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Abstract 

Restoring river-floodplain connectivity has been proposed as an alternative management 

measure for natural flood defence through the temporary storage of floodwaters and the 

attenuation of flood peaks downstream. Whilst several studies have documented the 

associated ecological and landscape amenity values of such hydrological measures, the 

water quality benefits to the adjacent water bodies have been inadequately studied. To 

date, the focus of scientific research and natural resource management has been on the 

role of riparian buffer zones for the alleviation of agricultural diffuse nitrate pollution. 

This research investigated the potential for nitrate attenuation in a restored river-

floodplain system, the River Cole (Coleshill, England), with the aim of informing future 

restoration schemes of the best management practices for enhanced nitrate removal.  

 

Following restoration, the increased river-floodplain connectivity has encouraged 

overbank flooding of the different land use zones throughout the year. The flood pulse 

supplies the floodplain soil with river water nitrate and creates the necessary anaerobic 

conditions for the effective removal of nitrate via heterotrophic denitrification, while 

organic carbon is supplied mainly through the traditional land use management 

practices of grazing and mowing. The conservation of nitrogen via DNRA is of minimal 

importance in this lowland agricultural catchment setting, mainly due to the non-

limiting nitrate supply from the surrounding agricultural land but also the intermittent 

saturation regime that restricts the low redox conditions to the low elevation riparian 

areas. This presents the added benefit of restricting methane emission to the more 

frequently waterlogged riparian soils, while denitrification is effective across the whole 

floodplain area. Additionally, more than 90% of nitrate removal occurs in the top 30 cm 

of the soil during the flood, while the role of subsurface denitrification is restricted by 

the limited availability of organic carbon and nitrate. Based on these findings, this study 

demonstrates that, for similar catchments, the nitrate removal capacity of a floodplain 

can be assessed by the denitrification capacity of the surface soil. The assessment of the 

denitrification capacity can be undertaken inexpensively using a simple empirical model 

that requires a single microbial denitrification potential measurement, and a seasonal or 

monthly record of soil nitrate content, soil moisture, and temperature. Assessments can 

be undertaken as part of the design process to optimise nitrate removal or post 

restoration to appraise the functioning of the scheme.   
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Chapter 1:  Introduction  

 

1.1 River-floodplain ecosystems 

Floodplains are defined as ‘areas of low lying land that are subject to inundation by 

lateral overflow water from rivers with which they are associated’ (Junk and 

Welcomme, 1990). They are usually created by the deposition of sediment as the 

channel migrates laterally, while their characteristics and functions are intimately linked 

to the river type (e.g. braided, anastomosed, meandering) that flows upon them 

(Marriot, 1998). Floodplain landform assemblage has a potentially complex 

sedimentological background with three-dimensional flow dynamics (lateral flow 

between the river and/or the upland, groundwater and direct precipitation) that lead to 

high temporal and spatial heterogeneity (Anderson et al., 1996). The spatial and 

temporal heterogeneity is maintained due to a ‘disturbance’ regime related to 

hydrogeomorphic processes such as flooding, erosion, accumulation and reworking of 

sediment along the fluvial corridor (Steiger et al., 2005). These processes generate for 

example various channel patterns, channel migration, avulsion, bar and island 

formation, and floodplain deposition, whilst they also interact with vegetation dynamics 

and create the geomorphic template for floodplain habitat according to different 

physiographic contexts, valley forms and river styles (Steiger et al., 2005). The larger 

alluvial floodplains may also contain riparian zones (Figure 1.1) primarily reflecting 

species-specific responses to soil moisture/oxygenation, sediment deposition, the 

frequency and duration of inundation, and the erosive action of flooding along a lateral 

gradient (Ward et al., 2002). 

 

Large floodplains, like the narrower riparian zones of headwater streams, can also be 

defined as ecotones between terrestrial and aquatic ecosystems (Gregory et al., 1991; 

Malanson, 1993) that extend from the low-water mark to the high-water line and also 

include the terrestrial vegetation influenced by elevated groundwater tables or extreme 

floods (Naiman et al., 2000). Due to their position in the landscape, floodplains, in their 

natural state, perform a number of functions that are important from both an 

environmental and a human perspective (Tockner and Stanford, 2002).  
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Figure 1.1: Schematic diagram of the vertical and lateral structure of a river-floodplain-

aquifer system indicating also the relative positions of the riparian zone and the 

floodplain (modified from Steiger et al., 2005). 

 

 

1.2 River - floodplain functions 

The hydrological connectivity between the river and the floodplain is the single most 

important factor defining the natural state of a river-floodplain system while also 

affecting its functioning (Tockner and Stanford, 2002). It is widely recognised that the 

storage of floodwater on floodplains can reduce flood magnitude downstream (Acreman 

et al., 2003, 2007), while it has also been shown to recharge groundwater bodies 

(Bullock and Acreman, 2003). The hydrological variability of a connected river-

floodplain system, together with the vegetation cover type, determine the erosion and 

sedimentation rates on the floodplain (Steiger and Gurnell, 2003). In turn, the stream 

function is influenced by the contributing particulate organic matter and woody debris 

(Gurnell et al., 2002) that support microorganism, invertebrate and fish populations 

through the provision of food and shelter (Gregory et al., 1991, Vervier et al., 1993). 

Floodplains are among the most productive landscapes on Earth, owing to the continual 

enrichment by import and retention of nutrient-rich sediments from the headwaters and 

from lateral sources (Tockner and Stanford, 2002). Floodplains are also considered as 

centres of bio-complexity and bio-production (Amoros and Bornette, 2002). More 

species of plants and animals by far occur on floodplains than in any other landscape 

unit in most regions of the world (Tockner and Stanford, 2002). The hydrology of 
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floodplains provides the natural controls for floodplain ecology as the patchwork of 

soils with different water regimes, stabilities and nutrient contents allows plants with 

different adaptive strategies to co-exist on floodplains (Brown, 1996). In these 

environments, biotic communities relate to the dynamic interaction of fluvial and 

terrestrial processes, and comprise a continuum of dependencies on flooding frequency 

from terrestrial species requiring regular inundation, to aquatic species requiring 

occasional desiccation, as well as, often opportunistic aquatic and terrestrial taxa (Petts, 

1996). Finally, an important function of floodplains, and their associated riparian zones, 

is the improvement and maintenance of water quality by filtering sediment, nutrients, 

organic matter, and pesticides from surface and groundwater flow, through the 

processes of deposition, adsorption, plant uptake and denitrification (Peterjohn and 

Correll, 1984; Décamps, 1993; Pinay et al., 1999). The estimated worldwide value of 

the services provided by floodplains is US$ 3,920 x 109 yr-1 (Constanza et al., 1997). In 

total, floodplains contribute >25 % of all terrestrial ecosystem services, although they 

cover only 1.4 % of the land surface area (Mitsch and Gosselink, 2000). 

 

1.3 Floodplain degradation and function loss 

Despite the recent appreciation of the ecosystem services provided by floodplains, many 

rivers and streams in Northern Europe and in most developed parts of the world have 

been, and still are, markedly modified. Floodplain ‘reclamation’ (i.e. elimination) is 

much higher than for most other landscape types (Vitousek et al., 1997). The impacts on 

rivers and floodplains by humans can be of either a proximal or distal nature (WWF, 

2000). Proximal impacts include those that result directly in the modification of channel 

form or hydrology, such as channelisation, embankment, dam construction and river 

water abstraction. Distal impacts originate mainly from catchment land use and other 

activities that affect runoff and pollution.  

 

Floodplain biodiversity decline has been attributed to habitat alteration, pollution, 

competition for water, invasive species and overharvest (Abramovitz, 1996). Due to 

restricted hydrological connectivity between the river and its floodplain, the migration 

of permanent aquatic organisms such as fish or aquatic molluscs is seriously restricted 

(Buijse et al., 2002). The isolation of large rivers from their floodplains has been a 

major factor in habitat degradation. Thus channelisation, embankment, and lowering of 

the channel bed for navigation, flood control and land drainage have contributed 
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significantly to biological impoverishment not only locally but also at the landscape 

scale (Naiman and Décamps, 1990; Petts, 1996). 

 

Over the past few hundred years, urban and agricultural development had priority on 

many floodplains in Europe leading to their protection from flooding either by building 

embankments along the river or enlarging the channel’s flow capacity so that it is 

exceeded less often (Boon et al., 2000). River channelisation, although highly effective 

as a means of improving land drainage and controlling flooding, is equally 

acknowledged to bring with it a wide range of adverse environmental impacts (Biggs et 

al., 1998). One of them is the significant reduction of the capacity of floodplains to 

attenuate floods and retain water, thereby reducing water transit time and changing 

hydrographs by inducing higher peak discharges (Kronvang et al., 1998). Moreover, the 

reduction in hydrological contact between streams and their adjacent floodplains 

reduces their nutrient retention capacity significantly (Iversen et al., 1993; Holmes and 

Nielsen, 1998). The drainage of floodplains can cause hillslope water to move rapidly 

across the floodplain, minimising the potential impact of any buffering processes. 

Furthermore, the riparian zone itself also becomes a source of pollution, the more so 

given the proximity to the channel (Burt et al., 2002a).  

 

Nutrient pollution, and specifically nitrogen (N) pollution, is degrading surface water 

(Cherry et al., 2008) and groundwater (Rivett et al., 2008) quality throughout Europe. 

Human activities such as excessive fertiliser application and the combustion of fossil 

fuel has increased the availability of reactive N into the biosphere, which now exceeds 

the rate of biological nitrogen fixation in native terrestrial ecosystems (Davidson and 

Seitzinger, 2006; Galloway et al., 2008). Nitrate specifically, being a highly water 

soluble anion, persists in water bodies where it can cause eutrophication (Jacobs and 

Gilliam, 1985) and a range of associated effects, including damage to fisheries in 

coastal systems (Rabalais, 2002). Eighty percent of European surface waters exceed the 

European Commission's drinking water standard of 50 mg NO3
- L−1 (Molenat and 

Gascuel-Odoux, 2002). In England and Wales, 28 % of rivers exceed N concentration of 

30 mg NO3
- L−1 (Environment Agency, 2007a). In addition, nitrate has been found to be 

toxic to both human and animal health. When consumed in drinking water it can cause a 

condition known as methemoglobinemia linked to brain damage and death by 

suffocation in infants and asphyxiation in livestock (Prasad and Power, 1995). Nitrite 
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produced from the reduction of nitrate may also react in the stomach to form 

carcinogenic nitrosamines (Starr and Gillham, 1993; Prasad and Power, 1995). The 

above suggest that the control of nitrate in freshwater systems is important from both an 

environmental and human health perspective (Martin et al., 1999).  

 

Within the next decades, the sharp increase in human population combined with 

economic expansion will lead to greater pressures on freshwater resources (Tockner and 

Stanford, 2002). The effects of growing water consumption will also be accentuated by 

land-use changes and by changes in the flow and flood regime driven by climate change 

(IPCC, 2007). Because rivers and floodplains are among the most threatened 

ecosystems worldwide (Vitousek et al., 1997), one of the major challenges will be to 

meet increasing resource demands while conserving aquatic ecosystems and the 

ecosystem services they provide for future decades (Tockner and Stanford, 2002).  

 

1.4 River - floodplain restoration 

 Over the last few decades, in several countries in Northern Europe there has been a 

desire to re-instate the natural functioning of river-floodplain systems. The objectives of 

such river restoration have been diverse, including increased nutrient retention, 

improved summer low flows, increased floodwater storage and therefore reduced flood 

risk downstream, minimised maintenance costs and improved fishery, recreation, 

landscape and ecological value (Holmes and Nielsen, 1998).  

 

However, Buijse et al., (2002) in a review of the state of floodplain rehabilitation in 

Europe and North America concluded that relatively few cases of river-floodplain 

restoration, that include the riparian zone and the floodplain, have been documented and 

that most of the projects focus narrowly on permanent aquatic habitats.  

 

However, due to the influences of the EU Common Agricultural Policy in intensifying 

food production, and then its set-aside policies for agricultural land, there has been an 

increasing awareness of the value of river and watershed restoration for integrated 

catchment management (Holmes and Nielsen, 1998). More recently, the Water 

Framework Directive (WFD) and the 11 water related Directives associated with it 

provide a mechanism for the support of floodplain restoration (Blackwell and Maltby, 

2005). The WFD by taking a river basin approach acknowledges that what happens in 
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waters depends substantially on what happens on land in the catchments (Wharton and 

Gilvear, 2007). It is impossible to manage a waterway without sympathetic management 

of the land, though almost all previous legislation had ignored this and was directed 

largely within the bounds of the wetted perimeter (Moss, 2008). The importance of 

managing water and land together is being increasingly recognised and articulated, for 

the purpose of flood and coastal erosion risk management (Defra, 2004), but also by 

integrating the different aspects of water policy (water quality, water resources and 

flood management) (Defra, 2002). For example, combined river-floodplain management 

can benefit flood storage, aquifer recharge, water quality, low flow water demand and 

biodiversity (Wharton and Gilvear, 2007). 

 

The majority of floodplain restoration projects so far, have had as main target to 

increase the flood storage capacity of the floodplain, providing in this way sustainable, 

inexpensive flood defence and as a side effect ecological benefits for the floodplain, in 

terms of increased biodiversity. This is documented in the 14 case studies of floodplain 

restoration presented as part of the EcoFlood Guidelines by Blackwell and Maltby 

(2005) and in a recent compilation of wetland restoration studies by Acreman et al. 

(2007).   

 

There are numerous studies documenting the ecological effects of river restoration for 

macrophytes (Biggs et al., 1998; Claassen, 2000; Clarke and Wharton, 2000), 

macroinvertebrates (Biggs et al., 1998; Friberg et al., 1998; Harrison et al., 2004) and 

fisheries (Kelly et al., 1998; Pretty et al., 2003). Fewer studies refer to ecological 

restoration of the actual restored floodplain (Bissels et al., 2004). Most studies on the 

conditions needed for sustainable ecological development of floodplains have focused 

on hydrological and geomorphological rather than biogeochemical issues (including 

nutrient availability and limitation). Lamers et al. (2006) review the biogeochemical 

constraints on the successful ecological restoration of floodplains and conclude that N, 

P and toxic contaminants from heavily fertilised floodplains can impose serious 

problems in achieving high ecological targets in restored floodplain wetlands. 

Therefore, biogeochemical knowledge is a prerequisite for successful ecological 

rehabilitation, ensuring that space for the river also implies space for ecologically sound 

floodplains. 

 



 35 

Very few floodplain restoration projects have had as a main target the increase of 

nutrient retention capacity of the floodplain. Only three out of the 14 case studies 

presented in Blackwell and Maltby (2005) had as a key target the enhancement of water 

quality through nutrient retention on the floodplain. Two of the three projects were in 

Denmark (Hoffmann et al., 1998a and 1998b; Hansen, 2003), where in 1998 a national 

programme for the restoration of freshwater wetlands was initiated with the purpose of 

reducing N-load to downstream recipients (Hoffmann and Baattrup-Pedersen, 2007). 

Other countries in Europe have recently added as an objective the improvement of water 

quality in flood retention areas (e.g. polders in the Upper Rhine), but these projects are 

still at the planning or the construction stage (Brettar et al., 2002).  

 

It should be acknowledged that river-floodplain restoration and rehabilitation are long-

term undertakings. The inherent complexity of floodplain ecosystems and our limited 

scientific understanding of their spatio-temporal dynamics significantly constrain 

planning (Buijse et al., 2002). Of all the political, economic and technical constraints on 

floodplain restoration, perhaps the most significant is the lack of scientific knowledge 

(Brookes, 1996). A handful of studies in large floodplains of European rivers (Tockner 

et al., 1999; Olde Venterink et al., 2003; Van der Lee et al., 2004) have provided 

evidence that nutrient in general and specifically nitrogen removal is possible via a 

number of pathways, while very few studies have actually evaluated those pathways in 

restored floodplains (Hoffmann et al., 1998a; Sheibley et al., 2006; Orr et al., 2007).  

 

There is therefore a need for further scientific evidence to elucidate the effect of the 

increased hydrological connectivity in restored river-floodplain systems on the spatial 

and temporal efficiency of the biogeochemical cycling of nutrients with the aim of 

informing the design of floodplain restoration projects for maximising N, P and 

sediment retention. 
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Chapter 2:  Literature Review  

 

2.1 Introduction 

Hydrologic connectivity, a key process in riverine floodplains, refers to water-mediated 

transfer of energy, matter and organisms within or among elements of riverine corridors 

(Tockner and Stanford, 2002). Inundation of floodplains is a complex phenomenon 

caused by different water sources via multiple pathways (Tockner and Stanford, 2002). 

These pathways together with the flood hydroperiod (i.e. flood duration, frequency and 

magnitude) largely control the transfer of nutrients, and specifically nitrogen, on the 

floodplain (Pinay et al., 2002). Subsequently, several mechanisms can affect the 

transformation of N-species (Cirmo and McDonnell, 1997), while the relative 

importance of each mechanism will determine the final fate of N, that is whether it will 

be permanently removed or re-cycled in the floodplain, and thus the effectiveness of the 

restored floodplain as a N sink contributing to the improvement of water quality. 

 

This literature review describes the various hydrological mechanisms likely to influence 

the supply and transformation of nitrate in a re-connected temperate floodplain. 

Moreover, it gives an overview of the possible processes of nitrate attenuation, their 

controlling factors and the reasons for their spatial and temporal variability, while 

discriminating between those processes that result in the permanent removal of nitrate 

from the system and those that re-cycle nitrate through its different forms. Finally, it 

provides the rationale for the development of a decision support tool aimed at the 

evaluation of candidate areas for floodplain restoration, at the landscape scale, with 

respect to their nitrate removal capacity and/or the assessment of the ability of re-

connected floodplains to effectively remove nitrate. This chapter concludes with the 

presentation of the aim and objectives of the study.  
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2.2 Hydrological connectivity between the river and the floodplain 

Several researchers have emphasised the importance of hydrological controls over the 

biogeochemical functions of floodplains and riparian zones (Hill, 1996; Cirmo and 

McDonnell 1997; Burt, 2005). The ability of a floodplain to attenuate nitrate depends 

fundamentally on the hydrological properties of the floodplain sediments. Permeable 

alluvium favours subsurface flow, providing the opportunity for interaction between 

water and sediment. Impermeable alluvium tends to deflect influent groundwater 

through aquifers below the floodplain or across the floodplain surface; in either case, the 

attenuation capacity of the floodplain is greatly reduced (Burt, 1997). There is the need, 

therefore, to establish the hydrological conditions under which particular nitrate 

attenuation processes can operate effectively. The precise pathway taken by water 

draining from farmland or inundating the banks of the river will determine whether that 

water is resident within the floodplain system for a sufficiently long period of time to 

allow internal processes to operate effectively. The hydrological pathways govern not 

only the flux of sediment and nutrients into and across the floodplain but may also be 

responsible for the concurrent transport of substrates required for their effective removal 

or transformation (Burt and Haycock, 1996). 

 

The majority of floodplain hydrology studies have concentrated on hillslope runoff 

processes in steep headwater catchments (Burt et al., 2002b) without considerable 

attention being paid to wide, low-angle floodplains, of higher stream order, where 

drainage from surrounding slopes, and also overbank flows, may be expected to 

particularly favour the development of extensive areas of surface saturation (Burt and 

Haycock, 1996) and thus affect the biogeochemical transformations of nitrate.  

 

Large parts of agricultural land in southern England, and also in other North and Central 

European countries, are found on medium to low permeability clay-silt alluvia 

bordering streams through gently sloping floodplains. There is therefore the need to 

research the specific hydrological mechanisms operating under these topographical and 

lithological conditions that can in turn directly affect their nitrate attenuation capacity. 

Therefore, this literature review focuses on the specific conditions that are expected to 

influence the groundwater (GW) - surface water (SW) interactions in the landscape 

setting of a temperate lowland medium-permeability floodplain.  
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2.2.1 Topographical and lithological controls on surface water - groundwater 

interactions 

The hydrological exchange between the GW and the SW at the landscape scale is a 

function of: 1) the distribution and magnitudes of hydraulic conductivities associated 

with the alluvial-plain sediments; 2) the relation of stream stage to the adjacent 

groundwater level; and 3) the geometry and position of the stream channel within the 

alluvial plain (Woessner, 2000). The direction of the exchange processes varies with 

hydraulic head, whereas flow (volume/unit time) depends on sediment hydraulic 

conductivity (Sophocleous, 2002). 

 

Recent attention has focused on the important role that subsurface lithology and 

stratigraphy play in controlling nutrient cycling and transport in riparian zones (Devito 

et al. 2000; Hill et al. 2004; Schilling and Jacobson, 2008). Because groundwater 

flowpaths in valleys are often complex with highly conductive sand and gravel lenses 

interspersed with less permeable silts, clays and peats (Haycock and Burt 1993; 

Simpkins et al. 2002; Hill et al. 2004), groundwater residence times are strongly 

affected by the stratigraphy of floodplains and riparian zones (Cirmo and McDonell, 

1997).  

 

Alluvia that are too permeable may not be able to sustain high water tables for long 

periods, while too impermeable alluvia allow little or no flow through and thus 

minimise the opportunity for nitrate removal (Burt and Pinay, 2005). A confining layer 

at a shallow depth increases the interaction of subsurface flow with vegetation root 

systems and surface soils and enhances the potential of the riparian zone for nitrate 

removal (Hill, 1996). In contrast, gravel layers in the soil profile beneath less permeable 

sediments can be zones of preferential subsurface flow across the riparian zone (Burt et 

al., 1999) and thus hillslope runoff may be directed straight to the stream with little 

chance of interacting with the sediments of the riparian zone (Burt, 2005). Moreover, 

gravel lenses underlying less permeable layers enhance the drainage of these layers by 

stronger downward gradients of GW recharge, providing they are connected to higher 

permeability zones (Burt and Haycock, 1996). 

 

Vidon and Hill (2004b) studied the effect of landscape position and subsurface lithology 

on the water table dynamics in eight riparian zones across Ontario in Canada. They 
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concluded that a minimum depth of two meters for permeable sediments above a 

confining layer was adequate to retain the hydrological connection with an upland 

aquifer throughout the year. Moreover, in gently sloping riparian zones (slope <5 %) the 

GW table was primarily controlled by the stream stage, and under baseflow conditions 

flow reversal from the stream towards the riparian zone was observed. On the other 

hand, in riparian zones with steep topography (slope >15 %) a continuous hillslope 

discharge through the riparian zone towards the river was predominant throughout the 

year.  

 

Schilling and Jacobson (2008) related the water table fluctuations in the riparian zone of 

an incised stream to subsurface lithology and land management. They showed that the 

nitrate-rich sediments of the recent Holocene alluvium were a potential nitrate source to 

the stream, due to the low GW table level in the near stream zone affected by the low 

stage of the incised stream (Schilling et al., 2006) and the prevalence of aerobic soils 

promoting ammonium nitrification. In contrast, in a tributary of the River Seine, where 

stage is regulated and kept level throughout the year, a shallow water table is 

maintained at the near stream zone promoting nitrate removal mainly via denitrification 

(Curie et al., 2009).  Sabater et al. (2003) showed that nitrate reduction is possible in 

riparian zones in a wide European climatic range and the influence of vegetation cover 

is minimal compared to the effect of the water table level creating the necessary 

conditions for denitrification to occur.  

 

Therefore, soils of medium hydraulic conductivity in combination with the appropriate 

geomorphology (i.e. low surface gradient encouraging high water tables) can increase 

the residence time of water in the floodplain creating more favourable conditions for 

nitrate removal.  

 

2.2.2 Hydrological mechanisms of surface water  - groundwater interactions 

Catchment hydrologic dynamics have traditionally been described by combinations of 

Hortonian infiltration excess overland flow (Horton, 1933), saturation excess overland 

flow (Dunne and Black, 1970), near-stream groundwater ridging (Sklash and Farvolden, 

1979), shallow near-surface flow through more transmissive soil layers (Hewlett and 

Hibbert, 1967), and macropore flow (McDonnell, 1990). For N transport, it is important 

to distinguish between these possible flowpaths and their link to the near-stream zone, 
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as the different mechanisms may result in significant differences in the water residence 

time and loading of N that can in turn affect the efficiency of nitrate attenuation 

processes (Cirmo and McDonnell, 1997). Additionally, hydrologic functions of near-

stream unsaturated zones include flood storage and peak flow moderation (Daniel, 

1981), discharge or exfiltration (and occasionally recharge) to local surface waters, and 

maintenance/moderation of baseflow (Novitzki, 1979). The response of any particular 

catchment may be dominated by a single mechanism or by a combination of 

mechanisms, depending on the magnitude of the rainfall event, the topography of the 

catchment, the antecedent soil-moisture conditions, and/or the heterogeneity in soil 

hydraulic properties (Sophocleous, 2002). 

 

2.2.2.1 Infiltration Excess Overland Flow (IEOF) 

Regarding the surface runoff generation mechanisms during a storm event, the concept 

that dominated for many years was the Infiltration Excess Overland Flow (IEOF) by 

Horton (1933). When rainfall intensity exceeds the infiltration capacity of the soil, the 

excess begins to fill up surface depressions; once these are full, the excess overflows 

downslope and surface runoff begins (Figure 2.1A). The infiltration capacity of the soil 

decreases asymptotically with time as the upper part of the soil becomes progressively 

saturated from the surface down. Changes in the soil surface (e.g. swelling of clay 

particles, in-washing of fine particles into pores, compaction by rainbeat) may also 

reduce infiltration capacity during the course of a storm (Burt and Haycock, 1996). 

IEOF can generate large flood peaks and is often associated with soil erosion. However, 

since its residence time is short and there is little interaction with the soil, the solute 

content of IEOF is usually low and it resembles the rainfall characteristics (Burt and 

Pinay, 2005).  

 

Ideal conditions for the generation of IEOF are found where bare soil is exposed to 

raindrop impact, as in arid and semi-arid areas, since in most cases, vegetation cover 

increases the soil infiltration capacity and restricts IEOF only in very intense storms 

(Ward and Robinson, 2000). Few riparian buffer zone studies have related surface 

runoff generation by IEOF to the nutrient transport to near-stream zones and the 

streamflow. The frequency of IEOF occurrence increased as a result of deforestation 

and pasture establishment with the subsequent effect of surface soil compaction by 

cattle in a hillslope pasture of the south-western Brazilian Amazon. Although 
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subsurface stormflow dominated annually, storms with rainfall intensity >5 mm h-1 

produced IEOF, which was responsible for increased export of phosphorus from 

upslope (Biggs et al., 2006). A eucalyptus riparian buffer in Western Australia produced 

IEOF during storm events throughout the year due to crusting of surface soils, while an 

adjacent grass buffer zone displayed only subsurface runoff and saturation excess 

overland flow during the winter months, when the water table was near the surface. 

Therefore, these two types of buffer zones in the same catchment were at the same time 

sinks and sources of runoff, while the high hydraulic conductivity of the subsurface 

sediments did not allow adequate residence time for nutrient transformations 

(McKergow et al., 2006). Land use zones in a temperate floodplain setting where 

grazing activity occurs may potentially become sources of IEOF. However, due to the 

existence of permanent pasture throughout the year, the infiltration capacity of the soil 

would be expected to be high and therefore minimise the relative role of IEOF.  

 

2.2.2.2 Saturation Excess Overland Flow (SEOF) 

When the rainfall intensity is less than the infiltration capacity, falling precipitation 

infiltrates the subsurface causing the water table to rise to the ground surface, first in the 

shallow water table areas immediately adjacent to stream channels, and subsequently in 

the lower valley slopes (Ward and Robinson, 2000). In these surface-saturated areas 

infiltration capacity is zero, so that the additional precipitation causes the generation of 

saturation excess overland flow (Dunne and Black, 1970). SEOF usually is a mixture of 

‘return flow’, exfiltrating ‘old’ soil water, and ‘direct runoff’, ‘new’ rainfall unable to 

infiltrate the saturated surface (Burt and Pinay, 2005), as shown in Figure 2.1B.   

 

The rapid water table rise in near stream zones has also been attributed to the 

conversion of a tension-saturated zone, or capillary fringe, overlying the pre-storm 

water table to a zone of positive potentials. When even a small amount of water 

percolates to the top of this zone, the menisci that maintain the tension saturation are 

obliterated and the pressure state of the water is immediately changed from negative to 

positive (Gillham, 1984). If the water table and capillary fringe are close to the soil 

surface, then only small amounts of rainfall are necessary to saturate the soil profile 

completely (Sophocleous, 2002). The thickness of the capillary fringe zone is inversely 

proportional to median particle size, and can be affected by porosity, permeability and 

particle size distribution (Cirmo and McDonnell, 1997). 



 42 

 

 

  

 

 

 

 

 

 

Figure 2.1: Mechanisms of surface runoff production. P; Precipitation, f; Infiltration, 

of; Overland flow, rf; Return flow, WT; Water table (adapted from Sophocleous, 2002). 

 
 

SEOF generation has been rarely studied in temperate floodplains, while most SEOF 

studies refer to tropical or semi-arid climatic conditions. SEOF occurred at roughly 

equal proportions to IEOF in a pasture hillslope of the southwestern Brazilian Amazon 

during storm events and it was related to the export of N and K in the near stream zone 

(Biggs et al., 2006). SEOF was observed together with subsurface runoff during winter 

storms, when the water table was near the surface, in a deciduous forest and eucalyptus 

riparian buffer zones in western Australia (McKergow et al., 2006). In a semi-arid, 

cultivated, Mediterranean environment, SEOF was observed to occur at the near-stream 

edge of the valley and in surface depressions (Ribolzi et al., 2000). Finally, the 

contribution of GW to the flood peak hydrograph through the generation of SEOF at the 

near stream zone in a steep headwater riparian zone in Germany was shown to be >80 

% (Wenninger et al., 2004). The above studies indicate that SEOF can be of importance 

in a variety of climatic gradients but it is mostly localised in near stream and depression 

zones with high water table. This mechanism may be of importance in a temperate 

floodplain for creating surface saturation conditions especially in surface micro-

depressions in areas of low angle relief. This in turn can affect nitrate attenuation 

processes by creating spatial activity ‘hotspots’ in those surface depressions away from 

the stream margin.  

 

 

 

A B 
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2.2.2.3 Subsurface stormflow 

It is difficult to discriminate between SEOF and subsurface stormflow since both 

depend to a large extent on the generation of flow through the soil profile. Subsurface 

stormflow will be most important where steep slopes with permeable soils are 

contiguous with the channel (Anderson and Burt, 1990). Although subsurface flow 

through porous media is usually sluggish, Beven (1989) identifies three mechanisms to 

account for fast subsurface contributions to the storm hydrograph: 1) translatory flow; 

2) macropore flow; and 3) groundwater ridging. Translatory flow (Hewlett and Hibbert, 

1967) or piston flow develops when, according to the kinematic theory, pressure waves, 

caused by infiltrating precipitation, push stored water in hillslope hollows downslope. 

Rapid subsurface responses to storm inputs may also be the result of fast flow through 

larger non-capillary soil pores, or macropores (McDonnell, 1990). Macropore flow is 

particularly important in cracked clay soils (Heppell et al., 2000) and in forest soils 

(McGlynn et al., 2002). Macropore flow can occur either when the soil matrix is 

saturated or after surface ponding (Anderson and Burt, 1990). The formation of a 

saturated groundwater wedge (Sklash and Farvolden, 1979) in low slopes at the near 

stream zone has been observed to contribute to stormflow at the initial rising limb of an 

event. As the event proceeds, the saturated wedge advances upslope on the hillslope 

forming a groundwater ridge, which upon recession discharges to the near stream zone 

maintaining a higher water table at the low slope areas (Burt and Pinay, 2005). 

Although subsurface stormflow is not expected to be of great significance in the low 

angled floodplains of mid-catchment locations (as opposed to steep hillslope 

landscapes) its importance may vary depending on the subsurface lithology. Lateral 

subsurface flow will be one control on the residence time of the storm water in the 

subsurface, thus increasing or decreasing the potential for further nitrate transformations 

below the soil surface.  

 

2.2.2.4 Bank storage and reversed groundwater ridge 

In gently sloping, wide floodplains, surface inundation is likely to remain for longer 

periods (Bates et al., 2000); in these areas, channel-floodplain interactions are perhaps 

more important than the hillslope-floodplain linkages (Pinay et al., 1998). Under low 

precipitation conditions, baseflow in many streams is maintained via groundwater 

discharge from the adjacent floodplain. However, during high precipitation, the stream 

stage with the contribution of falling rainfall, surface and subsurface runoff, increases 
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and the river loses water to bank infiltration, which reduces the flood level and 

recharges the aquifer. The volume of this bank storage depends on duration, height, and 

shape of the flood hydrograph, as well as on the transmissivity and storage capacity of 

the aquifer (Sophocleous, 2002). Figure 2.2 illustrates the bank storage process as 

described by Dingman (1994). In (a) baseflow conditions are maintained through 

groundwater discharge from the floodplain. In (b) a flood peak occurs and the river 

stage rises above the GW table reversing the hydraulic gradient from the river to the 

floodplain. In (c) the flood peak passes and while the river stage declines, SW-GW 

interaction is maintained for a short time in both directions but ultimately a streamward 

gradient is re-established.  

 

 

Figure 2.2: The bank storage process. For details see text. (after Burt et al., 2002b 

based in part on Dingman, 1994). 

 

 

A number of studies (e.g. Pinder and Sauer, 1971; Hunt, 1990) have shown that the 

infiltration of river water during bank storage can result in attenuation of the 

downstream flood peak. However, until recently very few studies were concerned with 

the detailed groundwater table fluctuation in relation to river stage during flood events 

and its effect on the conditions for nutrient biogeochemical transformations. Near 

stream bank storage has been observed during high flow conditions in an incised stream 
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in Iowa (Schilling et al., 2004, 2006) contributing to the shallow water table near the 

break in slope. However, during low flow, channel incision lowered the water table in 

the near stream zone creating a potential nitrate source area to the stream. In contrast, 

bank storage and shallow water table conditions were maintained throughout the year 

between a stage regulated tributary of the River Seine and a ditch running parallel to the 

tributary which also collected hillslope runoff, thus creating an effective nitrate sink 

(Curie et al., 2009). 

 

Detailed modelling and field studies in a lowland floodplain of the River Severn, UK, 

(Stewart et al., 1999; Bates et al., 2000; Burt et al., 2002b and Jung et al., 2004) have 

produced evidence that a reversed groundwater ridge with direction from the river 

across the floodplain towards the base of the hillslope is produced during in-bank and 

out-of-bank events effectively ‘damming’ hillslope contributions of subsurface 

stormflow to the near-stream zone. The flow velocities observed from hydrometric data 

could not have been explained by Darcian one-dimensional GW flow due to the low 

saturated hydraulic conductivities of the floodplain sediments. Instead Jung et al. (2004) 

suggested that the almost simultaneous increase of the water table with the rising river, 

at about the same rate, could only be explained by a kinematic wave similar to 

translatory or ‘piston’ flow (Anderson and Burt, 1982) that pushes ‘old’ floodplain 

water at a perpendicular direction away from the river towards the floodplain. During 

the recession limb of the flood, the hydraulic gradient reverses from the floodplain to 

the river and therefore the hillslope-floodplain connection is re-established contributing 

further to the maintenance of a high water table in the near-stream zone during the 

discharge period. Furthermore, the work by Jung et al. (2004) showed that the 

accumulation of storm runoff at a hillslope hollow during the reverse GW ridge induced 

down-valley flow, parallel to the stream, highlighting the need for more complex three-

dimensional modelling of floodplain-hydrology dynamics rather than the traditional 2D 

approach (Bates et al., 2000). 

 

Over the last decade, the occurrence of a reversed groundwater ridge has been shown in: 

lowland semi-arid riparian zones during high flow conditions (Martí et al., 2000; 

Butturini, et al., 2003; Lamontagne et al., 2005; Rassam et al., 2006; Schilling et al., 

2006); in temperate riparian zones throughout the year at baseflow conditions (Duval 

and Hill, 2006; Hill and Duval, 2009); or during low flow conditions when the water 
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table on the floodplain drops below the river stage (Burt et al., 2002a; Vidon and Hill, 

2004b). The relatively widespread occurrence of the reversed GW ridge mechanism 

seems to support the proposition that the limits of the hyporheic zone, defined as a 

continuum containing water from both the groundwater table and the river channel 

(Jones and Holmes, 1986), may extend up to the hillslope break during flood events 

(Burt et al., 2002b).  

 

The above studies suggest that the bank storage and/or the reversed groundwater ridge 

mechanisms can occur at various lithological and landscape settings depending mainly 

on the relative position of river stage and groundwater table heights. Furthermore, this 

mechanism can further influence subsurface nitrate attenuation by the provision of 

nitrate loading at the near stream zone and through the promotion of a higher water 

table closer to the soil surface. 

 

2.2.2.5 Overbank flooding 

River flood events, under climatic conditions conducive to flooding, are a product of the 

complex interactions between catchment character, network routing dynamics, and both 

local channel and valley hydraulics. In general, flood frequency (number of events per 

unit time) increases with reduced upstream storage attenuation of high flows and locally 

inefficient transport, whereas flood duration (length of inundation per event) increases 

when both local and catchment transport hydraulics are less efficient and result in 

longer total periods of event-flow transport (Bedient and Huber, 2002).  

 

Lewin and Hughes (1980) summarise the hydrological processes involved in the 

movement of water between a river and its floodplain and also show that these 

processes operate in a specific order as a flood rises (inundation sequence) and recedes 

(recession sequence). Rising GW and infiltration of precipitation are the first inundation 

steps, while stage rise, although sometimes delayed by bank storage, eventually creates 

overbank spilling and filling of surface depressions. As individual depressions fill up 

they amalgamate and lead to a transient (i.e. observed only during the flood) current 

occupying the whole floodplain. Recession processes operate at the same time as 

inundating ones, with the floodplain acting as part of an equilibrating throughput 

system. However, once the overbank spilling ceases, movement within the inundated 

zone declines through overbank return and discharge by ebb channels, and discrete 
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ponds remain in topographic lows to gradually shrink with the combined effect of 

infiltration and evaporation. The relative importance of the different inundation and 

recession sequence steps depends on the conductivity of the surface, defined in turn by 

the flood hydrograph characteristics and the hydraulic characteristics of the surface 

(floodplain relief and roughness). Moreover, Mertes (1997) considered the effect of 

multiple ‘local water’ sources such as, direct rainfall, tributary water, overland runoff 

and rising groundwater levels that may create flooded surfaces before bankfull 

discharge is reached. When eventually overbank flooding occurs, the river water will 

mix with the ‘local’ water according to the composition and the pressure distributions 

between the different water bodies creating a ‘perirheic’ zone.  

 

The importance of overbank flooding as the main mechanism responsible for the 

hydrological connectivity between river-floodplain that in turn influences the exchange 

processes of matter and organisms across river-floodplain gradients, was emphasized by 

the introduction of the Flood Pulse Concept (FPC) by Junk et al. (1989), for large 

tropical river-floodplain systems with predictable flood pulse of long duration under dry 

antecedent floodplain conditions, and it was recently expanded by Tockner et al. (2000) 

to include temperate floodplains.  

 

Even though different combinations of flood frequency and duration can result in highly 

distinct floodplain conditions (Baker and Wiley, 2009), most floodplain hydrology 

studies lack explicit distinction between flood frequency and flood duration, while 

floods are typically defined with respect to bank-full discharge and not necessarily 

individual floodplain surfaces (Dunne and Leopold 1978). The specific flow paths 

between SW-GW that affect the surface inundation pattern have been described in detail 

mainly for wetlands (Waddington et al., 1993; Bradley, 2002; Andersen, 2004) rather 

than lowland floodplains with intermittent surface saturation, while other studies have 

focused on the surface water recharge of alluvial aquifers (Winter, 1995).  

 

Despite the importance of overbank flooding for energy, matter and organisms 

exchange between the river and the floodplain, the detailed sequence of events during 

surface inundation has not been adequately studied in lowland temperate floodplains. 

Following river-floodplain restoration, increased frequency of overbank flooding is 

usually observed. There is therefore scope for a detailed investigation of this mechanism 
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which is expected to significantly affect the transport of nitrate and the conditions for its 

transformation in restored lowland floodplains.  

 

2.2.3 Effect of hydrological flow paths on nitrate cycling in re-connected 

floodplains and riparian zones 

The various hydrological mechanisms operating during and between flood events and 

leading to variable degrees of SW-GW interaction between hillslope, floodplain, the 

near-stream zone and the stream itself have a marked effect on the transport and 

transformation of nitrate along these flowpaths. Cirmo and McDonnell (1997) compiled 

a comprehensive review of the hydrological and biogeochemical controls on nitrate 

transport in temperate forested catchments while more recently, Burt and Pinay (2005) 

extended this approach to lowland agricultural catchments.  

 

Figure 2.3 summarises the main possible routes of event and pre-event water 

interaction, in a model lowland hillslope-floodplain setting, with respect to their likely 

effect on nitrate concentration in SW and GW. ‘New’ event water, low in nitrate 

concentration, may reach the stream quickly via direct precipitation, IEOF, SEOF or 

rapid macropore flow discharging straight to the stream (not shown in Fig. 2.3). The 

water table is rising from its ‘pre-event’ position through soil matrix, macropore flow 

and possibly the capillary fringe effect, and lateral subsurface flow begins towards the 

stream while nitrate concentration is increasing through mixing of ‘event’ and ‘pre-

event’ water and flushing of previously unsaturated soil. As the mixed source 

subsurface flow passes through the saturated near-stream zone, nitrate concentration can 

be reduced before reaching the stream, or if the near stream zone is bypassed by return 

flow it could become a source of nitrate to the stream. Additionally, the near stream 

zone could be responsible for flushing accumulated nitrate directly to the stream, 

especially during re-wetting after a dry period (Cirmo and McDonnell, 1997). 

Moreover, the near stream zone could be bypassed by rapid groundwater flow of mixed 

nitrate concentration where permeable strata are found below the floodplain alluvium 

(Burt et al., 1999). However, the conceptual model of Figure 2.3 does not include the 

effect of overbank flooding on nitrate transport and transformation, as the focus is on a 

hillslope-floodplain setting, and therefore this potentially important mechanism for 

lowland floodplains should be further investigated and subsequently added to the 

existing model. 
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Both reviews (Cirmo and McDonnell, 1997; Burt and Pinay, 2005) have emphasised the 

critical role of the near stream zone in decoupling hillslope hydrology from 

biogeochemical transformations of nitrate. The possibility and effectiveness of this 

decoupling will depend on the opportunity for mixing of different water sources at the 

zone and the residence time of the flow paths. Therefore, it is important to identify 

where within a catchment saturated near-stream zones are located (Burt and Pinay, 

2005). 

 

 

Figure 2.3: A schematic diagram of nitrate transport within a lowland hillslope-

floodplain setting (after Burt and Pinay, 2005 and references therein). Direct runoff 

means SEOF. 

 

Several studies have provided evidence of nitrate transformation along subsurface 

flowpaths in floodplains and riparian zones. Some floodplain hydrology studies have 

used Cl- as a conservative tracer in order to discriminate between nitrate dilution along 

subsurface flowpaths and biological removal, mainly via denitrification and plant 

uptake (Pinay et al., 1998; Sanchez-Perez et al., 1999; Devito et al., 2000; Clement et 

al., 2003; Butturini et al., 2003; Baker and Vervier, 2004; Hefting et al., 2006a; 

Schilling et al., 2006; Curie et al., 2009). This is because Cl- is considered biologically 

inactive with regards to processes occurring in water bodies (Hill et al., 1998). When 

there is lack of variability in Cl- concentrations along a groundwater flow path, but the 

ratio NO3
-:Cl- displays similar variability as the NO3

- concentration, then processes 
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other than physical mixing or dilution are likely to be responsible for nitrate reduction 

(Schilling et al., 2006). 

 

Nitrate removal rates have been very variable across different riparian floodplain 

settings and various hydrological flow paths. In some cases physical mixing was found 

to be more important than biological removal, as for example in Pinay et al. (1998), 

where extensive mixing between river water and groundwater, in a large floodplain of 

the Garonne River, was found responsible for most of the nitrate reduction while 

denitrification accounted only for 10 - 25 % of the reduction. Moreover, in the Ill 

floodplain (eastern France), 95 % of nitrate was reduced by dilution along the 

groundwater flowpath, while very little reduction was observed in the streambed 

(Sanchez-Perez et al., 1999).  

 

On the other hand, several floodplain studies have documented effective nitrate removal 

along SW-GW flowpaths that could not have been explained only by mixing and 

dilution of different nitrate sources, and therefore the importance of different biological 

removal mechanisms was highlighted. The relative importance between the different 

mechanisms was variable and depended on the specific conditions of each landscape. 

For example, in the Rhine floodplain (eastern France) nitrate inputs by river floods were 

reduced by 73 % in the shallow groundwater of the forested ecosystem, and only by 37 

% in the meadow, highlighting the higher uptake efficiency of woody species compared 

to herbaceous vegetation (Takatert et al., 1999). Exactly the opposite was observed by 

Hefting et al. (2006a) in the Netherlands, where the grassland buffer zone removed 63 

% of the incoming nitrate load, while the forested buffer, showing symptoms of nitrate 

saturation, removed only 38 % of the nitrate load. However, it should be noted that 

floodplain type, vegetation species and differences in nitrate loading, can also affect the 

uptake efficiency in both grassland and forested type buffer zones. In the study of 

Clément et al. (2003) nitrate reduction ranged between 76 and 99 % and concentrated 

within the first 10 m from the hillslope boundary, limiting nitrate supply to the near-

stream zone. Nitrate reduction was more efficient in winter when the vegetation was 

dormant and the mixing was minimum, indicating high denitrification rates.  

 

To summarise, the ability of a floodplain to attenuate nitrate depends fundamentally on 

the hydrological properties of the floodplain sediments and the hydrological pathways 
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that govern not only the flux of nitrate and organic carbon into and across the floodplain 

but also the necessary conditions for effective nitrate attenuation. Medium permeability 

alluvia, where saturated hydraulic conductivity ranges between 10-5 - 10-2 cm s-1 (Bear, 

1972), in gently sloping floodplains, allow adequate water residence times for nitrate 

attenuation processes to occur, while the occurrence of high permeability subsurface 

layers (saturated hydraulic conductivity >1 cm s-1) may constitute conduits of fast 

subsurface flow limiting the interaction of GW nitrate with subsurface sediments. 

Hydrological mechanisms of surface runoff generation such as the IEOF and the SEOF, 

generally have little influence in nitrate transport, but can create localised surface 

saturation conditions, thus promoting nitrate attenuation processes, before the onset of 

more widespread inundation by overbank flooding. Subsurface flows in the form of 

stormflow and groundwater ridge, although they may be limited in their extent by low 

hydraulic conductivities, can contribute to nitrate loading especially in near-stream 

sediments. They can also maintain higher water tables in the floodplain, hence giving 

the opportunity for subsurface nitrate attenuation to occur especially between overbank 

flood events. Finally, overbank flooding, especially in intermittently saturated lowland 

floodplains, is expected to constitute the main mechanism of nitrate transport into and 

across the floodplain, while it also influences the conditions (i.e. redox potential, supply 

of necessary substrates) for the occurrence of nitrate attenuation processes.    

 

Detailed studies of the hydrological event sequence during flooding in lowland 

floodplains are generally lacking. The objective of the present study is to identify the 

main hydrological mechanisms operating during and between the surface inundation of 

a re-connected floodplain and evaluate their relative importance with respect to their 

contribution to nitrate transport into and across the floodplain and to the creation of the 

necessary conditions for effective nitrate attenuation. Moreover, the spatial and 

temporal pattern of occurrence of the different mechanisms is expected to significantly 

influence the partitioning of nitrate attenuation between different processes as well as 

their relative efficiency.  
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2.3   Nitrate attenuation in re-connected floodplains  

In the previous section, the role of hydrological flowpaths between river-floodplain for 

the transport of nitrate (Pinay et al., 2002) and its subsequent transformation (Hill, 

1996) was presented. Moreover, several studies where nitrate removal along SW-GW 

flowpaths could not be explained only by mixing and dilution of different nitrate 

sources have highlighted the importance of biological nitrate attenuation along these 

flowpaths. The focus, therefore, of the present section is to describe the different 

biological mechanisms involved in nitrate attenuation and identify the  main controlling 

factors for their spatial and temporal variability in the context of temperate agricultural 

re-connected floodplains and riparian zones.  

 

Nitrate attenuation mechanisms 

Three possible mechanisms have been cited to explain the biological attenuation of 

nitrate in floodplains and riparian zones: 1) vegetation uptake; 2) microbial 

immobilisation; and 3) microbial heterotrophic denitrification (Martin et al., 1999). 

Moreover, the chemoautotrophic reduction of nitrate to N2, the dissimilatory reduction 

of nitrate to ammonium (DNRA) and the anaerobic oxidation of ammonium with nitrite 

to N2 (Anammox) have also been shown to occur in a variety of ecosystems, but their 

role in floodplain nitrate attenuation has not yet been established (Burgin and Hamilton, 

2007). The relative position of the three main biological attenuation mechanisms and 

also that of DNRA in the nitrogen cycle of floodplain soils is shown in Figure 2.4. 

 

2.3.1 Vegetation uptake 

Many studies have shown significant N uptake by plants in riparian floodplains 

(Peterjohn and Correll, 1984; Groffman et al., 1992; Osborne and Kovacic, 1993; 

Haycock and Pinay, 1993; Zhu and Ehrenfeld, 2000; Hefting et al., 2005). The 

morphological and physiological adaptations of the flood-tolerant species found in 

riparian floodplains frequently facilitate N uptake under low-oxygen conditions. 

However, the importance of plants as N filters may be reduced by restricted 

accessibility to water, when the water table is below the root zone or during storms, 

when concentrated surface flow and macropore-dominated percolation to deeper strata 

may restrict water availability to plants (Naiman and Décamps, 1997).  
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Figure 2.4: Nitrogen transformations in the nitrogen cycle in soils (adapted from Martin 

et al., 1999). 

 

 

The contribution of different vegetation types (forest versus herbaceous) to N retention 

has also been extensively studied, but the results have not been consistent. A number of 

studies have shown that forest cover is more effective in nitrate removal due to higher 

total biomass, (semi-) permanent storage of nutrients in wood and a deeper root system 

(Cooper, 1990; Osborne and Kovacic, 1993; Haycock and Pinay, 1993; Hefting et al., 

2005). Opposite results, i.e. higher nitrate removal efficiencies in grassland, were found 

by Groffman et al. (1991), Schnabel et al. (1996), Kuusemets et al., (2001) and Mankin 

et al. (2007). Finally some studies have indicated no significant difference in N removal 

between vegetation types (Vought et al., 1994; Lyons et al., 2000; Syversen, 2002; 

Sabater et al., 2003). Moreover, nitrate uptake by vegetation varies seasonally in its 

importance. Haycock and Pinay (1993) have inferred that vegetation uptake is the major 

retention mechanism during summer, because this is the season of maximum plant 
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growth and denitrification may be less important because soils become more aerated as 

the water table declines. However, this may not be necessarily true in regions where 

winters are mild (Hill, 1996) or during summer floods that can cause increased 

denitrification in conjunction with the higher temperature (Banach et al., 2009).  

 

Although there is no general consensus (Hefting et al., 2005), most studies in riparian 

floodplains have indicated that denitrification is probably more important than plant 

uptake for nitrate removal (Verchot et al., 1997; Schade et al., 2001). This is because 

plants only temporarily retain nitrate, which returns to the available pool once 

mineralised, whereas denitrification permanently removes nitrate from the soil to the 

atmosphere. However, the relative importance of vegetation in N mitigation in 

floodplains may increase with biomass harvesting, e.g. mowing or logging (Hefting et 

al., 2005). Furthermore, the presence of plants in riparian zones and floodplains has 

several indirect benefits for denitrification; plant litter provides habitat for microbe 

colonisation (Fennessy and Cronk, 1997), while root exudates together with dead leaves 

and roots are sources of organic carbon used in denitrification (Bastviken et al., 2007; 

Frank and Groffman, 2009). The presence of vegetation in areas of saturated soils 

significantly increases oxygen in the soil through the formation of oxidised rhizospheres 

(Frank and Groffman, 2009), where nitrification can take place and be directly coupled 

to denitrification (Seitzinger et al., 2006). Finally, vegetation tends to improve soil 

structure and leads to higher soil infiltration capacity (Vought et al., 1994). Nitrate 

retention via plant uptake is not considered per se in the present study; however the 

indirect effect of vegetation through land use management on affecting the spatial 

variability of denitrification is taken into account.  

 

2.3.2 Microbial immobilisation 

Although many heterotrophic microbes can assimilate nitrate for growth, it appears that 

in the presence of ammonium, the latter compound is taken up preferentially (Hill, 

1996). However, studies using the 15N-isotope dilution method suggest that 

considerable microbial assimilation of NO3
- occurs in agricultural and forest soils 

(Davidson et al., 1992). Microbial assimilation of NO3
- probably occurs at microsites 

where NH4
+ is absent within the heterogeneous soil environment (Rice and Tiedje, 

1989). Ambus et al. (1992) showed that in intact soil cores from a riparian fen soil that 

were low in ammonium, microbial assimilation of nitrate probably accounted for up to 
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20 % of the removed nitrate, while where NH4
+ was present, the assimilation  of nitrate 

was negligible. However, in an N-limited forest soil in Norway, nitrate immobilisation 

accounted for more than 85 % of nitrate removal as the microbial reduction of nitrate 

was limited probably by the availability of N (Bengtsson and Bergwall, 2000). As litter 

decomposition predominantly begins with plant senescence in autumn, the 

immobilization and retention of N in the litter fraction (decomposers) is most important 

during the dormant (winter) period. Moreover, low temperatures in this period limit N 

removal by denitrification activity (Maag et al., 1997) and hence, in winter, 

immobilization may have a more significant role in N retention in floodplains (Hefting 

et al., 2005). However, in temperate agricultural floodplains with N-rich soils, even if 

microbial assimilation of nitrate occurs, it will constitute a small fraction of the organic 

N pool that due to the short life cycle of the bacteria is rapidly re-mineralised and 

becomes available for further nitrification-denitrification cycles (Rivett et al., 2008). 

 

2.3.3 Heterotrophic denitrification 

Heterotrophic denitrification, as classically defined, is the microbial oxidation of 

organic matter coupled to the reduction of ionic nitrogen oxides (nitrate, NO3
- and 

nitrite, NO2
-) to the gaseous oxides (nitric oxide, NO and nitrous oxide, N2O), which 

may themselves be further reduced to dinitrogen (N2) (Knowles, 1982). The general 

equation (2.1) if glucose acts as electron donor is (Wetzel, 2001): 

 

C6H12O6 + 4NO3
- → 6CO2 + 6H2O + 2N2↑                             (2.1) 

 

It is a heterotrophic process of anaerobic respiration that occurs when respiratory 

denitrifiers use ionic nitrogen oxides to gain energy by coupling their reduction to 

electron transport phosphoryliation (Knowles, 1982). The electron-accepting capacity of 

denitrification is shown by equation (2.2) according to Tiedje et al. (1982): 

 

            2NO3
- + 10e- + 12H+ → N2 + 6H2O                                        (2.2) 

 

Denitrification can accept five electrons (e-) per mole of nitrate reduced. Nearly all 

respiratory denitrifiers are facultative anaerobs that prefer to use oxygen (O2) as a 

terminal electron acceptor, and in the presence of O2, synthesis and activity of 

denitrifying enzymes is repressed (Tiedje, 1988). Denitrification has an endpoint at 
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nitrogen gas, in which the triple bond between the two N atoms makes it extremely 

stable and unreactive (Davidson and Seitzinger, 2006). Therefore, denitrification is 

considered as the most desirable nitrate reduction mechanism, since it represents a 

permanent removal of N to the atmosphere and completes the nitrogen cycle (Martin et 

al., 1999).  

 

However, denitrification can be arrested at any of its intermediate stages (Figure 2.4) 

with important consequences for health and the environment. For example nitrite is 

significantly more toxic than nitrate (WHO, 2004). However, nitrite is more reactive 

than nitrate and is stable only within a limited range of redox conditions. A build-up of 

nitrite may occur due to the time lag between the onset of nitrate reduction and the 

subsequent onset of nitrite reduction, as nitrite reductase is more sensitive to high O2 

concentrations (Betlach and Tiedje, 1981; Gale et al., 1994). Nitric oxide (NO) and 

nitrous oxide (N2O) are formed during denitrification but, in favourable conditions, 

transform rapidly to benign nitrogen gas. Both NO and N2O contribute to acid rain, 

promote the formation of ground-level ozone and contribute to global warming; N2O 

also destroys ozone in the upper atmosphere (Rivett et al., 2008). Free NO is rarely 

observed because it transforms to N2O rapidly under typical environmental conditions. 

It is usually observed only in small-scale laboratory studies as an intracellular 

intermediate (Scheible, 1993). When oxygen levels are very low, nitrogen gas (N2) is 

the end product of the denitrification process; but, where oxygen levels are more 

intermediate or variable, the reactions may stop with the formation of NOx (Brady and 

Weil, 2002). Very high nitrate concentrations or low pH values may also arrest 

denitrification at the N2O stage (Hefting et al., 2003, 2006b). Finally, the production of 

bicarbonate ions and carbon dioxide when organic carbon is used as electron donor 

buffers the porewater pH around the neutral conditions that are more favourable for 

denitrification and also lowers the ratio of N2O/N2 (Groffman et al., 2000). 

 

2.3.3.1 Factors controlling denitrification 

Bacteria capable of denitrification are ubiquitous, and thus denitrification occurs widely 

throughout terrestrial, freshwater and marine environments, where the combined 

conditions of nitrate availability, low oxygen concentrations and sufficient organic 

matter occur (Seitzinger et al., 2006). 

 



 57 

Oxygen 

 It is generally assumed that the nitrogen oxide reductases are repressed by O2, and that, 

when O2 is removed, even in the absence of nitrogen oxides, the reductase enzymes are 

de-repressed within a period of 40 min to 3 hours (Knowles, 1982). In groundwater, 

given all other prerequisites, denitrification usually occurs at dissolved oxygen 

concentrations below 1-2 mg L-1 (Duval and Hill, 2007; Schilling and Jacobson, 2008; 

Hill and Duval, 2009; Curie et al., 2009), while completely anoxic conditions are not 

required (Seitzinger et al., 2006). In floodplain soils, the O2 concentration depends on: 

1) the O2 consumption rate, 2) the O2 diffusion rate, 3) the geometry of the diffusion 

path (Knowles, 1982), and when inundation occurs, on the percentage of the water filled 

pore space (WFPS) (Groffman and Tiedje, 1988). Pinay et al. (2007a) have observed 

maximum denitrification at around 70 % WFPS and not 100 % WFPS. This was 

explained by the fact that partial waterlogging conditions favour the co-existence of 

aerobic and anaerobic sites at the soil micro-scale. This, in turn, allows the close 

coupling of nitrification and denitrification between adjacent aerobic and anaerobic sites 

in the soil matrix (Seitzinger et al., 2006), thus maximising the denitrification activity. 

Similarly, alternate aerobic and anaerobic conditions triggered by the short-term 

periodic flooding of the soil are also expected to enhance denitrification in floodplains 

by promoting more frequent nitrification-denitrification cycles (Fennessy and Cronk, 

1997; Pinay et al., 2007a). 

 

Nitrate concentration 

In some denitrifying bacteria, the presence of nitrate is required for, or very much 

stimulates the de-repression of the nitrate reductase (Knowles, 1982). The half 

saturation constant (Km) of denitrification in in vivo and in cell-free systems ranges 

between 0.3 and 18 mg N L-1 (Knowles, 1982), while the kinetics of denitrification at 

nitrate concentrations >1 mg N L-1 are usually zero order (i.e. independent of 

concentration) (Rivett et al., 2008) in groundwater, and therefore denitrification is 

usually limited by the electron donor supply. However, in waterlogged soils, the 

diffusion of NO3
- in the denitrifying sites within the soil matrix may be a limitation 

(Olde-Venterink et al., 2003). Generally, increased nitrate supply leads to increased 

denitrification rates in agricultural grasslands and floodplains (De Klein and Van 

Logtestijn, 1994; van Beek et al., 2004; Ullah and Zinati, 2006), while even when N 

saturation of the soil has been observed, from chronic nitrate loading, denitrification 
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still occurs (Hanson et al., 1994; Ullah and Zinati, 2006), but its efficiency may be 

significantly decreased (Hefting et al., 2006a; Seitzinger, 2008). In a typical lowland 

agricultural catchment, such as the River Cole at Coleshill, nitrate supply is not 

expected to be limiting for denitrification. However, the relative availability of nitrate 

and electron donors will likely influence the partitioning of nitrate between 

denitrification and other dissimilatory reduction processes (Rivett et al., 2008).  

 

Organic carbon 

The availability of electrons in organic carbon compounds is one of the most important 

factors controlling the activity of the heterotrophs, which comprise the bulk of 

denitrifiers (Knowles, 1982). Several studies have found significant positive 

relationships between denitrification rates and groundwater and porewater dissolved 

organic carbon (DOC) in riparian zones and floodplains (Devito et al., 2000; Baker and 

Vervier, 2004; Hill and Duval, 2009; Curie et al., 2009). The stoichiometry of the 

denitrification reaction shown in equation 2.1 indicates that 1 mg C L-1 is required for 

the reduction of 0.93 mg NO3
--N L-1 to nitrogen gas. Although aquifers may be limited 

in their DOC availability (typically <5 mg C L-1) (Rivett et al., 2007), the shallow 

groundwater of riparian zones and floodplains usually contains higher concentrations of 

DOC (Rivett et al., 2008) that can support high denitrification rates (Haycock et al., 

1993; Burt et al., 1999; van Beek et al., 2004) especially where buried deposits of 

organic matter are found in the subsurface (Hill et al., 2000; Hill et al., 2004; Gurwick 

et al., 2008).  

 

Not only the quantity but also the quality of organic carbon affects the denitrification 

rate. Postma et al. (1991) noted that denitrification was minimal in groundwater when 

organic carbon was present as lignite or coal fragments. In floodplain soils, the 

availability of labile organic carbon increases by plant root exudates (Frank and 

Groffman, 2009) such as polysaccharides (Bastviken et al., 2007) that are readily 

available to denitrifiers. Moreover, Beauchamp et al. (1989) indicated that 

denitrification in the presence of more complex organic molecules (e.g. proteins, lipids 

and lignin) may be facilitated by fermenters that break down those complex molecules 

to simpler organic compounds. However, fermentation requires low redox potential and 

therefore this mechanism will be more important in flooded soils or within anaerobic 

microsites. Dahl et al. (2007) reported that an organic carbon fraction of 3 % in riparian 
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zone soils was an effective indicator of increased potential denitrification. The available 

labile organic carbon has also an indirect effect on denitrification, enhancing oxygen 

consumption by aerobic bacteria which leads to anaerobiosis (Tiedje, 1988). Finally, the 

land use management of floodplains in agricultural catchments can significantly affect 

both the quantity and the quality of the available organic carbon for denitrification (see 

below).  

 

Temperature 

The optimum temperature for denitrification is between 25 and 35oC, but denitrification 

processes will normally occur in the range 2 - 50oC (Brady and Weil, 2002) and 

possibly beyond, where bacteria have evolved to cope with specific environmental 

conditions (Knowles, 1982). Groundwater temperatures are typically around 10oC (in 

northern Europe), and therefore denitrification occurs at sub-optimal temperature, while 

the relatively small range of temperature fluctuations results in low temperature 

dependency of denitrification in groundwater (Rivett et al., 2008). In surface soils the 

effect of temperature is more pronounced and reaction rates are typically assumed to 

double for every 10oC increase in temperature (Q10 range 1.5 - 3) (Knowles, 1982). 

Stanford et al. (1975), based on experimental soil data, suggested a linear relationship 

between temperature and the denitrification rate until 11oC, above which the 

relationship becomes exponential increase with Q10 = 2.1. Finally, denitrification 

occurring at the lowest or highest temperature range usually results in a higher ratio of 

N2O/N2 (Knowles, 1982). 

 

pH 

The pH range preferred by heterotrophic denitrifiers is generally between 5.5 and 8, 

while denitrification almost ceases for pH <4 or pH> 10 (Paul and Clark, 1989). The 

optimal pH is site-specific because of the effects of acclimation and adaptation on the 

microbial ecosystem (Rivett et al., 2008). In agricultural catchments, where clay soils 

are dominant, the soil pH is usually around neutral or slightly alkaline (Rowell, 1994) 

and therefore denitrification is not expected to be adversely affected by pH. 

Denitrification itself can increase pH within the anaerobic microsites of the soil by 

releasing CO2 and hydroxide (OH-), and hence create locally favourable pH conditions 

for denitrification (Rivett et al., 2008).   
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2.3.3.2 Denitrification in restored floodplains 

Numerous studies have documented significant potential for nitrate removal via 

denitrification in hydric surface soils of riparian buffer zones across various climatic 

gradients (Peterjohn and Correll, 1984; Ambus and Lowrance, 1991; Groffman et al., 

1992; Pinay et al., 1993; Hefting et al., 2003; Pinay et al., 2007a) and in subsurface 

soils of riparian zones where nitrate is supplied from the upland via groundwater flow 

(Hill et al., 2000, 2004). More recently, the potential of restored urban riparian zones to 

remove nitrate via denitrification has also been established (Groffman and Crawford, 

2003; Kaushal et al., 2008; Gift et al., 2008). However, surprisingly few studies have 

investigated the potential for denitrification in restored floodplains (Hoffmann et al., 

1998a; Sheibley et al., 2006; Orr et al., 2007).  

 

One reason for this is that floodplain restoration has been advocated as a means of 

natural flood control and groundwater recharge, while also delivering ecological 

services such as fish rearing habitat and wildlife biodiversity, but not explicitly for 

water quality improvement (Sheibley et al., 2006). Moreover, the limited attention 

given to floodplains likely reflects the fact that many rivers have been disconnected 

from their historic floodplain by levees and flow modification (Gergel et al., 2002), 

while the inherent physical and ecological complexity of floodplains makes these 

systems difficult to study (Orr et al., 2007). Finally, the urgent need to tackle diffuse 

nitrate pollution from surface and sub-surface agricultural runoff has focused the 

scientific and natural resource management interest to the restoration of restricted width 

riparian buffer zones adjacent to agricultural land (Fennessy and Cronk, 1997), instead 

of wider floodplains. However, more recently, flood retention areas in northern Europe 

(e.g. polders in the Upper Rhine) have also as an objective the improvement of water 

quality. The management of the flooding regime in a way to optimise nitrogen 

elimination by denitrification is an important task for restoration managers (Brettar et 

al., 2002).  

 

There are studies that provide evidence for potentially significant nitrate retention in 

large flooded floodplains. In Tockner et al. (1999) the increased hydrological 

connectivity between the river and the floodplain, following the Danube Restoration 

Project, enhanced suspended sediment and particulate organic carbon retention, while 

the floodplain also became a sink for nitrate. However, the authors did not discriminate 
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between sedimentation, plant and algal nitrate uptake and denitrification. Olde 

Venterink et al. (2003) and Van der Lee et al. (2004) attempted to discriminate between 

the above retention processes in floodplains of the Rhine in The Netherlands. Their 

results indicated that nitrate denitrification during flooding is possible mainly in the 

waterlogged soil, rather than the water column, while it is regulated by the extent of 

discharge on the floodplain, the floodwater velocity and the diffusion rate of nitrate 

from the floodwater into the soil. Other studies have focused on the denitrification 

potential of the soil in large floodplains, where experimental NO3
- additions showed 

significant denitrification in the topsoil which depended on the regular flood pulse for 

the supply of nitrate (Forshay and Stanley, 2005). Pinay et al. (2000) found that flood 

duration can indirectly influence denitrification by the deposition of fine sediments that 

in turn positively affect denitrification rates, whilst the deposition of organic matter and 

the creation of low redox conditions, as a consequence of flooding, can also increase 

denitrification rates (Brettar and Höfle, 2002; Brettar et al., 2002).  

 

The results from the few studies conducted in restored floodplains with respect to their 

potential for denitrification have not been consistent. Sheibley et al. (2006) have found 

significant denitrification potential in the topsoil of a restored floodplain in the Lower 

Cosumnes River in California, four years after the restoration was completed. 

Denitrification was limited by the amount of the bio-available carbon on the floodplain, 

while the annual N-removal contribution of denitrification ranged between 1 and 24 % 

depending on the differing supply of NO3
- during flooding on a wet or dry year. In 

contrast, in a study that was conducted one year after the restoration of the River Brede 

floodplain in Denmark (Hoffmann et al., 1998a) no significant effect of the restoration 

was observed in the hydrology and the nitrate retention capacity of the floodplain, 

which was explained by the unusually dry weather conditions during the study and the 

short duration of the monitoring period. Similarly, two years after the restoration of the 

River Baraboo floodplain in Wisconsin (Orr et al., 2007), although the floodplain soil 

showed potential to denitrify, this was not well-correlated with any of the denitrification 

controlling factors, while no difference was observed between pre- and post- restoration 

rates. They suggested that the short time after the completion of the restoration may not 

have been enough for the physical soil properties to change and/or the microbial 

communities to adapt to the new conditions.  
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It becomes apparent that further studies are needed in order to assess the potential of 

restored floodplains for nitrate removal, if this is going to be a key management 

measure for river water quality improvement, especially with respect to the effect of the 

hydrological regime in the supply of nitrate and the temporal and spatial patterns of 

nitrate removal. Additionally, further insight is needed in the combined effect of the 

hydrological regime and the land use management on the floodplain soil properties that 

in turn control the partitioning of nitrate between different retention processes.  

 

2.3.3.3 Temporal variability of denitrification 

The temporal variability of denitrification is an important consideration as it has been 

suggested that, in temperate climates, the most concentrated nitrate discharges occur in 

the winter months, when the bioassimilation of nitrogen by plants is not possible 

(Groffman et al., 1992; Haycock and Pinay, 1993). Attenuation of nitrate discharges 

occurring in the winter months is generally assumed to be the result of denitrification 

(Groffman et al., 1992; Haycock and Pinay, 1993; Pinay et al., 1993; Burt et al., 1999), 

which predominantly occurs below the ground surface where temperatures are more 

moderate throughout the cold season (Fennessy and Cronk, 1997). Therefore, the 

combination of plant uptake during the growing season and denitrification throughout 

the year, but especially during the cold season, provides all-year round nitrate 

attenuation in a temperate floodplain (Fennessy and Cronk, 1997).  

 

However, denitrification may be more important during flood pulses in spring and 

autumn (Groffman and Tiedje, 1989; Hanson et al., 1994) or even in summer (Hefting 

et al., 2003, 2006b), when nitrate supply by floodwater is combined with higher 

temperature, thus greatly enhancing denitrification rates. Therefore, the occurrence of a 

summer flood pulse may constitute a ‘hot-moment’ (sensu McClain et al., 2003) of 

biogeochemical activity in general (Banach et al., 2009) and of denitrification 

specifically, that needs to be taken into account in the annual N-removal budget 

(Groffman et al., 2009) of the floodplain, especially in the light of the predicted increase 

of air temperature and summer flooding frequency in north-western Europe due to 

climate change (Bronstert, 2003). The temporal variability induced by the perturbation 

of wetting-drying cycles in the hydrological regime of floodplains is particularly 

considered below.   
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Drying-wetting cycles  

Lowland-river floodplain systems are characterised by a high degree of variability in 

both the frequency and period of inundation of the various morphological elements of 

the system due to topographical gradients and the timing of the flood pulses (Baldwin 

and Mitchell, 2000). The timing of flooding, and subsequently the dry-wet cycle 

sequence, will be further affected by global warming (Miller and Russell, 1992), as 

more frequent extreme events such as floods and droughts are forecasted (Mirza et al. 

2003), as well as an increase in the annual average runoff in Northern Europe (Arnell, 

1999). Consequently, forecast hydrologic variations will have profound effects on the 

processes responsible for nutrient cycling in wetland and river-floodplain systems 

(Baldwin and Mitchell, 2000). Soil and sediment drying promotes the aerobic 

mineralisation of organic matter and the release of cell-bound C from sediment bacteria 

killed during drying (Scholz et al., 2002). Moreover, several studies have shown a flush 

of mineralised-N and subsequent increase in nitrate and ammonium concentrations in 

soils and sediments upon re-wetting by flooding, due to flushing of accumulated 

ammonium and enhanced nitrification  (Baldwin and Mitchell, 2000; Olde-Venterink et 

al., 2002; Heffernan and Sponseller, 2004; McIntyre et al., 2009). Additionally, several 

studies suggest that the frequency of drying-rewetting events alters the response of 

microbial processes more than expected when only soil nutrient availability is taken into 

account (Schimel et al. 1999; Baldwin and Mitchell 2000; Fay et al. 2000; Fierer and 

Schimel 2002; Pinay et al., 2007b). 

 

Cavigelli and Robertson (2000) have shown that variability in denitrification activity 

may not only be due to differences in environmental conditions but also due to changes 

in the microbial community composition. Drying-rewetting cycles apart from 

representing a significant physiological stress for soil biota, that can undergo an osmotic 

shock with possible cell lyses and release of intracellular solutes (Fierer et al., 2003), 

they can also directly alter the denitrifier community composition (Fierer et al., 2003; 

Fromin et al., in press). More diverse microbial groups such as decomposers may be 

more resistant and resilient to the effect of drying-wetting cycles compared to more 

specialist groups such as nitrate respirers (Pinay et al., 2007b). In addition, the spatial 

variability in denitrification potential due to possible changes in the denitrifier 

community composition has not been previously studied in restored floodplains that 

experience frequent dry-wet cycles due to an intermittent flooding regime. 
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2.3.3.4 Spatial variability of denitrification 

Denitrification is spatially highly variable from both a soil matrix perspective (Parkin, 

1987), due to the existence of aerobic and anaerobic microsites and the presence of 

organic carbon patches, and at the landscape scale due to land use management 

practices, surficial hydrogeomorphic features and subsurface lithology. 

 

Land use management 

The different land use types within a watershed have been shown to vary significantly 

in their soil properties and consequently in their denitrification potential (Ullah and 

Faulkner, 2006). Traditional land use management of lowland agricultural grasslands 

includes bi-annual or annual mowing and grazing by ungulates (Robson et al., 2007). 

Higher denitrification potential in areas affected by grazing cattle has been reported in 

numerous studies (Frank and Groffman, 1998b; Meneer et al., 2005; Patra et al., 2005; 

Philippot et al., 2009). The stimulation of denitrification by grazing associated with 

animal activities has been attributed to changes in hydraulic soil properties through soil 

compaction and in nutrient availability through the deposition of urine and faeces and 

limited plant N uptake after defoliation (Luo et al., 1999; Meneer et al., 2005). 

Moreover, grazing has been shown to increase the availability of labile organic carbon 

and decrease the ratio of C/N, both contributing to enhanced denitrification rates (Frank 

and Groffman, 1998a). Mowing has been shown to increase species richness in 

managed grasslands by increasing the competition between plants and although root 

mass is reduced, the availability of C and N as well as the microbial activity is not 

negatively affected (Patra et al., 2006; Ilmarinen et al., 2009). Moreover, increased 

release of easily extractable carbon via rhizo-deposition processes due to mowing has 

been reported in mown pastures of the Mediterranean (Gavrichkova et al., 2008). The 

availability of easily extractable carbon and the accelerated N cycling due to the short 

life-cycle of plants in mown grassland has been positively related to enhanced 

denitrification (Robson et al., 2007). Finally, cultivation has been shown to negatively 

affect the availability of labile organic carbon in soils (Bowman et al., 1990; Groffman 

et al., 1993b; Boyer and Groffman, 1996; Ullah and Faulkner, 2006) and consequently 

significantly decrease their denitrification potential (Groffman et al., 1993b; Cavigelli 

and Robertson, 2000; Ullah and Faulkner, 2006). It is anticipated that the above land 

use management practices, found also in the River Cole re-connected floodplain, may 

significantly affect the denitrification potential across the floodplain land use zones.  
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Hydrogeomorphic variability 

Spatial variability of denitrification has also been attributed to differences in the 

hydrogeomorphic template of floodplains (Harms et al., 2009). The hydrogeomorphic 

template consists of both temporal and spatial variation in hydrology (i.e. the hydrologic 

regime), and spatial variation conferred by landform (Hauer and Smith, 1998) and 

topography (Florinsky et al., 2004). The convergence of hydrologic flowpaths carrying 

the necessary substrates (C and N) or the hydrologic transport of a missing reactant in a 

pool of substrate have been described as the main hydrological mechanisms for the 

occurrence of biogeochemical ‘hotspots’ (McClain et al., 2003).  

 

Soil texture may determine the capacity of soils to retain C and N (Pinay et al., 2000), 

and spatial variation in texture of floodplain soils often occurs along topographic 

gradients (Bruland and Richardson 2004; Bechtold and Naiman 2006), which would 

then produce gradual spatial variation in denitrification. Moreover, topographic 

gradients also affect soil moisture distribution as well as the transport of C and N with 

floodwaters, while the residence time of the floodwaters controls the redox potential of 

the soil. Therefore, many studies have found increased denitrification potential in low-

lying areas of floodplains, where the above conditions concur (Florinsky et al., 2004; 

Ullah and Faulkner, 2006; Harms and Grimm, 2008). Finally, the timing and spatial 

pattern of the hydrologic regime can influence directly the spatial variability of 

denitrification. Homogenisation in soil characteristics and microbial activity occurs 

when the hydrologic driver (i.e. flooding) is frequent and spreads across the floodplain, 

whereas infrequent hydrologic regimes or unevenly distributed in space contribute to 

spatial heterogeneity (Harms et al., 2009).  

 

Vertical variability 

Martin et al. (1999) suggest that apart from the horizontal spatial variability, the 

heterogeneity of denitrification in the vertical dimension should also be considered, 

where groundwater flow is a significant component of the hydrological regime and 

couples the transport of nitrate from arable land to the floodplain riparian zone. The 

vertical variability in denitrification is a function of hydrology, sediment characteristics 

(lithology) and availability of electron donors and acceptors (biogeochemistry) (Hill, 

1996). None of the studies in restored floodplains (Hoffmann et al., 1998a; Sheibley et 

al., 2006; Orr et al., 2007) have considered the potential for denitrification in the 
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vertical dimension, while most studies conducted in flooded floodplains have focused 

on nitrate processing in the water column or at the interface between water and sediment 

(Olde Venterink et al., 2003; Van der Lee et al., 2004; Andersen, 2004). Exceptions are 

the studies of Brettar et al. (2002) and Brettar and Höfle (2002), in candidate restoration 

floodplains of the Upper Rhine, where they investigated the relationship between 

denitrification potential and redox conditions and organic matter availability 

respectively, between the ground surface and 1 m depth.  

 

However, several studies in riparian buffer zones have indicated that subsurface 

lithology may significantly affect nitrate processing in shallow groundwater, especially 

where localised distinct gravel layers are found (Burt et al., 1999; Hill et al., 2004). 

Reineck and Singh (1980) indicate that gravel layers are often the former bed sediments 

of laterally migrating stream channels and are common features of floodplain lithology. 

These highly conductive coarse sediments can increase groundwater flow rates (as 

discussed in section 2.2) and limit nitrate removal in some riparian areas (Correll et al., 

1997; Burt et al., 1999).  

 

A possible explanation for the lack of research on denitrification in subsurface soils of 

floodplains may stem from past assumptions that conditions favourable for 

denitrification, such as the availability of labile organic carbon and microbial activity 

(Parkin and Meisinger, 1989), do not exist at depth (Martin et al., 1999). However, 

recent studies in a variety of riparian zones in North Europe and Canada (Burt et al., 

1999; Clément et al., 2002; van Beek et al., 2004; Hill et al., 2004) have documented 

significant denitrification potential with depth, which decayed exponentially with depth 

following closely the availability of organic carbon (Boyer and Groffman, 1996; Brettar 

et al., 2002; Brettar and Höfle, 2002; Gift et al., 2008) and/or the availability of nitrate 

(Dick et al., 2000; Clément et al., 2002; Brettar et al., 2002; van Beek et al., 2004; 

Schilling et al., 2009). There are some exceptions though where denitrification may not 

decrease with depth, or in fact may be more important in deeper layers, where buried 

patches of organic matter are combined with the transport of nitrate via groundwater 

(Hill et al., 2000; Vidon and Hill, 2004b; Hill et al., 2004). 
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2.3.4 Dissimilatory Nitrate Reduction  to Ammonium (DNRA) 

Another dissimilatory reduction pathway for NO3
-, as opposed to the assimilatory 

pathways of microbial and plant uptake, is the reduction of NO3
- to NO2

- and then to 

NH4
+ (equation 2.3 after Tiedje et al., 1982): 

 

                NO3
- + 8e- + 10H+ → NH4

+ + 3H2O                                    (2.3) 

 

DNRA is carried out primarily by obligate anaerobic fermentative bacteria (e.g. 

Clostridia, Bacillus, and most Enterobacteriaceae) that do not perform oxidative 

metabolism, which is the opposite from denitrification (Tiedje, 1988). The reduction of 

NO3
- to NH4

+, although less favourable energetically than the reduction to N2, it is a 

more efficient electron sink, since eight electrons (e-) are transferred per mole of nitrate 

reduced (2.3), which is three more electrons than in the denitrification reduction 

reaction (2.2) (Tiedje et al., 1982). Therefore, DNRA is thought to be more favourable 

where electron acceptors (i.e. nitrate) are limiting, while denitrification is more 

favourable where electron donors (i.e. organic carbon) are limiting (Tiedje et al., 1982).  

 

Whereas the conditions promoting DNRA and heterotrophic denitrification are similar 

(i.e. low O2 availability, available nitrate and organic substrates), denitrification 

represents a permanent nitrate removal pathway, while DNRA is a N-conserving 

mechanism that transforms nitrate to another more bio-available inorganic-N form 

(NH4
+). The produced ammonium can be subsequently nitrified under oxic conditions, 

taken up by plants and microbes and be temporarily retained in biomass, or abiotically 

adsorbed to negatively charged particles in the soil or sediment matrix (Burgin and 

Hamilton, 2007). Therefore, the determination of the nitrate partitioning between 

denitrification and DNRA can have important consequences for N management, 

especially where diffuse nitrate pollution is an important issue, such as in temperate 

lowland agricultural catchments. Moreover, the fact that the fermentative bacteria that 

carry out DNRA are obligate anaerobes, and thus cannot occupy all the niches that 

denitrifiers can (Rivett et al., 2008) and the relative availability of electron donors and 

acceptors in a given environment (Tiedje et al., 1982), are expected to be the main 

determinants of the relative importance between DNRA and denitrification as nitrate 

attenuation mechanisms. 
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2.3.4.1 Evidence for the occurrence of DNRA 

Several studies in marine and estuarine sediments have documented significant DNRA 

rates that can be comparable to denitrification. This could occur when for example NO3
- 

supply via nitrification is limited and the presence of macrophytes increases the 

competition for nitrate (Rysgaard et al., 1996), while DNRA can be significantly higher 

than denitrification in organically enriched anaerobic sediments under fish farms 

(Christensen et al., 2000) and in anaerobic estuarine sediments rich in sulphide (see also 

section 2.3.5) that can inhibit nitrification and denitrification (An and Gardner, 2002). 

DNRA may be relatively more important in marine than freshwater ecosystems due to 

the co-occurrence of permanently reduced conditions, high organic carbon availability 

(especially in near coastal areas) and limited nitrate supply (Revsbech et al., 2006), but 

this is a tenuous conclusion because of the small number of studies of DNRA in 

freshwater environments (Burgin and Hamilton, 2007).  

 

Difficulties in directly measuring DNRA (Silver et al., 2001), and the common 

assumption that due to its strict anoxic nature DNRA either plays no role or only a 

negligible role in aerobic topsoils (Tiedje, 1988), has resulted in this process being 

overlooked by terrestrial biogeochemists (Silver et al., 2001). However, recently, the 

role of DNRA as an N-conserving mechanism has been established in N-limited tropical 

forest soils (Silver et al., 2001, 2005; Pett-Ridge and Firestone, 2005; Pett-Ridge et al., 

2006; Huygens et al., 2007; Rütting et al., 2008; Templer et al., 2008). DNRA was 

shown to be at least three times higher than denitrification, or in some cases account for 

nearly 99 % of nitrate reduction (Huygens et al., 2007), in these humid tropical forest 

topsoils, characterised by a small NO3
- pool and rapid NH4

+ turnover rates and as a 

result limiting the availability of NO3
- for denitrification, leaching or immobilisation 

(Silver et al., 2001). The main controlling factor of DNRA in these systems appears to 

be the relative availability of electron donors and acceptors (high ratio of C/N), while 

the DNRA bacteria seem to be adapted to fluctuating redox regimes and be able to 

withstand unfavourable redox periods of higher O2 concentration (Pett-Ridge and 

Firestone, 2005; Silver et al., 2005; Pett-Ridge et al., 2006), therefore increasing their 

competitive advantage against the more tolerant to oxic conditions, denitrifiers.  

 

The occurrence of DNRA has also been documented in other freshwater environments, 

such as a riparian fen in Denmark (Ambus et al., 1992), in two Chinese and Australian 
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paddy soils (Yin et al., 2002), in a riparian wetland in the UK (Matheson et al., 2003) 

and in a created freshwater wetland in Texas (Scott et al., 2008). In all cases, 

denitrification was responsible for most of nitrate removal, while DNRA accounted for 

between 5 and 15 % of nitrate removal, being controlled mainly by the low redox 

potential and the increased organic carbon availability of the wetland sediments.  

 

The above studies in both the N-limited tropical forest soils and in wetland sediments, 

on one hand show that DNRA can occur in freshwater environments and aerobic soils, 

and on the other hand seem to verify the assumption that the partitioning of nitrate 

between denitrification and DNRA depends on the relative availability of electron 

donors and acceptors (Tiedje, 1988). However, this assumption has not yet been 

thoroughly tested in temperate agricultural floodplain soils. In a recent study of an 

herbaceous riparian zone in Oregon (Davis et al., 2008), DNRA was shown to occur in 

the top 15 cm of the soil and at 1 m depth, but its relative importance compared to 

denitrification was not consistent. Moreover, DNRA probably accounted for 3 % of in 

situ nitrate removal in the riparian zone of an ephemeral stream in Australia (Woodward 

et al., 2009), where denitrification was also low, accounting for another 3 % of nitrate 

removal, mainly due to the high concentration of dissolved oxygen in the groundwater.  

 

It becomes apparent that further studies are needed in temperate agricultural settings in 

order to give more insight into the role of DNRA as a nitrate attenuation process. This 

in turn will have important management implications for these human impacted 

environments, suggesting for example a more efficient use of fertilisers, in the case that 

DNRA is a significant N-conservation mechanism, or influencing the design of river-

floodplain restoration projects with the aim of maximising the N-removal capacity of 

denitrification while keeping N-conservation by DNRA to a minimum. Furthermore, the 

effect of the hydrological regime and that of the land use management of restored 

floodplains and riparian zones on the relative importance of DNRA as well as on its 

horizontal and vertical spatial distribution have not yet been investigated.  
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2.3.5 Chemoautotrophic Denitrification and DNRA 

Denitrifiers are mostly facultative anaerobic heterotrophs and therefore they obtain both 

their energy and carbon from the oxidation of organic compounds. However, some 

denitrifying bacteria are autotrophs, so obtain their energy from the oxidation of 

inorganic species, and their carbon from carbon dioxide (CO2). Inorganic e- donors 

found mostly in groundwater include reduced manganese (Mn2+), ferrous iron (Fe2+) 

and sulphides (Korom, 1992). If these ‘chemolithoautotrophic’ bacteria are present in 

groundwater, they can reduce NO3
- with simultaneous oxidation of manganese, iron or 

sulphide, and this is called chemoautotrophic denitrification.   

 

The nitrate reduction by Fe2+ is due to the bacterium Gallionella ferruginea, and can be 

described by the equation 2.4 (Korom, 1992): 

 

5Fe+2 + NO3
- + 12H2O → 5Fe(OH)3 + 1/2N2 + 9H+                            (2.4) 

 

G. ferruginea does require a small amount of oxygen for growth, so a likely ecological 

niche is at an aerobic/anaerobic interface where Fe2+ and dissolved oxygen meet in 

opposing diffusion gradients (Korom, 1992). This biotic reduction occurs at relatively 

low temperatures and circumneutral pH (between 5.5 - 7.2; Weber et al., 2001), and its 

occurrence has been documented in freshwater sediments (Weber et al., 2006). The 

controls on this process remain poorly understood, although it may be important in 

areas of high reduced iron and a limited supply of organic carbon (Weber et al., 2001). 

The presence of this process has not yet been reported in floodplain soils, where the 

high availability of organic carbon and the presence of Fe in oxidised form probably 

promote the dominance of heterotrophic denitrification. However, in groundwater, 

where organic carbon is usually restricted with depth, and if Fe2+ is present, 

chemoautotrophic denitrification could be possible (Postma et al., 1991).  

 

Electrons needed for chemoautotrophic denitrification can also originate from the 

microbial oxidation of reduced sulphur to the S (+VI) state as sulphate. The reduced 

sulphur may be present as the S (-II) state in H2S, S (-I) in FeS2, S (0) in elemental 

sulphur, S (+II) in thiosulphate S2O3
2-, or S (+IV) in sulphide SO3

2-. In groundwater, 

iron (and sometimes manganese) sulphide can be utilised as the electron donor (Korom, 

1992): 
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5FeS2 + 14NO3
- + 4H+ → 7N2 + 10SO4

-2 + 5Fe+2 + 2H2O                  (2.5) 

 

The oxidation of pyrite (equation 2.5) has been shown to provide an alternative electron 

donor in carbon-limited aquifer systems (Robertson et al., 1996; Pauwels et al., 1998; 

Tesoriero et al., 2000; Schwientek et al., 2008), but its importance in floodplain soils 

has not yet been established.  

 

Recently, the role of sulphur oxidisers in the reduction of nitrate in freshwater 

sediments and floodplain pools (Whitmire and Hamilton, 2005; Burgin and Hamilton, 

2008; Payne et al., 2009) has received more attention, despite the notion that this 

biogeochemical pathway has been considered unimportant in freshwater sediments due 

to the low sulphide concentrations. Bacteria genera such as Thiobacillus, 

Thiomicrospira and Thioploca have now been isolated from such freshwater systems 

(Burgin and Hamilton, 2008). These microbes are capable of oxidising H2S to S0 and/or 

SO4
2- coupled to the reduction of NO3

- to N2 (denitrification) or NH4
+ (DNRA) 

according to the following reactions (Fossing et al., 1995; Sayama et al., 2005): 

 

5HS- + 8NO3
- + 3H+ → 5SO4

2- + 4N2 + 4H2O                                    (2.6) 

   

4H2S + 4NO3
- + 4H2O → 4NH4

+ + 4SO4
2-                                          (2.7) 

 

Burgin and Hamilton (2008) reported a range between 25 and 40 % of nitrate removal 

attributed to the simultaneous oxidation of H2S in stream, lake and wetland sediments in 

Southern Michigan. Apart from the presence of the responsible bacteria, this process 

requires anoxic conditions, although some species may be able to survive in micro-

aerophilic environments (Burgin and Hamilton, 2008), but most importantly reduced 

sulphur is needed to serve as an energy source for the sulphur oxidisers. Brunet and 

Garcia-Gil (1996) have also hypothesized that H2S, that inhibits the last reduction steps 

in heterotrophic denitrification, may effectively favour the DNRA pathway. It is not 

known whether fermentative and chemoautotrophic DNRA can occur together or are 

mutually exclusive (Burgin and Hamilton, 2007). Due to the anaerobic nature of this 

process and its dependence on available reduced sulphur, its occurrence would be more 
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likely to be of significance in frequently saturated riparian zones or depression wetlands 

than in intermittently saturated floodplain soils.  

 

 

2.3.6 Anaerobic Ammonium Oxidation (Anammox) 

Anaerobic ammonium oxidation (Anammox) is a chemoautotrophic process by which 

ammonium is combined with nitrite under anaerobic conditions, producing N2 (2.8; 

Trimmer et al., 2003): 

NO2
- + NH4

+ → N2 + 2H2O                                         (2.8) 

 

The nitrite can derive from the reduction of nitrate via denitrification or possibly DNRA 

(Trimmer et al., 2003) and therefore Anammox constitutes another mechanism for the 

permanent removal of nitrate as N2 gas. It was first discovered in wastewater treatment 

systems (van de Graaf et al., 1995; Mulder et al., 1995) and subsequently documented 

in oxygen depleted zones of the ocean, temperate shelf sediments, where it can account 

for as much as 24 and 60 % of N2 formation (Dalsgaard et al., 2005), and estuarine 

sediments, representing between 1 and 11 % of N2 potential production (Nicholls and 

Trimmer, 2009). Anammox was shown to be favoured, compared to denitrification, by 

lower temperatures and organic carbon in deep marine sediments (Dalsgaard and 

Thamdrup, 2002), while in estuaries it is mostly regulated by the supply of NO3
- and 

NO2
- from the water column (Trimmer et al., 2003, 2005). While little is known about 

Anammox in freshwaters, one might expect that it would be more important in very 

deep, large oligotrophic lakes (Burgin and Hamilton, 2007). The only study to date on 

Anammox in freshwaters was in Lake Tanganyika (Schubert et al., 2006). Although the 

occurrence of Anammox in floodplain soils and shallow groundwater sediments is 

rather unlikely due to the fluctuating oxic-suboxic conditions and the high availability 

in organic carbon, it is worth assaying the soils and sediments for its detection.   
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To summarise, the reduction of nitrate in floodplains and riparian zones can be due to 

mixing and dilution between different water sources but also due to biological processes 

such as uptake by vegetation and microbes and heterotrophic denitrification. Of these 

three possible biological mechanisms, plant and microbial uptake although relevant in a 

restored floodplain context, constitute only a temporary retention mechanism through 

biomass storage that eventually leads to the release of N back to the system in a 

different form. However, heterotrophic denitrification that reduces nitrate to dinitrogen 

gas leads to the permanent removal of nitrate from the system and thus completes the N 

cycle. It is therefore the preferred nitrate attenuation pathway in restored agricultural 

floodplains targeting water quality improvement. However, denitrification is subject to 

a complex control by the availability of O2 and the relative availability of electron 

donors and acceptors, while as a microbial process it is also regulated by temperature 

and pH. These factors are in turn affected by the hydrological regime, the land use 

management and the geomorphological and topographical characteristics of the re-

connected floodplain both in the temporal and spatial dimensions.  

 

In order to understand how to restore river-floodplain systems for maximising nitrate 

removal, the above controlling factors need to be identified, and their interactions 

assessed in both space and time. Furthermore, the relative importance of alternative 

nitrate reduction pathways, such as DNRA, chemoautotrophic denitrification and 

Anammox, which can affect the final fate of nitrate, can have important implications for 

the management of restored floodplains and therefore their role needs to be established 

in temperate agricultural restored floodplains. The knowledge gained from the above 

research could be used in the design of future river-floodplain restoration projects aimed 

at water quality improvement through nitrate attenuation. One way of contributing to 

the design of future floodplain restoration projects could be the construction of a 

decision support tool for the selection of appropriate areas for restoration where 

effective nitrate removal can be achieved and/or for assessing the nitrate removal ability 

of restored floodplains as part of post-project monitoring.  
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2.4 Decision support tools for River-Floodplain restoration  

Despite the new policy drivers for river-floodplain restoration, restoration sites are still 

often selected opportunistically and on an ad hoc basis rather than according to a 

strategic planning process (Clarke et al., 2003, Rohde et al., 2006). Natural resource 

managers now face the challenge of restoring or recreating riparian zones and 

floodplains in many different settings, and this is a rather recent challenge with 

relatively little experience upon which managers can rely for guidance (Correll, 2005). 

Moreover, any proposed restoration strategy, regardless of its ecological merits, needs 

to be economically feasible and socially acceptable, and since the economic costs of 

such programs can be high, it is imperative that decision be based on sound scientific 

information (Osborne and Kovacic, 1993). Furthermore, Correll (2005) in his recent 

review acknowledges the fact that much more is known generally about the water 

quality functions of buffer zones, than about how quickly and effectively these 

functions were regained after restoration, highlighting the need for more effective post-

restoration assessment (Orr et al., 2007). Therefore, the need for a comprehensive yet 

rapid assessment tool to assist resource managers in evaluating restored floodplain 

functions and conditions pre- or post-project is more timely than ever before (Ducros 

and Joyce, 2003, Trepel and Kluge, 2004, Vidon and Dosskey, 2008). 

 

The existing decision support tools are mainly targeting buffer zone establishment or 

rehabilitation and can be grouped into two broad categories. Those that use spatial 

information, frequently incorporating it into a Geographic Information System (GIS), 

for specific landscape attributes that indicate potential effective buffer zone 

functionality and those that are based on models simulating hydrological and/or 

biogeochemical functioning at the field scale or catchment scale and are more detailed 

in estimating the potential water quality function of a restored floodplain or buffer zone. 

 

Pinay et al. (1995) suggested that geomorphic features can provide insight into riparian 

zone denitrification capacity. Gold et al. (2001) and Rosenblatt et al. (2001) used site-

specific reconnaissance studies in combination with spatial data such as the SSURGO 

(1:15840 Soil Survey Geographic database) map classification (slope class, 

geomorphology, and hydric soil designation) to identify riparian sites with high capacity 

for groundwater nitrate removal for the purpose of watershed modelling, protection and 

restoration efforts. By combining the site soil surveys and map database they classified 
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riparian soils into two functionally distinct classes: i) Soils where groundwater flows 

through a functionally significant width of hydric soils (> 10 m) and there is absence of 

groundwater surface seeps and are therefore characterised by high groundwater nitrate 

removal capacity; ii)  Soils where groundwater nitrate removal may be constrained by 

either minimal hydric soil width or by surface seepage and rapid flow across the riparian 

zone. The observed agreement between SSURGO drainage class and the field-observed 

drainage class of hydric soils suggested that SSURGO could be a useful database for the 

parameterisation of more site-specific riparian biogeochemical models such as the 

Riparian Ecosystem Management Model (REMM) (Lowrance et al., 2000), although 

the use of the database is restricted to the U.S. only.   

 

A similar landscape based approach was presented more recently by Tomer et al. 

(2009). In this, soil survey data (slope, soil texture and soil erodibility) can be used to 

identify locations where buffers can function better to trap sediment and associated 

pollutants from surface runoff. In general, better locations for buffers are those where 

slope and soil conditions lead to greater runoff and sediment generation. In conjunction 

with soil survey maps, or in their own right, digital terrain analyses can be applied to 

determine a range of landform parameters such as slope, aspect and upslope 

contributing area. Mapping these parameters provides images that reveal pathways of 

water movement and areas of water accumulation on the landscape, indicating where 

buffers will intercept more runoff. In general, better opportunities to intercept runoff 

and/or baseflow occur along first order streams than along larger streams. Although 

both techniques can provide detailed spatial resolution and can be incorporated in a GIS 

system, their dependence on detailed databases restricts their use in the U.S. Moreover, 

the authors suggest that due to the simplifying assumptions involved in both methods 

and the lack of uniform quality across the various databases, these techniques should be 

used only as a general guide for locating buffers. Another GIS-based catchment 

mapping tool to identify riparian areas where rehabilitation would most likely yield 

optimal reduction in stream nitrogen loads was developed by Rassam and Pagendam 

(2006). 

 

 Cosandey et al. (2003b) followed a more detailed two step approach for relating 

riparian zone denitrification functionality with 3D soil cartography. Specifically they 

measured potential denitrification activity, which then related to soil physicochemical 
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parameters, of which organic carbon and soil texture were the main determinants of 

variability. Subsequently they grouped the soil horizons with similar denitrification 

activity to delimit functional horizons. At a second step they related thickness maps of 

soil horizons to the denitrification functional horizons permitting the 3D pattern of 

denitrification to be estimated in a GIS environment. Although this approach allowed 

the prediction of the variation of denitrification based on field criteria, the high spatial 

variability of organic carbon in different soil types renders this method rather costly and 

unsuitable for wide application for management purposes.  

 

Another simplified field method to assess riparian zone nitrate removal at the field scale 

was recently proposed by Vidon and Dosskey (2008). The method is based on assessing 

nitrate depletion in riparian zone groundwater along a 3-well transect between the edge 

of a field and an adjacent stream. This approach was accurate in estimating nitrate 

concentration depletion but failed in assessing water and nitrate fluxes, as well as the 

necessary buffer zone width for 90% reduction of nitrate in the groundwater. Moreover, 

the method provided better estimates where groundwater flow was parallel to the water 

table through homogeneous aquifer material, and was therefore characterised as 

unsuitable for general use in sites where site-scale hydrogeomorphic patterns are not 

well established.  

 

A number of tools that do not involve detailed field studies but rather rely on literature 

information and sometimes simple field observations have been developed to assist 

management decisions for floodplain/buffer zone restoration aiming at ecological and/or 

water quality objectives. The appropriate buffer width for the purpose of atlantic salmon 

habitat protection can be estimated through the selection of a number of buffer attributes 

such as slope, soil hydrologic group and percent canopy closure, which then are 

evaluated through a buffer width key and further weighted with adjustment factors to 

finally determine a suggested riparian buffer width (Haberstock et al., 2000). The 

Buffer Zone Inventory and Evaluation Form (BZIEF) (Ducros and Joyce, 2003), built 

from a matrix of vegetation-related attributes as indicators of habitat quality and 

hydrological attributes that facilitate water quality improvements, is another score 

assessment based tool aimed at the rapid field reconnaissance of buffer zone potential 

for water quality and wildlife habitat improvement. A more strategic tool aimed at 

landscape and catchment scale planning integrates ecological key factors that drive 
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floodplain restoration (e.g. hydrology, bed load, connectivity, biodiversity, water 

quality), as well as crucial socio-economic aspects (e.g. flood protection, public 

attitude) with GIS and multi criteria decision analysis (MCDA) to derive a single 

Ecological Restoration Suitability Index (ERSI) (Rohde et al., 2006). A conceptual 

model that identifies riparian hydrologic types based on topography and depth of 

permeable sediments in the riparian zone and then links that information to soil texture 

to estimate effectiveness of nitrate removal and optimum width of riparian zones was 

developed as a management tool by Vidon and Hill (2006) in Ontario, Canada.  The 

identification of Operational Landscape Units (OLU), defined as combinations of 

landscape patches with their hydrogeological and biotic connections, is another tool to 

analyse best options for restoration of wetland ecosystem functioning and plant 

biodiversity in fragmented landscapes (Verhoeven et al., 2008). These tools, although 

likely to be popular among natural resource managers and consultants due to their 

desktop based approach and/or use of field reconnaissance forms, are too general for 

site specific applications. Moreover, the water quality function is evaluated through 

hydrogeomorphic characteristics that assume effective nitrate removal via the main 

pathway of denitrification, ignoring other nitrate attenuation processes, and more 

importantly not accounting for the high spatial and temporal variability of 

denitrification. 

 

Detailed numerical models that enable a more accurate prediction of the nitrate removal 

function in riparian zones also exist. According to Correll (2005), the best developed 

and tested overall model for multi-zone riparian buffer water quality functions is the 

Riparian Ecosystem Management Model (REMM; Inamdar et al., 1999a,b). REMM 

predicts reductions in nonpoint source pollutants within riparian vegetative buffer zones 

by simulating subsurface and surface hydraulic movement, nutrient dynamics, sediment 

transport and vegetation growth at a daily time step by incorporating a large number of 

variables including topographic properties, vegetation types and local weather 

(Lowrance et al., 2000). To date, REMM has been tested and validated only with field-

scale data from the South-eastern Coastal Plain region of the U.S. (Kim et al., 2007).  

 

Rassam et al. (2008) developed conceptual models for SW-GW interactions in riparian 

zones of ephemeral and perennial streams of Australia and then formulated analytical 

solutions that describe nitrate removal via denitrification in these riparian zones. These 
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conceptualisations were included in a GIS-based model called Riparian Nitrogen Model 

(RNM). According to the authors the RNM should be used in identifying catchments 

that have more potential for nitrate attenuation than others and not to produce absolute 

numbers of nitrate removal. This is due to issues of scale in terms of the land use and 

soil data availability, the mathematical formulation of the denitrification function and 

the estimation of the groundwater depth that dictates the extent of the anoxic saturated 

zone.   

 

The dynamical process-based eco-hydrological model SWIM (Krysanova et al., 1998), 

which simulates water and nutrient fluxes in soil and vegetation, as well as transport of 

water and nutrients to and within the river network, was used for identifying point and 

diffuse sources of nutrient pollution, assess possible influences of climate and land use 

change scenarios and finally evaluate potential measures to achieve the “good 

ecological status” target of the WFD in the meso-scale Rhin catchment (Hesse, et al., 

2008). Models such as SWIM that are process-oriented and of average complexity, can 

have several advantages when used at a strategic planning stage, but are rather 

complicated for a rapid assessment of a re-connected floodplain water quality function 

for the needs of natural resource managers. 

 

The Soil Water Assessment Tool (SWAT) is a continuous spatially explicit hydrologic 

and water quality model that requires specific information about weather, soil 

properties, topography, vegetation, and land management practices occurring in the 

watershed in order to quantify effects of land use and management change on water 

quality within agricultural basins (Arnold et al., 1995). Cerucci and Conrad (2003) used 

a combination of the SWAT and REMM models to predict nitrate loads from different 

source areas with and without riparian buffers in order to select the most cost efficient 

land parcels to form a riparian buffer. Barlund et al. (2007) tested SWAT’s applicability 

to assess the effectiveness of potential management options such as buffer strips as 

measures for achieving lake water quality targets set under the requirements of the 

WFD. Although SWAT showed some promise in evaluating impacts of different 

management options, it also demonstrated the effort needed to parameterise, calibrate 

and validate the model appropriately. Liu et al. (2008) improved further the SWAT 

model by embedding an additional module for assessing the effects of riparian wetlands 
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on runoff and sediment yields at the watershed scale with the aim to more effectively 

assess various wetland restoration scenarios.  

 

A more hydrodynamic-based model, including detailed inflow and outflow hydrological 

processes, is WETTRANS (Trepel and Kluge, 2004), a matrix model, which uses a 

quasi-stationary mass balance to approximate flow paths and nitrogen transformation 

and to evaluate the effects of various water management options on nitrogen retention in 

a riparian peatland in northern Germany. A process based hydrological model (TNT) 

and a generic crop model (STICS), for simulating crop growth and nitrogen 

biotransformations, were combined to study the effect of the spatial distribution of 

agricultural practices on nitrogen fluxes in streams. The results suggested that placing 

crops that act as nitrogen sinks downslope from potentially nitrogen polluting crops 

could reduce significantly the streamwater contamination by nitrate. Moreover, in this 

study, nitrogen uptake by sink crops was found to be quantitatively more important than 

denitrification in reducing nitrogen output (Beaujouan et al., 2001).  

 

Those conceptual models and assessment tools that are GIS-based, or depend on 

geomorphological databases or field observations and scoring criteria usually provide a 

qualitative assessment of the suitability of sites for water quality improvement. While 

they could constitute a first approach in selecting appropriate areas within a wider 

catchment, their use is restricted in pre-project management decisions. On the other 

hand, existing process-based models for quantitative predictions of hydrological 

interactions and nitrogen transformations are usually data intensive, which restricts their 

use to scientific applications, since these data are not usually available during the first 

stages of restoration planning or for the evaluation of the restoration success intensive 

monitoring programmes are required. However, there is need for a rapid, cost-effective 

and yet reliable assessment tool to support the management decisions for river-

floodplain restoration aimed at effective nitrate removal. This tool should be based on a 

scientifically sound assessment of the nitrate removal capacity based on data that can be 

fairly inexpensively obtained at a pre- or post- restoration stage. In this way 

uncertainties associated with the indirect estimation of nitrate removal through for 

example geomorphological characteristics can be avoided, while spatial and temporal 

variability can be accounted for without the need for extensive datasets that in most 

cases are not available.   
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2.5 Research Aim and Objectives 

The overarching aim of the present study is to investigate the hydrological and 

biological processes by which the floodplain of a temperate restored river reach can 

reduce nitrate concentration in surrounding surface and groundwaters with the aim of 

informing future river-floodplain restoration projects about best management practices 

with respect to water quality improvement via nitrate removal. 

 

The research will address the following research objectives: 

 

1. Identify the main hydrological mechanisms responsible for the inundation regime in a 

temperate re-connected floodplain. Assess the relative importance of each hydrological 

mechanism for (i) the transport of nitrate and (ii) the creation of the necessary 

conditions for denitrification and DNRA in the soil. 

 

2A. Quantify the relative importance of potential heterotrophic denitrification and 

DNRA in the reconnected floodplain.  

 

2B. Investigate the main controlling factors influencing the two processes in a temperate 

agricultural re-connected floodplain. This research will focus in particular on:  

(i) The role of land use management in influencing the magnitude and relative 

importance of heterotrophic denitrification and DNRA.  

(ii)  The role of vertical changes in soil stratigraphy and electron donor and 

acceptor availability in influencing the magnitude and relative importance of 

denitrification and DNRA. 

(iii)  The role of wetting-drying cycles in controlling the spatial and temporal 

variability of heterotrophic denitrification and DNRA. 

 

3. Develop, validate and apply a management tool aimed at evaluating the nitrate 

removal capacity of candidate sites for river-floodplain restoration and/or assessing the 

nitrate removal capacity of restored floodplains as part of a post-project appraisal. 
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Chapter 3:  Study Site  

 

3.1 Introduction 

The River Cole catchment at Coleshill, Oxfordshire UK, was selected as the study site, 

since it is a temperate rural floodplain where diffuse nitrate pollution from urban and 

agricultural sources is a current issue. Moreover, the river-floodplain connectivity was 

restored 14 years ago, for the purpose of increased flood storage and habitat creation, 

and the frequency of overbank inundation was markedly increased. Therefore it was a 

suitable site for studying the research objectives of the study. 

    

3.2 The River Cole catchment 

The study reach is a section of the River Cole located on the National Trust Buscot and 

Coleshill Estate, on the Oxfordshire/Wiltshire border (NGR: SU 234935), covering a 

catchment area of approximately 130 km2 that consists of 2 km reach of river with 

approximately 50 ha of floodplain. The River Cole is a tributary of the River Thames 

located in the upper part of the catchment. Its headwaters include part of the large town 

of Swindon, Wiltshire (Figure 3.1). 

 

3.3 Land Use 

The Cole catchment is dominated by agriculture with significant urban development in 

the headwaters draining Swindon. Agricultural changes in the catchment have been 

dramatic since the 1950s. The dominant land use was originally pasture with flooding of 

the lowlands allowing two cuts of hay per year. The agriculture in the catchment has 

witnessed significant change over the past 50 years, predominantly from pasture to 

arable farming. Much of the floodplain shows evidence of 19th century under-drainage 

or management for water meadows. Drainage of the floodplain soils was undertaken in 

the 1960s and peaked in the period 1965-1975. Downstream of Coleshill the land 

drainage scheme of 1976 was accompanied by large scale under-drainage and arterial 

drainage of the floodplain. Prior to the restoration, arable farming occupied 60 % of the 

floodplain riparian zone, with the main concentration downstream of Coleshill Bridge 

(Sear and White, 1994).  
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Figure 3.1: Site location 
 

3.4 Geology and Soils  

The valley of the River Cole is floored with alluvium. In the lower reaches of the River 

Cole, downstream of Coleshill Bridge, Thames gravels underlie the alluvium, and 

locally outcrop in the river banks. The river rises from the chalk escarpment of the 

Berkshire Downs before flowing across a wide expanse of Kimmeridge Clay and 

passing between the Corallian Rag Hills, comprising Corallian Sandstone and 

Limestone, to the north east of Swindon. The downstream section of the river flows 

over lowland clay vales comprised of Oxford Clay, before joining the River Thames at 

Lechlade (Sear and White, 1994).  

 

The soils of the Cole catchment are dominated by clay based soils up onto the Downs. 

The main soils associations in the area are: Pelo-Stagnogley/Stagnogley (712 & 711 j/f); 

Brown Redzina (343h); Gleyic brown calcareous earths (512); and grey Redzinas 

(342a). Clay vale landscapes of this type are not particularly susceptible to erosion, due 
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to the low gradients associated with this landscape and the cohesiveness of the soil 

types (Sear and White, 1994). 

 

3.5 Hydrology  

The headwaters of the River Cole are in chalk, which sustains a modest baseflow 

throughout the year. The river is also fed by a number of springs along its course, 

notably at Highworth, Watchfield and Coleshill (Environmental Report River Cole 

Restoration, 1995). However, over 50 % of the catchment is underlain by clay which 

promotes a rapid response to rainfall (Kronvang et al., 1998). The flashy response to 

rainfall events is also exacerbated by urbanisation in the upstream reaches around 

Swindon. The mean annual discharge of the River Cole, based on records from 1976 to 

2006 at the gauging station at Inglesham (NGR: SU 208970), is 1.19 m3s-1. The Q95 

(discharge exceeded at 95 % of time) is 0.14 m3s-1, while the Q10 (discharge exceeded 

at 10 % of time) is 2.72 m3s-1. The mean annual precipitation of the catchment is 682 

mm (Source: Environment Agency of England and Wales).  

 

Although no sewage effluent from Swindon itself enters the Cole, there are large 

amounts of urban runoff that have necessitated the gradual construction and continuous 

upgrading of 12 flood storage areas, in the urban areas of the catchment, in order to 

regulate flashy flows. Prior to the restoration, the 1 in 2 year flood event flooded the site 

mainly upstream of Coleshill Bridge, with little flooding downstream (Environmental 

Report River Cole Restoration, 1995). The river is a low energy system with sediment 

transport mainly confined to fine silts and clays.  

 

The river has been straightened and impounded in the 17th century to enable the 

operation of a water mill. In the 1970s the downstream channel had been further 

deepened and widened to alleviate flooding in support of arable farming within a 

floodplain of 50 ha (Vivash et al., 1998).  Consequently, the Cole floodplain, which was 

an important store of water and fine sediments, was effectively drained in the reach 

downstream of Coleshill as all but the largest floods (>1:25 year recurrence interval) 

were contained in- bank (Sear and White, 1994).   
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3.6 Water Quality 

The River Cole at Coleshill is fairly typical of many small rural rivers in lowland 

Britain (Environmental Report River Cole Restoration, 1995). Table 3.1 shows average 

concentrations for selected water quality determinants between 2005 and 2008. These 

indicate that in general the water quality is good, well-saturated with oxygen and 

usually with a low BOD and only moderate levels of ammonia. The water has a high 

alkalinity, with pH most of the time above neutral. Suspended sediment loads tend to be 

rather high, while nutrient loadings also tend to be high with nitrate nitrogen peaking 

near the EC drinking water threshold (10 mg N L-1). Phosphate is also much higher than 

would be expected for an undisturbed catchment. The high nitrate and phosphate levels 

reflect the largely agricultural nature of the catchment, whilst the phosphate levels could 

also reflect sewage discharges from the small sewage treatment works (STW) at 

Coleshill and possibly from the larger STW at Shrivenham further upstream 

(Environmental Report River Cole Restoration, 1995).  

 

 

Table 3.1: Values of selected water quality determinants sampled at Coleshill Bridge 

(NGR: SU 234935) in 2005 - 2008. * indicates data collected in 2000 - 2005 from the 

same location (Source: Environment Agency of England and Wales). 

Determinant Mean Range

pH* 7.8 6.7 - 8.7

Suspended solids (mg L-1) 13.2 5.1 - 39.8

Biochemical Oxygen Demand (mg L-1) 1.7 1 - 5.3

Dissolved Oxygen (%) 88.6 61 - 117

Ammonium nitrogen (mg L-1) 0.06 0.03 - 0.18

Nitrate nitrogen (mg L-1) 5.1 1.8 - 9.7

Chloride (mg L-1)* 53.6 17.3 - 242

Orthophosphate (mg L-1) 0.28 0.1 - 0.6

Alkalinity (as CaCO3) (mg L-1)* 153 38 - 198

Copper (dissolved) (µg L-1)* 4.9 0.7 - 8.8

Zinc (µg L-1)* 31.8 7.3 - 105 
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3.7 Vegetation 

A river corridor and floodplain vegetation survey was undertaken in 1994, prior to the 

restoration of the site (Environmental Report River Cole Restoration, 1995). To date 

there has not been a follow up survey to document any changes in the vegetation 

composition of the floodplain following the restoration (personal communication Martin 

Janes).  

 

River Corridor 

As a whole the River Cole in this area is moderately rich in wetland plant species (circa 

46 spp.). The ponded area upstream of the Mill supports the richest wetland reaches, 

including a diverse wetland herb community on the lower, cattle-poached banks. Both 

emergent and aquatic flora of this area include species such as: arrowhead (Sagittaria 

saggittifolia); narrow leaved water plantain (Alisma lanceolatum); skullcap (Scutellaria 

galericulata); tufted forget-me-not (Myosotis laxa); and marsh woundwort (Stachys 

palustris). The other main areas of interest are the aquatic communities, dominated by 

stream water-crowfoot (Ranunculus penicillatus) and flowering rush (Butomus 

umbellatus), both of which are associated with the shallow reaches of the River Cole 

(Environmental Report River Cole Restoration, 1995). 

 

Floodplain 

A Phase 1 survey of the floodplain adjacent to the Cole was also carried out in 1994 in 

accordance with the National Vegetation Classification (NVC) methodology 

(Environmental Report River Cole Restoration, 1995). Two broad habitat types 

emerged: arable land to the north of Coleshill Bridge and grassland to the south. The 

arable land in 1994 was largely down to rape. All fields on the western side of the river 

had broad (10 m) buffer strip areas between the arable crop and the rivers edge, 

supporting a variety of common ruderals. 

 

Four NVC grassland types were recorded south of Coleshill Bridge. The grassland 

community of greatest species richness and conservation value was NVC type MG5-

Crested Dogs-tail - Common Knapweed Meadow and Pasture Community. This type of 

community is characterised by red fescue (Festuca rubra), crested dog’s tail (Cynosurus 

cristatus), bird’s foot trefoil (Lotus corniculatus), ribwort plantain (Plantago 

lanceolate) and Yorkshire fog (Holcus lanatus). These pastures have usually not been 
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sprayed with herbicide, and they received little or no fertiliser. They were usually cut 

for hay and were ungrazed in summer but may have been grazed in winter 

(Environmental Report River Cole Restoration, 1995).  

 

Of particular interest is the ex-SSSI Coleshill fritillary meadow north of the bridge. This 

is a moderately species rich site, which has been partially improved, but still retains a 

number of old wet meadow species including snake’s head fritillary (Fritillaria 

meleagris), dropwort (Fillipendula vulgaris), sweet vernal grass (Anthoxanthium 

odoratum), meadow sweet (Fillipendula ulmaria), meadow vetchling (Lathyrus 

pratensis), ladies smock (Cardamine pratensis), knapweed (Centaurea nigra) and 

common vetch (Vicia sativa).  

 

3.8 River Cole Restoration project 

The 2 km reach of the River Cole, chosen also as the site of the present study, was 

included in an EU-Life Demonstration Project for damaged rivers and floodplains in 

1995 along with River Brede in Denmark and River Skerne in UK (Holmes and 

Nielsen, 1998). The main objective for River Cole was the restoration of the river and 

floodplain in terms of physical features, flood storage, habitat diversity and visual 

appearance (Janes et al., 1999).  

 

This was achieved by both new channel creation and reshaping of existing channels 

over a distance of 2 km. During this process, channel width was considerably reduced 

from a mean of 14.9 to 9.4 m, and channel length was increased by about 8%. Bankfull 

capacity was reduced by raising bed levels relative to ground level by about 1m. This 

aimed to restore more frequent seasonal flooding to adjacent fields which would be 

farmed less intensively, supported by Countryside Stewardship (Janes et al., 1999). 

Wetland vegetation was allowed to re-colonise naturally (Biggs et al., 1998). Figure 3.2 

illustrates the various elements of the restoration project along the restored reach.  

 

In the upstream reach, a new meandering stream was created along what was believed 

to be the old course of the river and the mill leat was also kept for its heritage value. 

Floods are encouraged between the new course and the mill leat. In the downstream 

section, a new meandering channel was created along the old straightened one. The old 

channel was infilled in some parts and elsewhere it was turned into backwater areas. 
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Flooding is encouraged through the connection of the new channel with a former 

draining ditch surrounding the pasture meadow. In this way overbank inundation is not 

restricted to the riparian areas along the banks, but extends further to the higher area of 

the floodplain. At the end of the reach, the fritillary meadow with important 

conservation value was preserved and an experimental reedbed receiving runoff from 

agricultural land was created. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic of the restoration measures implemented at the River Cole reach 

at Coleshill (adapted from Janes et al., 1999). FM: Fritillary Meadow; PM: Pasture 

Meadow; BZ: Buffer Zone and GG: Grazing Grassland. 
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Following the implementation of the restoration plans, flood frequency and river valley 

inundation have increased and downstream peak water levels were reduced (personal 

communication Martin Janes). A variety of instream geomorphological features such as 

pools, berms, point bars and overbank deposits were created in the new channels. 

Suspended sediment loads increased during the construction phase, but soon after 

returned to normal levels (Kronvang et al., 1998). Plant and aquatic invertebrate 

assemblages showed a rapid recovery of species richness in the restored sections of 

River Cole after channel reconstruction (Biggs et al., 1998). In the case of River Cole, 

there was not post-restoration monitoring of the change in nutrient retention capacity of 

the restored floodplain, as there was the case for River Brede (Hoffmann et al., 1998a). 

 

Figure 3.3 shows the current layout of the 2 km reach of the River Cole, 14 years after 

the completion of the restoration project. The four land use zone areas, which are the 

subject of the present study, have also been delineated in Figure 3.3. With direction 

from upstream to downstream, the Grazing Grassland (GG) is the area between the new 

meandering river and the retained mill leat. The vegetation type is expected to be 

similar to the grassland communities identified in the 1994 survey, since the land use 

management has not been changed, although the effect of the increased inundation 

frequency on the vegetation community composition is not currently known. The 

dominant land use is grazing by cattle, when overbank flooding is not occurring (Figure 

3.4).  

 

The Buffer Zone (BZ) area is part of the buffer strip maintained between the arable land 

on the west and the new meandering section of the river downstream from Coleshill 

Bridge. The arable land adjacent to BZ is mainly used for winter cereals (oil seed rape 

and flax) but the farming practice is now less intensive, although the current rate and 

frequency of fertiliser and herbicide application is not known. While the vegetation 

composition is not expected to have changed significantly, the inundation regime has 

increased due to the narrowing of the river and the raising of its bed downstream of the 

bridge (Figure 3.5). The restoration plan predicted an increased flooding occurrence 

under low order events during the winter and spring months, but anticipated flooding to 

persist for short periods due to expected rapid drainage through the gravel underlying 

the alluvium. It was however noted that ‘in extreme circumstances the downstream 
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meadow areas could be covered with flood water for up to three weeks in winter’ 

(Environmental Report River Cole Restoration, 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Current layout of the restored 2 km reach of the River Cole at Coleshill 

(Google Maps©, 2009). 

 

The arable land to the east of the downstream section of the river was reclaimed and 
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local equestrian clubs. Overbank flooding is encouraged by the connection of the old 
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landscape feature spreading across the PM with direction from east to west. This land 

use zone is the most modified following the restoration, and therefore a change in the 

vegetation composition has probably occurred with re-colonisation of the former arable 

land by wet-meadow species and possibly fritillaries from the adjacent Fritillary 

Meadow (FM) (personal observation). The FM, north from PM, has been conserved and 

the abundance of fritillaries has increased (personal communication Martin Janes). 

Flooding is also encouraged from both the river and the draining ditch. 

 

 

 

 

 

 

 

Figure 3.4: Flooding in the Grazing Grassland area in December 2005 (photo F. 

Sgouridis) 
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Figure 3.5: The Buffer Zone area next to the arable field in September 2006 (top) and 

flooded in March 2008 (bottom) (photos F. Sgouridis). 
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Figure 3.6: The Pasture Meadow area with a view from east to west (top) in December 

2006 and flooded in March 2008 (bottom) (photos: F.Sgouridis).  
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3.9 Rationale for study site selection 

The selection of the restored reach of the River Cole at Coleshill as the site for 

investigating the research objectives of the present study is based on the following 

arguments: 

 

Objective One: Identify the main hydrological mechanisms responsible for the 

inundation regime in a temperate re-connected floodplain. 

• It is obvious that the hydrological connectivity between the river and the 

floodplain has been reinstated and that the River Cole at Coleshill has an active 

re-connected floodplain 

• Given the low relief landscape of the River Cole catchment and the heavy clay 

nature of the alluvium, water table fluctuations in relation to stream stage are 

expected to play a significant role in regulating nitrate attenuation processes 

• Overbank flooding seems to be the dominant hydrological mechanism, however 

the contribution of hillslope processes as well as subsurface processes between 

interspaced permeable and impermeable alluvia can also be investigated due to 

the landscape position and the geology of the floodplain 

 

Objective Two: Quantify the relative importance of potential heterotrophic 

denitrification and DNRA and investigate the main controlling factors influencing the 

two processes in a temperate agricultural re-connected floodplain. 

• The intermittent saturation regime of the re-connected floodplain suggests that 

favourable conditions for nitrate attenuation processes are likely to develop. 

Moreover, the effect of the different land use management practices and the 

spatial distribution of nitrate attenuation can be investigated across the different 

land use zones of the restored reach 

• It is hypothesized that due to the low relief of the River Cole re-connected 

floodplain, topography likely plays a minor role in creating areas of increased 

nitrate attenuation activity, whereas the hydrological regime is the main driver of 

temporal and spatial variability by controlling both the supply of nitrate and the 

redox potential of the soil 

• There is indication for the existence of shallow groundwater table in the re-

connected floodplain of the River Cole, which fluctuates between the ground 
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surface and 2 m depth for most of the year. Therefore its role in nitrate removal 

may be important during, and especially between, flood events and for this 

reason there is scope in investigating the nitrate attenuation potential of 

subsurface soils 

• Being a mature re-connected floodplain, transient problems associated with the 

acclimation of the vegetation and microbial communities to the changing 

hydrological regime are not expected to be encountered.  

 

Objective Three: Develop, validate and apply a management tool aimed at evaluating 

the nitrate removal capacity of candidate sites for river-floodplain restoration and/or 

assessing the nitrate removal capacity of restored floodplains as part of a post-project 

appraisal. 

• The re-connected River Cole catchment is also suitable for the development and 

validation of a management tool for the post-project appraisal of the nitrate 

removal capacity of a restored floodplain  

• Finally, issues of ownership, accessibility and permissions are resolved because 

of long established connections with the River Restoration Centre (providing 

advisory support to the present study) and the National Trust who are 

responsible for managing the area. 
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Chapter 4:  Methods  

 

4.1 Introduction 

For the purpose of characterising the hydrological regime of the re-connected floodplain 

of the River Cole, a hydrological and meteorological monitoring program was designed 

and implemented according to the methodology described in section 4.2. Additionally, 

the water chemistry of both the surface water (river and draining ditch) and the shallow 

groundwater were also monitored with the aim of identifying nitrate removal patterns 

along SW-GW interaction flow paths, following the methodology presented in section 

4.3. The potential for biological nitrate attenuation processes was investigated in soil 

samples from the surface and subsurface horizons of the floodplain, while a number of 

soil properties were also measured with the aim of identifying and quantifying the 

relative importance of the main controlling factors of nitrate attenuation processes. This 

methodology is described in section 4.4. Finally, the methodology for the development, 

validation and application of the floodplain restoration management tool is given in 

Chapter 7. 

 

4.2 Hydrological analysis 

4.2.1 Meteorological dataset 

An Automatic Weather Station (AWS) (MiniMet SDL 2900, Skye, Powys, UK) was 

installed on site (NGR: SU 2302793645), in the Pasture Meadow (henceforth PM), on 

12th February 2007 (Figure 4.2.1). Table 4.2.1 shows the various sensors connected to 

the AWS, their operational range and sensitivity. The sample interval for all sensors was 

30 seconds and averages were stored at 30 minute intervals. The raingauge stored total 

rainfall at 30 minute storage intervals.  

 

Table 4.2.1: Specifications of the AWS sensors 

Sensor Measurement Type Units Range Sensitivity

Pyranometer Total solar radiation SKS 1110 W m-2 0 - 5000 1mV/100W/m2

Net radiometer Net radiation NR Lite W m-2 -200 - 1000 10µV/W/m2

Thermistor Soil temperature SKTS 200/I oC -20 - 100 0.1oC

Anemometer Wind speed A100R m s-1 0 - 75 0.1 m s-1

Wind vane Wind direction W200P Degrees 0 - 360 2o

Raingauge Rainfall ARG100 mm n/a 0.197 mm/tip

RH Relative humidity SKH 2070/I/RS % 0 - 100 2%

Thermometer Air temperature SKH 2070/I/RS
oC -40 - 60 0.2oC  
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Figure 4.2.1: The AWS in the PM area of the River Cole floodplain (photo: F. 
Sgouridis) 
 
 
The reference evapotranspiration rate (ETo; mm day-1) was estimated according to the 

FAO Penman-Monteith method (Allen et al., 1998), assuming a constant plant height of 

0.12 m and a standardised height for wind speed, temperature and humidity at 2 m. The 

ETo formula is given in Equation 4.2.1, while Table 4.2.2 presents the definition of 

each parameter in Eq. 4.2.1, their units and whether they were measured or estimated. 
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Table 4.2.2: Parameters used for the estimation of ETo. * γ is calculated from Cp, P, ε, 

λ, which are used as constants. a.s.l. means above sea level. 

Symbol Definition Units Comment

ETo reference evapotranspiration rate mm day-1 estimated

Rn net radiation at the crop surface MJ m-2 day-1 measured

G soil heat flux density MJ m-2 day-1 assumed minor

T mean daily air temperature at 2 m oC estimated

u2 wind speed at 2 m height m s-1
measured

es mean saturation vapour pressure kPa estimated

ea actual vapour pressure kPa estimated

es - ea saturation vapour pressure deficit kPa estimated

∆ slope vapour pressure curve kPa oC-1 estimated
eo(Tmax) saturation vapour pressure at max temp kPa estimated

eo(Tmin) saturation vapour pressure at min temp kPa estimated

RHmax maximum relative humidity % measured

RHmin minimum relative humidity % measured

γ* psychrometric constant kPa oC-1 0.067

Cp specific heat at constant temp MJ kg-1 oC-1 1.01E-03

P average atmospheric pressure (77 m a.s.l.) kPa 100.39

ε ratio molecular weight of water vapour/dry air 0.622

λ latent heat of vaporisation MJ kg-1
2.45  

 
 
 
4.2.2 River Cole stage, discharge and water chemistry 

River stage (m) and discharge (m3s-1) data were obtained as daily means and at fifteen-

minute intervals from the nearest gauging station operated by the Environment Agency, 

at Inglesham (NGR SU 20829695; station ID 0790TH; Datum: 72.69 m above sea 

level), situated 5 km downstream of Coleshill Bridge and referring to a catchment area 

of 140 km2, very similar to the catchment area of Coleshill (130 km2). The gauging 

station consists of a compound crump weir (high central crest). 

 

Additional water chemistry data for the River Cole were obtained from the Environment 

Agency’s monitoring station at Coleshill Bridge (NGR: SU 234935; station ID 

PUTR0025) at monthly intervals. The list of the chemical determinants is presented in 

Table 4.2.3. 
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Table 4.2.3: Water chemistry determinants for River Cole 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.3 Floodplain hydrological monitoring 

4.2.3.1 Groundwater level 

An important aim of the hydrological monitoring was to measure the groundwater table 

elevation across the re-connected floodplain and thereby establish flow rate and 

direction within the subsurface, and also examine the detailed time sequence of events 

across the floodplain during overbank floods. Due to budget and time constraints it was 

not possible to monitor the hydrological regime of all four land use zones (approx. 50 

ha of floodplain). Consequently, groundwater monitoring was restricted to the PM and 

BZ areas.  

 

The PM (7.5 ha surface area) is the largest land use zone where the restoration project 

aimed at increasing the inundation frequency by connecting the river with the old 

draining ditch. Overbank flooding had been observed to occur at both the river to 

floodplain and ditch to floodplain directions. Therefore, the PM was a suitable site at 

Code Description Units
0061 pH

0062 Conductivity at 20oC µS cm-1

0076 Water temperature oC
0085 BOD as O2 mg L-1

0111 Ammonia as N mg L
-1

0116 Total Oxidised Nitrogen as N mg L
-1

0117 Nitrate as N mg L
-1

0118 Nitrite as N mg L-1

0135 Total Suspended Solids mg L-1

0162 Alkalinity pH 4.5 - as CaCO3 mg L-1

0172 Chloride ion as Cl mg L-1

0180 Orthophosphate as P mg L
-1

0211 Potassium as K mg L
-1

0237 Magnesium as Mg mg L
-1

0241 Calcium as Ca mg L
-1

6051 Iron as Fe µg L-1

6396 Turbidity NTU NTU
6452 Copper as Cu µg L

-1

6455 Zinc as Zn µg L
-1

9901 Dissolved Oxygen as % saturation %
9924 Dissolved Oxygen as O mg L

-1



 99 

which to study the floodplain response to overbank flooding and the effect of multiple 

water sources on nitrate transport and inundation patterns. The BZ area (1.5 ha surface 

area) has the typical characteristics of a buffer strip, being situated between arable land 

and the river. Hence, its position is ideal for studying the attenuation of nitrate 

transported through groundwater flow paths from the arable land towards the river. 

Moreover, the gently sloping topography of BZ allows the investigation of the interplay 

between hillslope runoff and overbank inundation.  

 

The PM and the BZ land use zone areas were instrumented with two transects of 

groundwater wells each. The locations of the wells are shown in Figure 4.2.2. Flow 

patterns across low-angled floodplains comprising heterogeneous sediments can be 

complex, and thus a single transect measurement orthogonal to the river, may not 

provide an adequate picture of subsurface flow paths (Burt et al., 2002a). In PM, the 

transect perpendicular to the river (wells F1 to F7) was designed for capturing the SW-

GW interactions between both the river to floodplain and ditch to floodplain directions. 

The transect parallel to the river (wells F9 to F14) aimed at capturing the contribution of 

the ditch to the overbank flooding across the floodplain. In BZ, the two perpendicular to 

the river transects (wells H1 to H4 and H10 to H4) aimed at intercepting the 

groundwater flow between the arable land and the river.         

 

The groundwater wells were installed using a 40 mm hand auger. Each well consisted of 

an open hole drilled through the saturated zone to the shallowest impermeable layer, 

lined using a PVC pipe (I.D. 32 mm), perforated (5 mm holes at 20 mm intervals) along 

its entire length and sealed at the bottom to prevent ingress of sediment. The aim was to 

intercept the water table throughout the year and therefore the depth of the wells ranged 

between 1 and 2 m. The annular space between the tube and the sediment was in-filled 

with coarse gravel and sand while a bentonite seal was used to prevent rainwater from 

seeping down the hole. The top of the tube was capped and covered with a paving slab. 

Water table elevation was measured at every well at least monthly between October 

2006 and October 2007, using a water level meter (Model 101, Solinst, Ontario, 

Canada). Seven wells in PM and five wells in BZ (see black circles in Figure 4.2.2) 

were instrumented with a pressure transducer (Levelogger Gold 3001, Solinst, Ontario, 

Canada) for continuous water level and temperature measurements.  
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Figure 4.2.2: Location of groundwater wells in the PM and BZ sites. Dark circles 

indicate wells equipped with pressure transducers, while white circles indicate wells 

manually sampled without pressure transducers. The black square indicates the location 

of the Barologger™. 

 

The Levelogger™ has internal temperature compensation, while it can be corrected for 

atmospheric pressure changes by using a Barologger™, which measures atmospheric 

instead of hydraulic pressure. The Levelogger™ has temperature sensor accuracy ± 

0.05oC and level sensor accuracy ± 0.3 cm at 4 m deployment depth. The logging 

frequency for all the Leveloggers™ and the Barologger™ was at fifteen-minute 

intervals between 19-10-06 and 18-12-06, and was changed to hourly intervals from 

then onwards. The specifications of the Leveloggers™ used in this study are shown in 

Table 4.2.4. 

 

Since permission for the installation of a river stage was not granted, the wells closest to 

the river bank, F1 for the PM and H10 for the BZ, were used to approximate river stage 

at above bankfull conditions. These wells were chosen since they were located in river 

marginal sediments and were directly influenced by river stage fluctuations. When F1 

and H10 wells are used as proxies for river stage, this is annotated in the hydrographs 

(see results in Chapter 5). 

 



 101 

Table 4.2.4: Levelogger™ specifications 

Well name Sensor serial # Longtitude (E) Latitude (N) Depth from ground surface to 
pressure plate within sensor 
(cm)

Well surface elevation above 
local datum (cm)

Pasture Meadow

F1 1018741 423057 193589 94 0

F2 1019036 423051 193629 155 83

F3 1018742 423059 193669 144 61

F5 1019038 423077 193752 160 26

F7 1018726 423094 193832 187 17

F11 1019016 423161 193764 157 38

F14 1019010 423277 193763 183 80

Buffer Zone

H4 1019013 423344 193491 170 57

H7 1019029 423354 193495 193 53

H8 1018478 423363 193499 103 64

H9 1018674 423372 193503 183 39

H10 1018483 423386 193509 115 45  
 
 
 

4.2.3.2 Floodplain surveying and floodwater volume calculation 

The surface elevation of the PM and BZ areas was surveyed using a GPS-RTK system 

(HiPer Pro, TOPCON, Newbury, UK) with horizontal and vertical accuracy 3 and 5 mm 

respectively. The PM was surveyed following a 25 x 25 m grid over a 7.5 ha surface 

area, while for the BZ a 5 x 5 m grid was followed over a 1.5 ha surface area. Contour 

plots for both areas were produced using Surfer® 8.0 (Golden Software), a grid-based 

contouring and three dimensional surface plotting graphics software, whereby XYZ data 

are interpolated on to a regular spaced grid from which a contour map is plotted. The 

gridding method chosen was kriging with a linear variogram. The contour plots are 

shown in Figures 4.2.3 and 4.2.4 for the PM and BZ respectively. 

 

The peak floodwater volume stored on the floodplain surface during overbank events 

was estimated by using the Fill-Volume command in Surfer® 8.0 (Golden Software) in 

conjunction with the maximum water table elevation recorded above ground level for 

each flood event (using well F2 in the PM and the well H7 in the BZ). The linear 

relationships between water level and floodwater volume and flooded surface are shown 

in Figure 4.2.5.  

 

Finally, the nitrate loading per flood event was estimated by multiplying the nitrate 

concentration of the river water on the available date closer to the event, data obtained 

from the Environment Agency’s monitoring station at Coleshill Bridge, with the 
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maximum floodwater volume stored on the floodplain. This estimation assumes that all 

floodwater originates from river overbank flooding, without taking into account the 

contribution of rainwater and hillslope runoff. Nitrate removal percentages along 

surface and subsurface flowpaths were calculated based on concentration differences 

between neighbouring wells, accounting for dilution using Cl- data, but without 

including the effect of flow through sediment layers of different hydraulic 

conductivities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.3: Contour map of the PM site. The groundwater wells have been depicted 

with a characteristic shape according to their elevation in (m) above sea level. The 

arrows indicate flow direction in the ditch and the river under baseflow conditions. 
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Figure 4.2.4: Contour map of the BZ site. The groundwater wells have been depicted 

with a characteristic shape according to their elevation in (m) above sea level. The 

arrow indicates flow direction in the river under baseflow conditions. The dashed line 

indicates the location of the road and Coleshill Bridge above the BZ. The dotted line 

indicates the fence of the arable field. The circled letter C indicates the location of the 

Campbell Logger. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.5: The linear relationships between water level above the well F2 and the 

floodwater volume and flooded surface in the PM area. A.s.l. stands for above sea level. 
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4.2.3.3 Hydraulic conductivity 

The horizontal saturated hydraulic conductivity (Kh) was measured with piezometer 

slug tests according to Baird et al. (2004) in the A, B and C  soil horizons of both the 

PM and BZ sites. Piezometer slug tests can provide accurate measurements of Kh as 

long as close attention is given to the test procedure, while destructive sampling (as in 

laboratory methods) is avoided (Baird et al., 2004). The piezometers used in this study 

were made of PVC pipes (O.D., 3.3 cm; I.D. 2.9 cm) and had an intake of 21 cm length 

machined at the lower end of the pipe, which was sealed at its base with a wooden cone 

(Figure 4.2.6). Nearly 70 % of the intake was open to water flow.  

 

The measurements were taken when the horizons to be investigated were fully saturated 

according to the method described by Baird et al. (2004). The Kh was calculated using 

the Hvorslev (1951) equations. The aim was to perform at least three measurements in 

different piezometers per horizon per site with either insertion or withdrawal of the slug. 

From the 18 tests that were successful, 11 (61 %) were very close (r2= 0.99) to the 

required log-linear piezometer response (Hvorslev, 1951). In 28% of the tests, the 

deviation from log-linearity was slightly higher (r2=0.98), while in 11% of the tests the 

deviation from log-linearity was significant (r2=0.94) and these results were not used in 

further analyses. 

 

 

 

Figure 4.2.6: Detail of the piezometer intake used in the study (after Surridge et al., 

2005). 
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4.2.3.4 Tensiometer, soil moisture and temperature data 

For the purpose of studying in detail the water table fluctuations between the different 

soil horizons, three tensiometers (SWT4, Delta-T Devices Ltd., Cambridge, UK), one 

per soil horizon, were installed in the BZ site (Lat: 193503 N Long: 423372 E) to 

measure soil water tension. Additionally, at the same location, three theta probes 

(ML2x, Delta-T Devices Ltd., Cambridge, UK) and three thermistors (Model 107, 

Campbell Scientific, Loughborough, UK), one per soil horizon, were installed for 

collecting soil moisture and temperature data to be used in modelling denitrification 

across the soil horizons of the BZ (for details see Chapter 7). Table 4.2.5 shows the 

installation depth for each of the above probes and their operational specifications.  

 

The probes were installed in November 2007 using an appropriate diameter hand auger 

for each probe. A bentonite seal was used around the top of each probe to prevent 

seeping of rainwater along the probe. The probes were connected to two CR10X data 

loggers (Campbell Scientific, Loughborough, UK), one for the tensiometers and one for 

the theta probes and the thermistors. An hourly logging interval was chosen for all 

probes. The logging program of the two CR10X loggers can be found in Appendix 1.  

 

The tensiometers were calibrated by the manufacturer (Delta-T Devices Ltd., 

Cambridge, UK) and the calibration values for 10.6 VDC and horizontal installation are: 

1000 hPa = 100 mV and offset = 0 hPa. A soil specific calibration was performed for 

the theta probes, using metal bulk density rings for each soil depth, following the 

polynomial equation conversion for very moist mineral soils (Delta-T Devices, 1999). 

The relationship between theta probe output (V) and square root of the soil dielectric 

constant ( ε ) for the range 0 to 1 Volt can be described very precisely by a 3rd order 

polynomial: 

 

                   (4.2.2) 

 

The volumetric water content (θ) is related to theε through a simple linear relationship 

(Delta-T Devices, 1999): 

                      (4.2.3) 

 
 

32 7.44.64.607.1 VVV +−+=ε
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0
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The coefficients a0 and a1 were determined experimentally from the calibration for each 

soil depth and their values are given in Table 4.2.6. 

 

Table 4.2.5: Installation depths and operational specifications for the tensiometers, theta 

probes and thermistors used in this study. aDepth from the surface to the middle of the 

ceramic cup. bLinearity at 10±0.01 VDC excitation, 25oC. A, B, C respective soil 

horizons. 

Depth from surface (cm) Units Range Accuracy

Tensiometers

A 35a hPa -1000 - 850 ± 0.5%b

B 74a hPa -1000 - 850 ± 0.5%b

C 115a hPa -1000 - 850 ± 0.5%b

Theta probes

A 20 m3.m-3 0 - 1 ± 0.01

B 70 m3.m-3 0 - 1 ± 0.01

C 120 m3.m-3 0 - 1 ± 0.01

Thermistors

A 10 oC -35 - +50 ± 0.2

B 50 oC -35 - +50 ± 0.2

C 150
oC -35 - +50 ± 0.2  

 
 
 
Table 4.2.6: Soil moisture coefficients derived from the soil specific calibration of the 

theta probes for the A, B and C soil horizons of the BZ 

BZ soil horizons α0 α1

A 2.95 4.24
B 2.56 4.89
C 2.68 6.34 

 

4.3 Hydrogeochemical analysis 

 

4.3.1 Water sampling 

The groundwater in the PM and BZ zones, as well as the river, ditch and rain water, 

were monitored at bimonthly or at least monthly intervals with the purpose of 

identifying chemical gradients along GW-SW interaction flow paths that would imply 

nitrate removal or dilution. The monitoring occurred during the period October 2006 -

September 2007 and all of the groundwater wells were used as monitoring points. Since 
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piezometer nests at various depths in the subsurface were not used, the groundwater 

monitoring reflects the average groundwater conditions throughout the A, B and C soil 

horizons, and the focus was on tracing chemical gradients on the horizontal dimension 

along the well transects.   

 
Before sampling, the wells were purged of at least one well volume using a manual 

inertial pump (HDPE tubing; O.D: 25 mm; max rate: 15 L min-1; Waterra, Solihull, 

UK). Subsequently, 100 mL of ‘fresh’ groundwater and surface water were sampled 

manually using a point-source bailer (Model 429, Solinst, Ontario, Canada) and stored 

in Duran® glass bottles at 4oC. Upon return to the laboratory, the samples were 

centrifuged at 3,000 rpm for 20 minutes and the supernatant was filtered through 0.45 

µm Supor® hydrophilic polyethersulphone (PES) membrane filter paper and stored at 

4oC until analysis (maximum for 24 hours). All sample bottles and glassware had been 

washed in 1:10 HCl and rinsed three times in distilled water. 

 

4.3.2 Groundwater temperature, pH, specific conductance and dissolved oxygen 

concentration measurements 

The groundwater temperature, pH, specific conductance and dissolved oxygen (D.O.) 

concentration were measured in situ, after well purging, using the 100 mL sample 

collected for chemical analysis with portable probes. Table 4.3.1 shows the probe types 

used in this study and their operational specifications. The pH meter was calibrated 

prior to use with two calibration solutions at pH 4 and 7. The conductivity meter was 

calibrated once a month using a special calibration solution (HI 7031). The D.O. meter 

was calibrated prior to use for 0 and 100% O2 saturation. All probes were rinsed with 

deionised water and wiped dry between sample readings.  

 

Table 4.3.1: Portable water quality probes used in this study and their operational 

specifications. FS means full scale. 

 
 
 
 
 
 
 
 
 

Probe Model Units Range Accuracy Manufacturer

pH HI8424 n/a 0 - 14 ± 0.01 HANNA Instuments Ltd, 
Bedfordshire, UK

Conductivity HI933000 µS cm-1 0 - 1999 ± 1% FS HANNA Instuments Ltd, 
Bedfordshire, UK

D.O. 550A mg L-1              

or %
0 - 20 mg L-1, 

0 - 200 %
± 0.3 mg L-1, 

± 2%
YSI Hydrodata Ltd, 
Letchworth, UK

Temperature 550A
oC -5 + 45 ± 0.3

YSI Hydrodata Ltd, 
Letchworth, UK
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4.3.3 Anion analysis 

Of the 100 mL water sample volume, 5 mL were used for anion analysis (NO3
--N, Cl- 

and SO42-) by ion exchange chromatography (ICS-2500, Dionex Corp., Sunnyvale, 

California, U.S.A.). Anions were separated on a 2 x 250 mm RFICTM IonPac® AS18 

analytical column with an IonPac® AS18 guard column. The eluent used was 100 mM 

KOH pumped by a GP50 gradient pump at a flow rate of 0.25 mL min-1 in a gradient 

mode. Conductivity was measured by an ED50 detector and it was linear between 0 and 

45 µS. The system had an AS50 autosampler for automated sample injection (25 µL 

injection volume) and Chromeleon® 6.5 software for system control, peak integration 

and data processing. A set of standards (1, 10, 20, 50 and 200 ppm) for Cl- and SO42- 

and (0.25, 2.5, 5, 12.5 and 50 ppm) for NO3
--N was prepared fresh each month and the 

standards were injected at the beginning of the run for calibration purposes. The 

precision of the method for the three anions is shown in Table 4.3.2.  

 

Table 4.3.2: Anion analysis precision data. STDEV: standard deviation; RSD: relative 

standard deviation 

 

 

 

 

 

4.3.4 Metal analysis 

Another 5 mL of the water sample was used for elemental metal analysis (Ca, Na, K, 

Mg, Mn, Fe, Al, and Zn) by Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES). The ICP-OES instrument used was a Vista-PROTM (Varian, 

The Netherlands) spectrometer with a SPS3 autosampler. The instrument was equipped 

with a one-piece low flow extended high dissolved solids torch with a quartz injector 

tube (2.3 mm diameter), a two channel peristaltic pump, a glass cyclonic spray chamber 

and a concentric glass slurry nebulizer. The operating conditions were optimized using 

the Varian’s AutomaxTM function designed to obtain the optimum measurement 

conditions for any combination of metals. These are listed in Table 4.3.3. The ICP-OES 

was calibrated at the beginning of each run with standards at 1, 2, 10 and 50 ppm 

concentrations. The calibration standards were made up from a multi-elemental standard 

solution. One of the calibration standards was also used as a laboratory reference after 

Anion (n=9) Standard Average measured STDEV RSD

Chloride 50.0 47.3 2.2 4.7

Nitrate 12.5 12.6 0.2 1.8

Sulphate 50.0 46.9 2.1 4.4

Concentration (mg L-1)
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every ten analyses to monitor drift in the analyte signal with time. The most sensitive 

analyte wavelengths without spectral interferences were used (Table 4.3.4). The limits 

of determination of the metals analysed in this study, calculated as six standard 

deviations of the mean of ten replicate readings of a blank sample (3σ), are shown in 

Table 4.3.4.  

 
Table 4.3.3: Operating conditions of the Varian Vista-PROTM spectrometer 

Operating characteristics Units Optimum value

Radio frequency power W 1000

Plasma gas flow L min-1 19.5

Auxiliary gas low L min-1 1.25

Pump rate rev. min-1 15

Nebuliser gas flow L min-1
1  

 
 
Table 4.3.4: Selected wavelength and determination limits for the metals analysed in 

this study. 

 

 

 

 

 

 

 

 

 

 

4.3.5 Dissolved Organic Carbon (DOC) analysis 

Finally, 30 mL of the water sample was used for DOC analysis with a HiPerTOC 

Carbon analyser (Thermo Electron Corp., Delft, The Netherlands). The method used 

was the standard high temperature combustion at 1,000oC with non-purgeable organic 

carbon (HT_NPOC), which is recommended for groundwater and surface water samples 

(Thermo, 2006). Briefly, the method involves the removal of inorganic carbon (i.e 

carbonates and bicarbonates) from the sample by the addition of 1M HCl prior to the 

measurement of the DOC. All inorganic carbon is unstable at low pH and reacts to CO2. 

The auto sampler then bubbles gas through the sample to homogenize and sparge off all 

Element Wavelength (nm) 3σ (µg L-1)

Ca 422.673 0.01

Na 588.995 0.15

K 766.491 0.3

Mg 279.553 0.01

Mn 257.61 0.03

Fe 238.204 0.1

Al 394.401 0.2

Zn 213.857 0.2
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the purgeable compounds, i.e. CO2 and some volatile carbon compounds. The sparged 

sample, containing only organic carbon, is then injected into the high temperature 

reactor (1,000oC). The carrier gas (O2 at 250 mL min-1) leads the CO2 to the dual NDIR 

detector via a condition step. The absorbed Infra Red radiation is relative to the amount 

of CO2, which relates to the total organic carbon in the sample. The dual NDIR 

detectors measure the CO2 simultaneously within two analytical ranges (0 - 10 and 0 - 

10,000 ppm C). System control and peak integration is performed through the ThEus® 

software. Standards of 10, 20, 50 and 100 ppm C concentrations prepared from 

anhydrous potassium hydroxyl phthalate (KHC8H4O4) were used for calibration. The 

precision of the HT- NPOC method was assessed by measuring 5 repeat injections and 

the relative standard deviation (RSD) was <5 %.  

 

 

 

4.4 Soil biogeochemical analysis 

4.4.1 Soil sampling and preparation 

 

4.4.1.1 Land Use Zones 

For the purpose of investigating the potential for biological nitrate attenuation across the 

re-connected floodplain of the River Cole, four land use zones (Objective 2B(i) in 

Section 2.5) (from downstream to upstream: Fritillary Meadow, Pasture Meadow, 

Buffer Zone and Grazing Grassland) were selected (see also section 3.8). A stratified 

systematic sampling approach was followed to ensure that both the spatial distribution 

of land use and hydrological regime effects were sampled representatively. Each land 

use zone was divided into three sampling transects, parallel to the river, reflecting 

primarily different hydrological conditions and landscape positions. Both the FM and 

PM areas (Figure 4.4.1) were split into the following: (i) a Riparian transect running 

along the meandering river and therefore receiving overbank flooding from the river, 

while the vegetation was characteristic of the riparian corridor. (ii) A Middle transect 

across the FM and PM reflected less frequent inundation conditions and the dominant 

land use of each area. Finally, (iii) the third transect in the FM and PM was called 

Channel depression and was located on a characteristic depressional feature on the north 

edge of the areas, created by overland flow from the ditch across the floodplain.  
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Figure 4.4.1: The sampling transects in the PM and FM areas. White circles indicate 

sample locations. Channel depression samples 1-5; Middle transect samples 6-10; 

Riparian transect samples 11-15 for both the PM and FM from east to west direction.  

 

 

 

 

The same rationale was followed for delineating the sampling transects in the BZ 

(Figure 4.4.2). In place of the channel depression, a third ‘arable’ transect was selected 

inside the arable field to contrast both the hydrological and land use conditions between 

the buffer strip and the arable field. Finally, in the GG area (Figure 4.4.3) the 

hydrological regime of the ‘new’ meandering river and the ‘old’ channel were 

represented by the Riparian and Mill Leat transects respectively, while the land use 

management and the less frequent inundation conditions were reflected in the Middle 

transect. 
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Figure 4.4.2: The sampling transects in the BZ area. White circles indicate sample 

locations. Riparian samples 1-5; Middle samples 6-10 from east to west direction. 

Arable transect samples 11-15 from south to north direction. 

 

Five topsoil (0 - 20 cm) samples were collected equidistantly per transect, amounting to 

a total of 15 samples per land use area and 60 samples across all areas. Soil samples 

were collected in the FM in July 2006, in the GG and the BZ in June 2007 and in the 

PM in July 2007. Samples were collected with the aid of metal cores (38 mm I.D., 23 

cm long, ELE International, Bedfordshire, UK) to minimise exposure of the soil to the 

atmosphere and also to make sure that all samples were collected from the same depth. 

A separate soil sample was collected at the same location for bulk density determination 

using bulk density rings (I.D: 53 mm, height: 51 mm, volume: 100 cm3) (Type 

07.53.SA, Eijkelkamp, Giesbeek, The Netherlands). Immediately after collection, the 

metal cores and bulk density rings were capped, sealed in plastic zip-lock bags and 

transported to the laboratory in refrigerated containers. The samples were stored at 4oC 

overnight and extruded the next day in the laboratory with a hydraulic sample extruder 

(Model 23-4060, ELE International, Bedfordshire, UK) at room temperature (20oC). 

After extrusion, the samples were split in two fractions, 0-10 cm and 10-20 cm. Visible 
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stones and roots were removed manually and the remaining sample was well 

homogenised by mixing before being transferred in a new plastic zip-lock bag and 

stored at 4oC overnight. Only the 0-10 cm fraction of the soil sample was used in soil 

biogeochemical analyses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.3: The sampling transects in the GG area. White circles indicate sample 

locations. Mill leat samples 1-5; Middle samples 6-10; Riparian samples 11-15 from 

south to north direction. 
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4.4.1.2 Vertical variability in the Pasture Meadow and Buffer Zone subsurface 

In order to investigate the effect of vertical changes in soil stratigraphy and electron 

donor and acceptor availability on nitrate attenuation processes (Objective 2B(ii) in 

Section 2.5), soil samples were collected from the A, B and C soil horizons of the BZ 

and PM areas in March and July 2008 respectively. A different sampling strategy was 

followed for each area. In the case of the BZ, where a homogeneous subsurface soil 

horizon sequence was observed across the site, eight locations were randomly chosen 

within the 1.5 ha area. In the case of the PM, the sequence of subsurface soil horizons 

was represented by sampling next to the well locations along the transect F1 - F7. Soil 

samples were collected with a 40 mm hand auger at six depth intervals (A; 0 – 10 cm, 

B; 10 – 20 cm, C; 20 – 30 cm, D; 50 – 70 cm, E; 80 – 100 cm and F; 100 – 120 cm) per 

sampling location, covering the whole of the soil profile from the surface through the 

vadose zone to the water table, and amounting to a total of 48 samples per area. Bulk 

density rings were also collected for each depth increment, while the storage, transport 

and processing of the soil samples was done as per section 4.4.1.1. 

 

4.4.1.3 Spatial variability due to wetting - drying cycles 

In order to examine the effect of prolonged wetting and drying, under field conditions, 

on the spatial variability of nitrate attenuation processes (Objective 2B(iii) in Section 

2.5), soil samples were collected from 0 - 10 cm depth across all the land use zones. The 

sampling design was based on the results from the land use zone analysis performed in 

the 2006 - 2007 monitoring season. Specifically, the physical soil properties and the 

denitrification potential of all the samples from across the land use zones (n=60) were 

used in a Principal Component Analysis (PCA) in order to choose 30 sample locations 

that represented the widest range of soil conditions and denitrification potential across 

all the land use zones.  

 

The sampling of the wet conditions took place in late March 2008, after the reconnected 

floodplain had received 70 mm total rainfall in three weeks (3.3 mm rain d-1), while the 

dry conditions sampling occurred in late July 2008, after the floodplain had received 11 

mm total rainfall in two weeks (0.8 mm rain d-1) prior to the sampling and no rain at all 

for 10 days before the sampling. Soil samples and bulk density rings were collected and 

processed as per section 4.4.1.1. Additionally, soil moisture in the top 10 cm of the soil, 
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right next to each sampling point, was measured in situ with a theta meter (Type HH1, 

Delta-T Devices, Ltd., Cambridge, UK; Accuracy: ± 0.016 m3.m-3). 

 

4.4.1.4 Monthly monitoring of soil nitrate content in the Buffer Zone area 

For the purpose of the denitrification modelling application (for details see Chapter 7) 

the soil nitrate content in the A, B, and C soil horizons of the BZ was monitored on a 

monthly basis. Soil sampling was performed between November 2007 and September 

2008 at three depth intervals (A horizon: 0 - 10 cm; B horizon: 50 - 60 cm; C horizon: 

100 - 110 cm) with the aid of a 40 mm hand auger at 5 randomly selected locations. The 

sampling locations were selected by random number generation (representing X and Y 

distances) on a 30 x 30 m surface area. The soil samples were processed as per section 

4.4.1.1 and were used for soil nutrient extraction (see section 4.4.5). 

 

4.4.2 Soil bulk density, porosity, moisture and organic matter content, and water 

filled pore space (WFPS) 

The samples were extruded from the bulk density rings and analysed for soil bulk 

density, porosity, moisture content, organic matter content (by Loss on Ignition) and 

water filled pore space (WFPS) following the methods described in Rowell (1994), 

Heiri et al. (2001) and Linn and Doran (1984) respectively. 

 

4.4.3 Absolute particle size distribution with permeability calculations 

Following treatment of soil with hydrogen peroxide (to remove organic matter) and 

diaggregation using Calgon, the absolute particle size distribution was determined with 

optical laser diffraction (Chappell, 1998) using an LS 13320 Coulter Counter Particle 

Size Analyzer (Beckman Coulter Corp., Hialeah, FL, US), with precision between 0.1 

and 10 µm particle size, <1 % RSD.  

 

Soil permeability was estimated using the Carman-Kozeny equation (cited in Boudreau, 

1997): 

                                        (4.4.1) 

         

where k is the permeability (m2), dp is the mean diameter of soil particles and Pt the soil 

porosity. 
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This equation is one of the most commonly applied means of relating permeability to 

the geometric properties of soil (Hillel, 1998). However, the equation has its limitations, 

as permeability depends not only on porosity and particle size distribution but also on 

the continuity, shape and tortuosity of conducting channels (Dullien, 1979). Hence the 

application of this theory to terrestrial soils can be problematic due to inhomogeneous 

structural characteristics, such as plant roots, which may dominate permeability in 

places. Nevertheless, the equation allows a first approximation of the soil permeability 

as direct measurement was beyond the scope of this study. 

 

4.4.4 Soil elemental analysis for C and N 

The total organic carbon (TOC) and total nitrogen (TN) content in the soil samples was 

determined with elemental analysis. For determining the TOC content, all the samples 

were acidified prior to analysis in order to remove any carbonates (Hedges and Stern, 

1983). The soil samples were homogenised using a mortar and pestle, and a sub-sample 

(50-100 mg) was placed in a pre-weighed scintillation vial (20 mL), dried to constant 

weight over night (50 oC) and then reweighed (Wo). The sample was injected with an 

HCl solution (2 mL, 1 M organic-free grade) as per Hedges and Stern (1983): 1.5 mL of 

the solution was added and left for 24 hr, after which 0.25 mL was added and the slurry 

re-suspended. A further 0.25 mL was added after half an hour to bring the slurry back to 

1M, followed by drying (50 oC) to a constant weight. After removal from the oven the 

sample was left open in a fume cupboard for 24 hr to allow for hydroscopic salt 

equilibration. The sample was re-weighed to determine mass (Wf). 

 

The weight percentage of either the TOC or TN in the original sample were calculated 

as per Hedges and Stern (1983):  

 

 

 

 

Sub-samples of the processed soil (5-10 mg) were placed in pre-weighed containers 

(Tin caps, ultra clean 8x5mm, Elemental Microanalysis Ltd, Okehampton, UK) and 

weighed on a 6dp microbalance (Supermicro, Sartorius UK Ltd). The samples were 

analysed for TOC and TN using an elemental analyser (Flash EA 1112, Thermo-

Finnigan, Bremen, Germany). Sample TOC and TN content were calculated from an L-

 
 % TOC or TN =                                    x                          x 100                         

OC or TN mg 
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Wo 

(4.4.2) 
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aspartic acid (C4H7NO4) standard (C: 36.09 %; H: 5.30 %; N: 10.52 %; O: 48.08 %), 

using the Eager 300® software and linear regression. The precision as a coefficient of 

variation was better than 1 %.  

 

4.4.5 Soil nutrient extraction and analysis 

All soil samples (except for the FM samples in the land use zone sampling) were 

extracted for semi-total NO3
-, NO2

- and NH4
+ analysis with 2M KCl (Rowell, 1994). 

Approximately 20 g of field moist soil was weighed in a 250 mL conical flask and 100 

mL of 2M KCl were added. The flasks were shaken at 180 oscillations per minute on a 

reciprocating horizontal mechanical shaker for 1 hour. Subsequently a 50 mL sub-

sample was centrifuged at 3,000 rpm for 20 minutes. The supernatant was filtered 

through 0.45 µm Supor® hydrophilic polyethersulphone (PES) membrane filter paper 

and frozen until analysis.  

 

The analysis for NO3
-, NO2

- and NH4
+ was performed on a segmented continuous flow 

auto analyser (SAN++, SKALAR, Delft, The Netherlands) according to standard 

colorimetric techniques (Kirkwood, 1996). The method for each inorganic N species, 

instrumental range and accuracy are given in Table 4.4.1. Calibration standards were 

prepared fresh each week, covering the analytical range for each N species. Peak 

integration and calibration with linear regression was performed with the FlowAccess® 

software. The N content in the original soil sample was calculated according to Keeney 

and Nelson (1982), correcting the dilution factor for the soil moisture content of the 

sample. 

 

Table 4.4.1: Method, operational range and accuracy for NO3
-, NO2

- and NH4
+ 

determination with segmented continuous flow analysis 

Inorganic N Method Range                 

(mg L-1)

Wavelength 
(nm)

RSD (%)

NO3
- Reduction to NO2

- 

by Cd-Cu reductor
0.05 - 50 540 0.98

NO2
- Sulfanilamide-

NEDD 0.002 - 2 540 0.46

NH4
+ modified Berthelot 

reaction 0.02 - 10 660 0.83
 

 



 118 

4.4.6 Measurement of Anaerobically Mineralisable Organic Carbon (AnMOC) and 

methane production potential 

Several studies have measured the anaerobic mineralisation rate of organic carbon 

(Bijay-Singh et al., 1988; Drury et al., 1998; Simek et al., 2000; Hill and Cardaci, 2004; 

Ullah and Faulkner, 2006; Dodla et al., 2008) as an expression of the labile organic 

carbon fraction available for nitrate respiration (Gale et al., 1992). In the present study, 

we measured the anaerobically mineralisable organic carbon (AnMOC) through the 

evolution of CO2 from anaerobically incubated field moist soil without nitrate 

amendment. Although nitrate has been used in AnMOC measurements (Hill and 

Cardaci, 2004; Ullah and Faulkner, 2006) to stimulate the oxidation of organic carbon 

via heterotrophic denitrification, in this study it was not deemed appropriate as the soil 

was rich in nitrate, due to frequent replenishment by overbank flooding, and because the 

DNRA activity could have possibly been suppressed by lowering the C/NO3
- ratio 

(Tiedje, 1988). Therefore the AnMOC measurement would not reflect the labile organic 

carbon available to DNRA bacteria. Moreover, the same soil incubations were used to 

estimate the production of methane over time via methanogenesis (Kemnitz et al., 

2004), which could also be suppressed by elevated nitrate content and a positive redox 

potential (Alewell et al., 2008). Therefore the AnMOC method selected for this study 

represents a combined measurement of the relative availability of labile organic carbon 

and ambient availability of electron acceptors for anaerobic respiration and 

fermentation.  

 

Field moist soil (5.5 g) was weighed into gas-tight 12.5 mL vials (Exetainer vial; Labco 

Ltd., High Wycombe, United Kingdom). The vials were capped airtight and purged 

with oxygen-free N2 gas for 20 min to induce anaerobic conditions. After purging, the 

vials were stored at room temperature (22 - 25 oC). The headspaces of the vials were 

sampled every 48 h for 21 days. The incubation period for the subsurface soil samples 

was extended to 100 days due to the long lag phase of the methanogens (Kemnitz et al., 

2004). However, CO2 production rates were calculated for the first 21 days of the 

incubation (i.e. the duration of linear CO2 accumulation in the headspace). During 

sampling, a 100 µL sample was withdrawn from the headspace using a gas-tight syringe 

in an auto-sampler (Multipurpose Sampler MSP2, Gerstel, GmbH, Germany) and 

injected into a GC-FID, (7890A GC Agilent Technologies Ltd., Cheshire, UK) (Column 

40oC, detector 300 oC). CH4 and CO2 were separated using a stainless steel column 
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(length 1.8 m x diameter 12 mm) and packed with Porapak (Q 80/100), and 

hydrogen/air (7/93%) (Zero grade BOC) as the carrier gas (430 ml min-1). CO2 was then 

converted to CH4 in a nickel catalyst set at 385 oC. Headspace concentrations of CH4 

and CO2 were calculated from peak areas using an electronic integrator (ChemStation®, 

software). CH4 and CO2 were calibrated against known standards (Scientific and 

Technical Gases Ltd, Staffs, UK). Precision, as a coefficient of variation, was better 

than 2 % for CH4 and 1 % for CO2. CH4 and CO2 production rates were estimated 

through linear regression and expressed as µmol of CH4 or CO2 kg-1of dry soil day-1.  

    

4.4.7 Measurement of denitrification potential rate 

Groffman et al. (2006) have recently compiled an extensive review of methods used to 

measure denitrification in aquatic and terrestrial ecosystems at various scales. It is not in 

the scope of the present study to present another review of denitrification measurement 

methods, but the focus is rather on explaining the rationale for the methods selected in 

this study. 

 

Sigunga (2003) attempted to clarify the concept of potential denitrification by proposing 

a definition: ‘... potential denitrification should explicitly embrace the idea of maximum 

attainable denitrification rate under optimal conditions within the limitations of soil’s 

natural setting in terms of texture and C content’. In other words, Sigunga (2003) 

suggested that potential denitrification is measured in the laboratory, under anaerobic 

conditions, at 20oC and non-limiting supply of NO3
- but without external carbon supply, 

as denitrification differences mainly depend on this soil-inherent property (organic 

carbon). Earlier studies by Myrold and Tiedje (1985) and Yeomans et al. (1992) termed 

this measurement as denitrification capacity, which represents the active denitrifier 

biomass of the soil, at the time of sampling, without additional microbial growth 

induced by the added organic carbon. Furthermore, they showed that the added nitrate 

did not affect the denitrification capacity in agricultural soils with high indigenous NO3
- 

(>20 mg N kg-1 soil).  

 

The vast majority of studies on floodplain and riparian zone soils (e.g. Groffman et al., 

1992; Pinay et al., 1993; Groffman and Crawford, 2003) have measured potential 

denitrification according to the Denitrification Enzyme Assay (DEA) as described by 

Smith and Tiedje (1979). The DEA involves the anaerobic incubation of soil slurries 
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amended with nitrate and an equal amount of a carbon source (e.g. glucose), usually in 

the presence of a protein synthesis inhibitor (e.g. chloramphenicol). During the first 

incubation stage, termed Phase I, which lasts between 1-3 h (although incubation times 

vary across studies depending mainly on the reactivity of the soil), the denitrification 

rate depends on the pre-existing denitrifying enzymes in the soil (similar to the 

denitrification capacity mentioned earlier). Both the denitrification capacity and the 

DEA (Phase I) are closely related to field denitrification rates (Smith and Tiedje, 1979; 

Myrold and Tiedje, 1985), but they do not reflect in situ rates (Groffman et al., 1992). 

However, they are well suited for comparisons between sites and treatments (Groffman 

et al., 2006). 

 

In the present study we are primarily interested in the horizontal and vertical spatial 

variability of denitrification activity as it is affected by the hydrological regime and the 

land use management across the re-connected floodplain of the River Cole, while the 

quantification of absolute denitrification rates is of secondary importance. Therefore, for 

the purpose of comparing between sites and accommodating a large number of samples 

for representing spatial variability, the denitrification potential measurement will be 

used (Sigunga, 2003) instead of in situ denitrification measurements (see Chapter 7). 

Denitrification potential has been recently successfully measured in anaerobic slurries 

without the addition of organic carbon (Brettar et al., 2002; Hill et al., 2004; Ullah and 

Faulkner, 2006), since during short incubation times (between 1 and 6 hours) soil 

indigenous carbon is usually non-limiting (Tiedje et al., 1982).  

 

All the above mentioned studies that measured denitrification potential, have used 

acetylene (C2H2) to inhibit the reduction of N2O to N2 (Yoshinari and Knowles, 1976) 

and estimated denitrification rates from the linear accumulation of N2O over time. 

However, a number of problems have been described in the literature (reviewed in 

Groffman et al., 2006) related to the use of C2H2, of which the use of C2H2 as a carbon 

source for denitrification (Beauchamp et al., 1989) is likely to affect our experiments. 

Alternatively, very few studies in soils (Well et al., 2003, 2005) have used 15N-labelled 

NO3
- in slurry incubations and subsequently estimated denitrification rates by 

measuring the production of 15N2. In the present study, a similar technique with 15N-

labelled NO3
- (adapted from Trimmer et al., 2003) will be used, thus avoiding the 

complications of the use of C2H2.  
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In order to estimate denitrification potential rates, a timed experiment was performed 

using a method adapted from Trimmer et al. (2003) as follows. From each sample, four 

sub-samples were prepared by weighing approximately 1.10 g of field moist soil into 

gas-tight 3 mL vials (Exetainer vial; Labco Ltd., High Wycombe, United Kingdom). 

The 3 mL vials were used in preference to larger volume serum bottles or gas-tight 

flasks because; (i) they provide better mixing of the substrate, (ii) less 15N-labelled 

nitrate is needed, so the cost is kept low, and (iii) the headspace can be directly sampled 

by the autosampler of the Isotope Ratio Mass Spectrometer (IRMS), thus minimising 

any handling bias by transferring gas samples between vials or manually injecting the 

headspace into the IRMS. Finally, each soil sample was represented by one set of 

subsamples, as the purpose of the study was to have good spatial representativeness and 

therefore the replication of individual soil samples had to be sacrificed to keep an 

acceptable number of samples without compromising the accuracy of the experiment. 

 

The 3 mL exetainers were transferred to an anaerobic glove box (Belle, UK) and 

flushed with N2 (oxygen-free nitrogen, 30 mins) to induce anaerobic conditions. The 

samples were made into slurries by adding 1 ml of synthetic river water (Smart and 

Barco, 1985), degassed by flushing with N2 (oxygen free) for 30 minutes, and the vials 

were sealed with lids containing butyl rubber septa. The samples were pre-incubated on 

rollers in the dark at room temperature (22 - 25oC) for 24 hours leading to the depletion 

of 96.3 (± SE 0.7) % of the background 14NO3
- pool.  

 

Following the pre-incubation stage, the first sub-sample from each soil sample was 

treated as a reference and microbial activity was inhibited at the beginning of the 

experiment by injecting ZnCl2 (100 µL 50% w/v) through the septum with a hypodermic 

syringe without adding any 15N-labelled nitrate. The remaining three subsamples per 

soil sample were enriched to 99.2 (± SE 0.2) % above the ambient level with 

concentrated stock of labelled 15NO3
- (75 µL of 2.4 mM Na15NO3

- [99.3 15N atom %] 

Sigma-Aldrich, Poole, UK) through their septa using a gas-tight syringe (Hamilton, 

1750 RN, 500 µL, VWR International). The spike solution was degassed by flushing 

with N2 (oxygen free) for 15 minutes before use. The final concentration of nitrate in the 

slurry sample was on average 90 µM and lower than the average ambient nitrate 

concentration of the samples which was 500 (± se 0.05) µM. Therefore, the slurry 

treatment resulted in effectively replacing the ambient 14NO3
- pool with a 15NO3

- pool, 
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without purposely enhancing denitrifier activity by supplying nitrate above ambient 

concentration.  

 

The samples were placed back on the rollers. Every two hours one sub-sample per soil 

sample was sacrificed and microbial activity was inhibited by injecting ZnCl2 (100 µL 

50% w/v) through the septa with a hypodermic syringe. The timed experiment lasted for 

6 hours with T1 = 2 h, T2 = 4 h and T3 = 6 h. The timed experiment in the case of the 

subsurface samples was adapted to account for the slower activity of the soil. The time 

step for the depth intervals between 20 and 70 cm was set to 3 h, while for the deeper 

sediments (80 - 120 cm), the time step was 24 h. At the end of the experiment, all 

references and time-samples were centrifuged for 5 minutes at 3,000 rpm to create a 

clean headspace.  

 

Samples of the headspace (50 µL) were then injected using an autosampler 

(Multipurpose Sampler MSP2, Gerstel, GmbH, Germany) into an elemental analyser 

(Flash EA 1112, Thermo-Finnigan, Bremen, Germany) interfaced (ConFlo III Interface, 

Thermo-Finnigan, Bremen, Germany) with a continuous flow isotope ratio mass 

spectrometer (Finnigan MAT DeltaPlus, Thermo-Finnigan, Bremen, Germany). The 

reduction and oxidation columns in the elemental analyser were held at 980oC to reduce 

trace NO and N2O to N2. Then N2 and CO2 were separated on a GC Porapak column 

(PoraPLOT Q). The mass spectrometer was calibrated with N2 in air blank vials at 22oC 

and the mass charge ratios for m/z 28, m/z 29 and m/z 30 (28N2, 
29N2, and 30N2) was 

measured. Precision as a coefficient of variation was better than 1%. 

 

Due to the pre-incubation of the samples, leading to the depletion of the 14NO3
- pool, 

and the subsequent enrichment of the sample with 99.2 % atom 15NO3
-, the production 

of 29N2 (p
29N2) and hence the denitrification from the 14NO3

- and 15NO3
- combined (D29), 

assuming random pairing of 14N and 15N, would be expected to be less than 1.5 % 

(Hauck, 1958). Indeed, the 24h pre-incubation of the samples was so effective that only 

trace amounts of 29N2 were detected with the IRMS and therefore the use of the classic 

isotope pairing technique (IPT) equations according to Nielsen (1992) for estimating 

both D15 (denitrification of the 15NO3
- spike) (equation 4.4.3) and D14 (denitrification of 

ambient 14NO3
-) (equation 4.4.4) was not necessary. 
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29 30
15 2 2(2 )D p N p N= + ⋅  

 

    

where p29N2 and p30N2 are the production of 29N2 and 30N2 gas respectively. Instead, the 

signal from the mass spectrometer was converted into concentration of 30N2 gas only in 

the headspace of the mini-exetainers and then production per unit of soil mass per unit 

time. Values were calculated as excess over that in the references before the addition of 
15NO3

- according to and adapted from Thamdrup and Dalsgaard (2000): 
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where p mg N kg-1 day-1 was the production of 30N2; the fraction 30N2/ΣN2 represents 

the signal ratio for 30N2 to total signal ΣN2 (total signal for m/z ratios 28, 29 and 30 for 

either sample or reference, respectively); a the concentration of N2 in air; V the volume 

of the headspace (mL); 30 the molecular weight of 30N2; m the dry mass of the soil 

sample (g) and t (hours) the duration of linear p30N2 production. An estimate for an areal 

rate of denitrification in the common units kg N ha-1 day-1 could then be calculated by 

multiplying the p mg N kg-1 oven dry soil day-1 by the mass of soil in 1 hectare at 10 cm 

depth, which can be calculated using the dry soil bulk density (Rowell, 1994). The dry 

bulk density (g dry soil cm-3) can also be expressed in tonnes dry soil m-3. In 1 ha at 10 

cm depth there is 0.1 x 104 m3 of soil.  So the dry mass of soil ha-1 is then:  

 

Dry bulk density (t m-3) x 0.1 x 104= mass of soil in 1 ha at 10 cm depth (t)        

 

The denitrification rate (mg N kg-1 soil day-1) can also be expressed as g N t-1 soil day-1. 

Therefore, multiplying the latter with the product of Eq. 4.4.6 gives an areal rate of 

denitrification in g or kg N ha-1 day-1. However, the areal expression adds the effect of 

bulk density onto the denitrification capacity of the soil increasing the complexity of the 

measurement. For this reason, the areal expression is not used in the statistical analysis 
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of the results and is calculated only for comparison purposes with the geographical 

literature.  

 

4.4.8 Measurement of DNRA potential rate 

A 15N tracer method has been used in all the studies (considered in our literature review) 

that measured DNRA rates in a variety of ecosystems (Table 4.4.2). One of the most 

popular methods has been the 15N isotope pool dilution technique (Kirkham and 

Bartholomew, 1954; Davidson et al., 1991), especially among studies in tropical forest 

soils that aimed at estimating gross rates of N transformations. The advantage of the 

pool dilution technique is that gross rates of mineralisation and nitrification are 

estimated by supplying the 15N-labelled product (i.e. 15NH4
+ for mineralisation and 

15NO3
- for nitrification), instead of the reactant, and subsequently the dilution of the 

labelled pool by each process is followed. This is particularly important in N-limited 

natural environments, where the supply of a labelled reactant (e.g. 15NH4
+ for 

nitrification) could alter the rate (i.e. fertilisation effect) of a substrate-limiting process. 

Gross rates of NH4
+ and NO3

- consumption (e.g. denitrification and DNRA for NO3
-) are 

calculated from the disappearance of the 15N label by using accordingly modified 

calculations (for details see Silver et al., 2001, 2005). Although the isotope pool dilution 

method is appropriate when considering a variety of gross N transformation processes, 

and can be further improved by coupling it to a 15N tracing model to include for 

example the cycle of immobilisation and re-mineralisation of 15NH4
+ (Müller et al., 

2004, 2007), it is better suited for environments with high transformation rates and 

small pool sizes, such as untilled and unfertilised soil (Davidson et al., 1991). 

Moreover, the labelling of the pool is usually at around 10 atom % 15N, which leads to 

low enrichment of the gaseous denitrification products (15N2 and 15N2O), compared to 

their atmospheric concentrations, and therefore denitrification can be seriously 

underestimated (Templer et al., 2008).   

 

An alternative method for the measurement of DNRA is the use of 15N-labelled NO3
- as 

a tracer in intact core incubation experiments (Matheson et al., 2002), in flow-through 

core experiments for sediments (An and Gardner, 2002; Scott et al., 2008) or in 

laboratory assays for soils (Yin et al., 2002; Davis et al., 2008) for the direct 

quantification of DNRA rate through the production of 15NH4
+. The fertilisation effect 

from the addition of the 15N-labelled NO3
- is not likely to be a problem in wetland 
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sediments and agricultural soils rich in N (Groffman et al., 2006). This method allows 

the estimation of both the denitrification and DNRA rates in the same treatment. When 

C2H2 is used (Tiedje et al., 1981), denitrification is calculated from the accumulation of 

N2O. However several drawbacks have been reported regarding the use of C2H2 for 

measuring denitrification but not for DNRA (Groffman et al., 2006). Alternatively, 

denitrification can be calculated from the production of 15N2 and 15N2O (Kelso et al., 

1997; Yin et al., 2002), provided that sensitive mass spectrometer instrumentation is 

available. The DNRA rate is estimated from the production of 15NH4
+, which is 

subsequently diffused to ammonia and captured in acidified filters for mass 

spectrometric analysis (Brooks et al., 1989; Herman et al., 1995), or it can be oxidised 

to 15N2 (Risgaard-Petersen et al., 1995), which is then measured in an isotope ratio mass 

spectrometer (IRMS).  

 

In the present study we are interested in measuring denitrification and DNRA rates in 

the same treatment using soil from a former agricultural floodplain expected to be rich 

in N and therefore not very sensitive to the effect of fertilisation by a 15N tracer 

technique. Therefore, we will be using a 15N-labelled NO3
- tracer laboratory assay to 

measure the potential denitrification and DNRA rates by adapting the methods 

described by Trimmer et al. (2003) and Risgaard-Petersen et al. (1995).  

 

The same slurry samples (references and sub-samples) prepared for the determination of 

denitrification potential, after the mass spectrometric analysis of their headspace for N2, 

were used for investigating the DNRA potential rate by a combined microdiffusion-

hypobromite oxidation method adapted from Risgaard-Petersen et al., (1995) and 

Rysgaard and Risgaard-Petersen (1997), as follows. The 3 mL exetainers containing the 

denitrification potential slurries were opened and the contents were tipped in pre-

weighed 12 mL exetainers (Exetainer vial; Labco Ltd., High Wycombe, United 

Kingdom). Subsequently, 2M KCl solution was added in the 12 mL exetainers in 4:1 

ratio, the exetainers were capped and put on rollers for 30 mins. Next, the exetainers 

were centrifuged for 5 mins at 3,000 rpm to separate the sediment from the KCl-water 

solution containing the extractable NH4
+. After passing the supernatant through a 0.45 

µm PTFE syringe filter (Eurolab, VWR), 1 mL was transferred in a new 3 mL exetainer 

(Exetainer vial; Labco Ltd., High Wycombe, United Kingdom), and the remaining 
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sample was stored in a bijou at -18oC for later colorimetric analysis of ammonium as 

per section 4.4.5. 

 

 

 

Table 4.4.2: Summary table of methods used for the quantification of DNRA in various 

ecosystem types. MIMS; Membrane Inlet Mass Spectrometry, GC-MS; Gas Chromatography 

Mass Spectrometry, HPLC; High Performance Liquid Chromatography. 

Author Study location DNRA method 15NH4
+ extraction method 

Silver et al. (2001);                     
Templer et al. (2008)

Tropical forest soil in                  
Puerto Rico

Intact core - 15N isotope pool dilution                                                         
(Kirkham and Bartholomew, 1954) 

Diffusion (Herman et al., 1995)

Silver et al. (2005) Tropical plantation forest             
soil in Costa Rica

Intact core - 15N isotope pool dilution                                                         
(Kirkham and Bartholomew, 1954) 

Diffusion (Herman et al., 1995)

Pett-Ridge and Firestone            
(2005); Pett-Ridge et al. (2006)

Tropical forest soil in                  
Puerto Rico

Intact core - 15N isotope pool dilution                                                        
(Davidson et al.,  1991; Hart et al.,  1994a) 

Diffusion (Herman et al., 1995)

Huygens et al. (2007);                 
Rütting et al. (2008)

Tropical forest soil in                  
Chile

Laboratory assay - 15N isotope pool dilution                                              

and 15N tracing model (Müller et al.,  2004, 2007)

Conversion to N2O                      
(Laughlin et al.,  1997)

Sotta et al. (2008) Old growth lowland                     
forest soil in Brazil 

Intact core - 15N isotope pool dilution                                                        
(Davidson et al.,  1991) 

Diffusion (Corre et al.,  2003; 
Corre and Lamersdorf, 2004)

Davis et al. (2008) Herbaceous riparian                   
soil in Oregon, USA

15N-labelled NO3
- laboratory assay with C2H2                                             

(Tiedje et al.,  1981)

Diffusion (Brooks et al.,  1989)

Wan et al. (2009) Calcareous alluvial                     
soil in Beijing, China

Laboratory assay - 15N isotope pool dilution                                              
(Kirkham and Bartholomew, 1954)

SPINMAS technique (Stange et 
al.,  2007)

Bengtsson and                          
Bergwall (2000)

Glacial till forest                         
soil in Sweden 

15N-labelled NO3
- laboratory assay with C2H2                                             

(Tiedje et al.,  1981)

Derivatisation and analysis with 
GC-MS (Fujihara et al., 1986)

Fazzolari et al. (1998) Cultivated soil in France 15N-labelled NO3
- laboratory assay with C2H2                                             

(Fazzolari et al.,  1990)

Fazzolari et al. (1990)

Ambus et al. (1992) Riparian fen soil                              
in Denmark

Intact core and laboratory assay 15N isotope pool                                      
dilution (Kirkham and Bartholomew, 1954) 

Diffusion (Brooks et al.,  1989)

Davidsson and Ståhl (2000) Wetland sediment                       
in Sweden

15N-labelled NO3
- in flow-through core                                            

(Nielsen, 1992; Davidsson et al., 1997)
Microdiffusion BrO- oxidation 
(Risgaard-Petersen et al.,  1995)

Yin et al. (2002) Chinese and Australian               
paddy soils

15N-labelled NO3
- laboratory assay                                                           

(Yin et al.,  2002)

Diffusion (Brooks et al.,  1989)

Matheson et al. (2002) Riparian wetland                                     
in New Zealand 

Intact core and 15N-labelled NO3
- laboratory assay                                     

(Matheson et al.,  2002)

Diffusion (Brooks et al.,  1989)

Matheson et al. (2003) Riparian wetland                                     
in Durham, UK

Laboratory assay - 15N isotope pool dilution                                              
(Di et al.,  2000)

Diffusion (Stark and Hart, 1996)

Scott et al. (2008) Lake wetland in                          
Texas, USA

15N-labelled NO3
- in flow-through core                                                       

with MIMS (Kana et al., 1994; An and Gardner, 2002)

HPLC (An and Gardner, 2002)

Kelso et al. (1997) River sediment in                       
Northern Ireland

15N-labelled NO3
- laboratory assay                                                           

(Stevens et al.,  1993)

Conversion to N2O                      
(Laughlin et al.,  1997)

Tomaszek and                           
Gruca-Rokosz (2007)

Lake sediment                                       
in Poland

15N-labelled NO3
- static core (Nielsen, 1992;                                            

Risgaard-Petersen et al.,  1993)
Microdiffusion BrO- oxidation 
(Risgaard-Petersen et al.,  1995)

An and Gardner (2002) Estuarine sediment                                  
in Texas, USA

15N-labelled NO3
- in flow-through core                                                       

with MIMS (Kana et al., 1994; An and Gardner, 2002)

HPLC (An and Gardner, 2002)

Rysgaard et al. (1996) Coastal lagoon                          
sediment in France

15N-labelled NO3
- static core (Nielsen, 1992;                                            

Risgaard-Petersen et al.,  1993)
Microdiffusion BrO- oxidation 
(Risgaard-Petersen et al.,  1995)

Christensen et al. (2000) Estuarine fjord                           
sediment in Denmark

15N-labelled NO3
- static core (Nielsen, 1992;                                            

Risgaard-Petersen et al.,  1993)
Microdiffusion BrO- oxidation 
(Risgaard-Petersen et al.,  1995)
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The hypobromite iodine solution was prepared as described by Rysgaard and Risgaard-

Petersen (1997). First, 60 mL of 16M KOH was added to a 100 mL flask immersed in 

crushed ice. The solution was allowed to cool to 5 oC and 12 mL of Br2 was added 

dropwise during constant stirring over a period of 30 mins. After the addition of 

bromine, the hypobromite solution was left stirring for at least 1 hour before 

transferring it in a sealed 100 mL bottle and storing it at 5oC for one week. After 1 

week, the solution was filtered to remove the precipitate, and the supernatant was mixed 

with an equal volume of KI (0.2% w/v). The hypobromite iodine solution remains stable 

in the refrigerator for at least 6 months. The activity of the hypobromite was tested with 

a set of standards with different 15N:14N ratios (from 1 to 50 15N at %) and final 

ammonium concentration 1mM. The measured and expected values did not differ 

significantly (ANOVA; F= 5.98, P> 0.05, r2=0.99) (Figure 4.4.4). The effect of the 2M 

KCl used for the extraction of NH4
+ as well as the presence of ZnCl2 (50% w/v) in the 

sample, from fixing the denitrification potential slurries, was also examined and it was 

negligible. 

y = 0.9254x + 2.3498

R2 = 0.9968
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Figure 4.4.4: Measured 15N at % versus expected values in 1mM NH4
+. Coefficient of 

correlation (R2) and regression line is shown in the figure. 

 

After the ammonium extraction with 2M KCl, 1 mL of the supernatant was transferred 

in a 3mL exetainer, which was then sealed with a cap containing a butyl rubber septum 

and the sample was flushed with He (CP grade) for 10 mins. This step is important for 

samples having 15N enrichment <5 at % (Rysgaard and Risgaard-Petersen, 1997) for 
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decreasing the amount of atmospheric N2 dissolved in the sample and also for removing 

any dissolved 15N-labelled N2 in the sample from the denitrification potential 

experiment, thus increasing the sensitivity of the assay. 

 

Then a ‘reaction-needle’ was prepared by flattening the tip of an injection needle and 

putting it in the 3 mL exetainer containing the sample as shown in Figure 4.4.5. After 

inserting the ‘reaction-needle’, 50 µL of the hypobromite iodine solution was added into 

the luer attachment of the needle and the exetainer was sealed again. Having the 

‘reaction-needle’ with its tip blocked ensured that the hypobromite would not come in 

direct contact with the sample and the oxidation of N-compounds other than NH4
+ 

would be avoided. To convert NH4
+ to volatile NH3, pH in the sample was increased to 

>12 by adding 50 µL 12M NaOH through the rubber septum with a syringe. The 

exetainer was then agitated gently and left for at least 24 hours at 22 oC in order to 

allow NH3 to diffuse into the headspace, react with the hypobromite solution in the 

needle cup and subsequently be oxidised to N2. The isotopic composition of N2 in the 

headspace of the vials was analysed with the aid of an IRMS as per section 4.4.7. 

 

Because the 15N enrichment of the timed sub-samples was <1 at % and the 30N2 signal 

was not significantly different between the samples and their respective references and 

air blanks, the equations (4.4.7) and (4.4.8) according to Risgaard-Petersen et al. (1993) 

were miscalculating the 15N at % of the samples. 
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where f29H and f30H are the amounts of 14N15N and 15N15N in the headspace of the 

sample, and f29A and f30A the amounts of 14N15N and 15N15N in the headspace of an air 

blank. 
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Figure 4.4.5: Procedure for preparing the microdiffusion-hypobromite oxidation assay: 

(A) flushing with He; (B) insertion of the ‘reaction needle’ with hypobromite into the 

glass vial; (C) addition of alkaline solution (adapted from Risgaard-Petersen et al., 

1995). 

 

Alternatively, the 15N at % in samples containing <10% of the 15N isotope can be 

calculated from the signals for 28N2 and 29N2 as described in Platzner (1997): 
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However, since the enrichment in the samples was less than 1% and approaching the 

natural abundance of the 15N isotope (0.366 %), the effect of the background ‘carrier’ 

N2 in the headspace of the sample had also to be taken into account. Since the 

headspace of the sample was exposed to the atmosphere while adding the ‘reaction’ 

needle and the hypobromite solution, atmospheric nitrogen with natural abundance in 
15N was mixed with the N2 derived from the oxidation of ammonium. Therefore the 15N 

at % of the N2 mix in the headspace of the sample can be calculated by equation 

(4.4.10) adapted from Fry (2006).  
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where Mair the amount of background N2 in the headspace (µmol); Msample the amount  

of N2 deriving from the sample (µmol); 15Nair and 15Nsample, the 15N at % of the 

headspace background and the sample respectively.  

 

The 15N at % calculated in equation (4.4.9) by the signals for 28N2 and 29N2, is 

effectively the 15N at % of the mix estimated from equation (4.4.10). Therefore, by 

combining equations (4.4.9) and (4.4.10) and solving for 15Nsample gives equation 

(4.4.11) that estimates the ‘true’ 15N enrichment of the sample: 

 

sample

airairsampleair
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NMMMNA
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The validity of equation (4.4.11) was tested with a set of standards with different 
15N:14N ratios (from 0 to 0.5 15N at % above natural abundance) and final ammonium 

concentration 1mM. The measured and expected values did not differ significantly 

(ANOVA; F= 5.92, P> 0.05, r2=0.99) (Figure 4.4.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.6: Measured 15N at % versus expected values in 1mM NH4
+. Coefficient of 

correlation (R2) and regression line is shown in the figure. 
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The excess of 15N at % in the sample over that in the reference was used to calculate the 

production of 15N originating from the oxidation of NH4
+ to N2 per unit of dry soil mass 

per unit time: 

   

15 15
1 1 6 1

4

( ) 1
[ ] 15 10

100
sample referenceN N

pDNRAmgNkg day NH df V t
m

− − + − −−
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where p DNRA mg N kg-1 day-1 was the production of 15N in ammonium; 15N  the 15N 

at % in the sample and the reference respectively; [NH4
+] the ammonium concentration 

(µM); df the dilution factor from the KCl extraction (volume KCl/volume of slurry); V 

the volume of the slurry (mL); 15 the atomic mass of N; m the dry mass of the soil 

sample (g) and t the duration of the incubation (hour). An areal rate for DNRA in kg N 

ha-1 day-1 was also calculated as per section 4.4.7. 

 

4.4.9 Measurement of nitrous oxide potential production rate 

The potential N2O production rate during the denitrification potential slurry experiment 

was estimated by gas chromatography. The headspace of the slurry samples, before their 

extraction for DNRA analysis, was sampled (50 µL) with a gas-tight syringe in an auto-

sampler (Multipurpose Sampler MSP2, Gerstel, GmbH, Germany) and injected into a 

GC-µECD, (7890A GC Agilent Technologies UK Limited, Cheshire) (Column 40oC, 

detector 375 oC) equipped with a 63Ni plated cell and using as carrier gas 5% 

Methane/Argon (60 mL min-1). Headspace concentration of N2O was calculated from 

peak area using an electronic integrator (ChemStation®, software). N2O was calibrated 

against known standards (Scientific and Technical Gases Ltd, Staffs, UK). Precision, as 

a coefficient of variation, was better than 2 % for N2O. Nitrous oxide production rate (p 

N2O-N mg kg-1 d-1) was estimated with equation 4.4.13. 
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where [N2O] the concentration of N2O in the sample and the reference respectively 

(µM); V the volume of the headspace (mL); M the molecular weight of 15N2O (46); 

0.6521 the proportion of N in N2O; m the dry mass of the sample (g); t the incubation 

time (hours) and 24 the hours in one day. The [N2O] was corrected for N2O solubility in 

(4.4.12) 
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water by applying a Bunsen coefficient of 0.70 at 20 oC according to Weiss and Price 

(1980). An areal rate for N2O production in kg N ha-1 day-1 was also calculated as per 

section 4.4.7. It should be noted that the above analysis was performed for the PM and 

BZ subsurface samples, as well as for the wet-dry conditions sampling only. 

 

4.4.10 Screening for potential anammox activity 

The slurry samples from the BZ subsurface sampling were used to screen for the 

occurrence of anammox activity throughout the soil profile, following the methodology 

by Trimmer et al. (2006). The headspace of the slurry vials, before their extraction for 

DNRA measurement, was sampled (10 µL) and transferred into an air-filled 12.5 mL 

exetainer (Exetainer vial; Labco Ltd., High Wycombe, United Kingdom). A preliminary 

analysis had shown that due to high 15N enrichment of N2O, the 45N2O and 46N2O were 

off the measuring scale of the IRMS. Therefore, a double dilution was used by 

transferring 10 µL of the 12.5 mL exetainer headspace to a second series of air-filled 

12.5 mL exetainers (final dilution 15 x 103). Subsequently, the entire content of the gas-

tight exetainer was swept, using a two-way needle and analytical grade He, to a trace 

gas preconcentrator (Cryo-Focusing; PreCon, Thermo-Finnigan), where the gases are 

dried and scrubbed of most of the CO2 before being cryo-focused twice in liquid N2 and 

the final separation of N2O from CO2 occurs on a PoraPLOT Q capillary column. The 

sample then passes to the CF/IRMS via an interface (ConFlo III Interface, Thermo-

Finnigan) and the mass charge ratios for m/z 44, m/z 45, and m/z 46 (44N2O, 45N2O, and 
46N2O) are measured. Calibration was performed with known amounts of N2O (98 µL L -

1; Scientific and Technical Gases) over the range 0.41–13.25 nmol N2O (Σ 44N2O, 
45N2O, and 46N2O) and was linear between 0.8 pmol and 99 pmol for 45N2O and 46N2O. 

 

As Trimmer et al. (2006) suggested, the r14, which is the ratio between 14NO3
- and 

15NO3
- in the slurry, can be estimated from the 15N labelling of the N2O produced during 

the incubation, i.e. 14N15N2O (p45N2O) and 15N15N2O (p46N2O) (equation 4.4.14). For 

the purposes of this technique, denitrification is assumed to be the only quantitative 

significant source of 15N-N2O in a 15NO3
- labelling experiment (Trimmer et al., 2006).  

 

                                   (4.4.14) 
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The term r14 can be converted to the term q, which is the proportion of 15N in the total N 

gas pool and is directly related to r14: 

 
                                       (4.4.15) 
 
 
The term q is calculated for both 15N gas species, i.e. q’ N2 vs. q N2O, and subjected to 

regression analysis. If the slope deviates significantly from 1 then the change in the 

predicted distribution of 15N is taken as being due to anammox (Trimmer et al., 2006). 

Because in the present study there was no spread in the 15NO3
- concentrations and the 

ambient 14NO3
- was consistently low (because of pre-incubation), the linear regression 

would generate false slopes. Instead, a paired-sample Student’s t-test was used to 

compare the means of q’ N2 and q N2O for each sampled depth interval.  

 

4.5 Statistical analysis 

All data were tested for normality and homogeneity of variance with the Kolmogorov-

Smirnov test and the Levene statistic respectively. If data did not meet the requirements 

they were log-transformed before statistical analysis. Comparison of independent 

samples’ variance was performed primarily with One-Way ANOVA combined with the 

Least Significant Difference (LSD) post hoc test for the assessment of inter-sample 

group differences. The variance of those samples that were not log-normally distributed 

was tested with the non-parametric Kruskal-Wallis test (for more than two groups of 

samples) or the Mann-Whitney U test (between two groups of samples).  

 

Principal Component Analysis (PCA) was employed to explore which combinations of 

variables, ‘principal components’, are likely to provide the maximum discrimination 

between individual samples (Dytham, 2003). PCA also served in identifying and 

clustering together highly inter-correlated variables (Hefting et al., 2003). The PCA 

assumes: linear relationships between all the variables, no inter-correlation of the 

component axes; continuity and normal distribution of the data (Dytham, 2003). 

Discriminant Function Analysis (DFA) was used once to test the groups of samples (i.e. 

the four land use zones) suggested by the PCA. The difference between PCA and DFA 

is that in DFA, individual samples are assigned to groups before the start of the test. 

Then variable weightings are calculated so that they maximise the difference between 

groups instead of individual samples. The power of the weightings is tested by naming 

1

1

14 +
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one individual sample from the dataset as ‘unknown’ and then using the variable 

weightings to assign it to one of the groups. The hit rate is a measure of the power of the 

test to discriminate real unknowns (Dytham, 2003). 

 

The relationships among variables (e.g. soil properties), and between variables and 

process rates (e.g. denitrification), were tested with Pearson’s Product Moment 

correlation (for normally distributed data) or Spearman’s rank correlation (for non 

normally distributed data). Finally the prediction of the process rates’ variance by the 

combination of different variables was tested with multiple forward linear regression 

analysis. All statistical analysis was performed using SPSS® 11.5 for Windows (SPSS 

2002, Chicago, Illinois, USA).  

 

 



 135 

Chapter 5: Hydrology and hydrochemistry of the re-connected floodplain 

of the River Cole. 

 

5.1  The stratigraphy and the saturated hydraulic conductivity in the subsurface soil 

horizons of the reconnected floodplain of the River Cole  

This chapter begins with the description of the subsurface soil stratigraphy and the 

results for the saturated hydraulic conductivity measurements in the subsurface soil 

horizons of the PM and BZ sites. These results are used in the subsequent sections to 

explain the groundwater residence time and flow rate through the different soil horizons 

that in turn affect nitrate attenuation processes in the studied areas. 

 

5.1.1 Floodplain stratigraphy 

During the installation of the groundwater wells in the PM and BZ sites, the borehole 

logs were used to describe the soil stratigraphy in the cross sections along the transect 

F1 to F7 in PM, and H10 to H4 in BZ. The subsurface soil profile of the cross-section 

F1-F7 is shown in Figure 5.1.1. 

 

The top 0 - 20/30 cm comprises the organic A soil horizon, characterised by dark 

brown, friable, crumbly soil. The root zone extends up to 20 cm, especially where 

riparian vegetation is dominant. The B soil horizon (below 20/30 cm depth) is 

characterised by brown clay with blocky structure. This horizon extends up to 50 cm 

depth near the river bank (F1) and is characterised by abundant (>50 %) ochreous and 

grey mottles indicating imperfect drainage (Rowell, 1994). The same horizon extends 

up to 85 cm between the wells F1-F4, becoming increasingly light in colour, while the 

abundance of ochreous and grey mottles also increases. Between the wells F4 and F7, 

the B horizon is more greyish below 50 cm depth and instead of ochreous mottles more 

abundant black anoxic zones are observed, indicating poorly drained sediments up to 1 

m depth. In well F5, calcareous shell remains are observed in high abundance (> 50 %) 

below 80 cm depth, potentially indicating an old course of the River Cole.  

 

The C horizon is found at 80 - 100 cm depth near the river bank (F1) and is 

predominantly grey clay with increasing amounts of silt. However, at 105 cm depth the 

C horizon abruptly changes to gritty gravel and sand. The same sand – gravel C horizon 
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is observed between the wells F2 and F5 below 120 cm depth. This gravel lens layer is 

characterised by bright brown - orange colour, very unconsolidated structure, granular 

texture and the presence of fines (clays and silts) between the interstices. Towards the 

north end of the PM area, near the ditch, no gravel lens is observed and the C horizon is 

predominantly grey thick clay with black and grey gley features. The C clay horizon 

becomes gradually more consolidated with depth at around 200 cm, and this is also 

found underneath the gravel lens. Although boreholes deeper than 200 cm were not 

excavated, and the presence of a deeper aquifer has not been documented in the 

literature, it could be assumed that the C clay horizon at 2 m depth is an impermeable 

layer confining the movement of a perched water table between the ground surface and 

2 m depth. Finally, during the borehole excavation no evidence of tile or mole drainage 

was found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.1: The soil profile in the cross-section of the perpendicular to the river 

transect (F1-F7) in the PM site. The arbitrary datum is the surface of the well F1. 
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The soil stratigraphy of the cross-section F9 to F14 is not described in detail since it is 

very similar to the cross section F1-F7, with the exception of the absence of a distinct 

gravel lens. 

 

The subsurface soil profile of the cross-section H10 – H4, in the BZ site, is shown in 

Figure 5.1.2. The organic A horizon is restricted in the top 25 cm from the ground 

surface and is characterised by dark brown friable soil, with high root abundance of 

different diameters, earthworm burrows and some scattered gravel. Possibly due to the 

proximity of the BZ to the river, calcareous shell remains and gravel are scattered 

throughout the soil profile. The A horizon near the river margin, well H10, is 

characterised by rusty mottles due to roots along with grey silty anoxic sediments and 

the presence of reed root mat. 

 

Between the wells H10 and H8, a thin layer of brown blocky clay with ochreous 

mottling is observed below the A horizon up to 50 cm depth. This layer is deeper in the 

wells H7 and H4 reaching a depth of 100 cm, whilst absent from well H8. A more sandy 

clay B horizon is observed between 50 and 80 cm depth in the wells H10 and H9, while 

this layer extends from below the A horizon to 80 cm depth in the case of well H8.  

 

A grey thick clay C horizon extends below 100 cm depth in wells H7 and H4 and below 

80 cm depth in the case of well H9. The clay C horizon is characterised by ochreous, 

black and grey mottles, scattered gravel and sand in places and also calcareous shell 

remains. This layer does not change up to the two meters depth of the borehole 

excavations, but becomes thicker and drier. It is therefore assumed that below 2 m depth 

the thick C clay horizon is an impermeable layer and the movement of a perched water 

table in the BZ site is restricted between the ground surface and 2 m depth. No evidence 

of tile or mole drainage was found in the BZ subsurface. 
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Figure 5.1.2: The soil profile in the cross-section of the perpendicular to the river 

transect (H10-H4) in the BZ site. The arbitrary datum is the surface of the well H1 (not 

shown). 

 

 

5.1.2 Saturated hydraulic conductivity 

The results from the saturated horizontal hydraulic conductivity (Kh) measurements in 

the A, B and C soil horizons of the PM and BZ areas are summarised in Table 5.1.1. 

 

Table 5.1.1: The saturated horizontal hydraulic conductivity (Kh) in the soil horizons of 

the PM and BZ areas. Depths in brackets indicate the measurement depth. The values 

are minimum - maximum range and mean in brackets. N/A indicates non availability of 

data.  
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The Kh of the A horizon was only measured at the BZ site at 30 cm depth. The mean 

was 20.9 ± SE 7.3 cm day-1, which was 38 % lower than in the B horizon, opposite to 

our expectations. It is likely that the spatial arrangement of the soil particles and also 

their shape affect the Kh and moreover the presence of roots in the top 30 cm of the soil 

complicate further the measurement of the hydraulic conductivity.  

 

The Kh of the B horizon, measurement between 50 and 70 cm depth, was 30 % higher in 

the BZ than in the PM. The mean Kh in the BZ B horizon was 55.4 ± SE 7.6 cm day-1, 

while the mean Kh of the PM B horizon was 16.8 ± SE 0.4 cm day-1. The most likely 

explanation for this difference between the PM and the BZ site could be the strongly 

alluvial nature of the BZ subsurface with a mixture of fine sediments, and therefore a 

low permeability value, but also scattered gravel and shell deposits that could be 

creating larger pore spaces where preferential flow might have been taking place. 

 

The Kh of the gravel lens in the PM site was measured between the wells F2 and F4 at 

depths ranging between 122 and 140 cm from the ground surface, making sure that the 

intake of the measuring piezometer was exclusively in the gravel layer. The average Kh 

in the gravel lens was 8.4 ± SE 2.8 cm day-1, being lower than the Kh of the B horizon, 

and indicating that the gravel lens is not hydraulically well connected to the river, and is 

probably constrained by surrounding clay that lowers the Kh. As for the thick clay C 

horizon at around 2 m depth in the PM subsurface, the mean Kh was 0.8 ± SE 0.5 cm 

day-1, being an order of magnitude lower than the Kh of the gravel lens and confirming 

the assumption that the water table was restricted between the ground surface and 2 m 

depth, since the C clay horizon was practically impermeable. 

 

The C horizon of the BZ site, measurement performed between the wells H9 and H2 at 

120-140 cm depth, was considerably more permeable with mean Kh 20.3 ± SE 6.2 cm 

day-1, 41 % higher than the Kh of the gravel lens. Probably, the presence of scattered 

gravel, apart from fine sediments, in the C horizon of the Buffer Zone could be 

responsible for preferential flow through larger pore spaces that were absent from the C 

horizon of the PM. Moreover, the unconsolidated structure of the PM gravel lens 

together with its high content of fine sediments probably impeded the fast recovery of 

hydraulic heads in the piezometers resulting in lower Kh compared to the more 

consolidated with sparse gravel structure of the BZ C horizon. 
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5.2 The meteorological record at Coleshill, Oxfordshire (February 2007 – September 

2008) 

The purpose of this section is to present an overview of the climatic conditions in the re-

connected floodplain of the River Cole, in the context of the U.K. climate, focusing on 

the rainfall, air and soil temperature patterns during the monitoring period (February 

2007 - September 2008) that influenced the hydrological regime of the floodplain. The 

climatic conditions are described for the two monitoring seasons; 1) from 12th February 

2007 until 30th September 2007 and 2) from 1st October 2007 until 30th September 2008. 

 

5.2.1 Season 1 (February 2007 – September 2007) 

A monthly summary of air temperature, soil temperature at 10 cm depth in the topsoil, 

total rainfall and potential evapotranspiration is presented in Table 5.2.1. February 2007 

was a mild month with the air temperature being 2.3oC above the 1961-1990 average, 

while the rainfall was also above average. The first 10 days of the month were dry, 

while from 10th to 12th the weather was showery, and the water table started to rise. The 

daily total rainfall, as well as, the daily mean soil temperature for the period 12th 

February till 30th September are shown in Figure 5.2.1. The PM channel depression was 

flooded for 10 days while the BZ was flooded for 12 days during February (Fig. 5.2.2). 

 

Overall March 2007 was a mild and sunny month with slightly below average rainfall. 

The soil temperature at 10 cm depth gradually started to rise. One overbank flood event 

was recorded at the beginning of the month (peaking on 6th March) following 11.4 mm 

of rain on 4th March on already wet ground from the last event at the end of February. 

This event resulted in overland flow in the PM channel depression that lasted five days, 

while the BZ site and the riparian zone of the PM were still flooded from the previous 

event at the end of February (Fig. 5.2.2). For the remainder of the month, following 12th 

March, the water table was below the ground surface and continued to recede. The dry 

weather continued throughout April 2007, which was in fact a record warm month with 

April mean temperatures being the warmest on record since 1914, and well above 

average sunshine. The warm weather resulted in the topsoil temperature rising quickly, 

while the mean evapotranspiration rate exceeded the total daily rainfall on almost all 

days. The combination of high evapotranspiration and below average rainfall (fourth 

driest April since 1914), led to the second lowest water table recorded during the study, 

130 cm below ground surface in the PM and 78 cm below ground surface in the BZ site 
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(lowest water table level across the sites). That dry spell lasted only for the first six days 

of May, which was overall a rather wet month (5th wettest May since 1979) with 130.4 

mm of total rainfall. The water level in the River Cole rose to its bankfull height on the 

14th, following a wet week with a total of 55.2 mm rain. Then another dry period 

followed until the storm of the 27th, when 39.2 mm of rain fell in 24 hours, leading to 

another overbank flood event, the first in the last 80 days, that led to the complete 

flooding of the BZ and the PM channel depression for four days, while the mean soil 

temperature at 10 cm depth was 14.6oC.   

 

June 2007 was warm and dry at the start, but towards the end of the month low pressure 

brought significant rainfall and as a consequence, it was the wettest June since 1997 and 

the dullest since 1998. The mean topsoil temperature was the highest recorded during 

the study at 17.3oC. On the 25th, 27.2 mm of rain fell in 24 hours resulting in another 

four day overbank flood event at the River Cole reconnected floodplain. Similar 

conditions prevailed during most of July 2007, which was the wettest July since 1936, 

with the highest total rainfall of the study, 178.9 mm, while the temperature was slightly 

below average. The most notable event was the extremely heavy rainfall on the 20th, 

where 77.2 mm of rain fell in 6 hours causing a flashy response of the River Cole that 

overflowed onto the PM and the BZ, which then remained inundated for 11 days. 

August started and ended with dry and settled weather, with the majority of rainfall 

recorded in mid-month. Despite the mean air temperature being the highest in season 

one, 15.4oC, August 2007 was the coldest since 1993. However, the mean 

evapotranspiration was the highest, 2.3 mm d-1, over season one and the maximum was 

recorded on 23rd August with 4.8 mm d-1. The fine dry weather continued during most 

of September and the rainfall was 64 % below the 1961-1990 average.  

 

Overall, Season one was eventful, with extensive overbank flooding of the River Cole 

in the winter months, followed by an 80 day water table receding period in March and 

April, which was then followed by one of the wettest summers of the last 20 years, 

where three major overbank flood events occurred in May, June and July respectively 

(Figure 5.2.2).  
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5.2.2 Season 2 (October 2007 – September 2008) 

October 2007 was overall a fine and settled month with rainfall being 56 % below the 

1961-1990 average. The 35.3 mm of rain that fell on the 16th (Table 5.2.1 and Figure 

5.2.3) led to the first overbank flood event of season two that lasted two days in both the 

PM and the BZ (Figure 5.2.4). November was generally more anticyclonic than a 

‘normal’ November with rainfall being 86 % of the 1961-1990 average. However, the 

30.3 mm of rain that fell between the 18th and the 22nd of the month led to a five day 

overbank flood event between the 20th and the 24th in the PM channel depression and 

the BZ (Figure 5.2.4).  

 

The winter started with unsettled weather in December, when 52.8 mm of rain fell in the 

first 10 days of the month leading to yet another overbank flood event that lasted for six 

days in the PM channel depression and 13 days at the BZ site. This event was followed 

by more settled weather for about two weeks, until the 25th and the 30th when the second 

flood event occurred. The unsettled weather continued throughout January 2008, which 

was mild in terms of air temperature (mean 6.9oC), 4th warmest January since 1914, but 

the rainfall was the second highest recorded for season two, 107.6 mm, being the 

wettest January since 1995. The wet weather led to an extensive complex flood event 

with three peaks on 12th, 16th and 20th respectively (Figure 5.2.4). The riparian zone of 

the PM was flooded for 27 days, while the channel depression was flooded for 13 

continuous days. Similarly, the BZ site was inundated continuously for 26 days, while 

the topsoil temperature ranged between 3.4 and 10oC (Figure 5.2.3). In contrast to 

December and January, February 2008 was a dry, sunny month, sunniest February since 

1929, with rainfall being 65 % of the 1961-1990 average. Moreover, it was the coldest 

month in season two, mean air temperature 4.3oC, while the topsoil temperature ranged 

between 0.5 and 7oC. 

 

Spring started with windy, wet weather and rainfall was well above average for March 

2008, being the wettest March since 1981. Two distinct events, one on the 10th when 

14.6 mm of rain fell in one day, and the other between the 15th and 16th when 41.4 mm 

of rain fell in two days, led to two overbank flood events. During these events, the PM 

channel depression was inundated for four days, while the BZ site was flooded for a 

week. The topsoil temperature ranged between 3.8 and 8.5oC. April was generally dry 

but cold, coldest April since 2001, being three degrees lower than April 2007 in both the 
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topsoil and the air temperature. The total rainfall, 37.8 mm, was the second lowest for 

season two after February. May, on the other hand, was a very warm month with 

average air temperature 12.9oC, being the second warmest May since 1914. The average 

topsoil temperature of the month was 14.1oC. Moreover, May had the highest total 

rainfall in season two, 116 mm, of which 70 mm fell between the 25th and the 28th 

causing another overbank flood event for 4-5 days in the PM channel depression and the 

BZ site.  

 

The unsettled weather from the end of May continued in June 2008 giving another flood 

event following the 59.3 mm of rain that fell in 24 hours on 3rd June. This event lasted 

for four days, while the mean topsoil temperature was 15.2oC.  Similarly unsettled was 

the first half of July 2008. A storm on the 9th, during which 24.5 mm of rain fell in 24 

hours flooded both the BZ and the PM areas for a couple of days. July was also the 

warmest month of season two with mean air temperature 15.8oC and mean topsoil 

temperature 16.1oC. Dry weather prevailed from the 13th till the 27th when the highest 

summer temperature was recorded at 27.3oC. After the short dry weather break in July, 

August was very much unsettled with frequent showery weather and it was also 

exceptionally dull for this time of the year. The 23.6 mm of rain that fell on the 12th 

caused a brief overbank flood event that lasted for two days in the PM channel 

depression and the BZ site. Finally, the unsettled weather front continued until mid-

September when almost 60 mm of rain that fell between the 1st and the 13th of the month 

led to two bankfull events on the 6th and the 13th respectively. The rest of the month was 

mostly dry and settled. 

 

Overall, the second monitoring season was characterised by increasingly wet weather 

during the autumn and winter that peaked in January. The wet weather was responsible 

for 28 flood days between October and January. The unusually warm January was 

followed by an unusually dry and uneventful February. However, the wet and unsettled 

weather resumed in March with 7 more flood days, and after a relatively dry April, the 

wet unsettled weather continued throughout May till mid-September giving less 

frequent but higher magnitude flood events. Generally, monitoring season two was 

eventful with a total of 48 flood days recorded at the PM channel depression and 83 

flood days for the BZ site, but less eventful compared to the first monitoring season, 

which comprised 75 flood days in the PM channel depression and 102 flood days in the 
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BZ. Although the number of flood events was approximately similar for both field 

seasons, the rainfall magnitude of the events was lower in the second season of 

fieldwork resulting in less frequent inundation of the floodplain.  
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Table 5.2.1: Monthly summary of weather at Coleshill, Oxfordshire, from 12th February 2007 to 30th September 2008. The number in brackets 

indicates the date of the highest daily rainfall. Number of ‘flood’ days in the BZ with reference to the well H10, whereas for the PM the 

reference well is F11 in the channel depression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Month

Weather Data from Coleshill AWS February 07 March 07 April 07 May 07 June 07 July 07 August 07 September 07

Mean air temperature (oC) 7.9 6.7 10.6 11.8 14.9 15.0 15.4 13.5

Mean soil temperature at 10 cm (oC) 7.4 7.6 12.5 14.6 17.3 16.6 15.0 13.3

Highest daily rainfall (mm) 10.2 (28th) 11.4 (4th) 0.8 (23rd) 39.2 (27th) 27.2 (25th) 101.1 (20th) 13.2 (15th) 6.5 (24th)

Total rainfall (mm) 43.7 41.2 3.7 130.4 93.6 178.9 33.9 23.8

Mean potential evapotranspiration (mm d-1) 0.4 1.1 1.9 1.8 2.2 2.2 2.3 1.5

No. 'wet' days (> 1 mm rain) 11 10 0 14 15 14 6 5

No. 'flood' days in the Buffer Zone 12 11 0 4 3 11 1 0

No. 'flood' days in the Pasture Meadow 10 8 0 4 4 11 0 0

Month

Weather Data from Coleshill AWS October 07 November 07 December 07 January 08 February 08 March 08 April 08 May 08

Mean air temperature (oC) 10.2 6.5 4.6 6.9 4.3 6.1 7.5 12.9

Mean soil temperature at 10 cm (oC) 10.7 7.0 4.8 6.2 4.2 6.3 9.3 14.1

Highest daily rainfall (mm) 35.3 (16th) 13.4 (18th) 17.1 (25th) 26.0 (15th) 8.3 (26th) 30.5 (16th) 10.6 (29th) 29.0 (28th)

Total rainfall (mm) 75.6 50.4 79.8 107.6 24.2 84.7 37.8 116.0

Mean potential evapotranspiration (mm d-1) 0.5 0.2 0.1 0.2 0.4 1.0 1.4 2.0

No. 'wet' days (> 1 mm rain) 5 9 10 16 6 12 13 10

No. 'flood' days in the Buffer Zone 2 6 19 26 6 15 0 5

No. 'flood' days in the Pasture Meadow 2 5 8 13 0 7 0 4

Month

Weather Data from Coleshill AWS June 08 July 08 August 08 September 08

Mean air temperature (oC) 14.1 15.8 15.7 12.5

Mean soil temperature at 10 cm (oC) 15.2 16.1 16.0 13.3

Highest daily rainfall (mm) 59.3 (3rd) 24.6 (9th) 23.6 (12th) 12.4 (5th)

Total rainfall (mm) 94.6 96.5 91.6 64.2

Mean potential evapotranspiration (mm d-1) 2.7 2.3 1.4 1.0

No. 'wet' days (> 1 mm rain) 8 10 15 11

No. 'flood' days in the Buffer Zone 4 3 3 2

No. 'flood' days in the Pasture Meadow 4 2 2 0145  
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Figure 5.2.1: Total daily rainfall and mean daily soil temperature at 10 cm depth in the reconnected floodplain of the River Cole during the first 

monitoring season (12th February 2007 – 30th September 2007).  
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Figure 5.2.2: Mean daily actual water table (WT) height for the BZ site (well H10), the PM riparian area (F1) and the PM channel depression 

(F11) during the first monitoring season (12th February 2007 – 30th September 2007). The zero line indicates surface saturation.  
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Figure 5.2.3: Total daily rainfall and mean daily soil temperature at 10 cm depth in the reconnected floodplain of the River Cole during the 

second monitoring season (October 2007 – September 2008).  
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Figure 5.2.4: Mean daily actual water table (WT) height for the BZ site (well H10), the PM riparian area (F1) and the PM channel depression 

(F11) during the second monitoring season (October 2007 – September 2008). The zero line indicates surface saturation.  
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5.3 The hydrological mechanisms of SW - GW interaction in the Pasture Meadow 

and Buffer Zone areas of the reconnected floodplain of the River Cole 

This section refers to the first research objective, which is to identify the main 

hydrological mechanisms responsible for the inundation regime in the re-connected 

floodplain of the River Cole and to assess the relative importance of each mechanism 

for: (i) the transport of nitrate; and (ii) the creation of the necessary conditions for the 

occurrence of nitrate attenuation via heterotrophic denitrification and DNRA.  

 

The hydrological mechanisms are presented in order of importance in terms of their 

contribution to the creation and duration of saturation conditions that would favour 

nitrate retention processes. Moreover, each mechanism is also assessed with respect to 

its contribution to the transport of nitrate onto the floodplain, which is a prerequisite for 

the occurrence of nitrate attenuation. The mechanisms are categorised into three main 

types: a) overbank flooding; b) saturation excess overland flow; and c) groundwater 

discharge by lateral subsurface flow. One characteristic event of each type is described 

in detail for the PM and BZ sites respectively. 

 

5.3.1 Overbank flooding 

Overbank inundation of the re-connected floodplain was the dominant mechanism of 

soil saturation of the A/B horizon identified during the monitoring period. Tables 5.3.1 

and 5.3.2 summarise the overbank flood events for the PM and BZ sites respectively. 

Although the same flood event frequency was observed for both monitoring years at 

both sites, the retention time of the flood waters on the floodplain was significantly 

longer during the first season compared to the second. This was probably due to higher 

magnitude, in terms of total rainfall, events during the first year that resulted in longer 

periods of inundation for both floodplain sites. More flood events were observed during 

the first winter period in the PM site, while the events were relatively evenly distributed 

between winter, spring and summer during the second year in the PM and throughout 

the monitoring period in the BZ, highlighting the effect of the ‘wet’ summers and ‘dry’ 

autumns on the hydrological regime of the floodplain. Generally, more frequent and 

longer flood events were observed in the BZ area due to its lower landscape position 

and closer connection to the river. 
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Table 5.3.1: Overbank flood events in the PM site during the monitoring period October 2006 - September 2008. N/A indicates non available 

data.  

  # Date

1 18/11/06 - 20/11/06 2 N/A N/A N/A 0.31 13.5

2 23/11/06 - 02/12/06 9 N/A N/A N/A 0.35 33.3

Autumn 06 11 0.66 46.8

3 02/12/06 - 09/12/06 7 N/A N/A N/A 0.24 17.0

4 11/12/06 - 13/12/06 2 N/A N/A N/A 0.09 6.4

5 30/12/06 - 05/01/07 6 N/A N/A N/A 0.37 27.3

6 06/01/07 - 14/01/07 8 N/A N/A N/A 0.41 20.8

7 17/01/07 - 23/01/07 6 N/A N/A N/A 0.42 28.8

8 10/02/07 - 15/02/07 5 N/A N/A N/A 0.16 10.6

9 24/02/07 - 02/03/07 6 38.4 3.9 N/A 0.13 8.5

Winter 07 40 1.82 119.4

10 05/03/07 - 09/03/07 5 32.3 1.8 N/A 0.40 29.5

11 28/05/07 - 31/05/07 4 61.5 5.7 N/A 0.48 24.2

Spring 07 9 0.88 53.7

12 25/06/07 - 28/06/07 4 34.1 7.7 N/A 0.42 14.1

13 20/07/07 - 31/07/07 11 101.1 17 N/A 0.54 21.6

Summer 07 15 0.96 35.7

Totals Season 1 75 4.32 255.6

14 17/10/07 - 19/10/07 3 45.5 8.3 N/A 0.20 8.4

15 19/11/07 - 21/11/07 3 21.5 3 N/A 0.20 9.1

16 22/11/07 - 23/11/07 2 8.9 3.3 8.8 0.11 5.9

Autumn 07 8 0.51 23.4

17 06/12/07 - 11/12/07 6 41.6 3.3 -8.8 0.25 13.4

18 25/12/07 - 27/12/07 2 17.5 5.1 -27.7 0.13 7.6

19 11/01/08 - 24/01/08 13 83.9 8.3 5.1 0.49 28.7

Winter 08 21 0.87 49.7

20 11/03/08 - 12/03/08 1 15.8 3.9 -7.1 0.10 6.2

21 16/03/08 - 19/03/08 4 41.6 4.7 -15.5 0.50 30.9

22 27/05/08 - 31/05/08 5 69.7 8.9 -338 0.41 26

Spring 08 10 1.01 63.1

23 03/06/08 - 07/06/08 5 60.9 6.9 -16.5 0.53 33.7

24 10/07/08 - 11/07/08 2 78.8 6.3 -1008 0.10 3.0

25 13/08/08 - 14/08/08 2 26.8 4.7 -74.2 0.14 4.0

Summer 08 9 0.77 40.7

Totals Season 2 48 3.16 176.9

Max floodwater volume 

(m3m-2)

Nitrate loading                   

(kg N ha-1)

Duration                                
(days)

Total rainfall                      
(mm)

Max rainfall intensity          

(mm h-1)

Soil matric potential                 
(hPa)

 

151

 



 152 

Table 5.3.2: Overbank flood events in the BZ site during the monitoring period October 2006 - September 2008. N/A indicates non available 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Date

1 17/11/06 - 30/11/06 13 N/A N/A N/A 0.53 22.9

Autumn 06 13 0.53 22.9

2 01/12/06 - 13/12/06 13 N/A N/A N/A 0.39 34.3

3 30/12/06 - 31/12/06 2 N/A N/A N/A 0.27 19.1

4 01/01/07 - 24/01/07 24 N/A N/A N/A 0.55 40.4

5 10/02/07 - 16/02/07 7 N/A N/A N/A 0.28 18.6

6 23/02/07 - 02/03/07 8 38.4 3.9 N/A 0.27 15.7

Winter 07 54 1.76 128.1

7 03/03/07 - 11/03/07 9 29.6 1.8 N/A 0.52 40.8

8 13/05/07 - 14/05/07 1 56.9 5.7 N/A 0.12 6.1

9 27/05/07 - 31/05/07 5 61.9 5.7 N/A 0.62 31.3

Spring 07 15 1.26 78.2

10 25/06/07 - 28/06/07 4 34.1 7.7 N/A 0.54 18.1

11 01/07/07 - 03/07/07 3 33.7 3.7 N/A 0.12 3.7

12 20/07/07 - 31/07/07 11 101.1 17 N/A 0.77 30.9

13 16/08/07 - 17/08/07 2 22.7 3.9 N/A 0.16 7.3

Summer 07 20 1.59 60

Totals Season 1 102 5.14 289.2

14 17/10/07 - 19/10/07 3 45.5 8.3 N/A 0.42 17.7

15 19/11/07 - 24/11/07 6 30.9 3.3 N/A 0.41 18.9

Autumn 07 9 0.83 36.6

16 01/12/07 - 12/12/07 12 53.8 3.3 -22.6 0.50 26.7

17 25/12/07 - 27/12/07 2 17.5 5.1 -27.7 0.29 15.5

18 05/01/08 - 31/01/08 26 107.4 8.3 -20.6 0.79 46.3

19 04/02/08 - 08/02/08 5 11.4 2.2 -6.4 0.17 12.5

Winter 08 45 1.75 101

20 10/03/08 - 12/03/08 3 19.1 3.9 -42.5 0.24 14.8

21 16/03/08 - 23/03/08 8 45.7 4.7 -15.9 0.80 49.4

22 30/03/08 - 31/03/08 2 13.4 2 -22.6 0.20 12.3

23 26/05/08 - 31/05/08 5 69.7 8.9 -338 0.54 34.3

Spring 08 18 1.78 110.8

24 03/06/08 - 07/06/08 4 60.9 6.9 -16.5 0.68 43.2

25 09/07/08 - 12/07/08 4 78.8 6.3 -1008 0.18 5.5

26 12/08/08 - 14/08/08 3 26.8 4.7 -74.2 0.28 7.9

Summer 08 11 1.14 56.6

Totals Season 2 83 5.50 305

Max floodwater volume 

(m3m-2)

Nitrate loading                   

(kg N ha-1)

Duration                                
(days)

Total rainfall                      
(mm)

Max rainfall intensity          

(mm h-1)

Soil matric potential                 
(hPa)
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Overall, during the first monitoring year, the PM site was flooded for 75 days, while the 

total nitrate loading onto the floodplain was 255.6 kg N ha-1. The decrease in the flood 

retention time observed in the second monitoring year was accompanied by a decrease 

in the total flood days (48) and nitrate loading (177 kg N ha-1) on PM. The flood water 

volume correlated positively with the duration of the event (Spearman; r=0.61, P<0.01), 

indicating that longer flood events resulted in larger volumes of flood storage on the 

floodplain, while positive correlation was also found with the total rainfall volume 

(Spearman; r=0.60, P<0.05), showing that higher magnitude rainfall events were 

associated with larger flood water storage. The nitrate loading correlated positively with 

the duration of the flood event (Spearman; 0.68, P<0.01), showing that high nitrate 

loadings were associated with longer inundation periods.  

 

The BZ area, due to its proximity to the river and the higher inundation frequency, was 

flooded for longer (102 days) and subsequently higher nitrate loading (289.2 kg N ha-1) 

was observed during the first monitoring year, compared to the PM area. Although the 

flood retention time decreased during the second year (83 days), the total volume of 

stored flood water and the nitrate loading increased slightly, indicating that even lower 

magnitude events can cause considerable floodwater storage and nitrate loading to the 

BZ site. The correlation analysis indicated positive relationships between the flood 

water volume and the event duration (Spearman; r=0.67, P<0.01) as well as with the 

total rainfall (Spearman; r=0.54, P<0.05) and the rainfall intensity (Spearman; r=0.48, 

P<0.05). The nitrate loading correlated positively with the event duration (Spearman; 

r=0.73, P<0.01) and the total rainfall (Spearman; r=0.44, P<0.05).  

 

The sequence of events and interactions between the falling precipitation, the raising 

river stage, the antecedent moisture conditions and subsequently the raising 

groundwater table across the floodplain areas are described for a characteristic overbank 

flood event for each area. In this way, the differences in the hydrological connectivity 

between the two studied areas can be demonstrated, while different sources of 

floodwater, and subsequently nitrate, to the floodplain are identified. Moreover, the 

factors that lead to surface saturation conditions are identified and evaluated in terms of 

their importance, while the spatial distribution of surface saturation can also indicate 

areas where nitrate attenuation may be more effective. 
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5.3.1.1 PM area in March 2007 (05/03/07 - 09/03/07) 

The event of 5th March 2007 followed a previous overbank event in late February that 

peaked on the 28th of the month. Therefore, the ground was near saturation and the 

water table, as well as, the river stage was receding at the beginning of the event. The 

event was divided in three main components; A, B and C (Table 5.3.3).  Hourly changes 

in perched water table (PWT) height in the monitoring wells of the transect F1-F7 of the 

PM site as well as the total hourly rainfall and river stage height for the three 

components of the event are shown in Figure 5.3.1.  

 

Table 5.3.3: March 2007 rainfall and river stage data 

Component Date Time Time Duration Total Rain Max. Hourly River stage River stage
(began) (end) (mins) (mm) Intensity (mm/hr) response (mins) change (cm)

A 02/03/07 17:00 20:30 210 2.8 0.8 330 18.7
B 04/03/07 09:00 23:00 840 11.4 1.8 360 95.6
C 05-06/03/07 21:00 04:00 420 11 1.8 480 41  

 

The most substantial component of the rainfall event was B, which occurred on 4th 

March. The response from the river stage occurred during the event, and there was a 

steep increase by almost 95.6 cm. The groundwater beneath the channel depression 

showed an almost immediate response to the falling precipitation (wells F11 and F7), 

possibly because of higher hydraulic conductivities in the near surface layers due to 

high soil moisture content. The groundwater response followed in the rest of the wells 

almost simultaneously with the river stage (wells F2 and F5 on Fig. 5.3.1). The 

maximum hydraulic gradient between the river stage and the PWT in F2 during the 

rising limb of event B was 0.4%. Using the maximum Kh for the B horizon of the PM 

(0.17 m d-1) and an average porosity of 0.60, the potential seepage velocity V can be 

calculated from Darcy’s law with equation (5.1) according to Schilling et al. (2006): 

 

( / ) /hV K dh dl n= ⋅           (5.1) 

where dh/dl the dimensionless hydraulic gradient and n the porosity. The seepage 

velocity was estimated at 1.4 x 10-6 cm s-1, and therefore could not explain the rise in 

PWT through Darcian flow bank seepage. However, the almost simultaneous rise of the 

PWT in the wells F2, F3 and F5 by the same amount as the river stage could be due to 

the development of a reversed groundwater ridge (Jung et al., 2004) pushing as 
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translatory  flow ‘old’ floodplain water ahead across the floodplain. The river stage (F1) 

- PWT height hysteresis plots for the wells F2, F5, F7 and F11 during the March ’07 

event sequence are shown in Figure 5.3.2. For F2 and F5 the shape of the hysteresis 

curve roughly follows and includes the x = y line indicating that the PWT is influenced 

by the river stage change. However, during the rising limb the recharge rate of the PWT 

seems to be higher than the river stage, possibly as a consequence of infiltrating 

precipitation on top of the reversed groundwater ridge, while the recession limb 

indicates a slower groundwater discharge rate. The shape of the hysteresis curves, in 

terms of how open or closed they are approximates the temporary floodwater storage, or 

bank storage in the case of the river water, which is higher in the channel depression 

well (F5) compared to the well F2, where steeper gradients towards the river and the 

underlying gravel lens may be responsible for faster discharge. 

 

The hysteresis curves for the wells F7 and F11 are very different from the x = y line 

indicating that the river stage has no direct influence on the PWT. In the case of F7, the 

PWT is rising possibly as a result of seepage from the ditch receiving hillslope runoff, 

while F11 rises possibly from percolating precipitation, without a concurrent increase in 

the river stage. When surface saturation is reached, overland flow is directed towards F5 

(southward), from both F7 and F11, and no further PWT height build up is observed, 

while the river stage is still rising. Finally, the recession limb is very different, as the 

wells F7 and F11 discharge to the ditch and not the river.  

 

The correlation coefficients between the river stage (F1) and the PWT height during the 

March 2007 event are shown in Table 5.3.4. All the wells were highly correlated with 

each other (Pearson’s r > 0.9, P<0.01), possibly as an effect of the overland flow 

extending across the floodplain surface (discussed later). However, stronger correlations 

with the river stage were found for the wells F2 and F3, indicating that the reversed 

groundwater ridge is more likely to extend 80 m across the floodplain subsurface 

perpendicular to the river.  The correlation strength with the river stage diminished with 

the distance from the river suggesting that the influence of the ditch water becomes 

increasingly more important at the north and north-east side of the floodplain. 
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Figure 5.3.1: The hourly PWT level in the monitoring wells F2, F5 and F11 of the PM site and the hourly total rainfall 
and river stage (F1) for the three components of the March 2007 event. The zero line indicates the datum (F1), while the 
parallel to the datum lines indicate surface saturation for the wells with same colour coding. 
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Figure 5.3.2: River stage (F1) - PWT height hysteresis plots for the wells F2, F5, F7 

and F11 of the PM area during the event of March 2007. The PWT heights are relative 

to the datum, which is the well F1 (i.e. river stage). The diagonal lines give the 

relationship y = x (PWT identical to river stage). 

 

Table 5.3.4: Correlation matrix between the river stage height (well F1) and the PWT 

height in the wells of the PM site during the March 2007 event. Numbers are Pearson’s 

r significant at 0.01 probability level.   

 

 

 

 

 

 

River stage F2 F3 F5 F7 F11
River Stage 1

F2 0.92 1
F3 0.91 0.99 1
F5 0.87 0.98 0.98 1
F7 0.86 0.97 0.98 0.96 1
F11 0.78 0.91 0.93 0.91 0.93 1

-20

0

20

40

60

80

100

120

-20 0 20 40 60 80 100 120

River stage (cm)

P
W

T
 h

ei
g

h
t(

cm
)

-20

0

20

40

60

80

100

120

-20 0 20 40 60 80 100 120

River stage (cm)

-20

0

20

40

60

80

100

120

-20 0 20 40 60 80 100 120

River stage (cm)

P
W

T
 h

ei
g

h
t 

(c
m

)

-20

0

20

40

60

80

100

120

-20 0 20 40 60 80 100 120

River stage (cm)

F2 F5 

F7 F11 



 158 

Overbank flooding from the overflowing ditch to the channel depression was first 

observed at the end of component B. This is shown in the hydrograph of Figure 5.3.1, 

where at 23:00 hours on 4th March there was a sudden vertical increase in the F11 level. 

A similar vertical increase of the groundwater level was noted one hour later for well 

F7, indicating overbank flooding from the north side of the ditch. Overland water flow 

moved across the PM floodplain in the directions shown in Figure 5.3.3. A delay was 

observed between the first flood peak recorded in well F1 and the peak in the river 

discharge measured 4 km downstream at the Inglesham monitoring station, which was 

approximately 8 hours later (Figure 5.3.4), indicating that flooding in the rural 

catchment of the River Cole, between Coleshill and Inglesham, probably resulted in 

delaying and reducing the magnitude of the downstream flood peak. The flood waters 

slowly started to recede after the first flood peak but most of the floodplain remained 

inundated until component C of the event occurred.  

 

The recession of the March 2007 flood event followed the surface gradient. The 

hydraulic gradient first reversed between F2 and F1 and flood waters flowed quickly 

towards the river. The PWT level dropped below ground surface sequentially first in F2, 

then in F3 and then in F7, which drained towards the north side of the ditch, while the 

flood waters receded last from the channel depression, first from F5, after 67 hours, and 

lastly from the F11, after 76 hours. Therefore the direction of the receding flood waters 

was exactly opposite from the overland flow direction, following generally the surface 

elevation gradient.  

 
To summarise, during overbank flooding of the PM, the rise of the river stage creates a 

reversed groundwater ridge with direction from the river to approximately the middle of 

the floodplain, contributing to floodwater storage and the rise of the water table. At the 

same time, infiltrating precipitation and seepage from the ditch further contribute to the 

water table rise in the north side of the floodplain. When bankfull capacity is exceeded, 

the river floods the riparian area, while the east and north breaches of the ditch supply 

further the floodplain with river and hillslope runoff water. Therefore, two sources of 

floodwater and nitrate supply are identified in the PM. At the receding phase of the 

flood, floodwaters follow the surface gradient back to the river and ditch, while 

saturation conditions are maintained for longer in the riparian and channel depression 

zones, creating favourable conditions for nitrate attenuation. 
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Figure 5.3.3: Overland water flow direction, indicated by large arrows, during the 

March 2007 event on the PM floodplain area. 
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Figure 5.3.4: The hourly river discharge at Inglesham monitoring station and the mean 

hourly river stage (well F1 next to the river bank) in the PM site during the March 2007 

event. 
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5.3.1.2 BZ area in May 2007 (13/05/07 - 14/05/07) 

In order to describe the sequence of events during overbank flooding of the BZ site, a 

flood event with lower antecedent moisture conditions was selected. This is because the 

BZ site, due to its proximity to the river, its elevation and its small surface area, is 

rapidly flooded during a high magnitude event, especially when high antecedent soil 

moisture conditions are present, and therefore there is not adequate time for studying the 

PWT wetting up pattern during such an event.  

 

The first week of May 2007 was characterised by dry weather continuing from April 

2007, and the river stage was around -65 cm from its bankfull height (Figure 5.3.5). The 

first rain (> 1 mm) fell on 7th May (Component A), 46 days after the last rainfall (Table 

5.3.5). The water table started to rise in all the wells of the transect H10-H4 during 

component A (Figure 5.3.5). The well H9 displayed a more pronounced response 

corresponding to the increase of the river stage, whereas the response of the other wells 

was more subdued, possibly due to groundwater recharge from infiltrating precipitation. 

As a result of component A, the hydraulic gradient between H10 and H9 changed from 

almost 0 at the start of the event to 4 % from H10 to H9. Using the maximum Kh for the 

B horizon of the BZ (0.83 m d-1) and an average porosity of 0.55, the potential Darcian 

seepage velocity V according to equation (5.1) was 7 x 10-3 cm s-1, three orders of 

magnitude higher than the seepage velocity estimated between F1 and F2 in PM. By 

multiplying V with the time period of the hydraulic gradient reversal (8h), the distance 

the stream water has potentially travelled through the B horizon from H10 to H9 was 

calculated at 2 m (Schilling et al., 2006). Although the distance between H10 and H9 is 

10 m, the theoretical calculation of Darcian seepage velocity seemed to support the 

possibility of seepage between the wells indicated by the hydrograph (Fig. 5.3.5), as the 

porosity could be higher near the stream margin and also preferential flow through 

macropores and animal burrows were not taken into account. 

 

Table 5.3.5: May 2007 rainfall and river stage data 

Component Date Time Time Duration Total Rain Max. Hourly River stage River stage
(began) (end) (mins) (mm) Intensity (mm/hr) response (mins) change (cm)

A 07/05/07 04:30 09:30 300 9.1 2.8 330 50.4
B 10/05/07 18:30 23:30 300 7.9 1.8 360 56.3
C 13/05/07 11:00 15:30 270 15.8 5.7 270 70.2
D 15/05/07 17:00 18:30 90 4.5 3.5 90 19.1
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The potential for the development of a reversed groundwater ridge at the BZ site was 

investigated with hysteresis plots between the PWT height in well H10 (reflecting the 

local river stage) and the rest of the BZ wells (Figure 5.3.6). Although the hysteresis 

plots for all the wells display a scatter along the y = x line, suggesting some dependence 

on the river stage, the picture is complicated by the multiple small peaks during the 

event. In all cases, when overbank inundation reaches a well, the hysteresis plot closely 

approximates the y = x line, thus indicating control of the PWT by the overlying water 

rather than a reverse groundwater ridge. Therefore the reverse groundwater ridge must 

be important only at the initial flood stage, before bankfull capacity is exceeded.  

 

During the initial flood phase only the well H9 shows close correspondence with the  

river stage, suggesting that a reverse groundwater ridge is contributing to bank storage 

in H9 (i.e. 10 m inland from the stream bank). Regarding the wells in the middle and 

field edge of the BZ, the extent of a reversed groundwater ridge is inconclusive, but as 

suggested also by the rounded hydrographs, groundwater recharge by infiltrating 

precipitation is likely to be equally important for these wells. High correlation 

coefficients were found between the local river stage (H10) and the PWT height in all 

the wells of the BZ during the May 2007 event (Table 5.3.6). The high correlation is 

mostly due to the effect of overbank flooding that ‘equals’ the PWT across the site 

during the flood peak.  

 

During component B of the May event, no seepage was observed between H10 and H9, 

as the hydraulic gradient was not reversed, but the water table rose quickly and the river 

broke its bank supplying overland flow to H9. Interestingly, well H7 displayed a similar 

rapid level increase. This could possibly be due to preferential flow along the well 

casing due to cracks on the bentonite seal because of the antecedent dry conditions. The 

hydrograph for H8 indicated groundwater recharge from infiltrating precipitation. 

 

Table 5.3.6: Correlation matrix between the local river stage height (well H10) and the 

PWT height in the wells of the BZ site during the May 2007 event. Numbers are 

Pearson’s r significant at 0.01 probability level. 
H10 H9 H8 H7 H4

H10 1
H9 0.97 1
H8 0.91 0.96 1
H7 0.93 0.96 0.99 1
H4 0.93 0.97 0.99 0.99 1
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Figure 5.3.5: The hourly PWT level in the monitoring wells H10, H9, H8 and H7 of the BZ site and the total rainfall and river 
stage (H10) for the four components of the May 2007 event. Parallel lines on the horizontal axis indicate surface saturation for 
the wells with same colour coding. 
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Figure 5.3.6: River stage (H10) - PWT height hysteresis plots for the wells H9, H8, H7 

and H4 of the BZ area during the event of May 2007. The PWT heights are relative to 

the datum, which is the well F1 in PM. The diagonal lines give the relationship y = x 

(PWT identical to river stage). 

 

Finally, component C of the event caused the water table to respond rapidly in all the 

wells due to increased infiltration rate. After the end of component C, the BZ site was 

completely inundated. The maximum floodwater volume stored on BZ was 0.12 m3 m-2, 

while the nitrate loading for this event was 6.1 kg N ha-1. Therefore, a bankfull event 

after prolonged dry weather for the rest of the River Cole floodplain had caused an 

overbank flood at the BZ site, indicating the very responsive character of the site and its 

proneness to frequent flooding even during moderate rainfall events. The single 

floodwater and nitrate loading source is the river, while the reversed groundwater ridge 

mechanism is restricted to the near-bank margin area, as overbank inundation rapidly 
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spreads across the site. The drainage of the site follows the surface elevation gradient 

from the arable field edge (H7) towards the river (H10). 

 

5.3.2 Saturation excess overland flow 

In some cases, prior to an overbank flood event, saturation excess overland flow 

(SEOF) was observed to occur mainly in the channel depression and the middle field 

area of the PM and between the field edge and the river margin in the BZ. The dates on 

which SEOF was recorded, as well as the storm characteristics and the contribution of 

SEOF to the total volume of surface runoff per area are presented in Table 5.3.7. During 

the first season, SEOF was recorded at the beginning of the June and July 2007 storms 

in the BZ and only in July 2007 in the PM. Both events were characterised by high 

magnitude and intensity rainfall under high antecedent soil moisture conditions. The 

produced runoff, for the BZ, contributed only 12 % of the total floodwater volume 

stored on the floodplain for both events, while for the PM it was 20 % of the stored 

floodwater volume. Furthermore, during the second monitoring year, one SEOF case 

per season was recorded at the BZ site and the total runoff contribution was 6 % of the 

stored floodwater volume for the whole year. SEOF was only observed in the first and 

the last storm of the year for the PM contributing 7 % runoff volume to the yearly total 

floodwater volume. Therefore, it could be argued that the contribution of SEOF to the 

creation of surface saturation conditions, favouring nitrate attenuation processes, is 

minimal compared to the overbank flooding effect. Moreover, since the main source of 

water during SEOF generation is the falling precipitation, inherently low in nitrate 

concentration, the contribution of this mechanism to the nitrate loading on the 

floodplain is insignificant. 

 

The possibility of infiltration excess overland flow (IEOF) was also examined, when 

soil matric potential data where available, especially when low antecedent soil moisture 

conditions where followed by summer storms. However, in all cases surface saturation 

had been reached when overland flow was occurring, and therefore IEOF occurrence 

was ruled out. The sequence of events during SEOF formation is described below for 

both the PM and BZ areas for the July 2007 summer storm. 
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Table 5.3.7: Saturation excess overland flow events in the BZ and PM sites during the monitoring period October 2006 - September 2008. N/A 

indicates non availability if data. a Soil matric potential data corrected for the maximum surface elevation of the transect H10-H4 in BZ. 

# Date

1 25/06/2007 7 30.9 7.7 N/A 0.06 0

2 20/07/2007 4 51.4 17 N/A 0.10 0.19

Totals Season 1 11 0.16 0.19

3 17/10/2007 5 45.5 8.3 N/A 0.08 0.10

4 25/12/2007 5 17.5 5.1 33.8a 0.08 0

5 15/03/2008 9 41.6 4.7 31.1a 0.07 0

6 03/06/2008 8 60.9 6.9 44.2a 0.10 0.11

Totals Season 2 27 0.33 0.21

Max runoff volume BZ 

(m3m-2)

Max runoff volume PM 

(m3m-2)

Duration                                
(hours)

Total rainfall                      
(mm)

Max rainfall intensity          

(mm h-1)

Soil matric potential                 
(hPa)
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5.3.2.1 Summer flood in July 2007 (20/07/07 - 31/07/07) 

The beginning of July 2007 was characterised by the receding river stage and PWT. The 

water table was approaching the C horizon in the wells F1 and F2, while it was within 

the B clay horizon and closer to the ground surface for the wells F5, F11 and F7. On 

20th July the main component (B) of the summer flood event occurred (Table 5.3.8 and 

Figure 5.3.7). This was the most extreme rainfall event in the two monitoring seasons, 

giving 101.5 mm of total rainfall volume in 16 hours with maximum intensity 16.9 mm 

h-1. As a consequence of this high magnitude and intensity event the river stage 

increased by 174.5 cm. Within four hours from the start of component B, the water table 

started to rise almost simultaneously in wells F5 and F11. Twelve hours from the start, 

the wells F11, F7, F5 and F3 recorded surface saturation in the channel depression and 

the middle field of PM, while the river stage (F1) was 15 cm below its bankfull level. 

Although the river was already feeding the ditch (bed elevation; 54 cm below F1), there 

was no indication of ditch overflow as the channel depression hydrographs did not show 

vertical level increase, and therefore the surface saturation was attributed to saturation 

excess overland flow (SEOF). Four hours later, while the rainfall continued, and with 

0.19 m3 m-2 contributed from surface runoff, the river and ditch overflowed onto the 

floodplain. The maximum floodwater volume stored at the peak of the event was 0.54 

m3m-2, while the nitrate loading was 21.6 kg N ha-1.  

 

The groundwater response of the BZ site was similar to the PM, although the 

hydrograph of the transect H10-H4 (Figure 5.3.8) was more homogeneous, due to the 

combined effects of the magnitude of the event, the smaller size of the site and its 

proximity to the river. The water table started to rise simultaneously across the site, 

from the arable field to the river bank, as a response to the precipitation from 

component A of the event. However, no overbank flooding or saturation excess 

overland flow was recorded at this stage. The water table retained some of its gain 

before the onset of the major component B of the event. For 14 hours the water level on 

the BZ site was higher than the water level at H10 (the river bank) indicating that SEOF 

was formed at the BZ before bankfull capacity was reached. After the lag phase of 14 

hours, the water table level was almost equal across the site, which was completely 

under water. At the peak of the flood 0.77 m3m-2 of floodwater was stored on BZ, 

although discrimination between the volume of precipitation and river water was not 

possible, while the nitrate load was 30.9 kg N ha-1. 
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Figure 5.3.7: The hourly PWT level in the monitoring wells F2, F5 and F11 of the PM site and the hourly total rainfall 
and river stage (F1) for the four components of the July 2007 event. The zero line indicates the datum (F1), while the 
parallel to the datum lines indicate surface saturation for the wells with same colour coding. 
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Table 5.3.8: July 2007 rainfall and river stage data 
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Figure 5.3.8: The hourly PWT level in the monitoring wells H10, H8 and H7 of the BZ site for the four components of the 
July 2007 event. Parallel lines on the horizontal axis indicate surface saturation for the wells with same colour coding. 

SEOF 

Component Date Time Time Duration Total Rain Max. Hourly River stage River stage
(began) (end) (mins) (mm) Intensity (mm/hr) response (mins) change (cm)

A 17/07/07 10:00 20:30 630 16.2 4.7 450 41.7
B 20/07/07 00:00 16:00 960 101.5 16.9 210 174.5
C 26/07/07 07:30 18:30 690 14 5.5 390 61.7
D 28-29/07/07 20:00 04:00 480 9.9 2.4 540 48.9
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5.3.3 Lateral subsurface flow - Reverse groundwater ridge 

Lateral subsurface flow and subsequent groundwater discharge to the river was 

observed between flood events. Tables 5.3.9 and 5.3.10 summarise those discharge 

periods for the PM and BZ site respectively. Regarding the PM area, the PWT was 

discharging in two directions, from the middle of the floodplain (well F3) towards the 

north side of the ditch and from F3 southwards to the river; Table 5.3.9 refers to the 

latter flow path. Further details about groundwater flow direction are given in the 

example of the spring ’07 discharge period that follows.  

 

Generally low hydraulic gradients were recorded between F3 and F1 (range 0.01 - 0.7 

%) and this combined with the low Kh of the B soil horizon (0.17 m d-1) resulted in low 

flow rates (range 0.1 - 0.9 L d-1 m-1), according to Darcy’s law for one-dimensional flow 

(equation 5.2): 

 

AdldhKQ h ⋅⋅= )/(            (5.2) 

 

Where Q the one dimensional groundwater flow (L d-1 m-1), Kh the horizontal saturated 

hydraulic conductivity (m d-1), dh/dl the dimensionless hydraulic gradient and A the 

cross section area estimated by the depth of the saturated B horizon and a width of 1 m.  

 

The nitrate loading for the maximum flow rates was estimated from the groundwater 

nitrate-N concentration measured in F3. As it can be seen in Table 5.3.9, the N-loading 

to the F3-F1 groundwater flow path was low throughout the monitoring period (range 

0.02 - 0.10 mg N d-1 m-1) and given the low flow rate and hydraulic conductivity, the 

groundwater nitrate would be expected to be even further reduced before it reaches the 

river at F1 (see also section 5.4).  

 

The groundwater in the BZ site discharged to the river following one direction from the 

upslope arable field (H4), or the field edge (H7), to the river margin (H10). Higher 

hydraulic gradients were observed between H4 and H10 in the BZ site (range 0.4 - 1.6 

%) compared to the PM. Consequently, the flow rates were also significantly higher 

(range 1.6 - 10.3 L d-1 m-1) considering also that the Kh of the B horizon in BZ was 

about 4 times higher (average 0.55 m d-1) than the respective in PM. 
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Table 5.3.9: Lateral subsurface flow between the well F3 and the river bank (F1) in the PM site during both monitoring seasons.  N/A indicates 

non availability of data. a Summer 2007 does not include Sept. 2007. b Autumn 2007 includes Sept. 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Date

1 21/10/06 - 17/11/06 28 N/A 0.7 50 - 117 0.9 0.10

Autumn 06 28

2 19/12/06 - 29/12/06 11 N/A 0.2 34.4 - 106.6 0.3 0.03

3 26/01/07 - 08/02/07 14 N/A 0.1 30.4 - 104.5 0.2 0.03

4 16/02/07 - 19/02/07 4 2.8 0.3 18.6 - 91.4 0.3 0.03

Winter 07 29

5 10/03/07 - 06/05/07 58 12.6 0.4 64.6 - 132.9 0.4 0.08

6 16/05/07 - 26/05/07 10 6.3 0.4 67.9 - 132.4 0.4 0.05

Spring 07 68

7 01/06/07 - 13/06/07 14 8.5 0.4 63.7 - 128.9 0.5 0.06

8 03/07/07 - 17/07/08 14 8.9 0.4 63.0 - 129.5 0.4 0.06

9 01/08/07 - 13/08/07 14 3.3 0.2 40.1 - 119.5 0.2 0.13

10 20/08/07 - 30/09/07 40 24 0.4 62.8 - 127.9 0.4 0.26

Summer 07 42a

Totals Season 1 207

11 19/10/07 - 17/11/07 30 11.4 0.4 55 - 131.2 0.5 0.06

12 24/11/07 - 30/11/07 6 4.3 0.3 41.3 - 115.4 0.3 0.03

Autumn 07 66b

13 12/12/07 - 24/12/07 12 1.2 0.2 39.8 - 119.1 0.2 0.03

14 08/02/08 - 25/02/08 17 3.7 0.1 33.9 - 116.9 0.2 0.03

Winter 08 29

15 01/03/08 - 08/03/08 8 6.9 0.2 41.6 - 120.6 0.3 0.05

16 22/03/08 - 27/03/08 5 2.2 0.01 25.8 - 110 0.1 0.02

17 01/04/08 - 24/05/08 54 84.1 0.4 67.6 - 130.9 0.4 0.06

Spring 08 67

18 07/06/08 - 30/06/08 23 32.9 0.3 58.7 - 128.8 0.4 0.06

19 13/07/08 - 28/07/08 15 0 0.5 72.7 - 132.2 0.5 0.07

20 15/08/08 - 31/08/08 16 23.8 0.4 63.8 - 130.5 0.5 0.07

Summer 08 54

21 14/09/08 - 30/09/08 16 4.3 0.6 66.6 - 128.5 0.6 0.09

Totals Season 2 202

Max flow rate                      

(L d -1 m-1)

Duration                                
(days)

Total rainfall                      
(mm)

Max hydraulic gradient   
(%)

Depth range                        
(cm)

Nitrate loading                 

(mg N d-1 m-1)

 

17
0
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Table 5.3.10: Lateral subsurface flow between the arable field (H4) and the river bank (H10) in the BZ site during both monitoring seasons.  

N/A indicates non availability of data. a Summer 2007 does not include Sept.2007. b Autumn 2007 includes Sept. 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Date

1 21/10/06 - 15/11/06 26 N/A 0.4 37.2 - 120 1.6 11.23

Autumn 06 26

2 19/12/06 - 29/12/06 11 N/A 0.6 12.3 - 120 3.6 37.52

3 28/01/07 - 08/02/07 12 N/A 0.5 13.2 - 120 2.9 14.83

Winter 07 23

4 10/03/07 - 06/05/07 58 12.6 0.7 31.5 - 120 3.4 35.19

5 16/05/07 - 26/05/07 10 6.3 1.0 32 - 120 4.9 22.67

Spring 07 68

6 01/06/07 - 13/06/07 14 8.5 1.5 12.3 - 120 8.9 41.17

7 03/07/07 - 17/07/08 14 8.9 1.5 15.1 - 120 8.8 3.84

8 01/08/07 - 13/08/07 14 3.3 1.2 1 - 120 8.2 3.67

9 20/08/07 - 30/09/07 40 24 0.8 36.6 - 120 3.6 1.61

Summer 07 42a

Totals Season 1 199

10 19/10/07 - 17/11/07 30 11.4 0.9 34.3 - 120 4.4 21.60

11 24/11/07 - 30/11/07 6 4.3 1.6 1.5 - 120 10.3 50.57

Autumn 07 66b

12 12/12/07 - 24/12/07 12 1.2 1.3 0 - 120 8.9 76.77

13 08/02/08 - 25/02/08 17 3.7 0.8 4.3 - 120 5.3 45.72

Winter 08 29

14 01/03/08 - 08/03/08 8 6.9 0.7 10.1 - 120 4.5 35.35

15 22/03/08 - 27/03/08 5 2.2 1.0 0 - 120 7.0 54.99

16 01/04/08 - 24/05/08 54 84.1 1.0 0 - 120 6.7 52.63

Spring 08 67

17 07/06/08 - 30/06/08 23 32.9 1.6 0 - 120 10.3 11.32

18 13/07/08 - 28/07/08 15 0 1.2 24.7 - 120 6.5 7.14

19 15/08/08 - 31/08/08 16 23.8 1.0 40.7 - 120 4.5 4.95

Summer 08 54

20 14/09/08 - 30/09/08 16 4.3 1.0 44.4 - 120 4.1 20.13

Totals Season 2 202

Max flow rate                      

(L d -1 m-1)

Duration                                
(days)

Total rainfall                      
(mm)

Max hydraulic gradient   
(%)

Depth range                 
(cm)

Nitrate loading                 

(mg N d-1 m-1)

 

17
1
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The maximum N-loading rate (range 1.6 - 76.8 mg N d-1 m-1) was almost two orders of 

magnitude higher than the one observed between F3-F1, highlighting the contribution of 

the lateral subsurface flow from the upslope arable field to the N-loading in the 

subsurface of the BZ. Therefore, the arable field could potentially be a source of nitrate 

for the river through lateral groundwater flow, although the flow rate even at high 

saturation periods was not more than 10.3 L d-1. Given the generally low Kh of the B 

horizon, it is likely that the retention time of the groundwater coming from the arable 

field, is long enough to allow reduction of the groundwater nitrate via denitrification 

before reaching the stream (see also section 5.4).  

 

To summarise, although lateral subsurface flow between flood events is observed 55 % 

of the time during one year, its contribution to saturation conditions in the most 

biologically active A soil horizon is insignificant compared to overbank flooding. 

However, it contributes to the maintenance of saturated conditions in the vadoze zone 

(B soil horizon) of the floodplain, therefore giving the opportunity for further nitrate 

attenuation in the subsurface. Furthermore, in the case of the BZ, the lateral subsurface 

flow serves as an additional mechanism for nitrate supply to the BZ from the adjacent 

arable field.  

 

5.3.3.1 Groundwater discharge in spring 2007 (10/03/07 - 06/05/07) 

After the overbank event at the beginning of March 2007 (described earlier), the longest 

dry spell of the monitoring period followed, when only 12.6 mm total rainfall was 

recorded in 58 days. Therefore this period was selected to describe the lateral subsurface 

flow pattern during groundwater discharge for both the PM and BZ sites.  

 

The PWT followed two divergent directions during the discharge period in PM, from 

the well F3 (second highest surface elevation) towards the river (F1) and from F3 

towards the north side of the draining ditch (F7) according to the elevation of the B 

subsurface horizon (for the direction F3-F7), which remained saturated throughout the 

drainage period (Figure 5.3.9). Although the well F2 had the highest surface and B 

horizon elevation, in most cases drained faster than F3, which maintained the highest 

PWT level throughout the drainage period. This also becomes apparent from the steeper 

slope of the drainage hydrograph of F2 for the whole of the discharge period in spring 

2007 (Figure 5.3.10). It could therefore be argued that the groundwater discharged 
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faster between F2 and F1 due to the steeper hydraulic gradient but also the higher 

hydraulic conductivity of the sandy clay layer and the gravel lens, that were thicker 

between F2 and F1. On the contrary, the groundwater discharged at a slower rate 

towards the north side of the ditch maintaining a higher water table within the B horizon 

for longer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.9: The PWT level (black circles) and the direction of subsurface flow at the 

end of April 2007 in the cross-section of the F1-F7 transect in the PM. 

 

The groundwater velocity was estimated from Darcy’s velocity equation (5.3): 

     iKV h ⋅=       (5.3) 

Where V the groundwater velocity (m d-1), Kh the horizontal saturated hydraulic 

conductivity (m d-1) and i the dimensionless hydraulic gradient. The groundwater 

velocity between the surface and 30 cm depth was estimated at 8 x 10-4 m d-1. The 

groundwater discharge within the B horizon continued at a slower rate with 

groundwater velocity estimated at 4 x 10-4 m d-1. 
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Figure 5.3.10: The hourly PWT level in the monitoring wells F1-F11 and the hourly total rainfall and river stage height of the PM site 
during the discharge period 10/3 - 6/5/07. The dashed line indicates the limit of the A horizon in the well F11. The dotted line 
indicates the river stage cut off height beyond which the river no longer flows in the ditch. 
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On April 18th, the river stage was 54 cm below the F1 surface (river margin) and the 

river stopped feeding the ditch, which was then fed exclusively by the discharging 

groundwater. Towards the end of April and the first six days of May 2007 (i.e. the 

warmest days in the drainage period) diurnal fluctuations of the PWT were recorded in 

the wells F7 (ditch), F11 (channel depression) and F1 (river stage). These fluctuations 

were attributed to the effect of increasing evapotranspiration, which during April was 

higher than the total daily rainfall in all but two days (Figure 5.3.11). Finally, there was 

no indication for the occurrence of a reversed groundwater ridge between the river and 

the floodplain, as the PWT level in F2 was higher than the river stage throughout the 

discharging period. 

 

At the BZ site the PWT discharged to the river with direction from the arable field (H4) 

and/or the field edge (H7), to the river margin (H10). Although the C horizon was 

deeper upslope, the PWT during the lateral subsurface flow seemed to follow the 

elevation gradient of the B horizon (Figure 5.3.12). The groundwater discharged at the 

same rate across the soil horizons in the BZ as indicated by the uniform slope of the 

hydrographs in Fig. 5.3.13. The groundwater velocity estimated between the surface and 

30 cm depth (limit of A horizon) for Kh = 0.21 m d-1 was 1.5 x 10-3 m d-1.  

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 5.3.11: Daily total rainfall and mean daily evapotranspiration for April2007 
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Figure 5.3.12: The water table level (black circles) and the direction of subsurface flow 

at the end of April 2007 in the cross-section of the H10-H4 transect in the BZ. 

 

Despite the fact that the estimated hydraulic gradient, flow rate and groundwater 

velocity were all higher than the estimates for the PM (transect F3-F7), the groundwater 

residence time in the A horizon of the BZ was significantly longer than in the channel 

depression of the PM. During the rest of the discharge period, the PWT dropped 

between 70 and 85 cm below the ground surface in 34 days, while the estimated 

groundwater velocity for Kh = 0.55 m d-1 was 5.5 x 10-3 m d-1. 

 

Towards the end of April beginning of May 2007, the river stage rose higher than the 

PWT in the wells H9 and H8 and the conditions for the occurrence of a reversed 

groundwater ridge appeared. However, no such seepage from the river towards the BZ 

was observed within the first week of May 2007. Nevertheless, during the second dry 

April of the monitoring season, April 2008, the river stage exceeded the PWT height of 

the BZ, without the occurrence of overbank flooding, and there was indication for  a 

reversed groundwater ridge occurring between the river margin and the well H9 (3 

occasions) and the well H8 (2 occasions) (Figure 5.3.14).  
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Figure 5.3.13: The hourly PWT level in the monitoring wells H7-H10 of the BZ site during the discharge period 10/3 - 6/5/07. Parallel lines 
indicate the limit of the A soil horizon for the respective wells with the same colour coding. Circled peaks are result of groundwater sampling. 
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Figure 5.3.14: The hourly PWT level in the monitoring wells H7-H10 and the hourly total rainfall and river stage height of the BZ 
site during the discharge period April 2008. Circled hydrograph area indicates the possible occurrence of reverse groundwater ridge. 
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5.4 The hydrochemistry of the surface and groundwater of the reconnected 

floodplain of the River Cole. 

This section aims to describe the hydrochemistry of the groundwater and adjacent 

surface water bodies, and identify the effect of the hydrological processes on the 

groundwater and surface water chemistry, mainly with respect to nitrate sources and 

potential fates. The specific objectives are: 

 

• To assess how the main hydrological mechanisms identified are influencing 

nitrate supply and transformations in the topsoil and the subsurface of the 

floodplain 

• To identify temporal and spatial  patterns of nitrate transformation 

• Inform the experimental design as to whether denitrification activity is likely to 

occur and where and when it is expected to occur based on hydrochemical 

patterns 

 

During the first monitoring season (October 2006 – September 2007), the 

hydrochemistry of the surface water, the River Cole and the ditch surrounding the PM, 

as well as the groundwater in the PM and BZ transects were also monitored. 

Groundwater was sampled bimonthly during the autumn, winter and spring and monthly 

during the summer from the groundwater wells that were intercepting the subsurface 

soil horizons (A, B and C), thus providing an integrated measure of groundwater 

chemistry. Conductivity, pH, temperature and dissolved oxygen concentration were 

measured in situ with portable probes and the samples were also analysed for NO3
--N, 

Cl-, SO4
2-, all the major cations and dissolved organic carbon (DOC) upon return to the 

laboratory (for method details see section 4.3). For the second monitoring season 

(October 2007 - September 2008), nitrate concentration data for the River Cole were 

obtained from the Environment Agency’s monitoring station at Coleshill Bridge (Table 

5.4.1). A summary of the hydrochemical data obtained during the first season is 

presented in Table 5.4.2. The conductivity increased from winter through the spring and 

the summer in both the surface water and the groundwater. The ditch water had slightly 

higher conductivity compared to the river water, while the BZ groundwater had 

consistently higher conductivity than the groundwater under the PM area.  
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Table 5.4.1: Concentration of NO3
--N in the River Cole at the sampling point 

PUTR0025; NGR: SU2340093500. Source: Environment Agency of England and 

Wales (2008). N/A indicates non availability of the time of sampling. 

 

Date Time NO3
- -N (mg l-1)

02-Oct-07 1200 2.64

31-Oct-07 1350 4.57

27-Nov-07 1210 5.34

03-Jan-08 959 5.86

29-Jan-08 1145 7.36

25-Feb-08 1200 6.17

01-Apr-08 N/A 5.50

30-Apr-08 N/A 3.40

27-May-08 N/A 6.35

03-Jul-08 N/A 3.04

30-Jul-08 N/A 2.83

27-Aug-08 N/A 4.23
30-Sep-08 N/A 3.98  

 

The pH was relatively constant throughout the monitoring season and was slightly 

alkaline in the surface water (around 8) whereas the groundwater in both areas, BZ and 

PM, was neutral for most of the time fluctuating moderately around 7. The groundwater 

temperature followed a typical seasonal cycle with lowest temperatures recorded in 

winter and highest in summer.  

 

The dissolved oxygen (DO) concentration of the surface and groundwater was measured 

in situ throughout the monitoring season. However, due to the unreliability of the 

portable probe measurements, only the spring and summer measurements have been 

presented (Table 5.4.2). The DO concentration of the river water ranged between 8.7 

and 15.2 mg l-1 and decreased in the summer compared to the spring. The DO content of 

the ditch water was slightly lower, ranging from 7.4 to 12.6 mg l-1, and also decreased 

during the summer months.  The groundwater had significantly lower DO concentration 

that was consistently below 3 mg l-1 and in PM ranged between 0.2 and 2.9 mg l-1, while 

in the BZ area the range was between 0.2 and 0.9 mg l-1 suggesting that low redox 

potential prevailed throughout the saturated zone of the PWT creating the necessary 

conditions for the occurrence of nitrate reductive processes. 
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Table 5.4.2: The hydrochemical parameters in the surface and ground-water of the reconnected floodplain of the River Cole during the first 

monitoring season (October 2006 – September 2007). The values are means ± SE, where available. N/A indicates not available data and GW is 

groundwater.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conductivity pH Temperature Alkalinity D.O. NO 3
- -N Cl- SO4

2- DOC

(µS cm-1) (oC) (mg l-1) (mg l-1) (mg l-1) (mg l-1) (mg l-1)

Autumn 2006

River 595 7.9 N/A - 9.8 N/A 7.1 ± 1.5 38.7 ± 4.6 62.3 ± 4.1 19 ± 4.1

Ditch 911 7.6 N/A - 3.6 N/A 8.5 ± 0.7 40.9 ± 5.6 69.6 ± 8.8 17.6 ± 1.7

Rain 143 6.9 N/A - 8.5 N/A 2 ± 1.5 7.3 ± 3.4 10.4 ± 7.6 2.02

PM GW 786.1 ± 33.7 7.1 ± 0.03 13.1 ± 0.3 27 N/A 1.7 ± 0.3 32.1 ± 3.2 57.8 ± 3.1 20.9 ± 0.4

BZ GW 1266.8 ± 93.2 6.9 ± 0.04 12.8 ± 0.3 4.1 N/A 4.4 ± 0.6 74 ± 8.9 87.2 ± 12.5 29.7 ± 4.9

Winter 2007

River 551.3 ± 54.7 8.1 ± 0.1 N/A 29.9 N/A 6.5 ± 0.4 33.4 ± 8.2 46.5 ± 4.7 20.6

Ditch 498.3 ± 59.8 7.9 ± 0.3 N/A -7.0 N/A 10.5 ± 2 44.8 ± 7.6 65.3 ± 8.1 21.5

Rain 37.3 ± 7.3 6 ± 0.7 N/A -8.4 N/A 0.3 ± 0.1 21.2 ± 9.7 1.9 ± 0.2 14

PM GW 504.9 ± 19.5 7.2 ± 0.03 9.4 ± 0.2 29.8 N/A 2.1 ± 0.5 37.1 ± 3.2 47.5 ± 3.8 10.7 ± 1.1

BZ GW 624.3 ± 16 7.4 ± 0.1 9.4 ± 0.3 -12.0 N/A 5 ± 1.1 72.7 ± 4.8 68.9 ± 5.1 11.2 ± 1.3

Spring 2007

River 493 ± 42.8 8.2 ± 0.1 11.7 ± 0.8 6.5 12.9 ± 1 6.2 ± 0.4 32.4 ± 0.7 48.3 ± 1.9 11 ± 0.8

Ditch 704 ± 78.1 8.2 ± 0.1 14 ± 1.3 -7.6 10.4 ± 0.6 15.9 ± 0.4 44.7 ± 0.8 68.9 ± 2.2 17.3 ± 6.3

Rain 36 ± 5.5 7.2 ± 0.2 N/A -4.7 N/A 0.5 ± 0.1 9.2 ± 3 8.1 ± 4.6 18.7 ± 8.4

PM GW 623.1 ± 27.4 7.2 ± 0.03 10.2 ± 0.1 43.1 0.9 ± 0.2 1.4 ± 0.8 30.4 ± 2.6 49 ± 4.3 13.1 ± 0.6

BZ GW 966.2 ± 47.1 7.1 ± 0.06 10.6 ± 0.1 -14.4 0.5 ± 0.1 2.9 ± 1.3 110.5 ± 18.7 79.8 ± 11.3 19.4 ± 1.9

Summer 2007

River 689 ± 49.8 8 ± 0.1 15.3 ± 0.5 60.4 9.7 ± 0.8 4.3 ± 0.3 31.2 ± 8 45.9 ± 8 16.5 ± 1.3

Ditch 953 ± 0.8 8.1 ± 0.02 15.8 ± 0.7 -3.1 7.7 ± 0.2 12.8 ± 0.3 41.9 ± 1.4 59.2 ± 3.1 15.4 ± 1.7

Rain 388.5 ± 156.4 7.4 ± 0.4 N/A 82.1 N/A 3.5 ± 3.3 15.9 ± 6.9 21.8 ± 12.8 25.1 ± 2.4

PM GW 761.6 ± 31.1 7.1 ± 0.03 13.9 ± 0.1 57.3 0.5 ± 0.1 0.6 ± 0.2 26.7 ± 2.2 39 ± 3.7 23 ± 2.7

BZ GW 1207.9 ± 54.1 7 ± 0.03 15 ± 0.2 27.8 0.3 ± 0.03 0.4 ± 0.1 99.7 ± 17.9 72.4 ± 15.2 27.5 ± 2.1

 18
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The concentration of NO3
--N in the river water decreased from autumn 2006 to summer 

2007, from 7.1 to 4.3 mg N l-1, but the difference between seasons was not statistically 

significant (Kruskal-Wallis; χ2=4.46, df=3, P>0.05). In contrast, the concentration of 

nitrate-N in the ditch water increased from 8.5 to 15.9 mg N l-1 from the autumn through 

spring and decreased again in summer 2007 to a mean value of 12.8 mg N l-1. However, 

once again the difference between the seasons of the monitoring year was not 

statistically significant (Kruskal-Wallis; χ2=6.9, df=3, P>0.05), but it should be noted 

that the concentration of nitrate remained above the drinking water limit (< 10 mg N l-1) 

throughout the spring and summer period. Therefore, there was an indication of high 

nitrate inputs from the surrounding agricultural hillslope to the ditch throughout the 

year. During the autumn and winter (high water periods), the ditch nitrate was probably 

diluted with river water, while overbank flooding of the ditch could also have 

contributed to the reduction of nitrate via denitrification in the flooded floodplain soil. 

On the other hand, during the spring and summer low water periods, the mixing 

between the river water and the overbank flooding was more restricted resulting in 

nitrate accumulation in the ditch water. Similar to the river water, the nitrate-N in the 

groundwater of both the PM and the BZ areas decreased from a maximum in winter to a 

minimum in summer (Table 5.4.2), without the difference being statistically significant 

(Kruskal-Wallis; χ2=5.03, df=3, P>0.05 for the PM and Kruskal-Wallis; χ2=6.38, df=3, 

P>0.05 for the BZ).  

 

Significant differences were found between the concentration of NO3
- -N in the different 

water sources (i.e. the river, the ditch and the groundwater of the PM and BZ areas 

respectively; ANOVA; df=59, F=54.4, P<0.01). The ditch water displayed the highest 

concentration throughout the monitoring period, mean 12.2 ± 1 mg N l-1, followed by 

the river water, mean 6.2 ± 0.4 mg N l-1 and the groundwater in the BZ, mean 3.3 ± 0.6 

mg N l-1 and the PM area, mean 1.6 ± 0.3 mg N l-1 (Figure 5.4.1 A). The concentrations 

of Cl- and SO4
2- were also not significantly different between the four seasons of the 

monitoring period in the different water sources (Table 5.4.3). Moreover, Cl- 

concentration was similar between the water sources (Figure 5.4.1 B), with only the 

groundwater in the BZ area displaying a significantly higher Cl- content (ANOVA; 

df=59, F=6.98, P<0.01). The concentration of SO4
2- (Figure 5.4.1 C) was similar 

between the river water and the groundwater in the PM, while the ditch water had 
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similar SO4
2- concentration to the groundwater of the BZ area (ANOVA; df=59, 

F=12.01, P<0.01). 

 

Table 5.4.3: The results of the Kruskal-Wallis test for the concentration of Cl- and SO4
2-

between the four seasons of the monitoring period for the four different water sources. 

River Ditch PM GW BZ GW

Cl-

χ
2 0.92 0.94 5.13 1.9

df 3 3 3 3

P 0.822 0.815 0.163 0.593
SO4

2-

χ
2 5.41 1.66 7.04 1.16

df 3 3 3 3

P 0.144 0.645 0.071 0.764

 

Principal component analysis (PCA) was used to identify the best combination of 

environmental variables explaining the highest proportion of the variance between the 

samples from the four water sources. The environmental variables used were the 

concentrations of NO3
--N, Cl- and SO4

2-, while the DO and DOC were omitted as there 

was a considerable number of missing values (especially for DO) that would have 

resulted in the reduction of the sample size and unequal representation of the different 

seasons during the PCA. The analysis indicated two principal axes. The first axis 

(eigenvalue 1.558) explained 52 % of the variance between samples and correlated 

strongly with the SO4
2- and the Cl- (weightings; 0.89 and 0.88 respectively). The second 

axis (eigenvalue 1.055) explained 35 % of the variance between samples and correlated 

strongly with the NO3
--N (weighting 0.98). Plotting the samples along the two principal 

axes produced Figure 5.4.2. The samples were clustered into four distinct groups 

corresponding to the four water sources. The main discrimination was along axis 2, 

indicating that NO3
--N was the differentiating factor between samples. The ditch 

samples, higher NO3
--N, were associated closely with the positive side of axis 2 and 

partially overlapped with the river water samples having the second highest NO3
--N 

concentrations. Finally, the groundwater samples from both areas were more closely 

associated with the negative side of axis 2, having significantly lower NO3
--N 

concentrations, and no overlap was observed since the higher Cl- and SO4
2- 

concentrations found in BZ separated the two groups along axis 1.  
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Figure 5.4.1: Mean concentration of NO3

--N, Cl- and SO4
2- during the monitoring 

season (Oct. 2006 – Sept. 2007) in the river and ditch water and the groundwater of the 
PM and BZ floodplain areas. Different letters indicate significant differences.
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Figure 5.4.2:  Plot of individual water samples from all the water sources according to 

their principal components in PCA. 

 
 

 

The DOC concentration in the river water was not significantly different in autumn, 

winter or summer and only in spring was it significantly lower (Kruskal-Wallis; 

χ
2=8.14, df=3, P<0.05). Seasonal differences in the DOC concentration were also 

observed for the ditch water that had significantly higher DOC concentration in winter 

(Kruskal-Wallis; χ2=8.1, df=3, P<0.05). Finally, no significant difference in the DOC 

concentration of the groundwater in both the PM and BZ areas was noted throughout 

the monitoring year (Kruskal-Wallis; χ2=7.4, df=3, P>0.05 for the PM and Kruskal-

Wallis; χ2=4.3, df=3, P>0.05 for the BZ). The lowest mean DOC concentration for the 

monitoring year was measured for the river water, 14.7 ± 1.5 mg l-1, followed by the 

groundwater of the PM area, 16.5 ± 1.6 mg l-1, then the ditch water, 17.4 ± 3.1 mg l-1 

and finally the groundwater of the BZ area, 22.1 ± 2 mg l-1. However, these differences 

between the water sources were not statistically significant (ANOVA; df=47, F=2.14, 

P>0.05). 
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Correlation analysis between the major water anions and the DO and DOC 

measurements in all the samples of the monitoring year has indicated some significant 

relationships. The nitrate-N showed a significant but weak positive correlation with the 

DO (Spearman’s; r=0.39, N=137, P<0.01), indicating that at higher DO concentrations 

higher NO3
--N was found in the surface and groundwater samples possibly as a result of 

lower denitrification activity, while no relationship was found between DOC and 

nitrate-N. The Cl- and SO4
2- were strongly inter-correlated (Spearman’s; r=0.79, N=60, 

P<0.01) and they both correlated positively with the DOC (Spearman’s; r=0.38, N=48, 

P<0.01 between Cl- and DOC, Spearman’s; r=0.45, N=48, P<0.01 between SO4
2- and 

DOC). 

 

Correlation between the NO3
--N concentration of the groundwater in all the wells during 

the monitoring year revealed some interesting relationships (Table 5.4.4). The well F1 

correlated positively with the river water and the wells F5 and F6, indicating the 

influence of those wells by overbank flooding, while a negative correlation was found 

between F1, F5 and F6 with the ditch by F7, indicating mainly an opposite hydraulic 

gradient (i.e. discharging) towards the north side of the ditch. The well F5, apart from 

correlating positively with F1 and the river water, also showed strong correlation with 

the wells F6 and F7, indicating that nitrate is reduced along the hydraulic gradient from 

F5 to F7. Finally, the well F2 correlated only with the well F3 that also correlated with 

the well F4, suggesting that these wells located in the middle of the floodplain had 

nitrate-N concentrations that were closely related to each other and there was no 

significant effect from overbank flooding either from the river or the surrounding ditch, 

except during very high magnitude events.  

 

Figure 5.4.3A summarises the subsurface spatial distribution of NO3
--N along the 

transect F1-F7 in the PM. In all seasons, the water sources intercepted by the transect 

(i.e. the river in F1, the ditch in F7 and overland flow along the channel depression in 

F5) displayed higher nitrate concentration, which upon its deposition on the floodplain 

mainly through overbank events, infiltrated the subsurface where nitrate-N 

concentration was observed to be reduced. The reduction of nitrate-N was similar 

during autumn and winter, around 50 %, but increased considerably in spring, 97 %, 

and summer months, 91 %, probably as a function of prolonged inundation caused by 

storm events under favourable temperature conditions for denitrification and possibly 
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increased nitrate uptake by plants during the growth season. Figure 5.4.3 B summarises 

the distribution of Cl- along the same transect. Chloride can be used as a conservative 

tracer to discriminate whether the reduction of nitrate-N is due to dilution or other 

biological or chemical processes (Schilling et al., 2006). When there is lack of 

variability in Cl- concentrations along a groundwater flow path, but the ratio NO3
-:Cl- 

displays similar variability as the NO3
- concentration, then processes other than physical 

mixing or dilution are likely to be responsible for nitrate reduction (Schilling et al., 

2006). This is because Cl- is considered biologically inactive with regards to processes 

occurring in water bodies (Hill et al., 1998). Chloride along the transect F1-F7 seemed 

to increase its concentration along the main groundwater discharge pathways (F3 to F1 

and F3 to F7), possibly as a result of weathering processes. Figure 5.4.3 B shows that 

Cl- increased in the groundwater of F1 compared to the river water (by 38 % in autumn, 

39 % in winter, 24 % in spring and 15 % in the summer). The ratio NO3
--N:Cl- followed 

the decrease pattern noted for nitrate-N indicating further that dilution plays a minor 

role along the groundwater discharge flowpath (Figure 5.4.3 C).  

 

The effect of the overbank flooding of the channel depression with nitrate-rich ditch 

water was apparent in all the seasons apart from summer 2007 in well F5. The nitrate-

rich groundwater found in F5 was reduced along the hydraulic gradient towards F4, by 

80 % in autumn; 97 % in winter and 82 % in spring, while there was also some dilution 

occurring as shown by the reduction of Cl- concentration along the same pathway, but at 

lower percentages; 27% in autumn, 20% in winter and 59% in spring. Reduction of the 

groundwater nitrate-N concentration was also observed along the hydraulic gradient 

from F5 to F6. It was slightly less than the reduction observed between F5 and F4; 76 % 

in autumn, 68 % in winter, 88 % in spring, but still higher than the respective reduction 

in Cl-; 21 % in winter and 10 % in spring.  
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Table 5.4.4: Correlation matrix between the NO3
--N concentration in the groundwater of the transect F1-F7 in the PM and the river and ditch 

water. Underlined correlation coefficients are products of Spearman rho correlation whereas non-underlined are products of Pearson Product-
Moment correlation. ** Correlation is significant at the 0.01level and *Correlation is significant at the 0.05 level.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

River F1 F2 F3 F4 F5 F6 F7 Ditch
River R or rho 1 0.553* 0.321 0.111 -0.221 0.596* 0.325 0.414 -0.196

P . 0.032 0.243 0.694 0.428 0.019 0.237 0.125 0.483
N 15 15 15 15 15 15 15 15 15

F1 R or rho 1 0.439 0.114 -0.336 0.743** 0.604* 0.436 -0.589*
P . 0.101 0.685 0.221 0.002 0.017 0.104 0.021
N 15 15 15 15 15 15 15 15

F2 R or rho 1 0.718** 0.439 0.411 0.077 0.489 -0.361
P . 0.003 0.101 0.128 0.785 0.064 0.187
N 15 15 15 15 15 15 15

F3 R or rho 1 0.695** 0.211 0.450 0.461 -0.079
P . 0.004 0.451 0.092 0.084 0.781
N 15 15 15 15 15 15

F4 R or rho 1 -0.268 0.075 -0.129 0.018
P . 0.334 0.791 0.648 0.950
N 15 15 15 15 15

F5 R or rho 1 0.736** 0.729** -0.718**
P . 0.002 0.002 0.003
N 15 15 15 15

F6 R or rho 1 0.861** -0.700**
P . 0.000 0.004
N 15 15 15

F7 R or rho 1 -0.587*
P . 0.022
N 15 15

Ditch R or rho 1
P .
N 15

Variables/Correlation coefficients
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Figure 5.4.3: Mean ± SE seasonal NO3

--N and Cl- concentration and the ratio NO3
--

N:Cl- in the groundwater of the PM and the surface water of the river and ditch. * and 
** indicate correlations between the respective wells and water bodies. 
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Transect F9-F14 extended from the west to the east side of the surrounding ditch, 

parallel to the river, and intercepted the channel depression of the PM at well F11 

(Figure 5.4.4 A) The nitrate-rich water entering the well F14 via seepage or overbank 

flooding from the ditch, was reduced significantly by 66 % in autumn, 36 % in winter, 

29 % in spring and 83 % in summer. This highlighted the effect of the summer floods in 

supplying nitrate-rich water, accumulated in the ditch from hillslope runoff, onto the 

floodplain where reduction occured along the westward flowpath possibly via 

denitrification and plant uptake during the growth season. Some reduction of Cl- due to 

dilution was observed along the same flowpath, but the ratio NO3
--N:Cl- followed 

largely the nitrate-N concentration change, suggesting that the important reduction of 

the nitrate-N in the groundwater along the hydraulic gradient is due to biological 

processes rather than dilution (Figures 5.4.4 B & C).  

 

The overland input of nitrate-rich ditch water was apparent in wells F11 and F9 (Figure 

5.4.4 A). The well F11 was intercepting the channel depression and received overbank 

flooding from the ditch in all seasons. The ditch water that entered the well F9 and 

moved along the hydraulic gradient towards the well F8 also showed a decrease in the 

nitrate concentration, while Cl- also decreased but to a lesser extent. The well F11, 

within the channel depression, correlated positively with the river water (r=0.53, 

P<0.05), the well F1 (r=0.76, P<0.01) and the well F5 (r=0.90, P<0.01), confirming the 

direct influence of overbank flooding to the NO3
--N concentration of the groundwater 

underneath the channel depression. Moreover, the well F14 correlated positively with 

the ditch water (r=0.69, P<0.01) indicating that probably seepage of ditch water through 

to well F14 is occurring alongside the flood events throughout the year. 
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Figure 5.4.4: Mean ± SE seasonal NO3

--N and Cl- concentration and the ratio NO3
--

N:Cl- in the groundwater of the PM and the surface water of the river and ditch. 
*indicates correlation between the well F14 and the ditch. 
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The distribution of NO3
--N in the groundwater of the BZ area along the transect H4-

H10 is shown in Figure 5.4.5 A. The effect of the elevated nitrate-N concentration 

originating from both the arable field and the river was obvious in all the seasons of the 

monitoring year. The highest NO3
--N concentrations were recorded just outside the 

arable field (well H7) and within 10 m along the hydraulic gradient (well H8) they were 

reduced by 54 % in autumn, 75 % in winter, 99 % in spring, and 68 % in summer. 

However, considerable dilution was also observed along the same hydraulic gradient as 

indicated by the Cl- concentration (Figure 5.4.5 B) that decreased by 34 % in autumn, 

28 % in winter, 62 % in spring and 66 % in summer, being though less than the 

decrease in nitrate-N and therefore suggesting that other processes apart from dilution 

could be responsible for reducing the NO3
--N leaching from the arable field to the 

groundwater (Figure 5.4.5 C).  

 

The nitrate-rich river water that entered the subsurface of the buffer zone through 

seepage during the groundwater discharge periods, or was deposited during flood events 

and percolated in the subsurface, had its NO3
--N content reduced within 20 m from the 

river bank by 66 % in autumn, 54 % in winter, 94 % in spring and 96 % in summer. 

This reduction could be entirely due to biological processes, since the concentration of 

Cl- in the groundwater of the BZ was actually higher than in the river water, and 

therefore no dilution along the hydraulic gradient from the river to the wells H10 and 

H9 could be detected.  

 

Correlation between the NO3
--N content of the wells H4-H10 and the river water has 

highlighted the two main pathways of nitrate reduction in the subsurface of the buffer 

zone (Table 5.4.5). The wells H4 and H7 correlated strongly with each other (r=0.76, 

P<0.01), indicating leaching of nitrate from the topsoil of the arable field to the 

underlying water table. Moreover, H7 also showed some correlation with the river water 

(r=0.65, P<0.05) that highlighted the influence of the river water in supplying additional 

nitrate to that part of the BZ via overbank flooding and direct outflow of the river 

through the drainage tunnel under the bridge at high flow conditions. The groundwater 

in H8 was more strongly associated to well H9 (r=0.67, P<0.01) and to a lesser extent to 

well H10 (r=0.68, P<0.05).  The well H9 was strongly correlated with the well H10 

(r=0.84, P<0.01), which was also associated with the river water (r=0.61, P<0.05) 

indicating the direct connection of H10 with the river through seepage and flooding. 
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Figure 5.4.5: Mean ± SE seasonal NO3

--N and Cl- concentration and the ratio NO3
--

N:Cl- in the groundwater of the BZ and the river water. * and ** indicate correlation 
between the respective wells and the river water. 
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Table 5.4.5: Correlation matrix between the NO3
--N concentration in the groundwater of the transect H4-H10 in the BZ and the river water. 

Underlined correlation coefficients are products of Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment 

correlation. ** Correlation is significant at the 0.01level and *Correlation is significant at the 0.05 level. 

 

River H4 H7 H8 H9 H10

River R or rho 1 0.323 0.648* 0.354 0.368 0.610*
P . 0.260 0.012 0.215 0.177 0.027
N 15 15 15 15 15 15

H4 R or rho 1 0.758** -0.015 -0.222 0.352
P . 0.002 0.958 0.446 0.239
N 15 15 15 15 15

H7 R or rho 1 -0.138 -0.200 0.231
P . 0.637 0.493 0.448
N 15 15 15 15

H8 R or rho 1 0.666** 0.676*
P . 0.009 0.011
N 15 15 15

H9 R or rho 1 0.835**
P . 0.000
N 15 15

H10 R or rho 1
P .
N 15

Variables/Correlation coefficients

 

 

 

19
4
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In conclusion, the hydrochemical analysis of the groundwater in the two areas of the re-

connected floodplain of the River Cole and the adjacent water bodies suggested that the 

main supply of nitrate to the floodplain originates from the river and ditch water. The 

ditch also collects hillsope runoff from the surrounding agricultural fields. The nitrate is 

deposited onto the floodplains mainly via overbank flooding, which has been shown to 

be the dominant hydrological mechanism in both areas, and subsequently infiltrates into 

the subsurface. However, some mixing between low nitrate groundwater and nitrate rich 

river and ditch water, due to seepage, was observed at the river and ditch margin 

groundwater wells, providing a further indication for the occurrence of groundwater 

ridging at the near stream and ditch zones. Finally, the arable field adjacent to the BZ 

had consistently higher nitrate concentration, and especially during spring and summer, 

it is a likely source of nitrate to the subsurface of the BZ following the main 

groundwater discharge flow path from upslope to the river.   

 

Although no significant seasonal differences were observed in the nitrate concentration 

of surface water and groundwater during the monitoring year, nitrate reduction rates 

tended to be higher during the winter and summer periods in both the PM and BZ areas. 

This could have been an effect of higher nitrate supply due to more frequent inundation 

events, longer flood water residence time that would have allowed more effective 

denitrification, and specifically for the summer events higher soil temperature would be 

expected to have increased the denitrification rates, while also plant uptake could have 

contributed to nitrate attenuation during the growth period. Some degree of dilution 

along the main groundwater flow paths was also observed, but it could not account for 

all of the observed nitrate reduction. Therefore, biological denitrification is likely to 

occur in the topsoil and the subsurface of the floodplain, as was also indicated by the 

positive correlation between nitrate and DO. Overall the DO was consistently below 3 

mg l-1 in the groundwater, suggesting low redox conditions that would favour 

subsurface denitrification. Although no significant relationship was found between 

nitrate and DOC, the DOC was consistently relatively high in both the groundwater and 

the surface water throughout the year suggesting a constant supply of organic carbon 

through the main hydrological flow paths. Finally, stronger nitrate reduction gradients 

were observed where surface water intercepted the floodplain, i.e the riparian areas, the 

channel depression in the PM and between the arable field and riparian zone interface in 

the BZ, suggesting potential areas of high denitrification activity.  
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5.5 Discussion 

 

Conceptual model of the River Cole re-connected floodplain hydrological regime 

 

In contrast to a 2D floodplain hydrological model proposed by Bates et al. (2000) and in 

accordance to a 3D approach adopted by Jung et al. (2004), the hydrological regime of 

the River Cole re-connected floodplain is best described by a three-dimensional 

approach: 

• At the initial stage of a flood event, the rising river stage leads to river water 

bank storage which extends several meters away from the bank. Therefore 

mixing of SW and GW occurs first in the subsurface, while the effect of 

percolating precipitation and water table rise due to capillary fringe should also 

be taken into account. 

• When bankfull capacity is exceeded, a flood pulse extends across the floodplain 

from two directions; perpendicular to the river towards the floodplain and 

parallel to the river from the ditch to the floodplain (PM case). In the BZ case, a 

2D approach between the river and the field adequately describes the 

hydrological dynamics. The flood pulse decreases the importance of the bank 

seepage, and SW - GW mixing proceeds with the infiltration of the surface 

ponded river-ditch water into the subsurface. 

• During the recession limb, GW discharges to both the river and the ditch 

contributing to baseflow. GW residence time is prolonged by the infiltrating 

surface water, the maintenance of high soil water content by the capillary fringe, 

and possibly by a reversed GW ridge under baseflow conditions with direction 

from the ditch towards the PM area and from the river towards the BZ area.  

 

5.5.1 Hydrological regime of the re-connected floodplain 

The hydroperiod (i.e. the frequency, duration and intensity of flood events) is a useful 

criterion for documenting hydrological restoration success. According to Kentula 

(2000), the high water table of a restored floodplain should typically be within 30 cm of 

the soil surface for a certain period of time (typically between 12 and 21 consecutive 

days) for compliance success. In the case of the River Cole re-connected floodplain, 

field measurements have documented relatively long periods of inundation in both the 
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PM and BZ areas, ranging between 1 and 26 continuous days. On an annual basis, for 

the monitoring year 2006-2007, the PM was flooded 21 % of the time, while the BZ 

was flooded for 28 % of the year. For the second ‘drier’ monitoring year, 2007-2008, 

the flooding conditions accounted for 13 % and 23 % of the year for the PM and the BZ 

areas respectively. 

 

The River Cole floodplain pre-restoration (before 1995) in a 1 in 2 year flood event 

would result in flooding conditions in the upstream site (above the bridge and the BZ 

area), while both the upstream and downstream sites (including the BZ and PM areas) 

would be flooded in a 1 in 100 year flood event. The restoration plan predicted an 

increased flooding occurrence under low order events during the winter and spring 

months, but anticipated flooding to persist for short periods due to expected rapid 

drainage through the gravel underlying the alluvium. It was however noted that ‘in 

extreme circumstances the downstream meadow areas could be covered with flood 

water for up to three weeks in winter (Environmental Report River Cole Restoration, 

1995). The hydrological monitoring of the present study has provided evidence of 

restored connectivity between the river and the floodplain not only during the winter 

and spring months, but also during the summer storms encountered in the monitoring 

seasons. However, it is possible that the increased hydrological connectivity has been 

affected by the climatic variability observed during the monitoring period. Indeed, 

following two relatively dry years (2005 and 2006) the winter of 2006-2007 was warm 

but also notably wet across southern Britain, and after an exceptionally dry period in 

spring, the wettest summer since 1879 followed with three particularly significant 

storms in June and July (Marsh and Hannaford, 2007). The monitoring year 2007-2008, 

after a dry autumn that led to a significant decrease in the water table levels, was 

followed by a wet winter and a relatively wet summer, and therefore the duration of the 

observed flooding in the reconnected floodplain probably reflects the ‘wet’ conditions 

of the monitoring years. 

 

Inadequate monitoring and post-project evaluation continues to be an important 

criticism of river restoration projects, and further research is needed for the assessment 

of the floodplain hydrological response to channel modifications (Tague et al., 2008). 

However, assessment of the hydrological restoration success needs to account for 

rainfall variability when documenting changes between pre- and post- restoration 
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conditions. When no control study area exists, periods of nearly-average rainfall should 

be used for evaluating the post-restoration hydroperiod characteristics (Moorhead et al., 

2008). Clearly, this was not possible during the study of the re-connected floodplain of 

the River Cole due to the particular climatic conditions. Alternatively, a modelling 

approach could have been employed simulating pre- and post- restoration scenarios for 

flooding hydroperiod, subsurface water storage and runoff decrease, as suggested by 

Hammersmark et al. (2008). Despite the fact that the hydrological connectivity may 

have been overestimated due to the particular climatic conditions of the monitoring 

period, the flashy response of the River Cole, due to the urbanisation effect of the 

headwaters and the heavy clay alluvium underlying >50 % of the catchment 

(Environmental Report River Cole Restoration, 1995), was documented for events of 

variable magnitude across seasons. Moreover, the two eventful monitoring seasons 

allowed for a variety of hydrological mechanisms to be studied and to assess their 

contribution to the inundation pattern and residence times on the floodplain expected to 

affect the biogeochemical nitrogen transformations in the surface and subsurface soil 

horizons.    

 

5.5.1.1 The effect of topography and floodplain stratigraphy on the hydrological 

regime of the re-connected floodplain 

The hydrological exchange between the GW and the SW at the landscape scale is a 

function of: 1) the distribution and magnitudes of hydraulic conductivities associated 

with the alluvial-plain sediments; 2) the relation of stream stage to the adjacent 

groundwater level; and 3) the geometry and position of the stream channel within the 

alluvial plain (Woessner, 2000). The direction of the exchange processes varies with 

hydraulic head, whereas flow (volume/unit time) depends on sediment hydraulic 

conductivity (Sophocleous, 2002).  

 

The topography of the re-connected floodplain is flat with the slope range being 

between 0.01 and 2 % in the PM, while the BZ is slightly undulating, range between 0.2 

and 2.5 %, but still fairly flat. Therefore, the GW flow direction was governed by the 

lower limit of the PWT, the upper limit of the heavy impermeable clay C horizon, 

(McDonnell, 1990; Ward and Robinson, 2000), rather than the surface elevation which 

controls subsurface flow direction in headwater catchments with high angle hillslopes 

(Gu et al., 2008; van Verseveld et al., 2009). Furthermore, in riparian zones with slope 
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<5 %, the stream stage is the main control of water table elevation rather than any 

upland input (Vidon and Hill, 2004a). On the other hand, the PM site, although 

surrounded by arable hillslopes, at its north and north-east borders, the presence of a 

draining ditch at the break of slope intercepted any lateral subsurface or overland flow, 

thus decoupling the hillslope from the valley bottom, where hillslope runoff would have 

had a greater opportunity to interact with saturated soils, supporting possibly higher N-

transformation rates, before reaching the stream channel (Cirmo and McDonnell, 1997).  

 

‘Switching off’ of hillslope inputs was observed due to the formation of a reversed 

groundwater ridge (with direction from the river towards the break of slope) during 

modelled overbank events (Bates et al., 2000) and in-bank events (Burt et al., 2002b) in 

a floodplain of the River Severn in the UK. However, the authors assumed that the 

‘damming’ of hillslope inputs would increase soil saturation and residence times in the 

floodplain and thus have a positive effect on biological nitrate removal. In our study, 

some bank seepage of ditch water into the floodplain was observed at the north and 

north-east floodplain edges, but as a result of frequent overbank inundation, hillslope 

runoff collected by the ditch was mixing with river water in the channel depression of 

the PM, thus creating a flow convergence area similar to that observed by Curie et al. 

(2009) in a tributary of the River Seine in France, and therefore giving the opportunity 

for biological nitrate removal of the ditch water along the channel depression.   

 

Groundwater residence times are strongly affected by the stratigraphy of riparian zones 

(Cirmo and McDonnell, 1997). The PM area was characterised by the extensive clay 

alluvium with the cumulative clay and silt fraction being >90 % of the grain size 

distribution across the whole depth profile. Therefore, relatively low horizontal 

saturated hydraulic conductivities (Kh) were measured, which were within the range 

reported for similar soil textures found in eight riparian zones in southern Ontario, 

Canada (Vidon and Hill, 2004a). Throughout the B soil horizon (0.3 to 1 m depth) 

extensive soil hydromorphic features such as mottling and iron and manganese 

concretions were observed, suggesting anaerobic soil conditions. Similar indications 

were found in the riparian zone of an incised stream that maintained a shallow water 

table (< 1.5 m) throughout the year in Iowa, USA (Schilling and Jacobson, 2008). In the 

present study, a localised gravel lens was observed at depths below 1 m from the ground 
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surface between the middle of the floodplain with direction towards the south and the 

river bank. Despite the coarser texture, the gravel lens had slightly lower Kh than the 

silty clay B horizon, something also observed by Burt et al. (2002b), attributing the 

finding to a gravel diamict with a fine-grained matrix surrounding the well dispersed 

gravels that in effect lowered the hydraulic conductivity. Sandy gravel lenses with 

almost two orders of magnitude higher conductivities were associated with strong 

lateral subsurface flows in a perennial and an ephemeral stream riparian zone in a semi-

arid climate (Rassam et al., 2006). An impermeable heavy clay till layer at an 

approximate depth of 2 m acted as the limit of a perched water table that fluctuated 

between the surface and 1.5 m depth throughout the year. Similar impermeable clay 

layers with comparable very low Kh were found in a number of riparian zones studied 

by Vidon and Hill (2004a).  

 

More variable hydraulic conductivities were observed in the clay loam and silty clay 

layers of the BZ subsurface, which were approximately five times higher than the 

respective conductivities measured for the PM subsurface. Additionally, no localised 

gravel lens was observed but instead dispersed sand and gravel patches were scattered 

throughout the subsurface, probably representing channel deposits preserved by the 

lateral migration of the river (Devito et al., 2000). The fact that the Kh of the topsoil 

layer (0 - 30 cm) was two and a half times lower than the B horizon could be explained 

by the presence of scattered gravel in the subsurface that increased the Kh. 

 

The low slope gradient in conjunction with the intermediate hydraulic conductivities in 

the unsaturated zone, and the effect of the stream and ditch stage but also the 

precipitation inputs are all conductive factors (Burt and Pinay, 2005) for frequent soil 

saturation in the reconnected floodplain of the River Cole. Moreover, maximum nitrate 

removal rates in riparian zones are traditionally associated with shallow water tables 

confined by an impermeable layer in depths were high carbon zones exist (Hill, 1996; 

Gold et al., 2001). Therefore, the River Cole re-connected floodplain is a suitable 

location for investigating nitrate attenuation processes, as it displays the desirable 

hydrological properties. 
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5.5.1.2 The effect of increased hydrological connectivity on the surface and sub-

surface floodwater storage 

The dominant control of the PWT level in the re-connected floodplain was the river 

stage and subsequently the ditch stage, as a result of the establishment of increased 

hydrological connectivity for the downstream reach after the River Cole restoration 

project (Environmental Report River Cole Restoration, 1995). On average 13 overbank 

flood events were recorded per monitoring season, which is 10 times more than the 

number of overbank events observed by Burt et al. (2002b) in the floodplain of the 

much larger River Severn in the ‘wetter’ north-west part of Britain, reflecting both the 

flashy character of the River Cole, but also the specific climatic conditions of the wet 

winters of 2006-2007 and 2007-2008 and the exceptionally wet summer 2007 (Marsh 

and Hannaford, 2007). For the PM area the flooding conditions persisted on average 

between 4-6 days, while for the BZ the average flood water residence time was between 

6-8 days, being comparable to the flooding duration observed by Andersen (2004) in a 

seasonally inundated wet meadow at the River Gjern catchment in Denmark. The 

maximum floodwater storage in the unsaturated zone of the PM (i.e. between the 

ground surface and the impermeable clay till layer) for an average porosity of 0.59 was 

1.18 m3m-2, while for the unsaturated zone of the BZ with slightly higher porosity, 0.61, 

was 1.22 m3m-2. Our estimates are comparable to the cumulative floodwater storage 

capacity observed in the riparian zone of a semi-arid perennial and ephemeral stream, 

between 1.5 and 2 m3m-2 (Rassam et al., 2006), during a six month long wet season. 

However, in our case the maximum storage capacity was reached at the peak of each 

overbank flood event, followed by a drawdown period and a subsequent re-fill of the 

unsaturated zone at the next overbank event, highlighting the large floodwater storage 

capacity of a temperate lowland floodplain and its potential for attenuating downstream 

flood waves (Pinder and Sauer, 1971).  

 

Additional floodwater volumes were stored on the floodplain surface at each overbank 

event contributing to the nitrate loading of the flood pulse and triggering 

biogeochemical nitrate removal via lowering the oxygen availability in the reactive 

topsoil (Olde Venterink, et al., 2003; Valett et al., 2005; Cabezas et al., 2009; Banach et 

al., 2009) and in parallel assisting in the recharge of the PWT (Winter, 1995). Overbank 

flooding from two sources, namely the river and the draining ditch in the PM area, 

created a ‘perirheic’ zone (sensu Mertes, 1997) combining the river water with the 
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hillslope runoff giving the opportunity for processing of the diffuse nitrate during 

ponding and recharge of the unsaturated zone. Higher magnitude and duration rainfall 

events were associated with larger floodwater storage volumes and subsequently 

increased nitrate loading, which in turn was positively related to longer residence times. 

In other words, long and high magnitude winter and spring storms delivered more 

nitrate loading onto the floodplain, which had the opportunity to be reduced during the 

long inundation periods (Gergel et al., 2005). Specifically for the BZ, lower magnitude 

but high intensity events seemed to be adequate to cause complete inundation of the 

site, which explained the longer flooding period observed. Being adjacent to arable land 

and displaying a high inundation frequency, the BZ site was ideally positioned to offer a 

buffering function to the discharging groundwater from the arable field before entering 

the stream.  

 

5.5.2 The hydrological mechanisms of SW - GW interaction in the re-connected 

floodplain of the River Cole 

The relative importance of the different hydrological mechanisms with respect to their 

contribution in: (i) the transport of nitrate; and (ii) in the creation of saturation 

conditions, favouring nitrate attenuation processes, was assessed in two land use zone 

areas of the floodplain. The mechanisms are categorised into three main types: a) 

overbank flooding; b) saturation excess overland flow; and c) groundwater discharge by 

lateral subsurface flow.   

 

5.5.2.1 Overbank flooding and reversed groundwater ridge during flood events 

Overbank inundation during medium to high magnitude and intensity rainfall events has 

been observed for both the PM and BZ areas. With respect to the BZ area, the wetting 

up pattern is perpendicular to the river direction, from the stream towards the arable 

field, while two flood relief tunnels underneath the Coleshill Bridge supply additional 

longitudinal overland flows from upstream during high magnitude events.  

 

In the case of the PM area, the overland flow pattern is more complex due to the 

connection of the draining ditch to the river, as long as the river stage does not drop 

below 54 cm from the bankfull stage height. The analysis of hourly PWT height data 

indicated overflowing of the ditch at three breach points, firstly at the east side of the 

floodplain area where the overland flow is directed towards the channel depression 



 203 

flowing westwards, followed by the north breach supplying overland flow towards the 

south direction and finally the west breach supplying both the channel depression in the 

PM and FM areas. In high magnitude events, a convergence of overland flows has been 

observed from the north (ditch) and the south (river) towards the middle, higher surface 

elevation area, resulting in complete floodplain inundation. Due to the complexity of the 

multiple flooding sources onto the floodplain and the lack of on site discharge 

measurements, the relative input of ditch and river water was not quantified. However, a 

mixed source ‘perirheic’ zone (Mertes, 1997), including nitrate loading from the river 

and the arable hillslope runoff, was established for the PM site.  

 

Floodwater retention time in the PM ranged between 1 and 13 days, while in 52 % of 

the cases it was more than 5 days. For the BZ the range was between 1 and 26 days, 

while in 50 % of the events, floodwaters ponded on the surface for more than 5 days. 

Longer residence times where observed in the riparian and channel depression areas of 

the PM, while the hollow areas near the well H9 and H7 in the BZ were the ones to 

drain last following a flood event. The total nitrate loading per monitoring year ranged 

between 177 and 305 kg N ha-1 for the PM and the BZ areas.   

 

A hydraulic residence time of at least five days has been suggested to promote efficient 

nitrogen retention in treatment wetlands (Kadlec and Knight, 1996), as this period of 

time is assumed to be long enough to promote denitrification of inflowing nitrate and 

solids sedimentation. Andersen (2004) estimated that nitrate in pond water was reduced 

completely in two weeks for similar surface hydraulic conductivity, surface water 

temperature range and average river water nitrate concentration. In experimental 

flooding treatments of a semi-arid floodplain in New Mexico (USA) that lasted ~30 

days, nitrate was reduced concurrently with DO depletion, while DOC was released 

from the decomposition of organic matter (Valett et al., 2005). In contrast, brief 

overbank flooding (1-2 days) across three seasons in a floodplain in Maryland (USA) 

resulted in nitrate flushing from the soil to the overlying surface water as a result of 

ammonium nitrification (Noe and Hupp, 2007). Based on the frequency of flooding and 

the relatively long retention times observed, the re-connected River Cole floodplain 

would be expected to be a sink rather than a source of nitrate. 
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During an intermediate magnitude rainfall event, the stream stage responds first, in a 

relatively short time (between 3 and 4 hours from the start of the event), which depends 

on the antecedent moisture conditions of the catchment (Ward and Robinson, 2000), but 

also the contribution of runoff from the urbanised headwaters near the town of Swindon 

(Environmental Report River Cole Restoration, 1995). In the PM area, a reversed 

hydraulic gradient from the river towards the floodplain is observed, which at the onset 

of the event (i.e. before bankfull capacity is exceeded) can contribute to bank storage 

through seepage as it was predicted by the modelling study of Bates et al. (2000) and 

subsequently shown for the first time in a field investigation of a floodplain in River 

Severn (Burt et al., 2002b). However, the hydraulic gradient in the PM area is low, a 

few centimetres compared to more than a meter observed by Burt et al., (2002b) and 

combined with the relatively low saturated hydraulic conductivities of the silty clay 

layer, it is very unlikely that river water can travel through the subsurface as far as the 

ditch at the north side of the floodplain (240 m distance) following Darcian flow 

through the soil matrix. Jung et al. (2004), studying the same floodplain on the River 

Severn, suggested that the almost simultaneous increase of the water table with the 

rising river, at about the same rate, could only be explained by a kinematic wave similar 

to translatory or ‘piston’ flow (Anderson and Burt, 1982) that pushes ‘old’ floodplain 

water at a perpendicular direction away from the river towards the floodplain.  

 

A similar reverse GW ridge between the river and the middle of the PM area (80 m 

distance) was observed at the initial stage of a high antecedent moisture condition flood 

event. Significant floodwater storage was observed on the pasture meadow of the 

floodplain. The reversed GW ridge mechanism in the BZ site was restricted between the 

river margin and 10 m inland, due to rapid overbank flooding, even during medium 

magnitude events, that exerts a stronger control on the PWT height. 

 

Similar near stream bank storage was observed in the riparian zone of an incised stream 

with comparable conductivities and the ‘damming’ effect of upslope contributions to the 

water table (Schilling et al., 2004, 2006). Mixing of GW and SW in the near stream 

zone was also observed by Curie et al. (2009), who suggested the extension of the 

hyporheic zone hydrological functioning to near stream sediments. Generally, 

significant reversed groundwater ridge in lowland semi-arid riparian zones during flood 

events (Martí et al., 2000; Butturini, et al., 2003; Lamontagne et al., 2005; Rassam et 
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al., 2006) and in temperate low relief riparian zones throughout the year (Duval and 

Hill, 2006; Hill and Duval, 2009) has been associated with relatively high hydraulic 

conductivities of well dispersed gravel layers. Therefore, it could be argued that reverse 

groundwater ridging although possible in the reconnected floodplain of the River Cole, 

is spatially restricted due to topography and lithology to short near stream distances and 

temporally constrained to bankfull or the initial stages of overbank events (Bates et al., 

2000; Burt et al., 2002b; Jung et al., 2004). More conclusive results with regards to the 

relative importance of the GW ridging during bank storage in the River Cole floodplain 

could be obtained in future work by using stable isotopes (δ18O and δ2H) to identify 

flow paths and residence times of ‘old’ floodplain GW and ‘new’ water from differing 

sources (i.e. river water and precipitation) (Wolfe et al., 2007) and/or 2D modelling of 

GW - SW interactions between the river and the PWT (Krause and Bronstert, 2007; 

Peyrard et al., 2008). 

 

5.5.2.2 Saturation and infiltration excess overland flow 

Saturation excess overland flow (SEOF) was mainly observed in summer and autumn 

storms under high antecedent moisture conditions and although significant surface 

ponding was measured, it ranged between 7 and 20 % of the floodwater volume stored 

on the floodplain during the event. Specifically the BZ area was more prone to SEOF, 

displaying one per season, probably due to the higher water tables maintained in the 

hollow areas. Given the low slope topography of the floodplain, SEOF did not produce 

any significant runoff that could have had an erosional effect or result in decoupling of 

the floodplain or diffuse nitrate transport to the river. Therefore, in contrast to 

headwater steep slope hillslope/floodplain areas where SEOF may contribute up to 80 

% of the flood peak hydrograph (Wenninger et al., 2004), in the lowland catchment of 

the flashy River Cole, SEOF is of minor importance compared to overbank flooding. 

 

Infiltration excess overland flow (IEOF) has been mostly documented in arid and semi-

arid floodplains, on impermeable surfaces or bare ground (Ribolzi et al., 2000; Ward 

and Robinson, 2000). In temperate lowland floodplains with perennial vegetation, 

infiltration capacity usually exceeds rainfall intensity except for very high magnitude 

storms (Ward and Robinson, 2000). In the present study, although such high magnitude 

rainfall events were encountered, the soil moisture deficit in the topsoil was low, 

possibly as a result of a high capillary fringe maintained by the low PWT and the high 
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in clay alluvium (Gillham, 1984). Moreover, the presence of cracks in the clay as a 

result of a drying period probably favoured rapid macropore flow (McDonnell, 1990) 

that raised the water table to surface saturation before any IEOF was observed. 

Therefore, IEOF is not considered as a likely mechanism operating in the River Cole 

floodplain. 

 

5.5.2.3 Groundwater discharge by lateral subsurface flow and reverse groundwater 

ridge during baseflow conditions 

Although inevitably some of the floodwaters will return to the river as surface flow, 

groundwater recharge was shown to delay the recession of the PWT and subsequently 

contribute to river baseflow. The recession limb occurred in two divergent directions 

through the B soil horizon in the PM area, from F3 southwards to the river and 

northwards to the ditch. The highest water table was observed in the middle of the 

floodplain (well F3), despite the fact that the highest surface elevation was 40 m south 

in well F2. One likely explanation for this is that the gravel lens and the overlying sandy 

clay layer were thicker underneath F2, and in conjunction with the steeper hydraulic 

gradient towards the river, promoted faster drainage. However, the flow rate was <1 L 

d-1 m-1 and therefore there was no significant bypass flow through the gravel lens, as 

observed in gravel lenses in the River Thames catchment (Burt et al., 1999). The 

drainage towards the opposite direction (ditch) was occurring at a lower slope and flow 

rate and therefore the PWT height was maintained within the limits of the B horizon (60 

cm depth).  

 

The water table dropped below the A soil horizon (30 cm depth) within two days after 

the flood peak, which is a relatively significant retention time for nitrate transformations 

in the most biologically active topsoil (Pinay et al., 2000), depending also on the nitrate 

loading of the flood event and the temperature conditions. However, longer retention 

times were observed in the B soil horizon, where the heaviest clay alluvium was 

located. Although there is uncertainty in the theoretical flow rate estimation, it is likely 

that the PWT was maintained relatively constant during the discharge period through a 

reversed groundwater ridge under baseflow conditions in the ditch. Unfortunately, the 

ditch stage was not monitored, and therefore there are no data to support our 

assumption. There is however an indication that the assumption could be true, since 

when the ditch dried, the discharge rate of the north side of the floodplain increased and 
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diurnal fluctuations due to evapotranspiration (ET) became apparent in the hydrographs. 

Similar daily water table fluctuations were reported for sandy soils up to 3m depth 

(Krause and Bronstert, 2007), and silty loam soil under cool grass vegetation at <1m 

depth (Schilling, 2007) for comparable range of ET as the maximum observed in our 

study for April and May 2007. Therefore it could be argued that ET demand dominated 

the control of the PWT level when the reverse groundwater ridge ceased, while the 

discharge rate towards the ditch increased.  

 

In the BZ site, the GW discharged with direction from the field edge (between the wells 

H7 and H4) towards the river at H10 at higher flow rates compared to the PM. 

However, the retention time of the GW in the A soil horizon was significantly longer 

than in the PM, with the hollow areas holding the PWT within 30 cm from the surface 

for up to 25 days, while during the whole discharge period the PWT did not drop below 

1 m depth. One possible explanation for the longer residence time in the BZ could be 

the contribution of capillary fringe in delaying the lateral subsurface flow towards the 

river. The amount of capillary rise varies with soil texture and structure and it is 

estimated to be in the order of 1-2 m in silt loam and silt-clay soils (Gillham, 1984).  

Other studies in riparian and wetland areas with similar soil textures have attributed 

shallow water tables to capillary rise often extending to the ground surface, and also 

contributing to rapid water table responses to falling precipitation (Andersen, 2004; 

Schilling, 2007). Moreover, the fact that diurnal PWT fluctuations due to ET were not 

observed in the BZ could also be explained by a high capillary fringe that balanced the 

ET demands (Andersen, 2004). However, there is no obvious explanation as to why a 

similar capillary fringe does not operate in the A soil horizon of the PM, despite the 

high water table (at least in the channel depression and riparian areas), where also the 

soil texture is similar. The present study focused mainly on lateral GW-SW interactions, 

but it has become apparent that the vertical soil water component can also influence WT 

dynamics in riparian zones, which could be resolved in a future study. 

 

During the discharge period of April 2008, there were three to four occasions when the 

river stage rose above the PWT level under below bankfull conditions and a reversed 

GW ridge was observed to extend up to 20 m inland in the BZ site. A similar ephemeral 

reversed GW ridge under baseflow conditions was observed in a French and a Polish 

riparian zone with silty-clay and loam soil textures (Burt et al., 2002a) as well as in a 
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low gradient (<1 %) sandy-loam riparian zone in Canada (Vidon and Hill, 2004a). The 

mechanism behind the formation of the reversed GW ridge under baseflow conditions is 

similar to the kinematic wave proposed by Jung et al. (2004) during bankfull and 

overbank events. 

 

Finally, although lateral subsurface flow between flood events is observed 55 % of the 

time during one year, its contribution to saturation conditions in the most biologically 

active A soil horizon is insignificant compared to overbank flooding. However, it 

contributes to the maintenance of saturated conditions in the vadose zone (B soil 

horizon) of the floodplain, therefore giving the opportunity for further nitrate 

attenuation in the subsurface. Furthermore, in the case of the BZ, the lateral subsurface 

flow serves as an additional mechanism for nitrate supply to the BZ from the adjacent 

arable field.  

 

5.5.3 Hydrochemical patterns along the SW - GW flow paths 

The major sources of nitrate to the floodplain GW were the ditch water, acting as a 

conduit for collecting hillslope runoff from the surrounding agricultural land, and the 

river water. The GW nitrate concentration in both sites was consistently lower than the 

respective concentration in SW, suggesting that following the hydrological connection 

during high flow events, and the possible subsurface connection during baseflow, nitrate 

entering the subsurface was reduced via dilution and/or biological transformation. 

Therefore, nitrate removal is directly controlled by SW - GW interactions (Sanchez-

Perez et al., 1999; Takatert et al., 1999), primarily through nitrate supply and 

secondarily through the control of biogeochemical transformation conditions such as 

redox and availability of organic carbon (Burt et al., 1999).  

 

5.5.3.1 Transformation pathways 

Generally, nitrate reduction followed the main surface and subsurface hydrological flow 

paths. Nitrate reduction across all seasons was observed along the bank seepage 

flowpaths from the river and ditch. Furthermore, the SW influence on the GW of the 

wells F1 (riverbank) and F5 (channel depression) through seepage and overbank 

flooding respectively, was highlighted by the positive correlation of their nitrate 

concentration. Finally, the nitrate arriving with overland flow in the channel depression 
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(F5) was shown to be reduced along the surface hydraulic gradient during overbank 

flooding (F5 to F4) and the subsurface gradient during flood recession (F5 to F6).  

 

Regarding the parallel to the river flow direction from the ditch towards the PM 

floodplain, nitrate entering the subsurface via seepage was observed to be reduced along 

the hydraulic gradient from F14 across the floodplain. Similar response to the well F5 

was shown for the well F11, intercepting the channel depression and receiving overland 

flow from the ditch. Finally the ditch water influence was also apparent at the west side 

of the site, where nitrate concentration in well F9 was reduced along the flow path 

towards F8.  

 

In the BZ site, nitrate entering the subsurface through river water bank seepage and 

overbank deposition was reduced towards the middle of the site, while nitrate input 

from the arable field along the discharge flow path was reduced significantly within 20 

m at the middle of the site. Significant nitrate reduction at the ‘upslope’- buffer zone 

boundary (field edge in the BZ case) was also observed by Clément et al. (2003) while 

they attributed low to absent reduction rates at the near stream zone to inadequate nitrate 

supply. In contrast, Curie et al. (2009) observed high nitrate removal rates at near-

stream wells due to mixing of SW and GW. In our case, the BZ site displayed effective 

nitrate removal capacity in both convergent nitrate flow directions throughout the year.  

 

5.5.3.2 Dilution or biological nitrate removal? 

Several riparian hydrology studies have used Cl- as a conservative tracer in order to 

discriminate between nitrate dilution along subsurface flowpaths and biological 

removal, mainly via denitrification and plant uptake (Clément et al., 2003; Hefting et 

al., 2006a; Schilling et al., 2006; Curie et al., 2009). Our Cl- data for the F1-F7 

perpendicular transect showed an opposite trend from the nitrate concentration, with 

increasing Cl- concentration along the main discharge flowpaths (from F2-F3 towards 

the river and the ditch) and therefore indicating enrichment of the GW with Cl-, possibly 

as a result of weathering processes in the floodplain sediments, rather than dilution. 

Therefore, nitrate removal rates were estimated without accounting for dilution and 

ranged between 50 and 97 % throughout the year. Along the subsurface flow path 

parallel to the river, Cl- concentration moderately decreased, but nitrate reduction was of 

a larger magnitude and therefore the ratio NO3
--N:Cl- followed largely the same pattern 
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as nitrate. However, nitrate removal estimates corrected for dilution ranged between 29 

and 83 % throughout the year.   

 

With respect to the BZ, elevated Cl- concentrations in the arable field were observed 

mainly in spring and summer, possibly due to the use of chloride containing fertilisers 

that leached into the GW (Curie et al., 2009). The dilution of Cl- along the flow path 

towards the middle of the site was significant (range 28 - 66 %) and therefore the 

corrected nitrate removal rate was lower than in the PM ranging between 2 and 47 %.  

In contrast, the Cl- concentration increased in the near stream zone compared to the 

river water, and therefore no dilution effect was observed. Therefore, the nitrate 

removal rate between the river and the middle of the site ranged between 54 and 96 % 

during the year. 

 

Our average nitrate removal rates are in agreement with other studies in shallow water 

table, temperate agricultural riparian zones Cooper, 1990 (64 - 94 %); Haycock and 

Pinay, 1993 (60 - 90 %); Clément et al., 2003 (76 - 99 %); Hoffmann et al., 2006 (61 - 

74 %); Hefting et al., 2006a (63 %). The average nitrate removal rates, similarly to the 

nitrate concentration in SW and GW were not significantly different between seasons, 

indicating that denitrification is more likely to be responsible for the removal rather than 

plant uptake (Sabater et al., 2003; Hefting et al., 2006a; Hoffmann et al., 2006). Nitrate 

can also be reduced through pyrite oxidation (Postma et al., 1991), if carbon availability 

is limited. However, Fe was below detection limit in our GW and SW samples and 

therefore, heterotrophic denitrification is likely to be the dominant nitrate reduction 

pathway. 

 

5.5.3.3 Factors controlling nitrate removal 

The DO concentration in the GW was consistently lower compared to the SW, while in 

the PM it was always below 3 mg l-1, whereas in the BZ it was <1mg l-1, suggesting 

even lower redox conditions. Moreover, the nitrate concentration correlated positively 

with the DO, indicating greater nitrate removal under suboxic or anoxic conditions. 

Other riparian zone studies that have reported significant nitrate removal via 

denitrification have consistently shown DO in GW to be <2-3 mg l-1 (Duval and Hill, 

2007, Schilling and Jacobson, 2008, Hill and Duval, 2009, Curie et al., 2009). 
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The DOC concentration in both the SW and GW did not show any significant seasonal 

differences and it was comparable to the DOC concentration of buried channel 

sediments in an agricultural riparian zone in Canada (Devito et al., 2000), but was 

higher than DOC concentrations reported in other riparian studies (Baker and Vervier, 

2004; Hoffmann et al., 2006; Schilling and Jacobson, 2008; Hill and Duval, 2009). The 

fact that no significant relationship was observed between nitrate and DOC likely 

suggests an ample supply of organic carbon from the SW to the floodplain and across 

the depth of the PWT to support denitrification above limiting conditions.  

 

The pH was very stable throughout the year and it was slightly alkaline in the SW, 

typical for a predominantly agricultural watershed (Ward and Robinson, 2000), while it 

moderately fluctuated around neutrality in the GW across both sites. The stability of the 

pH could be partly explained by the prevalence of reduced conditions promoting 

denitrification and therefore de-acidification of the groundwater, compared to the 

acidifying effect of nitrification observed in more aerobic soils (Hefting et al., 2006a). 

In any case, neutral pH is within the optimum range for denitrification activity (Simek 

and Cooper, 2002). The specific conductance (SC) was higher in the ditch water and the 

BZ GW compared to the river and the PM GW. Higher SC has been associated with 

longer residence time GW (Schilling and Jacobson, 2008), indicative of the slower 

drainage observed in the BZ GW and the stagnant water conditions during discharge 

periods in the ditch. Finally, the GW temperature was within the range of suboptimal 

and optimal denitrification rates (Payne, 1981).  

 

Concluding, the hydrochemical pattern along the SW - GW interaction gradient in the 

re-connected River Cole floodplain suggested that nitrate supplied mainly via overland 

and subsurface hydrologic pathways and also via leaching from the agricultural field, 

can be effectively reduced along the main GW flowpaths via heterotrophic 

denitrification rather than chemodenitrification or plant uptake; while the high water 

table maintains suboxic to anoxic conditions, there is  adequate supply of DOC from 

SW and GW sources and the pH and temperature conditions are within the optimal 

range for effective denitrification.  
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Chapter 6: Nitrate attenuation processes in the re-connected floodplain of 

the River Cole. 

 

 

6.1    The effect of land use on the relative importance of nitrate attenuation processes 

The aim of this section is to present the potential for nitrate attenuation in the 

reconnected floodplain of the River Cole, to quantify the relative importance of 

heterotrophic denitrification and DNRA as attenuation processes and assess the effect of 

land use in controlling nitrate attenuation.  

 

6.1.1 Soil physical properties across the land use zones 

The physical properties of the topsoil (0-10 cm) in the four land use zones: Fritillary 

Meadow (FM); Pasture Meadow (PM); Buffer Zone (BZ); and Grazing Grassland (GG) 

and in their respective sampling transects are summarised in Table 6.1.1. Although 

some significant differences in the absolute particle size distribution were found 

between the four zones (data summarised in Figure 6.1.1), the silt and clay fractions 

were predominant in all cases ranging between 68 and 88 % of the volume. The textural 

classification of the four zones according to the UK system (i.e. using 63 µm as the size 

limit dividing fine sand and silt according to Rowell (1994) is: Silty clay (Fritillary 

Meadow); Clay loam (Pasture Meadow); Silty clay loam (Buffer Zone); and Clay loam 

(Grazing Grassland). The predominance of the clay and silt fractions in the topsoil 

structure gives certain properties to the soil, such as good water holding capacity and 

increased surface for the binding of nutrient ions; both being conducive to potentially 

enhanced nitrate attenuation capacity. The higher sand content found in the PM (the 

middle transect classified as sandy loam) and GG samples (the mill leat transect 

classified as loam) is probably an indication of sand deposits from the old course of the 

River Cole prior to channelization. Finally, the higher silt content of the BZ and the FM 

reflects a frequent overbank inundation regime, found especially in the riparian areas of 

the two zones, that results in increased deposition of fine particulate matter on the soil 

surface.   
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Table 6.1.1: Physical properties of the topsoil in the four land use zones and their respective sampling transects (data are mean values ± 1 

standard error, where data are missing are replaced by a - sign). 

Soil type

Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

Fritillary Meadow (n=15) Silty clay 0.79 0.05 36.4 3.0 15.8 1.6 6.5 0.7 0.62 0.07 - - - -

Channel depr. (n=5) Silty clay loam 0.67 0.05 49.2 2.3 21.0 0.8 8.4 0.5 0.89 0.04 - - - -

Middle (n=5) Silty clay 0.69 0.05 35.9 1.5 18.0 1.5 7.7 0.7 0.64 0.06 - - - -

Riparian (n=5) Silty clay 1.01 0.05 24.0 2.7 8.6 1.6 3.2 0.9 0.34 0.09 - - - -

Pasture Meadow (n=15) Clay loam 0.74 0.02 51.6 2.3 13.1 0.7 5.4 0.4 0.43 0.03 9.4 1.7 1.14 0.38

Channel depr. (n=5) Clay loam 0.68 0.04 58.2 3.6 15.9 0.7 6.6 0.7 0.52 0.03 8.0 0.8 0.70 0.12

Middle (n=5) Sandy loam 0.76 0.03 48.9 0.3 12.8 0.6 5.6 0.5 0.43 0.03 6.6 2.6 2.23 1.03

Riparian (n=5) Clay loam 0.78 0.03 47.7 5.1 10.6 1.2 4.0 0.5 0.33 0.02 9.6 1.5 0.47 0.10

Buffer Zone (n=15) Silty clay loam 0.97 0.07 44.5 3.3 11.0 0.4 5.2 0.3 0.86 0.02 19.6 5.0 0.37 0.04

Riparian (n=5) Silty clay loam 0.81 0.06 49.0 4.4 12.1 0.9 5.6 0.7 0.89 0.05 33.9 13.5 0.26 0.06

Middle (n=5) Silty clay loam 0.93 0.12 46.2 8.5 10.9 0.6 5.1 0.6 0.88 0.04 12.9 1.4 0.40 0.04

Arable (n=5) Silty clay loam 1.19 0.14 38.3 2.1 9.9 0.3 5.0 0.2 0.80 0.04 12.1 1.7 0.44 0.05

Grazing Grassland (n=15) Clay loam 0.87 0.05 53.6 4.6 13.8 1.1 6.6 0.6 0.86 0.09 21.4 4.5 0.41 0.05

Mill Leat (n=5) Loam 0.92 0.01 45.6 5.6 12.1 1.3 5.8 0.5 0.86 0.08 14.2 3.1 0.47 0.08

Middle (n=5) Clay loam 0.66 0.09 70.6 8.4 18.5 1.8 8.7 1.2 0.91 0.26 33.7 11.9 0.44 0.14

Riparian (n=5) Clay loam 1.04 0.03 44.6 2.8 10.8 0.6 5.2 0.4 0.82 0.09 16.3 1.5 0.33 0.04

TOC/NO3
-Dry Bulk Density

(g cm-3)

Water content

(%)

NO3
--N

(mg kg-1)

Organic matter

(%)

Organic carbon

(%)

Total Nitrogen

(%)

 

 

21
3
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Figure 6.1.1: Absolute particle size distribution (volume %) in the four land use zones 

of the River Cole (mean + 1 standard error, same lower case letters indicate non 

significant difference between the means). 

 

 

The mean dry bulk density was significantly higher (ANOVA; df=56, F= 3.93, P<0.05) 

in the buffer zone and the grazing grassland compared to the pasture meadow and the 

fritillary meadow (Figure 6.1.2 A). This is probably a result of the different land uses, 

with the lower bulk densities associated with the more friable, porous organic soil in the 

fritillary and pasture meadows, where human intervention is minimal. On the other 

hand, the higher bulk densities observed in the BZ and GG areas could be attributed to 

the compaction of the topsoil caused by the grazing animals in GG and the horse riding 

and angling activities at the BZ site.  

 

Significant differences (Kruskal-Wallis; χ2=14.5, df=3, P<0.01) were also found 

between the mean water content of the soil samples in the four land use zones (Figure 

6.1.2 B). However, the gravimetric measurement of the water content is only an 

indication of the moisture conditions in the topsoil on the day of sampling, affected by 

the weather conditions before and on the sampling date. Since the four land use zones 
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were sampled at different dates, it is more appropriate to compare the moisture 

conditions between the sampling transects within each zone, rather than comparing the 

measurements between zones. 

 

The mean organic matter content of the soil samples from the four land use zones was 

significantly different (Kruskal-Wallis; χ2=8.09, df=3, P<0.05). Significantly less 

organic matter was found in the buffer zone compared to the FM and PM (Mann-

Whitney; U=61, Z=-2.14, P<0.05 and U=57.5, Z=-2.82, P<0.05 respectively), whereas 

the organic matter in the FM, PM and GG samples did not differ significantly (Figure 

6.1.2 C). The difference in the organic matter content could be attributed to the specific 

flooding regime found in BZ, where overbank inundation is more frequent than in any 

other zone, and could have led to increased leaching of organic matter from the soil to 

the river and/or increased mineralisation rates.  

 

In contrast to the results for the organic matter content, the percentage of total organic 

carbon in the soil samples was not significantly different across the land use zones 

(Figure 6.1.3 A), ranging from 1.5 % to 12 %, which is a range characteristic of mineral 

agricultural soils (Rowell, 1994). The C/N ratio, total organic carbon to total nitrogen, 

(Figure 6.1.3 B) was significantly lower in the upstream zones (ANOVA; df=3, F=109, 

P<0.001), ranging from 3 to 7, compared to the downstream sites that ranged between 8 

and 16. This is potentially due to variability in nitrogen availability between the 

downstream and upstream sites. It should be noted that although the BZ site is not really 

upstream, located just downstream of Coleshill bridge, for ease of comparison it is 

grouped together with the GG site as upstream, whereas the two meadows (FM and PM) 

are grouped as true downstream sites. 

 

Nitrate and ammonia were significantly lower (ANOVA for NO3
--N: df=2, F=6.68, 

P<0.01; ANOVA for NH4
+-N: df=2, F=3.7, P<0.01) in the PM samples compared to the 

BZ and GG samples, while nitrite was lower than the other nitrogen species and not 

significantly different between zones (Figure 6.1.4). The results highlight an important 

difference between the land use zones, with the grassland and buffer zone areas being 

located at the foot of the surrounding hillslope and adjacent to an arable field 

respectively, and therefore more likely to receive increased nitrate inputs through 

runoff. 
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Figure 6.1.2: Mean dry bulk density, water content and organic matter content (+ 1 

standard error) in the four land use zones of the River Cole (significant differences 

indicated with different lower case letters).  
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Figure 6.1.3: Mean organic carbon content and TOC/TN ratio (+ 1 standard error) in 

the four land use zones of the River Cole (significant differences indicated with 

different lower case letters)  

 

 

The fact that higher concentrations for both NH4
+-N and NO2

--N were found in the 

upstream sites (Figure 6.1.4), rather than the PM zone, is an indication of possibly 

higher N turnover rates upstream. Build-up of ammonium could be attributed to 

enhanced mineralisation rates following soil disturbance, and the accumulation of 

nitrite, an intermediate in both the denitrification and DNRA processes, attributed to 

reduced conditions induced by frequent flooding.  
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Figure 6.1.4: Mean concentrations of NO3
--N, NH4

+-N and NO2
--N (+ 1 standard error) 

in three land use zones of the River Cole floodplain. Significant differences indicated 

with different lower case letters. 

 

 

 

 

By combining the organic carbon and NO3
--N data, the ratio of TOC: NO3

--N (Silver et 

al., 2005) can be estimated (Table 6.1.1), indicating the relative availability of organic 

carbon for nitrate respiration over the available nitrate. The ratio is significantly higher 

in the PM samples compared to the BZ and GG (Figure 6.1.5), which are not 

significantly different between each other (ANOVA; df=2, F=5.68, P<0.01). The results 

indicate that there are significant differences in the relative availability of electron 

donors (organic carbon) and electron acceptors (nitrate) in the four land use zones and 

this could potentially lead to significant differences in the relative importance of nitrate 

attenuation processes in these zones.  
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Figure 6.1.5: Mean TOC/NO3
--N ratio (+ 1 standard error) in three land use zones of 

the River Cole (NO3
--N data not available for FM, significant differences indicated with 

different lower case letters).  

 

 

6.1.2 AnMOC and methane production potential across the land use zones 

The Anaerobically Mineralisable Organic Carbon (AnMOC), one way of measuring the 

anaerobic respiration rate of the microbial biomass (Rowell, 1994), showed no 

significant differences across the FM, PM and BZ sites (Table 6.1.2 and Figure 6.1.6 

A), and only the GG had significantly higher AnMOC (ANOVA; df=3, F=11.6, 

P<0.001). This was probably due to the application of animal manure on this site as a 

consequence of grazing and the creation of carbon ‘hotspots’, hence the high variability 

indicated by the standard error value, that could potentially affect the rates of nitrogen 

retention processes. 

 

AnMOC can also be used for describing the lability of organic carbon when expressed 

as the amount of carbon mineralised per gram of total organic carbon (TOC) per day 

(Dauwe et al., 2001). Similar to the anaerobic mineralisation rate results, the GG site 

had significantly higher (ANOVA; df=3, F=17.29, P<0.001) mean amount of labile 

organic carbon compared to the other three land use zones that were lower and not 

significantly different between them (Table 6.1.2 and Figure 6.1.6 B). 
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The methane production rate of field moist soil incubated under anaerobic conditions 

could be used as a proxy for the redox condition of the topsoil (Table 6.1.2 and Figure 

6.1.6 C). The results showed no significant difference in the methane production 

potential of the topsoil across the four land use zones (Kruskal Wallis; χ2=3.35, df=3, 

P>0.05). The amount of methane emitted during the anaerobic incubations was 

proportionally lower than the amount of CO2 released from the anaerobic mineralisation 

of the organic carbon, and therefore it should be attributed to methanogens’ respiration 

rather than fermentative processes that would have resulted in the production of equal 

amounts of methane and carbon dioxide (Middelburg et al., 1996). However, the 

process of methanogenesis occurs at the lowest redox potential; Eh below -400 mV 

(Oremland, 1988), and therefore the methane production potential rates were only 

indicative of very reduced conditions, which were mainly found in the riparian sampling 

transects of each zone. Therefore, averaging the measurements per site results in 

smoothing these differences and creating high standard errors of the means. 

 

Table 6.1.2: Anaerobic mineralisation rate (AnMOC), lability of organic carbon and 

methane production potential of the topsoil in the four land use zones and their 

respective sampling transects (data are mean values ± 1 standard error). 

 

 

Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

Fritillary Meadow (n=15) 918.6 103.5 15.2 1.4 7.6 3.7

Channel depr. (n=5) 1322.1 78.7 15.8 1.0 0.0 0.0

Middle (n=5) 979.0 56.5 12.9 1.1 1.1 1.0

Riparian (n=5) 454.8 88.2 16.8 3.9 21.6 8.3

Pasture Meadow (n=15) 767.8 56.8 15.3 1.4 1.1 0.5

Channel depr. (n=5) 738.3 130.2 11.6 2.0 0.4 0.3

Middle (n=5) 846.1 77.1 15.8 2.4 0.0 0.0

Riparian (n=5) 719.1 92.6 18.6 2.1 2.6 1.0

Buffer Zone (n=15) 970.5 131.0 17.9 1.6 1.5 0.9

Riparian (n=5) 1174.3 239.9 20.0 1.8 4.1 2.4

Middle (n=5) 1192.9 231.0 22.9 2.0 0.4 0.2

Arable (n=5) 544.5 32.6 10.8 0.6 0.0 0.0

Grazing Grassland (n=15) 2260.2 446.0 40.7 8.0 2.8 0.8

Mill Leat (n=5) 1733.1 263.4 30.0 3.8 1.6 0.4

Middle (n=5) 3929.7 1251.1 63.7 21.4 0.6 0.5

Riparian (n=5) 1451.8 106.9 28.4 2.6 5.5 1.5

Labile org. carbon

 (µmol CO2 g
-1 TOC d-1)

Methane

CH4 (µmol kg-1 d-1)

AnMOC

CO2 (µmol kg-1 d-1)
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Figure 6.1.6: Mean AnMOC, lability of organic carbon and methane production 

potential (+ 1 standard error) in the four land use zones of the River Cole (significant 

differences indicated with different lower case letters). 
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6.1.3 Spatial ordination of the land use zone samples 

Principal Component Analysis (PCA) was employed to explore which combinations of 

soil physical properties, ‘principal components’, are likely to provide the maximum 

discrimination between individual soil samples (Dytham, 2003). The properties used in 

the analysis were: (i) dry bulk density; (ii) organic matter content; (iii) the particle size 

fractions; clay, silt and very fine sand contents; (iv) AnMOC; (v) organic carbon 

content; (vi) total organic carbon to total nitrogen ratio (TOC/TN); and (vii) the labile 

organic carbon content (µmol CO2 g-1 TOC d-1). The water content variable was not 

used because there is little or no meaning in comparing measurements made on different 

dates and weather conditions, as mentioned earlier. Furthermore, none of the soil NO3
- -

N content measurements was used in the PCA, since there were no measurements for 

the FM samples and therefore all these samples would have been excluded from the 

derivation of principal factors. The effect of N availability is instead introduced with the 

TOC/TN ratio. The methane production potential variable was also not used due to the 

fact that it was not significantly different between land use zones and also because of 

the nature of the measurements that are concentrated in the riparian samples, which 

have high variability and a non-normal distribution.  

 

The PCA method assumes: linear relationships between all the variables; no inter-

correlation of the component axes; continuity and normal distribution of the data 

(Dytham, 2003). A scatter plot matrix between all the variables used in PCA indicated 

that all relationships were linear. As for the issue of no correlation between the 

component axes, this could be a potential problem since the majority of the variables 

used have an organic carbon component and therefore are very likely to be inter-

correlated. However, since PCA is only used for exploring the distribution of data and 

for deriving further hypotheses regarding the environmental variables that are likely to 

differentiate the land use zones and possibly have an effect on nitrate attenuation 

processes, the assumption of inter-correlation has a minor role.  Finally, the data used in 

the PCA were continuous and normally distributed.  

 

The PCA generated four principal axes (Table 6.1.3). The first two are the most 

important with eigenvalues of 2.9 and 2.0 respectively. The first axis explained 36.6 % 

of the variation between samples, whereas the second axis explained 25.2 %. The 

variables associated more closely with the first axis were the organic matter content 
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(weighting 0.947), the organic carbon content (weighting 0.884) and the bulk density 

(weighting -0.794). The second principal axis was formed mainly by the weightings of 

the AnMOC (0.901) and the labile organic carbon content (0.861). The third component 

factor had strong association with the silt and clay contents with 0.910 and 0.870 

weightings respectively. 

 

 

 

 

Table 6.1.3: The principal components (axes) generated by the PCA, their respective 

eigenvalues, the % of variance explained by each component and the cumulative % of 

variance explanation. 

Axes Eigenvalues % of Variance Cumulative %

1 2.931 36.64 36.64

2 2.019 25.24 61.88

3 1.839 20.44 82.32

4 0.792 8.79 91.11

 

 

 

Plotting the position of individual samples on the first two component axes generated 

Figure 6.1.7. What is immediately apparent from the graph is the grouping of the 

individual samples into their respective land use zone groups, especially for the BZ and 

GG samples, whereas there is considerable overlapping between the FM and PM 

samples. A second interesting point is that the grouping is mainly due to the second 

principal axis rather than the first. Indeed, One-way ANOVA between the position of 

samples on axis 1 showed significant difference only between the BZ and FM samples 

(ANOVA; df=3, F=2.87, P<0.05), whereas One-way ANOVA between the samples’ 

position on axis 2 showed significant differences (ANOVA; df=3, F=41.55, P<0.001) 

between the BZ and GG samples, and only the FM and PM samples were not 

significantly different. 
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Figure 6.1.7: Plot of individual soil samples from all land use zones according to their 

principal components in PCA.  

 

The overlapping of the meadow samples (FM and PM) and the separation of BZ and 

GG samples from the rest was even more clearly shown by using Discriminant Function 

Analysis (DFA) with the same environmental variables (Figure 6.1.8).  The difference 

between PCA and DFA is that in DFA, individual samples are assigned to groups before 

the start of the test. Then variable weightings are calculated so that they maximise the 

difference between groups instead of individual samples. The power of the weightings 

is tested by naming one individual sample from the dataset as ‘unknown’ and then using 

the variable weightings to assign it to one of the groups. The hit rate is a measure of the 

power of the test to discriminate real unknowns (Dytham, 2003).  

 

The first two axes with eigenvalues of 13.1 for the first and 1.1 for the second, explain 

88.4 % and 7.3 % of the variation between the four land use zones, respectively. The 

variables with the highest weightings for the first axis are the AnMOC (1.383) and the 

total organic carbon to total nitrogen ratio (-1.058) that shows a negative correlation 

with the first discriminating axis. The second axis that explains only 7.3 % of the 

variation is strongly associated with the labile organic carbon content (2.335) and the 

organic carbon content (1.451). Finally, the testing of the model’s weightings showed 

that 91.5 % of originally grouped samples were correctly assigned to groups. 
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Figure 6.1.8: Plot of individual soil samples grouped in land use zones according to the 

discriminant functions in DFA. The large squares represent the centroid of each group. 

 

 

The results from PCA indicate a gradient in individual samples, where the samples from 

the GG and the BZ are separated from the rest, whereas the FM and PM samples form 

an agglomeration of meadow samples. This is an indication of different conditions 

between three types of land use (pasture meadow, buffer zone and grazing grassland) 

found in the reconnected floodplain of the River Cole. The main reasons for this 

discrimination between land use zones, according to PCA, seems to be the availability 

of labile organic carbon and the carbon mineralisation rate as expressed from the 

AnMOC measurement. The groups identified from the ordination of the samples in the 

PCA were used in the DFA, which confirmed the grouping of samples in three distinct 

land use zones and indicated that apart from the labile organic carbon and the 

mineralisation rate (AnMOC), the organic carbon to nitrogen ratio is potentially playing 

a role in differentiating the land uses. It is therefore interesting to examine whether 

nitrate attenuation processes are correlated to a specific land use type and whether the 

principal factors differentiating land uses have a marked effect on the nitrogen cycling 

processes as well.   
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6.1.4 Denitrification potential  across the land use zones 

All the topsoil samples from all the land use zones showed potential for denitrification 

that ranged from 5.3 to 62.8 mg N kg-1 dry soil d-1. The mean potential denitrification 

rates and ± 1 SE for all the land use zones and their respective sampling transects are 

shown in Table 6.1.4.  

 

 

Table 6.1.4: Potential denitrification rates in the four land use zones and their respective 

sampling transects (data are mean values ± 1 standard error).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FM samples displayed significantly lower denitrification rates (ANOVA; df=3, 

F=5.96, P<0.01), the PM and the BZ samples were not significantly different between 

each other, while the potential denitrification rate of the GG samples was significantly 

higher from the rest of the land use zones (Figure 6.1.9).  

 

Mean ± 1 SE

Fritillary Meadow (n=15) 10.73 1.02

Channel depr. (n=5) 13.89 1.39

Middle (n=5) 8.53 1.42

Riparian (n=5) 9.76 1.76

Pasture Meadow (n=15) 14.77 1.30

Channel depr. (n=5) 16.71 3.37

Middle (n=5) 12.50 0.53

Riparian (n=5) 15.09 1.96

Buffer Zone (n=15) 15.81 1.91

Riparian (n=5) 19.26 3.43

Middle (n=5) 16.74 4.04

Arable (n=5) 11.42 1.50

Grazing Grassland (n=15) 24.06 3.98

Mill Leat (n=5) 25.73 6.38

Middle (n=5) 33.39 7.95

Riparian (n=5) 13.05 3.12

Denitrification

mg N kg-1 soil day-1
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Figure 6.1.9: Mean potential denitrification rates (+ 1 standard error) in the four land 

use zones of the River Cole (significant differences indicated with different lower case 

letters). 

 

  

 A combination of Pearson Product-Moment (parametric) and Spearman rho (non-

parametric) correlations was performed between the potential denitrification rate, the 

AnMOC, the lability of organic carbon, the methane production potential rate and the 

physical properties of the topsoil (Table 6.1.5).  Significant positive correlation 

(Pearson; r=0.60, n=59, P<0.01) was found between the denitrification potential and the 

AnMOC measurement (Figure 6.1.10). The denitrification potential also correlated 

significantly (Pearson; r=0.52, n=58, P<0.01) with the lability of organic carbon (Figure 

6.1.11). 
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Table 6.1.5: Correlation matrix between the potential denitrification rate, AnMOC, lability of organic carbon, methane production potential and 

the physical properties of the topsoil of the four land use zones of the River Cole. Underlined correlation coefficients are products of Spearman 

rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is significant at the 0.01level and 

*Correlation is significant at the 0.05 level. 

 

 Denitrification 
potential AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon % TOC/TN Soil nitrate Soil nitriteTOC/NO3

- 

Denitrification potential R or rho 1
P .
N 60

AnMOC R or rho 0.599** 1
P 0.000 .
N 59 59

Org. carbon lability R or rho 0.521** 0.712** 1
P 0.000 0.000 .
N 58 58 58

Methane emission R or rho 0.136 0.200 0.523** 1
P 0.313 0.140 0.000 .
N 57 56 55 57

Organic matter content R or rho 0.258* 0.468** -0.107 -0.280* 1
P 0.047 0.000 0.426 0.035 .
N 60 59 58 57 60

Organic carbon % R or rho 0.297* 0.528** -0.044 -0.278* 0.858** 1
P 0.021 0.000 0.742 0.036 0.000 .
N 60 59 58 57 60 60

TOC/TN R or rho -0.262* -0.231 -0.404** 0.041 0.325* 0.110 1
P 0.044 0.078 0.002 0.760 0.011 0.405 .
N 60 59 58 57 60 60 60

Soil nitrate R or rho 0.505** 0.617** 0.490** 0.402** 0.431** 0.343* -0.240 1
P 0.000 0.000 0.001 0.008 0.003 0.021 0.113 .
N 45 44 43 42 45 45 45 45

Soil nitrite R or rho 0.592** 0.052 0.243 0.248 0.283 0.263 -0.143 0.435** 1
P 0.000 0.736 0.117 0.113 0.060 0.081 0.348 0.003 .
N 45 44 43 42 45 45 45 45 45

TOC/NO3
- R or rho -0.144 -0.141 -0.417** -0.460** 0.055 -0.030 0.387** -0.864** -0.355* 1

P 0.345 0.361 0.005 0.002 0.717 0.846 0.009 0.000 0.017 .
N 45 44 43 42 45 45 45 45 45 45

Variables/Correlation coefficients
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Figure 6.1.10: Scatter plot of potential denitrification rates in all land use zones against 

the production of CO2 from the anaerobically mineralisable organic carbon (AnMOC) 

(r=0.60, n=59, P<0.01). 
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Figure 6.1.11: Scatter plot of potential denitrification rates in all land use zones against 

the lability of organic carbon (r=0.52, n=58, P<0.01). 
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Significant positive correlation was observed between denitrification rates and soil 

nitrate and nitrite content (Pearson; r=0.51, n=45, P<0.01 and r=0.59, n=45, P<0.01 

respectively). These results possibly indicate a partial regulation of the denitrification 

activity in the four land use zones by the availability of nitrate in the topsoil, and also 

highlight nitrite as one of the products of incomplete denitrification. All of the different 

organic carbon measurements correlated positively with the potential denitrification 

rates (Table 6.1.5). However, AnMOC and the labile organic carbon expression were 

the more significant, indicating that they potentially give a better estimate of the fraction 

of organic carbon used as an electron donor by the nitrate respiring bacteria. The 

organic carbon measurements that correlated significantly with the denitrification 

activity were also highlighted by the PCA analysis of the soil samples in the four land 

use zones, indicating that the discriminating factors between the different land uses 

could possibly also have a marked effect on denitrification activity.  

 

Multiple regression forward analysis (MRA) between the environmental variables and 

the denitrification activity produced similar results to the Pearson product moment 

correlation. Specifically, the AnMOC measurement explained 42 % of the variance in 

the potential denitrification rates (MRA; r2=0.423, df=42, P<0.01), followed by the 

lability of organic carbon with 29 % explanatory power (MRA; r2=0.29, df=58, P<0.01) 

and finally the soil nitrate content explaining 26 % of the variance in denitrification 

activity (MRA; r2=0.257, df=43, P<0.01).  

 

Therefore the available labile organic carbon seems to be mainly responsible for a 

gradient of denitrification activity from high rates found in the carbon rich grazing 

grassland, to intermediate rates found in the buffer zone and pasture meadow (the main 

floodplains affected by the increased hydrological connectivity following the 

restoration), to lower rates found in the fritillary meadow, which is the least impacted 

floodplain in terms of external carbon inputs and flooding frequency.  
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6.1.5 Dissimilatory Nitrate Reduction to Ammonium (DNRA) potential across the 

land use zones 

From the 90 nmol 15NO3
- added per mL slurry per sample, 63.8 ± SE 1.8 % on average 

was recovered as 30N2. The mean recovery was highest in the BZ samples, 71.7 ± SE 3.1 

%, lowest for the FM samples (52 ± SE 2.4 %), whereas the PM and the GG samples 

had mean recoveries of 61.4 ± SE 1.9 % and 70.2 ± SE 4.3 % respectively. The 

recovery (%) was significantly different across land use zones, with only the recoveries 

for the GG and BZ samples not being significantly different between each other 

(ANOVA; df=3, F=8.67, P<0.001).  

 

However, the mean concentration of nitrate in the samples after the 6 hour incubation 

was 22 µM (± SE 6), whereas from the amounts recovered as 30N2 it would be expected 

to have 33 µM (± SE 2) of nitrate remaining in the sample pool. Therefore, there was a 

deficit of 19 µM (± SE 2) of nitrate on average in the experiment budget. Likely fates 

for the ‘missing’ nitrate could be intermediate paths of denitrification that produce NO2
- 

or N2O instead of N2, the simultaneous occurrence of DNRA, or assimilation of nitrate 

into bacterial biomass. Nitrite was measured in the samples after the completion of the 

experiment, and its average concentration was 5 µM (± SE 0.6), thus only 26 % of the 

unaccounted for NO3
-. 

 

One possible fate for the unaccounted 15N-labelled nitrate in the 30N2 produced from 

denitrification could be the simultaneous occurrence of dissimilatory nitrate reduction to 

ammonium (DNRA). Using the same slurry samples after the completion of the timed 

experiment for the denitrification activity, the NH4
+ was extracted from the sample and 

then subjected to a microdiffusion-oxidation assay with hypobromite to convert 15NH4
+ 

to 29N2 for subsequent quantification with a continuous flow isotope ratio mass 

spectrometer.  

 

DNRA was indeed occurring simultaneously with denitrification in all the samples from 

all the land use zones. However, as shown in Table 6.1.6, denitrification rates were 

higher than DNRA rates in all cases. DNRA ranged from 0.02 to 2.64 mg N kg-1 dry 

soil d-1 and the mean rates across the four land use zones were not significantly different 

(Kruskal-Wallis Test; χ2=4.86, df=3, P>0.05). However, the highest rate was observed 
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in the GG samples, followed by the FM samples then the PM and finally the BZ 

samples (Figure 6.1.12). 

 

Table 6.1.6: Potential denitrification and DNRA rates in the four land use zones and 

their respective sampling transects (data are mean values ± 1 standard error). 

Mean ± 1 SE Mean ± 1 SE

Fritillary Meadow (n=15) 10.73 1.02 0.43 0.17

Channel depr. (n=5) 13.89 1.39 0.16 0.06

Middle (n=5) 8.53 1.42 0.13 0.05

Riparian (n=5) 9.76 1.76 1.01 0.43

Pasture Meadow (n=15) 14.77 1.30 0.39 0.06

Channel depr. (n=5) 16.71 3.37 0.49 0.13

Middle (n=5) 12.50 0.53 0.21 0.05

Riparian (n=5) 15.09 1.96 0.46 0.11

Buffer Zone (n=15) 15.81 1.91 0.35 0.03

Riparian (n=5) 19.26 3.43 0.38 0.06

Middle (n=5) 16.74 4.04 0.39 0.07

Arable (n=5) 11.42 1.50 0.29 0.02

Grazing Grassland (n=15) 24.06 3.98 0.49 0.07

Mill Leat (n=5) 25.73 6.38 0.61 0.14

Middle (n=5) 33.39 7.95 0.60 0.13

Riparian (n=5) 13.05 3.12 0.26 0.05

Denitrification DNRA

mg N kg-1 soil day-1 mg N kg-1 soil day-1

 

 

Although the four land use zones of the River Cole re-connected floodplain do not seem 

to differentiate in terms of their potential DNRA rates, the relative importance of 

denitrification versus DNRA, expressed by the ratio of mean denitrification potential/ 

mean DNRA potential rate, is different between the four zones (Figure 6.1.13). DNRA 

becomes increasingly important moving gradually from the upstream towards the 

downstream sites. Therefore, although the GG site displayed the highest DNRA, due to 

also having the highest denitrification potential rate, DNRA is 50 times less important 

than denitrification. In contrast, the FM site with the second highest DNRA rate but the 

lowest denitrification potential rate, results in denitrification being only 25 times higher 

than DNRA. 
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Figure 6.1.12: Mean DNRA rates (+ 1SE) in the four land use zones of the River Cole 

(same lower case letters indicate non significant difference of the means).  
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Figure 6.1.13: Relative importance of denitrification over DNRA potential rates in the 

four land use zones of the re-connected floodplain of the River Cole.  
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DNRA had no significant effect on the final ammonium concentration in the slurry 

samples. However, DNRA enriched the ammonium pool with 15N in all the samples, 

although the enrichment was not greater than 1 % in any case. As a result of that, 

DNRA contributed on average to 2 % recovery of the initial 15N-labelled nitrate as 29N2. 

Therefore, the deficit in the nitrate budget of the experiment remained after the 

formation of nitrite and DNRA which accounted for 28 % of the introduced nitrate. The 

other possible fates of the 15N-labelled nitrate would be the formation of 15N labelled 

N2O, from incomplete denitrification, which was not measured in this set of 

experiments, and nitrate assimilation in bacterial biomass during the course of the 

experiment.   

 

A combination of Pearson Product-Moment (parametric) and Spearman rho (non-

parametric) correlations was performed between the potential DNRA rate and; 

denitrification rate, AnMOC, lability of organic carbon, methane production potential 

rate and the physical properties of the topsoil (Table 6.1.7). DNRA correlated 

significantly (Spearman; rho=0.57, n=59, P<0.01) with the denitrification activity 

(Figure 6.1.14), indicating the simultaneous occurrence of the two processes. Moreover, 

DNRA showed significant positive correlation (Pearson; r=0.36, n=57, P<0.01) with the 

labile organic carbon (Figure 6.1.15) and the soil nitrate content (Spearman; rho=0.42, 

n=45, P<0.01). Finally, DNRA correlated significantly (Spearman; rho=0.47, n=56, 

P<0.01) with the methane production potential in the land use zone samples (Figure 

6.1.16). If the methane production potential can be regarded as a proxy for the redox 

conditions in the topsoil of the land use zones, then there is an indication for increased 

DNRA activity in areas where reduced conditions are found more often. The correlation 

results suggested that DNRA was regulated by the prevalence of reduced conditions, the 

availability of soil nitrate and secondarily by the availability of labile organic carbon. 

  

Multiple forward regression analysis confirmed the correlation findings. The methane 

production potential explained 26 % of the variance in DNRA activity (MRA; r2=0.26, 

df=48, P<0.01), followed by the soil nitrate content with 15 % (MRA; r2=0.15, df=44, 

P<0.01) and finally the lability of organic carbon with 13 % (MRA; r2=0.13, df=56, 

P<0.01).  
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Table 6.1.7: Correlation matrix between the potential DNRA rate, the potential denitrification rate, AnMOC, lability of organic carbon, methane 
production potential and the physical properties of the topsoil of the four land use zones of the River Cole. Underlined correlation coefficients 
are products of Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is 
significant at the 0.01level and *Correlation is significant at the 0.05 level. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Denitrification 
potential DNRA AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon % TOC/TN Soil nitrate Soil nitriteTOC/NO3

- 

Denitrification potential R or rho 1
P .
N 60

DNRA R or rho 0.566** 1
P 0.000 .
N 59 59

AnMOC R or rho 0.599** 0.289* 1
P 0.000 0.028 .
N 59 58 59

Org. carbon lability R or rho 0.521** 0.358** 0.712** 1
P 0.000 0.006 0.000 .
N 58 57 58 58

Methane emission R or rho 0.136 0.468** 0.200 0.523** 1
P 0.313 0.000 0.140 0.000 .
N 57 56 56 55 57

Organic matter content R or rho 0.258* -0.064 0.468** -0.107 -0.280* 1
P 0.047 0.626 0.000 0.426 0.035 .
N 60 60 59 58 57 60

Organic carbon % R or rho 0.297* 0.003 0.528** -0.044 -0.278* 0.858** 1
P 0.021 0.982 0.000 0.742 0.036 0.000 .
N 60 60 59 58 57 60 60

TOC/TN R or rho -0.262* -0.056 -0.231 -0.404** 0.041 0.325* 0.110 1
P 0.044 0.673 0.078 0.002 0.760 0.011 0.405 .
N 60 59 59 58 57 60 60 60

Soil nitrate R or rho 0.505** 0.419** 0.617** 0.490** 0.402** 0.431** 0.343* -0.240 1
P 0.000 0.004 0.000 0.001 0.008 0.003 0.021 0.113 .
N 45 45 44 43 42 45 45 45 45

Soil nitrite R or rho 0.592** 0.044 0.052 0.243 0.248 0.283 0.263 -0.143 0.435** 1
P 0.000 0.776 0.736 0.117 0.113 0.060 0.081 0.348 0.003 .
N 45 45 44 43 42 45 45 45 45 45

TOC/NO3
- R or rho -0.144 -0.161 -0.141 -0.417** -0.460** 0.055 -0.030 0.387** -0.864** -0.355* 1

P 0.345 0.291 0.361 0.005 0.002 0.717 0.846 0.009 0.000 0.017 .
N 45 45 44 43 42 45 45 45 45 45 45

Variables/Correlation coefficients

 

23
5



 236 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.14: Scatter plot between the denitrification potential in all land use zones 

and the DNRA potential (rho=0.57, n=59, P<0.01). Samples circled with a dashed line 

were outliers, due to sampling next to animal manure, and were not included in the 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.15: Scatter plot between the lability of organic carbon in all land use zones 

and the DNRA potential (r=0.36, n=57, P<0.01). The sample circled with a dashed line 

was an outlier, due to sampling next to animal manure, and was not included in the 

analysis.  
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Figure 6.1.16: Scatter plot between the log-transformed methane production potential 

in all land use zones and the DNRA potential (rho=0.47, n=56, P<0.01). 

 

 

 

Concluding, three main land use types were identified in the re-connected floodplain of 

the River Cole; floodplain meadow, riparian buffer strip and grazing grassland. The 

differentiating factor between the land uses was the availability of labile organic carbon, 

which decreased moving from upstream (GG and BZ areas) to the downstream meadow 

areas (FM and PM). The availability of labile organic carbon and the nitrate supply 

were the main determinants of the potential denitrification rates in the topsoil. 

Therefore, higher denitrification rates were observed in those land uses that combined 

both high availability of carbon and nitrate. DNRA, although present in all the land use 

zones, was on average 40 times lower than the heterotrophic denitrification rate. The 

land use type did not seem to affect the DNRA potential, as the latter was not primarily 

controlled by the availability of organic carbon, but rather by the dominance of reduced 

conditions and the supply of nitrate. However, the relative importance of denitrification 

over DNRA decreased from the upstream more ‘impacted’ carbon and nitrate rich areas 

to the ‘less impacted’ downstream meadows.  
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6.2 The effect of the different hydrogeomorphic units within the land use zones on 

the nitrate attenuation processes 

This section aims to assess the effect of the different hydrogeomorphic units found 

within each land use zone, mainly as a result of their specific hydrologic regime, on the 

rate and control of nitrate attenuation via heterotrophic denitrification and DNRA. 

Therefore in this section, each land use zone is examined separately, while the soil 

physical properties and the process rates are compared between the sampling transects 

in each area. The riparian transects corresponded to the effect of river overbank 

flooding, the channel depression transects captured the effect of the ditch overbank 

flooding, while the middle transects reflected the less frequently flooded/drier areas of 

the floodplain. Additionally, an arable transect in the BZ represented the specific soil 

conditions of the agricultural field, while the mill leat transect in the GG contrasted the 

frequency of flooding between the restored River Cole and the remnant channelized part 

of the river.   

 

6.2.1 Fritillary Meadow (FM) 

The physical properties of the topsoil in the three sampling transects (Channel 

Depression, Middle Field and Riparian) of the Fritillary Meadow are summarised in 

Table 6.1.1. The Riparian samples displayed higher bulk density, lower organic matter 

content as well as lower organic carbon content (Table 6.2.1 and Figure 6.2.1 A,B,C). 

Moreover, only the clay fraction from the particle size distribution was significantly 

lower (Table 6.2.1) in the samples of the riparian transect, whereas there was not any 

significant difference between the other fractions, apart from 0.26 % of medium sand 

found only in the riparian samples (Figure 6.2.2). 

 

The gravimetric measurement of the water content of the samples was significantly 

different (Table 6.2.1) between the three transects, forming a gradient of decreasing 

water content from the Channel Depression samples to the Riparian samples (Figure 

6.2.1 D). There was no measurement of soil nitrate, nitrite or ammonia in the FM 

samples. The percent of total nitrogen (TN %) was significantly different between the 

transects, following a similar gradient to the water content (Figure 6.2.1 E). The ratio 

TOC/TN was also significantly different between the three transects (Figure 6.2.1 F). 

The AnMOC was significantly different between the sampling transects of FM (Table 

6.1.2 and 6.2.1). Higher mean mineralisation rates were observed for the Channel 
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depression samples, followed by the Middle field samples and the Riparian samples 

(Figure 6.2.3 A). The labile fraction of organic carbon was not significantly different 

between transects, and the Riparian samples, although they had the lowest 

mineralisation rate, they displayed a higher proportion of labile organic carbon (Table 

6.1.2 and Figure 6.2.3 B). 

 

The methane production potential was significant almost exclusively in the riparian 

samples (Table 6.2.1). This rate was almost two orders of magnitude higher than the 

rates measured for the rest of the FM area, but also displayed high variability between 

individual samples in the Riparian transect (Table 6.1.2 and Figure 6.2.3 C). 

 

 

Table 6.2.1: Comparison of the means between the three sampling transects of the FM 

area for selected soil properties and processes. df; degrees of freedom, F; F statistic, χ2; 

χ
2 statistic P; probability level. Where the variable is annotated with * the non-

parametric Kruskal-Wallis test has been used instead of One-Way ANOVA.  

Fritillary Meadow df F or χ 2
P<

Bulk density 14 14.27 0.01

Organic matter 14 28.57 0.01

Organic carbon 14 14.98 0.01

Clay fraction 14 7.21 0.01

Water content 14 31.91 0.01

Total Nitrogen* 2 10.62 0.01

TOC/TN 14 4.15 0.05

AnMOC 14 33.37 0.01

Lability of OC* 2 1.46 0.05

Methane emission 14 21.4 0.01

Denitrification 14 3.51 0.05

DNRA 14 7.11 0.01

D/DNRA* 2 8.96 0.05

One-Way ANOVA and Kruskal-Wallis
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Figure 6.2.1: Soil physical properties in the sampling transects of the Fritillary 

Meadow. Data are means + 1 SE. Different lower case letters indicate significant 

difference of the means. 
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Figure 6.2.2: Absolute particle size distribution (volume %) in the three sampling 

transects of the Fritillary Meadow (mean and + 1 standard error, same lower case letters 

indicate no significant difference between the means). 

 

 

 

 

PCA analysis of the FM samples, where only those environmental variables that showed 

some significant difference were used, resulted in a spatial ordination of the samples 

similar to their grouping in their respective transects (Figure 6.2.4). The first two 

principal axes extracted by the method explained 82.3 % of the variance between 

individual samples. The eigenvalues as well as the explanation percentages for the three 

principal axes are shown in Table 6.2.2. The first axis was more closely associated with 

the organic matter content (weighing 0.977), the water content (weighing 0.923) and the 

AnMOC (weighing 0.913), whereas the second axis was associated with the lability of 

organic carbon (weighing 0.917) and the methane production potential (weighing 0.442) 

that was mainly responsible for the observed spread of the Riparian samples shown by 

the standard error bars in Fig. 6.2.4. The sample clusters were separated along axis 1 

due to the significant differences in water content and AnMOC potential between the 

three sampling transects. 
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Figure 6.2.3: Mean AnMOC, lability of organic carbon and methane production 

potential (+ 1 standard error) in the sampling transects of the FM (significant 

differences indicated with different lower case letters). 
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Figure 6.2.4: Correlation bi-plot from the PCA analysis with cluster centroids (average 

score on each component, with standard errors) for the three sampling transects in FM. 

Correlations of the variables with the main axes are given by solid arrows. Dashed 

arrows indicate the correlation of nitrate attenuation processes with the component axes. 

Water; water content, OM; organic matter content, CH4; methane production, Lability; 

labile organic carbon, D; potential denitrification rate. 

 

 

 

Table 6.2.2: The principal components (axes) generated by the PCA, their respective 

eigenvalues, the % of variance explained by each component and the cumulative % of 

variance explanation. 

Axes Eigenvalues % of Variance Cumulative %

1 4.448 63.54 63.54

2 1.312 18.74 82.28

3 0.685 9.79 92.07  
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A summary of the denitrification and DNRA potential rates measured in the sampling 

transects of the FM are presented in Table 6.1.6. Only the Middle field samples had 

significantly lower denitrification rate (Table 6.2.1) compared to the Channel 

Depression samples, which were not significantly different from the Riparian samples 

(Figure 6.2.5 A).  

 

The DNRA potential rate was significantly higher (Table 6.2.1) in the Riparian samples, 

compared to the samples of the Channel Depression and the Middle field (Figure 6.2.5 

B). The ratio Denitrification over DNRA (D/DNRA) was significantly different 

between the transects of FM (Table 6.2.1). Denitrification was 250 times more 

important in Channel depression and 87 times more important in the Middle field 

samples, whereas the Riparian samples had only 16 times higher potential 

denitrification rates than DNRA rates (Figure 6.2.5 C).  Therefore, it could be assumed 

that the different conditions that characterise the Riparian area of the FM zone, that are 

potentially attributed to its specific hydrological regime, have also a marked effect on 

the relative importance of the two nitrate attenuation processes. 

 

A combination of Pearson-Product Moment correlation (parametric) and Spearman rho 

correlation (non-parametric) was employed to investigate possible relationships between 

Denitrification, DNRA and the various environmental variables (soil physical 

properties, AnMOC and CH4 production potential). The produced correlation matrix is 

shown in Table 6.2.3. Denitrification potential correlated poorly with the majority of the 

variables tested and only two correlations were significant at the 0.05 level; with the 

water content and the AnMOC. Furthermore, there was no significant relationship 

between denitrification and DNRA. One possible reason for the above result could be 

the fact that although the soil physical properties and the AnMOC measured in the 

Riparian samples were indicating conditions not so favourable for high denitrification 

rate, these samples displayed a denitrification rate not significantly different from the 

Channel depression, where more favourable conditions were observed. Therefore, the 

denitrification activity was more homogeneous than expected from the environmental 

variables variability between the sampling transects. Presumably, the relatively high 

lability of organic carbon measured in the Riparian samples could be partly responsible 

for the sustained denitrification activity. 
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Figure 6.2.5: Mean denitrification potential, DNRA potential and D/DNRA (+ 1 

standard error) in the sampling transects of the FM (significant differences indicated 

with different lower case letters). 
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On the other hand, the DNRA potential rate showed significant positive correlation with 

the low bulk density, the low redox conditions expressed by the CH4 production 

potential and the ratio TOC/TN, while significant negative correlation was found with 

the AnMOC and the water content.  

 

Multiple Regression Analysis (MRA) between the denitrification potential and the 

environmental variables confirmed the correlation results, with the water content 

explaining 37 % (MRA; r2=0.37, df=13, P<0.05) of the variance in potential 

denitrification rates and the AnMOC (MRA; r2=0.30, df=13, P<0.05) following with 30 

% explanatory power as a ‘causal’ variable. MRA of the potential DNRA rates indicated 

significant negative ‘causal’ relationship with the AnMOC (MRA; r2=0.64, df=13, 

P<0.01), the water content (MRA; r2=0.46, df=13, P<0.01) and the organic matter 

content (MRA; r2=0.44, df=13, P<0.05) and significant positive relationships with the 

bulk density (MRA; r2=0.49, df=13, P<0.01) and the methane production potential 

(MRA; r2=0.48, df=13, P<0.01). 

 

 

To summarise, significant differences were found between the soil properties in the 

sampling transects of the FM area. Higher water content, total nitrogen and AnMOC 

were associated with the Channel depression creating favourable conditions for 

increased potential denitrification. The Riparian samples although lower in clay content 

and having higher bulk density, were characterised by high methane production 

potential as well as labile organic carbon. Therefore, although the total organic carbon 

was lower in the Riparian samples, the high proportion of the labile organic carbon 

fraction was probably adequate to sustain high potential denitrification activity. 

Moreover, the prevalence of reduced conditions, as shown by the methane production 

potential, due to frequent river overbank flooding of the  Riparian transect created 

favourable conditions for  the occurrence of DNRA. Additionally, the ratio TOC/TN, 

being higher in the Riparian samples, also favoured higher DNRA rates compared to the 

other sampling transects. Finally the decoupling of DNRA from denitrification in the 

FM area suggested that under relatively limited nitrogen conditions, DNRA becomes 

more important where reduced conditions are combined with a higher ratio of TOC/TN.
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Table 6.2.3: Correlation matrix between the DNRA potential rate, the denitrification potential rate, AnMOC, lability of organic carbon, methane 

production potential and the physical properties of the topsoil in the sampling transects of FM. Underlined correlation coefficients are products 

of Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is significant at the 

0.01 level and *Correlation is significant at the 0.05 level. 

 

 

 

Denitrification 
potential DNRA AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon TOC/TN Bulk density 

Water 
content

Total 
Nitrogen

Denitrification potential R or rho 1
P .
N 14

DNRA R or rho -0.238 1
P 0.413 .
N 14 15

AnMOC R or rho 0.549* -0.709** 1
P 0.042 0.003 .
N 14 15 15

Org. carbon lability R or rho 0.053 -0.328 0.049 1
P 0.858 0.232 0.864 .
N 14 15 15 15

Methane emission R or rho -0.277 0.642** -0.650** 0.225 1
P 0.337 0.010 0.009 0.420 .
N 14 15 15 15 15

Organic matter content R or rho 0.405 -0.594* 0.892** -0.318 -0.814** 1
P 0.151 0.020 0.000 0.248 0.000 .
N 14 15 15 15 15 15

Organic carbon R or rho 0.342 -0.596* 0.829** -0.437 -0.868** 0.977** 1
P 0.232 0.019 0.000 0.103 0.000 0.000 .
N 14 15 15 15 15 15 15

TOC/TN R or rho -0.522 0.560* -0.690** 0.001 0.755** -0.719** -0.683** 1
P 0.056 0.030 0.004 0.998 0.001 0.003 0.005 .
N 14 15 15 15 15 15 15 15

Bulk density R or rho -0.238 0.761** -0.849** 0.302 0.761** -0.916** -0.922** 0.589* 1
P 0.413 0.001 0.000 0.275 0.001 0.000 0.000 0.021 .
N 14 15 15 15 15 15 15 15 15

Water content R or rho 0.610* -0.649** 0.939** -0.021 -0.732** 0.897** 0.848** -0.717** -0.841** 1
P 0.020 0.009 0.000 0.94 0.002 0.000 0.000 0.003 0.000 .
N 14 15 15 15 15 15 15 15 15 15

Total Nitrogen R or rho 0.518 -0.647** 0.893** -0.159 -0.764** 0.913** 0.878** -0.686** -0.868** 0.962** 1
P 0.058 0.009 0.000 0.572 0.001 0.000 0.000 0.005 0.000 0.000 .
N 14 15 15 15 15 15 15 15 15 15 15

Variables/Correlation coefficients
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6.2.2 Pasture Meadow (PM) 

Less variability was observed between the physical soil properties in the three sampling 

transects (Channel Depression, Middle Field and Riparian) of the Pasture Meadow 

(Table 6.1.1). Specifically, there were no significant differences in the bulk density, the 

water content and the ratio TOC/TN, while the ratio TOC/NO3
- was significantly lower 

in the Riparian samples (Table 6.2.4 and Figure 6.2.6 A,B,C,D). Moreover, the organic 

matter content was higher in the Channel Depression samples compared to the other two 

transects (Figure 6.2.6 E). Similarly, the organic carbon content was significantly lower 

in the Riparian samples (Figure 6.2.6 F). From the particle size fractions, significantly 

less clay and silt was measured in the Middle Field samples, which also had a 

significant amount of fine sands, despite not being statistically significant due to the 

high variability among the samples (Figure 6.2.7). Additionally, no significant 

differences were found in the soil nitrate content, soil ammonia or soil nitrite (Table 

6.2.4 and Figure 6.2.8). 

 

Table 6.2.4: Comparison of the means between the three sampling transects of the PM 

area for selected soil properties and processes. df; degrees of freedom, F; F statistic, χ2; 

χ
2 statistic P; probability level. Where the variable is annotated with * the non-

parametric Kruskal-Wallis test has been used instead of One-Way ANOVA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pasture Meadow df F or χ 2
P

Bulk density 14 2.54 >0.05

Organic matter 14 9.71 <0.01

Organic carbon 14 5.45 <0.01

Clay fraction 14 7.86 <0.01

Water content* 2 3.92 >0.05

TOC/TN 13 0.48 >0.05

TOC/NO3
-* 2 6.35 <0.05

Soil nitrate 13 0.68 >0.05

Soil ammonia* 2 1.04 >0.05

Soil nitrite* 2 1.82 >0.05

AnMOC 14 0.45 >0.05

Lability of OC 14 2.62 >0.05

Methane emission 11 11.91 <0.01

Denitrification* 2 0.62 >0.05

DNRA 14 2.35 >0.05

D/DNRA 14 3.13 >0.05

One-Way ANOVA and Kruskal-Wallis



 249 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.6: Soil physical properties in the sampling transects of the Pasture Meadow. 

Data are means + 1 SE. Different lower case letters indicate significant difference of the 

means. 
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Figure 6.2.7: Absolute particle size distribution (volume %) in the three sampling 

transects of the Pasture Meadow (mean and + 1 standard error, same lower case letters 

indicate no significant difference between the means). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.2.8: Mean concentrations of NO3
--N, NH3-N and NO2

--N (+ 1 standard error) 

in the three sampling transects of the Pasture Meadow. Same lower case letters indicate 

no significant difference between the means. 
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Similar to the physical soil properties results, no significant differences were observed 

in the organic carbon mineralisation rate (AnMOC) between the sampling transects of 

the PM (Table 6.1.2, 6.2.4 and Figure 6.2.9 A). Neither the lability of organic carbon 

was significantly different between the PM transects, however a gradient was observed 

from higher lability measured in the Riparian samples, to intermediate values in the 

Middle field samples, and lower in the Channel depression samples (Table 6.1.2, 6.2.4 

and Figure 6.2.9 B). However, the methane production potential was significantly 

different; with the Riparian samples displaying the highest rate, followed by the 

Channel depression samples and the Middle field samples (Table 6.1.2, 6.2.4 and Figure 

6.2.9 C). 

 

A PCA analysis of the environmental variables with some significant differences 

resulted in extracting three principal components which explained, cumulatively, 95 % 

of the variance between individual samples (Table 6.2.5). The first axis was associated 

with the water content (weighing 0.941) and the organic matter content (weighing 

0.899), whereas the second axis was associated with the AnMOC (weighing 0.748) and 

the lability of organic carbon (weighing 0.927). A biplot of the cluster centroids 

(average score on each component, with standard errors) for the three sampling 

transects in PM is shown in Figure 6.2.10. The samples were separated along axis 2 into 

two groups; the first group including only the Channel Depression samples associated 

with lower labile OC, but higher water and organic matter content, and a second group 

with close association of the Middle field and Riparian samples that displayed higher 

labile OC but lower water and organic matter content.  

 

 

Table 6.2.5: The principal components (axes) generated by the PCA, their respective 

eigenvalues, the % of variance explained by each component and the cumulative % of 

variance explanation. 

 

Axes Eigenvalues % of Variance Cumulative %

1 2.097 41.9 41.9

2 1.661 33.2 75.2

3 0.991 19.8 95.0  
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Figure 6.2.9: Mean AnMOC, lability of organic carbon and methane production 

potential (+ 1 standard error) in the sampling transects of the PM (significant 

differences indicated with different lower case letters). 
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Figure 6.2.10: Correlation bi-plot from the PCA analysis with cluster centroids 

(average score on each component, with standard errors) for the three sampling 

transects in PM. Correlations of the variables with the main axes are given by solid 

arrows. Dashed arrows indicate the correlation of nitrate attenuation processes with the 

component axes. Water; water content, OM; organic matter content, Lability; labile 

organic carbon, D; potential denitrification rate. 

 

 

Following the low variability observed between the sampling transects of the PM in 

terms of their soil physical properties and AnMOC and lability of organic carbon 

measurements, the potential denitrification was not significantly different between the 

transect samples (Table 6.2.4).  The Channel Depression and the Riparian samples had 

similar denitrification rates, despite the fact that there was significant difference in their 

organic matter and carbon content, and the Middle field samples had slightly lower 

denitrification potential (Table 6.1.6 and Figure 6.2.11 A). 

 

The potential DNRA rates were also similar between the Channel Depression and the 

Riparian samples, while the Middle field samples displayed a slightly lower DNRA rate 

(Table 6.1.6, 6.2.4 and Figure 6.2.11 B). 
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Figure 6.2.11: Mean denitrification potential, DNRA potential and D/DNRA (+ 1 

standard error) in the sampling transects of the PM (significant differences indicated 

with different lower case letters). 
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Regarding the relative importance of denitrification over DNRA, the Middle field 

samples had on average 72 times higher denitrification than DNRA rates, followed by 

the Channel depression with 42 times less DNRA and finally the Riparian samples, 

where denitrification was 36 times higher than DNRA (Figure 6.2.11 C). Although the 

results indicated a shift of the relative importance in favour of DNRA towards the 

riparian zone of the floodplain, as shown also for the FM land use zone, the differences 

in the D/DNRA ratio were not statistically significant (Table 6.2.4). 

 

Correlation analysis (Table 6.2.6) revealed a strong significant positive correlation 

between denitrification and DNRA, indicating the coexistence of the two processes in 

the sampling transects of the PM. This is also shown by the similar correlation of the 

two processes with the PCA axes in Fig 6.2.10. Moreover, denitrification correlated 

significantly with the water content and less strongly with the AnMOC. On the other 

hand, DNRA showed an unexpected significant negative correlation with the TOC:TN 

ratio and also a significant positive correlation with the water content  but no significant 

relationship was found between DNRA and methane production potential. 

 

Multiple Regression Analysis (MRA) resulted in the same significant relationships 

indicated also by the correlation analysis, with the water content explaining 51 % 

(MRA; r2=0.51, df=14, P<0.01) of the variance between the PM samples and the 

AnMOC explaining 35 % of the variance (MRA; r2=0.35, df=14, P<0.05). The MRA 

results for DNRA were also similar to the correlation results, with the ratio TOC/TN 

explaining 47 % (MRA; r2=0.47, df=13, P<0.01) of the variance in DNRA rates 

between the PM samples, followed by the water content with 41 % explanatory power 

(MRA; r2=0.41, df=14, P<0.05), and also the methane production potential explaining 

35 % (MRA; r2=0.35, df=11, P<0.05) of the variance in DNRA rates.  
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Table 6.2.6: Correlation matrix between the DNRA potential rate, the denitrification potential rate, AnMOC, lability of organic carbon, methane 

production potential and the physical properties of the topsoil in the sampling transects of PM. Underlined correlation coefficients are products 

of Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is significant at the 

0.01level and *Correlation is significant at the 0.05 level. 

 

 

 

 

 

 

 

 

 

 

 

 

Denitrification 
potential DNRA AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon TOC/TN TOC/NO3

-
Water 
content Soil nitrate

Denitrification potential R or rho 1
P .
N 15

DNRA R or rho 0.800** 1
P 0.000 .
N 15 15

AnMOC R or rho 0.594* 0.509 1
P 0.020 0.053 .
N 15 15 15

Org. carbon lability R or rho 0.281 0.192 0.531* 1
P 0.310 0.493 0.042 .
N 15 15 15 15

Methane emission R or rho 0.217 0.264 -0.070 0.587* 1
P 0.457 0.361 0.811 0.027 .
N 14 14 14 14 14

Organic matter content R or rho 0.412 0.367 0.274 -0.454 -0.440 1
P 0.127 0.179 0.323 0.089 0.115 .
N 15 15 15 15 14 15

Organic carbon R or rho 0.204 0.259 0.243 -0.712** -0.468 0.744** 1
P 0.466 0.352 0.383 0.003 0.092 0.001 .
N 15 15 15 15 14 15 15

TOC/TN R or rho -0.280 -0.688** -0.200 0.058 0.014 -0.119 -0.273 1
P 0.333 0.007 0.493 0.843 0.963 0.684 0.345 .
N 14 14 14 14 13 14 14 14

TOC/NO3
- R or rho -0.088 -0.360 0.024 -0.574* -0.924** 0.411 0.556* 0.279 1

P 0.765 0.206 0.935 0.032 0.000 0.144 0.039 0.356 .
N 14 14 14 14 13 14 14 13 14

Water content R or rho 0.714** 0.643** 0.596* -0.039 -0.070 0.816** 0.556* -0.130 -0.089 1
P 0.003 0.010 0.019 0.891 0.811 0.000 0.031 0.657 0.752 .
N 15 15 15 15 14 15 15 14 15 15

Soil nitrate R or rho 0.255 0.446 0.231 0.296 0.580* -0.161 -0.038 -0.181 -0.776** 0.258 1
P 0.378 0.110 0.427 0.304 0.038 0.583 0.898 0.553 0.001 0.374 .
N 14 14 14 14 13 14 14 13 14 14 15

Variables/Correlation coefficients

 

25
6
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Concluding, the hydrogeomorphic units represented by the three sampling transects in 

PM showed low variability with respect to their soil physical properties and organic 

carbon mineralisation rate. This could be due to the characteristic hydrologic regime in 

this area, with two sources of overbank flooding (see section 5.3) covering the majority 

of the floodplain area and resulting in fairly homogeneous conditions across the site. 

However, the slightly higher water, organic carbon and clay content of the Channel 

depression samples favoured relatively high denitrification rates, while the availability 

of labile organic carbon in the Riparian samples and the reduced conditions were 

probably responsible for increased denitrification activity. DNRA in the PM transects 

followed closely the denitrification conditions, while the ratio TOC/TN was associated 

with lower DNRA rates opposite to what was observed in the FM transects. Finally, the 

MRA highlighted once again the dependence of DNRA on the reduced conditions, most 

frequently found in the Channel Depression and the Riparian area. 

 

 

6.2.3 Buffer Zone (BZ) 

The smallest land use zone of the re-connected floodplain of the River Cole was found 

very homogeneous in terms of the topsoil physical properties between its sampling 

transects (Riparian, Middle Field and Arable). None of the measured physical properties 

displayed a statistically significant difference between the sampling transects (Table 

6.2.7), although in most cases a gradient from the riparian towards the arable transect 

was observed. The bulk density was lower near the river (Riparian transect) and higher 

in the Arable field (Table 6.1.1 and Figure 6.2.12 A). On the contrary, the water, as well 

as the organic matter content followed an opposite gradient with higher values observed 

in the Riparian samples moving towards lower values in the Arable field (Table 6.1.1 

and Figure 6.2.12 B,C). The same gradient was observed for the organic carbon content 

and the ratio TOC/TN (Figure 6.2.12 D,E). The ratio TOC/NO3
- was lower in the 

Riparian transect and higher in the Arable field (Figure 6.2.12 F). The particle size 

fractions were similar across the sampling transects with the exception of silt that was 

significantly less in the Arable field samples (Table 6.2.7 and Figure 6.2.13).  

 

Regarding the soil nitrate content, it was found three times higher in the Riparian 

samples compared to the rest of the BZ, but the variability between samples was very 

high and therefore the difference was not statistically significant (Table 6.2.7).  As for 
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the soil ammonia and the soil nitrite, they both followed the common gradient with 

higher values near the river and lowest values in the arable field (Table 6.1.1 and Figure 

6.2.14).  

 

 

 

Table 6.2.7: Comparison of the means between the three sampling transects of the BZ 

area for selected soil properties and processes. df; degrees of freedom, F; F statistic, χ2; 

χ
2 statistic P; probability level. Where the variable is annotated with * the non-

parametric Kruskal-Wallis test has been used instead of One-Way ANOVA. 

Buffer Zone df F or χ 2
P

Bulk density 14 3.17 >0.05

Organic matter 14 3.09 >0.05

Organic carbon 14 0.34 >0.05

Silt fraction 14 4.73 <0.05

Water content 14 0.95 >0.05

TOC/TN 14 0.42 >0.05

TOC/NO3
- 14 3.49 >0.05

Soil nitrate* 2 2.78 >0.05

Soil ammonia 14 0.67 >0.05

Soil nitrite 14 0.62 >0.05

AnMOC* 2 7.34 <0.05

Lability of OC 14 15.62 <0.01

Methane emission* 2 7.49 <0.05

Denitrification 14 1.58 >0.05

DNRA 14 0.91 >0.05

D/DNRA 14 1.22 >0.05

One-Way ANOVA and Kruskal-Wallis
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Figure 6.2.12: Soil physical properties in the sampling transects of the Buffer Zone. 

Data are means + 1 SE. Same lower case letters indicate no significant difference of the 

means.
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Figure 6.2.13: Absolute particle size distribution (volume %) in the three sampling 

transects of the Buffer Zone (mean and + 1 standard error, same lower case letters 

indicate no significant difference between the means). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.14: Mean concentrations of NO3
--N, NH3-N and NO2

--N (+ 1 standard error) 

in the three sampling transects of the Buffer Zone. Same lower case letters indicate no 

significant difference between the means. 
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Unlike the soil physical properties, the AnMOC displayed statistically significant 

differences between the sampling transects of the BZ area (Table 6.2.7). Specifically, 

the Arable field samples had the lowest mineralisation rate, whereas the Riparian and 

Middle field samples were not significantly different (Table 6.1.2 and Figure 6.2.15 A).  

Similarly, the lability of organic carbon was significantly lower in the Arable field 

samples, and there was no significant difference between Riparian and Middle samples 

(Table 6.1.2, 6.2.7 and Figure 6.2.15 B). The same pattern was also observed for the 

methane production potential. The arable field samples displayed significantly lower 

rates, whereas the Riparian and the Middle field samples were not statistically different 

(Table 6.1.2, 6.2.7 and Figure 6.2.15 C). 

 

The PCA extracted three principal component axes that combined explained 91 % of the 

variance between individual samples (Table 6.2.8). The correlation coefficients between 

the first two axes and the environmental variables are shown in Table 6.2.9. Of these 

axes, the first explained 58 % of the variance and was associated with the AnMOC, the 

organic carbon and the water content, the soil nitrate, the methane production potential 

and the lability of OC. The second axis explained 20 % of the variance and was 

associated with the clay content and the ratio TOC/NO3
-. Plotting the scores of the first 

two axes for each sample resulted in the bi-plot of Figure 6.2.16. The majority of the 

samples formed a cluster which was positioned at the negative side of axis 1 showing 

weak correlation with the variables associated with this axis. The cluster included all the 

samples of the arable transect, which were closely related to the ratio TOC/NO3
-, most 

of the middle field samples and only two of the riparian samples, those located further 

away from the bridge (for a detailed sampling design please see section 4.4.1.1). 

Interestingly, the first three riparian samples (BZ 1-3) as well as the samples BZ6 and 

BZ7 from Middle field were associated with the positive side of axis 1. These samples 

were located near the flood entry points from the river and the drainage tunnel below 

the road and were waterlogged for considerably longer periods (see also section 5.3). 

Due to the higher frequency and longer duration of suboxic conditions, these BZ 

locations may constitute biogeochemical activity ‘hotspots’. Therefore, the hydrologic 

regime of the BZ clearly affected the topsoil properties, with higher moisture content, 

higher AnMOC, higher NO3
- supply and lower redox potential, hence creating 

favourable conditions for both denitrification and DNRA. 
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Figure 6.2.15: Mean AnMOC, lability of organic carbon and methane production 

potential (+ 1 standard error) in the sampling transects of the BZ (significant differences 

indicated with different lower case letters). 
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Figure 6.2.16: Correlation bi-plot from the PCA analysis in the three sampling transects 

in BZ. Correlations of the variables with the main axes are given by solid arrows. 

Dashed arrows indicate the correlation of nitrate attenuation processes with the 

component axes. Black circles; Riparian samples, Grey squares; Middle field samples, 

Light grey triangles; Arable field samples, Water; water content, CH4; methane 

production potential, NO3; soil nitrate content, D; potential denitrification rate. 

 

 

 

 

 

 

Table 6.2.8: The principal components (axes) generated by the PCA, their respective 

eigenvalues, the % of variance explained by each component and the cumulative % of 

variance explanation. 

Axes Eigenvalues % of Variance Cumulative %

1 4.631 57.9 57.9

2 1.619 20.2 78.1

3 0.997 12.5 90.6
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Table 6.2.9: Correlation coefficients of the environmental variables in PCA. 

***Correlation significant at the 0.01 probability level. 

Variables Component 1 Component 2

Water content 0.859*** 0.366

Clay content 0.423 0.770***

AnMOC 0.931*** 0.134

Methane 0.770*** -0.303

Organic Carbon 0.897*** 0.280

Soil Nitrate 0.774*** -0.446

TOC/NO3 -0.594 0.710***

Lability of OC 0.706*** -0.022  

 

 

The Buffer Zone area displayed very homogeneous soil physical properties and only the 

AnMOC, the lability of organic carbon and the methane production potential were 

significantly lower in the Arable field samples. The homogeneity was also evident in 

the potential denitrification rates that were not significantly different between sampling 

transects (Table 6.2.7). The gradient from the river towards the arable field, found in the 

majority of the soil properties, was also repeated for the denitrification potential; with 

the Riparian samples having slightly higher rates, followed by the Middle field samples 

and finally the Arable field samples (Table 6.1.6 and Figure 6.2.17 A). 

 

The DNRA results were similar to the pattern for the denitrification rate; the sampling 

transects of the BZ were not significantly different (Table 6.2.7). The DNRA rates of 

the Riparian and Middle field samples were almost identical, while the Arable field 

samples had a slightly lower rate (Table 6.1.6 and Figure 6.2.17 B). As expected, the 

ratio D/DNRA was not significantly different between the sampling transects of the 

Buffer Zone (Table 6.2.7 and Figure 6.2.17 C).  

 

As a result of the homogeneous conditions between sampling transects and the fact that 

the nitrate attenuation processes followed a similar gradient to the soil physical 

properties, correlation analysis indicated numerous statistically significant relationships 

(Table 6.2.10).  
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Figure 6.2.17: Mean denitrification potential, DNRA potential and D/DNRA (+ 1 

standard error) in the sampling transects of the BZ (significant differences indicated 

with different lower case letters). 
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Denitrification showed a strong significant positive correlation with DNRA, with the 

water content, the AnMOC, the organic carbon content, the ratio TOC/TN and the soil 

nitrate content. Similarly, DNRA correlated strongly with the water content, the 

AnMOC, the organic carbon content and the methane production potential (Table 

6.2.10). 

 

MRA for the denitrification potential confirmed the results of the correlation analysis; 

with the water content explaining 79 % (MRA; r2=0.79, df=14, P<0.01) of the variance 

observed in the denitrification potential rates, followed by the AnMOC with 70 % 

(MRA; r2=0.70, df=14, P<0.01), the organic carbon content with 58 % (MRA; r2=0.58, 

df=14, P<0.01) and the ratio TOC/TN with 49 % (MRA; r2=0.49, df=14, P<0.01). MRA 

for the DNRA potential rates indicated the water content with 83 % (MRA; r2=0.83, 

df=9, P<0.01) explanatory power, followed by the AnMOC with 69 % (MRA; r2=0.69, 

df=9, P<0.01), the ratio TOC/TN with 65 % (MRA; r2=0.65, df=9, P<0.01)  and the 

organic carbon content with 59 % (MRA; r2=0.59, df=9, P<0.05). 

 

Overall the hydrogeomorphic units in the BZ area (i.e. sampling transects) were fairly 

homogeneous in their soil physical properties reflecting a uniform hydrologic regime 

dominated by overbank flooding of the river, which extends from the riparian area to 

the arable field. However, those locations near the river margin and the drainage tunnel 

beneath the road, due to their longer floodwater retention times, have been separated by 

the PCA as ‘hotspots’ of favourable conditions for denitrification and DNRA. Although 

not statistically significant, a decreasing gradient of favourable conditions for nitrate 

attenuation was observed from the riparian transect towards the arable field. Despite the 

AnMOC, the labile OC and the methane production potential being significantly lower 

in the arable field samples, the denitrification and DNRA potential was not different 

between the transects. The results suggest that the BZ as a whole has the potential for 

effective nitrate attenuation provided that the overbank flooding creates the necessary 

conditions of reduced oxygen availability, and increased supply of labile organic carbon 

and nitrate.  
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Table 6.2.10: Correlation matrix between the DNRA potential rate, the denitrification potential rate, AnMOC, lability of organic carbon, 

methane production potential and the physical properties of the topsoil in the sampling transects of BZ. Underlined correlation coefficients are 

products of Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is significant 

at the 0.01level and *Correlation is significant at the 0.05 level. 

 

 

 

 

 

 

 

 

 

 

 

Denitrification 
potential DNRA AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon TOC/TN TOC/NO3

-
Water 
content Soil nitrate

Denitrification potential R or rho 1
P .
N 15

DNRA R or rho 0.887** 1
P 0.000 .
N 15 15

AnMOC R or rho 0.837** 0.866** 1
P 0.020 0.000 .
N 15 15 15

Org. carbon lability R or rho 0.631* 0.698** 0.878** 1
P 0.012 0.004 0.000 .
N 15 15 15 15

Methane emission R or rho 0.498 0.730** 0.833** 0.786** 1
P 0.059 0.002 0.000 0.001 .
N 15 15 15 15 15

Organic matter content R or rho 0.652** 0.677** 0.824** 0.704** 0.909** 1
P 0.008 0.006 0.000 0.003 0.000 .
N 15 15 15 15 15 15

Organic carbon R or rho 0.763** 0.778** 0.808** 0.442 0.433 0.737** 1
P 0.001 0.001 0.000 0.099 0.107 0.002 .
N 15 15 15 15 15 15 15

TOC/TN R or rho 0.697** 0.722** 0.820** 0.560* 0.396 0.657** 0.829** 1
P 0.004 0.002 0.000 0.030 0.143 0.008 0.000 .
N 15 15 15 15 15 15 15 15

TOC/NO3
- R or rho -0.219 -0.244 -0.346 -0.286 -0.506 -0.606* -0.349 -0.447 1

P 0.433 0.382 0.206 0.302 0.055 0.017 0.202 0.095 .
N 15 15 15 15 15 15 15 15 15

Water content R or rho 0.889** 0.921** 0.874** 0.650** 0.676** 0.680** 0.817** 0.738** -0.270 1
P 0.000 0.000 0.000 0.009 0.006 0.005 0.000 0.002 0.330 .
N 15 15 15 15 15 15 15 15 15 15

Soil nitrate R or rho 0.593* 0.610* 0.562* 0.372 0.542* 0.696** 0.611* 0.597* -0.871** 0.510 1
P 0.020 0.016 0.029 0.172 0.037 0.004 0.016 0.019 0.000 0.052 .
N 15 15 15 15 15 15 15 15 15 15 15

Variables/Correlation coefficients

 

26
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6.2.4 Grazing Grassland (GG) 

The physical properties of the topsoil in the three sampling transects of the Grazing 

Grassland (Mill Leat, Middle Field and Riparian) are summarised in Table 6.1.1. 

Opposite to the other zones of the re-connected floodplain, GG has two transects 

influenced by overbank flooding, the Mill Leat adjacent to the old channel, and the 

Riparian along the meandering river, whereas the grazing activity is concentrated in the 

Middle Field. The above land use and hydrological regime seem to be influencing 

markedly the physical properties of the topsoil. 

 

The dry bulk density was found significantly lower (Table 6.2.11) in the Middle Field, 

whereas the water content and the organic matter content were significantly higher in 

the Middle (Figure 6.2.18 A,B,C). The organic carbon was also found significantly 

higher in the Middle, but the ratios TOC/TN and TOC/NO3
- were not significantly 

different between transects (Table 6.2.11 and Figure 6.2.18 D,E,F).  

 

Table 6.2.11: Comparison of the means between the three sampling transects of the GG 

area for selected soil properties and processes. df; degrees of freedom, F; F statistic, χ2; 

χ
2 statistic P; probability level. Where the variable is annotated with * the non-

parametric Kruskal-Wallis test has been used instead of One-Way ANOVA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grazing Grassland df F or χ 2
P

Bulk density 14 11.67 <0.01

Organic matter 14 9.56 <0.01

Organic carbon 14 6.03 <0.05

Very fine sand 14 4.49 <0.05

Water content 14 5.90 <0.05

TOC/TN 14 3.21 >0.05

TOC/NO3
- 14 0.61 >0.05

Soil nitrate* 2 1.82 >0.05

Soil ammonia* 2 5.29 >0.05

Soil nitrite* 2 2.66 >0.05

AnMOC* 2 4.61 >0.05

Lability of OC 12 0.06 >0.05

Methane emission* 2 10.68 <0.01

Denitrification 14 2.79 >0.05

DNRA 14 3.02 >0.05

D/DNRA 14 0.60 >0.05

One-Way ANOVA and Kruskal-Wallis
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Figure 6.2.18: Soil physical properties in the sampling transects of the Grazing 

Grassland. Data are means + 1 SE. Same lower case letters indicate no significant 

difference of the means. 
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However, the particle size fractions were not significantly different between the transect 

samples, with the exception of the very fine sand fraction that was significantly higher 

in the Mill Leat samples compared to the Middle (Figure 6.2.19). Finally, the mean soil 

nitrate concentration, although double in the Middle samples, due to high inter-sample 

variability, it was not statistically different from the other transects. Both soil ammonia 

and nitrite concentrations were not found significantly different between transects 

(Table 6.2.11 and Figure 6.2.20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.19: Absolute particle size distribution (volume %) in the three sampling 

transects of the Grazing Grassland (mean and + 1 standard error, same lower case letters 

indicate no significant difference between the means). 

 

 

Although the majority of the soil physical properties showed some significant 

differences between the sampling transects of the GG, the AnMOC was not 

significantly different mainly due to the high variability observed in the Middle field 

samples (Table 6.1.2, 6.2.11 and Figure 6.2.21 A). Similarly, the lability of organic 

carbon, although it was double for the Middle field samples (Table 6.1.2 and Figure 

6.2.21 B), due to the high variability it was not significantly different from the rest of 

the sampling transects. 
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Figure 6.2.20: Mean concentrations of NO3
--N, NH3-N and NO2

--N (+ 1 standard error) 

in the three sampling transects of the Grazing Grassland. Same lower case letters 

indicate no significant difference between the means. 

 

 

 

The methane production potential was however significantly different between the 

sampling transects (Table 6.2.11), with the Riparian samples displaying the highest rate, 

followed by the Mill Leat samples and the Middle field samples (Table 6.1.2 and Figure 

6.2.21 C). 

 

The application of PCA with those variables that displayed some significant differences 

resulted in three principal component axes explaining 94 % of the variance between 

individual samples (Table 6.2.12). Axis 1 was associated with the water content, the 

AnMOC, the lability of OC and the soil nitrate, while the second axis was associated 

with the CH4 production potential and the ratio TOC/NO3
- (Table 6.2.13). Plotting the 

cluster centroids (average score per component and standard errors) for the three 

transects resulted in Figure 6.2.22. The Middle samples were associated with the 

positive axis 1, while the error bars indicated the high variability between samples. The 

Riparian and Mill leat samples overlapped along axis 1, while the first were closely 

associated with the methane potential whereas the latter were related to the ratio 

TOC/NO3
-.   

 

0
5

10
15
20
25
30
35
40
45
50

Mill Leat Middle field Riparian

S
o

il 
n

itr
o

g
en

 (m
g

 k
g

-1
 d

ry
 s

o
il)

Nitrate

Ammonia

Nitrite

a 

a 

a 

b b 

b 

c 
c 



 272 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.2.21: Mean AnMOC, lability of organic carbon and methane production 

potential (+ 1 standard error) in the sampling transects of the GG (significant 

differences indicated with different lower case letters). 
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Figure 6.2.22: Correlation bi-plot from the PCA analysis with cluster centroids 

(average score on each component, with standard errors) for the three sampling 

transects in GG. Correlations of the variables with the main axes are given by solid 

arrows. Dashed arrows indicate the correlation of nitrate attenuation processes with the 

component axes. Water; water content, NO3
-; soil nitrate content, Lability; labile 

organic carbon, CH4; methane production potential, D; potential denitrification rate. 

 

 

 

 

 

 

Table 6.2.12: The principal components (axes) generated by the PCA, their respective 

eigenvalues, the % of variance explained by each component and the cumulative % of 

variance explanation. 

Axes Eigenvalues % of Variance Cumulative %
1 4.750 67.9 67.9
2 1.338 19.1 87.0
3 0.461 6.6 93.6  
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Table 6.2.13: Correlation coefficients of the environmental variables in PCA. 

***Correlation significant at the 0.01 probability level. 

Variables Component 1 Component 2

Water content 0.933*** 0.142

Organic matter 0.865*** 0.249

AnMOC 0.953*** 0.050

Methane -0.383 -0.811***

Soil Nitrate 0.929*** -0.192

TOC/NO3 -0.574 0.739***

Lability of OC 0.940*** -0.109  

 

 

 

The potential denitrification and DNRA rates for the sampling transects of the GG are 

summarised in Table 6.1.6. Despite some significant differences of the soil physical 

properties between the sampling transects, the denitrification rates were not 

significantly different (Table 6.2.11). The Middle field samples had slightly higher 

denitrification rate, followed by the Mill Leat samples and finally the Riparian samples 

(Figure 6.2.23 A). Neither the DNRA potential was significantly different between the 

sampling transects of the GG (Table 6.2.11). The Mill Leat and the Middle field 

samples had very similar DNRA rates, while the Riparian samples were lower (Figure 

6.2.23 B). With regards to the relative importance of the two processes, D/DNRA ratio, 

there was no significant difference between the sampling transects (Table 6.2.11 and 

Figure 6.2.23 C). 

 

The potential denitrification and DNRA rates showed a significant positive correlation 

with each other (Table 6.2.14). Moreover, both processes correlated significantly with 

the AnMOC, the bulk density and the water content. Finally, no significant relationship 

was found between DNRA and the methane production potential or the ratio TOC/TN. 
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Figure 6.2.23: Mean denitrification potential, DNRA potential and D/DNRA (+ 1 

standard error) in the sampling transects of the GG (significant differences indicated 

with different lower case letters). 
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Table 6.2.14: Correlation matrix between the DNRA potential rate, the denitrification potential rate, AnMOC, lability of organic carbon, 

methane production potential and the physical properties of the topsoil in the sampling transects of GG. Underlined correlation coefficients are 

products of Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is significant 

at the 0.01level and *Correlation is significant at the 0.05 level. 

 

 

 

 

 

 

 

 

 

 

 

 

Denitrification 
potential DNRA AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon TOC/TN Bulk density 

Water 
content Soil nitrate

Denitrification potential R or rho 1
P .
N 15

DNRA R or rho 0.811** 1
P 0.000 .
N 15 15

AnMOC R or rho 0.736** 0.692** 1
P 0.003 0.006 .
N 14 14 14

Org. carbon lability R or rho 0.493 0.544 0.561* 1
P 0.087 0.055 0.046 .
N 13 13 13 13

Methane emission R or rho -0.396 -0.191 -0.476 0.409 1
P 0.181 0.532 0.118 0.212 .
N 13 13 12 11 13

Organic matter content R or rho 0.572* 0.521* 0.849** 0.378 -0.714** 1
P 0.026 0.047 0.000 0.202 0.006 .
N 15 15 14 13 13 15

Organic carbon R or rho 0.371 0.554* 0.635* 0.093 -0.665* 0.795** 1
P 0.174 0.032 0.015 0.763 0.013 0.000 .
N 15 15 14 13 13 15 15

TOC/TN R or rho 0.313 0.502 0.613* 0.057 -0.462 0.697** 0.910** 1
P 0.256 0.057 0.020 0.854 0.112 0.004 0.000 .
N 15 15 14 13 13 15 15 15

Bulk density R or rho -0.723** -0.647** -0.907** -0.277 -0.740** -0.831** -0.705** -0.637* 1
P 0.002 0.009 0.000 0.359 0.004 0.000 0.003 0.011 .
N 15 15 14 13 13 15 15 15 15

Water content R or rho 0.739** 0.570* 0.916** 0.531 -0.423 0.911** 0.686** 0.664** -0.842** 1
P 0.002 0.026 0.000 0.062 0.150 0.000 0.005 0.007 0.000 .
N 15 15 14 13 13 15 15 15 15 15

Soil nitrate R or rho 0.506 0.416 0.922** 0.622* -0.132 0.730** 0.532* 0.536* -0.799** 0.814** 1
P 0.054 0.123 0.000 0.023 0.668 0.002 0.041 0.040 0.000 0.000 .
N 15 15 14 13 13 15 15 15 15 15 15

Variables/Correlation coefficients
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MRA between the denitrification potential and the environmental variables indicated 

that AnMOC can explain 61 % of the variance in denitrification (MRA; r2=0.61, df=14, 

P<0.01), while the lability of organic carbon, that was not picked up by the correlation 

analysis, displayed 54 % explanatory power (MRA; r2=0.54, df=14, P<0.01). 

Additionally, the water content explained 46 % of the variance (MRA; r2=0.46, df=14, 

P<0.01), while the organic matter content 33 % (MRA; r2=0.33, df=14, P<0.05) and the 

bulk density 32% (MRA; r2=0.32, df=14, P<0.05). MRA between the DNRA potential 

and the environmental variables was not in good agreement with the correlation results. 

The highest explanatory power was shown for the organic carbon content with 30% 

(MRA; r2=0.30, df=14, P<0.05), while only the organic matter content (MRA; r2=0.27, 

df=14, P<0.05) and the AnMOC (MRA; r2=0.27, df=14, P<0.05) were also significant 

in regression analysis and they could both explain 27 % of the variance in DNRA rates.  

 

The specific hydrologic regime of the GG as well as the land use affected the 

distribution of soil moisture and organic carbon across the site. Specifically, the Middle 

field was associated with higher organic carbon availability, possibly as a result of the 

grazing activity and the animal manure, which created carbon ‘hotspots’, as it was also 

indicated by the high variability shown in the PCA. Moreover, the overbank flooding 

regime in both the Riparian and the Mill leat transects was responsible for lower redox 

conditions indicated by the methane production potential. However, neither the 

denitrification nor the DNRA potential were significantly different between 

hydrogeomorphic units, due to high variability among samples, although denitrification 

tended to be higher within the grazing zone. Therefore, it could be argued that the 

external organic carbon supply in conjunction with frequent overbank flooding from 

both the river and the old channel create the necessary conditions for effective nitrate 

attenuation across the whole extent of the GG.  
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6.3   The effect of subsurface hydrology and soil properties on nitrate attenuation in 

two land use zones of the River Cole re-connected floodplain 

The effect of groundwater hydrology and subsurface soil properties on the nitrate 

attenuation processes in the vadoze zone of the reconnected floodplain of the River Cole 

was investigated in the Buffer Zone (BZ) and the Pasture Meadow (PM) where a 

detailed study of the hydrological regime was also conducted. Moreover, the potential 

for denitrification in the subsurface of the BZ was investigated for the purpose of the 

application of the NEMIS model (see Chapter 7).  

 

6.3.1 Soil physical properties in the subsurface of the Buffer Zone 

The soil physical properties, averaged from eight randomly sampled locations in the 

BZ, at six depth intervals (A; 0 – 10 cm, B; 10 – 20 cm, C; 20 – 30 cm, D; 50 – 70 cm, 

E; 80 – 100 cm and F; 100 – 120 cm) are summarised in Table 6.3.1. Table 6.3.2 

presents the results of the parametric (One-Way ANOVA) or non-parametric (Kruskal-

Wallis) statistical tests for the comparison of variable means between depth intervals. 

The dry bulk density was significantly different between the A, B and C depth intervals 

and only the D, E and F depths did not differ between them (Figure 6.3.2 A). Regarding 

the absolute particle size distribution, the topsoil (A depth interval) had significantly 

less clay and silt content, while the fine and medium sand contents were higher than in 

the rest of the depth intervals (Figure 6.3.1). Therefore the topsoil in the BZ was 

classified as sandy clay loam, as opposing to silty clay loam found in an earlier 

sampling for the land use analysis, whereas the subsurface was dominated by clay and 

silt, with appreciable amounts of fine (10 %) and medium (6 %) sands. The combination 

of low bulk density and high mean grain size for the topsoil leads to increased 

permeability k (19.3 m2) according to Boudreau (1997). The discrepancy observed in 

the soil type of the BZ topsoil between the two different samplings could be due to the 

fact that the sampling dates were 18 months apart and during this period there were 

numerous high magnitude flood events that could have changed the composition of the 

topsoil (see Chapter 5).  
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Table 6.3.1: Soil physical properties in the sampled depth intervals of the buffer zone subsurface (data are mean values ± 1 SE). 

Soil type

Buffer Zone depth Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=8) Sandy clay loam 0.75 0.05 51.9 4.84 11.1 0.73 4.5 0.47 10.5 0.31 15.3 2.6 0.34 0.05

B 10-20 cm (n=8) Clay loam 1.24 0.04 38.6 2.58 8.4 0.47 2.9 0.32 10.0 0.18 7.8 2.1 0.47 0.07

C 20-30 cm (n=8) Silty clay 1.13 0.04 36.7 2.61 6.8 0.65 1.6 0.24 11.7 0.96 6.9 1.3 0.30 0.07

D 50-70 cm (n=8) Clay 2.20 0.06 38.8 4.04 6.2 0.44 1.3 0.1811.0 0.92 6.0 1.1 0.26 0.07

E 80-100 cm (n=8) Silty clay 2.20 0.06 41.0 3.87 5.1 0.33 1.4 0.12 8.4 0.95 4.8 2.1 0.56 0.16

F 100-120 cm (n=8) Silty clay 2.15 0.11 43.3 4.57 5.0 0.58 1.3 0.28 8.1 0.77 5.4 1.7 1.10 0.71

Dry Bulk Density Water content Organic matter Organic carbon TOC/TN NO3
--N TOC/NO3

-

(g cm-3) (%) (%) (%) (mg kg-1)

 

 

Table 6.3.2: Comparison of the means between the depth intervals of the BZ subsurface for selected soil properties and processes. df; degrees of 

freedom, F; F statistic, χ2; χ2 statistic P; probability level. Where the variable is annotated with * the non-parametric Kruskal-Wallis test has 

been used instead of One-Way ANOVA.  

  

 

 

 

 

Buffer Zone subsurface df F or χ 2
P

Bulk density* 5 44.9 <0.01

Clay fraction 47 2.6 <0.05

Silt fraction 47 6.0 <0.01

Fine sand fraction 47 8.3 <0.01

Medium sand fraction* 5 15.7 <0.01

Water content 47 2.0 >0.05

Organic matter 47 17.5 <0.01

Organic carbon 47 19.8 <0.01

TOC/TN 47 3.7 <0.01

TOC/NO3
-* 5 5.1 >0.05

One-Way ANOVA and Kruskal-Wallis

Buffer Zone subsurface df F or χ 2
P

Soil nitrate 47 4.2 <0.01

Soil ammonia* 5 7.7 >0.05

Soil nitrite* 5 15.7 <0.01

AnMOC* 5 32.9 <0.01

Lability of OC* 5 12.0 <0.05

Methane emission* 5 21.7 <0.01

Denitrification* 5 41.0 <0.01

Nitrous oxide production 46 56.3 <0.01

DNRA 47 21.6 <0.01

D/DNRA* 5 13.9 <0.05

One-Way ANOVA and Kruskal-Wallis
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Figure 6.3.1: Absolute particle size distribution in the depth intervals of the subsurface 

of the BZ. Different lower case letters indicate significant differences. 

 

Although the mean water content of the samples from the various depth intervals was 

not significantly different, the results showed a decreasing trend moving downwards in 

the soil profile from the surface, while the soil moisture increased again below 50 cm 

depth (Figure 6.3.2 B). The organic matter content decreased exponentially from the 

ground surface to 120 cm depth (Figure 6.3.2 C), whilst the organic carbon content 

decreased exponentially within 30 cm from the surface, with no significant difference 

between depths C, D, E and F (Figure 6.3.2 D). The ratio total organic carbon to total 

nitrogen (TOC/TN) was significantly different between the first four depth intervals 

(A,B,C,D) and the bottom two (E and F) (Figure 6.3.2 E). In contrast, the ratio 

TOC/NO3
- was not different across the subsurface of the BZ (Figure 6.3.2 F). 

Significantly higher soil nitrate content was found in the topsoil of the Buffer Zone, 

while the other depth intervals had approximately 50 % less nitrate and were not 

significantly different between each other (Figure 6.3.3 A). Soil ammonia content was 

not significantly different between the depth intervals and the highest values were 

observed in the topsoil and in the saturated zone where the variability was very high 

driven by two hotspots in the samples 4 and 6 (Figure 6.3.3 B). Finally the nitrite 

content (Figure 6.3.3 C) was significantly higher in the topsoil compared to the rest of 

the depth intervals with the exception of depth B and the saturated zone F, indicating 

the possibility of nitrate reduction processes occurring in deeper horizons and especially 

the permanently saturated zone. 
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Figure 6.3.2: Dry bulk density, water content, organic matter and organic carbon 

contents, TOC/TN and TOC/NO3
- ratios in the depth intervals of the BZ subsurface. 

Data are mean values ± 1 SE. Different lower case letters indicate significant 

differences 
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Figure 6.3.3: Soil NO3
--N, NH4

+-N and NO2
--N in the depth intervals of the BZ 

subsurface. Data are mean values ± 1SE. Different lower case letters indicate significant 

differences.  
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6.3.2 AnMOC and methane production potential  in the subsurface of the Buffer 

Zone 

The anaerobic mineralisation rate of organic carbon (AnMOC) was significantly 

different between the depth intervals A, B and C compared to the deeper intervals D, E 

and F that were not different between each other (Table 6.3.2, 6.3.3 and Figure 6.3.4 A). 

The anaerobic mineralisation rate was reduced by 50 % within 10 cm in the topsoil 

(from 10 to 20 cm) and by 75 % down to 30 cm in the soil profile. Within the B soil 

horizon (50 – 100 cm) the AnMOC was 85 – 90 % less than the surface (top 10 cm) 

rate. However, the permanently saturated C soil horizon (>100 cm) retained 20 % of the 

mineralisation rate observed in the topsoil and that could possibly sustain a reduced rate 

of nitrogen retention processes. 

 

The results for the lability of organic carbon, although they followed a similar pattern to 

AnMOC, only the E depth interval displayed significantly lower lability (Table 6.3.2, 

6.3.3 and Figure 6.3.4 B). This was mainly due to the high variability among samples as 

shown by the large error bars in Figure 6.3.4 B. However, the lability of the C soil 

horizon, despite the variability, was comparable to the lability of the surface soil, 

supporting further the indication that the deepest saturated zone of the BZ area could 

potentially have enough electron donors to support appreciable rates of nitrogen 

retention processes. Methane production potential was observed predominantly in the 

topsoil (0 – 10 cm) samples (Table 6.3.3). Despite the high variability, the CH4 

production rate of the A samples was significantly higher than the rest of the samples 

(Table 6.3.2 and Figure 6.3.4 C).  

 

Table 6.3.3: Anaerobic mineralisation rate (AnMOC), lability of organic carbon and 

methane production potential in the subsurface of the Buffer Zone. Data are means ± 

1SE. 

 Buffer Zone depth Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=8) 550.2 78.5 13.0 2.0 167.3 79.0

B 10-20 cm (n=8) 273.5 26.7 9.9 1.4 2.7 2.4

C 20-30 cm (n=8) 137.1 15.2 9.3 1.5 0.012 0.01

D 50-70 cm (n=8) 85.3 12.4 8.0 1.5 0.005 0.00

E 80-100 cm (n=8) 51.4 7.7 4.1 0.9 0.004 4.07

F 100-120 cm (n=8) 109.9 25.9 10.1 2.6 0.03 0.02

AnMOC Labile org. carbon Methane

CO2 (µmol kg-1 d-1) CO2 (µmol g-1 TOC d-1) CH 4 (µmol kg-1 d-1)
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Figure 6.3.4: AnMOC, lability of organic carbon and methane production potential in 

the subsurface depth intervals of the BZ. Data are means ± 1 SE. Different lower case 

letters indicate significant differences. 
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Although in every depth interval some samples displayed potential for methane 

production, in all cases it was >90 % lower than the potential of the topsoil. The 

anaerobic incubation and measurement period was extended beyond the three weeks (21 

days) in case there were bacterial populations, mainly in the deeper strata, that had lag 

phases longer than 21 days. As shown in Table 6.3.4, with the exception of one sample, 

the lag phase for the A samples ranged between 2 and 16 days. In the B and C depths 

the lag phase extended beyond 50 days in many cases (Figure 6.3.5). Fewer samples in 

the depth intervals below 50 cm (D, E and F) showed potential for methane production, 

however, the duration of the lag phase was reduced the closer to the permanently 

saturated C soil horizon.  

 

Table 6.3.4: Length of lag phase (d) and mean ± 1SE methane production potential rate 

in the six depth intervals of the Buffer Zone subsurface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.5: Methane production potential of the sample B8 following 53 days of lag 

phase. 

Buffer Zone depth Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=7) 11.4 6.7 167.3 79.0

B 10-20 cm (n=7) 34.9 12.3 2.7 2.4

C 20-30 cm (n=6) 62.3 11.8 0.012 0.01

D 50-70 cm (n=4) 61.8 17.0 0.005 0.00

E 80-100 cm (n=3) 35.7 17.3 0.004 4.07

F 100-120 cm (n=3) 9.7 6.7 0.03 0.02
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6.3.3 Spatial ordination of the Buffer Zone subsurface samples 

Principal Component Analysis (PCA) between the soil physical properties (excluding 

the particle size fractions) and the soil nitrate content, the AnMOC, the lability of 

organic carbon and the methane production potential in the six depth intervals of the BZ 

subsurface resulted in the extraction of three principal axes (Table 6.3.5). The 

correlation coefficients between the first two component axes and the environmental 

variables are shown in Table 6.3.6. The first axis explained 54 % of the variance 

between individual samples and was closely associated with the AnMOC, the organic 

matter content, the water content, the OC lability, the soil nitrate content and the 

methane production potential, while the second axis was associated only with the ratio 

TOC/NO3
-. 

 

Plotting the cluster centroids for each depth interval and projecting the significant 

environmental variables on the scatter plot resulted in the bi-plot of Figure 6.3.6. The 

topsoil samples (A) were clearly separated from the rest and were associated with the 

positive axis 1, suggesting that the co-occurrence of high OC mineralisation rate, high 

soil moisture and soil nitrate as well as low redox is more likely in the topsoil. The 

samples just below the topsoil (B) displayed intermediate conditions and were therefore 

plotted near the origin of the axes. Finally, the samples C, D, E and F formed a large 

cluster with significant overlapping along the negative axis 1, indicating less favourable 

conditions for nitrate attenuation than in the topsoil.  

 

 

Table 6.3.5: The principal components (axes) generated by the PCA, their respective 

eigenvalues, the % of variance explained by each component and the cumulative % of 

inter-sample variance explanation for the BZ subsurface.  

Axes Eigenvalues % of Variance Cumulative %

1 3.747 53.5 53.5

2 1.208 17.3 70.8

3 0.902 12.9 83.7  
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Table 6.3.6: Correlation coefficients of the environmental variables in PCA. 

***Correlation significant at the 0.01 probability level. 

Variables Component 1 Component 2

Water content 0.739*** 0.195

Organic Matter 0.908*** -0.061

Nitrate 0.704*** -0.477

TOC/NO3
- -0.129 0.915***

AnMOC 0.930*** 0.060

Lability of OC 0.727*** 0.245

Methane 0.686*** 0.192  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.6: Correlation bi-plot from the PCA analysis with cluster centroids (average 

score on each component, with standard errors) for the depth intervals (ABCDEF) in 

BZ. Correlations of the variables with the main axes are given by solid arrows. Open 

circles indicate the correlation of nitrate attenuation processes with the component axes. 

Water; water content, OM; organic matter content, Lability; labile organic carbon, CH4; 

methane production potential, NO3
-; soil nitrate content, D; potential denitrification rate. 
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6.3.4 Denitrification and DNRA potential in the subsurface of the Buffer Zone 

All the depth intervals in the subsurface of the Buffer Zone area showed potential for 

denitrification. The potential rate was significantly different between the A and B 

depths and the rest of the depth intervals (Table 6.3.2). Denitrification was not 

significantly different between the C and D depths and the E and F depths, following 

closely the subsurface zonation indicated by the PCA. The denitrification rate decreased 

by 56 % within 10 cm in the topsoil and by 95 % within 120 cm following an 

exponential decay rate (Table 6.3.7 and Figure 6.3.7 A). 

 

The potential for nitrous oxide (N2O) production as a product of denitrification in the 

subsurface of the BZ was also investigated. The B depth interval (10 – 20 cm) displayed 

a significantly higher N2O production potential compared to the topsoil and the rest of 

the subsurface intervals (Table 6.3.2). The nitrous oxide production rate was not 

significantly different between the topsoil and the C and D depth intervals, whereas it 

was significantly lower and not different between the bottom two intervals, E and F 

(Table 6.3.7 and Figure 6.3.7 B). Although the B depth had 44 % lower denitrification 

rate than the topsoil, the incubation time for the topsoil and the B samples was the same. 

Therefore it could be assumed that the slower reaction rate in the B samples resulted in 

the accumulation of N2O that was not further reduced to N2 before the end of the 

experiment.  

 

The ratio of the denitrification products, N2O/N2 followed a similar pattern to the N2O 

production rate (Figure 6.3.8). The ratio increased significantly between A and B depths 

as a result of N2O accumulation during the incubation, but smaller increases were also 

observed between the coupled depths C - D and E - F that also shared the same 

incubation times. Although the differences in the relative importance of the two 

reduction steps seemed to be an effect of the incubation time of the experiment an 

overall trend of decreasing importance for N2O with depth was observed, suggesting 

that the production of nitrous oxide is more likely in the surface soil rather than in the 

subsurface. 
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Table 6.3.7: Denitrification, N2O production and DNRA potential rates in the depth 

intervals of the BZ subsurface. Data are means ± 1SE. 

Buffer Zone depth Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=8) 54.0 8.5 1.8 0.5 1.1 0.2

B 10-20 cm (n=8) 23.7 1.9 4.1 0.7 0.6 0.1

C 20-30 cm (n=8) 10.5 1.9 0.7 0.5 0.4 0.1

D 50-70 cm (n=8) 7.0 1.7 0.4 0.1 0.1 0.02

E 80-100 cm (n=8) 2.4 0.3 0.002 0.001 0.03 0.01

F 100-120 cm (n=8) 2.5 0.4 0.005 0.002 0.02 0.004

DNRANitrous oxideDenitrification

(mg N kg-1 soil d-1) (mg N kg-1 soil d-1) (mg N kg-1 soil d-1)

 

 

 

 

The Buffer Zone subsurface also showed potential for DNRA that varied with depth, 

but not as distinctly as the denitrification potential. The depth intervals A, B and C had 

significantly higher DNRA potential than the D, E and F depths (Table 6.3.2). 

Furthermore, the DNRA potential was not significantly different between the C and D 

depths and the E and F, as shown also for the denitrification potential (Figure 6.3.7 C). 

The DNRA rate decreased by 45 %  within 20 cm in the topsoil and by 62 % within 30 

cm, but the rates were not significantly different due to the high variability observed 

between samples (Table 6.3.7). However, DNRA significantly decreased by 89 % in the 

B soil horizon (50 – 100 cm) and by 92 % in the permanently saturated C soil horizon 

(> 100 cm).  

 

Regarding the ratio denitrification to DNRA (D/DNRA), it was significantly lower in 

the A, B, C and D depths (Table 6.3.2), compared to the E and F depths, indicating that 

the importance of denitrification over DNRA increased significantly below the 

permanently saturated horizon. Denitrification was 32 to 55 times more important 

between the topsoil and 70 cm in the subsurface zone, while it was 97 to 113 times 

more important in the permanently saturated zone (Figure 6.3.9). 
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Figure 6.3.7: Denitrification, N2O production and DNRA potential rates in the depth 

intervals of the BZ subsurface. Data are means ± 1SE. Different lower case letters 

indicate significant differences 
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Figure 6.3.8: The ratio of N2O/N2 in the depth intervals of the BZ subsurface. Data are 

means ± 1SE. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 6.3.9: The ratio of D/DNRA in the depth intervals of the BZ subsurface. Data 

are means ± 1SE. 

 

 

Measuring the NO2
- and N2O produced during denitrification, as well as the DNRA rate, 

allowed for the estimation of the NO3
- budget of the experiment. Table 6.3.8 shows the 

percent contribution of the three products of denitrification, of DNRA, as well as the 

percentage of nitrate ‘unused’ during the experiment. Finally, the proportion of nitrate 

not accounted for in any of the above processes was assumed ‘lost’ by assimilation into 

bacterial biomass.  
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Regarding the topsoil samples, 77 % of the added nitrate was recovered as N2, the end 

product of denitrification, while 15 % remained unused after the three hour incubation, 

indicating that nitrate was not limiting during the experiment. DNRA accounted for 

only 2 % of the added nitrate, while NO2
- and N2O were also present at the end of the 

incubation completing the budget without any indication of nitrate assimilation in 

bacterial biomass. In the depth intervals B, C and D, between 43 and 53 % of the spike 

was converted to N2 gas via complete denitrification, whereas there was some 

accumulation of intermediate denitrification products, especially NO2
- in the depths C 

and D, indicating probably slower reaction rates than the incubation time used (9 h). 

However, between 14 and 22 % of the added nitrate was not recovered and was 

characterised as ‘lost’, indicating that assimilation of nitrate into bacterial biomass 

could be occurring in the less reactive subsurface zones. Finally, in the deeper parts of 

the C soil horizon, where the incubation time was 72 h, more than 80 % of the spike 

was used for complete denitrification, while the intermediate products were very low. 

DNRA was not different from the other depths and between 4 and 5 % of the added 

nitrate was regarded as ‘lost’.  

 

 

 

 

Table 6.3.8: Nitrate budget for the BZ subsurface experiment including three products 

of denitrification, DNRA, unused amount of added nitrate and ‘lost’ amount of nitrate. 

 

DNRA Unused  'Lost' Total

N2 NO2
- N2O NH4

+ NO3
-

Buffer Zone depth % % % % % % %

A 0-10 cm (n=8) 77 1 5 2 15 0 100

B 10-20 cm (n=8) 52 1 10 1 15 20 100

C 20-30 cm (n=8) 53 9 3 3 10 22 100

D 50-70 cm (n=8) 43 17 3 3 21 14 100

E 80-100 cm (n=8) 83 1 0.12 2 9 5 100

F 100-120 cm (n=8) 81 2 0.17 1 12 4 100

Denitrification
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Correlation analysis between denitrification, DNRA, the AnMOC mineralisation rate, 

the methane production potential, the lability of organic carbon and the soil physical 

properties of the BZ subsurface has indicated a number of significant relationships 

(Table 6.3.9). The denitrification and DNRA correlated positively with each other, 

indicating the coexistence and similar variability with depth of the two nitrate 

attenuation processes in the BZ subsurface (Figure 6.3.10). Moreover, the potential 

denitrification rate showed significant positive correlation with the AnMOC (Figure 

6.3.11), the organic matter content, the methane production potential and the soil nitrate 

content. To a lesser degree denitrification correlated significantly with the lability of 

organic carbon and the water content. The DNRA potential rate showed significant 

positive correlation with the AnMOC, the organic matter content, the methane 

production potential, the ratio TOC/TN and the soil nitrate content.  

 

Multiple Regression Analysis (MRA) highlighted the importance of the organic carbon 

availability in explaining the variance observed between the potential denitrification rate 

of the samples. The organic carbon content explained 89 % of the variance, while the 

AnMOC explained 88 % in a forward MRA (MRA; r2=0.89, df=42, P<0.01 and 

r2=0.88, df=42, P<0.01 respectively). Additionally, the water content of the samples 

(MRA; r2=0.72, df=42, P<0.01) and the lability of organic  carbon (MRA; r2=0.43, 

df=42, P<0.01) explained 72 % and 43 % of the observed variance in denitrification 

rates, while the soil nitrate content (MRA; r2=0.32, df=42, P<0.01) was ranked last with 

32 % explanatory power, indicating that the availability of nitrate is becoming a less 

important controlling factor for denitrification as the depth within the subsurface zone 

increases.  

 

MRA between the DNRA potential rate and those environmental variables that were 

significant in the correlation analysis resulted in relatively low percentages of variance 

explanation by the environmental variables. The highest explanatory power was 

observed for the ratio TOC/TN (MRA; r2=0.25, df=42, P<0.01) with 25 %, and was 

followed by the organic carbon content (MRA; r2=0.17, df=42, P<0.01) with 17 % and 

the AnMOC (MRA; r2=0.16, df=42, P<0.01) with 16 %, indicating that the relative 

availability of  organic carbon over the availability of nitrate is a more important 

limiting factor for DNRA, which becomes increasingly important as nitrate availability 

becomes limiting.  
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Table 6.3.9: Correlation matrix between the denitrification and DNRA potential rate, the AnMOC, the lability of organic carbon, the methane 

production potential and the soil physical properties in the depth intervals of the BZ subsurface. Underlined correlation coefficients are products 

of Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is significant at the 

0.01level and *Correlation is significant at the 0.05 level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Denitrification 
potential DNRA AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon TOC/TN TOC/NO3

-
Water 
content Soil nitrate Bulk density 

Denitrification potential R or rho 1
P .
N 48

DNRA R or rho 0.849** 1
P 0.000 .
N 48 48

AnMOC R or rho 0.938** 0.666** 1
P 0.000 0.000 .
N 43 43 43

Org. carbon lability R or rho 0.548** 0.396** 0.591** 1
P 0.000 0.009 0.000 .
N 43 43 43 43

Methane emission R or rho 0.667** 0.546** 0.740** 0.650** 1
P 0.000 0.000 0.000 0.000 .
N 48 48 43 43 48

Organic matter content R or rho 0.849** 0.649** 0.874** 0.564** 0.615** 1
P 0.000 0.000 0.000 0.000 0.000 .
N 48 48 43 43 48 48

Organic carbon R or rho 0.791** 0.540** 0.755** 0.035 0.436** 0.700** 1
P 0.000 0.000 0.000 0.824 0.002 0.000 .
N 48 48 43 43 48 48 48

TOC/TN R or rho 0.205 0.489** 0.100 0.181 0.172 0.256 0.070 1
P 0.162 0.000 0.522 0.247 0.243 0.079 0.637 .
N 48 48 43 43 48 48 48 48

TOC/NO3
- R or rho -0.120 0.032 -0.062 0.006 -0.049 -0.114 -0.040 -0.142 1

P 0.417 0.831 0.692 0.970 0.739 0.439 0.789 0.334 .
N 48 48 43 43 48 48 48 48 48

Water content R or rho 0.507** 0.068 0.559** 0.511** 0.219 0.602** 0.332* -0.101 0.153 1
P 0.000 0.648 0.000 0.000 0.135 0.000 0.021 0.493 0.300 .
N 48 48 43 43 48 48 48 48 48 48

Soil nitrate R or rho 0.588** 0.383** 0.571** 0.314* 0.465** 0.632** 0.517** 0.002 -0.662** 0.504** 1
P 0.000 0.007 0.000 0.041 0.001 0.000 0.000 0.988 0.000 0.000 .
N 48 48 43 43 48 48 48 48 48 48 48

Bulk density R or rho -0.763** -0.672** -0.734** -0.370* -0.555** -0.732** -0.690** -0.310* 0.147 -0.200 -0.453** 1
P 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.032 0.320 0.172 0.001 .
N 48 48 43 43 48 48 48 48 48 48 48 48

Variables/Correlation coefficients
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Figure 6.3.10: Scatter plot of denitrification against DNRA potential rates in the BZ 

subsurface (r=0.85, n=48, P<0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.11: Scatter plot of potential denitrification rate against the AnMOC in the  

BZ subsurface (r=0.94, n=43, P<0.01). 
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6.3.5 Anammox and chemoautotrophic denitrification in the subsurface of the 

Buffer Zone 

The possibility of N2 production from the anaerobic oxidation of ammonia (Anammox) 

was investigated in the BZ subsurface samples as described in section 4.3.11. According 

to Trimmer et al. (2006), denitrification is assumed to be the only quantitative 

significant source of 15N-N2O in a 15NO3
- labelling experiment and if the ratio between 

15NO3
- and 14NO3

- is constant, the produced isotopic N2O species will be binomially 

distributed. Therefore, the ratio between 14NO3
- and 15NO3

- (r14) as well as the 

proportion of 15N in the total N gas pool (q) can be calculated according to Nielsen 

(1992). The term q was calculated for both 15N gas species i.e. q’N2 and qN2O (Table 

6.3.10) and since there was no adequate spread of 15NO3
- concentrations i.e. a range of q 

from 0 to 1, regression analysis, as recommended in Trimmer et al. (2006), could not be 

used. Instead a paired-sample t test was used to evaluate the differences in the 

distribution of 15N in N2 and N2O. Any significant change in the predicted distribution 

of 15N would have been attributed to the occurrence of Anammox. The two-tailed 

probability values (P) from the paired-samples t test for the depth intervals of the BZ 

subsurface are shown in Table 6.3.10. In all cases the probability was P>0.05, and 

therefore the distribution of 15N in N2 and N2O was not significantly different, 

indicating that Anammox was not occurring in the topsoil and the subsurface sediments 

of the BZ. These results also showed that the only source of N2 in the BZ subsurface 

experiment was denitrification and Anammox was rightly not used in the nitrate budget 

of the experiment described earlier.  

 

Table 6.3.10: The proportion of 15N in the N2 (q’) and the N2O (q) produced by 

denitrification, and the two-tailed probability (P) calculated by the paired-sample t test. 

P
Buffer Zone depth Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=7) 0.97 0.002 0.98 0.013 0.804

B 10-20 cm (n=8) 0.96 0.003 0.97 0.008 0.454

C 20-30 cm (n=8) 0.97 0.003 0.97 0.006 0.691

D 50-70 cm (n=8) 0.93 0.014 0.96 0.012 0.100

E 80-100 cm (n=8) 0.94 0.019 0.91 0.040 0.553

F 100-120 cm (n=8) 0.94 0.017 0.84 0.089 0.336

q'N2 qN2O
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The presence of ‘chemolithoautotrophic’ denitrifiers that could use inorganic e- donors, 

such as reduced manganese (Mn2+), ferrous iron (Fe2+) and sulphides (Korom, 1992) 

instead of organic carbon, for the reduction of nitrate was investigated in the BZ 

subsurface samples as described in section 4.3.12. The analysis of the denitrification 

potential slurry extracts with the ICP-OES revealed that there were no measurable 

amounts of Fe in any of the topsoil or subsurface sediment samples. Therefore, the 

hypothesis that pyrite (FeS2) could serve as an alternative electron donor for 

denitrification had to be rejected.  There were, however, measurable amounts of Mn2+ in 

all the samples from the BZ subsurface and its concentration decreased with depth 

(Table 6.3.11). Manganese sulphide (MnS2), like pyrite, could also serve as an e- donor 

for chemoautotrophic denitrification (Korom, 1992). The oxidation of sulphur with 

simultaneous reduction of nitrate would result in the accumulation of sulphate in the 

samples following the incubation period. Paired-sample t tests between the reference 

and the inoculated and incubated samples showed no significant change in the 

concentration of sulphate (Table 6.3.11). The results for Mn2+ were similar, with no 

significant difference in concentration observed between the reference and the incubated 

samples. The results were inconclusive with regards to the occurrence of 

chemoautotrophic denitrification and since no readily identifiable patterns were 

observed, chemoautotrophic denitrification was assumed of negligible importance and 

was not included in further experiments. 

 

 

Table 6.3.11: The concentration of SO4
2- and Mn2+ and the two-tailed probability (P) 

calculated by the paired-sample t test in the references and the samples from the depth 

intervals of the BZ subsurface. 

P P
Buffer Zone depth Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=6) 15.2 4.3 13.3 2.0 0.616 7.1 1.0 8.8 1.3 0.095

B 10-20 cm (n=8) 8.6 1.6 11.8 1.0 0.013 4.3 0.9 5.8 0.8 0.084

C 20-30 cm (n=8) 10.2 0.5 11.3 0.8 0.176 4.1 0.8 5.1 0.7 0.190

D 50-70 cm (n=8) 13.8 1.6 15.4 0.8 0.306 2.2 0.4 3.5 0.6 0.069

E 80-100 cm (n=8) 14.9 1.1 15.8 0.9 0.210 2.4 0.5 3.0 0.4 0.147

F 100-120 cm (n=8) 16.3 1.0 17.7 1.0 0.122 3.1 0.7 3.2 0.6 0.544

Sample Mn2+

(mg L-1)

Reference SO4
2- Sample SO4

2- Reference Mn2+

(mg L-1) (mg L-1) (mg L-1)
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To summarise, significant differences were found in the soil properties between the 

ground surface and the subsurface in the BZ area. Specifically, the organic carbon 

availability as well as the mineralisation rate decreased exponentially with depth. 

Moreover, the soil nitrate content also followed an exponential decay with depth, 

although a small increase in both nitrate and ammonium was observed in the deeper 

permanently saturated zone, attributed to lateral subsurface flow with direction from the 

arable field towards the river. Both nitrate attenuation processes (i.e. heterotrophic 

denitrification and DNRA) were present in all depth intervals and they both decreased 

exponentially with depth following closely the decrease in organic carbon availability. 

The methane production potential concentrated largely in the topsoil, although, some 

methane was also produced in the subsurface following a long lag phase. The relative 

importance of nitrous oxide as a denitrification product decreased with depth as did the 

DNRA over the heterotrophic denitrification. The availability of labile organic carbon 

seemed to be the most important controlling factor of subsurface nitrate attenuation, but 

also the nitrate supply significantly limited the process rates with increasing depth. 

Finally neither Anammox nor chemoautotrophic denitrification were observed to occur 

in the topsoil or the subsurface of the BZ, while the nitrate budget of the laboratory 

incubations indicated that some proportion of the added substrate may have been 

assimilated in bacterial biomass during the course of the experiment.  
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6.3.6 Soil physical properties in the subsurface of the Pasture Meadow 

The PM subsurface was sampled at eight locations next to the groundwater wells F1-F7, 

comprising the transect perpendicular to the river, in order to include all the different 

features of the subsurface lithology at the same depth intervals as the BZ subsurface. 

The soil physical properties are summarised in Table 6.3.12. Table 6.3.13 presents the 

results of the parametric (One-Way ANOVA) or non-parametric (Kruskal-Wallis) 

statistical tests for the comparison of variable means between depth intervals. The dry 

bulk density was significantly lower in the topsoil (A depth) and increased with depth 

(Figure 6.3.12 A). The particle size distribution in the PM subsurface was fairly 

homogeneous with the clay and silt fractions dominating in all the depth intervals (> 90 

%). The clay content decreased slightly with depth, but the decrease was not statistically 

significant. On the contrary, the silt fraction increased with depth and the bottom two 

depth layers had significantly higher silt content compared to the top two layers in the 

PM topsoil. None of the sand fractions were significantly different between the depth 

intervals of the PM subsurface (Figure 6.3.13). However, the sand fractions were more 

abundant in the first four samples i.e. from the river towards the middle of the PM area, 

where a gravel lens was observed between the B soil horizon (> 70 cm depth) and the  

permanently saturated C soil horizon (<120 cm depth). Due to the low bulk densities, 

and therefore high porosity, and the dominance of the clay and silt fractions i.e. low 

mean grain size, the permeability k (Boudreau, 1997) was below 1 m2 in all the samples 

apart from the topsoil samples next to the river (2.1 – 2.7 m2). 

 

The soil water content decreased with depth and the top three intervals were 

significantly different from the bottom three (Figure 6.3.12 B). The organic matter 

content decreased exponentially within 50 cm from the ground surface, while the three 

bottom intervals were not significantly different between each other (Figure 6.3.12 C). 

A similar pattern was observed for the organic carbon content which also decreased 

exponentially with depth (Figure 6.3.12 D). The ratio TOC/TN (Figure 6.3.12 E) was 

significantly different between the topsoil (first 20 cm A&B) and the depths C and DEF, 

which were not different between each. Finally, the ratio TOC/NO3
- (Figure 6.3.12 F) 

was not significantly different between the depth intervals of the PM.  
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Table 6.3.12: Soil physical properties in the sampled depth intervals of the pasture meadow subsurface (data are mean values ± 1 SE). 

Soil type

Pasture Meadow depth Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=8) Clay 0.69 0.03 60.1 2.64 15.3 0.93 6.0 0.82 8.5 0.36 3.3 1.3 11.7 5.5

B 10-20 cm (n=8) Clay 1.03 0.04 54.7 3.96 12.6 1.17 4.0 0.31 7.4 0.19 3.0 0.4 1.4 0.2

C 20-30 cm (n=8) Silty clay 0.98 0.05 48.7 5.06 9.1 1.20 2.0 0.32 5.3 0.37 1.6 0.3 1.5 0.2

D 50-70 cm (n=8) Silty clay 1.24 0.06 42.3 4.14 5.8 0.65 1.0 0.40 3.0 0.76 0.7 0.2 1.6 0.6

E 80-100 cm (n=8) Silty clay 1.24 0.08 39.7 4.38 5.0 0.57 0.7 0.32 2.6 0.86 0.5 0.1 1.5 0.7

F 100-120 cm (n=8) Silty clay 1.33 0.08 37.4 3.76 4.3 0.42 0.5 0.25 2.3 0.74 0.3 0.1 5.9 5.1

TOC/TN NO3
--N TOC/NO3

-

(g cm-3) (%) (%) (%) (mg kg-1)

Dry Bulk Density Water content Organic matter Organic carbon

 

 

Table 6.3.13: Comparison of the means between the depth intervals of the PM subsurface for selected soil properties and processes. df; degrees 

of freedom, F; F statistic, χ2; χ2 statistic P; probability level. Where the variable is annotated with * the non-parametric Kruskal-Wallis test has 

been used instead of One-Way ANOVA.  

  

 

 

 

 

Buffer Zone subsurface df F or χ 2
P

Bulk density* 5 31.3 <0.01

Clay fraction 47 1.3 >0.05

Silt fraction 47 2.5 <0.05

Fine sand fraction 47 0.5 >0.05

Medium sand fraction* 5 2.5 >0.05

Water content 47 4.9 <0.01

Organic matter 47 26.5 <0.01

Organic carbon 47 24.3 <0.01

TOC/TN 47 19.1 <0.01

TOC/NO3
-* 5 8.2 >0.05

One-Way ANOVA and Kruskal-Wallis

Buffer Zone subsurface df F or χ 2
P

Soil nitrate* 5 22.0 <0.01

Soil ammonia* 5 20.1 <0.01

Soil nitrite* 5 3.3 >0.05

AnMOC* 5 39.0 <0.01

Lability of OC* 5 4.7 >0.05

Methane emission* 5 34.5 <0.01

Denitrification* 5 42.4 <0.01

Nitrous oxide production* 5 32.5 <0.01

DNRA* 5 35.5 <0.01

D/DNRA 45 1.2 >0.05

One-Way ANOVA and Kruskal-Wallis

 30
0
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Figure 6.3.12: Dry bulk density, water content, organic matter and organic carbon 

contents, TOC/TN and TOC/NO3
- ratios in the depth intervals of the PM subsurface. 

Data are mean values ± 1 SE. Different lower case letters indicate significant 

differences. 
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Figure 6.3.13: Absolute particle size distribution in the depth intervals of the subsurface  

of the PM. Different lower case letters indicate significant differences. 

 

 

 

 

 

The soil nitrate content decreased significantly with depth below the first 20 cm of the 

topsoil (Figure 6.3.14 A). The first 10 cm of the topsoil (A depth), due to high 

variability among the samples, was not significantly different from the B and C depths, 

while the C depth was not significantly different from the D depth. Finally, as observed 

in most physical properties, the soil nitrate content between the depths D, E and F was 

not significantly different. The soil ammonia also decreased exponentially with depth 

(Figure 6.3.14 B). Finally, although the soil nitrite was not significantly different 

between the depth intervals of the PM subsurface, mainly due to the high variability 

between samples, an interesting pattern was observed with increased nitrite 

concentrations in the topsoil layers and the layers of the permanently saturated C soil 

horizon, and lower nitrite in the B soil horizon (Figure 6.3.14 C). 
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Figure 6.3.14: Soil NO3
--N, NH3-N and NO2

--N in the depth intervals of the PM 

subsurface. Data are mean values ± 1SE. Different lower case letters indicate significant 

differences.  
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6.3.7 AnMOC and methane production potential  in the subsurface of the Pasture 

Meadow 

The results for the AnMOC mineralisation rate were similar to the respective results for 

the BZ subsurface and followed the general exponential decay pattern observed in most 

of the soil physical properties. The first three topsoil depth intervals (A, B and C) were 

significantly different while the three bottom depth intervals (D, E and F) were not 

different between them (Figure 6.3.15 A). The anaerobic mineralisation rate was 

reduced by 37 % within 10 cm in the topsoil and by 95 % in the permanently saturated 

C soil horizon (>100 cm) (Table 6.3.14). The lability of organic carbon did not display a 

decrease with depth as both the AnMOC and the organic carbon decreased at the same 

exponential rate with depth and therefore their ratio remained unchanged across the 

different depth intervals (Figure 6.3.15 B and Table 6.3.14).  

 

Methane production potential was observed predominantly in the topsoil (0 – 10 cm), 

while the potential was 86 % less in the B depth interval (Figure 6.3.15 C and Table 

6.3.14). The lag phase for the methanogens in the A samples ranged between 1 and 29 

days, with longest lag phase length for the samples from the middle of the floodplain 

and shortest from the riparian and the channel depression samples. The lag phase for the 

B depth samples was between 15 and 60 days. The C and D samples produced 

measurable amounts of methane linearly for the first 12 days after which they reached a 

plateau. The production rates were similar regardless of the sampling location. As for 

the E and F depths, only one sampling location, next to the river, displayed a significant 

methane production potential at the depth of the permanently saturated C soil horizon. 

 

Table 6.3.14: AnMOC, lability of organic carbon and methane production potential in 

the subsurface of the Pasture Meadow. Data are means ± 1SE. 

 

 

 

 

 

 

 

  

Pasture Meadow depth Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=8) 764.4 34.1 13.9 1.5 158.3 57.1

B 10-20 cm (n=8) 485.1 48.2 12.7 1.3 21.8 21.1

C 20-30 cm (n=8) 272.7 56.9 14.2 2.2 0.006 0.001

D 50-70 cm (n=8) 75.2 27.4 10.5 2.3 0.001 0.001

E 80-100 cm (n=8) 68.3 17.7 10.2 2.4 0.031 0.03

F 100-120 cm (n=8) 38.1 19.3 17.1 8.8 0.03 0.02

AnMOC Labile org. carbon Methane

CO2 (µmol kg-1 d-1) CO2 (µmol g-1 TOC d-1) CH4 (µmol kg-1 d-1)
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Figure 6.3.15: AnMOC, lability of organic carbon and methane production potential in 

the subsurface depth intervals of the PM. Data are means ± 1 SE. Different lower case 

letters indicate significant differences. 

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

Lability of organic carbon (µmol CO2 g
-1 TOC d-1)

D
ep

th
 (

cm
)

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900

AnMOC (µmol CO2 kg-1 d-1)

D
ep

th
 (c

m
)

0

20

40

60

80

100

120

140

0 50 100 150 200 250

Methane emission potential (µmol CH4 kg-1 d-1)

D
ep

th
 (

cm
)

a 
b 

c 

d 

d 

d 
A 

a 
a 

a 

a 

a 

a 
B 

a 
b 

c 

c 

c 

c 
C 



 306 

6.3.8 Spatial ordination of the Pasture Meadow subsurface samples 

Principal Component Analysis (PCA) between the soil physical properties that showed 

some significant differences between the PM depth intervals resulted in the extraction of 

four principal axes that, combined, explained 95 % of the inter-sample variance (Table 

6.3.15). The correlation coefficients between the first two component axes and the 

environmental variables are shown in Table 6.3.16. The first axis explained 58 % of the 

variance and was closely associated with the organic matter content, the AnMOC, the 

water content, the soil nitrate and the methane production potential. The second 

principal axis explained 21 % of the variance and was associated with the ratio of 

TOC/NO3
-. It should be noted that the lability of OC was not included in the PCA since 

it was not significantly different between samples, while the methane was excluded as 

the missing values would have reduced the sample size of the PCA. 

  

Plotting the cluster centroids of scores for the first two axes per sample depth resulted in 

the bi-plot of Figure 6.3.16. The topsoil samples (A depth) clearly separated from the 

rest and were associated with the positive side of Axis 1 (i.e. with soil conditions such 

as high OM availability and soil moisture, high mineralisation rates and nitrate supply 

and low redox potential) suggesting favourable conditions for nitrate attenuation. The B 

and C depth samples also formed distinct groups with decreasing association to the 

positive Axis 1, showing less favourable conditions for denitrification and DNRA. 

Finally, the depths D, E and F formed an agglomeration associated with the negative 

Axis 1, thus indicating a similarity of soil conditions between the B and C soil horizons 

in the PM that were less favourable for biogeochemical nitrate attenuation compared to 

the topsoil.  

 

Table 6.3.15: The principal components (axes) generated by the PCA, their respective 

eigenvalues, the % of variance explained by each component and the cumulative % of 

inter-sample variance explanation for the PM subsurface. 

 

 

 

 

 

Axes Eigenvalues % of Variance Cumulative %

1 3.473 57.9 57.9

2 1.247 20.8 78.7

3 0.675 11.3 89.9

4 0.329 5.5 95.4
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Table 6.3.16: Correlation coefficients of the environmental variables in PCA. 

***Correlation significant at the 0.01 probability level. 

Variables Component 1 Component 2

Water content 0.823*** -0.141

Organic Matter 0.962*** -0.044

Soil Nitrate 0.683*** -0.585

TOC/NO3
- 0.314 0.892***

AnMOC 0.921*** 0.094

Methane Emission 0.677*** 0.283  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.16: Correlation bi-plot from the PCA analysis with cluster centroids 

(average score on each component, with standard errors) for the depth intervals 

(ABCDEF) in PM. Correlations of the variables with the main axes are given by solid 

arrows. Dashed arrows indicate the correlation of nitrate attenuation processes with the 

component axes. Water; water content, OM; organic matter content, CH4; methane 

production potential, Nitrate; soil nitrate content, D; potential denitrification rate. 
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6.3.9 Denitrification and DNRA potential in the subsurface of the Pasture Meadow 

The potential denitrification rate decreased exponentially with depth in the subsurface 

of the PM (Table 6.3.17 and Figure 6.3.17 A). The topsoil rate decreased by 38 % 

within 10 cm in the B depth, while it decreased by > 95 % within 120 cm from the 

ground surface. The denitrification rate of the PM subsurface was generally not 

significantly different from the BZ subsurface, apart from the B depth that had 

significantly higher denitrification rate in the PM compared to the BZ (Student’s t-test; 

df=7, t-stat=-3.17, P<0.05) and the F depth that displayed higher denitrification rate in 

the BZ than the PM (Student’s t-test; df=7, t-stat=2.8, P<0.05). 

 

Regarding the nitrous oxide (N2O) production, the B depth interval displayed a 

significantly higher production potential compared to the topsoil and the rest of the 

subsurface intervals. Moreover, the two bottom layers (E and F) had significantly lower 

N2O production potential (Table 6.3.17 and Figure 6.3.17 B). The ratio of N2O/N2 

(Figure 6.3.18), indicated, as also in the case of the BZ subsurface, that the differences 

in the relative importance of the two denitrification reduction steps were probably an 

effect of the incubation time of the experiment. Adjacent depth intervals (A-B, C-D and 

E-F) were treated with the same incubation periods, while, as the denitrification 

potential results showed, had significantly different process rates. This resulted in the 

accumulation of N2O as an intermediate of denitrification in the second sample set of 

each pair, the one that had the lowest denitrification rate.  

 

The DNRA potential also varied with depth. The surface soil (A depth) had 

significantly higher DNRA potential compared to the rest of the depths, followed by the 

B depth, which was also significantly different from the other layers. Below the C depth 

DNRA decreased at a slower rate. (Table 6.3.17 and Figure 6.3.17 C). The potential 

DNRA rate decreased by 67 % within 10 cm in the topsoil and by 99 % within 120 cm 

in the subsurface. Regarding the ratio D/DNRA, it generally increased with depth 

(Figure 6.3.19), although the increase was not statistically significant as both 

denitrification and DNRA decreased exponentially with depth at similar rates, and 

therefore their ratio was not different across the subsurface.  
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Figure 6.3.17: Denitrification, N2O production and DNRA potential rates in the depth 

intervals of the PM subsurface. Data are means ± 1SE. Different lower case letters 

indicate significant differences. 
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Table 6.3.17: Denitrification, N2O production and DNRA potential rates in the depth 

intervals of the PM subsurface. Data are means ± 1SE. 

Pasture Meadow depth Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

A 0-10 cm (n=8) 57.3 4.8 1.1 0.4 1.6 0.3

B 10-20 cm (n=8) 35.0 3.8 2.2 0.8 0.5 0.1

C 20-30 cm (n=8) 15.2 2.6 0.3 0.1 0.3 0.1

D 50-70 cm (n=8) 6.9 1.5 0.6 0.2 0.2 0.09

E 80-100 cm (n=8) 2.3 0.5 0.005 0.003 0.05 0.01

F 100-120 cm (n=8) 1.3 0.3 0.005 0.003 0.02 0.008

DNRANitrous oxideDenitrification

(mg N kg-1 soil d-1) (mg N kg-1 soil d-1) (mg N kg-1 soil d-1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.18: The ratio of N2O/N2 in the depth intervals of the PM subsurface. Data 

are means ± 1SE. 
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Figure 6.3.19: The ratio D/DNRA in the depth intervals of the PM subsurface. Data are 

means ± 1SE. 

 

 

A NO3
- budget was also estimated for the PM subsurface experiment (Table 6.3.18). 

Regarding the topsoil samples, 63 % of the added nitrate was recovered as N2, the end 

product of denitrification, while 15 % remained unused after the three hour incubation. 

DNRA accounted only for 2 % of the added nitrate, while NO2
- and N2O were also 

present at the end of the incubation. However, 16 % of the originally added spike was 

not recovered in any of the above measurements, and it was therefore considered as 

‘lost’, possibly assimilated in bacterial biomass. In the B depth interval, 71 % of the 

added nitrate was recovered as N2, while also 6 % of the nitrate was accumulated as 

N2O, possibly as a result of the short incubation time, as it was also indicated by 22 % 

of the added nitrate remaining in the sample vessel. Between the paired depths C & D 

and E & F, where each pair shared the same incubation time, more NO2
- and N2O 

accumulated in the D and F samples, while also more nitrate remained unused in the 

same depth intervals. DNRA accounted for 2 % of the added spike in every case, and 

seemed to be unaffected by the duration of sample incubation. Finally, the amount of 

the added nitrate, which was not recovered in any of the measured processes, and 

therefore was characterised as ‘lost’, increased with depth from 9 % in the C depth to 34 

% in the F depth. 

 

 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

D/DNRA

D
ep

th
 (c

m
)



 312 

Table 6.3.18: Nitrate Budget of the PM subsurface experiment including three products 

of denitrification, DNRA, unused amount of added nitrate and ‘lost’ amount of nitrate. 

DNRA Unused   'Lost' Total

N2 NO2
- N2O NH4

+ NO3
-

Pasture Meadow depth % % % % % % %

A 0-10 cm (n=8) 63 1 3 2 15 16 100

B 10-20 cm (n=8) 71 1 6 1 22 0 100

C 20-30 cm (n=8) 68 0 3 2 18 9 100

D 50-70 cm (n=8) 38 10 5 2 25 20 100

E 80-100 cm (n=8) 74 1 0.14 2 0 22 100

F 100-120 cm (n=8) 47 2 0.31 2 14 34 100

Denitrification

 

 

Correlation analysis between the denitrification and DNRA potential, the AnMOC 

mineralisation rate, the methane production potential, the lability of organic carbon and 

the soil physical properties of the PM subsurface has indicated a number of significant 

relationships (Table 6.3.19). The denitrification and DNRA potential inter-correlated, 

indicating the coexistence and similar variability with depth of the two nitrate 

attenuation processes in the PM subsurface (Figure 6.3.20). Moreover, the 

denitrification potential rate showed significant positive correlation with the AnMOC 

(Figure 6.3.21), the organic carbon content, the ratio TOC/TN, the soil nitrate content, 

the water content, and the methane production potential. The DNRA potential rate 

showed significant positive correlation with the organic carbon, the AnMOC, the ratio 

TOC/TN, the water content, the soil nitrate content and the methane production 

potential. 

 

MRA between the denitrification rate and the environmental variables produced similar 

results to the correlation analysis. The AnMOC explained 83 % (MRA; r2=0.83, df=47, 

P<0.01) of the variance in the denitrification rate of the samples, followed by the 

organic matter content (MRA; r2=0.75, df=47, P<0.01) and the organic carbon (MRA; 

r2=0.68, df=47, P<0.01) with 75 % and 68 % explanatory power respectively, 

highlighting the importance of the organic carbon availability in regulating the 

denitrification rate in the PM vadose zone. As secondary controlling factors, the soil 

nitrate content (MRA; r2=0.43, df=47, P<0.01) explained 43 % of the variance between 

samples, and the water content (MRA; r2=0.42, df=47, P<0.01) 42 %. 
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Table 6.3.19: Correlation matrix between the denitrification and DNRA potential rate, the AnMOC, the lability of organic carbon, the methane 

production potential and the soil physical properties in the depth intervals of the PM subsurface. Underlined correlation coefficients are products 

of Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is significant at the 

0.01level and *Correlation is significant at the 0.05 level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Denitrification 
potential DNRA AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon TOC/TN TOC/NO3

-
Water 
content Soil nitrate Bulk density 

Denitrification potential R or rho 1
P .
N 48

DNRA R or rho 0.880** 1
P 0.000 .
N 47 47

AnMOC R or rho 0.908** 0.826** 1
P 0.000 0.000 .
N 48 47 48

Org. carbon lability R or rho 0.158 0.084 0.348* 1
P 0.301 0.589 0.019 .
N 45 44 45 45

Methane emission R or rho 0.532** 0.541** 0.617** 0.441** 1
P 0.000 0.000 0.000 0.002 .
N 48 47 48 45 48

Organic matter content R or rho 0.871** 0.822** 0.890** 0.025 0.435** 1
P 0.000 0.000 0.000 0.872 0.002 .
N 48 47 48 45 48 48

Organic carbon R or rho 0.875** 0.848** 0.862** -0.023 0.529** 0.864** 1
P 0.000 0.000 0.000 0.883 0.000 0.000 .
N 48 47 48 45 48 48 48

TOC/TN R or rho 0.838** 0.805** 0.831** -0.254 0.528** 0.866** 0.903** 1
P 0.000 0.000 0 0.092 0.000 0.000 0.000 .
N 48 47 48 45 48 48 48 48

TOC/NO3
- R or rho 0.259 0.443** 0.341* -0.060 0.183 0.273 0.301* 0.600** 1

P 0.075 0.002 0.018 0.697 0.212 0.061 0.038 0.000 .
N 48 47 48 45 48 48 48 48 48

Water content R or rho 0.668** 0.635** 0.638** -0.294* 0.337* 0.857** 0.667** 0.696** 0.014 1
P 0.000 0.000 0.000 0.050 0.019 0.000 0.000 0.000 0.927 .
N 48 47 48 45 48 48 48 48 48 48

Soil nitrate R or rho 0.604** 0.568** 0.554** -0.082 0.259 0.618** 0.656** 0.557** -0.223 0.503** 1
P 0.000 0.000 0.000 0.593 0.076 0.000 0.000 0.000 0.127 0.000 .
N 48 47 48 45 48 48 48 48 48 48 48

Bulk density R or rho -0.753** -0.708** -0.756** 0.120 -0.478** -0.805** -0.734** -0.746** -0.155 -0.782** -0.496** 1
P 0.000 0.000 0.000 0.431 0.001 0.000 0.000 0.000 0.292 0.000 0.000 .
N 48 47 48 45 48 48 48 48 48 48 48 48

Variables/Correlation coefficients
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MRA between the DNRA potential rates and the environmental variables in the PM 

subsurface, indicated the prevalence of reduced conditions, as expressed by the methane 

production potential, as the most important environmental parameter that explained 67 

% of the variance between DNRA potential rates (MRA; r2=0.67, df=46, P<0.01). The 

AnMOC (MRA; r2=0.57, df=46, P<0.01) and the organic carbon content (MRA; 

r2=0.54, df=46, P<0.01) had 57 % and 54 % explanatory power respectively, while the 

ratio TOC/TN (MRA; r2=0.40, df=46, P<0.01) explained 40 % of the DNRA variance. 

The results indicated that the most likely controlling factors of DNRA in the PM 

subsurface were the existence of reduced conditions and the relative availability of 

organic carbon over the availability of nitrogen.    
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Figure 6.3.20: Scatter plot of denitrification against DNRA potential rates in the PM 

subsurface (r=0.88, N=47, P<0.01). 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.21: Scatter plot of denitrification potential rates against the AnMOC in the 

PM subsurface (r=0.91, N=48, P<0.01). 

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900 1000

AnMOC (µmol CO2 kg-1 d-1)

D
en

itr
ifi

ca
tio

n
 (m

g
 N

 k
g

-1
 d

-1
)



 315 

Concluding, a discrete zonation of soil properties was observed in the subsurface of the 

PM. Specifically, the organic carbon availability, the soil moisture and the soil nitrogen 

content decreased significantly within the topsoil depth intervals (i.e. every 10 cm) 

compared to the deeper soil horizons where less variability was observed between 50 

and 120 cm depth. The same pattern was observed for the organic carbon mineralisation 

rate that decreased exponentially with depth up to 50 cm, while it remained unchanged 

at greater depths. The methane production potential concentrated in the top 20 cm of the 

soil with shorter lag phase length in the riparian area samples and longer lag phase in 

the middle of the floodplain. Both the denitrification and DNRA processes followed an 

exponential decay with depth up to 50 cm (i.e. within the B soil horizon), while the 

decrease became less significant between 50 and 120 cm depth. The primary controlling 

factor for denitrification was the availability of organic carbon with depth while the soil 

nitrate and soil moisture played a secondary role. For DNRA, the existence of reduced 

conditions was the most important controlling factor, followed by the availability of 

organic carbon.  Finally the relative importance of DNRA over denitrification decreased 

with depth, while the importance of nitrous oxide as a denitrification product increased 

within the vadoze zone compared to the soil surface and then decreased again within the 

permanently saturated zone.  
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6.4     The effect of prolonged wetting and drying on nitrate attenuation processes in 

the reconnected floodplain of the River Cole 

This section aims to assess the effect of prolonged wetting and drying under field 

conditions on the topsoil properties and subsequently the nitrate attenuation processes 

across the different land use zones of the re-connected floodplain of the River Cole.  

 

 

6.4.1 Soil physical properties  

The sampling of the wet conditions took place in late March ’08, after the reconnected 

floodplain had received 70 mm total rainfall in three weeks (3.3 mm rain d-1). From data 

available for the Buffer Zone area, the topsoil was flooded from overbank flooding for 7 

days prior the sampling date. The matric potential of the topsoil in the BZ area on the 

day of sampling was on average -0.04 hPa, indicating near surface saturation conditions. 

The sampling of the dry conditions took place four months later, in late July ’08, after 

the floodplain had received 11 mm total rainfall in two weeks (0.8 mm rain d-1) prior to 

the sampling and no rain at all for 10 days before the sampling. The sampling day was 

12 days after a summer flood peak and the matric potential of the topsoil in the BZ area 

on that day was on average -704.28 hPa, far from surface saturation. 

 

The physical properties of the topsoil in all four land use zones from both the wet and 

the dry sampling are summarised in Table 6.4.1. Table 6.4.2 presents the results of the 

parametric (One-Way ANOVA) or non-parametric (Mann-Whitney) statistical tests for 

the comparison of variable means between wet and dry conditions across all the 

floodplain zones. The dry bulk density was not significantly different between wet and 

dry conditions (Figure 6.4.1 A). Although the wet condition samples had higher water 

content compared to the dry conditions, they were not statistically different (Figure 

6.4.1 B). However, another measurement of the soil water content, the Water Filled 

Pore Space (WFPS) tends to be more accurate when soil moisture conditions are 

generally high (Sleutel et al., 2008). The WFPS was estimated as described by Linn and 

Doran (1984), from the volumetric water content (cm3.cm-3), which was measured 

directly at each sampling location with a Theta probe (Delta-T Instruments), and the 

porosity of the soil, which was estimated from the dry bulk density according to Rowell 

(1994). The WFPS was significantly higher in the wet condition samples compared to 

the dry condition samples (Figure 6.4.1 C). 
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Regarding the absolute particle size distribution (Figure 6.4.2), the analysis was 

performed once after the wet conditions sampling since the particle size fractions, as 

shown in previous experiments, played a minor role in controlling the nitrogen retention 

processes in the topsoil of the reconnected floodplain of the River Cole. The Fritillary 

Meadow (FM) samples contained significantly higher clay from the rest of the land use 

zone samples that were not different between each other. Additionally, the FM samples 

had higher silt content from the Buffer Zone (BZ) and the Grazing Grassland (GG) 

samples and were not different from the Pasture Meadow (PM) samples. Similarly, the 

FM samples had lower very fine sand content from the BZ and GG samples, while they 

were not different from the PM samples. The dominance of the clay and silt fractions 

was observed once more in the topsoil of the reconnected floodplain of the River Cole 

and since this was unlikely to change during the four months between the wet and the 

dry conditions sampling, the analysis was not repeated after the dry conditions 

sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.2: Absolute particle size distribution (volume %) in the topsoil of the four 

land use zones on the wet conditions sampling (means + 1 SE, significant differences 

indicated with different lower case letters). 
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Table 6.4.1: Physical properties of the topsoil in the four land use zones on the wet and dry conditions sampling (data are mean values ± 1 

standard error, where data are missing are replaced by N/A). 

Soil type

Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

WET conditions (n=30) Silty clay 0.70 0.04 57.6 4.47 67.8 2.09 12.3 1.01 4.5 0.33 0.27 0.07 34.9 6.2

Pasture Meadow (n=6) Clay 0.77 0.06 51.4 6.25 68.8 1.79 11.0 1.52 3.2 0.62 0.22 0.05 18.3 6.4

Fritillary Meadow (n=6) Clay 0.61 0.04 85.4 13.01 65.1 2.75 18.8 2.77 6.2 0.67 0.15 0.05 69.3 25.9

Buffer Zone (n=10) Silty clay 0.61 0.06 43.2 2.64 62.0 2.37 8.6 0.50 3.7 0.42 0.14 0.02 30.5 4.9

Grazing Grassland (n=8) Silty clay 0.83 0.11 59.2 7.97 76.3 5.99 12.9 1.75 5.3 0.47 0.58 0.27 35.8 15.0

DRY conditions (n=30) N/A 0.75 0.03 47.9 4.27 51.4 2.22 13.7 1.14 4.3 0.29 1.03 0.34 11.4 2.4

Pasture Meadow (n=6) N/A 0.84 0.03 48.7 6.16 61.3 1.94 12.6 1.91 3.3 0.46 1.49 0.88 7.0 3.0

Fritillary Meadow (n=6) N/A 0.65 0.05 74.7 14.37 52.6 7.15 21.4 2.87 5.8 0.65 1.98 1.45 23.9 10.1

Buffer Zone (n=10) N/A 0.82 0.06 32.8 1.58 49.1 3.95 9.5 0.49 3.8 0.33 0.54 0.07 8.2 1.4

Grazing Grassland (n=8) N/A 0.65 0.06 45.9 5.49 45.9 2.50 14.1 1.96 4.4 0.63 0.59 0.15 9.1 1.7

Dry Bulk Density Water content WFPS Organic matter TOC/NO3
- NO3

--N

(g cm-3) (%) (%) (%) (mg kg-1)

Organic carbon

(%)
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Table 6.4.2: Comparison of the means between the wet and the dry conditions sampling 

for selected soil properties and processes. df; degrees of freedom, F; F statistic, z; z 

statistic P; probability level. Where the variable is annotated with * the non-parametric 

Mann-Whitney test has been used instead of One-Way ANOVA. 

WET - DRY conditions df F or z P

Bulk density 59 0.7 >0.05

Water content* 59 -1.9 >0.05

WFPS 59 29.0 <0.01

Clay fraction 29 6.5 <0.01

Silt fraction 29 3.1 <0.05

Very fine sand fraction 29 3.1 <0.05

Organic matter* 59 -0.8 >0.05

Organic carbon 59 0.3 >0.05

TOC/NO3
-* 56 -4.6 <0.01

Soil nitrate* 56 -3.9 <0.01

Soil ammonia* 57 -0.7 >0.05

Soil nitrite* 59 -3.2 <0.01

AnMOC* 57 -1.0 >0.05

Lability of OC 59 0.7 >0.05

Methane emission* 59 -1.4 >0.05

Denitrification 59 4.2 >0.05

Nitrous oxide production* 59 -1.1 >0.05

N2O/N2
* 54 -0.6 >0.05

DNRA* 59 -2.4 <0.05

D/DNRA* 59 -1.2 >0.05

One-Way ANOVA and Mann-Whitney
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Figure 6.4.1: Mean dry bulk density, water content, WFPS, organic matter, organic 

carbon content and the ratio of TOC/NO3
- (+ 1 SE) across the four land use zones on the 

wet and dry conditions sampling (significant differences indicated with different lower 

case letters). 
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With respect to the soil organic carbon availability between the wet and dry conditions, 

neither the organic matter nor the organic carbon content was significantly different 

between the two samplings (Figures 6.4.1 D & E respectively). However, the ratio 

TOC/NO3
- (Figure 6.4.1 F) was significantly higher in the dry condition samples, 

compared to the wet, as a result of the different nitrate availability. The soil NO3
--N 

content was three times higher in the wet condition samples, compared to the dry 

(Figure 6.4.3). Similarly, the soil NO2
--N was significantly higher in the wet samples, 

compared to the dry samples, indicating more reduced conditions during the wet 

conditions sampling. Although the mean NH3-N content of the wet samples was almost 

three times higher than the dry samples, due to the high variability among the wet 

samples the difference was not statistically significant (Table 6.4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.3: Mean concentrations of NO3
--N, NO2

--N and NH3-N (+ 1 standard error) 

in the topsoil of the four land use zones on the wet and dry conditions sampling 

(significant differences indicated with different lower case letters). 
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6.4.2 AnMOC and Methane production potential 

The Anaerobic Mineralisation rate of Organic Carbon (AnMOC) displayed the same 

pattern as the organic matter and the organic carbon results with no significant 

difference between the wet and dry condition samples (Table 6.4.3 and Figure 6.4.4 A). 

However, in both the wet and dry sampling, the FM samples had significantly higher 

AnMOC compared to the BZ and the GG, as a result of a few outliers. Similarly, the 

lability of organic carbon although it was 23 % less in the dry samples (Table 6.4.3 and 

Figure 6.4.4 B), the difference between wet and dry was not statistically significant, 

while no difference was found between land use zones in both samplings. Although the 

methane production potential (Table 6.4.3 and Figure 6.4.4 C) was slightly higher under 

dry conditions, the variability between samples was high under both conditions and the 

difference was not statistically significant, while no difference was observed between 

land use zones in both samplings. 

 

 

 

Table 6.4.3: AnMOC, lability of organic carbon and methane production potential of 

the topsoil across the four land use zones on the wet and dry conditions samplings (data 

are means ± 1SE). Significant differences between land use zones for both samplings 

indicated with different lower case letters. 

Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

WET conditions (n=30) 649.3 127.4 22.9 5.9 9.8 6.8

Pasture Meadow (n=6) 587.6ab 155.2 20.4a 4.0 1.8a 1.1

Fritillary Meadow (n=6) 1503.7b 494.9 26.5a 8.8 33.4a 33.0

Buffer Zone (n=10) 297.8a 67.2 8.5a
1.8 2.0a

1.3

Grazing Grassland (n=8) 593.9a 176.7 11.6a
3.6 7.8a

7.2

DRY conditions (n=30) 704.9 102.2 17.7 2.5 14.52 9.33

Pasture Meadow (n=6) 694.2ab 157.5 19.5a 3.6 16.8a 15.7

Fritillary Meadow (n=6) 1372.7b 346.8 26.2a 7.8 7.0a 5.5

Buffer Zone (n=10) 388.9a 53.2 10.7a 1.5 27.1a 26.7

Grazing Grassland (n=8) 607.2ab
114.7 18.8a

5.9 2.8a
1.4

AnMOC Labile org. carbon Methane

CO2 (µmol kg-1 d-1) CO2 (µmol g-1 TOC d-1) CH4 (µmol kg-1 d-1)
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Figure 6.4.4: Mean AnMOC, lability of organic carbon and methane production 

potential (+ 1 SE) in the topsoil across the four land use zones on the wet and dry 

conditions sampling (same lower case letters indicate no significant differences). 
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6.4.3 Spatial ordination of the wet and dry condition samples 

Principal Component Analysis (PCA) of the soil physical properties, the AnMOC rate 

and the lability of organic carbon resulted in the extraction of two principal axes with 

eigenvalues larger than one (Table 6.4.4). The correlation coefficients between the first 

two component axes and the environmental variables are shown in Table 6.4.5. The first 

axis explained 50 % of the variance between individual samples and was closely 

associated with the water content, the AnMOC, the organic matter content and the soil 

nitrate. The second principal axis explained 21 % of the variance between individual 

samples and was associated mainly with the WFPS and the ratio TOC/NO3
-.  

 

Plotting the cluster centroids of each land use zone for both the wet and dry samplings 

along the first two component axes resulted in the bi-plot of Figure 6.4.5. What 

becomes immediately apparent is the separation of the samples along axis 2. The wet 

condition samples were positioned closer to the negative side of the axis and were 

therefore associated with higher WFPS, while all the dry condition samples were 

associated with the positive side of axis 2 and the higher values for the ratio of 

TOC/NO3
-. Interestingly, axis 1 separated the land use zone samples into three fairly 

distinct groups. The samples of the FM zone were positioned towards the positive side 

of the axis suggesting that higher AnMOC, water content, OM and soil nitrate were 

observed in this land use, while the large error bars along axis 1 highlighted the 

‘hotspot’ nature of the FM samples. The samples of the PM and the GG had similar 

characteristics in both the wet and the dry samplings as indicated by the overlapping of 

the cluster centroids. Finally, the BZ samples were separated from the rest and were 

associated with the negative axis 1 (i.e. lower AnMOC, OM, water and soil nitrate), 

while the small error bars showed high homogeneity between samples. It should be 

noted that the environmental variables associated with axis 1 were not different between 

wet and dry conditions for each land use zone as indicated by the overlapping of the 

‘wet’ and ‘dry’ cluster centroids along axis 1. This indicates further that the majority of 

the measured environmental variables remained unchanged between the wet and the dry 

conditions, while only the WFPS and the relative availability of organic carbon to soil 

nitrate changed significantly, something that could potentially also influence the rate of 

nitrate attenuation processes between wet and dry conditions.  
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Table 6.4.4: The principal components (axes) generated by the PCA, their respective 

eigenvalues, the % of variance explained by each component and the cumulative % of 

inter-sample variance explanation between the wet and the dry condition samples. 

Axes Eigenvalues % of Variance Cumulative %

1 3.472 49.6 49.6

2 1.443 20.6 70.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.5: Correlation bi-plot from the PCA analysis with cluster centroids (average 

score on each component, with standard errors) for the four land use zones in wet and 

dry conditions sampling. Correlations of the variables with the main axes are given by 

solid arrows. Dashed arrows indicate the correlation of nitrate attenuation processes 

with the component axes. Water; water content, OM; organic matter content, WFPS; 

water filled pore space, NO3
-; soil nitrate content, D; potential denitrification rate. 
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Table 6.4.5: Correlation coefficients of the environmental variables in PCA. 

***Correlation significant at the 0.01 probability level. 

Variables Component 1 Component 2

Water content 0.916*** 0.084

Organic Matter 0.805*** 0.427

AnMOC 0.909*** 0.163

WFPS 0.306 -0.759***

Soil Nitrate 0.703*** -0.269

TOC/NO3
- -0.269 0.756***

Lability of OC 0.706*** 0.079  

 

 

6.4.4 Denitrification and DNRA potential 

The potential denitrification rate was not significantly different between the wet and the 

dry condition samples (Table 6.4.6 and Figure 6.4.6 A), although the wet samples had 

37 % higher mean denitrification rate compared to the dry samples. Within the wet 

samples, the BZ area had significantly lower denitrification rate, while the BZ rate did 

not change at all under dry conditions. However, within the dry samples no significant 

differences were observed in the denitrification rate between the land use zones.  

 

Similarly, the potential for N2O production was not significantly different between wet 

and dry conditions (Table 6.4.6 and Figure 6.4.6 B). Moreover, only the PM samples 

under wet conditions had significantly higher N2O production rate, while in the dry 

sampling there were no significant differences between land use zones. Regarding the 

ratio of N2O/N2 as denitrification products, there was no significant difference between 

wet and dry condition samples (Figure 6.4.7).  

 

DNRA was 60 % higher in the wet samples compared to the dry samples (Table 6.4.6 

and Figure 6.4.6 C), while only under dry conditions the FM samples displayed a 

significantly higher rate and there was no difference between land use zones under wet 

conditions. As for the ratio of D/DNRA, although it was 27 % higher in the dry samples 

compared to the wet, the difference was not statistically significant (Figure 6.4.8). 
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Figure 6.4.6: Denitrification, N2O production and DNRA potential rates in the topsoil 

across the four land use zones on the wet and dry sampling. Data are means + 1SE. 

Different lower case letters indicate significant differences 
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Table 6.4.6: Denitrification, N2O production and DNRA potential rates across the four 

land use zones on the wet and dry conditions sampling. Data are means ± 1 SE. 

Significant differences between land use zones indicated by different lower case letters. 

Mean ± 1 SE Mean ± 1 SE Mean ± 1 SE

WET conditions (n=30) 45.8 7.1 3.2 0.9 2.1 0.6

Pasture Meadow (n=6) 55.8a
9.0 8.9a

2.4 1.4a
0.7

Fritillary Meadow (n=6) 69.1a 17.4 0.7b 0.3 3.0a 1.4

Buffer Zone (n=10) 23.8b 6.6 2.9b 1.8 0.9a 0.4

Grazing Grassland (n=8) 55.6ab
20.3 1.0b

0.4 3.3a
1.7

DRY conditions (n=30) 28.5 2.3 1.5 0.3 0.8 0.2

Pasture Meadow (n=6) 34.0a 4.4 2.6a 0.7 0.4a 0.1

Fritillary Meadow (n=6) 43.1a 8.9 1.9a 1.2 1.6b 0.5

Buffer Zone (n=10) 23.9a 1.9 0.9a 0.4 0.5a 0.2

Grazing Grassland (n=8) 22.9a
3.3 1.0a

0.2 1.0ab
0.5

DNRANitrous oxideDenitrification

(mg N kg-1 soil d-1) (mg N kg-1 soil d-1) (mg N kg-1 soil d-1)

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.7: The ratio N2O/N2 in the topsoil across the four land use zones on the wet 

and dry sampling. Data are means + 1SE. Same lower case letters indicate no significant 

differences. 
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Figure 6.4.8: The ratio D/DNRA in the topsoil across the four land use zones on the 

wet and dry sampling. Data are means + 1SE. Same lower case letters indicate no 

significant differences. 

 

Correlation analysis between the potential denitrification and DNRA rates, the AnMOC, 

the methane production potential, the lability of organic carbon and the soil physical 

properties of the samples from the wet and the dry condition samplings combined has 

indicated a number of significant relationships (Table 6.4.7). The denitrification and 

DNRA potential correlated with each other, indicating the coexistence of the two nitrate 

attenuation processes under both prolonged wet and dry conditions. Moreover, the 

potential denitrification rate showed significant positive correlation with the AnMOC, 

the lability of organic carbon, the water content and the WFPS. To a lesser degree 

denitrification correlated significantly with the organic matter content and the soil 

nitrate content. The DNRA potential rate showed significant positive correlation with 

the lability of organic carbon, the water content, the organic carbon and the organic 

matter content and the methane production potential. 

 

 

Multiple Regression Analysis (MRA) highlighted the importance of the anaerobic 

mineralisation rate of the organic carbon and the WFPS as the main controlling factors 

regulating the potential for denitrification after prolonged wetting and drying of the 

a 
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topsoil in the reconnected floodplain of the River Cole. The AnMOC and the WFPS 

combined explained 51 % of the variance between the denitrification potential rates 

(MRA; r2=0.51, df=53, P<0.01). Moreover, the soil water content explained 33 % of the 

variance between denitrification rates (MRA; r2=0.33, df=54, P<0.01), followed by the 

lability of organic carbon with 23 % explanatory power (MRA; r2=0.23, df=54, 

P<0.01). The organic matter content explained 13 % of the variance, while the soil 

nitrate content only 7 % (MRA; r2=0.13, df=54, P<0.01 and r2=0.07, df=54, P<0.05 

respectively).  

 

MRA between the DNRA potential rate and those environmental variables that were 

significant in the correlation analysis resulted in relatively low percentages of variance 

explanation by the environmental variables. However, there was complete agreement 

with the correlation results in that the lability and availability of organic carbon together 

with the soil moisture content were the most important factors regulating DNRA rates 

between prolonged wetting and drying in the topsoil of the reconnected floodplain of 

the River Cole. The highest explanatory power was observed for the lability of organic 

carbon (MRA; r2=0.31, df=59, P<0.01) with 31 %, and was followed by the water 

content (MRA; r2=0.16, df=59, P<0.01) with 16 %, the organic carbon content (MRA; 

r2=0.12, df=59, P<0.01) with 12 % and the organic matter content with  (MRA; r2=0.11, 

df=59, P<0.01) with 11 %. 
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Table 6.4.7: Correlation matrix between the denitrification and DNRA potential rate, the AnMOC, the lability of organic carbon, the methane 

production potential and the soil physical properties in the wet and dry conditions sampling. Underlined correlation coefficients are products of 

Spearman rho correlation whereas non-underlined are products of Pearson Product-Moment correlation. ** Correlation is significant at the 

0.01level and *Correlation is significant at the 0.05 level. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Denitrification 
potential DNRA AnMOC

Org. carbon 
lability

Methane 
emission

Organic 
matter 
content

Organic 
carbon TOC/TN TOC/NO3

-
Water 
content Soil nitrate WFPS 

Denitrification potential R or  rho 1
P .
N 55

DNRA R or  rho 0.623** 1
P 0.000 .
N 55 60

AnMOC R or  rho 0.679** 0.245 1
P 0.000 0.063 .
N 55 58 58

Org. carbon lability R or  rho 0.607** 0.554** 0.799** 1
P 0.000 0.000 0.000 .
N 55 60 58 60

Methane emission R or  rho 0.210 0.268* 0.312* 0.229 1
P 0.123 0.039 0.017 0.078 .
N 55 60 58 60 60

Organic matter content R or  rho 0.432** 0.404** 0.798** 0.492** 0.102 1
P 0.001 0.001 0.000 0.000 0.436 .
N 55 60 58 60 60 60

Organic carbon R or  rho 0.223 0.425** 0.494** 0.024 0.275* 0.671** 1
P 0.102 0.001 0.000 0.855 0.033 0.000 .
N 55 60 58 60 60 60 60

TOC/TN R or  rho 0.075 0.174 -0.291* -0.407** 0.009 -0.272* 0.219 1
P 0.587 0.184 0.027 0.001 0.944 0.036 0.093 .
N 55 60 58 60 60 60 60 60

TOC/NO3
- R or  rho -0.079 0.104 -0.051 -0.146 0.265* -0.022 0.123 0.278* 1

P 0.570 0.442 0.705 0.277 0.046 0.87 0.362 0.036 .
N 54 57 57 57 57 57 57 57 57

Water content R or  rho 0.576** 0.528** 0.752** 0.541** 0.016 0.869** 0.581** -0.090 -0.256 1
P 0.000 0.000 0.000 0.000 0.906 0.000 0.000 0.493 0.055 .
N 55 60 58 60 60 60 60 60 57 60

Soil nitrate R or  rho 0.271* 0.202 0.485** 0.039 -0.169 0.445** 0.446** -0.044 -0.884** 0.593** 1
P 0.047 0.133 0.000 0.772 0.208 0.001 0.001 0.747 0.000 0.000 .
N 54 57 57 57 57 57 57 57 57 57 57

WFPS R or  rho 0.512** 0.228 0.213 0.297* -0.198 0.057 0.017 0.275* -0.355** 0.367** 0.328* 1
P 0.000 0.080 0.109 0.021 0.129 0.664 0.897 0.034 0.007 0.004 0.013 .
N 55 60 58 60 60 60 60 60 57 60 57 60

Variables/Correlation coefficients

 

33
1



 

 332 

6.5     Discussion 

 

6.5.1 The effect of different land use types on nitrate attenuation in the topsoil 

 

6.5.1.1 Soil properties 

The land use zones within the restored River Cole floodplain displayed some significant 

differences in their topsoil properties resulting in the identification of three main land 

use types; the floodplain meadow, the buffer zone and the grazing grassland. With 

respect to the soil texture, all four land use zones had high combined silt and clay 

fraction (range 68 - 88 %). Silt and clay contents above 65 % have been associated with 

increased denitrification activity in floodplain soils (Groffman and Tiedje, 1989; Pinay 

et al., 1995; Pinay et al., 2000) due to the higher water filled porosity of fine textured 

soils compared to coarser ones for a given water content (Granli and Bockman, 1994) 

that leads to slower oxygen diffusion and faster development of anaerobic conditions 

(Parkin and Tiedje, 1984). Additionally, fine textured soils contain more labile C and N 

than coarser textured soils and often show a much greater flush of N mineralisation in 

response to rewetting (Sala et al., 1988). Moreover, lower bulk densities were 

associated with the downstream floodplain meadows (FM and PM), while the BZ and 

GG had higher soil bulk density, probably as a result of soil compaction by grazing 

activity in the GG and horse riding in the BZ (McNaughton, 1984). 

 

The soil nitrate content was also higher in the BZ and GG zones compared to the PM. 

Generally the soil  nitrate in the land use zones of the River Cole floodplain was above 

the ranges reported for different agricultural land use types in the lower Mississippi 

valley (Ullah et al., 2005; Ullah and Faulkner, 2006), in riparian wetlands in Brittany 

(Clément et al., 2002), in a restored floodplain in Wisconsin (Orr et al., 2007) and in 

riparian forest soils receiving prolonged nitrogen runoff in New Jersey (Ullah and 

Zinati, 2006), while they were comparable to chronically nitrate loaded forested riparian 

zones in the Netherlands (Hefting et al., 2006b). Therefore it could be argued that 

nitrate supply is probably not limiting for nitrate attenuation processes to occur in the 

re-connected floodplain of the River Cole. The higher nitrate and ammonia contents 

observed in the GG and BZ sites could be attributed to the grazing activity in the former 

and to the fertilisation of the arable land in the latter. In grazing pastures, the deposition 
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of urine and faeces, apart from increasing the productivity of the grasses, also creates 

‘hot spots’ of high nitrogen cycling rates (McNaughton, 1984). 

 

The availability of organic carbon (OC) was not different among the land use zones and 

ranged between 2 and 12 %, which is within the range of the OC reported in other 

topsoil (0-10 cm) studies of similar texture (Ullah and Zinati, 2006; Sheibley et al., 

2006; Orr et al., 2007). As a result of similar OC contents and differences in the soil 

nitrogen, the ratio of C/N was significantly lower in the BZ and GG areas compared to 

the meadows PM and FM, while the range from 3 to 16 was comparable to C/N ratios 

of other temperate riparian agricultural soils (Pinay et al., 1995; Ullah et al., 2005; 

Ullah and Zinati, 2006). 

 

Several studies have measured the mineralisation rate of organic carbon under aerobic 

conditions (Groffman et al., 1992; Hart et al., 1994a; Dick et al., 2000; Groffman and 

Crawford, 2003; Sheibley et al., 2006) as a measure of microbial biomass respiration 

rate or under anaerobic conditions (Bijay-Singh et al., 1988; Drury et al., 1998; Simek 

et al., 2000; Hill and Cardaci, 2004; Ullah and Faulkner, 2006; Dodla et al., 2008) as 

the fraction of labile organic carbon available to the denitrifier population (Gale et al., 

1992). In the present study we used the anaerobically mineralisable organic carbon 

(AnMOC) as a measure of the relative availability of organic carbon and electron 

acceptors for anaerobic respiration and fermentation. We also calculated the ratio of 

AnMOC per gram of total organic carbon in the soil as an additional expression of the 

labile organic carbon fraction according to Dauwe et al. (2001). However, it has been 

shown that the mineralisation of organic carbon can be faster and more extensive when 

nitrate is supplied (Abell et al., 2009), possibly due to enhanced flow of fermentation 

by-products to denitrifiers and/or increased accessibility of denitrifiers to labile organic 

carbon fractions. This implies that the AnMOC measurement method may have lead to 

an underestimation of the absolute mineralisation rate of organic carbon via nitrate 

reduction, although our AnMOC rates were comparable to some NO3
--amended rates of 

similar organic carbon content soils, temperature conditions and duration of incubation 

(Hill and Cardaci, 2004; Gurwick et al., 2008). Even though the absolute AnMOC rates 

may have been underestimated, AnMOC still has an interpretation value as a relative 

controlling factor of nitrate reduction processes, between different land use zones and 

hydrological regimes across the River Cole floodplain.  
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Both the AnMOC and the labile organic carbon (LOC) were higher in the GG area, 

while the other three land use zones were not different between each other, despite the 

significant differences in soil nitrate content (Fig. 6.1.4). This is a further indication that 

the AnMOC measurement may have not been biased by the ambient soil nitrate content 

during the incubation. The higher AnMOC rate in GG could be attributed to the effect 

of grazing and the subsequent application of animal manure that either contains more 

labile OC (Frank and Groffman, 1998a) and/or increases nutrient cycling and organic 

carbon mineralisation in the soil (McNaughton, 1984). 

 

We used Principal Component Analysis (PCA) and Discriminant Factor Analysis 

(DFA) in order to identify the linear combination of environmental variables that 

explains the highest proportion of variance between individual samples (PCA) and 

between samples grouped in land use zones (DFA). In PCA, the samples were grouped 

into three distinct land use types, namely the grazing grassland, the buffer zone and the 

floodplain meadows along the second component axis formed by the AnMOC and LOC 

variables. The PCA also confirmed the overlap of samples from all the land use zones 

with respect to their organic matter and carbon content. Finally, the silt and clay 

fractions across the land use zones explained 20 % of the variance between samples. 

The grouping of samples in the PCA was also confirmed by the DFA. Therefore it could 

be argued that all the land use types in the re-connected floodplain receive adequate 

nitrate originating from a number of sources such as grazing activity (GG), leaching 

from arable land (BZ) and river overbank flooding (all land use zones), while there 

seems to be adequate organic carbon supply across all land use types. However, the 

differentiating factor between the land use types is the fraction of labile organic carbon 

in the soil that would be available for microbial nitrate respiration processes and seems 

to be increased by the grazing activity in the GG (Frank and Groffman, 1998a) and by 

the combination of horse riding (Frank and Groffman, 1998a) and frequent flooding in 

the BZ (Bastviken et al., 2007), despite the fact that the lability of organic carbon is 

reduced by cultivation in the arable field (Ullah and Faulkner, 2006). Finally the two 

floodplain meadows (PM and FM) seem to have very similar conditions in terms of 

labile organic carbon and organic matter in general.  
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6.5.1.2 Denitrification Potential 

The topsoil across all the land use zones showed significant potential for denitrification 

that ranged between 5 and 63 mg N kg-1 dry soil d-1 (mean 16.3 ± SE 2.8 mg N kg-1d-1). 

Comparing our potential denitrification rates to other studies in floodplain and riparian 

zone soils is not straight forward as in most cases the Denitrification Enzyme Activity 

(DEA) (Smith and Tiedje, 1979) has been used with various incubation durations and 

temperatures. In DEA, nitrate and organic carbon are added at non limiting 

concentrations and for short incubation times (Phase I; 1-3 hours) the rate reflects the 

cellular denitrifying enzyme activity present in the sample at the time of sampling. 

While DEA does not reflect in situ denitrification rates (Groffman et al., 1992), it is 

well suited for comparisons between sites and treatments (Groffman et al., 2006). Since 

indigenous carbon for short-incubation times is usually non-limiting (Tiedje et al., 

1982), our results could be compared with DEA studies of short duration (between 1 

and 3 hours) and incubation temperatures around 20oC.  

 

Ullah and Faulkner (2006) followed a similar approach to ours in measuring 

denitrification potential (DP) with no added organic carbon, incubating at 22oC for 6 

hours, and the summer range of DP across different agricultural land use types in 

Mississippi was between 2.4 and 36 mg N kg-1d-1, which is close to our mean rate. A 

similar DP method was employed in forested and agricultural soils in the lower 

Mississippi Valley that displayed average potential denitrification 34 mg N kg-1d-1 and 

15 mg N kg-1d-1 respectively (Ullah et al., 2005) that are also within the range reported 

in our study.  In several agricultural soils with varying degrees of fertilisation in the 

Czech Republic, Simek et al. (2000) measured DEA in the top 15 cm of the soil that 

ranged between 1.3 and 16 mg N kg-1d-1, being in agreement with our mean rate. 

Similarly, the DEA rate of the topsoil in a semi-arid riparian zone was 16.3 mg N kg-1d-

1 (Harms and Grimm, 2008). Finally our potential denitrification rates compare well 

with the DEA rates of hydromorphic soils in Switzerland (2 - 30 mg N kg-1d-1) 

(Cosandey et al., 2003a) and the denitrification capacity (no added carbon) of hydric 

soils in Germany (0.13 - 27 mg N kg-1d-1) (Well et al., 2005).  

 

The denitrification potential was significantly different between the land use zones, with 

the lowest rate observed in the FM area, the highest in the GG, while the BZ and the 

PM were not significantly different between each other. With respect to the controlling 
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factors of denitrification across the land use zones, both the correlation and multiple 

regression analysis indicated that the AnMOC (r2=0.42) was the main predictor of 

denitrification, followed by the LOC (r2=0.29) and finally the soil nitrate (r2=0.26). 

Although the coefficients of determination are not very high, they indicate that the same 

environmental factor that discriminated the three land use types of the re-connected 

floodplain (i.e. the availability of labile organic carbon) is also responsible for their 

different potential denitrification activity. It should be noted that all the different 

measurements of organic carbon correlated positively with the denitrification potential, 

but the highest correlation coefficient was observed for the AnMOC, which represents a 

combined mearure of organic carbon and electron acceptor availability. This has also 

been found in previous studies (Bijay-Singh et al., 1988; Drury et al., 1998; Hill and 

Cardaci, 2004) that suggested the AnMOC as the most appropriate expression of the 

labile fraction of organic carbon available for nitrate respiration.  

 

The fact that the soil nitrate content explained only 26 % of the variance in 

denitrification may be due to an overestimation of the role of AnMOC as an explanatory 

variable, as AnMOC represents both the organic carbon and electron acceptor 

availability for denitrification. The significant dependence of denitrification potential 

rates on organic carbon availability could have also been affected by the experimental 

procedure followed (i.e. the 24 hours pre-incubation of the slurries for the removal of 

the background 14NO3
-), that could have decreased the availability of easily degradable 

organic carbon to denitrifiers. In 40 % of the samples, the amount of CO2 produced 

during nitrate reduction (according to the molar stoichiometry 1 NO3
- : 1.25 CO2) had 

been reached in 24 hours anaerobic incubation, however, the slope of CO2 production 

did not change after the first 24 hours, and the CO2 production continued linearly until 

the end of the incubation (20 days). This suggests that the total soil organic carbon 

content was not in fact limiting. Upon amendment of the pre-incubated soil slurries with 
15NO3

-, denitrifiers were probably able to also utilise fermentation by-products as easily 

degradable electron donors, as suggested by Abell et al., (2009), and hence the N2 

production during the assay (maximum 6 hours incubation) remained linear with  no 

indication of carbon limitation during the experiment.   

 

Numerous studies have shown a positive relationship between denitrification and the 

availability of organic carbon (Ambus and Lowrance, 1991; Hedin et al., 1998; Hill et 
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al., 2000; Ostrom et al., 2002; Brettar and Höfle, 2002; Vidon and Hill, 2004b; Hefting 

et al., 2006b). The available labile organic carbon, apart from fuelling heterotrophic 

denitrification as an electron donor (Knowles, 1982), also has an indirect effect on 

denitrification, enhancing oxygen consumption by aerobic bacteria which leads to 

anaerobiosis (Tiedje, 1988). In wetlands and riparian zones receiving high NO3
- 

concentration with floodwater, organic carbon might be a controlling factor for 

denitrification (Davidsson and Leonardson, 1996). This could be true in the case of the 

River Cole re-connected floodplain that has been shown to be receiving frequent 

overbank flooding with nitrate-rich water throughout the year, while fertiliser inputs 

from the surrounding arable land and the additional organic-N inputs from grazing 

ungulates also contribute to the N-loading of the soil.  

 

The increased denitrification activity observed in the grazing grassland could be 

attributed to the presence of grazing ungulates. Higher denitrification potential in areas 

affected by grazing cattle has been reported in numerous studies (Frank and Groffman, 

1998b; Meneer et al., 2005; Patra et al., 2005; Philippot et al., 2009). The stimulation of 

denitrification by grazing associated with animal activities has been attributed to 

changes in hydraulic soil properties through soil compaction and in nutrient availability 

through the deposition of urine and faeces and limited plant N uptake after defoliation 

(Luo et al., 1999; Meneer et al., 2005). Moreover, grazing has been shown to increase 

the availability of labile organic carbon and decrease the ratio of C/N, both contributing 

to enhanced denitrification rates (Frank and Groffman, 1998a). However, the spatial 

distribution of soil properties due to grazing can significantly control the distribution of 

potential denitrification and the occurrence of biogeochemical ‘hotspots’ (McClain et 

al., 2003) but does not affect the size of the denitrifier community (Philippot et al., 

2009).  

 

The maintenance of natural riparian vegetation in the BZ could be partly responsible for 

nitrate removal via plant uptake, but also for the supply of organic matter to denitrifiers 

through plant litter (Hefting et al., 2005). It has been shown that litter from submersed 

plants is more readily available to denitrifiers in wetland sediments throughout the year 

(Bastviken et al., 2007). The fact that the BZ is more frequently flooded than any other 

area of the re-connected floodplain means that wetland-like waterlogged conditions 

develop more often and for longer and therefore could lead to the supply of LOC from 
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decomposing plants to the soil microbial population. However, one third of the samples 

of the BZ originate from the arable field, where LOC was lower due to cultivation 

which decreases the availability of LOC (Ullah and Faulkner, 2006). Therefore the 

significantly lower LOC of the BZ compared to the GG is probably the reason for the 

lower denitrification potential.  

 

The PM displayed lower denitrification potential than the GG, but was not different 

from the BZ. Although there is no supply of LOC from grazing in the PM, it has been 

shown that overbank flooding from the river and the surrounding ditch is significant 

especially during the winter and spring, but also during summer storm events that 

inundate a large portion of the PM surface. Flooding in the PM, apart from enhancing 

the decomposition of riparian plants (Bastviken et al., 2007), acts as a conduit for the 

transport of C and N from the surrounding hillslope that includes arable fields and horse 

paddocks. The amendment of restored riparian wetlands with organic matter from plant 

composts and animal manure was shown to stimulate microbial communities and 

especially denitrifiers (Sutton-Grier et al., 2009). Additionally, the PM is mowed at 

least once every summer for hay. Mowing has been shown to increase species richness 

in managed grasslands by increasing the competition between plants and although root 

mass is reduced, the availability of C and N as well as the microbial activity is not 

negatively affected (Patra et al., 2006; Ilmarinen et al., 2009). Moreover, increased 

release of easily extractable carbon via rhizo-deposition processes due to mowing has 

been reported in mown pastures of the Mediterranean (Gavrichkova et al., 2008). The 

availability of easily extractable carbon and the accelerated N cycling due to the short 

life-cycle of plants in mown grassland has been positively related to enhanced 

denitrification (Robson et al., 2007). Therefore the combination of flooding and 

mowing is responsible for supplying the PM with the electron donors and nitrate so as 

to sustain an increased denitrification capacity. Finally, the FM zone is also subjected to 

the same mowing regime as the PM, but flooding is less extensive and frequent and it is 

mostly concentrated in the near-stream zone. However, the FM did not have 

significantly lower LOC, and therefore the lower denitrification potential could be 

possibly explained by lower nitrate supply due to restricted flooding and disconnection 

from the surrounding agricultural land.  
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Our results suggest that the re-connection of the floodplain of the River Cole, although 

aiming at flood attenuation and habitat creation targets (Environmental Report River 

Cole Restoration, 1995), also resulted in a significant potential for denitrification 

activity of the topsoil. This potential was evident and significant across the different 

land use types of the floodplain and was not restricted to areas directly adjacent to 

arable land (e.g. BZ) as it has been commonly shown in the literature (Clément et al., 

2003; Hefting et al., 2003; Ullah and Zinati, 2006). This highlights the importance of 

the enhanced overbank flooding, following the restoration of River Cole, in supplying 

nitrate-rich river water on the floodplain surface and creating the necessary anaerobic 

conditions for the occurrence of denitrification, as it has also been shown in other cases 

of restored river-floodplain connectivity (Forshay and Stanley, 2005; Sheibley et al., 

2006; Orr et al., 2007). The spatial heterogeneity in denitrification potential observed 

between land use types is a function of management practices that affect the availability 

of organic carbon (e.g. grazing and/or mowing) rather than landscape position, which 

has been more important in areas of more complex topographic relief than the River 

Cole catchment (Ullah and Faulkner, 2006; Wang et al., 2009; Harms et al., 2009). 

Therefore, the increased overbank flooding combined with the traditional grassland 

land-use management practices of mowing and grazing act together in creating the 

necessary conditions in this lowland floodplain for increased nitrate removal via 

denitrification on top of the other hydrological and ecological benefits of river-

floodplain connectivity.  

 

 

6.5.1.3 Dissimilatory Nitrate Reduction to Ammonium (DNRA) Potential 

All the samples from all the land use zones displayed potential for DNRA that ranged 

between 0.02 and 2.64 mg N kg-1d-1 (mean 0.4 ± SE 0.03 mg N kg-1d-1). DNRA was on 

average 40 times lower than denitrification, while it accounted for 2 % of the removed 

nitrate during the incubation experiment, compared to 64 % removal attributed to N2 

production from heterotrophic denitrification. Although the conditions promoting 

DNRA and heterotrophic denitrification are similar (i.e. anoxia, available nitrate and 

organic substrates), DNRA is thought to be favoured in nitrate-limited environments 

rich in labile carbon, while denitrification would be favoured under carbon-limited 

conditions (Kelso et al., 1997; Silver et al., 2001). The reason for this is that DNRA 

transfers eight electrons per mole of nitrate reduced, whereas denitrification only 
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transfers five, and therefore DNRA is energetically more favourable in nitrate limited 

conditions (Tiedje et al., 1982; Tiedje, 1988). Moreover, DNRA is mostly performed by 

obligate anaerobic fermentative bacteria, whereas denitrifiers are mostly facultative 

anaerobes present in the soil even under oxic conditions (Tiedje, 1988). Therefore it is 

not surprising that the topsoil in the reconnected floodplain of the River Cole which, as 

it was shown in the present study, was not controlled by nitrate availability but rather by 

the availability of labile organic carbon due to the different land management practices, 

has displayed a significantly lower DNRA potential compared to denitrification.  

 

DNRA has been under-researched in freshwater environments (Revsbech et al., 2005; 

Burgin and Hamilton, 2007) and especially in temperate lowland agricultural 

floodplains, where its role has been assumed to be minor due to the wetting-drying 

cycles that prevent anoxic conditions from becoming established for long periods of 

time (Robertson et al., 1999) and the supply of nitrate from agricultural runoff and 

flooding (Forshay and Stanley, 2005). However, in a recent study of an herbaceous 

riparian zone in Oregon (Davis et al., 2008), with similar soil texture and climatic 

conditions as ours and using anaerobic laboratory incubations, DNRA has been reported 

to occur in the top 15 cm of the soil ranging between 0.2 and 1.3 mg N kg-1d-1, which is 

within our range of values. Moreover, DNRA accounted for 3 % of in situ nitrate 

removal in the riparian zone of an ephemeral stream in Australia (Woodward et al., 

2009), where also denitrification was low, accounting for 3 % of nitrate removal, due to 

high dissolved oxygen in groundwater. Higher percentages of DNRA (between 5 and 15 

% of nitrate removal), in soil slurries, were found in a riparian fen in Denmark (Ambus 

et al., 1992), in two Chinese and Australian paddy soils (Yin et al., 2002), in a riparian 

wetland in UK (Matheson et al., 2003) and in a flow-through experiment of intact cores 

from a created freshwater wetland in Texas (Scott et al., 2008). However, in all cases 

denitrification was responsible for most of nitrate removal, while DNRA was enhanced 

compared to our study due to lower redox under wetland conditions and higher organic 

matter in some of the studies.   

 

The mean DNRA rate across the different land use zones of the River Cole floodplain 

(0.4 ± SE 0.03 mg N kg-1d-1) was very close to the mean DNRA rates reported in the 

surface soil of tropical N-limited forests investigated in soil core incubations under in 

situ conditions using the 15N isotope pool dilution method (Davidson et al., 1991); 0.23 
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mg N kg-1d-1 (Silver et al., 2005); 0.45 mg N kg-1d-1 (Huygens et al., 2007); 0.36 mg N 

kg-1d-1 (Rütting et al., 2008); 0.5 mg N kg-1d-1 (Templer et al., 2008). However, when 

our DNRA rate is compared to a laboratory assay of DNRA from a tropical forest soil 

(0.5 - 9 mg N kg-1d-1; Silver et al., 2001) it falls within the lower range of their 

measurement, suggesting that the potential for DNRA of our temperate agricultural soil 

is lower than in a tropical N-limited forest soil. The denitrification rate in all the above 

tropical forest studies was significantly lower than DNRA, which highlights DNRA’s 

role as a N-conserving mechanism in those nitrogen limited ecosystems. However, it is 

likely that in situ denitrification rates were underestimated by the isotope pool dilution 

technique (Templer et al., 2008; Rütting et al., 2008). 

 

DNRA was not significantly affected by the land use management practices in the re-

connected floodplain of the River Cole. Slightly higher DNRA was observed in the GG, 

followed by the FM, which showed high spatial variability, while the PM and the BZ 

had very similar DNRA rates, as it was also observed for the denitrification potential. 

The multiple regression analysis indicated that 54 % of the variance in DNRA can be 

explained by combining three environmental variables: the methane production 

potential, the availability of labile organic carbon and the availability of nitrate. 

Moreover, DNRA and denitrification correlated positively, which is not surprising as 

both processes are regulated by the same environmental conditions and reactants 

(Tiedje, 1988).  

 

The production of methane occurs at the lowest redox potential in anaerobic soils 

(below -400 mV; Oremland, 1988) and is therefore an indicator of highly reduced 

conditions (Hedin et al., 1998). Although DNRA bacteria can operate at the same redox 

range (+ 250 to + 10 mV; Mitsch and Gosselink, 2000) as denitrifiers (Myrold, 2005), 

they have been found to be competitively more effective, in anaerobic sediments, at 

redox potentials as low as -200 mV (Buresh and Patrick, 1981). Therefore, the 

correlation of the DNRA potential rate with the methane production potential indicates 

that DNRA is likely to be primarily controlled by redox fluctuations, which are in turn 

controlled by the hydrological/ flooding regime, in the intermittently saturated re-

connected floodplain. The low but spatially variable redox conditions found in the FM 

(Fig. 6.1.6 C) are probably responsible for the relatively high DNRA potential in this 

zone. Other studies, where DNRA was a less important process compared to 
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denitrification, also found an increase in DNRA with low redox conditions. For 

example, in Ambus et al. (1992) pre-incubation of the soil under anaerobic conditions 

increased DNRA by 9 %, while DNRA in a created freshwater wetland correlated to the 

sediment oxygen demand (Scott et al., 2008) and the clay soil with WFPS >70 % in a 

lowland Brazilian forest also showed higher DNRA (Sotta et al., 2008). In contrast, in 

studies where DNRA played an important role as an N-conserving mechanism, DNRA 

bacteria seemed to be adapted to fluctuating redox regimes and be able to withstand 

unfavourable redox periods of higher O2 concentration (Pett-Ridge and Firestone, 2005; 

Silver et al., 2005; Pett-Ridge et al., 2006). It could therefore be assumed that in the N-

rich agricultural soil of the River Cole floodplain, where denitrifiers are dominant, 

DNRA is concentrated in more reduced environmental patches where they might have a 

competitive advantage against denitrifiers, while in the N-limited environments, where 

competition from denitrifiers is less intense, they have developed more flexible 

enzymatic pathways able to tolerate limited O2 exposure in order to exploit the limited 

resources. A comparative study of DNRA bacterial strains from these two contrasting 

environments could be employed to test the above assumption.  

 

Positive correlation between DNRA and the organic carbon has been shown in previous 

studies (Fazzolari et al., 1998; Davidsson and Ståhl, 2000; Yin et al., 2002; Sotta et al., 

2008; Wan et al., 2009). It has been suggested that a fermentative source of carbon may 

be a more important controlling factor in the partitioning of nitrate between DNRA and 

denitrification compared to complete anaerobicity (Fazzolari et al., 1998). It is possible 

that the increased availability of LOC in the GG due to grazing activity also stimulates 

DNRA by providing the substrate for fermentative respiration, although this cannot be 

proved in the present study as a qualitative analysis of organic carbon was not 

performed. Tiedje (1982) suggested that DNRA would be favoured where the ratio of 

C/NO3
- is high. We have not found a significant relationship between DNRA or 

denitrification with the ratio of TOC/NO3
-, while only denitrification showed a weak 

negative correlation with the ratio of TOC/TN (Table 6.1.7). Other studies where redox 

potential was an important regulating factor of DNRA have also indicated no 

relationship between DNRA and the ratio C/NO3
- (Matheson et al., 2002; Sotta et al., 

2008). Moreover, those studies where C/NO3
- was a significant predictor of DNRA had 

significantly higher values of C/NO3
- compared to our ratio of TOC/NO3

- (Schipper et 

al., 1994; Bengtsson and Bergwall, 2000; Silver et al., 2005; Wan et al., 2009) and 
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NO3
- availability was limiting. Finally, the positive relationship between DNRA and 

soil nitrate, is probably of limited significance as nitrate supply was frequent across the 

floodplain and this positive correlation is likely to be skewed by the spatial co-

occurrence of LOC and high nitrate due to manure application in the GG and the BZ. A 

positive relationship between DNRA and soil nitrate would be meaningful only where 

nitrate is truly limiting for both DNRA and denitrification reduction processes (Silver et 

al., 2001). 

 

In conclusion, our results document for the first time the occurrence of DNRA as an 

alternative nitrate reduction pathway in the soil of a temperate former agricultural re-

connected floodplain. The reduction of nitrate via DNRA is of lower importance 

compared to denitrification, which has a beneficial effect on the management of diffuse-

nitrate pollution in these lowland catchments. The flood pulsing creates redox 

fluctuating conditions across the floodplain, which in turn maintain viable DNRA 

bacterial populations fuelled also by the availability of labile organic carbon from the 

grazing and mowing management practices. However, the frequent supply of nitrate 

gives a competitive advantage to denitrifiers while it also increases the redox potential 

and lowers the ratio of C/NO3
- in the soil (Yin et al., 2002), both unfavoring DNRA. 

Therefore, the majority of nitrate is transformed to nitrogen gases (N2 and possibly 

N2O) and is removed rather than conserved in the system as NH4
+ which can easily re-

enter the soil cycle via plant uptake.  

 

6.5.2 Spatial distribution of nitrate attenuation across the hydrogeomorphic units 

within each land use zone  

Apart from land use management practices (Ullah and Faulkner, 2006), spatial 

variability of nitrate attenuation has been also attributed to differences in the 

hydrogeomorphic template of riparian zones (Harms and Grimm, 2008) and floodplains 

(Harms et al., 2009). The hydrogeomorphic template consists of both temporal and 

spatial variation in hydrology (i.e. the hydrologic regime), and spatial variation 

conferred by landform (Hauer and Smith, 1998) and topography (Florinsky et al., 

2004). The convergence of hydrologic flowpaths carrying the necessary substrates (C 

and N) or the hydrologic transport of a missing reactant in a pool of substrate have been 

described as the main hydrological mechanisms for the occurrence of biogeochemical 

‘hotspots’ (McClain et al., 2003). It has been hypothesized that due to the low relief of 
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the River Cole re-connected floodplain, topography likely plays a minor role in creating 

areas of increased nitrate attenuation activity, whereas the hydrological regime is the 

main driver of variability by controlling both the supply of nitrate and the redox 

potential of the soil. 

 

6.5.2.1 Fritillary Meadow (FM)  

The overbank flooding from the ditch and the river created distinctly different 

conditions in the channel depression (influence from ditch) and the riparian zone 

(influence from river), which interestingly enough displayed similar denitrification rates 

but significantly different DNRA rates. The high denitrification potential of the channel 

depression could be explained by a combination of factors such as: high clay content 

(Pinay et al., 2000), high moisture content (Groffman et al., 1993a; Pinay et al., 2007) 

and high AnMOC (Pinay et al., 1995; Groffman and Crawford, 2003). The middle 

transect, receiving less frequent flooding from either the ditch or the river had a 

significantly lower denitrification potential due to the lower supply of the available 

substrates and soil moisture. The riparian samples, although they were associated with 

higher bulk density (i.e. lower water holding capacity), lower total nitrogen and organic 

carbon content and lower AnMOC, their denitrification potential was not significantly 

lower from the channel depression samples. At first this seems to be an unexpected 

result, but it could be explained by the availability of LOC in the riparian zone. 

Although the riparian samples were lower in both the organic carbon and the AnMOC, 

the proportion of LOC seems to be higher in the near stream zone (Fig. 6.2.3 B). It has 

been shown that the quality apart from the quantity of organic carbon can significantly 

affect denitrification potential in riparian wetland soils (Dodla et al., 2008), where 

polysaccharides in the surface soil of a freshwater marsh seemed to support higher 

denitrification than other carbon fractions. Moreover, the natural vegetation cover and 

the resulting soil litter production in depressional wetlands (Ullah and Faulkner, 2006) 

supported higher denitrification rates than similar textured agricultural soils. Although 

we do not have organic carbon composition data to support this assumption, it is likely 

that a different source of LOC in the riparian area supports increased denitrification 

activity.   

 

The DNRA potential was significantly higher in the riparian zone compared to the other 

two transects of the FM. This pattern could be explained by the lower redox potential 
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suggested by the higher methane production in this zone (Scott et al., 2008; Sotta et al., 

2008), the lower nitrate availability (Silver et al., 2001) and the higher ratio of TOC/TN 

(Bengtsson and Bergwall, 2000; Silver et al., 2005). Surprisingly, DNRA displayed 

negative relationships with all the organic carbon measurements including the LOC. 

This finding could suggest that fermentative DNRA might not be the dominant process 

in the riparian zone of the FM. Chemolithoautotrophic DNRA where NO3
- is reduced to 

NH4
+ with the simultaneous oxidation of H2S to SO4

2- or S0 has been documented in 

freshwater wetland sediments rich in sulphur (Burgin and Hamilton, 2008; Payne et al., 

2009). Although highly reduced conditions have been found in FM, the presence of S 

has not been determined. Therefore, although the presence of chemolithotrophic DNRA 

cannot be definitely rejected or accepted, it is likely that DNRA bacteria are more 

abundant in the riparian area of the FM, where the low redox, the low nitrate availability 

and the high ratio of C/NO3
- gives them an advantage in resource competition with the 

denitrifiers.  

 

In the least disturbed zone of the re-connected floodplain, where there is no pressure 

from grazing, horse riding or angling activities, the hydrological regime is the main 

controlling factor of resource availability and consequently nitrate attenuation 

processes. Furthermore, the conservation of natural meadow vegetation (i.e. fritillaries) 

together with the more hydrophilic riparian plants is likely to have increased the 

patchiness of soil conditions in the FM (Bruland et al., 2006). Denitrification 

concentrated in the low-lying areas, formed by flooding, where soil moisture combines 

with the availability of carbon and nitrate substrates (Ullah and Faulkner, 2006; Harms 

and Grimm, 2008). Furthermore, DNRA has been shown to be relatively important in 

this most natural and more N-limited area of the River Cole floodplain (Huygens et al., 

2007).    

 

6.5.2.2 Pasture Meadow (PM)  

The widespread flooding of the PM area from the ditch and the river had as 

consequence fairly homogeneous soil properties across the three transects. As shown by 

Harms et al. (2008), homogenisation in soil characteristics and microbial activity occurs 

when the hydrologic driver (i.e. flooding) is frequent and spreads across the floodplain. 

Therefore, soil nitrate is supplied uniformly across the floodplain during overbank 

flooding, which this study has shown to occur throughout the year, while organic carbon 
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supply is maintained by the annual mowing regime as explained in section 6.5.1. The 

riparian area of the PM has also shown (as in FM) a slightly higher availability of LOC, 

despite the lower amounts of organic carbon measured. Consequently, the 

denitrification and the DNRA potentials were not statistically different across the 

transects, while the higher clay content in the channel depression and the riparian areas 

(Pinay et al., 2000) may be related to the slightly higher process rates compared to the 

middle transect.  

 

Denitrification in PM seems to be controlled by the availability of organic carbon and 

the soil moisture, as indicated by the correlation and regression analysis, while there is 

frequent nitrate supply. In this homogeneous land use zone with adequate nitrate supply, 

DNRA probably occupies the same niches as denitrification and is largely outcompeted, 

as indicated also by the second lowest DNRA rate in a cross-zone comparison. Finally, 

DNRA correlated with the soil moisture content, while its dependence on low redox 

conditions was also highlighted by MRA.  

 

Interestingly, although almost all soil properties in the PM were similar or not 

significantly different between transects, the methane production potential was 

significantly higher in the riparian transect. The same pattern has been observed in all 

the riparian transects of the different land use zones. The riparian zone of a Scottish 

ombrotrophic peatland was a significant CH4 ‘hotspot’ contributing ~12 % of the total 

catchment productions whilst covering only ~0.5 % of the catchment area (Dinsmore et 

al., 2009). Furthermore, temperate forest wetlands in Canada (Ullah et al., 2008), 

riparian zones of the River Waal in The Netherlands (Kemnitz et al., 2004) and riparian 

fens and floodplain soils in Germany and Switzerland respectively (Alewell et al., 

2008) were significant CH4 sources. In floodplains, despite the regular change between 

wet anoxic and dry oxic soil conditions, soil methanogens persist during the year in 

abundance and diversity (Mayer and Conrad, 1990). However, methanogens were 

shown to be abundant in soils that were at least frequently flooded, while instantaneous 

methanogenic activity (i.e. no lag phase) and greatest microbial diversity was found in 

permanently flooded soils (Kemnitz et al., 2004). The above are in agreement with our 

observations where despite the frequent flooding of the re-connected floodplain, 

significant methanogenesis was observed only in the near-stream zones during 21 days 

of anoxic incubation.  
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Therefore it could be argued that the frequent and spatially extensive flooding regime of 

the PM zone maintains a high denitrification capacity that can be equally effective 

across the whole floodplain surface in permanently removing river water and 

agricultural runoff nitrate, while at the same time N-conservation via DNRA is minimal 

and the adverse effect of CH4 production from waterlogged soils is restricted in the near 

stream zones. In other words, the intermittent flooding of a re-connected floodplain can 

provide the benefit of nitrate removal via denitrification, without the adverse effect of 

increased methane productions from more permanently saturated areas in riparian zones 

(Itoh et al., 2007) or treatment wetlands (Søvik and Kløve, 2007; Altor and Mitsch, 

2006).     

 

6.5.2.3 Buffer Zone (BZ)  

The BZ, being the smallest in surface area and at the same time the most frequently 

flooded, displayed a remarkable homogeneity in the soil properties among the three 

transects. Although a trend of decreasing soil moisture and organic matter content with 

distance from the stream was observed, it was not statistically significant. However, the 

arable field displayed significantly lower AnMOC and LOC compared to the rest of the 

BZ. Cultivation has long been known to cause marked reductions in total organic C 

(Paul and Clark, 1989) and more serious reductions in labile or microbial C (Bowman et 

al., 1990; Groffman et al., 1993b; Boyer and Groffman, 1996; Ullah and Faulkner, 

2006).  

 

Despite this difference in the availability of LOC, neither the denitrification nor the 

DNRA potential was significantly different between transects. Although the arable field 

displayed substantially lower mean rates, due to the spatial variability observed in the 

riparian and middle transects (Fig. 6.2.17), the difference was not statistically 

significant. Other studies have found lower denitrification rates in cultivated soils 

(Groffman et al., 1993b; Cavigelli and Robertson, 2000; Ullah and Faulkner, 2006) and 

at the edge of arable fields and buffer zones (Hefting et al., 2003, 2006b) that were 

attributed to lower LOC availability and lower soil moisture.  

 

The PCA analysis highlighted the occurrence of five biogeochemical ‘hotspots’ (sensu 

McClain et al., 2003), three along the riparian transect nearest to the bridge and two in 
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the middle transect near the drainage tunnel. These ‘hotspots’ were associated with 

higher soil moisture, lower redox potential and higher availability of LOC and soil 

nitrate, possibly as a result of being located in surface depressions with distinctly longer 

residence time of floodwaters. Similar low elevation areas have been associated with 

increased biogeochemical activity and large pools of C and N in semi-arid riparian 

zones due to the longer residence time of floodwaters after the monsoon passage 

(Harms and Grimm, 2008). Therefore, despite the frequent flooding regime (almost 90 

days per year) that extends across the BZ and within the arable field, the highest 

denitrification and DNRA potential rates were observed in those depressional ‘hotspot’ 

areas, that possibly extend the effectiveness of the BZ in removing nitrate beyond the 

time limits of the flood ‘hot-moment’ (McClain et al., 2003). Although these ‘hotspots’ 

may benefit the BZ by increasing its denitrification capacity, care must be taken when 

there is the need to model denitrification at the field scale to adequately represent the 

contribution of those ‘hotspots’, both at the spatial and temporal dimension (Groffman 

et al., 2009). 

 

6.5.2.4 Grazing Grassland (GG)  

The combination of the hydrologic regime and the grazing activity has shaped the 

spatial distribution of the soil properties between transects in the GG. The presence of 

grazing ungulates in the middle zone between the restored meandering river and the 

remnant channel had as a result higher organic matter and organic carbon soil contents, 

while the soil moisture also increased probably as a result of the more organic, lower 

bulk density soil. However, the ‘hotspot’ nature of the grazing influence (McClain et 

al., 2003) was apparent by the large error bars, and therefore the high spatial variability, 

observed in the soil nitrate content and also the AnMOC and LOC availability that 

despite being on average higher in the middle transect, the difference was not 

statistically significant. Consequently, neither the denitrification nor the DNRA 

potential rates were different among transects, although the riparian zone tended to be 

slightly lower.  

 

Both denitrification and DNRA seem to be controlled by the availability of LOC and 

the soil moisture conditions, while there is frequent nitrate supply through flooding and 

the animal manure application. The fact that no significant relationship was found 

between DNRA and the methane production potential in this zone suggests that 
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fermentative DNRA is the dominant process, while it is primarily regulated by the LOC 

availability rather than the lower redox (Fazzolari et al., 1998). Despite the fact that two 

of the transects in this zone were affected by overbank flooding (i.e. riparian and mill 

leat), the riparian transect was the one that displayed the highest methane production 

potential, being in agreement with the observations in the other land use zones as well. 

This is additional evidence that the restored River Cole floods more frequently than the 

remnant channelized part of the river. 

 

In contrast to the depressional ‘hotspots’ observed in the BZ, where the hydrology 

transports the C and N substrates in a low relief topography where enhanced 

biogeochemical activity occurs, in the GG, the reactants are supplied by the applied 

manure, and the ‘hot-moment’ of a flood is necessary to lower the redox and initiate 

enhanced denitrification activity. The above ‘hotspot’ occurrences are field scale 

variations of the hydrological ‘hotspot’ generation mechanisms reviewed in McClain et 

al. (2003).  

 

Therefore our results suggest that within the re-connected River Cole floodplain, both 

micro-topography and land use act together with hydrology in creating areas of 

enhanced denitrification activity, thus highlighting the importance of combining river-

floodplain connectivity, traditional land use practices and geomorphic diversity as an 

efficient measure against diffuse nitrate pollution in lowland agricultural catchments.  

 

6.5.3 The effect of subsurface hydrology and lithology in the vertical distribution of 

nitrate attenuation in the vadose zone of two land use zones  

Although overbank flooding has been identified as the dominant hydrological 

mechanism in the re-connected floodplain of the River Cole that supplies nitrate to the 

surface soil and promotes anaerobic conditions that favour nitrate attenuation via 

denitrification and DNRA, groundwater sub-surface flow has also been observed to 

occur during and in between flood events. Moreover, nitrate removal has been observed 

along groundwater flow paths between the floodplain and the river and ditch in the PM 

zone and between the arable field and the river in the BZ area. Therefore, the vertical 

distribution of nitrate attenuation and the relative importance of different processes were 

investigated in the vadose zone of these two land use zones in the context of the relative 
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availability of electron donors and acceptors (Vidon and Hill, 2004b) and subsurface 

lithology (Hill et al., 2004). 

 

6.5.3.1 Vertical distribution of lithology and electron donors and acceptors across the 

vadose zone  

There were no significant differences in the lithology (as expressed by soil texture) 

across the vadose zone in both the BZ and the PM. Only the topsoil in the BZ was 

classified as sandy clay loam, containing less clay and silt compared to the BZ 

subsurface and the topsoil of the PM. The presence of stream margin reedbeds and 

depressional pools in the BZ compared to the grassland in PM, has probably caused 

increased deposition of coarser sediments during the winter and spring floods, as it was 

also found for two contrasting Dutch floodplain wetlands (Olde Venterink et al., 2006).   

 

Silt and clay fractions dominated the subsurface of the BZ, while the presence of 

scattered gravel was observed throughout the vadose zone, without though forming 

localised distinct gravel lenses (Hill et al., 2004). In contrast, a localised gravel lens was 

observed between the middle of the PM and the river, at depths around 1 m, while 

gravels were also found closer to the surface near the river. The depth and lateral extent 

of the scattered gravel in the BZ and the gravel layer in the PM suggest that stream 

processes produced them (Burt et al., 1999; Hill et al., 2004). Reineck and Singh (1980) 

indicate that gravel layers are often the former bed sediments of laterally migrating 

stream channels and are common features of floodplain lithology. Highly conductive 

coarse sediments can increase groundwater flow rates and limit nitrate removal in some 

riparian areas (Correll et al., 1997; Burt et al., 1999). However, in our study the silt and 

clay content of the gravel layer was high and not significantly different from the upper 

soil layers, while the saturated hydraulic conductivity was not higher compared to the B 

soil horizon. Therefore the gravel lense is unlikely to act as a groundwater bypass 

without the opportunity for nitrate removal.  

 

The bulk density increased with depth in both vadose zones of the BZ and the PM. The 

soil moisture content decreased with depth in the unsaturated zone and increased again 

at the top limit of the water table at depths between 0.7 and 1 m. The organic carbon and 

organic matter contents, as well as the AnMOC measurement followed an exponential 

decay with depth in both the PM and the BZ, which is consistent with the findings of 
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other studies in hardwood forest soils of the Upper Rhine floodplain (Brettar et al., 

2002; Brettar and Höfle, 2002), in agricultural and forested soil profiles of the Hudson 

River Valley in New York (Boyer and Groffman, 1996) and in restored urban riparian 

zones in Maryland (Gift et al., 2008). However, due to the similar decay rate of the 

AnMOC and the organic carbon content, the expression of LOC (CO2 produced per 

gram of organic carbon) remained largely unchanged throughout the depth profile, 

indicating that the labile fraction of organic carbon does not change significantly with 

depth, but the amount of total organic carbon is significantly reduced. Finally, there was 

no indication of buried organic patches (Hill et al., 2000; Vidon and Hill, 2004b; Hill et 

al., 2004) or subsurface peat layers (van Beek et al., 2004) in either the subsurface of 

the PM or the BZ. Burt et al. (1999) also did not find any such deep organic rich layers 

in a riparian site (Cuddesdon Mill), only 50 miles away from Coleshill, underlain by 

similar geology. 

 

Soil nitrate decreased significantly between 10 and 20 cm depth in the BZ and although 

a decreasing trend was observed throughout the unsaturated zone, due to variability 

among samples, the difference was not statistically significant. In contrast, in the PM, 

the soil nitrate followed an exponential decay with depth (Dick et al., 2000; Clément et 

al., 2002; Brettar et al., 2002; van Beek et al., 2004; Schilling et al., 2009). This 

difference highlights the role of subsurface groundwater flow in the transport of nitrate 

from the arable field to the middle and riparian zone in the BZ. This is an additional 

nitrate supply mechanism, observed only in the BZ, suggesting that subsurface 

denitrification may be of importance in this land use zone. Ammonium and nitrite were 

both lower than nitrate concentration and generally decreased with depth, although in 

some cases the decrease was not statistically significant.  

 

Significant methane production potential was only observed in the top 10 cm of the soil 

in both the PM and the BZ while the lag phase increased and the rates of CH4 

production decreased with increasing soil depth (Kemnitz et al., 2004). Depending on 

redox potential, pH, and availability of electron acceptors, the following microbial 

reduction processes can occur after O2 depletion: nitrate, manganese, iron, sulphate and 

finally CO2 reduction (Zehnder and Stumm, 1988; Paul and Clark, 1989). Laboratory 

experiments confirm that methanogens will be out-competed by sulphate and nitrate 

reducers in the presence of sulphate and nitrate under controlled conditions (D'Angelo 
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and Reddy, 1999). However our laboratory incubations have shown that methanogens 

co-exist in the surface soil with nitrate reducers and can produce significant amounts of 

methane with lag phases as short as 1-2 days. This implies that redox sequence is not 

necessarily occurring in the field where several redox processes may be occurring 

simultaneously in anaerobic microsites (Alewell et al., 2008). On the other hand, apart 

from redox conditions and the presence of electron acceptors, the availability of electron 

donors (organic carbon) has also been proposed as an additional regulating factor in 

anaerobic soils (Achtnich et al., 1995). The lower availability of organic carbon in the 

unsaturated zone probably limits the abundance of methanogenic bacteria giving a 

competitive advantage to the nitrate reducers that can operate at much higher redox 

potential. The management implication of this is that there is far lower risk of increased 

methane productions from the subsurface of the re-connected floodplain, firstly because 

of the limited availability of organic carbon and secondly due to the substantially longer 

lag phase of the methanogens at depth that is usually beyond the duration of a flood 

event.   

 

6.5.3.2 Denitrification Potential  

The denitrification potential in both the PM and the BZ subsurface decreased 

exponentially with depth, while the rates were similar between the two land use zones, 

as it was also shown earlier in the land use analysis. Only the permanently saturated 

depth in the BZ had higher denitrification rate than the respective of the PM, probably 

as a result of higher nitrate availability through the subsurface flow from the arable 

field. A similar exponential decay of potential denitrification with depth has been shown 

in the Cuddesdon Mill floodplain near Oxford (Burt et al., 1999), in three riparian 

wetlands in Brittany (Clément et al., 2002), in a peat soil under grassland in the 

Netherlands (van Beek et al., 2004) and in some riparian sites without buried organic 

patches in Ontario (Hill et al., 2004). Our denitrification rate in the top 30 cm of the soil 

was comparable to a similar soil textured floodplain influenced by surrounding 

agricultural land (Burt et al., 1999), while the deeper soil horizon rates were within the 

ranges reported in a number of studies (Clément et al., 2002; Hill et al., 2004; Hill and 

Cardaci, 2004; Well et al., 2005; Gift et al., 2008).  

 

Correlation and multiple regression analyses highlighted the role of organic carbon 

availability in controlling the denitrification potential with depth (Drury et al., 1998; 
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Brettar and Höfle, 2002; Hill and Cardaci, 2004; Gift et al., 2008). The availability of 

nitrate was a secondary regulating factor (van Beek et al., 2004), while the soil moisture 

content weakly correlated with denitrification, as the water table in the re-connected 

floodplain regularly fluctuates between 1 m depth and the ground surface throughout 

the year, maintaining a relatively high soil moisture throughout the subsurface. Finally, 

the soil texture did not seem to influence the denitrification potential, as it is 

homogeneously distributed across the subsurface and the clay and silt fraction is 

consistently above 65 % and thus being conducive to denitrification (Pinay et al., 2000).  

 

6.5.3.3 DNRA Potential  

The DNRA potential also followed an exponential decay with depth in both the BZ and 

the PM, while the rates were similar between the two land use zones across the same 

depth intervals. We are aware of only one other study, in an herbaceous riparian area in 

Oregon (Davis et al., 2008), where DNRA potential was measured below 1 m depth. 

Compared to their results, our DNRA rate below 1 m corresponds to their lower range 

(0.05 - 0.26 mg N kg-1d-1). So far DNRA has been assumed to be of minor importance 

as a nitrate reduction mechanism in groundwater systems (Rivett et al., 2008). Bulger et 

al. (1989) observed DNRA in groundwater flowing beneath waste stabilisation ponds 

discharging organic-rich wastewater, while Smith et al. (1991) suggested that DNRA 

might be a minor nitrate sink in a sand-gravel aquifer contaminated with a plume of 

treated sewage effluent.  

 

Our study shows for the first time that DNRA occurs within the soil profile of a riparian 

buffer zone that receives nitrate from arable land via subsurface groundwater flow, and 

in a restored former agricultural floodplain receiving river water nitrate through 

overbank flooding. However, DNRA is on average 40 times lower than denitrification 

in the topsoil, while its relative importance diminishes with increasing depth. DNRA 

and denitrification correlated strongly, indicating the coexistence of the two processes 

across the subsurface. The most important predictors of subsurface DNRA were the 

availability of AnMOC and the low redox potential, while the availability of nitrate 

exerted a less important control.  
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6.5.3.4 Other nitrate fates  

The calculation of a nitrate removal budget for the anaerobic slurry incubation 

experiments indicated other possible fates for nitrate apart from the complete 

heterotrophic denitrification and DNRA. Complete denitrification (final product 

dinitrogen gas) accounted for 38 to 83 % of the added nitrate. Generally, highest N2 

production was observed in the top 10 cm of the soil and in the permanently saturated 

zone. Although this may indicate the presence of more active denitrifier populations in 

these depths, it is also a function of the different incubation times of the experiment. 

Apparently, 3 hour incubation was adequate for the expression of all the reductase 

enzymes (including the N2O reductase) in the topsoil, while 72 hour incubation were 

needed for the saturated zone samples to produce comparable amounts of N2, for the 

same amount of added nitrate and incubation temperature. This clearly shows the lower 

reactivity of denitrifiers in the deeper floodplain sediments (Hill et al., 2004). 

Additionally, between 9 and 25 % of the added nitrate remained in the sample pool at 

the end of the experiment, showing that nitrate supply was not limiting. Finally, DNRA 

ranged between 1 and 3 % of the added nitrate and this was consistent across the 

subsurface depth layers.  

 

The production of nitrous oxide has also been observed in all the samples from all the 

depth intervals in both the PM and the BZ. However, it was generally less than 5 % of 

the added nitrate (apart from two depth layers), which is commonly observed for 

incomplete denitrification in agricultural and forested soils (Davidson et al., 2000). 

Moreover, N2O production generally decreased with depth in the BZ (Hunt et al., 2007), 

while a more complicated pattern was observed in the PM. It seems that the rate of 

denitrification activity is more stratified in the PM with more pronounced differences 

within small vertical distances, which led to an increased accumulation of N2O in the 

deeper of the paired depths that shared the same incubation time (Figs. 6.3.8 and 

6.3.18). Our N2O production rate at the top 10 cm of the soil was comparable to slurry 

rates without carbon or nitrate amendment in similar riparian soils in a watershed in 

North Carolina (Hunt et al., 2007), while they were lower compared to nitrate-only 

amended batch incubations of topsoil from a riparian zone in the Netherlands, identified 

as a nitrous oxide production hotspot (van den Heuvel et al., 2009). The ratio of N2O/N2 

(range 0.02 - 0.18) in the top 30 cm of the soil in the PM and BZ zones is within the 

lower range reported in the literature for other riparian areas and floodplains (Groffman 
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et al., 2000; Ullah et al., 2005; Hefting et al., 2006; Woodward et al., 2009). This 

probably suggests that the land use zones of the River Cole floodplain are not important 

sources of nitrous oxide while they are effective sinks through complete denitrification. 

However, a slight increase of the ratio of N2O/N2 was observed in the unsaturated zone, 

which could be due to a lower soil moisture effect (Ullah et al., 2005) or an artefact of 

our incubation time that did not allow complete expression of the N2O reductase. Even 

if slightly more N2O is produced in the unsaturated zone, there is the possibility of 

further reduction in the upper soil layers, although there is a complicated control of gas 

diffusion through the soil profile and the availability of reduced conditions and electron 

donors and acceptors (van den Heuvel et al., 2009).  

 

Nitrite has also been shown to accumulate at the end of the incubation experiments at 

proportions ranging between 1 and 17 % of the added nitrate. Elevated nitrite levels do 

not tend to occur during denitrification (Rivett et al., 2008), while nitrite accumulation 

may be due to DNRA bacteria that have a different type of nitrite reductase enzyme 

(Knowles, 1982). It has been shown in anaerobic river sediments that NO2
- can 

accumulate from DNRA when the reduction of nitrite to ammonium is inhibited by 

elevated nitrate concentrations (Kelso et al., 1997). It is likely that this inhibitory effect 

occurred in our samples, from the unsaturated soil horizon, that were exposed to 

‘unusually’ high nitrate concentrations during the incubation experiment.   

 

On average 14 % of the added nitrate was not accounted for by any of the measured 

products or the remaining NO3
- in the sample pool. This ‘lost’ nitrate was assumed to be 

assimilated into microbial biomass. Other studies have also shown similar percentages 

of nitrate assimilation during laboratory incubation of intact cores from the top 20 cm of 

a riparian fen soil (Ambus et al., 1992) or a range of wetland soils from sandy loam to 

peat (Davidsson and Ståhl, 2000). Moreover, in an N-limited forest soil, nitrate 

immobilisation accounted for more than 85 % of the added nitrate and higher 

immobilisation was observed in the least fertilised soils (Bengtsson and Bergwall, 

2000). Although nitrate assimilation by bacterial biomass is possible in soil types 

similar to ours, it should have been inhibited by the presence of NH4
+ (Rice and Tiedje, 

1989), which is taken up preferentially from nitrate by bacteria (Hill, 1996). The 24 

hour pre-incubation of the samples increased substantially the NH4
+ pool (Rütting et al., 

2008) and the relatively short incubation times of our experiment should have 
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minimised nitrate assimilation. Moreover, this means that assimilated 15NO3
- would not 

have had the time to be re-mineralised as 15NH4
+ and therefore bias our DNRA results. 

However, not accounting for 100 % of 15NO3
- applied is a common challenge in tracer 

experiments (Templer et al., 2008), but still even the assumed microbial assimilation as 

a temporary nitrate sink is relatively unimportant compared to the temporary nitrate 

removal via denitrification in the vadose zone of the River Cole floodplain.  

 

Anaerobic ammonium oxidation (anammox), which is the chemolithotrophic process by 

which ammonium is combined with nitrite under anaerobic conditions to produce N2 as 

a final product was not observed to occur neither in the topsoil nor in the subsurface soil 

horizons of the BZ and the PM areas. This process has been thoroughly described in 

estuarine and deep sea sediments (Trimmer and Nicholls, 2009; Nicholls and Trimmer, 

2009), but its importance in freshwater environments has not yet been established 

(Burgin and Hamilton, 2007). Finally, the chemolithotrophic reduction of nitrate via 

pyrite oxidation (Schwientek et al., 2008) or reduced sulphur oxidation (Burgin and 

Hamilton, 2008) is probably not an important process in the intermittently saturated 

River Cole floodplain, where iron was undetectable in surface soils and subsurface 

sediments; while although sulphate was present, reduced sulphur compounds were 

restricted only to the anoxic riparian river margins. 

  

6.5.4 The effect of the intermittent saturation regime on nitrate attenuation 

processes in the topsoil  

The effect of the intermittent saturation regime of the re-connected floodplain on the 

denitrification and DNRA potential was investigated with sampling of the topsoil across 

all the land use zones after a prolonged wet period and a subsequent sampling of the 

same locations after a prolonged dry spell.  

 

6.5.4.1 Soil properties  

The gravimetric water content was not significantly different between wet and dry 

conditions. However, the Water Filled Pore Space (WFPS), which is considered a better 

index for aeration dependent biological processes at relatively high soil moisture 

contents (Aulakh et al., 1996; De Neve and Hofman, 2002; Sleutel et al., 2008), was 

significantly lower following the prolonged dry period.  
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Neither the organic matter nor the organic carbon content was any different between the 

wet and the dry conditions sampling. Soil and sediment drying promotes the aerobic 

mineralisation of organic matter and the release of cell-bound C from sediment bacteria 

killed during drying (Scholz et al., 2002). Therefore, upon drying, a decrease in organic 

matter and an increase in organic carbon should have been observed. It should be noted 

though that the wet and the dry samplings were four months apart, due to the very wet 

weather of the season 2007 - 2008 that prevented the occurrence of a prolonged dry 

spell, and therefore the wet sampling does not reflect the exact pre-drying conditions. 

Moreover, Fierer and Schimel (2002) observed significant decrease of the DOC 

concentration of oak and grassland soils only after multiple stresses of dry-wet cycles 

over two months, while the changes were greater in the less frequently wetted oak soil. 

This suggests that the 12 days of dry conditions may have not been long enough to 

stimulate an increased organic matter mineralisation, while the intermittent saturation 

regime of the River Cole floodplain, without overly long periods of drought, maintains 

increased levels of organic carbon that can fuel microbial nitrate removal all year round. 

 

Similarly, the AnMOC and the LOC were not significantly different between wet and 

dry samples. Pinay et al. (2007b) and Fromin et al. (in press) have also found no effect 

of a rainfall perturbation in dry soils on the potential microbial respiration as expressed 

by the Sediment Induced Respiration (SIR) rate (Beare et al., 1990). Apart from the 

similar availability of anaerobically mineralisable organic carbon between wet and dry 

samples, this result also indicates that decomposers, which are mainly responsible for 

the anaerobic mineralisation of organic matter, are resistant to perturbations such as dry-

wet cycles (Pinay et al. 2007b). Finally, the methane production potential, being 

spatially very variable, was not different under prolonged wet or dry conditions. Boon et 

al. (1997) have shown in in vitro anaerobic incubations of wetland sediments that 

methanogenesis is decreasing with increasing sediment dessication, however, 

methanogenic archaea can survive long drying periods and can be subsequently revived 

by re-wetting with relatively short lag-phases.  

 

Only the soil N content was significantly higher in the wet samples compared to the dry 

samples. Several studies have shown a flush of mineralised-N and subsequent increase 

in nitrate and ammonium concentrations in soils and sediments upon re-wetting by 

flooding, due to flushing of accumulated ammonium and enhanced nitrification  
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(Baldwin and Mitchell, 2000; Olde-Venterink et al., 2002; Heffernan and Sponseller, 

2004; McIntyre et al., 2009). However, as the saturation conditions persist, the relative 

importance of nitrification diminishes, while losses of nitrate by denitrification increase 

(Baldwin and Mitchell, 2000). Although the exact sequence of events prior to our wet 

sampling was not determined, increased availability of inorganic N may be attributed to 

the above combination of processes, but also the additional supply by the river 

floodwater. The decrease in soil N content upon drying could be explained by an 

increased nitrification of ammonium coupled to enhanced denitrification at the initial 

stages of the dry period (Koschorreck, 2005). Moreover, the dry sampling took place in 

July 08, and therefore plant uptake during the growth season has probably contributed 

to the further reduction of soil nitrate and ammonium.  

 

The PCA indicated that the most important discriminating factor between the wet and 

the dry samples was the difference in their WFPS. The samples formed three distinct 

clusters, with the FM samples being the most spatially variable due to the presence of 

organic matter and soil nitrate ‘hotspots’. Considerable overlap was found between the 

PM and the GG samples, while the lowest spatial variability and higher homogeneity in 

the soil properties was observed for the BZ. Heterogeneity in the FM and more 

homogeneous soil conditions in the PM and the BZ were also shown in an earlier study 

of the same areas (see section 6.5.2). However, the presence of ‘hotspots’ in the GG due 

to grazing activity was not observed at the wet-dry sampling, highlighting that a random 

sampling strategy increases the probability of missing important biogeochemical 

‘hotspots’ at the field scale (Groffman et al., 2009). The same clusters were observed 

for both the wet and the dry conditions, while the overlap of the clusters along axis 1 

suggests that flooding and drying cycles significantly affect the soil moisture conditions 

across the re-connected floodplain as a whole, while the spatial variability of the rest of 

the soil properties seems to be unaffected.  

 

6.5.4.2 Denitrification and DNRA potential  

Although the potential denitrification rate was 37 % higher in the wet samples, the 

difference was not statistically significant. As indicated by the correlation and multiple 

regression analysis, denitrification was mainly driven by the availability of AnMOC and 

the higher WFPS under wet conditions, while the effect of the elevated soil nitrate was 

only marginal. This is in agreement with our earlier results across the different land use 
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zones of the re-connected floodplain (see section 6.5.1), where also the availability of 

labile organic carbon seemed to be limiting denitrification, while soil nitrate was 

probably in excess. Under dry conditions, the control of denitrification by AnMOC was 

still important, while the soil moisture had a slightly more important role and no 

relationship was found with the soil nitrate (data not shown). This indicates further that 

even though nitrate was significantly lower in the dry conditions, it was still not-

limiting for denitrification.  

 

Despite the lower WFPS in the dry condition samples and in conjunction with the 

available organic carbon and the adequate soil nitrate, denitrification activity survived 

the unfavourable oxic conditions and was not significantly different compared to the 

wet conditions. This finding is in agreement with other studies that have found 

denitrifiers to be very resilient of unfavourable oxic conditions (Smith and Tiedje, 1979; 

Groffman and Tiedje, 1988; Olde Venterink et al., 2002; Fromin et al., in press). 

Denitrifying bacteria are predominantly facultative anaerobs (Knowles, 1982), therefore 

dessication-oxidation should be less toxic to them than to obligate anaerobes (Baldwin 

and Mitchell, 2000). The physiological cost for denitrifiers to maintain functional 

denitrifying enzymes under long desiccation conditions is probably compensated by 

their ability to rapidly use nitrate produced during drought once the sediments get 

flooded (Fromin et al., in press).  

 

However, the variability in denitrification activity between land use zones (Table 6.4.6) 

under wet conditions was lost in the dry conditions, despite the fact that most of the 

environmental variables did not change significantly as indicated by the PCA. This 

convergence of denitrifying activity following a perturbation was also observed by 

Pinay et al. (2007b), while Florinsky et al. (2004) found that the variability in 

denitrification due to topographical controls in wet soils was cancelled under drier 

conditions. This finding could imply a change in the community structure of denitrifiers 

induced by the perturbation of prolonged dry conditions. Generally, denitrifier 

community structure is affected on a long-term basis by the C availability, pH, and the 

range of moisture and temperature they experience, while nitrate can stimulate the 

denitrification activity but does not seem to affect its long term composition 

(Wallenstein et al., 2006). Denitrifier community structure has been shown to be 

affected by the frequency of drying-rewetting cycles (Fierer et al., 2003) as well as by 
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season and plant succession (Bremer et al., 2007). The higher potential for N2O 

production by denitrification under drier conditions has been attributed to changes in the 

structure of the denitrifier community (Fromin et al., in press). However, in our study 

the potential for N2O production was not significantly different between wet and dry 

samples and it also displayed a decreasing trend with decreasing WFPS. Moreover, 

changes in the denitrifier community structure have been more prominent in 

infrequently wetted soils than in those soils experiencing frequent wet and dry cycles 

(Fierer et al., 2003; Fromin et al., in press). Although our results with respect to the 

effect of the intermittent saturation regime of the re-connected floodplain on the 

denitrifier community structure are not conclusive, we have shown that denitrification 

activity is not adversely affected by brief periods of drought, and that the regular 

flooding of the floodplain maintains high denitrification enzyme activity that depends 

more on the availability of soil moisture and electron donors rather than the community 

composition of the denitrifiers.  

 

The DNRA potential on the other hand, although present in the dry condition samples, 

was significantly affected by the dry period and was 60 % lower compared to the wet 

samples. The correlation and multiple regression analysis confirmed the results of the 

earlier study across the land use zones (see section 6.5.1) in that the most important 

controlling factors of DNRA were the availability of labile organic carbon, the soil 

moisture content and the redox potential, while no relationship was found between 

DNRA and the soil nitrate. We are not aware of any other studies that have investigated 

the effect of a wetting-drying cycle under field conditions on the DNRA potential of the 

topsoil. Our results suggest a higher sensitivity of the DNRA activity in a drought 

perturbation compared to denitrification, which could be due to the change of 

environmental conditions (i.e. lower WFPS, as nitrate was adequate) or a change in the 

bacterial community composition (Wallenstein et al., 2006). DNRA bacteria are mostly 

obligate anaerobs (Tiedje, 1988) and therefore prolonged oxic conditions may be toxic 

for them; something that was shown for sulphate reducers that are also obligate 

anaerobs (Holland et al., 1987). However, the fact that DNRA activity was observed 

upon re-wetting of the dry samples indicates a degree of resilience of the DNRA 

bacteria, while it is also possible that some bacteria survive in anaerobic microsites 

within the soil matrix, as it has also been shown for methanogens (Boon et al., 1997).  
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One other possible explanation could be that some DNRA populations may be adapted 

to more oxic conditions (Pett-Ridge and Firestone, 2005; Silver et al., 2005; Pett-Ridge 

et al., 2006). Although DNRA under wet conditions correlated significantly with low 

redox conditions, under dry conditions such a relationship was not found and the single 

most important predictor of DNRA was the availability of labile organic carbon. It is 

therefore likely that a diverse DNRA population exists even in a temperate agricultural 

catchment with N-rich soils, where denitrifiers generally outcompete DNRA bacteria 

and restrict them in the lower redox, high carbon environments. However, when a 

perturbation like drought occurs, DNRA populations adapted to more oxic conditions 

can survive. These assumptions could be further explored by studying the effect of 

wetting-drying cycles to the community structure of DNRA bacterial populations. 

 

In conclusion, the intermittent saturation regime of the River Cole floodplain maintains 

an effective denitrifying enzyme activity that is not adversely affected by short periods 

of drought and oxic conditions, while it significantly reduces N-conservation via DNRA 

that is more sensitive to oxic conditions. This balance is maintained by the frequent 

supply of nitrate and the availability of labile organic carbon that give a competitive 

advantage to denitrifiers over the DNRA bacteria. However, there is the indication that 

if conditions change to a more N-limited system, DNRA bacteria could evolve and be 

able to tolerate more oxic conditions and thus compete more successfully with 

denitrifiers for the limited resources.  
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Chapter 7: Predicting denitrification rates at the field scale for the design 

and appraisal of river restoration schemes 

 

7.1    Introduction 

Decision support tools for the assessment of the water quality function, and specifically 

the nitrate removal capacity, of restored floodplains and buffer zones can be broadly 

assigned to two types. Those that are GIS-based, or depend on geomorphological 

databases or field observations and scoring criteria, which usually provide a qualitative 

assessment of the suitability of sites for water quality improvement, and those that 

consist of process-based models for quantitative predictions of hydrological interactions 

and nitrogen transformations, are usually data intensive and their use is restricted to 

scientific applications. However, there is need for a rapid, cost-effective and yet reliable 

assessment tool to support the management decisions for river-floodplain restoration 

aimed at effective nitrate removal. Ideally, this tool should be based on a scientifically 

sound assessment of the nitrate removal capacity based on data that can be 

inexpensively obtained at a pre- or post- restoration stage. 

 

In the previous chapters, the role of hydrology in nitrate transport onto the restored 

floodplain and in creating the necessary conditions for biological nitrate removal has 

been clearly shown. Moreover, in a temperate lowland agricultural setting, heterotrophic 

denitrification was shown to be the single most important mechanism for nitrate 

removal in the surface soil and the vadose zone of the floodplain. Therefore, following 

the hydrological reconnection of the river with its floodplain, the nitrate removal 

capacity of the restored floodplain could be predicted by the denitrification potential of 

its soil. Predictions at the pre-restoration stage would facilitate selection of sites with 

the highest potential for nitrate removal, and at the post-restoration stage could be used 

to assess the effectiveness of the restoration measures in re-instating the nitrate removal 

capacity of the re-connected floodplain.  

 

7.2    Aim and Objectives 

A major aim of this research was therefore to develop a management tool for the 

prediction of denitrification at the field scale to support decision making for the 

selection of suitable locations for river and floodplain restoration and to allow the post-
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project assessment of restored floodplains targeting increased nitrate retention. For this 

purpose the following objectives were identified: 

• Identify an appropriate model able to predict actual denitrification rates based on 

a simple set of measured or simulated variables; 

• Build a database for validating the model simulations with actual denitrification 

measurements and assess the goodness of fit of the model predictions; 

• Evaluate the transferability of the model to a different location from its 

development and assess the need for site-specific calibration or optimisation of 

the model parameters; 

• Assess the applicability of the model to subsurface soil horizons in addition to 

the topsoil; 

• Formulate the management tool by identifying the data requirements and the 

necessary steps for its application as a decision support tool. 

 

7.3    Simplified denitrification models 

The process-based models that have been proposed as a potential decision support tool, 

all include a denitrification component or a more general nitrogen biogeochemical 

transformation component. Numerous studies have suggested that denitrification in 

floodplains and riparian buffer zones is the process mainly responsible for nitrate 

removal, while nitrate uptake by vegetation is much less important (Haycock and Pinay, 

1993; Burt et al., 2002b; Clément et al., 2002; Hefting et al., 2004). The present study 

has also shown that although DNRA is occurring simultaneously with denitrification, its 

magnitude was, on average, 40 times less than that of denitrification. Therefore, 

denitrification is by far the dominant removal pathway for nitrate reaching floodplains 

and riparian zones from non-point agricultural sources, and therefore the prediction of 

the nitrate removal capacity of a re-connected floodplain could be based solely on 

estimating potential denitrification rates.  

 

Different approaches exist for including denitrification in a N-cycling model: i) 

microbial growth models that consider the dynamics of microorganisms responsible for 

denitrification (e.g. DNDC; Li et al., 1992a,b, 2000); ii) soil structural models that 

consider the diffusion of gases in and out of the soil matrix (e.g. Vinten et al., 1996) and 

iii) simplified models where denitrification is assumed to be determined by easily 
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measurable parameters such as degree of saturation, soil temperature, and nitrate 

content of the soil. The latter is appropriate for use at the field scale, where the data can 

be obtained from field measurements or from simulation models (Heinen, 2006a).  

 

In his recent review of over 50 simplified denitrification models, Heinen (2006a) 

provided a description of the most common formulation for denitrification found in the 

majority of the models. Specifically, denitrification is simulated as a function of a 

potential denitrification rate or is considered as a first-order decay process. Since 

denitrification is dependent upon environmental conditions such as oxygen scarcity, 

nitrate availability, temperature and pH conditions, reduction functions are estimated for 

the above parameters and the general mathematical function to describe actual 

denitrification is given by equation (7.1): 

 

a N S T pHD af f f f=                                                                                        (7.1) 

 

Where Da is the actual denitrification rate, a depends on whether the denitrification 

potential is used or a first-order decay coefficient, fN is a dimensionless reduction 

function for nitrate soil content, fS is a dimensionless reduction function for water 

content in soil, fT is a dimensionless reduction function for soil temperature and fpH is a 

dimensionless reduction function for soil pH.  

 

A number of simple denitrification models deviate from Eq. (7.1) mainly by adding to 

or modifying the dimensionless reduction functions to account for: the effect of air 

temperature on the denitrification decay constant (CREAMS; Knisel, 1980 in Marchetti 

et al., 1997); the contribution of different nitrogen transformation processes in the fN 

such as N deposition, plant uptake and N immobilisation in the root zone (EXPERT-N; 

Priesack et al., 2001); the effect of soil type on the soil water function (Lippold and 

Matzel, 1992 and NGAS; Parton et al., 1996); a specific rainfall or irrigation regime 

(NLEAP and NLOS; Shaffer et al., 1991, 2001a; Xu et al., 1998; Bittman et al., 2001) 

and the effect of redox potential on the maximum possible denitrification increase and 

the effect of organic carbon on the degree of anaerobiosis (REMM; Inamdar et al., 

1999ab). 
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Since the scope of the present study is not to present an exhaustive review of the 

different variations of simple denitrification models, the focus of this section will be on 

presenting the rationale for using the different functions in Eq. (7.1) with the aim of 

selecting the most suitable simple denitrification model expression that will form the 

basis for the development of the management tool.   

 

The actual denitrification rate Da can be computed at the point scale, expressed as loss 

of N on dry soil weight basis, loss of N on soil volume basis, or some spatial scale for a 

certain soil layer, where the soil layer thickness should also be indicated. The parameter 

a can represent a potential denitrification rate Dp (same units as Da) or represent a first-

order denitrification coefficient (constant) kd (Heinen, 2006a). In the case where a = Dp, 

a certain point or soil layer can be characterised by a potential denitrification rate, which 

also provides an indirect measure of the effect of organic matter decomposition on 

denitrification since Dp is measured under non-limiting nitrate conditions, anaerobicity 

and at a default or reference temperature. Moreover, as the organic carbon availability is 

likely to change over time, or due to seasonal effects, the measurement of Dp should 

also take into account the effect of the time or season of measurement (Hénault and 

Germon, 2000). Finally, as the organic carbon distribution changes with depth, this 

should also be reflected by the Dp measurement in case several soil layers at different 

depths need to be considered (Heinen, 2006a). 

 

When a = kd, kd is a first-order denitrification coefficient and the actual denitrification is 

still influenced by environmental conditions through the dimensionless functions fS and 

fT. However, the function fN is no longer a dimensionless function but equals the soil 

nitrate content. The first-order denitrification coefficient in most cases is estimated 

experimentally as a function of soil type and soil nitrate content or from some 

expression of the soil organic carbon availability (Heinen, 2006a). 

 

Regarding the function fN, when Dp is used in Eq. (7.1), fN  is estimated from a 

Michaelis-Menten type formula as the bacterial denitrifying activity increases in a 

hyperbolic type curve approaching a maximum value with respect to the substrate 

concentration (i.e. soil nitrate concentration) (Paul and Clark, 1989). Therefore, the fN is 

given by equation (7.2): 
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NK

N
f N +

=          (7.2) 

 
Where fN  is the dimensionless nitrate function, N the soil nitrate concentration and K, 

which can be determined experimentally, the half-saturation constant or the soil nitrate 

concentration when fN = 0.5.  

 

From Eq. (7.2), when K>>N, i.e. at low soil nitrate concentrations, nitrate becomes 

limiting for denitrification and the process approaches first-order kinetics and therefore 

kd can be used correctly in Eq. (7.1). However, when ambient soil nitrate concentration 

is high, then nitrate is not limiting and a first-order decay constant should not be used, 

but instead a combination of  Dp and fN  described by Eq. (7.2) should be used in Eq. (1) 

(Heinen, 2006a). Therefore, the use of the Dp in the formulation of the simple 

denitrification model has the advantage that it can accurately take into account low or 

high ambient soil nitrate contents. 

 

Denitrification also depends on a lack of oxygen availability, but since oxygen 

dynamics in soil are difficult to measure (or simulate) (Rolston et al., 1984; Grundmann 

and Rolston, 1987) the soil water content is used instead to describe anaerobic 

conditions. As the water content increases, the air-filled porosity of the soil decreases. 

However, oxygen diffusion coefficients are not related linearly to air-filled pore space, 

and therefore a power reduction function is usually used, as in equation (7.3): 
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Where fS is the dimensionless water reduction function, S is the dimensionless degree of 

saturation or water-filled pore space, Sm is S above which fS =1, St is a threshold value 

for S below which fS = 0, and w is a curve shape parameter determining the steepness of 

the curve. In most cases Sm = 1, meaning that when 100% of the pore space is filled with 

water, denitrification will operate optimally. The threshold parameter St is usually 

determined experimentally relating it to a specific soil property and more commonly on 
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the value of S at field capacity, whereas w is usually w>1; that is (Sm - St) multiplied by 

the slope of the curve at S = Sm (Heinen, 2006a). 

 

Heinen (2006a) also gives examples of models that have used a different water 

reduction function based on volumetric water content (θ), groundwater level, pressure 

head, and the water retention characteristic (including the effect of hysteresis) or a 

Michaelis - Menten type function. Heinen (2006a) also acknowledges that although 

there is a wide range of water reduction functions (mainly due to differences in the soil 

gas diffusivity and soil respiration rate of the different soil types the models were based 

on for their development) in most cases fS = 0.5 at S > 0.7.  

 

All biological processes, and therefore denitrification, are regulated by temperature and 

they usually increase exponentially with increasing temperature until they reach a 

maximum where the rate levels off and if the temperature continues to increase then a 

rapid drop in the process rate towards inactivity is observed (Payne, 1981; Tiedje, 

1988). According to Heinen (2006a), most simple denitrification models have a 

temperature reduction function based on the Van’t Hoff law (equation 7.4) or the 

Arrhenius law (equation 7.5): 
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Where fT the dimensionless temperature reduction function, T the soil temperature (in 
oC or oK), Tr a reference temperature where fT =1, Q10 is an increase factor in fT at an 

increase in T of 10 oK or oC and kA is an exponential increase coefficient (oK or oC). For 

each model that incorporates one of the above expressions for the fT, the reference 

temperature needs to be specified and the Q10 needs to be computed for the range of 

temperatures anticipated for the purpose of the predicted denitrification rates. 

Furthermore, when kA is used it can be computed from the activation energy EA and the 

ideal gas constant R (kA = EA / R). In some cases, the temperature function is split in 
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two, around a rapture value (e.g. NEMIS; Hénault and Germon, 2000) to account for a 

discontinuous influence of temperature on denitrification rates (Stanford et al., 1975). 

 

The effect of pH on denitrification is reflected in the process rate, which is slower under 

acidic conditions compared to neutral or slightly alkaline (Simek and Cooper, 2002), 

but also on the relative proportion of the produced nitrogen gases (mainly N2O and N2), 

with more N2O being produced under acidic conditions (Hefting et al., 2003, 2006b). 

Denitrification operates optimally between pH 5 and 8, while denitrification almost 

ceases for pH <4 or pH> 10 (Paul and Clark, 1989). Heinen (2006a) reports that only 

15% of the models considered in his review included a reduction function for pH, as in 

most cases if the potential denitrification or the decay coefficient is determined under 

the same pH conditions as occur in the soil, it is not necessary to include the effect of 

pH in Eq. (1).  

 

Heinen (2006a) also computed the normalised sensitivity (elasticity) of the simplified 

model to its parameters according to Eq. (7.1) and performed a Monte Carlo analysis. 

His results indicated that Dα = Dp only when all reduction functions are one, but in most 

cases Dα < Dp, which is an acceptable result as potential denitrification is usually several 

times higher than actual denitrification. When K is not large, then both K and N need to 

be determined accurately. The highest sensitivity was shown for the parameters S and St 

that can cause significant errors in the estimation of Dα if not determined at great 

accuracy. Finally, the sensitivity for T is not large and since soil temperature can easily 

be measured accurately, the function fT is not expected to be a significant source of 

errors for the model. Currently, there is not a universally accepted model for predicting 

denitrification, and the existing models are usually site specific. However, if a model is 

required for predicting denitrification at the field scale, then care must be taken 

regarding the transferability of the parameters to specific soil and environmental 

conditions, and if a new calibration of the parameters is not possible, parameter 

optimisation is suggested.  

 

7.4    NEMIS - A simplified model for predicting denitrification at the field scale 

NEMIS (Hénault and Germon, 2000) was developed from the further calibration and 

adaptation of earlier models proposed by Rolston et al. (1984) and Johnsson et al. 

(1991), in an attempt to produce a model that is based on the general formulation of Eq. 
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(7.1) and would be generally applicable. The purpose of this section is to describe the 

conditions under which the model was developed and the specific functions of NEMIS 

and assess its suitability for being used as a management decision support tool. 

 

The general form of the model is given in equation (7.6): 

 

a p N S TD D f f f=           (7.6) 

Where Da is the actual denitrification rate (in kg N ha-1 d-1), Dp the potential 

denitrification rate (also in kg N ha-1 d-1), and fN, fS and fT are the soil nitrate, water 

content, and temperature dimensionless reduction functions respectively. 

 

The NEMIS model uses the combination of estimated Dp and a Michaelis-Menten 

function for the fN instead of a first-order decay constant, and it is therefore appropriate 

even for high ambient soil nitrate levels, where nitrate is not limiting and the process 

approaches a zero order reaction. Denitrification potential rates were estimated at the 0 - 

20 cm depth in a cultivated loam soil (14 % clay, 52 % silt and 35 % sand) with pHwater 

7.1. The acetylene block technique in undisturbed soil cores kept at 20 oC, saturated 

with water in the laboratory, and placed at nitrate content near to 200 mg N kg-1 soil, is 

recommended by the model authors for estimating Dp, and if an annual simulation of 

denitrification is needed then the measurement should be repeated twice, once in 

autumn, winter or spring and once in summer.  

 

The Michaelis-Menten type reduction function for the effect of soil nitrate is given in 

equation (7.7): 

 

3

3

[ ]

22 [ ]N

NO
f

NO

−

−=
+          (7.7) 

 

Where [NO3
-] is the soil nitrate content (in mg N kg-1 soil) and 22 is the half saturation 

constant K (also in mg N kg-1 soil). The fN was estimated experimentally for a range of 

soil nitrate contents between 0 - 200 mg N kg-1 soil and the K was computed by fitting a 

Michaelis-Menten function to the experimental points (Hénault and Germon, 2000). 
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For the fS function, the water filled pore space δWF (%) was calculated according to the 

formula by Linn and Doran (1984): 

 

                (7.8) 

 

Where θν is the volumetric water content (%) and Pt the total soil porosity (%). The 

parameters in the power reduction function for the soil water content fS (see Eq. 7.3) 

were computed experimentally by estimating the ratio of denitrification between 

untreated soil cores and wetted soil cores and plotting the ratio against the δWF and then 

fitting an exponential curve to the experimental points. However, the estimated 

parameters were very close to those reported in Grundmann and Rolston (1987) and 

Johnsson (1991), and therefore the NEMIS model authors decided to use the 

formulation included in the  Grundmann and Rolston (1987) model (Equation 7.9): 

 

1.74
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0.38
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δ − =   

        (7.9) 

 

With reference to Eq. 7.3, in Eq. 7.9; St = 0.62, Sm = 1 and w = 1.74. 

 

With respect to the effect of temperature on the denitrification process, the NEMIS 

model uses two formulations for Eq. (7.4) around the rupture temperature of 11oC. This 

is based on the work from Stanford et al. (1975) that proposed: i) a linear relationship 

between temperature and log k, k being the denitrification rate constant at temperatures 

≥ 11oC and; ii) a dramatic rupture at 11oC. Therefore, two Q10 are calculated; one for 

temperatures <11oC (Q10=0.89) and one for temperatures ≥ 11oC (Q10=2.1). The Tr for 

Q10=0.89 is 11oC, while the Tr for Q10=2.1 is 20oC (equation 7.10), the temperature at 

which Dp is measured. 
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( 20) ln(2.1)
exp

10T

t
f

− =   
                    t ≥ 11oC     (7.10) 

 
 
The authors validated NEMIS with two independent databases (Ryden, 1983 and 

Hénault et al., 1998). In Ryden (1983) Dp measurements were missing and a Dp was 

computed assuming that maximum soil water content corresponded to saturation and the 

total measured and simulated denitrification rates were equal. Comparison between the 

measured and simulated denitrification rates gave a coefficient of determination of 0.54. 

The model effectively predicted temporal patterns in denitrification rates but was not 

reliable for estimating actual denitrification rates since the Dp had to be assumed. In the 

case of the Hénault et al. (1998) database, that was complete, the coefficient of 

determination was 0.9, for a simulation using the mean value for each input variable. 

Sensitivity analysis of the model by a systematic change of ± 5% in the input variables 

and the function coefficients indicated that the determination of the δWF had the greatest 

impact on simulated denitrification rates due to the exponential relationship between the 

two. Any other variables associated with the estimation of the water filled pore space, 

such as the volumetric water content or the bulk density (for the indirect estimation of 

the % soil porosity) are therefore expected to be significant sources of error in the 

model and should be measured as accurately as possible. Moreover, the determination 

of the St was highlighted as the most important limitation of the model, since St is 

related to the soil texture and the soil’s field capacity and it is likely that site-specific 

calibration or optimisation could be needed for conditions other than those described in 

Grundmann and Rolston (1987) and Hénault and Germon (2000). The simulations were 

also relatively sensitive to the temperature rupture point, while they were rather 

insensitive to K, which is not expected to vary greatly between soils as long as the Dp is 

measured according to the conditions described in Hénault and Germon (2000). 

 

The NEMIS model was also applied to eight Dutch datasets and the Ryden (1983) 

dataset for comparison (Heinen, 2006b). These datasets did not aim to recalibrate the f 

functions of the model and included a variety of soil types, from dry and wet sand to 

heavy loams and peat. Since not all the available input variables were available, 

assumptions needed to be made and parameters were calculated indirectly or from 

similar datasets. All the function parameters were optimised by minimising the root 
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mean square error (RMSE) in Da, and in order to compare the optimisation results 

between datasets the normalised root mean square error (NRMSE) was also defined 

according to Janssen and Heuberger (1995). The best results (smallest NRMSE) were 

obtained for the Ryden (1983) UK loam dataset that was already shown by Hénault and 

Germon (2000) to be adequately described by NEMIS. The Dutch datasets, even after 

parameterisation, displayed significant differences in the model parameters between 

similar soil types and the simulation failed to accurately predict individual actual 

denitrification rates. However, there was good correspondence between averaged 

measured and simulated denitrification rates for the sand and loam soil types, but not 

the peat datasets. According to Heinen (2006b), the main source of errors in the case of 

the Dutch datasets was probably the assumptions that had to be made and the estimation 

of the missing input variables (e.g. low range of measured soil N contents, Dp estimated 

from organic carbon decay) and also the effect of the site specific soil texture, pore 

geometry and pore connectivity on the fS that was the most sensitive and prone to large 

errors. Therefore, NEMIS could be used in the case of sandy and loam soils to derive a 

reliable average denitrification rate, as long as all the necessary input variables are 

available and the functions are parameterised for the specific location.    

 

NEMIS was also used to simulate N losses due to denitrification under different 

summer irrigation treatments in a fertilised sandy clay loam soil (around 900 mg N kg-1) 

in Southern France (Vale et al., 2007). The model parameters were not optimised and 

the input variables were measured in situ at hourly intervals, apart from the Dp, which 

was not determined and a value reported in Hénault et al. (2005) for a similar soil type 

was used instead. The model predictions showed good agreement with 15N balance 

measurements for only one of the three treatments (the one with the lowest initial N 

content). This was probably due to the inadequate description of soil heterogeneity and 

oxygen diffusion variability by the unique values for total porosity and WFPS 

introduced in the model. Moreover, the transferability of Dp values from other studies is 

questionable. Finally, the model performed better at hourly time steps than at daily 

averages, indicating that smoothing of short term soil moisture changes may result in 

underestimating denitrification rates especially during summer storm events.  

 

Coupled to the agro-hydrologic model TNT2 (Beaujouan et al., 2001), NEMIS was 

used to simulate denitrification at the catchment scale in slightly acidic, silty, hillslope 
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and riparian soils in Western France (Oehler et al., 2007, 2009). The Dp was measured 

once with the Denitrification Enzyme Activity (DEA) method (i.e. adding apart from 

NO3
- also C as substrate), while the soil nitrate and water contents were measured 

monthly. Parameter optimisation resulted in NRMSE value of 1.24, which is relatively 

high but within the range also reported by Heinen (2006b). The model predicted 

satisfactorily daily denitrification rates (coefficient of determination 0.68). However, the 

discrepancy between measured and modelled denitrification rates could be due to the 

fact that the assumption of a constant DEA is not valid and the relationship between 

denitrification and soil moisture is more complex and transient than that assumed by 

applying the model at daily time steps (Oehler et al., 2009). 

 

From the above uses and sensitivity analyses of NEMIS, a number of advantages of the 

model can be drawn. The use of a measured Dp, once or twice per year for better annual 

representation, in conjunction with a dimensionless fN, has the advantage that field 

points or a specific soil layer can be characterised by a Dp rate that also incorporates the 

effect of organic carbon availability on denitrification without the need of additional 

laborious organic carbon measurements. Additionally, the Michaelis - Menten type fN, 

allows for both high and low ambient soil nitrate levels to be represented accurately. 

The determination of K is unlikely to be a major error source for the model, as long as 

the Dp is measured according to the protocol defined by the authors (Hénault and 

Germon, 2000). Although the model was relatively sensitive to the determination of the 

temperature rupture point (Hénault and Germon, 2000), additional validations of the 

model with different datasets have shown that this does not constitute a significant 

source of error, especially if optimisation is performed (Heinen, 2006b). Furthermore, if 

the NEMIS fT formulation is overcomplicated, it could be replaced by the more generic 

Eq. 7.4, as shown in Oehler et al. (2009).  

 

There is agreement between the authors of the model and its subsequent validations by 

other studies that the determination of the fS parameters is the major limitation of the 

model. This is due to the complex nature of the relationship between soil moisture 

content and denitrification, which is greatly influenced by the site’s soil characteristics. 

This fact could limit the transferability of NEMIS into conditions different from its 

development. Therefore, apart from ensuring that the input variables associated with the 

definition of fS are measured as accurately as possible, calibration or parameter 
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optimisation may be needed for a site-specific application. Since a universally accepted 

model for simulating denitrification does not yet exist, the application of NEMIS under 

different conditions has shown that despite its limitations it can be a useful tool for 

predicting average denitrification rates at the field scale. NEMIS has therefore been 

selected in this study as the basis of the management decision support tool to evaluate 

the denitrification capacity of restored floodplains and riparian zones. 

 

7.5    Data requirements and site selection for the validation and application of 

NEMIS 

Mulligan and Wainwright (2004, and references therein) distinguish three broad 

categories of model validation: i) operational or whole-model validation where the 

model output is compared to real-world observations; ii) conceptual validation that is 

the evaluation of the underlying theories and assumptions of the model; and iii) 

validation of the data used to test the model. From the above types of validations, only 

the whole-model validation will be applied for assessing the suitability of NEMIS, since 

the conceptual background is based on established controls of the denitrification 

process, as described in Heinen (2006a), and the re-calibration of the model parameters 

is not in the scope of the present study. Moreover, validation of the data used by the 

model (i.e. input variables) is not possible, as one method or type of measurement is 

applied for each variable and no comparison could be made between different 

techniques for the assessment of the same variable. 

 

The input variables for Eq. 7.6 consist of: i) a potential denitrification rate; ii) soil 

nitrate content; iii) volumetric water content and total soil porosity for the calculation of 

WFPS; and iv) soil temperature. The model authors (Hénault and Germon, 2000) have 

suggested a protocol for measuring potential denitrification rates based on the acetylene 

block technique (Yoshinary and Knowles, 1976) in static cores at 20oC and nitrate 

content near 200 mg N kg-1. The reference temperature and the added nitrate 

concentration were kept the same, as they affect the estimation of the K and Q10 

parameters of the functions fN and fT respectively, but instead of incubations with 

acetylene, a 15N tracer method (adapted from Trimmer et al., 2003) was used for 

measuring potential denitrification rate in slurries (for method details see section 4.4.7). 

The advantages and disadvantages of the C2H2 inhibition technique versus 15N tracer 

methods are discussed in detail in section 4.4.7, however in the case of estimating the 
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Dp for the purpose of NEMIS, no significant differences should be expected due to the 

method used as long as the conditions (i.e. incubation temperature, nitrate concentration 

and no addition of organic carbon substrate) follow the model specifications.  

 

7.5.1  Measurement of in situ denitrification rates 

For the purpose of whole-model validation, in situ denitrification measurements were 

needed for comparison against the model predictions. The C2H2 inhibition technique 

was used by the model authors for measuring denitrification rates on cores incubated 

under field water and nitrate content conditions in order to estimate in situ 

denitrification rates.  

 

Generally, the most popular method for measuring in situ denitrification rates in 

floodplain and riparian zone surface soils (Pinay et al., 2000, 2007a; Hefting et al., 

2003, 2006b; Forshay and Stanley, 2005; Orr et al., 2007) has been (and probably still 

is) the static core acetylene inhibition method, as it was described by Yoshinari and 

Knowles (1976) and subsequently modified by Tiedje et al. (1989) and Groffman et al. 

(1999). Briefly, the method entails the extraction of an ‘intact’ soil core, typically from 

between 5 and 20 cm in the topsoil, and its subsequent incubation in the field or in the 

laboratory under ‘field’ conditions in a C2H2 atmosphere, where N2O accumulates 

during an incubation period between 1 and 24 hours. While this method is simple to 

carry out and allows large numbers of samples to be run (Groffman et al., 2006), both 

under aerobic or anaerobic conditions in waterlogged or simply moist soil (Yoshinari et 

al., 1977), the use of C2H2 has several drawbacks (Groffman et al., 2006 and references 

therein), of which the incomplete inhibition of N2O reduction and the slow diffusion of 

C2H2 into fine-textured saturated soils would seriously underestimate the denitrification 

rates in this study. 

 

An alternative method for the direct quantification of in situ denitrification is the 

application of 15N-labelled NO3
- and the subsequent measurement of the produced 15N-

labelled N2 with the aid of an Isotope Ratio Mass Spectrometer (IRMS). Although this 

method has been considered one of the best for soil studies, its application has been 

limited due to the lengthy procedures and expensive instrumentation required 

(Groffman et al., 2006). The most important criticism of this method is the possibility of 

overestimating denitrification due to the addition of 15N-labelled NO3
-, to achieve high 
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levels of 15N enrichment, and thus the stimulation of denitrification by increasing the 

availability of N. It has been shown that when this method is used in agricultural soils, 

the fertilisation problem is less likely to appear, while where the ambient N 

concentrations are low or very variable, they should be determined prior to the 15N 

tracer experiment in order to adjust dosing accordingly (Groffman et al., 2006). 

 

The 15N tracer method has been successfully used to measure coupled nitrification-

denitrification in sediment cores from aquatic systems (reviewed in Steingruber et al., 

2001) and in wetland sediment microcosm flow-through systems (Stepanauskas et al., 

1996; Hoffmann et al., 2000), but these methods are very laborious, involve long pre-

incubation times and therefore the number of samples is usually limited (Groffman et 

al., 2006). Moreover, enclosure effects are a major problem in incubation studies, as it 

is essential to keep hydrodynamics and concentrations of O2 and NO3
- near in situ 

conditions to produce accurate estimates of in situ denitrification rates (Groffman et al., 

2006). 

 

Enclosure effects are not a concern in aquifer and in small stream studies, where 15N 

tracer methods have also been used with relatively little disturbance of in situ conditions 

Groffman et al., 2006). The approach for groundwater involves the injection through a 

piezometer of an injectate solution containing the 15N tracer and a conservative tracer 

such as Br-, used to correct for dilution, and subsequently recover the injected plume 

from several piezometers along the flow path (Smith et al., 1996, 2004) or use the same 

piezometer for dosing and sampling of the groundwater in the so-called ‘push-pull’ 

method (Istok et al., 1997; Addy et al., 2002; Kellogg et al., 2005) and analyse the 

samples for dissolved 15N-labelled N2. These methods are appropriate for relatively 

permeable aquifers (e.g. sandy) with significant groundwater flows at depths larger than 

1 m, and therefore are unlikely to be successful in the shallow groundwater table of the 

heavy clay alluvium of the River Cole floodplain.  

 

For the purpose of measuring in situ denitrification rates in the saturated topsoil (10 cm 

depth) with the application of 15N tracer at several locations with relatively short 

incubation times, a soil-probe method would be the most appropriate. Such methods 

have been described for saturated hydromorphic soils (Well et al., 2003), for wetland 

sediments (Whitmire and Hamilton, 2005) and river sediments (Sanders and Trimmer, 
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2006). While the above methods are based on the same principle of the ‘push-pull’ 

method by Addy et al. (2002), they were designed for high porosity media and therefore 

further adaptations are needed before being applied to our silty-clay topsoil texture. The 

other limitation of the soil-probe method is that it is operational under saturation 

conditions only, but this is counteracted by the possibility of multiple measurements in 

several locations, thus accounting for larger spatial variability. 

 

7.5.2 Method description 

For the present study, a first attempt was made to use the mini-probe system developed 

by Sanders and Trimmer (2006) for measuring denitrification at the top 10 cm of 

saturated floodplain soils. However, this attempt was unsuccessful due to the fine 

texture of the River Cole floodplain soils that led to the immediate clogging of the mini-

probe system (developed for river-bed sediments of coarser texture), thus rendering it 

unusable. Therefore, it was decided to follow the method principle of Sanders and 

Trimmer (2006) but using, instead of their mini-probe system, Rhizon samplers (Rhizon 

SMS, 10 cm; Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands) for both 

sampling porewater nutrients and also applying 15N-tracer to the saturated topsoil.   

 
Rhizon samplers (Figure 7.5.1) are made of a hydrophilic porous polymer tube, with a 

typical pore diameter of 0.1 µm, extended with a PVC tube. The outer diameter of a 

Rhizon is 2.4 mm, and the filter section has a length of 5 or 10 cm. To support the 

polymer, a wire is fixed to one end of the porous polymer. The fluid sampled from the 

sediment flows into the tiny space between the porous tube and the supporting wire. A 

Rhizon has several advantages compared with other sampling devices: low mechanical 

disturbance of the sediment due to small diameter (2.4 mm), low dead volume (0.5 mL 

including the PVC tubing), minimised sorption processes on the inert polymer and no 

aging during long-term deployments (Seeberg-Elverfeldt et al., 2005). The pore size 

ensures the extraction of microbial- and colloidal-free, ready-to-analyse solution 

(Knight et al., 1998). 
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Figure 7.5.1: Schematic diagram of a Rhizon sampler (after Shotbolt, 2009). 

 
 
The drainage area of a Rhizon is distributed evenly along the entire filter section. The 

area of influence is given by calculating the radius of a cylinder, which represents the 

sediment volume from which the porewater is extracted. The radius of this influenced 

cylindrical volume around a Rhizon is calculated according to Seeberg-Elverfeldt et al. 

(2005) by:  

                                                  (7.11) 
 
 
where Vsample is the volume of the sampled porewater (mL), Pt the porosity of the 

surrounding sediment or soil, and l the length of the filter section (cm). Rhizon samplers 

have been used for porewater sampling in sediments and soils for nitrate (Luo et al., 

2003), ammonium under anaerobic conditions (Song et al., 2003), DOC (Sigfusson et 

al., 2006), dissolved methane (Alberto et al., 2000) and metals (Shotbolt, 2009), but not 

yet used for the application of 15N tracer.  

 

The sampling design for the in situ measurements was based on the transect set up for 

the BZ and PM zones described in section 4.4.1.1. Specifically, the Rhizon samplers 

were deployed in triplicates in three locations within each sampling transect in BZ 

(Figure 7.5.2), generating 27 measurements in total, in March 2008, and another 27 

measurements in July 2008. Moreover, the same approach was followed in March 2008 

for the riparian and channel depression transects of the PM, which shared the same 

hydrological and soil properties with the BZ, in order to increase the sample size for the 

validation of the model, generating 19 additional samples (Figure 7.5.3). Due to the 

chosen method, which can only be applied in saturated soil, sampling was restricted in 

inundated locations with a few centimetres of overlying water. 
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Figure 7.5.2: Location of Rhizon samples in the BZ. Each cluster represents a triplicate 

Rhizon deployment. GHI clusters in arable transect, DEF clusters in middle transect and 

ABC clusters in riparian transect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5.3: Location of Rhizon samples in the PM. Each cluster represents a triplicate 

Rhizon deployment. KLM clusters in the channel depression transect and OPQ clusters 

in the riparian transect. 
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Before the deployment of the Rhizon sampler, a syringe (10 mL, Plastipak, Becton 

Dickinson, Spain) containing degassed deionised water (10 mL, Purelab Ultra, Elga Lab 

Water, UK) is connected via a luer-lock adaptor (2*LL female, Eijkelkamp Agrisearch 

Equipment, Giesbeek, the Netherlands) to the Rhizon and the polymer filter is flushed 

throughout its length. The Rhizon is inserted gently in the ground (10 cm depth), simply 

by pushing in soft soil or using a stainless steel wire (diameter <2.4 mm) to create a 

narrow hole and push away any small gravel. After insertion, the syringe remains 

attached to the Rhizon, which is left for 30 min for the porewater nitrate concentration 

to stabilise (Sanders and Trimmer, 2006) and the suspended sediment in the overlying 

water to settle.  

 

Following the stabilisation time, porewater is drawn from the Rhizon by pulling the 

syringe plunger, or if this is not possible due to high suction pressure, vacuum is applied 

via positioning a wooden spacer (Eijkelkamp Agrisearch Equipment, Giesbeek, the 

Netherlands) on the syringe plunger (Figure 7.5.4). Usually, 10 - 15 minutes of vacuum 

was enough for collecting 5 mL of sample. After disposing of the first 0.5 mL of the 

sample (dead volume of the Rhizon), approximately 2 mL of the sample is gently 

discharged into a crimp top (aluminium over butyl rubber with PTFE liners, Chromacol 

Ltd, UK) mini-vial (1,200 µl, Chromacol Ltd, UK) and allowed to overflow (to 

minimize atmospheric gas exchange). Bacterial activity is inhibited by adding ZnCl2 (25 

µL 50 % w/v) before sealing the mini-vial. The remaining sample is transferred into a 

glass vial for background determination of NO3
- via ion exchange chromatography (see 

section 4.3.3) and DOC analysis (see section 4.3.5). The reference mini-vial represents 

the T0 of the in situ timed experiment.  

 

As soon as the reference sample is drawn, a second syringe containing 2.5 mL of 

degassed 500 µM Na15NO3
- (99.3 at % 15N; Sigma-Aldrich, Poole, UK) is connected to 

the luer-lock adaptor of the Rhizon sampler and its contents are gently discharged. 

Following, on average, 15 minutes of incubation time, 2 mL of sample is drawn and 

transferred in a mini-vial, as described above, while no further samples are collected for 

anion analysis. If vacuum needs to be applied for collecting the sample, the duration of 

the vacuum application is added to the incubation time. The above step is repeated three 

times generating the timed samples T1, T2 and T3 of the in situ measurement.  
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After the completion of the T3 step, the Rhizon is removed and at the same location a 

soil sample is collected via a known volume syringe corer for porosity and particle size 

determination and C and N elemental analysis, while the soil moisture is measured with 

a theta meter (Type HH1, Delta-T Devices, Ltd., Cambridge, UK) and the soil 

temperature with a soil thermometer. 

 

On return to the laboratory, all of the mini-vials were equilibrated to 22 °C and a 

headspace (200 µl analytical grade helium) introduced using a 2-way valve and a gas-

tight micro litre syringe (Hamilton, Bonaduz, Switzerland). The mini-vials were then 

shaken vigorously, inverted and stored upside down overnight to allow the N2 gas to 

equilibrate between the water phase and headspace. The isotopic composition of 15N2 in 

the headspace of the mini-vials was analysed with a CF/IRMS as per section 4.4.7. 

 

For the estimation of in situ denitrification rates, only total denitrification was 

considered (i.e. the coupled nitrification-denitrification was not taken into account) as 

suggested by Sanders and Trimmer (2006). The signal from the mass spectrometer was 

converted into concentrations of 29N2 and 30N2 in the pore water and then production per 

unit volume of soil per unit time. Values were calculated as excess over that in the 

references before the addition of 15NO3
- according to and adapted from Thamdrup and 

Dalsgaard (2000): 
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where p nmol N2 cm-3 h-1 was the production of either p29N2 or p30N2; the fractions 
xN2/ΣN2 represent the signal ratio for either 29N2 or 30N2 (

xN2) to total signal ΣN2 (total 

signal for m/z ratios 28, 29 and 30 for either sample or reference, respectively); α the 

concentration of N2 in pure water at equilibrium with air; V the volume of the mini-vial 

headspace (mL); Vs the volume of the porewater in the mini-vial (mL); Vp the volume 

of the porewater in the soil cylinder influenced by the Rhizon (mL); Vsd the volume of 

the soil cylinder influenced by the Rhizon (cm3) and t the duration (h) of linear p29N2 

and p30N2 production. Both D15 (denitrification of the 15NO3
- spike) and D14 

(denitrification of ambient 14NO3
-) were calculated using the classic IPT expressions: 



 

 382 

 

( )2
30

2
2913

15 2 NpNphnmolNcmD ⋅+=−−                  (7.13) 

( )2
30

2
29

2
30

2
29

13
14 2

2
NpNp

Np

Np
hnmolNcmD ⋅+⋅

⋅
=−−                 (7.14) 

 

An estimate for an areal rate of denitrification in the common units kg N ha-1 d-1 was 

calculated by converting nmol N to kg (15 or 14 the atomic mass of N multiplied by 10-

12) and scaling up from cm3 to ha (one ha at 10 cm depth equals 109 cm3) and finally 

multiplied by the 24 hours for one day.  

 

 

 

Figure 7.5.4: Rhizon sampler attached to a syringe via a luer-lock adaptor and vacuum 

application with a wooden spacer in the syringe’s plunger. (photo: F. Sgouridis). 

 

 

The in situ measurements performed in March 2008 and July 2008 were merged into 

one dataset that was used to validate the NEMIS predictions.   
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7.5.3 Site selection and model application database 

For the purpose of assessing the suitability of NEMIS as a decision support tool for 

predicting the denitrification capacity of a floodplain area across a range of 

hydrological, temperature and nitrate loading conditions, an extended database is 

needed that covers the temporal variations of the above variables across at least one 

monitoring year. Due to the limited availability of measuring instruments but also the 

time and cost constraints associated with the fieldwork and subsequent laboratory 

analyses, the spatial variability of the NEMIS predictions was not investigated, but the 

study focused on assessing the temporal variability in one area of the reconnected 

floodplain of the River Cole. The selected sampling site for the application of NEMIS is 

the Buffer Zone (BZ) area for the following reasons: 

 

• The surface and subsurface hydrology of the site has been monitored for two 

years and there was evidence that the hydrological conditions for the occurrence 

of denitrification exist. 

• The topsoil in the BZ is silty clay loam, which is within the range of soil types 

for which the model was previously successfully applied, and therefore the 

calibrated model parameters should perform satisfactorily. 

• The BZ site has the typical characteristics of a lowland gently sloping riparian 

buffer zone within a re-connected floodplain, situated between the edge of 

agricultural land and the river, having a maximum width of 30 m, and 

predominantly herbaceous vegetation adapted to frequent inundation. Therefore, 

it is a good representative of a restored floodplain aimed to achieve water quality 

targets. 

 

The database for the annual simulation of denitrification at the BZ site was compiled 

for the period November 2007 - October 2008 and consisted of: 

 

1. One Dp measurement (method adapted from section 4.4.7 with higher 

concentration of nitrate (3 mM) in the spike and incubation temperature 20 oC) 

in February 2008, representing the autumn, winter and spring potential (Hénault 

and Germon, 2000) and one measurement in July 2008 for the summer potential. 

Additionally, the Dp was also measured for the B and C soil horizons (50 and 
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100 cm depth respectively), with the aim of extending the application of NEMIS 

to subsurface soil horizons, where denitrification was also occurring.   

2. A continuous record of temperature with three sensors at 10, 50 and 150 cm 

depth (method described in 4.2.3.5). 

3. A continuous record of soil volumetric water content with three probes at 20, 70 

and 120 cm depth (method described in 4.2.3.5). 

4. Two measurements of soil bulk density for the A horizon (0-10 cm depth) 

during the sampling for the Dp in February and July 2008 and one for the B and 

C horizons in February 2008. The soil bulk density was used to estimate total 

soil porosity according to Rowell (1994) (method described in 4.4.2). 

5. Monthly measurements of soil nitrate content with five replicates per horizon on 

each occasion (sampling strategy as per section 4.4.1.4 and analysis method as 

per 4.4.5). The monthly measurements were linearly interpolated for the 

simulation (Hénault and Germon, 2000).  
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7.6    Results and Discussion 

 

7.6.1 In situ denitrification rates 

The actual denitrification rates and the topsoil properties measured in March 2008 and 

July 2008 in the three transects (riparian, middle and arable) of the BZ and in the 

channel depression and riparian transects of the PM are summarised in Table 7.6.1. The 

mean denitrification rate of the BZ area for March 2008 was 0.57 (± SE 0.09) kg N ha-1 

d-1 and no significant differences were found between the riparian and middle field 

transect samples (Mann-Whitney; U=35, Z=-0.49, P>0.05). The PM topsoil samples 

displayed similar mean denitrification rates, 0.68 ± SE 0.18 kg N ha-1 d-1, but 

significantly higher rates were measured in the riparian transect samples (Mann-

Whitney; U=0, Z=-3.58, P<0.01). Actual denitrification rates in July 2008 were 

measured only at the BZ site and they were significantly lower than the rates measured 

in March (Mann-Whitney; U=11, Z=-6.17, P<0.01). The mean denitrification rate for 

July 2008 was 0.014 ± SE 0.003 kg N ha-1 d-1, 40 times lower than the rate measured in 

March, while denitrification rates decreased with increasing distance from the stream, 

but not significantly (Figure 7.6.1 A). 

 

The porewater nitrate content was significantly different between the March and July 

samples (Mann-Whitney; U=61, Z=-5.91, P<0.01). The mean porewater nitrate content 

for the July BZ samples was 0.12 ± SE 0.05 mg N kg-1 dry soil, while no significant 

differences were found between transect samples (Kruskal-Wallis; χ2=0.39, df=2, 

P>0.05). Higher nitrate content was measured in the porewater of the March samples, 

mean 2.96 ± SE 0.74 and 1.97 ± SE 0.46 mg N kg-1 dry soil for the BZ and PM samples 

respectively that were not different from each other.  
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Table 7.6.1: Actual denitrification rates and soil and porewater physical properties in the BZ and PM sampling transects on March 2008 and July 

2008. Mean values and standard errors in parentheses. Different lower case letters indicate significant difference of the means. 

Denitrification Porewater Nitrate Temperature Dry Bulk  Density Water content Organic carbon TOC/TN DOC

(kg N ha-1 d-1) (mg N kg-1) (oC) (g cm-3) (cm3.cm-3) (%) (mg L-1)

BZ Mar. 08 (n=18) 0.57 (0.09) 2.96 (0.74) 7.6 (0.2) 0.68 (0.02) 0.76 (0.01) 6.1 (0.48) 11.06 (0.17) 21.67 (3.95)

Riparian (n=9) 0.54 (0.14)a 1.89 (0.73)a 8.3 (0.22) 0.65 (0.04)a 0.78 (0.02)a 5.31 (0.64)ac 10.93 (0.29)a 8.64 (1.61)ac

Middle field (n=9) 0.59 (0.12)a 4.02 (1.23)a 6.8 (0.05) 0.70 (0.03)a 0.73 (0.02)abc 6.89 (0.65)ab 11.18 (0.18)ab 34.71 (3.98)b

PM Mar. 08 (n=18) 0.68 (0.18) 1.97 (0.46) 7.4 (0.07) 0.78 (0.01) 0.75 (0.01) 5.86 (0.66) 11.98 (0.24) 10.17 (0.57)

Ch. Depression (n=9) 0.075 (0.014)b 1.20 (0.46)a 7.6 (0.07) 0.73 (0.01)a 0.73 (0.003)b 6.49 (0.9)abc 11.76 (0.29)bc 11.76 (0.56)a

Riparian (n=9) 1.28 (0.21)c 2.75 (0.72)a 7.1 (0.04) 0.81 (0.03)a 0.76 (0.02)a 5.24 (0.97)ac 12.2 (0.37)c 8.37 (0.53)c

BZ Jul. 08 (n=27) 0.014 (0.003) 0.12 (0.05) 16.4 (0.13) 0.73 (0.02) 0.7 (0.01) 6.79 (0.53) 10.07 (0.16) 37.8 (3.1)

Riparian (n=9) 0.02 (0.011)b 0.07 (0.012)b 16.6 (0.09) 0.52 (0.03)b 0.74 (0.008)ab 7.98 (0.51)b 10.58 (0.13)ad 47.73 (7.87)b

Middle field (n=9) 0.014 (0.003)b 0.08 (0.021)b 16.1 (0.2) 0.83 (0.03)a 0.69 (0.006)c 8.14 (1.12)ab 9.97 (0.32)de 36.3 (3.24)b

Arable field (n=9) 0.009 (0.003)b 0.21 (0.14)b 16.4 (0.31) 0.83 (0.04)a 0.66 (0.007)d 4.25 (0.15)c 9.65 (0.26)e 29.57 (1.86)b  
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The mean topsoil temperature for the March measurements was 7.6 ± SE 0.2 oC, 

significantly lower than the temperature during the July measurements, 16.4 ± SE 0.13 
oC. The dry bulk density was not significantly different between the two seasons 

(Mann-Whitney; U=454, Z=-0.45, P>0.05) and ranged between 0.52 - 0.83 g cm-3. 

Additionally, a gradient of decreasing water content with increasing distance from the 

stream in the BZ during the July measurements was observed (Figure 7.6.1 B). 

However, the water content range, with the measurements from both seasons pooled 

together, was 0.62 - 0.85 cm3 H2O cm-3 soil, which corresponded to a range of WFPS 

from 68 to 100 % that was above the threshold (62 %) that triggers denitrification in the 

NEMIS model.  

 

The organic carbon content was not significantly different between measurements in the 

BZ and the PM areas or among transects in each area in March 2008 and ranged 

between 0.63 and 9.82 %. Moreover, no significant difference in the organic carbon 

content was observed between the two seasons (Mann-Whitney; U=416, Z=-0.98, 

P>0.05). The ratio TOC/TN was significantly different between the March BZ and PM 

samples and also the July BZ samples (Kruskal-Wallis; χ2=25.7, df=2, P<0.01). No 

differences were observed between transects in March 2008, but in July, the ratio 

TOC/TN decreased with increasing distance from the stream towards the arable field. 

Finally, the DOC in the porewater was significantly higher in the BZ samples compared 

to the PM samples in spring (ANOVA; df=1, F=8.81, P<0.01), while the July samples 

had higher DOC than the March samples (Mann-Whitney; U=494, Z=-5, P<0.01). 

Although not significant, the DOC in the BZ summer samples ranged from higher 

values closer to the stream to lower values in the arable field (Figure 7.6.1 C).  

 

 The topsoil particle size distribution was investigated for the March 2008 samples 

(Figure 7.6.2). The PM channel depression samples had significantly higher clay 

content (ANOVA; df=3, F=5.48, P<0.01), while the BZ riparian samples contained 

more silt than the BZ middle samples that also contained significantly less silt than the 

PM samples (ANOVA; df=3, F=6.94, P<0.01). The sand fraction (between 60 and 2000 

µm) was significantly higher in the BZ middle samples and the PM riparian samples 

(ANOVA; df=3, F=7.21, P<0.01). The BZ riparian samples and the PM channel 

depression samples were classified as silty clay, the BZ middle field samples as clay 

loam and the PM riparian samples as silty clay loam. 
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Figure 7.6.1: Mean (± SE) denitrification rate (A), volumetric water content (B) and 

DOC (C) in the three transects of the BZ in July 2008. 
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Correlation analysis between the denitrification rates (the samples from both seasons 

and all areas pooled) and the soil and porewater physical properties (Table 7.6.2) has 

indicated a significant negative correlation between denitrification and temperature 

(Spearman; r=-0.78, N=58, P<0.01), while denitrification correlated positively with the 

porewater nitrate content (Spearman; r=0.64, N=58, P<0.01) and the water content 

(Spearman; r=0.61, N=58, P<0.01). Forward regression analysis between the same 

variables and the denitrification rate indicated a stronger predictive power of the water 

content (MRA; r2=0.29, F=22.42, P<0.01) followed by the temperature that explained 

28% of the variance in denitrification rates (MRA; r2=0.28, F=19.34, P<0.01) and the 

porewater nitrate with only 11% explanatory power (MRA; r2=0.11, F=6.28, P<0.05). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.6.2: Particle size distribution in the topsoil of the BZ and PM sampling 

transects in March 2008. Different lower case letters indicate significant difference of 

the means. The sand fractions have been grouped into one fraction between 60 and 2000 

µm for ANOVA analysis. 
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Table 7.6.2: Correlation matrix between actual denitrification rates and soil and porewater variables (Spearman rank-order, *Significance at the 

0.05 probability level, **Significance at the 0.01 probability level). 

Denitrification Porewater 
Nitrate

Temperature Porosity Water content Organic 
carbon (%)

TOC/TN DOC Clay (%) Silt (%)

Denitrification R 1 0.643** -0.775** 0.073 0.608** 0.009 0.531** -0.498** -0.256 0.211
P . 0.000 0.000 0.585 0.000 0.942 0.000 0.000 0.131 0.216
N 58 58 58 58 58 58 58 53 36 36

Porewater Nitrate R 1 -0.670** 0.226 0.425** -0.154 0.503** -0.464** 0.079 -0.122
P . 0.000 0.075 0.000 0.229 0.000 0.000 0.648 0.477
N 63 63 63 63 63 63 58 36 36

Temperature R 1 0.010 -0.394** 0.041 -0.545** 0.421** 0.324 0.448**
P . 0.938 0.001 0.752 0.000 0.001 0.054 0.006
N 63 63 63 63 63 58 36 36

Porosity R 1 0.529** 0.310* 0.193 0.111 0.054 0.139
P . 0.000 0.013 0.129 0.405 0.755 0.419
N 63 63 63 63 58 36 36

Water content R 1 0.107 0.403** -0.360** -0.041 0.589**
P . 0.404 0.001 0.006 0.813 0.000
N 63 63 63 58 36 36

Organic carbon (%) R 1 0.199 0.278* -0.292 -0.032
P . 0.118 0.035 0.084 0.854
N 63 63 58 36 36

TOC/TN R 1 -0.475** -0.013 -0.295
P . 0.000 0.941 0.081
N 63 58 36 36

DOC R 1 -0.072 -0.358*
P . 0.689 0.041
N 58 33 33

Clay (%) R 1 -0.063
P . 0.716
N 36 36

Silt (%) R 1
P .
N 36

Variables/Correlation coefficients
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A principal component analysis (PCA) on soil and porewater variables for both seasons 

and all sampling transects resulted in two components with eigenvalues larger than 1, 

which explained 63.5 % of the total variance (Table 7.6.3). A correlation bi-plot of the 

PCA results on the soil and porewater variables is shown in Fig. 7.6.3. Cluster centroids 

(average score on each component, with standard errors) per sampling transect per 

season are presented in Fig. 7.6.4. As can be seen from the bi-plot, the majority of the 

environmental variables correlated with the first component, which explained 40% of 

the observed variance. The soil water content, the porewater nitrate and the ratio 

TOC/TN correlated with the positive axis of component 1, while the temperature and 

the DOC correlated with the negative axis of component 1 (Table 7.6.3). The second 

component explained 23 % of the observed variance and two variables, namely the total 

porosity and the organic carbon content correlated strongly with component 2 (Table 

7.6.3). It is clear from the cluster centroids that the samples between the two seasons 

were separated along component 1, with the July measurements being characterised by 

higher temperatures, higher DOC content but lower porewater nitrate and lower 

volumetric water content. Moreover, the three BZ transects in July 2008 were separated 

along component 2 mainly due to their differences in organic carbon content. The 

March 2008 samples formed a more closely associated cluster with considerable overlap 

between the transect samples and correlated with the porewater nitrate and the soil 

water content that were also the most important predictors of denitrification as shown 

by the correlation and regression analysis. 

 

 

Table 7.6.3: PCA results on the soil and porewater variables. ***Correlation significant 

at the 0.01 probability level.  

Variable Component 1 Component 2
Nitrate 0.673*** 0.083
Temperature -0.888*** 0.187
Porosity 0.241 0.818***
Water content 0.706*** 0.438
Organic carbon -0.104 0.663***
TOC/TN 0.762*** 0.028
DOC -0.649*** 0.537
Variance explained, % of total 40.2 23.3
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Figure 7.6.3: Correlation bi-plot from the PCA analysis on soil and porewater variables. 

Correlations of the variables with the main axes are given by arrows. T: Temperature; 

DOC: Dissolved Organic Carbon; OC: Organic Carbon; Pt: Total soil porosity; Water: 

Water Content; NO3
-: Porewater nitrate. 
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Figure 7.6.4: Correlation bi-plot from the PCA analysis with cluster centroids for the 

sampling transects in the BZ and PM areas for the March and July 2008 measurements. 
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In situ injection of 15NO3
- tracer and subsequent quantification of denitrification rates 

from dissolved 15N gases (15N-N2 and 15N-N2O) has been used extensively in saturated 

zone studies in for example a grassed buffer strip (Mengis et al., 1998), a riparian sandy 

aquifer (Addy et al., 2002), a petroleum-contaminated sandy aquifer (Schurmann et al., 

2003), hydric permeable soils of riparian wetlands (Well et al., 2003; Kellogg et al., 

2005), streambanks of restored urban riparian zones (Kaushal et al., 2008) and the 

hyporheic zone of river islands (Clilverd et al., 2008). However, these “push-pull” 

applications are confined to between 0.15 and 10 m below the soil surface, where 

denitrification usually declines with depth following the decline in groundwater DOC 

availability (Hill et al., 2000), as it was also shown in the present study, and are 

therefore not suitable for comparison with surface soil denitrification rates. 

 

The vast majority of studies that have measured actual denitrification rates in surface 

soil used an acetylene-based ‘static core’ method (Groffman et al., 2006). Hefting et al. 

(2003, 2006a) have measured a mean denitrification rate of 0.8 kg N ha-1 d-1 at 10 cm 

depth in sandy riparian buffer zones, which is slightly higher than the mean March rate 

measured in the BZ and PM areas in the present study. This difference is probably due 

to the high nitrate-loading rates via the shallow inflowing groundwater in the Dutch 

buffer zones, where nitrate was not limiting denitrification. The March rates were within 

the range measured in silty-clay and silty-sand Swiss riparian zones in spring (Cosandey 

et al., 2003a) and slightly higher than the annual range measured across 15 alluvial sites 

along the Garonne River (Pinay et al., 2000). Clément et al. (2003) reported a narrow 

annual range of actual denitrification rates from silty-clay loam grassland and shrub 

riparian zones that corresponded to the upper bound of our measurements, but the high 

fertiliser application rates leading to groundwater nitrate concentrations between 10 and 

20 mg N L-1 was responsible for shifting upwards their lower bound of the 

denitrification range. Finally, denitrification rates measured in alluvial soils across a 

European climatic range (Pinay et al., 2007a) displayed a wide range between 0 and 10 

kg N ha-1 d-1 that encompasses the rates measured in both seasons at the present study. 

  

The mean denitrification rate for the BZ area in March 2008 was 1.5 % of the potential 

denitrification rate of the topsoil measured in spring 2008. Similarly, the mean 

denitrification rate for the PM was 1.6 % of the potential denitrification rate, while the 

low actual rate measured in BZ in July 2008 was <1 % of the corresponding potential 
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rate for the summer 2008. In Cosandey et al (2003a), the potential denitrification rate, 

measured with denitrifying enzyme activity (DEA), was 18 to 34 times higher than the 

actual denitrification rates in two hydromorphic riparian soils. The DEA was always 

significantly higher than the in situ rates of denitrification in the upper soil horizons (0 - 

25 cm) by 2 to 25 times along different topohydrosequences in three riparian wetlands 

with differing vegetation cover (Clément et al., 2002). Although the DEA represents the 

potential denitrifying activity at the time of sampling and is expected to be several times 

higher than the on-site measured denitrification rates (Martin et al., 1999), in some 

situations DEA and in situ rates have been found to be very similar (Orr et al., 2007), or 

at least within the same range (Schipper et al., 1993; Bernal et al., 2007) mainly 

because the in situ conditions were approximating the non-limiting conditions of the 

DEA in terms of nitrate and carbon availability, saturation conditions and temperature. 

In cases where DEA was measured at higher than the in situ temperature, the potential 

rates were corrected to the temperature of actual rates (Well et al., 2003). The reason for 

the difference between the potential rates and the in situ rates measured in this study is 

that the potential was measured at 20oC, ambient carbon content and non-limiting 

nitrate concentration to reflect the maximum potential rate, as required for the 

application of NEMIS, while the in situ measurements were performed at a temperature 

range (6 - 16.5oC) and ambient carbon and nitrate concentrations, of which the latter 

were probably limiting for denitrification in the July samples.  

 

Although the in situ rates were not statistically different between the BZ transects in 

both seasons due to high inter-transect variability, a spatial trend was observed in the 

summer measurements, with higher rates near the stream border (riparian transect) 

moving gradually to lower rates in the arable field. A similar trend was found by Ettema 

et al. (1999) and Cosandey et al. (2003a) and was associated with a lack of frequent 

anaerobiosis in the upland (arable field edge), which was responsible for lower 

denitrifier density despite the non-limiting supply of nitrate through high rates of 

ammonification and nitrification. Lower denitrification rates at the field border were 

also related to lower soil moisture contents (Hefting et al., 2003) and specifically, 

denitrification rates were found to be insignificant below 70 % WFPS (Hefting et al., 

2006a). The water content in the arable field was significantly lower (Figure 7.6.1 B) 

than the middle and riparian transects, but the WFPS was not lower than 68 %, as near-

saturation conditions was a prerequisite for the in situ technique. However, the moisture 
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content was probably responsible for the spatial trend as the porewater nitrate and DOC 

were not significantly different between transects.  

 

The most important predictors of actual denitrification rates were the soil water content, 

the soil temperature, and the porewater nitrate content as indicated by the MRA and 

correlation analysis. Pinay et al. (2007a) found the same variables, with the same order, 

to be the main controlling factors of denitrification in riparian zones across a European 

climatic range. Moreover, maximum denitrification was observed for water contents 

between 0.6 and 0.8 (w/w), which corresponds also to the findings of the present study, 

although there were no measurements of denitrification with <0.6 water content. 

According to the PCA, all the spring denitrification rates from both sites were 

associated closely with higher soil moisture conditions. Higher soil moisture was also 

responsible for higher spring denitrification rates in created wetlands receiving flood 

pulses (Hernandez and Mitsch, 2007) in nitrate-stressed riparian zones in the 

Netherlands (Hefting et al., 2003, 2006a) and in N-addition experiments in a riparian 

forest in Georgia (Ettema et al., 1999). 

 

Although high soil temperature is traditionally associated with higher denitrification 

rates (Hernandez and Mitsch, 2007, Pinay et al., 2007a), in the present study the 

summer measurements that were performed at higher soil temperature displayed lower 

denitrification rates. However, Kliewer and Gilliam (1995) observed a positive 

correlation between the nitrous oxide evolution from C2H2 incubated cores with mean 

soil temperature at 10 cm depth, until low nitrate levels appeared to limit denitrification. 

Indeed, the summer measurements in the BZ were characterised by 1-2 orders of 

magnitude lower porewater nitrate concentrations than the March samples, and probably 

were limiting for denitrification despite the high temperature, the saturated conditions 

and the slightly higher porewater DOC.  In a study of denitrification controls on organic 

riparian soils, Schipper et al. (1993) observed a significant non-linear relationship 

between denitrification and nitrate content and their estimated half-saturation constant 

was around 5 mg N kg-1 (or 150 µM) for nitrate contents of the same magnitude as those 

found in the March measurements. The fact that the July nitrate content was 2-3 orders 

of magnitude lower than the half saturation constant in Schipper et al. (1993) is an 

indication that denitrification was indeed limited by nitrate during the summer 

measurements.  
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In conclusion, the in situ denitrification measurements in the BZ and PM areas during 

spring and summer 2008 were within the range reported by other studies in similar soil 

types, nitrate loadings, and climatic range. Therefore, there is confidence that the actual 

measurements can be used for the validation of NEMIS predictions within a range of 

soil nitrate contents, a temperature range above and below the 11oC threshold of the fT 

function, and at water contents near saturation. Moreover, the actual denitrification rates 

are several times lower than the potential rate, which is acceptable in the model 

formulation (Heinen, 2006a). A spatial trend was observed in the summer 

measurements with higher denitrification rates associated with the higher soil moisture 

and DOC of the riparian transect, while porewater nitrate followed an opposite gradient 

from higher concentrations in the arable field to lower in the riparian transect. Overall, 

the soil water content, the soil temperature, and the porewater nitrate were the most 

important predictors of the observed variability in denitrification rates, with the nitrate 

concentration being limiting for denitrification during the summer measurements 

despite the high soil temperature and the saturated conditions. 

 

7.6.2 Model validation and parameterisation 

The validation of a model usually requires some measurement of how well the model 

represents actual measurements. These measurements are often known as goodness-of-

fit statistics (Mulligan and Wainwright, 2004). The goodness-of-fit statistics to be used 

in describing the model’s performance relative to the observed data should be selected 

prior to the validation (Engel et al., 2007). In most instances, both visual comparisons 

of predicted and observed data, as well as goodness-of-fit statistics, should be used. 

Plotting predicted and observed results along with the 1:1 line can be helpful in 

identifying model bias. In conjunction with the plot, the coefficient of determination, r2, 

which represents the proportion of variance in the observed data explained by the model 

results, can be calculated as in Eq. 7.15: 
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Where Mi is a sequence of model outputs, Oi a sequence of observed values, M  is the 

mean model output and O  the mean observed value. The value of r2 varies from 1, 

which means all of the variance in the data is explained by the model, to 0, where none 

of the variance is explained. However, this correlation-based measure may be 

oversensitive to extreme values (i.e. outliers) and insensitive to constant proportional 

deviations between model estimates and observed values (Legates and McCabe, 1999).  

 

The Nash and Sutcliffe (1970) measure of the mean square error to the observed 

variance is another commonly used coefficient of simulation efficiency calculated as in 

Eq. 7.16: 
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This criterion ranges between -∞ to 1, 1 indicating a perfect fit, while 0 indicates that 

the observed mean is an as good estimator as the model. If the value is negative, the 

mean is a better estimator. Although the NS coefficient of efficiency is a better measure 

than correlation-based measures, as it does not suffer from proportional effects, it is still 

sensitive to outliers (Legates and McCabe, 1999). As there is not only one standard or a 

range of values for goodness-of-fit statistical parameters that will adjudge the model 

performance as acceptable, statistical measures are usually project specific (Engel et al., 

2007). For example, in Ramanarayanan et al. (1997) the performance of the APEX 

model was judged as satisfactory if the correlation coefficient was greater than 0.5 and 

the NS greater than 0.4. Santhi et al. (2001) assumed an NS greater than 0.5 and r2 

greater than 0.6 indicated acceptable model performance when calibrating SWAT.  

 

The Root Mean Square Error (RMSE) is a generalised measure of the standard 

deviation and it is often used as an indicator for the effective parameterisation of models 

(Heinen, 2006b; Oehler, 2009). RMSE is defined as in Eq. 7.17: 
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 If the model accurately describes the noise-free data, the RMSE should be 

approximately equal to the standard deviation of the measurement noise. However, if 

model-errors are significant, then due to the squared term, disproportional weight may 

be given to the large error (Go, 2008). A way of standardising the RMSE is by dividing 

it by the mean O  of the observations. This results in the NRMSE and renders a kind of 

coefficient of variation of the discrepancies Mi - Oi around the mean O (Janssen and 

Heuberger, 1995). Moreover, the NRMSE is comparable between different studies. 

 

The mean absolute error (MAE) is an absolute indicator of the agreement between 

model predictions and observed data. It is given by Eq. 7.18: 
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The MAE is less sensitive to outliers than the RMSE. The MAE of zero suggests an 

absolute agreement between the predicted and observed data. Dividing the MAE by the 

observed mean O , the dimensionless NMAE is obtained, which is preferred over the 

MAE (Janssen and Heuberger, 1995). Furthermore, the effects of outliers can be 

minimised by making the comparison on values above or below a specific threshold or 

by using log-transformed values (Mulligan and Wainwright, 2004). 

 

All of the above goodness-of-fit statistics as well as visual representation of the 

predicted and observed values will be used to assess the efficiency of the model, as the 

more tests a model can successfully pass, the more confidence one can have in it 

(Mulligan and Wainwright, 2004). However, the statistic results will be interpreted 

cautiously with regards to the limitations of the statistic itself but also the intended 

accuracy and temporal and spatial resolution of the model predictions. Finally, weight 

will be given to those goodness-of-fit measures that have been used in the literature for 

the validation of NEMIS in assessing acceptable model performance levels (Engel et al., 

2007). The application of the model with a more extensive annual dataset will be an 

additional indication of how closely the model reproduces the behaviour of the system 
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under study and how reasonable the calibration of the model parameters has been for its 

use in a different setting than the one it was developed for.   

 

The actual denitrification rates and the soil and porewater characteristics (Table 7.6.1) 

collected during March and July 2008 in the BZ and PM areas were used for the 

validation of NEMIS predictions. The characteristics of the databases used in previous 

studies for the validation of the model are shown in Table 7.6.4. The organic carbon 

content and the soil pH were within the range reported in previous model validations. 

The dry bulk density was lower than the loam and sandy soils used in previous studies 

due to the significantly higher proportion of clay (36%) in the samples. All the studies 

measured or estimated actual denitrification in the topsoil (0 - 40 cm) with three of them 

within the first 11 cm in sandy, loam and peat soils.  

 

In the present validation, porewater nitrate concentrations were used, as the bulk soil 

samples collected during the in situ denitrification measurements were not analysed for 

extractable NO3
--N. However, since the March and July 2008 samplings occurred at 

surface saturation conditions caused by flood events that preceded the sampling date for 

at least one day, the conditions were favourable for denitrification and the porewater 

nitrate reflected the actual soil nitrate content at the time of sampling. For the purpose of 

model validation, using the monthly mean soil nitrate content for March and July would 

result in overestimating the actual denitrification rates, as the monthly soil sampling 

occurred under non saturated conditions when denitrification would be less favourable 

while nitrification would be operating in the aerobic portions of the soil. Nevertheless, 

the nitrate data are not significantly different from those used by the model authors, and 

therefore the estimated K is expected to be acceptable in the validation. It should be 

noted that in applying the model for long-term denitrification prediction, soil nitrate 

data are preferred, rather than porewater nitrate, as explained in the following section.   

  

All the actual denitrification measurements were taken at field saturation conditions that 

were very similar to those reported by previous validation attempts (except for the peat 

soils and the second heavy loam soil), despite the soil textural differences. The soil 

temperature for the present study (Table 7.6.4) is the mean temperature of all the actual 

measurements and is skewed towards the lower bound as more measurements were 

taken in March, when mean soil temperature was around 7oC. There is no indication 
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whether the temperatures reported in other studies are the mean or the maximum 

temperature during their measurements. 

 

The mean potential denitrification rate in this study was higher than most other soil 

types considered with NEMIS apart from the peat soils. However, in 7 out of the 13 

studies the Dp was either estimated indirectly from the yearly organic matter decay 

(sand, calcareous and sedimentary loam), or was taken from other studies in similar 

conditions (peat soils, clay and sandy clay loam) and considering the high spatial and 

temporal variability of denitrification these estimates should be used cautiously 

(Heinen, 2006b). In the rest of the studies, the Dp was measured according to the DEA 

technique. Possible reasons for the high potential denitrification rate in this study are: 

the higher organic carbon content compared to the other similar soil types; the high 

percentage of silt and clay (85%) that is associated with higher denitrification rates 

(Pinay et al., 2000); and the fact that the Dp was measured in the top 10 cm of the soil 

(i.e. the root zone) which is the most biologically active soil layer (Pinay et al., 2007a) 

at 20oC representing the maximum potential denitrification (Hénault and Germon, 

2000). Possibly for the same reasons (except for the soil temperature) the mean actual 

denitrification rate in this study was higher than the mean rates reported for sandy and 

loamy soils, while it was closer to the rate measured in silty clay riparian soil (Oehler et 

al., 2007). 
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Table 7.6.4: Characteristics and references of the databases used to validate NEMIS 

Soil Type OM pH ρd n H Dp Dα Ν S T References

(%) (g cm-3) (cm) (kg N ha-1 d-1) (kg N ha-1 d-1) (mg N kg-1) oC

Silty clay 6.3b
7 0.73 58 10 33.8c

0.39 1.6 0.62 11.3 Present study

Dry sanda 6 5.4 1.34 22 20 17.4 0.04 6.5 0.52 15 Corre (1996); Dekkers (1992); Aarts (1996) in Heinen (2006b)

Wet sanda 3.4 5 1.43 25 20 9.8 0.17 3.4 0.62 13.9 Corre (1996); Dekkers (1992); Aarts (1996) in Heinen (2006b)

Sanda 3 5 1.4 22 11 5 0.05 7.6 0.66 13.9 De Klein and van Logtestijn (1994) in Heinen (2006b)

Calcareous heavy loama 1.75 7.2 1.41 60 20 2.7 0.03 5.5 0.69 12.4 Corre (1995) in Heinen (2006b)

Sedimentary heavy loama 2 7 1.4 24 11 3.6 0.11 7.4 0.82 11.4 De Klein and van Logtestijn (1994) in Heinen (2006b)

Peat 1a 45 4.8 0.46 120 20 35.1 0.41 29.8 0.80 13.7 Velthof et al. (1996); Velthof (1997) in Heinen (2006b)

Peat 2a 42 5 0.5 28 11 38.5 0.09 16.6 0.83 13 De Klein and van Logtestijn (1994) in Heinen (2006b)

Anaerobic sandy peata 19 5.2 0.93 36 d n/a 4.2e 69.8 1 20.3 Meijer (2000); Van Beek et al. (2004) in Heinen (2006b)

Clay loam 6 6.3 1.1 46 n/a 7.2 0.14 10.5 0.70 13.3 Ryden (1983)

Silty loam 1.1b 6 1.4 12 20 2.7 0.005 1.8 0.62 16 Henault et al. (1998); Henault and Germon (2000)

Sandy clay loam 7.2b 8.4 1.4 f 30 15 f 900 0.62 25.3 Vale et al. (2007); Henault et al. (2005); Mahmood et al. (2005)

Silty  hillslope 2.3 6.1 n/a 15 40 12.7 0.10 0.94g 0.59 11.8h Oehler et al. (2007, 2009)

Silty clay riparian 2.9 5.8 n/a 15 40 19.9 0.25 0.42g
0.62 11.8h

Oehler et al. (2007, 2009)

n/a: not available; aThese datasets are given in Heinen (2006b); borganic carbon (%); cMean potential denitrification rate for spring and summer '08 measured in 15N amended slurries; ddisturbed soil; ein mg N kg-1 d-1; fDa not measured, 15N mass balance used instead; 
gin g N m-2; hmean annual air temperature.

The characteristics are: percentage organic matter (OM), pH, dry bulk density (ρd), number of samples for determination of actual denitrification (n), sample height (H), potential denitrification rate (Dp), average of the measured actual denitrification (Da; all measured 
using the acetylene-inhibition-technique apart from the present study), nitrate N content (N), degree of saturation (S) and soil temperature (T). When more than one reference is given, these were used to obtain additional soil characteristics.
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The model simulation was run for all the measurements in March and July 2008 (n=58) 

using the function parameters as originally defined in NEMIS (Hénault and Germon, 

2000). The mean predicted actual denitrification rate was 0.22 ± SE 0.04 kg N ha-1 d-1 

and the coefficient of variation (CV) 127 %, which is within the range of CVs found in 

the literature for actual denitrification rates and indicates a high spatial variability 

(Heinen, 2006b and references therein). Heinen (2006a) suggested the estimation of the 

relative denitrification (Dr=Da/Dp) as a simple way for gaining an insight into how 

reasonably the model predicts actual rates of denitrification. The relative denitrification 

for this database (including all 58 samples) was 0.006, which corresponds to Heinen’s 

estimation that in 83 % of the cases Dr<0.125, since the model yields small values for 

actual denitrification when not all the soil conditions (nitrate, moisture and temperature) 

are favourable for denitrification. Moreover, the mean Dr of the present study is 

comparable to the average relative denitrification of a sand soil (0.009; De Klein and 

van Logtestijn, 1994), of a loam soil (0.02; Ryden, 1983), of a heavy loam soil (0.032; 

De Klein and van Logtestijn, 1994) and of a peat soil (0.002; De Klein and van 

Logtestijn, 1994). 

 

Both the measured and the predicted denitrification datasets were not normally 

distributed and they were log-transformed. The log-transformation improved their 

distribution but also effectively removed the effects of outliers from the datasets 

(Mulligan and Wainwright, 2004). In Figure 7.6.5 the measured denitrification rates are 

plotted against the predicted values. The coefficient of determination (r2) was 0.30, 

while the Pearson correlation coefficient was 0.54 both of which were significant at the 

0.01 probability level. The correlation coefficient was similar to the one calculated by 

Hénault and Germon (2000) when they applied NEMIS to the Ryden (1983) database. 

However, the coefficient of determination was lower than both validations performed by 

the model authors. The estimated errors as well as the Nash-Sutcliffe (NS) coefficient of 

efficiency are shown in Table 7.6.5. Although the NRMSE was within the range 

reported in Heinen (2006b) and lower than the validation in Oehler et al. (2009), it was 

still high and the NS was far from the ideal situation of 1 (complete agreement between 

predicted and observed values). Averaging the measurements per sampling transect, 

thus reducing the spatial heterogeneity between point measurements to variability 

between geomorphic units (i.e. transects), improved the correspondence between 

predicted and measured rates considerably (Table 7.6.5). The coefficient of 
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determination (0.76) was within the range of the model authors validations, while the 

Pearson correlation coefficient (significant at 0.01 probability level) was higher than the 

correlations in Hénault and Germon (2000) and Oehler et al. (2009), despite the fact that 

the latter had also performed parameter optimisation. Finally, the NRMSE was lower 

than the range of NRMSE (0.50 - 1.61) achieved after parameterisation in both the 

Heinen (2006b) and Oehler et al. (2009) validations, while the NS of 0.65 indicated 

very good agreement between predicted and measured denitrification rates (Figure 

7.6.6).   

 

Table 7.6.5: Goodness-of-fit criteria for the model validation 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.6.5: Performance of the model for all the available measurements (n=58). The 

coefficient of determination (R2) is shown in the figure. The slope is 0.37 and the 

intercept -0.65, both significantly different from the 1:1 line (p < 0.001). 

 

r2
Pearson MAE NMAE RMSE NRMSE NS

Log-transformed data (n=58) 0.30 0.54 0.61 0.56 0.80 0.75 0.28

Averaged log-transformed data (n=20) 0.76 0.87 0.45 0.37 0.52 0.43 0.65
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Figure 7.6.6: Performance of the model for averaged measurements per sampling 

transect (n=20). The coefficient of determination (R2) is also shown in the figure. The 

slope is 0.50 and the intercept -0.46, both significantly different from the 1:1 line (p < 

0.001). 

 

The agreement between our measured actual denitrification rates and the predicted rates 

from the NEMIS model was satisfactory when the high spatial heterogeneity between 

point measurements was reduced by averaging measurements per sampling transect. 

This is a more meaningful spatial representation of denitrification in riparian zones 

found in many studies (Clément et al., 2002; Hefting et al., 2003 and 2006a; Hernandez 

and Mitsch, 2007) as it allows a variety of hydrogeomorphic controls to be studied 

(Pinay et al., 2000) and the bias from single erroneous measurements and activity 

‘hotspots’ is reduced (Groffman et al., 2009). The goodness-of-fit criteria suggested 

good model performance, which in the case of the averaged measurements was better 

than previous validations of the model where parameter optimisation was also 

performed. Although the different criteria have their own limitations, obtaining 

satisfactory values for most of them increases our confidence that the model performed 

well in conditions different from its development without indicating that parameter re-

calibration or optimisation is needed. Performing a sensitivity analysis was not in the 
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scope of the present study; however previous validation attempts have highlighted an 

important sensitivity of the model output to the determination of the fS function. This 

was not observed in this study as due to the requirements of the in situ technique, only 

water contents near saturation were included in the validation database. Moreover, the 

database was built with the purpose of validating the model and therefore due care was 

taken to follow the specifications of the model authors during data collection and 

laboratory procedures. The capability of the model to reproduce adequately the annual 

temporal variations in denitrification rates will be tested using annual data collected for 

the BZ area between Nov 2007 and Oct 2008. 

 

7.6.3 Model application 

The nitrate content, soil moisture and soil temperature data, as well as the simulated 

denitrification rate for the period November 2007 (from the 24th onwards) to October 

2008 (until and including the 22nd) in the three horizons (A, B and C) of the BZ area are 

summarised in Table 7.6.6. The results for the non-parametric Kruskal-Wallis test for 

the comparison of the means between seasons per soil horizon per soil variable and 

predicted denitrification rate are shown in Table 7.6.7. For the A horizon (10 cm depth) 

the soil nitrate content was higher in winter and spring whilst it was lower and similar 

between autumn and summer. The soil moisture content and temperature were 

significantly different between seasons with highest moisture in winter and lowest in 

summer, while the temperature pattern was exactly the opposite. The highest 

denitrification rate was predicted for the spring months, 0.83 ± SE 0.08, followed by 

winter, 0.55 ± SE 0.06, while the autumn and spring rates were lower and similar, 0.31 

± SE 0.06 kg N ha-1 d-1 respectively. The seasonal variation of denitrification has not 

been consistent in previous studies of floodplains and riparian zones in temperate 

climates. Some researchers have found higher denitrification rates in autumn and winter 

(Haycock and Pinay, 1993; Burt et al., 1999), while others have measured highest 

denitrification during spring and summer (Hefting et al., 2003 and 2006a) whereas there 

are cases where no significant seasonal variation was observed (Clément et al., 2002; 

Sabater et al., 2003). 

 

Correlation analysis between the three soil variables and the predicted denitrification for 

the annual data pooled together, indicated a significant positive correlation between 

denitrification and soil moisture (Spearman rank; r=0.74, P<0.01). 
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Table 7.6.6: The soil nitrate, water content, temperature and predicted denitrification data for the period Nov 2007 to Oct 2008 for the three 

horizons (A, B and C) of the BZ area. Data are means with SE in parentheses. For the per season comparisons the Nov 2007 data were grouped 

with Sep and Oct 2008. Different lower case letters between the seasonal means per horizon per parameter indicate significant differences. 

BZ Horizons A (10 cm) B (50 cm) C (100 cm) A (10 cm) B (50 cm) C (100 cm) A (10 cm) B (50 cm) C (100 cm) A (10 cm) B (50 cm) C (100 cm)

Autumn 4.92 (0.34)a 1.82 (0.18)a 1.09 (0.21)a 0.422 (0.010)a 0.462 (0.011)a 0.439 (0.000)a 11.9 (0.3)a 12.8 (0.3)a 13.2 (0.1)b 0.31 (0.06)a 0.08 (0.009)a 0.04 (0.006)a

Sep 08 (d=30) 3.54 (0.05) 1.21 (0.02) 0.49 (0.02) 0.439 (0.010) 0.520 (0.011) 0.435 (0.000) 13.7 (0.2) 14.3 (0.2) 13.9 (0.0) 0.42 (0.10) 0.13 (0.01) 0.02 (0.00)

Oct 08 (d=22) 4.59 (0.06) 1.46 (0.01) 0.51 (0.01) 0.349 (0.004) 0.363 (0.002) 0.435 (0.000) 11.2 (0.2) 12.3 (0.1) 13.1 (0.1) 0.00 (0.00) 0.00 (0.00) 0.02 (0.00)

Nov 07 (d=7) 11.85 (0.07) 5.58 (0.00) 5.45 (0.06) 0.573 (0.004) 0.525 (0.001) 0.440 (0.000) 6.9 (0.5) 8.1 (0.1) 10.6 (0.1) 0.83 (0.14) 0.11 (0.01) 0.15 (0.00)

Winter 9.23 (0.16)b 5.02 (0.04)b 4.84 (0.09)b 0.585 (0.001)b 0.528 (0.002)b 0.440 (0.000)b 5.4 (0.2)b 6.8 (0.1)b 8.6 (0.1)a 0.55 (0.06)b 0.07 (0.005)a 0.06 (0.003)b

Dec 07 (d=31) 10.04 (0.23) 5.35 (0.03) 4.85 (0.10) 0.580 (0.001) 0.510 (0.003) 0.440 (0.000) 5.2 (0.5) 7.3 (0.3) 9.6 (0.1) 0.67 (0.14) 0.08 (0.01) 0.09 (0.01)

Jan 08 (d=31) 7.61 (0.16) 4.84 (0.03) 3.99 (0.09) 0.593 (0.002) 0.534 (0.001) 0.439 (0.000) 6.3 (0.3) 7.3 (0.2) 8.3 (0.0) 0.62 (0.09) 0.09 (0.01) 0.04 (0.00)

Feb 08 (d=29) 10.10 (0.06) 4.84 (0.07) 5.73 (0.05) 0.579 (0.002) 0.542 (0.000) 0.436 (0.000) 4.7 (0.3) 5.9 (0.1) 7.8 (0.1) 0.33 (0.04) 0.05 (0.00) 0.04 (0.00)

Spring 8.05 (0.20)c 3.83 (0.19)c 3.47 (0.21)c 0.516 (0.008)c 0.471 (0.008)a 0.439 (0.000)a 9.5 (0.3)c 9.3 (0.2)c 8.8 (0.1)a 0.83 (0.08)c 0.06 (0.006)a 0.04 (0.000)a

Mar 08 (d=31) 9.09 (0.05) 6.08 (0.06) 6.00 (0.06) 0.575 (0.003) 0.536 (0.001) 0.436 (0.000) 6.4 (0.2) 7.1 (0.1) 7.8 (0.0) 0.59 (0.06) 0.09 (0.01) 0.05 (0.00)

Apr 08 (d=30) 9.36 (0.06) 3.42 (0.19) 2.88 (0.20) 0.513 (0.009) 0.472 (0.013) 0.436 (0.000) 9.0 (0.3) 8.7 (0.1) 8.4 (0.0) 0.82 (0.10) 0.06 (0.01) 0.03 (0.00)

May 08 (d=31) 5.72 (0.25) 1.99 (0.03) 1.53 (0.02) 0.460 (0.016) 0.404 (0.013) 0.435 (0.000) 13.2 (0.2) 12.1 (0.2) 10.1 (0.1) 1.09 (0.22) 0.05 (0.01) 0.04 (0.00)

Summer 5.21 (0.19)a 2.07 (0.09)a 1.14 (0.05)a 0.376 (0.012)d 0.454 (0.008)a 0.434 (0.000)c 15.5 (0.1)d 15.5 (0.1)d 12.6 (0.1)c 0.31 (0.07)a 0.09 (0.008)a 0.05 (0.002)c

Jun 08 (d=30) 3.69 (0.09) 1.39 (0.05) 0.69 (0.04) 0.405 (0.020) 0.536 (0.005) 0.434 (0.000) 14.4 (0.1) 14.2 (0.1) 11.5 (0.1) 0.34 (0.10) 0.17 (0.01) 0.03 (0.00)

Jul 08 (d=31) 7.37 (0.19) 3.14 (0.09) 1.58 (0.06) 0.347 (0.020) 0.369 (0.004) 0.434 (0.000) 15.8 (0.2) 15.8 (0.1) 12.6 (0.1) 0.36 (0.15) 0.02 (0.00) 0.06 (0.00)

Aug 08 (d=31) 4.52 (0.24) 1.67 (0.12) 1.13 (0.05) 0.375 (0.020) 0.461 (0.014) 0.434 (0.000) 16.2 (0.1) 16.5 (0.1) 13.7 (0.0) 0.24 (0.11) 0.10 (0.01) 0.05 (0.00)

Annual Total (d=334) 173.18 25.74 15.63

Nitrate (mg N kg-1) Water content (cm3.cm-3) Temperature (oC) Denitrification (kg N ha -1 d-1)

 

Table 7.6.7: Results of the Kruskal-Wallis test for the comparison of means per soil horizon per soil variable and predicted denitrification rate. 

The χ2 is the test statistic, df the degrees of freedom between groups and P the probability level. Significance is reported at the 0.05 probability 

level.  

 
 
 

BZ Horizons

Kruskal-Wallis Test χ
2

df P χ
2

df P χ
2

df P

Nitrate content 158.70 3 0.000 166.1 3 0.000 202.8 3 0.000

Water content 179 3 0.000 22.2 3 0.000 271.2 3 0.000

Temperature 249.2 3 0.000 259 3 0.000 249.1 3 0.000

Denitrification 79.5 3 0.000 3.3 3 0.347 82.8 3 0.000

A (10 cm) B (50 cm) C (100 cm)
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Multiple regression forward analysis (MRA) showed that the soil moisture alone 

explained 29 % of the variance in denitrification but when combined with temperature 

the predicting power of the two variables rises to 60 %. Combining the nitrate content 

together with the soil moisture and the temperature improves the variance explanation 

only by a further 3 %. Therefore, annually, the soil moisture and the soil temperature 

equally limit denitrification in the topsoil, while the soil nitrate content does not seem to 

be limiting in the agricultural landscape of the River Cole re-connected floodplain 

throughout the year. 

 

When a similar multiple regression analysis was performed within each season, a 

difference in the relative importance of the three controlling factors was observed as 

expected. In the autumn, the soil moisture explained 67 % of the variance in 

denitrification rates and combined with temperature the predictive power increased to 

73 %, while nitrate was not limiting. In winter, denitrification correlated strongly with 

the soil temperature (Spearman; r=0.99, P<0.001) which explained 72 % of the 

denitrification variance and when combined with the soil nitrate content they explained 

77 % of the variance, while the soil moisture was not limiting. The close association 

between denitrification and soil temperature during the winter months can be seen in 

Fig. 7.6.7 A where there is close correspondence between daily mean temperature and 

mean denitrification peaks. Moreover, the topsoil was around its saturation level 

throughout the winter, therefore soil moisture was not limiting while the dry periods in 

September 2008 and mainly the dry October 2008 are the main reasons for soil moisture 

limiting denitrification during autumn (Figure 7.6.7 B). In spring, soil moisture becomes 

limiting again, but can account for only 22 % of the variance in denitrification, while 

the moisture combined with temperature have 84 % explanatory power and soil nitrate 

is not limiting. Therefore, the combination of fairly high soil moisture content, 

especially during March and May, together with the increasing soil temperature, which 

rises above 11oC in May, and the non-limiting soil nitrate content lead to the highest 

mean denitrification rate. In summer, the denitrification correlated strongly with the soil 

moisture (Spearman; r=0.92, P<0.001), which had 60 % explanatory power and when 

combined with soil nitrate this raised to 66 %, while the temperature is no longer 

limiting.  The importance of the summer floods that increase the soil moisture and lead
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Figure 7.6.7: Predicted Denitrification against mean soil temperature (A), soil matric potential (B) and total daily rainfall (C). 
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to pulses of increased denitrification activity in the topsoil can be observed clearly in 

Figs. 7.6.7 B and C with denitrification peaks following shortly after the major summer 

flood events. 

 

The soil nitrate content in the B horizon (50 cm depth) displayed a similar pattern to the 

one observed for the topsoil. However, the soil moisture content was less variable than 

in the topsoil with only the winter months having significantly higher moisture content, 

while the temperature fluctuated significantly between seasons with highest values in 

summer and lowest in winter. The predicted denitrification rate was not significantly 

different between seasons (Table 7.6.7) and the mean rate was 0.08 ± SE 0.01 mg N kg 

ha-1 d-1, which was 75 % less than the topsoil rate in autumn and summer and 90 % less 

than the spring denitrification rate of the topsoil. The lower denitrification rate of the B 

horizon was mainly due to the Dp value used in the NEMIS formulation which was 87 

% less than the denitrification potential of the surface and included the effect of 

decreasing carbon availability as the main limiting factor of denitrification in the vadose 

zone of floodplain areas (see also discussion in section 6.5.3). 

 

Without taking into account the effect of organic carbon in further analyses, the 

predicted denitrification rate correlated significantly with the soil moisture content 

(Spearman; r=0.78, P<0.001), while in MRA analysis the soil moisture together with 

the temperature explained 78 % of the variance in denitrification rates, a predictive 

power which was higher than the respective value for the topsoil, when all the data are 

pooled in an annual dataset. The soil nitrate content was not limiting throughout the 

monitoring year. MRA for the autumn data revealed a strong dependence of 

denitrification on soil moisture conditions that predicted 96 % of the denitrification 

variance. Similarly, to the topsoil results, the winter dataset showed that the temperature 

is the main regulator of denitrification with 87 % explanatory power suggesting that 

even at 50 cm depth, where the effect of the air temperature is more subdued compared 

to the surface, temperature is still an important regulator of the denitrification activity 

(Fig. 7.6.8 A). In spring, the decreasing soil moisture combined with the increasing 

temperature are responsible for 91 % of the variance in denitrification rates (Fig. 7.6.8 

A and B). Finally, in the summer months, the soil moisture together with the nitrate 

availability are the main limiting factors for denitrification and combined have 94 % 

explanatory power. 
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Figure 7.6.8: Predicted Denitrification against mean soil temperature (A), soil matric potential (B and C for the respective 

horizons). 
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In the saturated zone of the BZ (C horizon; 100 cm depth) seasonal variation in the 

nitrate content was still observed following the pattern seen for the A and B horizons. 

Although the C horizon was permanently saturated there was still some variation 

observed with higher mean moisture measured in winter and lower in the summer 

months. The temperature pattern between seasons was somehow different from the 

above soil layers, with highest temperatures observed in autumn and summer and lowest 

but not different between them in winter and spring. The predicted denitrification rate 

displayed significant differences between seasons with higher rates estimated for winter 

and summer and lower for autumn and spring (Table 7.6.6). The mean annual predicted 

denitrification rate for the C horizon was 0.05 ± SE 0.01 kg N ha-1 d-1, which was 90 % 

less than the mean annual rate of the topsoil and 38 % less than the rate of the B 

horizon. The measured Dp used in the application of NEMIS for the C horizon was 95 

% less than the denitrification potential of the surface, and therefore the lower 

availability of organic carbon was the main limiting factor for denitrification in the 

saturated zone, which is in agreement with the findings of numerous studies of 

denitrification in the saturated zone (see also discussion in section 6.5.3). 

 

The annual predicted denitrification rate correlated positively (Spearman; r=0.60, 

P<0.01) with the nitrate content suggesting that apart from the organic carbon, nitrate 

availability was also limiting denitrification in the saturated zone. In MRA analysis of 

the annual dataset, the nitrate content explained 21 % of the variance in denitrification 

rates and when combined with temperature the prediction increased to 50 %, while soil 

moisture was not an important predictor for the annual database, as saturation 

conditions prevailed throughout the year (Fig. 7.6.8 C). In autumn, the sole predictor of 

denitrification in MRA was the nitrate content which explained 99 % of the variation, as 

the temperature was higher than in any other season and therefore not limiting. In the 

winter months temperature was the first limiting factor, predicting 88 % of the 

denitrification rates and combined with the nitrate content the prediction power 

increased to 97 %. Both in spring and summer the combination of nitrate availability 

and the soil temperature were the main limiting factors, with temperature being more 

important in spring (61 %) and nitrate (97 %) in summer.  
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The application of NEMIS with the annual database for the topsoil of the BZ area 

showed that the model accurately predicts the temporal variations of denitrification. 

Having included the effect of organic carbon availability in the measured denitrification 

potential value, the annual denitrification rate is influenced by the saturation state of the 

soil, the soil temperature and nitrate availability whose relative importance as 

controlling factors changes between the seasons of the year. The validation analysis has 

indicated that the model is transferable to relatively different soil type conditions from 

the ones used for the model development, although the temperate climatic conditions 

and the agricultural type of the floodplain were similar between this study and the 

Hénault and Germon (2000) study. Therefore, it is suggested that NEMIS can be used 

as a tool for predicting actual denitrification rates in temperate agricultural floodplains 

and riparian zones with a variety of soil types from clay and silty clay to loam and sand 

without the need for site specific parameter calibration or optimisation. 

 

The annual application of the model has indicated that the soil moisture content was the 

primary controlling factor of denitrification followed by the soil temperature, while 

nitrate was not limiting in the studied agricultural landscape. Whereas the temperature 

of the topsoil can easily be measured accurately with one in situ probe, especially in 

grass-vegetated floodplains where there is no effect from tree shading, the 

representation of the spatial soil moisture variability that is influenced by the site 

topography and hydrological regime may require more effort. In the present study the 

hydrological regime of the BZ area was already known and thus it was straight forward 

to select a representative location for the soil moisture measurement, although for better 

representation of the spatial variability multiple measuring points would be suggested 

especially in complex topographies and/or multiple sources of surface saturation (i.e. 

overbank inundation, groundwater upwelling, hillslope runoff).  

 

In the case when the soil moisture conditions are bound to change, for example in a 

candidate site for restoration, the use of soil moisture probes at the pre-restoration stage 

would not be appropriate. Therefore, when NEMIS needs to be used for predicting the 

nitrate attenuation capacity of a site to-be-restored, then the soil moisture conditions as 

they will be affected by the restoration will also need to be predicted. One way for 

doing this would be the coupled use of NEMIS with a hydrological model (SWIM, 

MIKE-SHE) for simulating the site hydrology post-restoration. However, it should be 
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noted that the parameterisation and validation of a hydrological model is a time and data 

intensive process that would considerably increase the cost and duration of the pre-

restoration assessment. A more cost-effective approach would be to monitor the soil 

moisture conditions at a reference site, within the same catchment or in a different 

catchment, where the soil moisture conditions emulate those expected to be achieved 

with the restoration project. In this case, a similar monitoring design to the post-project 

appraisal of restored sites could be followed, but care should be taken to account for 

climatic variability and differences in nitrate-loading between the reference and the 

restoration candidate site. Finally, hydrological data from the literature could be used, if 

and when they are available, from the same or from a catchment of similar 

hydromorphology, but these should be applied with caution as climatic variability and 

land use changes may considerably change soil moisture and nitrate conditions over 

time.    

 

With respect to soil nitrate data collection, due to cost and time constraints only 

monthly measurements were performed and these were not successful in representing 

the fertilisation periods of the arable land adjacent to the BZ. However, this was not a 

major error in the present study, as nitrate was not limiting throughout the study period. 

If higher resolution of denitrification activity is needed, for example during fertilisation 

events, then higher soil nitrate sampling frequency should be employed as 

recommended by the model authors.  

 

The measurement of the potential denitrification rate is a prerequisite of the model 

formulation, and although other studies have used Dp measured under similar conditions 

or adjacent areas, it is recommended that a site specific measurement is performed as 

the Dp will reflect the effect of organic carbon availability on the predicted 

denitrification rates. In the present study, two Dp values were used, one representing the 

potential in autumn, winter and spring, and one in summer, but as the model authors 

also suggest, for the prediction of an annual denitrification rate only one Dp rate from 

the most active season would be adequate.  

 

The annual simulation of denitrification in the present study indicated that spring was 

the most active season contributing to a total of 76.5 kg N ha-1 removed by 

denitrification, followed by winter with 49.6 and then the summer with 28.9 while the 
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dry autumn 2008 contributed the least with 18.3 kg N ha-1 respectively. However, by 

combining the daily topsoil denitrification rates with the nitrate loading during river 

overbank flood events in the BZ (see table 5.3.2 for nitrate loading in the BZ), it was 

observed that during the spring flood events, 25 % of the river nitrate could have been 

removed via denitrification in the topsoil, while during the winter floods the removal 

percentage increased to 39 %. This is an effect of the higher N loading in spring, 

possibly due to fertiliser application, despite the significantly shorter duration of floods 

compared to winter (Table 5.3.2). This observation highlights the importance of nitrate 

loading via the dominant hydrological mechanism, in the present study overbank 

flooding, for effective nitrate removal by the re-connected floodplain, while it suggests 

that spring fertilisation in the studied agricultural catchment is a current issue that can 

increase significantly river nitrate concentrations. Despite the lower total denitrification 

rate observed in summer, the combination of high temperature and soil moisture during 

overbank flood events, together with a moderate nitrate loading, can lead to 36 % nitrate 

removal via denitrification in the BZ topsoil. This finding highlights the importance of 

the summer storms that can trigger high denitrification activity due to the high soil 

temperature and therefore contribute substantially to the annual N removal budget via 

denitrification. It is therefore recommended that an annual simulation of denitrification 

is performed to capture the contribution of each season to the annual N removal budget. 

However, if there are budget or other constraints and only one season can be monitored 

then winter would give the maximum denitrification capacity in a temperate agricultural 

landscape such as the River Cole re-connected floodplain. 

 

Assuming an equal mean potential denitrification rate for the PM topsoil, as it was 

shown in section 6.1.4 and Figure 6.1.9, to the BZ topsoil, and similar soil moisture, 

temperature, and nitrate content conditions during overbank flood events, the actual 

denitrification rate of the PM topsoil was predicted using the NEMIS model. Combining 

the nitrate loading data during overbank flooding in the PM (Table 5.3.1) with the 

actual denitrification rates during the flood days, the PM topsoil showed potential for 48 

% nitrate removal in winter 2008, 35 % in spring 2008 and 45 % in summer 2008. 

Although more nitrate was removed via denitrification during the winter flood events, 

as it was also shown for the BZ area, overall the contribution of denitrification in 

removing river water nitrate was higher in all seasons for the PM compared to the BZ 

topsoil. This is probably a result of the lower nitrate loading per hectare in the PM 
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(Tables 5.3.1 and 5.3.2), since the denitrification capacity was chosen to be similar to 

the BZ, highlighting the effectiveness of a larger re-connected floodplain in nitrate 

removal during overbank flooding compared to a narrow buffer strip (BZ area). This 

result demonstrates that a re-connected floodplain, in addition to providing floodwater 

storage and attenuation of flood peaks, can also be more efficient as a nitrate sink during 

flood events compared to a narrow buffer zone adjacent to arable land. 

 

The simulation of denitrification in the vadose and saturated zone of the BZ area has 

shown that the NEMIS formulation can be used for subsurface horizons, as 

denitrification is essentially controlled by the same factors, as long as the effect of the 

reduced organic carbon availability with depth is reflected in the measured Dp. The 

annual contribution of the BZ subsurface to the N removal via denitrification was 41.4 

kg N ha-1, which was 24 % of the total annual topsoil denitrification. However, 

monitoring or modelling the subsurface hydrology is a lot more complicated than the 

surface hydrology due to for example the effect of macropores, tile and mole drainage 

(Heppell et al., 2000), and the anisotropy of hydraulic conductivities between different 

soil horizons (Baird et al., 2004). The effect of localised buried patches of organic 

carbon should also be considered as denitrification ‘hotspots’ (Devito et al., 2000; Hill 

et al., 2000) making the application of the model a lot more complicated and costly as 

additional sampling and analytical effort will be required. Unless there is some strong 

indication that subsurface denitrification is playing an important role, then the 

management tool kit for predicting the denitrification capacity of floodplains and 

riparian zones should be restricted to the most biologically active topsoil layer.  

    

7.6.4 Floodplain Restoration Management Tool 

The management tool for floodplain restoration is aimed at natural resource managers 

and/or those statutory bodies responsible for the design and undertaking of floodplain 

restoration schemes. Two main applications are envisaged: first to provide a tool for the 

assessment of the nitrate attenuation capacity of the candidate restoration site; and 

second the post-project appraisal of the nitrate attenuation capacity of a restored site, via 

a simple prediction of the denitrification capacity. It is expected that the use of the 

management tool will facilitate the inclusion of water quality targets, and specifically 

the nitrate attenuation objective, in the design of future floodplain restoration projects. 

The main procedures for these two applications are outlined in the flow diagram below: 
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Data Collection 
1. Denitrification potential (Dp). Determined experimentally in the topsoil (0 - 10 

cm) as per Hénault & Germon (2000) or as per section 4.4.7. Once, in winter 

for an annual denitrification rate or in winter and summer if higher resolution is 

preferred.  

2. Soil nitrate content (fN). Monitoring of soil nitrate content at least monthly or 

bimonthly with increased sampling frequency in the fertilisation period in 

agriculture impacted areas. Methodology according to sections 4.4.1.4 and 

4.4.5. 

3. Soil temperature (fT). Monitoring of soil temperature with a single probe at 

hourly or daily intervals. Methodology according to section 4.2.3.4. 

4. Soil moisture (fS). Post-project appraisal: Monitoring of soil moisture at hourly 

or daily intervals (as per section 4.2.3.4). Pre-project design applications: Soil 

moisture data could be provided by: (i) monitoring a reference site; (ii) by using 

a literature source and (iii) using a hydrological model.  

Note: Care should be taken during soil sampling for the Dp and fN determination for 

the adequate representation of the different hydrogeomorphic areas likely to display 

high spatial heterogeneity in denitrification potential. 

 

Floodplain Restoration Management Tool 

Pre-project Design 

Identify areas for floodplain restoration 

with increased potential for nitrate 

removal  

Post-project Appraisal 

Assess the effectiveness of floodplain 

restoration with respect to increased 

nitrate removal capacity 

Site Selection 
Identification of candidate sites for restoration or recently restored areas for appraisal 

 

Purpose 

Method 



 

 417 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although the tool is based on a simple prediction of denitrification at the field scale, it 

requires a laboratory assessment and a fieldwork monitoring effort, and it is therefore 

likely to be better suited to fairly large scale restoration projects, such as the River Cole 

restoration. Costs associated with the laboratory estimation of denitrification potential 

could be minimised by using a reference value from the literature. However, this is not 

recommended for very heterogeneous sites, as spatial variability of denitrification 

would be expected to be high and therefore site-specific estimation should be preferred. 

Additionally, the fieldwork effort for the collection of the necessary soil moisture, 

temperature and nitrate content data will depend on the desired resolution of the 

denitrification estimation. Data could possibly be obtained from the established 

monitoring programmes of statutory bodies, such as for example the Environment 

Agency, where they are available. Instead of detailed soil moisture data, the number of 

flooding days could be used, while soil temperature could be easily obtained from the 

nearest weather station. Finally, the monitoring of the soil nitrate content could be 

substituted by river water nitrate concentration data, where overbank flooding is the 

main source of nitrate on the floodplain, or fertiliser application amounts and rates 

could be obtained where agricultural runoff is expected to be the main nitrate source. 

NEMIS Application  
1. Estimation of the reduction functions fN, fT and fS according to section 7.4 

2. Input of the Dp and the reduction functions fN, fT and fS into the formula: 

a p N S TD D f f f=  

and estimation of the actual denitrification rate (Da) of the topsoil at hourly or daily 

intervals depending on the resolution of the data collection. 

Assessment 

Pre-project Design 

Estimation of the annual denitrification 

rate for the purpose of comparing 

between candidate sites for floodplain 

restoration 

Post-project Appraisal 

Estimation of the actual denitrification 

rate at different time intervals (i.e. daily, 

monthly or seasonally) for the purpose of 

assessing the nitrate removal capacity 

following the floodplain restoration.  
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Chapter 8: Summary and Conclusions  

 

8.1    Review of the research objectives 

This chapter summarises the main findings of this study in relation to each objective 

before providing some concluding remarks. The results of this study have shown that 

re-instatement of hydrological connectivity, following the restoration of a temperate 

agricultural floodplain, not only increases floodwater storage but also beneficially 

affects nitrate attenuation in the restored floodplain via biological removal mechanisms. 

The objectives of this study were to: 

 

1. Identify the main hydrological mechanisms responsible for the inundation regime in a 

temperate re-connected floodplain. Assess the relative importance of each hydrological 

mechanism for: (i) the transport of nitrate; and (ii) the creation of the necessary 

conditions for denitrification and DNRA in the soil (Chapter 5). 

 

2A. Quantify the relative importance of potential heterotrophic denitrification and 

DNRA in the reconnected floodplain (Chapter 6).  

 

2B. Investigate the main controlling factors influencing the two processes in a temperate 

agricultural re-connected floodplain. This research focused in particular on:  

(iv) The role of land use management in influencing the magnitude and relative 

importance of heterotrophic denitrification and DNRA (sections 6.1 & 6.2).  

(v) The role of vertical changes in soil stratigraphy and electron donor and 

acceptor availability in influencing the magnitude and relative importance of 

denitrification and DNRA (section 6.3). 

(vi) The role of wetting-drying cycles in controlling the spatial variability of 

heterotrophic denitrification and DNRA (section 6.4). 

 

3. Develop, validate and apply a management tool aimed at evaluating the nitrate 

removal capacity of candidate sites for river-floodplain restoration and/or assessing the 

nitrate removal capacity of restored floodplains as part of a post-project appraisal 

(Chapter 7). 
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8.2    Objective One 

The inundation regime of the temperate River Cole re-connected floodplain can be best 

described by a 3D approach. River water bank storage, that extends several meters 

inland, precedes the sequence of events during a flood. When bankfull capacity is 

exceeded, a flood pulse extends across the floodplain from two directions; perpendicular 

to the river towards the floodplain, and parallel to the river from the ditch to the 

floodplain (PM case), or between the river and the arable field (BZ case). During the 

recession limb, GW discharges to both the river and the ditch contributing to baseflow. 

Under baseflow conditions, a perched water table is maintained through the occurrence 

of a reversed GW ridge and the capillary fringe effect.  

 

The dominant hydrological mechanism responsible for the inundation regime of the re-

connected floodplain is overbank flooding from the river and the surrounding ditch, 

leading to surface saturation conditions between 13 and 28 % of the time during one 

year, and thus creating the necessary conditions for the occurrence of nitrate attenuation 

via heterotrophic denitrification and DNRA. The low angle topography of the 

floodplain (maximum slope around 2 %), the heavy silt-clay alluvium (>90 % of the 

grain size distribution), associated with low saturated hydraulic conductivities of the 

floodplain sediments, and finally the flashy character of the River Cole, mainly due to 

its urbanised headwaters, all contribute to increased overland flows during flood events. 

Additionally, during high magnitude and high intensity events, SEOF in surface 

depressions, where the water table stays relatively close to the surface, and IEOF from 

artificial surfaces, further contribute to the generation of surface runoff, before bankfull 

capacity is reached, without contributing significantly to the nitrate loading on the 

floodplain. Overbank flooding is the main conduit for the transport of river water nitrate 

onto the floodplain, ranging between 180 and 300 kg N ha-1 year-1. Moreover, overland 

flow from the ditch transports the nitrate from the arable hillslope runoff onto the 

floodplain, where nitrate can be attenuated upon its infiltration into the soil matrix.  

 

Lateral subsurface flow is the main mechanism for groundwater discharge into the river 

and the ditch, while it is also responsible for maintaining baseflow under dry conditions. 

However, the low angle topography together with the low hydraulic conductivity, lead 

to slow GW flow rates (0.1 - 10 L d-1 m-1), thus maintaining a perched water table 

(PWT) between 1 and 2 m depth between flood events and giving the opportunity for 
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further nitrate attenuation in the subsurface sediments of the floodplain. Moreover, the 

maintenance of the PWT is also aided by reversed groundwater ridging during baseflow 

conditions and possibly the capillary fringe effect. Finally, nitrate loading during lateral 

subsurface flow is restricted in the PM area (0.02 - 0.26 mg N d-1 m-1), while it is more 

significant in the BZ area (2 - 55 mg N d-1 m-1) due to the transport of nitrate from the 

arable field to the riparian zone through groundwater flow paths.  

 

8.3    Objective Two 

The results of the present study suggest that the re-connection of the floodplain of the 

River Cole, although aiming at flood attenuation and habitat creation targets, resulted 

also in a significant potential for denitrification activity in the topsoil (range: 5 to 63 mg 

N kg-1d-1). Moreover, the occurrence of DNRA (range: 0.02 to 2.64 mg N kg-1d-1) as an 

alternative nitrate reduction pathway was documented, for the first time, in the soil of a 

temperate agricultural re-connected floodplain. The reduction of nitrate via DNRA is of 

lesser importance compared to denitrification (on average 40 times less), which has a 

beneficial effect on the management of diffuse-nitrate pollution in these lowland 

catchments. The frequent supply of nitrate onto the floodplain, mainly via overbank 

flooding, gives a competitive advantage to denitrifiers while it also increases the redox 

potential and lowers the ratio of C/NO3
- in the soil, neither of which conditions favour 

DNRA. Therefore, the majority of nitrate is transformed to nitrogen gases (N2 and 

possibly N2O) and is removed, rather than conserved in the system as NH4
+ which can 

easily re-enter the soil cycle via plant uptake. 

 

8.3.1 The role of land use management in influencing the magnitude and relative 

importance of heterotrophic denitrification and DNRA 

The denitrification potential was significantly different between the land use zones of 

the River Cole floodplain. With respect to the controlling factors of denitrification, the 

Anaerobically Mineralisable Organic Carbon (AnMOC) was the main predictor of 

variance in denitrification, followed by the lability of organic carbon (LOC) and finally 

the soil nitrate content. The fact that the soil nitrate content explained only 26 % of the 

variance in denitrification suggests that denitrification is likely primarily controlled by 

the availability of labile organic carbon and secondarily by nitrate supply. However, it 

should be acknowledged that AnMOC, and subsequently the derivative LOC, are 

relative measures of the available organic carbon and available electron acceptors for 
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anaerobic respiration and fermentation combined and therefore they may be 

underestimating the anaerobic mineralisation rate by nitrate reduction. However, the 

importance of organic carbon in controlling denitrification rates across the land use 

zones of the River Cole floodplain was also highlighted by the high correlation 

coefficients between denitrification potential and other carbon measures, such as the 

organic carbon and organic matter contents. The spatial heterogeneity in denitrification 

potential is a function of the management practices that affect the availability of organic 

carbon (e.g. grazing and/or mowing) rather than landscape position.  

 

Although a frequent supply of nitrate onto the floodplain is maintained by overbank 

flood events and runoff from the surrounding agricultural land (PM case), this does not 

necessarily create N-saturation conditions across the land use zones. Therefore, the low 

importance of nitrate in explaining denitrification potential variability probably means 

that nitrate, at the concentrations encountered in our site, has a secondary role compared 

to organic carbon availability in controlling denitrification. During the determination of 

denitrification potentials, field range concentrations of nitrate were used under the 

assumption that field nitrate concentration is not limiting for denitrification rates. 

However, studies in N-saturated soils have shown that further nitrate additions under 

these conditions can further increase the denitrification activity of these soils (Hanson et 

al., 1994). This was indeed evident when the denitrification potentials at ambient nitrate 

concentration (‘land use’ samples) were compared to potentials where nitrate was at 

higher than ambent concentration (‘dry’ condition samples) between the same sampling 

locations in the BZ area (Box 8.1). The ‘dry’ denitrification potential was significantly 

higher than the ‘land-use’ one, despite the fact that the ‘land-use’ samples displayed 

higher AnMOC rate and had higher organic carbon and soil nitrate content (Box 8.1). 

This difference in denitrification rates could be attributed to the different nitrate 

concentration used in the spike (3mM Na15NO3
- for the ‘dry’ samples instead of 2.4 mM 

for the ‘land-use’ samples) since the incubation temperature was the same (20oC) and 

the samples had similar moisture content. This implies that the absolute denitrification 

potential rates across the River Cole floodplain may have been underestimated, however 

they still represent potential rates at the given nitrate concentration, rather than in situ 

rates, since they were on average two orders of magnitude higher that the actual 

denitrification rates measured for the NEMIS model validation. It should also be noted 

that since the same treatment was applied to all samples, the relative differences in 
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denitrification rates between land-use zones, depth intervals in the vadoze zone and 

between ‘dry’ and ‘wet’ condition samples are unbiased and can be interpreted with 

respect to the different controlling factors involved in each case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Box 8.1: Comparison between potential denitrification rates at ambient nitrate 

concentration (‘land-use’ samples) and at higher than ambiemt nitrate concentration 

(‘dry’ samples). The bar chart shows the mean potential denitrification rate ± 1 

standard error. The table presents the means ± 1 standard error for denitrification 

potential, AnMOC, organic carbon content, water and soil nitrate content. The F 

statistic and P probability value for One-Way ANOVA are also presented. 

0

5

10

15

20

25

30

35

Dry Land-use 

D
en

it
ri

fi
ca

ti
o

n
 (

m
g

 N
 k

g
-1

 s
o

il
 d

-1
)

 

Mean ± 1 SE Mean ± 1 SE F P

Denitrification                  

(mg N kg-1 soil d-1)
28.0 2.3 15.7 1.3 27.9 0.000

AnMOC                           

(µmol CO2 kg-1 soil d-1)
704.9 102.2 1334.7 248.8 11.7 0.001

Organic carbon                
(%)

4.3 0.3 5.8 0.4 10.4 0.002

NO3
--N                               

(mg kg-1)
8.2 1.1 17.5 4.0 6.3 0.016

Water content                   
(%)

47.9 4.3 46.0 2.7 0.0 0.990

Land-use samples ANOVADry samples
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DNRA was not significantly affected by the land use management practices. DNRA 

was shown to be primarily controlled by redox fluctuations, which are in turn controlled 

by the hydrological/flooding regime, in the intermittently saturated re-connected 

floodplain. It could therefore be assumed that in the N-rich agricultural soil of the River 

Cole floodplain, where denitrifiers are dominant, DNRA is concentrated in those 

environmental patches with low redox conditions, where they might have a competitive 

advantage against denitrifiers.  

 

8.3.2 The role of vertical changes in soil stratigraphy and electron donor and 

acceptor availability in influencing the magnitude and relative importance of 

denitrification and DNRA 

There were no significant differences in the soil stratigraphy (as expressed by soil 

texture) across the vadose zone in both the BZ and the PM areas of the River Cole 

floodplain. The relative availability of electron donors (organic carbon) and acceptors 

(nitrate) decreased exponentially with depth. Consequently, both the denitrification and 

DNRA potentials, which were primarily controlled by the LOC availability, decreased 

exponentially with depth in the vadoze zone. While this study for the first time 

documents the potential of subsurface floodplain sediments for DNRA, it also 

highlights the lower relative importance of nitrate attenuation in the subsurface soil 

horizons of the studied re-connected floodplain. In the subsurface horizons, GW flow is 

restricted by the low angle and the slow hydraulic conductivities, and the absence of 

buried organic carbon patches also constraints the efficiency of nitrate attenuation to the 

organic carbon-rich topsoil.  

 

8.3.3 The role of wetting-drying cycles in controlling the spatial variability of 

heterotrophic denitrification and DNRA 

 Although the potential denitrification rate was 37 % higher in the wet samples, the 

difference was not significant. Despite the lower WFPS in the dry condition samples 

and in conjunction with the available organic carbon and the rich in nitrate soil, 

denitrifiers survived the unfavourable oxic conditions. However, the spatial variability 

in denitrification activity between land use zones under wet conditions was lost in the 

dry conditions. This finding could imply a change in the community structure of 

denitrifiers induced by the perturbation of prolonged dry conditions. Despite a possible 

denitrifier community structure change, denitrification activity is not adversely affected 



 

 424 

by brief periods of drought, and the regular flooding of the floodplain maintains high 

denitrification enzyme activity that depends more on the availability of soil moisture 

and electron donors rather than the community composition of the denitrifiers. 

 

The DNRA potential on the other hand, although present in the dry condition samples, 

was significantly affected by the dry period and was 60 % lower compared to the wet 

samples. The results suggest a higher sensitivity of the DNRA activity in a drought 

perturbation compared to denitrification, which could be due to the change of 

environmental conditions (i.e. lower WFPS) or a change in the bacterial community 

composition. However, the fact that DNRA activity was observed upon re-wetting of 

the dry samples indicates a degree of resilience of the DNRA bacteria. It is therefore 

likely that a diverse DNRA population exists even in a temperate agricultural catchment 

with N-rich soils, where denitrifiers generally outcompete DNRA bacteria and restrict 

them in the lower redox, high carbon environments. However, when a perturbation like 

drought occurs, DNRA populations adapted to more oxic conditions can survive.  

 

8.4    Objective Three 

The results for Research Objectives 1 and 2 (A & B) indicated that the intermittent 

overbank flooding, following the re-connection of the River Cole floodplain, transports 

river and hillslope-runoff nitrate onto the floodplain, while at the same time creates the 

necessary conditions (i.e. low oxygen availability, supply of organic carbon) for the 

occurrence of nitrate removal predominantly via microbial heterotrophic denitrification 

in the floodplain topsoil. Therefore, for the purpose of informing the design of a 

floodplain restoration project aiming at increased nitrate removal capacity, or for the 

post-project appraisal of a restored floodplain, the nitrate removal capacity can be 

assessed by predicting denitrification at the field scale with the aid of a simple model. 

 

The simple denitrification model NEMIS (Hénault and Germon, 2000) was selected to 

form the basis of the management tool for floodplain restoration. The validation of the 

model indicated that the model performs well in conditions different from its 

development without the need for parameter re-calibration or optimisation. The 

subsequent application of the model to an annual database collected in the River Cole 

floodplain showed that the model reasonably predicts the denitrification capacity at the 

field scale at daily temporal resolution. The application of the model is not data 
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intensive, since it depends on one laboratory estimation of the denitrification potential 

of the studied area, which could also be obtained from the literature, while the annual 

monitoring of soil nitrate, temperature, and moisture is inexpensive and based on 

standard fieldwork and analytical techniques. It is therefore proposed that the 

management tool based on the application of the NEMIS model is used as a decision 

support tool for evaluating the nitrate removal capacity of candidate sites for river-

floodplain restoration and/or assessing the nitrate removal capacity of restored 

floodplains as part of a post-project appraisal.  

 

In conclusion, this study has demonstrated that reconnected floodplains, apart from 

forming temporary floodwater storage areas, can also significantly contribute to water 

quality improvement through for example the biological attenuation of nitrate 

originating from diffuse agricultural sources. Therefore, alongside the establishment of 

vegetated buffer zones (VBZ) restricted adjacent to agricultural land, as a measure for 

tackling diffuse agricultural pollution, future river-restoration projects should aim at 

maximising the buffering capacity of ‘larger’ floodplains, currently used only as flood 

alleviation measures. This could be done by the appropriate control of the hydrological 

regime, for example encouraging overbank flooding in low-angle floodplains for the 

transport of nitrate and the establishment of the necessary conditions for biological 

nitrate removal. Moreover, maintaining traditional land management practices, such as 

grazing and mowing for hay for example, in reclaimed floodplains can potentially have 

a beneficial effect on the nitrate attenuation capacity through increasing the availability 

of organic carbon and also temporarily removing nitrate stored in plant biomass. In 

terms of the processes involved in biological nitrate removal, denitrification appears as 

the most desirable since it results in permanent removal of nitrate, whilst the alternative 

pathway of DNRA would be problematic where diffuse nitrate pollution is an issue 

since it leads in conserving N in the system in a more bioavailable form (NH4
+). This 

study however has shown that although the potential for DNRA exists in temperate N-

rich agricultural soils, it is significantly lower than denitrification and does not pose a 

serious risk to nitrate pollution control, as long as redox conditions and nitrate supply 

remain favourable for denitrification. Finally, this study suggests the use of the simple 

denitrification model NEMIS for estimating field denitrification rates as a management 

tool for assisting the design process of future floodplain restoration projects targeting 

increased nitrate attenuation and for the post-project appraisal of restored sites.       
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Appendix 1 
 
1.1 CR10X logger instructions for tensiometers 

*Table 1 Program 

01: 3600  Execution Interval (seconds) 

 

1: Battery Voltage (P10) 

1: 1 Location [Battery] 

 

2: Do (P86) 

1: 41 Set Port 1 High 

 

3: Excitation with Delay (P22) 

1:1 Excitation Channel 

2: 0000 Delay W/Ex (0.01 sec units) 

3: 1000 Delay After Ex (0.01 sec units) 

4: 0000 mV Excitation 

 

4: Voltage (Diff) (P2) 

1:3 Replicates 

2:4 250 mV Slow Range 

3:1 DIFF Channel 

4:2 Location [Tensiom_1] 

5:10 Multiplier 

6:0 Offset 

 

5: Do (P86) 

1:51 Set Port 1 Low 

 

6: If time is (P92) 

1:0000  Minutes (Seconds--) into an interval 

2:60  Interval (same units as above) 

3:10  Set Output Flag High (Flag 0) 
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7: Set Active Storage Area (P80)  

1:1 Final Storage Area 1 

2:100 Array ID 

 

8: Real Time (P77) 

1:1220  Year, Day, Hour/Minute (midnight=2400) 

 

9: Sample (P70) 

1:1 Reps 

2:1 Location [Battery] 

 

10: Sample (P70) 

1:3 Replicates 

2:2 Loc [Tensiom_1] 

 

11: Serial Out (P96) 

1:71 Storage Module 

 

*Table 2 Program 

02:0.0000 Execution Interval (seconds) 

 

*Table 3 Subroutines 

End Program  
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1.2 CR10X logger instructions for theta probes and thermistors 

*Table 1 Program 

01:3600 Execution Interval (seconds) 

 

1: Battery Voltage (P10) 

1:1 Location [Battery] 

 

2: Do (P86) 

1:41 Set Port 1 High 

 

3: Excitation with Delay (P22) 

 1:1  Excitation Channel 

 2:0 Delay W/Ex (0.01 sec units) 

 3: 1000 Delay after Excitation (0.01 sec units) 

 4: 000  mV Excitation 

 

4: Voltage (Diff) (P2) 

 1:3 Replicates 

 2:5 2500 mV Slow Range 

 3:1 DIFF Channel 

 4:2 Location [ThetaV] 

 5:0.001 Multiplier 

 6:0.0  Offset 

 

5: Do (P86) 

 1:51 Set Port 1 Low 

 

6: Temperature (107) (P11) 

 1:3 Replicates 

 2:7 SE Channel 

 3:1 Excite all replicates w/E1 

 4:5 Location [Temp] 

 5:1.0 Multiplier 

 6:0.0 Offset 
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Subroutine to convert theta probe voltage to SQRT (Dielectric) using polynomial  

7: Polynomial (P55) 

 1:3 Replicates 

 2:2 X Location [ThetaV] 

 3:8 F(X) Location [SQRTE_1] 

 4:1.07  C0 

 5:6.40  C1 

 6:-6.40  C2 

 7:4.7  C3 

 8:0.0  C4 

 9:0.0  C5 

 

Subroutine to convert to volumetric water content using standard calibration for mineral 

soil 

8: Z=X+F (P34) 

 1:8 X Location [SQRTE_1] 

 2:-1.6 F 

 3:11 Z Location [ThetaVWC1] 

 

9: Z=X+F (P34) 

 1:9 X Location [SQRTE_2] 

 2:-1.6 F 

 3:12 Z Location [ThetaVWC2] 

 

10: Z=X+F (P34) 

 1:10 X Location [SQRTE_3] 

 2:-1.6 F 

 3:13 Z Location [ThetaVWC3] 

 

11: Z=X*F (P37) 

 1:11 X Location [ThetaVWC1] 

 2:0.11904 F 

 3:11 Z Location [ThetaVWC1] 
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12: Z=X*F (P37) 

 1:12 X Location [ThetaVWC2] 

 2:0.11904 F 

 3:12 Z Location [ThetaVWC2] 

 

13: Z=X*F (P37) 

 1:13  X Location [ThetaVWC3] 

 2:0.11904 F 

 3:13 Z Location [ThetaVWC3] 

 

14: If time is (P92) 

 1:0 Minutes (Seconds--) into an interval 

 2:60 Interval (same units as above) 

 3:10 Set Output Flag High (Flag 0) 

 

15: Set Active Storage Area (P80) 

 1:1 Final Storage Area 1 

 2:100  Array ID 

 

16: Real Time (P77) 

 1:1220  Year, Day, Hour/Minute (midnight=2400) 

 

17: Sample (P70) 

 1:1  Replicates 

 2:1 Location [Battery] 

 

18: Sample (P70) 

 1:3 Replicates 

 2:5 Location [Temp] 

 

19: Sample (P70) 

 1:3 Replicates 

 2:2 Location [ThetaV] 
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20: Sample (P70) 

 1:3 Replicates 

 2:11 Location [ThetaVCW1] 

 

21: Serial Out (P96) 

 1:71 Storage Module 

  

*Table 2 Program 

02:0.0000 Execution Interval (seconds) 

 

*Table 3 Subroutines 

 

End Program 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


