was used to infect animals, which was expected. However, a closer 

analysis of the curves in Figure 8.1a showed that throughout the whole time course, 

the increase in weight of guinea pigs infected with the Beijing strain was lower than 

the other four circulating strains, with the highest percentage weight gain being for 

guinea pigs infected with the CAS strain isolated from the patient born in India. The 

largest difference in body weight change between guinea pigs infected with Beijing 

and Indian CAS strains was approximately 8% between day 29 and 43, whilst the 

smallest difference was approximately 5% at day 23. The percentage weight change 

curve for guinea pigs infected with the CAS strain isolated from the patient born in 

Somalia was very similar to, but just below, the curve for the Indian CAS-infected 

guinea pigs. 

 

Statistical analysis using the Mann-Whitney test (p<0.05) proved that there were 

significant differences in the percentage body weight change between guinea pigs 

infected with the Beijing and Indian CAS strains, at days 23, 29, 37, 43 and 57 post-

challenge (p=0.024, 0.014, 0.018, 0.007, 0.041, respectively). At day 37 post-

challenge there was a significant difference between animals infected with Beijing 

and Somalia CAS strains (p=0.024) and at day 43 there was a significant difference 

between guinea pigs infected with Indian CAS and LAM10 strains (p=0.031). 

 

The differences in percentage weight change of guinea pigs infected with the different 

M. tuberculosis strains was further emphasised when looking at the overall change in 

body weight by calculating the area under the curves (Figure 8.1b). There was a 200 

unit2 difference between the area under the curves for percentage body weight change 

in guinea pigs infected with the Beijing and Indian CAS strain, with the smallest area 

occurring in animals infected with the Beijing strain. This difference was statistically 

significant (p=0.007) using the Mann-Whitney test. The values for area under the 

curves for the other strains were around 500 units2 and although these values were 

intermediate to those for guinea pigs infected with the Beijing and Indian CAS strains, 

there was a significant difference between the area under the curves for the Indian 

CAS and LAM10 (p=0.031). 
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Due to the limited number of guinea pigs available for the present project, a group of 

guinea pigs infected with the virulent laboratory control strain M. tuberculosis H37Rv 

was not included in the present study. However, there was data for the laboratory 

control strain available from previous studies performed at HPA, CEPR 

(Movahedzadeh et al., 2008; Vipond et al., 2008).  There was also data for a negative 

control group of guinea pigs infected with an M. tuberculosis double mutant strain, 

which had deletions in the inositol-1-phosphate synthase gene, ino1, and trpD, a gene 

encoding the tryptophan biosynthetic enzyme, anthranilate phosphoribosyltransferase 

(Movahedzadeh et al., 2008). The data from the study by Movahedzadeh et al., 2008 

demonstrated that this nutritional mutant strain was severely attenuated after infecting 

guinea pigs therefore the data produced after using this strain to infect guinea pigs 

served as a guide to represent what an unvaccinated-unchallenged weight data set 

would look like.  

 

The weight of guinea pigs infected with the M. tuberculosis double mutant increased 

steadily over a 60 day period post-challenge and by day 60 there was a 113.6% 

change in body weight (data not shown). However, the same was not observed in 

guinea pigs infected with the positive laboratory control strain, M. tuberculosis 

H37Rv (data not shown). There was an increase in body weight of the guinea pigs 

infected with M. tuberculosis H37Rv until day 36 post-challenge, but there was only 

an 8.0% body weight change between day 0 and 36. After day 36 the body weight 

started to decrease so the final percentage body weight change at day 63 post-

challenge was 0.85%.  

 

Although this data was from a previous study it provided an insight into any 

differences in the percentage body weight change between guinea pigs infected with 

the laboratory M. tuberculosis H37Rv strain and the five clinical M. tuberculosis 

strains included in the present guinea pig study. The overall percentage body weight 

change 56 days post-challenge for each of the clinical M. tuberculosis strains, M. 

tuberculosis Beijing, CAS (India), CAS (Somalia), EAI5 and LAM10 was 19.4%, 

24.6%, 23.6%, 20.8% and 20.6%, respectively.    
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8.2.2 The effect on lung weight to body weight ratio 

Each of the five clinical M. tuberculosis strains was used to infect sixteen guinea pigs 

and at two time points, day 16 and 56, eight guinea pigs from each group were culled. 

At necropsy at day 56 in addition to recording the total body weight, the weight of the 

lungs was recorded. The lung weight to body weight ratio was calculated and values 

for each guinea pig plotted along with the mean ratio for each group (Figure 8.2). 

 

When looking for differences between the circulating strains, the mean lung to body 

weight ratio for guinea pigs infected with the Beijing strain was higher than the means 

for the other four circulating strains. The lowest mean ratio was observed with the 

groups of guinea pigs infected with both of the CAS strains, with the mean ratio for 

animals infected with Somalia CAS being slightly lower than the Indian CAS. After 

performing the Mann-Whitney statistical analysis test (p < 0.05), it was concluded 

that the lung to body weight ratio of guinea pigs infected with the Beijing strain was 

significantly higher than the ratios obtained when guinea pigs had been infected with 

Indian and Somalia CAS strains (p=0.041 and 0.024, respectively). In addition, the 

ratios of guinea pigs infected with EAI5 were significantly higher than the ratios of 

animals infected with the Somalia CAS (p=0.018). 

 

There was lung to body weight ratio data from the historical controls in previous 

studies described in Section 8.2.1 where guinea pigs were challenged with M. 

tuberculosis H37Rv and the M. tuberculosis double mutant strain (Movahedzadeh et 

al., 2008; Vipond et al., 2008). There were some differences when comparing the 

lung to body weight ratios of guinea pigs infected with the circulating strains in the 

present study with the data from previous experiments. The lung to body weight ratios 

of guinea pigs challenged with the double mutant strain (negative control; mean lung 

to body weight ratio=4.16; data not shown) was approximately three times lower than 

the ratios of the guinea pigs that had been infected with the circulating and laboratory 

strains. In contrast, the mean lung to body weight ratio of the group of guinea pigs 

infected with M. tuberculosis H37Rv (mean lung to body weight ratio=15.5; data not 

shown) was approximately 0.7 times higher than the ratios of the circulating strains. 
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Figure 8.1 Graphs showing (a) the mean percentage change in body weight of guinea pigs 
post-challenge with each of the five M. tuberculosis strains (Beijing; Indian CAS; Somalia 
CAS; EAI5; LAM10) and (b) the area under each of the percentage growth change in body 
weight curves, in Figure 8.1a, for the five circulating strains. 
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Figure 8.2 A graph showing the lung to body weight ratio at the time of necropsy 56 days post-challenge of guinea pigs with each of the five M. tuberculosis strains 
(Beijing, Indian CAS, Somalia CAS, EAI5, LAM10), M. tuberculosis H37Rv challenged control guinea pigs and control guinea pigs [both sets of control data were 
provided by Vipond et al., 2008 and Movahedzadeh et al., 2008]. Each point represents lung to body weight ratio for an individual guinea pig and horizontal lines 
represent the mean lung to body weight ratio in each group. 
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8.3 THE DISSEMINATION OF MYCOBACTERIA FROM THE LUNGS 

TO THE SPLEEN OF GUINEA PIGS 

 

8.3.1 Mycobacterial load at day 16 post-challenge 

Eight guinea pigs from each group that had been aerosol challenged with each of the 

five M. tuberculosis strains were culled at 16 days post-challenge. The lung and 

spleen from each animal was dissected and after homogenisation, samples were plated 

onto Middlebrook 7H11 agar plates. After plates had been incubated for 4 weeks, the 

number of colonies in all plates was counted and for each animal the c.f.u./ml in the 

lungs and spleen was calculated and plotted onto graphs along with the mean c.f.u./ml 

for each group of eight guinea pigs (Figure 8.3). Calculating c.f.u./ml in lungs and 

spleen at the early time point of 16 days post-challenge provided an insight into the 

infectivity of the M. tuberculosis strains in vivo. 

 

In general, the c.f.u./ml in the lungs for each group of guinea pigs was higher than the 

c.f.u./ml in the spleen. When looking at the c.f.u./ml in the lungs, it was observed that 

there were similar numbers of c.f.u./ml in guinea pigs that had been infected with the 

Beijing, Somalia CAS and EAI5 strains with approximately 1×103.5 c.f.u./ml, whilst 

lower counts were observed in the guinea pig groups infected with the Indian CAS 

and LAM10 strains with approximately 1×103.2 c.f.u./ml. 

 

From those groups of guinea pigs with higher numbers of c.f.u. in lungs, animals 

infected with the EAI5 strain had the highest c.f.u./ml in the spleen demonstrating a 

higher rate of dissemination. The spleen counts in the groups infected with the Beijing 

and Somalia CAS strains were low at approximately 1×101 c.f.u./ml, showing a 

slower rate of dissemination. The lowest c.f.u./ml in the spleen was observed for the 

guinea pigs infected with the LAM10 strain. 

 

In general, at the early time point, it could be concluded that guinea pigs had been 

successfully infected with TB. There was a slow rate of dissemination of 

mycobacteria from the lungs to the spleen in guinea pigs infected with M. tuberculosis 

Beijing, Indian and Somalia CAS, and LAM10 strains. The faster rate of 

dissemination 16 days after infecting guinea pigs with the EAI5 strain could mean 

that this strain was more infective than the other strains, demonstrating that there are 

differences in the behaviour of the strains in an in vivo model at an early time point.   
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8.3.2 Mycobacterial load at day 56 post-challenge 

The remaining guinea pigs in each group were culled at a later time point of 56 days 

post-challenge to assess the development of infection. The dissected lung and spleen 

tissue was treated in exactly the same way as tissues dissected at day 16 post-

challenge (Figure 8.4). There were clear differences in the way the strains behaved as 

infection had clearly progressed further.  

 

There was an increase of mycobacterial load in lungs for guinea pigs that had been 

infected with the Beijing and LAM10, indicating that these strains had more potential 

to persist during infection. The increase in mycobacterial load in the lungs was greater 

in those guinea pigs infected with LAM10. For the other groups of guinea pigs 

infected with the CAS and EAI5 strains, there was a decrease in mycobacterial load in 

the lungs (compared to day 16; Figure 8.3) as infection progressed, which suggested 

that the guinea pigs were able to control infection with these strains more effectively 

than infection caused by the Beijing and LAM10 strains. The decrease in 

mycobacterial load was more prominent in guinea pigs infected with the EAI5 strain 

and after performing the Mann-Whitney statistical analysis test (p < 0.05) there was a 

significant difference between the groups of guinea pigs infected with EAI5 and 

LAM10 (p=0.018). 

 

There was a general increase in mycobacterial load in the spleen for all groups of 

guinea pigs as infection had progressed to day 56 post-infection. The largest increase 

in mycobacterial load, of approximately 1×103.2 c.f.u./ml, in the spleen was observed 

in guinea pigs infected with the Beijing strain, indicating that this strain was more 

virulent than the others as there was increased dissemination of mycobacteria from the 

lung to the spleen during the progression of infection. A marked increase in bacterial 

load of approximately 1×102.5 c.f.u./ml was observed in spleens isolated from guinea 

pigs infected with the LAM10 strain. The increased load in animals infected with 

these two strains is reflected by the increased mycobacterial load in the lungs from 

these guinea pigs, which reinforced the initial suggestion that these strains were more 

persistent and potentially more virulent. The mycobacterial load in the spleen was 

significantly higher in guinea pigs infected with the Beijing strain than in guinea pigs 

infected with the Indian and Somalia CAS and EAI5 strains (p=0.003, 0.041, 0.031, 

respectively). Also there was a significantly higher mycobacterial load in the spleens 
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of guinea pigs infected with LAM10 strain than those infected with the India CAS 

strain (p=0.024). 

 

The smallest increase in the mycobacterial load in the spleen was seen in guinea pigs 

infected with EAI5 strain, which is interesting as the spleen mycobacterial load 16 

days post-challenge was higher than the spleen mycobacterial load of guinea pigs 

infected with the other four strains. This suggested that whilst dissemination of the 

EAI5 strain was quicker than the other strains in the early stages of infection, as 

infection progressed, the immune system of the guinea pigs was able to control 

infection as there was no significant increase in the dissemination of mycobacteria 

from the lung to spleen 56 days post-challenge. 

 

8.4 HISTOPATHOLOGY OF TISSUE 56 DAYS POST-CHALLENGE 

 

8.4.1 Histopathology of spleen tissue 

At 56 days post-challenge, as well as determining the mycobacterial load in spleen 

and lung tissue and weight of lungs, sections of lung and spleen were taken and 

stained with haematoxylin and eosin for routine examination, with van Giesen 

staining method for detecting encapsulated lesions and with Alizarin Red stain for 

identifying calcified lesions. Slides were examined by a veterinary pathologist and all 

lung and spleen sections were scored according to the size of lesions present and the 

degree of consolidation, which was displayed by a specific morphological change of 

the lesion. The scores were assigned according to the criteria shown in Table 2.2; 

Section 2.9.3. The number of foci of caseation and calcified lesions were also 

recorded for lung tissue. The histopathology scores for the spleen and lung tissue and 

the numbers of caseated foci and calcified lesions in lung tissue from guinea pigs 

infected with the five different M. tuberculosis strains is shown in Figure 8.5. 

 

In the spleen sections, the least pathology (average score=1) was observed in guinea 

pigs infected with the Indian CAS strain (refer to Figure 8.5a; refer to Figure 8.6bi for 

a histopathology image from one of the spleen sections taken from a guinea pig 

challenged with the Indian CAS strain). This degree of pathology when compared 

with the other strains correlated with the mycobacterial load in the spleen 56 days 

post-challenge. The highest observed pathology (average score=4) was in animals 

infected with the Beijing strain (refer to Figure 8.6ai for a histopathology image from 
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one of the spleen sections taken from a guinea pig challenged with the Beijing strain), 

with significant pathology also being observed for the Somalia CAS and EAI5 strains 

(refer to Figure 8.6ci, and di for a histopathology image from one of the spleen 

sections taken from a guinea pig challenged with the Somalia CAS and EAI5 strains, 

respectively). Again, this correlated with the mycobacterial load in the spleen of these 

animals. Surprisingly, despite the fact that there was a higher mycobacterial load in 

the spleens taken from guinea pigs infected with the LAM10 strain than the Somalia 

CAS and EAI5 strains, the pathology score was lower (average score=3) (refer to 

Figure 8.6ei for a histopathology image from one of the sections taken from a guinea 

pig challenged with the LAM10 strain). 

 

8.4.2 Histopathology of lung tissue 

The overall score for the degree of consolidation in the lung tissue was higher than in 

the spleen tissue. As with the spleen tissue, the lowest score was given to lung 

sections taken from guinea pigs infected with the Indian CAS strain (refer to Figure 

8.6bii for a histopathology image of one of the lung sections taken from a guinea pig 

challenged with the Indian CAS strain). The score for Indian CAS strain was in 

accordance with the mycobacterial load observed in the lung tissue. A similar score 

was assigned to lung sections taken from guinea pigs infected with LAM10 strains, 

which as with the spleen sections, did not correlate with the mycobacterial load 

observed in lungs at day 56 post-challenge. Refer to Figure 8.6eii for a histopathology 

image of one of the lung sections taken from a guinea pig challenged with the LAM10 

strain. 

 

As with the spleen sections, the higher scores were assigned to lung sections taken 

from guinea pigs infected with the Beijing, Somalia CAS and EAI5 strains (refer to 

Figure 8.6aii, cii, and dii for a histopathology image of one of the lung sections taken 

from a guinea pig challenged with the Beijing, Somalia CAS and EAI5 strains, 

respectively). These higher scores correlated with the mycobacterial load in lungs 

isolated from guinea pigs infected with Beijing and Somalia CAS. 
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Figure 8.3 Graphs showing the number of c.f.u./ml in (a) the lungs and (b) the spleen, which 
were dissected 16 days post-challenge from five groups of 8 guinea pigs infected with M. 
tuberculosis strains (Beijing, Indian CAS, Somalia CAS, EAI5, LAM10). Each point 
represents the c.f.u. count for individual guinea pigs and horizontal lines represent the mean 
c.f.u. counts in each group. 
(No significant difference between strains when performing Mann-Whitney statistical test p<0.05) 
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Figure 8.4 Graphs showing the number of c.f.u./ml in (a) the lungs and (b) the spleen, which 
were dissected 56 days post-challenge from five groups of 8 guinea pigs infected with M. 
tuberculosis strains (Beijing, Indian CAS, Somalia CAS, EAI5, LAM10). Each point 
represents the c.f.u. count for individual guinea pigs and horizontal lines represent the mean 
c.f.u. counts in each group. 
 * Mann-Whitney statistical test (p<0.05) 
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Figure 8.5 Graphs showing (a) the average histopathology scores, with standard deviation 
bars, for each group of 8 guinea pigs whose spleens were dissected 56 days post-challenge 
with the five M. tuberculosis strains and (b) the average histopathology score for the same 
groups of guinea pigs whose lungs were dissected 56 days post-challenge with the five 
strains, but also shown is a breakdown of the scores for consolidation, caseation/necrosis, 
and calcification seen during examination. 
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Figure 8.6 Histopathology images of guinea pig i) spleen and ii) lung sections following dissection 56 
days post-challenge with (a) M. tuberculosis Beijing (Estonia); (b) M. tuberculosis CAS (India); (c) M. 
tuberculosis CAS (Somalia); (d) M. tuberculosis EAI5 (India); and (e) M. tuberculosis LAM10 (UK) 
strains and staining with haematoxylin and eosin. (Refer to the scale bar on individual images for 
measurements and refer to Table 2.2 for the criteria used for histopathology scoring of sections). 
NOTE: Histopathology scores in Figure 8.5 are averages of all sections taken from guinea pigs in each of the 
five groups challenged with each of the five M. tuberculosis strains and the scores assigned in Figure 8.6 are 
for the images shown; therefore there may be differences in the scores.  
 
 
 i) Image of a spleen section illustrating a histopathology score of 4 with 11 moderate to large sized 
lesions. 

a) M. tuberculosis Beijing (Estonia) 

ii) Image of a lung section illustrating epithelioid macrophages and evenly distribute
ded by peripheral blood vessels (with lymphocyte cuffs), all of which toget
sed granuloma. 

d lymphocytes 
surroun her formed an 
unorgani
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i) Image of a spleen section illustrating a histopathology score of 0 with no detected lesions or 
abnormalities. 

b) M. tuberculosis CAS (India) 
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ii) Image of a lung section illustrating a histopathology score of 0 as no lesions or abnormalities were 
detected. 
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i) Image of a spleen section illustrating a histopathology score of 9 with more than 30 large sized 
lesions some of which are caseated. 

c) M. tuberculosis CAS (Somalia) 

ii) Image of a lung section illustrating a histopathology score of 3 with medium sized lesions and 20-
33% consolidation. 



i) Image of a spleen section illustrating a histopathology score of 5 with 22 lesions. 

d) M. tuberculosis EAI5 (India) 

ii) Image of a lung section illustrating a histopathology score of 1 with a small unorganised granuloma. 
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i) Image of a spleen section illustrating a histopathology score of 2 with 6 small non-caseated lesions. 

e) M. tuberculosis LAM10 (UK) 
 

ii) Image of a lung section illustrating two small unorganised granuloma with a histopathology score of 
1. 



There were no significant differences between the M. tuberculosis strains in the extent 

of caseation/necrosis and calcification seen in the lung sections (refer to Figure 8.5b). 

There was less caseation/necrosis and calcification in lung sections taken from guinea 

pigs infected with the Indian CAS and LAM10 strains than the other strains. This 

means that mycobacterial load would not necessarily correlate with the degree of 

caseation/necrosis and calcification as there was a lower load in lungs isolated from 

the guinea pigs infected with the Indian CAS than in lungs from animals infected with 

the LAM10 strain. Similarly, the mycobacterial load in lungs dissected from guinea 

pigs infected with EAI5 strain was as low as Indian CAS, but there was more 

caseation/necrosis and calcification seen in the EAI5 infected lung sections than any 

of the other strains. So while there are fewer M. tuberculosis EAI5 bacilli present, 

they may cause more pathological damage to the infected tissue. There was a similar 

level of caseation/necrosis and calcification seen in lung sections taken from guinea 

pigs infected with the Beijing and Somalia CAS strains. 

 

8.5 DISCUSSION 

 

The protocol that was used in the present study for the aerosol challenge of guinea 

pigs had previously been evaluated for the purpose of comparing infectivity of M. 

tuberculosis strains and whilst testing the null hypothesis, the data offered additional 

information about the degree to which strains were pathogenic (Williams et al., 2005). 

In the study by Williams et al., 2005, a higher dose of mycobacterial bacilli had been 

administered to the guinea pigs via aerosols delivered to the snouts of the guinea pigs, 

but the study had shown that the validity of the assay remained with the lower dose 

used in the present study and that such a dose would more closely resemble natural 

doses. However, for the purposes of comparing data from the present study with data 

from previous studies the administered dose is an important factor to take into 

consideration. 

 

The weight of guinea pigs was assessed post-challenge and this can be used as a 

sensitive read-out of the extent of infection. The lower increase in weight gain of 

guinea pigs infected with the Beijing strain when compared with the data for guinea 

pigs infected with the other four strains suggested that this strain was causing more 

severe disease than the other strains. 
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Supplementing the weight change data with the lung to body weight ratio data further 

demonstrated that there was a difference in the effect of the Beijing strain on disease 

progression in guinea pigs. Comparing the data for the five strains with the data from 

the non-infected guinea pigs proved that the weight gain patterns of guinea pigs 

infected with the five strains was caused by infection with the strains. Comparison 

with the previous data from guinea pigs infected with M. tuberculosis H37Rv showed 

that there were some differences in the weight gain patterns between circulating and 

laboratory strains (Movahedzadeh et al., 2008; Vipond et al., 2008). However, as 

mentioned earlier it is important to remember that the dose of H37Rv administered to 

the guinea pigs was higher than the dose administered for the five circulating strains 

making direct comparison difficult. 

 

Mycobacterial load was evaluated in lungs and spleens from half of the guinea pigs 

from each group infected with the different strains at the early time point of day 16 

post-challenge. Day 16 post-challenge is a very early time-point in guinea pigs and 

although it is expected that little to no dissemination from the lungs to the spleen 

would take place, the presence of any mycobacteria in the spleen 16 days post-

challenge has been used as a marker of infectivity and pathogenicity of M. 

tuberculosis strains (Williams et al., 2005). Other studies have also demonstrated that 

virulence of clinical isolates of M. tuberculosis strains can be assessed by calculating 

the number of viable mycobacterial cells in the spleen (Prabhakar et al., 1987; 

Balasubramanian et al., 1992).  

 

Using this principle and the c.f.u. data from lungs and spleen at day 16 obtained from 

the present study, we would conclude that the Beijing, Somalia CAS and EAI5 strains 

all shared some of the markers of higher pathogenicity compared to the Indian CAS 

and LAM10 strains (reflected in the very low dissemination of bacilli from the lung to 

the spleen in the latter two strains).  

 

Data for mycobacterial burden in the lungs and spleen was also obtained at a later 

time point of 56 days post-challenge to further assess virulence in terms of persistence 

relative to day 16 post-challenge. The pathogenicity of the strains was also evaluated. 

The pathology of lung and spleen tissue involved looking at the degree of 

consolidation, caseation/necrosis and calcification. Consolidation scores are an 

important marker for loss of lung tissue functionality, and general pathology of tissue 

 203



post-challenge offered valuable information when considering the virulence of M. 

tuberculosis strains (Dunn et al., 1995; Williams et al., 2005). 

 

Compared to 16 days post-challenge, at the later time point, there was a significant 

increase in extrapulmonary dissemination of mycobacterial bacilli from the lungs to 

the spleen of guinea pigs infected with the Beijing strain, whilst there was still strong 

replication of mycobacteria in the lungs. The histopathology scores for spleen and 

lungs reflected the mycobacterial loads observed in the organs taken from animals 

infected with the Beijing strain showing that there was reduced functionality of tissues 

in these organs 56 days post-challenge. There was also increased necrosis and 

calcification observed in the lungs of guinea pigs infected with the Beijing strain. 

Collectively, these data suggested that the Beijing strain was more pathogenic and 

virulent when compared with the other strains. 

 

The Beijing strain was selected not only to represent M. tuberculosis lineage I, but 

because this Estonian strain was of particular interest for clinical purposes as an MDR 

strain of the same molecular genotype (12 MIRU and 3 ETR profile) had changed 

from first appearing in the Estonian population to now dominating the TB population, 

over a period of 10 years. If the fully sensitive Beijing strain could illicit a 

significantly more pathogenic effect in vivo, this might partly explain the success of 

this strain in Estonia and reflect on how the MDR strain might have gained 

dominance. 

 

In a study by Palanisamy et al., 2009, the virulence of different clinical M. 

tuberculosis strains was demonstrated using a guinea pig model. The panel of strains 

included MDR and drug sensitive Beijing and non-Beijing strains (Palanisamy et al., 

2009). The study showed that the MDR strains drug sensitive Beijing and non-Beijing 

strains did not grow as well as the laboratory control strain, M. tuberculosis H37Rv, 

in the lungs, whilst there was higher growth of bacilli observed with the drug sensitive 

Beijing and non-Beijing strains when compared to M. tuberculosis H37Rv. In 

addition there was a higher lung histopathology score for the drug sensitive strains 

than M. tuberculosis H37Rv and the MDR strains. Palanisamy et al., 2009 concluded 

that clinical M. tuberculosis strains caused different degrees of pathology and that the 

disease seen with the clinical strains differed to the disease caused by M. tuberculosis 
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H37Rv. The same observations were noted in the present study after performing both 

in vitro and in vivo analysis of the clinical M. tuberculosis strains in Panel B. 

 

A lower mycobacterial burden was seen in the lungs when the Somali CAS strain was 

used to infect guinea pigs compared to the Beijing strain. There was also significantly 

less dissemination, but the histopathology scores were very similar, possibly 

suggesting that not many Somalia CAS bacilli are required to cause pathology. A 

similar scenario in mycobacterial load in the lungs and spleen was observed for the 

isoniazid resistant LAM10 strain, which is responsible for the North London, UK, TB 

outbreak. However, the degree of consolidation, caseation/necrosis, and calcification 

was lower than that of the Somalia CAS strain, indicating that whilst virulence of the 

LAM10 strain may be expressed by extrapulmonary dissemination, there was reduced 

pathology post-challenge. 

 

When comparing the data obtained from guinea pigs infected with the Indian CAS 

strain with data from the other strains, there were very low levels of replication in the 

lungs and very low levels of dissemination at day 16, but at day 56, whilst there was 

still a similar mycobacterial load in the lungs, there was very little dissemination in 

comparison to the other strains. The histopathology scores and levels of necrosis and 

calcification in tissue taken from guinea pigs infected with the Indian CAS strain was 

lowest out of all of the strains, supporting the conclusion that this may be the least 

virulent of the five strains that were evaluated. It is important to note that the two 

CAS strains seem to behave differently, indicating that even strains within the same 

M. tuberculosis family vary. 

 

Besides the study by Palanisamy et al., 2009, there have been very few studies 

investigating the effects of clinical M. tuberculosis strains in an in vivo model. Lopez 

et al., 2003 investigated the pathogenesis of M. tuberculosis strains from four 

different genotype families (Beijing, Somali, Haarlam and Canetti) from different 

geographical locations using a mouse model (Lopez et al., 2003). The laboratory 

control strain, M. tuberculosis H37Rv, had been included for comparison. There was a 

higher rate of mortality in mice that had been infected with the Beijing strain and a 

higher mycobacterial burden was observed in the lungs with the Beijing strain than 

the other strains that were evaluated. The higher bacillary load in the lungs was also 
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observed in the present study. This study concluded that after infecting mice with the 

Beijing strain, a non-protective immune response was propagated.  

 

As was concluded after performing the in vitro experiments in the present study, 

results from the in vivo analysis of the M. tuberculosis strains belonging to the 

different phylogenetic lineages disproved the null hypothesis and clearly showed that 

there were differences in the way in which strains behaved during infection. Lopez et 

al., 2003, arrived at a similar conclusion, which stated that “genetically different M. 

tuberculosis strains evoked markedly different immunopathological event” (Lopez et 

al., 2003).    
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CHAPTER 9 

 

GENERAL DISCUSSION 

 

9.1 SUMMARY OF PRESENT STUDY 

 

The main aim of the present study was to construct a panel of MTBC strains that 

would be as representative of the global population of TB strains as possible and 

include a broad spectrum of M. tuberculosis strains against which any vaccine should 

be effective. This panel of strains would be useful for future vaccine evaluation 

studies and general TB research. 

 

The first step towards creating this representative panel involved the identification of 

common and unique clinical, wild-type M. tuberculosis strains circulating within the 

city of London, UK, which consists of an ethnically diverse population and could be 

used as a model of global TB diversity. Molecular typing using a discriminative panel 

of MIRU, ETR and VNTR loci was performed on MTBC isolates from TB cases 

reported within London during a one year time period. Cluster analysis of all MIRU-

VNTR profiles was carried out to identify common and unique strains. After 

excluding serial isolates (multiple isolates from the same patient) to avoid bias, cluster 

analysis of 2261 profiles yielded 235 clusters, with the largest cluster consisting of 53 

isolates and the smallest cluster consisting of 2 isolates, and 1036 unique isolates. 

 

In order to ensure there was sufficient global representation of the M. tuberculosis 

strains included in the present study epidemiological analysis was performed. All 

isolates that had been typed using MIRU-VNTR analysis were also subjected to 

spoligotyping, which helped to identify which MTBC family isolates belonged to. 

The spoligotyping data along with country of birth data for the patients was used for 

epidemiological analysis. The majority of patients were born in East Africa and the 

Indian Subcontinent, but there were patients that had also been born in other high 

burden regions including Western Africa, Eastern and South East Asia, South-Central 

Asia, Middle Africa and Southern Africa. Geographical associations were identified 

between some M. tuberculosis families and particular global regions, for example, 

patients born in the Indian subcontinent were infected mainly with M. tuberculosis 
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CAS and EAI families, whilst the majority of patients born in South-East Asia were 

infected with M. tuberculosis Beijing and EAI families. 

 

The data from the present study was corroborated by similar associations identified in 

previous studies between the EAI and CAS families and the Middle Eastern and 

Central Asian region, and between the Beijing strain and the Far Eastern regions 

(Filliol et al., 2002; Vitol et al., 2006). Studies have also identified associations 

between M. africanum and countries such as Ghana and Nigeria within the Western 

Africa region as was identified in the present study (Vitol et al., 2006; Gagneux et al., 

2007).  In the present study M. tuberculosis Beijing strains were also isolated from 

patients born in Eastern Europe. Previous studies have identified the prevalence of the 

Beijing family in Eastern European countries like Russia and Estonia (Kruuner et al., 

2001; Toungoussova et al., 2002; Drobniewski et al., 2005; Gagneux et al., 2007). 

The epidemiological analysis in the present study revealed that there were 

representatives from all MTBC families and almost all global regions. 

 

As it would be impossible to perform phenotypic analyses on all isolates circulating 

within London, a preliminary panel of MTBC strains had to be selected, to include a 

broad spectrum of M. tuberculosis strains, which was as representative of the global 

TB strain population as possible, and against which any vaccine should prove 

effective. Cluster analysis helped to identify the most dominant strains circulating in 

London, and based on the hypothesis that infectious strains are more successful (e.g. 

higher clustering rates), an algorithm was designed to identify associations between 

clusters, MTBC family identification and the country of birth of patients, to select 

MTBC strains of interest for the preliminary panel (Panel A). This panel also included 

strains that did not fit in with the general patterns identified in the clusters reflecting 

more transient contact and therefore potentially higher strain infectivity. Panel A 

contained 42 strains, which were made up of 10 different MTBC families from 

patients born in 17 different countries. 

 

It was predicted that investigating the phenotype of strains would allow the 

identification of differences between strains if the initial hypothesis was correct that 

strains were more common or dominant in a population because of some underlying 

advantage in comparison with other TB strains. An experimental approach was taken 
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to prove or disprove the null hypothesis that all TB strains are phenotypically the 

same.     

 

A smaller panel of MTBC strains (Panel B) was selected from the preliminary panel 

of strains in Panel A by performing phylogenetic analysis on all MTBC isolates that 

had been included for molecular typing. Isolates were successfully assigned to one of 

six lineages (four M. tuberculosis and M. bovis lineages defined by Baker et al., 2004 

and the M. africanum lineage defined by Gagneux et al., 2006) using MIRU-VNTR 

profiles and supplementary SNP analysis data. Strains for Panel B were selected from 

each of the six lineages.  In summary, Panel B included a M. tuberculosis Beijing 

strain (from a patient born in Estonia), a LAM10 strain (from a patient born in the 

UK), two CAS strains (from patients born in Somalia and India), an EAI5 strain (from 

a patient born in India) and an M. africanum strain. For phenotypic experiments, also 

included were the laboratory control strains: M. tuberculosis H37Rv (supplied by 

HPA, MRU), M. tuberculosis H37Rv and M. bovis BCG (supplied by HPA, Porton 

Down), and M. tuberculosis H37Ra (HPA, NCTC). 

 

The Panel B and laboratory control strains were included for in vitro phenotypic 

analyses in tissue culture models and cell-free mycobacterial culture systems. Firstly, 

PMA-activated macrophage-like THP-1 cells were infected with each of the strains 

after which the growth of intracellular mycobacteria and cytokine production profiles 

were investigated. The growth rates of the strains were investigated in mycobacterial 

cell-free culture systems (7ml MGIT Middlebrook 7H9 tubes). 

 

The data from these in vitro experiments disproved the initial null hypothesis as the 

M. tuberculosis Beijing strain behaved differently to the other strains. The 

intracellular growth rate and the growth rate in the cell-free culture system of the 

Beijing strain was higher than the other strains, which meant this strain was 

potentially more virulent using the principles described previously (Theus et al., 

2005; Park et al., 2006; Theus et al., 2007). The increased production of the pro-

inflammatory cytokines, TNF-α, compared to the other Panel B strains and the low 

levels of the anti-inflammatory cytokine, IL-10, produced after infecting THP-1 cells 

with the Beijing strain further demonstrated the virulent nature of the Beijing strain in 

comparison to the other strains as had been established in previous studies (Park et al., 

2006; Theus et al., 2007). 
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The association between the intracellular growth of the M. tuberculosis Beijing strain 

and production of the cytokines, TNF-α and IL-10, has been investigated previously 

(Theus et al., 2007). There was an inverse relationship between intracellular growth 

rate of the Beijing strain and production of TNF-α; therefore strains with an increased 

intracellular growth rate produced less TNF-α. Whereas an inverse relationship was 

identified between intracellular growth rate and TNF-α production by Theus et al., 

2007, a study by Park et al., 2006, demonstrated that the more virulent strains both 

grew better and produced more TNF-α (Park et al., 2006; Theus et al., 2007). 

 

In the present study, the highest multiplication rates were observed after infecting 

THP-1 cells with the Beijing strain and higher levels of TNF-α were produced by the 

THP-1 cells infected with the Beijing strain than THP-1 cells infected with the other 

four Panel B MTBC strains (two M. tuberculosis CAS strains, M. tuberculosis EAI5, 

M. tuberculosis LAM10 and M. africanum). 

 

The panel of strains was subsequently narrowed down by further selecting strains of 

interest for in vivo analyses in order to test the original null hypothesis. Strains 

representing the four M. tuberculosis lineages out of the six major phylogenetic 

lineages were selected (M. tuberculosis LAM10, Beijing, EAI5 and the two CAS 

strains). 

 

The in vivo experiments involved aerosol challenge of guinea pigs. During the 

aerosolisation of mycobacterial cultures it was decided to perform AGI-30 sampling, 

primarily to ensure that any observations after infecting guinea pigs with each of the 

strains were due to differences in virulence of the M. tuberculosis strain alone, rather 

than physical differences of the bacteria, but it was recognised that these data may 

offer insights into the stability of strains as aerosols. There were no significant 

differences between strains in the c.f.u./ml collected in the AGI-30 samplers relative 

to the initial c.f.u./ml in the cultures indicating that there was no significant difference 

in the stability of the tested strains in their aerosolised state. 

 

In vivo analyses of the M. tuberculosis strains in the guinea pig model demonstrated 

that there were differences between the wild-type clinical M. tuberculosis strains as 

well as differences between the wild-type clinical strains and laboratory control strain, 
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M. tuberculosis H37Rv (e.g. weight data). The percentage weight change in guinea 

pigs infected with the Beijing strain was significantly lower than the other clinical 

strains after using the Mann-Whitney statistical test. The lung to body weight ratio at 

the time of necropsy was significantly higher for the Beijing strain than both of the 

CAS strains and the ratios observed after guinea pigs were infected with laboratory 

control strain was higher than all of the clinical strains.  

 

The largest increase in lung and spleen mycobacterial load was observed in guinea 

pigs infected with the Beijing strain indicating that this strain had more potential to 

persist during infection and was more virulent than the other strains due to the 

increased dissemination of mycobacteria from the lung to the spleen during TB 

infection. 

 

In conclusion, the data from the in vitro and in vivo analyses in the present study, 

disproved the null hypothesis and showed that there were phenotypic differences 

between the wild-type M. tuberculosis strains that were of clinical relevance and also 

differences between the wild-type and laboratory control strains. These conclusions 

indicated that there is a need to perform future vaccine evaluation studies not only 

using standardised laboratory challenge strains (such as H37Rv and Erdmann) but 

also with wild-type circulating strains from relevant global regions. This will be 

particularly relevant when a lead vaccine candidate is identified, and which will 

require more extensive evaluation before being introduced for mass vaccination and 

possibly before primate studies are instituted. Also, if evaluation studies showed that a 

particular vaccine was more effective against a M. tuberculosis strain isolated from a 

patient born in a high TB burden region it could lead to a successful niche vaccine. 

 

9.2 FUTURE WORK 

 

All of the strains in the preliminary panel (Panel A) need to undergo in vitro 

evaluation by calculating the growth rates of strains using the MGIT 960 culture 

system and inoculum sizes of 600 and 6,000 genomes, calculating the fold 

enhancement of strain growth after infecting PMA-activated THP-1 cells and 

measuring the production of human TNF-α, IL-10, IL-1β and IL-6 by infected THP-1 

cells. In order to better monitor the production of each cytokine earlier, more 
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extensive time points need to be investigated, because the highest levels of the 

cytokine, TNF-α, were produced by day 1 post-infection. 

 

The data from THP-1 cells for in vitro experiments needs to be corroborated using 

primary cell lines such as bone-marrow derived macrophages or primary macrophages 

from PBMCs. Other variables also need to be investigated. In the present study an 

MOI of 1 was used to infect the THP-1 cells with the mycobacterial strains. Different 

MOIs need to be evaluated. During further experiments the effect of infecting 

macrophage cell-lines could be monitored by observing the cells using inverted 

microscopy during the time course of infection. 

 

The data from the in vitro experiments performed on the entire Panel A strains would 

help to narrow down this panel to include the most virulent MTBC strains. This 

would provide insight into potential correlations between the virulence of a particular 

strain and the dominance of the strain in the population. The dominance of a strain 

would be determined using the size of clusters to which the strains were initially 

assigned. 

 

In the present study Panel B included a strain from each of the lineages defined by 

Baker et al., 2004 and Gagneux et al., 2006. However, there was only one strain per 

lineage, so to establish if there are true differences between the lineages, more strains 

need to be selected to represent each of the lineages and in vitro experiments need to 

be repeated to confirm the results and conclusions in the present study. 

 

As well as testing the null hypothesis that there are no differences between the strains 

from the different lineages, the hypothesis needs to be tested on strains within the 

same lineage to confirm if strains within lineages are phenotypically the same. In 

addition, the phenotypic differences between the fully drug sensitive and MDR M. 

tuberculosis Beijing strains needs to be evaluated as the Estonian Beijing strain that 

has dominated the population in Estonia is an MDR strain, whilst the strain included 

in the present study was a fully drug sensitive equivalent strain with the same MIRU 

and ETR profiles. 

 

In addition to evaluating laboratory control strains, M. tuberculosis H37Rv and 

H37Ra, and the vaccine strain, other laboratory control strains like the virulent 
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Erdmann strain needs to be included alongside the clinical wild-type strains to 

conclusively establish that the clinical strains are different to laboratory control and 

vaccine strains. 
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APPENDIX 1 

 

 

The expected molecular weights, in base pairs, of amplified fragments with various copy numbers in MIRU loci. 

 

Molecular weight of fragment (base pairs) Copy 
number 2 4 10 16 20 23 24 26 27 31 39 40 

0 189 103 219 367 215 78 325 244 272 106 194 229 
1 238 189 272 420 292 131 375 295 325 159 243 280 
2 287 264 325 473 369 183 425 344 378 212 292 331 
3 336 339 378 526 446 235 475 393 431 265 341 382 
4 385 414 431 579 523 287 525 442 484 318 390 433 
5 434 489 484 632 600 339 575 491 537 371 439 484 
6 483 564 537 685 677 391 625 540 590 424 488 535 
7 532 638 590 738  443  589 643 477 537 586 
8 581 713 643   495  638  530 586 637 
9 630 788 696   547  687  583 635 688 
10  863 749   599  736  636  739 
11   802   651  785    790 
12        834     
13        883     
14        932     
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APPENDIX 2 

 

 

The expected molecular weights, in base pairs, of amplified fragments with various 
copy numbers in ETR and VNTR loci. 

 

Molecular weight of fragment (base pairs) Copy 
number A B C 2163B 2347 3232 2163A 1982 3336 4052 

0 195 121        117 178 270   
1 270 174 133 133 385 242 186 256 325 266 
2 346 227 187 202 441 286 255 334 380 376 
3 422 280 242 273 501 330 324 412 435 488 
4 499 333 297 343 556 372 393 490 490 596 
5 570 386 350 412 611 415 462 568 545 710 
6 645 439 405 480 667 458 531 646 600 820 
7 720 492 460 548 724 501 600 727 655 935 
8 795 545 515 617 781 546 669 802 710 1050 
9 870 598 570 686 838 587 738 880 765 1165 
10 945 651 625 755   630 807 958 820 1280 
11 1020   824   673 876 1038 875   
12    892   716 945 1126 930   
13    963   759 1014 1272 985   
14    1034   802 1083 1350 1040   
15    1105   839 1152 1428 1095   
16    1176   888 1221   1150   
17        931 1290   1205   
18        974 1359   1260   
19        1017 1428    
20        1060 1497    
21        1103 1566    
22        1150 1635    
23        1200 1704    
24        1247 1773    
25          1842    
26          1911    
27          1980    
28          2049    
29          2118    
30          2187    
31          2256    
32          2325    
33          2394    
34          2463    
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APPENDIX 3 
 

The calculation used to perform a cell count of THP-1 cells using a Kova slide II. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kova slide II 
 
 

 

The number of bright, clear round cells (x) were counted in the smaller grids shaded 
in grey, making sure not to include cells that were in the spaces between the smaller 
grids. 

 

The following calculation was done to establish the number of THP-1 cells per ml, 
which had been pooled in the falcon tube:- 

 

x × 3 =  the number of cells in the whole large grid 

 = the number of cells/μl as 1μl covers the large grid 

 

To account for the 1 in 2 dilution with Trypan blue solution:-  

Number of cells/μl × 2 = actual number of cells/μl 

 

Therefore:- 

Number of cells/ml  =  actual number of cells/μl × 1000 
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APPENDIX 4 
 

The calculation used to determine the number of genome molecules/µl. 
 

Total M. tuberculosis genome  4,411,529 base pairs (b.p.) 

Total guanidine + cytosine      2,894,585 b.p. (single strand) 
     5,789,170 b.p. (double strand) 

Total adenosine + tyrosine       1,516,944 b.p. (single strand) 
     3,033,888 b.p. (double strand) 

Compound molecular weight for base pairs:-  

adenosine base 331.2 g/mol  cytosine base  307.2 g/mol 
guanidine base  347.2 g/mol  tyrosine base  322.2 g/mol 
 
guanidine + cytosine (307.2+347.2) ÷ 2 = 327.2 g/mol 
adenosine + tyrosine (331.2+322.2) ÷ 2 = 326.7 g/mol 

Compound molecular weight for M. tuberculosis genome:-  

 guanidine + cytosine 5,789,170 b.p. × 327.2 g/mol = 1,894,216,424 g/mol 
 adenosine + tyrosine 3,033,888 b.p. × 326.7 g/mol = 991,171,209.6 g/mol 

 Total = 2,885,387,633.6 g/mol 

However when 2 bases bind a water (H2O) molecule is lost. 

The compound molecular weight for H2O is 18 g/mol. 

There are 4,411,529 b.p., but when calculating the g/mol H2O lost the calculation is:- 

4,411,528 b.p. × 18 g/mol = 79,407,504 g/mol 

Therefore the actual g/mol of genome = 2,885,387,633.6 - 79,407,504 

      = 2,805,980,129.6 g/mol 

 

Avogadro’s constant = 6.02 × 1023 molecules/mol 

The DNA concentration in the extract measured by nanodrop 

 = 124.1 ng/μl (1.241 × 10-7 g/μl) 

2,805,980,129.6 g  = 1 mol 

1.241 × 10-7 g/μl =  (1.241 × 10-7 g/μl ÷ 2,805,980,129.6 g) mol 

   =  4.422697035 × 10-17 mol in 1μl 

 
1 mol    =  6.02 × 1023 molecules 

4.422697035 × 10-17 mol =   (4.422697035 × 10-17 mol × 6.02 × 1023 molecules) 
    =   26,624,636.15 molecules in 1μl 
 
Therefore the DNA standard contains 2.7 × 107 genome molecules/μl. 

 

 



To address conflicting results about the stability of vari-
able number tandem repeat (VNTR) loci and their value in 
prospective molecular epidemiology of Mycobacterium tuber-
culosis, we conducted a large prospective population-based 
analysis of all M. tuberculosis strains in a metropolitan set-
ting. Optimal and reproducible conditions for reliable PCR 
and fragment analysis, comprising enzymes, denaturing con-
ditions, and capillary temperature, were identified for a panel 
of hypervariable loci, including 3232, 2163a, 1982, and 4052. 
A total of 2,261 individual M. tuberculosis isolates and 265 
sets of serial isolates were analyzed by using a standardized 
15-loci VNTR panel, then an optimized hypervariable loci 
panel. The discriminative ability of loci varied substantially; 
locus VNTR 3232 varied the most, with 19 allelic variants 
and Hunter-Gaston index value of 0.909 . Hypervariable loci 
should be included in standardized panels because they can 
provide consistent comparable results at multiple settings, 
provided the proposed conditions are adhered to.

Globally, tuberculosis (TB) accounts for almost 2 mil-
lion deaths each year (1). Although TB notification 

rates in the United Kingdom (13.8/100,000 in 2007) re-
main low, rates differ substantially by region: London 
(43.2/100,000) accounts for ≈40% of all TB cases regis-
tered in the United Kingdom, and ≈75% of TB patients in 
London were born abroad (2). Rates of drug resistance also 
are higher in London than in the rest of the United King-
dom: 8.6% of isolates are isoniazid resistant, and 1.2% are 

multidrug resistant (UK Health Protection Agency; www.
hpa.org.uk).

In settings where incidence of TB is low or moderate, 
molecular genotyping is used to investigate suspected TB 
outbreaks, laboratory cross-contamination, and reactivation 
and (at a population level) to identify clustered cases that 
are not apparently linked; for the latter purpose, the highest 
possible level of discrimination is required (3). For these 
purposes, insertion sequence (IS) 6110 restriction fragment 
length polymorphism (RFLP) analysis—often supplement-
ed with spoligotyping and, more recently, with variable 
number tandem repeat (VNTR) typing—is used routinely.

The highest levels of epidemiologic discrimination 
of strains of the Mycobacterium tuberculosis complex 
(MTBC) can be achieved by using multilocus VNTR typ-
ing, but these results depend on the number and loci used, 
particularly for homogenous strain groups such as the 
Beijing family (3–5). This approach overcomes technical 
difficulties associated with IS6110-RFLP and is amenable 
to automation that results in a high throughput (6–10). 
A standardized panel of 15 + 9 VNTR loci (24 loci) has 
been proposed (7,11), but it is unclear whether sufficient 
discrimination would be seen when the panel is used in 
populations with a substantial prevalence of homogenous 
MTBC families (4,5,12). In addition, the discriminative 
power of VNTR loci may vary markedly among genetic 
families (7,13). Recent studies evaluating the discriminative 
power of VNTR typing have produced conflicting results 
that were generated by using convenience samples (small 
populations with low diversity or populations confined to a 
single geographic setting). These studies highlighted a need 
for larger population-based studies to identify discrimina-
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tive VNTR loci and ascertain their applicability for various 
genetic groups.

Concerns about the stability and reproducibility of 
particularly useful hypervariable loci, such as 3232, 2163a, 
3336, and 1982 (3–5,14), have been raised (7,15). As a 
result, they have been excluded from the proposed inter-
national panels for VNTR typing. For these reasons, we 
conducted a study to examine the stability of hypervariable 
loci and the parameters associated with reproducibility, to 
select loci suitable for prospective molecular epidemiologic 
studies, and to evaluate the discriminatory power of these 
loci at a population level in a metropolitan setting.

Materials and Methods

Bacterial Isolates
A total of 2,261 individual MTBC isolates (1 per pa-

tient) were included in this prospectively designed popula-
tion study. These isolates represented 95.7% of the bacteri-
ologically confirmed TB cases reported from the 30 London 
hospitals in the 12 months from April 2005 through March 
2006. These isolates had been characterized by using spoli-
gotyping, and all but 4 were assigned to 1 of 36 spoligotype 
families (16,17). Multiple isolates were available from 265 
patients (11.7%), resulting in serial isolate sets of 2–6 iso-
lates, which had been sampled at intervals of 3 days to 11 
months (N = 632).

Multilocus VNTR Analysis
All extracts were typed by using 15 mycobacterial in-

terspersed repetitive unit (MIRU)-VNTR loci as previously 
described (3). Isolates clustered when the 15 MIRU- Hunter-
Gaston index value VNTR profiles we used were reanalyzed 
with an additional panel of VNTR loci 2163b, 2347, 3232, 
2163a, 1982, 3336, and 4052 as previously described (3,5) 
after optimization of factors affecting reproducibility (see 
Hypervariable Loci Optimization). Variability or discrimi-
nation at a locus was assessed by using the Hunter-Gaston 
Discriminative Index (HGDI) (18). Loci with HGDI values 
<0.3, 0.3–0.6, and >0.6 were considered poorly, moderate-
ly, and highly discriminative, respectively (19).

Hypervariable Loci Optimization
We selected 16 previously characterized MTBC iso-

lates to cover the complete range of repeat sizes at control 
loci MIRU 26 and exact tandem repeat (ETR)–B and experi-
mental hypervariable loci VNTRs 1982 and 3232 (except 0 
repeats for the locus 3232). For each of the 16 extracts, four 
10-µL PCRs were conducted for each of the primer mixes 
in duplicate. Of these 4 reactions, the first was performed 
as described previously with BIOTAQ polymerase (Bio-
line, London, UK) (any enzyme in the given context means 
enzyme in conjunction with the buffer recommended and 

supplied by a manufacturer). Three other sets of PCRs were 
conducted under different amplification conditions (1).

Method 1
Diamond DNA polymerase (Bioline) was used (9). 

The PCR amplification cycle was 3 min at 95°C, followed 
by 35 cycles of 30 s at 95°C, 30 s at 60°C, and 2 min at 
72°C, and 1 final cycle of 5 min at 72°C (2).

Method 2
HotStartTaq DNA polymerase (QIAGEN, Hilden Ger-

many) was used. Each 10-µL reaction contained 1× PCR 
buffer (QIAGEN), 0.25 U/µL of the relevant polymerase, 
0.2 µmol/L dNTPs, 0.125 µmol/L of relevant primer, and 
5% dimethylsulfoxide. The DNA amplification cycle was 
15 min at 95°C, followed by 35 cycles of 30 s at 94°C, 30 
s at 60°C, and 1 min at 72°C, and a final cycle of 10 min 
at 72°C (3). 

Method 3
HotStartTaq Plus DNA polymerase (QIAGEN) was 

used. The PCR mixture was the same as in method 2, and 
the amplification cycle was the same, except that the initial 
95°C activation time was reduced to 5 min.

We manually calculated the number of repeats within 
each PCR product by resolving 4 µLof each product on a 
1.2% (wt/vol) agarose gel (Agarose LE Analytical grade; 
Promega, Southampton, UK) against a 2,000-bp Hyper-
Ladder II standard (Bioline). The number of repeats at each 
locus also was calculated by sizing in a denaturing capil-
lary electrophoresis system using a CEQ 8000 instrument 
with a DNA Size Standard 600 (Beckman Coulter, High 
Wycombe, UK) and MapMarker D1 labeled 640–1000 
(BioVentures, Inc., Murfreesboro, TN, USA) because frag-
ments were expected to be >600 bp. Three parameter sets 
(Table 1) were used to analyze all fragments. The different 
parameters examined were capillary temperature (60°C for 
methods 1 and 2 and 50°C for method 3, respectively), de-
naturation time (120 s for method 1 and 180 s for methods 2 
and 3, respectively) and separation time (60 min for meth-
ods 1 and 2 and 70 min for method 3, respectively). Frag-
ment data traces were automatically analyzed by using the 
scheme shown in Table 1. For locus 3232, we accounted 
for offset values (i.e., difference among actual sizes of PCR 
fragments and apparent sizes indicated by electrophoresis) 
when calculating number of repeats in Table 1.

Assessing Stability and Reproducibility of VNTR Loci
All isolates were grouped into 265 sets of serial isolates 

(2–6 isolates each) and typed at all 22 loci. Primer sequenc-
es for all loci were as described previously (3,9,20,21). PCR 
was set up by using BIOTAQ polymerase for amplifying 
12 MIRU and 3 ETR loci and Diamond polymerase for the 
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additional 7 VNTR loci. Capillary electrophoresis was per-
formed by using the parameters described in method 1.

Results

Optimization of Hypervariable Loci
We evaluated factors that potentially affect the repro-

ducibility of hypervariable VNTR loci by using various 
PCR and capillary and manual electrophoresis separation 

conditions as described in the Materials and Methods. The 
ability to correctly amplify different VNTR loci depended 
on the enzyme used (Table 2); all polymerases efficiently 
amplified MIRU 26 and ETR-B, as indicated by the pres-
ence of PCR fragments on agarose gels and capillary elec-
trophoresis peaks. However, locus VNTR 3232 was ampli-
fied effectively only with Bioline Diamond (15/16 strains, 
93.8%). Although all polymerases except Bioline BIOTAQ 
were able to amplify DNA at locus VNTR 1982, longer 
fragments were amplified more efficiently by QIAGEN 
and Bioline Diamond polymerases. Therefore, Diamond 
polymerase was selected for the amplification of additional 
VNTR loci.

We assessed 3 methods for capillary electrophoresis. 
For each locus, apparent fragment sizes were plotted against 
expected fragment sizes for each method (Figure 1).

MIRU 26 fragments sizes were as expected for all al-
lelic variants (except for the variant with 2 repeats) when 
BIOTAQ and Diamond polymerases were used, but sizes 
were larger than expected with QIAGEN polymerases. The 
smaller ETR-B fragments with 1 and 2 repeats all gave ex-
pected sizes with methods 1 and 2 but were less than ex-
pected with method 3 (where the capillary temperature was 
decreased). These results did not affect overall interpreta-
tion. For the higher number of repeats (4–6 repeats), all 
polymerases generated fragments that, when analyzed by 
using method 3, gave apparent sizes lower than expected. 
In some cases, this result affected the interpretation. The 
apparent sizes of VNTR 1982 fragments were all similar 
to the expected values independent of the polymerase used 
and the method used for capillary electrophoresis.

Serial Isolates
Amplification was performed by using BIOTAQ 

polymerase for 12 MIRU and 3 ETR loci and Diamond 
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Table 1. Expected molecular weights of Mycobacterium 
tuberculosis of fragments at each locus, with different numbers  
of copies, London, UK, 2005–2006* 

Length of expected fragments for each locus, bp 
No. repeats MIRU 26 ETR-B VNTR 1982 VNTR 3232†
0 244 121 178
1 295 174 256 242
2 344 227 334 286
3 393 280 412 330
4 442 333 490 372
5 491 386 568 415
6 540 439 646 458
7 589 492 727 501
8 638 545 802 546
9 687 598 880 587
10 736 651 958 630
11 785 1,038 673
12 834 1,116 716
13 883 1,194 759
14 932 802
15 845
16 888
17 931
18 974
19 1,017
20 1,060
*MIRU, mycobacterial interspersed repetitive unit; ETR, exact tandem 
repeat; VNTR, variable number tandem repeats. 
†No isolates had 0 repeats in locus 3232 in our population. 

Table 2. Number of DNA extracts (from n = 16) for which peaks were detected by different conditions for capillary electrophoresis of
Mycobaterium tuberculosis after amplifying the loci with different polymerases, London, UK, 2005–2006* 

Bioline polymerases‡ QIAGEN polymerases‡ 
Locus Method† BIOTAQ Diamond HotStartTaq HotStartTaq Plus 
MIRU 26 1 16 16 16 (1) 16 (1) 

2 15 16 16 (1) 16 (1) 
3 16 16 16 16

ETR-B 1 16 16 16 (1) 16 (1) 
2 15 16 16 (1) 16 (1) 
3 16 16 16 (2) 16 (2) 

VNTR 1982 1 8 13 14 14
2 9 13 12 14
3 6 11 12 14

VNTR 3232 1 11 15 13 14
2 10 15 14 14
3 11 (3) 15 (7) 13 (6) 13 (4) 

*MIRU, mycobacterial interspersed repetitive unit; ETR, exact tandem repeat; VNTR, variable number tandem repeats. 
†Refer to Table 1. 
‡Numbers in parentheses represent number of extracts whose calculated number of repeats were higher and lower than the expected value on the basis 
of that produced by the standard procedure (method 1). 
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polymerase for 7 VNTR loci with the optimized param-
eters in method 1. Analysis was blinded. No disagreements 
occurred in the interpretation of VNTR repeat numbers 
among isolates in a set. In a proportion of isolates (N = 
124), genotyping results were validated by using both cap-
illary electrophoresis and manual electrophoresis for PCR 
fragment separation, and again, no discrepancies were 
found between VNTR loci copy numbers in strains isolated 
from the same patient at different time points (Figure 2).

Population Genotyping in Metropolitan Setting  
with 2 Panels of VNTR Loci

A total of 2,261 MTBC isolates circulating in London 
with known spoligotypes were genotyped by using a defined 
set of 15 loci (12 MIRU and 3 ETR); all known spoligotyp-
ing families were represented in the test population (online 
Technical Appendix, available from www.cdc.gov/EID/
content/15/10/1609-Techapp.pdf). Complete 15-loci profiles 
were obtained for 2,046 strains (90.5% of all strains). Data 
for the remaining profiles were incomplete for >1 locus. 

Overall PCR failure rate was 1.6%, with the highest number 
of failures (n = 72) at locus ETR-A and the lowest number 
of failures (n = 4) at locus ETR-C. When PCR failed, DNA 
was reextracted from original cultures, and genotyping was 
attempted again. If the second attempt was unsuccessful, the 
results for the locus were marked as missing.

Genotyping of MTBC isolates by using 15 MIRU-ETR 
loci yielded 1,036 unique profiles and 235 clusters contain-
ing 2–53 isolates (Table 3). Clustered profiles were shared 
by 1,225 isolates, giving a clustering rate of 54.2%.

Subsequently, 1,196 (97.6%) of 1,225 isolates (15 
MIRU-ETR clustered isolates) were subjected to second-
ary typing by using VNTR loci 2163b, 2347, 3232, 2163a, 
1982, 3336, and 4052. Resolution improved because strains 
that had been clustered initially were subdivided into new 
groups: 1,730 isolates now had unique genotyping patterns, 
and the remaining 502 isolates were grouped into 158 clus-
ters, giving a new, substantially lower, clustering rate of 
22.2% (Table 3).
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Figure 1. Effect of various enzymes and separation conditions on amplification and detectable molecular weights of PCR fragments for 
4 variable number tandem repeat (VNTR) loci. A) Mycobacterial interspersed repetitive unit locus 26; B) locus exact tandem repeat; C) 
locus 1982; D) locus 3232.
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Variability and Discriminative Power of VNTR Loci
The discriminative ability of VNTR loci varied mark-

edly among the 22 VNTR loci and among spoligotyping 
families (online Technical Appendix) with locus VNTR 
3232 showing the greatest variation (HGDI = 0.909 and 19 
allelic variants) and loci MIRU 2 and 20, the least (HGDI = 
0.134 and 0.196; number of allelic variants 4 and 3, respec-
tively). Twelve loci each had >10 allelic variants. MIRU 
4 showed moderate discriminative power, and MIRU 
10, MIRU 16, MIRU 23, MIRU 26, MIRU 40, ETR-A, 
ETR-C, and VNTR 2163B, 2163A, 1982, 3232, 3336, and 
4052 showed high discriminative power with HGDI val-
ues varying from 0.524 to 0.909. None of the 22 loci were 
monomorphic in the current study. With the exception of 
VNTR 2347, all loci included in the additional VNTR pan-
el displayed higher variability than the primary panel of 15 
MIRU-ETR loci used for UK national typing, which indi-
cates their potential for increasing the power of prospective 
molecular genotyping.

The discriminative power of VNTR loci also varied 
among spoligotype families. The mean 15 MIRU-ETR 

HGDI value for the Beijing family was low (0.163), which 
indicates that this family is relatively homogeneous, even 
within the diverse London population settings. Notably, 
mean 15 MIRU-ETR HGDI values for genetic families 
within the Euro-American lineage (T, Haarlem, S, X, 
Latin American–Mediterranean) were generally higher 
(0.307–0.378) than those for Beijing and Central Asian 
(CAS) (0.235). Within spoligotype families, the additional 
7 VNTR increased variability in all cases, except for M. 
bovis. The highest HGDI were seen in the Latin Ameri-
can–Mediterranean family with locus 2163B; in Beijing, 
Haarlem, and M. africanum with VNTR 3232; in East Af-
rican–Indian with VNTR 2163A; in X with VNTR 1982; 
in T with VNTR 3336; and in CAS with VNTR 4052. 
Within the East African–Indian family, the hypervariable 
loci VNTR 3232 varied little, with 93.7% isolates having 
a single copy. A small proportion of strains (Table 4) ana-
lyzed by using more discriminative loci, including VNTR 
3232, 1982, 2163A, and 3336, generated PCR products that 
were too large for automated analysis but were resolved 
manually.

Discussion
Polymorphisms in rapidly evolving repetitive se-

quences, such as minisatellite VNTR, are a valuable tool 
for prospective epidemiologic analyses and provide a high 
degree of discrimination in situations in which few a priori 
epidemiologic data are available. In this population-based 
study, we genotyped 2,261 individual MTBC isolates ob-
tained from patients residing in London by using 22 VN-
TR-MIRU loci.

Conflicting views on the use of hypervariable loci for 
typing have been reported, even when loci such as VNTR 
3232 have been shown to have high discriminatory pow-
er (3,5,14). Some studies have demonstrated difficulty in 
amplification of multiple alleles, absence of PCR ampli-
fication products, varying data interpretation, and lack of 
reproducibility among laboratories (7). Similar problems 
were found with another potentially valuable hypervariable 
locus, VNTR 1982 (5,7). Therefore, we believed that by 
identifying the conditions that provided good, reproducible 
discrimination, we would be able to define the optimal con-
ditions that would enable molecular epidemiologists to use 
VNTR 1982 and 3232. We addressed variability and repro-
ducibility for these 2 loci using MIRU 26 and ETR-B as 
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Figure 2. Agarose gel showing the stability of amplified fragments of 
variable number tandem repeat (VNTR) 3336 from 2 serial isolates 
isolated from 4 patients. Lane 1, patient A, isolate 1, isolated 2005 
Jun 20, 8 copies; lane 2, patient A, isolate 2, isolated 2005 Jul 11, 
8 copies; lane 3, patient B, isolate 1, isolated 2005 Jul 8, 9 copies; 
lane 4, patient B, isolate 2, isolated 2005 Aug 8, 9 copies; lane 5, 
patient C, isolate 1, isolated 2005 Nov 11, 7 copies; lane 6, patient 
C, isolate 2, isolated 2005 Nov 15, 7 copies; lane 7, patient D, 
isolate 1, isolated 2005 May 16, 6 copies; lane 8, patient D, isolate 
2, isolated 2005 May 25, 6 copies. 

Table 3. Discriminatory power of VNTR typing used in the study in establishing true minimum cluster size as marker of real 
transmission rate* 

Genotyping method 
No. distinct profiles 
(variety of types) 

No.
clusters 

Size of clusters, 
no. isolates 

Clustering
rate, % (n/N) 

Recent transmission 
rate, % ([n – c]/N)

No. unique 
isolates

MIRU15 (n = 2261) 1,271 235 2–53 54.2 44.0 1,036
MIRU15 + Spoligotyping 1,619 196 2–48 37.1 29.0 1,423
MIRU15 + VNTR7 1,888 158 2–35 22.2 17.0 1,730
*MIRU, mycobacterial interspersed repetitive unit; VNTR, variable number tandem repeats; n, no. clustered cases; N, total no. of strains; c, no. of clusters.
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controls that give stable comparable results in both agarose 
gel and capillary electrophoresis and have been used previ-
ously in a multilaboratory comparative study (7).

In all cases, identical data were produced for MIRU 26 
and ETR-B irrespective of the DNA polymerase used. Am-
plification of VNTR 1982 and 3232 varied with different 
DNA polymerases, particularly when expected fragments 
were long.

The differing performances of polymerases for am-
plifying different loci can be explained by their varying 
properties. BIOTAQ polymerase is a basic Taq that can 
be used for a wide range of templates, whereas Diamond 
polymerase has been modified by a point mutation at the 
active site of the enzyme, enabling it to read through re-
gions of secondary structure, microsatellites, and guanine 
cytosine–rich templates, such as those found in the M. tu-
berculosis genome. The QIAGEN polymerases are chemi-
cally modified polymerases with a high specificity similar 
to that of Diamond polymerase; thus they showed similar 
capabilities in amplifying VNTR 1982 and 3232. In addi-
tion, the buffer used with the QIAGEN polymerases is de-
signed to increase the specificity of primer binding, mak-
ing these polymerases suitable for dealing with complex 
genomic DNA.

Conditions that affect the denaturation of PCR prod-
ucts, and therefore their linearity before fragment sizing by 
electrophoresis, would be expected to influence apparent 
sizes of PCR fragments and copy number enumeration. We 
investigated the influence of DNA denaturation time and 
capillary separation temperature. As expected, we found 
that lowering the separation rate increased the discrimina-
tion of fragments >1,000 bp.

A marked difference was observed when the capillary 
temperature was decreased (method 3), which was indepen-
dent of the polymerase used and locus investigated and dem-
onstrated that separation conditions are critical for the cor-
rect interpretation of the VNTR typing results. In method 3, 
apparent fragment sizes were smaller and offset values were 
markedly larger, to the point that in some cases the calcu-
lated copy number was different from that expected.

Taking all the data together, we used BIOTAQ for 
amplifying MIRU and ETR loci, and Diamond polymerase 
for amplifying the extra 7 hypervariable VNTR loci, us-
ing the separation conditions detailed in method 1. We also 
demonstrated the reproducibility and stability of the extra 

7 VNTR loci by comparing 22 MIRU-VNTR profiles from 
serial isolates. The resulting profiles of serial isolates from 
the same patients were identical, indicating that the condi-
tions used for fragment amplification, detection, and analy-
sis were ideal for typing of these loci and that these loci 
could be used for routine genotyping.

Clustering rates seen by using 15 MIRU-ETR loci far 
exceeded those previously reported when IS6110 RFLP was 
used in a London population study (22,23). We concluded 
that 15-MIRU-ETR genotyping was insufficiently discrimi-
native and was producing so-called false clustering. This 
view was supported by the spoligotyping results in which 38 
(16%) of 235 isolates of 15 MIRU-ETR clusters contained 
isolates that belonged to >2 spoligo families (Table 3).

Applying all 22 loci gave the lowest clustering rate 
(22.2%) in MTBC strains obtained over 1 year from a sin-
gle metropolitan setting (London), a rate almost identical 
to the proportion established in previous studies conducted 
in London in 1993 and 1995–1997 (22,23) and similar to 
previously reported rates in population-based studies in 
low- to-middle TB incidence settings where RFLP and 
PCR-based genotyping methods were used (11,24–26). 
These findings suggest, from the public health viewpoint, 
that TB transmission in London has remained stable over 
the past decade. Our study provides strong evidence that 
PCR-based methods, especially VNTR-MIRU, can replace 
IS6110 RFLP typing for prospective analysis and that 12 
MIRU (27), and 15 MIRU-ETR loci panels alone are insuf-
ficiently discriminating for evaluation of TB transmission.

The recently proposed VNTR panel (3,5,7,11) pro-
vides similar degrees of discrimination (comparable to that 
achieved by IS6110 RFLP), although discrimination of in-
dividual VNTR loci is not equal for different MTBC genetic 
families (13). Inclusion of highly polymorphic VNTR loci 
effectively differentiates strains within highly conserved 
groups and is vital for prospective genotyping. Our study 
demonstrated that even in settings of low TB incidence and 
relatively low TB transmission rates, TB families, such as 
Beijing and CAS, remain more conserved than others, and 
hypervariable loci (e.g., VNTR 3232, 2163A, 4052) pro-
vide much higher discrimination than MIRU and ETR loci 
either alone or in combination.

Our current results agree with the preliminary results 
of our earlier studies about the applicability of hypervari-
able VNTR loci (VNTR 3232, VNTR 3336; VNTR 2163a, 
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Table 4. Allelic variants of additional hypervariable VNTR loci that cannot be resolved with the CEQ automated sequencer*† 

Locus
Maximum no. repeats suitable for 

automated analysis Fragment size, bp 
Proportion of strains with allelic variants beyond 

the automated system resolution, % 
3232 15 830 4.1
1982 9 880 11.9
2163A 11 876 10.8
3336 11 875 21.1
*Beckman Coulter, Fullerton, CA, USA. 
†VNTR, variable number tandem repeats. 
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and VNTR1982, in particular) and recent reports (28–30) 
demonstrating their effectiveness for discrimination among 
Beijing strains. This agreement suggests that these loci are 
discriminating and reproducible, especially where Beijing 
strains are dominant (e.g., China, Russia, Baltic countries) 
(28) and should be included in standardized VNTR panels. 
They can be used successfully at multiple laboratories with 
consistent results, provided the conditions for proposed 
reaction and PCR fragment separation are adhered to and 
specific DNA polymerases are used.
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