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Abstract

The work presented in this thesis is focused at associating a se-

mantics to the content of an image, linking the content to high level

semantic categories. The process can take place at two levels: either

at image level, towards image categorisation, or at pixel level, in se-

mantic segmentation or semantic labelling. To this end, an analysis

framework is proposed, and the different steps of part (or patch) ex-

traction, description and probabilistic modelling are detailed. Parts of

different nature are used, and one of the contributions is a method to

complement information associated to them. Context for parts has to

be considered at different scales. Short range pixel dependences are ac-

counted by associating pixels to larger patches. A Conditional Random

Field, that is, a probabilistic discriminative graphical model, is used

to model medium range dependences between neighbouring patches.

Another contribution is an efficient method to consider rich neighbour-

hoods without having loops in the inference graph. To this end, weak

neighbours are introduced, that is, neighbours whose label probability

distribution is pre-estimated rather than mutable during the inference.

Longer range dependences, that tend to make the inference problem

intractable, are addressed as well. A novel descriptor based on local

histograms of visual words has been proposed, meant to both comple-

ment the feature descriptor of the patches and augment the context

awareness in the patch labelling process. Finally, an alternative ap-

proach to consider multiple scales in a hierarchical framework based

on image pyramids is proposed. An image pyramid is a compositional

representation of the image based on hierarchical clustering. All the

presented contributions are extensively detailed throughout the thesis,

and experimental results performed on publicly available datasets are

reported to assess their validity. A critical comparison with the state
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of the art in this research area is also presented, and the advantage in

adopting the proposed improvements are clearly highlighted.
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Chapter 1.

Introduction

Computers are having an increasingly important role in people’s everyday life. This

includes an essential function of computer-based automation in industrial processes,

and an extensive interaction with electronic devices in everybody’s public and private

life. The beginning of this era can be placed, for what the average user is concerned, at

some point around the 80s – 90s. In the early stages, the interaction between machine

and humans would mainly involve the adoption by the user of the language of the

machine for the communication. As the user-base involved in this process grows and

consequently becomes less and less specialised, the trend is for the computers to be able

to interact with the user using the user’s language. This process has reached an advanced

stage for some form of communication, i.e., mainly text-based: modern search engines,

for example, adequately react to queries entered in plain English. Similarly, several

companies nowadays provide user support by phone via interactive answering machines

with satisfactory results. In contrast, visual information is still perceived by humans and

computers at two well-distinct levels, with little common-ground for communication.

This thesis represents an effort and contribution towards a greater understanding

of visual content by the computer, as intended by the human user, and therefore a

narrowing of the “gap” affecting the interaction between human and machine in the

context of image handling.

1.1. Image Understanding

Human beings interact with the environment through the five senses. Although the

dominant way to exchange information among different people is the textual/oral form,

2



Introduction 3

Figure 1.1.: A human can easily abstract the semantics, that is, the conveyed message, from
these images.

the role of different media, i.e., videos and still images, is all but negligible. The proof

of this statement is under everybody’s eyes, once looking at the role that televisions,

digital cameras, interactive news websites, and personal image collections currently have

in our lives.

The textual medium has been designed over the millennia of human history to opti-

mally convey information by efficiently coding the semantics of a message in information-

rich tokens. No wonder that the first attempts of “natural” communication between

human and machine have been done over this medium [10]. Nowadays, text messages

can be handled by computers in very efficient ways: textual tokens (that is, characters)

are encoded efficiently, complex pieces of information can be carried in a low number

of bits, and querying and retrieval operations are handled by algorithms simulating real

understanding of the queries. Keywords and underlying concepts can be inferred for tex-

tual content in a number of ways to improve retrieval results, as popular search engines

show. This is chiefly important as the amount of stored data is steadily increasing, cre-

ating challenges that go well beyond the storage aspect, being mostly related to content

access and efficient retrieval [61].

For what visual information is concerned, however, the situation is much gloomier.

Visual information is rich of “information” (as in Shannon’s Information Theory [114])

unrelated to the semantics carried by the image itself. The human user has got a distinct

ability of discerning the informative content of an image from the particular traits of

the specific image instance: in the pictures of Figure 1.1, one can easily agree that a

group of friends in a pub and a sailing boat are depicted. This is because humans can

abstract the concepts of people and sailing boat from the particular instances depicted

in the images.
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The possibility for computers to perform the above-mentioned abstraction, therefore,

is an appealing and challenging task, whose achievement would open a terrific set of ap-

plications and set new standards in the way computers interact with humans and with

the external context in general. Of course, abstraction capabilities of human beings are

deeply rooted in the complexity of the brain and take full advantage of a knowledge

system acquired throughout entire lives. The mechanisms behind our parallel and hi-

erarchical image processing capabilities are in fact still largely unknown and subject to

active research in fields that span from neuroscience and biology to cognitive science.

The temptation of mimicking the human visual system is however always strong, and

seminal works of Marr [88] and Gibson [43], for example, have deeply influenced the com-

puter vision community in the early years. Several vision algorithms nowadays claim

to be “biologically inspired”, for they try to replicate behaviours loosely observed (or

deducted from the observation) in animals and humans, often based on speculation, in

addition to the strict evidence.

In current image analysis systems, the elaboration of the content involves a classifi-

cation or clustering of features taken on the whole images or in parts of them, optionally

taking advantage of additional high level information provided by the user. There are

two dominant philosophies to the analysis and the classification of visual content, that

can be summarised as top-down and bottom-up:

bottom-up processes refer to the activity of inferring semantic concepts by the analysis

of the low-level image content, such as colour, colour variations, textures, and so

on (as in the class of object detection and semantic segmentation systems analysed

in this dissertation and extensively discussed in Chapter 2);

top-down processes, on the other hand, are related to the guided application and bind-

ing of high-level conceptual structures to the low-level structures present in the

images (as for example, in model-based object recognition [34, 100]).

The aforementioned activities can be viewed also as a generation of concepts from fea-

tures; and an explanation of features through concepts, respectively. There are sugges-

tions that in the human vision system the two activities act at the same time, and they

complement each other, as modelled more than 25 years ago by Treisman and Gelade in

the feature-integration theory [123]. However, the means by which these two processes

integrate is still a matter of debate and an active research field [20].

Details on the nature of the high-level information to be applied in the top-down

process are subject to debate and there is little evidence on a univocal interpretation
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of such information. Many related aspects are subject to interpretation, starting from

the same nature of this information, to the source of it and the application methods. A

notable type of high-level information is represented by ontologies, structures of concepts

tied together by a set of relations [47]. However, these structures tend to become rapidly

wide and be domain-specific. On the other side, there is a high evidence that all the high-

level information ultimately comes from the whole individual experience and history.

Different theories in neural sciences emphasise the role of concept learning from low-

level information, as in the attractor networks theory [63,90], or visual attention saliency

maps models [62,124]. These studies try to model the process by which the brain focuses

the attention to particular zones of the images and objects in it, and ultimately makes

associations between these objects and pre-defined concepts. This process incidentally

also results in part of the image (background) being almost discarded in the visual

information processing step, and the objects being segmented out of the image contest.

Such works create the ground for the wide class of visual pattern recognition research

efforts that set as a goal the learning of high-level concepts from low level features as

a bottom-up process. Although this approach is criticised by somebody [25], under the

ground that many of these works ignore the strong evidence of top-down processes in

human vision, a number of approaches have been presented in the last years, obtaining

promising results (some of these are reviewed in Chapter 2).

The goal of bridging the so-called semantic gap [50] between low-level features and

high-level concepts is all but accomplished, and different researchers approach the prob-

lem from different perspectives. For the time being, research works have been only

able to solve narrow problems to which they have been tailored, but possibly a solution

which mixes different strategies will be able to perform in the image domain the process

of mimicking the understanding of content that we currently experience with textual

information.

1.2. Part-based Image Content Analysis

This work deals with pattern recognition systems for image analysis and classification,

in what has been described as a bottom-up process meant to infer the semantics of

the image content by dealing only with visual information retrievable from the image.

The temptation of solving such a problem without additional external information is of

course strong. One of the reasons is the fact that this is a common pattern classification
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paradigm, whose advantages include a minimum need for human intervention in the

process, i.e., limited to the provision to annotated examples for supervised learning.

Image classification systems cannot handle directly raw image contents1 due to com-

plexity constraints. In the first attempts of performing content-based image classification

and retrieval, the need of a compact representation of images led to the design of pow-

erful descriptors able to compactly represent highly informative content of the images,

in form of colour, texture or shapes. Standardisation efforts for these descriptors mate-

rialised in the ISO/IEC MPEG-7 standard [87]. In this document different descriptors

suitable for a wide range of classification and retrieval applications are described. The

descriptors are nonetheless often meant to be global, that is, they summarise the content

of the whole image from which they are extracted. This allows for a compact image

representation, fast matching, and efficient handling of large visual databases.

The usage of global descriptors has nevertheless a number of disadvantages, starting

from the fact that a single descriptor is not representative enough to characterise the

complexity of an image. The calculation of the descriptor is normally entirely based

on the application of mathematical operators to the image, therefore the process of

inference and reasoning of the actual content of an image is absent. Global descriptors

can efficiently represent images traits in terms of colour or texture distributions, but they

fail in describing what attracts the “attention” of the human, that is, objects pictured in

the image. Consider for example the image in Figure 1.2: the small person depicted in

the image will not affect significantly any global descriptor, that will fail characterising

the real subject of the image; however, a human user will immediately notice her.

A more thorough analysis of the image is obtainable through part-based image anal-

ysis [83]: image parts are extracted by some means (i.e., segmentation, or interest point

extraction), and the concurrent analysis of these parts will produce the final classifi-

cation of the image, in a process meant to mimic the human image understanding as

discussed in the previous section. A typical part-based image analysis system will act

according to the following steps:

1. extraction of parts from the image;

2. representation of single parts through feature descriptors;

1 There are a few exceptions of object (e.g. face) recognition systems in which low-resolution versions
of the images are used as data vectors [77], but this is not the usual case.
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Figure 1.2.: The small person next to the
door in this picture will not in-
fluence a global descriptor signif-
icantly, but she will attract the
attention of a human observer.

Figure 1.3.: Local analysis without
context will inevitably
fail in understanding
the content of the
image above. [Chuck
Close, self-portrait,
04/05].

3. application of an image classification/clustering/description model to the descrip-

tors set.

Parts need to be described in a similar (possibly simpler) way to the global image, with

descriptors able to embed part traits in terms of colour, textures, edges, and shape. The

dimensionality of the image description in this approach does indeed increase of several

order of magnitude, depending on how many parts are extracted from the image and

on the size of the descriptors. Since the part extraction process takes place before the

classification model, where the bridging between descriptors and concepts is performed,

usually the number of extracted parts is redundant compared to the number or the size

of the objects.

The central step of the entire process is then the application of the correct model to

the primitive information expressed through the descriptors. In this phase the bottom-

up/top-down processes that guide the discovery of objects within the image, by analysing

the displacement and the nature of the descriptors, take place. It is crucial to consider,

in this context, the role of each different part in the composition of the entire scene. An

extreme example gives the extent of this assertion: in Figure 1.3 local information alone
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Figure 1.4.: The role of context in human vision is prominent. Even if the blurred images
do not allow for a clear identification of the objects of the scene, a person can
be inferred in the left image, and a car in the right one. The dark blob is the
same in the two images, rotated of 90◦. [images from Antonio Torralba.]

is misleading, and only by looking at the image as a whole it is possible to figure out

the real object of the representation. This is what in complex system theory is called

“emergence”: the presence of patterns in a complex system that arise by the complex

interaction of a multitude of simple elements [21]. In simpler cases, features are not

descriptive enough to discriminate between very different object categories. An example

of this fact is shown in Figure 1.4.

Context modelling is challenging because it constitutes a dramatic increase of the

problem complexity. Taking into account only all the binary (mutual) parts relation-

ships alone between N parts, a total ofN(N−1)/2 relations would have to be considered,

a number rapidly increasing with the dimension of the problem. With the considera-

tion of more complex part interactions, the problem quickly becomes intractable. The

described curse of dimensionality, a well-known problem in pattern-recognition [27], cre-

ates both theoretical and practical problems, relating to the choice of the small bits of

information that are actually relevant to the classification task, and to the time required

for the processing of such an amount of interconnected data. More precisely, the space

of meaningful feature vectors that is meaningful for the problem is a low-dimensional

subspace of a very high dimensional space in which the vectors lie. The accommodation

of the modelling of such a complex feature set into a complete framework that accounts

for the whole scene represents therefore one of the main problems to overcome.
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Figure 1.5.: Semantic segmentation with, from the left, input image, segmented image
ground truth (hand-labelling), and label colours legend for the semantic cat-
egories. The dataset is the 9-categories MSRC, described in Chapter 6.

A pattern classification system with the properties described so far falls in the cat-

egory of bottom-up systems described in the previous section, that aim at learning the

visual appearance of concepts relying only on low-level visual data. No additional infor-

mation is used in the inference to explain image contents through the imposition of a

selected conceptual structure to the image. However, this does not mean that global de-

pendences, possibly not related to local low-level information, are not taken into account

while considering dependences between parts. It is often desirable to have a model that

can actually handle structural information involving parts acting as a top-down com-

ponent, and, up to a certain level, impose learnt distributed constraints. A common

practice for bottom-up approaches is to incorporate some sort of top-down contribution

in the form of priors learnt from features [26].

1.3. Targeted Problems

In the context of part-based image understanding as previously described, two are the

specific classification problems that are considered in this PhD dissertation. They are

detailed in the following.
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Semantic Segmentation. Semantic segmentation, or semantic labelling, is the

task of associating a semantic category label to each image pixel, obtaining a semantic

map as a result. An example of such a segmentation is presented in Figure 1.5. Object

detection and segmentation is obtained as a side-effect. However, an important remark

has to be made in this aspect: for what object segmentation is concerned, the aim of the

method is not to maximise the accuracy in finding object boundaries, as in segmentation

algorithms. It is however important to associate the correct category to the right areas

of the image, to identify the semantics of the content. Of course, often an accurate

segmentation denotes a coherent understanding of region boundaries, and is therefore

desirable.

Regarding object detection, the term “object” has to be intended as area belonging to

a certain category. This is a key difference with object detection algorithms that model

object instances as structured entities. In this case, the concept of single instances does

not need to be part of the system. A second difference is that instance-modelling object

detection algorithms only deal with an object category at time and fail contextualising

the result since they lack of an understanding of the entire image. Additional top-down

high-level information on the specific category may be required as well. This prevents

this class of models from scaling to many categories. The use of accurate models for

objects also yields to a lack of flexibility with respect to the perspective under which

the object is viewed, and of the intra-category object variety (for example, the category

“clock” indicates objects with a very different structure and appearance). Therefore, the

application scope for such systems is restricted to scenarios in which specific, immutable

instances need to be discovered (as for example in detection algorithms for face tracking),

while semantic segmentation algorithms are aimed at more general scenarios with a

different number of non-homogeneous categories.

Image Categorisation. Image categorisation is defined as detection of the presence

of a number of categories within an image. This task is closely related to the semantic

segmentation one. The category labels that in the semantic segmentation are associated

to pixels, in image categorisation are applied to the image itself. Moreover, being the

classification performed in accordance to the image content, the category of the image

pixels can trigger in a deterministic way the categories present at image-level. The image

categorisation task is considered in this work as a variation of the semantic segmentation

one. The main difference is that when performing image categorisation there is no need

for the algorithm to infer a correct labelling at pixel-level. Indeed, often in this case a
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pixel-level ground truth is no available during the training. In this case then, given an

approach for image analysis, a simplified task is considered within a more challenging

scenario (the absence of pixel-level ground truth makes the learning of the category

appearances difficult). The part-based image analysis approaches considered in this

work implicate the process of labelling the single parts. In the image categorisation

task, however, a hard-decision on the label of single image regions is not necessary. To

take full advantage of the probabilistic approach to labelling, the regional labels are

considered as latent random variables. These variables can appear in the probabilistic

function defining the probability of label configurations, but are then integrated out

during the marginalisation of the image level labels. The category labels for the parts

are additionally not learnt explicitly during the training. On the opposite, there is

freedom in associating part category appearance models with different regions of the

images that represent particularly significant hints of the presence of a certain category

in the image.

1.4. Contributions of the Thesis

My PhD project deals with part-based image analysis, for semantic labelling, and image

classification. The topic of the thesis thus involves work in all the areas of segmenta-

tion, features selection, and, more importantly, design of pattern classification systems

suitable to the part-based analysis problem. In terms of problem domain, the guidelines

that driven the design of the analysis/classification system are:

• bottom-up (low level) architecture based on the analysis of features related to

parts extracted from images, without any use of high-level pre-existent semantic

information2;

• approach based on analysis of images parts or patches, exploiting local appearance

of different image areas, relationships between them, and their actual distribution

in the image;

• integration of features of different nature (that is, texture, edge, and colour), in an

efficient way, to allow for a satisfactory appearance model to be learnt.

2The only pre-existent information is a training set annotated with ground truth, whose role is indeed
different from the discussed high-level information used in top-down processes because it is not used
to drive the classification process but only to tune the model to the specific instance of the problem.
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The first point has driven the design choices towards a model that could embed

the problem in a thorough, principled mathematical framework to solve a well-defined

problem. From a design point of view, a well-defined problem is characterised by a clear

and objective goal and a definite problem definition with clearly stated initial data. In

this case, the task has been considered as a pattern recognition one, in which sets of

different descriptors extracted from the images have to be related to different image

and objects categories. The chosen framework is a probabilistic one, where the aim

is the modelling of the likelihood of a concept or object being present within an image

depending on the image traits. The adoption of such an approach allowed to state clearly

a classification fitness function (i.e., the maximisation of the probability for the model

to infer the correct ground truth labelling given the observation in the training set), the

initial data being a set of images and their ground truth labelling (the training set).

Different sub-problems analysed throughout the thesis led to consideration of different

types of annotation depending on the specific task to be solved (at image or at pixel

level).

The central idea beyond the image understanding principle is an analysis of its com-

ponents, rather than a plain classification based on global data. This in turn arises

different second-order questions and design choices, related to patches definition and

extraction, and to the embedding of patches relationships in the statistical framework

mentioned earlier. The term patch can indeed refer to entities of a different nature. In

the simplest case, patch is an element of the segmented image, in which case the segmen-

tation strategy becomes a crucial problem. In this case the image itself can be seen as

the sum of all its patches, that can be therefore considered as constituents of the image.

In this case the term “patch” is particularly appropriate, and it becomes a synonym of

“super-pixel”, often used in literature. However, in a broader perspective, a patch can

actually designate a less defined concept, being the synonym of a particular element of

the picture that carries a sensible information, as for example a particular edge, or an

interest point (that is, a point which is stable under certain image transformations and

therefore a good candidate to be used to analyse different images on a stable ground).

One of the aims of the work has been the integration of parts of different nature to boost

the classification results.

Computational complexity, when it comes to the solution of probabilistic problems

over hundreds of random variables (that is, at least one per patch) with non-trivial

dependences, rapidly becomes an issue to be addressed with proper design choices. A

probabilistic function on a hundred-dimensional space is in general intractable, and
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calculations such the marginalisation of the probabilistic density function on a single

variable, or even the normalisation of the function itself are impossible in closed form and

achievable only with the introduction of iterative optimised methods that often include

use of approximations. Probabilistic graphical models have been used as the formal

method to sample parts dependences and perform inference in an optimised way. Linking

parts (and therefore the associated random variables) in a graph enables to perform

a critical selection of the direct dependences to be considered in the problem. This

ultimately allows a selective introduction of independence assumptions driven by the

qualities expected in the result, minimising the error given the context in which the model

is applied. The nature of the probability (conditional or joint) modelled by the graph,

and the data handled by the functions as observation (that is, the features extracted

from the image or preprocessed information), also greatly influences the expressiveness

of the model and the capabilities in terms of model training and classification process.

Finally, the last of the mentioned design guidelines, that is, a reasoned choice of

features for the description of the parts, is not less important for the system performance.

Indeed, good classification can be achieved only by coupling descriptive features with

a suitable inference system. Poor performances in one of these two aspects determine

a drop of the overall system results. The requirements on the features extracted from

the parts are the descriptiveness, in terms of catching properties that discriminate parts

belonging to different objects; and the simplicity, for a complexity consideration linked to

what just discussed in relation to probabilistic graphical models. Another reason for the

choice of simple features from a pattern recognition point of view is the so-called “curse

of dimensionality” [27]. This problem is related to the increase of the system complexity,

in terms of model parameters, that is caused by the increase of the dimensionality of

the features involved in the classification problem. This affects the optimisation step,

increasing the requirements for a large training dataset and making the system more

exposed to overfitting the training set. Finally, different types of features serve different

purposes, and indeed some features are directly linked to the parts extraction step itself.

In this work, the main contribution have been:

• the investigation of different strategies for segmentation, part extraction, and ac-

counting for parts relationships, in the context of object detection and part-based

image classification with probabilistic graphical model, to assess the application

areas of the adopted methodology and to define the scope of intervention in terms

of research effort;
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• the formalisation and integration of parts of different nature to improve the clas-

sification results by mixing complementary information necessary to capture clues

of different nature to better describe the objects appearance; in particular, the

following distributed descriptors have been introduced:

WWH. the Windowed Word Histogram, representing the local distribution of vi-

sual words located at salient points in the vicinity of dense patches;

LTD. the Latent Topic Distribution, summarising the local confidence on the pres-

ence of a set of latent concepts in the vicinity of dense patches;

• the proposal of different methodologies aimed at increasing the context awareness

while analysing and classifying single image parts, without excessively affecting the

complexity of the framework; in particular, these methodologies include:

– a structure selection approach to effectively account for significant, strong parts

relationships;

– a strategy to account for dense neighbourhoods without falling into loopy

graphs and approximate inference;

• the proposal of a hierarchical image analysis strategy based on image pyramids, that

is, a hierarchical image representation method, in order to effectively represent the

compositional nature of the scene and prioritising the dependences between the

parts.

Even though the thesis represents a complete, three-year work, the research problem

is obviously far from being solved. Semantic segmentation, image categorisation, and

more generally image understanding, have witnessed a dramatic, healthy growth during

the last three years, and the number of open problems is becoming larger. This thesis

leaves an open perspective towards the treated problems. In particular, the hierarchical

structure provides an interesting framework that can be exploited in conjunction with

multi-level classification of groups of patches. This includes the use of object models,

and the explicit search of instances in the pyramid. This direction can be complemented

with the use of the proposed distributed descriptors.
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1.5. Thesis Organisation

This report summarises the work related to the PhD programme, spanning a period of

over three years. The overall plan for the PhD is exposed. An accurate allocation of

all the topics has not always been possible, because some of the presented algorithms

cover multiple areas. The proposed allocation of the work is meant to lead to the most

homogeneous and structured coverage of the entire research activity, leading to an easy

understanding of the complete framework. The thesis is therefore organised as described

in the remainder of the section.

Chapter 2 presents a survey, with a brief introduction, of the related works in the

area of pattern recognition systems for image classification, object recognition and

semantic segmentation; the list of works is not exhaustive for space constraints, but

a selection of the most significant ones for this project is presented. The works are

contextualised and put into the perspective of this study whenever their application

domain does not entirely match it.

Chapter 3 covers the topic of patch definition and extraction: patches of different nature

are introduced, and their role on image classification and on the characterisation of

different traits of objects is discussed. Different extraction methods used through-

out the work are detailed. The effective description of patches via suitable features

extracted from them is also covered in this chapter, with introduction of features

to efficiently describe textures and colour information. Finally, the proposed dis-

tributed descriptors mentioned among the thesis contributions are presented.

Chapter 4 investigates details about the inference system, presenting the used prob-

abilistic graphical models, detailing the issues related to the application of such

methodologies to the domain of image classification and proposing suitable solu-

tions. The proposed approaches towards structure selection and dense neighbour-

hoods accounting are presented in this chapter, as well as the integration of the

distributed descriptors in the inference framework.

Chapter 5 describes the alternative approach towards accounting for the structure in

image analysis, based on image pyramids. The proposal is contextualised, present-

ing related works in the areas of computer vision, image processing, and statistical

hierarchical clustering. In particular, Binary Partition Trees [130] are introduced

and used for labelling. Inference and training are detailed as well.
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Chapter 6 contains the description on how the proposed solutions work in a realistic

environment. For the purpose of the proof of validity of the system, experimental

configurations and results are presented and discussed, performing a comparison

with similar and relevant work in the area, and highlighting the related achieve-

ments.

Chapter 7 concludes the work presenting the final considerations about the obtained

results, and briefly presenting the possibilities for further research building on this

work.



Chapter 2.

Literature Review

In this chapter a brief survey of the most relevant recent advances in the area of image

categorisation and semantic segmentation is presented. The selected systems are the

most relevant to my work in terms of problem definition and type of approach used to

address it. The problem of image reasoning, as stated in the introduction to this thesis,

is indeed very broad and diverse and even a selective analysis of the state of the art in

this area is well beyond the aim of this chapter, being way too dispersive. I have selected

here the most relevant facet of the problem, focusing on methods that address semantic

segmentation or image categorisation using a set of annotated training images as only

side-information (supervised systems). According to the definition of the tasks given in

the introduction, in this review I am explicitly not considering approaches aiming at:

• classification of images containing a specific instance of an object, e.g ., a particular

car or face;

• classification or clustering according to similarity of given features, as for example

a certain colour distribution, either explicitly specified or extracted from a query

image (retrieval strategies on these lines are referred to as “Query by (Visual)

Examples”).

Additionally, no segmentation work has been addressed in this chapter. The reason is

that semantic segmentation is conceptually different to the classical segmentation prob-

lem of isolating different objects within an image1. The former is indeed a classification

process which segments areas according to their category rather than separating single

instances: two adjacent buildings are considered as a single “building” area rather than

1 The segmentation problem itself tends to be ill-posed, because without a ground truth object bound-
aries are not objectively defined: while some boundaries are well identifiable, other ones rather
depend on the evaluation of the single observer.
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two separate objects. This problem is well defined in general, given that a human ob-

server is able to classify the high majority of pixels within an image as belonging to

an object of a specific category (the condition is often relaxed in proximity of objects

boundaries or in confused zones of the image).

In terms of used approaches, the chosen surveyed works are based on machine learning

algorithms applied to the analysis of multiple features within images. They therefore

belong to the category of part-based approaches, despite of the wide variance existing

in what can be considered as patch or part within an image.

Proposals that address the problem of learning to recognise categories within images

starting from labelled data have so far represented a fairly homogeneous, yet very diverse

in terms of solutions, field of research in the area of computer vision. It is worth men-

tioning that in some cases different hypotheses have been made on the nature of the data

available for learning. These can include the presence of partially labelled images [128],

or taxonomies2 of labels [54].

2.1. Multivariate Analysis Models

The survey starts with a brief introduction of multivariate analysis methods aimed at

matrix factorisation, for dimensionality reduction and classification. These methods are

not strictly linked to part-based image analysis. However, they represent a fundamen-

tal tool for such a task and some probabilistic extensions such as probabilistic Latent

Semantic Analysis (pLSA) [58] have been applied successfully to the area of image cat-

egorisation and represent consistent part-based analysis methods.

The idea underlying this class of methods is to find a factorisation of a matrix repre-

senting the set of features collected from a dataset, in order to find a simpler and more

descriptive representation for it. The result of this process is to obtain a shorter repre-

sentation, in a lower dimensional space, for each feature vector, and a transformation

matrix to map from the high-dimensional space to the low dimensional one. Vectors in

the low dimensional space have some desirable properties such as being less correlated to

each other. Once the low-dimensional representation is obtained, vectors in the resulting

2 A taxonomy is a set of items arranged in a classification hierarchy. A taxonomy of labels is therefore
a set of labels, arranged in a hierarchy, where the labels at each level of the hierarchy group more
specific labels down in the structure.



Literature Review 19

space can be classified with standard techniques or, depending on the method, having

their own meaningful interpretation in the domain of the problem.

The most relevant algorithms in this class of approaches are Principal Component

Analysis (PCA) for unsupervised dimensionality reduction, and Linear Discriminant

Analysis (LDA) [27] for supervised dimensionality reduction. One of the recent classifi-

cation approaches inspired on PCA, as well as on related methods such as non-negative

factorisation [77], is the already mentioned pLSA, that has recently been applied with

excellent results to the area of object detection [118].

2.1.1. Unsupervised Feature Transformation via PCA

The principle on which PCA is based is to analyse a set of feature vectors in a high-

dimensionality space and find the most suitable linear space transformation to have

the the maximum discrimination between them. In the new space, a low dimension

subspace carries much of the variability of the feature vectors, and dimensions with little

associated information can be discarded from the analysis. This provides a stable basis

for the actual feature classification step. The transformation is chosen to maximise the

variance of the projected vectors in the target subspace (or, more formally, to maximise

the norm of the dataset covariance matrix). This subspace is found as a basis of the

n-dimensional feature space of eigenvectors of the scatter matrix

S =

N∑

k=1

(xk −m)(xk −m)t (2.1)

where the xk are the feature vectors of the N example images used to tune the system,

and m is their mean value. The eigenvectors corresponding to the biggest eigenvalues

of scatter matrix span the subspace with the maximum variance. This principle can

actually be applied to different classes of problems. A trivial unsupervised image clas-

sification approach can be implemented by finding the optimal subspace through PCA,

then clustering the subspace and classifying with a nearest-neighbour approach.

2.1.2. Supervised Feature Transformation via LDA

The LDA fundamental principle is strongly related to the one of PCA, but it takes

advantages of additional information available in supervised approaches on the class of
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Figure 2.1.: Comparison between PCA and LDA algorithm in finding the most relevant linear
combination of features to classify the data.

the training set vectors. Given N examples each of which is of one of c classes, the aim

of the algorithm is to find the reduced subspace that minimise the spreading among

the element of the same class while maximising the distances between the centres of

the classes. That is, the directions wi of the optimal subspace have to maximise the

criterion function

J(wi) =
wt

iSBwi

wt
iSWwi

(2.2)

where SB is the between-class scatter matrix and SW is the within-class scatter matrix.

The first is given by

SB =

c∑

i=1

ni(m−mi)(m−mi)
t (2.3)

where ni is the number of elements in the i-th class, and mi is their mean value. The

within-class scatter matrix is given by

SW =

c∑

i=0

Si , Si =
∑

x∈Di

(x−mi)(x−mi)
t (2.4)

where Si are the scatter matrices of the single classes, calculated over the vectors in the

classes sets Di.

A graphical interpretation of the difference between the supervised (LDA) and the

unsupervised (PCA) approach is given in Figure 2.1. The data to be classified has a

Gaussian distribution over the features f1, f2 with different mean value for two different
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categories (whose distribution is represented by the ellipses on the plane). The most

discriminative linear combination of features is fl, that is the result of the (supervised)

LDA. Without taking into account the classes of the data, the best choice would have

been fp, the direction calculated by the PCA algorithm, that is the direction in which

the data are more spread.

2.1.3. Part-based Probabilistic Clustering via pLSA

The solution that PCA gives to the problem of dimensionality reduction in the features

space, presented in Section 2.1.1, is mathematically optimal, because it calculates the

subspace that maximises the covariance matrix of the given data. However, this result

is not always the desired one, and it can be not the one that generalise the best. Each

dimension in the subspace embeds some sort of shared global information, that is why

for example in the face recognition domain the features corresponding to the vectors of

the optimal basis are referred to as “eigenfaces”. The effect is that each image in the

database is expressed as a weighted mixture of the basis images, that are combined in

the best mathematical way to give in average the best result cancelling out the error by

compensation.

Other methods for finding relevant features subspaces have been devised: perhaps

one of the most significant approaches is based on Non-negative Matrix Factorisation

(NMF) [77]. The idea behind this approach is to impose a constraint on the way the

components that form the basis of the reduced dimension space are mixed together in

order to represent the examples in the database. This constraint is that the weights of

the mixture have to be non-negative, thus preventing “error cancellation” mechanisms.

Under this constraint, the optimal basis vectors tend to embed local information related

to relevant parts of the image, and the mixture of the basis vectors resembles more a

process of parts compositions. This solution can improve the generalisation capabili-

ties of the classification/recognition system, and generally leads to a more meaningful

decomposition of the analysed images.

The underlying idea on which pLSA is based is the same: modelling the images as

mixture of “concepts”, each of which can be viewed as a basis vector in a reduced-

dimensionality space. The basic difference is that this basis is calculated in order to

maximise the likelihood that the examples used to train the system are generated mixing

the basis vectors. This approach to the problem adapts well to the reality, and it implies

the desirable property that the topics can be mixed in a “non-negative” form (being
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the coefficient of the mixture probabilities). Since the concepts are not related to any

ground truth, that is, the optimisation is unsupervised, pLSA actually performs a “soft

clustering” of the feature vectors over the concepts.

Let the system be trained with N images dj , j ∈ [1, N ]. Each image dj is associated

to nj parts, each one of which is represented as a feature vector wi from a vocabulary of

M (so that i ∈ [1,M ]). Note that, in accordance with the literature, the original notation

used for document analysis (where d stands for document and w for word) is retained.

The number of occurrences of the part type wi in the image dj is given by n(wi, dj),

and therefore the function n satisfies nj =
∑M

i=1 n(wi, dj). It has to be highlighted that

the documents are considered as single entities, while the part types are considered in

aggregated form, that is, only the number of each part type present in each image is

used in the analysis3. The part types can be in a very high number (in the order of

thousands of types). The dimensionality reduction problem from a probabilistic point

of view can be addressed as to find a limited number of hidden topics zk, k ∈ [1, K],

that can be associated to a document with a certain probability and that produce a

set of part types with a certain probability distribution, so that the joint probability of

obtaining the set of training images with the associated parts types

p(wi, dj) ∝ p(wi/dj) =

K∑

k=1

p(wi/zk)p(zk/dj) (2.5)

is maximised for the whole training set. A graphical representation of the probabilistic

model used in pLSA is given in Figure 2.2.

The objective function to maximise is proportional to the probability of obtaining

the N training set documents with the related densities n(wi, dj) for each part type wi,

which is

L =

N∏

j=1

M∏

i=1

p(wi/dj)
n(wi,dj) . (2.6)

The parameters of the training procedure are the conditional probabilities p(wi/zk) and

p(zk/dj). An analytical solution for these quantities can not be obtained, but they

have to be determined iteratively. This is done by the Expectation-Maximisation (EM)

technique [14]. EM is a common optimisation instrument that can be used when latent

3 This is the reason for the name “bag-of-words” that is usually associated to methods as pLSA (see
Section 3.3.1).
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Figure 2.2.: The graphical probabilistic structure of pLSA. Note that p(d) is a mock proba-
bility that can be considered as 1/N .

variables appear in the probability function to be maximised. It works by estimating the

a posteriori probability of the latent variables, p(zk/wi, dj), during the expectation step,

by using the current best approximation of p(wi/zk) and p(zk/dj). In the maximisation

step, the extimated a posteriori probabilities are used to refine the approximations of

p(wi/zk) and p(zk/dj), recalculating these distributions from the data set and the hidden

variables posteriors [58].

This approach has been applied with successful results to unsupervised object recog-

nition algorithms in the image domain [118]. The main drawback of such a system is

that spatial configurations of parts are completely ignored. On one side, this property

makes the algorithm simple and fast, but as one can expect, the addition of structural

information can improve the results significantly. Some attempts of inclusion of such an

information, by different means, confirm this claim [18, 108, 127].

The output of the algorithm are the concept posterior vectors

p(zk/wi) = p(wi/zk)
p(zk)

p(wi)
,

that associate a distribution over the latent concepts to each visual word. This intuitive

representation allow a direct use of the pLSA result for clustering. However, considering

pLSA as a dimensionality reduction system, the posterior vectors can be used as a base

in more complex systems where pertinent.

Finally, it is worth noticing that there exist a number of related approaches that

do not use directly pLSA but are inspired by similar concepts of bags-of-words. A

notable modification of the pLSA algorithm is Latent Dirichlet Allocation (LDA) [16],

that, considering the distribution of the topics over the documents p(zk/dj) as random

variables to be averaged out (with suitable priors) instead that as parameters of the

model, encourages sparsity of the topics over the documents. A popular extension

of LDA is proposed by Fei-Fei et al . [31, 33], that extend LDA by adding category
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variables to the framework. Recently, Cao and Fei-Fei proposed a further improvement

of the model taking advantage of a separate segmentation process to enforce spatially

coherent labelling [18]. In particular, in this approach an image is over-segmented and

the assumption is made that each segment or patch represent a single object. Therefore,

all the words that are located at one patch are forced to be drawn from the same

latent topic, in the generative probabilistic model, being therefore coherent with the

segmentation. This is a simple and elegant addition to the latent model that can be

easily incorporated in the analysis. However there is a clear compromise to be made in

the segmentation process. The method relies on the hypothesis that each single region

encompasses a single object. Therefore, the segmentation has to produce a large number

of small regions to satisfy this requirement. However, the effectiveness of the modelling is

inversely proportional to the size of each region, because when small regions are present,

spatial coherence is actually only enforced in very small sets of words.

2.2. Conditional Random Fields

The main shortcoming of multivariate analysis methods and bag-of-words methods, is

that the only inter-patch dependence considered in the model is the co-presence. In other

words, no patch adjacency or relative location is accounted. To mend this, probabilistic

models explicitly including the contribution of the single parts have been proposed. In

terms of the model, the important point is the presence of a different random variable for

each single patch. This is in contrast with bag-of-words methods that consider each word

as random variable, but not each instance of the word in the image, all the instances of

the same word being accounted collectively.

This paragraph focuses on the review of the current state of the art on methods based

on discriminative probabilistic graphical models. In the area of probabilistic modelling,

discriminative models are those that directly estimate the a posteriori probability of a

particular labelling given the observation (i.e., the extracted features), p(l|x). This is in
contrast with generative models that estimate the joint probability p(l, x), building an

appearance model of the parts by ultimately estimating the probability of the observation

given a concept, p(x|l). The main advantage of discriminative models over generative

ones is that no additional computational complexity is spent modelling aspects of the

system that are not strictly needed for the classification: only the probability of the labels

given the observation is actually required for the classification task. This topic will be
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covered in detail in Chapter 4. In the following of this section, a brief explanation of

the most significant discriminative models applied to the part-based image classification

and labelling problem is presented.

2.2.1. Pixel-based CRF for Image Segmentation: TextonBoost

Associating random variables to single patches or pixels leads to very high dimensional-

ity probabilistic functions, that are expensive to evaluate, investigate and manipulate.

In general, considering all the possible statistical dependences between all the patches

in a single image is infeasible because is too complex. For this reason, Probabilistic

Graphical Models (PGM) are used to declare variable dependences. PGM are a neat

and direct formalism to specify direct statistical dependences between a set of variables.

Each random variable is considered as a node in a graph. Links in the graph represent

direct dependences between the two connected variables. A probability function can be

factorised isolating any two variables that are not directly dependent (that is, there is

no factor depending on both of them). In undirected graphs, the modelled probabilistic

function is composed by factors of subsets of variables that are connected in a clique4.

The graphical formalism allows for the development of a set of techniques for efficient

analysis of such functions. A more extensive review of these techniques is provided by

Bishop [14].

The most straightforward embedding of the problem of semantic image segmentation

into the framework of a probabilistic graphical model is to associate to each pixel in

the image a node in a graph, that will take a regular structure of nodes connected

in a rectangular lattice. TextonBoost [117] is a system that embraces this idea. The

probabilistic function is modelled in order to classify pixels using colour, shape-texture,

absolute location, and edge information. The model is used to infer a class label for

every pixel of an image, once trained on a segmented training set.

The learning process adopted for the model is peculiar and presents different inter-

esting solutions to the complexity problem that is the common barrier to the usage of

the graphical models at pixel level. Primarily, the model parameters are not learnt in

a single common step, but specific approaches for parameters related to information of

different nature are applied. Although the separate learning of the model is in general

suboptimal, this strategy allows to design the different parts of the system to effectively

4 A clique in a graph is a sub-graph that is fully connected (a link is present between each pair of
nodes).
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solve specific sub-tasks of the problem. Each module is therefore locally optimised with-

out excessively affecting the overall complexity of the method.

For example, colour information is maximally exploited using a per-image approach.

The main drawback of the colour information for semantic classification is that only few

object categories can be discriminated by the colour. On the other hand, single instances

of the objects often can (especially man-made ones). For this reason, the colour model

is learnt separately for each image. This is basically a Gaussian-Mixture Model (GMM),

in which the means and the variances of the different modes are first learnt from the

database and then the mixture component are estimated for the specific query image.

Texture information, on the other side, is learnt with a boosting approach [110]. A set

of weak classifiers is used to train a strong classifier with a Joint Boosting approach [121].

For the weak classifiers, a novel category of filters, called shape-filters, is used. They

are based on textons [145], edge/texture descriptors obtained through convolution with

Gaussians, Difference of Gaussians (DoG) and Laplacian filter banks. A dictionary

approach is used, and the weak learners are actually based on the classification of the

pixels based on texton words. The learnt information for each pixel is used as a simple

pixel-prior in the CRF. Location potentials are learnt with an Maximum Likelihood

(ML) approach5. Edge-related functions are shaped as Potts-like potentials, weighted

on the difference in colour between two pixels. Mixing parameters are manually tuned

on the validation set once all the other parameters have been set.

The resulting model is quite complex and the learning of all the parameters requires a

long time. Approximations are made at several steps to ease the learning, that anyway

can be optimised for each subset of parameters separately. The results provided by

the model are quite accurate on the MSRC database of 21 classes6. Pixel-based CRF

have strong limitations in considering distributed information, due to the locality of the

connections. The method however takes advantage of contextual information thanks

to the use of textons. The main disadvantage of this technique is that this is not

a probabilistic approach but the association of textures with texton words is hard-

thresholded.

The main advantage of a pixel-based approach is however the accuracy achieved on

the segmentation, because single pixels are classified within the probabilistic framework

in the last stage of the analysis. Recently, an extension of TextonBoost that includes

5 Potentials are the log-factor of the labelling probability function. The terminology related to graph-
ical model is detailed in Section 4.2.

6 The MSRC dataset is presented in Section 6.1.
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higher-order potential functions has been proposed [66]. The method is focused on

accurate modelling and detection of object boundaries, and remarkable results have

been presented. However, the complexity of the inference due to high order cliques and

overall accuracy in the classification remains an issue.

2.2.2. Label Patterns and Scene Models

Graphical models are used as a framework to embed dependences between neighbouring

patches, in order to consider local context. Their main problem is considering the right

dependences for the specific labelling task. Graphs consisting of a simple rectangular lat-

tice connecting small patches only represents short-distance dependences. This is often

just enough to favour homogeneous labelling configurations over scattered ones. Increas-

ing the size of the patches before the inference step is nonetheless challenging, resulting

in a chicken-and-egg problem, even if it can be justified with performance reasons. A

study has been performed in this work for object classification via coarse-patch-based

analysis, presented in Section 6.2.1. On the other hand, a simple increase of the number

of connections simply result in over-complex models, that can not be solved because they

become mathematically intractable. Additionally, the curse of dimensionality tends to

affect the learning of such complex models. That is why many authors propose tailored,

additional ways to learn and embed structural information in the base graph.

In the Multiscale Conditional Random Field (mCRF) framework [53], He et al . pro-

pose a technique to embed in the CRF model structural information learnt separately

at different scales. A standard CRF for image labelling problems is enriched with ad-

hoc structural patterns. These additional patterns are chosen to be at two different

scales, namely regional and global. Regional patterns encode local spatial constraints as

class proximity boundaries (e.g ., “fish” and “water”, “tree” and “grass”), relative loca-

tion constraints (e.g., “ground” below “sky”), and other local structural properties (for

example, particular shapes for some classes of objects). Global patterns encode weak

global constraints (for example, “sky” usually at the top of the images, “ground” at the

bottom). These patterns are learnt before the training of the model, from a labelled

ground truth. Examples of both categories are shown on the left of Figure 2.3.

The CRF, shown in the right of Figure 2.3, consists of two layers of nodes. The

lower layer in the figure is the patch layer, in which the nodes corresponds to labels

assigned to the patches. The upper layer is a hidden layer, whose nodes act as switches

for different regional and global features, activating or deactivating them for the specific
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Figure 2.3.: Multiscale CRF for image labelling. On the left, example of annotation, and a
regional and local feature. On the right, the structure of the graph.

image. The graph does not have direct connections between patches. Patch labels are

therefore considered as independent while conditioned on the activation pattern of the

features, and vice-versa. Finally, the observation is taken into account in the model by

the means of a multilayer perceptron neural network, trained separately. The different

parts of the model are linked in a product-of-experts fashion. The learning of the system

is performed via Contrastive Divergence [57], an approximate iterative method that does

not require the calculation of the normalisation factor for the probability distribution,

which significantly simplifies the training.

The main model shortcoming is the little flexibility of its structure. The structural

patterns are rigid, because they are not rotation invariant, only partially position invari-

ant and they strongly rely on the examples in the training set with little generalisation.

Finally, the solution does not scale well. A big number of patterns are required to ex-

press a real-world concept, and these patterns tend to be sparse among the images (but

not in the model in which they are all embedded). Other attempts to perform image

understanding by embedding knowledge on the layout of the particular type of scene

being analysed have been made. Notably, Alexei Efros and his group are acclaimed for

their notable work on object detection by using priors based on the interpretation of the

geometry of a scene [59]. This is an appealing direction of work, that is however bound

to the specific typology of images being analysed (in this case, structured city scenes

with a clear perspective). The method is therefore generally difficult to generalise to

more general types of images.

The attempt of describing label patterns made with the mCRF was preliminary but

promising. Very recently, Warrell et al . [135] proposed a compact version of label pattern

priors, named epitome prior. Basically, the epitome is a two-dimensional look-up table
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Figure 2.4.: The epitome represents sets of label patterns in a compact bidimensional struc-
ture. On the left, 4 classic label patterns are represented. On the right, with
the same numbers of parameters, the epitomised prior can express 9, partially
overlapping, allowed patterns (excluding the ones wrapping the borders of the
bidimensional representation).

of likely label configuration, wrapped in itself. The compact structure allows to easily

represent a broader set of priors compared to the mCRF, for example. An example

of how the epitome condenses a set of label patterns, partially overlapping them in a

two-dimensional structure, is presented in Figure 2.4 The applicability of the epitome

is broad, and the authors have so far made some preliminary tests with simple directed

models in which priors influence rectangular (or, more in general, regular) groups of

patches.

2.2.3. Accounting for Global Information

Verbeek and Triggs have applied Conditional Random Fields to the image semantic

segmentation problem [128]. In their work, the images are analysed at patch-level, with

medium size rectangular patches (20 × 20 pixels) extracted on a regular grid. The

pixel-level labels are derived from patch-level labels inferred with a CRF trained with

a labelled ground truth. The two main points that are discussed in the paper are the

analysis of partially labelled images and the inclusion of both local (patch-level) and

global information.

The patch appearance is captured with the SIFT [81] descriptor for the texture/edge

component and a robust hue descriptor [126] for colour. The SIFT and the colour appear-

ance vectors are regarded as independent. Samples of the vectors can thus be quantised

separately in 1000 and 100 visual words, respectively, using a k-means algorithm. The

approximate location of the patch is used as well as a cue, and it is obtained quantising

the image with a 8× 8 grid and using the grid indexes for describing the location.



Literature Review 30

Figure 2.5.: Conditional Random Field for image labelling with global features. The h node
represents the histogram of visual words, the x nodes represent the patches while
the y nodes represent the local observation (single visual words associated to the
patches).

The problem of handling the contribution of global information is solved in a de-

terministic fashion: a histogram of visual words is calculated for each image and the

resulting vector is introduced, as a part of the observation, in the local function of the

CRF. This strategy has the advantage of not introducing additional nodes in the CRF

graph: the nodes corresponding to global information would add a noticeable amount of

complexity to the complete graph, due to their high connectivity. The global histogram

gives a general description of the image, ultimately biasing local CRF labelling on a

per-image basis. The approach can be generalised in order to create multiple large-

scale aggregated descriptors, for different image areas, and obtain a loose description of

different zones of the image.

The resulting graphical structure used in this work is shown in Figure 2.5. The local

inter-patch correlation can be taken into account in two different ways: the simplest

one is by the means of a set of indicator functions that constitute a labels compatibility

table. The second one is to weight the connections between two patches with some

“visual compatibility” coefficient, that can be simply obtained for two patches as a

difference between their appearance vectors (before the k-means quantisation).

Nodes that are unlabelled in the training set (void) are accounted for in the learning

phase. Dismissing these nodes would be a suboptimal solution since it would affect the
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resulting graph structure. On the countrary, unlabelled nodes are considered as latent.

The corresponding random variables are marginalised out when calculating the configu-

ration likelihood. The inference process is performed via loopy belief propagation [41],

estimating the likelihood logarithm with the Bethe free-energy approximation [143].

One of the main issues with this system is the use of rectangular patches that are

completely disconnected from the semantic content of the image, both in term of scale

and centre of the patches. This adds noise to the extracted visual words worsening the

classification. The presented method only partially tackles this problem by allowing for

the patches in the CRF model to assume multiple valid labels during training. However,

errors during the actual labelling related to co-presence of different categories within the

same patch are not avoidable with such a system.

Other approaches to take into account global information worth mentioning include

the use of global spatial layout potentials for single categories or global category co-

presence probabilities, both learnt separately from the training set and used in the CRF

model as global feature [122]. Alternatively, He et al . [55] use a mixture of CRFs to

model a predefined number of different (global) contexts, obtaining a system that is not

particularly scalable or flexible regarding the training set usage (that is, the different

CRFs do not necessarily embed generalisable contextual rules). Finally, simpler models

that are not graph-based, such as the one proposed by Csurka and Perronnin [22], use the

output of global classifiers applied to the image to derive image-based category priors.

2.2.4. Objects Layout

A shortcoming of discriminative models over generative ones is that they do not allow

a seamless introduction of real-world concepts such as the presence of object instances

in a picture, and possibly the use of a particular appearance model for a specific object

category. In generative models this operation is straightforward, since the considered

probability models the generation of the appearance as driven by an underlying “cause”

(the object instance), under a certain model (the object model). This is further com-

mented in Section 2.3. The primary advantage in imposing real-world concepts is to

bias the inference towards solutions that are realistic. This leads most of the times in

an improvement of the results. In general, in many applications an error leading to a

realistic solution is more tolerable than an error that does not find critical explanation.
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Attempts to impose smoothing constraints through a CRF jointly with making hy-

potheses on the number and relationships between different instances of foreground

offices have been made. Winn and Shotton [139] for example proposed the Layout Con-

sistent CRF to model the a posteriori probability distribution of a set of object parts

for a number of object instances, that are put in relation with each other. The model

considers a single-category of objects, mainly due to complexity constraints. Although

possible in theory, a version for the multi-class problem has been only briefly introduced

and not extensively tested. The framework is patch-based. It models the joint prob-

ability p(y,h, {T}|X), where y represents the label of the patches (as foreground or

background), h is a set of hidden object part labels, so that an object can be viewed

as a collection of parts, and {T} is a set of simple geometrical transformations (such as

translation) on single object instances. The model is therefore generative on the relation

between parts and labels, but discriminative on the observation. The training is quite

complex: appearance, pairwise CRF potentials between object parts, and potentials

involving each single object part and geometrical transformations are learnt separately.

Gould et al . [45] proposed another strategy for considering the objects layout in the

inference stage for semantic segmentation. The approach is again based on relative lo-

cation priors, but the framework is simpler and the inference happens at two stages.

On the first stage, patches obtained through oversegmentation of the image are labelled

independently using a boosted classifier. An important assumption is that the labelling

obtained in this first step is largely right. Based on that, location potentials for single

categories are computed in relation to the location of the obtained category map. Rela-

tive category locations are learnt separately on the training set. These assume the form

of a distribution map centred on the patch of a given category. The rules can express

concepts as that the more likely category to be found above “tree” patches is “sky”.

A reclassification is made considering location potentials, that are used within a CRF

framework for smoothing.

2.2.5. Patch Labelling and Object Detection

A challenging goal in the area of part-based image recognition is the object detection

through the automatic learning of the relevant patches disregarding the irrelevant ones

while looking for different objects. This problem can be described in a more formal way

as patch labelling via weakly labelled images. The patch labelling represents the actual

goal, while the weakly labelled images are the kind of information that is available for
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the learning phase: a set of images labelled according to the presence or absence of one

or more instances of different object categories.

Bishop and Ulusoy [15] present an interesting comparison of discriminative and gen-

erative approaches to the above mentioned problem. The generative approach uses a

Bayesian Network (BN) in which the appearance of the patches is modelled through a

GMM, while the discriminative one is a reversed BN (with the probabilistic dependence

going from the patches nodes to the category labels – see Figure 2.6, left). The pa-

per helps understanding which practical advantages and disadvantages are associated to

each one of the approaches, even though the used models are relatively simple, that is,

in the model no direct probabilistic dependence between different patches is considered.

Being the paper related to learning capabilities, not much attention is devoted to the

feature selection. Local interest point (see Chapter 3 for a general discussion on interest

points) are selected and described with the SIFT descriptors [81], that are augmented

with colour information (patch average colour in the nRGB space and colour variance).

In this way, each patch is associated with a 144 element feature vector.

The graph structure of the discriminative probabilistic network is shown in Figure 2.6

on the left: each patch variable hnj is only influenced by the corresponding feature

vector xnj and the model parameters w; the variable that describes the image-level

labels, yn, is equally influenced by all the patch variables. This simple structure implies

that the graph has got no loops and the inference on it can be implemented in a very

optimised way, discarding positional and co-presence information. This particular graph

structure allows the authors to associate a probability function, to describe the image-

level labelling given the patch-level classes, that they call “noisy-OR” function. The

form of this probability is

p(y|h) =
K∏

k=1

[

1−
J∏

j=1

[1− hjk]

]yk [ J∏

j=1

[1− hjk]

]1−yk

(2.7)

where hjk is equal to 1 if the j-th patch is of class k and 0 otherwise; and similarly yk

is equal to 1 iff in the image the category k is present. The function in Eq. (2.7) is the

formalisation of the fact that if there is at least one patch of class k, the image will carry

the label k, otherwise it will not. This “OR” logic becomes noisy, or smoothed, when

the expectation on the value of hjk introduces values in the interval [0, 1]. It is possible

to see that Eq. (2.7) is not factorisable by itself on the hjk: the noisy-OR function can
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Figure 2.6.: Discriminative (left) and generative model (right) for a problem of patch-
labelling given image-level labels. The layer of hnj is hidden, and the patches
variables are latent.

be used only in some particular set-up (i.e., no inter-patches connections) in which the

factorisation can be carried out at a graph-level.

In Figure 2.6 the right graph refers to the generative model, in which the variables

xnj are modelled with a GMM, and then are observed (shaded nodes). The probabil-

ities p(hj |y) are simple mixture coefficients, that make the part of the model relating

image-level labels and patch-level labels look like a pLSA model. As for the pLSA, the

parameters ψ, π and θ are found via EM, in a process that is more computationally

expensive that the likelihood maximisation required for the conditional model.

In the tests the results are that, as expected, the conditional model is more time-

efficient. For the correctness of the labelling, the main finding is that the generative

model, when properly initialised, performs better than the discriminative one in both

image-level labelling and patch level labelling. This can be explained with the fact that

the generative model has the additional expressing power coming from the modelling of

the observation, that in the discriminative one is absent. For the patch-level labelling

problem, the conditional model tends to classify as non-background only few discrimi-

native patches, so the accuracy in the labelling of the background is very high, but this

is not true for the objects. This can be explained with the noisy-OR function being used

in the discriminative model, such that in order for the entire image to be labelled with

a category, only few patches of that category need exist. The initialisation problem for

the generative model on the other hand is related to the need for this model of good

candidates as initial mixture parameters of the observations in order not to get stuck in

local minima – a partial patch-level labelling needs to be used. This work highlights the
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problem, while comparing different models, of how the assumptions made for the single

models affect the results of the comparison.

2.3. Object Models

It would be certainly reductive to think that discriminative probabilistic models based

on CRF are the only choice for part-based image understanding problems. Indeed the

community has come up with very diverse solutions, some of them very peculiar and

imaginative in terms of adopted methodologies. The reason they have not been covered

here is that they are less relevant to the present work. This paragraph however mentions

some of the works especially noteworthy in terms of interest of the approach or quality

of the obtained results.

One of the most notable solution classes is the one of systems that learn selective

models for object categories. This philosophy is close to the top-down approach de-

scribed in Chapter 1. The main difference is that the object information is usually an

appearance model learnt from a set of training examples without the support of high-

level additional information. The images are subsequently searched for occurrences of

the object by matching parts of the images with the previously learnt model. In this

category of algorithms fall for example popular boosting algorithms such Adaboost [131]

and derivations [79,141] use a mixture of weak classifiers to obtain a strong classifier for

a particular object. The algorithm is not scale-invariant so the search window has to

be applied to different areas of the image at different scales. Differently, a probabilistic

approach to the object modelling construction is presented by Felzenszwalb and Hut-

tenlocher [34]: the guiding principle is the fitting of a small graph describing the object

structure in the best match area of the image, thus individuating one or more instance

of the object that is looked for. Fergus et al . [36], finally, use a generative probabilistic

model to describe object models and represent the shape of an object as a matrix of

Gaussian statistical distributions of mutual positions.

CRF have been employed to learn part relationships in object-model-based object

detection algorithms. One of the early contributions on this has been provided by

Quattoni et al . [103], proposing a model where a hidden CRF built over interest points

is used to infer the presence of an instance of a given object category within an image.

A similar model has been used also in this work (Section 4.2.3) to study the role of

structural information in part-based object detection (Section 6.2.2) and in a fast object
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detection method based on coarse patches (Section 6.2.1). Amongst the limitations of

the model, there is a lack of semantics associated to the single patch: interest points

extracted from an image are not necessarily related to a single object instance. Therefore,

the pairwise links between interest points are weak, conveying little information. More

recently a strategy has been proposed to learn the connections in a similarly defined

CRF [112]. The main differences with the Quattoni work, besides the automatically

learnt graphical structure, are the presence of hierarchical features and the use of a

non-hidden CRF that allows for localisation of the object instance in the image.



Chapter 3.

Part Extraction and Description

The concept of part or patch is central in part-based systems. Studies in the fields of

human vision and visual attention provide strong support towards a part-based human

processing scheme for visual scenes, especially in some theories related to feature inte-

gration [123] processes in human brain, evolved into attractor networks theory [63,90], or

visual attention saliency maps models [62,124]. The principle at the basis of these studies

is the integration, in the human visual awareness process, of two opposite and comple-

mentary mechanisms, a top-down “analytic” process and a bottom-up “synthetic” one.

The former process is related to the imposition of our knowledge system to the images to

explain them, in order to find a meaning for the whole scene. The latter, on the contrary,

is related to the process by which features coming from different parts of the images are

processed and integrated together to build a meaningful setting. Many aspects of this

process are disputed in the community, starting from whether the top-down approach

is dominant over the bottom-up one in the awareness acquisition process or the other

way round. Additionally, in the synthetic processing of the parts into a whole scene, the

stimuli integration process is not yet understood. The cited attractor networks theory

represents the image analysis system as a network whose stable (low-energy) states cor-

respond to conceptually meaningful representation of concepts and scenes. The network

fits different features coming from different parts of the image. Attention saliency maps

models underline the mapping of different parts into different zones of the brain cortex

specialised in the detection of different types of features, and are connected to integrate

the features together to contribute to the whole scene understanding.

Whatever the truth about the biological vision system, if there is one point in which

all the community seems to agree, this has to be the fact that features are extracted

locally and at some point are integrated together. The process is indeed a part-based

37
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analysis, and for automated image classification system this evidence cannot be ig-

nored. An accurate definition of what parts are and how to describe them numerically

is therefore mandatory in order to create a solid ground on which build up a sensible

classification/detection system.

In this chapter issues related with parts are discussed. Parts are first defined in

Section 3.1; different techniques used throughout the work for extraction are then de-

scribed (Section 3.2); finally, in Section 3.3, descriptors for parts of different nature are

discussed.

3.1. Part Definition

In this work, the concept of part or patch is considered in its broad meaning, as it often

happens, in general, in the research field of semantic segmentation and image categori-

sation. The term is used to indicate every local trait of an image. Parts can be image

areas (segments, or super-pixels, as in many literature works described in the previous

chapter), but also image edges, or corners, stable retrievable points [22] (interest points,

as described in Section 3.2.4), and so on. Parts are therefore elementary components

or traits of an image. Being elementary, they are local, and have an associated spatial

extent (scale). Parts do not, in general, offer a univocal representation of the image.

This can be the case only in some situations, as when all the segments of the image

are taken as full set of parts considered in the analysis, so that every bit of informa-

tion present in the image is also present in one (and only one) part and vice-versa. In

general, it is beneficial to consider in the analysis a set of parts from which it is not

possible to reconstruct the original image. In practice, the choice of which parts have

to be considered and which ones discarded is related to the specific classification task:

information present in the image that is not relevant to image classification can be dis-

carded, while highly informative zones of the images can result in “redundant” parts

being taken into account, that will be used to extract different kind of information and

therefore complement each other in terms of descriptors.

An image part can then be defined as a local image trait that can be described

accurately with some feature and can be associated with a semantic concept present

within the image. These properties are the real basis of the part-based analysis, and

failure in considering parts that satisfy them will irrimediably introduce some error.

It has to be possible to describe accurately one part with a suitable feature: if the
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numerical vector extracted from the part and associated to it is not representative of

the part, in what can be called the part appearance, it is not possible to discriminate

similar parts once abstracted from the image pixels and represented with their associated

feature. This undermines inevitably the results obtained with any learning algorithm

whatsoever.

A part should belong to a definite instance of a semantic object in the class, that

is, no part should be shared between two or more object instances (more importantly,

if these instances belong to different semantic categories). This is for two reasons: the

first is that if a part is extracted from an image that is shared between more concept, it

means that the system is not able to discriminate the appearance of these two different

concepts, which is the basic assumption for a cascade system as the one taken into

account in this work, in which the learning algorithm acts after the extraction of the

parts. The second reason is that such a part is likely to have a noisy contribution on

the subsequent learning step, in which the semantics unicity of the parts is assumed1.

As mentioned before, parts represent local, possibly redundant, information from the

image. Not all the information contained in the image is contained in the extracted parts,

but all the information related to the parts is obviously contained in the whole picture.

The parts choice has therefore to be done in such a way to ease the feature extraction step

favouring the compliance with the above mentioned rules. It is important to abstract

consistently the image analysis job in layers, the first related to parts extraction and the

second one related to the inference, performing as most job in the extraction layer as

possible, without introducing errors. For this reason, patches extraction, presented in

the next Section, is a key step towards the accurate classification and understanding of

images.

3.2. Part Extraction

The process of extracting the parts depends on the nature of the parts that are involved

in the analysis, which is ultimately bound to the goal of the analysis. This is because,

as already mentioned, parts of different nature carry different types of information. For

example, image semantic segmentation, that is, the process of labelling pixels as belong-

1It is possible to take this aspect partially into account by introduced an undefined “void” concept in
the inference algorithm, but this can only provide a partial fix of the problem, due to the broadness
of this concept and the loss of information for mixed parts.
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ing to a semantic category, requires a unique link from every pixel to a corresponding

part, thus guaranteeing the full coverage of the image. In this case, at least a subset

of the parts has to densely cover the image. An appropriate part extraction strategy is

therefore a segmentation of some nature. This is the case in which the term patch best

suits the role of the parts in covering the full image area. In this case, each part should

ideally embed pixels coming only from objects of a single semantic instance. A sensible

segmentation can help in finding correct object boundaries thus easing the classification

step from having to handle the class of each single pixel (which has been done in the past

and tends to result in over-complex systems, as seen for TextonBoost in Section 2.2.1).

Patches extracted via segmentation result in areas that are homogeneous for colour

hue, colour intensity or texture. However, when a description of the edge content of the

image is sought, segmentation approaches are not particularly useful. Edge content can

be particularly descriptive for some categories presenting strong boundaries. A major

contribution of the research is related to the integration of dense patches with interest

points, that can be considered as parts of a different nature. Interest points are sparse

points in the image that have a rigid mathematical definition, and therefore can be

extracted as minima of the opportune target cost function. They are designed to be

stable, in the sense that are resilient to noise and to image transformations. The design

criteria include invariance to a subset of affine geometric transformations2. The features

that are associated to interest points, are related to local edge content, as discussed in

Section 3.3.1.

3.2.1. Regular Grid

The easiest way to obtain a dense coverage of an image is indeed to cover the image with

a grid of homogeneous, rectangular patches [68,127,128], possibly partially overlapping.

The advantages of such an approach are:

• the extraction process is immediate;

• the coverage of the image is homogeneous, both in the sense that every pixel is

taken into account in one patch (excluding overlap) and in terms of local patches

density (the patches have the same size);

2 Affine transformations are linear transformations including translation, rotation, scaling, and shear.
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Figure 3.1.: Regular grid segmentation, 40× 40 patches with 20 pixels of overlap, windowed
with a Gaussian kernel with σ = 20/3.

• the spatial structure of the image is regular, and patches can be considered as

connected in regular lattices, that represent a well-studied configuration in the

area of graphical modelling and approximate inference (see Chapter 4).

Regular patches however by no means represent the optimal choice for parts. In partic-

ular, in general the extracted parts do not behave well in terms of the patch properties

stated earlier in this chapter. Depending on their size, patches will indeed contain more

than one object within them (thus contradicting one defining patch property). Addi-

tionally, being the borders not depending by any means on visual information, there is

no guarantee that the set of pixel is representable consistently by any descriptor (the

other property of the patch), and in general the features will have a considerable amount

of noise. These problems can be somehow mitigated by choosing smaller patches, but

in general there is not a simple way to estimate the loss of precision with the reduction

of the patch dimensions, having no information about the scale of the objects in the

images, and this reduction results in a quadratic increase in the number of patches. The

impact of a choice of rectangular patches over patches obtained with more advanced

techniques has been estimated as part of the study on semantic segmentation, and it is

discussed in Chapter 6.

To enhance the locality and reduce the noise of the features, the patches are often

overlapped and the pixels contributions are Gaussian-weighted on the distance from the

centre. In Figure 3.1 an example of regular grid segmentation is shown.
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3.2.2. Non-linear Diffusion

Regular grid segmentation oversimplifies the patch extraction process in the system,

introducing errors and leaving too much burden on the inference step. This has to be

avoided for two reasons. First, because errors introduced in the patch extraction cannot

be recovered in the inference step, and will influence the remainder of the analysis chain.

Second, overcomplexity in the inference system is one of the biggest problems in the

analysis and a wise patch selection represents an effective way to tackle it. Often simple

cues such as sharp colour or intensity changes in the image offer important information

on objects boundaries. This assumption has driven for a long time research in the

field of image segmentation, for what has been identified as edge-based or boundary

segmentation [102]. One of the contribution of this thesis is the application of this

segmentation paradigm to the semantic classification problem, through a process that I

have indicated as cartooning [2].

As the name suggests, the cartooning process involves the transformation of the

original image into a segmented one in which regions have constant colour equal to its

average in the region. The result is analogous to a cartoon, in which large areas of homo-

geneous colour are a common distinguishing feature3. The cartooned image is obtained

via mathematical operations based only on colour information, that can be classified

as belonging to the gradient-based (differential) methods. A strong difference on the

image colour located consistently to form an edge may indicate object boundaries. The

cartooning process puts region borders in correspondence of such edges. Depending on

the threshold in the process the number of the obtained regions can differ substantially.

A low threshold results in a mosaic image composed by a high number of small area

regions. In contrast, the concept of cartooning refers to a coarser segmentation, in which

every single patch has a significant informative content.

In practice, the cartooning effect is achieved using colour-based anisotropic diffusion.

The anisotropic (or non-linear) diffusion technique has been introduced by Perona and

Malik [101] as a proposal to address the issue of the “semantically meaningful segmen-

tation of images” through luminance analysis. This task, in order to make sense, has

to rely on an unequivocal definition for “semantic meaning” of the segmentation pro-

cess. In the classification process the meaning of a patch refers to the semantic label in

the training/test set. In opposition, the segmentation process does not have additional

3 This is indeed such a common feature that it is almost a defining attribute of cartoons, with few
exceptions.
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information available on classes. Therefore the segmentation is, to a certain degree, sub-

jective. Actually, a semantically meaningful segmentation can be defined as a process

which isolates different objects represented into images. However, the objects are not

always discriminable via a low-level feature such as the image luminance, because dif-

ferent values of this feature are not necessarily linked to different objects. Nevertheless,

in many practical scenarios the luminance (or, for multi-valued images as in our case,

the colour) can be quite representative of the semantic objects.

The anisotropic diffusion process is a scale-space algorithm: it is applied iteratively

and a more coarsely segmented image is produced at each iteration. The algorithm has

been designed focusing on three fundamental requirements:

causality: the segmentation process should not introduce any new region while going

towards coarser scales;

immediate localisation: at each scale, the regions boundaries should be sharp and the

regions should be clearly identifiable;

piecewise smoothing: during the segmentation, the intra-region smoothing should be

preferred to the inter-region smoothing, for every individual iteration.

In order to satisfy the previously stated constraints the algorithm implements a non-

linear smoothing by the means of an anisotropic diffusion process. The anisotropic

diffusion equation is given by

∂I(x, t)

∂t
= ∇(c(x, t)∇I(x, t)) , (3.1)

where I(x, t) represents the image at different scales (I(x, 0) being the original image), x

is a point on the image, t is the image scale, and c is the non-constant diffusion coefficient.

The differential equation is discretised and iteratively solved on t until convergence to

an image segmented in homogeneous intensity areas. Eq. (3.1) differs from the heat

equation, which is equivalent to the application of a Gaussian blurring filter [11], because

the diffusion coefficient (corresponding to the spreading of the Gaussian blurring filter)

is not constant in the image. The value of c across the image determines the result of the

segmentation process: the image should be strongly smoothed (big c magnitude) where

the luminance does not change considerably, while it should not be smoothed (small

values of c) where the luminance presents strong, edge-like changes. This is achieved for
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Figure 3.2.: Effect of the application of a non-linear diffusion filter to a monodimensional
signal: on the left image the original signal shape is sketched, and on the right
image the result of the filtering process when the convergence is reached.

example by choosing

c(x, t) , g(‖∇I(x, t)‖) , (3.2)

where g in Eq. (3.2) is a monotonically decreasing function that has to be chosen de-

pending on the image structure. In this work,

g(‖∇I(x, t)‖) , 1

1 +
(

‖∇I(x,t)‖
k

)2 (3.3)

is used. The choice of k in Eq. (3.3) represents a challenge because this parameter has

a large influence on the quality of the result and it is dependent on the single processed

image. However, some estimations can be done to adapt the parameter depending on

the specific image, as stated later in this section. When the complete convergence is

not acquired, the regions are not homogeneous in colour, but some smoothing is present

inside them. This smoothing can be removed by a colour quantisation process. The

effect of the anisotropic diffusion filter is exemplified in Figure 3.2.

The Perona-Malik algorithm was originally developed for monochrome images, and

the extension to colour images is not straightforward. The colour components are not

independent, and the application of the equation to each separate component produces

poor results because the semantic information lies in all the colour channels considered as

a whole. A number of authors addressed the extension of anisotropic diffusion to colour

images [82, 109]. In the work of Lucchese and Mitra [82] a separate application of the
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Figure 3.3.: Result of cartooning through colour-based anisotropic filtering.

non-linear diffusion algorithm to the achromatic and chromatic components is proposed,

as suggested by biological vision systems. The separate processing of the achromatic

and chromatic components of the image has his rationale in the fact that they usually

carry two different types of information.

The colour space used for the colour anisotropic filtering is the 1976 CIE Lu∗v∗ [102],

because it is perceptively uniform to the human vision system, and it defines a way to

separate the luminance information (L) from the chromaticity information (u∗, v∗). The

luminance diffusion is performed by a standard one-dimensional non-linear diffusion

algorithm, while the chromatic components are considered as real and imaginary part

of numbers in the complex space. In this way Eq. (3.1) can be solved in the complex

domain. Since the diffusion constant c is real, Eq. (3.1) can be split in







∂ℜ{Ic(x,t)}
∂t

= ∇(c(x, t)∇ℜ{Ic(x, t)})
∂ℑ{Ic(x,t)}

∂t
= ∇(c(x, t)∇ℑ{Ic(x, t)})

, (3.4)

where Ic is the chromatic image. Even if it is not explicit in the previous formulae, the

Eq. (3.4) are not independent, because they are correlated through the diffusion coeffi-

cient c. The whole chromatic component gradient contributes to determine the strength

of the blurring, even if the real and the imaginary parts have to satisfy independently

their own continuity equations. In Figure 3.3 an example of cartooning is shown.

Parameters selection. As mentioned, one of the issues related to the cartooning

process via anisotropic diffusion is that it is an unsupervisioned algorithm, and there

are parameters, such as the number of iteration or the constant k in Eq. (3.3), that model

the strength of the smoothing action. The optimal value for this parameters depends on
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the single processed image. In this work, the parameter k is adaptive and it is chosen

depending on the single image [82]. In particular, the parameter k is adapted in each

step of the algorithm, both for the luminance and the chrominance equations. At each

iteration k is chosen equal to a given percentage p of the maximum value of the image

gradient magnitude,

k = p ·max
i,j

(‖∇I(x, t)‖) , (3.5)

where I represents the achromatic or chromatic image for the two different equations

solved. This choice is motivated by the fact that k in Eq. (3.3) plays the role of scale

factor for the gradient magnitude, and comparing with the maximum magnitude is a

solution to tune the filter response to the variation scale of the particular image. The

choice of the max function for k leads to a segmentation that is influenced by the

strongest edges in the image. When few strong edges dominate, only these ones are

preserved. Other choices are possible whenever this behaviour is not desirable, such as

the mean or the median gradient magnitude. These choices would lead to a less variable

number of segments across different images. The parameter p has to be pre-determined,

but this choice is less critical for the algorithm final result.

The dependence of the results on the number of iterations of the algorithm is reduced

once the effect of the parameter k is stabilised. A robust value for the parameter p has

been chosen, such that the optimal result is obtained for a high number of iterations,

further reducing the effect of the number of iterations on the final result.

3.2.3. Superpixels

An alternative choice for selecting patches is to perform an oversegmentation of the

image in order to make sure that the patches indeed satisfy the requirements about

belonging to a single object and on strong characterisation through the chosen feature

descriptors. Oversegmentation increases the likelihood that only patches really homo-

geneous according to some criterion are taken into account [53,122,142]. This approach

places additional burden on the inference system, for having to cope with an increased

number of random variables. However, two advantages are achieved: the first is to pro-

vide a stable ground for the statistical analysis, the second is to ease the discovery of

object boundaries. These two advantages directly derive from patches that satisfy the

patch-defining properties.
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Oversegmentation itself does not provide any strong guarantee for object segmen-

tation. Imposing the number of required patches, there is no mathematical certainty

that no patch will include multiple objects due to their small scale or visual similarity.

However, choosing a reasonable number of patches generally conducts to satisfactory

results. As it will be shown in Chapter 6 while presenting the experimental arrange-

ments and results, a choice of 300 patches for a typical image is often sound, apart from

specific applications where one is interested in smaller-scale objects. This is because the

interesting subjects of an image are usually not too small compared to the size of the

image itself. In this perspective the number of patches can be chosen to be independent

from the original dimensions of the image. The patches obtained via oversegmentation

are the closest entities to the concept of superpixels [105], intended as groups of pixels

homogeneous according to some criterion, of similar dimensions, that constitute a proxy

to the real image for further analysis (i.e. classification, segmentation or, as in our case,

object detection and semantic classification).

In this thesis and in the related works [3,5–7], patches are obtained using the approach

presented by Fowlkes and Malik [39]. The target is an oversegmented image in which

patches are homogeneous and can be related to a single concept. For this purpose, the

NCuts algorithm [115] is used. NCuts is a spectral clustering [134] method, in which

the aim is to cluster pixels grouping them according to a similarity measure.

We can introduce a similarity (adjacency) matrix W = {wij} in which wij = wji ≥ 0

measures the similarity between the pixels i and j, and wii = 0. Additionally, we use

the graphical formalism by considering pixels as nodes in a graph G = {V,E}, whose
edges are weighted by W, and wij = 0 implies that the nodes i and j are not connected.

The goal is to cluster the graph by grouping nodes connected with high weights and

ungrouping nodes connected with low weights. For two disjoint partitions A,B ∈ V we

define the cut as

cut(A,B) =
∑

a∈A,b∈B
wab , (3.6)

as a measure of the weight between the two partition, that has to be minimal. Addi-

tionally, for a partition A ∈ V

vol(A) =
∑

a∈A,v∈V
wav (3.7)
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indicates the size of A in terms of weights of its nodes’ connections. The NCuts algorithm

for K clusters minimises the function

KNcuts(V1, . . . , VK) =

K∑

k=1

cut(Vk, V \Vk)
vol(Vk)

, (3.8)

where Vi ∩ Vj = ∅ for i 6= j and
⋃

k Vk = V . The rationale behind the cost function in

Eq. (3.8) is to minimise Eq. (3.6) for each group penalising the creation of very small

groups having low vol. This problem can be solved efficiently (although not exactly) by

computing the eigenvalues and eigenvectors of the generalised eigenproblem

(D−W)y = λDy , (3.9)

where D is the diagonal matrix of the vertices degrees di =
∑

j wij. Minimising Eq. (3.8)

in practice leads to balanced regions, that will therefore have a comparable area.

The similarity measure used to calculate W is decisive to obtain a good quality

segmentation. However, since an oversegmentation is needed, this factor is less critical

compared to a classical image segmentation scenario. Splitting two regions in corre-

spondence of a real object boundary becomes more likely by increasing the number of

segments. A failure in doing so can anyway result in spurious patches that will add noise

in the learning phase. We use the similarity measure described by Martin et al . [89].

Region boundaries can occur either due to the presence of strong edges, or due to a

change in the texture pattern. The nature of these two kind of boundaries is very dif-

ferent. Boundaries due to edges present a strong response to gradient-based features.

These features however fail in presence of textures. On the other side, textures are well

represented by the response to Gaussian filterbanks. The problem addressed by Martin

et al . is related to the combination of features of different nature to cope with these two

types of boundaries. An example of the segmentations results obtained with such an

approach is given in Figure 3.4.

Normalised Cuts represents the state of the art in the area of segmentation, and this

is the main reason why it has been applied in this work. The cost paid for the good

segmentation results is the high resource requirement of the algorithm. The method

itself is not meant to be primarily used for oversegmentation. Alternative methods

have been used for oversegmentation in the literature when the performance represented

a critical issue [35]. However, the recent popularity of part-based image analysis has

triggered an effort in the scientific community to produce methods that are specifically
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Figure 3.4.: Superpixels extraction via k-Normalised Cuts with k = 300.

aimed at oversegmentation, to be used as superpixels for further analysis. Optimal

oversegmentation is an open and active research field, and new methods are presented

regularly that possess different useful properties and that allow for a fast superpixel

extraction [78, 96].

3.2.4. Interest Points

The patches extraction methods described so far handle with a class of patches that

map directly into set of pixels and that cover all the image (also called ”dense” patches,

since they densely cover the image). This is, as previously said, useful for pixel labelling

(semantic segmentation), but this class of patches fails in isolating some relevant infor-

mation related to edges, corners and shapes in the image. Indeed, the cartooning and

the spectral clustering techniques are influenced by the presence of an edge in an image,

for the fact that, with different mechanisms, both these methods tend to place regions

neighbours in correspondence of strong edges. However, the edge or corner traits are not

embedded within a patch, but rather its presence has influence on a number of differ-

ent patches, thus “distributing” information among different patches. Additionally, the

patch itself being a collection of pixels, the information about the boundaries is weak

and edge information is lost while representing patches through descriptors. This is the

reason why dense patches can not be used to handle edge information.

This is one of the situations in which a different class of patches may come into

use. These patches should be linked to the presence of edges and corners and embed

their traits, rather than using the edges as a mean for separating different regions. This

is particularly true since some kind of edges are strongly related to certain semantic

classes. The idea behind the use of interest points is to localise regions in the images
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(called interest regions/points, salient points, or invariant regions4) that can be assigned

in a repeatable way to a part of an object when seen from different points of view. The

goal is to identify stable locations in which to calculate descriptors that, being invariant

to point of view, allow for a reliable representation of the object part. Such stable

points have been used for a while for different purposes, initially for object tracking and

matching [51]. Only later on their use has been proven useful and then extended to the

object recognition task [111].

The first incarnation of the idea of interest points has been achieved with the use of

corner detectors. In particular, a popular corner detector has been developed by Harris

(Harris Detector [52]). Despite of its name, this class of detectors does not only detect

corners, but rather, more generally, regions characterised by a high gradient magnitude

in multiple directions. The reason for this interest for corner points is that, when the

image of an object presents a corner, it is likely that the same corner will be preserved

(although with different characteristics) while picturing the same object under another

angle, position and scale, thus identifying a stable location on it.

Changes in point of view (orientation and position of the viewer or the object) are

mathematically defined as affine transformations. Therefore the detection of stable

points has progressed towards affine-invariant detectors, that are invariant to the set of

affine transformations. Even when complete affine-invariance is not achieved, some class

of transformations is addressed for invariance. Harris points are for example invariant to

rotation (the same point is considered exactly in the same way by the algorithm before

and after a rigid rotation of the target image). The Harris detector can be improved

by applying it over different scales and performing an affine adaptation process, as for

example in Mikolajczyk and Schmid [92]. A more solid approach is to work directly in

the scale space [140], that is, to work with filters that are a continuous function of scale5.

This is the approach on which the interest point detector in the SIFT algorithm [81] is

based. This technique has achieved noticeable results and it is nowadays very popular

and largely used, although it is not fully affine-invariant, but only to rotation and scale

changes. Extensions have been devised [94] to achieve full affine-invariance by affine

adaptation of the detected points6.

4 These terms will be used interchangeably in the rest of the dissertation.
5 The term “scale space” is used to indicate the space of a set of filter kernels that are a continuous
function of the scale. The scale space constitutes therefore a neat formalism for multi-scale signal
processing.

6 Basically, while the interest regions detected with the SIFT algorithm have a circular support,
Mikolajczyk et al . [94] use elliptical supports.
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In my work the detection system used in the SIFT algorithm has been used. This

algorithm is based on finding extrema in the scale space of the Difference-of-Gaussians

(DoG) operator. The DoG kernel at scale σ is

KDoG(x, y, σ) = G(x, y, kσ)−G(x, y, σ) , (3.10)

where k is a parameter indicating the actual difference in scale between the two Gaussians

and G is simply

G(x, y, σ) =
1√
2πσ2

e−(x2+y2)/(2σ2) . (3.11)

This choice of kernel is motivated by the fact that the DoG approximates the Laplacian

of Gaussians σ2∆2G which has shown high performance in detecting the correct scale

for interest regions (Mikolajczyk [91], page 52). Applying (convolving) such a filter to

the processed image and finding the extrema (maxima and minima) in the scale space

determines location and scale of the interest points. In practice, for discrete scale spaces,

in which both spatial and scale coordinates are quantised, one can apply DoG filters to

images at different quantised scales and look for extrema as points whose value is smaller

or greater than all the neighbouring ones. In practice, weakest extrema are then removed

because inherently non-stable (and maybe due to image- or quantisation noise). Also

points falling in correspondence with edges are removed because of their instability.

They are spotted by evaluating the Hessian matrix of the second derivatives

H =




Dxx Dxy

Dyx Dyy



 , (3.12)

where D(x, y, σ) = KDoG ⋆ I, I(x, y) being the image, and the subscript indicate partial

spatial derivatives. The criterion for identifying edge points is to estimate the magni-

tude of eigenvalues of H, that are proportional to principal curvatures of D, and then

discarding the point whose eigenvalues are too dissimilar, indicating a strong dominance

of an orientation for the detected extrema. Rotation invariance is achieved by tacking

as a reference angle for the region the one resulting from the evaluation of the gradients

in the entire interest region. In Figure 3.5 interest regions for a sample image are shown.



Part Extraction and Description 52

Figure 3.5.: Interest regions extraction via SIFT (DoG extrema evaluation). The green ar-
rows start at the interest points, are oriented in the patch direction and the
length is proportional to the scale. The interest points support regions are cir-
cular.

3.3. Part Descriptors

In part-based approaches, not only the selection and extraction of the parts play a central

role, but the description as well. The part description is closely related to part selection,

and its role is indeed complementary. The form of the descriptor has to be matched

against the properties of the patch to be described. On the one hand, patches that are

homogeneous in colour or in textures will be best described through a feature vector

embedding information that summarises their texture and colour content respectively.

On the other hand, interest points, that are obtained as maxima in the scale space, will

advantage of a description embedding local edge (gradient) information. In this section

different families of descriptors used throughout the work for colour, texture and edge

information are presented.

3.3.1. Edge and Texture Descriptors

Image texture has been recognised for a long time as one of the key factors for image

segmentation by the human vision system, that naturally tends to isolate patches homo-

geneous in texture [71]. The word “texture” in English, according to the Oxford English

Dictionary [120], indicates “the feel, appearance, or consistency of a surface, substance,

or fabric”. In computer vision, however, it substantially refers to repeating regular visual

patterns in a zone of the image. Once again, it is the human visual system that guides

the characterisation of these visual primitives. Today the theory on which the scientific

community agrees explains the human ability at texture discrimination with models of
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Figure 3.6.: Examples of textures: a brick wall and a grass field.

filters selective in spatial frequency and orientation [17,37,71,84,85]. Texture and edges

are closely related, textures being essentially edges patterns.

The human feature discrimination skills make this primitive very relevant for iden-

tification of particular categories of objects. Some examples of concepts that are rich in

texture content and therefore highly discriminable by this information are water, grass,

textiles, satellite images, hair. In Figure 3.6 there are two examples of textures. In

the first one, on the left, the base element is obviously a brick: due to the geometrical

properties of the base element the resulting texture presents a strong frequency content,

in terms of repetition of the base element, in the horizontal and vertical direction. The

image on the right depicts instead a portion of grass field. It is not possible to find a

base element whose replication leads to the given pattern, but the entire area is still

homogeneous in terms of frequency content.

Being based on the universally recognised human texture discrimination system, tex-

ture description techniques are often based on a filterbank in the scale space, combining

filters at different scales and orientations (particularly popular are in this case Gabor

filters [86]). Years of research in the field of texture description led to the definition of

standard descriptors for textures by the MPEG-7 standardisation committee [87]. Three

texture-related descriptors are introduced by this standard, namely a homogeneous tex-

ture descriptor (HTD), a texture browsing descriptor (TBD) and an edge histogram

descriptor (EHD). The HTD is a vector of coefficients representing the response of the

image to the application of a Gabor filterbank [106]. The TBD offers a more compact

representation of the texture based on human attributes, that is, coarsness, directionality

and regularity. Finally, the EHD provides support for non-uniform textures, for which

the HTD filterbank coefficient do not offer an accurate description. These descriptors

have been devised and designed for the characterisation of the whole image, and are

intended to be used as global descriptors. Even though with some modifications they
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Figure 3.7.: SIFT descriptor calculation with a 8× 8 grid mapping to 2× 2 spatial bins with
8 directional bins.

are partially valid for the description of local image areas, they represent a suboptimal

choice for part-based systems. In this work two texture-edges descriptors have been used.

The first is the SIFT descriptor, for patches that are interest points. The second one

is a histogram of textons for patches that are segmented patches. The two descriptors

are designed to fit the nature of the patches from which they are extracted. The main

difference between them is that SIFT descriptors are intended at the characterisation of

edges (not-repetitive structures), while texton histograms aim at repetitive textures.

SIFT Descriptors

Interest points are extrema in the scale space, and by definition present strong edges and

edge information. Descriptors for these parts have to consider the appearance of a region

surrounding the interest point. This region is given by the scale of the retrieved key-

point. The most popular descriptors are either based on distribution representations or

response to frequency filters. In the first case, the descriptor vector models a distribution

of values related to the content of the patch: the pixels intensity values histogram can be

taken, as well as the oriented gradients distribution, as in the SIFT descriptors. In the

second case, the components of the descriptor vector represent the energy (or, in general,

some moment) of the signal obtained convolving the image with a spatial oriented filter

in the patch neighbour. The MPEG-7 HTD is an example of the latter class.

SIFT descriptors [81] are intensity-invariant grayscale descriptors. The descriptor

vector is a histogram of local gradient magnitudes in the interest point’s support. In
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Figure 3.7 a graphical representation of a descriptor evaluation is shown. The algorithm

is composed by the following steps:

1: divide a square centred on the key-point, proportional to the scale of the key-point,

and oriented in the key-point direction (in order to achieve rotational invariance),

in a 16× 16 grid;

2: initialise a histogram of 4× 4 spatial coordinates, and 8 gradient directions;

3: for all squares in the grid do

4: evaluate the local image gradient;

5: evaluate the weight w of the square via Gaussian weighting function centred on

the centre of the key-point;

6: add up in the histogram the weighted gradient magnitude, using tri-linear inter-

polation;

7: end for

8: normalise the histogram using ℓ2-norm;

9: threshold the histogram’s values greater than 0.2;

10: normalise the histogram using ℓ2-norm.

The operation in line 1 guarantees rotation and scale invariance, and it is shown in

Figure 3.7 on the left (with a 8 × 8 grid). The histogram initialised in line 2 produces

a 128-dimensional vector (in Figure 3.7 on the right, 2× 2 spatial bins are considered).

The normalisation in line 8 is to achieve brightness invariance, while the operations in

lines 9 and 10 are used to limit the effect of non-linear illumination changes.

A number of other descriptors for interest points have been proposed in literature,

and Mikolajczyk and Shmid [93] offer a good review of the most popular methods. In

this work SIFT descriptors have been considered to this end, because their performances

is generally very close to the state of the art, and they represent the de-facto standard

in the area. The most valid alternative methods include:

gradient location and orientation histograms [93], an improved version of SIFT, ob-

tained again as histogram of oriented gradient, increasing the number of bins in

log-polar scale and reducing the descriptors’ length via PCA;

shape context [13], analogous to SIFT descriptors (distribution-based), but using

edges extracted via Canny edge detector instead of gradients;

PCA-SIFT [65], yet another SIFT variant with more dense bin and descriptor length

reduction via PCA;
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original image salient points visual words

Figure 3.8.: Visual words distribution starting from extracted salient point with associated
descriptors. A visual word is associated with each one of the red dots in the
image on the right.

steerable filters [40], are coefficients obtained with the convolution of the image of

differential Gaussians of different orders.

This list is not exhaustive and is meant to give a glimpse to what have been the main

trends for interest point descriptors. The research in this area is anyway still quite active

and proposals for new improvements of the current descriptors appear from time to time.

Visual Dictionaries

SIFT descriptors, are only an instance, though particularly representative, of features

based on response to derivative filterbanks. These feature vectors can be used in ap-

pearance models as they are, and sometimes this approach pays off. More often though,

the representation offered by such descriptors is too complex to be associated to a single

image element (patch or pixel). Such vectors offer a rich representation but isolated to

the single element in which they are extracted. Combining contributions of different

elements is not straightforward. For example, the feature vectors can be applied as in-

put of the patch appearance in a image analysis model as the ones used in this work,

described in Chapter 4.

Recently many successful works have been based on a simple analysis of parts re-

lationships. These approaches are based on the concept of Bags of (Visual) Words

(BO(V)W) [118]. The principle is the association of a token, or word, to each part, rep-

resenting their descriptor, from a large dictionary. In this way, the image representation

takes the form of a spatial displacement of words, in what can be seen as a structured

visual document. In the basic approach, the location of the words is actually ignored, so

that only words coexistence, or copresence, within the same image is taken into account.

The image becomes a set, or bag, of words, whose relative frequency (that is, the word

histogram) happens to be a very descriptive summary of the content. The stream of
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works based on bag of visual words builds on the success obtained by such a strategy in

text documents, when it has been first applied [58].

The dictionary size is usually in the order of thousands of words. This size is not

justified by any strong theoretical ground, but rather driven by complexity constraints.

Since no semantics information is used during the word extraction phase, the dictionary

is obtained through unsupervised hard-clustering techniques, such as k-means. A de-

scriptor is associated to a word by nearest neighbour. A histogram is built on words

over an image. Even though spatial information is usually lost, some recent proposals

to avoid so have been made [76]. In this context, one of the contributions of my work

is to use localised histograms to account for distributions of local words, as detailed in

Section 3.4.1. The conceptual process of obtaining visual words from salient points is

depicted in Figure 3.8.

Finally, the clustering of complex features in a dictionary of word can be done also

at pixel level. For example in textons, described in the next section, a word is associated

to each pixel and the local distribution of them is used to describe a dense patch.

Texton Histograms

Similarly to SIFT descriptors, textons are based on image filter responses over differ-

ent orientations and scales of a differential filter. The term textons has been coined

by Julesz [64] in relation to early study of the human texture perception, to indicate

elementary visual units that allow a human to discriminate two different textures7. In

its original meaning, a texton would indicate some elementary image structure, as a ori-

ented segment or a corner. This theory did not succeed with the time, as the universally

accepted way for humans to discriminate between different features is by the means of

spatial filtering at different orientations and scale, as already discussed in this Section.

The term has been re-used recently by Malik et al . [84] in the light of these scientific

developments, to indicate prototypes (i.e., cluster centres) of filter responses.

Textons have been used in my work to describe the texture appearance of the patches

obtained via oversegmentation (as explained in Section 3.2.3). The extraction procedure

can be summarised as follows:

1: extract the filterbank response for the image;

2: cluster the feature vectors in a texton dictionary;

7A texton is the texture-domain equivalent of a phoneme in human languages [84].
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Figure 3.9.: Filterbank for the extraction of the vectors used to build the textons dictionary.
Radial filters are represented as well as even and odd ones, for three different
scale and six different orientations.

3: associate a word to each pixel of the image;

4: for all patches in the image do

5: calculate the descriptor as the word histogram of the words on the patch;

6: end for

Three different sets of filters have been used: radial filters, oriented even-symmetric

filters and oriented odd-symmetric filters. The radial filters are modelled as Difference

of Gaussians (DoG), introduced in Eq. (3.10), f
(r)
σ (x, y) = KDoG(x, y, σ). The even-

symmetric oriented filters are based on Gaussian Derivative (GD) filters. The GD filters

for even-symmetric filters are of the form

f
(e)
σ,0(x, y) = G′′(y, σ)G(x, kσ) , (3.13)

where G{x,y},σ are the one-dimensional Gaussians analogous to the one in Eq. (3.11),

and k is the elongation factor. The rotated versions f
(e)
σ,θ of f

(e)
σ,0 can be obtained via

a coordinate transformation. Given an even-symmetric filter, the corresponding odd-

oriented filter corresponds to its Hilbert transform along the y axis

f
(o)
σ,0(x, y) = H{G′′(y, σ)}G(x, kσ) = G(x, kσ) p.v.

∫ +∞

−∞

G′′(z, σ)

π(y − z)
dz . (3.14)

When applied to a even-symmetric signal, the Hilbert transform produces a quadrature

signal that is odd-symmetric. Three scales and six orientations are chosen, so there

the filterbank is composed by 18 even, 18 odd and 3 radial filters, for a resulting 39-

dimensional feature vector in the high-dimensional space. The filterbank is represented

in Figure 3.9.

The filterbank output vectors, calculated pixel-based, are then clustered with a k-

means algorithm run over all the dataset. This is a difference with Malik et al . [84],
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where the textons, used for segmentation, are calculated in a image-based fashion. For

this reason, the number of words in the dictionary has been incremented to 300 instead

of the original 25. The vectors associated to each pixel of all the images are assigned to

the closest texton. The histogram that represents the descriptor is obtained considering

all the words associated to the pixels over a patch, weighted in terms of distance from

the patch centre. This is a bag-of-words-based technique, as previously mentioned.

Close pixels in practice tend to be associated to the same texton word, especially for

smooth regions. This makes the textons histograms quite sparse, causing problem with

the linear features matching model used in the learning algorithm (see Chapter 4). For

this reason, the PCA algorithm (explained in Section 2.1.1) is run on the descriptors

and the 40 most descriptive components are taken. The optimisation of such dimension

for the description is not easy, because the dependency of the results on the descriptor

length is not a smooth function. This is due to the fact that the quantisation error

implied by the histogram operation has a complex non-linear dependence on the length

of the histogram. The choice is however in agreement with other works in the area

analysed in this thesis.

An important difference with the SIFT descriptors is that while computing the tex-

tons the filter responses are not normalised, which means that they are not contrast-

invariant. This property, fundamental for key-points, is however not desired in the case

of patches derived from oversegmentation, because the descriptor has to discriminate

between very smooth patches, such “sky” ones, and very coarse ones, as for example

some “grass” ones.

Beyond Bags of Words – Gaussian Mixtures

Using bags-of-words methods, either to analyse local distributions of patch features or to

build patch features from pixel features, as for textons, involves the creation of a feature

dictionary and a hard association of each feature to a single entry in the dictionary. Dic-

tionaries have to be large in order not to lose information in the discretisation process.

However, their size is difficult to determine according to any optimality criterion. Addi-

tionally, local distributions of words tend to be rather sparse. This leads to histograms

of words having many zero-entries, moreover creating problems related to the learning

in a feature space that is bigger and less descriptive than required, due to the curse

of dimensionality. One option, as discussed when presenting texton descriptors, is to
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Figure 3.10.: Fitting of a set of training data with a GM with two components. In blue
the true distribution from which the training data is drawn, in red the initial
distribution and in green the value to which the EM algorithm converges in
this case.

use PCA to reduce the dimensionality of the descriptors. Alternatively, soft assignment

methods can be devised.

The use of soft assignment processes has been investigated in this work, and in par-

ticular an approach based on Gaussian Mixtures (GM) [14]. In particular, a multivariate

GMM works on the assumption that a set of data vectors (in this case, the output of

the derivative filterbanks on the images) is generated by a set of multivariate Gaussian

processes. For each vector, a Gaussian component is chosen and the vector is sampled

from it. Once the parameters of the Gaussians are estimated in the training phase, each

feature vector is expressed in terms of mixture coefficients. The model is generative for

feature vectors. Using GMM allows to

• achieve dimensionality reduction by limit the number of GM components and ex-

plaining the variability of the feature vectors in terms of Gaussian distributions;

• capture correlation between feature vector components by the means of cross-

correlation matrices of each GM component, thus reducing redundancy;

• have a soft assignment of a vector to many components according to mixture coef-

ficients.
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A feature vector x is drawn from the probability distribution

p(x) =

n∑

i=1

p(x|ci)p(ci) =
n∑

i=1

kiN (x;µi,Σi) , (3.15)

where ci is the i-th GM component, ki = p(ci) is the mixture coefficient, and µi,Σi are

the parameters of the i-th GM distribution N .

In order to use a GMM model, the GM components have to be fit to a training set,

in a similar way to what is done when creating a word dictionary with the k-means

clustering in the bags of words approach. During the training step, the parameters ki,

µi and Σi are estimated in order to maximise the likelihood L =
∏N

i=1 p(xi), being N

the feature vectors in the training set (usually, a subset of the extracted descriptors

is used). This can not be done analytically, but good results are achieved iteratively

through EM. In Figure 3.10 an example of bidimensional fitting of a set of training data

with a mixture of two Gaussian distributions is presented.

Once the GMM is trained, new feature vectors x are expressed in terms of GM

components through the mixture coefficients, obtained via

ki =
N (x;µi,Σi)

∑

j N (x;µj,Σj)
. (3.16)

The advantages of using a GMM for textons instead of texton histograms as described

in the previous paragraph and often used in the literature [84] is reflected in improved

classification performance of the system. Quantitative tests over the MSRC dataset

revealed a result relative improvement of almost 4% for the independent patch model

(as detailed in Section 6.4.1).

3.3.2. Colour Descriptors

Colour often represents an important cue for the discrimination of different object cat-

egories. The role of this feature is particularly important whenever the texture content

of the patch is ambiguous or absent. For example, many “sky” patches are smooth

and they have no texture content: however, given the information about the absence of

smoothness and the colour of the patch, the ambiguity about the category of this class

of patches is considerably reduced. This is valid both for the human vision system and

computer processing. The relevance of this class of information for discrimination, in
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a more general picture, for image reasoning, is highly class-dependent. Some objects

categories are poorly described by their colour, while some others have a strong colour

information associated, and even humans can be disoriented if this information is al-

tered. For example, colour plays little or no role in the identification process for a car;

on the other hand, objects like a beach, a lawn, the sky or the sea, are strongly expected

to have a particular colour or a range of realistic colours and this information becomes

essential in their discrimination. As noted by Shotton et al . [117], additionally, a dis-

tinction has to be made between the role of colour for discrimination of a category of

objects, and single instances of objects. For some categories the colour is not descriptive

because of the high inter-instances variance of this feature. However, it can happen that

single instances are characterised by the same colour. For example, the cars category is

very broad in terms of colour, but single cars often have the same colour (at least for the

frame). This aspect is used for the appearance-coherence structural pattern proposed in

Section 4.3.2.

Different kind of descriptors based on colour can be devised for image classification

purposes, depending on the classification system and on the usage scenarios addressed by

a particular classification system. For example, the MPEG-7 standard [87] describes a

number of different colour-based descriptors (namely Colour Space Descriptor, Dominant

Colour Descriptor, Scalable Colour Descriptor, Group-of-Pictures Descriptor, Colour

Structure Descriptor and Colour Layout Descriptor) aimed to a compact and global

summarisation of the colour information in the entire image. Whenever an approach

based on a global description of the images is adopted, the representation of complex

colour relationships gets a substantial importance. This is because a single feature vector

has to embed colour information coming from different objects, characterised by different

colours, for some of whom the colour is an important cue, while for some others is not.

When colour information is used within a system based on local analysis, in which

local feature vectors are associated to patched extracted from images, the colour infor-

mation to be associated to the single image’s element in order to be used in the image

classification process is indeed less complex, having to describe simpler structures. Ac-

cording to the level complexity of the patch being taken into account, even the simple

colour of the region or a mixture of the few most representative colours can be considered,

thus mantaining a very complete representation of the analysed scene.

Single colours and Colour Spaces Choosing the right colour model (the way a

colour is mapped into a numerical vector) is important for colour analysis since different
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models present different properties [102]. This is valid for both colour processing and

colour feature extraction. The choice of a particular model leads to the use of a colour

space that is limited in terms of representative power and is characterised by perceptual

properties that derive directly from the associated colour model. A full analysis of the

colour-space theory is out of the thesis topic, and only a brief comment on the colour

spaces used in the work is given. One of the used colour spaces is the standard RGB

(sRGB). This is one of the most widespread spaces, and represents a colour as a triplet

indicating the presence of each one of the three additive primaries Red, Green and Blue.

It is the most used in general-purpose computer applications since it is easy to handle,

due to the fact that the components vary independently one to the other. Additionally,

the 1976 CIE Lu∗v∗ has been considered considered both as a patch feature [1] and in

the cartooning segmentation process. The main advantage associated with this colour

space is that is perceptively uniform to the human vision system. Additionally, the lu-

minance information L is encoded separately from the chrominance one, u∗, v∗, carrying

information of a different nature.

Normalised Hue Histogram

Although the simple average colour or chrominance of a patch can be enough to represent

patches homogeneous in colour, its descriptive power is not enough for patches that are

homogeneous in texture and interest points linked to edge contents. In general, a more

comprehensive descriptor is desired, able to embed the local distribution of colour in the

local patch area. Colour descriptors have been used for category discrimination quite

recently and a number of descriptors with different invariance properties have been

proposed. Some popular approaches have been surveyed by van de Sande et al . [125].

In this work a normalised Hue Histogram descriptor [126] is used. The hue is the

colour property that distinguishes it from another colour regardless of its luminance

or saturation (how vivid it is). Discarding luminance and saturation allows for the

achievement of some degree of invariance to illumination conditions8. The descriptor is

calculated as follows (R,G,B ∈ {0, 1}):
1: for all pixels in the patch do

2: calculate the hue, hue = arctan
( √

3(R−G)
(R−B)+(G−B)

)

;

3: calculate the saturation, sat =
√

2
3
(R2 +B2 +G2 −RB +G)−BG;

8 There is always a degree of approximation in the invariance to illumination, due to non-linear effects
associated with the change of the specific lighting conditions.
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4: calculate the positional weight w = exp
(

− (x−xc)2

2σ2
x

− (y−yc)2

2σ2
y

)

where (xc, yc) is the

patch centre and σ2 is the spatial coordinate variance;

5: accumulate hue in a histogram hhue, weighting the contribution by w · sat;
6: end for

7: apply twice a low-pass filter with kernel [0.25 0.5 0.25] to the histogram;

8: normalise with ℓ1-norm: hhue = hhue/ (
∑

i |hhue,i|).

The hue histogram will describe the colour content of the patch. The normalisation

on the position of the saturation compensates the lower accuracy for the hue of pixels

with low saturation values (the hue has a singularity point for sat = 0). Finally, the

smoothing is meant to reduce the quantisation error while calculating the histogram.

3.4. Distributed Descriptors

The descriptors described until now are aimed at accurately describing information re-

lated to patches of different nature on a local basis. In this respect, they fulfil their role

with good results, providing with a compact and effective representation of the patch

contents. However, support from distributed descriptors can be useful to embed context

information in the features and therefore in the classification/labelling system.

The part-based approach presented in this work is based on part-based analysis

of the patches through graphical models, and in particular CRF, as better detailed

in Chapter 4. This class of algorithms however presents shortcomings in taking into

account long-range dependences. Introducing long-range context constraints with CRFs

can result to computationally intractable learning. This is because the complexity of

inference in graphical models depends on the graph’s maximum clique size, and in general

on the number of connections and loops. Therefore, typically CRFs involve only local

connections that impose smooth labelling constraints. This problem can be partially

tackled by considering patches as constituent nodes in the CRF graph, as in the presented

system. However, as shown also by the results in Section 6.2.1, improving the size of

the patches over a certain level comes at a price of reduced performance.

Approaches to address this shortcoming include integrating in the CRF framework

distributed [117] or global features [122,128], or using image global category priors [22].

The aim is to capture the global context of the image in the distributed feature and

the local traits of the patch in the local one. Global features do not directly relate to
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semantic categories, and global features have to be carefully chosen in order to capture

context. Some works consider aggregate versions of local descriptors [128], with the

disadvantage of accepting a degree of redundancy in the feature set. Other works rely on

simple, appearance-based image-level descriptors [122]: these descriptors are not closely

related to object instances and therefore give weak context information. The distributed

features considered in Textonboost [117] focus on appearance coherence between close

pixels rather than longer range semantic coherence.

My contribution in this aspect is to integrate dense patches extracted via image seg-

mentation with patches extracted at interest point. In particular, for the task of semantic

labelling of images, a CRF built over the patches obtained via segmentation advantages

of distributed descriptors related to interest points to capture context. Descriptors asso-

ciated to interest points have proved very powerful for object modelling [18,108,118] but

have been rarely used for semantic segmentation. The reason is that interest points are

sparse and therefore fail to cover the full area of the image homogeneously, in contrast

with dense descriptors [33, 76]. A notable exception is given by Csurka and Perronnin,

that recently did so [22], but without integrating this in a distributed probabilistic

model such as a random field. Considering both features at interest points and densely

extracted features for content description is beneficial since they contain largely com-

plementary information. Indeed, interest points are localised at stable extrema of the

scale-space, and the associated descriptors are designed to optimise the representation of

such areas. On the other side, when dense coverage of an image is needed, the resulting

descriptors are extracted at regular patches or at patches obtained by segmentation.

The latter ones are characterised by homogeneity in the feature space and therefore

the nature of the information that can be extracted from these patches is significantly

different than that extracted at interest points.

In the next subsections some proposed descriptors will be detailed, which are used

to effectively integrate distributed information related to interest points at a local level

for an efficient part-based image analysis.

3.4.1. Windowed Word Histograms

The idea at the base of the distributed interest-point descriptors is that additional in-

formation is accounted by adding to local patch features descriptors extracted in the

vicinity of the corresponding patch. Interest points will therefore influence a set of

patches around the area in which they fall. An excessive growth of the problem com-
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Figure 3.11.: Scheme of the procedure used to build the WWH descriptor.

plexity is avoided by accounting in the descriptor itself for the relationships between

salient points. Although spatial relationships between salient points are essential for

some tasks such as object recognition or retrieval of deformed images, there is little ev-

idence of the usefulness of such information for scene characterisation and for semantic

classification problems. Some benefits have been however reported when mutual rela-

tionship is embedded in local descriptors [142]. On the other hand, simple co-presence

is extremely informative. The proposed integration strategy is aimed at preserving

some form of positional information without resorting to the relative positions. This

is achieved by representing the local, rather than image-wide, co-presence of interest

points, at multiple scales.

The Windowed Words Histograms (WWH) features are proposed in order to ac-

count for salient points in the image analysis. At first salient points are extracted using

the Lowe algorithm [81], introduced in Section 3.2.4, and described as detailed in Sec-

tion 3.3.1. The feature vectors from all the images are then clustered using the k-means

algorithm in order to form a dictionary of 1000 visual words (Section 3.3.1). Local

descriptors are built in accordance to the local distributions of the resulting words in

the image, that is, by calculating weighted word histograms in which the words weights

are proportional to the distance of the key-point to each patch centre. The weighting

function at scale s is a Gaussian window, that is,

ws(x,xp) ∝ N (‖x− xp‖, σ2
s) . (3.17)

By changing the variance of the window, salient points in narrower or broader neigh-

bourhoods are considered. A multi-scale descriptor can be obtained by concatenating

histograms calculated at different scale. The standard deviations taken into account are

σs ∈ {+∞, d/3, d/6, d/12}, where d is the value of the diagonal of the image. Consid-
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Figure 3.12.: Scheme of the procedure used to build the LTD descriptor.

ering infinite variance, i.e. σs = +∞, results in using the global (image-wide) words

histogram. The length of the salient points histograms is then reduced to 20 with the

application of PCA algorithm (see Section 2.1.1), in order to prevent high dimensionality

problems in the learning stage. The steps needed to build the descriptor are represented

in Figure 3.11.

3.4.2. Latent Topics Distributions

In Section 2.1.3 the power of latent semantic analysis has been presented. The idea in

this approach is to associate to each visual word a posterior distribution over a latent

set of topics. This process can be applied also when integrating salient points in the

baseline semantic segmentation framework. The latent analysis fits the problem since it

is not always possible to always clearly identify the category for a salient point. Visual

words are at first considered globally when the pLSA algorithm [58] is used to associate

a distribution of latent topic posteriors to each word. We decided to use a total of 20

latent topics, that are expected to represent different traits of some of the categories

(visual words in general cover different categories unequally).

The contribution of each salient point can be considered in the inference graph by

considering salient points as additional parts, that is, analogously to the patches. In this

way, each salient point will directly influence only the parts that are explicitly connected

to it, depending on its latent topics distribution. However, the results obtained with such

a strategy are not satisfactory. In particular, results obtained kinking single visual words

to the closest node in the CRF reported a drop of performance compared to the baseline

model (an average precision of 78.6%, compared with base performance of 82.9%, on the

MSRC9 dataset, performing the evaluation as detailed in Section 6.3.2). This is because

the power of latent semantic analysis on bag-of-words relies on the consideration of

words in groups, or bags. Each word singularly is not significant enough to effectively
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contribute to the classification of any patch. On the contrary, the lack of discriminative

power of single words prevent the learning of a generalisable set of parameters for the

model, resulting it in the mentioned drop of performance.

For this reason, the Latent Topic Distribution (LTD) descriptor has been proposed [6].

Once the compact representation given by the posterior distribution over the latent top-

ics is associated to the words, the single distributions are combined by a sum weighted

on the position (the process is visually described in Figure 3.12). As for the WWH

descriptor, the pLSA entails a dimensionality reduction, but in this case that happens

before the integration of contributions from different words in the local window. This is

a simplifying assumption, since some information related to words co-presence is mainly

lost before the windowing step. On the other hand, the use of pLSA ensures that distri-

butions of words in the entire image is considered when associating the descriptor to the

words. Additionally, this representation allows for more flexibility, as for example for a

dynamic choice of the window centres and scales [113], that is however not performed

in the proposed basic scheme. Finally, adding topic distributions associated to different

words is not coherent with the assumption of independent words, but allows to consider

local word densities in an effective way.

3.4.3. Computational Complexity Considerations

The computational complexity associated to the distributed descriptors is in line with

that one of other works in the area. Both WWH and LTD descriptors need the calcula-

tion of a visual dictionary. This involves a k-means clustering step. The step is common

to many other works in literature, including all the works based on bags of visual words

cited in Chapter 2, as well as for texture descriptors based on texton words. The his-

togram calculation for the WWH features is again a common step in feature extraction:

this is performed for the hue descriptors and for the texton descriptors in my work. Sim-

ilar features are used in other works [128]. The PCA is another demanding step during

the training, that is, the calculation of the space-transformation matrix. However, the

transformation itself involves only a matrix multiplication. The locality of the WWH

features does not add in complexity. The PCA matrix has however to be recalculated

at each scale. This is avoided in the LTD descriptor. For this descriptor, only a pLSA

training is required. This is again a standard step whose complexity is in line with

other operations such as clustering and histogram calculations. The local averaging in
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the LTD descriptor is the only step dependent on the scale, which is one of the main

advantages of this descriptor over the WWH.



Chapter 4.

Part-based Statistical Models

Patches can sometimes be discriminated using only their appearance, that is, the asso-

ciated features. Robust features, that satisfy important invariance requirements such as

rotation, scale or illumination invariance, help in having a stable basis for patch classifi-

cation. However often it is hard to infer the patch category only based on patches. This

is not always related to problems with the feature or to limitations in the appearance

model. As Figure 1.3 made strikingly clear, scale and context are fundamental to inter-

pret an image, and humans are very good at it. In fact, computer vision models tend

to be much better at modelling appearance than context and structured information,

when compared to humans. Accounting for context often results in very complex models

having to cope with an uncountable number of part combinations. Efficient techniques

aimed at context modelling are therefore a major research area. In particular, as seen

in Chapter 2, computational capabilities achieved by computers in the recent years have

made part-based image modelling feasible, bringing new excitement and activity in the

area.

A probabilistic framework is used to model the image content in this work. Two

main aspects have to be considered in the choice and design of the model. The first one

is how to represent the appearance of the patches. The second one is how to take into

account their dependence on the contest. The appearance of the patches refers to the

relationship between the category of the patch and the feature vector associated to it.

It can be noted that the same concept of “category” does not make sense for all the

classes of patches: for example interest points are not related to any particular semantic

category.

70
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The problem of patch interdependence is however central and by far the most com-

plex. The reason is that statistical dependences between different image zones span

different abstraction levels and scale. A simple, first order classification is between:

• dependences due to the fact that two patches belong to the same object (intra-

object dependences), and

• dependences related to patches belonging to two objects of the same categories or

different categories conceptually related (inter-object dependences).

While in the first case a similarity in appearance will often, even not necessarily, been

observed, the second case is much more abstract, relating to the semantics of the cat-

egories. Correlation between patches is also due to local appearance dependences, as

for example the particular lighting conditions. An example of what just said can be

appreciated in Figure 4.1. The highlighted patch depends on the neighbours because it

shares similar appearance: neighbouring patches belong to the same object. However,

the patch more broadly depend on the entire content of the image, since the presence of

street and other cars enforces its belonging to the “car” category. The latter is a sim-

ple dependence based on co-occurrence, but more general distributed dependences from

the context can be argued (for example, related to mutual position of categories – sky

patches do not usually appear below patches of other categories, with few exceptions,

as for patches belonging to an aeroplane). The models devised in the literature (the de-

scription of some of which has been offered in Chapter 2) do not address the problem in

its whole complexity. The current state of the art in research mostly presents proposals

to partially account one of the discussed classes of dependences. Even the integration

between appearance model and inter-patch dependences model is challenging. Most of

the times, the two of them are designed independently.

In Section 4.1 a brief discussion on generative and conditional model is offered, to

justify and enforce the choice of a conditional graphical model, which is presented in

depth in Section 4.2. The inference step in such models, as well as the learning of the

model parameters, are discussed in Section 4.3. In this context, the role of the graphical

structure in the semantic segmentation and image categorisation scenarios is detailed.

The contributions of the thesis in respect to this problem are also discussed.
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Figure 4.1.: A patch depends on the context on different scale, both local and distributed
over all the image. In this example, the patch highlighted in yellow depends on
its neighbours because they are part of a car. It also depend on the far patches
because of categories compatibility and relative position constraints between the
category car and other such as road, building or sky.

4.1. Generative and Discriminative Models

In the following, the classification problem, as the choice of a category yopt given an

observation x, is considered. The observation is the set of features extracted from the

image. In this scenario, a probabilistic framework can be designed in two different

ways, leading to two distinct model classes: generative and discriminative ones. For the

classification task, the criterion is to choose the category that maximises the Maximum

A Posteriori (MAP) probability, that is,

yopt = argmax
yi

{p(yi|x)} . (4.1)

In this context, the a posteriori probability can be modelled according to the following

strategies.

Generative Models The probability of the observation given a category y is modelled,

for each possible observation and category. This is the set of category-conditional

observation probability distributions p(x|yi), for each category yi. The MAP crite-

rion becomes

yopt = argmax
yi

{
p(x|yi)p(yi)

p(x)

}

= argmax
yi

{p(x|yi)p(yi)} . (4.2)

In addition to the observation posteriors the categories priors p(yi) are needed, that

can be retrieved from the training dataset or from knowledge of the application

domain. This model is named generative since, once knowing category priors and
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observation posteriors, new data points can be generated by sampling from the

distribution.

Discriminative Models The dependence of the category on the probability is mod-

elled. In other words, the quantity p(yi|x) is directly estimated without explicitly

modelling the appearance of different categories. The model allows for a direct

discrimination of the category given the observation, hence the category name.

Generative models have historically had a great popularity, because allow for a intuitive

structuring of the classification problem. The underlying category is seen as a “cause”

for the observation, and specific knowledge of the domain of the problem allows to add

detail to the observation model to ease the learning phase. Additionally, the possibility

of drawing the probability of the data (that is, p(x) =
∑

i p(x|yi)p(yi)) allows to detect

outliers.

On the other side, discriminative models are conceptually simpler, since an observa-

tion model for single categories is not required. The system is based on the only function

needed for the inference problem, that is, the a posteriori labelling probability function.

Therefore, the model can not be used to describe the data as a random process. In

other words, new data point cannot be drawn from the model by random sampling.

This nonetheless brings some positive aspects, as the complexity of the modelled pro-

cess is usually one of the main limitations of the classification system. Modelling the

observation is in general an expensive process: it may require a great amount of data,

since the dimensionality of x is usually considerable. Additionally, if there is no domain

information to include in the mathematical model of the observation, a large number

of parameters have to be learnt. Often assumptions are made on the form of the dis-

tribution (e.g ., a multi-modal Gaussian) that have not substantial foundation but are

chosen for their mathematical tractability. Such models can therefore be chosen when

handling with complex problems with high-dimensional observations, reduced data-sets,

and limited domain knowledge.

For part-based systems, additional considerations can be added. The observation

x in this case is particularly complex, being the set of features from all the patches.

On the other hand, when semantic segmentation is the targeted goal, the category y

is a particular configuration of labels over the pixels. The number of configurations,

even if superpixels are considered, grows exponentially with the number of entities to

be labelled. Therefore, in general learning the category-conditioned probabilities dis-

tributions p(x|yi) is intractable. A simplification assumption that has to be made to
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get around this problem is that the observation is considered locally independent: the

features extracted at each patch depend solely on the category of that patch. This as-

sumption is largely inconsistent with the reality and it can be relaxed up to a certain

extent in conditional models.

Additionally, it is usually difficult and misleading to make assumptions on the form

of the probability distribution. This is because the features are complex vectors whose

derivation involves many non-linear operations, and therefore modelling the distribution

of the outcome is often meaningless. As suggested before, in this case avoiding to model

directly these distributions can be considered as a point in favour of discriminative

models. Finally, the learning stage for generative models is usually more complex: in

absence of fully labelled training set, for example, the learning of the parameters has to

be carried out interactively via methods such as Expectation-Maximisation (EM) [24].

A broader data-set is needed for training and additional supervision may be required to

limit the effect of local minima. An interesting comparison between a generative and

discriminative model for image labelling is presented by Bishop and Ulusoy [15].

Generative modelling can still be considered in a framework that is predominantly

discriminative. Actually, joining the advantages of discriminative and generative models

has appealed scientists in related areas of computer vision as well [29]. Indeed, one

possibility is to embed a generative model for the input data in a generative framework

for image labelling [54]. Approaches of this type have been used in this work to obtain

visual features. In particular, the pLSA used for the LTD distributed descriptor in

Section 3.4.2, as well as the GMM model used as alternative to texton histograms for

texture features (described in Section 3.3.1). These descriptors are both generative

models of latent concept variables, used in an unsupervised fashion.

4.2. Conditional Graphical Models

In this work conditional random models are employed to describe the relationship be-

tween observation and parts, as well as dependenies between different parts. In par-

ticular, part interdependences are modelled via graphical models, in which the direct

dependences are directly translated into edge connecting related nodes in a graph. This

provides a principled method to tackle the complexity growth in a problem with a con-

siderable number of variables and generally presenting multiple suboptimal solutions.



Part-based Statistical Models 75

G = {V, E} is an undirected graph composed by the set of nodes V and edges

E . The graph forms the basis of the adopted inference framework. The choice of the

structure, the nodes and the connections with the features determine the performances

of the system. The nodes in the graph represent discrete, generally interdependent

random variables. The graph G satisfies the Markov property : the marginal probability

distribution of a random variable associated to a node, when conditioned on all its

neighbours, is independent on all the other nodes of the graph. In mathematical terms,

p(yj|{yk}, k 6= j) = p(yj|{yk}, k ∈ Nj) , (4.3)

where yj is the random variable associated to the node Vj ∈ V, and Nj = {Vk, (j, k) ∈ E}
is the set of neighbours of the node Vj. This property allows to isolate the propagation

of the dependences and perform the inference process in an optimised way.

The Markov property on the graph reflects on the structure of the probability function

modelled by the CRF. In particular, for a node to be independent on the other nodes

of the graph once conditioned on its neighbours, the probabilistic function has to be

factorisable on the variable associated to the node once the value of the neighbour

variables are assigned. To satisfy this constraint, in general it is required that the

probability function is a product of factors that are function of clique variables. In

the graph G, a clique C ⊆ V is a subset of nodes fully connected, that is, C = {yi ∈
V|∀yj ∈ c, i 6= j, (i, j) ∈ E}. A general graph used in this work will include factors of

single variables (node factors) and of two variables connected by an edge (edge factors),

even though for specific graphs with larger cliques are in theory possible. However, the

complexity associated to higher order factors compared to the gain on expressivity for

the problem of image analysis limits the utility of this choice. Additionally, higher-order

cliques have not proven successful for increased contextual modelling, since they tend

to be limited in space. A successful application of them has been however achieved in

improving fine object segmentation [66].

The probability of a labels assignment is therefore expressed as a product of factors.

The general expression for it is

p(y) =
1

Z

∏

c∈C(G)

fc(yc1, . . . , yc|c|) , (4.4)
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where C(G) is the set of cliques of G and yc1, . . . , yc|c| ∈ c. The probability function is

normalised, so that

Z =
∑

y

∏

c∈C(G)

fc(yc1, . . . , yc|c|) . (4.5)

Graphical models terminology. The terminology used when studying graphical

models is largely influenced by statistical physics [144], where similar models have been

studied well before appearing in computer vision. The form in which the probability

appears is the one of the Boltzmann law p(y) = 1
Z
exp(−E(y)/(kT )), in relation with the

“temperature” T . The term E is therefore an “energy”. In computer vision applications

this interpretation has no meaning, but an analogous form can be used, with kT = 1.

The exponential E is therefore often referred as energy function. In this formulation,

Eq. (4.4) is

p(y) =
1

Z
exp




∑

c∈C(G)

φc(yc1, . . . , yc|c|)



 , (4.6)

where φc(. . . ) = log fc(. . . ) are called potential functions (or just potentials). The

constant Z is referred to as partition function, because it encodes how the probability is

partitioned among the different possible states that a system can reach1.

4.2.1. Independent Patches Discriminative Model

The first discriminative probabilistic to be presented independently models the labelling

probabilities for the single patches given the observation. This model is then used for a

comparison with a CRF. The independent patch model in this section is a multi-class

Logistic Regression (LR), and it can be seen as a degenerate version of CRF in which

inter-patch dependences are not taken into account. Nonetheless, it shares with the

CRF the log-linear dependence on the observation vector, and its expressivity in terms

of modelling the appearance of different categories is the same as for a CRF.

The independent patch model is represented in a condensed form in Figure 4.2. Un-

der this model, an image is considered as composed by m patches, each one of which

is associated to an observation. The observation in general may be local or embed

1The term “function” is used because, classically, Z is function of the temperature of a gas, its volume
and other system variables in a thermodynamic problem.
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Figure 4.2.: Compact representation of a discriminative model for independent patches. The
m patch variables Yj are connected to the associated observation xj (a feature
vector) and disconnected from each other.

distributed features as well. The modelled probabilistic function is the a posteriori

probability distribution of a patch label over the possible categories given the observa-

tion, p(Yj = yj |xj) = p(yj|xj). The LR model is based on a softmax function, that is, a

log-linear model. The probability for the patch Y to be labelled as yi ∈ L is

p(yi|x; θ) =
exp(θyi · x)

∑

y′∈L exp(θy′ · x)
. (4.7)

The probability function is called softmax because it is the smoothed version of the

function p(y|x; θ) = δ(y, argmaxy′(θy′ · x)), where δ is the Kronecker delta. Since the

patches are independent under this model, when the entire image is considered the

probability (or likelihood) of a labelling y = {y1, . . . , ym} is

p(y|x; θ) =
m∏

j=1

exp(θyj · xj)
∑

y′∈L exp(θy′ · x)
. (4.8)

Training and Inference. When the independent patch model is used to perform

semantic labelling, a node is associated to each patch extracted from the image. Pixel-

level ground truth is needed for training. In this case, since the patches are assumed

as independent, the probability of a labelling configuration is the product of the single

patch label probabilities. The training of the model consists in finding the set of vectors

{θ1, . . . , θn}, one for each one of the n categories. This can be done using the MAP

criterion, that is,

{θj}opt = argmax
{θj}

{logL(θ)} = argmax
{θj}

{
N∑

i=1

mi∑

j=1

log(p(yij|xij))

︸ ︷︷ ︸

logLi(θ)

} . (4.9)

The solution of Eq. (4.9) can not be expressed in closed form due to the normalisation

term in the patch probability in Eq. (4.7). Nonetheless, the optimisation problem can
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be solved efficiently and accurately with an iterative approach such as the gradient

ascent method. The solution is guaranteed to be the global maximum due to the fact

that the optimisation function does not present local minima. In this work the L-

BFGS method is used, which is a Quasi-Newton method similar to gradient ascent,

and is detailed in Appendix A. In particular, it is an optimised implementation of an

approximated quadratic optimisation problem where the Hessian matrix is estimated

rather than calculated. The k-th component of the log-likelihood gradient is

δ logL

δθk
(θ) =

N∑

i=1

mi∑

j=1

xijuk
(δ(yij, lk)− p(lk|xij; θ)) , (4.10)

where uk and lk are the feature vector index and category associated to the k-th parame-

ter vector coefficient (the index k spans over all the coefficients of the parameter vectors

associated to each category). Note that, being the patches independent, the ones that

are unlabelled in the training set can be ignored. Therefore, if the training set contains

unlabelled patches, the per-image index j will only span over the mai labelled ones.

The inference task with the independent patch model is straightforward due to the

independence assumption. The most likely category for each patch can be determined

locally once the model parameters and the associated observation are known. The

criterion to assign the labels is

yopt = argmax
y

{
m∑

j=1

log(p(yj|xj))

}

=

{

argmax
yj

{log(p(yj|xj))}
}

= (4.11)

=

{

argmax
yj

{θyj
· xj}

}

.

4.2.2. Conditional Random Field

The independent model presented in the previous section is simple and efficient but it

has an important drawback in considering patches as independent: once the model is

trained, the category of a patch is completely determined by the model parameters {θj}
and the local observation x associated to the patch. Due to the oversegmentation, this

is rarely the case. In particular it often happens that neighbouring patches belong to

the same semantic category. As additional flexibility provided by the discriminative

nature of the model, it is possible to add global or distributed features in the vector x
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Figure 4.3.: An example of CRF graph, with m = 8 nodes. The patch variables Yj are
connected to the associated observation xj (a feature vector) and to some of
their neighbours.

to account for context, but nonetheless key information as confidence on the category

of neighbouring patches is ignored.

Dependences between neighbouring patches can be taken into account by extending

the model presented in the previous section and adding to Eq. (4.7) factors of multiple

variables, which results in a Conditional Random Field. The CRF has been first intro-

duced by Lafferty et al . [70] for problems of text segmentation at it has subsequently

been applied with success to the field of image processing and computer vision. A CRF

is defined over a graph G = (V, E). The node vj ∈ V is related to the j-th patch

category label variable yj ∈ Y . Edges in the graph represent direct probabilistic depen-

dences between these variables. An example of graphical structure is given in Figure 4.3.

The graph is Markovian, that is, each variable is independent on the entire graph when

conditioned on its neighbours,

p(yj|Y \ {yj}) = p(yj|Nyj), Nyj = {yk : (j, k) ∈ E} . (4.12)

Under this assumption, the CRF can express probabilities that are in the form of a

Gibbs distribution

p(y|X; θ) =
eΨ(y,X;θ)

Z(X; θ)
, (4.13)
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where Z is a normalisation factor,

Z(X; θ) =
∑

y∈Ln

exp (Ψ(y,X; θ)) . (4.14)

The probability in Eq. (4.13) is a Gibbs distribution and the local function (or compati-

bility function) Ψ is a sum of potential functions φk,

Ψ(X,y; θ) =
∑

c∈C(G)

φ(c,x,y|c; θ) , (4.15)

where C(G) is the set of cliques in G, y|c is the projection of the labels vector over the

clique c, obtained considering only the components o y related to nodes in c, that is,

yc = {yi : vi ∈ c}, and in general the function φ depends on the entire set of features

and on the clique.

With this choice of Ψ, Eq. (4.13) becomes a product of exponentials that can be

factorised on the cliques variables y|c. In this case the probabilities of the single variables

and of the cliques variables can be efficiently estimated in a number of ways, for example

with message passing algorithms [67], as explained in Section 4.3.

Here, graphs where the maximum size of the cliques is two are considered. The

potential functions are therefore divided in node potentials φ1
k and edge potentials φ2

k.

The mixing coefficients are the parameters of the model θk. The form of the compatibility

function is

Ψ(X,y; θ) =
∑

i∈V

∑

k∈K1

θkφ
1
k(yi,xi) +

∑

(i,j)∈E

∑

k∈K2

θkφ
2
k(yi, yj,xi,xj) , (4.16)

where K1,K2 are the set of values for k associated to node and edge potentials, respec-

tively.

The node potentials describe the relation between the node category and the local

features, and they are the equivalent of the exponents in the softmax model in Eq. (4.7),

φ1
k(y,x) = xik δ(y, ljk) . (4.17)

The index k spans over the nl combinations of patch labels and feature vectors elements,

selecting the configuration through the indices ik, jk. The parameters θk weight each

different component of the feature vector for each patch label.
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The edge potentials that have been considered are of two types. The simplest version

is a label compatibility Look-Up Table (LUT), in which each possible combination of

two labels is considered for connected nodes. A higher weight is assigned to more

“compatible” labels. The formalisation for this category of functions is

φ2,LUT
k (y, y′) = δ(y, lik) δ(y

′, ljk) , (4.18)

where the indices ik, jk span over the labels. The functions φ2,LUT have to be symmetric:

φ2,LUT (x, y) = φ2,LUT (y, x). For this reason, the total number of parameters θk is n(n+

1)/2. For the label indices the condition ik ≤ jk is assumed, and the functions become

φ2,LUT
k (y, y′) = δ(min(y, y′), lik) δ(max(y, y′), ljk) . (4.19)

In Eq. (4.19) the features associated to the nodes are not taken into account: this is

a simplification to reduce the number of parameters to be learnt and to decrease the

number of examples needed to learn them without overfitting the model. Such functions

therefore act as smoothing potentials, as they tend to enforce constant labelling in

neighbouring patches. As an alternative, though, functions that weight this potential on

the actual difference in appearance between cells are possible. The vectorial difference

between hue values has been used as a weight for edge potentials. With this choice

φ2,DIFF
k (y, y′,x,x′) = (x− x′) · euk

δ(y, lik) δ(y
′, ljk) , (4.20)

where euk
is a unit vector in R

l with the only uk-th component different from zero. In

this case the symmetry of the function in respect to the y, y′ variables is lost and the

total number of parameters is therefore equal to n2l.

Training. In the training phase a set of labelled images is presented to the model

and the parameters θ are tuned according to the MAP criterion for maximisation of the

likelihood. For N training images,

θopt = argmax
θ

{log(L)} = argmax
θ







N∑

i=1

log(p(yi|Xi; θ))
︸ ︷︷ ︸

log(Li)

−‖θ‖2
2σ2

θ







. (4.21)

The last term in the equation is due to a Gaussian prior, to avoid the overfitting of

the training set that happens when the model parameters specialise too tightly to the

examples presented during the training and the model does not generalise to the images
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in the test set. Therefore, the model parameters are considered as random variables and

for each parameter θk the assumption is done that, a priori, its distribution is Gaussian

with zero-mean and variance σ2
θ . Maximising the joint log-probability of training set

and parameters,

log(p({y1, . . . ,yN , θ|{X1, . . . ,XN}})) =
= log(p({y1, . . . ,yN |{X1, . . . ,XN}}, θ)) + log(p(θ)) =

= log(p({y1, . . . ,yN |{X1, . . . ,XN}}, θ))−
‖θ‖2
2σ2

θ

+K , (4.22)

which is the same as Eq. (4.21) except for a constantK that is discarded in the maximisa-

tion. The hyper-parameter σθ can not be determined during the training but it has to be

assessed for each training with a validation step, or it can be chosen via cross-validation

of the model over different training/set sets. Unfortunately the Gaussian distribution

assumption for θ is often inaccurate, and care has to be put in the choice of the features

scale in the model in order to retrieve a reasonable solution as the maximum likely one.

The role of the prior is weak in the maximisation. Tuning the hyper-parameter σθ can

prove costly, since it has to be done by sampling. The prior tends to lose importance

when N gets large, as it can be seen in Eq. (4.21). In practice, many times the effect of

the prior is negligible on the obtained solution.

As for the softmax model, the solution of Eq. (4.21) is found iteratively via the L-

BFGS method treated in Section 4.2.1. For this method to work, the objective function

(i.e., the training set likelihood) and its gradient need to be estimated. This involves,

for the i-th image, the calculation of both log(Li) = log(p(yi|Xi, θ)) and the gradient

∇θ log(Li) =∇θ (Ψ(Xi,yi; θ)− log(Z(Xi; θ))) =

=∇θΨ(Xi,yi; θ)−
∑

y

p(y|Xi; θ)∇θΨ(Xi,y; θ) . (4.23)

With the choice of Ψ of Eq. (4.16), potential functions do not depend on the specific

subset of nodes to which they are applied. This allows for a simplification on the number

of elements over which the summations in Eq. (4.23) has to be performed. Additionally,

parameters are either associated with node factors as in Eq. (4.17), or with edge factors

as in Eq. (4.19) and Eq. (4.20). These two cases can be considered separately. If k ∈ K1,

∂ log(Li)

∂θk
=

∑

j∈V
φ1
k(yij,xij)−

∑

j∈V

n∑

l∈1
p(yij = l|Xi; θ)φ

1
k(l,xij) . (4.24)
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Instead, if k ∈ K2,

∂ log(Li)

∂θk
=

∑

(v,w)∈E
φ2
k(yiv, yiw,xiv,xiw)+ (4.25)

−
∑

(v,w)∈E

n∑

lv,lw∈1
p(yiv = lv, yiw = lw|Xi; θ)φ

2
k(lv, lw,xiv,xiw) .

The calculation of the global configuration probability log(Li) = log(p(yi|Xi, θ)) and

the marginal probabilities p(yij = l|Xi; θ), p(yiu = lu, yiv = lv|Xi; θ) for ∇θ log(Li) is

not trivial because of the normalisation factor Z(X; θ) in Eq. (4.13) and the additional

marginalisations needed for the last two distributions. However, optimised methods exist

to compute summations over factorisable functions. Here, the Factor Graphs (FG) [67]

representation is used to describe the factorised function exp(Ψ) to calculate the factor Z

and the marginal probabilities through the sum-product algorithm, which is a generalised

version of Loopy Belief Propagation (LBP) [41]. The sum-product algorithm guarantees

the convergence to the exact result for loopless graphs; on the other side, nothing can

be said for loopy graphs. Even fairy simple examples exist for which LBP does not

converge to the exact solution. In general, convergence is not even guaranteed. These are

nonetheless isolated situations and the algorithm usually leads to good approximations

of the exact solution, even though the time requirement for solution convergence varies.

The Junction Tree algorithm [60,75] allows for exact inference in graphs with loops, but

its high complexity prevents the application of such algorithm to this scenario as well

as many other practical ones.

In this work, libDAI [95], an open-source software for efficient discrete approximate

inference, has been used. The software contains an optimised C++ version of the Belief

Propagation algorithm, with different message passing schedules for the loopy version.

Actually, the work for this research has lead to several efficiency improvements in the

implementation of libDAI. These improvements have now been merged into the main-

stream version for the benefit of the entire scientific community.

Inference. Once the weights θ have been assigned during the training, inference in

the model involves finding the best labelling configuration given an input image. The

solution quality is evaluated in terms of likelihood, so

yopt = argmax
y

{p(y|X)} = argmax
y

{Ψ(X,y; θ)} . (4.26)
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The Eq. (4.26) would in general require the analysis of all the configurations to find the

yopt. Due to the constraints imposed on the factorisable structure of p(y|X), and the

conditions on the graph, the optimal solution can be estimated via optimised strate-

gies. Indeed, an analogous of the sum-product algorithm exists, called max-sum al-

gorithm [14], which works analysing the graph iteratively and storing the best partial

configurations that lead to the best global result. The max-sum algorithm is a dynamic

programming algorithm which is a generalisation of the well-known Viterbi algorithm

used to find the most likely sequences of hidden states in a random chain [133].

Partial Labelling and Latent Nodes

An important characteristic of the images that can be used to train the system is that

is not always possible nor practical to obtain the annotation for every pixel in the

image. This is reflected in the used dataset. Examples can be seen in Figure 4.1 and

Figure 6.1: in the ground truth images, black pixels represent unlabelled data. If the

ground truth is missing for the training set, the maximisation of the full likelihood in

Eq. (4.21) is not possible. Neither is possible to simply ignore the unlabelled patches as

in the independent patch model, since they take part in the global graphical structure.

Instead, labels of unassigned nodes can be treated as hidden or latent.

An extension of the training algorithm to partially labelled images, in which not

all the nodes are labelled in the ground truth, can be devised starting from the one

presented earlier in this section. The maximisation of the likelihood will involve only

the patches for which the ground truth is present, optionally forcing the latent variables

to belong to a subset of the total number of categories [128]. Additionally, a latent

category has been added, which is not present in the training set, to optionally account

for the appearance of unlabelled pixels. This is motivated by the fact that pixels can

be unlabelled either because there is no information about their category, or because

they are tricky to classify for a human, or belonging to a category not present in the

system. In this last case, the appearance of the patches can be very different from the

one learnt for the single categories. Allowing for another category, not present in the

labelling, gives to the system the freedom to assign the “void” label to all the patches

whose appearance is not in accordance with the one of any of the other categories.

Let us assume that the label vector for the i-th training image is divided into the

assigned and unassigned part, yi = {yai,yui}, of length mai and mui = mi − mai

respectively; and that the set of allowed categories for an unassigned label in the i-th
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image is Lui, so that yui ∈ Lmui

ui . The likelihood for the i-th image to be maximised is

therefore

log(Li) = log(p(yai,yui ∈ Lmui

ui |Xi; θ)) . (4.27)

The maximisation does not bind yui to the subset Lmui

ui , but maximising the joint prob-

ability forces the model to find solutions that are compatible with the constraint. The

joint probability in Eq. (4.27) is, averaging Eq. (4.13),

p(ya,yu ∈ Lmu

u |X; θ) =

∑

lu∈Lmu
u
eΨ(X,ya,yu;θ)

Z(X; θ)
. (4.28)

Evaluating Eq. (4.28) without explicitly performing the summation at the numerator

is possible considering an additional graph, that I will call conditioned graph, to dif-

ferentiate it from the original or unconditioned one. In the conditioned graph all the

variables ya are assigned and yu is forced to take values in Lmu
u . This graph can be used

to efficiently estimate

p(yu|ya,yu ∈ Lmu

u ,X; θ) =
eΨ(X,ya,yu;θ)

Zc(X,ya; θ)
, (4.29)

where

Zc(X,ya; θ) =
∑

yu∈Lmu
u

eΨ(X,ya,yu;θ) . (4.30)

Combining Eq. (4.30) into Eq. (4.28), we obtain

log(Li) = log

(
Zc(Xi,yai; θ)

Zu(Xi; θ)

)

= log(Zc(Xi,yai; θ))− log(Zu(Xi; θ)) , (4.31)

being Zu = Z(Xi; θ). Analogously, for the likelihood gradient,

∇θ log(Li) =
∇θZc

Zc
(Xi,yai, θ)−

∇θZu

Zu
(Xi, θ) =

=
∑

yu∈Lmui
ui

p(yu|yai,yu ∈ Lmui

ui ,Xi; θ)∇θΨ(Xi,yai,yui; θ)+ (4.32)

−
∑

ya,yu

p(ya,yu|Xi; θ)∇θΨ(Xi,ya,yu; θ) .
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The expression obtained in Eq. (4.23) for the likelihood gradient can be considered as a

particular case of Eq. (4.32), when all the variables are assigned and the firm summation

degenerates in a single valid configuration. Again, with the specific choice of factors made

in this work, the summations in Eq. (4.32) can be greatly simplified. In particular, when

k ∈ K1,

1

Zc

∂Zc

∂θk
=

∑

j∈Vai

φ1
k(yaij,xij) +

∑

j∈Vui

n∑

l∈1
p(yuij = l|yai,yu ∈ Lmui

ui ,Xi; θ)φ
1
k(l,xij) ; (4.33)

1

Zu

∂Zu

∂θk
=
∑

j∈V

n∑

l∈1
p(yij = l|Xi; θ)φ

1
k(l,xij) , (4.34)

where Vai,Vui are the sets of nodes in the i-th graph that are assigned and unassigned,

respectively. For factors k ∈ K2,

1

Zc

∂Zc

∂θk
=

∑

(v,w)∈E
v,w∈Vai

φ2
k(yaiv, yaiw,xiv,xiw)+

+
∑

(v,w)∈E
v∈Vai,w∈Vui

n∑

l∈1
p(yuiw = l|yai,yu ∈ Lmui

ui ,Xi; θ)φ
2
k(yaiv, l,xiv,xiw)+ (4.35)

+
∑

(v,w)∈E
v∈Vui,w∈Vai

n∑

l∈1
p(yuiv = l|yai,yu ∈ Lmui

ui ,Xi; θ)φ
2
k(l, yaiw,xiv,xiw)+

+
∑

(v,w)∈E
v,w∈Vui

n∑

lv,lw∈1
p(yuiv = lv, yuiw = lw|yai,yu ∈ Lmui

ui ,Xi; θ)φ
2
k(lv, lw,xiv,xiw) ;

1

Zu

∂Zu

∂θk
=

∑

(v,w)∈E

n∑

lv,lw∈1
p(yiv = lv, yiw = lw|Xi; θ)φ

2
k(lv, lw,xiv,xiw) . (4.36)

Again, the marginal probabilities for single node variables and pairs of connected nodes

variables conditioned on the value of the assigned nodes can be calculated analogously

to the unconditioned ones, running a sum-product algorithm on the FG obtained from

the conditioned graph for the i-th image.

As it is clear from the previous Eq. (4.33) and Eq. (4.35), factors are averaged over

the compatible configurations when the conditioned model is considered. The “void”

label is introduced among the possible values for the node variables. This label is never

considered as present in the training set ground truth, but nonetheless it plays a role in

the averaging operation. By accounting for categories not considered explicitly in the
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model, the model parameters for the appearance term of the remaining categories can

fit more closely the relevant examples.

4.2.3. Multiple-Category Hidden Conditional Random Field

The CRF presented in the previous sections is useful for image understanding and seman-

tic segmentation. Once the semantic map is calculated for an image, object detection

and localisation can be easily achieved. Nonetheless, a fully labelled training set is re-

quired for the training in order to learn the correct appearance model and relationships

for different categories. Often such training data is not available, but only image-level

labels are given, on whether certain categories are present or not in the image. In this

case the training set is said to be weakly labelled, in opposition to the strongly labelled

datasets with pixel-level labels considered so far.

The weakly labelled training scenario is considered in relation to the image categori-

sation problem, that is, the assignment of weak labels at image-level. To model this

problem a hidden model is considered, in which patch labels are not bound to any cat-

egory during the training but they represent a latent layer between features and visible

category nodes. The Multicategory Hidden CRF (MHCRF) has been presented [4] for

the purpose of studying the different role of connections between patch nodes when they

are actually latent. This model is inspired by [15] and it is an extension of the Hidden

CRF (HCRF) of [103].

The dynamic of a MHCRF can be introduced as an extension of the CRF explained

in Section 4.2.2. Image-level nodes are added to the model, to represent the presence or

absence of a given category. in the image. The actual patch-level nodes become hidden,

not having any patch-level ground truth. For this reason, it is convenient to perform

a slight change of notation, indicating with h the patch nodes, so that, compared to

a CRF, y → h. The notation y is kept for visible nodes. The n image-level nodes

y = {y1, . . . , yn}, one for each category considered in the system, are associated to

boolean random variables indicating whether the category is detected within the image

or not. An example of a MHCRF graph is presented in Figure 4.4. Analogously to

Eq. (4.13), the probability of a patch configuration h and an image-level labelling y is

p(y,h|X; θ) =
eΨ(X,y,h;θ)

Z(X; θ)
, (4.37)
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Figure 4.4.: An example of MHCRF graph: compared with the CRF of Figure 4.3, there are
additional global category nodes connected to patch nodes. The latter ones are
then treated as hidden, and indicated as Hj.

being Z(X; θ) =
∑

y

∑

h exp(Ψ(X,y,h; θ)). The actual probability for a labelling con-

figuration is

p(y|X; θ) =

∑

h e
Ψ(X,y,h;θ)

Z(X; θ)
. (4.38)

The form of the local function is similar to the one presented in Eq. (4.16), but the

factors related to the image-level nodes are included in it,

Ψ(X,y,h; θ) =
∑

i∈V

∑

k∈K1

θkφ
1
k(hi,xi) +

∑

(i,j)∈E

∑

k∈K2

θkφ
2
k(hi, hj ,xi,xj)+ (4.39)

+

n∑

i=1

∑

k∈K3

θkφ
3
k(yi) +

n∑

i=1

∑

j∈V

∑

k∈K4

θkφ
4
k(yi, hj) .

The notation is similar to Eq. (4.16), with obvious extensions for K3,K4. The terms

φ4
k account for the way patch-level labels influence image-level ones. The terms φ3

k are

explicit priors on the categories to adjust to the database inhomogeneities in terms of

topic frequencies. Both the φ3
k and the φ4

k are look-up tables analogous to the ones in

Eq. (4.18) (without considerations about symmetry).
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Hidden variables can assume a number of values equal to the number of categories

plus an additional “void” value, that is, h ∈ H, |H| = n + 1. This decision is meant

to favour a direct correspondence between patch-level variables and image-level ones,

even though in principle hidden variables are not bound to any explicit semantics and

the training process can result in multiple values being associated at the same category,

with categories not covered explicitly by any label.

For what the inference is concerned, in the MAP approach the target likelihood

function is analogous to Eq. (4.21),

log(L) =

N∑

i=1

log(p(yi|Xi; θ))
︸ ︷︷ ︸

log(Li)

−‖θ‖2
2σ2

θ

, (4.40)

and it can be obtained via Eq. (4.38) averaging out all the latent variables, that is, sum-

ming over all the latent configurations. This operation is computationally intractable,

but optimised methods analogous to the ones presented in relation to latent nodes in

Section 4.2.2 are available. In particular, employing a FG conditioned on the image-

level ground-truth for the i-th image in addition to the full (unconditioned) FG, we can

calculate the normalisation factor for the conditioned probabilities

p(h|y,X; θ) =
eΨ(X,y,h;θ)

Zc(X,y; θ)
, (4.41)

that is,

Zc(X,y; θ) =
∑

h

eΨ(X,y,h;θ) , (4.42)

and obtain the likelihood for the i-th image as

log(Li) = log(Zc/Z) = log(Zc(X,y; θ))− log(Z(X; θ)) . (4.43)

The expression for the likelihood gradient is analogous to Eq. (4.32)),

∇θ log(Li) =
∇θZc

Zc
(Xi,yi, θ)−

∇θZ

Z
(Xi, θ) = (4.44)

=
∑

h

p(h|yi,Xi; θ)∇θΨ(Xi,yi,h; θ)−
∑

y,h

p(y,h|Xi; θ)∇θΨ(Xi,y,h; θ) .
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The intractable summations simplify when substituting in the previous equation the

local function in the form described earlier in the section, so that:

• if the gradient component k ∈ K1,

∂ log(Li)

∂θk
=

∑

j∈Vh

n∑

l=0

p(hij = l|yi,Xi; θ)φ
1
k(l,xij)+ (4.45)

−
∑

j∈Vh

n∑

l=0

p(hij = l|Xi; θ)φ
1
k(l,xij) ,

with Vh equal to the subset of hidden nodes in the graph;

• if k ∈ K2,

∂ log(Li)

∂θk
=

∑

(v,w)∈Eh

n∑

lv,lw=0

p(hiv = lv, hiw = lw|yi,Xi; θ)φ
2
k(lv, lw,xiv,xiw)+ (4.46)

−
∑

(v,w)∈Eh

n∑

lv,lw=0

p(hiv = lv, hiw = lw|Xi; θ)φ
2
k(lv, lw,xiv,xiw) ,

where Eh ⊂ E is the set of connections between two hidden patches;

• if k ∈ K3 (category priors),

∂ log(Li)

∂θk
= φ3

k(yijk)−
1∑

ly=0

p(yijk = ly|Xi; θ)φ
3
k(ly) ; (4.47)

• finally, if k ∈ K4 (factors that link category nodes and latent nodes),

∂ log(Li)

∂θk
=

∑

v∈Vh

n∑

lv=0

p(hiv = lv|yi,Xi; θ)φ
4
k(yijk , lv)+ (4.48)

−
∑

v∈Vh

n∑

lv=0

1∑

ly=0

p(hiv = lv, yijk = ly|Xi; θ)φ
4
k(yy, lv) .

The conditioned probabilities can be computed efficiently in the conditioned graph, as

the unconditioned ones can in the regular graph.

For inference, once the model is trained, the objective would be to find the best

vector y of image labels given the observation. This is not straightforward, however, be-
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cause the category nodes are not directly connected in the graph, and the sum-product

algorithm does not allow for the calculation of a marginal probability of unconnected

variables (i.e., only clique factors marginals are calculated). For this reason, the best

configuration is calculated using the maximum likelihood (ML) approximation. In op-

position to MAP, with ML the maximisation does not involve the joint probability of

{y1, . . . , yn}, but the marginal probabilities of each yi. This is equivalent to considering

the yi independent. However, in this context it does not represent a heavy approxima-

tion, since the dependences of each yi on the latent variables is considered. The most

likely value for each yi is considered instead of the most likely global configuration. The

ML criterion is, mathematically,

yopt = {argmax
yi

p(yi|X; θ)} . (4.49)

The result is straightforward to obtain, since each yi is a two-state variable whose dis-

tribution is calculated performing sum-product in the full graph.

4.3. Connectivity and Inference

This section discusses aspects related to the inference in the graphical structures pre-

sented so far for the CRF. In general, the specific structural configuration chosen for the

graph plays a major role in the performances of the algorithm. This is caused by two

contrasting causes, that are

• on the one side, the connections represent the dependences considered in the model,

so accounting for more connections means taking into account more contextual data

and ultimately building a system that is more context-aware, while inferring on the

single patch;

• on the other side, connectivity increments the complexity of the model: inference

in loopy graphs in general can not be performed exactly in an efficient way, and the

number of training parameters increases with the complexity as well, contributing

to the so-called “curse of dimensionality” [12], which leads to an increased need for

training data and time.

An inappropriate choice of the structure in relation to the problem to be solved can

degrade the results. A study has been performed on how the choice of the structure

affected a MHCRF for category detection with different choices of patches configura-
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tions [4], that is commented in Section 6.2.2. There are several approaches to consider

structural information, spanning from systems that do not explicitly take into account

neighbouring information [15] to systems that learn the optimal graphical structure [42].

In particular, this last solution is popular in systems that model object instances, when

the objective is to learn the structure of different categories of objects and the target of

the learning is more circumscribed [34, 136].

4.3.1. Message Passing Schedule

As mentioned earlier in this chapter, message passing algorithms are used to perform

inference tasks. This can happen in the form of sum-product algorithm for marginals

calculation or max-sum algorithm for the estimation of the optimal configuration in

terms of probability maximisation. Message-passing algorithms are iterative methods

that evaluate global (e.g ., the probability of a configuration) and local (i.e., marginal

probabilities of clique variables) information in an optimised way by considering the

actual dependences between factors implicated by the graph structure.

When the graph is open, i.e., there are no loops in it, a message passing algorithm

is guaranteed to converge to the solution in a time that is equal to the diameter of the

graph2. When loops are in the graph, however, there is no guarantee on convergence

and on the correctness of the possible solution. In particular, convergence time depends

greatly on the scheduling algorithm for the message passing, that is, the order in which

updated messages are calculated. This is because of the presence of feedback loops.

Some possibilities in this regard are to adopt a random or fixed schedule (static policies).

Recently, though, dynamic policies have shown to significantly improve the convergence

time [28, 119]. This is still however an open research topic.

In the literature there have been proposals for specific message-passing strategies for

specific graph structures, as for example the regular lattice [48]. In my work, messages

are scheduled in order of decreasing residuals [28]. The residual of a message is calculated

as ri = maxk{mi[k] − mi,old[k]}, and it represents the “perturbation” occurred in a

message following the last iterations steps (the last update).

A further optimisation of the message passing schedule has been introduced in re-

lation to the specific graph structure in the part-based image analysis problem. In the

2 The diameter of a graph in graph theory is the maximum eccentricity of any of its vertices, where
the eccentricity of a vertex is the maximum distance between that vertex and any other vertex in
the graph.
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MHCRF model, a two-layers update scheduling policy has been adopted. The idea is to

divide the set of nodes in groups and propagate the inter-group message until conver-

gence before the intra-group ones, according to the following general algorithm:

1: divide the nodes N in groups {N1, . . . ,Nk};
2: converged = FALSE

3: while NOT converged do

4: for all Ni in fixed order do

5: propagate inter-nodes messages according to the maximum residual schedule;

6: propagate the intra-nodes messages to the other groups;

7: end for

8: if residuals of intra-nodes messages < threshold then

9: converged = TRUE

10: end if

11: end while

The application of such a schedule is particularly helpful in the MHCRF, due to

the different nature of the involved nodes. Performing the group separation N1 =

{y1, . . . , yn} and N2 = Nh, that is, separating categories nodes from hidden nodes, the

following advantages are achieved:

• a large number of connections are not considered while propagating inter-group

messages, and long-range dependences are temporarily broken to achieve fast con-

vergence in the hidden layer;

• convergence in the visible (category) layer is achieved in one step (no inter-connections);

• being the category nodes global, the effect of single hidden nodes perturbations is

minimal on them: the significant overhead due to the update of the residuals in

the maximum residual schedule strategy is efficiently avoided.

With the application of the two-layers schedule, any of the dynamic or static schedules

proposed in literature can in practice be applied for the hidden layer, possibly choosing

a strategy that is consistent with the chosen structure. The main advantage of the two-

layer schedule is the scalability on the number of image-level category nodes. Actually,

for a very small number of nodes, a conditioned random graph can be solved for each

configuration of these nodes. This strategy guarantees the solution after 2n applications

of the message-passage algorithm, which is convenient only for very small values of the
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number of categories n. Similar strategies for piecewise convergence has been proposed

for LBP by other authors in relation to different problems (e.g ., [49]).

4.3.2. Using Appearance Coherence for Connectivity

An alternative to approximate inference is to introduce an approximation in terms of

considered connections in the graph. Having an open graph (that is, a tree) in the

inference step guarantees a fast and exact solution. This is particularly important when

partial labelling is taken into account. This is because, as shown in Eq. (4.43), the

likelihood that has to be maximised during the training (and therefore its gradient)

is obtained by difference of terms derived from two different graphs. Any error in

the evaluation of these terms is transferred to the interactive gradient-ascent method,

preventing it from converging correctly. This is not a problem of presence of local

minima, but rather of inconsistency in the objective function.

The proposed technique to achieve an effective graph connectivity is based on the

selection of the connections based on information on the appearance of the connected

nodes. The technique is aimed at obtaining a tree that connects all the parts of the

image [3, 8], that has been called appearance-coherent tree. The input to the algorithm

is a graph including all the connections present in the image. This is obtained via a con-

nected component analysis, with 4-connectivity. Two patches are considered connected

if the ℓ1 (Manhattan) distance between any two of their pixels is less or equal to one.

The tree is obtained by using a Minimum Spanning Tree (MST) algorithm. The

appearance information is integrated in the graph. Connections between patches that

are coherent in appearance are encouraged by weighting graph edges on appearance

similarity. The distance between patch colour features has been chosen as edge weight.

The colour feature is used for different reasons. First, sharp colour changes are often a

clear indication of an object boundary. Even if colour itself is not a good descriptor for

some categories, other authors [117] have noticed that it tends to be shared within object

instances. Additionally, the histogram form of the robust hue histogram descriptor

detailed in Section 3.3.2 offers a suitable support for the use of a consistent distance

metric. Finally, the hue descriptor equally describes all the patches, except in rare cases

of limited illumination in which the hue measure is not reliable. This is in contrast with

texture features, that poorly describe instances of some categories (e.g . clear sky, some

buildings, car frames). The metric used to calculate the distance between colour feature

vectors is the symmetric Kullback-Leibler divergence, defined for two distributions P,Q
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Figure 4.5.: Oversegmentation (300 patches) using NCuts (original images size of 321× 214
pixels). In the central column, the ground-truth for the corresponding images
is displayed, with the superimposed segmentation. Finally, in the right column
is the Minimum Spanning Tree based on appearance coherence built over seg-
mented images.
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as

DKLs(P ||Q) = DKL(P ||Q) +DKL(Q||P ) , (4.50)

where DKL is the (asymmetric) Kullback-Leibler divergence

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
. (4.51)

Results of the MST algorithm are presented in Figure 4.5: it is possible to observe how

different objects are very little connected, most of the edges lying between patches of

the same category.

4.3.3. Weak Neighbourhood

A drawback associated to the graph tree structure is that neighbouring patches are

only partially considered. This is the general downside of graphical approaches, but

the application of the proposed appearance-coherent structure highlights the problem.

This is however the only way to avoid loops in the graph thus enabling efficient exact

inference. We proposed another (dual) approach for partially overcome this limitation.

This is based on the introduction of another type of neighbour type, namely the weak

neighbour, as opposed to the conventional (here, strong) neighbours. Given a segmented

image (and therefore, the patch connectivity graph as described in the previous section)

and the MST built on it, weak neighbours of a patch are all the patches linked in the

connectivity graph but not in the MST. In fact, being a weak neighbour is not a property

of a node, but rather a property of the relationship between two nodes. The strength

of a neighbour is a property of the connecting edge rather than a node. Additionally,

it is a reflective property: if the node vi is a weak neighbour for the node vj, then vj

is a weak neighbour for vi. Finally, by construction, each node has at least one strong

neighbour (because all the nodes are connected in the MST).

At first, all the patches are classified according to the independent patch model pre-

sented in Section 4.2.1. The probability distribution over the category labels is there-

fore estimated for each patch. When performing the classification using CRF, normal

neighbours connections are modelled as in Eq. (4.16). Additionally, weak neighbours

contribute to single node potentials by the means of previously computed distributions

accounted as additional features. The reason why the neighbours are “weak” is that
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Figure 4.6.: Example of introduction of weak neighbours for a detail of an image from the
data set. The white nodes are the nodes of the CRF. The full graph represents
the patches connectivity. The solid lines represent connections left after the ap-
plication of the appearance-coherence MST algorithm. The dashed connections
are weak neighbourhoods.

these distributions will not change during inference on CRF, decoupling the label dis-

tributions inferred on the weak neighbours. From a message-passing perspective, the

links between weak neighbours do not propagate messages: instead, they emit a con-

stant message regardless of the modifications in the distribution of the source node. The

presence of at least a strong neighbour for each node guarantees a proper propagation

of the beliefs over all the image. As we shall see in Chapter 6, the performance obtained

by the independent patch classification is good enough to provide the weak neighbours

with important contextual information.

The weak neighbours are accounted in the local function of Eq. (4.16) as an additional

feature, that is, with single node potentials of the form φ1,w
k (yv,p) = puk

δ(yv, lk). Here,

p is the distribution over category labels of the weak neighbour. The local function then

assumes the form

Ψ(y,X; θ) =
∑

v∈V

∑

k∈K1

θkφ
1
k(yv,xv) +

∑

v∈V

∑

j∈Nw
v

∑

k∈K1,w

θkφ
1,w
k (yv,pj)+

+
∑

(i,j)∈E

∑

k∈K2

θkφ
2
k(yi, yj,X) , (4.52)

where N w
v indicates the set of weak neighbours for the node v and K1,w the corresponding

parameter vector indices. In Figure 4.6 an example of the graph used for the CRF is

presented. In particular, in the image solid lines represent strong neighbour connections,

while dashed lines represent weak neighbourhoods.



Chapter 5.

Hierarchical Models

In this chapter an alternative option to multi-scale image modelling is discussed, namely

the hierarchical approach [7]. The developed solutions of connectivity analysis and

optimisation, as the appearance-based spanning tree presented in Section 4.3.2, suggest

a clear path to prioritise connections in the graph. In particular, not all the connections

between patches have the same role: some of them, under the appearance-coherence

similarity model, have a low cost associated to them, while the cost for some other

ones is high. The hypothesis being made when presenting the appearance-coherent

model is that connections associated with a low cost are likely to be intra-object ones,

while connections associated with a high cost are mostly inter-object ones. Under this

consideration, the linking cost represents a valuable source of information, that can be

usefully applied when modelling the image according to a statistical model.

In Chapter 4 two attempts have been made to integrate such an information in the

probabilistic model. The first is the already mentioned appearance-coherent spanning

tree, where the integration philosophy is to use the similarity between patches to drive the

choice of the structure, rather than statically incorporating it in the model. The second

attempt is to integrate appearance difference, in terms of difference between feature

vectors, in the potential functions of the CRF. This has been realised by introducing

weighted potentials in the CRF formulation, as in the φ2,DIFF
k functions in Eq. (4.20).

However, as explained in Section 6.3, results of this second strategy have not been

satisfactory. This is in line with other research findings [128].

When incorporated in the graph construction phase but discarded in the modelling

phase, patch appearance similarity information is not used in its full power. Indeed,

there is no difference between an edge linking two very different regions with another

edge linking similar ones. The proposal is to go one step further, and consider the tree

98
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creation as a hierarchical clustering process, that is meant to prioritise some connections

over others.

5.1. Hierarchical Clustering

Hierarchical clustering methods are a general tool for pattern classification, and they can

be applied to data of different nature. They are used whenever the data can be logically

clustered at different levels. In this scenario, on the lowest level, data points are clustered

in a large number of small, compact clusters that group very similar points. These

clusters are then further clustered in a smaller set of larger clusters, representing more

general traits, and so on. Or, looking at the clustering from the top-down perspective,

the large top-level clusters can be considered as composed by sub-clusters, recursively up

to a certain level. The resulting structure is meant to reflect a hierarchical organisation

of the data. This is the case in a multitude of domains, as well as in the one of image

analysis. A common example is given by the classification of living organisms. In the

domain of natural image analysis, a scene can be split in different zones, each one of

which is composed by a set of objects, that are made by a set of parts, and so on. The

hierarchical representation is therefore appropriate for the problem investigated in this

work.

To introduce the general problem, n data points are considered. In the image analysis

domain, these points are the dense patches extracted from the image. These data points

are going to be clustered into c clusters. The clustering happens iteratively, in n − k

steps. At step 0, the number of clusters is equal to n, each cluster containing a single

data point. At each step, the number of clusters is reduced by one, by the means of

merging two clusters from the previous step. At step k, the number of clusters is n− k,

and after n−c steps the data points are going to be clustered into c groups. The sequence

of cluster sets after each iteration is defined hierarchical clustering [27].

In general, the procedure can be continued until all the data points are contained in a

single cluster, after n−1 iterations. The number c of clusters at the top level is not easy

to evaluate in most practical cases. This is because the clustering is an unsupervised

technique, therefore it is not common to have any information on the number of groups

of the data. In the image analysis domain, the top level is a single cluster containing

the whole image, the bottom level is constituted by the patches, and a sensible choice

for meaningful clusters is the number of objects in the scene (including the background
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Figure 5.1.: The dendrogram obtained by hierarchical clustering of 6 data points. Nodes
B and C are very similar, and the presence of a large gap between c2 and c3
indicates a natural number of 4 clusters. The node c5 is the root. Nodes are
recursively merged building the tree from the bottom to the top. When merging
two nodes, the gap between the resulting node and the closest (highest) of the
two children is proportional to the merging cost.

“object”). Being the clustering unsupervised, however, there is no guarantee that, for an

image containing c object instances, the objects will be exactly isolated into c clusters.

The hierarchical analysis has to contemplate for flexibility in this account.

As previously stated, the hierarchical clustering is represented by the sequence of

cluster sets, not on the order in which they are obtained. In other words, even though the

procedure for obtaining the sets that has been used to introduce hierarchical clustering

would entail a series of merging operations, the same hierarchical clustering can be

approached starting from an initial cluster containing all the data points and performing

a series of n− 1 split operations. The first strategy, that works bottom-up by merging,

is referred to as agglomerative clustering. As opposite the second strategy, that works

top-down by splitting, is named divisive clustering. Agglomerative strategies are the

most commonly studied and used in pattern classification and this is the case for the

strategy proposed in this work.

The customary way to graphically represent a hierarchical clustering is in the form

of a dendrogram. The dendrogram is a rooted tree1 in which the leaves are the data

1 A rooted tree is a directed tree in which a root node has been defined. A directed tree is a directed
graph that is a tree if the direction of the edges are not considered. The presence of a root node
in the rooted tree uniquely defines the orientation of all the edges, that is the one that points away
from the root.
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points and all the other nodes represent clusters. The cost of merging two clusters into

a bigger parent is reflected by the length of the edge connecting the closest one to the

parent (that is, the vertical gap between them). Since the hierarchical clustering is a

sequence of cluster sets whose cardinality increases by one at each step, the corresponding

dendrogram is in fact a binary tree. The dendrogram is a very communicative way to

explore the diversity of the data being clustered. The presence of a clear gap between

vertices can be a symptom of the presence of a meaningful number of clusters in the

data. This is visible in the example of dendrogram presented in Figure 5.1.

The adaptive strategy for hierarchical clustering works by merging the two nearest

clusters in the cluster set at each iteration. The algorithm starts with n clusters contain-

ing a single data point and stops when a single cluster is obtained (even though different

stopping criteria can be introduced when the full dendrogram is not needed). The result

of the agglomerative hierarchical clustering is therefore completely determined once a

distance measure between two clusters is defined. In general, a few distance measures

are particularly common. Supposing that d(·, ·) is a distance measure for elements in

the clusters, the measures can be defined as:

• the minimum distance between any two elements of the two clusters,

dmin(Di,Dj) = min
(x,y)∈Di×Dj

{d(x,y)} (5.1)

that minimises the distance between elements belonging to the same cluster, being

however affected by a “drifting” effect whenever the data points tend to form an

elongated pattern in the data space;

• the maximum distance between any two elements of the two clusters,

dmax(Di,Dj) = max
(x,y)∈Di×Dj

{d(x,y)} (5.2)

that discourages elongated patterns, but for this reason does not behave well when

the patterns are not homogeneous, compact and similar in size;

• the average distance between data points and the distance between the barycentre

of the clusters, respectively

davg(Di,Dj) =
1

ninj

∑

(x,y)∈Di×Dj

d(x,y) , (5.3)
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dbar(Di,Dj) = d(x̄Di
, x̄Dj

) , (5.4)

representing a compromise and a having greater robustness against outliers when

compared to the first two methods.

The distance measure d(·, ·) can be chosen to be the euclidean distance, however in some

domains other choices can be more relevant. In particular, in the image analysis domain,

different features can be associated to different weights to optimise the clustering result.

Some distance measures, as the barycentre distance in Eq. (5.4), require a way to evaluate

an equivalent feature for a cluster. This is commonly obtained through averaging, as

in the barycentre case. Better strategies can sometimes be devised, that are domain

dependent. An example of such a strategy in the image analysis domain is given in

Section 5.2.1.

5.2. Hierarchical Image Analysis

Hierarchical techniques have been applied to the image analysis domain in different ways.

This is mainly motivated by the desire to consider different scales in the analysis. In this

section the most relevant approaches towards hierarchical image analysis are presented.

The motivation behind the use of hierarchical models is the compositional nature of

the natural world: complex objects are the sum of their parts, that can be themselves

divided into their constituent components, in a recursive fashion. However, nobody so

far (to the best of my knowledge) used the hierarchical clustering approach in modelling

the probabilistic distribution of a label field in semantic segmentation problems.

One of the first attempts to enforce the hierarchical nature of a scene in the analysis

framework of a scene classification model is probably represented by the work of Lazebnik

et al . [76] on spatial feature pyramids. Their contribution is essentially a hierarchical

feature and an associated kernel that represent a multi-resolution bag-of-words model.

Traditional bags of words are histograms of visual words that summarise the content of an

image. Visual words are extracted locally, but the histogram-based description leads to

a global histogram that discards spatial information. Spatial pyramids are an extension

of such descriptors where histograms are computed at different scale. The visual words

are SIFT descriptors computed only once, on a regular grid [33], and clustered in a

vocabulary of M entries. The image space is recursively divided into regions, at L

levels. The level 0 represents the total image area, while the level l is obtained by
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splitting the level l − 1 into four quadrants. The number of levels is typically L = 3.

The histogram at a certain level is the number of visual words present in each region at

each resolution. The size of the descriptor tends to become quite large when L > 2, which

is a limit of the method. A matching kernel is proposed as well, to measure the distance

between two different descriptors that is aware of the semantics of the histograms. This

means that in the kernel higher (coarser) levels in the pyramid are penalised because the

discrimination power of the associated descriptor decreases. The matching kernel is used

in a Support Vector Machine2 (SVM) trained with a one-versus-all scheme for multi-

class scene classification (that is, a image categorisation scenario). The reported results

present significant improvements compared with the baseline (descriptor calculated at a

single level of the pyramid).

The idea of modelling the compositional nature of objects has been formalised and

exploited more explicitly by Ommer and Buhmann [98, 99]. Small-scale image descrip-

tions based on localised feature histograms are used, that are similar to the low levels of

a spatial pyramid, differing on the fact that features are taken at interest points since

the method is aimed at object detection rather than scene classification. Additionally,

soft clustering of the descriptors is used rather than a real distribution of words. The

features describing atomic parts are subsequently grouped. However, compositions of

atomic parts are not imposed, but rather significant compositions are sampled and learnt

based on their discriminative power on different object classes. The learning of the com-

positions considers the position of the atomic parts as well. More specifically, the object

centre is estimated based on the posteriors of each atomic part, and then the position

of the centre of the composition in relation of the centre of the object is modelled as

well. This step is performed at another scale to learn compositions of compositions, thus

considering a shallow hierarchical model. The probability function for the presence of

an object is directly modelled, so that its estimation provides the likelihood of an object

in a given image.

On the side of semantic segmentation, when the target is to perform pixel-level

classification rather than localising objects, hierarchical structures have been used to a

minor extent. The multi-scale CRF [53] described in Section 2.2.2 represents an attempt

to consider dependences at different scales. This is however a type of hierarchy that does

2 Support Vector Machines are a class of linear, kernel-based classifiers. More precisely, the SVM is
a maximum margin classifier, since it is aimed at finding the best discrimination hyperplane in the
kernel space so that the distance between positive and negative example data points is maximised.
This boundary is fully determined by the data points that are closest to the boundary between
positive and negative samples, under the hypothesis of linearly separable samples. These points are
called support vectors.
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not try to consider the scene as a structured composition of parts. Rather, it is based

on modelling of category correlation at different scales. The lack of proposals may be

due to the fact that object models, that can take large advantage from a hierarchical

structured description, do not pair easily with label field models such as CRF, that have

proven very successful in semantic segmentation. One attempt of merging object models

with random fields is represented by the method proposed by Larlus et al . [72–74]. This

is a generative model where distributions for features extracted at regular rectangular

patches are drawn from a model that incorporates the notion of object instances. In

particular, a hypothesis on a certain number of objects is generated as a Dirichlet process,

and the patches are associated to the object instances. The posterior of the features given

the object instance is then modelled. The resulting probabilistic distribution is enriched

with a set of pairwise distributions on neighbouring patches that represents a Markov

Random Field (MRF). The effect of the MRF on the object model is the regularisation

of the label field. This expressive generative model however is not really a hierarchical

model, but merely one that consider latent object hypotheses that are entities on a

coarser scale than the grid patches.

5.2.1. Binary Partition Trees

The work that is by far the most relevant for my contribution is the one by Vilaplana

et al . [129, 130]. They introduce the concept of binary partition tree (BPT), which is a

hierarchical, region-based representation of the image. Even though this is not explic-

itly stated in their presentation, a BPT is essentially a hierarchical clustering of image

patches. By applying the hierarchical clustering representation to the image domain,

they obtain a principled way to define sets of regions that capture different objects in

the image at multiple resolutions. The representation also respects the compositional

nature of natural scenes, discussed earlier in this chapter. The model is then used for

object detection, but no accurate probabilistic classification model is used in conjunction

with the BPT. Rather, a set of thresholds and rules is set to find the level in the tree in

which objects are found and to identify the branch containing a specific class of objects.

An example of the typical output of the algorithm is presented in Figure 5.2.

The starting point in the construction of a BPT is an image that has been over-

segmented in homogeneous regions. The segmentation algorithm used for the overseg-

mentation is not critical to the algorithm. In their work, the authors use a colour- and

shape-based region merging algorithm as segmentation method, that is similar to the
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Figure 5.2.: The binary partition tree for a test image with the algorithm proposed by Vila-
plana et al . [130]. The image on the left is the original one, while the one on the
right represents the initial partition, that is, the result of the over-segmentation.
Below, the dendrogram is shown.

algorithm that is used later on to merge regions in the BPT. In this work, however,

the more accurate over-segmentation based on spectral clustering is used. The resulting

set of patches is called initial partition. Once the initial partition is available, a set of

merging operations is performed. Patches constitute the initial regions, and merging

operations are performed until all the regions are merged in a single region contain-

ing all the patches. The procedure represents an agglomerative hierarchical clustering

strategy, whose steps are summarised by the following algorithm, where ri are regions,

N (ri) is the neighbourhood of ri, and f(ri, rj) is the similarity measure between ri and

rj:

1: set R = {r1, . . . , rn} as the set of initial regions;

2: for all ri ∈ R do

3: calculate N (ri) as set of regions connected to ri;
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4: for all rj ∈ N (ri) do

5: calculate f(ri, rj) as similarity between regions ri and rj;

6: end for

7: end for

8: while |R| > 1 do

9: find argminri,rj∈N (ri)
{f(ri, rj)};

10: set rk = ri ∪ rj ;
11: set N (rk) = (N (ri) ∪ N (rj)) \ {ri, rj};
12: for all rl ∈ N (rk) do

13: set N (rl) = (N (rl) ∪ {rk}) \ {ri, rj};
14: calculate f(rk, rl) as similarity between regions rk and rl;

15: end for

16: set R = (R \ {ri, rj}) ∪ {rk};
17: store merging operation and cost f(ri, rj);

18: end while

The sequence of all the merging operations is the BPT for the image. Being a hierarchical

clustering strategy, the BPT is uniquely determined once the similarity measure is given,

as explained in Section 5.1. Indeed, for this specific application domain, the initial

set of conditions includes the constraints on the regions that can be merged. This is

indeed a particular case of constrained hierarchical clustering, which in general is a

NP-complete problem [23]. However, the particular constraint of region connectivity

makes the problem even simpler due to the ease of calculation and update of the allowed

merging operations, as presented in the algorithm above.

The similarity measure has a capital importance in the quality of the resulting den-

drogram, and therefore of the subsequent analysis of the image. It is important to include

some domain knowledge in it, rather than using a feature-based measure as introduced

in the general discussion of Section 5.1. The authors of BPT propose a strategy that

combines a term fc depending on colour information and a term fp depending on the

contour information. The first one is aimed at obtaining regions that are homogeneous

in content, while the second one penalises regions that are not compact. The latter prin-

ciple is in agreement with the consideration that natural objects are normally compact.

The similarity measure is

f(ri, rj) = αfc(ri, rj) + (1− α)fp(ri, rj) (5.5)
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where α is a weighting parameter chosen to be 0.5. Additionally,

fc(ri, rj) = Ni‖w(x̄i − x̄k)‖2 +Nj‖w(x̄j − x̄k)‖2 , (5.6)

where Ni, Nj are the areas of the regions i, j, w(x) is a vectorial function that weights x

by the inverse of the dynamic range of the components of x in the image, rk = ri∪rj , and
x̄i, x̄j , x̄k are the averages of the feature vector of the regions i, j, k within the regions.

The feature used for the colour is the pixel colour in the (Y, Cb, Cr) colour space. The

function considers the content of the whole regions rather than being based on maximum

or minimum pixel distance to achieve a good compromise in region homogeneity. The

weights Ni, Nj favour the growing of regions of similar size. Finally,

fp(ri, rj) = max{0,∆P (ri, rj)} (5.7)

where ∆P (ri, rj) is the difference between the perimeter of the region rk and the maxi-

mum of the perimeters of ri, rj,

∆P (ri, rj) = P (rk)−max{P (ri), P (rj)} = min{P (ri), P (rj)} − 2P (ri ∪ rj) . (5.8)

The authors define two partitions (that is, sets of regions) in the resulting den-

drogram: the initial partition is also named accuracy partition, since it provides high

accuracy on the fact that single regions encompass a single object or part of it. Addi-

tionally, the search partition is a partition that proves useful for object detection tasks,

defining a set of regions that are likely to include the object that one wants to search.

The authors individuate this partition by setting a stopping criterion that is based on

the accumulated merging cost for the merging operations in the image. This is clearly a

threshold that is, up to a certain extent, image-dependent, and therefore suboptimal. As

said, no machine learning methodology has been included in the algorithm, and object

detection happens by the means of application of a number of criteria and conditions

manually set on the regions.

5.2.2. Image Pyramids

The proposed work is based on the construction of an image pyramid. This is analogous

of a binary partition tree, being basically the result of a hierarchical clustering algorithm.

The pyramidal structure embeds the hierarchical structure of the image, as different
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Figure 5.3.: Pixel boundary probability, used in the distance measure for the image pyramid
construction. On the left, the original image. On the centre, the pixel boundary
probability map (the darker, the greater the probability for a pixel of being a
boundary). On the right, the segmentation is super-imposed to the map.

dendrogram nodes contain object instances present in the scene. The dendrogram nodes

are referred to as super-patches, since they are compositions of patches. The purpose of

the image pyramid is to provide the structural support for a probabilistic model of the

label field that is detailed in the following Section 5.3. The image pyramid construction

algorithm is an agglomerative clustering strategy. In this section the details of the

implementation used in this work are presented and justified.

The starting point for the pyramid construction is the set of dense patches that have

been obtained with over-segmentation. For this purpose, the normalised cuts has been

used, as presented in Section 3.2.3. This is in general much more accurate than the simple

method to obtain the initial segmentation for a BPT, that is based on a colour-based

region merging approach. Even though the oversegmentation method is not critical, as

previously mentioned, there are two reasons for this choice. The first is to be consistent

with the patches used when performing the CRF-based analysis. This enhances the

comparability of the results reported in Chapter 6 for different approaches. The second

reason is that the adoption of a stable, widely used method for patch extraction allows

to better isolate the contribution to the results caused by the proposed image model.

The metric used for the spectral clustering directly estimates the boundary probability,

based on colour, intensity and texture cues. An example of pixel boundary probability

map is presented in Figure 5.3.

The constraint for the merging operations considered in the BPT is the patch connec-

tivity: for each patch, connection candidates are chosen between neighbouring patches.

In this work, an additional constraint has been introduced, to discourage the merging

of patches belonging to different objects. The allowed connections to be candidate for

merging operations are the ones that form a spanning tree on the image patches. The
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spanning tree is obtained through a MST algorithm that is run by weighting the patch

connections with the boundary probability already used for the over-segmentation, in

the patch extraction phase. This is motivated by the fact that the boundary probability

between two patches offers a locally very reliable source of information. It is therefore

appropriate to use this measure locally to select links. However, when the merging of

big regions is involved, such as in the agglomerative clustering strategy, the boundary

probability becomes a weak measure since a local underestimate of the boundary prob-

ability between two patches would potentially generate an early merging of two very

dissimilar regions. This is because such a metric is comparable to the minimum distance

clustering metric presented in Eq. (5.1). A global metric based on the appearance of the

whole regions is to be preferred instead. In detail, the weights for the edges to be used

in the MST algorithm are calculated starting from the pixel boundary probability map,

that is the probability, for each pixel, to be part of an object boundary [89]. For each

link, the weight is estimated by averaging the boundary probability over all the pixels

that constitute the boundary between two patches.

Once the MST is obtained for an image, the clustering algorithm is run. Note that

the hierarchical clustering will not decide the structure of the connections, meaning

which patches are connected with each other. Instead, it will merely prioritise the

connections selected locally by the MST algorithm. Given the order of the links, the

hierarchy tree is uniquely determined. The distance measure used for the dendrogram

construction is similar to the one proposed for the BPT. In particular, two terms are

included in it, one that accounts for the shape of the super-patches and the other one

that is proportional to the patch feature difference. The first term is the same that is

used in the BPT. The term based on features is calculated starting from the features

used for the appearance-based independent classification of the patches. These features

include information on the patch colour as well as the patch texture content. The colour

part of the texture is a 30-bin normalised hue histogram, as presented in Section 3.3.2.

The feature vector for textures is a 40-dimensional GMM of texton filterbank responses,

as described in Section 3.3.1. The use of mixtures and histograms is very convenient for

iterative clustering, since the features for a super-patch can be obtained from features of

the generating blocks. The recalculation of the features from scratch for each super-patch

is therefore avoided.

The pyramid is finally built with an agglomerative clustering algorithm. For each

super-patch, the children and the merging cost are stored. Two examples of pyramids
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Figure 5.4.: Dendrogram for two images of the MSRC dataset. On the top-right, the part of
the image corresponding to the labelled super-patch is represented.

are shown in Figure 5.4. The images are related to the LabelView visualisation tool

developed as a research support, and detailed in the Appendix C.

5.3. Probabilistic Modelling

The main idea of the hierarchical model is to favour smoothing in a way that is similar

to a classical graphical model such as CRF or MRF, but embedding the hierarchical

structure of the image in the operation, to favour a meaningful uneven propagation of

label confidences. The initial hypothesis is that a dendrogram can be built over an image

that respects the hierarchy of objects in a scene. The corresponding formal requirement

would be that any two patches belonging to the same object instance are merged together

before they merge to any of the patches belonging to other object instances, or to the

background. This is the aim of works such as the BPT, and in many cases a dendrogram

that mostly respects this requirement can be obtained. There are cases in which such a

dendrogram cannot be obtained for topological reasons, such as when a partial occlusion

determines the disconnection of patches belonging to the same object instance. Such

cases are however rare. The most common reason for failure in respecting the hierarchy

requirement in an image is due to different objects with similar appearance (e.g ., sky

and water at the horizon), or objects made by very heterogeneous parts (e.g ., the wind-

shield and the frame of a car). These cases are however relatively uncommon and the

metrics proposed in Section 5.2.1 partially account and prevent them.
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search space
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Figure 5.5.: Image pyramid, where the search space, that is, the set of nodes that represent
the hypothesis on the scene objects, is shown. The split area and the merge area
are the sets of nodes for which the split and merge operations are considered in
the model.

The conceptual model is that a set of super-patches represents the objects in the

image. This is what in the BPT formalism has been named as search space. This name

will therefore be used in the following to indicate the initial objects hypothesis set of

super-patches. It is however difficult to find the correct search space, using only features

from the patches and the pyramid. Given an initial search space, the model allows for a

certain probability that a super-patch in the search space is actually a composition of two

or more objects. This is modelled by a certain split probability ps(sp). The probability

of a split indicates the probability that the two children of the super-patch sp represent

more than one object. In case of a super-patch split, the same considerations hold for

the children. Each one of them will be analysed according to the same logic, so that

they can represent a single object or be a composition of different objects. This process

is repeated recursively until the leaf nodes, that are the image patches.

An analogous model is applied towards the top of the pyramid. For each super-patch

of a given search space, there is a certain probability that it represents a full object.

Otherwise, it may be the parent of that super-patch that represents a bigger part of the

same object, together with the super-patch sibling. In other words, the parent of each

super-patch above the search space has a merge probability, pm(sp), that indicates the
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probability that its children contribute to the formation of a single object or part of it.

Again, the same considerations will be applied recursively to the parents of each super-

patch. Figure 5.5 shows a toy dendrogram in which the search space is highlighted, as

well as the pyramid areas in which the merge and the split operations are considered.

The compositional model just presented is also referred to as split-and-merge model,

due to the previously described dynamics.

This model represents a probabilistic version of the BPT concept of search space. In-

deed, a similar approach has been already applied to the general hierarchical clustering

domain. In the Bayesian Hierarchical Clustering (BHC) algorithm [56] a probabilistic

model embedding the splitting mechanism described above has been used as a statisti-

cal hypothesis for data clustering. In particular, this Bayesian approach is based on the

hypothesis that points belonging from the same cluster are drawn from the same (Gaus-

sian) probability distribution. The clustering approach is an agglomerative hierarchical

clustering strategy. Therefore, the probability of the data is estimated for each possible

merge operation in the clustering iteration. The two different hypotheses are that the

data belong to a cluster, or that they form two different clusters. The global probability

for a sub-tree considered in an iteration of the algorithm is

p(Dk|Tk) = πkp(Dk|Hk
1) + (1− πk)p(Di|Ti)p(Dj |Tj) . (5.9)

In the above equation, Di and Dj are the data points considered for merging, and Ti, Tj

the corresponding sub-trees. The merged data hypothesis is Dk = Di∪Dj , and Tk is the

corresponding tree. The first term in the equation corresponds to the case in which the

data is drawn from the same distribution (hypothesis Hk
1), which happens with probabil-

ity πk. The second term considers the case in which they are drawn from more than one

distribution. This formulation is used to express clusters distance for the agglomerative

hierarchical clustering and obtain good-quality dendrograms. The proposed labelling

strategy presents a partial modelling analogy with the described algorithm, but it is

used to find a sensible label distribution for the patches once a dendrogram has been

obtained with the BPT algorithm, that is tailored to the application to image domain.

5.3.1. Label Probability Under the Split Model

The starting point to calculate the label distribution for each patch, pi(l) (indicated as

pi in the following, for brevity), is an initial hypothesis for a search space. This can be
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search space

search space

(a) (b)

Figure 5.6.: Notation related to the analysis of the pyramidal probabilistic labelling model.
(a) The patch from patch i, with associated probability pIND

i , to the object
super-patch spN , in the split model. (b) The patch from the root spN to the
object super-patch sp0, in the merge model.

obtained either by fixing the number of initial objects, or by thresholding the merging

cost in the hierarchical clustering algorithm. For a patch i, the object super-patch in the

search space is spN,i, at distance N in the pyramid. In the following, the subscript i for

all the super-patches related to the patch i will be omitted for conciseness. The super-

patches in the path between the patch i and the super-patch spN are {sp1, . . . , spN−1}.
The label distribution obtained by independent patch classification is pIND

i . For each

super-patch sp, the label distribution under the hypothesis that the super-patch repre-

sents a single object is pIND
sp . This is obtained as the average of pIND

i for all the patches

included in sp, weighted according to their area. The described notation is represented

in Figure 5.6(a). The resulting distribution for a patch can be written as

psi =
(N)psi = pIND

spN
(1− ps(spN)) + ps(spN)

(N−1)psi . (5.10)

The quantity (n)psi is the label distribution for the patch i when considering spn as object

node (super-patch in the search set). The psi is obtained recursively, and the recursion

step is

(n)psi = pIND
spn (1− ps(spn)) + ps(spn)

(n−1)psi , (5.11)

for n ∈ [1, N ]. The base of the recursion is

(0)psi = pIND
i . (5.12)
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The chosen model for the split probability is a binomial logit, of the form

ps(sp) =
1

1 + exp(−θs · xsp)
, (5.13)

θs being the parameters of the model, and xsp the relevant super-patch features.

5.3.2. Label Probability Under the Merge Model

The label probability distribution for the patch i can be obtained for the merge model

analogously to what has been done for the split model. Indeed, the starting point for the

merge model is the distribution obtained for each patch with the application of the merge

model. If the parent of the object node associated to a patch i does not merge its children

(with probability (1 − pm(sp))), the patch i will take the distribution calculated using

the split model. Otherwise, the distribution of the parent will be considered instead.

For the merge model, in order to achieve a similar notation to the split model, the root

of the pyramid is indicated with spN . The super-patches in the path between the object

node and spN are the super-patches {sp1, . . . , spN−1}. This configuration is represented

in Figure 5.6(b). In this way,

pmi = (0)pmi = psi (1− pm(sp1)) + pm(sp1)
(1)pmi . (5.14)

The recursion step is in this case

(n)pmi = pIND
spn (1− pm(spn+1)) + pm(spn+1)

(n+1)pmi , (5.15)

for n ∈ [1, N − 1]. Finally, the base of the recursion is

(N)pmi = pIND
spN

. (5.16)

As a particular case of the merge model, when the search space consists of the single

root node of the pyramid, the merge model is not used and only the split is considered.

However, this is usually an oversimplifying model because it weights too much the trivial

solutions (the ones in which the whole image is labelled with the same category). Anal-

ogously to the split model, as stated in Eq. (5.13), the model for the merge probability
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is

pm(sp) =
1

1 + exp(−θm · xsp)
, (5.17)

where θm are the parameters of the model.

5.3.3. Model Learning

The distributions pIND
i , and therefore the pIND

sp , are computed independently to the

pyramid model by independent patch classification. The parameters of the model that

have to be learnt are therefore the ones related to the split and the merge probabilities,

that is, ps(sp; θs) and pm(sp; θm). The parameter vectors θs and θm are learnt by max-

imising a fitness function on the labelled training set. The proper fitness function to

maximise would be the likelihood for the labelling of the training set according to the

model, following a MAP approach. The problem is that the full labelling probability for

an image is not factorisable, because it is a summation of terms. This is in contrast to

what happens for the graphical models explored in Chapter 4. The log-likelihood of the

labelling probability cannot be calculated analytically in a simple iterative form. Addi-

tionally, the labelling probability in linear scale tends to be very small, causing numerical

approximations problems in the implementation of an optimisation algorithm.

The chosen workaround is to maximise an analogous fitness function, that is, the

product of all the marginal patch probabilities in the model, that is, a ML approach.

Under this approximation, the patches are considered as independent, and the log-

likelihood for the i-th training image is

logLi(θ) =

mi∑

j=1

log(p(yij|xij)) =

mi∑

j=1

log(pmi (yij)) . (5.18)

The quantity in Eq. (5.18) can be maximised with an iterative maximisation method.

To this end, the efficient calculation of both the probability and the gradient of it

is necessary. The analytical expression for the probabilities related to the split-and-

merge model are summarised in the sections above. The gradient can be evaluated in an

analogous way. For greater clarity, the gradient for the probability under the split model

is derived first. In particular, the gradient of the general recursion step in Eq. (5.11) is

∇θs
(n)psi = ∇θsps(spn)

[
(n−1)psi − pIND

spn

]
+ ps(spn)∇θs

(n−1)psi . (5.19)
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The base of the recursion is obtained by calculating the gradient of Eq. (5.12), obtaining

∇θs
(0)psi = 0 . (5.20)

When integrated in the merge model, the gradient with respect to the split parameter

vector θs has to be multiplied by a factor (1−pm(sp1)), as from Eq. (5.14). The gradient

with respect to the merge parameter vector θm is analogous to the one just derived. For

the recursion step, it is

∇θm
(n)pmi = ∇θmpm(spn+1)

[
(n+1)pmi − pIND

spn

]
+ pm(spn+1)∇θm

(n+1)pmi , (5.21)

and the base of the recursion is

∇θm
(N)pmi = 0. (5.22)

Eq. (5.21) holds for n ∈ [1, N − 1]. For n = 0, pIND
spn ought to be replaced with psi .

In Eq. (5.19) and Eq. (5.21) the gradients of ps(sp) and pm(sp) appear, respectively.

These are, according to Eq. (5.13), Eq. (5.17),

∇θsps(sp) = xspps(sp)(1− ps(sp)) , (5.23)

∇θmpm(sp) = xsppm(sp)(1− pm(sp)) . (5.24)

5.3.4. Efficient Split Model Probability Calculation

The label probabilities under the split-and-merge model can be calculated recursively as

discussed above. The same holds for the probability gradients. The recursive calculation

is efficient, involving an iteration that is, for the combined models, equal to the depth

of the single patch. For the label probability under the merge model, in particular, the

recursion steps involving each super-patch can be evaluated once for all the nodes for

which that super-patch is in the path to the root. This is due to the fact that the base

of the recursion for this model, in Eq. (5.16), is related to the pyramid root. Of course,

the same consideration holds for the probability gradient.

However, for the split model the same consideration does not hold. In particular,

the base of the recursion in Eq. (5.12) is related to the i-th patch. For this reason,
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since in the recursion the probability partial results are propagated bottom-up towards

the nodes in the search space, they have to be re-estimated for each patch, resulting in

an inefficient operation. This drawback can be overcome with a dynamic programming

algorithm, in which contributions for all the super-patches are back-propagated from the

search space to the leaf nodes. This is done by recursively updating contribution terms

top-down from the nodes in the search space. To obtain the form of the update rules,

the end of the recursion in Eq. (5.10) is considered. This equation gives the actual split

probability for the patch i, and it is in the form

(N)psi = A1 +B1
(N−1)psi , (5.25)

where







A1 = pIND
spN

(1− ps(spN))

B1 = ps(spN)
. (5.26)

Expanding (N−1)psi in Eq. (5.25),

(N)psi = [A1 +B1p
IND
spN−1

(1− ps(spN−1))] + [B1ps(spN−1)]
(N−2)psi =

= A2 +B2
(N−2)psi . (5.27)

From Eq. (5.27) the recursion rule for Ak, Bk is obtained,







Ak+1 = Ak +Bkp
IND
spN−k

(1− ps(spN−k))

Bk+1 = Bkps(spN−k)
, (5.28)

that are valid for k = [1, N − 1]. The Ak, Bk are estimated once starting from the nodes

in the search space. At the end, for the i-th patch, the label probability is

psi = AN +BNp
IND
i . (5.29)

A similar approach is applied to the gradient calculation. Here, the end of the

recursion, for Eq. (5.19) with n = N , is written as

∇θs
(N)psi = L1 +M1

(N−1)psi +N1∇θs
(N−1)psi , (5.30)
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where







L1 = −∇θsps(spN)p
IND
spN

M1 = ∇θsps(spN )

N1 = ps(spN)

. (5.31)

Expanding (n−1)psi and ∇θs
(n−1)psi in Eq. (5.30),

∇θs
(N)psi = [L1 +M1p

IND
spN−1

(1− ps(spN−1))−N1∇θsps(spN−1)p
IND
spN−1

]+

+ [M1ps(spN−1) +N1∇θsps(spN−1)]
(N−2)psi+ (5.32)

+ [N1ps(spN−1)]∇θs
(N−2)psi =

= L2 +M2
(N−2)psi +N2∇θs

(N−2)psi .

From Eq. (5.32) the update equations for Lk,Mk, Nk are







Lk+1 = Lk +Mkp
IND
spN−k

(1− ps(spN−k))−Nk∇θsps(spN−k)p
IND
spN−k

Mk+1 =Mkps(spN−k) +Nk∇θsps(spN−k)

Nk+1 = Nkps(spN−k)

. (5.33)

The update equations in Eq. (5.33) are valid for k = [1, N −1]. Eventually, the gradient

for the i-th patch is

∇θsp
s
i = LN +MNp

IND
i . (5.34)

5.3.5. Entropy-based Likelihood Compensation

The results discussed in Section 6.4.3 show that the likelihood-based model fitting pro-

cedure is not the optimal one. In particular, for simple choices of features, it is easy

to see how the quality of the labelling is not easily linked to the likelihood. A model

can lead to better results than another one, being however associated to a lower likeli-

hood of the labelling. This problem affects the model fitting since the optimisation is

driven by the likelihood maximisation. This effect is discussed in the results chapter.

The reason beyond the failure of the likelihood maximisation function is likely to be

related to the working principle of the labelling algorithm. The split-and-merge model

works by “spreading the uncertainty” on the labelling of a patch among all the other
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patches in the sub-tree in which the patch is located. For this reason, while the label

probability distribution of a patch that is misclassified is driven towards the one of the

neighbours in the pyramid, the distribution of the neighbours is also negatively affected

by the presence of a misclassified patch.

A possible solution to this problem is to re-design the model-fitting process in order

to account for the cited effect. This can also be done by proposing a more complex

model for the probability that suffers less from the stated effect, while retaining the cur-

rent simplicity and algorithmic efficiency. However, this would be a major contribution

requiring an extensive amount of work, and is therefore not in the scope of this thesis.

In order to achieve an effective automatic fitting of the model, nonetheless, a partial

solution is proposed to balance the effect of loss of confidence in the correctly labelled

patches by propagating it to the nodes that are misclassified. This is based on an

additional term in the likelihood to be maximised in the training. Large split and merge

probabilities tend to favour homogeneous label patterns, by levelling high-confidence

distributions and adding to the distributions that are flatter. This effect is desirable,

since for labelling purposes, high confidence on the label is not relevant, as long as the

peak of the distribution is on the patch true category. On the other side, the contribution

to the patches with little confidence can be determinant for their correct classification.

The homogeneous, low confidence configurations are penalised in the log-likelihood,

since the lowering of the true label probability in a patch negatively influences the likeli-

hood. In order to balance for this, a term including the entropy of the label probabilities

is included in Eq. (5.18), leading to

logL′
i(θ) =

mi∑

j=1

log(pmi (yij))− α

mi∑

j=1

∑

y′

pmi (y
′) log(pmi (y

′)) . (5.35)

The weight α is a mixing parameter. The entropy term has a similar structure to the

likelihood function and therefore it does not require additional computational effort.

The gradient is modified analogously,

∇θ logL
′
i(θ) =

mi∑

j=1

∇θp
m
i (yij)

pmi (yij)
− α

mi∑

j=1

∑

y′

(1 + log(pmi (y
′)))∇θp

m
i (y

′) . (5.36)

The role of the entropy term is to favour homogeneous labelling configurations. A

correct balancing with the first likelihood term, that promotes high-confidence on the

true labelling configuration, gives a generally better model, as shown in Section 6.4.3.



Chapter 6.

Applications and Experimental

Results

This chapter provides details on the the experiments conducted on the proposed mod-

els previously discussed in the thesis, focusing on the intended goals and the obtained

achievements. In particular, all the claims previously made in discussing the different

contributions are validated and experimental evidence is given. Whenever possible, a

comparison with related work in literature is also presented, allowing the contextualisa-

tion of the proposed contributions in the research scenario.

6.1. Testing Databases

Image categorisation and, to even a greater extent, image semantic segmentation are a

relatively recent field of study for the community of computer vision. This is due to the

fact that the recent advances in computational power of recent computers have made the

implementation of complex part-based probabilistic models possible. For this reason, the

community still partially suffers from a lack of uniquely recognised standards for testing

and validating models. The data sets used in early works were often proprietary or

not extensively available and the labelled ground truth made in the single laboratories.

Different papers sometimes even use different measurements and metrics to evaluate the

performance of their work. This represents a major drawback for the comparison of

different methods and proposals. This is additionally stressed by the fact that many

proposed systems differ more on the final aim than for the adopted solution, and a

different set-up of the training phase may stress one rather than another purpose.

120
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As the field grows in importance and recognition in the community, efforts have been

made to fill the gaps in the system evaluation and comparison tasks. This is a major

step, witnessed in the last three years during the work for this thesis, which is likely to

accelerate and strengthen future achievements. Recently some databases have known

growing popularity. The first field to witness a consolidation in the testing databases

has been image categorisation, as well as object detection, especially for systems aimed

at modelling single instances of object categories rather than understanding images. In

this case, databases consisting of images portraying single instances of an object of a

given category are useful and have been made available, after a long cataloguing work,

by large research groups. Perhaps the most notable example of this process has been

the Caltech 101 dataset [32]. As the name suggests, the collection contains images of a

single instance of object taken from 101 categories. For each category there are about

40 to 800 images, with in average around 50 images. The Caltech 101 has been later

expanded to form the bigger Caltech 256 dataset [46], containing 256 categories. Images

from this dataset depict a single instance of an object, with limited scale, perspective

and orientation variations. Objects are always centred in the image and fully visible.

However the categories present a notable variability in representation, and the actual

object can be either a real instance, or a sketch or a similarly man-made representation of

it. The background is very diversified, varying from plain white to cluttered background

providing context for the image object. As a ground truth, the object outline is provided

for the Caltech 101 database images.

Semantic segmentation is a goal that requires an additional level of effort for what

the dataset is concerned. A pixel-level ground-truth as to be available. Even though

some few proposals specifically address the problem of weakly labelled training images,

for which no pixel-level labelling is provided, this is necessary at least during the testing

phase. Manually labelling images is a long, delicate and resource consuming process that

requires the commitment of many people, and a valid supervision to provide a consistent

result. Two are the main early examples of image sets used for this target. The first

one is the so-called Corel database, that has been used substantially since the early

days of CBIR. This database is actually a set of images CDs from a product of Corel

Corporation, a Canadian computer software company. The collection is roughly split

in different categories, or subjects. In different scientific experiments different subsets

of this large set of images have been used. Even though it is almost commonly agreed

that this dataset does not provide a good testing ground by itself [97], a pixel-labelled

subset of it has been used for semantic segmentation since a few years ago [53,122,128],

and it is still sometimes used even in the latest works [135]. This pixel-level ground-
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Figure 6.1.: Some examples of images and ground-truth for the MSRC database. It is possible
to appreciate the difference in scale and appearance of different object instances,
as well as the complexity of the entire scene.

truth is however not widely publicly available. The commonly used pixel-level-labelled

Corel subset contains two clusters of natural images: the first ones are taken in an

African scenario and contain animals such as hippos and rhinos, while the second ones

are taken in an icy Polar scenario, containing animals such as polar bears. The Sowerby

database [19] is another example of pixel-labelled image collection. It is made by images

of outdoor scenes, and the categories that are represented are such as “building”, “tree”,

“road” and so on. The database is one of the first ones of its kind, and has been created

by the Sowerby Research Centre of the former British Aerospace Plc, now BAE Systems

UK. However it has never been publicly available and it is now difficult to obtain and

falling into disuse.
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The first serious attempt to provide a public common database for semantic segmen-

tation is represented by the Microsoft Research Cambridge (MSRC) database1 [138].

This collection is being used extensively in the last years for its wide availability [15,22,

66, 73, 117, 127, 128, 139], and for this reason it can be considered almost as a de-facto

standard for testing semantic segmentation algorithms. The MSRC database consists

of images of outdoor scenes, plus faces in indoor scenes. The images present cluttered

background, multiple object instances for several of the object categories, different object

scales, and different degrees of partial occlusion. Additionally image analysis is in gen-

eral very challenging for the variance on the appearance of different object instances (for

example, buildings). There are two versions of the database. The first, initial version in-

cludes 240 images belonging to one of 13 possible categories (“building”, “grass”, “tree”,

“cow”, “horse”, “sheep”, “sky”, “mountain”, “aeroplane”, “water”, “face”, “car”, “bicy-

cle”) or “void” for the ambiguous pixels. However, the authors of the data set suggest to

discard the categories “horse”, “sheep”, “mountain” and “water” (treat them as void),

due to the lack of training data for reliable training and testing phases. With this mod-

ification, the total amount of categories is reduced to 9, and the dataset is commonly

known and referred to as MSRC-9. The second version later expanded the first by adding

other categories, namely “flower”, “sign”, “bird”, “book”, “chair”, “road”, “cat”, “dog”,

“body” and “boat”, for a total of 23 categories in 591 images. In this case, the authors

suggest to discard the categories “horse” and “mountain”. The dataset is commonly

called MSRC-21. Some examples of images and labelling ground truth for the MSRC-9

database are shown in Figure 6.1. The hand-made ground truth is slightly imprecise, as

discussed later on in this chapter, since the object boundaries in the ground truth are

not consistent with the real ones. This has also been noted by other authors, that when

addressing accurate boundary segmentation had to use their own improved ground truth

labelling [66]. The database is extensively used for this work.

Finally, it is worth mentioning a recent attempt by the community to have different

institutions and research groups competing on a common ground in tasks such as object

detection, localisation, and segmentation. This initiative is called PASCAL Visual Ob-

ject Challenge (VOC) [30], organised within the PASCAL Network of Excellence (NoE).

In this context a set of training and test images is made available every year as well

as the related ground truth, in terms of object bounding boxes. The set of images is

actually composed of photos retrieved from the “flickr”2 website, that offers a free image

storage service and tagging tool, and is therefore very significant in terms of relevance for

1 Available on-line: http://research.microsoft.com/vision/cambridge/recognition/.
2 http://www.flickr.com/.

http://research.microsoft.com/vision/cambridge/recognition/
http://www.flickr.com/
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the users. Even though the challenge initially would not include semantic segmentation,

this category has been proposed in the last editions, initially as a “taster” event, but

being elected as a regular category in the VOC 2009. To give a general idea of the char-

acteristics of the collection, it contains 1499 images labelled at pixel-level, containing 21

categories. The images are a subset of those of the object detection dataset.

It is worth mentioning how the research community is currently very active in pro-

viding labelled data for image analysis and retrieval. In particular, systems to gather

relevant image tags through gaming [44] and large collaborative annotation tools [69]

are proving successful and give hope for a future with more data to be mined and auto-

matically processed by learning algorithms.

6.2. Image Categorisation Results

In this section, results related to the image categorisation task are reported. This part of

the work mainly represents preliminary study on part-based image analysis, finalised to

the understanding of the role played on the parts and the structure in the probabilistic

modelling and in the detection results. To this end, Section 6.2.1 presents results of the

proposed system for a lean modelling of part-based system with few patches that are

coarse in scale. The results allow to draw conclusions on how the size of the patches

influences the system performance. Similarly, structure and patch shape considerations

are analysed in Section 6.2.2.

6.2.1. Colour-based Reduced-Parts Classification

The first part of the PhD work has been aimed at the evaluation of the performance

of a part-based image categorisation system based on CRF with a particular focus on

the scalability of the performance while considering a reduced number of patches and

fast feature extraction and analysis [1, 2]. One of the main shortcomings of graphical

models for part-based object detection is indeed the fact that the learning and the

classification steps of the system tend to become computationally- and time-expensive

due to the modelled patch dependences. In particular, this is due to the fact that the

patches are usually in a high number within a image and they are not bound to any

particular semantics. They are extracted on a regular grid or by oversegmentation to

represent small areas that are homogeneous and accurately representable with a low-
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Figure 6.2.: Images labelled as “face” (top row) and background examples (bottom row)
from the Caltech 101 dataset. The images have been used for the validation of
the cartooning-based image classification system as described in Section 6.2.1.

level descriptor. A colour-based system to classify images based on the analysis of a

low number of coarse but discriminative patches has been proposed and evaluated. In

terms of statistical model, this has been done by tailoring the MHCRF-based object

detection system presented in Section 4.2.3 to object categories that can be adequately

well identified by colour cues. The findings, when compared to a more general HCRF

imposed over salient points, have been promising in terms of time efficiency, while the

reduced precision in classification and the requirements to be satisfied by the category

to be identified make it suitable only for specific usage scenarios.

The system is based on patches extracted via the cartooning process described in

Section 3.2.2. For this experiments, a “näıve” implementation of the non-linear diffusion

has been used, which is indeed computationally expensive. There are however different

optimised versions of the algorithm available to reduce this hurdle [137]. A simple and

reasonably good feature set associated to the patches for the purposes of this test is

composed of the patch colour (represented as a triplet of numbers in the RGB space)

and the number of patch pixels, obtaining a four-dimensional feature vector. I have

considered this last feature to let the model weight differently the patches in relation

to their size. This can narrow the effect of the noise introduced in the segmentation

process, which can be partially associated to small patches.

Even though the MHCRF model supports the presence of multiple categories, the

system has been tested on the simpler scenario of single category classification. The
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used dataset is the Caltech 101. In particular, images from the “face” category were

discriminated against images chosen from all the other categories. Some examples of

the images used in the experiment are provided in Figure 6.2. This category were

selected since faces can be, up to a certain point, discriminated on colour, and the

number of images in this category is relatively high in the target database. The data

sets were populated by choosing 300 images from the face category and other 300 images

randomly from the other categories, and then subdividing the set in three subsets equally

dimensioned to obtain a training set, a test set and a validation set. Each subset was

therefore composed of 100 “face” and 100 “background” images. The validation set was

used to test the σθ smoothing parameter in the log-likelihood evaluation, as introduced

in Eq. (4.40): the learning was performed with different values of σθ and the model

that performed the best based on the validation set was considered for the performance

evaluation on the test set. The results have been evaluated using as a reference a

implementation of the model proposed by Quattoni et al . [103]. This model has been

personally implemented for performance comparison.

The patch extraction process resulted in an average number of 80 to 100 patches,

which is more than one order of magnitude less than in the reference model. This has

been obtained by imposing as parameters of the cartooning algorithm p = 0.01 and per-

forming 3000 iterations. In practice, if the complete convergence has not been achieved

by the non-linear quantisation process after the chosen amount of iterations, the colour

quantisation can introduce errors originating additional segments in the images. This

effect has been reduced by the application of a discretisation filter that segmented the

regions removing the smoothing by considering two (four-connected) pixels as belonging

to the same region if their Euclidean distance is below a certain small threshold. This

discretisation process is indeed a connected-component analysis to cluster similar pixels.

The approach uses a merging criterion that is completely local, considering only the dif-

ference between neighbouring pixels. This is motivated by the fact that the non-linear

quantisation, even if not fully converged, produces sharp edges between different regions.

Propagation of regions between their boundaries is therefore avoided. Two versions of

the model were tested, with the discretisation filter enabled and disabled. The results

obtained from the tests are shown in Table 6.1.

The first information arisen from the tests is related to the convergence problems

of the algorithm. The L-BFGS algorithm failed in finding the optimal solution for the

given training set, and the best partial result on the log-likelihood maximisation had to
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Model iterations relative elapsed time σθ accuracy

ourdf 68† 0.04 104 77%

our 79† 0.14 1 83%

MIT 160 1 0.1 90%

Table 6.1.: Comparison of performance, in terms of speed and accuracy, between our model
with the discretisation filter enabled (“ourdf”), with the discretisation filter dis-
abled (“our”), and the reference one (“MIT”). The number of iterations during
the training, the relative training time rescaled to the reference model, the sigma
prior value and the classification accuracy are shown. †: the minor number of
iterations is not due to settings but to the impossibility for the algorithm to find
a better solution after that step.

Configuration

INDsp independent patches located on salient point

INDrg independent patches located on a regular grid

CRFsp CRF with salient points connected in a tree

CRFrg CRF with patches located in a grid 4-connected in a regular lattice

Table 6.2.: Summary of the different configurations tested for the object detection method
based on MHCRF for the structural choice analysis in Section 6.2.2.

be chosen in order to perform the accuracy evaluation. The model trained with features

obtained without the use of the discretisation filter performed better. This behaviour

can be explained with two arguments: the first is that the number of nodes increases as

the region colours are not previously flattened. The second reason, that explains more

generally the convergence problem, is that the local function structure is too simple to

embed the correct colour information, and the skin colour can not be adequately isolated.

This aspect penalises the optimisation algorithm, considering that the target function

(the likelihood) is not convex and presents multiple minima due to the presence of the

latent layer of patch nodes. On the other side, the improvement in terms of training

speed of the framework is significant as expected.

6.2.2. Structural Choices Analysis

This work highlighted the availability of different techniques for patch extraction, as well

as the different connections choices that are possible with graphical models applied to

image categorisation and semantic segmentation. In particular, for this last application,
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results related to the proposed system based on over-segmentation and patch appearance

coherence have been presented in Section 6.3.1. The results related to this proposed

strategy are presented later on in this chapter. Additionally, a study on different patch

extraction and connection possibilities for image categorisation was performed. This has

been done in relation to the MHCRF model presented in Section 4.2.3 [4]. The tested

modes are summarised in Table 6.2.

The patches are located either on salient points or on a regular grid. The first ap-

proach is preferred in object detection systems, where the actual salient point position

configuration can be useful to discriminate different objects. On the other side, segmen-

tation problems often rely on regular structures that allow a uniform coverage of the

image area. For what image categorisation systems are concerned, there is no guarantee

that the category of interest will be adequately or coherently covered by salient points.

Salient points have been extracted using the SIFT detector, as described in the relevant

thesis’ chapter. For the patches extracted on a regular grid, 20×20 pixels square patches

have been taken with a 10 pixels overlap. As patch descriptors, in both cases SIFT de-

scriptors have been used to have a common ground for result comparison. In particular,

when dealing with salient points, their scale and orientation have been used to extract

the SIFT descriptors at the patch. When rectangular grid patches where considered,

fixed orientation and scale proportional to the size of the patch were used instead.

Even though the graphical model used for object detection can be used for simultane-

ous multiple category detection, the instance used in this set of experiments was based

on a single category and was trained separately for each different category on which

the experiments have been run. For the choice of connections, two possibilities have

been considered for each patch extraction method. Both the models based on patches

extracted on salient points and on regular grid have been run in a “connectionless”

configuration, in which no inter-patches connections were present, but only the ones be-

tween patches and category nodes. Additionally, a “connected” version for both of them

has been considered. For patches extracted on salient points, the graphical structure

consisted of a tree obtained using the MST algorithm on the full set of image patches

where the weights between two nodes have been set to the distance between the centres

of the correspondent salient points (in analogy with Quattoni et al . [103]). In this way,

exact inference is possible at patch-level. Differently, patches extracted on a regular

grid have been connected in a rectangular lattice. In this case, approximate inference at

patch-level was performed via LBP.
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P
P
P
P
P
P
P
P
P

config.
cat.

build. grass tree cow sky

INDsp 91% 84% 91% 89% 87%

INDrg 73% 89% 67% 78% 87%

CRFsp 84% 87% 93% 84% 84%

CRFrg 69% 82% 69% 80% 87%

Table 6.3.: Image-level labelling accuracy for different categories using different configura-
tions for the model.

Experiments were run on a subset of the MSRC database. For this set of experiments,

five categories have been considered, that is, “building”, “grass”, “tree”, “cow” and

“sky”. Even though they are considered singularly, the categories are very diverse both

in terms of appearance and extension in the image. Some of them have the traits common

to foreground objects, while others typically represent background. Detection results for

different configurations of the model are shown in Table 6.3.

It is possible to notice that when considering patches on detected points without

spatial connections, results are comparable with similar works [15], being the expressive

of the model similar. As a first result, it can be seen that the results for the model

with patches placed on salient points were generally better. This is due to the fact that

these patches are usually more stable and descriptive than the ones whose position is

forced with a rigid placement. The only exceptions were categories like sky and grass,

that are not generally well covered by the salient point locator, being smooth areas. For

this reason, forcing a regular coverage increased the representativeness of the patches

for these categories. This is in line with findings by other authors that a dense coverage

of the image tends to help in scene classification tasks [33].

The results showed that the structural information is not always useful to improve

detection results. As a side effect the complexity of the model increased, both in terms

of number of parameters to tune in the training phase, and of BP complexity. Improve-

ments were reported only on tree and grass categories, for the model based on salient

points. This can be explained with the fact that these categories tend to present a

homogeneous coverage of the same type of textures, so that structural (proximity) in-

formation can be helpful in improving the confidence. The sky category did not present

such improvements because, since few salient points fall in the sky regions, the model
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Figure 6.3.: Precision-Recall curves for the retrieval of images of different categories, for
patches taken on interest points (top) and regular grid (bottom), either consid-
ering structure (right) or not (left).
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tends to discriminate the category with the help of other (usually unstructured) salient

points located on objects of different categories.

To have a better detail on the retrieval performance of the algorithm, Precision-Recall

curves of the tested models for patches located on salient points and on a regular grid

are shown in Figure 6.3.

The under-performance of the approaches based on CRF is an evidence of a general

trend. In fact, there is a capital, valuable message that all the studies presented so far

seem to put forward from different perspectives. This is about when it is useful to con-

sider structure in the image analysis. When putting together the results obtained in this

thesis with other works in the literature, a general rule seems to emerge. When image

categorisation (image-level labelling) is considered as target of the analysis, structural

analysis in the “näıve” form of pair-wise potentials with neighbouring patches is dis-

ruptive. Local image salient regions, mainly associated with specific details of depicted

objects, are better analysed independently to label the image as a whole. Influence

from a large amount of patches that are irrelevant for the image classification tends to

cancel out the positive contribution of these highly discriminative points. Other, less

constraining types of dependence between parts have however proven useful, such as

co-presence. Also, spatial models have proven useful to find and match object instances,

in object detection tasks. The capital difference between an object model and the struc-

tural model considered in this and similar [103, 104] works is that the latter does not

model an object, but rather the structure of the image as a whole. The picture changes

when the target problem involves the location of the categories, or the classification of

the pixels. In the remainder of the chapter, semantic segmentation of images is con-

sidered, where the positive role of the structure is clear and by now agreed within the

research community. This message can be considered as one of the important output of

my PhD work. The performed experiments contributed to the general and incremental

development of awareness about the limitations of the present structural models when

image classification is considered.

6.3. Semantic Segmentation Results

In the following results related to the semantic segmentation systems based on CRF are

presented. This is the main focus of the PhD work. The tests are performed on the

MSRC database, to ease the comparison with other works. The results in this section are
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Figure 6.4.: Detail of two examples in which the ground truth provided with the database
is not consistent with the actual object category near the object boundaries.
On the left, the ground truth image; on the centre, the original image with
segmentation and ground truth categories boundaries, and on the right our
labelling.

calculated at patch-level. A patch is considered classified correctly if its label is the same

as that one of the majority of the pixels in the ground truth label map, under the patch

support. This provides accurate results since the over-segmentation guarantees, up to

a certain extent, that the label of the pixel within a patch are consistent. A commonly

adopted alternative is to evaluate the results on a pixel-level basis, that is, labelling

each pixel of a patch with the corresponding patch label and then comparing with the

ground truth label map. This is in general better because it provides a common ground

to compare to the pixel-based classification methods, and it is equally applicable when-

ever rectangular patches that significantly overlap between different objects are used.

However, in this case performance evaluated on a pixel-level basis highlighted inaccura-

cies in the localisation of the object borders in the ground truth maps. The labelling

inaccuracy for the MSRC database has been noticed by other authors as well [66]. In

many occasions this penalises the accurate segmentation provided by the employed seg-

mentation method. This effect is illustrated in Figure 6.4, in which details of both the

manual reference labelling and the estimated label field are depicted for two example

images. The overall effect of such an imprecise labelling is a slight fluctuation of the

pixel-level labelling results when compared to the patch-level ones. Such results however

remain quite near across all the experiments.

Computational Complexity Considerations. The computational complexity of

the processing steps involved in semantic segmentation has not been given a consider-
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able importance in the discussion. Most attention has been devoted to the complexity of

the inference and training steps, and considerations about the performance of different

methods are commented throughout the section. This behaviour is common in seman-

tic segmentation literature, and the justification is twofold. On the one hand, feature

extraction and patch extraction are modules analysable separately from the main pro-

posals, that are related to the used probabilistic models. Their complexity can therefore

be analysed separately. Often this analysis is presented in the literature where the single

processing and extraction steps are presented. On the other hand, the complexity associ-

ated to the probabilistic models tends to represent the biggest challenge. This is because

that is inherent to the probabilistic model being proposed. The patch and feature ex-

traction modules can be modified and substituted in a real-scenario deployment of the

system. Recent research for example addressed the efficiency of the over-segmentation

step, as discussed in Section 3.2.3. Feature description is more consolidated and different

optimised strategies are used in practical applications already. For feature extraction an

important consideration is that several methods that have been used include a training

phase and an extraction phase. For example, in order to calculate texton descriptors

as described in Section 3.3.1, either a texton dictionary calculation or a GMM training

are involved. These are expensive steps, as detailed in the respective sections. The

texton dictionary involves a k-means algorithm in a 39-dimensional space. Similarly, the

GMM is trained with an EM algorithm on the same space. The PCA used to reduce

the dimensionality of histograms also involves the estimation of a space-transformation

matrix. Once the training is done, the calculation of the features is faster (even though

word association and histogram calculation are lengthy processes compared to GM fit-

ting). Other practical considerations regarding the application of semantic segmentation

have to be done depending on the application domain [9].

6.3.1. Appearance Coherence and Weak Neighbours

A set of tests was performed on a CRF model for semantic segmentation in order to assess

the validity of the graph selection method based on appearance coherence proposed in

Section 4.3.2, and of the weak neighbours categories explained in Section 4.3.3 [3, 8].

The single model choices for the frameworks were tested and proved. The corresponding

results, reported in Table 6.5, are explained in the remainder of this section. The tests

were executed using the 9 category MSRC dataset introduced in Section 6.1. To achieve

stable and significant results, these were performed on three different splits of training
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Model Description

INDNW Independent patch model (Section 4.2.1).

IND as INDNW, but trained weighting the examples based on the relative cat-
egory frequencies.

MSTAC CRF model with patches obtained through over-segmentation, connected
in a tree obtained via acMST (Section 4.3.2).

MSTAC,B as MSTAC, but with rectangular overlapping patches extracted on a regu-
lar grid.

MSTHUE as MSTAC, but pairwise potential functions weighted on the difference in
feature vectors.

MSTCC as MSTAC, but weighting the connections for the MST algorithm in the
tree construction phase on the patches centre distance.

MSTWN as MSTAC, with the additional contribution of weak neighbours.

Table 6.4.: Description of the different model configurations that have been tested.

and test set. Each split randomly divides the dataset into 75% training images and 25%

test images.

Initially, to have a reference for the model performance, the independent patch model

discussed in Section 4.2.1 has been tested. The patches have been obtained with an

over-segmentation method based on NCuts. They have been described with feature

vectors built by concatenating a texton descriptor for textures, a hue descriptor for

colour content, and the normalised position of the centre of gravity of the patch within

the image. Details on the patch extraction method and on the descriptors are given in

Chapter 3.

The first consideration involves the unbalance in the frequency of different categories.

The categories relative occurrences vary significantly: the most common one, “grass”,

occurs in the 30% of the patches, while the rarest amounts to only less than 3% of them,

the difference being more than one order of magnitude. Tests with the independent patch

model highlighted that some poorly represented categories suffer from this unbalance,

as shown in the row indicated with INDNW in Table 6.5. In particular, the “aeroplane”

category is penalised because it is a rare category whose patches tend to get confused

with “building”. These two categories share similar homogeneous white patches. Ad-

ditionally, aeroplanes do not possess patches with strong texture content, and they are

not reliably discriminable with using the colour. The strong edge content of the planes
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Build.
(14.5%)

Grass
(30.1%)

Tree
(14.1%)

Cow
(7.2%)

Sky
(13.4%)

Plane
(2.8%)

Face
(3.2%)

Car
(7.5%)

Cycle
(7.3%)

Avg.

INDNW 58.4
(1.48)

93.7

(1.94)
72.7
(1.60)

54.8
(5.54)

96.1
(2.18)

25.0
(4.65)

54.9
(1.62)

50.2
(0.68)

55.2
(2.69)

72.4
(1.51)

IND 55.4
(1.84)

92.3
(1.56)

74.6
(1.71)

51.8
(5.85)

96.2
(2.11)

34.4
(4.99)

57.5
(1.06)

52.5
(2.68)

59.3
(3.54)

72.6
(1.26)

MSTAC 61.0
(8.35)

91.7
(3.63)

81.8
(5.84)

73.4
(13.36)

95.1
(2.51)

72.4
(7.32)

82.8
(10.75)

84.2
(7.47)

85.2
(7.91)

82.8
(3.21)

MSTAC,B 55.2
(8.84)

92.9
(4.39)

84.3
(5.14)

78.8
(10.09)

93.1
(1.79)

75.4
(10.36)

88.9
(10.74)

76.0
(12.72)

75.1
(11.63)

81.0
(1.11)

MSTHUE 55.2
(2.92)

92.5
(1.88)

73.8
(2.12)

54.6
(6.48)

95.6
(1.98)

36.9
(5.34)

57.6
(4.26)

53.1
(0.45)

59.5
(2.62)

72.7
(1.44)

MSTCC 57.5
(5.43)

91.5
(3.30)

80.3
(4.51)

76.6
(7.91)

94.3
(0.75)

68.1
(8.71)

87.8
(19.73)

77.4
(10.93)

75.0
(6.94)

80.6
(3.36)

MSTWN 68.7
(8.20)

93.1
(4.66)

85.7

(4.10)
73.5
(6.71)

96.5

(1.76)
73.0
(4.50)

95.8

(3.37)
85.5
(7.71)

85.4

(7.42)
85.6

(1.93)

LITgen [127] 74.0 88.7 64.4 77.4 95.7 92.2 88.8 81.1 78.7 82.3

LITloc [128] 71.4 86.8 80.2 81.0 94.2 63.8 86.3 85.7 77.3 82.3

LITglob [128] 73.6 91.1 82.1 73.6 95.7 78.3 89.5 84.5 81.4 84.9

Table 6.5.: Models comparison table. Categories relative occurrences are shown next to the
name, in parenthesis. The configuration associated to each model is detailed
throughout Section 6.3.1 and summarised in Table 6.4. The results are in terms
of percentages of patches correctly classified, for each category (for the refer-
ence models, the results are pixels percentage – the difference is negligible given
our patch segmentation approach). Under them, in parentheses, is the standard
deviation over different runs.

is used for patch extraction but it is not adequately represented in the descriptors. This

effect was partially counteracted by optimising a modified version of the objective func-

tion presented in Eq. (4.9). Single image likelihoods were weighted according to their

ground truth categories. A weighting vector wc was introduced whose elements are the

reciprocals of the category frequencies in the entire database, or wcj = 1/p(lj). If the

categories distribution in the training image i is represented by the vector pli, the weight

for the likelihood of the i-th image is wc · pli. Results obtained in this way with the

independent patch model are indicated as IND in Table 6.5. A general improvement on

the fairness of classification can be noticed, paid by an only very small drop in the overall

precision (0.2%). For this reason, all the other models have been trained by weighting

the likelihood as explained.

Then, experiments on structured models were run. The row MSTAC in Table 6.5

indicates the results obtained with the CRF as described in Section 4.2.2 with the

proposed connection model based on appearance coherence (Section 4.3.2). It is possible

to notice a dramatic improvement of the results when compared with the independent

patch model. To prove the validity of choice for patch extraction, results obtained with
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the MSTAC model were compared with a similar model in which however patches were

taken in a 20×20 regular grid with 10 pixels overlapping. The results for this model are

presented in the row MSTAC,B. It is possible to see how these were globally worse for

the block-based model even though the number of patches in this latter model amounts

to roughly double the number (620 blocks compared to 300 over-segmented patches).

As for the choice of potential functions for the pairwise connections discussed in

Section 4.2.2, functions weighted on the difference on the hue part of the patch feature

vectors were tested. Related results are presented in the row MSTHUE. This setting did

not provide the expected improvements. The reason for the observed under-performance

is two-fold. On the one hand, the MSTHUE increased the optimisation problem dimen-

sionality, resulting in a less effective training. On the other hand, the pairwise functions

are defined on the difference of appearance between connected variables, that is min-

imised in the graph construction step. As a result, the pairwise terms are affected to

feature vectors noise and their utility is limited. Hence, for the following, the LUT-based

pairwise potential functions were chosen.

The choice of the graph connections was then evaluated. In particular, a CRF model

based on a tree built according to the appearance-coherence method detailed in Sec-

tion 4.3.2 was compared with an analogous model where the graph is built using the

MST algorithm weighting the edges on the distances between patch centres, according

to the criterion that close patches are more likely to be related than distant ones. Re-

sults are shown in Table 6.5, where the performance on the model without connections

is reported as well for comparison. As expected, a drop of performance is observed, es-

pecially for those categories that tend to present elongated patches and for which colour

is discriminative of the single instances, as “aeroplane”, “car” and “bicycle”.

Finally, full neighbourhoods were considered using the weak neighbours model. Re-

lated results are indicated as CRFWN in Table 6.5, and the method is detailed in Sec-

tion 4.3.3. These ones revealed very promising, showing a clear increase in the overall

classification accuracy. Additionally, the increase is spread quite uniformly among all the

categories. The only exceptions are the “cow” and “face” categories. The former pays for

the increase for other categories with the same compatible neighbours (as “building”).

On the other hand, the latter represents a particular case since the indoor background of

the “face” areas is not present as a category in the system and it is therefore regarded as

“void”. Therefore, the face category has limited benefit from neighbouring patches. The

only positive contribution for it is that confidence on the labelling tends to propagate
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Void Build. Grass Tree Cow Sky Plane Face Car Bicycle

Build. 806 1336 23 110 23 36 50 0 143 39

Grass 722 13 3665 91 54 1 11 1 3 1

Tree 376 40 99 1296 8 17 3 5 7 9

Cow 371 41 28 131 711 0 2 11 1 22

Sky 249 50 1 27 5 1640 5 0 14 0

Plane 193 119 22 16 3 1 292 0 2 3

Face 1193 22 20 2 100 6 0 378 0 0

Car 618 159 0 47 18 22 2 0 790 20

Bicycle 678 79 5 88 0 1 0 15 1 844

Table 6.6.: Category confusion matrix for the CRF model with graph based on appearance
coherence and weak neighbours. Rows are the labels inferred by the system, and
columns are the real category labels. The numbers are in terms of patches.

from patches classified with high confidence thanks to their appearance, to ambiguous

ones.

In order to prove the general validity of our method, it was compared with other works

that have been tested on the same database [127,128]. In particular, the proposed model

performed better than LITgen [127], a generative approach combining MRF and pLSA.

The same model also performed better than the CRF-based LITloc [128]. This work,

relevant to this thesis, has been already presented in Section 2.2.3. The limited difference

with the LITglob model [128], is due to the usage, in the latter, of global features that

in the proposed configurations were not present.

To have a better insight of the performance of the model based on weak neighbours,

namely MSTWN, the category confusion matrix is reported in Table 6.6. Much of the

confusion between categories is due to some of the inter-category appearance similarities

being comparable to the intra-category ones. Additionally, in Figure 6.5 examples of

labelled outputs of the same model are shown. It is possible to notice how the seg-

mentation of objects is generally accurate. The labelling of “void” areas is sometimes

reasonable, as for the path in the third example labelled as “building”. However, the

absence of certain categories causes the overestimation of the extent of some objects, as

for the “car” and “bicycle” objects in the sixth and seventh examples, in which the road

is absorbed into these objects. Finally, the absence of the “object instance” concept in

the system makes the presence of single scattered misclassified patches difficult to tackle,

as for the “aeroplane” patch in the second example.

For what the computational complexity is concerned, the figures are similar for all

the CRF-based methods. The experiments have been run on different machines, so an
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Figure 6.5.: Images from the MSRC database segmented with the proposed method based
on weak neighbourhood and appearance coherence for graph connections. In the
first row the original images, on the second row the ground truth, on the third
row the results obtained with the CRFWN model as detailed in Section 6.3.1.
The category labels legend is reported in Figure 6.1.
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Building
(12.5%)

Grass
(40.8%)

Tree
(15.2%)

Cow
(9.2%)

Sky
(17.6%)

Aeroplane
(4.7%)

Average

Base 76.3 (4.41) 89.9 (4.16) 85.3 (3.44) 83.3 (7.22) 96.2 (1.33) 73.8 (5.93) 87.2 (1.31)

WWHG 68.4 (8.12) 86.5 (10.82) 68.3 (12.44) 75.1 (11.30) 94.4 (2.87) 55.4 (16.51) 80.3 (5.15)

WWH3 75.4 (5.88) 90.4 (6.34) 75.3 (4.08) 81.6 (8.70) 91.6 (3.00) 81.0 (6.70) 85.1 (2.00)

WWH6 76.8 (5.39) 87.8 (2.13) 77.0 (0.38) 85.7 (2.04) 93.6 (1.81) 78.6 (5.04) 85.5 (1.15)

WWH12 80.0 (2.05) 90.9 (4.68) 84.9 (4.97) 83.0 (7.07) 95.9 (0.63) 72.4 (7.96) 87.9 (0.51)

WWHG,3 69.2 (7.65) 85.6 (10.47) 72.7 (10.12) 77.6 (8.75) 91.5 (5.33) 61.6 (8.04) 80.7 (4.98)

WWHG,6 70.7 (3.74) 87.6 (12.04) 73.9 (11.12) 80.0 (6.92) 93.3 (4.13) 62.3 (8.34) 82.4 (5.11)

WWHG,12 75.0 (3.95) 88.0 (10.40) 75.0 (10.54) 76.4 (10.58) 93.4 (4.71) 57.9 (14.02) 82.8 (4.50)

WWH3,6 75.6 (3.24) 92.0 (4.96) 76.4 (6.97) 79.6 (10.02) 92.1 (2.39) 79.9 (9.83) 85.7 (0.87)

WWH3,12 76.6 (6.98) 90.7 (4.55) 76.7 (3.69) 80.4 (9.34) 91.2 (2.87) 80.8 (5.72) 85.4 (2.25)

WWH6,12 75.9 (2.58) 91.0 (3.77) 80.4 (1.04) 83.3 (8.89) 96.6 (0.81) 80.5 (3.20) 87.3 (0.79)

Table 6.7.: Result table for the evaluation of the WWH descriptors on the six categories
MSRC dataset subset. Next to each category on the first row is the relative oc-
currence. The reported accuracy rates are the percentage of patches correctly
classified. Next to them, in parentheses, is the standard deviation over differ-
ent runs. “Base” is the base model without additional descriptors. The sub-
scripts {G,3,6,12} in WWH refer to the value of window standard deviations
{+∞, d/3, d/6, d/12}, respectively.

accurate timing analysis has not been performed. Some considerations can therefore

be made considering the order of magnitude of the training and test durations. The

appearance model alone is much faster to train than a CRF model (around 4 hours

compared to 60 hours for a CRF). The discriminative nature of the model however makes

the testing efficient in all configurations: both independent patch model and CRF can

be tested in less than 30 seconds on 60 images. The inclusion of the hue in binary

potentials calculation does not affect performance noticeably because of the gradient-

based nature of the optimisation algorithm. Compared to other works, especially the

ones using CRF on a regular lattice [128], the proposed model has a low associated

complexity. It does not rely on LBP that, as mentioned earlier in Section 4.2.2, does

not even offer guarantees of convergence.

6.3.2. Integration of Distributed Descriptors

This section details the results related to the integration into a CRF framework for

image semantic labelling of distributed descriptors presented in Section 3.4. This set of

experiments shows the improvements related to an augmented context awareness of the

probabilistic framework when the medium and long range context are accounted in the

descriptors used at local level for patch labelling.
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Analogously to what happened for the weak neighbours analysis, the MSRC-9 dataset

was used to produce the test results. The final comparison with other works was per-

formed on the full dataset. Additionally, tests to tune the model and get better insights

on the performance of the proposed descriptors were done on a subset of the dataset con-

taining only the six categories, namely “building”, “grass”, “tree”, “cow”, “aeroplane”

and “sky”. This allowed a faster training phase, and therefore the test of a greater num-

ber of configurations. This has been exploited in particular for the WWH descriptor,

that is expensive both in the extraction and in the evaluation phase. In both cases,

the set-up of the tests was the same, and the results were always averaged over three

different splits of training and test set. A selection of the best performing configurations

were compared on the nine categories dataset against two methods described by Verbeek

and Triggs [127, 128].

In Table 6.7 results for different configurations of the WWH descriptor are reported.

For this descriptor, windows of different sizes were tested. In particular, the standard

deviation of the Gaussian window that determines the aperture of the support for the

histogram calculation, was chosen to be σs ∈ {+∞, d/3, d/6, d/12}, where d is the image

diagonal. The value σs = +∞ corresponds to the global window, that is, the same image-

wide descriptor is considered for all the patches. Combinations of descriptors at different

scales were also tested. The experiments on six categories allowed for an exhaustive test

of all the pairing of scales. The combined descriptors were obtained by appending the

related feature vector in a longer local descriptor.

The first point to note in the results of Table 6.7 is that the improvement of the

results is, in the six categories case, modest at most. Most of the configurations actually

present a performance decrease over the baseline. The reason for this is to be found in a

saturation of the performance of the model. For few concepts, the simple baseline model

describes adequately enough most of the images. Therefore, the patches that are not

correctly labelled by the baseline, are those that present a very misleading appearance

and are difficult to recover using the context. In this picture, additional features for the

patches do not bring a strong positive contribution. Additionally, the increase of the

size of the parameter vector leads to a model that is longer to train and less flexible to

generalise its behaviour from training to test images. It is however reasonable to expect

a greater influence of the distributed descriptor when a larger number of categories and

images are considered. This is indeed what happens, as proven by the results on the

full dataset of nine categories, presented in Table 6.8 and discussed in the following

paragraphs.
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The first conclusion that can be made from the experiments on six categories is that

the scale of the histogram window greatly affects the results. The results are not guar-

anteed to improve when considering distributed information. On the contrary, choosing

the wrong size for the descriptor windows triggered a worsening of the system perfor-

mance. This is due to the lack of generalisable discriminative power of descriptors at

certain scales, as well as to the curse of dimensionality. When the space of the solution

increases, so does the need for training samples and training time. A lack of sufficient

training data does not allow the learning of a good problem solution. Over-fitting of

the model can also occur. Additionally, it can be noticed that the overall performance

increased as the window scale decreased (in particular, σs = d/12). This contrasts

with the findings of Verbeek and Triggs [128] that reported the greatest improvements

when global aggregate features are used. It is however possible to explain this apparent

disagreement in the findings by focusing on the difference between the models. In par-

ticular, the advantages of the global descriptors used in their work can be associated to

a image-wide re-use of the local node features. The proposed descriptors, on the other

side, are based on words calculated on salient points that are complementary to the node

features. Their role is therefore substantially different. The location of the words on

salient point ties them to objects and this increases their positional significance. A more

isolated contribution of local distributions is eventually more effective than a moderate,

global one.

As anticipated, in Table 6.8 results of the experiments run on the full MSRC-9 dataset

are reported. The base model were tested, as well as the model with WWH descriptors

and with LTD descriptors, as introduced in Section 3.4.2. Additionally, two of the

works of Verbeek and Triggs on the same dataset [127,128] are reported for performance

comparison.

For what WWH descriptors are concerned, the results confirm the findings of the tests

on the six categories MSRC subset. The improvement on the baseline is nevertheless

much larger, as expected. The proposed strategy clearly outperforms similar methods

in the literature tested over the same dataset. A note has to be made on the variability

of the single category precisions when changing the window size parameter. This is due

to the fact that in the training the global accuracy is maximised rather than the single

category ones. Different categories are better described by distributed descriptors at

different scales. Once the scale of the descriptor is fixed, then, the categories that are
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Build.
(14.5%)

Grass
(30.1%)

Tree
(14.1%)

Cow
(7.2%)

Sky
(13.4%)

Plane
(2.8%)

Face
(3.2%)

Car
(7.5%)

Bicycle
(7.3%)

Avg.

Base 63.0
(7.43)

94.2
(0.71)

68.9
(9.11)

84.4
(7.06)

93.7
(3.36)

75.8
(5.78)

92.9
(6.15)

76.4
(10.65)

86.5
(10.91)

82.9
(2.68)

WWHG 50.3
(18.39)

87.4
(8.32)

70.3
(10.94)

73.7
(8.27)

81.2
(15.18)

65.7
(16.46)

85.2
(12.55)

66.2
(24.98)

83.1
(4.10)

75.3
(6.33)

WWH3 71.2
(16.73)

94.2
(3.70)

71.7
(5.90)

85.4
(8.21)

94.0
(3.90)

73.1
(7.47)

96.9
(1.89)

70.0
(16.28)

95.2

(1.27)
84.8
(2.44)

WWH6 74.9
(10.18)

94.6
(2.36)

72.1
(5.65)

87.9

(4.17)
94.9
(2.27)

73.0
(2.90)

99.3

(0.67)
74.6
(8.53)

94.2
(2.53)

86.2

(2.22)

WWH12 68.1
(9.66)

95.1

(3.51)
75.4
(6.88)

87.4
(4.34)

94.3
(2.88)

73.2
(4.20)

96.8
(4.33)

79.7
(5.65)

90.1
(8.99)

85.6
(2.69)

WWH6,12 76.7

(8.00)
94.6
(2.44)

71.4
(6.37)

86.3
(6.09)

95.0
(2.20)

73.1
(9.24)

99.3

(0.67)
73.2

(13.30)
93.7
(2.92)

86.2

(1.79)

LTD6 57.5
(12.78)

94.2
(1.22)

76.9
(4.57)

84.3
(8.43)

92.5
(2.93)

73.9
(3.59)

88.2
(1.20)

80.6
(14.18)

88.5
(1.76)

83.2
(2.69)

LTD12 60.2
(5.91)

94.3
(0.88)

76.5
(4.43)

84.2
(8.22)

93.2
(2.56)

73.5
(3.01)

91.9
(6.83)

80.3
(13.91)

89.6
(3.15)

83.9
(1.66)

LTD24 61.5
(4.70)

94.1
(0.99)

76.6
(5.00)

83.9
(8.64)

93.8
(3.74)

74.3
(5.60)

91.6
(7.04)

80.4
(14.08)

88.3
(4.92)

84.0
(1.94)

Lit. [127] 74.0 88.7 64.4 77.4 95.7 92.2 88.8 81.1 78.7 82.3

Lit. [128] 73.6 91.1 82.1 73.6 95.7 78.3 89.5 84.5 81.4 84.9

Table 6.8.: Classification precision results for different categories and in weighted average.
Categories relative occurrences are shown under the name. “Base” is the base
model without additional descriptors. The subscripts {G,3,6,12,24} in WWH and
LTD refer to the value of window standard deviations {+∞, d/3, d/6, d/12, d/24},
respectively. Under each score, in parentheses, the standard deviation over dif-
ferent runs is reported.

better described on that scale are favoured by the optimisation step (the adaptation of

the parameter in their favour produces a higher likelihood increase).

When applying the LTD descriptor, a slight drop of performance was experienced

in comparison with the WWH, even though the performance still reports improvements

over the base model. As a result, the method can be roughly placed at the same level

of other works in the literature. As hinted when introducing the LTD descriptor in

Section 3.4.2, this is likely to be due to the simplification assumption associated to

the dimensionality reduction before local word aggregation. The independence between

contributions is highlighted in the very reduced performance difference with different

configurations, with σs = {d/6, d/12, d/24}.

6.4. Image Pyramids

This section presents the results related to the last part of the research, that is, the

hierarchical image models based on image pyramids [7], as presented in Chapter 5.
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Build.
(14.5%)

Grass
(30.1%)

Tree
(14.1%)

Cow
(7.2%)

Sky
(13.4%)

Plane
(2.8%)

Face
(3.2%)

Car
(7.5%)

Bicycle
(7.3%)

Avg.

Textons, patch 57.7 93.6 68.3 52.8 98.6 32.7 56.9 53.0 57.5 73.3

GMM, patch 68.2 94.4 72.4 60.5 98.3 41.4 58.9 57.3 61.3 77.1

Textons, pixel 55.2 94.8 70.4 51.5 97.8 27.6 59.1 54.4 53.8 73.0

GMM, pixel 67.0 95.2 74.7 60.2 97.4 41.0 63.3 57.5 59.2 77.2

Table 6.9.: Classification precision results for an independent patch classification model, us-
ing both textons and GMM descriptors. Results calculated at both patch- and
pixel-level are reported, showing that the difference between these two methods
in calculating the performance is minimal.

This model has been extensively tested, comparing different configurations to assess

the role of each single contribution singularly and to fully understand their role. The

dataset used is mainly the full MSRC database, containing 21 categories. This is in

contrast with previous experiments, but allows to compare our work with more pieces

of research in the area. Some of the experiments, that do not require direct comparison

but are rather meant to assess design decisions, are carried out on the 9 categories

dataset. Additionally, tests on the 9 categories dataset allow a direct comparison with

the previously proposed techniques.

6.4.1. Mixture of Gaussians

At first, for this contribution the description of the patches has been improved. The idea

was to use a soft assignment of filter-bank responses to visual words rather than a hard

one, as for textons. Therefore, descriptors based on a Gaussian Mixture Model (GMM),

as described in Section 3.3.1, are introduced, and compared with texton histograms.

An important difference between the two model is the absence, in the case of GMM,

of the dimensionality reduction step. In this case, this is directly done in the choice

of the mixture components. The soft-assignment of the pixels to the mixture elements

reduces the error caused by the quantisation. The final length of the descriptors based

on texton histograms reduced via PCA, and of the ones based on GMM, is therefore

the same. This is equal to 40 in these experiments. This choice is in agreement with

the configuration of the previous models. Additionally, taking the same length for the

GMM creates a fair scenario for the comparison of the results.

The experiments were carried out on the MSRC-9 database, since the aim was a

comparison between the discrimination power of two different types of descriptors. The
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used model is the independent patch model described in Section 4.2.1. Using this model

allowed to isolate the contribution of the descriptors in the patch classification process.

The obtained results, presented in Table 6.9, highlight the superior performance of the

GMM for independent patch classification. The average results when using GMM over

the ones using textons show almost a 4% improvement. Additionally, another positive

aspect is that the less represented categories are the ones that gain the most. Indeed, for

the category “sky”, it is possible to notice a slight performance drop. However, the gain

for the categories “building” and “aeroplane”, often confused with “sky”, is remarkable.

The GMM descriptors have therefore been used in the following for patch classification.

6.4.2. Feature Smoothing

Several experiments using the hierarchical image representation introduced in Chapter 5

were executed. For these experiments the variance over multiple runs has not been

formally evaluated. However, the results proved stable throughout different runs, when

varying different model parameters. This is in itself a demonstration of the statistical

relevance of the obtained figures. At the same time, the dependence of the results

on some parameter modification is shown as predictable general trends, that are in

accordance with what can be expected from the underlying theory.

The experiments presented in this section start from the consideration that the image

pyramid built on each image allows to identify a hierarchical structure in it, and therefore

to have a principled way to contextualise each single patch in the scene. Each patch

appears in several super-patches, that are the nodes of the dendrogram that forms

the image pyramid. Therefore, context can be considered when classifying a patch

by considering the super-patches in which it is contained. The pyramid also defines an

order for such super-patches. Starting from the patch and going towards the top of

the pyramid, super-patches are sorted in decreasing relevance order with respect to the

starting patch.

One way to account for the patch context is to consider the split-and-merge model

proposed in Section 5.3. However, to have an initial idea of the effect of considering

increased context when classifying a patch, a set of preliminary experiments enabling

the context integration at feature level has been performed. In particular, context-

augmented features can be defined for each patch by mixing the features of the patch

with the ones of the parents, and learning the independent patch model parameters using

these features. Fixed weight have been used, summing up the patch features with the



Applications and Experimental Results 145

56

58

60

62

64

66

0 1 2 3 4 5 6 7 8 9 10

precision

depth

pixel

♦

♦
♦

♦
♦

♦
♦ ♦

♦ ♦ ♦
♦

patch

+

+
+

+
+

+
+ +

+ + +

+

Figure 6.6.: Dependence of the average classification precision on the depth considered in
averaging patch descriptors.
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Figure 6.7.: Difference between classification precision with fixed and learnt weights for the
features averaging process. This is plotted against the depth of the considered
operation. The results are at pixel-level.

features of each super-patch up to a certain depth. The features of a super-patch are the

average of the features of the contained patches, weighted according to the patch area.

The results are shown in the graph of Figure 6.6, for a maximum depth in the pyramid

varying from 0 to 10. The figure reports the results at both patch-level and pixel-level.

The results tend to improve, with a obvious tendency for the saturation. The results are

on the MSRC-21 dataset, and therefore the average precision is less than what reported

in Table 6.9.

It is also possible to learn the mixing weights. This can be done by calculating the

variation of the likelihood, and its gradient, with the variation of the weights of the

features at a certain depth. The optimisation is performed iteratively by a gradient-

based method. In Figure 6.7 the precision at pixel-level obtained with fixed weights

is compared to the one obtained after the weights optimisation. An improvement can
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Figure 6.8.: Precision obtained with an independent patch classification and with the split
model, for different levels of feature smoothing. The experiments were done
with both fixed and learnt weights for features smoothing. The results are at
pixel-level.

again be noticed, even though this tends to reduce with the depth increase. The weighted

features are not normalised. However, a similar weight-learning procedure accounting

for normalisation did not show appreciable difference.

6.4.3. Split-and-Merge Model

The application of a split model has been tested on the dataset. The split model is

a simplified version of the split-and-merge model where merging operations are not

considered. Instead, the initial hypothesis is of a single object node, corresponding to

the root of the pyramid. The model maximally favours the simplest solution containing

one single object (homogeneous labelling of the whole image). The split model uses

super-patch features for evaluating the split probability. For this set of experiments,

only two features have been used. The first of them is the difference in number of

patches between the two children of a super-patch. The motivation beyond this choice

is that unequal tree sizes are penalised, so when they happen it may be because the

visual traits of the branches are so different that an earlier join was not possible. The

second feature is the symmetric KL divergence between the distributions of the children

of the super-patch (considered as for the split model). Again, a significant difference in

distribution is more likely to indicate the presence of two different objects.

The tests have been run with different configurations. It is clear that, even though

the smoothing of the features analysed in the previous section provokes a result increase,
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Configuration Features Length

NONE no features – constant split probability 0

CDIFF difference in number of patches between children 1

CDIFF2 as CDIFF, plus average CDIFF of the children 2

DEP super-patch depth (distance from the root) 1

KL symmetric KL divergence between the children distributions 1

SPVF Visual Features of super-patch 72

SPD Distribution of super-patch (as in split model) 21

Table 6.10.: Summary of the different features tested for the split model.

the corresponding smoothing of the label field is similar to what achievable with the use

of a split model. The variation in the increased performance associated to the split

model with the use of a smoothing of the patch features at different depths has been

tested. The results are plotted in Figure 6.8. It is possible to see how the split model

performs generally better than the associated model with smoothed patch features, both

for constant weights and optimised ones. However, the advantage tends to shrink for

large depths of the smoothing process. This is understandable since the smoothing of

the features produces a similar smoothing in the labelling, reducing the role of the split

model.

The choice of the features for the split model is not trivial. Being this work the first

to propose such a split model for hierarchical clustering of images, the literature does not

provide any help in identifying which features can be adopted to this end. Some proposals

have been done in this work, and have been tested to compare the discriminative power

of different features. These experiments have been performed using a smoothing of the

patch features obtained by using fixed weights for a depth of 4 levels in the pyramid.

This is because at such level the results still show a significant difference due to the split

model, that is the one being tested for feature quality, and at the same time a good

compromise in the results.

According to the independent patch classification, the theoretical maximum in per-

formance achievable with the split model has been estimated. This is the result if all the

split decisions, for each super-patch, were optimal. In other words, a split decision has

been made whenever that would increase the performance over the non-split labelling.

The obtained theoretical maximum would report a label accuracy of 82.02 on the testing
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IND 45 89 67 41 56 87 50 58 63 43 68 54 51 8 48 18 68 31 28 36 14 62.5

NONE 42 90 68 41 51 88 51 59 63 40 70 56 51 5 49 17 70 32 29 35 19 62.9

CDIFF 44 90 68 43 55 89 55 60 65 43 72 57 54 6 51 19 70 33 31 36 16 64.1

CDIFF2 42 89 67 37 51 90 51 58 62 41 69 55 50 4 48 18 69 31 29 35 19 62.5

DEP 43 91 71 40 56 89 55 60 67 45 77 58 54 9 51 18 69 34 31 34 15 64.3

KL 43 91 69 40 53 89 54 60 65 43 75 59 54 5 51 17 71 33 30 35 18 64.3

SPVF 43 90 68 45 57 87 54 58 66 44 69 58 50 6 54 17 69 36 29 35 18 63.8

SPD 44 89 67 50 65 87 56 60 65 42 70 61 54 10 56 21 69 33 28 35 17 64.1

CDIFF-KL 44 91 69 42 56 90 55 61 68 45 75 57 55 7 51 19 71 32 31 36 16 64.8

DEP-KL 43 91 71 41 55 90 57 60 68 44 79 59 55 8 51 18 71 33 31 35 15 64.7

SPD-KL 43 90 68 50 66 88 56 61 67 44 72 62 55 9 55 21 70 33 27 34 14 64.8

CSK† 44 91 69 43 56 90 55 61 68 45 75 58 55 7 51 19 71 33 31 36 16 64.9
†: CSK: CDIFF-SPD-KL

Table 6.11.: Classification precision results for the split model using different features, sum-
marised in Table 6.10. Combinations of the most effective features have been
tested as well (last four rows).

set. Unfortunately, with none of the chosen features the results have been as good. The

set of tested configurations is summarised in Table 6.10. The configuration labelled as

NONE is a model with constant split probability. The CDIFF model uses the differ-

ence in number of patches between the children of each super-patch as explained above.

CDIFF2 additionally considers the average value of the CDIFF feature for the children.

This would provide additional evidence on the likelihood of the presence of an uneven

branch deeper in a dendrogram. The model KL uses as a feature the symmetric KL

divergence between the label probability distribution of the children, as defined for the

image pyramids model. This is a direct measure of the difference in labelling between

two clusters and therefore relevant to the split probability. The SPVF and the SPD

models use more complex features of the super-patch: the visual features (average of the

patches features) and the label probability distribution, respectively.

In Table 6.11 the results of these different models are presented. The experiments in

this case have been performed on a single run for each feature choice. It is however safe

to assume the results as relevant, due to their stability over different sets of features. The

model can therefore be assumed stable with respect to different numerical values pre-

sented during the training phase. It is possible to see how the difference in performance

is visible, but not significant. The results are well below the theoretical maximum. This

could be improved using a more complex splitting model for the super-patch, that entails

local object detection. The main weakness of the used features is that they are derived
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or involved in the patch labelling process, and therefore they are affected by the same

errors that influence the independent labelling in the first place. The development of a

more accurate split model is an interesting area for further research.

Another reason for the lack of performance with all the chosen features is the fact that

the likelihood on the training set is not a good measure of the performance of the system,

as anticipated in Section 5.3.5. Indeed, a simple set of tests with the split model with no

features (NONE) verified this claim. The fixed split probability has been tuned according

to the labelling performances on the training set, and then the best configuration has

been validated on the test. The obtained performance was equal to 66.2% in this case,

which easily surpasses all the learned configurations, even though no feature was used.

This is very significant, since it suggests that the model is not currently exploited at its

maximum. However, to solve the training problem a modification of either the modelled

probability or of the training function is required. This is not trivial and outside of the

scope of this work. However, a partial workaround that uses a modified version of the

likelihood, as explained in Section 5.3.5, was tested as well. Results are reported towards

the end of the section.

The used features in the following represent the combination of KL, CDIFF and DEP.

The combination of these three features seems to lead to the overall best results. Next, an

analogous merge model has been tested. The merge model is the complementary to the

split model, since it corresponds to an initial hypothesis of a number of objects equal to

the number of patches, and therefore contemplates only the merging operations, and no

split. The model performed worse than the single split one, giving a 63.1 % classification

precision, compared to the 64.8 % of the single split model (the row before the last in

Table 6.11). This is understandable, since the top-down split model favours simpler

label configurations than the bottom-up merging one.

Combining the two models is achieved by selecting an initial hypothesis with a certain

number of objects. This can be done by selecting the number of objects a priori, or by

thresholding the merging cost in the hierarchical clustering process. The results are

shown in Figure 6.9. The result improvement is not significant, being generally better

for a very restricted number of objects (one or two). When the threshold for the merging

cost in the hierarchical clustering is used to determine the number of objects, the results

saturate for a value of around 3 · 108, for which a single object is selected in almost all

the images in the dataset.
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Figure 6.9.: Precision obtained with a split-and-merge model, for different initial number
of objects. The two lines represent the results obtained fixing the number of
objects or the threshold in the hierarchical clustering merging cost. The results
are at pixel-level.
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SM3 44 91 69 43 57 90 56 61 68 44 76 58 56 8 51 20 71 33 30 37 15 65.0

CRF 55 86 68 52 62 86 68 63 71 54 75 59 54 4 72 48 61 38 26 42 7 66.1

SM3,ent 45 92 72 43 56 91 57 60 71 51 82 63 54 9 58 15 74 30 29 34 8 66.5

[117] 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7 71

[116] 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72

Table 6.12.: Comparison of the performance with the best split-and-merge model (3 objects
hypothesis, SM3) and a plain CRF. SM3,ent is the same split-and-merge model
trained using the modified version of the likelihood. The results are reported at
pixel-level. Performance of similar research works are reported as well.

Finally, the pyramid model has been compared with a simple CRF applied on the top

of the independent patch classification with smoothed features. This CRF model does

not learn jointly appearance and structural information as for the previous proposals,

but used the independent patch classification distributions as features for the singleton

potentials. This is indeed a common design choice in the literature since it eases the

learning of both CRF and appearance model. The structure of the CRF is however

the same as explained in Section 4.2.2. The results comparing CRF with the best

performing split-and-merge model are reported in Table 6.12. The CRF model performs

slightly better than the split-and-merge, but the performance are in overall comparable.

A significant advantage of the split-and-merge model over the CRF is the training

speed. The training of a CRF requires more than 2 and a half days, while the training
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Build.
(14.5%)

Grass
(30.1%)

Tree
(14.1%)

Cow
(7.2%)

Sky
(13.4%)

Plane
(2.8%)

Face
(3.2%)

Car
(7.5%)

Cycle
(7.3%)

Avg.

MSTWN 72.0 94.8 71.6 77.3 95.3 80.3 92.1 82.3 89.9 85.2

WWH6,12 76.7 94.6 71.4 86.3 95.0 73.1 99.3 73.2 93.7 86.2

LTD24 61.5 94.1 76.6 83.9 93.8 74.3 91.6 80.4 88.3 84.0

SM3,ent 89.5 95.1 79.5 75.9 95.8 57.1 77.1 76.6 73.9 85.8

LITgen [127] 74.0 88.7 64.4 77.4 95.7 92.2 88.8 81.1 78.7 82.3

LITglob [128] 73.6 91.1 82.1 73.6 95.7 78.3 89.5 84.5 81.4 84.9

Table 6.13.: Comparison on the MSRC-9 dataset of the best-performing configuration of all
the proposed models. MSTWN: minimum spanning tree with weak-neighbours;
WWH6,12: CRF with WWH distributed descriptors; LTD24: CRF with LTD
distributed descriptor; SM3,ent: pyramidal model.

of a split-and-merge model takes less than 30 minutes in the MSRC-21 dataset. This

accounts for both appearance model and pyramidal model training. The latter tends,

in the described scenario, to take around 15 minutes to train. The figures have to be

interpreted as guidelines. One reason for this is that the number of steps required by

the optimisation algorithm to achieve convergence depends on the choice of parameters

such as α. On the MSRC-9 dataset, the appearance model takes less than 10 minutes

to train, compared with the 4 hours reported for the independent model at the end

of Section 6.3.1. The explanation for this is twofold. On the one hand, an improved,

optimised implementation to learn only the appearance model was applied in the last

experiments. On the other hand, the use of better features as described in Section 6.4.1

allowed to significantly decrease the number of optimisation steps, from 3000 to 1000.

The CRF model was faster to train as well (only around 10 hours in the MSRC-9

dataset), primarily due to the faster convergence, due to the fact that the appearance

model was in this last case trained beforehand.

When training the parameters with the modified likelihood function, accounting for

the entropy, the pyramidal model outperforms the CRF. The results with the enhanced

training were obtained using a value α = 0.35 for the entropy mixing weight. Unfor-

tunately, the results are quite sensible on the choice of this mixing parameter. The

similarity with the results obtained without training, on a much simpler model, suggest

that the potentiality of the proposed model is greater than what it is obtained with this

training process.

Other literature works are reported for comparison. It is possible to see how the

proposed system tends to under-perform compared to them. This is likely to be due to

the unsuitability of the appearance model for a so large amount of topics. The listed
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works to build on more advanced appearance models that employ non-linear (e.g ., kernel)

discrimination. A drawback of the proposed model, as well as of the CRF, is the absence

of a mechanism of recovery for a completely wrong appearance-based classification. If

a category is not at all detected in an image, the split-and-merge model will not work,

nor will the CRF. The first system will tend to give a structure-coherent, yet wrong,

labelling. The second will propagate the labelling from the zones with high confidence

to the zones with low confidence (smoothing), without being able to detect the missing

labels. For this reason, one direction of improvement is a better appearance model that

tends to give smoothed probability distributions over the labels for a patch rather than

distributions that are peaked on the wrong label.

Finally, in Table 6.13, the results of the pyramidal model are compared to other

proposals of the thesis and related work. The results of the pyramidal model are in line

with what has been obtained with other configurations, with the significant advantage

of a much reduced computational complexity. The pyramidal model has been trained

again accounting for the entropy in the likelihood. It pays the cost of abandoning

the joint learning of appearance and structural parameters, that is used in the other

proposals. The better performance compared to the literature on nine categories is a

further evidence of the problems of the appearance model in coping with an elevated

number of categories.

A possible direction of investigation would be to compare the different proposals in

the extended MSRC-21 dataset. This however implies a considerable amount of work

compared to the value of the outcome. The performed experiments on the MSRC-21

dataset already consistently tell the most important message. The appearance model

starts exhibiting its limits in presence of a large amount of categories. The log-linear

model is efficient and seamlessly integrates in the CRF framework. However, some

categories just cannot be discriminated only based on appearance. This is clear when

reasoning on the precision of the classification of some categories in Table 6.11. From

the breakdown of the precision on different categories, it is clear that some of them have

a classification rate that is particularly low. Cow, car, bird, chair, cat, dog, body and

boat are among these categories. The proposed contributions to the CRF framework are

aimed at an increased context awareness in the classification. In this case a more complex

appearance model to account for challenging categories would be a more appropriate

solution to improve the classification results. The expected improvement obtainable with

a structural method as CRF or pyramidal model when the starting part distributions

have substantial errors is limited. This is further stressed by the results presented in
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Table 6.12. The improvements obtained with the application of very different models

such as CRF and split-and-merge model over a simple feature averaging (which are

presented in Figure 6.6) are consistently low when compared with similar works that

make use of more complex appearance models. Better directions for future investigations

and development are discussed in Section 7.2.



Chapter 7.

Conclusions and Future

Developments

This report describes and details the work accomplished during my PhD programme.

It provides with a consistent exposition of the research and the findings of three years,

as well as the proposed improvements to the state of the art. The related field, that is,

computer vision models for semantic segmentation and image categorisation, is a rapidly

evolving one, and in the time-span of the work it has significantly evolved and mutated.

My research dynamically adapted to such evolutions, constituting active part of it.

However, the roots have been stable since the start of the work. This allows to present

the findings in a coherent, self-contained work, and to draw significant conclusions. Also,

this document constitutes an important reference for other researchers entering the area,

as a useful starting point to grasp the current trends in the field, as well as what look

as promising routes to the research community. In the remainder of this chapter the

obtained achievements are summarised and some directions for future research work are

suggested.

7.1. Achievements

The initial idea of image analysis through consideration of different parts, or patches,

and their relationships, evolved developing into an analysis framework based on discrim-

inative probabilistic graphical model. The first step achieved in this aspect is to have put

the idea in the context of the current advances in the field by the research community,

increasing the awareness on the state of the art performances and on the weaknesses to
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be addressed. The resulting picture, consisting of a very active distributed effort aimed

at developing low-level pattern classification systems for object detection and semantic

segmentation, has been presented in Chapter 2 and helps in an effective definition of the

aims of the system and the major areas needing research work for improvement.

The ultimate goal of the models used in this work is the understanding of a scene,

that is, the extraction from an image of all the depicted high-level concepts, and their

logical relationships. This goal is both ill-posed and far from being in sight. The

capital problem is the lack of an objective definition of high-level concepts and logical

relationships. Image categorisation and semantic segmentation on the contrary can

be viewed as quantitative tasks that are closely related to image understanding. In

particular, the modelling of concepts and logical relationships becomes functional to the

formal goal (i.e., either pixel-level or image-level labelling). The position in the research

scenario of the probabilistic models entailing the entire images is to be considered under

the light of what said. In particular, even though for object detection the approaches

based on the scanning of an entire scene, to match object instances against a model,

are more effective than those based on scene modelling, the last ones have to be seen as

leaning towards a more ambitious achievement. When ignoring this, it is easy to embark

in wrong design choices for a particular problem, that are going to lead to disappointing

results.

On the other hand, the analysis of the research in the area stimulated the acqui-

sition of in-depth knowledge of some methodologies related to different aspects of the

problem, as segmentation, patch extraction, inference in graphical models, that are ex-

tremely relevant and useful for the work and enable to focus in specific issues related

to the framework, as efficiently accounting for patch dependences in the probabilistic

formalisation at different scales. Most importantly, the performed analyses shed light on

the limitations of the founding methods and models. These limitations are highlighted

in Chapter 6 and constitute an important starting point for investigating extensions. For

example, even though the CRF represents a powerful tool, it appears nowadays clear

how its usefulness is mainly limited to imposing smoothing constraints in a label field,

rather than modelling more complex relationships.

In terms of patches extraction and description, the major contribution of my work to

the current state of the art is related to the study of the suitability of certain approaches

to the goal of part-based image analysis. To this end, patches of different nature have

been formalised (region-based – obtainable via segmentation, and interest-point-based)
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and their suitability to the object detection goal has been analysed. An image classifi-

cation method involving the analysis of a little number of coarse patches has been also

proposed. This is based on large patches obtained via the so-called cartooning process,

that is, an extraction of homogeneous areas according to colour image content. This

contribution was meant to the creation of a fast analysis framework working on simple

features, with a compromise in the system performance. The patch extraction process

has been introduced in Section 3.2.2. The results related to these systems of image

categorisation are reported in Section 6.2. The principal conclusion to be drawn from

this work is that the usefulness of the graphical structure has to be carefully consid-

ered, especially in relation to the presence of a field of latent variables. The additional

modelling burden and constraints on the latent layer often lead to a worsening of the

results.

Furthermore, in relation to the semantic segmentation problem, a method to integrate

dense patches with the ones based on interest points has been proposed. The aim is

to have complementary information that helps increasing the context awareness when

modelling the label probability for the pixels. This is obtained through two distributed

descriptors, namely the WWH and the LTD. They both embed distributed information

related to visual words distributions, as detailed in Section 3.4.1 and Section 3.4.2,

respectively. Finally, in Section 6.3.2 results originated by the introduction of such

descriptors have been presented, highlighting their role in improving the classification

results.

The area of work in which the greatest amount of effort has been invested is however

related to the probabilistic analysis framework based on discriminative graphical models.

To this end, a CRF has been applied to the learning and analysis of patches’ appearance

in terms of extracted features and their statistical dependences. This work implicated

actions of three kind, as explained below.

1. The first step has been the formalisation of the general structure of the CRF frame-

work when used for different purposes, that is, image categorisation or semantic

segmentation. The two problems are closely related but the target is different, as

well as the initial set of information available for the system training. In a super-

vised scenario, the training set is consistent with the goal of the system. Therefore,

when image categorisation is targeted, the examples are labelled at image level, and

for semantic segmentation, pixel-level labelling is given. The structure of the CRF

and the learning and inference steps have to replicate this difference accordingly,
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preserving the internal working principles. The different configurations considered

for CRFs are illustrated throughout Section 4.2.

2. The role of the structural configuration in the CRF has been related to the com-

putational complexity, the tractability of the learning and the inference, and the

performance of the resulting system. This is a central aspect of the research work,

since connections in the graphical model encode the intimate means of inter-patch

relationship modelling. This has led to the proposal of a novel method to construct

meaningful trees over graphs built on the top of over-segmented images, based on

appearance coherence. The proposal is meant to maximise the strength of the con-

sidered connections while retaining a low level of complexity in the CRF, using

appearance information otherwise ignored in the connection analysis. The novel

structure selection method is explained in Section 4.3.2 and the related experi-

mental results to prove its effectiveness are given in Section 6.3.1. In this section

another novel technique used to improve the context awareness in the patch anal-

ysis process is tested, that is based on the concept of weak neighbours. This class

of inter-patch relationships is meant to consider neighbours whose probability dis-

tribution over the category labels is pre-estimated rather than mutable during the

inference. Details about the weak neighbours role in the system, and on how they

are accounted during training and inference, have been given in Section 4.3.3. The

evidence here is that an approximation in the statistical dependence between cor-

related variables, that leads to a simpler model, can indeed improve the results

despite the reduced modelling power.

3. The major drawback related to the choice of CRF as modelling and inference frame-

work has been highlighted, i.e. the lack of support for long-range patches depen-

dences. CRFs model short range dependences via connections in the probabilistic

graph, and this can be used to impose smooth labelling behaviours in the patch

labelling process. This class of relationships is related to the fact that neighbouring

patches are more likely to belong to the same object instance than patches that

are far away one from the other. However, the more complex dependences between

different categories present in the same scene is not effectively modelled in the CRF

framework. Additionally, having long range connections in the graph makes the in-

ference intractable. This argument motivates the proposal for the use of the WWH

and LTD descriptors, that are distributed descriptor based on histogram of visual

words, as previously mentioned.
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Finally, in Chapter 5, an alternative approach to consider structure in an image has

been proposed, to overcome the shortcomings of CRF in considering dependences on a

long range and different scales. In particular, an approach based on image pyramids, that

is, hierarchical representations of the compositional nature of an image, is introduced.

The model is based on the concept of Binary Partition Tree (BPT) of an image. The

construction of a BPT is a process of agglomerative hierarchical clustering, and the final

result is aimed at the separation of different objects in a scene in different branches of

a dendrogram. A probabilistic model built on such a structure is shown to favour label

configurations that have the desirable properties of the ones obtained with CRF, and at

the same time are coherent with the hierarchy of objects in the scene. The model indeed

favours the homogeneous labelling of cluster of patches that are likely to belong to a

single object instance. This is valid also for large clusters that extend over a large area

in the image. This model is an initial attempt to a direction of image analysis where

the central element is the evaluation of an image at different scales.

The section can be concluded by making some general considerations on the scientific

relevance of the proposals presented so far in the thesis, in particular with regards to the

semantic segmentation problem. If considered in isolation, proposals presented in the

thesis such as weak neighbourhoods, distributed descriptors and the pyramidal model

risk to look as a moderately successful attempt to improve the state of the art with

respect to a well-delimited problem that is semantic segmentation. The improvements

appear to be often incremental and not significant enough to justify the effort. This

would be overlooking the real motivation, evolution and achievements of the work. The

bigger context has to be taken into consideration when weighing what obtained so far.

The first important point to consider is the current state of application of the re-

search in the area. Semantic segmentation is a very novel research field and methods

do not currently have the necessary flexibility to be successfully applied to any particu-

lar practical problem. However, the goal of semantic segmentation, that is, a complete

understanding of a scene, is terribly ambitious and its achievement is an important mile-

stone in computer science. Secondly, the research community has been very active and

receptive in the field. New results get published at an astonishing rate, and important

and high-impact conferences such as the International Conference on Computer Vision

and Pattern Recognition (CVPR), the International Conference on Pattern Recognition

(ICPR), the British Machine Vision Conference (BMVC), the International Conference

and European Conference on Computer Vision (ICCV/ECCV) all feature very success-

ful sessions on this topic. In this respect what I presented so far has to be considered
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in a picture that is fast evolving. The single contributions are likely to be superseded

in the near future by better methods that build on newly acquired knowledge that was

not available at the moment in which these methods were proposed. This is far from

rendering the present work useless. On the contrary, the study is part of a process of

increasing the awareness on what methods and techniques can be applied with success

to this novel challenge.

When a new complex research problem raises the attention of the scientific com-

munity, there often is a large number of directions and approaches that are potentially

and intuitively promising. A number of paths are then analysed and tested, to gain

knowledge that sheds light on their virtues as well as limitations. When seen from this

point of view, the contributions of this thesis acquire new value and significance. The

CRF framework for example has not proven as successful as expected in a latent setting

for object detection, since its capabilities of modelling complex structures are limited.

Differently, for semantic segmentation the positive role of graphical models materialised

in terms of a label smoothing effect. The improvement of semantic segmentation results

due to increased context consideration, such as weak neighbours and distributed de-

scriptors based on interest points contributed to highlight the intrinsic limits of CRF in

accounting for large scale context. As discussed in the section about related work, this

consideration is fully supported by results reported in related works, where attempts to

embed long range dependences in CRF with different strategies have not proven success-

ful. Finally, the hierarchical model based on image pyramids proposed in Chapter 5 is a

direct reaction to the evidence that CRF alone are not structured enough to efficiently

represent the compositional nature of the images. This may seem intuitive while reading

this structured report, but the evidence has been gained iteratively by the community

at an expense of many failed attempts. Hierarchical CRF [53] seemed a reasonable way

to go, but the generalisability of the results has proven limited. In Section 5.2 other

reactions to the need for hierarchy are analysed. Many of the presented works have been

proposed after the start of my PhD programme, which reflects the raise in awareness in

the community.

The advice of the author to the reader of the thesis is therefore to consider what

read so far as a coherent picture of a path in the process of incrementing the awareness

with respects to a new exciting problem in computer vision. This picture only presents

a perspective of what has been happening in the last years in the field, but it presents

this perspective in an exhaustive way. Only when going beyond the single contributions

to grasp the real message contained in the whole of the thesis the reader will take full
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advantage of this work. The intent is to provide researchers approaching the field with

the instruments to take more informed decisions when approaching the problem in the

future.

7.2. Future Work

As mentioned earlier, this thesis is an open work, living in a context of rapidly advancing

worldwide research. At the same time, the proposals and achievements make it a self-

standing contribution to the field. In this aspect, there are directions open for further

research, that look appealing considering the current state of the research field.

Two are the main directions for further research that can stem from this work. The

first is related to the integration of the goals of semantic segmentation (classification

at pixel level) and object detection/image classification (classification at image level).

It is clear that the two addressed goals of object (category) detection and semantic

classification are tightly bound together. On the one hand, when semantic segmentation

is performed on an image, it is straightforward to derive the set of categories that are

present in the image by just enumerating the different labels assigned to the image

pixels. On the other hand, when detecting objects in an image by part-based analysis, it

is natural to try to associate some parts to the categories of object that are detected [15].

The temptation to link the two problems in a flexible system capable to achieve both

the goals is therefore strong. In terms of problem statement, however, the integration

is not straightforward. The first issue is on how to design a cost function mixing object

detection and semantic segmentation that is a good approximation of what a human

user would expect as system output and at the same time is tractable in terms of

computational complexity when it is used to steer the system training. Such a cost

function would have to consider issues related for example to the fact that the presence

within an image of a considerably small area of pixels labelled with a category may not

be intended to trigger the labelling of the entire image as containing that category.

Differently, when considering a part-based object detection system with latent part

labels, often the best solution found via system training produces a patch-level labelling

that has little connection with a meaningful interpretation of the image. Additionally,

in terms of training, one of the achievements would be related to the consideration of

mixed training data, that would in general contain both images tagged at pixel level
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and image level. The system should be able to get the maximum out of the information

that is available for the single images.

The second direction of investigation is the improvement of the pyramidal model

for image analysis. This can take two directions. The first is the development of an

effective automatic training system to overcome the problems related to the likelihood-

based optimisation. This may include the design of another fitness function to maximise

during the training, the study of another strategy for parameter fitting, or even the

adoption of a modified model that limits the loss of confidence on the patches classified

with high accuracy. The second direction is the integration of classifiers at different scale

in the image pyramid framework. At the moment, the use of the pyramidal structure in

the image representation is limited to mutual influence of connected branches according

to split and merge probabilities. This is because the distribution at each super-patch

is derived from the contained leaves. The propagation of such distribution tends to

strengthen the confidence on the labelling that is present with greatest confidence on

the majority of patches. The confidence is propagated equally, for each super-patch, to

all the branches underneath. This system works well because it groups together down

in the pyramid patches that are likely to belong to the same object instance. However,

by construction, it is not possible for a super-patch to be associated to a distribution

that is not in agreement to the one of the composing patches. For this reason, if the

appearance of the patches is inherently ambiguous for a given instance, the recovery

of the label of the entire branch representing the instance is impossible. The method

currently ignores the emergent traits of the super-patches, that is, those qualities that

arise from the combination of different patches, while being not present in each one

of them singularly. To consider these qualities, super-patches should be independently

classified [112]. Optionally, object models could be used in the analysis of different

instances. Such an integration would lead to greater knowledge of the scene, and if

modelled correctly, the propagation of such knowledge through the pyramid is likely to

lead to a significant improvement of the results.
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Appendix A.

L-BFGS Optimisation Method

The training step for the conditional models used in this work, as the independent patch

model and the CRF models, requires the calculation of the optimal value for the model

parameters from a set of labelled examples. As explained in Section 4.2, a closed-form

solution for the solution does not exist (typically due to normalisation factors), and

therefore an iterative optimisation algorithm needs to be used. The solution is ap-

proached iteratively by estimating, given an initial parameter set configuration, a new

configuration that will improve the current one. The optimisation problem is relatively

complex due to the dimension of the solution space. However, in all the methods the

form of the likelihood to be maximised during training allows to rely on gradient-based

methods, because it is possible to efficiently estimate the likelihood gradient value. This

family of methods approaches the optimum value by estimating the direction for ex-

ploring the solution space by following the function’s gradient direction and therefore

moving towards a maximum. This is very convenient when the dimensionality of the

search space is large as in the problems that are typical of machine learning.

In this work, both for the training of the independent patch model and of the CRF

models I used the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) pro-

gram [80], a limited-memory quasi-Newton code for unconstrained optimization. This

is an implementation of the BFGS method used for problems in large data spaces. The

Newton method (also called Newton ascent algorithm [27]) is a gradient-based algorithm

that seeks local stationary points by finding zeros of the objective function’s gradient.

The Newton method locally approximates the objective function to a second-order func-

tion, and involves the calculation of the Hessian MatrixH of the second derivatives. This

requirement is relaxed in the algorithms of the quasi-Newton class, and in particular in

BFGS, whereH is approximated via gradient differences. The choice of this optimisation
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strategy is primarily motivated by a need for a gradient ascent method due to the high

dimensionality of the solution: in the independent patch model with feature vectors’

length equal to 128 and 7 categories, for example, 896 parameters need to be estimated.

Avoiding the calculation of the Hessian matrix is crucial for the computational speed.

BFGS achieves a fast convergence to the real Hessian matrix of the objective function

starting from a neutral form such as the identity matrix, which contributes to a faster

convergence.

If the function to be optimised is f(x), being x a value in the solution space, according

to the Newton algorithm a maximum is found iteratively by the iteration step

x(k + 1) = x(k)−H−1
k ∇fk , (A.1)

where k is the iteration, and Hk and ∇fk the Hessian matrix and the function gradient

evaluated in x(k), respectively. For k = 0 the initial x(0) can be chosen randomly. This

is usually the case when appearance parameters are learnt, since there is no available

information on which feature channels are more indicative of certain categories. A sen-

sible starting point can be however guessed for parameters related to pair-wise potential

parameters. If the solution is unique, the value of the initial parameters only influences

the convergence speed. In general is however wise to start from a random point to avoid

trivial suboptimal stable points in the solution space. Eq. (A.1) is obtained by approxi-

mating f with a second order function, so that if this is really the case the algorithm will

find the optimum in the first step. Otherwise, a stopping criterion can be based on a

threshold on the amplitude of the k-th movement in the solution space, |x(k+1)−x(k)|.
The BFGS method works by approximating the Hessian matrix at the k+1-th iteration

by

Hk+1 = Hk +
yky

T
k

yT
k sk

− Hksk(Hksk)
T

sTkHksk
, (A.2)

where yk = ∇fk+1 −∇fk and sk = x(k + 1)− x(k). Initially, H0 can be chosen as the

identity matrix, as mentioned.



Appendix B.

Microsoft Research Database

In this appendix some additional details on the main database used throughout the

work are given. The Microsoft Research Database (MSDB) is a well-known, widely

available database that offer the advantage to enable a comparison of the results with

a large set of other works. The database is available free of charge for non-commercial

applications [132].

This database has been created by the group of Antonio Criminisi at Microsoft

Research in Cambridge, UK. It consists of images of 23 object classes, together with

their pixel-based manual annotation. The image classes are building, grass, tree, cow,

horse, sheep, sky, mountain, aeroplane, water, face, car, bicycle, flower, sign, bird, book,

chair, road, cat, dog, body, boat, plus the void category, for unlabelled pixels. The

number of examples for the categories horse and mountain is not significant, therefore

the authors themselves suggest to ignore them, therefore retaining 21 categories. The

legend for the database is reported in the following.

Category R G B Colour

void 0 0 0

building 128 0 0

grass 0 128 0

tree 128 128 0

cow 0 0 128

horse 128 0 128

sheep 0 128 128
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sky 128 128 128

mountain 64 0 0

aeroplane 192 0 0

water 64 128 0

face 192 128 0

car 64 0 128

bicycle 192 0 128

flower 64 128 128

sign 192 128 128

bird 0 64 0

book 128 64 0

chair 0 192 0

road 128 64 128

cat 0 192 128

dog 128 192 128

body 64 64 0

boat 192 64 0

Table B.2.: MSRC database legend.

The images are divided in 20 groups, that cluster images of different themes. In the

following, some examples from each group are presented, together with the provided

manual labelling, listing the most represented categories in each group.

group 1 grass, cow, . . .



Microsoft Research Database 182

group 2 tree, grass, sky, . . .

group 3 building, sky, tree, . . .

group 4 aeroplane, grass, sky, . . .

group 5 cow, tree, grass, . . .
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group 6 face, body, . . .

group 7 car, building, road, . . .

group 8 bicycle, building, road, . . .

group 9 sheep, grass, . . .

group 10 flower, . . .
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group 11 sign, . . .

group 12 bird, sky, grass, water, . . .

group 13 book

group 14 chair, grass, . . .

group 15 cat, road, . . .
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group 16 dog, road, grass, . . .

group 17 road, building, sky, tree, . . .

group 18 water, boat, . . .

group 19 body, face, . . .

group 20 water, boat, sky, building, . . .



Appendix C.

Visualisation Support: LabelView

The process of writing an image understanding algorithm is complex, primarily due to

the amount of data that has to be dealt with. In particular, when part-based algorithms

are involved, such as in this thesis, it becomes very useful to find a usable representation

of the features, the structural information and the results of the inference. A usable

representation of such information is one that allow not only the final user to employ

the results of the inference in the image, but mostly the designer to understand what is

happening “under the hood” of the inference algorithm. This is not easy to obtain, it

requires a substantial effort and is often volatile, since techniques change often and in

an abrupt way, thus requiring the complete re-design of the visualisation framework.

However, a visualisation aid has been implemented and used towards the end of the

PhD to obtain a clearer representation of the working details of some inference algorithm,

and to better focus on areas of action and improvement. This tool has provided quite

useful and informative, and in this appendix is dedicated to the presentation of its main

components and capabilities. The hope in the development of the tool is that future

researchers can advantage from the use of it to accelerate the progresses in their study

and to avoid design and investigation choices that do not reflect real shortcomings of

the current models.

LabelView is written in C++ using the graphical library Qt, that is free for non-

commercial use and represent a well-known, portable framework for Graphical User

Interface (GUI) design and implementation. The use of C++ allows for flexibility when

graphically representing data. Even though languages like Matlab are nowadays associ-

ated with a complete framework for data analysis and visualisation, the complex domain

of image understanding requires ad-hoc visualisation solutions that are not provided nor

easily implementable in such frameworks. An additional advantage of the use of C++
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image selection

combo box

mode selection

radio buttons

labelling super-

imposition slider

options

button

operations

buttons

unit testing

button

text output 

area

current 

image ground

truth

labelling 

distribution

histogram

latent concepts

distribution

histogram

(super-patch 

analysis)

Figure C.1.: LabelView interface.

is that it is a mature language and there is a huge amount of third-party open software,

freely usable for research purposes, that can be included in the tool in case some analysis

is required directly in the visualisation tool rather than in a separate process (e.g ., due

to interactivity requirements).

In Figure C.1 a screenshot of the main interface of the program is shown, detailing

the main functionalities, that will be detailed in the remainder of the appendix. The

program requires a set of data to be specified in the options window, to work at its full

capabilities. These are:

1. number of categories for the dataset;

2. number of latent concepts for the super-patch analysis (detailed later);

3. category names and colour legend for the labelled images;

4. original images location;

5. ground-truth images location;
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6. segmentation files location;

7. distribution files location;

8. super-patch distributions location (detailed later);

9. image information directory.

The program is able to link the files related to the same image together, based on the file

names, once the locations are given. This enables the fast browsing of a given database.

The images can be of many common standard formats, readable by the Qt library. The

segmentation files are 2D indexed matrices that are produced with the helper functions

of the Berkeley Segmentation Engine (BSE) [38]. Distributions files for patches and

super-patches are text-files, having the distribution of a patch per line, as array of

floating numbers. Finally, image information files are XML files listing the properties

and the extracted features for each patch and super-patch, as well as connectivity details,

neighbours (strong and weak ones), and hierarchical structure. These files can be easily

read with an XML library pluggable in the C++ code.

Once the data is loaded into the program, the set of images from the dataset becomes

available in the image selection combo box. The currently opened image is shown at the

top-centre of the program, together with its segmentation. At the bottom, the ground

truth image is presented. The label probability distributions for patches is not computed

in place, but rather read from a file produced by the inference program. This approach

gives the flexibility of inspecting results corresponding to different configurations without

the need of performing the inference multiple times, or recompiling the visualisation tool.

The inspection modalities are “distribution” or “superpixel”. The first one allows

to drag the mouse over the image and see the label probability distribution associated

to each patch in the histogram on the right. The second one allows for the inspection

of superpixels, or super-patches, instead. Clicking several times on the same patch, it

is possible to navigate through the dendrogram branch containing the patch, starting

from the leaf. At each iteration, the navigation goes up one level of the dendrogram.

All the patches inside the super-patch associated to that node are highlighted. If there

is a relevant probability distribution associated to the super-patch, it id displayed in

the histogram. One of the last developments in the work (not detailed in the thesis)

involved a semi-latent model for super-patches, that is displayed with the help of the

lower histogram.
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Figure C.2.: On the left, a screen showing the options for the application of a split-and-merge
hierarchical model. In the background, the labelling is the one obtained with
the independent patch model. On the right, the result after the application of
the split-and-merge model.

The labelling can be estimated inside of the program with a ML criterion, given the

single category posterior for each patch. For each patch the label is chosen whose cor-

responding probability is maximum. It is useful to have a visual insight of the obtained

image labelling, to compare it to the ground truth. By operating on the “labelling”

slider in the program, the inferred labels are superimposed on the image. The slider

allows for a partial superimposition. When the slider is moved to the right end, the

superimposition is total and the image is replaced by the inferred label field, as shown,

for example, in Figure C.2. A partial superimposition however helps in investigating

the label field while keeping visual contact with the image original content. For par-

tial superimposition, the label field and the original image are mixed according to the

formula

I = (1− α)Im+ αLf , (C.1)

Im being the original image, Lf the label field, and α ∈ [0, 1] according to the position

of the slider.

The label visual investigation tool has been developed towards the end of the work,

when the research effort was directed towards hierarchical structure. For this reason,

some simple operations are implemented in the program to apply the split-and-merge

probabilistic model presented in Chapter 5. In Figure C.2 the options window for the
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Figure C.3.: The window for the display and inspection of the image dendrogram. For each
super-patch, the id is given, as well as the merging cost. The patches included
in the super-patch are visualised in the image at the top-right of the window.

application of a split-and-merge model is displayed on the left image. In the visualisation

tool, the only option is the application of fixed split and merge probabilities that do not

depend on super-patch features. This is however enough to have an idea of the effect

of the variation of the parameters, while keeping the number of tunable parameters low

in order to allow manual testing of them. On the right image of Figure C.2 the results

of the model application is shown. After the application of the model, the updated

marginal distributions for each patch can be investigated. The reset button is used to

restore the original distributions (loaded from file).

The “dendrogram” button allows to visualise the dendrogram associated to the image.

An example of dendrogram is represented in Figure C.3. The unfolded tree of progressive

clustering is shown. The length of the vertical stems is proportional to the cost of the

correspondent merging operation. In particular, for each super-patch, the length of the

shortest stem linking it to one of the two children is the cost of the merging operation that

generated that super-patch, normalised to the height of the window. The order of the

patches at the bottom is one that guarantees no branch crossing in the dendrogram. By
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passing the mouse over a patch or super-patch, its numerical ID is shown for reference,

and the corresponding image area is shown in the top-right corner of the dendrogram

window. The displayed image reflects the current content of the image area in the main

program window, so that both labelling and original image can be visualised. In case of

super-patches, the merging cost is represented as well.

LabelView has been developed following the common modern best development prac-

tices. This includes the use of unit testing, for most of the interested classes and modules.

Since the program itself is a research support, a “test” button has been directly included

in the main window. The button triggers the tests execution on a different thread. A

window displays the textual output of the tests. Tests have been implemented using the

framework provided by the simple and popular Boost unit testing library [107].


	Introduction
	Image Understanding
	Part-based Image Content Analysis
	Targeted Problems
	Contributions of the Thesis
	Thesis Organisation

	Literature Review
	Multivariate Analysis Models
	Unsupervised Feature Transformation via PCA
	Supervised Feature Transformation via LDA
	Part-based Probabilistic Clustering via pLSA

	Conditional Random Fields
	Pixel-based CRF for Image Segmentation: TextonBoost
	Label Patterns and Scene Models
	Accounting for Global Information
	Objects Layout
	Patch Labelling and Object Detection

	Object Models

	Part Extraction and Description
	Part Definition
	Part Extraction
	Regular Grid
	Non-linear Diffusion
	Superpixels
	Interest Points

	Part Descriptors
	Edge and Texture Descriptors
	Colour Descriptors

	Distributed Descriptors
	Windowed Word Histograms
	Latent Topics Distributions
	Computational Complexity Considerations


	Part-based Statistical Models
	Generative and Discriminative Models
	Conditional Graphical Models
	Independent Patches Discriminative Model
	Conditional Random Field
	Multiple-Category Hidden Conditional Random Field

	Connectivity and Inference
	Message Passing Schedule
	Using Appearance Coherence for Connectivity
	Weak Neighbourhood


	Hierarchical Models
	Hierarchical Clustering
	Hierarchical Image Analysis
	Binary Partition Trees
	Image Pyramids

	Probabilistic Modelling
	Label Probability Under the Split Model
	Label Probability Under the Merge Model
	Model Learning
	Efficient Split Model Probability Calculation
	Entropy-based Likelihood Compensation


	Applications and Experimental Results
	Testing Databases
	Image Categorisation Results
	Colour-based Reduced-Parts Classification
	Structural Choices Analysis

	Semantic Segmentation Results
	Appearance Coherence and Weak Neighbours
	Integration of Distributed Descriptors

	Image Pyramids
	Mixture of Gaussians
	Feature Smoothing
	Split-and-Merge Model


	Conclusions and Future Developments
	Achievements
	Future Work

	Publications
	Bibliography
	L-BFGS Optimisation Method
	Microsoft Research Database
	Visualisation Support: LabelView 

