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Abstract 

In the aerospace industry, the manufacturing of structures as one monolithic 

piece is very common. At the same time, thin walled sections are becoming more 

wide spread due to weight requirements, environmental concerns and the general 

demand for higher efficiency. These thin walled sections are easily found within 

the aircraft wings, fuselage and engines. The machining of these sections is one of 

the most complex manufacturing processes in the aerospace industry, due to its 

low stiffness and it is investigated in this thesis. 

In this thesis, an approach to predicting both the average and instantaneous 

cutting force coefficients required in force models, using a Finite Element Method 

(FEM) based on an Arbitrary Lagrangian-Eulerian formulation (ALE) is 

presented. Due to the inherent flexibility of both the cutter and the workpiece, the 

milling process is naturally accompanied by both dynamic and static vibrations. In 

order to investigate the dynamic vibrations, the dynamic parameters of both the 

cutter and the workpiece are required. A novel numerical and experimental 

investigation has been carried out in this thesis for the prediction of thin walled 

structure’s damping parameters. A newly discovered approach to predicting the 

structural damping parameters is proposed and its applications in thin-wall 

machining is presented. An FEM and Fourier transform (FT) approach is 

presented, to obtain the frequency response function (FRF) required for the 

prediction of chatter vibration free cutting conditions. 

A more accurate stability model that considers the effects of higher 

harmonics from highly intermittent milling process, the nonlinearity of the cutting 

force coefficients and axial immersion angle along the axial depth of cut is 

developed. A numerical approach to obtaining a converged solution to the 

stability model is presented. A method that uses the FEM and the FT approach 

and the improved stability model, whilst considering the nonlinearities of the thin-

wall dynamics in predicted stable region is also presented. 
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flute j  

[ ] [ wc GG , ] cutter and workpiece transfer function 

[ ]J  Jacobian matrix of coordinate transformation 

[ ]K  stiffness matrix of structure 

pK   mode modal stiffness thp

cidi KK ,   direct and cross inner modulation dynamic cutting force 

coefficients 

codo KK ,   direct and cross outer modulation dynamic cutting force 

coefficients 

sK  specific cutting force coefficient 

art KKK ,,  exponential tangential, radial and axial cutting force 

coefficients (exponential force model) 

acrctc KKK ,,  tangential, radial and axial cutting force coefficients (linear-

edge force model) 

aerete KKK ,,  exponential tangential, radial and axial cutting force 

coefficients (linear-edge force model) 

321 ,, tctctc KKK  tangential cutting force coefficients (non-linear edge force 

model) 

321 ,, rcrcrc KKK  radial cutting force coefficients (non-linear edge force model) 

321 ,, acacac KKK  axial cutting force coefficients (non-linear-edge force model) 

[ ]M  mass matrix of structure 

pM   mode modal mass thp

zr MM   cutter geometry 

N  number of teeth or flutes on the cutter 
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iN   shape functions for subscript  node i

 ,, zr NN  cutter geometry 

P  a cutting point on cutting edge 

{ }P  external force 

R  cutter radius 

[ ]pR   modal residue thp

zrc RRR , ,  cutter geometry 

T  tooth period 

V  volume 

X  feed direction coordinate axis 

( )ωX  acceleration in frequency domain 

Y  normal direction coordinate axis 

Z  axial direction coordinate axis 

Greek 

βα  ,  cutter geometry 

rlprlp βα ,  constants reflecting the residue of mode p  at row r  and 

column l  of the transfer function matrix 

[ C ]α  directional dynamic milling coefficients curve fitted 

polynomial constants  

rakeα  cutter’s rake angle in orthogonal cutting 

uα  Rayleigh, Caughey and proposed damping model’s real 

constants 
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Nomenclature 
 

⎪
⎭

⎪
⎬

⎫

,,,

,,,

,,,

zzzyzx

yzyyyx

xzxyxx

ααα

ααα

ααα

 directional dynamic milling coefficients 

ε  phase between successive waves in chatter vibrations 

{ }ε  strain tensor 

zyx εεε ,,  direct strain 

φ  rotation angle of the cutter 

( )zjφ  immersion angle of flute j  at level z  on the XY  plane 

pφ  cutter pitch angle 

exitstart φφ ,  start and exit angles of cut in milling 

ϕ  material variable/property 

flankγ  cutter’s flank angle 

effectγ  cutter’s effective flank angle during cutting 

zxyzxy γγγ ,,  shear strains 

κγ ,  average axial immersion angle 

mη  limiting axial depth of cut error for  axial depth of cut 

increment 

thm

κ  axial immersion angle 

λ  wavelength of dynamic vibrations 

ν  Poisson’s ratio 

ρ  density 

{ }σ  stress tensor 

zyx σσσ ,,  direct stresses 

zxyzxy τττ ,,  shear stresses 
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υ  cutting speed / material velocity 

iυ̂  mesh velocity 

jwjc υυ ,  cutter and workpiece dynamic vibrations in tooth’s local co-

ordinates for the current toot period 

00 , jwjc υυ  cutter and workpiece dynamic vibrations in tooth’s local co-

ordinates for the current toot period 

ω  frequency 

cω  chatter frequency 

dω  damped natural frequency 

nω  undamped natural frequency 

npω   mode natural frequency thp

Tω  tooth passing frequency 

ζηξ ,,  isoparametric natural element coordinates 

ψ  phase shift of the eigenvalues 

( )zψ  lag angle at elevation  z

pζ   mode damping ratio thp

hphp ωωζζ ,,,  newly defined parameters for the prediction of damping ratio 

[ ]Φ  oriented transfer function 

Λ  eigenvalue of dynamic milling force eigenvalue problem 

n,Ω  spindle speed in rev per min 

{ }pΨ   mode eigenvector thp
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Introduction 

1.1. Background of the Research 

In aerospace, the manufacturing process is progressively limiting the use of 

joints through the manufacturing of structures as one monolithic piece. Machining 

is a very common operation in manufacturing, due to its versatility and its high 

material removal rate in producing parts of desired dimensions. Aircraft wing 

sections, fuselage sections, turbine blades and jet engine compressors, are all 

typical parts with sections produced from machined aluminium or titanium 

blocks. With environmental concerns and the general demand for higher 

efficiency, weight requirements compel the design of much thinner sections. For 

this reason, thin sections with a height to thickness ratio of 35:1 or even thinner 

are common in manufactured workpiece sections. Whilst on the one hand 

manufacturing of aluminium alloys is relatively easier compared to titanium 

alloys due to their relatively low yield stress, on the other hand thin-wall sections 

can be problematic due to added reduced structural stiffness. In order to maintain 

the quality of the machined parts there is usually a dimensional tolerance, which 

the machined parts have to satisfy. To enforce this, it is a general practice for 

machined parts to undergo inspection before they are certified for use. While parts 
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that fail this inspection are either scrapped or subjected to many hours of manual 

labour to remove the bad surface finish. 

Machining processes used in manufacturing industries for the purpose of 

material removal vary in their design and approach. They generally can be 

grouped into three main categories: 

 Cutting processes (including milling, drilling or lathe). 

 Abrasive processes (including grinding, lapping and polishing). 

 Special processes (including the use of chemical compounds, laser, water jet 

to remove material). 

In milling the workpiece is fed past a rotating tool with one or more teeth, 

which makes it possible to attain very high ‘Material Removal Rate’ (MRR). This 

can be a major advantage in mass production. The tooth/teeth remove the material 

from the workpiece in the form of small individual ‘chips’. The milling process 

can generally be grouped into three categories namely: peripheral/slab milling, 

face milling and end milling (Kalpakjian and Schmid, 2003). The cutting occurs 

along the teeth on the periphery of the tool in peripheral milling and the axis of 

rotation is parallel to the machined surface. In face milling however, the cutting 

occurs both along the teeth on the periphery and also the face of the tool. End 

milling is the most flexible of the three groups and can be used to cut out any 

desired shape using 5-axis milling machines. Face milling is different from end 

milling in that its axis of rotation is perpendicular to the workpiece surface. Even 

though the researches into the milling process have flourished extensively for over 

sixty years, study into the process is continually motivated by the manufacturing’s 

ever increasing demand for better performance. 

The study into the numerical simulations of the machining of thin-walled 

sections is the focus of this thesis. Machining time for wing sections such as wing 

box rib, wing spar or fuselage frame can easily range from 10 hours to 20 hours 

and one of the main problems encountered has to do with cutting conditions when 

machining thin-wall sections. Even though the project originated and was 

supported by an aircraft wing manufacturing company, its applications however 

are valid in other milling processes. 
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In milling the cutting conditions used are very important and must be 

chosen with care as they directly influence the cutting forces. The different 

excitations during milling process can be grouped into two main categories as 

follows: 

1. Primary excitation: These sources must not be ignored but kept within safe 

levels as they can lead to extremely high vibrations, which if not prevented 

could lead to tool break, possibly damage the spindle and certainly cause 

wavy and bad surface finish. Primary sources include: 

– Excitations from cutting forces. The cutting forces are direct periodic 

external forces acting on the system, which deflects both the workpiece 

and the tool. The machine, cutter and the workpiece are collectively 

referred to at times as ‘the system’. 

– Undulations left on machined surface. Due to the vibrations during the 

cutting process, the machined surface is wavy. While at the next 

subsequent tooth pass, the wavy surface finish causes fluctuations in the 

chip load, which in turn causes unsteady cutting forces. 

– Damaged tool or worn out spindle. This causes a deviation from the 

designed performance and unsteady cutting forces. 

– Tool run out. This is an offset in the tool, collet and spindle set up, 

characterised by the cutter having a rotational axis differing from its 

geometric axis. It can have adverse effects on the chip load distribution 

between the flutes, which invariably causes varying cutting forces. 

2. Secondary excitations: The excitations causes by these sources are very 

minimal and most of which either resisted due to the system’s stiffness or 

dampened out by the system’s dynamics. Secondary excitations include 

mechanical vibrations (due to the motor, the motion of the machine table 

and so on) as well as acoustic vibrations. 

The cutting forces cause structural vibrations in the workpiece, tool and 

spindle. These vibrations can be classified as free vibrations (occur after an 

external energy source is removed), forced vibrations (occur during the presence 

of an external energy source) and self-excited vibrations (Huo and Cheng, 2009). 

The self excited vibration has its source from the inherent structural dynamics of 

 - 25 - 



Chapter 1 – Introduction 
 

the machine tool-workpiece and feedback responses. The self excited vibration is 

an effect of the undulations explained earlier. The optimum cutting case is when 

the undulations left on the machined surface are in phase with the undulations 

from previous tooth pass. The worst case however is when the phase angle 

between the two undulations is out of phase by 90o. This leads to the phenomena 

known as ‘‘regenerative chatter’’ or simply ‘‘chatter’’, which is discussed in more 

detail in Chapters 4, 5 and 6. Chatter is usually characterised by a very bad surface 

finish and a drastic increase in both cutting forces and vibrations. Chatter as stated 

by Taylor is one of the most obscure and delicate of all problems facing the 

machinist (Taylor, 1907). It undermines the machinist’s efforts, reduces 

productivity and surface quality in manufacturing. In some cases the surface finish 

can subsequently be improved, either during the finishing cut or by polishing the 

surface, while in other cases the workpiece has to be scrapped. Chatter is also 

undesirable due to its adverse effects on the tool and spindle life. The relative 

stiffness between the tool and the workpiece would determine which flexibility is 

dominant. The cutting conditions determine the cutting forces which lead to 

forced vibrations, while the cutting conditions also determine the onset of 

regenerative or self-excited vibrations. The forced vibrations can also lead to the 

onset of chatter. Though the forced vibrations can be reduced they can never be 

eliminated, while the self-excited vibrations occur when certain cutting condition 

are used. These conditions are jointly known as unstable cutting conditions. 

1.2. The Scope of the Research 

Currently during the manufacturing process, limited or no knowledge of 

stable cutting conditions compels process planners on most occasions to resort to 

a trial and error approach; the reliance of which is heavily dependent on the 

individual’s experience. Even with the most experienced individuals, these 

selected trial conditions may still result in the onset of chatter, possibly excessive 

cutting forces and damage to tool, workpiece or machine. This is the purpose for 

the continuous investigations including this work, to better improve the cutting 

process. These studies utilise different approaches ranging from analytical to 

numerical methods. This work successfully: 
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 Made improvements to known and available cutting force models. 

 Identified the possibility of predicting structural damping. 

 Minimized the need for experimental methods. 

 Made major improvements into the prediction of stable cutting conditions. 

Right through the study, experimental validations are used extensively as 

this is one of the most reliable methods of checking the soundness and practicality 

of proposed theoretical results. The models developed in this thesis for the 

simulation of thin-wall machining are quite comprehensive and are believed to 

contribute to the literature on metal cutting. 

1.3. The Structure of the Dissertation 

The chapters of the thesis are organized as follows: 

In Chapter 2, the literature into metal cutting in general, milling geometry, 

cutting force modelling, dynamic modelling, chatter stability prediction and Finite 

Element Method (FEM) modelling of metal cutting is introduced. This chapter 

provides an in-depth review of the literature into metal cutting process, with a 

quick summary presented in subsequent chapters. 

Chapter 3 covers cutting force modelling. The well developed mechanistic 

approach to cutting force modelling is presented and the approach to calibrating 

its coefficients is explained. Improvements to this model are presented in the form 

of a higher order mechanistic model. This improvement would better model the 

cutting forces when the cutting force coefficients are not a linear function of the 

axial depth of cut although it does come at the price of added coefficients. The 

chapter then goes on to introduce the application of Finite Element Method (FEM) 

to calibrating both the instantaneous and average cutting force coefficients using 

an Arbitrary Lagrangian-Eulerian (ALE) formulation. The FEM approach 

eliminates the need for experimental calibrations of the cutting force coefficients, 

with the added advantages that makes it more attractive compared to experimental 

methods. These advantages include the possibility of heat analysis and being able 

to extract more results at any location on the model and so on. 
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In Chapter 4, the dynamics of the tool and the workpiece are the main focus. 

The structural stiffness and mass are well known for different materials, while the 

structural damping still remains an empirical parameter. In this chapter, a novel 

approach to predicting the structural damping is presented. Due to the complexity 

of damping, this approach is a start as it identifies certain trends defining the 

dependence of the damping parameters on the structures’ geometry. Investigating 

why these trends exist could help to better understand structural damping and its 

prediction, even if it requires experimental calibrations of parameters like in 

stiffness and mass for different materials. In the later part of the chapter, a finite 

element analysis (FEA) and Fourier transform approach to extracting the systems 

transfer function is presented. This eliminates the need for experimental impact 

testing approach currently adopted. 

Chapter 5 focuses on dynamic tool deflections. In this chapter, 

improvements to the well developed stability model used to predict stable cutting 

conditions are presented. The cutting force is more accurately modelled by 

considering the nonlinearity of calibrated cutting force coefficients and axial 

immersion angle. These improvements give a more accurate prediction of stable 

cutting conditions that agree very well with experimental results. 

In Chapter 6, the dynamic deflections of thin-walled workpiece sections are 

investigated. The nonlinear dynamics of the workpiece were included in the 

prediction of stable cutting conditions. Apart from the more accurate predictions 

from the presented approach, it also does not require anymore experimental 

results as it uses numerical FEM results. It is shown in this chapter that when 

machining thin-wall sections, the variations in the dynamics along the tool path 

must be considered when predicting stable cutting conditions. 

The thesis is finally concluded in Chapter 7, where a summary of all the 

contributions in the work is presented. Suggestions for future work are also 

presented in this chapter. 



V{tÑàxÜ E 

Literature Review 
Metal cutting can be said to have a very rich collection of different studies 

and research dating back as early as the 19th century. Arguably one of the first 

attempts to explain the mechanics of chip formation was by Timme in 1870 who 

from his observation of the cutting process, idealised the shear zone into a single 

shear plane (Henkin, 1962). Tresca later (in 1878) argued that the cutting process 

is through compression of the metal ahead of the tool and therefore chip failure 

should occur along the path of tool motion (Henkin, 1962). Timme later provided 

evidence that the cutting process is through shearing and not compression 

(Henkin, 1962); while Tresca later described the cutting process and chip 

formation in detail (Tresca, 1878). Mallock in 1881 presented a paper (Mallock, 

1881) in which he first describes the chip formation in a similar concept as 

Piispanen (1948) and Merchant (1945). Mallock concluded that the deformation 

occurs at defined shear planes, inclined at an angle to the cutting direction. 

Taylor later summarized his extensive experimental work in his 1907 

ASME presidential address: ‘‘On the Art of Cutting Metals’’ (Taylor, 1907). 

Shore (1924) and Herbert (1926) were among the first to study the cutting 

temperature using the tool – work thermocouple method. Ernst and Martellotti 

examined ‘built-up edge’ in their study. Piispanen (1948), Ernst and Merchant 

(1940) and Merchant (1945) derived an expression for the shear plane. The shear 
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plane was defined as the plane in which the shearing stresses reach a maximum. 

Lee and Schaffer (1951) used the slip line theory to analyse the stress and strain 

distribution in metal cutting. Other analyses of metal cutting prior to the 

development of the Finite Element Method (FEM) (such as Oxley, 1963; Fenton, 

1969 and Hastings, 1980) were mainly based on these two models. These models 

were however focused on orthogonal and oblique machining/metal cutting. 

In this chapter, a review of the literature is given for different topics, to set a 

good base for the relevant chapters that follow. 

2.1. Milling Geometry 

As explained in Chapter 1, in milling, the workpiece is fed past a rotating 

tool with one or more teeth; hence the machined surface consists of series of 

surface segments generated by each of the individual cutting edges on the tool as 

shown in Figure 2.1. There are two different types of milling orientations as 

shown in Figure 2.1, namely: upmilling or conventional milling and downmilling 

or climb milling. The first studies into milling were by (Airey, 1921; Parsons, 

1923; Sawin, 1926) and their studies were on chip formation and spindle power. 

Martellotti (1941) carried out an in-depth study on the kinematics of milling and 

showed that the path of the tooth is described as trochoidal and not circular due to 

the linear motion of the tool. However, it can be approximated as circular if the 

radius of the cutter is much larger than the feed per tooth, which is generally the 

case when milling. Martellotti derived expressions for the amplitude of tooth 

marks left of the machined surface and for the undeformed chip thickness (which 

is used in cutting force models) as, 

,sinφtsh =  

where,  is the undeformed chip thickness (refer to Figure 2.2),  is the feed per 

tooth and 

h ts

φ  is the immersion angle. 
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(a) Down/climb-milling 

 

(b) Milling process geometry 
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(c) Up/conventional-milling 

Figure 2.1 - Milling geometry. 
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A generalised model for general end mills similar to the representation used 

by APT (Automatically Programmed Tools) and Computer-Aided 

Design/Manufacturing (CAD/CAM) systems have been reported by several 

studies (Engin 2001a&b; Gradisek, 2004). In these studies the geometry of the 

end milling tool was fully defined analytically, which often serves the beginning 

of recent studies into cutting force modelling. The model by Gradisek et al. (2004) 

is detailed in this thesis for the tool used through the course of this work. 

2.2. Cutting Force Modelling 

The prediction of the cutting forces usually serves as the beginning of many 

studies as most problems in metal cutting are linked to or originate from the 

cutting forces. There have been different attempts and models proposed to model 

the cutting forces in milling. 

One of the very first studies of milling cutting forces was by Sawin (1926), 

where expressions for the milling forces were defined in terms of the cutting 

coefficient; though for the upmilling case he also gave an expression similar to 

Martellotti for the uncut chip thickness. The study gave different examples 

however with no experimental validation. Due to the large quantity of sampled 

data and its practicality, experimental methods to predict cutting force are less 

preferred compared to analytical or semi-analytical methods. One of the first 

comprehensive analytical studies into milling cutting force modelling and 

prediction for slab and face milling processes was by Sabberwal and 

Koenigsberger (Koenigsberger, 1961; Sabberwal, 1961). The cutting force 

coefficient, termed as the ‘specific cutting pressure’ was experimentally shown to 

be a function of the chip thickness using the instantaneous tangential force and 

uncut chip area. Cutting force models that utilise experimentally calibrated cutting 

force coefficients are generally known as ‘mechanistic’ models. A similar model 

was used by Tlusty and MacNeil (1975) in their study of cutting force prediction 

during: the entry of the tool into cut (transient state), full engagement (steady 

state) and also the time delay experienced between consecutive engagement. They 

also proposed defining the radial force as a function of the tangential force, which 

reduces the cutting force coefficients required to just one. Kline et al. (1982a, 
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1982b) later proposed a mechanistic approach to extracting the exponential 

coefficients and predicting the cutting force by discretising the tool into disk 

elements along the tool axis. Other studies using the exponential mechanistic 

force model are reported in (Devor, 1980; Sutherland, 1986; Altintas, 1991). In 

opposition to the mechanistic model is the mechanics force model, in which the 

cutting force coefficients are obtained using the oblique mechanics theory. This 

has also been adopted in numerous studies (Brown, 1964; Armarego, 1985; 

Armarego, 1989; Budak, 1996). Brown and Armarego (1964) showed that the 

force coefficients can be split into two types: cutting force coefficient and edge 

force coefficient. By splitting the coefficients they become constants and not a 

function of the uncut chip thickness. 

When predicting the cutting forces in milling, better accuracy is acquired 

when tool deflections and runout are modelled. The modelling of tool deflections 

and runout, also allows for the prediction of surface accuracy for given cutting 

conditions. Perhaps the earliest studies to consider tool deflections, tool runout 

and surface accuracy were made at the National Twist Drill and Tool Co. (Kline, 

1982b), during which the surface accuracy and tool deflections were measured 

experimentally. It was deduced that in up or conventional milling, the tool always 

deflected towards the workpiece thereby over-engaging the workpiece and vice 

versa for down or climb milling. Fujii (1979) later studied the effect of tool and 

workpiece deflections on surface errors by predicting the surface error profile 

using measured tool and workpiece deflection data. Following their developed 

mechanistic exponential force model in (Devor, 1980), Kline et al. further 

developed the model to include tool and workpiece deflections hence surface error 

predictions (Kline, 1982b). This was possibly one of the first studies to predict 

tool and workpiece deflections using Finite Element Method (FEM). Their study 

was presented with experimental comparisons. In the model, the cutting forces are 

first predicted assuming a rigid tool-workpiece system and then surface error 

predictions are conducted. Kline (1983) later developed a mathematical model for 

the cutter runout which again was based on the mechanistic exponential force 

model previously proposed in (Kline, 1982a, 1982b). The expressions defining the 

tool runout were presented and included in the mechanistic force model with 

experimental validations; although the cutting forces were still predicted assuming 
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a rigid tool-workpiece system. In a later study, attempts were made to incorporate 

the inherent flexibility of the system in the cutting forces and surface error 

predictions (Sutherland, 1986). In this study, Tlusty’s dynamic chip thickness 

regeneration model (Tlusty, 1981) was used to obtain improved chip thickness 

prediction. The mechanics force model in which the coefficients are split into 

cutting and edge force coefficients was later adapted to include tool runout by 

Armarego in an ongoing study reported in (Armarego, 1989, 1991). Montgomery 

and Altintas (1991) later made an attempt to model the milling process, where the 

system’s kinematics is used to define the cutter and workpiece motion. Apart from 

its complexity, the model’s draw back is in its inability to accurately model the 

friction on the cutting edge and both the rake and flank faces of the cutter. Ismail 

et al. (1993) presented a mechanistic exponential force model to predict the 

surface finish whilst including the effects of flank wear and tool dynamics. 

The studies have so far been on face and peripheral milling using flat end 

mills. Perhaps one of the first studies to present a force model for ball end mill 

was by Koch et al. (1990). They developed a Computer-Aided Engineering (CAE) 

Module to calculate the cutting forces in 3-axis milling using both a flat end mill 

and a ball-end mill; although without experimental validations. Yang and Park 

(1991) studied the prediction of the cutting forces for ball end mills using plane 

rake faces. The series of plane rake faces are modelled as oblique cutting edges. 

Feng et al. (1994) developed the mechanistic exponential force model, using the 

discretization approach by Kline (1982a) to model the cutting forces for a ball end 

mill. They also developed a simplified cutter runout model to include the effects 

of the cutter axis offset on the undeformed chip geometry. Lim et al. (1993, 1995) 

used this model to simulate the surface errors, where the cutter or tool holder 

deflections were modelled using cantilever beam theory. Sim and Yang also 

modelled the cutting force in ball-end milling using the mechanistic force model, 

whilst taking account of cutter deflections through the equilibrium equation (Sim, 

1993). Ramaraj and Eleftheriou (1995) modelled the cutting forces for a tapered 

end mill using the kinematics and analysis of the shearing process. Tai and Fuh 

(1995) used the intersection of a spherical surface and a skew plane to define the 

cutting edge and used the oblique cutting theory to model the force system in ball 

end milling, whilst including the tool axis offset. The cutting force components on 
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the oblique edge were modelled using the energy method. Altintas and Lee (1996) 

used the oblique cutting edge theory to model the cutting force for a general 

helical end mill, including dynamic vibrations. The cutting force model used is 

similar to the mechanics force model by Armarego (1989). Yucesan and Altintas 

used a semi-mechanistic model similar to the model presented by Yucesan et al. 

(1994), where pressure and friction on the cutting edge were modelled using 

cutting force coefficients that were dependent on the cutter geometry and the feed-

rate. The approach used to model the tool geometry and the definition for the 

cutting edge length proposed in this model (Yucesan, 1996) was later used by 

Engin and Altintas along with the CAD/CAM system of defining the envelope of 

the milling cutter (Engin, 1999a&b; Altintas, 2001). In these studies the modelling 

of the cutter was generalised for different end milling tools. Altintas (2000) later 

adapted this model to the cutting force model by Armarego (1989) for flat end 

mills. After this, Gradisek (2004) adapted the geometry model to Armarego’s 

(1989) cutting force model for general end milling tools, where they presented 

how to extract the six (cutting and edge) force coefficients. 

Yun and Cho (2000, 2001) later proposed an approach to extract 

exponential cutting force coefficients that are dependent only on the uncut chip 

thickness. This approach includes the runout parameter of the cutter. The 

advantage the exponential force model has over the linear edge force model is 

seen in this study. The main complication is obtaining the exponential cutting 

force coefficients as a function of only the uncut chip thickness. The size effects 

on the cutting force coefficient was obtained by re-scaling the uncut chip 

thickness using the minimum and maximum uncut chip thicknesses analytically 

predicted from the uncut chip model. The applications of the proposed approach 

were later presented (Ko, 2002; Yun, 2002a; Yun, 2002b) and applied to ball-end 

milling (Ko, 2004) with experimental validations presented. Liu et al. (2002a, 

2004) have presented an improved cutting force model based on the oblique 

cutting theory for peripheral milling, which includes the size effects and the 

influence of the effective rake angle. The exponential tangential cutting force 

coefficient was modelled using the initial total cutting energy per unit volume in 

the oblique cutting theory. This improved cutting force model was later applied to 

ball-end milling (Liu, 2005a). 
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In an attempt for a much faster and efficient approach to calibrating the 

cutting force coefficients, Wan et al. presented an approach that includes the tool 

runout when calibrating exponential cutting force coefficients (Wan, 2006), 

Adetoro and Wen (2008, 2009a) presented an FEM approach to calibrating cutting 

force coefficients. In the study carried out by Wan et al. it was shown that the 

cutting forces can be separated into a nominal component with no runout 

influence and perturbation component influenced by the cutter runout. The FEM 

approach presented by Adetoro et al. (2009a) is discussed in the Chapter 3. 

In this thesis, two different force models are proposed. The first is the FEM 

approach proposed by Adetoro and Wen (2009a). This approach aims to extract 

both the linear edge force and exponential cutting force coefficients solely through 

the use of FEM simulations. The second is an improvement on the already 

developed linear edge force model. This improvement aims to improve the 

accuracy of the model by taking into account the nonlinear relationship between 

the cutting force coefficients and the uncut chip thickness. 

2.3. Dynamic Metal Cutting Modelling 

In order to fully analyse and study different problems encountered in 

milling, the dynamic nature must be modelled. There have been numerous studies 

on dynamic modelling of milling with an ultimate aim to create a unified model 

that would fully incorporate all dynamic aspects both in the workpiece and the 

tool. These studies have however been met with some complications or the other 

that demand the use of various assumptions. Much like in dynamic orthogonal 

cutting in dynamic milling, each tooth is removing material from an undulated 

surface which was generated by the previous tooth due to both tool and workpiece 

vibrations as shown in Figure 2.2. These vibrations would always exist due to the 

intrinsic stiffness of both structures; however the aim is to keep the vibrations 

minimal and stable or constant. Therefore the tool’s vibration at the previous pass 

had an amplitude of  (outer modulation) while the current tool is vibrating with 

an amplitude of 

0z

z (inner modulation). It is the analysis of this model that has been 

the topic of many of the early studies like the ones reported in (Albrecht, 1962; 

Klegg, 1965; Wallace, 1965, 1966; Das, 1967; Knight, 1970; Srinivasan, 1978a). 
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Figure 2.2 – Dynamic milling model. 

Therefore the transfer function of the cutting process (in Figure 2.2) is 

defined by superposition of two processes that contribute to the cutting force; the 

first being wave generation (the creation of new undulations on the machined 

surface trailing behind the tool) and the second being wave removal (the 

machining of old undulations created by previous cut. An expression for the 

tangential and normal forces was proposed by Peters et al. (1971) and can be 

defined as, 

( )0zKzKaF dodin +=  

( )0zKzKaF cocit +=  

where  and  are the normal and tangential cutting forces,  is the width of 

the cut perpendicular to the 2-D plane in Figure 2.2.,  and  are called the 

direct and cross inner modulation ‘‘Dynamic Cutting Force Coefficients’’ 

(DCFC), while  and  are the direct and cross outer modulation DCFCs. 

The dynamic cutting force coefficients are simply the proportionality constant 

between the forces and the depth of cut  and their experimental extraction has 

been the topic of several studies reported in (Tobias, 1965; Klegg, 1965; Goel, 

1967; Kals, 1971; Peters, 1971; Srinivasan, 1978b), while attempts to obtain them 
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analytically are reported in (Sisson, 1969 and Wu, 1989). The wavelength λ  

shown in Figure 2.2 is expressed by Tlusty (1978) as, 

vf
v

=λ  

where  is the cutting speed, and  is the vibration frequency. v vf

At the early stages of research into the problem of chatter, there were some 

misconceptions as to what process was responsible for the onset of instability. 

One of the early studies that attempted to explain the source of chatter was by 

Arnold (1946), in which he considered the existence of negative damping to be 

the only source for chatter to occur. This comes from the variation of the rake 

angle due to the vibrating tool and changing cutting velocity directions (Tlusty, 

1978). The oscillation of the shear angle observed by Knight (1970) was 

considered as the source of chatter by Sarnicola (1973) due to its effects on the 

cutting forces. The shear plane is shown in Figure 2.2 while the shear angle is the 

angle this plane makes with the direction of the tool. The oscillation of the shear 

angle is owing to the undulations left on the surface due to vibrations. Nigm and 

Sadek (1977) carried out experimental studies on the variations of the shear plane 

and the dynamic cutting coefficient with various cutting conditions. Their results 

show that the magnitude of the shear plane oscillation (defined as the change in 

shear angle divided by the change in the uncut chip thickness, ) decreased with 

the increase in feed, cutting speed and also the rake angle for both wave 

generation (inner modulation) and wave removal (outer modulation). The uncut 

chip thickness is shown in Figure 2.1, while the deformed chip thickness is 

identified as . Although the relief angle 

h

dh flankγ  (or clearance angle) shown in 

Figure 2.2, plays no role in shear angle oscillation, it however plays an important 

role in another occurrence known as ‘‘process damping’’. The effect relief angle, 

effγ  varies as the tool vibrates as seen in Figure 2.2 and if the tool is imagined to 

continue in the path traced out ahead of it, the effective relief angle will start to 

decrease after the tool reaches its maximum amplitude. As the relief angle 

decreases, the normal force acting on the tool increases and this effect is known as 

process damping (Tlusty, 1978). It reaches a minimum (hence maximum process 
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damping) at the middle of the downward slope and a maximum at the middle of 

the upward slope. This effect of this on the cutting process stability has been 

considered by Kegg, (1965) and Sisson and Kegg (1969), although the effects of 

the process damping diminishes as the cutting speed increases (Tlusty, 1978). 

More recently, Liu et al. (2002b) proposed an improved dynamic cutting 

force model for peripheral milling. This model included the size effect of the 

undeformed chip thickness and the influence of the effective rake angle. Their 

study also showed how the cutting force coefficients can be extracted from 

experimental results, and case studies of the effect of the cutting conditions on the 

cutting forces with an aim to improve dimensional or surface form errors. In a 

study later carried out by Liu and Cheng (2005b), the improved cutting force 

model developed in (Liu, 2002a) was used along with system’s identified transfer 

function to predict the dynamic cutting forces, vibrations and surface finish. The 

simulations were carried out using a developed Simulink program, which 

modelled the dynamic deflections of both the cutter and the workpiece; while Luo 

et al (2005) proposed a new modelling approach, which uses a developed 

Simulink program to model the dynamic cutting process. 

 
Figure 2.3 – Bad surface finish due to chatter marks. 
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2.4. Chatter Stability Modelling 

The development of chatter during milling operations is so troublesome that 

it has been the main topic of studies over the past 5 decades. Chatter causes the 

machinist all kinds of trouble including bad surface finish from teeth or chatter 

marks (Figure 2.3), damages to the spindle-tool assembly, inefficiency through 

lost labour hours and wasted materials and so on. It was stated much earlier into 

the studies in metal cutting process by Taylor (1907) that chatter is the most 

obscure and delicate of all problems facing the machinist. 

In the milling process, forces are induced at each of the cutter teeth in 

contact with the workpiece and these forces in turn excite the machine-tool and 

workpiece structure. Due to the inherent feedback that exists between the cutting 

forces and the structures deflection, there are conditions under which this system 

becomes unstable. This instability leads to a condition known as self-excited 

chatter. Once chatter develops the chip load that is cut by the tool becomes 

periodically greater than the intended chip load (by set cutting conditions), which 

inevitably leads to cutting force peaks increasing (some times twice as much) 

beyond their nominal peaks within a very short time. It is this sudden increase that 

could possibly lead to tool and machine damages. Although the studies cited in 

section 2.3 tried to explain the source of chatter, the main aim was to understand 

the dynamic cutting process and the effects the cutting conditions have on the 

process. Following the early assumption that the existence of negative damping 

was a necessary condition and only source for chatter, were the two simultaneous 

pioneering discoveries by Tobias (1958) and Tlusty (1963). They recognized that 

the most important sources of self-excitation, regeneration and mode coupling 

were associated with the structural dynamics of the machine tool-workpiece 

system and the feedback response between subsequent cuts. At this early stage, 

the stability lobes approach that is widely used by researches to predict the stable 

margin was also established by Tobias (1958); while Tlusty and Polacek obtained 

the classical definition of chatter free axial depth of cut,  

[ ]min
lim Re2 GK

a
s

=
1  
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where  is the specified cutting force coefficient, sK [ ]minRe G  is the minimum 

value of the real part of the structure’s transfer function in the direction normal to 

the machined surface. This was later improved by Tlusty (1967) to include the 

effect of the spindle speed on the chatter frequency (‘lobbing effect’). Other 

studies on the stability of metal cutting were reported by Merritt (1965). 

Though, a pioneering research, the stability models by Tobias and Tlusty are 

only applicable to orthogonal metal cutting (Figure 2.2) where the directional 

dynamic milling coefficients are constant and not periodic. This is quite the 

contrary in milling due to the rotating cuter with multiple teeth. In order to 

accommodate this directional dynamic milling coefficients, time domain 

simulation of the milling process was introduced by Tlusty (1981, 1983). Slavicek 

(1965) and Vanherck (1967) made the assumption that all the cutter teeth have a 

constant directional orientation in their study of the effect of irregular pitch on the 

stability. Sridhar et al. (1968a, 1968b) and Hohn (1968) later carried out an in-

depth study in which they introduced time-varying directional coefficients in their 

chatter stability analysis. They used the system’s state transition matrix in their 

stability model, which helps to eliminate the periodic and time delay terms. Optiz 

et al. (1968, 1970) used an average value of the periodic directional coefficients in 

the analysis. Tlusty (1970) made an attempt to apply the orthogonal model to the 

milling process by assuming the teeth of the tool had equal pitch, was 

simultaneously in cut and that the motion was rectilinear with constant depth of 

cut. The Nyquist criterion was used by Minis and Yanushevsky (1990, 1993) and 

Lee et al. (1991a, 1991b) to obtain the stability limits. Lee et al. used the mean 

value method to replace the time varying directional coefficients by a constant. Up 

until this point there existed no proposed analytical approach to predicting the 

stability margin for milling, whilst respecting the varying directional dynamic 

milling coefficients. 

Following the in-depth work by Budak, (1994), Altintas and Budak (1995, 

1995, 1998, 1999) later proposed an analytic approach in which the zeroth order 

term in the Fourier series expansion (single frequency solution or zeroth order 

approximation) of the time varying coefficients was adopted. A similar model was 

later used by Altintas et al. (1999), where they proposed an average scheme of the 
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immersion angle (refer to Chapter 5). The analytical model was later extended to 

include three directions by Altintas (2001), where the axial immersion angle was 

assumed to be constant. Except for flat end mills however, the axial immersion 

angle, is a function of the axial depth of cut. Campa et al. (2007) later proposed an 

averaging approach to calculating the axial immersion angle in order to solve the 

stability model analytically. However, the axial immersion angle was still 

assumed to be a constant. 

Of recent, the focus of researchers is more on the possible presence of 

additional lobes around high spindle speed ranges as identified by Davies et al. 

(2000, 2002). This was following his study on the impact dynamics of thin-walled 

structures (1996), where they investigated the effects of impact dynamics in the 

milling of thin-walled component. The presence of additional lobes can be 

effective when milling thin webs, where the dynamics are dominant in one 

direction and/or when the radial depth of cut is very small, thereby causing a 

highly intermittent milling process and exhibiting a significant number of tooth 

passing frequency harmonics. These additional lobes are due to period doubling or 

flip bifurcation. While the mono-frequency solution only predicts quasi-periodic 

chatter due to Hopf bifurcation, the harmonics of the tooth passing frequencies 

would have to be considered in order to predict flip bifurcations as presented by 

Budak and Altintas (1998), Merdol and Altintas (2004) and other studies on flip 

bifurcation reported in (Insperger, 2000; Insperger, 2004; Stepan, 2005; Gradisek, 

2005). Merdol and Altintas (2004) used the approach proposed by Minis and 

Yanushevsky (1993) to model the added lobes due to highly intermittent cutting 

process. Zatarain et al. (2006) studied the influence the helix angle has on chatter 

stability and the helix angle was shown to reduce the importance of higher order 

harmonics; while Insperger (2008) recently studied the effect the tool runout has 

on the chatter frequency. 

There are always some levels of assumptions made in research to simplify 

models to a point where solutions can be obtained at a reasonable cost. This has 

obviously been employed in the studies reviewed. However researchers are 

reviewing these assumptions in an attempt to improve and eliminate discrepancies 

often observed in obtained results. Amongst these assumptions are, 
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 The system’s transfer function: To analytically predict the stable region the 

dynamic parameters identified at the cutter-workpiece contact zone are used. 

The classic approach to obtaining the dynamic parameters is through impact 

tests. Unlike in tool chatter, the dynamic parameters are not constant along 

the workpiece and are constantly changing as material is removed and the 

geometry changes. Attempts were made by Thevenot (2006) to use this 

varying dynamics in thin wall machining to initiate the variation of the 

spindle speed along the workpiece in order to improve surface finish. The 

tendency in this approach however is for new marks to be left on the surface 

due to the change in cutting conditions as seen from their experimental 

results. Budak considered the variations of the dynamics of the cutter and 

the workpiece along the axial direction (Budak, 1995, 1998). Seguy et al. 

(2008) just recently carried out a study to include the varying dynamics 

along a thin wall and thin floor section, although the results showed certain 

discrepancies which could have arisen from the assumptions made. It is 

however clear in thin wall machining that it is insufficient to assume the 

dynamics of the workpiece are constant, which was the case in previous 

studies. An FEM approach presented by Adetoro (2009b, 2009g) was used 

to incorporate this changing dynamics in the stability margin prediction by 

Adetoro et al. (2009f). Their results were validated with very good 

agreement with experimental results as shown in Chapter 6. 

 The cutting force coefficients: In all the previous studies, the cutting force 

coefficients used in modelling the cutting force were assumed to be constant 

along with the axial immersion angle for the prediction of stable conditions. 

However the cutting force coefficients are well known to be a function of 

the axial depth of cut as reported by (Lim, 1995; Gadalla, 1997; Engin, 

1999a&b, 2001a&b; Altintas, 2000, 2001; Gradisek, 2004), where the 

calibrated coefficients are generally fitted quite accurately with a 

polynomial expression. Adetoro et al. (2009e) recently proposed some 

modifications to the stability lobe model by Altintas (2001). The 

modifications allow for the inclusion of the nonlinear nature of the cutting 

force coefficients and the axial immersion angle along the axial depth of cut 
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in the prediction of more accurate stable cutting conditions. The results were 

obtained using a numerical approach. 

In this thesis, a novel approach to predicting structural damping parameters 

is presented. This novel approach was proposed by Adetoro (2009c, 2009d) and it 

identifies certain trends in the effect the geometry has on the damping parameters. 

The possibility to predict the structural damping would obviously eliminate the 

need for experimental methods. The FEM approach to predicting the structure’s 

transfer function presented by (Adetoro, 2009b, 2009g) is discussed. To fully take 

advantage of the damping prediction approach especially in thin wall machining, 

this FEM approach is used. This shows how the stable margins for subsequent 

walls can be predicted without the need for experimental impact testing. The 

improvements to the analytical stability lobes model proposed by Adetoro et al. 

(2009e) are later presented. The improvement to the stability lobe model 

eliminates the assumption that the cutting force coefficients and axial immersion 

angles are constant. A quick numerical approach to obtaining a solution for the 

model was proposed and presented here. Later on in this thesis, the FEM approach 

to modelling nonlinear thin wall dynamics by Adetoro et al. (2009f) is discussed. 

2.5. Finite Element Modelling 

In contrast to the analytical approach is the FEM approach to simulate the 

milling process and with the development of the finite element method, 

orthogonal and oblique cutting processes have been extensively analysed using 

FEM based techniques. FEM simulations are generally based on three main 

formulations. The first of these is the Total or Updated Lagrangian Formulation, 

which was the basis of Klamecki’s study (1973). He was the first to introduce 

FEM technique into machining, using a three-dimensional elastic-plastic finite 

element method. This study was however limited to just the initial stages of chip 

formation. Similarly, Shirakashi and Usui (1974) applied the elastic-plastic finite 

element method to orthogonal metal cutting process. In this, they modified the 

shape of the chip until it was consistent with the plastic flow generated. Iwata 

(1984) also used a rigid-plastic finite element method to consider the effect of 

friction between the tool rake and face. In their model the shape of the model was 
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predicted and modified repeatedly based on the distribution of flow stress. The 

first analysis to simulate the movement of the tool into the workpiece and 

continuous chip formation along a predefined ‘‘parting line’’ was by Strenkowski 

and Carroll (1985). They used a finite element program (‘NIKE2D’) adopting the 

‘‘Updated-Lagrangian’’ formulation (ULF) and also proposed a separation 

criterion to simulate chip formation. This separation criterion was based on the 

effective plastic strain (critical limit of 0.5) at the tool tip region of the workpiece. 

Strenkowski and Carroll found that the separation criterion value used had a 

significant effect on the residual stress in the workpiece and little effect on the 

chip geometry and the cutting force. Lee and Wilkening (1982) were however the 

first to attempt chip formation by the use of an element death option in the model, 

but this model was not realistic as friction in the secondary shear zone was 

ignored. 

Shih et al. (1990) carried out a study on the effects, elasticity, 

viscoplasticity, temperature, strain-rate and large strain have on the stress-strain 

relationship and the effects large friction have on the tool-chip interface. Their 

study was also based on the Updated-Lagrangian formulation. The separation 

criterion used was based on the distance between the node connecting the chip and 

workpiece (crack tip) and the tool tip. This type of criterion has been adopted in a 

number of studies to model orthogonal metal cutting, however with different 

values used (Shih, 1996; Mamalis, 2001; Baker, 2002; Carrino, 2003; Rosa, 

2007). Shet et al. (2000) simulated orthogonal metal cutting using a separation 

criterion based on a critical stress. Lei, et al. (1999) used a crack length versus 

time separation criterion, based on the movement of the tool. Ceretti et al. (1996) 

used an Implicit Lagrangian FE code (‘DEFORM-2D’) to study continuous and 

segmented chip formation. In their model, a damage criterion similar to that of 

Lee and Wilkening (1982) was used, where the damaged element is removed from 

the domain. The downside of this approach is that the removal of elements 

corresponds to loss of mass. The only way to minimize this would be to have very 

small element sizes along the tool path, which would come at a higher 

computational cost. Zhang (1999) carried out a detailed study on the separation 

criteria used by different researchers in their studies. The study showed that none 

 - 45 - 



Chapter 2 – Literature Review 
 

of the existing criteria is universal and deduced that there is the need to develop a 

comprehensive criterion to ensure consistency in FEM models and results. 

To avoid the use of separation criteria while using a Lagrangian 

formulation, the cutting action can be simulated as the continuous indentation and 

plastic flow of the material around the tool. The tool is fed into the workpiece and 

as soon as the elements become distorted, a re-mesh is carried out. The point of 

re-mesh is determined by a set of specified criteria. This method was used by 

Sekhon and Chenot (1993), Madhavan et al. (2000) and Bil et al. (2004). One of 

the main problems with this approach is its high computational cost. Frequent 

remeshing and a very high mesh gradation is required to minimize the errors 

(Baker, 2002). Bil et al. compared three different finite elements models of 

orthogonal metal cutting with experimental data. Two of these models used 

continuous remeshing and the third was based on a damage criterion. While it was 

noted that the friction parameter drastically affects the results, it was also noted 

that even though the re-meshing approach produced better results, there was still 

the need for a better separation criterion. 

Opposite to the Lagrangian formulation, is the Eulerian formulation, which 

is more suitable for fluid flow problems involving a control volume where the 

mesh is spatially fixed. However, its first application to metal cutting was reported 

by Usui et al. (1978) and Lajczok (1980). In the study by Lajczok, the tool forces 

and geometry obtained experimentally were applied to the workpiece surface, 

thereby omitting the chip in the model. The residual stress and plastic deformation 

zone in the workpiece were validated experimentally. A similar approach was 

used by Natarajan and Jeelani (1983) in modelling the residual stresses in the 

workpiece. Strenkowski and Moon (1990) analysed a steady-state orthogonal 

cutting with the capability to predict chip geometry and chip-tool contact length. 

In their simulation, the mesh was not entirely spatially fixed as they employed a 

method proposed by Zienkiewicz et al. (1978) to obtain the shape of the chip. In 

this method, the free surface of the chip was calculated by adjusting its location 

(through an iterative process) to enforce a zero normal surface velocity 

component. Also based on an Eulerian formulation, Moriwaki et al. (1993) 

developed a rigid-plastic finite element model to examine the effects of the tool 

edge radius on the depth of cut in the micro cutting process. Other studies carried 
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out with the use of pure Eulerian formulation were reported by Strenkowski et al. 

(2002) and Athavale (1997). 

What makes the Lagrangian formulation very attractive in modelling metal 

cutting is that the mesh covers and moves together with the material. Therefore, 

no a priori assumption of the chip is required because the chip develops as the tool 

progresses through the workpiece. Moreover, the analysis can model the 

indentation, incipient and the steady state stages in metal cutting. At the same 

time, this formulation also suffers some disadvantages, the most important of 

which is the need for a separation criterion. The use of separation criterion to 

model chip formation is not reliable, as there exists no universal and consistent 

criterion as explained by Zhang (1999). Not only are there different types/methods 

of applying the separation criteria, there is also no physical indication as to what 

criterion value is to be used.  Another factor concerning the use of separation 

criterion is the use of a parting line. As the simulation progresses, the distortion of 

the nodes along the parting line can cause instabilities in the algorithm. This is 

because the separation criteria approach works best when the nodes are precisely 

in front of the approaching tool. A similar problem was experienced by Bil et al. 

when using damage models for chip separation (Bil, 2004).  Furthermore, the 

parting line restricts the types of tools used in the model to sharp edged tools 

(Movahhedy, 2000). Another major disadvantage of using the Lagrangian 

formulation is that, as the material is highly sheared in reality on passing through 

the shear plane or primary shear zone, so are the model elements, thereby causing 

highly distorted elements. The Eulerian formulation on the other hand, does not 

suffer the same disadvantages as the Lagrangian formulation. In addition, because 

the material flows into the model, the domain can be designed to include only the 

area near the shear zone, thereby improving on computational cost. The only 

major disadvantage to this approach is that, knowledge of the volume of the 

domain (chip) and its precise boundary conditions are required a priori. 

It is due to the above shortcomings that the third formulation called 

Arbitrary Lagrangian-Eulerian (ALE) formulation is an ideal formulation to adopt 

as it combines the advantages of pure Lagrangian and pure Eulerian formulations. 

Frank and Lazarus (1964) and Noh (1964) first proposed it, for two-dimensional 

hydrodynamic problems using finite difference schemes. It was called Coupled or 
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Mixed Eulerian-Lagrangian method or code at the time and was later introduced 

to finite element method by Donea et al. (1977). The ALE formulation has been 

used in several applications, mainly involving large deformations (e.g. metal 

forming, metal cutting and metal forging). Some studies using ALE to model 

metal cutting are reported by Ozel et al (2005, 2007). The ALE formulation 

combines the advantages of both the Lagrangian and Eulerian formulations, 

rendering it a more versatile formulation; as the main advantages of Lagrangian 

are also the main disadvantages of the Eulerian and vice versa. 

So far the studies have been focused on analysing orthogonal metal cutting 

and turning. Ozel and Altan (2000) modelled flat end milling using a single insert 

flat end mill. They had to split the tool cutting edges into two regions (primary 

and secondary cutting edges). Pantale et al. (2004) presented a three-dimensional 

oblique model to simulate the milling process using damage criterion (Johnson–

Cook’s). A full three-dimensional simulation was briefly reported, however it was 

not validated and no results were presented, as more investigation was needed.  

Recently, an FEM approach to predicting the cutting force coefficients 

discussed in section 2.2 was simultaneously proposed by Gonzalo et al. (2009) 

and Adetoro and Wen (2009a). The approach by Adetoro and Wen is discussed in 

depth in this thesis in Chapter 3. This novel simulation approach uses a general 

FE commercial package (Abaqus Explicit) to simulate flat-end milling process. 

Chapter 3 then follows on to propose an efficient method to extract the cutting 

force coefficient for both the linear edge and exponential force models discussed 

in section 2.2. 



V{tÑàxÜ F 

Cutting Forces 

3.1. Introduction 

The accurate prediction of cutting forces in milling is essential when 

analysing and predicting machine-tool vibrations through workpiece and tool 

deflections, tool wear, workpiece surface quality, geometrical accuracy, onset 

and/or possible regeneration of chatter. The prediction of the cutting forces is 

equally important at the tool design stage as it aids the selection of optimum tool 

design concepts, modifications and materials. The prediction of cutting forces 

prediction is also essential for the jig and fixture strength requirements and for 

determining power requirements, hence the majority of studies have been focused 

on the accurate prediction of milling forces. In other studies, it would serve as the 

beginning as it is in this work. 

In the study carried out by Sawin (1926), the milling forces were defined in 

terms of cutting coefficients. Martellotti carried out an in depth study of the 

kinematics of milling, the tooth path during milling and chip formation 

(Martellotti, 1941). Tlusty and MacNeil (1975) later showed that further to 

assuming the tangential force is proportional to the chip load as presented by 

Koenigsberger and Sabberwal (1961), the radial force can be defined as 

proportional to the tangential force. This model is termed the exponential cutting 
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force model as it uses a single cutting force coefficient that is a variable of the 

uncut chip thickness due to the influence of the size effects, while Sabberwal 

proposed the exponential expression for the exponential cutting force coefficient 

(Sabberwal, 1961). Due to the finite sharpness of the tool as the chip thickness is 

reduced to zero, there will always be some cutting force due to the rubbing of this 

finite edge. Therefore the cutting force does not reduce proportionally to zero, 

rather it converges to some value, which is consequently observed as an infinite 

increase in the force coefficients, hence the term exponential. The value the 

cutting force converges to is dependent on the cutting edge radius and is known as 

the edge force. Therefore, the larger the edge radius (i.e. the bluntness) of the 

cutter, the larger the edge force becomes and the greater the size effect. For a 

perfectly sharp tool however, the edge force is zero as explained by (Boothroyd 

and Knight, 1989). Kline later proposed the discretisation of the tool into disk 

elements along its axis and the differential forces on each element are combined to 

give the total cutting force on the tool (Kline, 1982). 

Brown and Armarego later proposed the slitting of the cutting forces into 

edge/ploughing forces and cutting forces, characterised by edge and cutting force 

coefficients (Brown, 1964). This gives constant values for the coefficients that are 

independent of the uncut chip thickness. This force model was later termed the 

‘linear edge cutting force’ model. The tool geometry modelling and approach and 

the definition for the cutting edge length proposed Yucesan (Yucesan, 1996) was 

improved and well defined for different types of end mill shapes by Altintas and 

Engin (2001a&b). Gradisek et al. (Gradisek, 2004) later proposed an approach to 

extracting the cutting force coefficients mechanistically for a general end mill 

based on the force model by Brown and Armarego (Brown, 1964). An approach to 

extracting instantaneous/exponential cutting force coefficients and the runout 

parameters for general end milling process was presented by Wan et al. (Wan, 

2007). They separated the perturbation terms due to cutter runout in the cutting 

force model from the terms not influenced by the tool runout. 

In contrast to the analytical approach is the ‘Finite Element Method’ (FEM) 

approach to simulate the milling process. Orthogonal and oblique cutting 

processes have been extensively analysed using FEM based techniques. Studies 

using a Lagrangian mesh formulation are reported in (Klamecki, 1973; Shet, 
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2001; Baker, 2002; Carrino, 2003). While studies using an Eulerian mesh 

formulation are reported in (Usui, 1978; Lajczok, 1980; Strenkowski, 1990; 

Moriwaki, 1993). Arbitrary Lagrangian-Eulerian (ALE) mesh formulation was 

introduced to FEM by Donea et al., (Donea, 1997) where it was used to model 

processes involving large deformations. The ALE formulation combines 

advantages of both the Lagrangian and Eulerian formulations, rendering it a more 

versatile formulation. As it is known, the main advantages of Lagrangian are the 

main disadvantages of the Eulerian and vice versa. As a solution to the disputed 

separation criteria used in simulations using a Lagrangian mesh formulation, 

studies have been conducted using an ALE mesh formulation (Ozel, 2005, 2007). 

Recently, Finite Element Method approaches to extracting the cutting force 

coefficients have been reported by Gonzalo et al. (2008) using a Lagrangian mesh 

formulation and Adetoro and Wen (2009a) using an ALE mesh formulation. The 

later approach is discussed in-depth in the fourth section of this chapter. 

Thus this chapter is structured as follows; the geometry of a general end mill 

is described in the second section; the tool to be used during the course of this 

thesis is mechanistically calibrated in the third section and improvements to the 

linear edge force model are later presented; the FEM approach to extracting the 

coefficients for both the linear edge force and exponential force models is finally 

presented in the fourth section. 
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3.2. Geometry of a General End-Mill 

The generalised model for general end mills similar to the representation 

used by APT and CAD/CAM systems have been reported by several studies 

(Engin 2001a; Gradisek, 2004). Though only two types of end mill tools are used 

in this chapter, the model is summarised here for completion. The cutter’s 

envelope is defined by seven independent geometric parameters 

HRRRD zrc   and    ,  ,  ,  ,  , βα  as shown in Figure 3.1. Hence for a bull nose as 

used in this section, by following the convention{ }HRRRD zrc ,,,,,, βα  the tool 

can be is defined by . In order to predict the cutting force at a 

given point  along the cutting edge (Figure 3.2), the chip load and cutting force 

components (tangential, radial and axial), along with above defined cutter 

geometry are required. The point  along the cutting edge is defined by its 

elevation 

{ 5,5,5,20

P

}5,0,0,

P

z  (along the tool axis), radial distance ( )zr  (from the tool axis), axial 

immersion ( )zκ , and radial lag angle ( )zψ  (Figure 3.2). Where the axial 

immersion is defined as the angle between the tool axis and the normal to the 

cutting edge at point P  and the radial lag angle is angle between the tangential 

line at tool tip O  and line from point P  to the tool axis. 

Z

 
Figure 3.1. Geometry of a general end milling tool. 
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Y- Plane 

Z - Plane

 

Y

 

 
Figure 3.2. Tool dimensions and chip load. 
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A vector drawn from the cutter tip to point P  on the j -th cutting edge in 

cylindrical coordinates is defined (Engin, 2001a) as, 

( ) ( )( ) ( ), cossin,, jjjjjjjj zzrzyxz φφφφφ kjikjir ++=++=       (3.1) 

where, jφ  is the radial immersion angle of point P  on flute number j . With the 

first flute as the reference edge, the radial immersion angle of the j -th cutting 

edge at axial elevation  is expressed as, z

( ) ( ) ( ) , 1z zj p ψφφφ −−+=            (3.2) 

where, φ  is the immersion angle of the reference edge and pφ  is the pitch angle 

defined as Np πφ 2=  for a cutter of  uniformly spaced teeth. N

The distance  and radial lag angle ( )zr ( )zψ  are both a function of the geometry of 

the cutter. Hence the tool is divided into three different zones: cone, arc, and taper 

zones (Engin, 2001a) and corresponding expressions are summarised as follows: 

 Cone Zone 

( ) ( )

( ) ( ) 0

0

                                     ,
tan

log
cos
tan

                                ,
tan

iziz

zi
zzzr

=−=

==

ακ
αα

ψ
α      (3.3a) 
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     (3.3c) 

where zrzrzrc MMNNRRRz  and , , , , , , , , , βα  shown in Figure 3.1 and R  is the 

cutter radius, lead  is the lead distance of the tool,  is the helix angle at the small 

cone zone, which is assumed to be constant; the helix angle is shown in Figure 

3.3. 

0i

( ) ( )sψψ  and 0  corresponds to the lag angles for cutters grounded with a 

constant helix angle (with variable lead) and those grounded with constant lead 

(with variable helix angle) (Engin, 2001a). 

( )zi

z

Cutting Edges  
Figure 3.3. Helix angle of a general end milling tool. 
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3.3. Mechanistic Cutting Force Model 

In this section, the analytical modelling of the milling cutting force is 

presented. The ‘Linear Edge-Force’ mechanistic model is explained briefly and 

used in modelling the cutting force, with experimental results used to validate its 

accuracy. An improvement to the model is proposed which would better model 

nonlinear influence imposed by ‘size effects’. The model’s formulations are 

systematically given. 

3.3.1. Linear Edge-Force Model 

Based on Kline’s work (1982a, 1982b), the tool is discretized along the axis 

into segments,  as shown in Figure 3.2 and the differential tangential ( )  

radial  and axial  cutting forces acting on the infinitesimal cutting edge 

segment are given (Engin, 2001a) by, 

zd tFd ,

( rFd ) )( aFd

( ) ( ) ,d ,d,d bhKSKF jtctejtj κφκφ +=         (3.4a) 

( ) ( ) ,d ,d,d bhKSKF jrcrejrj κφκφ +=         (3.4b) 

( ) ( ) ,d ,d,d bhKSKF jacaejaj κφκφ +=         (3.4c) 

where, κsindd zb =  is the chip width,  is the length of the cutting edge, and Sd

jφ  is the radial immersion angle of the cutting edge j  as shown in Figure 3.2. 

The coefficients  are cutting force coefficients due to the shear force and  

are edge force coefficients due to the ploughing force of the tool edge and flank 

rubbing on the workpiece. 

cK• eK•

The undeformed chip thickness as defined by Martellotti (1941) can be 

expressed as, 

,sinsin κφ jtsh =             (3.5) 
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while the edge length  can be derived from equation (3.1) (Engin, 2001a) as, Sd

( ) ( )( ) ( )( ) ,ddrd 222 φφφφ zrrS ′+′+==          (3.6) 

where the differentials ( )φr′  and ( )φz′  are with respect to φ . 

The cutting forces in the cylindrical coordinates are transformed into global 

Cartesian coordinates (feed (X), normal, (Y) and axial (Z) directions defined in 

Figure 3.2) by multiplying by the transfer matrix, 
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     (3.7) 

Therefore the average milling forces for one tooth period, is defined as, 

 ( ) , d d z,d1  

 

 

 

2

1
∫ ∫= exit

start

z

z q
p

q zFF
φ

φ
φφ

φ
          (3.8) 

where, Np πφ 2= , zyxq ,,= , startφ  and exitφ  are the entry and exit radial 

immersion angles, respectively (Figure 3.4) and the discretization  is shown in 

Figure 3.2. 

zd

φ

 
Figure 3.4. Cutter’s entry and exit angles for downmilling. 
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If there is a helix angle, runout or the tool is not a flat end tool, then the chip 

load at the different disk segments are not the same. When there is a helix or 

corner radius, the analytical derivation of  in equation (3.4) is slightly more 

complicated. The tool used in this section has a fairly large helix angle and a 

corner radius. Gradisek proposed a uniformed approach to obtaining the cutting 

force coefficients for general end mill, which is adopted and summarised here. 

Sd

Following the first integration, equations (3.4) are simplified to, 
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where, parameters  and A B  are dependent on the tool geometry and differ along 

the tool axis for tool without a flat-end. These parameters are defined by the 

following integrals, 

( )( ) ( )( ) ( ) , d cos         , d sin         , d 2
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Numerical integration of the B  parameters would be required, if the tool is not a 

flat-end tool as explained by Gradisek et al. (2004). This is due to the complex 

nature of the edge length,  of the cutting segment, which varies with elevation 

. The instantaneous forces are then averaged over radial immersion angle 

yielding, 

Sd

z

,
0

1            

0

2131

332312

322213

1

1

1

2232

342415

352514

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ae

re

te

p

ac

rc

tc

p

t

z

y

x

K
K
K

BCBC
BCBCBC
BCBCBC

K
K
K

ACAC
ACACAC
ACACAC

s

F
F
F

φ

φ
      (3.11) 

 - 58 - 



Chapter 3 – Cutting Forces 

where, 
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The final step is to extract the six cutting coefficients in equation (3.11). 

There are however only 3 equations available. In order to obtain a closed-form 

expression for the cutting force coefficients, the relationship between the cutting 

force and the feed per tooth is used. As mentioned earlier, in mechanistic 

modelling the cutting force is assumed to be proportional to the chip load, hence 

chip thickness. Therefore in the case of milling it is assumed that the average 

cutting force per tooth is a linear function of the feed, . This is also dependent 

on the assumption that the deflections during the experiment are negligible and 

the cutting process is stable. Therefore, the average cutting force can be defined 

as, 

ts

,qetqcq FsFF +⋅=           (3.13) 

where,  ( )zyxq ,,=

Therefore equations (3.11) and (3.13) can be used to obtain a closed-form 

expression for the cutting force coefficients (Gradisek, 2004) as, 
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( ) ( )( )
( )( ) ,222
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where, 

,    (3.14f) 

Np
πφ 2

=  

Time D  omain Simulations 

Once the cutting coefficients have been obtained, they can be validated by 

g force for given cutting condition with 

experim

comparing the predicted cuttin

entally measured cutting forces. Although the coefficients were obtained 

using a spreadsheet program, running the mechanistic model would either require 

some programming or the use of available commercial software like CutPro. For 

this section, the mechanistic model was programmed using Fortran Language in 

order to validate the coefficients obtained using the approach presented by 

Gradisek (2004). The cutter geometry and cutting conditions are given in Table 

3.1. Apart from the discretisation along the tool axis, the time domain 

discretisation is in the terms of the rotation of the cutting edges about the cutter 

axis. A quick convergence study was carried out to identify the optimum 

discretisation gradation, whilst keeping the simulation timely efficient. The 

rotation in degrees of the cutting edges used was 0.5o, whilst the tool was 

discretized along the axis with a disc thickness 0.01% of the axial depth of cut.  

Table 3.1. Tool Geometry and Cutting Conditions 

Tool Radius (mm) 10.00 

Helix Angle (Degs) 54.39 

5.00 Corner Radius, R  (mm) c

rR  (mm) 5.00 

zR  (mm) 5.00 

H  (mm) 5.00 

βα ,  (Degs) 

Radial Immersion, rdoc (mm) 

Spindle Speed (rpm) 4420.0 

0.00 

10.00 
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The workpiece and tool were assumed to be perfectly rigid, thus no 

vibra simulations similar to sumption that the 

deflectio

The experiment to obtain the cutting force coefficient was carried out on a 

and 75kW, while the cutting 

force measurements were taken using a ‘‘Kistler dynamometer - 9255B’’ and 

samp

tions were modelled in the the as

ns are negligible. 

The Mechanistic Calibration Experiment 

‘‘Marwin MPS’’ with Steptec spindle 27,000 rpm 

led at a frequency of 50 kHz using a ‘‘LDS Sigma 90-8 scope’’. This 

sampling frequency meant data was sampled ever 0.5304o of tool rotation. The 

Kistler dynamometer has an ‘Fx’ and ‘Fy’ force range of -20kN to 20kN, ‘Fz’ 

force range of -10kN – 40kN and an accuracy of ±0.5%. The experiment was 

carried out using Alusol (5% concentration) mixed with deionised water coolants. 

The feedrates used are given in Appendix A and were repeated for all axial depths 

of cuts ranging from 0.5 to 6.0mm at intervals of 0.5mm. The spindle speed of 

4420rpm used in this experiment was based on the magnitudes of the transfer 

functions between the impact force and the dynamometer measurements in the 

principal directions, Y  obtained through a quick test known as ‘‘reliability test’’. 

The transfer function reflects the dynamic response of the force sensor, which is 

dependent on its dynamic properties. The reliability test is explained in Appendix 

A. The milling orient ion used was down-milling. 

Modelling and Experimental Assumptions 

at

The definition of chip thickness in equation (3.5) would be inaccurate if 

 and workpiece caused by 

vibrations. Therefore the cuttings conditions were carefully taken to ensure there 

was n

there is any relative displacement between the tool

o chatter and to minimize vibrations in the tool and workpiece. However 

there is always some level of vibration, which comes from mechanical vibrations 

caused by the machine and slight vibrations from the dynamic nature of the 

cutting process. These were assumed to be negligible. 
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The effects the coolant has on the cutting forces was neglected and not 

included in the model. The coolant was delivered to the cutting region through 

jets, which would have an impact on the cutting forces measured by the 

dynam

For the axial depth of cut of 5.5mm, the average cutting forces are plotted 

in Figure 3.5. It can be seen that the assumption that 

the average cutting force per tooth is a linear function of the feed,  is of 

the shearing of the material). 

ometer. The coolant would also change the temperature of the workpiece 

and the tool through heat transfer. The effect this has on the machining process 

(hence cutting forces) was not included in the model. 

Experimental Results 

against the feeds per tooth 

t

satisfactory accuracy, although yF  is seen to fit more accurately than xF  and zF . 

From these results, the six cutting force coefficients were derived using the 

approach presented by Gradisek (Gradisek, 2004). The point of intersection at - 

axis is used to extract the edge force coefficients (due to the ploughing forces) 

while the slope of the graph is used to extract the cutting force coefficients (due to 

s

y
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Figure 3.5. Distribution of average measured cutting forces ( ) for 

5.5mm axial depth of cut. 
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The cutting force coefficients obtained for the different axial depths of cuts 

are shown in Table 3.2. These coefficients are plotted against axial depth of cut in 

Figures 3.6 – 3.11. The data is fitted using the least squares method to a 

polynomial expression as follows: 

     (3.15a) 

      (3.15b) 

     (3.15c) 

      (3.15d) 

e) 

      (3.15f) 

where,  is the axial depth of cut. 

red’ value is known as the coefficient of 

determination and it is the square of the data correlation coefficient (Edwards, 

1976). Its value ranges from 0 to 1, whe

Table 3.2. Mechanistically Calibrated Cu

Axial Depth of 
Cut (mm), 

Ktc 
(N/mm2) 

Kte 
(N/mm) (N

, 763.1157116.174904.14 2 +−= aaKtc

, 438.43520.7261.0 2 +−= aaKte

, 486.915282.560240.47 2 −+−= aaK rc

, 682.88082.29254.2 2 −+−= aaK re

, 504.976679.82360.13 2 +−−= aa      (3.15K ac

, 149.50020.0387.1 2 +−−= aaK ae

a

Plots of these polynomial fittings are shown in Figures 3.6 – 3.11. These 

polynomial expressions are essential when the cutting coefficients of any axial 

depth are required. The ‘R-squa

re 1 is for perfect curve fitting. 

tting Force Coefficients 

Krc 
/mm2) 

Kre 
(N/mm) 

Kac 
(N/mm2) 

Kae 
(N/mm) a  

0.50 981.697 32.550 -691.073 -70.800 880.899 44.867 
1.00 1088.489 45.195 
1.50 975.489 35.695 -146.049 -50.058 865.708 48.976 
2.00 867.092 29.704 
2.50 801.097 25.519 242.768 -28.240 655.208 40.384 
3.00 772.410 21.860 
3.50 703.360 22.402 433.296 -14.195 502.936 36.906 

 504.703 -11.289 488.636 29.436 
4.50 672.627 17.202 568.484 -7.990 385.403 28.664 

5.50 

-433.896 -72.246 936.369 55.764 

88.704 -37.148 739.643 44.362 

364.955 -22.105 586.352 37.275 

4.00 711.859 17.792

5.00 612.805 7.356 719.912 3.097 154.528 4.967 
657.990 9.317 758.064 3.929 93.674 5.179 

6.00 679.603 11.488 778.744 4.736 33.244 6.129 
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Figure 3.7. Tangential Edge Force Coefficient, . teK
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Figure 3.8. Radial Cutting Force Coefficient, . rcK
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Kre = -2.254a2 + 29.082a - 88.682
R2 = 0.9804
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Figure 3.9. Radial Edge Force Coefficient, reK . 
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Figure 3.10. Axial Cutting Force Coefficient, . acK
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Figure 3.11. Axial Edge Force Coefficient, . aeK
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The correlation coefficient gives the quality of a least squares fitting compared to 

the original data (Wolfram Research, 2008). The R-squared value is simply 

defined (Press, 1992) as, 

( )

( )
,1

2

2

2

∑

∑

−

−
−≡ n

i
ii

n

i
pii

yy

yy
R          (3.16) 

where,  is the original data, and  is the predicted data. Some discrepancies 

can be seen at the beginning (0.5mm and 1.0mm) and at the end (5.0mm and 

6.0mm). At the sm

are most likely from the tool coming out of cut due to the axial depth of cut being 

too small for a good engagement. After the 5.0mm axial depth of cut the cutting 

edge engaged now includes the part of the tool outside the corner radius (there is 

no taper zone) and it would appear that there seems to be a new trend evolving 

that would perhaps be better revealed by performing deeper tests and starting the 

curve fitting from 5.0mm data points. Hence the curve fitting for the data points 

0.5mm – 5.0mm is used in Chapters 5 and 6. 

Cutting Force Coefficient Validation 

The cutting force coefficients shown in Table 3.2 were used to predict the 

cutting forces at n p gram as shown 

 tool and the workpiece are rigid and d ring the 

simulations at these tool rotations the tooth completely rom the 

workpiece due to the tool geometry. In  

usually very small and 

be constantly engaged with the workpi

deflection. This is also noticeable in the measured  cuttin orces. The extra 

frequency apart from the tooth passing frequenc e ex ental force 

or workpiece vibration. 

iy piy

all axial depth of cuts of 0.5mm and 1.0mm, the discrepancies 

 different cutting conditions using the Fortra ro

in Figures 3.12 – 3.14 in comparison to respective measured cutting forces. The 

discrepancy in the trough of both the measured cutting forces yF  and zF  is due to 

the assumption that the u

 f disengaged

reality, there will always be (though

ece depending on the direction of the 

g f

perim

negligible) a static deflection, which can cause the tool to 

x

z

could be due to tool vibration. The simulations did not take into account any tool 

F

y in th F  
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Figure 3.12. Experimental and prediction forces for 2.5mm axial depth of cut and 

0.110mm feed per tooth. 
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Figure 3.13. Experimental and prediction forces for 5.0mm axial depth of cut and 

0.170mm feed per tooth. 
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Figure 3.14. Experimental and prediction forces for 6.0mm axial depth of cut and 

0.1850mm feed per tooth. 
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3.3.2. Higher Order / Non-Linear Edge-Force Model 

The mechanistic approach in the previous section assumes a linear 

relationship between the cutting force and feed (equation 3.13). However this is 

only accurate for an end tool with a perfectly sharp cutting edge. For a sharp tool 

having a good deep engagement, a very good linear relationship would be 

obtained. An example is shown in Figure 3.5, for a tool having an edge radius 

well below 10-20 microns. On the other hand, when the engagement is shallow or 

if the tool is very blunt this linear relationship would not be as accurate due to the 

influence of size effects (Boothroyd, 1975; Wan, 2007; Ranganath, 2007), which 

is discussed in more detail in the next . For cases where the size effects can 

not be ignored, the linear edge force model would give inaccurate results when 

used to predict cutting forces for varied cutting conditions, hence a nonlinear 

model is proposed. 

The mechanistic model can be improved by assuming a nonlinear 

relationship between the cutting force and the feed. Therefore equations (3.4 a, b 

& c) becomes, 

 section

( ) ( ) ( ) ( ) ,dd ,d ,d ,,d 1
2

2
3

3 SKzhKzhKzhKF tejtcjtcjtcjtj +++= κφκφκφκφ  (3.17a) 

( ) ( ) ( ) ( ) ,dd ,d ,,d 1
2

2
3

3 SKzhKzhKzhKF rejrcrcjrcjrj +++= κφκφκφ  (3.17b) d ,j κφ

( ) ( ) ( ) ( ) SKzhKzhKzhKF aejacjacjacjaj dd ,d ,d ,,d 1
2

2
3

3 +++= κφκφκφκφ  (3.17c) 

Therefore by following the same steps as the mechanistic model described in the 

previous section, the average milling force for one tooth period expressed as 

(equation 3.8), 

 ( )∫ ∫= exit

entry
q

p
q FF

φ

φ
φφ

φ
 

 

z 

z 

2

1

d z,d1  

This gives, 
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By assuming a nonlinear relationship between cutting force (using a third-

order polynomial expression), the average cutting force can be defined as, 

,1
2

2
3

3 qetqctqctqcq FsFsFsFF +⋅+⋅+⋅=        (3.20) 

where, . 

This can then be related to equations (3.19a – 3.19i), which finally yields 

( )zyxq ,,=

the cutting coefficients definitions as, 
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mechanistic model equation (3.14 d, e

model introduces six more coefficients, its results would capture nonlinear 

ship between feed and cutting forces more accurately. Therefore, for tool 

with a blunt cutting edge (e.g. honed tools), or when machining with small feed 

(e.g. 

. 

Validation 

Though a very sharp tool was used in the experimental carried out, the 

accuracy of the developed higher-order force mode

predicted cutting forces for axial depth of cut 2.0mm in Figure 3.15. The 

discrepancies due to the simulations not including static deflection are again seen 

the comparisons. The cutting force coefficients identif

3.21i) are given in Tables 3.3a and 3.3b 

Table 3.3a. Mechanistically Calib

Axial Depth of 
Cut (mm), 

Ktc3 
(N/mm2) 

Ktc2 
(N/ mm2) 

Ktc1 
(N/mm2) 

Krc3 
(N/ mm2) 

Krc2 
(N/mm2) 

Krc1 
(N/ mm2) 

3743

The edge force coefficients teK , reK , aeK  are the same as the linear 

 & f). Although the modified mechanistic 

relation

in micromachining), the proposed nonlinear mechanistic model could give 

more accurate cutting force predictions

l is still demonstrated in the 

ied using equations (3.21a – 

rated Higher-Order Cutting Force Coefficients 

a  
0.50 4116.11 -3521.45 1697.37 -948
1.00 3945.48 -3917.91 1942.65 -549
1.50 4697.96 -3945.12 1775.32 -5323.96 4347.53 -987.59 
2.00 6814.69 -4734.37 1725.84 -2754.28 2274.28 -336.78 
2.50 6172.25 -4240.64 1562.13 -2637
3.00 1121.77 -1628.27 1167.41 -3853.77 2734.8
3.50 -4448.96 589.50 887.37 -6899.24 3967.31 -159.90 
4.00 -1563.26 -256.65 917.52 -4979.18 3179.34 -18.56 
4.50 -232.33 
5.00 948.53 -845.80 792.46 66.13 -24.49 733.88 
5.50 -248.44 -239.30 760.03 -335.94 312.51 700.41 
6.00 387.03 -584.61 833.89 -192.27 357.34 698.08 

8.44 7645.99 -2198.43 
1.22 5367.23 -1571.10 

.08 2181.60 -164.86 
8 -115.37 

-963.08 977.26 -2327.22 1519.65 332.35 
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Table 3.3b. Mechanistically Calibrated Higher-Order Cutting Force Coefficients 

Axial Depth of 
Cut (mm), 

Kac3 
(N/mm2) 

Kac2 
(N/ mm2) 

Kac1 
(N/mm2) (N/ mm) (N/mm) (N/ mm) 

Kte Kre Kae 
a  

0.50 2197.48 -2575.46 1530.58 26.52 -57.39 38.11 
1.00 3023.28 -3152.74 1703.82 35.50 -58.61 45.37 
1.50 2341.79 -2664.75 1530.21 25.
2.00 3142.22 -2803.22 1374.12 19.60 -31.39 34.03 
2.50 3672.91 -3202.30 1358.75 16.40 -22.63 29.10 

1 3.9 1
3.50 

99 -39.37 38.71 

3.00 3887.38 -3116.36 23 2 6.02 -15.72 27.22 
811.30 -1866.47 1030.93 17.57 -7.58 27.27 

4.00 3034.07 -2795.83 1102.09 13.63 -4.83 19.71 
4.50 1743.46 -2033.54 877.20 12.19 -5.39 20.02 
5.00 -636.74 304.89 122.90 4.66 2.38 4.74 
5.50 -2251.18 1243.11 -90.18 6.96 4.15 6.94 
6.00 -1201.43 583.25 -37.54 8.39 5.40 6.43 
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3.4. Finite Element Modelling of Milling Cutting Forces and 

Cutting Force Coefficients 

This section, demonstrates the use of an efficient and accurate numerical 

tool (i.e. FEA) in simulating the cutting process and determining both the average 

and instantaneous cutting force coefficients (used in linear edge and exponential 

force models respectively). The main advantage of this approach compared to 

other available methods is that it reduces the need for experimental calibrations. 

In this approach, an Arbitrary Lagra  was employed in 

Eulerian formulations into g force predictions using 

evaluated coefficients are shown to match experimental results with satisfactory 

accuracy. 

ngian Formulation (ALE)

the FEM simulations, which combines advantages of both Lagrangian and 

 a single model. Cuttin

3.4.1. Model Formulation 

The approach in this section was presented by Adetoro et al. (2008, 2009a) 

and its application is demonstrated by predicting the cutting forces for a flat end 

milling tool with no tool runout. With the presence of runout and corner radius, 

the chip load would not be constant for each discretized disk (Figure 3.2). For a 

flat end mill, the average forces per tooth period obtained from equation (3.8) can 

be defined (Altintas, 2000) as, 

( )[ ] [ ] ,cossin
8

2sin22cos
8

exit

start

reterctc
t

x KKNaKKNasF
φ

φ

φφ
π

φφφ
π

−−−−=  (3.22a) 

( )[ ] [ ] ,sincos
2

2cos2sin2
8

exit
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reterctc
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y KKNaKKNasF
φ

φ

φφ
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φφφ
π

+−+−=  (3.22b) 
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exit
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Figure 3.16. Workpiece and cutter showing FEM model. 

3.4.2

 angles of rotation to obtain the 

instantaneous cutting forces at these respective angles for a given feedrate. The 

full results obtained for a particular feedrate can be further used to predict the 

cutting forces for smaller feedrates without additional simulation. Thi

for average cutting force coefficients as explained in previous section. When the 

helix angle is small, the tool would experience very little cutting force alo

axis, therefore the domain can be simulated using plane strain elements. 

The angle of rotation or radial immersion angle 

Y

. Simulation 

Even though the proposed approach is suitable for any general end mills, it 

is demonstrated here using a tool with zero helix angle and the results compared 

with experimental data for a tool with small helix angle. The approach involves 

modelling the cutting process at different

s is required 

ng its z-

jφ , and undeformed chip 

thickness , are shown in Figure 3.2. The entry angle of e tool for downmilling 

can be expressed as, 

h  th

docr

a

φ

startφ

Key 
Hidden Line 

FEM Domain 
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,1arccos ⎟
⎠
⎞

⎜
⎝
⎛ −−=

R
rdoc

entry πφ          (3.23) 

where,  is the radial depth of cut and docr R  is the tool radius. 

The exit angle for down milling is π  according to the convention used in 

equation (3.23). Therefore, using the undeformed chip thickness  (for a specific 

angle) from equation (3.5), the cutting process is simulated and the instantaneous 

radial and tangential cutting forces (in cylindrical coordinate) are obtained for that 

angle. The reaction forces on the tool obtained from the FEM results are 

obviously the cutting forces required. Finally, the cutting forces in Cartesian 

coordinate system (global) can be reso y a transforma atrix using 

equation (3.7), where the axial immersion angle,

h

tion mlved b

 κ  is zero for a flat end tool. 

The relative speed between the cutting edge and the workpiece is defined as, 

2R⋅⋅Ω= πυ ,            (3.24

where  is the spindle speed. 

3.4.3. Extracting Average Cutting Force Coefficients 

illing are 

determined using equation (3.23), while the exit angle for down milling is

) 

Ω

The coefficients used in the linear edge-force model are at times referred to 

as average cutting force coefficients as they are assumed to be constant with 

change in chip thickness. This is because in the linear edge-force model, the 

forces due to shearing and ploughing/rubbing are separated out. Using the linear 

relationship assumption between the cutting forces in global coordinates and the 

feed per tooth, ts  in equation (3.13), three more equations are obtained to 

transform equation (3.25) into a closed-form expression. 

For example, the entry angles in Figure 3.16 of the tool for downm

 π . 

Hence, using the boundary conditions (entry angle = 1.97 rads and exit angles = 

π ) and ignoring coefficients for z-axis, the four average cutting coefficients in 

equation (3.22 a & b) can be expressed as, 
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 ( ),133 xcF⋅      (3.25a) 9.74674.71
yctc F

Na
K +⋅=

( ),4674.79133.7 xcycrc FFK ⋅−⋅=     1
Na

 (3.25b) 

( ),1416.37989.41
yexete FF

Na
K ⋅+⋅−=      (3.25c) 

( )yexere FF
Na

K ⋅−⋅= 7989.41416.31      (3.25d) 

Therefore, to calculate the average cutting force coefficients the global 

cutting forces at different feeds are required as this is used to obtain the 

relationship between the feed and cutting forces (in global coordinates) in 

equation (3

conducted for a feed per tooth of 37.5

.14). To calculate this, let us assume the FEM simulation was 

μm . Assuming the radial depth of cut is the 

tools radius, the undeformed chip thickness at the entry angle would be 37.5μm  

(using equations 3.5 and 3.23). The forces (in both local and global coordinates) at 

this entry angle are obtained using mulations as explained earlier. The tool 

is then rotated through various angles and the cutting forces obtained for each 

ll cutting f

for the tooth period using a feed per tooth of 37.5

 FEM si

respective angle until it is past its exit angle. This will define the fu orce 

μm  and more importantly the

relati

 

onship between both the tangential and radial forces and h. 

To use the obtained results to calculate the cutting forces for a smaller feed 

per tooth of 20.0μm , the undeformed chip thickness corresponding to 20.0μm  is 

calculated. By keeping the radial depth of the tool radius constant (as the tool 

radius), this would give an undeformed chip thickness of 20.0μm . Then the 

tangential and radial cutting forces for this thickness/angle and all subsequent 

angles can be obtained using the relationship between the tangential and radial 

force

for any undefor

lations cover the maximum and the 

s and h obtained earlier. The least squares method is used to fit the 

relationship (between the tangential and radial forces and the chip thickness) to a 

2nd-order polynomial model. This is then used to predict the corresponding forces 

med chip thickness hence any angle or rotation. Care should be 

taken however, to ensure the FEM simu
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s  as much as possible in order to make the mallest undeformed chip thicknesses

polynomial approximation as accurate as possible. 

The simulation process can how

only the maximum and smallest undeformed chip thickness (corresponding to tool 

entry and tool exit) and then only a few (1 or 2) chip thicknesses in-between. 

Depending on the edge radius of the tool 

influence of size effect, then more than two or three points in between the entry 

and exit might be required to fully ca

thickness and predicted cutting forces. The steps for extracting both the average 

and in

mo

the

presented in the 

previous section is used to extract the cutting force coefficient corresponding to 

the no

ever be made more efficient by simulating 

however, if there is a considerable 

pture the nonlinear relationship between chip 

stantaneous cutting force coefficients are shown in Figure 3.14. 

3.4.4. Instantaneous Cutting Force Coefficients 

Similar to the linear edge-force del is the ‘exponential’ force model. In 

the exponential force model or ‘lumped mechanism’ model (Wan, 2007),  

effects of the shearing on the rake face and the rubbing at the cutting edge are 

modelled by a single coefficient. This coefficient is also referred to as exponential 

cutting force coefficient. Wan et al. studied efficient calibration of instantaneous 

cutting force coefficients (Wan, 2007) and in their model they separated the 

cutting force into a nominal component with no runout influence and perturbation 

component influenced by cutter runout. The FEM approach 

minal component of the cutting force. 

In the exponential cutting force model, the edge or ploughing force terms in 

equations (3.4 a, b & c) are dropped giving, 

( ) ,d d bhKF tcjtj =φ         (3.26a) 

( ) ,d d bhKF rcjrj =φ         (3.26b) 

( ) ,d d bhKF acjaj =φ         (3.26c) 
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This relationship and the coefficients are readily available from the FEM 

results. As a matter of fact, the main characteristic of the proposed model is the 

fact that the milling forces obtained are a collection of instantaneous cutting 

force

FEM approach. It should be noted however that 

s from instantaneous uncut chip thicknesses. This is another advantage this 

approach gives over the use of experimental results, as the cutting forces in their 

polar coordinates are readily obtained for each instantaneous chip thickness. This 

directly shows the ‘‘size effects’’ caused by the ploughing forces at the cutting 

edge. As explained by Yun and Cho (2001), the difficulty experienced in 

experimental methods to calibrating exponential cutting force coefficients is that, 

the measured cutting forces cannot be decomposed into the corresponding 

components for each discretized disk, which obviously is not the case with the 

( )jjaF φ,d  was ignored as the helix 

e ignored. Hence, the 

tangential, radial and axial cutting forces from FEM simulations are fitted with 

2nd-o

angle was assumed to be small enough for its influence to b

rder polynomials as follows, 

( ) ( ) ,dd 12
2

3 bChChCF tttjtj ++=φ       (3.27a) 

( ) ( ) ,dd 12
2

3 bChChCF rrrjrj ++=φ       (3.27b) 

( ) ( ) ,dd 12
2

3 bChChCF aaajaj ++=φ       (3.27c) 

where the constants 3pC , 2pC  and 1pC  ( )artp  and  ,=  are extracted using least 

squares method. Therefore, the exponential cutting forc

(3.27 a, b and c) through by 

e coefficients are simply 

obtained by dividing equations ( ) bh j d φ  to obtain, 

,1C p
23 h

ChCK ppp ++=  ( ),,, artp =        (3.28) 

This allows for the calculation of the instantaneous/exponential cutting coefficient 

for any uncut chip thickness, h. It should be noted that zb dd =  when helix angle 

is ignored or assumed to be zero and it is the axial depth of cut used in the 

simulations. 
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Figure 3.17. Steps for estimating average and instantaneous cutting force 

coefficients. 

The geometry was simplified to a 2-dimensional domain to reduce its 

computational cost. Running it as a 3-di

computational resources. Pednekar et al. (2004) reported a three-dimensional 

sing f

ions. A comparison between plane strain, plane stress and 3-D 

models was reported by Pednekar et al. (2004) as shown in Figure 3.18. The tool 

was modelled as a rigid body due to its relatively high stiffness. A penalty 

3.4.5. The Finite Element Model 

Finite Element Mesh 

mensional domain would demand large 

simulation using ALE adaptive meshing, taking eight days to run using four 

1.3GHz processors. The workpiece was modelled u our-node bilinear 

(CPE4R) isoparametric quadrilateral elements and a plane strain assumption for 

the deformat
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tangential behaviour was adopted to model the friction between the tool and the 

chip. A friction coefficient of approximately 0.11 reported by Itoigawa et al. 

(2006) for lubricated machining was used. 

 
Figure 3.18. (a) cutting force and (b) thrust force comparison between 2D plane 

strain and stress and 3-D models, by Pednekar et al. (2004). 

Explicit Dynamic Analysis 

The explicit dynamic analysis algorithm used in all the simulations was 

originally developed for high speed dynamic problems. It also handles comp

cont  of 

motion (Hibbitt, 2006), 

       (3.29) 

for the domain is integrated using the explicit central difference integration rule, 

lex 

act and material properties very well. In this algorithm, the equation

[ ]{ } [ ]{ } [ ]{ } { },PuKuCuM =++

( )
( ) ( ) ( ) ,2121 i

i
ii uuu ⋅+= −+        (3.30) 

1i tt Δ−Δ +

2

( ) ( ) ( ) ( ) ,2111 +++ ⋅Δ+= iiii utuu         (3.31) 

where [ ]M  is the lumped mass matrix, [ ]K  is the stiffness matrix, { }P  is the 

applied load vector, u  is the displacement, the superscript ( )i  is the increment 

number, while ( )21+i  and ( )21−i  are the mid-increment values, tΔ  is the time 

increment and u  is the velocity vector while u  is the acceleration vector. 
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The explicit method determines the solution by explicitly advancing the 

kinematic state from the previous increment as opposed to an iterative process 

(Hibbitt, 2006). In the first increment, the accelerations are defined as, 

( ) [ ] ( ){ },1 ii PMu ⋅= −           (3.32) 

where the lumped mass matrix is a diagonal element matrix, which makes the 

process computationally efficient. 

The central difference operator is not self-starting since the value of the 

mean velocity ( )21−u  is not defined. Therefore, the initial values (unless otherwise 

specified) for the velocity and acceleration are set to zero. Hence the following

c

 

ondition is specified, 

( )
( )

( )0
0

02
1

2
utuu Δ

+=
⎟
⎠
⎞

⎜
⎝
⎛ +

         (3.33) 

Substitu ( )21−u  as, ting equation (3.33) into (3.30) gives an expression for 

( )
( )

( )0
0

02
1

2
utuu Δ

−=
⎟
⎠
⎞

⎜
⎝
⎛ −

         (3.34) 

These provide the nodal calculations and element calculations are performed 

using the strain rate to calc

and highly non-linear problems as machining. In addition to its efficiency, its 

inbuilt ALE adaptive meshing form

Arbitrary Lagrangian-

 w ati

eshing, pu

t which 

ulate the strain increments and the stresses from 

constitutive equations. The explicit algorithm was the preferred method as it has 

the advantages of computational efficiency when dealing with large deformation 

ulation is robust (Hibbitt, 2006). 

Eulerian (ALE) Adaptive Meshing 

The ALE adaptive meshing feature as used in all the simul ons, to 

simulate chip separation and to maintain a high-quality mesh through out the 

analysis. In ALE adaptive m the mesh can be converted to a re Eulerian 

or pure Lagrangian formulation or can be assigned a different motion, a
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point

 Meshing. During this stage, a new mesh is created at a set number of 

simulation in

to the Eulerian region defined (Figure 3.19) and also spatial mesh 

 and moving nodes to satisfy the specified 

 takes as prio

oothing objective, where the aim

domains without Eulerian boundary regions. The second objective is a 

graded mesh smoothing objective, where the aim is to keep the initial mesh 

gradation consta

more Eulerian boundary regions. Though element distortion is minimized, 

pical ep when 

creating the new mesh, a node is moved by a fraction of the characteristic 

length of its surr

to determine the new location of the nodes. These smoothing methods are: 

 the adjacent 

nodes connected by an element edge to the node in question. While 

ethod that 

relocates a node using weighted average of the positions of the nearest eight 

previous mesh are remapped/transferred to the new mesh. The second-order 

 it is termed ‘‘Sliding’’ (Hibbitt, 2006). The ALE adaptive meshing 

formulation on Abaqus performs two steps: 

crement intervals. This frequency was set to one by default due 

constraints. During the meshing stage, the new mesh is found by sweeping 

iteratively over the domain

meshing objective. There are two types of meshing objectives, which the 

algorithm rity when creating a new mesh. The first is a uniform 

mesh sm  is to keep mesh distortion to a 

minimal, while improving element aspect ratios. This is better suited for 

nt. This obviously is better suited for domains with one or 

the aspect ratio is approximately kept the same. In a ty  swe

ounding elements. There are three smoothing methods used 

volume smoothing, Laplacian smoothing and equipotential smoothing. The 

default smoothing method is volume smoothing, which was adopted in all 

the simulations carried out. In the volume smoothing, a new node location is 

obtained by computing a volume-weighted average of the element centres in 

the elements surrounding the node. Laplacian on the other hand, calculates 

the new location using the average of the position of each of

equipotential smoothing is more complex, as it is a high-order m

nodes (for 2D domain) and eighteen nodes (for 3D domain). To improve the 

mesh quality of ‘‘Sliding regions’’ a mesh sweep was performed three 

times. 

 Advection step. At this stage, the material and element variables from the 
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advection based on the work of Van Leer (1971), which uses the concept of 

upwind scheme was employed by default for the simulations. First, a linear 

distribution of the variable, ϕ  in each old element is obtained in a process 

called ‘flux-limiting’ (Hibbitt, 2006). Secondly, these distributions are 

integrated over each new element. Finally, the value of the variable for the 

new element is obtained by dividing the value of each integral by the new 

element volume. During the mesh motion, the state variables are conserved 

including the mass and energy (Pantale, 2004) i.e., 

,0ˆ =
∂
∂

+
∂
∂

=
xtDt

D
i
ϕυϕϕ          (3.35) 

where iυ̂  is the mesh velocity and i  is the increment number. 

 
Figure 3.19. The ALE region boundaries and boundary conditions. 

3.4.6. Model Geometry and Boundary Conditions 

The geometry of the domain according to the study carried out by Ko et al. 

(Ko, 2002) is given in Tables 3.4 and 3.5. The specified mesh regions and 

boundary conditions applied to the workpiece and cutter are shown in Figure 3.19. 
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Table 3.4. HSS end-mill tool geometry with four flutes 

HSS end mill with four flutes 

Tool diameter, ( )μm D  10,000.0 

Rake angle (Deg.) 11.0 

Helix angle (Deg.) 0.0 

Clearance angle (Deg.) 5.0 

Edge radius, ( )μm edger  5.0 

Table 3.5. Cutting conditions 

Aluminium 2014-T6 

( )μm  Axial depth, a 500.0 
( )μm  Radial depth, rdoc 3,000.0 

Entry angle (rads) 1.97 

π  Exit angle (rads) 
Feed, 37.5 

Spindle speed (rev/min) 1000.0 

( )μm ts  

 

Boundary Conditions 

The boundary conditions applied to the material and also to the mesh are 

shown in Figure 3.20. The mesh boundary conditions are either spatially 

stationary, (Eulerian region), sliding (ALE region) or fixed to material 

(Lagrangian region). 

 
Figure 3.20. Mesh and material boundary conditions. 
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Mate

The m n the mulation was Al

properties are g & 3.7. 

Table 3.6 s 

inium 20 4-T6 -  Elastic Proper

rial Properties 

aterial used i si uminium 2014-T6 and its 

iven in Tables 3.6 

. Material Elastic Propertie

Alum 1 ties 

Density, ( )-3Kgm  ρ    2800 

Young’s Modulus, E (Pa) e+10 6.98203 

Poisson Ratio 0.33425 

Table 3.7 opert s 

Yie 08 Plastic Strain

. Material Plastic Pr ie

ld Stress, S (Pa) e+ , ε  

3.2400 0.0 

3.5370 0

3.7714 0.00136 

3.8404 0.00176 

0.00216 

3.8818 0.00236 

6 

4.0231 0.00456 

4.0334 0.00496 

4.0472 0.00536 

4.0507 0.00576 

4.0334 0.00496 

4.0472 0.00536 

4.0507 0.00576 

.00056 

3.6887 0.00096 

3.8611 

3.9024 0.00276 

3.9300 0.00316 

3.9507 0.00336 

3.9748 0.00376 

3.9921 0.0041

 

Modelling Assumptions 

During machining as explained earlier the tool and workpiece experience 

different vibra  regenerative tions, which can grow significantly in what is called
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chatter. This in turn affects the undeformed chip thickness. In the simulations, it 

was assumed that the cutting process was stable and vibrations were negligible, an 

assum

The actual tool modelled has a helix angle of 30 degrees, however due to 

such mm it was assumed to be zero. In order to 

model a tool with hel uld be required. 

When simulating the end milling cutting process as a two-dimensional 

domain, the friction face of a flat end ill rubbing against 

the surface perpendicular to the tool axis is not included in the simulations. 

The cutting edge was modelled as perfectly  r dius of 

ption made when conducting calibration experiments. 

a small axial depth of cut of 0.5

ix angle, a three-dimensional domain wo

 experienced on the end -m

5μm round with a a . 

The actual edge radius of the tool can only be obtained by measuring it directly 

from the tool or obta from the manufacturers. Strenkowski et al. m

an average edge rad 5

ining it easured 

0μmius of  (Strenkowski, 2002), while Ranganath et al. 

(2007) measured radiuses ranging from 15μm  to 72μm . This however can 

quickly create errors esult as shown in the nex  Moreover, during 

machining, there is the chance of erosion of the cutting edge, thereby changing its 

original shape. 

Tool runout was ignored in the model. Tool runout would cause variations 

in the peak in the for ured. Another factor that ect the similarities 

of the measured cutti s per flute is the fact that  might not exactly 

be of the same geom  also the pitch angles might vary slight. However, the 

tool flutes were assum e perfectly identical. 

3.4.7. Results and Discussions 

The simulations were conducted successfully an ple of the steady 

stress state of the workpiece is shown in Figure 3.21. The primary and secondary 

highest stress area and the residual stress is seen 

trailing further along the machined surface. From these simulations the cutting 

force

 in the r t section.

ce meas could aff

ng force the flutes

etry and

ed to b

d an exam

shear zones are seen with the 

s in directions 1 and 2 (refer to Figure 3.21) in the local coordinates which 

correspond to the tangential and radial cylindrical coordinates respectively, are  
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Figure 3.21. von Mises stress distribution for the milling simulation. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ta
ng

en
ti

l
F t

 (N
)

a
 F

or
ce

, 

0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05
Time Increment (s)  

(a) Tangential force 

0.0
0.2
0.4
0.6

0 1E-06 2E-06 3E-06 4E-06 5E-06 6E-06 7E-06
Time Increment (s)

ad

 
(b) Radial force 

Figure 3.22. Convergence of forces on FEM. 
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collated and shown in Table 3.8. Figures 3.22 a and b show the convergence of 

the cutting forces in the simulation for μm602.10=h . 

A plot of these forces against the undeformed chip thickness,  gives an 

indication of the effect the edge radius has on the cuttin

(Figure 3.23 a and b). The ploughing or rubbing of the edge radius adds to the 

residual stress clearly visible on the machined surface. To further show the 

influence the edge radius has on the force, it was changed from 5

h

g force ‘size effects’ 

μm  to 7.5μm . 

The influence of the larger edge radius can be seen to have increased with the 

increase in the radius, especially the tangential cutting force, where the curve is 

seen to kness 

approaches zero. This graph is actually the relationship described in exponential 

cutting force model in equation (3.26). 

Table 3.8. FEA and calculated cutting force results for feed, μm50.37

 approach a constant tangential cutting force value as the chip thic

=ts  

φ  
(deg) 

φ  (rads) ( )m μh  
Tangential Force, 

( )NtF  
Radial Force, 

( )NrF   ( )NxF  ( )NyF  

0.0 5.12 34.369 11.047 0.719 4.419 10.125 
1.0 5.14 34.102 10.960 0.721 4.559 9.967 
2.0 5.16 33.825 10.873 0.724 4.694 9.807 
3.0 5.18 33.537 10.784 0.729 4.825 9.644 
4.0 5.19 33.239 10.694 0.735 4.951 9.479 
5.0 5.21 32.931 10.604 0.742 5.072 .312 
7.5 5.25 32.117 4 5.353 8.881 
10.0 5.30 31.242 10.121 0.790 5.598 8.432 
12.5 5.34 30.308 9.855 0.818 5.804 7.965 
15.0 5.39 29.316 9.568 0.846 5.966 7.480 
17.5 5.43 28.268 9.256 0.874 6.082 6.977 
20.0 5.47 27.166 8.920 0.901 6.149 6.462 
25.0 5.56 24.810 8.187 0.957 6.139 5.417 
30.0 5.65 22.265 7.403 1.027 5.957 4.395 
35.0 5.73 19.550 6.604 1.114 5.635 3.443 
40.0 5.82 16.687 5.787 1.206 5.182 2.575 
45.0 5.91 13.696 4.892 1.308 4.554 1.787 
50.0 6.00 10.602 3.843 1.536 3.686 1.086 

9
10.369 0.76
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O ni st ous Cutting Force Coefficien

Using the g press equations (3.25) and (3 b, and c), the 

in ne nc thickn (given in 3.8) an orre g 

tangential and radial forces, the instantaneo ing fo effici re 

extracted. It should be noted however that the proposed approach is demonstrated 

here with the cutting edge radius of 5.0

(b) Ra e 

Figu  3.23. C g forces 

btai ng In antane ts 

 cuttin  force ex ion in .26 a, 

stanta ous u ut chip ess, h  Table d the c spondin

us cutt rce co ents a

μm  ass ith this edge radius being 

the cause  s t, its a  measure  requi the e n 

of precise instantaneous cutting force coefficients. For completion, the cutting 

forces for smaller uncut thickness are extrapolated using a second order 

polynomial curve fitting of the data given in Table 3.8 and the extracted 

instantaneous cutting force coefficients are plotted in Figures 3.24 a and b. 

umed. W

of the ize effec ccurate ment is red for xtractio
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(b) Instantaneous Radial CFC 

Figure 3.24. Instantaneous Cutting Force Coefficients. 

The expression for the instantaneous cu g force coefficients in equation (3.28) 

are fitted to the FEM results as shown in Figure 3.24, where, 

,3
21 h

C
ChCK p

ppp ++=  ( ),, rtp =  

and 1pC , 2pC , 3pC  are constants obtained using least squares method as, 
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,9939.7571 −=tC     ,9507.11671 =rC  

,9116.6352 =tC     ,2510.1172 −=rC  

,1078.13 =tC      0915.43 =rC  

The instantaneous cutting force coefficients were also obtained by Wan et 

al. (2007), however with the use of experimental results. 
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kness. Figure 3.25. Radial and Tangential forces against undeformed chip thic
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Obtaining Average Cutting Force Coefficients 

Figure 3.25 shows the radial and tangential forces plotted against the 

undeformed chip thickness. This is therefore used to calculate the cutting force for 

different sma n 3.4.2 and the steps laid out in the 

flow chart in Figure 3.17. Following the classical approach used for the 

mechanistic m

e cutting forces over 

the tooth period according to equation (3.9). In the classical approach detailed in 

section 3.3.1, the cutting forces are sampled over many tooth periods and 

averaged out for different feedrates. In this case the cutting forces for a tooth 

period are first calculated by using the FEM results in Table 3.8. This is simply 

done by fitting a curve to the FEM results as shown in Figure 3.25 and simply 

calculating the cutting forces for all tool rotation angles 

ller feeds as explained in sectio

odel (detailed in section 3.3.1), the relationship between the forces 

and the feed per tooth is obtained by taking an average of th

φ , required for the tooth 

period; this is then averaged out to obtain the average cutting forces for the 

corresponding feed used in equation (3.5). Figure 3.26 shows the average cutting 

forces in Cartesian global coordinates against the feed, . This relationship is 

different from the one in Figure 3.25 as they are in different coordinates system. 

ts
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Figure 3.26. Average cutting forces from FEM results. 

 - 95 - 



Chapter 3 – Cutting Forces 

Hence from the two linear systems of equations (3.13) and (3.22), the force 

coefficients are obtained in equation (3.25) as, 

n

t 

the accuracy of the average cutting force coefficients, , is mainly dependent on 

the slope of the graph in Figure 3.26; while the accuracy of the edge force 

coefficients,  is dependent on the point the graph crosses the y-axis. There are 

slight over estimations on the Fy’s. It is however believed that this is due to the 

helix angle not being equal to zero on the actual tool as assumed in the FEM 

models. From these results it is evident that with just the relationship between 

both the tangential and radial forces and the instantaneous uncut chip thickness, 

the average cutting force coefficients can be extracted with satisfactory accuracy. 

To model the variations observed in the peaks the tool runout parameters as 

defined by Wan (2007) are required. In fact, the approach proposed here deals 

with the terms in the cutting force model that are not influenced by the tool 

runout. These terms were separated by Wan et al. (2007). The main difference in 

this approach compared to other available methods is that it does not require 

experimental 

,Nm 35.1 -2=teK   ,Nm 101.1729 -2=tcK  

,Nm 288.1 -2=reK   .Nm 332.746 -2=rcK  

FEM Cutting Force Coefficients Validation 

To validate the coefficients, the linear Edge-Force model was programmed 

in FORTRAN. Quick analytical simulations were carried out using the cutting 

conditions similar to the ones reported by Ko et al. (2002) and the results are 

shown in comparison in Figures 3.27 – 3.29. 

The trend and also the magnitudes of the experime tal results reported by 

Ko et al. (2002) are clearly reflected in the predictions obtained using the 

coefficients extracted from the FEM simulations. This was assuming the 

coefficients were not dependent on the axial depth of cut, which should be the 

case for a flat end-milling tool with a small constant helix angle. It is obvious tha

cK•

 eK•

results and yet includes the ploughing forces. 
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       (b) (a)     

Figure 3.27. (a) Predicted and (b) experimental cutting forces for feed per tooth 

0.0375mm, rdoc = 3.0mm, a = 0.5mm, Ω  = 1000rpm by (Ko, 2002). 

`  

(a)         (b) 

Figure 3.28. (a) Predicted and (b) experimental cutting forces for feed per tooth 

0.0375mm, rdoc = 3.0mm, a = 0.2mm, Ω  = 1000rpm by (Ko, 2002). 

  
(a)          (b) 

Figure 3.29. (a) Predicted and (b) experimental cutting forces for feed per tooth 

0.0375mm, rdoc = 2.5mm, a = 5.0mm, Ω  = 2000rpm by (Ko, 2002). 
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(a)          (b) 

Figure 3.30. (a) Predicted and (b) experimental cutting forces for feed per tooth 

0.0375mm, rdoc = 7.0mm, a = 5.0mm, Ω  = 1000rpm by (Ko, 2002). 
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3.5. Summary 

In this chapter, the linear edge force model was investigated and used to 

calibrate the cutting force coefficients for the tool to be used through the course of 

this thesis. The accuracies of the coefficients were shown in predicted cutting 

forces. Improveme to e line r edge force odel resented to better 

m  

were s M g nts in 

milling was later presented with experimental comparisons. These comparisons 

show satisfactory accuracies. 

nts th a  m were p

odel the influence of the size effects and comparisons with experimental results

hown. An FE  approach to extractin  the cutting force coefficie
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Tool and Workpiece Dynamics 

4.1. Introduction 

The tool and workpiece dynamics define the structure’s behaviour under 

dynamic loadings. The dynamics consist of its damping, stiffness and mass 

parameters. Damping is the dissipative factor present in every real-life 

system/structure. Its influence is more important in some structural analyses than 

others, hence its neglect or imprecision in these analyses can render these analyses 

unacceptable; while in other analyses, the analyst might get away by applying an 

approximate damping ratio of 0.05 or less. Unlike the well developed mass/inertia 

and stiffness forces, the damping forces are at present extracted through 

experiments known as modal testing/analysis. This is because the physics behind 

the damping forces are not fully understood especially for a wide range of 

systems. It is however always desirable for an analyst to be able to predict the 

damping ratio (either analytically or numerically) for any given geometry without 

having to rely solely on experimental results. 

Numerous studies in which the approximation of the damping parameters is 

not acceptable and are identified experimentally are reported in the literature. Of 

these studies are the studies on the dynamic modelling of metal cutting process. 

Due to the dynamic nature of the process, a complete and accurate modelling of 
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the workpiece and tool vibrations experienced during metal cutting process would 

require the use of accurate damping parameters as reported by (Tobias, 1958, 

Budak, 1998). Other studies requiring the damping parameters include studies on 

blast and accidental impact modelling and so on (Kaewunruen, 2005).  

A significant contribution at the early development of modal analysis was 

proportional damping model. It was first proposed by Lord Rayleigh in 1878, 

where he indicated that if the viscous damping matrix is proportional to mass and 

stiffness matrices (the damping forces are proportional to the kinetic and potential 

energies of the system) then it can be expressed (Rayleigh, 1878) as, 

[ ] [ ] [ ],10 KMC αα +=             (4.1) 

where 0α  and 1α  are real positive constants. The model is termed ‘Rayleigh 

damping’ or ‘classical damping’. The significance of this model is that the 

damped system would have the same mode shapes compared to its undamped 

counterpart, thus the system is said to possess ‘classical normal modes’. In 

proportional damping model the viscous damping matrix in the same manner as 

the mass and stiffness matrices, can be generalized using the system’s modal 

matrix or eigenvectors, { . This considerably simplifies the dynamic analysis by 

allowing the multi degree of freedom (MDoF) system to be represented by a series 

of uncoupled single degree of freedom (SDoF) systems. 

}Ψ

The equation of motion for a multi degree of freedom (MDoF) system can 

be expressed as, 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ },tFtxKtxCtxM =++          (4.2) 

where  is the mass matrix, [M ] [ ]C  is the viscous damping matrix, [  is the 

stiffness matrix, , 

]K

( ){ }tx ( ){ }tx , ( ){ }tx  ( ){ }tF  are the acceleration, velocity, 

displacement and excitation force vectors respectively. 

In 1960, Caughey and O’Kelly (1960) provided a generalization of 

Rayleigh’s condition for discrete systems in form of the series, 
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[ ] [ ] [ ] [ ]( ,
1

0

1∑
−

=

−=
L

u

u

u KMMC α )            (4.3) 

where  is the number of identified modes used in the curve fitting, L uα  are real 

positive constants obtained through using experimentally identified damping 

parameters. The Rayleigh damping model is the first two series of the expansion. 

In 1965, Caughey and O’Kelly (1965) derived the condition which the system 

matrix must satisfy for the system to have classical normal modes. In this 

condition, it is said that a system defined by equation (4.2) can possess classical 

normal modes if and only if the system matrices satisfy the following relationship, 

[ ][ ] [ ] [ ][ ] [ ]KMCCMK 11 −− =            (4.4) 

Based on this result, they also proved that the series expansion in equation 

(4.3) is the necessary and sufficient condition for the existence of classical normal 

modes. Based on the limitation posed for systems with a singular mass matrix, the 

three matrices can be treated as equal and can be interchanged as reported in 

(Adhikari, 2000) as, 

[ ][ ] [ ] [ ][ ] [ ],11 KCMMCK −− =            (4.5) 

[ ][ ] [ ] [ ][ ] [ ]MKCCKM 11 −− =            (4.6) 

The dynamic parameters for a structure are identified through modal testing 

and used in different time and frequency domain analysis. Frequency domain 

analyses are general preferred due to their computational time compared to time 

domain analyses. The required computational time is usually much shorter 

compared to time domain analysis, owing mainly to the lack of spatial and time 

discretisation. This efficient computational time coupled with the publication of 

Cooley and Turkey’s invented Fast Fourier Transform (FFT) algorithm (Cooley, 

1965), the frequency response of a structure can be computed from the 

measurement of given input and output responses. The first method of 

experimental modal analysis was however proposed by Kennedy and Pancu 

(1947), though the proposed method was largely forgotten until the invention of 

the FFT algorithm by Cooley. There has been other different modal testing 

 - 102 - 



Chapter 4 – Tool and Workpiece Dynamics 
 

methods proposed, however one of the most common involves the excitation of 

the structure using an instrumented hammer and measurement of the response 

with the use of a transducer (either laser based vibration transducers or 

accelerometers). The impact excitation and the vibration response of the structure 

are measured and transformed into ‘frequency response functions’ (FRFs) using a 

Fourier Analyzer. Subsequently, the structure’s dynamic parameters are extracted 

from the measured FRF. Great contributions on the identification of the dynamic 

parameters are reported by (Ewins, 1984, Allemang, 1986, Mitchell, 1986), with a 

good review of the developments reported by (Brown, 1982). 

Other notable developments are methods proposed to reduce or eliminate 

the systematic and noise errors which adversely affect measured FRFs (Sanliturk, 

2005). One of these systematic errors is the so called ‘mass loading effect’ which 

occurs when an accelerometer is used as the transducer. The accelerometer 

directly changes the dynamics of the system and causes the measured resonant 

frequencies to deviate from their correct values. Methods of correcting of the mass 

loading effects on the direct FRFs are reported by (Ewins, 1984, Cakar, 2005). 

The frequency response function (FRF) or ‘transfer function’ (TF) is used in 

a wide range of studies on the analysis of dynamic response of linear systems, 

including the milling process. The transfer function is used along with the cutting 

force model as explained later to predict stability margins in milling. The accuracy 

of the predicted stable region relies on the transfer function identified at the cutter-

workpiece contact zone. 

Thus this chapter is structured as follows; the experimental method for 

structural damping identification is discussed and a new numerical approach for 

its prediction is proposed in the second section; a new FEM and Fourier approach 

to identifying the structures transfer function is presented in section three; while 

the applications of both the proposed approach to predicting damping and also the 

presented FE approach are shown for thin wall machining in section four. A brief 

review of the well developed model for predicting stable margins due to Hopf 

bifurcations is also given in section three. A more in-depth review of this model is 

later given in subsequent chapters. 
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4.2. Prediction and Modelling of Damping Parameters 

In this section, a novel approach proposed by Adetoro et al. (2009a) that 

uses identified damping parameters for a known geometry to predict the damping 

parameters for any given geometry with a different thickness is discussed. This 

approach eliminates the need for experimental modal analysis otherwise used to 

identify these damping parameters. It is envisaged that this approach would 

further lead to the understanding of the physics behind the damping forces, as it 

identifies certain trends in the effect the geometry has on the damping parameters. 

A modelling approach similar to Caughey’s series is proposed, to better model 

the damping parameters. The prediction and damping models are validated using 

experimentally identified damping parameters and time domain finite element 

(FE) simulations of dynamic vibrations for various examples. 

4.2.1. Experimental Modal Analysis 

If its assumed that the undamped MDoF system in equation (4.2) is excited 

sinusoidally by a set of forces, ( ){ }tf  all at the same frequency, ω  but with 

different amplitudes and phases and assuming a solution ( ){ }tx  exists (Ewins, 

1984) of the form, 

( ){ } { } ,tieXtx ω=  ,1−=i           (4.7) 

where ω  is the natural frequency of the system and { }X  is a constant, then (4.2) 

is expressed as, 

[ ] [ ]( ){ } { },02 =Ψ− MK ω            (4.8) 

which represents an eigenvalue problem, where  is the eigenvalue (undamped 

natural frequency squared) and 

2
nω

{ }Ψ  is the eigenvector. The characteristic equation 

of the system is simply, 

[ ] [ ] 02 =− MK nω             (4.9) 
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The stiffne

using the extracted eigenvectors, the spatial models can be transformed into their 

moda

in as 

follows, 

ss and mass matrices are currently in their spatial coordinates and 

l model in generalised coordinates. This is done by pre-multiplying the 

matrices by the transpose of the eigenvectors and post multiplying by the 

eigenvectors. This transformation from the spatial coordinates into the generalized 

coordinates is one of the main advantages of modal analysis as it can be used to 

uncouple the equation of motion (equation 4.2) for large system. The uncoupled 

modes can subsequently be treated in the same way as a single degree of freedom 

(SDoF) system. This is known as the orthogonality property of an undamped 

MDoF system or system with proportional damping. The orthogonality property 

also allows for modal superposition which is later used in FEM simulations. 

The equation of motion is also represented in Laplace transform doma

[ ]( [ ] [ ]) ( ){ } ( ){ },~~2sM + sFsXKsC =+         (4.10) 

or, 

([ )] ( ){ } ( ){ }sFsXs ~~ =D           (4.11) 

Hence, the receptanc

as, 

          (4.12) 

which rearranges

e frequency response function (FRF) of the system is defined 

([G )] ( )[ ] ,1−= sDs

 to, 

( )[ ] ( )[ ]
( )[ ] ,det

adj
sD
sDsG =           (4.13) 

where  is the

,  is known as the ‘characteristic equation’ of the 

(He,

ix. Ther

( )sG

degree of freedom

 transfer function (TF) matrix of the system and for a single 

( )[ ]sDdet

system  2001). The ‘characteristic equation’ is shared by each element in the 

transfer function matr efore, the transfer function matrix can be expressed 

by its partial fraction expansion as (He, 2001), 
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( ) ,
1
∑
=

−

−

+

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

−
=

L

p p

rlp

p

rlp
rl ss

R
ss

R
sG          (4.14) 

where the complex roots are given as, 

iss nppnpppp ωζωζ 21, −±−=−+         (4.15) 

where pζ  is the damping ratio, where only underdamped cases are studied in this 

thesis (i.e. 1<pζ ), p  is known as the mode number. The complex roots  and 

He

+
ps

−
ps  and the complex residues +

rlpR  and +
rlpR  are a conjugate pair. The residues are 

obtained from the partial fraction expansions as detailed by He and Fu (He, 2001). 

nce, 

( ) ( )
( ) ,

21
22∑

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
+

=
L

p npnpp

rlprlp
rl sG

ss
s
ωωζ

βα
        (4.16) 

where  is the total number of moL des identified experimentally, nω  is the natural 

 and rlpβfrequency of the system, rlpα  are constants obtai entally ned experim

reflecting the residue of mode p  at row r  and column l . They are required when 

extracting the mode shapes experime lly. The mode shapes are however the 

eigenvectors in equation (4.8), therefore erimental approach to extracting 

which they can be collected into a residue matrix 

nta

 Altin

the exp

them is not covered in this esis. tas howe  approach in  th ver proposed an

[ ]pR  for each mode in order to 

calculate the mode shapes (Altintas, 2000). 

To experimentally measure the direct transfer function G , the system is 

excited at point 

rr

r  (using an instrumented hammer), whils meter is 

placed at po

t the accelero

int r . Using a Fourier analyser, the accelerance frequency response 

Fourier transform easured time domain input force 

function (FRF) is extracted for each impact test. This is simply the division of the 

 of the m ( )tf  and acceleration 

( )tx  i.e., 

 - 106 - 



Chapter 4 – Tool and Workpiece Dynamics 
 

( ) ( )
( )ω
ωω

F
XA =            (4.17) 

The use of accelerometer as the transducer alters the frequency response, 

hence the er

expression given by (Cakar, 2005), 

ror induced in the measured direct FRF is corrected using the 

( ) ( )
( ) ,1 ω

ωω
Am

AA
accel

new −
=          (4.18) 

where ( )ωnewA

accel  is th

 is the accelerance without the effect of the accelerometer mass, 

and e mass of the accelerometer. m

The FRF or TF is simply the imaginary axis, ωi -axis in the s -plane (i.e. 

ωis = ). Hence from equation (4.7) we have that, 

         (4.20) 

Therefore, the receptance FRF, 

( )tx = ,tiXe ω            (4.19) 

2( ) ( ) ( ),2 txXeitx ti ωω ω −==

( )ωG  in terms of accelerance FRF is 

expressed as, 

( )
2( ) ( )

( )
ω
ω

ω
ωω

−
G

This gives the transfer function element  in equation (4.16), where 

== newA
F
X          (4.21) 

rrG ωis = . All 

the elements in the matrix ( )[ ]ωG  share the same denominator of ( )[ ]sDdet . 

Therefore, assumi ithin the range of ng there are two modes w frequency extracted 

by the Fourier Analyzer (i.e. 2=L ), the direct transfer function can be defined 

using equation (4.16) as, 

( ) ,
2 22

22
2

11
2

11
⎥
⎤+

⎥
⎤

⎢
⎣

⎡
++

+
= rrrr

n

rrrr
rr

s
ss

ssG βα
ωζ
βα      

2
2 mode2221 mode1 ⎦

⎢
⎣

⎡
++

+
⎦ nnn ss ωωζω

ωis =    (4.22) 

The experimental measurements are analysed using a modal analysis 

system, which scans the transfer function data for the two amplitudes 

 - 107 - 



Chapter 4 – Tool and Workpiece Dynamics 
 

corresponding to these modes and the corresponding two frequencies at which the 

real part of the transfer function is zero. These two frequencies are the natural 

frequencies of the system. Then the modal analysis system fits a curve to the data 

with a denominator having a ( )22× -order polynomial, which is then converted to 

2 independent second order differential equations according to equation (4.22). 

Therefore the numerical values of the natural frequency, damping and residue for 

each mode can be estimated (Allemang, 1986). 

To measure element location rrG , r  is excited whilst keeping the 

accelerometer measurement point fixed at l , thereby giving one row or column of 

the transfer function matrix. The transfer function matrix obtained is symmetric 

for a linear system. Altintas detailed a method for constructing the full modal 

matrix of the structure using only one row or column identified experimentally 

(Altin

l normal modes we have the conditions given in 

equations (4.4, 4.5 and 4.6). Therefore using the procedure described in section 

ified for Case 1C are given in Table 4.3. To 

experimentally obtain the system’s mass, stiffness and damping matrices, the 

moda

tas, 2000). 

4.2.2. Proportional Damping 

From Caughey and O’Kelly’s condition (explained in section 4.1), for a 

system to possess classica

4.2.1, the dynamic parameters ident

l matrix or mode shapes are required. Using the experimentally identified 

residues in equation (4.22), the modal matrix for unity modal mass can be 

calculated as explained by Altintas (2000). Therefore, the modal mass matrix is 

simply an identity matrix and the modal stiffness and modal damping are defined 

as, 

,2
nppK ω=            (4.23) 

pnppC ζω2=            (4.24) 

The modal mass, stiffness and damping matrices are then transformed to 

spatial coordinates using the modal matrix or mode shapes. This is done by simply 
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pre-multiply

transpose of the modal matrix. Therefore equations (4.4), (4.5) and (4.6) are used 

to sho

Damping Ratio 

sed by Adetoro et al. 

(2009a). It is a quick, simple and yet significantly accurate approach to predicting 

 terms of the frequency for a given wall using the known 

damping ratios of a wall with same height (provided only the wall thickness is 

chang

ing the matrices by the modal matrix and post multiplying by the 

w that the system possess classical normal modes in Appendix B and hence 

that the damping is proportional. 

4.2.3. Proposed Damping Prediction Approach 

The approach discussed in this section was propo

the damping ratio in

ed). From a range of extracted structural dynamics, it was discovered that 

there was a certain trend between the different damping ratios for different wall 

thicknesses. It was found that a new set of parameters, pζ  and pω , can be defined 

as follows, 

,
a

a
p

p t
ζ

for damping ratio and  

ζ =            (4.25) 

,
a

a
np

p t
ω

ω =            (4.26) 

for natural frequency, where  is the reference current wall thickness,  is the 

modal dam

respectively. These parame

at

ters (

a
pζ

ping ratio and a
pω  is the natural frequency for the reference wall 

 and pωpζ ) are then used to pred ping ict the dam

ratio, b
pζ  in terms of frequency, b

pω  for any new geometry (provided only the wall 

thickness is changed) by s ply multiplying im pζ  and pω  by the new wall 

thickness bt  as follows, 
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,b
b
p t⋅=ζ            (4.27) pζ

b
p bp t⋅= ωω            (4.28) 

It should be noted that  and  are not necessarily the precise modal 

damping and natural frequencies of the new wall. Studying the series in equation 

(4.3) propo

b
pζ b

pω

se by Caughey (Caughey, 1960), the zeroth order approximation gives, 

[ ] [ ],0 MC 0α=            (4.29) 

terms a new series is proposed, which is defined as, 

which is not realistic as there the stiffness term has to always exist in what ever 

level of approximation, hence in an attempt to preserve the stiffness and mass 

( ),
2 1

212∑
=

−
− ⋅+⋅=

u

u
nu

u
nup ωαωαζ         (4.30) 

where the first term expands out to, 

1 2
L

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= n

n

ωα
ω
αζ 2

1

2
1    

 systems (He, 2001) that, 

       (4.31) 

Noting from single degree of freedom

,2

p

p
n M

K
=ω            (4.32) 

,
2

p
p MK

C
=ζ        

pp

   (4.33) 

where 

This is obtained when the equation of motion of a multi-degree of freedom 

(equation 4.2) is

in the eigenproblem in equation (4.8) as (He, 2001) follows, 

pC , pK , and pM  are the modal damping, stiffness and mass respective. 

 uncoupled using the eigenvectors obtained from undamped case 

[ ] [ ] [ ] ,fqΨΨq TTT       (4.34) ΨΨqΨΨ =⋅+⋅+⋅ KCM
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where q  and f  are the displacement and force vectors respectively in the 

transformed co-ordinate. 

This transforms the whole multi-degree of f

single degree of freedom systems, which are uncoupled. Hence, 

      (4.35a) 

        (4.35c) 

Therefore, equat

reedom system into L  number of 

[ ] ,ΨΨ CC T
p =   

[ ] ,ΨΨ MM T
p =         (4.35b) 

[ ]T ΨΨ KK p =

ion (4.31) can be written for the first series as, 

21 ppp KMC αα +=           (4.36) ,

which, shows that both mass and stiffness retained in the first series. Expanding 

 we obtain the following series expansion, 

the proposed series gives, 

...2
6

2
5

5.1
4

5.1
3 +++++ pppp KMKM αααα     (4.37) 21 += ppp KMC αα

Therefore by dividing equation (4.30) through by the wall thickness at , as done in 

equations (4.25) and (4.26)

( ),
2
1 2

1=u

where constants 12 −u

212∑ −
− ⋅+⋅=

L
u

u
u

u ωαωαζ         (4.38) 

α  and u2α  are real constants obtained using least squares 

method. This series expands out in the form, 

⎟
⎠
⎞

⎜
⎝
⎛ ++++++= …3

63
52

42
3

2
1

2
1 ωα

ω
αωα

ω
αωα

ω
αζ       (4.39) 

nt numerically extracted natural 

frequencies in equation (4.9) for each identified mode for the new wall thickness 

by  to obtain

Therefore, by dividing the differe

bt  ω  in equation (4.30) and then multiplying the calculated ζ  by bt , 

the corresponding damping for that mode is obtained. 
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Dam

in

ver the damping matrix 

ping Matrix 

The damp g ratio, b
pζ  in terms of frequency can be readily used directly by 

most commercial Finite Element (FE) packages, howe [ ]C  

ode is 

in equation (4.2) is som mes required. To obtain the damping matrix, the 

 na l frequency of the new structure for each m

divided by the wall’s thickness , to obtain 

eti

turanumerically extracted

bt ω  and used in equation (4.38), to 

calculate ζ , which is the ultiplied back by the wall’s thickness t , to obtain 

the new modal damping ratio for the corresponding mode. 

The modal damping pC  is simply calculated in a similar fashion to SDoF 

using equation (4.33). The dam ing matrix 

n m b

[p ]C  is finally obtained by pre-

multiplying by the modal matrix and then post-multiplying by the tran pose of the 

modal matrix or eigenvectors obtained in equation (4.9). T

s

his orthogonal property 

only applies to systems that possess classical normal modes or proportional 

damp

pproach to predicting damping ratios. Being a very well developed 

model, the modal dynamic analysis gives the response of a defined domain as a 

xtracted once the modes of the 

system

briefly here. 

ing. 

4.2.4. Time Domain Simulation in FEA 

The transient modal dynamic analysis on Abaqus was used to validate the 

proposed a

function of time for a given time dependent loading. The response obtained is the 

linear response of the structure, which is easily e

 are available. The modes are extracted in a frequency extraction analysis, 

which utilizes the Lanczos algorithm due to the size of the eigenproblem in 

equation (4.9). The algorithm is detailed by Grimes et al. (1994) and in Abaqus 

user manual (Hibbitt, 2006). 

The library of elements available in Finite Element Method is well 

documented in the literature on the Finite Element Method, however for 

completeness the formulation of the elements used during this thesis are discussed 
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Figure 4.1. 3-D state of stress. 

Element Formulation 

Isoparametric elements are used through out this thesis, in proposed Finite 

Element models/simulations. The isoparametric elements use mathematical 

mapping from a coordinate system called the ‘natural’ or ‘isoparametric’ 

coordinate system to th coordinate system. The 

physical coordinate system is the system in which the domain is defined, i.e. 

yσ

yxτ
yzτ

xyτ
zyτ

e other called the ‘physical’ 

X , 

Y , Z , (Figure 4.1); while 

the natural element coordinate

the isoparametric interpolation is defined in term

s, i.e. 

s of 

ξ ,η ,ζ , (Figure 4.2). Second order 20-node 

brick

The stresses acting on a unit volum

 isoparametric element is used through the course of this thesis. However to 

demonstrate the element formulation, an 8-node element is described here. The 

20-node brick element used in the FEM simulations uses the ‘Serendipity’ shape 

function for its interpolations based on corner and midside nodes only. 

e are shown in Figure 4.1 and their 

equations of equilibrium are obtained as, 

,0=
∂
∂

+
∂

∂
+

∂
∂

zyx
xzxyx ττσ

       (4.20a) 

,0=
∂

∂
+

∂

∂
+

∂

∂

zyx
yzyyx τστ

       (4.40b) 

x
z

y
xzτ

zxτ xσ

zσ
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,0=
∂
∂

+
∂

∂
+

∂ zyx
zzy σ∂ zx ττ

where 

       (4.40c) 

yxxy ττ =  zxxz ττ =  and zyyz ττ = . 

The constitutive equation for an isotropic material is defined (Kwon, 1997) as, 

{ } [ ]{ },εσ D=     

where the stress and str

and the elastic matrix  is obtained as, 

        (4.41) 

ain tensors are, 

{ } { } ,T
zxxyzyx τττσσσσ =  yz

{ } { } ,Tγγγεεεε =  zxyzxyzyx
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where 

1⎢ + ννν

E  is the material’s modulus of elasticity and ν  is the Poisson’s ratio. 

For small displacement assumption, the strain vector is defined as, 
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where ,  and  are displacements in the u v w X , Y  and Z  global directions 

respectively. 

 
Figure 4.2. 3-D isoparametric solid element. 

Therefore in the mathematical isoparametric mapping for an 8-node brick 

element (shown in Figure 4.2), the two coordinate (natural and physical) systems 

are defined in relation to each other as follows, 

y

x

z

(a) Natural coordinates 

η

ξ

ζ

(b) Physical coordinates 
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( ),,,
8

1
∑
=

=
i

ii Nuu ζηξ           (4.44) 

where ( , ) are nodal values in the global coordinate system , 

( ),,,
8

1
∑
=

=
i

ii Nvv ζηξ  ( ),,,
8

1
∑
=

=
i

ii Nww ζηξ  

iu iv , iw (x y , )z

ent 

, 

 are th  and they are given below for a 8-

(Kwon, 1997) and in Appendix B for a 20-node brick element, where 

iN

( 1

e shape functions

1

node brick elem

,, ≤≤− ζηξ ). 

( )( )( ,111
8
1

1 ζηξ −−−=N )   ( )( )( ,111
8
1

2 ζηξ −−+=N  )

( )( )( ,111
8
1

3 ζηξ −++=N )   ( )( )( ,111
8
1

4 ζηξ −+−=N  )

( )( )( ,111
8
1
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8
1

6 ζηξ +−+=N  )

( )( )( ,111
8
1

7 ζηξ +++=N )   ( )( )( ,111
8
1

8 ζηξ ++−=N  )    (4.45) 

Therefore equation (4.44) is arranged in matrix form as, 

 (4.46) 

When the shape functions are used for both geometric mapping and also the 

nodal variable interpolation within the element, the element is called 

[ ]{ },dN

where d  is the nodal displacement vector. 
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isoparam tric. The shape function e ( )ζηξ ,,iN , is such that it has a u ity va e 

ly at the node, i  and zero at other nodes in the element. 

Therefore by substituting equation (4.46) into (4.43) we obtain, 

n lu

on

{ } [ ]{ },dB=ε            (4.47) 

in which, 
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Though the formulation for a linear element is shown in this section, the 

actual simulations were carried out using higher-order quadratic solid elements 

(20-nodes shown in Appendix B). They both follow the same formulation steps. 

Though the quadratic element does feature many more matrix elements (i.e. 

), it is however more accurate as depicted in the results in Chapter 3 and in 

subsequent Chapters. 

Stiffness Matrix 

Therefore the stiffness matrix for the element is obtained using, 

y
80

∂N 2
   (4.48) 

6060×

[ ] [ ] [ ][ ] [ ] [ ][ ] [ ] ,ddd detddd 
1 1 1 

= ζηξJBDBzyxBDBK TT

1 1 1  ∫ ∫ ∫∫ − − −
=

Vol
    (4.49) 

where [ ]K  is the element’s stiffness matrix, [ ]J  is the Jacobian of the 

transform tion from the physical coordinate a ( )
( )

zy,x, , to the natural coordinate 

ζηξ ,, . 

 - 117 - 



Chapter 4 – Tool and Workpiece Dynamics 
 

From equation (4.48), the derivatives, ( ) ( ) yxN ∂∂ ζηξ ,,1 , N ∂∂ ζηξ ,,1  and 

( ) ,,,1 zN ∂∂ ζηξ  can be obtained using the chain rule (Kwon, 1997) as follows, 

,
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z
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y
x

x
∂
∂

∂
∂
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∂
∂

∂
∂

+
∂∂

∂
=
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which can be written in matrix form (Kwon, 1997) as, 
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while its inverse is used in equation (4.51)

coordinates, (i.e. the derivatives of the shape functions with respect to 

⎢
⎢
⎢

⎣ ∂
∂

∂
∂

∂
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ζζζ
yyx

 to obtain the derivatives in the physical 

y  and x , 

z ). The elements in the Jacobian matrix are simply defined as, 
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,
8
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= ∂
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i
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ζ
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ζ
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i
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  (4.53c) 
1=i

where are the nodal co

Therefore equation (4.53) is simply calculated and the inverse of the Jacobian 

matrix is obtained numerically.

all the simulations on Abaqus using Gauss integration as its efficient and well 

ced integration is available 

on Abaqus, a full integration was adopted in the simulations using modal analysis 

to prevent hourglass modes in the solution of the eigenvalue problem. 

Mass Matrix 

The two main common mass matrices used in FEM are lumped and 

3, 1965) developed the consistent mass matrix 

and is defined as, 

         (4.54) 

where  is the mass matrix and 

iii zyx ,,  ordinates for each node i . 

 The integration in equation (4.49) is performed for 

suited for the polynomial interpolations. Though redu

consistent mass matrix. Archer (196

[ ] [ ] [ ] ,d 
 ∫= Vol

T VNNM ρ

[ ]M ρ  s the mass density. Equation (4.54) can also 

be solved using Gauss’ Integration just like in stiffness matrix. 

m ment mass matrix 

would simply be, 

The lumped mass matrix was developed earlier than the consistent matrix 

(Kwon, 1997) and preferred for its computational advantages, as it is a diagonal 

atrix. For the 8-node element discussed above, the lumped ele

[ ] [ ],
8

IVM ρ
=            (4.55) 

where  is the element’s volume and V [ ]I  is a ( 2424× ) identity matrix. 

Kwon and Bang (1997) described an approach to extra

matrix. This simply involves, adding all the diagonal components of the consistent 

 of freedom and then 

ct it from consistent 

mass matrix corresponding to the translational degrees
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dividing the diagonal components by the summation. Then finally multiply by the 

element’s total mass. The off-diagonals elements are simply equated to zero. 

Transient Modal Dynamic Analysis 

When the model is projected onto the eigenmodes used for the system’s 

dynamic representation (i.e. uncoupling the system’s stiffness, mass and damping 

quation 4.34), its uncoupled equation of motion at time  is 

(Hibbitt, 2006) obtained by substituting equations (4.32, 4.33) into (4.34) as 

follow

tmatrices as in e

s, 

,2 t
t
ffq ttpnp Δ
Δ
Δ2 qq pnppp += Δ−        (4.56) 

where 

++ ωωζ

p p ,  is the mode number, q  is the amplitude of the response of mode p

pn,ω  is the undamped natural frequency of mode p , fΔ  is the change in f  over 

the time increment, tΔ  assuming the excitation varies linearly with

ent and 

in each 

increm pζ  is the damping ratio for mode p . The solution is giv  

(Hibbitt, 2006) in the form

      (4.57) 

where, 

different cases of non-rigid body motion. These cases are based on the oscillation 

 a rdamp
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en

, 

1211

2221

1211 ⎫⎧⎤⎡
+

⎫⎧⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

Δ+

Δ+ tt

tt

tt fbbq
aa
aa

q
q

,
2221 ⎭

⎬
⎩
⎨⎥
⎦

⎢
⎣⎭

⎬
⎩
⎨⎥
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2, , ila  and ilb  are constants, which are dependent on the three 1, =li

modes - underdamped, critical damping nd ove ed. 

e underdamped case, the constants are given as follows (Hibbitt, 2006); 

( ) ,cossinexp11 ⎟⎟
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⎞
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⎝

⎛
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d

n
n ωω

ω
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( ) ,sin1exp12 tta dn ΔΔ−= ωζω       (4.
dω

58b) 
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( ) ,sinexp21 tta dn ΔΔ−−= ω
1 2−ζ

ωζω      (4.58c) 
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cos tΔ− ωω

21 ζωω −= , which is the damped natural freqund ency. 

nse 

of the physical variables are obtained through summation (Altintas, 2000), 

         (4.60a) 

         (4.60b) 

where  are the eigenvector corresponding to the mode 

Since the time integrations is done in generalized coordinates, the respo

,∑=
N

p
pqu pψ

,∑=
N

p
pqv pψ

pψ p , u  is the 

displacement in nodal coordinates and  is the velocity in nodal coordinates. v
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The Finite Element Model 

The workpiece material used in the FEM m

T7651’’. The material properties required for generating the stiffness and mass 

matrices are: Density, 

odel is ‘‘Aluminium Alloy 7010 

ρ  =  (Kg m-3), Young’s Modulus, 310823.2 × E  = 69.809 

(GPa) and Poisson Ratio, ν  = 0.337. Three different t

used in the finite elem ). The dimensions are shown in Figure 4.3 

and the corresponding wall heights,  and thicknesses, W are given in Tables 4.1, 

entally identified dam ng ratios. 

The damping parame  4.1) and Case 2A (Tab

be used to predict the damping param ters,  for the remaining struc s (Cases 

ping 

parameters predicted, 

ypes of workpiece were 

pi

l

ture

ent analysis (FEA

H

ters for Case 1A (Table

e

1B, 1C and 2B) using the proposed approach in equation (4.27). The dam

 and the force data, 

4.2, 4.3, 4.4, and 4.5 along with their experim

b
pζ

e 4.4) are to 
b
pζ

( )tf  measured by the instrumented 

hammer (in time domain) during impact tests were used in ea n

analysis. 

 machine during 

the impact tests, hence in the FEM simulations it was assumed to be perfectly 

clamped (characterised by stiffness values of 

uch 

higher than the excited frequencies during impact tests. 

Table 4.1. Case 1A, H = 30mm, W = 4.5mm 

Mode Numb

ch correspo ding FE 

The workpiece was bolted at the back surface to a milling

36101×  for the corresponding 

degrees of freedom) and that the resonant frequency of the machine is m

er, p   Natural Frequency, npω  (Hz) Modal Damping Ratio, pζ  (%)
03101900.4 ×  02109639.2 −×  1 

2 

3 

5 

7 

03103516.4 ×  9803.1 −×  

4 03104475.5 ×  03108120.8 −×  

0210
03108717.4 ×  02100514.1 −×  

03102813.6 ×  03101132.7 −×  
6 333.7 03101×  03103088.4 −×  

03106491.8 ×  03109493.4 −×  
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rkpiece dimensions. 

Table 4.2. e 1B, H = 30mm, W = 3.0mm 

Mode Number, 

Figure 4.3. Wo

Cas

p   Natural Frequency, npω  (Hz) Modal Damping Ratio, pζ  (%)

1 03108299.2 ×  02105093.2 −×  
2 03101979.3 ×  03102365.4 −×  
3 03104036.3 ×  03104138.3 −×  
4 03107928.3 ×  03106309.5 −×  
5 03103637.4 ×  03106441.5 −×  

Table 4.3. Case 1C, H = 30mm, W = 1.5mm 

Mode Number, p   Natural Frequency, npω  (Hz) Modal Damping Ratio, pζ  (%)

1 03103181.1 ×  02100010.3 −×  
2 

3 

4 

5 

03106038.1 ×  03104222.2 −×  
03107067.1 ×  03104937.2 −×  
03109071.1 ×  03105882.2 −×  
03101948.2 ×  03106691.1 −×  

H 

W 

R=5mm

 260mm 

30mm 

260mm 
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Table 4.4. Case 2A, H = 70mm, W = 7.5mm 

Mode Number, p   Natural Frequency, npω  (Hz) Modal Damping Ratio, pζ  (%)
03102725.1 ×  02106636.1 −×  1 
03104651.1 ×  02104675.1 −×  
03109977.2 ×  03103671.8 −×  
03100140.2 ×  02100525.1 −×  
03103787.4 ×  03108279.5 −×  

2 

3 

4 

5 

Table 4.5. Case 2B, H = 70mm, W = 3.5mm 

Mode Number, p   Natural Frequency, npω  (Hz) Modal Damping Ratio, pζ  (%)
02107573.5 ×  03102024.9 −×  1 
02105420.6 ×  03100351.6 −×  
02109132.8 ×  03101987.5 −×  
03102789.1 ×  03100564.6 −×  
03108500.1 ×  03102948.3 −×  

2 

3 

4 

5 

 

4.2.5. Validation 

Damping Ratio for Case 1 

e

different damping ratios are extracted for the Cases 1A, 1B and 1C as given in 

Tables 4.1, 4.2 and 4.3, respectively. The proposed approach uses the damping 

ratio obtained from one geometry (Case 1A) to predict the damping for any given 

geometry with only the thickness change  (Case 1B) and (Case 1C). U ing the 

least squares method, the damping ratios

n equation (4.38) as follows, 

 

  

  

Using the xperimental modal analysis explained in section 4.2.1, the 

d s

 identified for Case 1A (see Table 4.1) 

were used to extract the coefficients i

,101272.1 ×−=  4
1α  ,10805.1 6−−=α  ,10997.3 2×=α  01

754 ×

,106932.3 3
2

-α ×= ,102188.1 10
5 ×−=α  

,108194.1 7
3 ×=α 10

6 108190.2 -α ×=  
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The curve f ttii n the lg is compared with  calcu ated pζ  and pω  in Fig e 4.4ur . 

From this curve fitting, the damping for a new wall thickness can be predicted as 

shown in Figures 4.5(b) and 4.5(c) for Cases 1B and Case 1C respectively using 

equations (4.27 and 4.28). 

The experimental data for each geometry (Tables 4.1, 4.2 and 4.3) was used 

to extract the coefficients uα  in Rayleigh’s damping model and Caughey’s series 

i  a ng i qu  

4.1) into generalized coordinates using equation (4.35) and substituting in 

equations (4.32 and 4.33) it can be expressed as, 

n equations (4.1 nd 4.3). By transformi Rayle gh’s damping model (e ation

,,1
,

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= pn

pn
p ωα

ω
αζ           (4.61) 

while Caughey’s series can be expressed in generalized coordinates as, 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ α
++++= …5

,3
3
,2,1

,

0
pnpnpn

pn
p ωαωαωα

ω
ζ       (4.62) 

Hence using least square method, the experimental damping ratios for each 

geom

 is seen to be 

satisfactory. Though it should be noted that to obtain Caughey’s series curve, the 

experimental data is required for each geometry in order to obtain the coefficients. 

The coefficients identified for Rayleigh damping model and Caughey’s series are 

given or each geom

etry in Tables 4.1, 4.2, and 4.3 were used to extract the coefficients for each 

corresponding geometry. 

The damping ratio curve fittings using both Rayleigh and Caughey’s series 

are compared with the damping ratios from the proposed series in Figures 4.5(a), 

4.5(b) and 4.5(c). The comparison between the proposed damping prediction 

approach, Caughey’s series curve fitting and experimental data

etry in Tables 4.6, 4.7 and 4.8. 
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Figure 4.4. Comparison between curve fitting using proposed series and pζ . 

Table 4.6. Case 1A, H = 30mm, W = 4.5mm (Rayleigh and Caughey’s Damping Constants) 

 0α  1α  2α  3α  4α  

Rayleigh 03101445.1 ×  06104440.1 −×−    
Caughey’s 

Series 
03108711.9 ×  05105707.9 −×− 12104716.3 −× 20103111.5 −×−  26108810.2 −×

 

Table 4.7. Case 1B, H = 30mm, W = 3.0mm (Rayleigh and Caughey’s Damping Constants) 

 0α  1α  2α  3α  4α  

Rayleigh 01106520.7 ×  06108016.3 −×−    
Caughey’s 

Series 
03105645.2 ×  04104519.7 −×− 11100026.8 −× 1810746.3 −×−  26104637.6 −×

 

The proposed approach apart from predicting the damping ratio can be used 

to give a rough estimate of the frequency range of the most significant modes, 

when performing a finite element analysis (FEA) or an impact test by using the 

calculated . 

Table 4.8. Case 1C, H = 30mm, W = 1.5mm (Rayleigh and Caughey’s Damping Constants) 

 

b
pω

0α  1α  2α  3α  4α  

Rayleigh    03100647.5 ×  05102563.1 −×−
Caughey’s 

Series 
02103362.8 ×  03100084.1 −×− 10105089.4 −× 17107757.8 −×−  24102665.6 −×
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Taking Hz 8821 =ω  for example, it will become  for a 7.5mm 

thick wall using equation (4.28). Using FEM, the f l frequency is 

calculated to be 6588.4 Hz, hence  can be used as a roug ate of the 

minimum frequency of interest and knowledge of the minimum frequency can be 

used to reduce the computational time. 

Hz 66151 =bω

irst natura

h estimb
1ω
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(c) Case 1C 

Figure 4.5. Comparison between predicted damping ratios (using the proposed 

approach), curve fittings (using Caughey’s series and Rayleigh’s damping model) 

and experimental damping ratios: (a) Case 1A; (c) Case 1B; (c) Case 1C. 

Similarly, by using the maximum frequency of the dominant modes in equation 

(4.28)  can be taken as a rough estimate of the maximum frequency of the

dominant modes for the new structure. 

Damping Ratio for Case 2 

A wall section with a different height of 70mm (Case 2) was further used to 

validate the proposed approach. The different damping ratios extracted for Case 

2A and Case 2B are given in Table 4.4 and 4.5. Using the least squares method, 

the damping ratios identified for Case 2A were used to extract the coefficients in 

equation (4.38) as follows, 

  

while the curve fitting is compared with the calculated 

b
pω  

,1068005.3 1
1

−×=α ,1004763.3 7
2

-α ×=  

 and pωpζ  in Figure 4.6. 

From this curve fitting, the damping for a new wall thickness can be predicted as

shown in Figure 4.7(b) for Case 2B using equations (4.27 and 4.28). 
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Figure 4.6. Comparison between  using proposed series and  curve fitting pζ . 

Tabl rve 

fittings using both Rayleigh and Caughey’s series are also compared with the 

mp

isfactory. The comparison between the 

proposed series damping model (equation 4.30) and Rayleigh’s model in Figure 

se the first term in the series in equation (4.38) 

is equivalent to Rayleigh’s model, when 

Rayleigh and Caughey’s series coefficients extracted using damping parameters in 

es 4.4 and 4.5 are given in Tables 4.9 and 4.10. The damping ratio cu

damping ratio curve fitting from the proposed series in Figures 4.7(a) and 4.7(b). 

The co arison between the proposed damping prediction approach, Rayleigh 

model and experimental data is sat

4.7(a) are exactly the same, becau

 and pωpζ  are converted back into the 

b
pζ  and b

pω . This further shows the accuracy of the proposed approach as the 

results for Case 2B were fully predicted as opposed to curve fitted. 

Table 4.9. Case 2A, H = 70mm, W = 7.5mm (Rayleigh and Caughey’s Damping Constants) 

 0α  1α  2α  3α  

Rayleigh   01101401.4 ×  07100953.6 −×  
Caughey’s Series 01102405.2 ×  07108966.9 −×− 13101526.2 −×  21100922.8 −×−
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Figure 4.7. Comparison between predicted damping ratios (using the propo

s series and Rayleigh’s dam

an a
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Table 4.10. Case 2B, H = 70mm, W = 3.5mm (Rayleigh and Caughey’s Damping Constants) 

 0α  1α  2α  

Rayleigh  8871.8  06106646.1 −×  
Caughey’s Series 7947.3  06104528.2 −×  13108788.4 −×−  
 

Time Domain – Case 1 

Cases 1B and 1C were simulated in a commercial FEM package (Abaqus) 

using the simulation approach explained in section 4.2.4. Two different 

simulations were performed for each structure. In the first simulation (for each 

case), the damping ratios extracted experimentally were used directly. This 

simulation shows how accurate the actual FEM predictions are compared to

experimental results. In the sec  (for each case), the predicted 

damping ratios using the new approach discussed in this section were used. It 

should be noted that this second simulation requires no experimental input/data as 

all the material properties are known and the damping ratios are predicted using 

the proposed approach. The input force in time domain 

 

ond simulation

( )tf  used in equation 

(4.56) in both simulations, was the impact force measured using the instrumented 

hammer for each corresponding structure. 

The damping ratio pζ  in equation (4.56), for the first simulation was the 

experimental damp tio for each natural frequency (Tables 4.2 and 4.3); and 

in the second simulation corresponds to the predicted damping ratio,  (Figures 

4.5(b) and 4.5(c)), where  is the numerically identified natural f cy for 

the structure. The damping ratios are defined in Abaqus in terms of their 

corresponding frequencies. The a the same accelerometer location 

(a  

Comparison between the FEM modal analysis and the experimental results 

is satisfactory as shown in Figures 4.8(a) and 4.8(b). The comparison between the 

FEM results when using experimental damping ratios and when using predicted 

damp g ratios show a very good match, see Figures 4.8(a) and 4.8(b). 

ing ra
b
pζ

requenb
pω

cceleration at 

s it was during the experimental impact testing) was monitored in the FE

analyses and is compared with acceleration measured during the experiments. 

in
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Figure 4.8. Comparison between FEM predicted acceleration for both simulations 

and experimentally measured acceleration. 
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Time Domain – Case 2 

Likewise for Case 2B, the experimentally identified damping ratios and 

damping ratio predicted (using the proposed approach) were used in FEM 

simulations and comparisons to experimental results are shown in Figure 4.9 to 

further show the accuracy of the predicted damping ratios. 

The possibilities of predicting the damping ratio for any given structure with 

only a change in just its height was also investigated. However the results, 

although inconclusive show a possible new set of parameters of the kind, 

,a
a
ph h⋅= ζζ            (4.63) 

a
a

pnh h⋅= ,ωω            (4.64)

Further experimental tests would however be required to further investigate 

any possible relationship. 
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Figure 4.9. Comparison between FEM predicted acceleration for both simulations 

and experimentally measured acceleration. 
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4.3. FEM Approach to Stability Lobes Prediction 

 the classical impact 

experimental approach used in extracting structure’s FRF. The numerical and 

experimental FRFs are 

This section presents a Finite Element Analysis (FEA) and Fourier 

transform approach to obtain a structure’s frequency response function (FRF). 

The aim of this approach is to eliminate the need for

used to obtain stable regions in the machining of thin 

walled structure. Examples are compared with experimental results and a 

satisfactory agreement is observed. 

4.3.1. Cha

The F

del used in this section is the 2-D model proposed by 

Altintas and Budak (1995) as summarized below. The periodic milling forces 

excite the cutter and the workpiece causing two orthogonal dynamic 

displacements

tter Stability Model 

EM approach presented in this section was proposed by Adetoro et al. 

(2009b). The stability mo

 and yx  in the global axis. This generates undulations on the 

machined surface and each tooth removes the undulations generated by the 

previous tooth (Figure 4.11). Therefore leading to a modulated chip thickness as 

opposed to a static chip thickness (Figure 4.10), which can be expressed as, 

( ) ( ) ( ),sin 00
jwjcjwjcjtj sh υυυυφφ −−−+=        (4.65) 

 
Figure 4.10. Static milling model. 

jφ

cutting 
edge, j 

ts
X

Y

( )jts sin φ
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Figure 4.11. Dynamic Milling Model. 

where ts  is the feed per tooth, ( )jcjc υυ ,0  and ( )jwjw υυ ,0  are the dynamic 

displacement of the cutter and workpiece at the previous and present tooth periods 

respectively, tj pj Ω+= φφ  is the angular immersion of tooth j  (see Figure 4.11) 

for a cutter (Ω  if the angular speed), with constant pitch angle 

pφ

jφ tjj Fv d,

rjj Fu d,

Ω

Vibration marks left 
by tooth (j) 

vibration marks 
left by tooth (j-1) 

tooth (j-2) 

tooth (j) 

tooth (j-1) 

X

Y

Np πφ 2=  ( N  is 

the number of teeth). 

The dynamic displacements in the 

workpiece vibrations are defined as, 

chip thickness direction due to tool and 

jjj yx φφυ βββ cossin −−=  ( ),, wc=β        (4.66) 

where  and  indicate the cutter and workpiece respectively,  and 

are the dynamic displacements in the global axis for the current and previous tooth 

periods respectively. 

By eliminating the static part (Figure 4.10) in equation (4.65), the dynamic 

chip thickness in milling is defined as, 

c w ββ yx , 00 , ββ yx  
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( ) ,cossin jjj yxh φφφ Δ−Δ=          (4.67) 

where, 

( ) ( )
( ) ( 00

00 ,

wwcc

wwcc

yyyyy

xxxxx

−−−=Δ

−−−=Δ

)         (4.68) 

Therefore, the dynamic forces on tooth j  (using ‘‘Exponential Force 

Coefficient Model’’, (Budak, 1994)) in the tangential and radial directions can be 

defined as, 

( ) ( )
( ) ( ),

,

φφ

φφ

tjrrj

jttj

FKF

ahKF

=

=
          (4.69) 

where  is the axial depth of cut (ADOC), and  and  are the tangential and 

radial cutting force co  equation (4.67) into 

(4.69) and resolving in the global directions, the following expression is obtained 

a tK rK

efficients respectively. By substituting

(Altintas, 1995, Budak, 2006) as: 

,
2
1

⎭
⎬
⎫⎧Δ⎤⎡

=
⎭
⎬
⎫

⎩
⎨
⎧

y
xaa

aK
F
F xyxx

t
y

x         (4.70) 
⎩
⎨Δ⎥
⎦

⎢
⎣ aa yyyx

where, 

     (4.71b) 

 .71c)

]      (4.71d) 

( )[ ]∑ −− 2sincossin rj Kg φφφ      (4.71a) 
−

=

=
1

0

N

j
xxa

( )[ ]∑
−

=

−−=
1

0

2 cossincos
N

j
rjxy Kga φφφ

( )[ ]∑ −= cossinsinsi rjyx Kγga φφφ     (4  

[∑
−

=
1

cossin
N

jyy ga φ

−

=

1

0

2n
N

j

( )
=

−
0

2cos
j

rKφφ

where, 
( )
( )

⎫

><←=

<<←=

g

g

φφφφ

φφφφ

or      0

1

⎪⎭

⎪
⎬

exitjstartjj

exitjstartj

φ
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xya  are the periodic direct

angular position of the cutter and the radial cutting force coefficient  (refer to 

Chapter 5), thereby making equation (4.70) a function of time, 

ional cutting coefficients and they depend on the 

rK

( ){ } ( )[ ] ( ){ },
2
1 ttAaKtF t Δ=          (4.72) 

where, ( ){ } { }Tzyxt ΔΔΔ=Δ ,, . ( )[ ]tA  is periodic at the tooth passing frequency 

Ω= NTω , therefore its Fourier series expansion is used for the solution of the 

system. The average value in t

) of the time varying direc

nce should 

nsional model is outlined. The

he Fo

tiona

ref

urier series expansion (single frequency 

l coefficients is used in this section. 

ore, the average Fourier term  of the 

 s ef s, 

solution

Refere

dime

be made to Chapter 5 for more detail on the model as a three-

 [ ]oA

Fourier eries expansion (Altintas, 2001) can be d ined a

[ ] ( )[ ]

( )[ ] [ ],d 1       

d1

 

 

0 

αφφ
φ NA

ttA
T

A

exit

T

o

==

=

∫

∫
 

4 πφ φstartp

       (4.73) 

and the evaluated elements of the directional factor matrix, [ ]α  are given as 

follows: 

      (4.74a) 

      (4.74b) 

]  

 

Hence, equation (4.72) reduces to, 

( )[ ] ,22sin2cos exit

startrxx K φ
φφφφα −+=

[ ] ,2cos22sin exit

startrxy K φ
φφφφα ++−=

[ ,2cos22sin exit

startryx K φ
φφφφα +−−=      (4.74c) 

 ( )[ ] ,22sin2cos exit

startryy K φ
φφφφα +−−=     (4.74d) 

( ){ } [ ] ( ){ },
8 0 tAaKNtF t Δ=
π

         (4.75) 

 is the time invariant, but imm tting 

coefficient matrix. 

where [ ] ersion dependent directional cu0A
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The vibration vectors at the present time t  and previous tooth periods ( )Tt −  are 

defined as, 

{ } ( ) ( ) ( ){ }T

{ } ( ) ( ){ TtyTtxr

tztytxr

−−=

=

,,

,,

0 ( )}TTtz −
       (4.76) 

By using the transfer function at the cutter-workpiece contact zone, the vibration 

vectors are defined in frequency domain as, 

( ){ } ( ){ } ⎪⎭

⎪
⎬− ωω

ωω
ω

ω

ireir
eFiGir

Ti

ti

0

         (4.77) 

Therefore, the displacement/regenerative vector in equation (4.72) is defined as, 

( ){ } ( ) ( )

( ){ } ( )[ ]{ } ⎫

=

=

( ){ } ,,, 000
Tzzyyxxt −−−=Δ        (4.78) 

 and in frequency domain, using equation (4.77) as, 

( ){ } ( ) ( )[ ]{ } tiTi eFiGei ωω ωω −−=Δ 1         (4.79) 

( )[ ]ωiGwhere,  is the transfer function (TF) matrix of the structure. Hence, 

equation (4.75) becomes an eigenvalue problem defined as, 

{ } [ ]( ) ( )[ ]{ } ,ee1
8

e 0
ti

c
Ti

t
ti ccc FiGAaKNF ωωω ω

π
−−=       (4.80) 

The transfer function matrix ( )[ ]ciG ω  is the main focus of this section. It is 

defined as, 

( )[ ] ( )[ ] ( )[ ],cwccc iGiGiG ωωω +=         (4.81) 

where, 

( )[ ] ( ) ( )
( ) ,⎥

⎤
⎢
⎣

⎡
=

cyx

cxycxx
cxx iG

iGiG
iG

ω
ωω

ω
β

ββ
β  ( )wc,=β      (4.82) ( )⎦cyy iG ωβ

Equation (4.80) has a non-trivial solution if and only if its determinant is zero, 
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[ ] ( )[ ][ ] ,0det 0 =Λ+ ciGI ω         .83)  (4

where, [ ] [ ][ ]GAG 00 =  is known as the oriented transfer function. The eigenvalues 

is defined as, 

( )Ti
t

caK
π

−−=Λ e1
8

         (4.84) N ω−

Solving equation (4.83) numerically will give eigenvalues with complex and real 

parts  a

Wh  into equation (4.84), the com

( )IR iΛ+Λ=Λ ,

en this is substituted

( )

nd from Euler’s formula, TiT cc ωω sincose −= . Ti cω−

plex part has to vanish (i.e. 

TT cRcI ωω sincos1 Λ=−Λ ) because the axial depth of cut a  is a real value. 

Therefore, 

,tan
cos1 ω

sin
ψ

ω
κ ==

Λ
=

TcI         (4.85) 

where 

−Λ TcR

ψ  is the phase shift 

relationship between the frequency and the spindle speed is obtained (Altintas, 

of the eigenvalues. From this expression the 

1995) as follows; 

,
T

60
,tan
,2

,2

1

N
n

kTc

=

=

−=
+=

− κψ

ψπε
πεω

     

where 

     (4.86) 

ε  is the phase difference between the inner and outer undulations,  is an 

integer corresponding to the num

 is the spindle speed (rpm). Substituting equation (4.85) into (4.84) and inal 

on for chatter free axial depth of cut becomes, 

k

 the f

ber of vibration waves within a tooth period and 

n

expressi

( )2
lim 14

κ
π

+
Λ

−=
t

R

NK
a          (4.87) 

Therefore for a given chatter frequency, cω  the eigenvalues are obtained 

from equation (4.83), which allows for the critical depth of cut to be calculated 
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using equation (4.87) a

different number of vibration waves, . This is repeated for various frequencies 

4.3.2. State Space Approach to the System’s Transfer Function 

The element form  4.2.4 and the stiffness and 

er comes at the rge as  It i

optimization algorithm or th  

es encountered. 

While most commercial packages can be used to obtain very good results in 

structural analysis, it is always desi

towards analysing a main process. T allows for quicker modelling time as the 

ecially for real en ers like machinists working on the ‘shop 

floor’. There have been various commercial software packages of this nature, for 

example ‘Metalmax’, ‘CutPro’ and ‘ShopPro’, that aim to analyse different 

aspects of milli

and so on. 

With the system ma mic parameters known, in order 

si

s (as demonstrated in Case 

studies in section 4.3) and even in m lling the change in dynamics along a thin 

wall in Chapter 6. Ho

Space’ approach to obtaining the syst ’s transfer function is proposed. 

nd finally the spindle speed using equation (4.86) for 

k

ulation was discussed in section

his 

d us

trix available and dyna

ode

em

around the structures dominant modes. 

mass matrices can be used to define the domain with very good accuracy. This 

howev  cost of large matrices sizes as la s 

for this reason that FEM commercial packages are well suited with some 

e other embedded within the code to deal with the 

large matric

 3000030000× .

rable to write a program that is tailored 

options that are not pertaining to the process wouldn’t necessarily be included in 

the program. Furthermore, a much simplified user interface would then be made 

possible. Most esp

ng, from experimental modal analysis, to cutting force modelling 

to obtain the system’s transfer function using any Finite Element Method (FEM) 

approach, the location of the input would have to be changed and the FEM 

mulation re-run to obtain the response of the system to an input force. This 

approach in itself is capable of attaining accurate result

wever, in order to further simplify the process, a new ‘State 
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Model Formulation 

The state-space is an alternate approach to defining the relationship between 

the input and output of a system using state variables. The state variables are a set 

of numbers, with sufficient information to allow computation of system behaviour 

th 

study can be found in (Tim

fined by the 

           (4.90) 

at any future given time. The state space is summarised below, while an in-dep

othy, 1968). The standard second-order differential 

equation of motion given in equation (4.2) is used for its formulation. 

Since the vector x  in equation (4.2) is completely de initial 

conditions 0x  and 0x  and input F , we define the column vector ( ) 00 yy =t . 

Hence, 

⎟⎟
⎠

⎜⎜
⎝

0

x
           (4.88) 

A unique output solution x  is determined by F  and 0y , therefore, 

,⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

y
y

y            (4.89) 

can be defined as a state vector, while, 

⎫
=

==
xy

yxy

2

21 ,

⎞⎛
=

0
0

x
y

⎭
⎬

Therefore by substituting for x  in equation (4.2) the following is (Timothy, 

1968) obtained, 

( ) ( ) 122 yKMyCMFMy 111 −−− −−=         (4.91) 

Hence, 

,111 F
IM

0
y
y

CMKM
I0

y
y

2

1

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−       (4.92) 
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which is known as the system or state equation, where  is an identity matrix. Just 

like before, the solution is uniquely determined by  and , as a result the 

outpu

1) for the 

differential system in equation (4.2) are generally written (Jaymin, 2001) as, 

   (4.94

          (4.95) 

where, for  state variables,  inputs,  outputs, 

I

F 0y

t equation is, 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

y
y

0Ix           (4.93) 

Therefore, the ‘state vectors’ in equations (4.90) and (4.9

[ ] [ ,FyAy +=        ) 

[ ]yCx =

]B

[ ] ,FD+

n i l [ ]A  is the  system/state 

matrix, 

nn×

[B]  is the in×  input matrix, [ ]C  is the nl ×  output matrix, [ ]D  is the il ×  

coupling trix  (f ma  between inputs and outputs or

i

 simplicity this is taken as null), 

F  is the 1×i  input/control vector, x  is the l ×  output vector, y  is the 1×n  state 

vector. 

Using this approach, the response for any desired output point can be 

also easily allows for multiple input and 

t can be easily changed according 

to where the force is acting or where the response is required. 

The System’s Transfer Function 

the transfer function from the state space equations, it is simply 

defined in Laplace transform domain, while ignoring the initial conditions (He, 

2001) as, 

obtained for any specified input point. It 

output as well. The input point and output poin

To obtain 

( ) ( ),~~~( )ssy = ss fByA +        (4.96a) 

( ) ( ) ( ),~~~ ssss fByAy =−     

        (4.96c) 

   (4.96b) 

( )( ) ( ),~~ sss fBAIy =−
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( ) ( ) ( ),~~ 1 sss fBAIy −−=        (4.96d) 

~~~( ) ( ) ( )sss fDyCx +=           (4.97) 

Therefore, 

) ( ) ( ),~~~( ) [ ]( 1 ss−       (4.98a) ss fDfBAICx +−=

( ) [ ]( ) DBAICG +−= −1ss        (4.98b)  

The transfer function is defined over the complex Laplace plane, s

 transfer 

 as 

described in previous section. The frequency response function (FRF) or

function is simply the ωi  – axis in the s  – plane ( )ωis = i.e. . Therefore, the 

system’s transfer function is defined in state space representation as, 

( ) [ ] )( ) DBAICG +−= −1ωω ii         (4.99) 

The steps for deriving the system stiffness and mass matrices (

(

K  and M ) 

proportional da

are given in section 4.2.4, while the new approach to model and/or predict 

mping proposed in section 4.2.3 can be used to obtain the damping 

matrix. 

highly sensitive to the approximations introduced. Due to the nature of the 

argins), errors in the extracted system’s 

pproach useless/unproductive. Hence a 

simpl

4.3.3. Fourier Approach to the System’s Transfer Function 

To obtain the tra

dynamic loading was obtained using the modal dynamic analysis on Abaqus 

described in section

workpiece to the dynamic loading (input) is obtained from equation (4.60a). 

Much efforts were made to use various available approximation methods to 

help reduce or to solve very large matrices. However it was either too 

computationally slow to implement the method or the solutions obtained were 

solution sought (i.e. prediction of stable m

dynamics can very quickly render the a

e FEM approach is thus proposed in conjunction with discrete Fourier 

transform. 

nsfer function of the system, the time domain response to a 

 4.2.4. Therefore the dynamic response (output) for the 
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The system’s fre

Fourier transform of the output/dynamic response over the input/dynamic loading 

(in the case of a syste

quency response function (FRF), is simply the ratio of the 

m with single input and output) i.e., 

( ) ( )
( )ω
ω

ω β
β

pnq

nq
nq F

X
G =  ( ) ( ) ( )yxqyxnwcp ,,,,, ===     (4.100) 

The discrete Fourier

(Smit

 transform (DFT) algorithm is adopted, which is defined 

h, 1997) as, 

[ ] [ ]

[ ] [ ]∑

∑
−

−

=

⎟
⎞

⎜
⎛ Θ

−=Θ

⎟
⎠
⎞

⎜
⎝
⎛ Θ

=Θ

1

1

0

2sinIm

,2cosRe

M

M

thG

thG
τ

πτ

πτ
      (4.101) 

= ⎠⎝0 M

M

τ

where  runs from  to , [ ]ΘGRe  and [ ]ΘGImΘ  0 2M  are the real and imaginary 

parts of the frequency domain signal and [ ]τh  is the time domain signa

The corresponding frequencies are defined as, 

l. 

,
1−

were 

⋅
=

M
fkω          (4.102) 

ω  is the frequency, f  is the sampling frequency. 

4.3.4. The Finite Element Model 

The workpiece material used in the FEM model is Aluminium Alloy 7010 

T7651 and its properties are given in section 4.2.4. The three different types of 

workpiece in Tables 4.1, 4.2 and 4.3 were used in the finite element analysis 

(FEA). The dimensions are shown in Figure 4.3 and the different thicknesses, (W) 

are given in Tables 4.1, 4.2 and 4.3 respectively. The damping ratios, pζ  used in 

equation (4.29) were identified through impact tests and are given in Tables 4.1, 

4.2 and 4.3. 

The assumptions made in the finite element analysis (FEA) are as follows: 
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ring the impact test and 

it was assumed that the natural frequencies of the machine are very high 

compared to that of the workpiece, hence th

the FEM analysis. 

 

 Although the addition of the point mass was only done at this 

stage to validate the proposed approach to extracting the structures transfer 

function. When this approach is later used in section 4.4 to show the 

application of previous 

accelerometer mass is not added. 

 R

nction 

For Case C,

input force (in time domain) in the FEM modal analysis. The predicted  

The workpiece was bolted at the back surface during the impact tests and in 

the FEM this was assumed to be clamped. 

 The workpiece was bolted to the milling machine du

eir influence can be ignored in 

The mass of the accelerometer was assumed to be a point mass added to the 

FEM model.

damping prediction approach in section 4.3, the 

4.3.5. esults 

Extracting the Workpiece Transfer Fu

 the measured input force from the impact test was used as the 
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Figure 4.12. Predicted and measured acceleration for Case C. 

 - 145 - 



Chapter 4 – Tool and Workpiece Dynamics 
 

acceleration (in time domain) is shown in comparison to the experimental 

acceleration from the accelerometer (during the impact test) in Figure 4.12. The 

predicted FRF (using the approach in section 2) and experimental FRF, are 

compared in Figures 4.13a and 4.13b respectively. The agreement between the 

experimental results and the predictions is satisfactory. 
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Figure 4.13. Predicted and measured FRFs for Case A. 
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For Cases B and C, the input force (in time domain) used in the FEM modal 

analysis was a Dirac delta function. The predicted and experimental FRFs are 

compared in Figures 4.14 and 4.15. The agreement between the experimental 

results and the predictions is satisfactory. It should be noted that though the 

frequency response of the workpiece are identified only in the normal direction 

(Y), they can equally be extracted for the feed and axial directions (X and Z). 
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Figure 4.14. Predicted and measured FRFs for Case B. 
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The results here are used to validate the presented approach. Moreover, an 

advantage this approach presents is actually in the fact that the FRF for the system 

can be identified in any specified spatial direction. Whilst experimentally, 

extracting the FRF for a structure can be challenging depending on the geometry 

of the structure. 
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Figure 4.15. Predicted and measured FRFs for Case C. 
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Chatter Stability Lobes 

The stability lobe model described in section 4.3.1 was programmed using 

Matlab. Using both the predicted and experimental FRFs, the stability lobes were 

generated for the three different types of workpiece using the cutting conditions 

listed in Table 4.11. The cutting force coefficients were assumed as constant and 

their values given in Table 4.11 were calibrated in Chapter 3, where ‘‘RCFC’’ and 

‘‘TCFC’’ are the radial and tangential cutting force coefficients respectively. The 

axial depth of cut they correspond to are given in Table 4.11. Due to the nonlinear 

behaviours or the cutting force coefficients an average is normally used; however 

in Chapter 5, an approach that accurately predicts the stability lobes with 

nonlinear coefficients is developed. In the transfer function matrix ( )[ ]ciG ω , the 

elements for the ( )cpxx iG ω , ( )cpxy iG ω  and ( )cpyx iG ω  are given small values (1E-

16) as only the direct transfer function ( )cipyyG ω  was extracted. The predicted and 

experimental results are compared in Figures. 4.16(a), 4.16(b) & 4.16(c) for the 

three different workpiece. 

The slight discrepancy in the predicted natural frequency (frequency at which FRF

real is zero and imaginary is ma can be seen in the slight shift in the 

spindle speed calculated in the stability lobes. The natural frequency predicted 

affects the stable tooth passing frequency 

 

ximum) 

Tω  calculated in the stability lobes, 

hence the slight differences seen in the spindle speeds. The predicted stable axial 

depth of cuts in Figures 4.16(b) and 4.16(c) are slightly higher than the 

experimental stable ADOC and this is due to the FEM model being too stiff. This 

can be caused by the boundary condition assumption stated in section 4.3.4, where 

the back surface was assumed to be perfectly clamped. 

Table 4.11. Cutting conditions and cutting force coefficients 

 Workpiece A Workpiece B Workpiece C 

RCFC, 1.1459 0.3030 -0.7040 rK  

TCFC  (MPa) 679.6021 801.0970 981.6966 

Axial Depth of Cut, (mm) 6.00 2.50 0.50 

Radial Depth of Cut, (mm) 2.00 1.00 0.50 

, tK
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In the FEM stiffness matrix, the diagonal elements corresponding to these degrees 

of freedom are therefore given a very high value (1E+36) and the degrees of 

freedom at this surface are not included in the simulation. A more accurate 

approach would require knowledge of the friction at the boundary between the 

machine and the workpiece. 
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Figures 4.16. Stability lobes comparison. 
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4.4. Numerical Prediction of Stable Margins in Thin Wall 

Machining 

In this section, the above proposed approach to damping prediction and 

modelling, the FEM and Fourier approach for extracting structure’s FRF 

presented are applied to thin wall machining stable margin prediction. It is shown 

in this chapter that only one experimental tap test result is required during thin 

wall machining. This is because the damping parameters required for subsequent 

wall thicknesses can be predicted using the proposed approach. An example of 

predicted stable regions using both experimental and numerical FRF’s gave a 

good comparison. Though the damping model is believed to be at a development

stage its direct application is clearly shown in this section. 

 

4.4.1. Damping Prediction Applications 

When machining a wall section, the materials are taken off in layers which 

change the workpiece’s geometry and hence its damping parameters. An approach 

that identifies a certain trend in the changes the workpiece thickness has on the 

damping parameter was proposed in section 4.2. This approach defines the 

damping parameters of a wall section as a function of another similar wall with a 

different thickness. When machining a simple wall section as shown in Figure 4.3, 

the wall thickness progressively gets thinner until the desired thickness is 

acquired. To fully implement the well developed stability lobe model summarised 

in section 4.3.1, the damping parameters are required, most especially when 

machining thin walled structures. Hence, the proposed approach can be directly 

used to predict the damping parameters as the workpiece thickness reduces, while 

mass and stiffness parameters can be modelled numerically with satisfied 

accuracy. 

During process planning, the damping parameters for the starting wall 

thickness can be extracted by performing a single tap test experiment, which is 

used in the prediction of the starting wall’s stable margins. Based on the radial 

depth of cut used in the calculation of the stable margins, the new wall thickness 
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is known. This can then be used in equations (4.27 and 4.28) to predict what the 

damping parameters for the next wall would be, where pζ  and pω  are obta

using equations (4.25 and 4.26) using the 

ined 

experimental tap test results. These 

damping parameters are subsequently used in the finite element approach (as 

expla

nitial wall thickness. 

Therefore this approach can also be used at this stage without the need to carry out 

cumbersome machining tests. 

To fully apply the predicted damping parameters, the finite element 

appro

frequency response function is solely based on prediction and a good 

comp

ined in section 4.3) to predict the transfer function. Hence, the stable margins 

for the next wall can be calculated using this predicted transfer function without 

any experimental tests conducted. 

During the design stage, with the knowledge of the damping parameters for 

the initial workpiece, the final optimum design can be obtained based on a trade 

off between weight and machinability. Though information about the weight is 

simply calculated, information about the machinability is dependent on the stable 

regions predicted for the wall thicknesses after the i

ach presented in section 4.3 is required. This approach deals with the 

stiffness and mass parameters along with the damping parameters by predicting 

the systems frequency response function (section 4.3.2). Therefore the stable 

margin can be predicted for thinner walls. 

4.4.2. Results 

To show this application, the damping parameters for Case 2B predicted in 

section 4.2.5 are used to extract the stability lobes and compared with stability 

lobes obtained using experimentally identified damping parameters. Using the 

damping parameters predicted in Figure 4.7(b), the FEM and Fourier approach 

(section 4.3.2), the frequency response function is extracted and shown in Figure 

4.17. This 

arison is seen with experimentally identified FRFs’. 
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Figure 4.17. Predicted and measured FRFs for Case 2B. 

The identified frequency response function (FRF) of the workpiece was 

used to extract the stable margins using the approach briefly summarised in 

section 4.3.1 as shown in Figure 4.18. The cutting force coefficients are again 

assumed as constant and the coefficients for an axial depth of cut of 0.50mm were 
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used. As detailed in Chapter 3 the tangential cutting force coefficient = 981.6966 

(Nmm-2), while the ratio of the radial to the tangential cutting force coefficients = 

-0.7040. A radial depth of cut of 0.50mm was used in the stability lobes model. 
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Figures 4.18. Stability lobes comparison for Case 2B. 
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In this chapter, different aspects of tool and workpiece structural dynamics 

have been covered. A new approach to predict and model the damping parameters 

for thin walls was proposed. Different numerical methods to obtain the system’s 

transfer function were introduced, with the aim to reduce the reliance on 

experimentally results. The models were experimentally validated, except for the 

State Space approach. This approach was only introduced without any results due 

to limitations imposed by available computer resources. The damping model 

proposed was also compared with existing models. 

 

4.5.  Summary 



V{tÑàxÜ H 

Tool Chatter 

5.1. Introduction 

Even after such an extensive research into chatter vibration, it still is (as 

stated by Taylor just over a century ago) one of the most obscure and delicate of 

all problems facing the machinist (1907). It certainly undermines and reduces 

productivity and surface quality in manufacturing. It could also increase the cost 

through possible machine or tool damage. It is because of these effects that it has 

been the topic of several studies over the years. The stability lobes/chart approach 

is more practical from the stance of a machinist, while its extraction can be 

somewhat tedious. The predicted stable region relies on the transfer function 

identified at the cutter-workpiece contact zone. The classical approach to 

obtaining this transfer function is through impact test, though an FEM approach 

was proposed in Chapter 4. 

The prediction of stable conditions in the form of charts started when, 

Tobias (1958) and Tlusty (1963) simultaneously made the remarkable discovery 

that the main source of self-excited regenerative vibration/chatter was not related 

to the presence of negative process damping as it was previously assumed. 

However, it is related to the structural dynamics of the machine tool-workpiece 

system and the feedback response between subsequent cuts. Their model is only 
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applicable to orthogonal metal cutting where the directional dynamic milling 

coefficients are constant and not periodic. Other studies on the stability of 

orthogonal metal cutting were reported by Merritt (1965). 

After various attempts to model the stability margin for milling whilst 

respecting the varying directional cutting coefficients (Slavicek, 1965; Vanherck 

1967; Sridhar, 1968a, 1968b; Hohn, 1968; Optiz, 1968, 1970; Tlusty, 1970), 

Altintas and Budak (1995, 1994, 1996a, 1996b, 1998a, 1998b) later proposed an 

analytic approach to predict stability margin. Perhaps, the first analytical approach 

in which the zeroth order term in the Fourier series expansion (single frequency 

solution or zeroth order approximation) of the time varying coefficients was 

adopted. The analytical model was later extended to include three directions by 

Altintas (2001), where the axial immersion angle was assumed to be constant. 

Except for flat end mills however, the axial immersion angle, is a function of the 

axial depth of cut. Campa et al. (2007) later proposed an averaging approach to 

calculating the axial immersion angle in order to solve the stability model 

analytically. However, the axial immersion angle was still assumed to be a 

constant. This is the main analytical approach generally used in predicting stable 

cutting conditions in machining (Bravo, 2005; Solis, 2004; Lacerda, 2004). 

Davies (2000) and Endres (2000) showed on the other hand that the 

classical chatter stability model, which neglects the degree of intermittent process, 

cannot accurately predict the stability lobes at low radial immersion milling 

operations; for which they showed the presence of additional lobes around high 

spindle speed ranges that may be effective during thin wall machining. The study 

by Davies led to two types of vibrations, which are generally known as Hopf and 

Flip bifurcations. The same problem was studied by (Insperger, 2000; Insperger, 

2004; Stepan, 2005; Gradisek, 2005). Merdol and Altintas (2004) further extended 

the multi-frequency model by Budak and Altintas (1998a), to predict the added 

lobes due highly intermittent milling process. 

One of the major drawbacks from the models proposed in the literature is 

that they assume the cutting force coefficients are constant. As shown in Chapter 

3, the cutting force coefficients for a general end mill are a function of the axial 

depth of cut. The cutting force coefficients have also been reported as a variable 
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of the axial depth of cut by (Lim, 1995; Gadalla, 1997; Engin, 1999, 2001; 

Altintas, 2000, 2001; Gradisek, 2004), where the calibrated coefficients are 

generally fitted quite accurately with a polynomial expression. Hence, to better 

model the cutting forces in the stability lobe model, this non-linearity would have 

to be modelled. Although the majority of these studies have been carried out using 

a flat end mill, for which the cutting coefficients can be assumed to be constant as 

shown in Chapter 3. However when modelling the stability margin for a general 

end mill (e.g. bull nose or ball end milling tool), the non-linearity of the cutting 

force coefficients and axial immersion can not be ignored. The axial immersion 

was used in Chapter 3 to resolve the cutting forces into their radial and axial 

components. 

Therefore this chapter is structured as follows; improvements to the zeroth 

order approximation when predicting stable cutting conditions for corner radius 

end mills and a numerical approach to obtaining more accurate results are 

proposed. The numerical approach obtains more accurate results by modelling the 

cutting force more accurately using the non-linear cutting force coefficients and 

the axial immersion angle dependent on the axial depth of cut. The results are 

validated extensively using experimental results towards the end of the section. 

The extended multi-frequency model by Merdol (2004) is further improved in this 

chapter; first by developing the formulation for a three-dimensional system and 

then by including the non-linearity of the cutting force coefficients and the axial 

immersion, thereby producing more accurate stability margin predictions. 

Although the process was not highly intermittent and the results obtained do not 

depict any added lobes, it however confirms the accuracy of the developed 

formulation. 
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5.2. Improved Stability Lobes Prediction using Non-linear 

Cutting Force Coefficients 

This section presents improvements to the well developed stability lobe 

model summarised in Chapter 4 by considering the cutting force coefficients and 

axial immersion angle as a variable along the axial depth of cut. The cutting force 

coefficients which help to model the cutting forces in the stability lobes are a 

variable along the axial depth of cut. Therefore an algorithm that predicts stable 

axial depth of cuts for different spindle speed whilst using non-linear cutting force 

coefficients is proposed. The results obtained for tool dynamic vibrations are 

validated extensively using experimental results and a very good agreement is 

seen. 

5.2.1. The Chatter Stability Model 

The stability model used in this section is similar to the model proposed by 

Altintas (2001) and was recently proposed by Adetoro et al. (2009). Modifications 

to this model in a three dimensional orientation are presented in this section. The 

periodic milling forces excite the cutter and the workpiece in the feed, normal and 

spindle axis directions, causing three orthogonal dynamic displacements , ( )x ( )y  

and  respectively in the global axis. This generates undulations on the 

machined surface and each tooth removes the undulations generated by the 

previous tooth (Figure 5.2), therefore leading to a modulated chip thickness, 

which can be expressed (Budak, 1998) as, 

( )z

( ) ( ) ( ),sin, 00
jwjcjwjcjtjj sh υυυυφγφ −−−+=         (5.1) 

where  is the feed per tooth (Figure 5.1), ts ( )jcjc υυ ,0  and ( )jwjw υυ ,0

(t −

 are the 

dynamic displacement of the cutter and workpiece at the previous  and 

present  tooth periods respectively, 

)T

t tj pj Ω+= φφ  is the angular immersion of 

tooth j  (see Figure 5.2) for a cutter (Ω  if the angular speed), with constant pitch 
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angle Np πφ 2=  ( N  is the number of teeth). This modulated chip thickness 

shown in Figure 5.2 is the practical model as opposed to the chip thickness in the 

static model in Figure 5.1. 

The dynamic displacements in the chip thickness direction due to tool and 

workpiece vibrations can be resolved into its components as, 

( ) ( ) ( )γγφφυ β  ( ),, wc=β     (5.2a) β cosββ cossinsin zyx jjj += −

and 

( ) ( ) ( )γγφφυ ββββ cossin   ( ),, wc=β     (5.2b) cossin 0000 zyx jjj −+=

where  and  indicate the cutter and workpiece respectively, c w γ  is the axial 

immersion angle shown in Figure 5.2,  is axial depth of cut,  and  

are the dynamic displacements in the global axis for the current and previous tooth 

periods respectively. 

a ββ yx , 00 , ββ yx

The axial immersion, γ  is variable along the tool axis direction. An average 

method for calculating the axial immersion, γ  was proposed by Campa et al. 

(2007) in an attempt to solve the stability problem analytically. Altintas suggests 

assuming the axial immersion, γ  to be acting at the middle of the maximum axial 

depth of cut. Being able to define a maximum axial depth of cut is however 

arbitrary. 

 
Figure 5.1. Static milling model. 
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Figure 5.2. Dynamic milling model. 
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The axial immersion can be defined in terms of the axial depth of cut for 

bull nose tools as, 

,κπγ −=              (5.3) 

where, 

for   , a ≤ cR

,
2

12
1 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+=
κκκκ             (5.4) 

,1arcsin
2

2
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ −
−=

c

z

R
aRκ            (5.5) 

for radial depth of cut,  > , docr cR

,01 =κ  

for radial depth of cut,  docr ≤  , cR

[ ] ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−

−
=

221 arctan
doccc

docc

rRR

rRκ           (5.6) 

 
Though the definition of the axial immersion above is an average value, it 

can however be shown to give good results within the corner radius. The 

parameters 1κ , 2κ , κ and  are illustrated in Figure 5.2 and cR 1κ  is the axial 

immersion angle at the lowest point of intersection of the tool and the workpiece. 

Therefore by eliminating the static part in equation (5.1), the dynamic chip 

thickness in milling is defined as, 

( ) ( )[ ] ( ),cossincossin, jjjjj gzyxh φγγφφγφ Δ−Δ+Δ=        (5.7) 

where, 
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xxxxx

−−−=Δ

−−−=Δ

−−−=Δ

)
)

           (5.8) 

and ( )jg φ  determines whether the tooth is in or out cut, i.e., 

( )
( ) ⎪⎭

⎪
⎬
⎫

><←=

<<←=

exitjstartjj

exitjstartj

g

g

φφφφφ

φφφφ

or      0

1
         (5.9) 

Therefore, the dynamic forces on tooth j  in the tangential, radial and axial 

directions can be defined as, 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ),,,,

,,,,

,,,,

γφγφ

γφγφ

γφγφ

jja
j

a

jjr
j

r

jjt
j

t

ahaKaF

ahaKaF

ahaKaF

=

=

=

         (5.10) 

where, ,  and  are the tangential, radial and axial cutting force 

coefficients respectively,  is the axial depth of cut. 

tK rK aK

a

This force definition is similar to the linear force model proposed by Budak 

(1996) with the exception of the edge/ploughing. The edge/ploughing forces are 

much like the static part of equation (5.1); they do not contribute to dynamic 

chatter. The linear force model introduces six coefficients as explained in Chapter 

3, comprising of three cutting force coefficients,  and three 

edge/ploughing force coefficients, . Where ,  and  in 

equation (5.10) correspond to the tangential, radial and axial cutting force 

coefficient, , ,  respectively. 

acrctc KKK ,,

tK rKaerete KKK ,, aK

tcK rcK acK

The linear force model’s cutting force and edge force coefficients are a 

function of the axial depth of cut, a  as shown in the calibrated coefficients in 

section 3.3.1 for a tool with a corner radius (refer to Chapter 3). The non-linearity 

of the cutting force coefficients have also been reported by (Engin, 2001 and 

Gradisek, 2004). However for simplicity, like the axial immersion γ , the cutting 

force coefficients, ,  and  are assumed to be constant and an average tK rK aK
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value is used as has been reported in numerous studies on stability lobe prediction. 

However to further improve the stability lobe model, they are considered as a non-

linear function of the axial depth of cut here. To model the non-linearity of the 

cutting force coefficients, a polynomial expression is usually fitted to the data 

using least squares method as reported by Gadalla (1997) and Altintas (2001). 

Hence by substituting equation (5.7) into equation (5.10) and resolving in the 

global directions, the following expression is obtained: 

.
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     (5.11) 

Substituting equation (5.10) into equation (5.11) and summing the forces 

from all the teeth and displacements gives the total dynamic milling forces on the 

tool using, 

,     ,     ,
1

0

1

0

1

0
∑∑∑
−

=

−

=

−

=

===
N

j

j
zz

N

j

j
yy

N

j

j
xx FFFFFF        (5.12) 

Hence, 

( ){ } ( )[ ] ( ){ },ttAatF Δ=           (5.13) 

where  is the force vector in time domain, ( ){ tF } ( ){ } { }Tzyxt ΔΔΔ=Δ ,, and [ ]A  

contains the time varying directional dynamic milling force coefficients that are 

also dependent on the axial depth of cut through the cutting force coefficients. The 

elements in matrix  are defined as, [ ]A

( ) ( )[
( ) ]a

N

j
rtjxx

K

KKga

γγφ

γφφγφ

cossinsin                   

sinsincossinsin

2

1

0

22
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−−=∑
−

=     (5.14a) 

( ) ([
( ) ]a
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)
    (5.14b) 
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( ) ( ) ( )[ ]∑
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=
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1
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2cossincossinsincoscos
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artjxz KγKγγKγga φφφ   (5.14c) 
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( ) ( ) ([ ]∑
−

=

−−=
1
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222 coscossincossincossinsin
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j
artjyy KγγKγKγga φφφφ  (5.14e) 

( ) ( ) ([ ]∑
−

=

++−=
1

0

2coscoscoscossincossin
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j
artjyz KγKγγKγga φφφ  (5.14f) 

( ) ([∑
−

=

−=
1

0

2sinsincossinsin
N

j
arjzx KγKγγga φφ     (5.14g) 

( ) ([∑
−

=

−=
1

0

2 cossincoscossin
N

j
arjzy KγKγγga φφ     (5.14h) 

( ) ( )[∑
−

=

+−=
1

0

2 cossincos
N

j
arjzz KγγKγga      (5.14i) 

The directional coefficient matrix, [ ]A  is periodic at the tooth passing 

frequency Ω= NTω  and also a function of the axial depth of cut through the 

cutting force coefficients. Hence to obtain an analytical solution a mono-

frequency solution is adopted. This makes the periodic matrix just a function of 

axial depth of cut, by taking its average Fourier term [ ]oA  of the Fourier series 

expansion (Altintas, 2001) as, 

[ ] ( )[ ]

( )[ ] ( )[ ]aNA

ttA
T

A

exit

startp

T

o

α
π

φφ
φ

φ

φ 8
d 1       

d1

 

 

 

0 

==

=

∫

∫
        (5.15) 

and the evaluated elements of the directional factor matrix, [ ]α  are given as 

follows: 

( )[
( )] ,22sincossin          

22sinsin2cossin 2

exit

starta

rtxx

K

KK
φ
φφφγγ

φφγφγα

−

+−+=
    (5.16a) 
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( )[ ] ,2coscossin2cossin22sinsin 2 exit

start
γγKγKγK artxy

φ

φφφφφα +++−=  (5.16b) 

( )[ ] ,12coscoscos2sinsincos22 exit

startartxz KKγK φ
φγφφγφα +−−=   (5.16c) 

( )[ ] ,2coscossin2cossin22sinsin 2 exit

start
γγKγKγK artyx

φ

φφφφφα ++−−=  (5.16d) 
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    (5.16e) 

( )[ ] ,12cossinsin2sincoscos22 exit

start
γKKγK artyz

φ
φφφγφα +++=   (5.16f) 

( )[ ,12coscoscos2sin2 exit

startarzx KK φ
φγφφγα −−−= ]     (5.16g) 

( )[ ,12cossinsin2sin2 exit

startarzy KK φ
φγφφγα −+= ]     (5.16h) 

( )[ exit

start
γKγK arzz

φ
φφφα 2sin12cos2 ++−= ]      (5.16i) 

Alternative to the mono-frequency solution is the multi-frequency solution, 

which considers several terms (Merdol, 2004, Gradisek, 2005). Using the mono-

frequency solution in equation (5.15), equation (5.13) is reduced to, 

( ){ } ( )[ ] ( ){ .
8

taaNtF Δ= α
π

}

)

         (5.17) 

The vibration vectors at the present time t  and previous tooth periods  are 

defined as, 

( Tt −

{ } ( ) ( ) ( ){ } { } ( ) ( ) ( ){ }TT TtzTtyTtxrtztytxr −−−== ,,          ,, 0    (5.18) 

Using the transfer function at the cutter-workpiece contact zone, the vibration 

vectors are defined in frequency domain as, 

( ){ } ( )[ ]{ }
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=

=
− ωω

ωω
ω

ω

ireir
eFiGir

Ti
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0

         (5.19) 

Therefore, the displacement/regenerative vector, 

( ){ } ( ) ( ) ( ){ ,,, 000
Tzzyyxxt −−−=Δ }        (5.20) 
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 in frequency domain becomes, 

( ){ } ( ) ( )[ ]{ } tiTi eFiGei ωω ωω −−=Δ 1         (5.21) 

where, the transfer function (TF) matrix ( )[ ]ωiG  is the sum of the ‘Frequency 

Response Function’ (FRF) or ‘TF’ matrixes of the tool/cutter and of the 

workpiece as follows, 
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cyzcyycyx

cxzcxycxx )
 (5.22) 

where,  denotes the cutter and  denotes the workpiece. It should be noted that 

if the directions ,  and 

c w

( )x ( )y ( )z  are orthogonal to each other, then the cross 

transfer functions are zero. Hence, equation (5.17) becomes an eigenvalue 

problem defined as, 

{ } ( ) ( )[ ] ( )[ ]{ },e1
8

FiGaaNF Ti c ωα
π

ω−−=        (5.23) 

which has a non-trivial solution if its determinant is zero, 

[ ] ( )[ ][ ,0,det =ΦΛ+ aiI c ]ω          (5.24) 

where, the oriented transfer function [ ] ( )[ ] ( )[ ]ciGa ωα=Φ  and the complex 

eigenvalue,  is defined as, Λ

( ,e1
8

Ti
iR

caNi ω

π
−−−=Λ+Λ=Λ )         (5.25) 

The complex eigenvalue, Λ  can be solved if a value is given for the cutting 

force coefficients, ,  and . For given cutting coefficients, the eigenvalue 

becomes a cubic function (Altintas, 2001) expressed as, 

tK rK aK

,011
2

2
3

3 =+Λ+Λ+Λ aaa          (5.26) 

where, 
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( ) ( ) ( ) ( )
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ΦΦΦ+ΦΦΦ−
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( ) ( ) ( ) ( ) ( ) ( ),1331122122113311322333222 ΦΦ−ΦΦ−ΦΦ+ΦΦ+ΦΦ−ΦΦ=a  

( ) ( ) ( ),1122331 Φ−Φ−Φ−=a  

and  are the elements of the oriented transfer function ijΦ Φ . 

The eigenvalue obtained has a real and an imaginary part, ( )  

and from Euler’s formula we have that, . When this is 

substituted into equation (5.25) the following is obtained, 

IR iΛ+Λ=Λ

TciTc
Ti c ωωω sincose −=−

( .sincos1
8

TiTaNi ccIR ωω
π

+−−=Λ+Λ=Λ )       (5.27) 

Noting that the division of two complex numbers is given as (Smith, 1997), 

DiD
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and after some manipulations, the following is obtained, 
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Since the axial depth of cut a  is real number, the imaginary part of equation 

(5.29) has to vanish (i.e., ( ) TT cRcI ωω sincos1 Λ=−Λ ). Therefore, 

,tan
cos1

sin ψ
ω

ω
=

−
=

Λ
Λ

T
T

c

c

R

I          (5.30) 

where, ψ  is the phase shift of the eigenvalues. From this expression the 

relationship between the frequency and the spindle speed is obtained (Altintas, 

2001) as follows, 
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where, ε  is the phase difference between the inner and outer undulations,  is an 

integer corresponding to the number of vibration waves within a tooth period n  is 

the spindle speed (rpm). 

k

Therefore substituting equation (5.30) into the real part of equation (5.29) 

and an expression for chatter free axial depth of cut is obtained as, 
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N
a π          (5.32) 

where, there exists a real positive solution if and only if 0<ΛR . 

For the case where the cutting coefficients and axial immersion are assumed 

to be constant, the axial depth of cut can be obtained using equation (5.32). 

However, for the case where the cutting coefficients are dependent on the axial 

depth of cut, obtaining an analytical solution proved very complicated as the 

oriented transfer function matrix [ ]Φ  is complex. Another approach could be to 

study the numerical nature of the relationship between the directional coefficients 

matrix ( )[ a ]α  and the axial depth of cut, . An example of this relationship is 

shown in Figures 5.3, 5.4, 5.5 and 5.6 (considering a 2-dimensional system) and 

from this a polynomial expression can be fitted as shown in the plots. Therefore 

equation (5.24) could be written in the form, 

a

[ ] ( )[ ,0det =Λ+ GPI α ]           (5.33) 

where, 
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αα
α   .6....2,1,0=C  

The elements of the matrix [ ]Cnstα  contain the constants of the polynomial fitting 

(example shown in Figures 5.3, 5.4, 5.5 and 5.6) for each corresponding order . C

alphaxx (E+10) = - 2.50E-05a6 + 4.28E-04a5 - 2.91E-03a4 + 9.96E-03a3

                          - 1.76E-02a2 + 3.69E-02a + 1.09E-03
R2 = 1.00E+00
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Figure 5.3. Directional coefficient, .xxα  

alphaxy (E+10) = 9.97E-05a6 - 1.69E-03a5 + 1.13E-02a4 - 3.85E-02a3 +
                            7.08E-02a2 - 1.10E-01a - 7.24E-03
                  R2 = 1.00E+00
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Figure 5.4. Directional coefficient, .xyα  

 - 171 - 



Chapter 5 – Tool Chatter 
 

alphayx (E+10) = - 2.79E-05a6 + 4.96E-04a5 - 3.58E-03a4 + 1.39E-02a3

                                        - 3.59E-02a2 + 7.67E-02a + 6.42E-04
R2 = 1.00E+00
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Figure 5.5. Directional coefficient, .yxα  

alphayy (E+10) = 1.49E-04a6 - 2.56E-03a5 + 1.75E-02a4 - 6.18E-02a3 +
                            1.27E-01a2 - 1.68E-01a - 8.37E-03
R2 = 1.00E+00
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Figure 5.6. Directional coefficient, .yyα  

Therefore for example, the sixth order constants in Figures 5.3, 5.4, 5.5 and 5.6 

are written out in matrix form [ ]6α  as, 

[ ] 5
6 10

937.147940.2
9694.95041.2 −×⎥

⎦

⎤
⎢
⎣

⎡
−
−

=α         (5.34) 
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The accuracy of the curve fitting is shown using the ‘‘R-squared’’ value defined 

in Chapter 3. There so far isn’t any known solution approach for the non-linear 

eigenvalue problem in equation (5.33) and an analytical solution was again 

sought, which still proved to be very complicated when obtaining the expressions. 

This again is due to the products and divisions of complex numbers. However, 

being able to solve this semi-numerical approach would be greatly beneficial, as 

the relationship obtained using polynomial curve fitting in equation (5.33) is 

dependent on the radial depth of cut only. The radial depth of cut is usually kept 

constant during machining processes. However, to predict a stable margin a 

numerical approach is thus proposed, which can be used to obtain very accurate 

results based on the resolution defined. 

5.2.2. Proposed Numerical Approach 

The numerical approach simply involves solving equation (5.32) using the 

cutting coefficients and the axial immersion for different axial depth of cuts and 

monitoring the error between the axial depth of cut value used to obtain the 

coefficients and the axial immersion and the obtained axial depth of cut in 

equation (5.32). When the cutting force coefficients are calibrated and fitted with 

a polynomial expression, there is a range of axial depth of cut  

within which the curve fitting is accurate. This range is usually the same 

minimum and maximum axial depths of cut at which the coefficients are 

calibrated. The same axial depth of cut range applies to the calculated 

characteristic coefficients in equation (5.26). This same range should be used 

when numerically seeking a converged solution. The steps of the proposed 

algorithm are as follows: 

maxmin aaa ≤≤

1. Select a chatter frequency from transfer functions around a dominant mode 

2. Start the numerical approach to calculating stable axial depth of cut: 

(A) Using predicted axial depth of cut ma  (where initial values of min
0 a ), 

calculate the cutting force coefficients, tK , rK , aK  and axial immersion 

a =

γ  
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(B) Solve the eigenvalue characteristic equation (5.26) 

(C) Calculate the critical depth of cut using equation (5.32) 

(D) Subtract the calculated axial depth of cut lima  from the predicted axial 

depth of cut ma  to obtain the error as follows 

limaamm −=η  

(E) If 1>m , compare the sign of the previous and current axial depth of cut 

error, mη  and 1−mη , else go to (I) 

(F) If the signs have changed, a converged axial depth of cut solution can be 

obtained by means of simple interpolation as follows, 

( ) 11
1

1
*
lim

−−
−

−

+−⋅
−

−
= mmm

mm

m

aaaa
ηη

η               (5.35) 

(G) then proceed to step 3 

(H) If the signs are unchanged and maxaa m <  then update the predicted axial 

depth of cut using aa m Δ+ , else STOP and go to step 1 as the 

solution to the chosen chatter frequency is not within the range of the 

axial depth of cut imposed by the calibrated cutting force coefficients 

a =m+1

(I) Go to step (A) with 1+= m , mm a  and mm η  m a =−1 η =−1

3. Using the converged axial depth of cut solution, *
lima  calculate the 

corresponding cutting force coefficients and axial immersion and then 

solve the eigenvalue characteristic equation, (5.26) 

4. Calculate the spindle speed n , using equation (5.31) for each integer 

number of vibration waves within a tooth period i.e., ... ,3 ,2 ,1 ,0=k   

5. Repeat the procedure for different chatter frequencies around dominant 

modes 
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Figure 5.7. Stability model numerical algorithm. 

The case where no solution is obtained (step (G)) would rarely occur; 

however this could happen if the solution being sought is above the maximum 

axial depth of cut . Hence the range for which the cutting coefficient has been 

calibrated for must be extended, alternatively the axial depth of cut  that gives 

the smallest error  can be used. The steps explained above are laid out 

systematically in Figure 5.7. 

maxa

mη

ma

5.2.3. System’s Transfer Function 

During machining both the tool and the workpiece will always exhibit 

dynamic deflections. However their relative stiffness’s would determine the 

magnitude of these deflections. Therefore, for cases where the stiffness of the tool 

 - 175 - 



Chapter 5 – Tool Chatter 
 

is relatively high compared to that of the workpiece (for example when machining 

a thin walled workpiece), the dynamics of the tool can be ignored. This was also 

done in Chapter 4, where the tool dynamics was ignored when extracting stable 

region for thin wall machining. The improvements by Adetoro et al. (2009c) that 

have been discussed in this chapter are however validated first by considering 

only the tool’s dynamic vibrations/chatter. For these cases the workpiece’s 

stiffness is kept relatively higher than that of the tool (for example machining a 

block of material), therefore the transfer function of the workpiece can be ignored. 

The deflections in two main directions are considered in this chapter, therefore the 

tool’s transfer function column and row corresponding to the direction being 

omitted can be simply removed or the diagonal elements given a relatively small 

value, but not zero. For completeness (though not necessary) if obtaining the 

transfer function in a certain direction proves experimentally challenging, the full 

matrix can still be extracted using the FEM approach presented in Chapter 4. 

For the case where only the tool dynamics in the feed (X) and normal (Y) 

directions are considered, the dynamics extracted experimentally can be assumed 

to be constant. Therefore following the experimental procedure explained in 

section 4.2.1, the tools dynamics were extracted experimentally and given in 

Table 5.1 

Table 5.1. Tool dynamic parameters 

Direction Mode 
Natural Frequency, 

nω  (Hz) 
Modal Stiffness, k 

(107 Nm-1) 
Modal Damping Ratio, ζ  

(10-2 %) 
1 1306.9361 1.0657 7.9626 
2 1897.8177 5.6677 4.4413 
3 2195.3198 6.6598 5.0610 

X 

4 2686.9228 3.1818 3.6897 
1 1262.6637 1.2149 3.4316 
2 2074.2514 2.2493 7.7559 Y 
3 2684.0002 3.1113 2.9063 

 

From these identified dynamic parameters the real and imaginary parts of 

the transfer function are simply calculated for each mode by sweeping the 

frequency of interest according to step (1). Therefore using modal superposition, 

the real part is defined (Budak, 1998b) as, 
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while the imaginary part is defined as  
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Any extra identified modes for the real and imaginary parts are simply 

added in the same manner to obtain the numeric values for the transfer function 

for each frequency. 

5.2.4. Experimental Validation 

To obtain experimental results to validate the proposed numerical approach, 

an aluminium milling application with a 3-tooth milling cutter is considered. The 

workpiece was kept sufficiently rigid in comparison to the tool in order to 

minimize workpiece vibration. The modal properties of the tool measured using 

impact tests are given in Table 5.1. The cutting coefficients were calibrated using 

the approach explained by Gradisek et al. (2004) (see Chapter 3) and fitted with 

2nd-order polynomial expressions as shown in Figures 5.8, 5.9, 5.10. 
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,7047.11208499.1300078.6Nmm  a
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aa aK

aaK

aaK

-
a

r

t

     (5.38) 

The cutting force coefficients were curve fitted in this section between 

0.50mm and 5.00mm as opposed to 0.50mm and 6.00mm in Chapter 3 and it is 

within this range of axial depth of cut, the cutting force coefficients can predict 

the cutting forces with reliable accuracy. 
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Using the proposed algorithm in section 5.2.2, an example of the error 

calculated in step (2D) and the converged axial depth (approximately 2.0mm) 

calculated in step (2F) for chatter frequency 1303.5 Hertz are plotted in Figure 

5.11. 
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Figure 5.8. Calibrated tangential cutting force coefficient. 
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Figure 5.9. Calibrated radial cutting force coefficient. 
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Figure 5.10. Calibrated axial cutting force coefficient. 

Being a 5.2.2 can be 

used to obtain very accurate results depending on the incremental steps used. The 

small

 numerical method, the algorithm proposed in section 

er the incremental steps, the more accurate the converged axial depth of cut 

obtained, although the algorithm naturally improves the results through the 

interpolation done in step (2F). 
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Figure 5.11. Example of algorithm convergence. 
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Using the proposed approach, the stability lobe diagram for a 19.0mm radial 

depth of cut and 20.0mm tool diameter is shown in Figure 5.12, where the 

unstable region is shown in grey. Changing the radial depth of cut would change 

the directional dynamic milling coefficients as these are a variable of the entry and 

exit angles used in equation (5.16). The results obtained are compared in Figure 

5.12 with results using the currently adopted approach proposed by Altintas 

(2001) (where the axial immersion is assumed to be constant and acting at 

42 ππγ += ) and also results from a commercial software package. The 

stability lobes predicted are experimentally verified using a radial depth of cut of 

19.00 mm and a feed of 0.20 mm, where the feedrate is simply calculated for each 

spindle speed. The presence of chatter is monitored by the spectrum of cutting 

forces measured and tool vibration measured using an accelerometer built in at the 

back of the spindle. The different expe

into three categories: stable, transition and chatter cuts. The ‘transition’ cuts were 

identi

rimental results are analysed and grouped 

fied as such because slight chatter was either identified in the measured 

force or the predicted chatter frequency can be seen very slightly in the FFTs. The 

region predicted to be unstable is in good agreement with the experimental results.  

The cutting force and vibration measurements for a series of cutting 

conditions (indicated in Figure 5.12) are shown in Figures (5.13 - 5.22) to further 
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Figure 5.12. Stability margin validation. 
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show

 

model proposed by Adetoro et al. (2009) and explained in this section predict 

stable cutting at spindle speed of 6000 rev/min, chatter at 7000 rev/min and stable 

cutting again at 8000 rev/min. 

The cutting forces measured in the feed direction (X) for spindle speed of 6000 

rev/min are shown in Figure 5.13a and the FFT of this data is shown in Figure 

5.13b. The cutting force plot shows a stable cut and the FFT shows only the  

 the effects of chatter development and why its early prediction is imperative 

for efficient machining processes. At a depth of cut of 2.00mm, the stability lobes
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(b) – FFT of measured cutting forces 

Figure 5.13. Measurements for 6000 rev/min and 2.0mm axial depth of cut. 
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presence of the tooth passing frequency, Tω  of 300 Hz and its harmonics. Using 

the previously adopted approach where the cutting force coefficients are assumed 

as constant, this cutting condition is predicted as an unstable cutting condition. 

Therefore this validates the improvements proposed in this section. 

The cutting forces for 7000 rev/min are shown in Figure 5.14a and it can be seen 

that the cutting forces are higher and more unsteady than 6000 rev/min. The FFT 

of this cutting force data is shown in Figure 5.14b and the chatter frequency at 

1266 Hz. The chatter frequency is naturally predicted by the stability model, as 
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(a) – Measured cutting forces, Fx 
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Figure 5.14. Measurements for 7000 rev/min and 2.0mm axial depth of cut. 
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the nature of the stability model is actually to assume a chatter frequency (step 1) 

and then give the stable margin that would initiate this chatter frequency. The 

chatter frequency predicted for 7000 rev/min was 1276.50 Hz, which further 

shows the accuracy of the model. 

The measured cutting forces for 8000 rev/min are shown in Figure 5.15a 

and the FFT of this data shown in Figure 5.15b. This shows that the chatter is no 

longer present and the cutting was stable as predicted in Figure 5.12. 
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(a) – Measured cutting forces, Fx 
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Figure 5.15. Measurements for 8000 rev/min and 2.0mm axial depth of cut. 

 - 183 - 



Chapter 5 – Tool Chatter 
 

Once chatter develops apart from the drastic increase in cutting force, there 

is the risk of considerable damage to the spindle. The vibrations measured from 

the accelerometer in-built at the back spindle are shown for 9000 rev/min in 

Figure 5.16a and the FFT shown in Figure 5.16b. This cutting condition was 

stable as predicted in Figure 5.12 and the FFT shows only the tooth passing 

frequency,  (450 Hz) and its harmonics. Tω
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(a) – Measured spindle deflections 
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Figure 5.16. Measurements for 9000 rev/min and 2.0mm axial depth of cut. 
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The vibrations measured for 10000 rev/min are shown in Figure 5.17a and 

the FFT in Figure 5.17b. This confirms the prediction for chatter presence. The 

vibrations are seen to increase quite drastically due to the development of chatter. 

The FFT also shows the tooth passing frequency, Tω  (500 Hz), its harmonics and 

an extra frequency at 1278 Hz, which is the chatter frequency. The chatter 

frequency predicted was 1290.5 Hz. 

-15

-10

-5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6
Time, t (sec)

A
cc

el
er

at
io

n,
 (m

s-2
)

 
(a) – Measured spindle vibrations 
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Figure 5.17. Measurements for 10000 rev/min and 2.0mm axial depth of cut. 
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The vibrations measured for 11000 rev/min are shown in Figure 5.18a and 

the FFT in Figure 5.18b. The vibrations are seen to be back to normal magnitude, 

which confirms the prediction for a stable cutting condition. The FFT also shows 

only the tooth passing frequency,  (550 Hz) and its harmonics. Tω
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(a) – Measured spindle vibrations 
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Figure 5.18. Measurements for 11000 rev/min and 2.0 mm axial depth of cut. 

ot of the 

The presented experimental measurements so far show the development of 

chatter as the spindle speed is changed. To show the development of chatter as the 

depth of cut is increased, a spindle speed of 9000 rev/min is used. A pl
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measured cutting forces in the normal direction (Y) for axial depths of cut of 2.00 

mm, 2.50 mm and 3.00 mm are shown in Figures 5.19, 5.20 and 5.21. The FFTs 

of these cutting force data are shown as well. The chatter predicted for 3.00 mm is 

seen to be present in the experimental cut depicted by the drastic increase in the 

measured experimental forces (Figure 5.21a). 
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Figure 5.19. Measurements for 9000 rev/min and 2.0 mm axial dept of cut. 
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Figure 5.21. Measurements for 9000 rev/min and 3.0 mm axial dept of cut. 
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The development of the chatter frequency is also clearly seen in the FFTs of 

the cutting forces (Figures 5.19b, 5.20b and 5.21b). The actual chatter frequency 

was 1148 Hz compared to 1136 Hz predicted by the proposed stability model. 

Finally, the effects of chatter are shown in the surface finish of the workpiece in 

Figures 5.22a and 5.22b. The tooth marks causing the bad surface finish are 

clearly visible. 

in, axial depth of cuts of; 2.50 mm above and 3.00 mm below. 
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(a) – Plan view 

 
(b) – Side view 

Figure 5.22. Plan and side views of two axial depth of cut surface finishes for 

9000 rev/m
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5.3. Floquet Approach to Higher-Order Approximation using 

Non-linear Cutting Force Coefficients 

In this section, a higher order approximation model is developed 

considering the systems vibrations in three dimensions. This higher order 

approximation considers the effect of higher harmonics on the stability margin for 

a milling system. The model takes into account the non-linearity of the cutting 

force coefficients and the axial immersion when predicting the stability margin. 

5.3.1. Model Formulat

The zeroth order approximation presented in the previous section is only 

able to predict instabilities due to Hopf bifurcations. However for Flip bifu ion, 

the tooth passing frequency harmonics must be considered. The use of Floquet’s 

theorem to model instabilities due to Flip bifurcations has been repo  by 

Insperger (2003) and (Merdol (2004). Therefore, the model by Merdol is further 

developed in this section for a three-dimensional system. 

It was shown in equation (5.13), that the directional coefficient matrix, 

ion 

rcat

rted

[ ]A  

is periodic at the tooth passing frequency Ω= NTω  and also a function of the 

axial depth of cut through the cutting fo d the axial immersion

angle. In previous studies it was only considered to be periodic at the tooth 

passing frequency, 

rce coefficients an  

Tω . Therefore the directional matrix [ ]A  can be expanded into 

the Fourier series, 

  (5.39) 

where the Fourier series coefficient 

( )] [ ] ,, ∑
∞

= tir
r

TeAatA ω        [
−∞=r

[ ]rA  is given by, 

[ ] ( )[ ] ...3 ,2 ,1 ,0     ,d ,1  
±±±== ∫ − rteatAA

T tir
r

Tω   
0 T

    (5.40) 

From equation (5.1), the angular immersion of tooth j  was defined as, 
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( ) tjt pj Ω+= φφ   where, 
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The tooth period and tooth passing frequency are defined respectively as, 
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The directional matrix [ ]A  as shown in previous section, is only valid when the 

tool is engaged ( )exitentry φφφ ≤≤ i.e.  and is periodic at the pitch angle, pφ . 

Therefore, equation (5.40) can be expressed as, 
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By using Euler’s form

exponential function and the polar form defined as, 

          (5.45) 

we have the following, 

         (5.46) 

ula, which gives the relationship between the complex 
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Therefore, by using equation (5.46), by noting that the reciprocal of the imaginary 

unit  is  and after slight manipulations using trigonometry identities, the i i−

elements of the directional factor matrix, are given as follows, 
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where, 

   

  (5.47i) 

   ,23 −= rNp  ,1 rNp = ,22 += rNp

   ,15 −= rNp  ,14 += rNp

 ( zyxli ,,== , ,....3 ,2 ,1 ,0=r is a complex conjugate of ril −,αand ril ,α ), the axial 

imm rsion angle e γ  was defined in section 5.2.1. For the special case of 0=r , the 

directional factor matrix for the zeroth order approximation in equation (5.15) is 

used. 

The displacement and regenerative vector fro

defined as 

m equation (5.21) can also be 

( ){ } ( ) ( )[ ] ( ){ },1 tFiGet Ti ωω−−=Δ         (5.48) 

which when substituted into the cutting forces expression (equation (5.13)), gives 

a differential equation with periodic and piecewise continuous coefficients in the 

form, 

( ){ } ( ) ( )[ ] ( )[ ] ( ){ },1 tFiGtAeatF Ti ωω−−=        (5.49) 
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 According to Floquet’s theorem (Magnus, 1966), there exists a solution to 

equation (5.49) in the form, 

           (5.50) 

where,  is periodic at the tooth period 

( ) ( )tPetF tλ=

( )tP T , λ  is the so-called characteristic 

exponent/Floquet exponent, while acteristic multiplier of the 

system. 

At the stability limit, the tool/workpiece will vibrate at the chatter frequency 

teλμ =  is a char

cω , 

hence ciωλ =

ltipliers 

. Therefore there are three cases for the 

mu

critical characteristics 

( )ti ce ωμ = : 

 μ  is complex and 1=μ . This type of

ark-Sacker) bifurcation or Quasi-periodic chatter (Insperger, 2008) and 

re developed in the previous section. 

 

 instability is called the Hopf (or 

Neim

predictions of which we

1−=μ . This type of instability is called d t inperio wo, period doubl g or flip 

bifurcation (Insperger, 2008). 

 1=μ . This type  instability is a called period one or saddle-node 

bif abili in milling as 

 force expression (equation 5.13) can be expanded into the Fourier series, 

          (5.51) 

where, the Fourier coefficient 

 of

urcation. This type of inst ty cannot arise shown by 

Davies (2002) and Insperger (2001). 

Therefore, by following solution form in equation (5.50), the dynamic 

milling

( ) ∑
∞

−∞=

=
k

PtP ,tik
k

Te ω

kP  is given by, 

( ) ...3 ,2 ,1 ,0     ,d 1  

0 
±±±== ∫ − ktetP

T
P

T tik
k

Tω       (5.52) 

Therefore, equation (5.51) is substituted into equation (5.50) to obtain, 
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( ) ( )∑∑
∞

=

+
∞

−∞=

=⎟
⎠

⎞
⎜
⎝

⎛
=

k

tki

k

tik
k

ti TcTc ePePetF ωωωω        (5.53) 
−∞

k

When this is 

(5.48) is substituted into equation (5.13) we obtain, 

compared with the differential equation obtained when equation 

( )( ) [ ] ( ) [ ] ,⎟⎞⎜
⎛

⋅⎟
⎞

⎜
⎛

Λ= ∑∑ +
∞

+
k

tktir
r

k

tki
k GeAeP TcTTc ωωωωω      (5.54) 

⎠⎝⎠⎝
∑
∞

−∞=−∞=

∞

−∞= k

i
k

r
eP

where, 

[ ] ))],Tk kG (([ ciG ω ω+=          (5.55) 

and the eigenvalue,  is defined as, Λ

( )Ti c
a ω−−=Λ e1
2

          (5.56) 

       (5.57) 

57) by 

Therefore, by comparing equations (5.54) and (5.51), we have, 

( ) [ ] [⎜
⎛

⋅⎟
⎞

⎜
⎛

Λ= ∑∑
∞∞

tiktir GePeAtP TT ωω ]⎟⎞
⎠⎝⎠⎝ −∞=−∞= k

kk
r

r

Hence, by multiplying both sides of equation (5. ( ) ti Tηω−eT1  and integrating 

from  to  0 T , we obtain, 

( ) [ ] [ ] ( ) ,d 1d 1   

∫ ∑∑∫ ⎟
⎞

⎜
⎛

⋅⎟
⎞

⎜
⎛

Λ=
∞

−−
∞

− T tki
kk

tir
r

T ti tePGeAtetP TTT ωηωηω     (5.58)
0 0 ⎠⎝⎠⎝ −∞=−∞= krTT

 

which gives the Fourier spectrum coefficient, of the force term ( )tP  at harmonics 

η  as, 

         (5.59) 

where, 

[ ][ ] ,⎟
⎠

⎞
⎜
⎝

⎛
⋅Λ= ∑

∞

−∞=
−

k
kkk PGAP ηη

rhk ±±±±=  ,....,3 ,2 ,1 ,0,η  

Therefore, depending on the number of tooth passing frequency harmonics 

considered, the algebraic equation in equation (5.59) can be truncated to an 
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eigenvalue problem, for which a nontrivi

is zero; i.e., 

al solution exists only if its determinant 

[ ][ ]

where, 

[ ] ,0det =Λ+ − kkk GAI ηηδ          (5.60) 

 if k=η , 0=kηδ  if k≠η ) and I is the Kronecker delta (i.e. 1=kηδkηδ  is 

an identity matrix. 

ilar, to the zeroth order approximation presented in the previous section, 

equation (5.58) is the characteristic equation of the milling system. Approximate 

roots of this infinite or

truncated version. For this characteristic equation, there exists 

Sim

der characteristic equation can be obtained by solving its 

( )36 +rh  

eigenvalues and when 0=rh , the problem is reduced to the zero

approximation presented in the previous section. 

Therefore, to predict the stability margin for a given structure (i.e. cutter and 

 the experimental 

approach discussed in Chapter 4, or the numerical damping prediction, the FEM 

and the Fourier methods proposed in Cha

actual modal dynamic parameters (i.e. natural frequency, damping ratios and 

namic para

a s 5.37) to calculate the system’s transfer function matrix 

 using the different frequency harmonics 

th order 

workpiece), the dynamic parameters are extracted using either

pter 4. It would be much easier to use the 

modal stiffness), like those given in Table 5.1. These dy meters are used 

in equ tion  (5.36) and (

[ ]( )kG ( )Tc kωω + . 

For example: for  we have that, ,2=rh

[ ]
[ ]
[ ]           (5.61) 

where, 

[ ]
[ ]

[ ]
[ ]
[ ]
[ ] ⎟

⎟
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⎟
⎟
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⎜
⎜
⎜
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and, 

         (5.63) [ ]
⎤

⎢

⎡

= yyryxr

xzrxyrr

rA ααα
αα

,
⎥
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⎦⎢

⎢

⎣ zzrzyrzxr

yzr

xx

ααα

α

[ ]
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
χχχ
χχχ
χχχ

iGiGiG
iGiGiG

G

zzkzykzxk

yzkyykyxk

xzkxykxxk

k        (5.64) 

where, Tc k

iGiGiG

ωωχ +=  

The eigenvalues obtained have a real and an imaginary part, 

( =Λ )IR iΛ+Λ . Therefore, by following the same procedure as in equations (5.27 

– 5.31), the axial depth of cut can be defined as, 

,1
2

lim ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
Λ
Λ

+Λ−=
R

I
Ra          (5.65) 

while, the spindle speed can be written in the form, 

( ) .2
60

επ
ω
+

=
kN

n c           (5.66) 

The minimum predicted  for the different harmonics is taken as the 

corresponding critical axial depth of cut. 

5.3.2. Proposed Numerical Approach 

e numerical approach for the higher order approximation is very similar 

to the procedure proposed for the zeroth order approximation, with the exceptions 

lima

Th
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of the added steps to allow for higher order approximation. The steps of the 

proposed algorithm are therefore as follows: 

1. Specify a spindle speed range of interest and the increment. 

2. Specify a chatter frequency range of interest (around the dominant modes of 

e system). 

3. Determine the total number of tooth passing frequency harmonics of interest, 

 The higher the 

approximations will be and also the greater the computation time. 

4. Begin the numerical steps by selecting the spindle speed. 

5. Select a chatter frequency and calculate the corresponding frequencies of all 

the harmonics, using ( )

th

rh . number of harmonics, the better the higher order 

Tc kωω + . 

6. Calculate the corresponding transfer function matrices,  using equations 

(5

7. Start the num

(A) Using predicted axial depth of cut  (where initial values of ), 

calculate the cu

kG

.36 and 5.37) for each considered harmonic. 

erical approach to calculating stable axial depth of cut: 

ma  min
0 aa =

tting force coefficients, tK , rK , aK  and axial immersion 

 γ

(B) Calculate the elements in matrices, [ ]rA  using equations (5.47) 

(C) Constru

which is shown in equation (5.62) for 

ct the system’s oriented transfer function matrix (example of 

2=rh ) 

(E) Calculate the critical depth of cut using equation (5.65) 

 cut  from the predicted axial 

depth of cut m  to obtain the error as follows 

(D) Solve the eigenvalue characteristic equation (5.60) 

(F) Subtract the calculated axial depth of lima

a

limaa mm −=η  
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(G) If 1>m , compare the sign of the previous and current axial depth of cut 

error, mη  and 1−mη , else go to (K) 

(H) If the signs have changed, a converged axial depth of cut solution can be 

obtained by means of simple interpolation as follows, 

11
1

1
*
lim

−−
−

−

+⋅⋅
−

−
= mmm

mm

m

aaaa
ηη

η               (5.67) 

 go to step 1 as the 

 i brated cutting force coefficients 

(I) Then proceed to step 8 

(J) If the signs are unchanged and m <  then update the predicted axial maxaa

depth of cut using aaa mm Δ+=+1 , else STOP and

solution to the chosen chatter frequency is not within the range of the 

axial depth of cut mposed by the cali

(K) Go to step (A) with 1+= mm ,  and 

8. Using the converged axial depth of cu

mm aa =−1 mm ηη =−1  

t solution,  calculate the *
lima

corresponding cutting force coefficients and axial immersion. 

9. Calculate the elements in matrices, [ ]rA  using equations (5.47) and [ ]kG  

using equations (5.36 and 5.37), now using the accurate cutting force 

coefficients and axial immersion. Then construct the system’s oriented 

transfer function matrix. 

ncies in the specified 

increment specified and repeat step 5 and continue. 

These steps are laid out chronologically in Figure 5.23. 

10. Solve the eigenvalue characteristic equation (5.60) 

11. Calculate the spindle speed using equation (5.66) for each stability lobe 

... ,3 ,2 ,1 ,0=k   

12. Repeat the procedure for the different chatter freque

range still for the current spindle speed. 

13. Increase the spindle speed to the next spindle speed based on the 
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Figure 5.23. Higher-order stability model numerical algorithm. 
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5.3.3. Validation 

The higher approximation approach developed in this section is more suited 

for a highly intermittent cutting process, which is obtained for very shallow radial 

depths of cut. However, the model is demonstrated here using a very deep radial 

depth of cut (19.00mm), which is nearly a full slot. The main purpose of this is to 

check on the validity of the actual model, since a very good set of accurate results 

were obtained for the zeroth order approximation. 

Therefore, the proposed algorithm was used to predict the stable margin for 

the cutting process presented in the previous section. A radial depth of cut of 

19.00mm, a total of 10 harmonics (i.e. 10=rh

 the tool

), a range of chatter frequencies 

from 500Hz to 3000Hz was scanned at increments of 0.5Hz. The minimum and 

maximum natural frequencies of  are at Hz and 

Hz respectively, therefore this fre

frequencies. The numerical solution steps, were coded using Matlab. The 

predicted stable margin is shown in Figure 5.24 and compared with the previously 

validated results obtained in section 5.2 on zeroth order approximation. 
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quency range covers all the natural 3106869.2 ×
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Figure 5.24. Stability Margin Validation. 
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It can be seen that there is no added stability lobe that arises from an 

intermittent cutting process. This is because as mentioned earlier the cutting 

condi

 of the 

zeroth

tions are nearly a full slot, which means that the tool’s teeth are constant in 

engagement. To further demonstrate this, the FFT of the cutting forces and 

deflection measurements shown in Figures 5.11 – 5.19, shows that although the 

higher harmonics exist they are not particularly dominant. However the results 

shown in Figure 5.24, validates the formulation of the model as the results are not 

seen to deviate from the zeroth order approximation; while the accuracy

 approximation has been confirmed in the previous section. 
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th of cut. The 

accuracy attainable by the proposed improvements is clearly seen in the results 

compared extensively with experimental results. An approach that uses Floquet 

theorem to predict stable margins, while taking into account the effects of higher 

harmonics, the non-linearity of coefficients and axial immersion was also 

developed. 

5.4. Summary 

In this chapter, the stability lobe approach to predicting the Hopf 

bifurcations in milling processes is discussed and the focus was on tool chatter 

only by making the workpiece relatively rigid. Improvements to the model are 

proposed and a numerical algorithm that allows for the extraction of the 

converged solution was proposed. The cutting force coefficient was successfully 

adopted into the stability model as a variable of the axial dep
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Thin Walled Workpiece Chatter 

6.1. Introduction 

Due to weight requirements and the demand for higher efficiency, 

manufactured parts are being designed with much thinner sections, which greatly 

reduces the parts’ structural stiffness. On the one hand when machining these 

parts, the need for more accurate stable cutting conditions becomes much more 

imperative as the development of chatter can greatly reduce the manufacturing 

efficiency by rendering the whole part unusable. On the other hand, knowledge of 

the influence the part’s design has on the cutting conditions would aid the 

designers in reaching better and more efficient designs. Chatter as stated by 

Taylor (1907) is one of the most obscure and delicate of all problems facing the 

machinist, as it undermines and reduces productivity and surface quality in 

manufacturing and also increases the cost through possible machine or tool 

damage. It is because of these effects that it has been the topic of several studies 

over the years. 

The accuracy of the predicted stable region relies on the dynamic 

parameters identified at the cutter-workpiece contact zone. The classical approach 

to obtaining the dynamic parameters is through impact tests. Unlike in tool 

chatter, predicting the stability margin for flexible workpiece parts is more 
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complex, as the dynamic parameters are not constant along the workpiece and are 

constantly changing as material is removed and the geometry changes. Attempts 

were made by Thevenot (2006) to use this varying dynamics in thin wall 

machining to initiate the variation of the spindle speed along the workpiece in 

order to improve surface finish. The tendency in this approach however is for new 

marks to be left on the surface due to the change in cutting conditions as seen 

from their experimental results. Budak considered the variations in the dynamics 

of the cutter and the workpiece along the axial direction. Seguy et al. (2008) 

recently carried out a study to try and include the varying dynamics along a thin 

wall and thin floor section, but the results show certain discrepancies which could 

have arisen from the assumptions taken. Adetoro et al. (2009b, 2009g) recently 

presented a ‘finite element analysis’ (FEA) approach to identify the systems 

transfer function at specified locations, which was discussed in Chapter 4. 

Thus this chapter is structured as follows; the modifications to the stability 

lobe model proposed in Chapter 5 and the FEM approach proposed in Chapter 4 

are used to include the nonlinear dynamics along a thin wall in the stability lobes 

prediction. Therefore, the nonlinear cutting coefficients, axial immersion angle 

and nonlinear dynamics along the workpiece are all included in the stable margin 

predicted. The accuracy is clear in the comparisons with experimental results. The 

accuracy also spans to the precise location of chatter development predicted. 
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6.2. Accurate Prediction of Stability Lobes using Nonlinear 

Thin Wall Dynamics 

This section further presents applications of the improvements proposed in 

Chapter 5 and also the applications of the Finite Element (FE) and Fourier 

transform approach in Chapter 4 in thin wall machining. The FE and Fourier 

approach was used to include the non-linearity of the workpiece dynamics in thin 

wall machining when predicting stable region. The model and approach are 

validated extensively using experimental results and very good agreements have 

been achieved. 

The stability lobe model used in this section was described in detail in 

Chapter 5. It is based on the three dimensional stability model by Altintas (2001). 

The modifications introduced in Chapter 5 allow for more accurate modelling of 

the cutting forces using non-linear cutting force coefficients and non-linear axial 

immersion angle. Reference should be made to Chapter 5, as this model is not 

detailed in this chapter. The chapter mainly goes on to use this improved model to 

predict the stable margin for thin walled sections, whilst accommodating the 

changes in the workpiece dynamics along the tool path. 

6.2.1. Varying Workpiece Transfer Function 

The tool or cutter’s transfer function can be assumed to be constant during 

the machining process, while the workpiece transfer function however cannot be 

assumed to be constant. It varies initially along a given tool path and also as 

material is removed, hence the experimental approach to extracting the transfer 

function would be challenging. The ‘finite element’ approach presented in 

Chapter 4 can be used to identify the workpiece transfer function at a single 

specified location; since the ideal stable condition when machining a thin wall 

section, would be a condition that is stable all along the workpiece. Therefore 

using the previously proposed finite element approach, the system’s transfer 

function is identified at as many locations along the intended tool path as possible 
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and their corresponding stability margins calculated using the method detailed in 

Chapter 5. Therefore, by simply superimposing the predicted stability lobes the 

actual stable cutting region for the given tool path can then be obtained. The lobes 

have to be superimposed because it is impractical to change the cutting conditions 

during machining, therefore the chosen cutting conditions at the beginning of cut 

must be stable for the rest of the tool path. Thevenot (2006) tried the varying 

spindle sped approach and found that new marks were left on the surface due to 

the abruptly stopped cutting process. Although the approach proposed here can be 

used to vary the spindle speed along the tool-path, it is not advised. 

6.2.2. The Finite Element Model 

The workpiece material used in the FEM model was the same model used in 

Chapter 4 and is given again here for convenience. The material used during both 

the experiments and FEM analysis was Aluminium Alloy 7010 T7651. The 

material properties required for generating the stiffness and mass matrices are: 

Density -  Kg m-3, Young’s Modulus - 69.809 GPa and Poisson Ratio 

- 0.337. The dimensions of the workpiece are shown in Figure 6.1 and the 

thickness, (W) = 3.0mm and height (H) = 30.0mm. 

310823.2 ×

R=5mm

H

W

 
Figure 6.1. Workpiece dimensions. 
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 260mm 
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The assumptions made in the finite element analysis (FEA) are as follows: 

 The workpiece was bolted at the back surface during the machining and in 

the FEM this was assumed to be perfectly clamped. 

 It was assumed that the natural frequencies of the machine are very high 

compared to that of the workpiece, hence their influence can be ignored in 

the FEM analysis. 

6.2.3. The Damping Ratio 

The mass or inertia and stiffness forces can be predicted numerically with 

very good accuracy for any given geometry, material properties and boundary 

conditions. The damping forces are at present extracted through experiments 

known as modal testing or analysis, although an approach to predicting the 

damping ratio for subsequent walls was proposed in Chapter 4. This approach can 

certainly be incorporated with the method this Chapter presents. Just like the 

natural frequency, the damping ratio is dependent on the geometry, therefore it 

can be taken to be constant along the workpiece, although it changes as material is 

removed. The damping ratios, lζ  for the cutter and workpiece were identified 

through impact tests in Chapters 4 and 5 and are given in Tables 6.1 and 6.2 for 

convenience. The workpiece is excited using an instrumented hammer, whilst the 

accelerometer is placed on the opposite side of the impact point, to measure the 

direct transfer function. Using a Fourier analyser, the accelerance frequency 

response function is extracted for each impact test. This is simply the division of 

the Fourier transform of the measured time domain input force  and 

acceleration 

( )tf

( )tx . 

( ) ( )
( ) ,
ω
ωω

F
XAcc =           (5.26) 

where ( )ωAcc  is the accelerance FRF, ( )ωX  is the output acceleration signal in 

frequency domain and ( )ωF  is the input force signal in frequency domain. The 

experimental measurements are analysed using a modal analysis system (a 

commercial software package called CutPro was used for the solutions in this 
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paper), which scans the measured transfer function and fits a curve to the data in 

order to obtain the numerical values of natural frequency and corresponding 

damping ratios (Gadalla, 1997). The errors induced by the mass of the 

accelerometer were compensated for using the approach proposed by Cakar and 

Sanliturk (2005). 

6.2.4. Results 

Extracting the Workpiece Transfer Function 

To obtain experimental results to validate the proposed numerical approach, 

an aluminium milling application with 3-teeth milling cutter is considered. The 

finite element approach introduced in Chapter 4 was used to identify the 

workpiece transfer function at five locations: at the start, a quarter way, half way, 

three quarter way and finally at the end point. These locations were at 1.00mm, 

65.00mm, 130.00mm, 195.0mm, 259.0mm as shown in Figure 6.1 along the 

cutting path respectively. In Chapter 4, the workpiece was analysed in Case Study 

1B, however the transfer function was only extracted at a single point in order to 

validate the modelling approach. The workpiece transfer function was identified 

in the normal direction (Y ) as the dynamics in the feed direction ( X ) can be 

neglected due to its relative magnitude. The workpiece material used in the FEM 

model is ‘‘Aluminium Alloy 7010 T7651’’. The material properties required for 

generating the stiffness and mass matrices are: Density, ρ  = (Kgm-3), 

Young’s Modulus, 

310823.2 ×

E  = 69.809 (GPa) and Poisson Ratio, υ  = 0.337. 

Table 6.1. Tool Dynamic Parameters in X and Y directions 

Direction Mode Natural Frequency, nω
(Hz) 

Modal Stiffness,  
k (107 Nm-1) 

Modal Damping Ratio, 
ζ  (10-2 %) 

1 1306.9361 1.0657 7.9626 
2 1897.8177 5.6677 4.4413 
3 2195.3198 6.6598 5.0610 

X 

4 2686.9228 3.1818 3.6897 
1 1262.6637 1.2149 3.4316 
2 2074.2514 2.2493 7.7559 Y 
3 2684.0002 3.1113 2.9063 
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Therefore by following the detailed Fourier approach presented in Chapter 4, the 

workpiece’s transfer function at the five different locations are extracted from the 

time domain response of the workpiece to an input force. The different identified 

transfer functions are shown in Figures 6.2, 6.3, 6.4, 6.5, 6.6 and the dynamic  
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Figure 6.2. FEM identified workpiece varying transfer function at the start 

location (1.0mm along tool path). 
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Figure 6.3. FEM identified workpiece varying transfer function at the 1st quarter 

location (65mm along tool path). 
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parameters are given in Table 2, where the experimental identified natural 

frequencies are compared with numerical extracted natural frequencies (the 

experiments are with the effects of the accelerometer removed). These numerical 

natural frequencies are obtained using the approach to solving the eigenvalue 

problem detailed in Chapter 4. 
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Figure 6.4. FEM identified workpiece varying transfer function at the middle 

location (130mm along tool path). 
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Figure 6.5. FEM identified workpiece varying transfer function at the 3rd quarter 

location (195mm along tool path). 
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Figure 6.6. FEM identified workpiece varying transfer function at the end location 

(259mm along tool path). 

Table 6.2. Workpiece Dynamic Parameters in Y direction, W = 3.0mm 

Mode 
Experimental 

 Natural Frequency, nω  (Hz)
 Damping Ratio,  
ζ  (10-2 %) 

Numerical  
Natural Frequency, nω  (Hz)

1 3173.9925 6.5375 3168.6005 
2 3248.6874 4.1127 3235.6682 
3 3453.1690 3.4466 3461.9967 
4 3848.8494 4.9615 3842.1306 
5 4356.7756 5.3526 4380.0491 

 

6.2.5. Stability Lobes for Non-linear Dynamics 

Using the proposed approach, the stability lobe diagram for a 2.0mm radial 

depth of cut and 20.0mm tool diameter is shown in Figure 6.7, where the unstable 

region is shown in grey. The transfer function is determined by modal 

superposition using the identified modal parameters. The different stability lobes 

predicted for different locations along the workpiece are superimposed in Figure 

6.7. The stability lobes predicted are experimentally verified using a radial depth 

of cut of 2.00mm and a feed of 0.15mm, where the feedrate is simply calculated 

for each spindle speed. 
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Figure 6.7. Stability Margin Validation. 

The presence of chatter is monitored by the spectrum of cutting forces 

measured and tool vibration measured using an accelerometer built in at the back 

of the spindle. The different experimental results are analysed and grouped into 

two categories: stable and chatter cuts. The region predicted to be unstable is in 

good agreement with the experimental results. This graph shows the collective 

stability lobes superimposed for different locations, however these are shown in 

more detail by showing the individual lobes at different locations in Figures 6.8, 

6.10, 6.12 and 6.14. These more detailed figures show the location where chatter 

is predicted ad comparisons are made with experimental surface finish. 

For cutting tests between 10000rev/min and 14000rev/min the 

corresponding lobes and their locations are shown in Figure 6.8. The predictions 

at 11000rev/min do not match exactly with predicted regions. It is possible that 

this is due to flip bifurcations, discussed in Chapter 5. The approach in this paper 

does not predict the flip bifurcations and as was shown by Davies et al. (2000, 

2002) in a highly intermittent cutting process, there are extra stable margins that 

the approach here does not predict. This cutting test can be considered as highly 

intermittent, hence for completeness the stable margin for flip bifurcations would 

have to be included using the model developed in Chapter 5. This however might 

prove to be inefficient considering the computational time required and the fact 

 - 212 - 



Chapter 6 – Thin-Walled Workpiece Chatter 
 

that any added lobes might not make a major change to the grey region shown in 

Figure 6.7. By changing the spindle speed to 13000rev/min at axial depth of cut of 

2mm, chatter is seen to develop in the cutting force. Moreover as predicted by the 

stability lobes, there should be chatter at the start and the end of the wall. It can be 

seen in the measured experimental cutting forces (Figure 6.10) that the peaks 

forces at the beginning of the cut and towards the end of the cut are nearly double 

the peak of the forces at the middle of the cut. 
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Figure 6.8. Stability lobes experimental validation for 10000rev/min – 

14000rev/min. 
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Figure 6.9. Measured cutting forces, Fx for 11000rev/min and 2.0mm axial depth 

of cut. 
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Machined Surface - 
 

 (a) Start location    (b) Finish location 

 
(c) Middle location 

Figure 6.10. A good surface finish for 11000rev/min spindle speed and 2.0mm 

axial depth of cut with no chatter. 
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Figure 6.11. Measured cutting forces, Fx for 13000rev/min and 2.0mm axial depth 

of cut. 
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(a) Start location 

 
(b) Finish location 

Figure 6.12. Surface finish for 13000rev/min spindle speed and 2.0mm axial depth 

of cut. 

This clearly indicates chatter development at the start of the cut, which diminishes 

towards the middle and develops again as it approaches the end location. The 

chatter marks are clearly visible on the surface finish for an axial depth of cut of 

2.0mm and spindle speed of 13000rev/min (Figure 6.12), while a good surface 

finish is seen for spindle speed of 11000rpm and axial depth of cut of 2.0mm 

(Figure 6.11). The machined surface is seen just below the ruler. 

For cutting tests between 18000rev/min and 21000rev/min, the predictions 

are shown to be in agreement with the experiments in Figure 6.13 and the 

measured cutting force for spindle speed of 19700rev/min and axial depth of cut 

of 3.5mm is shown in Figure 6.14. Chatter was predicted only at the end of the cut 

corresponding to an axial depth of cut of 3.5mm and it is seen in the measured 

experimental cutting forces in Figure 6.14 that the forces increase drastically 

towards the end of the cut as predicted by the stability lobes. 
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Figure 6.13. Stability lobes experimental validation for 18000rev/min – 

21000rev/min. 
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Figure 6.14. Measured cutting forces, Fx for 19700rev/min and 3.5mm axial depth 

of cut. 

To further validate the predictions the surface finish is shown in Figure 6.15 

where the slight chatter at the end of the cut can be seen. Contrary to the previous 

assumptions that the two ends of a thin wall behave similarly and if one end is 

stable then the other end should be stable and likewise when one end is unstable. 

It is seen in the surface finish and in the stability lobes that the start is stable and 

the end is unstable. 
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 (a) Start location 

 
(b) Finish location 

Figure 6.15. Surface finish for 19700rev/min spindle speed and 3.5mm axial depth 

of cut. 

For cutting tests between 21500rev/min and 24500rev/min the stability 

lobes are shown in Figure 6.16. At 23000rev/min spindle speed and 2.5mm axial 

depth of cut, chatter was predicted at only the beginning of the cut. The surface 

finish depicts this as shown in Figure 6.17. This again shows that the initial 

assumption that both ends of a thin wall would behave the same way is wrong, as 

the surface finish shows contrary to the start region that the end region was stable. 
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Figure 6.16. Stability lobes experimental validation for 21500rev/min – 

24500rev/min. 

 
(a) Start Location 

 
(b) Start Location Continued 
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(c) End location 

Figure 6.17. Surface finish for 23 le speed and 2.5mm axial depth 

For high spindle speeds between 23500rev/min and 26500rev/min, the 

stabil

000rev/min spind

of cut. 

ity lobes are shown in Figure 6.18. At a spindle speed of 25000rev/min and 

an axial depth of cut of 2.00mm chatter was predicted only at the middle of the 

cut. The cutting forces in Figure 6.19 show that there was chatter towards the 

middle of the cut as the cutting forces starts off stable and increases quite 

drastically towards the middle then reduces back again towards the end of the cut. 
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Figure 6.18. Stability lobes experimental validation for 23500rev/min – 

26500rev/min. 

 - 219 - 



Chapter 6 – Thin-Walled Workpiece Chatter 
 

There arter 

location and just before reaching nsfer function would have to be 

identified at more points in order for this to be included in the stability lobes 

 was another sharp increase in cutting forces just after the 3rd-qu

 the end. The tra
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Figure 6.19. Measured cutting forces, Fx for 25000rev/min and 2.0mm axial depth 

of cut. 
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Figure 6.20. Measured cutting forces, Fx for 25000rev/min and 3.5mm axial depth 

of cut. 
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At a deeper cut 3.5mm, chatter was predicted at the start and the middle of the cut. 

re 6.20The measured cutting forces in Figu  show that the chatter was located 

towards the beginning of the cut and the cut stabilized towards the end. Finally at 

an axial depth of cut of 4.5mm (Figure 6.21), chatter is present at most locations 

along the cut and this cutting condition is just below the margin in the stability 

lobes. 
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Figure 6.21. Measured cutting forces, Fx for 25000rev/min and 4.5mm axial depth 

of cut. 

proposed in this chapter, the wall was found to be less prone to chatter at the first 

and third quadrant of the wall section. This can be seen in the frequency response 

funct

From the results obtained both experimentally and through the approach 

ion identified using the finite element approach (Figures 6.2 – 6.6). The 

‘FRF’ for the weakest points are characterised by higher real and imaginary parts. 

The stability lobes predicted here are for Hopf bifurcations. In order to predict 

instabilities due to flip bifurcations, then the higher order approximation model 

developed in Chapter 5 can be used. This model however requires very high 

computational resources and even more with the approach proposed in this 

Chapter, as the stability lobes are predicted at various locations along the wall. 

From the superimposed stability lobes in Figure 6.7, it can be seen that even if any 

added lobe is found in any of the individual stability lobes, it would most likely 

fall in the unstable region of the predictions for another location. 
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In this chapter, a novel approach to predict the stable margin for a thin wall 

structure, whilst respecting the nonlinearity of the structures dynamics along the 

tool path was presented. This approach used the FEM approach in Chapter 4 to 

extract the transfer function and the improvements to the stability lobe model in 

Chapter 5 were used in all the extracted stable margins. The results are 

experimentally validated. 

6.3. Summary 



V{tÑàxÜ J 

Conclusion 

7.1. Concluding Remarks 

This thesis has focused mainly on different aspects in the machining of thin 

wall sections, with various modelling approaches proposed. The well developed 

mechanistic linear edge force model has been discussed and the mechanistic 

cutting force coefficients were calibrated for a range of axial depths of cut. They 

were validated by comparing the predicted cutting forces for varied cutting 

conditions with experimental results. Improvements to the model were proposed. 

These improvements consider the nonlinear relationship between the cutting force 

and the uncut chip thickness. This nonlinearity is caused by the size effect, 

experienced when using a tool with a blunt cutting edge. 

A new and efficient FEM approach to predicting the cutting force 

coefficients was presented. The approach uses an Arbitrary Lagrangian Eulerian 

(ALE) mesh formulation. It was shown that the domain can be simplified to a 2-

dimensional domain when simulating a non-helical flat end milling tool. 

However, the proposed approach can still be used to simulate machining with the 

use of general tools including tools with a corner radius. The results obtained from 

FEM simulations of the end milling process were used to evaluate the force 

coefficients. On the one hand, this approach eliminates the need to carry out 
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cumbersome experiments, otherwise used to calibrate the cutting force 

coefficients. On the other hand, it perfectly satisfies the assumption that there are 

no chatter effects in  the cutting force data. The coefficients obtained were 

validated by comparing predicted cutting forces with experimental results reported 

by Ko et al. (2002). Several comparisons were made with good agreements, using 

a wide range of cutting conditions. It was also found that an accurate 

measurement of the edge radius is very crucial when carrying out FEA modelling 

of end milling processes. 

An in-depth study of the cutter and workpiece dynamics was presented and 

a new trend or relationship between the damping parameters and the structure’s 

geometry was discovered. An approach that makes use of this discovered trend to 

predict the damping parameters for a different wall thickness from a known wall 

was proposed. A series expansion was proposed to help model the predicted 

damping parameters in frequency domain. The accuracy of the discovered trend 

and the proposed series expansion is seen to match experimental results. A Finite 

Element (FE) modal analysis approach to predicting the dynamic response of a 

structure to dynamic excitation was also presented. The accuracy of the 

discovered relationship is further explored by using the predicted damping ratios 

in FE time domain vibration simulations. Comparisons were made between the 

predicted acceleration and the experimentally measured acceleration; showing a 

satisfactory match. Although the proposed approach to predicting the damping 

parameters is at its early stages, its application in the machining of thin wall 

structures was presented. This approach fits naturally with machining of thin walls 

as the thickness of the wall changes as material is removed. The structure’s 

transfer function was extracted using a proposed FE and Fourier approach. 

In the aspect of the prediction of stable margin, the very common three-

dimensional stability model of self excited chatter vibrations in milling was 

improved to fully accommodate the nonlinear cutting force coefficients and the 

nonlinear axial immersion angle for the first time. In a newly developed model, 

the effects of higher harmonics on the predicted stability margin were considered. 

This model still respects the nonlinearities of both the cutting force coefficients 

and the axial immersion angle. A numerical approach to obtaining a converged 

solution with very good accuracy was proposed. This improved model was then 
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adapted to the FE and Fourier approach in an approach to predict the stable 

margin for a thin wall section, whilst fully considering the nonlinear dynamics, 

the nonlinear cutting force coefficients and the nonlinear axial immersion angle. 

The accuracies are seen in the comparisons made between the predicted and 

experimental results. 

The contributions to the knowledge and original thoughts that resulted from 

this research can be summarized as follows: 

 A nonlinear edge force model was developed for the first time. The 

advantages this model possesses over the linear edge force model would 

become much more apparent, as more studies on micromilling are 

performed. 

 A finite element approach to extracting the cutting force coefficient was 

proposed. This makes the whole calibration process more efficient and 

much easier. There is very little previous work on applying FE methods to 

the milling process. Therefore this approach also shows the practical 

application of FE analysis and ALE mesh formulation. 

 A previously unknown relationship between damping parameters was 

presented in this thesis. This relationship was used to predict the structural 

damping terms, which was previously considered an empirical parameter. 

This relationship is a fundamental knowledge that when further 

investigated, could lead to a full understanding of the damping forces, the 

influence the structure’s geometry has on it. Unlike the stiffness and mass 

parameters, the damping parameters are still not fully understood. This is 

the reason for the use of experimentally identified damping parameters. A 

proposed series expansion was used to model the predicted damping terms. 

 A new FE and state space approach to extracting the system’s Frequency 

Response Function (FRF) was presented. 

 With the damping prediction model and the FE approach the stable margin 

was fully predicted for the first time without experimental results with 

satisfactory accuracy. The advantages of this approach extend into both the 

design and manufacturing stages. 

 The widely used stability approach was modified to include the nonlinear 

characteristics of the cutting force coefficients and the axial immersion 
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angle. In all previous work using the stability model, the cutting force 

coefficients and the axial immersion angle have been assumed to be 

constant. Due to the complex nature of the system’s transfer function, 

attempts to obtain an analytical solution proved very complicated; hence a 

numerical algorithm was developed to obtain a converged solution. 

 For the first time a three dimensional higher-order stability model that 

considers the effects of higher harmonics from highly intermittent milling 

process was developed and its formulations systematically presented. 

 The FE and Fourier approach was adapted with the improved zeroth-order 

stability model in a proposed method that predicts the stable margin for a 

thin wall, taking in account the nonlinear dynamics along the thin wall. 

Unlike the previous work that made efforts to model varying dynamics, the 

FE and Fourier approach predicts the structure’s FRF with good accuracy. 

This coupled with the improved stability model helps to predict accurate 

results. The accuracy is demonstrated in the predicted location of chatter 

matching precisely with chatter marks in experimental surface finish and 

also in measured cutting forces. Stability margin predictions that consider 

the nonlinear dynamics of the workpiece have not been reported before in 

the literature with this level of accuracy. 

7.2. Future Work 

One of the main aspects additional studies should focus on is the damping 

parameters. The ultimate aim is to understand the relationship between the 

damping parameters and the structural geometry; perhaps first with constant 

boundary conditions and then taking into account the overall effects of the 

boundary conditions. With the damping parameters developed, advancements in 

structural analysis would certainly be accelerated. It will aid in the analysis of 

dynamic analysis. 

The modelling of the system’s transfer function using the state space 

approach should be investigated, as this can be easily used to extract the transfer 

function at any required point. The advantage of this is being able to obtain the 
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transfer function for any location (degree of freedom) without having to run the 

simulation in time domain, before converting into frequency domain. 

The approach to predicting the stable margin whilst taking into account 

nonlinear dynamics should also be further investigated, as this can allow for the 

adaptive modification of the structures dynamics at locations at which chatter is 

predicted to occur. 

The research algorithms developed in this thesis could also be interfaced 

with a CAD/CAM system for use in the design and production planning of a 

variety of components in the aerospace industry. 
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A.1. Calibration Experimental and Cutting Conditions 

When calibrating the tool’s cutting force coefficients, the more feedrates 

and axial depths of cuts performed the more accurate the results are. During the 

experiments, a total of 12 axial depths of cuts were performed each at an 

increment of 0.5mm starting from zero. For each axial depth of cut a total of 20 

feedrates were used during which the cutting forces were measured using the 

scopes. The feed rates used are detailed below in Table A.1. A half radial 

immersion was used in all the experiments. 

Table A.1 Experimental cutting conditions 

Cut No Feed per tooth,  (mm) ts Feedrate, (mm2/min) 

1 0.0500 663.000 
2 0.0650 861.900 
3 0.0800 1060.800 
4 0.0950 1259.700 
5 0.1100 1458.600 
6 0.1250 1657.500 
7 0.1400 1856.400 
8 0.1550 2055.300 
9 0.1700 2254.200 
10 0.1850 2453.100 
11 0.2000 2652.000 
12 0.2150 2850.900 
13 0.2300 3049.800 
14 0.2450 3248.700 
15 0.2600 3447.600 
16 0.2750 3646.500 
17 0.2900 3845.400 
18 0.3050 4044.300 
19 0.3200 4243.200 
20 0.3350 4442.100 
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Appendix A 
 

A.2. Dynamometer Dynamic Properties or Reliability Test 

The dynamometer – workpiece setup can be thought of as a system excited 

by the cutting forces from the tool, being in contact with the workpiece. Therefore 

according to the equations of motion, it exhibits it own response to the excitations 

which would in turn induce an error into the readings given. If this excitation 

should have a frequency that matches the resonance frequency of the 

dynamometer, then the response of the dynamometer would be at its maximum 

and so would the errors induced in the readings given. The frequency of the 

excitation (cutting forces) also known as tooth passing frequency is defined as, 

NT ×
Ω

=
60

ω             (A.1) 

where, Tω  is the tooth passing frequency, Ω  is the spindle speed in revs per min, 

 is the number of flute. N

To determine the dynamics of the dynamometer, the transfer function 

between the actual input and measured forces is used in similar approach used 

when extracting the dynamic parameters in Chapter 4. The input force is 

generated using an instrumented hammer mounted with a small load cell to 

measure input force. The output is taken directly from the dynamometer with the 

workpiece mounted on it. The transfer function was obtained using one of the 

modules in the commercial software package ‘CutPro’ called ‘MalTF’, which is a 

data acquisition and transfer function measurement program. The tests were 

repeated several times. The magnitudes of the transfer function in the normal ( )Y  

directions are shown below in Figures A.1. 

 
Figure A.1. Transfer function between input force and measured force in normal 

Y direction. 

Frequency, ω   (Hz)
260 280 300 320 340 360 380 400 420 440 460 480 500

0.6 

1.4 

1.8 N
)

N
/

(

1.0 

M
a

ni
tu

de
 

g

 - 255 - 



Appendix A 
 

 - 256 - 

A magnitude of 1 would imply that the measurements from the 

dynamometer are not affected in anyway and are the actual cutting forces. It can 

be seen that up to a frequency of 260Hz, the magnitude of the transfer function is 

approximately 1. Therefore, a frequency of 221 was during the tool calibration 

experiments, which corresponds to a spindle speed of 4420 rpm, thereby keeping 

any induced errors to a minimum. 
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B.1. Classical Normal Modes Theorem 

To show that the system used in this study possess classical modes, the 

theorem given by Caughey (1965) and Adhikari (2000) (equations 4.4, 4.5, 4.6), 

are used as follows. The mass normalized modal matrix, [ ]Ψ  was extracted 

experimentally as, 

,

6301.18921.34100.23948.20844.19607.12480.00194.0
2393.04780.29663.00824.16798.02667.00063.00274.0
3308.07370.15402.10554.05472.03307.00808.01547.0

8925.77695.10002.00390.01222.05762.07898.04101.1
1887.40958.242339.123840.52077.39066.36548.20339.0

3910.17356.08587.03049.06753.18059.09771.10738.0
5560.26251.291462.28660.36302.80443.78091.28476.1
0882.00852.05610.09148.18785.24899.23148.12124.12

][

⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎢
⎢
⎢
⎢

⎣
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−
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−−

=Ψ

             (B.1) 

while the modal stiffness matrix, [ ]pK  is simply the natural frequency (note the 

frequency is in radians) squared, giving, 

,,

0803.50000000
00860.3000000
000860.200000
0000890.10000
00000844.1000
000000815.100
0000000802.10
00000000791.6

2−⋅
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⎥
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⎥
⎥
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⎢
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⎢
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= mN

E
E

E
E

E
E

E
E

K p

             (B.2) 

and the modal mass matrix is an identity matrix. The modal damping matrix, 

 is [ ]pC [ ] [ ],2 ppC ζ=  giving, 
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,,

279.3610000000
0730.78000000
00207.5300000
000703.400000
0000584.53000
00000685.4100
000000949.530
0000000867.487
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             (B.3) 

Using the modal matrix extracted experimentally to obtain the system’s 
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Therefore using the third condition given in (4.6), 
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It can therefore be shown that the other two conditions in (4.4) and (4.5) are 

both equally satisfied, hence the system is assumed to possess classical normal 

modes and the damping can be taken as proportional. 

B.2. Shape Functions for a 20-node Brick Element 

The shape functions , for the 20-node brick element (Figure B.1) used in 

all the FEM simulations are as (Hibbitt, 2006) follows: 
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Figure B.1. 20 – Node isoparametric 3-D element. 
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