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ABSTRACT 

 

 

The availability of fixed forms of nitrogen is critical to the regulation of primary 

production. Until recently, denitrification (the sequential reduction of NO3
-
, through NO2

-

, to di-nitrogen gas) was recognised as the only significant pathway facilitating N 

removal. The discovery of anaerobic ammonium oxidation (a process whereby NH4
+
 is 

anaerobically oxidised with NO2
-
 to form N2 gas), however, has redefined this concept. 

Environmental studies clearly indicate that anammox is a globally significant sink for N, 

yet the factors that govern variations in the potential for anaerobic ammonium oxidation 

(anammox), the abundance or the natural diversity of these organisms are poorly 

understood.  

 

The purpose of this investigation was to identify the organisms responsible for anammox 

across a gradient of the Medway estuary, Irish Sea and North Atlantic. DNA 

amplification was performed using the Planctomycete forward primer ‘S-P-Planc-0046-a-

A-18’ in combination with either ‘S-G-Sca-1309-a-A-21’ (targeting members of the 

genus ‘Scalindua’) or ‘S-*-Amx-0368-a-A-18’reverse. Analysis of 16S rRNA gene 

fragments indicated that the majority of sequences shared large phylogenetic distances 

with the ‘candidate’ species ‘Scalindua sorokinni’ (!93% sequence similarity). A number 

of the sequences extracted from both marine and estuarine sediments, however, cluster 

into 2 sub-groups that share common origins with the anammox lineage. 

 

 

In addition, the zone of potential anammox activity was characterised using a 

combination of 
15

N isotope labelling experiments, pore water oxygen profiles and depth 

specific rates sediment metabolism (CO2 production). This was performed in combination 

with fluorescence in situ hybridisation (FISH), to map shifts in the abundance of 

anammox organisms with depth, thus potentially linking the depth integrated capacity for 

anammox to deviations in population size. The potential for anammox activity and 

positive FISH signals confirm the presence of anammox at all sites investigated. The 

contribution of anammox to total N2 production (ra%) varied, on average, between 4-

35% in estuarine and 13-49% in marine sediments relative to denitrification. This was 

linked to a small population of anammox organisms constituting <1-3% of total bacteria 

in the estuarine sediments and <1-5% in marine samples. Whilst the depth specific values 

of ra correlate with the relative abundance of anammox organisms in continental shelf 

(r
2
=0.86, P=0.024) and slope sediments (r

2
=0.84, P=0.011), no such relationship was 

observed in the Medway estuary.  The overall capacity for therefore appears to be 

dependant upon the depth integrated potential for anammox and is not inherent to 

differences in population size.  
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1. INTRODUCTION 

 

1.1. Nitrogen 

Nitrogen (N) is a group 5B element and exists in several oxidation states within the range 

of -3 (NH4
+
 and organic tissues) to +5 (NO3

-
) (Table 1.1.). In each of these oxidation 

states, nitrogen combines with atoms of oxygen or hydrogen to form a unique inorganic 

molecule. This occurs throughout aquatic environments where either the oxidation of 

reduced forms of N (such as organic N/ NH4
+
), or the reduction of oxidised N compounds 

(i.e. NO2
-
/ NO3

-
) is catalysed by a variety of autotrophic and heterotrophic bacteria 

(Seitzinger, 1988; Zehr and Ward, 2002).  

 

Compound  Formula Oxidation state 

Ammonium NH4
+
 -3 

Hydrazine N2H4 -2 

Hydroxylamine NH2OH -1 

Di-nitrogen gas N2 0 

Nitrous oxide N2O +1 

Nitric oxide NO +2 

Nitrite NO2
-
 +3 

Nitric dioxide NO2 +4 

Nitrate NO3
-
 +5 

 

Table 1.1. The oxidation states of N compounds in the aquatic environment. Reduced and oxidised forms 

of N are utilised in both autotrophic and heterotrophic metabolisms. 
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1.2. The turnover of nitrogen compounds in the environment 

The nitrogen cycle is essentially the exchange of N between atmosphere and aquatic or 

terrestrial environments. The larger, abiotic pool of nitrogen constitutes 78% (vol. N2) of 

the earth’s atmosphere and is inaccessible to most living organisms. Di-nitrogen gas is 

triple bonded (N!N) and cleavage of this molecule requires a series of complex reactions 

and high inputs of energy (16 ATP/mole of N2 fixed) (Paerl and Zehr, 2000).  The only 

organisms capable of catalysing this process (via the enzyme nitrogenase) are nitrogen 

fixing prokaryotes (Paerl and Zehr, 2000). It is only through this pathway that N becomes 

available to the biosphere. Consequently, the availability of fixed N is an important factor 

in regulating primary production (Ryther and Dunstan, 1971).  

 

Until recently, denitrification was considered the only significant process returning 

biologically available nitrogen to the atmosphere (Devol, 1991). In recent years, an 

increase in anthropogenic nitrogen inputs, including the production of industrial sewage 

effluent and agricultural fertilizers, has caused an imbalance between nitrogen fixation 

and nitrogen removal processes (Herbert, 1999; Middleberg et al., 1996; Vitousek et al., 

1997). In aquatic systems, the result of this imbalance is an enrichment with N, that is, 

hypernutrification, which can lead to multifaceted problems collectively termed 

eutrophication (Jickells, 1998). Classical nitrogen removal processes, however, may serve 

to combat the effects of nitrogen pollution and therefore have gained considerable 

attention in recent years (Ogilvie et al., 1997; Trimmer et al., 1998). 
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1.3. Nitrogen removal pathways 

The nitrogen cycle is a microbially mediated sequence of processes, consisting of two 

major phases; an aerobic nitrification and an anaerobic denitrification phase (Figure 

1.3.1.).  In aquatic environments, ammonium derived from the decomposition of organic 

matter is oxidised to NO2
-
 and NO3

-
 via nitrification. Nitrification occurs in phases and 

each stage is mediated by different groups of bacteria and archea (Equations 1. and 2.).  

To date, there are no known organisms capable of performing both reactions (Ward, 

2000). 

 

NH4 + O2 + H 
+
   !   NH2OH + H2O   !   NO2 

-
 + 5H 

+
    (1) 

                        Ammonium 

  monoxygenase 

 

NO2 
-
 + 0.5 O2   !   NO3 

-
        (2) 

 

Equations 1 and 2. The process of nitrification involves 2 phases.  Equation 1 represents the first phase of 

nitrification where NO2
-
 is produced. The second reaction involves the oxidation of NO2

-
 to NO3

-
 and is 

represented by equation 2. 

 

Although nitrification is typically considered an aerobic process, recent evidence has 

suggested that some species of nitrifiers are capable of anoxic nitrfication in the presence 

of NO2 (Schmidt et al., 2001). Furthermore, there is growing evidence that Crenarchea 

are also capable of this process (Könnecke et al., 2005; Francis et al., 2007). 

 

In the process of denitrification, facultative anaerobes sequentially reduce NO3
-
, through 

a series of intermediates (NO3
-
"NO2

-
"N2O), to N2 gas (Zumft, 1997) (Equation 3).  
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C6H12O6 + 4NO3 
-
   !    6CO2 + 6H2O + 2N2      (3) 

 

Equation 3. During denitrification, NO3
-
 is reduced through various inorganic forms to N2. The reaction is 

represented by equation 3. 

 

The nitrification and denitrification pathways are coupled across the oxic-suboxic 

interface, facilitated by the diffusion of NO3
-
 from the oxic into the suboxic zone 

(Henriksen and Kemp, 1988). At low oxygen concentrations, however, water column 

derived NO3
-
 may alternatively diffuse into the suboxic zone, where it is subsequently 

reduced to N2 gas.  

 

Until recently, denitrification was considered one the most significant sinks for fixed 

nitrogen in the biosphere, however, if NO3
-
 is utilised in the process of ‘dissimilatory 

nitrate reduction to ammonium’ (DNRA), it will be retained in a form that is bioavailable 

(Patrick et al., 1996). A variety of prokaryotes are capable of this process and combine 

the reduction of NO3
-
 to the oxidation of organic carbon (or reduced Fe and S) to produce 

NH4
+
 (via NO2

-
) (Blackburn, 1983). The importance of DNRA in sediments is not yet 

fully understood (Cornwell et al., 1999), although rates of DNRA equivalent to those of 

denitrification, have been reported in sediments with high rates of organic carbon 

mineralisation (Bonin et al., 1998; Tobias et al., 2001). 
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Figure 1.3.1.  Schematic representation of the ‘classical’ nitrogen cycle illustrating critical aerobic 

nitrification and anaerobic denitrification phases (in the absence of anammox). (Diagram used with the 

permission of Dr. M. Trimmer). 

 

 

1.4. A novel nitrogen removal process 

Anaerobic ammonium oxidation (anammox) was first described in an anaerobic 

denitrifying reactor where the disappearance of NH4
+
 and NO3

-
 were linked to a 

concomitant increase in N2 gas (Mulder et al., 1995; Van de Graaf et al., 1995).  Further 

studies, using 
15

N isotopes, revealed that NO2
-
 (rather than NO3

-
) served as the oxidizing 

agent for anammox and that denitrification could provide the source of NO2
-
 required for 

this process (Dalsgaard and Thamdrup, 2002; Van de Graaf et al., 1995) (Equation 4.). 

Essentially, this pathway circumvents the ‘critical’ aerobic phase of coupled 

denitrification and therefore redefines the ‘classical’ nitrogen cycle (Figure 1.4.1.). 

Further studies revealed that this process was microbially mediated by a group of 
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autotrophic bacteria forming a deep, monophyletic branch within the ‘Planctomycetales’ 

(Strous et al., 1999).  

 

NO2
-
 +NH4

+
 ! N2 + 2H2O        (4) 

 

Equation 4.  The anaerobic oxidation of NH4
+
 with NO2

-
 (as an electron acceptor) produces N2 gas with a 

stoichiometry of the ratio 1:1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.1. Links between ‘classical’ nitrogen removal pathways and anammox (dotted arrows) in the 

formation of N2 gas. (Trimmer et al., 2003).  
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1.5. The significance of anammox in sediment ecosystems 

The anammox process has been detected in a variety of ecosystems including oxygen 

minimum zones (Kuypers et al., 2003; Kuypers et al., 2005), tropical freshwater 

(Schubert et al., 2006), Arctic sea ice (Rysgaard and Glud, 2004) and Arctic (Rysgaard et 

al., 2004), marine (Schmid et al., 2007; Thamdrup and Dalsgaard, 2002), and estuarine 

sediments (Meyer et al., 2005; Nicholls and Trimmer, 2009; Risgaard-Petersen et al., 

2005; Trimmer et al., 2003; 2005; Tal et al., 2005; Rich et al., 2008). These studies 

confirmed that anammox significantly contributes to N2 gas production; particularly in 

continental shelf sediments where up to 67% of total N2 production can be attributed to 

this pathway (Dalsgaard and Thamdrup, 2002). Studies addressing the factors that 

regulate the distribution and significance of this process are, however, relatively scarce.  

 

Dalsgaard et al. (2003) proposed that anammox is closely coupled to NO3
-
 reduction in 

the environment. In a hypernutrified estuary, NO2
-
 seldom accumulates in sediments and 

therefore the availability of this nutrient is scarce. The production of this intermediate in 

denitrification may, however, provide the NO2
- 

required for anammox (Dalsgaard and 

Thamdrup, 2002). Interestingly Kuypers et al. (2003) reported that the highest density 

and activity of anammox coincided with a NO2
-
 peak in the suboxic zone (of the water 

column) (Figure 1.5.1.). Furthermore, this NO2
-
 peak arose at the base of the nitrate peak, 

indicating that anammox occurs just below the zone of denitrification, and in turn, 

provides evidence for coupling between these processes and is corroborated by Meyer et 

al. (2005).  
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Figure 1.5.1. The theoretical distribution of O2, NO2
-
, NO3

-
 and NH4

+
 in oxic, suboxic and anoxic zones. 

Oxygen rapidly depletes within the first few mm of the sediment due to microbial respiration. Nitrate 

penetrates a little further into the sediment, but depletes as a result of denitrification and NO3
-
 respiration. 

The zone of anammox activity is theoretically localised to suboxic zone where NO2
-
 availability and the 

absence of O2, provide the stable environment for the formation of an anammox community.   

 

 

Interestingly, there are conflicting reports of how anammox correlates with sediment 

reactivity (the availability of reductants in the porewater). In the Thames estuary 

anammox peaks in highly reactive sediment, accounting for 8% of N2 gas production in 

sediment slurries (Trimmer et al., 2003) although in the less reactive sediments of the 

Skagerrak, 67% of N2 gas production can be attributed to anammox (Dalsgaard and 

Thamdrup, 2002). Trimmer et al. (2005) reported rates of NO3
-
 reduction in the Thames 

at 20 times those of the Skagerrak. It was therefore proposed that if rates of NO3
-
 

reduction were operating at Vmax in the Skagerrak, 60% of all NO3
-
 reduced would 
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accumulate as NO2
-
. However, in the context of NO3

-
 reduction in the Thames, only 20% 

of NO3
-
 reduced would be lost as NO2

-
. Consequently, an excess in NO2

-
 production in 

the Skagerrak, could in fact, support a relatively large community of anammox organisms 

(Trimmer et al., 2005). 

 

In addition to a potential source of NO2
-
, anammox organisms require the absence of 

oxygen for stable growth. Enrichment culture studies have demonstrated that these 

organisms are inhibited by as little as 1 #M oxygen (Strous et al., 1997). The presence of 

bioturbating macrofauna dramatically disrupts the vertical distribution of O2 and NOx
-
 as 

shown in Figure 1.5.1. The overall effect of bioturbation is an increase in the surface area 

of the sediment-water interface. Essentially, this potentially results in an extension of the 

NO3
-
 reducing zone, through an extension of the oxic-suboxic interface (Henriksen et 

al.1980). In terms of anaerobic ammonium oxidation, an increase in the availability of 

NO2
-
 could enhance this process. The inhibitory effect of constant incursions of oxygen 

may, however, suppress the formation of a stable anammox community in such 

environments. The effects of bioturbation in either marine or estuarine sediments, are 

largely unexplored.  
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1.6. The identification of anammox organisms in enrichment culture and the 

environment 

One of the major challenges facing ongoing research is the failure to isolate anammox 

organisms in pure culture. The use of 16S ribosomal RNA (rRNA) as a phylogenetic 

marker for anammox, however, has facilitated the identification of anammox organisms 

without the need for conventional cultivation techniques. rRNA is ubiquitous to all 

cellular life forms and consists of regions with different levels of conservation. This 

allows the determination of phylogenetic relationships from distantly to closely related 

species (Woese, 1987).  

 

Anammox cells were purified for the first time (in suspension) by density gradient 

centrifugation (Strous et al., 1999). This enabled the extraction of DNA or RNA, 

amplification (with the use of a universal 16S ribosomal (rDNA) primer set) and cloning 

(to create a 16S rDNA gene library) (Jetten et al., 2001). The dominant 16S rDNA 

sequence, within this library, was affiliated with the order Planctomycetales and the 

purified organism was tentatively named ‘Candidatus Brocadia anammoxidans’ (Strous 

et al., 1999).  

 

Information from the 16S rDNA sequence was used to generate oligonucleotide probes 

specific for B. anammoxidans. These probes successfully hybridised with anammox 

organisms (in FISH) and were used in further studies of wastewater treatment systems. 

Interestingly, probe binding patterns suggested that B. anammoxidans was not the only 

organism present in wastewater samples. Phylogenetic analysis of 16S rDNA gene 
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sequences, from a biofilm in a wastewater treatment system in Stuttgart, confirmed the 

presence of a distant relative of B. anammoxidans, capable of the anammox reaction 

(Schmid et al., 2000). This new species was also affiliated with the order 

Planctomycetales and is known as ‘Candidatus Kuenenia stuttgartiensis’. Subsequent 

studies have confirmed the presence of further species within two additional candidate 

genera ‘Scalindua’ and ‘Anammoxoglobus’ in wastewater treatment and natural systems 

(Strous et al., 1999; Schmid et al., 2000; 2003; Kartal et al., 2007).   

 

1.7. Thesis outline 

This study addresses the depth distribution, significance and phylogeography of 

anammox organisms across a transect of estuarine, coastal and deep marine sediments. 

 

CHAPTER II: The phylogeography of anammox organisms in marine and estuarine 

environments 

Environmental studies clearly indicate that whilst the presence of anammox organisms 

has been verified in a vast range of environments, diversity is extremely limited (Penton 

et al., 2006; Nakijima et al., 2008; Schmid et al., 2007; Woebken et al., 2008). To date, 

only two ‘candidate’ species of anammox have been identified in natural systems. These 

species are constrained to the genus ‘Scalindua’ and are known as ‘Scalindua sorokinni’ 

and ‘Scalindua arabica’ (Kuypers et al., 2003; Woebken et al., 2008). The objective of 

this investigation was to explore the diversity of the organisms responsible for anammox 

in marine and estuarine sediments. To investigate the composition of the anammox 

community, seven sites were selected representing deep sea sediments in the North 
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Atlantic (2000m), coastal sediments in the Irish Sea (50-100m) and shallow, organically 

enriched sediments in the Medway estuary. DNA was extracted from sediment samples 

and PCR amplified using a combination of either Pla 46F-Sca 1309R or Pla 46F-Amx 

0368R. All amplificates were subsequently cloned and phylogenetically analysed. 

 

Following a preliminary survey, a single clone sharing 96% sequence similarity with 

‘Scalindua sorokinni’ was isolated from sediments in the Medway estuary. This clone 

potentially represents a new species within the genus Scalindua. Further exploration was 

therefore required to determine whether this clone was more widely distributed in the 

environment. An additional survey of the anammox community was performed using 

fluorescent probes and primers designed according to this sequence.  

 

CHAPTER III: The relative abundance and depth specific significance of anammox in 

estuarine sediments 

The potential contribution of anammox to total N2 production is highly variable in natural 

systems, yet the factors that regulate either the significance of the anammox process or 

the abundance of these organisms are largely unknown (Trimmer et al., 2003; 2005; 

Risgaard-Petersen et al., 2005; Meyer et al., 2005; Tal et al. 2005; Rich et al., 2008). The 

objective of this investigation was to determine whether variations in the significance of 

anammox were associated with changes in population size. In order to map this 

distribution, 
15

N tracer experiments were employed to examine depth specific fluctuations 

in the potential contribution of anammox to total N2 production (Thamdrup and 

Dalsgaard 2002; Dalsgaard and Thamdrup 2002; Dalsgaard et al., 2003, Trimmer et al., 
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2003; Risgaard–Petersen et al., 2004; Rysgaard and Glud, 2004; Risgaard–Petersen et al., 

2005; Meyer et al., 2005; Trimmer et al., 2005). FISH and fluorochrome 4’6-diamino-2-

phenylindole dihydrochloride (DAPI) staining were used alongside this technique to map 

shifts in the abundance of anammox organisms with depth, thus linking potential activity 

to differences in population size.  

 

Furthermore, the zone of anammox activity was characterised with the purpose of 

identifying the factors that may influence the distribution and activity of these organisms 

in an estuarine environment. This was achieved by using a combination of porewater 

oxygen profiles and measurements of depth specific rates CO2 production.  

 

Microsensor oxygen profiles were used to determine the position of the oxic-suboxic 

interface. As anammox is inhibited by the presence of oxygen ($1.1#M), the position of 

oxic-suboxic interface is potentially key to the distribution of these organisms with depth 

(Strous et al., 1999). Moreover, the depth specific rates of CO2 production provide an 

indirect measurement of sediment metabolism and are therefore an indication of sediment 

reactivity. In terms of the potential contribution of anammox to total N2 production, 

previous estuarine studies have demonstrated that that the significance of this process is 

positively correlated with sediment reactivity (Trimmer et al., 2003; 2005). Sediment 

samples were retrieved from three sites forming a transect along the Medway estuary. 

Samples were collected both in the presence and absence of bioturbating macrofauna. 
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CHAPTER IV: The relative abundance and depth specific significance of anammox in 

marine sediments 

Anammox is highly significant in deep, offshore sediments, yet the factors that maintain 

elevated activity are relatively unexplored (Van de Graaf et al., 1995; Mulder et al., 

1995; Dalsgaard et al., 2003). The purpose of this study was to investigate possible links 

between the depth integrated potential for anammox and the overall significance of this 

process. In turn, fluctuations in the depth specific potential for anammox were 

subsequently compared with variations in the distribution of anammox organisms. The 

zone of potential anammox activity was characterised using porewater oxygen profiles, 

15
N tracer experiments and FISH analysis. This investigation was performed at stations in 

the Irish Sea and North Atlantic.  
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2. INTRODUCTION 

 

The anammox process is performed by a group of organisms that form a monophyletic 

branch within the phylum Planctomycetes (Strous et al., 1999; Schmid et al., 2005). This 

group consists of four genera that can be further divided into two distinct groups (as 

described by Woebken et al., 2008). The first group encompasses species that appear to 

be confined to wastewater treatment environments. These species have been described in 

enrichment culture and fall within candidate genera ‘Brocadia’, ‘Kuenenia’ and 

‘Anammoxoglobus’ (Kartal et al., 2007; Schmid et al., 2000; 2003; Strous et al., 1999).  

The second group is represented by species that largely occur in the environment and fall 

within the clade ‘Scalindua’ (Kuypers et al., 2003; Van de Vossenberg et al., 2008). To 

date, only two species of Scalindua, ‘Candidatus Scalindua sorokinni’ and ‘Candidatus 

Scalindua arabica’, have been identified in natural systems (Kuypers et al., 2003, 

Woebken et al., 2008). Both Scalindua sorokinni and Scalindua arabica are distantly 

related to those species that constitute the wastewater treatment group. On average they 

share between 85.9 - 87.9% sequence similarity with members of ‘Kuenenia’ and 

‘Brocadia’ (Kirkpatrick et al., 2006; Kuypers et al., 2003; 2005; Risgaard–Petersen et al., 

2004; Strous et al., 1997; Van de Graaf et al., 1996; Woebken et al., 2008). Whilst a 

wealth of knowledge regarding the implementation and diversity of anammox in 

wastewater treatment is available, little is known about the ecophysiology of this distantly 

related clade. 
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The recent enrichment of Scalindua sorokinni in mixed culture could provide some 

insight into the physiology and regulation of anammox, yet the resulting data cannot be 

directly applied to natural systems. The constant, highly controlled conditions under 

which anammox organisms are enriched, fail to reflect the dynamics of temperature, 

salinity, oxygen or nutrient concentrations within the natural environment.  One of the 

most immediately relevant examples is the enrichment of Scalindua sorokinni from 

sediment collected in Gullmar Fjord (Van de Vossenberg et al., 2008). To promote the 

growth of this organism, the culture and reactor influent were maintained at 0.5mM NO2
-
. 

This is nearly two orders of magnitude above in situ NO2
-
 concentrations, where NO2

- 

rarely exceeds 5!M (Meyer et al., 2005). Whilst the availability of NO2
-
 (derived via 

NO3
-
 reduction) is potentially crucial to the significance, abundance and distribution of 

anammox in the environment, any extrapolation from enrichment culture studies should 

be viewed with caution (Meyer et al., 2005). In addition to high concentrations of NO2
-
, 

the enrichment vessel was continuously purged with a mixture of Ar/CO2 in order to 

maintain completely anaerobic conditions. This is in line with the observation that 

anammox reaction is inhibited by "1!M oxygen in enrichment culture (Strous et al., 

1999). In situ measurements of O2, however, indicate that the concentration of O2 in 

Gullmar Fjord (160!M) was highly elevated relative to the conditions maintained in the 

culture. This is far removed from environmental conditions where the presence of 

anammox has been confirmed in periphyton dominated, aerobic sediments (Penton et al., 

2006) and from depths in the Namibian OMZ where oxygen concentrations of up to 

25!M O2 were reported (Woebken et al., 2007). It is therefore clear that further 
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ecological studies are required to resolve the factors that may regulate the distribution, 

diversity and activity of environmental species. 

 

A growing number of environmental surveys suggest that whilst the distribution of 

anammox organisms is widespread, diversity is extremely limited (Penton et al., 2006; 

Nakajima et al., 2008; Schmid et al., 2007; Woebken et al., 2008). Intriguingly, 16S 

rRNA gene sequences collected from a broad range of environments including oxygen 

minimum zones (Kuypers et al., 2003; 2005; Kirkpatrick et al., 2006; Stevens and Ulloa 

2008; Woebken et al., 2007; 2008), freshwater (Penton et al., 2006; Schmid et al., 2007; 

Schubert et al., 2006), estuarine (Rich et al., 2008; Risgaard-Petersen et al., 2004; Tal et 

al., 2005) and marine systems (Penton et al., 2006; Schmid et al., 2007; Shu and Jiao, 

2008) demonstrate a high degree of sequence similarity to each other and to Scalindua 

sorokinni. In order to classify candidate sequences as members of a given species, the 

candidate sequences should share at least 97% sequence identity to the organism 

concerned (Rosello-Mora and Amann, 2001). To date, the majority of sequences 

retrieved from the environment share at least 97% sequence similarity to Scalindua 

sorokinni. The only exceptions are those retrieved from Lake Tanganyika (Schubert et 

al., 2006; DQ4440) and the South China Sea sediment (EU048621). These sequences 

share " 96% sequence identity with other Candidatus Scalindua sequences but can be 

grouped with Scalindua arabica (Woebken et al., 2008). No other species of anammox 

have been identified in the environment. 
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Given  the limited data set concerning the phylogeny of anammox, in marine (Penton et 

al., 2006; Schmid et al., 2007; Shu and Jiao, 2008) and estuarine systems (Rich et al., 

2008; Risgaard-Petersen et al., 2004; Tal et al. 2005) further investigation is clearly 

required.  The purpose of this study is to explore possible shifts in the structure of the 

anammox community, in the transition between marine and estuarine environments. 

Seven sites were analysed in total, representing deep sea sediment from the North 

Atlantic shelf break (2000m), coastal seas (at depths ranging from 50-100m) and from 

estuarine sediments (along a gradient of OC,O2 and NOx
- 

availability). This study was 

extended to determine whether a unique clone from The Medway was distributed more 

widely in the environment. The MC1 clone sequence shares 96% with Scalindua 

sorokinni and could therefore represent a new species within the genus Scalindua. To 

further investigate the composition of the Anammox community in the Medway estuary, 

the probe ‘MC1’ (S-*-MC1-0043-a-20) was tested in fluorescence in situ hybridisation in 

addition to the ‘MC1’ primer (designed with the same target sequence). 
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3.  METHODS 

 

 

3.1. Study sites 

 

3.1.1. Marine study 

Sediment samples were collected from sites located in the Irish Sea and the Celtic Sea 

portion of the North Atlantic. The Irish Sea is located between Great Britain and Ireland.  

It connects with the North Atlantic via Saint Georges Channel (to the south) and through 

the North Channel (to the North). Sediment samples were retrieved from three sites in the 

Irish Sea (Sites 4, 5 and 6) at depths ranging from 50-100m and from 1 site (Site 1, 

2000m) in the North Atlantic (Figure 3.1.1.). Details of locations and site characteristics 

are described in Table 3.1.  

 

3.1.2. Estuarine study 

Sediment samples were collected from three sites forming a transect along the Medway 

Estuary. The Medway Estuary lies to the South of the Thames Estuary in South East 

England, Kent. It is connected to the Thames Estuary via the Isle of Grain and drains into 

the North Sea through tidal channels that divide large islands of salt marsh. Samples from 

each site were gathered at low tide from the inter-tidal mudflats along the estuary (Figure 

3.1.2). Details of the locations and site characteristics are described in Table 3.1.  
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Site Location Depth Latitude Longitude Oxygen 

penetration 

depth (mm) 

Total 

organic 

carbon (%) 

1 North 

Atlantic 

2006 48.03.09N 9.51.11W 

 

12.4 0.49 

4 Irish Sea 106 51.13.10N 6.05.96W 9.8 0.82 

5 Irish Sea 104 53.52.95N 5.35.56W 17.0 1.36 

6 Irish Sea 54 54.07.14N 5.35.05W 7.2 1.25 

Gr Grain 0 51.22.24.74N 0.27.50.43E 9.9 NS 

Up Upnor 0 51.24.35.85N 0.31.45.54E 3.6 NS 

MBM Medway 

Bridge 

Marina 

0 51.27.38.90N 0.43.05.74E 5 NS 

 

Table 3. 1. Site characteristics and locations. Values for total organic carbon (Sites 1-6) were reproduced 

from Jaeschke et al, (2009). NS = Not included in this study. 

 

 

 

 

 

 

 

 



CHAPTER II: The phylogeography of anammox organisms in marine and estuarine environments 

 33 

 

Figure 3.1.1. Map of the North Atlantic and Irish Sea showing the locations of the four sampling sites 

(open circles). Source: Jaeschke et al, (2009). Sites 2 &3 did not form part of this study. 
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Figure 3.1.2.  Map of the Medway estuary on the southeastern coast of England showing the locations of 

the five sampling sites used in the preliminary (April 2005, red stars and open circles) and the second 

survey (September 2007, red stars). Used with permission of Dr. M. Trimmer. 
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3.2. Sediment collection and storage 

The marine sediment samples were collected with a box-corer aboard the R/V Pelagia 

during March 2006. Only intact undisturbed cores containing clear overlying water were 

sub sampled using Perspex tubes (height = 6cm, inner diameter = 9cm). 5 sediment cores 

were retrieved from the box corer and transferred to a water bath containing aerated site 

water. The water bath was maintained at constant temperature (8ºC) using a Grant thermo 

circulator (Grant instruments, Cambridgeshire, UK). The sediment cores were re-

equilibrated over night and subsequently sliced at 3mm intervals to a depth of 36mm. 

Approximately 1g of sediment from the suboxic zone was collected from each core and 

transferred to a 1.5ml Eppendorf tube. All samples were stored at -20ºC until required for 

further processing.  

 

Samples were gathered at low tide from the Medway Estuary (September 2007) using 5 

identical Perspex tubes (dimensions as above). The cores were then returned to the lab 

(within two hours) and transferred to a water bath containing aerated low nutrient sea 

water (diluted to site salinity). The cores were re-equilibrated over night and maintained 

at 12ºC using a Grant thermo circulator (Grant instruments, Cambridgeshire, UK). 

Sediment was sliced at 0.5cm and intervals to a depth of 2.5cm for FISH analysis. 

Approximately 1g of sediment from the suboxic zone was transferred to a 1.5ml 

Eppendorf tube. All samples were subsequently stored at -20 ºC until required.  
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3.3. DNA isolation 

DNA was extracted using the hydroxytapatite spin column method (Purdy et al., 1996). 

In brief this method lyses cells using bead-beating in an alkaline phosphate solution, in 

the presence of phenol and sodium dodecyl sulphate (SDS). Nucleic acids were separated 

from cellular components and sediment contaminants using a hydroxyapatite spin 

column. Nucleic acids were purified by ethanol and then PEG precipitation. PEG 

precipitation was performed using an amended method, with 10% (w/v) PEG as 

described by Arbeli and Fuentes (2007). Nucleic acid extracts were examined ethidium 

bromide-stained agarose gel electrophoresis (1.5% (w/v) gel in 1x TAE) (Figure 3.3.1.).  

 

3.4. Optimisation of anammox directed amplification using a sequential PCR 

approach 

Early attempts to directly amplify the 16S rRNA gene, from DNA extracted from 

sediment samples, failed to produce PCR products. Consequently, a general bacterial 

PCR was used as the first step in a nested PCR approach.  

 

Universal bacterial primers are widely used in the amplification of entire 16S rRNA 

genes (Bruce et al., 1992; Purdy et al., 2003). Nested within the 16S rRNA gene is a 

signature region unique to anammox organisms that can be amplified in an anammox 

directed PCR, using template DNA derived from the preceding general bacterial PCR.  
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      1     2         3 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1. Verification of DNA isolation using 1.5% (wt/vol) agarose gel electrophoresis. Lanes 1, 1kb 

DNA ladder; lane 2, Site 5 (Irish Sea sediment); lane 3, positive control (pond sediment). 
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The universal primers ‘BF’ and ‘1541R’ (see Table 3.4.1) were used in the amplification 

of 16S rDNA gene sequences.  PCR reactions (50 !l) were performed with Go-Taq from  

Promega (Southampton, UK) using their 5X PCR buffer, 1.75 mM MgCl2, 1mM dNTPs, 

20 pmols of each primer, 200 ng BSA and  1U of Go-Taq.  

 

Thermal cycling (EP Mastercycle, Eppendorf, Germany) was performed with an initial 

hotstart at 96°C for 2 minutes, followed by 10 cycles of a denaturation step of 1 minute at 

96ºC, an annealing step at 50ºC for 30 seconds and elongation at 72ºC for 2 minutes, then 

20 cycles of 94°C for 30 seconds, 50°C for 30 seconds and 72°C for 2.5 minutes and 

finally an elongation step at 72°C for 5 minutes. Positive (DNA extracted from pond 

sediment) and negative controls (no DNA) were included in all reactions. PCR reactions 

were analysed by ethidium bromide-stained agarose gel electrophoresis (1.5% (w/v) gel 

in 1x TAE) to determine the presence and size of amplicons.  

 

The general bacterial PCR product was used as a template for the following PCR assays: 

‘Pla 46F’ and ‘Amx 0368R’, targeting all anammox organisms; ‘Pla 46F’ and ‘Sca 

1309R’, targeting species of the genera Scalindua; and ‘Pla 46F’ and ‘MC1R’, designed 

using the probe design tool in ARB (see section 3.6.). Details of the primers are provided 

in Table 3.4.1.  

The PCR mixture (50!l) was as above, except they contained 1.5mM MgCl2 and 10pmol 

of each primer. Thermal cycling was carried out with a 5 minute hotstart at 94ºC, 

followed by 
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PCR 

primers  

Specificity Sequence 5’-3’ Reference 

Bf 

 

 

Bacteria TCAGAWYGAACGCTGGCGG KJ Purdy pers 

comms. 

1541R Bacteria AAGGAGGTGATCCAGCC Embley, 1991.   

Pla 46F 

 

Planctomycetales GACTTGCATGCCTAATCC Neef et al., 

1998. 

Sca 1309R 

 

Scalindua TGGAGGCGAATTTCAGCCTCC Schmid et al., 

2003. 

Amx 0368R 

 

All anammox 

organisms 

CCTTTCGGGCATTGCGAA Schmid et al., 

2000. 

MC1R MC1 clone TGTTAAGAAATGTAGGTCTG This study 

 

Table 3.4. PCR primers used in this study. All oligonucleotide primers were primers were purchased from 

MWG-Biotech (London, UK). 
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an annealing step of for 1 minute and elongation at 72ºC for 1.5 minutes. This was 

repeated between the second and last step 14 times. The program continued with a 

denaturation step of 94ºC for 1 minute, an annealing phase of 56 ºC for 1 minute and 

elongation at 72ºC for 1.5 minutes. This was repeated 14 times. In addition, samples were 

held at 72ºC at the end of the cycle for 10 minutes. Positive (DNA extracted from 

enrichment culture) and negative controls (no DNA template) were used in each PCR 

amplification and analysed by agarose gel electrophoresis (5% (w/v) gel in 1x TAE) to 

determine the presence and size of amplicons. In order to reduce the probability of 

preferential amplification bias (Polz et al., 1998), 5 replicate PCR amplifications were 

performed per primer pair for each sample. PCR products were subsequently checked by 

agarose gel electrophoresis (Figure 3.4.1.) and bulked prior to cloning. 

                 1              2             3             4            5 

 

 

 

 

 

 

 

 

 

Figure 3.4.1.  Agarose gel electrophoresis verifying the size and presence of amplicons.  Lane 1, 1kb 

ladder; Lanes 2-3, DNA amplified with Pla 46F Sca 1309R (1500bp); Lanes 4 and 5, DNA amplified with 

Pla 46F and Amx 0368R (650bp).  
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3.5. Cloning and comparative sequence analysis 

 

3.5.1. Clone libraries 

PCR amplified 16S rDNA fragments were transformed into Escherichia coli using a 

TOPO TA cloning kit (Invitrogen, UK) by following the manufacturer’s instructions. The 

presence and size of cloned inserts was verified by colony PCR amplification using 

vector based primers (M13F and M13R) and subsequent agarose gel electrophoresis. The 

clone libraries consisted of twenty clones (per primer set) for each of the marine and 

estuarine sites. In total, 280 clones were sequenced on an ABI Prism 3700 DNA analyser, 

at the Natural History Museum London, using the vector based primers M13F and M13R.  

 

 

3.5.2. Phylogenetic analysis 

The sequences were initially aligned using the alignment function in ‘green genes’ and 

corrected by visual inspection in ARB (http://greengenes.lbl.gov/cgi-bin/nph-

NAST_align.cgi; De Santis et al., 2006; http://www.arb-home.de; Ludwig et al., 2004). 

All partial and redundant sequences removed. Phylogenetic trees were calculated using 

the maximum likelihood algorithm with a 50% variability filter in ARB. The topology of 

each resulting tree was verified by bootstrapping in PAUP (n=300). Similarity matrices 

were calculated by using the ‘neighbour-joining’ tool using the similarity option in ARB. 

The Sim Rank algorithm was used (as a component of the green genes classification 

function) to initially classify all aligned sequences (De Santis et al., 2006).  
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3.6. Evaluating the specificity of MC1 

Approximately 1g of sediment from the suboxic zone from each site was fixed with 4% 

(v/v) paraformaldehyde in PBS solution and allowed to stand at room temperature for 2 

hours. Each sample was then washed twice with PBS and re-suspended in a 50% (v/v) 

PBS-ethanol solution. All samples were subsequently stored at -20ºC until required.  

 

FISH experiments were conducted based on the methods described by Schmid et al., 

(2000; 2003). Optimal hybridisation conditions for MC1 were determined by a series of 

FISH experiments. This involved sequentially increasing the concentration of formamide 

in the hybridisation buffer whilst decreasing the corresponding concentration of sodium 

chloride in the washing buffer. The hybridisation buffers were prepared between 

concentrations of 0 and 70% formamide, at 5% intervals. These indicated that in order to 

maximise probe binding, 25% formamide was required in the hybridisation buffer. 

Following hybridisation, sediment samples were counterstained with DAPI 

(fluorochrome 4’6-diamino-2-phenylindole dihydrochloride) mounted in Vectashield 

(Vector Laboratories, Peterborough, UK) and viewed using a Leica DM RA2 

epiflouresecence microscope (Leica microsystems, UK). Images were captured from two 

visual fields using Openlab (Improvision, Coventry, UK and processed with Adobe 

Photoshop (Adobe Systems, Edinburgh, UK). Adjustments to colour contrast and 

brightness were uniform across all images. Five replicate samples were analysed using 

FISH at each depth interval. Following the confirmation of positive FISH signals, the 

probe MC1 was tested in conjunction with the probes Pla 46F and Amx 0368R. All 

labelled oligonucleotide probes were purchased as Cy3, Cy5 and 5(6)-
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carboxyfluorescein-N-hydroxysuccinimide ester (Fluos) labelled derivatives from MWG-

Biotech (London, UK) and Thermo Electron (Ulm, Germany). 
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4. RESULTS 

 

4.1. Phylogenetic analysis based on 16S rRNA gene sequences retrieved from the 

North Atlantic, Irish Sea and the Medway Estuary 

Early attempts to directly amplify 16S rDNA fragments with anammox specific primers, 

failed to produce any PCR products. Consequently, a nested PCR using general bacterial 

primers BF and 1541R was performed followed by an anammox-specific PCR. This 

produced full length 16S rDNA fragments which then served as templates in a further, 

anammox directed PCR.  By adopting this sequential approach and several purification 

steps, the efficiency with which full and partial 16S rDNA fragments were amplified 

increased substantially (see Figure 3.4.1). 

 

In total, two marine clone libraries were constructed using the primers Pla 46F - Amx 

0368R, (forming the first clone library) and Pla 46F - Sca 1309R (forming the second). 

Within each clone library, clones derived from Sites 1, 4, 5 and 6 were screened for 

overall diversity and the presence of sequences affiliated with the anammox group. This 

was performed with the Sim Rank algorithm using the classification function in ‘green 

genes’ (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi, De Santis et al., 2006). The 

results suggested the presence of sequences closely related to Verrucomicrobia, amongst 

classified and unclassified Planctomycetes. Of the classified Planctomycetes, the majority 

of sequences were closely affiliated with Pirellula, Rhodopirellula and Plantomyces but 

no candidate anammox sequences were identified.  
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An additional three clone libraries were created from PCR products using the primer pairs 

Pla 46F-Amx 0368R, Pla 46F - Sca 1309R and Pla 46F – MC1R (targeting a unique 

sequence obtained from a previous phylogenetic survey, see 4.2.). Clones derived from 

three sites along the Medway estuary were initially classified (as above) using the Sim 

Rank algorithm. The results again suggested the presence of Verrucomicrobia amongst 

classified and unclassified Planctomycetes. The majority of ‘Planctomycete-like’ 

sequences were closely affiliated to Gemmata, Isosphaera, Pirellula and Rhodopirellula. 

Of the 180 estuarine clones screened, only 3 candidates were identified as potentially 

harbouring ‘Scalindua–like’ sequences.  These sequences were generated using the Pla 

46F capture primer in combination with Amx 0368R (Sites Gr and Up) and MC1R (Sites 

MBM and Up). A total of 280 clones were further analysed from both the marine and 

estuarine sites. 

 

4.2. Evaluation of the efficiency of the primer MC1 in PCR amplification 

To further investigate the composition of the anammox community in the Medway 

estuary, the primer ‘MC1’ was designed on the basis of a sequence retrieved (in an earlier 

survey) from Medway Bridge Marina (in April 2005, Figure 4.2.1.). This sequence shares 

96% identity with Scalindua sorokinni suggesting that the MBM sequence is a novel 

member of the genus Scalindua (Rosello-Mora and Amann, 2001). The primer ‘MC1’ 

was designed to specifically amplify these sequences as it has no mismatches with the 

MC1 clone sequence and three mismatches with closely related members of the genus 

Scalindua. This primer pair Pla 46F - MC1R successfully amplified partial 16S rDNA 

fragments from Sites MBM and Up but not from samples retrieved at Site Gr.  
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Figure 4.2.1.  

 

 

 

 

 

Figure 4.2.1. Phylogenetic tree of 16S rRNA gene sequences amplified with Pla 46F – Sca 1309R in April 

2005. The MC1 (Medway Clone C1) sequence shares 96% sequences similarity with Scalindua sorokinni.  

 



CHAPTER II: The phylogeography of anammox organisms in marine and estuarine environments 

 47 

4.3. Evaluating the specificity of probe MC1 in FISH at a range of formamide and 

Na Cl concentrations 

Several FISH experiments were performed to test the specificity of the new ‘MC1’ probe 

against target organisms potentially carrying the MC1 sequence. Subsequent 

epifluorescence microscopy revealed bright and clear FISH signal intensities originating 

from candidate anammox cells. Optimal hybridisation conditions for MC1 were 

determined by a series of FISH experiments. This involved sequentially increasing the 

concentration of formamide (in the hybridisation buffer) whilst decreasing the 

corresponding concentration of sodium chloride (Na Cl) (in the washing buffer). The 

hybridisation buffers were prepared between concentrations of 0 and 70% formamide, at 

5% intervals. The FISH protocol was followed as previously described (Schmid et al., 

2000; 2003), with subsequent observation of cells by epifluorescence microscopy. The 

results indicated that the optimum concentration of formamide in the hybridisation buffer 

was 25%. At this concentration the probes hybridised with Anammox-like cells 

producing a clear and bright signal (4.3.1). 
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Figure 4.3.1. The detection of anammox cells with the Cy3 labelled probe MC1. ‘doughnut - like’ 

anammox cells are clearly visible at a concentration of 25% formamide in the hybridisation buffer (white 

circles). The blue DAPI stained cells indicate the presence of DNA-containing bacterial cells. The diameter 

of the anammox cells is within the expected size range of 0.7 !m. The scale bar represents 5!m. 
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4.4. Phylogenetic analysis of sequences affiliated with the anammox group 

All phylogenetic trees were calculated using the maximum likelihood algorithm in 

combination with a 50% variability filter.  This method was performed using the Arb 

program package (http://www.arb-home.de; Ludwig et al., 1998). The topology of the 

resulting trees was further tested by bootstrapping (n=300 re-samplings) (PAUP). 

Surprisingly, of the 280 clones screened, only three sequences were retrieved that fell 

within the anammox group. All phylogenetic trees were constructed with reference 

Planctomycetes and anammox sequences. 

 

4.4.1 Sequences amplified using the primer MC1 

The sequence ‘Up 92’ (Site Up) clearly groups with Scalindua sorokinni (Figure 4.4.1). 

This sequence shares just 93% sequence similarity to this species and 96% identity with 

the MC1 clone. Although this value is relatively low, all remaining sequences shared 

<93% sequence similarity with Scalindua sorokinni. (This is applicable to all sequences 

analysed, throughout all clone libraries). 

 

The remaining sequences formed 3 sub-groups near to the known anammox group 

(Groups A, B and C). Despite the position of these clusters there is little evidence that 

these sub-groups represent new environmental clusters of anammox (Figure 4.4.1). On 

average, these sequences share just 72% sequence similarity to Scalindua sorokinni, 90% 

sequence similarity to each other and 77-100% sequence similarity with the MC1 clone. 

It is therefore  
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Figure 4.4.1.  Phylogenetic tree of 16S rRNA gene sequences amplified with Pla 46F – MC1R. These 

sequences were retrieved from the Medway Estuary at Sites MBM and Up. The scale bar represents 0.01 

substitutions/ site. Associated bootstrap values are displayed on supported nodes. 



CHAPTER II: The phylogeography of anammox organisms in marine and estuarine environments 

 51 

clear that the primer MC1 was non specific and consequently failed to retrieve the target 

sequence. This perhaps indicates that probe design cannot be directly applied to the 

synthesis of corresponding primers. All other known anammox primers, however, are 

based on probe sequences. 

 

4.4.2 Sequences affiliated with the Anammox group in the Medway estuary 

Samples amplified with the primer pair Pla 46F - Amx 0368R yielded 2 sequences that 

were placed near or within the anammox group. These sequences were retrieved from 

samples collected at Sites Gr (G 51) and Up (Up 36). ‘G 51’ appears to be affiliated with 

Scalindua sorokinni where as Up 36 forms an independent branch stemming from the 

Anammox clade (Figure 4.4.2.). These sequences, however, share as little as 86 and 77% 

sequence similarity with Scalindua sorokinni. Moreover, few conclusions can be drawn 

from the relationships of these and the remaining clones, given the low bootstrap values 

associated with the corresponding phylogenetic tree. 

 

4.5. Phylogenetic analysis of sequences falling outside the known anammox group 

Sequences from Sites 1 and 5 formed two phylogenetic clusters close to the Anammox 

group (Groups D and E) (Figure 4.5.1). The clustering of these sub-groups is well 

supported by the bootstrap values. Group D consists of 6 clone sequences (amplified with 

primers Pla 46F – Sca 1309R) derived from Site 5.  These sequences share between 74-

98% sequence similarity to each other and 75% sequence similarity to Scalindua 

sorokinni. Similarly, the 6 sequences that      
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Figure 4.4.2. Phylogenetic tree of 16S rRNA gene sequences amplified with primer pairs Pla 46F – Amx 

0368R. These sequences were retrieved from Sites MBM, Up and Gr (G). The scale bar represents 0.05 

substitutions/ site. Associated bootstrap values are displayed at supported nodes. 
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Figure 4.5.1. Phylogenetic tree of 16S rRNA gene sequences amplified with Pla 46F- Sca 1309R. These 

sequences were retrieved from Sites 1 (S1) and 5 (S5). The scale bar reprents 0.05 substitutions/ site. 

Associated bootstrap values are displayed at supported nodes. 
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comprise Group E (Site1 and 5), share between 73-97% sequence similarity to one 

another and 75% sequence similarity to Scalindua sorokinni. Despite the large 

phylogenetic distances between members of Groups D and E, to Scalindua sorokinni, 

these sequences share common origins with the anammox group and potentially represent 

environmental clusters of anammox. 

 

Three sequences (collected from Sites Gr and Up) also branched separately from the 

anammox group. The sequence identities of Up 66, Up 69 and G 88, to Scalindua 

sorokinni, were 77%, 75% and 74% respectively. Again, it is clear that large phylogenetic 

distances exist between these sequences and candidate members of the anammox group 

(4.5.3.).  

 

Bootstrap values could not be applied to the sequences retrieved with primers Pla 46F 

and Amx 0368R. It was therefore difficult to comprehensively analyse sequences 

retrieved from Sites 4 and 6. The above observations are not in line with previous 

environmental studies. In the majority phylogenetic surveys, the sequences identified 

were closely affiliated with the members of Scalindua. The efficiency, with which these 

sequences are retrieved, however, is highly variable (Penton et al., 2006; Schmid et al., 

2007; Tal et al., 2005). 
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Figure 4.5.2.  Phylogenetic tree of the 16S rRNA gene sequences amplified with primer pairs Pla 46F-Sca 

1309R. These sequences were retrieved from Site MBM, Up and Gr (G). The scale bar represents 0.05 

substitutions/ site. Associated bootstrap values are displayed at supported nodes. 
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5. DISCUSSION 

 

To date, only two candidate species of anammox have been identified in natural systems. 

These species are affiliated with the candidate genus ‘Scalindua’, and are known as 

‘Scalindua sorokinni’ and ‘Scalindua arabica’ (Kuypers et al., 2003, Woebken et al., 

2008). It is generally accepted that whilst anammox organisms are distributed across a 

vast range of environments, their diversity appears to be extremely limited. In fact, only 

members of the genus ‘Scalindua’ have been reported in natural systems (Penton et al., 

2006; Schmid et al., 2007, Woebken et al. 2008; Nakajima et al. 2008).  

 

The sequences retrieved from the North Atlantic, Irish Sea and the Medway estuary do 

not share the reported similarities. The highest sequence similarity, to known species of 

anammox, is limited to a single clone retrieved from the Medway estuary (Up 92). This 

clone shares just 93% sequence similarity with ‘Scalindua sorokinni’. This is evidently 

not in line with previous observations where the majority of environmental sequences, 

share at least 97% sequence identity with either ‘Scalindua sorokinni’ or ‘Scalindua 

arabica’ (Schubert et al., 2006; Woebken et al., 2008).  It is important to note, however, 

that whilst ‘Scalindua arabica’ sequences cluster within the ‘Scalindua’ clade, their 

presence has not, as yet, been confirmed with probes/primers specifically targeting the 

signature region of this species in the environment (Woebken et al., 2008). Essentially, 

this further constrains current knowledge of anammox organisms to ‘Scalindua 

sorokinni’ in natural systems.  
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The majority of sequences in this study are phylogenetically distant from ‘Scalindua 

sorokinni’ and with other members of the anammox group. One possible argument for 

this is PCR bias (Polz and Cavanaugh, 1998). The isolation of microorganisms in pure 

culture represents <1% of the total bacterial diversity in the environment, yet PCR 

amplification facilitates the retrieval of sequences from uncultured bacteria (Amann et 

al., 1995). Although this method is free from the bias associated with traditional isolation 

techniques, template-product ratios can be skewed by the preferential amplification of 

specific sequences (Polz and Cavanaugh, 1998). The probability of this occurring, 

however, was reduced by performing 5 PCR amplifications in parallel/ sample. Further 

steps were also taken to reduce the effect of sediment contaminants in PCR amplification. 

This prevented the co-extraction of sediment contaminants alongside DNA. It is probable 

that the absence of ‘Scalindua-like’ sequences, in this study, cannot be directly attributed 

to either the interference of sediment contaminants in amplification or to inherent PCR 

bias.  

 

Intriguingly, the efficiency with which ‘Scalindua-like’ sequences are retrieved from the 

environment is highly variable. This occurs whether sequences are recovered using 

general bacterial primers, anammox specific primers or a nested PCR approach. The 

collection of ‘anammox-like’ sequences, in a study surveying several marine oxygen 

minimum zones, is in good agreement with this type of variation. Of the total sequences 

amplified with Pla 46F and the (general bacterial) primer 1037R, just 1 of 480 sequences 

from the Black Sea could be affiliated with Scalindua sorokinni and 8/672 from the 

Namibian OMZ. This is in contrast to 31/136 collected from the Arabian Sea (Woebken 
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et al., 2008). Given that the frequency of anammox organisms in OMZ systems is 

approximately 1% of the total bacterial population, there is perhaps discrepancy between 

the number of anammox organisms postulated and the reported target retrieval efficiency 

of the primers (Kuypers et al., 2003; 2005; Hamersley et al. 2007). As a result, this could 

point towards a greater in situ diversity than previously acknowledged.  Using an 

anammox directed PCR approach, however, Schmid et al. (2007) successfully retrieved a 

high proportion of ‘Scalindua-like’ sequences from marine sediments in Gullmar Fjord 

and the Golfo Dulce (6/12, 3/12 respectively). Interestingly, these sequences were of such 

high purity that the PCR products were directly sequenced without the need for prior 

cloning. Nevertheless, Tal et al. 2005, failed to report more than 2 clones (of several 

hundred retrieved) affiliated with ‘Scalindua sorokinni’ (in estuarine sediments). 

Moreover, this was only achieved following a pre-amplification step (using general 

bacterial primers) preceding an anammox directed PCR. Given that anammox organisms 

constitute 2-8% of the total microbial population in sediments, this indicates that current 

primer sets are not suited to the consistent retrieval of all ‘anammox-like’ sequences 

(Schmid et al., 2007). Furthermore, it has been demonstrated that the available primer 

sets are at best semi-specific for anammox organisms and therefore underrepresent these 

organisms (by approximately 50%) in situ (Penton et al., 2006).  In the context of this 

study, this may explain the limited retrieval of ‘Scalindua-like’ sequences in the North 

Atlantic, Irish Sea and Medway estuary. 

 

In order to extend this survey, beyond the limitations of the available primer sets, an 

additional primer was specifically designed to retrieve a sequence sharing <97% 
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sequence similarity to ‘Scalindua sorokinni’. According to current understanding, 

candidate sequences sharing # 97% sequence identity to a particular species can be 

classified as members of the same species (Rosello-Mora and Amann, 2001). As the MC1 

clone shares 96% sequence similarity to ‘Scalindua sorokinni’, this sequence serves as a 

good candidate for a new species within the genus ‘Scalindua’. The primer MC1, 

however, proved non specific for the MC1 clone and therefore failed to retrieve target 

sequence. This is in contrast to the efficiency with which the probe hybridised with 

candidate organisms. This further demonstrates the difficulty with which anammox-like 

sequences can be retrieved from the environment and the adaptation of fluorescent probes 

as oligonucleotide primers. 

 

Interestingly, a number of unidentified Planctomycetes from Sites 1 and 5 form two 

phylogenetic clusters close to the anammox group. On average, these sequences share 

just 75% sequence similarity to ‘Scalindua sorokinni’ and yet exhibit common origins 

with the anammox clade (Figure 4.5.1.). This is strongly supported by the associated 

bootstrap values and suggests that these sequences perhaps represent organisms capable 

of the anammox process. In a previous phylogenetic survey, 16 clones were retrieved 

from Thames estuary (UK) that branched deep within the anammox lineage. Similarly, 

these sequences shared just 75% similarity with ‘Scalindua sorokinni’ and >96% 

sequence similarity to one another. Although anammox activity has been identified in 

sediments of the Thames estuary, amongst the sites investigated in this study, the 

ecophysiology of these organisms is unresolved (see Trimmer et al., 2003; 2005; 

Jaeschke et al., 2009 and Chapter III). Such sequences are often reported environmental 
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studies but are largely disregarded (Tal et al., 2005; Schubert et al., 2006; Stevens and 

Ulloa, 2008; Shu and Jiao, 2008; Woebken et al., 2008).  

 

In the context of this study, no sequences were retrieved that could be directly affiliated 

with known species of anammox. This does not however suggest the complete absence of 

organisms capable of anammox in the Medway estuary, North Atlantic or Irish Sea. 

Anammox activity, ladderane lipids (biomarkers unique to anammox organisms) and 

positive FISH signals confirm the presence of these organisms at all sites explored 

(Jaeschke et al., 2009, Chapters III and IV). It is therefore clear that in the absence of 

sequences affiliated with anammox, and in the presence of both anammox activity and 

ladderane lipids, that the available molecular tools were incapable of detecting the full 

diversity of the anammox organisms present.  

 

The biodiversity of the microorganisms responsible for anammox may expand well 

beyond the known anammox group and potentially, outside the phylum Planctomycetes. 

This is evident amongst the bacteria that account for aerobic ammonium oxidation in 

marine environments.  In contrast to the described diversity of anammox, the 

betaproteobacteria responsible for aerobic ammonium oxidation in marine systems, are 

relatively diverse. This diversity extends to members of the genera Nitrospira, 

Nitrosoccous, Nitrosomonas and even amongst marine crenarcheota (Freitag and Prosser, 

2003; Wuchter et al., 2006). In view of this, it is not unreasonable to suggest that the 

organisms capable  of anaerobic ammonium oxidation are not inherently confined to the 

candidate genera ‘Brocadia’, ‘Kuenenia’, ‘Anammoxoglobus’ or to ‘Scalindua’. Further 
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studies are clearly required to explore the diversity of anammox in natural systems. This 

includes the development of efficient primers and detailed investigations of sequences, 

that are distantly related, but share common origins with anammox organisms.  
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6. INTRODUCTION 

 

 

 

The availability of fixed forms of nitrogen is an important factor in regulating primary 

production (Vitousek and Howarth, 1991). In aquatic environments, NH4
+
 derived from 

the decomposition of organic matter is oxidised to NO3
-
 (via NO2

-
) in nitrification. The 

NO3
-
 produced in this process subsequently diffuses into the suboxic zone, where it is 

denitrified to N2 gas in coupled denitrification. Until recently, the removal of fixed 

nitrogen was almost entirely attributed to coupled denitrification (Devol, 1991). The 

discovery of anaerobic ammonium oxidation (a process whereby NH4
+
 is anaerobically 

oxidized with NO2
-
 to form N2 gas), however, redefined this concept. Consequently, 

anammox represents an alternative N removal pathway that circumvents the critical 

aerobic phase typically associated with coupled denitrification. 

 

Environmental studies have confirmed the presence of anammox in a diverse range of 

geographically and biochemically distinct environments such as oxygen minimum zones 

(Kuypers et al., 2003; 2005), tropical freshwater (Schubert et al., 2006), Arctic sea ice 

(Rysgaard and Glud, 2004) and Arctic (Rysgaard et al., 2005), marine (Schmid et al., 

2007; Thamdrup and Dalsgaard, 2002), and estuarine sediments (Meyer et al., 2005; Rich 

et al., 2008; Risgaard –Petersen et al., 2005; Tal et al., 2005; Trimmer et al., 2003; 2005). 

Although the occurrence of anammox is relatively widespread, the significance of this 

process is highly variable. The potential contribution of anammox to total N2 production, 

in marine and estuarine sediments, varies between 35-67% (Rysgaard et al., 2004; 

Thamdrup and Dalsgaard, 2002) and <1-26% (Nicholls and Trimmer, 2009; Risgaard-
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Petersen et al., 2004), yet the specific factors that govern this variation, are largely 

unknown.  

 

As NH4
+ 

is rarely limiting in sediments, the physical and microbiological mechanisms by 

which NO2
-
 is transported to anammox organisms are crucial. In particular, denitrification 

may play a key role in the regulation and abundance of anammox organisms via the 

delivery of NO2
-
. The potential contribution of anammox to total N2 production in the 

Thames estuary does not exceed 8% yet the significance of this process in deep, offshore 

sediments is 67-79% of the total N2 production (Skagerrak, Denmark) (Nicholls and 

Trimmer et al., 2009; Trimmer et al., 2003; Thamdrup and Dalsgaard, 2002). Trimmer et 

al. (2005) proposed that this could be attributed to shifts in the microbial population as a 

direct consequence of environmental conditions. Essentially, highly reactive sediments, 

enriched with NO3
-
 and organic carbon, favour the growth of heterotrophic denitrifiers 

over anammox organisms. Whilst the denitrifying community facilitates the delivery of 

NO2
-
 to anammox organisms, NO2

-
 production balances NO2

- 
consumption in the 

Thames. Consequently, the availability of free NO2
-
 (to anammox organisms) is limited 

in estuarine environments, and in turn, may reduce the overall importance of anammox to 

total N2 production (Trimmer et al., 2005). In deep, offshore sediments, however, the 

availability of NO3
-
 and organic carbon are limited. This promotes a 

chemolithoautotrophic lifestyle which potentially favours autotrophs such as anammox 

organisms.  In the Skagerrak, NO2
-
 production outweighs NO2

-
 consumption and 

therefore could increase the availability of this free intermediate and the overall 

importance of anammox as a sink for nitrogen. Consequently, this may maintain a 
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comparatively larger anammox population in deeper offshore waters, relative to shallow 

estuarine sediments. 

 

Whilst NO2
-
 is a prerequisite for anammox activity, the position of the oxic and suboxic 

interface could also serve as a governing factor in the spatial distribution of anammox 

organisms throughout marine and estuarine sediments. Enrichment culture studies have 

shown that anammox organisms are reversibly inhibited by as little as 1!M oxygen 

(Strous et al., 1999). This would suggest that the formation of a stable anammox 

community can only occur in the suboxic zone of the sediment substrata. The disruption 

of the sediment substrata by bioturbating infauna, however, strongly influences sediment 

processes by altering the supply of nutrients and oxygen to microorganisms. The overall 

effect of this is an increase in the surface area of the sediment-water interface. This 

causes an extension of oxic and suboxic zones into otherwise highly reduced, anoxic 

sediment (Henriksen et al.1980). Consequently, this has the potential to enlarge the size 

of the nitrifying and denitrifying communities and thus, their potential contribution to N2 

production (Blondin et al., 2004). Whilst bioturbation could sustain a larger community 

of NO2
-
 producing organisms, the relatively slow growth (maximum doubling time 11 

days) and sensitivity of anammox organisms to oxygen, could suppress anammox activity 

(Strous et al., 1999).  

 

Nevertheless there is a growing body of evidence for sustainable anammox activity under 

unfavourable conditions. Woebken et al. (2007) put forward an argument for the 

existence of anammox in oxygen depleted microniches (in planktonic snow of the 
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Namibian shelf waters). Essentially, in such environments, a protective layer of 

microorganisms (consuming oxygen) shields anammox bacteria from ambient O2 up to 

25!M. In view of this, the distribution of anammox organisms is not necessarily 

constrained by environmental conditions. 

 

The purpose of this study was to determine whether variations in the significance of 

anammox are related to the changes in the size of the anammox community. The zone of 

anammox activity was characterised by 
15

N isotope labelling experiments, oxygen 

profiles and depth specific rate measurements of CO2 production (sediment metabolism). 

Fluorescence in situ hybridisation and 4’6-diamino-2-phenylindole dihydrochloride 

(DAPI) were used alongside these techniques to determine shifts in the abundance of 

anammox organisms with depth, thus potentially linking anammox activity to deviations 

in population size. This was explored both at sites in the presence and absence of 

bioturbationg invertebrates, along a transect of the Medway estuary.  

 

 

 

 

 

 

 



CHAPTER III: The relative abundance and depth specific significance of anammox in estuarine sediments 

 66 

7. METHODS 

 

7.1. Study sites 

The sediment characteristics and site locations are described in section 3.1.2., Table 3.1. 

and Figure 3.1.2. (Chapter II).  This is with the exception of two sites (Sites 2 and 4) that 

were included in a preliminary survey of the Medway Estuary. Site 2 (Stoke Saltings) and 

Site 4 (Horrid Hill) are located between Sites Gr and Up, and Sites Up and MBM 

respectively. The locations of these sites are included in Figure 3.1.2. (Chapter II). 

 

7.2. Sediment collection, storage and sample preparation 

Samples were retrieved from the Medway Estuary during October 2007 using the 

methods described in section 3.1.2 (Chapter II). 

 

The position of the oxic-suboxic interface was determined by measuring porewater 

oxygen profiles in each core (as described in 7.3.). The sediment was then sub-sampled at 

1cm intervals to a total depth of 5cm in all cores (-1cm, -2cm, -3cm, -4cm and -5cm). 

This was for the purpose of 
15

N isotope labelling experiments and measurements of 

sediment metabolism. The second subset of samples was represented by depth intervals 

of 0.5cm. These samples were used in FISH labelling experiments and were retrieved 

over a depth of 2.5cm. 

 

For the purpose of measuring the potential contribution of anammox to total N2 

production, 1g of sediment (from each depth interval) was transferred to a 3ml gas tight, 
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glass vial (Exetainer, Labco Ltd., High Wycombe, UK). In total, 1 reference and 2 ‘end 

point’ incubation samples were collected from each depth in 5 replica cores. The wet 

weight of each sediment sample was measured and recorded prior to further processing. 

(For details of end point incubation experiments, see 7.4). Aliquots of 2.5g of sediment 

were distributed into gas tight, 12ml glass vials (Exetainer, Labco Ltd., High Wycombe, 

UK). This was for the purpose of measuring changes in the rate of CO2 production with 

depth. One sample was collected from each depth interval from 5 replica cores. The wet 

weight of each sediment sample was then measured and recorded prior to further 

processing. (For details of ‘CO2 production’ experiments, see 7.5.).  To map shifts in the 

abundance of anammox organisms with depth, approximately 1g of sediment from each 

interval was transferred to a 1.5ml Eppendorf tube (see 7.6). This was repeated 4 times in 

each core providing 4 separate sub-samples. These samples were fixed, and then stored at 

-20 ºC for further FISH analysis.  

 

7.3. Porewater oxygen profiles 

Porewater oxygen profiles were measured using a Clark-type oxygen microsensor with an 

outer tip diameter of 40 - 60!m (OX50, Unisense, Aarhus, Denmark) (Revsbech, 1989). 

Prior to each measurement, a two point linear calibration was conducted between 0% and 

100% oxygen with sodium ascorbate-NaOH solution and air saturated seawater 

respectively. Individual sediment cores were then transferred from the water bath and 

submerged in a Perspex container filled with 1.9L of aerated low nutrient seawater 

(diluted to site salinity). Following transfer, oxygen microelectrodes were positioned 

perpendicular to the sediment surface and driven into the sediment (using an automated 
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system) at 100!m depth intervals. Readings from the microelectrode were displayed on a 

picoammeter (PA 2000, Unisense, Aarhus, Denmark) and recorded every 4 s, (during 

which time the signal stabilised).During profiling the cores were maintained at 12ºC.  

 

7.4. End point incubation experiments 

To determine the relative contribution of anammox to total N2 production, 1g of sediment 

(from each depth interval) was distributed into 3ml, gastight glass vials (Exetainer, Labco 

Ltd., High Wycombe, UK). The glass vials were then transferred into an anaerobic glove 

box (Belle Technology, Dorset, UK) where they were filled with 1ml of LNSW (diluted 

to site salinity and degassed with oxygen free nitrogen), sealed and shaken vigorously (to 

create an anaerobic slurry). This was followed by a pre-incubation period of 24 hours in 

order to remove all background NOx
-
 and O2. During this preincubation period, the vials 

were placed on rotating rollers and maintained at constant temperature (12ºC) in the dark. 

The samples were then injected with a solution containing an isotopic mixture of 

Na
15

NO3
-
 (99.2 

15
Natm %) and 

14
NH4

+
Cl using a Hamilton syringe (Sigma-Aldrich, 

Poole, United Kingdom). The final concentrations of 
15

NO3
-
 and 

14
NH4

+
, in each slurry, 

were 200!M and 500!M respectively. To maintain completely anaerobic conditions the 

working solutions were degassed with (oxygen free nitrogen) prior to injection. The vials 

were then placed on rollers for a further 24 hours and incubated at 12ºC in a constant 

temperature room (as above). At the end of the incubation period, the samples were 

injected with 50% ZnCl2 (w/v) to inhibit further microbial activity.  
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The abundance of 
28

N2, 
29

N2 and 
30

N2 were measured directly from the headspace (of 

each vial) using a continuous flow isotope ratio mass spectrometer (Delta Matt plus, 

Thermo-Finnigan, Bremen, Germany). The potential contribution of anammox to total N2 

production (ra%) was calculated according to the equations described by Thamdrup and 

Dalsgaard (2002).  

 

D30 = P30 x FN
-2

         (1) 

 

Atot = FN
-1

 x [P29 +2 x (1-FN
-1

) x P30]       (2) 

 

Total denitrification was calculated from equation 1 where D30 is equal to the production 

of 
30

N2. The denitrification of 
15

NO3
-
 and unlabelled 

14
NO3

-
 produces 

29
N2 (

14
N

15
N) and 

30
N2 (

15
N

15
N) labeled N through random isotope pairing. Given that anammox only 

produces 
29

N2 (from 1 atom of 
15

NO3
-
 and 

14
NH4

+
), 

30
N2 is exclusive to denitrification 

(Thamdrup and Dalsgaard, 2002). The total production of 
30

N2 is therefore equal to 

denitrification (Dtot) and is denoted by the term P30 (equation 3). The fraction of 
15

N 

labelled NO3
-
 in the combined 

14/15
 NO3

-
 pool corresponds to FN. In this case FN is equal 

to 0.992 (from a stock solution of 99.2 
15

N atm %).  

 

Dtot = P30 x FN
-2

         (3) 

 

Total anammox can be calculated from equation 2 where Atot represents the total 

production of N2 via anammox and P29 is equal to total 
29

N2 production. The relative 
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contribution of anammox to total N2 production can be calculated from equation 4 where 

ra is simply: 

 

ra (%) = [100 x  (Atot / D30)].        (4)  

 

 

7.5. Rates of CO2 production with sediment depth 

The accumulation of CO2 was measured directly from the headspace of each sealed vial 

by gas chromatography-flame ionisation detection (GC-FID) (Sanders et al., 2007; 

Nicholls and Trimmer, 2009). Samples were injected into the gas chromatograph at 

intervals of 84 minutes. The rate of CO2 production was calculated by the linear 

regression of CO2 production, plotted against time (Nicholls and Trimmer, 2009).   

 

7.6. Fluorescence in situ hybridisation (FISH)  

Approximately 1g of sediment from each section was fixed with 4% (v/v) 

paraformaldehyde in PBS solution and allowed to stand at room temperature for 2 hours. 

Each sample was then washed twice with PBS and re-suspended in a 50% (v/v) PBS-

ethanol solution. All samples were subsequently stored at -20ºC until required.  

 

FISH experiments were conducted on the basis of the methods described by Schmid et al. 

(2000; 2003). In the preliminary phylogenetic survey of the Medway Estuary (April 

2005, Chapter II), the ‘Scalindua’ specific probes Sca 1114 and BS 820 were used 

alongside Pla 46F,  to detect anammox organisms at 5 sites along the Medway Estuary 
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(top 2cm of sediment). This investigation was performed in combination with 
15

N 

labelling experiments (top 2cm) as described by Trimmer et al. (2003).  For probe details 

refer to Schmid et al. (2005). 

 

Subsequently, the abundance of anammox organisms was examined with depth using the 

anammox specific probes Amx 0368 and Sca1309 in combination with Pla 46 (for target 

specificity refer to Table 3.4., Chapter II).  In order to maximise probe binding, the 

hybridisation buffer was set a concentration of 25% formamide. All hybridisations were 

conducted at 56ºC. Following hybridisation, the sediment samples were counterstained 

with DAPI (fluorochrome 4’6-diamino-2-phenylindole dihydrochloride) and viewed 

using an epiflouresecence microscope (Leica microsystems, UK). Images were captured 

from 20 visual fields with a black and white digital camera (Leica microsystems, UK). A 

total of five FISH experiments were performed at each depth interval per core. All 

labelled oligonucleotide probes were purchased as Cy3, Cy5 and 5(6)-

carboxyfluorescein-N-hydroxysuccinimide ester (Fluos) labelled derivatives from MWG-

Biotech (London, UK) and Thermo Electron (Ulm, Germany).  

 

Only anammox cells hybridising with all three probes and sharing typical ‘doughnut-

shaped’ morphology were considered during manual counts. All anammox organisms and 

bacterial cells were manually counted in the first survey. In the second survey, however, 

the total number of bacteria per micrograph was calculated using the software Image Pro 

Plus version 5.0 (Media Cybernetics, Inc.). Manual counts of total bacteria were 
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compared with automated counts to establish the degree of accuracy within the automated 

dataset. 
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8. RESULTS 

 

8.1. The in situ detection and potential significance of anammox 

Anammox organisms were detected at all sites in the first survey of the Medway Estuary 

(April 2005). The fluorescently labelled probes Scabr 1114 (Cy3) and BS 820 (Cy5) were 

used in combination with Pla 46 (Fluos). This resulted in the triple hybridisation of 

probes with target organisms, pointing towards the presence of ‘Scalindua-like’ cells 

(Figure 8.1.1). The cells depicted, were typically ‘doughnut-shaped’ and fell within the 

reported size range for anammox organisms. Only cells that positively hybridised with 

these probes were included in anammox specific counts. All samples were counterstained 

with DAPI, which was used to identify the total number of bacteria per micrograph.  

 

The relative abundance of anammox organisms decreased in a seaward direction from 8% 

at Site 4 (landward) to 1% at Site1 (seaward). This is in good agreement with values of 

ra, where the potential contribution of anammox to total N2 production decreased in a 

seaward direction from 19 to 1% (Figure 8.1.2., Table 8.1.). Interestingly, there is a 

discrepancy between the relative abundance of anammox organisms and values of ra 

(30%) at Site 5. Here, anammox organisms formed just 2% of the total prokaryotic 

population. Consequently, this lead to the detailed re-examination of three sites (Sites 

MBM, Up and Gr) from the Medway estuary. The results of this investigation are 

described below.  
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Figure 8.1.1. Combined epifluorescence micrograph from a sample retrieved from Site 5. The triple 

hybridisation of the anammox specific probes Scabr 1114 (Cy3), BS 820 (Cy5) and Pla 46 (Fluos) produces 

a white signal. In combination with a ‘doughnut-like’ morphology, this points towards the presence of 

anammox cells (white circle). Cells hybridising with Pla 46 (Fluos) only, represent members of the 

Planctomycetales (red circles). DAPI stained signals indicate the presence of DNA-containing bacterial 

cells. Autofluorescence is emitted by sediment particles and takes the form of large fragments of ‘white 

debris’. 
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Figure 8.1.2.  The potential contribution of anammox to total N2 production (black dots) at 5 sites along the 

Medway Estuary (April 2005). The proportion of ra decreased in a seaward direction coinciding with a 

reduction in the relative abundance of anammox cells (grey dots). The only discrepancy in the overall 

correlation is at Site 5, where ra= 30% and the abundance of anammox organisms constitutes just 2% of the 

microbial population. Each data point represents the mean of 5 (ra) and 20 replicates (relative abundance of 

anammox organisms).  
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Site  ra 

(%) 

SEM Relative abundance of anammox organisms to total bacteria 

(%) 

 

SEM 

1 6 0.2 0.4 0.1 

2 6 0.4 1.1 0.4 

3 11 0.3 2.2 0.2 

4 20 0.3 8.3 0.4 

5 30 1.2 1.8 0.5 

 

 
Table 8.1. The potential contribution (ra%) and relative abundance of anammox organisms (%) at 5 sites 

along the Medway estuary (April 2005). Each value represents the mean of 5 (ra) and 20 replicates (relative 

abundance of anammox organisms).  All values are 1 +/- SEM.  
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8.2. Porewater oxygen profiles 

Dissolved oxygen profiles were measured in each intact sediment core (Figure 8.2.1). The 

position of the oxic-suboxic interface was on average 9.9mm, 3.6mm  and 3.5mm at Sites 

MBM, Up and Gr respectively.  Interestingly, the dissolved oxygen profiles measured at 

Medway Bridge Marina indicate major disruption of the sediment substrata by 

bioturbating macrofauna (Figure 8.2.1 A). Here, multiple peaks in the oxygen profiles 

can be attributed to an extensive network of invertebrate burrows (personal observation). 

Further examination of the sediment revealed the presence of Nereis diversicolor and 

Corophium volutator at mean densities of 6 (SE = +/-1.4) and 18 (SE = +/-5.6) per core 

respectively.  

 

In contrast, the dissolved oxygen profiles measured at Site Up and Gr demonstrate the 

separation of the sediment substrata into clear oxic and sub-oxic zones (Figure 8.2.1 B & 

C). In the absence of bioturbating fauna, the oxic zone is constrained to the upper 3.5mm 

of the sediment. (This is one third of the oxygen penetration depth described at Medway 

Bridge Marina). The position of the oxic-suboxic interface and the oxygen profiles at 

these sites were almost identical. 
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Figure 8.2.1. Measurements of 

multiple dissolved oxygen profiles in 

the presence and absence of 

bioturbating macrofauna. Panel A 

represents Site MBM, B corresponds 

to Site Up and C is representative of 

Gr. Each profile corresponds to 1 

core. 
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8.3. Depth specific rates of CO2 production 

The production of CO2 was generally linear with time at all sites and the majority of 

depth intervals. The average rates of CO2 production were 0.0014!mol CO2 g 
-1

 wet 

sediment h 
-1

, 0.0002!mol CO2 g 
-1

 wet sediment h 
-1

 and 0.0003!mol g 
-1

 wet sediment h 

-1
 at Sites MBM, Up and Gr respectively. The depth specific rates of CO2 production 

varied between sites and at depth intervals (Table 8.3.1.). The greatest depth specific rates 

of CO2 production were measured at Site MBM. Here, the rates of sediment metabolism 

peaked in the first cm of the sediment (0.0016 !mol CO2 g 
-1

 wet sediment h 
-1

) and 

decreased almost linearly to a depth of -4.5cm (0.0012 !mol CO2 g 
-1

 wet sediment h 
-1

) 

(Figure 8.3.1.). At Site Up, the rate of CO2 production decreased within the first 2cm of 

the sediment from 0.00025 to 0.00015 !mol CO2 g 
-1

 wet sediment h 
-1

. This was 

followed by an increase in sediment metabolism to 0.00027!mol CO2 g 
-1

 wet sediment h 

-1
 (Figure 8.3.2.). In general, there was no depth specific trend in CO2 production at Site 

Up. Similarly, there was little variation in the depth specific rates of CO2 production at 

Site Gr. Here, the rate of sediment metabolism peaked within the first 2 cm of the 

sediment (0.00044!mol CO2 g 
-1

 wet sediment h 
-1

) and generally exceeded the rates of 

CO2 production measured at Site Up (Figure 8.3.2).  
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Figure 8.3.1. The depth specific distribution of CO2 production (black dots), ra (grey dots) and the relative 

abundance of anammox organisms to total bacteria (white dots) at Site MBM. The dotted line represents 

the position of the oxic-suboxic interface (-9.9mm).  Values of CO2 production are 1+/- SEM (n=5). Each 

data point represents the mean of 5 (ra) and 20 replicates (relative abundance of anammox organisms).  
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Figure 8.3.2. The depth specific distribution of CO2 production (black dots), ra (grey dots) and the relative 

abundance of anammox organisms to total bacteria (white dots) at Site Up. The dotted line represents the 

position of the oxic-suboxic interface (-3.6mm).  Values of CO2 production are 1 +/- SEM (n=5). Each data 

point represents the mean of 5 (ra) and 20 replicates (relative abundance of anammox organisms).  
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Figure 8.3.3. The depth specific distribution of CO2 production (black dots), ra (grey dots) and the relative 

abundance of anammox organisms to total bacteria (white dots) at Site Gr. The dotted line represents the 

position of the oxic-suboxic interface (-3.5mm).  Values of CO2 production are 1 +/- SEM (n=5). Each data 

point represents the mean of 5 (ra) and 20 replicates (relative abundance of anammox organisms).  
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Site Depth 

(cm) 

Depth specific rates of CO2 production (! 

mol CO2 g wet sediment
-1

 h
-1

) 

 

SEM ra 

(%) 

SEM  

MBM 0-1 0.0016283 0.0000880 35.2 5.8 

 1-2 0.0015784 0.0000431 38.0 4.8 

 2-3 0.0011720 0.0000225 25.7 4.2 

 3-4 0.0013841 0.0004154 18.0 3.9 

 4-5 0.0012571 0.0003218 21.7 7.0 

Up 0-1 0.0002562 0.0000256 15.2 5.6 

 1-2 0.0001640 0.0000164 9.4 0.8 

 2-3 0.0001466 0.0000146 8.6 0.6 

 3-4 0.0002076 0.0000208 7.8 0.7 

 4-5 0.0002740 0.0000274 7.0 0.6 

Gr 0-1 0.0002781 0.0000503 6.5 1.3 

 1-2 0.0002562 0.0000604 7.5 0.6 

 2-3 0.0004399 0.0000861 6.3 0.7 

 3-4 0.0003580 0.0000758 5.3 1.0 

 4-5 0.0003784 0.0000001 4.0 0.7 

 
Table 8.3.1.  Depth specific values of CO2 production and ra (%) across all sites in the Medway estuary. 

All values are 1 +/- SEM (n=5). 

 

 

 

 

Site Depth 

(cm) 

Relative abundance of anammox organisms to total bacteria 

(%) 

 

SEM 

MBM 0-0.5 1.0 0.4 

 0.5-1.0 1.6 0.5 

 1.0-1.5 2.1 0.6 

 1.5-2.0 2.3 0.4 

 2.0-2.5 3.0 0.9 

Up 0-0.5 0.7 0.3 

 0.5-1.0 1.4 0.4 

 1.0-1.5 2.9 0.7 

 1.5-2.0 2.3 0.8 

 2.0-2.5 1.4 0.4 

Gr 0-0.5 0.7 0.4 

 0.5-1.0 1.1 0.4 

 1.0-1.5 1.7 0.3 

 1.5-2.0 3.3 0.6 

 2.0-2.5 3.2 0.9 
 

Table 8.3.2.  The relative abundance of anammox organisms to total bacteria (%) across all sites in the 

Medway estuary. All values are 1 +/- SEM (n=20). 
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8.4. The significance of anammox relative to denitrification with sediment depth 

The relative contribution of anammox to total N2 production was on average 28%, 10% 

and 6% at Sites MBM, Up and Gr respectively. This is in line with the preliminary survey 

where values of ra decreased in a seaward direction (see Figure 8.1.2, Table 8.3.1.). 

Across all sites the greatest potential for anammox was localised to the upper 2cm of the 

sediment. The greatest depth specific values of ra were observed at Site MBM. Here, ra 

peaked at 37% and subsequently decreased downcore to 17% at -3.5cm (Figure 8.3.1). 

Similarly, a peak in the potential anammox was evident in the subsurface of the sediment 

at Site Up (Figure 8.2.1.). Here, ra peaked at 15% followed by a decrease to 7% (-4.5cm). 

The depth specific values of ra at Site Gr were the lowest observed. At this site, the 

potential for anammox decreased from 7.5 to 4% (Figure 8.3.3).  

 

8.5. Depth specific rates of CO2 production relative to the potential for anammox 

Depth specific rates of CO2 production are an indirect measurement of sediment 

metabolism. Interestingly, depth specific values of ra increased as a function of CO2 

production. This is clear at Site MBM where the maximum rate of sediment metabolism 

(0.0016!mol CO2 g 
-1

 wet sediment h 
-1

) corresponds to a peak in ra (35%) (Figure 8.5.1. 

B). Contrastingly, the depth specific potential for denitrification decreased in response to 

sediment metabolism (Figure 8.5.1 B). This was evident at Site Up, where the lowest rate 

of CO2 production (0.00015!mol CO2 g 
-1

 wet sediment h 
-1

) was associated with a peak 

in denitrification (91%). When the yield of anammox and denitrification (from 
15

N  
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Figure 8.5.1. (A) The yield of 
15

N labelled gas from anammox (black dots, y=67.13x+32.577, r
2
=0.541) 

and denitrification (white dots, y=26.459x+53.35, r
2
=0.816). (B) The relative contribution of anammox 

(black dots, y=17612x+2.947, r
2
=0.816) and denitrification (white dots, y=-17612x+97.05, r

2
=0.816) to 

total N2 production as a function of CO2 production. Values are a scatter of data points across all sites. 
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labelled NO3
-
) were plotted as a function of sediment metabolism, a similar relationship 

was apparent. The slope, however, indicates that proportionately less 
15

NO3
-
, is recovered 

as labelled gas, in denitrification (Figure 8.5.1 A). At maximum values of CO2 

production, the yield of 
15

N labelled gas from anammox is 17%, relative to just 30% in 

denitrification (Site MBM). 

 

8.6. In situ detection and the depth distribution of anammox organisms 

The presence of anammox organisms was verified by FISH at all sites. The fluorescently 

labelled probes Amx 0368 (CY3), Sca 1309 (fluos) and Pla 46 (CY5) clearly hybridised 

with anammox cells (8.6.1). The probe binding patterns therefore pointed towards the 

presence of ‘Scalindua-like’ bacteria. The cells depicted were typically ‘doughnut-

shaped’ and fell within the reported size range for anammox organisms (Figure 8.6.2.). 

Only cells that positively hybridised with these probes were included in anammox 

specific counts. All samples were counterstained with DAPI, which was used to identify 

the total number of bacteria per micrograph.  

 

Initially, ‘manual’ counts were used to determine the total number of cells in each of the 

captured images. These counts were then compared with automated counts as shown in 

Figure 8.6.3. The total number of bacteria counted manually clearly correlated with the 

number of cells counted using the automated procedure. It is important to note, however, 

that whilst the automated method proved more efficient, the linear relationship indicated 

an error of 16% (r
2
 = 0.843, P=0.04) (Figure 8.6.3.).  
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Figure 8.6.1. Confirmation of probe hybridisation in different filter sets in a sample from Site MBM. (A) 

DAPI stained DNA-containing cells, (B) cells hybridising with the probe Amx 0368 (cy3), (C) Sca 1309 

(Fluos) and (D) Pla 46 (Cy5). The combined micrograph is shown below.                                                                           
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Figure 8.6.2. (A) Combined epifluorescence micrograph of a sample from Site MBM. The scale bar 

represents 20!m. (B) An enlargement of panel A depicting a white, ‘doughnut-like’ anammox cell (white 

circle). The scale bar represents 7!m. 

 

Figure 8.6.3. Linear regression of the total number of bacteria included in the manual and automated 

counts (n=21).  Values are a scatter of data points across sites selected at random. 
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There was no significant variation in the total number of bacteria with depth (as 

previously reported, Schmid et al., 2007). The total number of anammox organisms 

detected varied between 0 and 3% at all sites and at all depth intervals (Table 8.3.2.) 

which is in line with previous observations (Schmid et al., 2007). The only site where the 

number of anammox organisms, relative to total bacteria, varied significantly was at 

Grain (1 way ANOVA, F=7.15, P=0.01). The overall trend with depth at this site was an 

increase from 0.7% at -5mm to 3.3% at -20mm (Figure 8.3.3.). Here, the maximum depth 

specific value of ra (5%) coincides with a peak in the abundance of anammox organisms 

(3.3%). This is not the case, however, at Site Up where the greatest number of anammox 

organisms accumulates within the first 1.5cm (2.9%).  Either side of this peak, the total 

N2 production does not vary significantly, although there is a definite increase in the 

relative number of anammox organisms from 0.7% at -0.75cm and a decrease to 1.4% at -

2.25cm (Figure 8.3.2.).  Interestingly, anammox organisms were present within the oxic 

zone and at the oxic-suboxic zone at Medway Bridge Marina. This is not consistent with 

the production of N2 at these specific depths in the sediment (Figure 8.3.1.). The general 

trend at this site is a linear increase in the relative number of anammox organisms from 

1% (at -0.25cm) to 3% (at -2.25m). 
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9. DISCUSSION 

 

The presence of NO2
- 
is a prerequisite for anaerobic ammonium oxidation (Van de Graaf 

et al., 1995; Dalsgaard et al., 2003). It is therefore likely that the capacity for anammox, 

in any given environment, is dependant on the physical and microbiological mechanisms 

by which NO2
-
 is delivered to anammox organisms. In temperate estuarine sediments, the 

availability of NO2
-
 is potentially governed by denitrification (whereby NO2

-
 is released 

into the surrounding porewater as an intermediate of NO3
-
 reduction) (Meyer et al., 

2005). Sediments enriched with NO3
-
 and organic carbon, stimulate the growth of 

heterotrophic denitrifying organisms which, in turn, could increase the overall availability 

of NO2
-
 to the anammox community (Trimmer et al., 2005; Stief et al., 2002). Studies 

addressing  the factors that regulate anammox activity and the microbial community 

structure, however, are limited (Trimmer et al., 2003; 2005; Risgaard –Petersen et al., 

2005; Meyer et al., 2005, Tal et al., 2005; Rich et al., 2008). Nevertheless, it was 

suggested that the thickness of the NO3
-
 reducing zone and the total number of the 

anammox organisms, could be directly linked to the significance of anammox in N 

removal (Trimmer et al. 2005; Dalsgaard et al., 2005). The purpose of this study was to 

characterise the zone of anammox activity and to subsequently connect this with the 

abundance of anammox organisms and the significance of anammox in N removal. Given 

the slow growth rate (max doubling time 9 days) and anaerobic physiology of anammox 

organisms (reversible inhibition <1!M oxygen) in bioreactors, the formation of a stable 

anammox community is theoretically limited to the suboxic zone in sediments (Strous et 

al., 1999).  
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The relative contribution of anammox to total N2 production, in the Medway Estuary, is 

in line with previous findings where ra is positively correlated with sediment reactivity 

and organic loading (Trimmer et al., 2003; 2005; Rich et al., 2008). The importance of 

anammox in N removal, however, at Site MBM is substantially elevated in relation to 

comparative systems (Trimmer et al., 2003; Nicholls and Trimmer, 2009). In the Thames 

estuary, ra does not exceed 8% (in sediment slurries) yet the contribution of anammox to 

total N2 production was, on average, 28% at Site MBM. Moreover, this data set is at best 

an estimate, given that measurements in sediment slurries under-represent ra by 10-15% 

(where ra >5%). (Trimmer et al., 2006). In the context of this error, the potential for 

anammox could exceed the values of ra measured at this site. According to current 

knowledge, this would therefore place the results amongst the highest values of ra 

reported in estuarine systems (maximum ra=24%) (Risgaard–Petersen et al., 2004). 

 

In terms of the depth specific distribution of ra, the results fall within the expected 

environmental conditions that serve as a prerequisite for anammox activity (Strous et al., 

1999; Dalsgaard et al., 2003). This is evident across all sites, where the greatest potential 

for anammox was constrained to subsurface sediment layers (Figures 8.3.1., 8.3.2.and 

8.3.3.). Moreover, in sediments where there is a sufficient supply of organic matter, NO2
-
 

concentrations peak within the upper cm of the sediment (Stief et al., 2002). 

Consequently, this could provide an adequate supply of NO2
-
 for the formation of a stable 

anammox community (in an oxygen deficient environment). Below the first 0.5-1cm of 

the sediment, the capacity for anammox decreases, as indicated by a reduction in the 
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significance of ra, to 4% (Site Gr), 7% (Site Up) and 17% (Site MBM). This could be 

linked to a decline in the availability of porewater NO2
-
 down-core, thus providing less 

favourable conditions for the formation of N2 via anammox (Figures 8.3.3 and 8.3.2.).  

 

Local variations in NO2
-
 alone, however, do not explain the elevated values of ra 

observed at Site MBM. Here, the overall contribution of anammox to total N2 production 

is at least 3 x greater than the values of ra reported at the other sites. Interestingly, depth 

specific rates of CO2 production are positively correlated with the formation of N2 via 

anammox (Figure 8.5.1. A). This is clear at Site MBM, where the maximum rate of CO2 

production (0.0016!mol CO2 g 
-1

 wet sediment h 
-1

) coincides with a peak in ra (35%). 

High rates of CO2 production are an indirect indication of elevated sediment metabolism. 

In environments where there is an abundant supply of organic matter, this increases 

sediment metabolism by stimulating the growth of heterotrophic, denitrifying bacteria 

(Sloth et al., 1995). Consequently, this may enhance the supply of freely diffusible NO2
-
 

to the anammox community, and therefore, promote close coupling between these 

processes (Kuypers et al., 2003; Thamdrup and Dalsgaard, 2002). This is further 

corroborated by the positive correlation between ra and the availability of organic carbon 

(see Nicholls and Trimmer, 2009), but does not explain the significance of the overall 

yield in 
15

N labelled gas. 

 

The recovery of 
15

N labelled gas, from the addition of 
15

NO3
-
, indicates that 

denitrification is perhaps not the only significant process enabling the delivery of NO2
- 
to 

anammox organisms. In terms of the total yield of 
15

N labelled gas, it was evident that 
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whilst anammox increased as a function of CO2 production, the corresponding yield from 

denitrification decreased by a factor of 4 (Figure 8.5.1. B). This deficit could perhaps be 

attributed to dissimilatory nitrate reduction to ammonium (DNRA), whereby NO3
-
 is 

anaerobically reduced through NO2
-
 to NH4

+ 
(Patrick et al., 1996). If DNRA is active in 

these sediments, this could reduce the pool of 
15

NO3
-
 available for denitrification. This 

implies that whilst anammox perhaps benefits from the release of NO2
-
 (derived as an 

intermediate of DNRA), denitrifying organisms may compete for the NO3
-
 reduced in this 

process. The potential relationship between anammox in the presence of DNRA, 

however, is largely unexplored and may add to the complexity of N transformation in 

estuarine systems.  

 

Overall, the relative abundance of anammox organisms increased with sediment depth. 

With the exception of Site Gr (Figure 8.3.3.), this conflicted with a decrease in the depth 

specific values of ra.  This can perhaps be attributed to the limitations of FISH analysis in 

sediments. The stability of prokaryotic rRNA is determined by several factors in the 

environment (Binder et al., 1998) and therefore, positive signals do not necessarily 

represent active organisms. Moreover, Schmid et al. (2007) reported that mapping the 

abundance of marine anammox bacteria using FISH is potentially misleading.  This may 

help to explain the depth distribution at Site Up (Figure 8.3.2.), but cannot account for the 

disproportionately large values of ra measured at Site MBM.  

 

In first cm of the sediment the depth specific values of ra varied between 35-37%, yet the 

anammox organisms constitute just 1-1.7% of the microbial population. This is further 
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corroborated by the preliminary survey of the Medway Estuary. At the same site, just 2% 

of the microbial population coincided with an average value of ra equal to 30% (Figure 

8.1.2.). Consequently, this could point organisms that are phylogenetically unrelated to 

anammox, yet capable of the anammox process. This was explored using a novel 

sequence (retrieved from Site MBM) sharing 96% similarity with Candidatus ‘Scalindua 

sorokinni’ (see Chapter II). A fluorescent probe was designed according to this unique 

sequence, and positively hybridised with anammox cells (see Figure 4.3.1., Chapter II). 

The preliminary counts, however, did not resolve the discrepancy between ra and the 

overall abundance of anammox organisms.  

 

In addition to the potential role of DNRA in N transformations, the presence of 

bioturbating macrofauna may enhance the significance of anammox by extending the 

zone of NO3
-
 reduction (Dalsgaard et al., 2005; Henriksen et al. 1980).  Total counts of 

invertebrates in the sediment, at Site MBM, point towards the presence of Nereis 

diversicolor and Corophium volutator at mean densities of 6 (" 3cm in length) and 18 per 

core respectively. The effect of this is demonstrated in Figure 8.2.1.A, where the multiple 

peaks in the dissolved oxygen profiles suggest ventilation of the sediment substrata with 

surface water. This can be attributed to a dense network of Nereis burrows (personal 

observation).  

 

The linings of invertebrate burrows are generally considered microbial ‘hot spots’ for 

heterotrophic bacteria. Consequently, bioturbation significantly contributes to total N2 

production. Nielsen et al. (2004) reported that as much as 82% of bulk NO3
-
 reduction in 
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sediments was the result of microbial activity in the lining of burrow structures. 

Invertebrate burrows have been associated with large numbers of nitrifying bacteria 

(Kristensen et al., 1995) and coupled denitrification (Blondin et al., 2004). As a result, 

bioturbation may enhance the supply of NO2
-
, by effectively extending the overall area of 

the NO3
-
 reducing zone. In combination with high rates of sediment metabolisms and the 

potential for DNRA, bioturbation is perhaps amongst several governing factors that 

enhance the significance of anammox. This combined effect may explain why values of 

ra at Site MBM exceed those reported at Site Up and Gr. The effect of bioutrbation, in 

the role of anammox, however is largely unexplored.  

 

Intriguingly, it is also evident that values of ra unexpectedly peak above the oxic-suboxic 

interface (-9.9mm) at this site in the presence of highly elevated and variable 

concentrations of oxygen (Figure 8.3.1.). This is perhaps the result of experimental 

design, whereby samples were incubated under completely anaerobic conditions. 

However, the physical presence of these organisms within the oxic zone, as demonstrated 

by FISH, implies that these bacteria are perhaps more metabolically flexible than 

previously understood.  Penton et al. (2006) suggest that anammox organisms are not 

necessarily restricted by unfavourable environmental conditions. Following a 

phylogenetic survey of widely contrasting environments, anammox was discovered in 

periphyton dominated aerobic sediment. In addition, Schmid et al. (2007) detected the 

presence of anammox cells in the subsurface layer of marine sediments, yet failed to 

explain the co-occurrence of these organisms with oxygen (The Fresian Front, The North 

Sea). Woebken et al. (2007), however, put forward an argument for the existence of 
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anammox in oxygen depleted microniches (in planktonic snow of the Namibian shelf 

waters). Essentially, in such environments, a protective layer of microorganisms 

(consuming oxygen) shield anammox bacteria from the external environment. The 

oxygen concentrations measured in the subsurface of the sediment at Site MBM are well 

above those reported in the Nambian shelf waters (25!M) (Woebken et al. 2007).  This 

suggests that the slow growth rate and anaerobic physiology of anammox does not limit 

their survival under dynamic environmental conditions. 

 

This study confirms the presence of anammox organisms in the Medway Estuary and 

therefore adds to the limited knowledge of anammox in estuarine environments. 

Anammox organisms were detected at all sites and throughout the sediment substrata. 

The distribution of these organisms and depth specific values of ra are not, however, 

necessarily linked. To determine whether this is the result of a low number of ‘highly 

active’ anammox organisms, future studies should focus on resolving the depth specific 

rate measurements per cell. This could be achieved by quantitative FISH and 

measurements of depth specific anammox activity. Given the non-translucent properties 

of sediment samples, however, volume based quantification of the total organisms may 

prove challenging.   Alternatively, if the in situ diversity cannot be fully explored using 

current molecular techniques, future studies should focus on the development of new, 

anammox specific probes/ primers. 
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Intriguingly, measurements of CO2 production verified a positive correlation between the 

significance of anammox and sediment metabolism. The yield of 
15

N labelled gas, from 

15
NO3

-
, revealed a fourfold decrease in denitrification relative to an increase in anammox 

(at higher sediment metabolisms). This could implicate DNRA as an important pathway 

for the delivery of NO2
-
 to the anammox community. Studies addressing the role of 

DNRA in the regulation of anammox are, however, relatively scarce.  

 

Surprisingly, the greatest potential for anammox is associated with unfavourable 

conditions due to incursions of oxygen as a result of bioturbating activity. Hence, this 

implies that anammox organisms are more flexible than enrichment culture studies 

suggest (Strous et al., 1999). Future studies could focus on determining the tolerance of 

environmental strains of anammox to oxygen and the effects of bioturbating 

invertebrates. Investigations including techniques such as microautoradiography 

combined with FISH could facilitate cell specific substrate uptake patterns of anammox 

bacteria under aerobic conditions (Daims et al., 2001; Nielsen et al., 2003; Kindaichi et 

al., 2004)  

 

In conclusion, it is clear that further studies are required to fully understand the dynamics 

of anammox in the environment, particularly with regard to the role of DNRA and the 

formation of stable communities under otherwise unfavourable conditions. Enrichment 

culture studies provide some insight into the physiological requirements for anammox, 

but fail to reflect the dynamics of the environment. 
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10. INTRODUCTION 

 

Anammox is the anaerobic oxidation of NH4
+
, coupled to NO2

-
 reduction, to form di-

nitrogen gas (N2) (Van de Graaf et al., 1995; Mulder et al., 1995; Dalsgaard et al., 2003 ). 

Environmental studies clearly demonstrate that anammox is critical to N removal and 

constitutes up to 67-79% of total N2 production in marine sediments, yet the total number 

of organisms affiliated with this process, form just 2-8% of the prokaryotic population 

(Thamdrup and Dalsgaard, 2002; Thamdrup et al., 2005; Schmid et al., 2007). Although 

the occurrence of anammox is well documented in a diverse range of marine sediments, 

studies specifically addressing the factors that regulate the distribution, abundance and 

significance of this process, are relatively scarce. 

 

In contrast to estuarine ecosystems, the availability of organic matter in marine 

environments is highly reduced. This is particularly evident in deep, offshore waters 

where a large portion of organic matter is mineralised (to NH4
+
) before reaching the 

sediment surface. Essentially, this severely limits the accessibility of heterotrophic 

microorganisms to suitable electron donors and thus reduces the capacity for 

denitrification in marine sediments (Canfield et al., 1993). In the absence of organic 

carbon, the overall competition for electron acceptors, such as NO3
-
 and NO2

-
, is further 

reduced and therefore enhances availability of interstitial NO2
-
 (Trimmer et al., 2005; 

Dalsgaard et al. 2005). Given that the production of NO2
-
 is 4 x greater than NO2

-
 

consumption in the Skagerrak, this could explain the comparative importance of this 

process (relative to denitrification) in deep, offshore waters (Thamdrup and Dalsgaard, 
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2002). It is also important to note that the anammox reaction is saturated at low 

concentrations of interstitial NO2
-
 (Km <3!M) (Thamdrup and Dalsgaard, 2002; Trimmer 

et al., 2005). In an environment where the in situ supply of NO2
-
 is abundant, and the 

affinity of anammox organisms for this nutrient is low, this could sustain a comparatively 

large community of anammox organisms (relative to estuarine environments). To date, 

information regarding the relationship between the significance of anammox and the total 

abundance of anammox organisms is limited to just one marine study (Schmid et al., 

2007).   

  

The overall availability of NO3
-
 is prerequisite to NO2

-
 production, and therefore essential 

to the formation of a stable anammox community. In terms of bottom water NO3
-
, 

Risgaard-Petersen et al., (2005) demonstrated that the penetration of NO3
- 

into the 

sediment substrata
 
was crucial to sustaining anammox activity. This was evident in 

Norsminde Fjord where the combined affect of low water column NO3
-
, and the presence 

of benthic microalgae (through active uptake), essentially inhibited the diffusion of NO3
-
 

into the NO3
-
 reducing zone (Risgaard-Petersen et al., 2005). Consequently, this was used 

to explain the absence of anammox activity from these sites and demonstrates that the 

anammox process is not ubiquitous to the environment.  

 

In contrast to conditions at Norsminde Fjord, the delivery of sufficient NO3
-
, to the NO3

-
 

reducing zone, promotes the formation of interstitial NO2
-
. In turn, this was shown to 

enhance the capacity for anammox (Meyer et al., 2005). This was clearly the case in 
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Randers Fjord, where the concentration of NO3
-
 at the oxic-suboxic interface (23!M) 

sustained values of ra of up to 22%. The relationship between anammox and NO3
- 

availability has been further corroborated by both marine and estuarine studies (Risgaard-

Petersen et al., 2003; Rysgaard et al., 2004; Meyer et al., 2005; Nicholls and Trimmer, 

2009).  

 

In contrast to hypereutrophic estuarine sediments, the low overall availability of organic 

matter in marine environments implies that concentrations bottom water NO3
-
 may play a 

key role in regulating significance of anammox. The extent to which NO3
-
 penetrates the 

sediment could cause changes in the portion of the sediment that constitutes NO3
- 

reduction zone. Consequently, this may alter the depth specific potential for anammox 

and ultimately the size of the anammox community.  

 

The purpose of this study was to compare the depth integrated potential for anammox 

with the distribution of these organisms in the sediments of the North Atlantic and Irish 

Sea. The zone of potential anammox activity was characterised using porewater oxygen 

profiles and 
15

N tracer experiments to investigate the depth specific potential for 

anammox. In addition, FISH analysis was used to map the distribution of anammox 

organisms with depth.  
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11. MATERIALS AND METHODS 

 

11.1. Study sites 

The sediment characteristics and site locations are described in section 3.1.1., Table 3.1. 

and Figure 3.1.1. (Chapter II).   

 

11.2. Sediment collection, storage and sample preparation 

Samples were retrieved from Site 1 in the North Atlantic and Sites 4 and 5 in the Irish 

Sea (March 2006). The collection, storage and preparation of sediment samples was 

performed according to the methods described in section 3.2., Chapter II. All samples 

were sliced at intervals of -3mm to a total depth of -36mm. 6-7 depth intervals were 

selected for the purpose of subsequent analysis. 

 

11.3. Porewater oxygen profiles, end-point incubation experiments and FISH 

analyses 

Subsequent porewater oxygen profiles, end-point incubation experiments and FISH 

analyses were performed according to the methods described in sections 7.3., 7.4. and 

7.6. (Chapter III).  FISH analysis was conducted using manual counts. 
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12. RESULTS 

 

12.1. Porewater oxygen profiles 

Dissolved oxygen profiles were measured in each of the in-tact sediment cores retrieved 

from the North Atlantic (Site 1) and Irish Sea (Sites 4 and 5) (Figure 12.1.1.). The 

position of the oxic-suboxic interface was on average 12.4mm at Site 1, 9.8mm at Site 4 

and 17.0mm at Site 5. The uniformity of each of the oxygen profiles, measured across all 

sites, demonstrates the partitioning of the sediment substrata into well defined oxic and 

suboxic regions. At site 5, however, the oxygen penetration depth is intriguingly 

extensive (Figure 12.1.1.A). Jaeschke et al., 2009 suggested that this could be attributed 

to re-working of the sediment strata, by the Anthropod ‘Nephrops norvegicus’. 

Ultimately this may have resulted in an extension of the oxic zone which was in stark 

contrast to the shallow oxygen penetration depths measured at other coastal sites 

(Jaeschke et al., 2009).  
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Figure 12.1.1.  Multiple dissolved oxygen profiles as measured in intact sediment cores from (A) Site 1, 

(B) Site 4 and (C) Site 5. The uniform decrease in oxygen represents the separation of the sediment 

substrata into defined oxic and suboxic zones (n=5). Each profile represents 1 core. 
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12.2. The depth specific significance of anammox relative to denitrification 

The potential contribution of anammox to total N2 production was on average 49% at Site 

5, 32% at Site 1 and 13% at Site 4. There was no significant difference in the depth 

specific values of ra at either Site 1 or Site 4, although distinct variations were evident at 

Site 5 (1 way ANOVA, F=12.65, P=0). This is clearly reflected by the depth specific 

values of ra across all sites.  

 

The contribution of anammox to total N2 production at Site 1 peaked at -27mm where ra 

was equal to 40% (Figure 12.2.1.). This is well below the oxic-suboxic interface (9.8mm) 

although there is little variation either side of this value with depth. Measurements of ra 

at the sediment surface (-3mm) indicate the potential for anammox within the oxic zone. 

Sub surface peaks in anammox were common to all sites, and in this case, the value of ra 

at the sediment surface (43%) is comparable to the maximum value at depth (Figures 

12.2.1, 12.2.2. and 12.2.3.). Similarly the potential for anammox peaks in the first few 

mm of the sediment at Site 4. Here, the significance of anammox is equal to 19% of the 

overall N2 production (Figure12.2.2.). Below the sediment surface there is little variation 

with depth and no obvious peak in the potential for anammox.  Interestingly, values of ra 

vary significantly throughout the sediment at Site 5 (12.2.3.). A peak in the capacity for 

anammox is apparent in the first 3mm of the sediment (65%) followed by a secondary 

peak between -9 and -18mm (62%). Below this depth the significance of anammox 

decreases to 35% at -36mm. Although the potential for anammox is highly variable, the 

capacity for this process is clear throughout both the oxic and suboxic zones. Moreover, 

the sediment collected from Site 5 shows the greatest capacity for anammox relative to all 

other sites and depth intervals.  
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Figure 12.2.1. The depth specific distribution of ra (black dots) and the relative abundance of anammox 

organisms to total bacteria (white dots) at Site 1. The dotted line marks the position of the oxic-suboxic 

interface (-12.4mm).  Each data point represents the mean of 5 (ra) and 20 replicates (relative abundance). 
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Figure 12.2.2. The depth specific distribution of ra (black dots) and the relative abundance of anammox 

organisms to total bacteria (white dots) at Site 4. The dotted line marks the position of the oxic-suboxic 

interface (-9.8mm).  Each data point represents the mean of 5 (ra) and 20 replicates (relative abundance). 
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Figure 12.2.3.  The depth specific distribution of ra (black dots) and the relative abundance of anammox 

organisms to total bacteria (white dots) at Site 5. The dotted line marks the position of the oxic-suboxic 

interface (-17.0mm).  Each data point represents the mean of 5 (ra) and 20 replicates (relative abundance). 

 

 

 

 

 

 

 

 

 

D
ep

th
 (

m
m

) 



CHAPTER IV: The relative abundance and depth specific significance of anammox in marine sediments 

 108 

Site  Depth 

(mm) 

ra 

(%) 

SEM Relative abundance of anammox organisms to 

total bacteria (%) 

 

SEM 

1 0-3 42.7 6.4 2.0 0.5 

 3-6 23.2 8.7 0.8 0.4 

 9-12 29.3 5.3 2.8 0.8 

 21-24 29.5 6.3 2.3 0.2 

 24-27 39.6 7.5 3.9 0.9 

 33-36 30.2 5.4 2.0 0.4 

4 0-3 18.7 1.5 3.3 0.5 

 3-6 14.1 1.1 3.5 0.5 

 9-12 15.1 2.5 3.2 0.8 

 21-24 11.5 0.5 4.0 0.8 

 24-27 9.9 0.6 2.8 0.6 

 33-36 10.3 1.4 4.4 1.4 

5 0-3 65.2 0.7 2.0 0.7 

 3-6 49.1 0.8 4.2 0.8 

 9-12 62.4 1.8 6.6 1.8 

 15-18 62.5 0.9 5.7 0.9 

 21-24 36.7 1.0 4.1 1.0 

 24-27 32.7 0.4 2.7 0.4 

 27-30 35.2 1.0 4.0 1.0 

 
Table 12.2. The potential contribution (ra%) and relative abundance of anammox organisms (%) at 3 sites 

in the North Atlantic and Irish Sea. Each value represents the mean of 5 (ra) and 20 replicates (relative 

abundance of anammox organisms).  All values are 1 +/- SEM.  
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12.3. In situ detection and the depth distribution of anammox organisms  

Anammox organisms were detected at all sites throughout the North Atlantic and Irish 

Sea using FISH. Triple hybridisation of the probes Amx 0368 (CY3), Sca-1309/ BS 820 

(fluos) and Pla 46 (CY5) with target cells produced clear signals, pointing towards the 

presence of ‘Scalindua-like’ organisms (Schmid et al 2003; Kuypers et al., 2003 and 

Neef et al., 1998). The observed cells were typically doughnut shaped and fell within the 

expected size range (for anammox organisms) (Figure 12.3.1.). Only cells that positively 

hybridised with these probes were included in anammox specific counts.  

 

The relative abundance of anammox organisms to total bacteria was 5% at Site 5, 4% at 

Site 4 and 1% at site 1. Statistical analyses indicated that there was no significant 

difference between either the abundance of anammox organisms or total bacteria with 

depth. This is in line with previous findings where both the abundance of anammox 

organisms varies between 2-8% and there is no depth specific variation in the prokaryotic 

population (Schmid et al., 2007).  Interestingly, the relative abundance of anammox 

organisms to total bacteria follows the same overall trend as the depth specific 

distribution of ra. This is clearly evident both at sites 1 and 5 (Table 12.2, Figures 12.2.1 

and 12.2.3.). At Site 1 the relative abundance of anammox organisms to total bacteria 

peaks at -27mm where the anammox community represents 4% of the prokaryotic 

population and 40% of N2 production. Either side of this peak, however, there is little 

variation in the abundance of anammox organisms, clearly reflecting the depth specific 

distribution of N2 produced via anammox. Moreover anammox bacteria were detected 

throughout the oxic  
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Figure 12.3.1.  Detection of anammox organisms with Fluorescence in situ hybridisation from (A) Site 1, -

36mm and (B) Site 5, -9mm; the white circles  mark the position of anammox cells. This is the result of the 

triple hybridisation of probes Amx 0368 (CY3), BS 820 (fluos) and Pla 46 (CY5) with target cells. The 

scale bar represents 5!m. 
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zone, including the first 3mm of the sediment (2%). At this depth, the average 

concentration of porewater oxygen was 270!M. This is well above the described 

concentrations of oxygen in which anammox is known to occur in the environment 

(Kuypers et al., 2005; Woebken et al., 2007). Similarly, the presence of anammox 

organisms was verified throughout the oxic zones of sites 4 and 5. Within the first 3mm 

of the sediment at Site 5 ra is equal to 65% of total N2 production, yet the abundance of 

anammox organisms is just 2% of the total prokaryotic population. This discrepancy only 

occurs at the sediment surface where ra tends to peak disproportionately relative to the 

abundance of anammox organisms across all sites. Below the first 3mm of the sediment, 

the depth specific abundance of anammox organisms tends to reflect the trend in ra. The 

secondary peak in ra, between -9 and -18mm (62%), is linked to a peak in the abundance 

of anammox organisms representing 6-7% of the total population. Below this depth the 

significance of anammox decreases to 35% at -36mm where the anammox community is 

proportional to 4% of the total population. To explore this relationship further, the 

potential contribution of anammox to total N2 production was scattered against the 

abundance of anammox cells relative to total bacteria (Figure 12.3.2.). This revealed a 

clear linear relationship between relative abundance of anammox organisms and ra, 

where r
2
 = 0.865 (P=0.024) and 0.84 (P=0.011) at sites 1 and 5 respectively. No 

significant relationship, however, was observed between relative abundance of anammox 

organisms and ra at Site 4.  
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Figure 12.3.2. The contribution of anammox to total N2 production as a function of the relative abundance 

of anammox organisms at (A) Site 1(where r
2
=0.86, P=0.024) and (B) Site 5 (r

2
=0.84, P=0.011). Mean 

values of ra are plotted against the mean abundance of anammox organisms relative to total bacteria. 
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13. DISCUSSION 

 

Anammox is highly significant in marine sediments, yet the factors that regulate the 

distribution, abundance and significance of this process are largely unexplored (Van de 

Graaf et al., 1995; Mulder et al., 1995; Dalsgaard et al., 2003). According to current 

knowledge, anammox is reversibly inhibited by less than 1.1!M oxygen and is dependant 

on the availability of NO2
-
 as a prerequisite to N2 production (Strous et al., 1997; 

Thamdrup and Dalsgaard, 2002). Theoretically, this would place anammox organisms 

well within the suboxic zone of the sediment, coinciding with the location of NO3
-
 

reduction and the absence of oxygen (Meyer et al., 2005). The purpose of this study was 

to characterise the potential zone of anammox activity in order to investigate links 

between the depth specific potential and distribution of anammox organisms.  

 

Strong evidence for the presence and distribution of anammox organisms was confirmed 

by FISH analysis and 
15

N isotope labelling experiments.  This was apparent across all 

sites investigated in the sediments of the North Atlantic and Irish Sea. According to 

previous marine investigations, the potential contribution of anammox to total N2 

production (ra) positively correlates with increased sediment depth (Thamdrup and 

Dalsgaard, 2002; Thamdrup et al., 2005). This coincides with a reduction in organic 

loading and therefore rates of sediment mineralisation. On average, the potential 

contribution of anammox to total N2 production was 49%, 32% and 13% at Sites 5, 1 and 

4 respectively. Given that the mean value of ra at Site 5 (100m) exceeds values of ra at 

Site 1 (2000m), this would suggest that the data are not in line with previous findings.  
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Measurements of the accumulation of 
29

N, from 
15

N labelled NH4
+
 and 

14
NO3

-
, are in 

good agreement with the above values of ra. Jaeschke et al. (2009) reported generally 

consistent values of 
29

N across all sites with the exception of Site 5, where a peak in 
29

N 

production (25.7 nmol ml-1 wet sediment) was clearly evident. Although these findings 

corroborate high values of ra at this site, it is important to note that only the top 2 cm of 

the sediment was sampled. If this reaction occurs at depth, this potentially excludes 

portions of the active anammox zone that could significantly contribute to N2 production. 

The conditions, however, that govern the significance of anammox, may relate to local 

environmental characteristics and may not strictly reflect those described by general 

correlations (Nicholls and Trimmer, 2009).  

 

In terms of the depth specific potential for anammox, this reaction is theoretically limited 

by environmental conditions that sustain an in situ supply of NO2
-
 in the absence of 

oxygen. With the exception of peaks in ra within the first few mm of the sediment, this 

was evident at Sites 1 and 4. Although there was no significant difference in depth 

specific values of ra, the greatest contribution of anammox to total N2 production peaked 

well below the oxic zone at  Sites 1 (-27mm, ra=40%) and 4  (-12mm, ra=15%) (Figures 

12.2.1 and 12.2.2.).   

 

A similar trend was observed at Site 4 where a general decrease in the potential 

contribution of anammox to total N2 production occurred. This was typical of sites in the 

Irish Sea where peaks in the potential for anammox were associated with the oxic-

suboxic interface (Sites 4 and 5).  At this depth, moderate organic loading (TOC=0.82-
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13.6%), abundant NH4
+
 and an accumulation of NO3

-
 (8-10 !M) could provide suitable 

conditions for the formation of a stable anammox community (Jaeschke et al., 2009). 

Furthermore, NO3
- 
reducers become NO3

-
 limited at 2-3 times lower than their Km value 

(Dalsgaard et al., 2005). This implies that NO3
-
 reduction is limited by "2-3!M NO3

-
 

(Dalsgaard and Bak, 1994). In turn, this suggests that the potential zone of anammox 

activity encompasses the first 3cm of the sediment in the Irish Sea. This is clearly 

reflected in the depth specific values of ra at Sites 4 and 5.  

 

The potential contribution of anammox to total N2 production varied significantly with 

sediment depth at site 5 (1 way ANOVA, F=12.65, P=0). Although peaks in ra (62%) 

coincide with the position of the oxic-suboxic interface (-17mm) the potential 

contribution of anammox to total N2 production is evident throughout both the oxic and 

suboxic zones (Figure 12.2.3.). ‘Physical reworking’ of the sediment by the anthropod 

‘Nephrops norvegicus’ is perhaps the cause of  this ‘mixed signal’ and associated with 

extension of the oxic zone (Aller et al., 2004, Jaescke et al., 2009). (The presence of 

these invertebrates was noted during sampling). It was clear, however, that at all sites 

both ra and the physical presence of anammox organisms in the oxic zone occurred. This 

was subsequently confirmed by FISH analysis. 

 

The anammox process is inhibited by <1.1!M oxygen yet a peak in subsurface (-3mm) 

N2 production was common across all sites (Strous et al., 1997) (Figures 12.2.1, 12.2.2 

and 12.2.3.). At this depth, the concentration of oxygen varied between 200-210!M O2. 

Although anammox activity has been observed at ambient concentrations of 25!M O2, 
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the concentration of O2 at the sediment surface is at least 10 x greater than those reported 

in the Namibian Shelf waters (Woebken et al., 2007). This demonstrates that anammox 

organisms in the Irish Sea and North Atlantic are not necessarily constrained by 

environmental conditions given that FISH analysis revealed the presence of these 

organisms in all cases. This is additionally noted in the highly bioturbated sediments 

described in detail in Chapter III.  

 

Positive FISH signals demonstrated the presence of anammox organisms in sediments of 

the North Atlantic and Irish Sea. Schmid et al. (2007) reported an average abundance of 

anammox organism within the range of 2-8% in marine systems. Given that anammox 

constitutes 67% of the total N2 production in deep marine sediments, this indicates that a 

relatively small fraction of the prokaryotic population is required for significant N - 

removal (Thamdrup and Dalsgaard, 2002). This is clearly reflected by the average 

abundance of anammox organisms across all sites. Essentially, the abundance of 

anammox organisms peaks at Site 5 (5%) and subsequently decreases with sediment 

depth (Site 4 = 4%, Site 1=1%).  

 

In terms of the positive correlation of anammox with increased sediment depth 

(Thamdrup and Dalsgaard, 2002), this does not coincide with expected trend. In 

sediments where the postulated significance of anammox is high, the expected correlation 

should theoretically coincide with an increase in the anammox community with sediment 

depth. In terms of the depth specific significance, however, the relative abundance of 

anammox organisms with sediment depth, coincides with depth specific values of ra. 



CHAPTER IV: The relative abundance and depth specific significance of anammox in marine sediments 

 117 

This excludes Site 4, but is evident at Sites 1 and 5 (Figure 12.3.2.). This supports the 

theory that a low number of anammox organisms are responsible for a significant portion 

of N2 production in marine systems (Kuypers et al., 2003; 2005; Hamersley et al., 2007; 

Schmid et al., 2007). 

 

This study confirms the presence of anammox organisms in an additional marine system 

and consequently adds to limited knowledge of the distribution of these organisms in 

sediments. The overall significance of significance of anammox organisms is not clearly 

reflected by depth integrated values of ra, although points towards the confinement of 

anammox activity to the sediment surface (Sites 4 and 5). The limitations of the sampling 

potentially excluded a significant portion of depth integrated values of ra in combination 

with a major portion of the microbial population (Site 1). In addition, it is also clear that 

anammox organisms are not inextricably constrained by environmental conditions. 

Investigations including the tolerance of anammox to oxygen, and the effects of 

bioturbation are required (see Chapter III). 
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14. CONCLUSIONS 

 

Anammox is the oxidation of NH4
+
 with NO2

-
 to di-nitrogen gas (Van de Graaf et al., 

1995; Mulder et al., 1995; Dalsgaard et al., 2003). This process is widely documented in 

the environment and circumvents coupled denitrification to provide an alternative 

nitrogen removal pathway in natural systems (Kuypers et al., 2003; Rysgaard et al., 2005; 

Schubert et al., 2006; Thamdrup and Dalsgaard, 2003; Trimmer et al., 2003; 2005). 

Previous studies indicate that whilst anammox occurs in a vast range of environments, the 

diversity of these organisms is limited to just two candidate species (Nakajima et al., 

2008; Penton et al., 2006; Schmid et al., 2007; Woebken et al., 2008). These species are 

known as ‘Scalindua sorokinni’ and ‘Scalindua arabica’ (Kuypers et al., 2003; Woebken 

et al., 2008).  

 

The sequences retrieved from the North Atlantic, Irish Sea and Medway estuary cannot 

be directly affiliated with known species of anammox (Chapter II). Intriguingly, however, 

a number of unidentified Planctomycetes retrieved from Sites 1 and 5 (in the North 

Atlantic and Irish Sea) form two phylogenetic clusters close to the anammox group 

(Chapter II, Figure 4.5.1.). These sequences share just 75% sequence similarity with 

‘Scalindua sorokinni’, yet exhibit common origins with the anammox lineage. Such 

sequences are common to environmental studies although largely disregarded (Tal et al., 

2005; Schubert et al., 2006; Stevens and Ulloa, 2008; Shu and Jiao, 2008; Woebken et 

al., 2008).   
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The lack of sequences directly affiliated with anammox does not suggest the complete 

absence of these organisms from the environments investigated. Subsequent exploration 

confirmed the activity and presence of anammox organisms across all sites (Jaeschke et 

al., 2009; Chapters III and IV). In view of this finding, it is not unreasonable to suggest 

that the diversity of anammox organisms may extend well beyond the known group of 

‘candidate’ organisms. Moreover, it is evident that future work should focus on 

expanding the current availability of molecular tools used in the detection of anammox. If 

the diversity is indeed greater than currently accepted, the development of efficient 

primers and detailed investigations of sequences, that are distantly related, but share 

common origins with anammox organisms, is essential. 

 

Variations in the potential contribution of anammox to total N2 production are apparent 

across a wide diversity of environments (Kuypers et al., 2003; Rysgaard et al., 2005; 

Schubert et al., 2006; Thamdrup and Dalsgaard, 2003; Trimmer et al., 2003; 2005). 

Details regarding the factors that regulate this process, however, are scarce. Following an 

exploration of the potential zone of anammox activity in the Medway estuary (Chapter 

III), it was evident that the relative abundance (<1-3%) and potential contribution of 

anammox to total N2 production (4-35%) were in line with previous findings (Rich et al., 

2008; Schmid et al., 2007; Trimmer et al., 2003; 2005). Direct links between the 

significance of anammox and changes in population size, however, were not clear.  

 

This is illustrated by the discrepancy between the depth specific values of ra at Site 

MBM and the relative abundance of anammox organisms. Within the first cm of the 
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sediment, the depth specific values of ra vary between 35-37%, yet the corresponding 

abundance of anammox organisms form just 1-1.7% of the microbial population. These 

results were corroborated by an earlier survey where just 2% of the microbial population 

coincided with a value of ra equal to 30% (Chapter III, Figure 8.1.2.). As a consequence, 

this deficit could point towards organisms that are phylogenetically unrelated to 

anammox, yet capable of the anammox process.  

 

Further investigation of the microbial diversity at this site was facilitated by the retrieval 

of a single sequence sharing 96% sequence similarity with ‘Scalindua sorokinni’ 

(Chapter II). A fluorescent probe was designed according to this sequence and positively 

hybridised with candidate anammox cells (Chapter II, Figure 4.3.1.). The proportion of 

additional cells, however, failed to resolve the deficit between the abundance of 

anammox organisms and high values of ra.  

 

The importance of N removal at Site MBM is substantially elevated relative to other 

stations (mean ra=28%) and coincides with the maximum rates of CO2 production 

(0.0016!mol CO2 g
-1

). Given that the rate of CO2 production is an indirect measurement 

of sediment metabolism, this finding is in line with the positive correlation between 

anammox and sediment reactivity (in estuarine sediments). In terms of the total yield of 

15
N, it was evident that whilst anammox increased as a function of CO2 production, the 

corresponding yield from denitrification decreased by a factor of 4.  This deficit can 

perhaps be attributed to DNRA.  In the presence of DNRA, anammox may benefit from 

the release of NO2
- 
(released as an intermediate of this process), where as denitrification 
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may be suppressed (as a result of competition for NO3
-
 reduced in this process). The 

potential relationship between anammox and DNRA however is largely unexplored, and 

may add to the complexity of N transformations in marine systems.   

 

In addition to the potential role of DNRA in N transformations, the presence of 

bioturbating macrofauna could potentially enhance the significance of anammox by 

extending the zone of NO3
-
 reduction and consequently increasing the availability of 

NO2
- 
(Dalsgaard et al., 2005; Henriksen et al., 1980; Nielsen et al., 2004). The greatest 

densities of Nereis diversicolor and Corophium volutator were located at Site MBM and 

therefore coincide with maximum values of ra.  The relationship between the significance 

of anammox and bioturbation, however, has not been investigated.  

 

In contrast to estuarine ecosystems, depth specific values of ra correlate with the relative 

abundance of anammox organisms in continental shelf (r
2
=0.86, P=0.024) and slope 

sediments (r
2
=0.84, P=0.011) (Chapter IV). The overall significance of anammox, 

however, is not clearly reflected by depth specific values of ra, although points towards 

the localisation of anammox activity at the sediment surface (Sites 4 and 5). The 

abundance (<1-5%) and significance (13-19%) of this process is in line with previous 

findings (Schmid et al., 2007). 

 

In conclusion, it is evident that further environmental studies are required to fully 

understand the factors which may regulate the distribution and significance of anammox 

in natural systems. This is particularly evident in the context of microbial diversity, 
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DNRA and bioturbation. Enrichment culture studies may provide some insight into the 

physiological requirements for anammox, but cannot recreate the complex dynamics that 

exist between anammox organisms and the environment.  
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