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ABSTRACT 

 

Cutaneous melanoma is an aggressive malignancy accounting for 4% of skin cancers 

but 80% of all skin-cancer related deaths. Its incidence is rapidly rising and advanced 

disease is notoriously treatment-resistant. The role of apoptosis in melanoma 

pathogenesis and chemoresistance is poorly characterised. Mutations in TP53 occur 

infrequently and are not critical for tumour development, yet the TP53 apoptotic 

pathway is abrogated; this may alternatively result from TP53 pathway defects or 

from alterations in other members of the TP53 family, including the TP53 homologue, 

TP63. The hypothesis of this thesis was that TP63 has an anti-apoptotic role in 

melanoma and is responsible for mediating chemoresistance. The primary aims were 

to investigate the biological role of TP63 in melanoma, to explore regulation of p63 

expression and to understand its role in apoptosis and dysregulation of the TP53 

apoptotic pathway in melanoma.  

 

Although p63 was not expressed in primary melanocytes, upregulation of both p63 

mRNA and protein was observed in melanoma cell lines and tissue samples. This is 

the first report of significant p63 expression in this lineage. Furthermore, aberrant 

cytoplasmic p63 expression significantly correlated with poor overall outcome in 

melanoma patients. Multiple possible mechanisms were demonstrated to regulate 

TP63 expression in melanoma, including epigenetic modulation, microRNA regulation 

of gene transcription and proteosome-dependent stability of p63 protein. In response 

to genotoxic stress, endogenous p63 isoforms were stabilised in both nuclear and 

mitochondrial subcellular compartments. Translocation of p63 to the mitochondria 

occurred through a co-dependent process with p53 but accumulation of wt-p53 in the 

nucleus was inhibited by p63. Using RNAi technology, both isoforms of p63 (TA and 

∆Np63) were demonstrated to confer chemoresistance in melanoma. In addition, the 

truncated variant, ∆Np63, was enriched in a subset of melanomas expressing 

CD133, pointing to an anti-apoptotic role for p63 in putative cancer stem cells in this 

aggressive tumour.  

 

Taken together, these data suggest that in melanoma, p63 is an oncogene which 

contributes to dysregulation of wt-p53 function and has an important role in mediating 

chemoresistance. Ultimately, these observations may provide the rationale for novel 

approaches aimed at sensitising advanced melanoma to chemotherapeutic agents.     
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CHAPTER 1: INTRODUCTION 

 

1.1 Melanoma skin cancer 

1.1.1  Epidemiology of cutaneous melanoma 

1.1.2  Aetiology of melanoma 

1.1.3  Melanomagenesis 

1.1.4  Molecular pathogenesis of melanoma 

1.1.5  Role of microRNAs in melanoma progression 

1.1.6  Prognostic factors 

1.1.7  Management of melanoma 

1.2 TP53 

 1.2.1  Background 

1.2.2  Structure of TP53 

 1.2.3  Regulation of p53 

 1.2.4  TP53 and melanoma 

1.3 TP63 

 1.3.1  Background 

1.3.2  Structure of TP63 

 1.3.3  p63 function 

 1.3.4  Regulation of p63 

  1.3.5  Role of p63 in response to DNA damage 

 1.3.6  p63 and apoptosis 

 1.3.7  p63 and cancer 

1.4 Hypothesis 

1.5 Aims of this thesis 

 

 

1.1 MELANOMA SKIN CANCER 

Melanoma is an aggressive cutaneous malignancy accounting for just 4% of skin 

cancers but resulting in 80% of all skin-cancer related deaths (Miller and Mihm 2006). 

The clinicopathological classification of cutaneous melanoma is primarily based on 

anatomic location and patterns of growth [Table 1.1; Figure 1.1]. Non-cutaneous 

melanoma accounts for 5% of melanoma and includes ocular and mucosal 

malignancies. The aetiology, prognostic features and treatment of these differs from 

that of cutaneous subtypes. 
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1.1.1 Epidemiology of cutaneous melanoma 

The incidence of cutaneous melanoma is rising faster than for any other major 

cancer, and rates are set to treble over the next 30 years (Diffey 2004). More than 

10,400 cases of melanoma are diagnosed annually in the UK with over 2,000 deaths 

attributable to melanoma (Statistical information team Cancer Research UK 2009). In 

2006, melanoma was more common in females than males with a M:F ratio of 4:5. 

The incidence of melanoma rises with age but a disproportionately high incidence of 

melanoma is observed among young people; almost a third of cases (31%) occur in 

people aged < 50 years and it is the commonest cancer among 15-34 year olds. For 

females, it is the 6th most common cancer and for males it is the 8th. The current 

lifetime risk for males in the UK is about 1:91 and 1:77 for females.  

 

1.1.2   Aetiology of melanoma 

The aetiology of cutaneous melanoma is multi-factorial and a number of risk factors 

have been identified [Table 1.2]. 

 

Table 1.1: Clinical classification of cutaneous melanoma. Adapted from Chudovsky (2005).  

Melanoma 

subtype 

Frequency (%) Gender 

M:F 

Common 

site  

Other key 

features 

Superficial 

spreading 

melanoma 

(SSM) 

50 – 70 F>M Back (M) 

Leg (F) 

Often arising 

from pre-

existing naevi 

Nodular 

melanoma 

(NMM) 

15 – 35 M>F Trunk   

Acral lentiginous 

melanoma 

(ALM) 

10 (Caucasian) 

50 (African or 

Asian origin) 

M>F Feet>hands  

Subungual 

Not related to 

UV exposure 

Lentigo maligna 

melanoma 

(LMM) 

5 – 15 M=F Face  Associated with 

chronic UV 

exposure 

M – males, F – females, UV – ultraviolet radiation 
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Figure 1.1: Clinical photographs of common histopathological subtypes of primary 

melanoma. (a) Asymmetrical lesion >1cm in diameter on leg, with variable pigmentation and 

irregular border – clinical features consistent with a diagnosis of superficial spreading 

melanoma. (b) Ulcerated, friable, rapidly enlarging necrotic nodular melanoma on back. (c) 

Lentigo maligna melanoma – poorly circumscribed, variably pigmented patch over the right 

cheek, enlarging slowly over time. (d) Ulcerated necrotic black pigmented subungual lesion on 

left thumb, consistent with a diagnosis of acral lentiginous melanoma.  
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Table 1.2: Risk factors for melanoma predisposition  

Risk factor 
Relative risk for developing 

melanoma (OR) 

Strong family history of melanoma* 
35 – 70 (Goldstein and Tucker 1995; 

Stehmeier and Muller 2009b)  

Previous history of melanoma 8.5 (Tucker et al. 1985) 

Low penetrance 

alleles 

 

MC1R 

 

ASIP  

 

TYR 

TYRP1 

1.03 – 2.45 (Gudbjartsson et al. 2008; 

Raimondi et al. 2008) 

1.45 – 1.75 (Brown et al. 2008; 

Gudbjartsson et al. 2008) 

1.21 (Gudbjartsson et al. 2008) 

1.15 (Gudbjartsson et al. 2008) 

UV exposure – history of > 10 

blistering sunburns 
3.9  (Han et al. 2006) 

Fitzpatrick skin type I (burns without 

tanning)# 
1.7 (Bliss et al. 1995; Marrett et al. 1992) 

Multiple benign naevi 
11 (Berwick and Halpern 1997; Grulich et 

al. 1996) 

Multiple atypical naevi 11 (Newton 1993; Tucker et al. 1997) 

Previous history of non-melanoma 

skin cancer (BCC and/or SCC) 
2.9 (Bower et al. 2000) 

Immunosuppression 

Human immunodeficiency virus  

Post-transplantation 

 

1.5 (Grulich et al. 2007; Patel et al. 2008) 

2 – 12 (Baccarani et al. 2009; Birkeland et al. 

1995; Bordea et al. 2004; Bouwes Bavinck et al. 

1996; Greene et al. 1981; Hollenbeak et al. 2005; 

Jain et al. 1998; Jensen et al. 2000; Kasiske et al. 

2004; Lanoy et al. 2009; Le Mire et al. 2006; 

Leveque et al. 2000; Lindelof et al. 2000; Moloney et 

al. 2006; Rigel and Carucci 2000; Sheil 1986; Sheil 

et al. 1985) 

* Defined as 3 family members affected 

# Fitzpatrick skin types developed to classify skin tolerance to ultraviolet radiation using skin colour, 

susceptibility to burning and ability to tan (Fitzpatrick 1988): I: always burns/never tans; II: usually 

burns/sometimes tans; III: usually tans/sometimes burns; IV: always tans/rarely burns; V: Asian; VI: 

Black African and Afro-Caribbean. 

BCC – basal cell carcinoma, SCC – squamous cell carcinoma, MC1R – melanocortin-1 receptor, ASIP – 

agouti stimulating protein, TYR – tyrosinase, TYRP1 – tyrosinase-related protein-1, UV – ultraviolet 

radiation, OR – odds ratio. 
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1.1.2.1 Ultraviolet radiation 

Melanomagenesis is associated with exposure to solar ultraviolet radiation (UVR). 

UVR promotes malignancy through direct mutagenic effects of UVB, production of 

growth factors, reduction of cutaneous immunesurveillance and formation of reactive 

oxygen species via UVA (Jean et al. 2001). There is compelling evidence for a 

causative link with sunlight exposure, with intermittent, high intensity exposure in 

early life correlating best with melanoma risk (Armstrong and Kricker 2001; Tucker 

and Goldstein 2003). A history of sunburn doubles the risk of developing melanoma 

(Elwood and Jopson 1997; Gandini et al. 2005), and the use of sunbeds and 

sunlamps (an artificial source of UVR) increases the risk of melanoma in young 

adults (Working 2007).  

 

1.1.2.2 Genetics 

A family history of melanoma is a significant risk factor [Table 1.2] and an estimated 

10% of all melanoma cases report a first- or second- degree relative with melanoma. 

In families with multiple cases of melanoma, the pattern of susceptibility is consistent 

with autosomal dominant inheritance of a single gene. However, the majority of 

familial aggregations show a complex pattern of inheritance suggesting melanoma is 

a complex trait influenced by the interaction between genetic and environmental 

factors. The genetic melanoma predisposition factors identified to date are stratified 

by risk profile into high penetrance genes and low penetrance alleles.  

 

1.1.2.2.1 High penetrance melanoma susceptibility genes 

In the 1990‟s, germline mutations in the CDKN2A locus and cyclin-dependent kinase-

4 (CDK4) segregated in melanoma-prone kindreds in a dominant pattern (Hussussian 

et al. 1994; Kamb et al. 1994; Zuo et al. 1996), and to date, these are the only high 

penetrance melanoma genes identified. The Melanoma Genetics Consortium 

(GenoMEL; http://www.genomel.org) reported on CDKN2A alterations (single-base 

changes, small insertions and deletions or large deletions) in 40% of melanoma-

prone families (Goldstein et al. 2006). Germline mutations in the CDK4 gene 

(Arg24His and Arg24Cis) are rare compared to CDKN2A but are found in 2% of the 

families in GenoMEL (Goldstein et al. 2006), with 14 families harbouring mutations 

worldwide (Helsing et al. 2008; Molven et al. 2005; Pjanova et al. 2009; Soufir et al. 

1998; Zuo et al. 1996). Moreover, penetrance of the CDKN2A mutations is influenced 

by UV exposure demonstrating an important gene-environment interaction (Meyle 

and Guldberg 2009). 

 

http://www.genomel.org/
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1.1.2.2.2 Low penetrance melanoma susceptibility alleles 

Epidemiological studies have established that the risk of developing melanoma is 

directly related to pigmentation phenotype. Fair skin, poor tanning response, red or 

blonde hair and freckles are all known melanoma risk factors (Bliss et al. 1995). 

Genome wide association studies and systematic analyses of candidate genes have 

identified a large number of genetic determinants of skin, hair and eye colour 

variation (Sturm 2009). A number of single nucleotide polymorphisms associated with 

genes involved in the melanin synthesis pathway have emerged as strong candidates 

for low penetrance melanoma susceptibility factors: melanocortin-1 receptor (MC1R), 

agouti stimulating protein (ASIP), tyrosinase (TYR) and tyrosinase-related protein-1 

(TYRP1) (Brown et al. 2008; Gudbjartsson et al. 2008; Raimondi et al. 2008). A total 

of nine MC1R variants are associated with increased melanoma risk and this risk 

persists after adjustment for hair colour and skin type (Kennedy et al. 2001; Landi et 

al. 2005; Palmer et al. 2000; Raimondi et al. 2008). ASIP, TYR and TYRP1 variants 

show a small but significant increased melanoma risk [Table 1.2]. In addition, MC1R 

variants influence penetrance of BRAF mutations with a 5-15-fold increased risk of 

BRAF-mutant melanomas demonstrated in MC1R variant carriers (Fargnoli et al. 

2008; Landi et al. 2006). 

 

1.1.2.3 Immunosuppression 

An intact immune system and surveillance are crucial in protecting the body from 

melanoma; it is therefore expected that immunosuppressed patients would be at 

increased risk for melanoma (Hollenbeak et al. 2005; Zimmerman and Esch 1978). 

The possibility that immunosuppression can lead to melanoma is supported by 

clinical observations that melanoma can spontaneously regress, and in such cases, 

an immune cell infiltrate is observed within the tumour lesion (Nathanson 1976). 

Immunological factors are also implicated in both development and progression of 

melanoma (Greene et al. 1981; Rigel and Carucci 2000).  

 

Significant advances in transplantation have been made over the last several 

decades benefiting thousands of patients. Long term survival after organ 

transplantation is increasing and the major cause of late morbidity and mortality in 

organ transplant recipients (OTR) is post-transplant malignancy (Buell et al. 2005). 

An increased incidence of skin malignancies following organ transplantation is well 

established, in particular squamous (SCC) and basal cell carcinomas (BCC) where 

the excess risk is in the order of 50-100 fold and 10-fold respectively (Ajithkumar et 

al. 2007; Grulich et al. 2007). For melanoma, an excess relative risk attributable to 
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transplantation is reported to be up to 12 (Baccarani et al. 2009; Birkeland et al. 

1995; Bordea et al. 2004; Bouwes Bavinck et al. 1996; Greene et al. 1981; 

Hollenbeak et al. 2005; Jain et al. 1998; Jensen et al. 2000; Kasiske et al. 2004; 

Lanoy et al. 2009; Le Mire et al. 2006; Leveque et al. 2000; Lindelof et al. 2000; 

Moloney et al. 2006; Rigel and Carucci 2000; Sheil 1986; Sheil et al. 1985).  

 

A recent multi-centre retrospective analysis to assess outcome in 91 post-transplant 

melanomas was undertaken by stratifying patients according to a number of 

American Joint Cancer Committee (AJCC) prognostic criteria (Matin et al. 2008). 

Outcome for post-transplant melanoma was similar to that of a matched non-

transplant population (Balch et al. 2001b) for T1 and T2 tumours (≤2mm thickness); 

but was significantly worse for T3 and T4 tumours (>2mm thickness) (p<0.0001) 

(Matin et al. 2008). Cohort studies of HIV-infected individuals have also demonstrated 

increased melanoma risk (Grulich et al. 2007; Patel et al. 2008) [Table 1.2], but no 

analysis of outcome has been undertaken in these individuals. 

 

1.1.3  Melanomagenesis 

1.1.3.1 Clark model  

Melanomagenesis and disease progression are commonly described as „de-

differentiation‟ processes of transformed, mature melanocytes enabling the linear 

stepwise transformation from naevus to melanoma. The Clark model of 

melanomagenesis represents the proliferation of melanocytes in the process of naevi 

formation and subsequent development of dysplasia, hyperplasia, invasion, and 

metastasis (Clark et al. 1984)  [Figure 1.2]. The clinicopathological progression from 

normal melanocyte to benign and dysplastic naevi, horizontal and vertical growth 

phase primary melanomas and ultimately metastatic melanoma reflects the 

accumulation of acquired genetic and epigenetic changes in genes with critical 

functions in the control of cell proliferation, differentiation, motility and  apoptosis 

[Section 1.1.4].  

 

1.1.3.1.1 Melanocytic naevi 

In the Clark model, the first phenotypic change in melanocytes leads to development 

of benign naevi, which are composed of nests of naeval melanocytes. Naevi are 

classified into three main pathological variants – junctional, compound and 

intradermal [Figure 1.3] based on the location of naeval melanocytes in relation to the 

dermo-epidermal junction. The control of growth in these cells is disrupted, but 

growth of a naevus is limited and rarely progresses to cancer (Clark et al. 1984). The 



 
Page | 37  

 

absence of progression is probably due to oncogene-induced cell senescence, in 

which growth stimulated by oncogenic pathways is limited (Braig and Schmitt 2006).  

 

Melanocytic naevi are thought to originate from the clonal expansion of a single 

melanocyte stem cell acquiring a BRAF mutation. After an initial phase of 

proliferation, naevus cells enter senescence. The presence of the BRAFV600 mutation 

alone is not sufficient to transform naevi cells to melanoma since these mutations 

occur at a similar frequency in benign naevi and in primary and metastatic 

melanomas (Pollock et al. 2003). Escape from senescence requires one or more 

additional hit(s), which might collaborate with loss of p16INK4a activity and trigger the 

naevus cell to proliferate. Immortalisation, however, requires cells to overcome 

replicative senescence by inactivating the p16INK4a/pRB pathway and by maintaining a 

minimal telomere length, which can be achieved by activation of hTERT. Full 

oncogenic transformation to melanoma is then likely to require further (epi-) genetic 

hits (Michaloglou et al. 2008).  

 

Although the Clark model was widely accepted, clinical and pathological evidence 

suggests that a significant proportion of melanomas do not arise from naevi and that 

this model of progression is somewhat oversimplified. More recently, evidence of 

melanoma heterogeneity and plasticity has led to an alternative hypothesis in line 

with a cancer stem cell concept, proposing mutated melanocyte stem cells or 

immature progenitor cells present in skin as precursors to melanoma (Fang et al. 

2005; Frank et al. 2005; Grichnik et al. 2006; Monzani et al. 2007; Topczewska et al. 

2006). These could be involved in initiating cancer and in conjunction with distinct 

changes in the microenvironment, would regulate the malignant transformation from 

melanocyte to melanoma [Figure 1.4]. 
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Figure 1.2: Clark Model of Melanomagenesis. Primary melanocytes (black arrows) are 

interspersed with keratinocytes, in a 1:6 ratio, in the basal layer of the epidermis of normal 

skin. The Clark model is based on the linear progression of a primary melanocyte to develop 

nests forming a benign naevus which following genetic aberrations develop into a dysplastic 

naevus. Further genetic changes result in development of a primary melanoma, initially in a 

radial growth phase which if it exceeds beyond the basement membrane, grows in a vertical 

direction (VGP) and through haematogenous and lymphatic spread can metastasise to 

various organs of the body.  

 

 

 

Figure 1.3: Clinical photographs of naevi. a) Well circumscribed pink nodule with linear 

dermal pigmentation, characteristic of benign intradermal naevus (BIDN). b) Well 

circumscribed, evenly pigmented macule consistent with a diagnosis of a junctional naevus. 

Histopathological examination reveals nests of melanocytes in the dermo-epidermal junction. 

Bar 10mm. Patient consent provided for images.  
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1.1.3.2 Cancer stem cell model 

The hypothesis that cancer stem cells lead to the tumourigenic process has received 

increasing attention over recent years. It proposes that tumours are initiated and 

maintained by a subset of cancer cells capable of self-renewal and differentiation into 

bulk tumour cells (Reya et al. 2001) [Figure 1.5].  

 

There are several features of the stem cell hypothesis in melanocytic neoplasia. 

Melanocytic naevi and melanoma would both have a common origin, being derived 

from a genetically defective stem cell. The severity of the defect in growth regulation 

would determine the extent of the growth; self-limiting defects would be benign 

(giving rise to naevi), while non-limiting defects would be malignant (resulting in 

tumour formation). The concept of melanoma „de-differentiation‟ from a melanocyte 

could be explained by the unmasking of a malignant stem/precursor cell with 

decreased ability to produce competent differentiated daughter cells. Melanomas 

show phenotypic heterogeneity both in vivo and in vitro, suggesting an origin from a 

cell with multi-lineage differentiation abilities. Delayed onset of disease recurrence 

could be more easily explained where mutated stem cells could exist dormant in the 

body for many years until the environmental stimulus was triggered. The aggressive 

nature of melanoma against a heightened immunological response could also be 

explained whereby daughter cells were destroyed but the malignant stem-like cells 

might be overlooked by the immune system. Moreover, most chemotherapies 

achieve a limited response, resulting in no overall survival benefit, and many patients 

die with relapsing disease that is resistant to further therapy. The recurrence of 

cancer following a primary response to treatment can be explained by the survival of 

a subset of cancer stem cells that display an intrinsic resistance to treatment-induced 

death  (Reya et al. 2001). Thus, a number of known biological characteristics of 

melanomas supports the theory that melanoma arises from a mutated stem cell.  

 

The biological and molecular characterisation of melanoma stem cells is still 

preliminary. The origin of melanoma stem cells is yet to be determined. Whether 

melanoma stem cells are derived from melanocyte stem cells, melanocyte 

progenitors or more mature melanocytes that have de-differentiated, remains unclear 

[Figure 1.6]. Classification of cell-surface molecules specific to melanoma stem cells 

could allow for the purification and characterisation of these cells from the bulk 

tumour population and a number of these have been identified in melanoma [section 

3.1.2].  
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Figure 1.4: Cancer stem cell hypothesis. The melanoma stem cell model proposes that 

melanocyte stem cell precursors are at the centre of melanomagenesis. It suggests that the 

stem cell could lead to melanoma development directly or via transition through a naevus. 

Other cells within the microenvironment (fibroblasts, inflammatory cells and endothelial cells) 

contribute to regulation of malignant transformation.   

 

 

 

Figure 1.5: Models of cancer growth. (A) The stochastic model predicts that all melanoma 

cells (coloured circles) derived from a heterogeneous population have the capacity to 

proliferate, regenerate and maintain tumour growth. (B) The cancer-stem-cell model 

hypothesises that a subpopulation of melanoma cells within the tumour, the melanoma-

initiating cells (MICs – red circles) are able to regenerate, maintaining tumour growth (green 

arrows). The bulk of the heterogeneous tumour cell population does not share these 

properties and lacks tumourigenicity. The red zig-zag arrow indicates genetic and/or 
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epigenetic changes that drive oncogenesis. Circular arrows represent proliferating cells. 

Figure reproduced from Rafaeli et al. (2009). 

 

 

 

Figure 1.6: Potential origin of melanoma stem cells. Melanoma stem cells may appear 

after mutations (denoted by yellow zig-zag arrows) occur in melanocyte stem cells or 

progenitor cells. They may also be the result of transformation in differentiated cells. A 

number of melanoma stem cell markers have been used to identify these cells from a tumour 

population, including CD133, ABCB5 and CD20 [detailed in section 3.1.3]. The cancer stem 

cell hypothesis proposes that these melanoma stem cells are responsible for tumour growth 

and metastasis. Figure adapted from Sabatino et al. (2009). 
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1.1.4  Molecular pathogenesis of melanoma 

1.1.4.1 Apoptotic pathways 

Abnormalities in apoptosis are a common feature of melanoma and occur due to 

acquired changes in the structure or expression of genes whose products function in 

various cell death pathways (Soengas and Lowe 2003). The role of apoptosis in 

melanocyte function and melanomagenesis is not well characterised. However, 

acquisition of resistance to apoptosis appears important in the transition from normal 

melanocyte to melanoma (Gilchrest et al. 1999). To support this, apoptosis resistance 

is demonstrated in naevus cells compared with normal melanocytes (Alanko et al. 

1999) and lower levels of spontaneous apoptosis occur in melanoma cells in vivo 

compared with other tumour cell types (Mooney et al. 1995).  In addition, occasional 

overexpression of the anti-apoptotic protein bcl-2 is observed in melanoma (Cerroni 

et al. 1995; Collins and White 1995; Selzer et al. 1998; Tang et al. 1998).  

 

Most chemotherapeutic agents function by inducing apoptosis in malignant cells 

(Fisher 1994) and accumulating evidence suggests that melanoma cells exploit their 

intrinsic resistance to apoptosis to render them resistant to standard chemotherapies 

(Grossman and Altieri 2001; Satyamoorthy et al. 2001). The expression and activity 

of apoptotic regulatory proteins maintains a critical balance in cells, with anti-

apoptotic and pro-apoptotic regulators exerting influence at multiple control points in 

apoptotic pathways. Examination of apoptotic dysregulation in melanomas [Figure 

1.7; Table 1.3] has revealed:  

a) increased expression of apoptotic inhibitors e.g. Livin (Kasof and Gomes 

2001); survivin (Bowen et al. 2003; Grossman et al. 1999) 

b) loss of pro-apoptotic factors e.g. downregulation of PUMA (Karst et al. 2005); 

loss of Apaf-1 (Soengas et al. 2001)  

c) hyperactivation of survival signalling pathways e.g. Akt is constitutively 

activated in 45 to 67% melanomas (Robertson 2005a) [section 1.1.4.2]  

None of these documented changes in melanoma have thus far, afforded a robust 

explanation for its characteristic chemoresistance.  
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Figure 1.7: Apoptotic dysregulation in melanoma. Simplified schematic of apoptotic 

pathways in human cells showing multiple levels of regulation, both in extrinsic (death-

receptor-mediated) and intrinsic (mitochondrial) apoptosis. A number of these molecules are 

dysregulated in melanoma [Table 1.3, section 1.2.4]. FLIP – flice inhibitor protein, Hsp70 – 

heat shock protein 70, IAP – Inhibitor of Apoptosis, TRAIL-R – TNF-related apoptosis inducing 

ligand, MDM2 – mouse double minute-2, Apaf-1 – Apoptotic protease activating factor-1, ATM 

– Ataxia telangiectasia mutated, Chk2 – checkpoint kinase-2. Adapted from Soengas and 

Lowe (2003). 
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Table 1.3: Dysregulated expression of molecules in melanoma cells [Figure 1.7]  

 

UPREGULATED DOWNREGULATED 

Survivin (Grossman et al. 1999)  Apaf-1 (Soengas et al. 2001) 

FLIP  (Irmler et al. 1997)  PTEN (Wu et al. 2003b)  

MDM2 (Polsky et al. 2002)  P14ARF (Sharpless and Chin 2003) 

MDM4 (Ramos et al. 2001)  TRAIL-R   (Zhang et al. 1999) 

IAPs  (Irmler et al. 1997)  PUMA (Karst et al. 2005) 

Hsp70 (Dressel et al. 1998; Ricaniadis et al. 

2001) 
 

TRAF2 (Ivanov et al. 2001)  

 

Bcl-2/Bcl-xL (Tron et al. 1995) 

 

E2Fs (Halaban et al. 2000) 

 

ATF-2  (Huang et al. 2008a; Takeda et al. 

1991) 
 

FLIP – flice inhibitor protein, Hsp70 – heat shock protein 70, IAP – Inhibitor of Apoptosis, 

TRAIL-R – TNF-related apoptosis inducing ligand, MDM2 – mouse double minute-2, MDM4 – 

mouse double minute-4, Apaf-1 – Apoptotic protease activating factor-1, PUMA – p53-

upregulated modulator of apoptosis, PTEN – phosphatase and tensin homologue, ATF-2 – 

activating transcription factor-2, TRAF-2 – TNF receptor associated factor-2,  
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1.1.4.2 Survival pathways 

There is rigorous evidence for the activation of cell survival pathways in melanoma 

[Figure 1.8]. Among the main forces limiting cell death are survival signals derived 

from activation of the Mitogen-Activated Protein Kinase (MAPK), Phosphoinositol-3-

kinase (PI3K) / Protein Kinase B (AKT) / Phosphatase and Tensin Homologue 

(PTEN) and the Nuclear factor-kB (NF-κB) signalling pathways. These signalling 

cascades are organised in intricate networks and a brief summary of their 

dysregulation in melanoma is outlined below. 

 

1.1.4.2.1 RAS/RAF/MAPK Pathway 

The MAPK pathway is primarily involved in regulation of cell growth. Stimulation of 

the pathway occurs after interaction of growth factors with their respective cell 

surface receptors e.g. receptor tyrosine kinases, stem cell factor / c-KIT, and the 

transmission of these signals through the small GTPase, RAS (Robinson and Cobb 

1997). Upon activation, RAS in turn, activates the RAF family of serine/threonine 

kinases which stimulates the MAPK cascade [Figure 1.8]. Hyperactivation of the 

MAPK pathway is an early event in melanoma progression (Cohen et al. 2002). 

Mutations in NRAS and BRAF, which occur exclusively of each other, cause 

constitutive activation of the serine–threonine kinases in the ERK–MAPK pathway 

(Albino et al. 1989; Davies et al. 2002; Omholt et al. 2003); somatic mutations of N-

RAS occur in 15-20% of melanomas (Brose et al. 2002; Davies et al. 2002); more 

commonly mutations in BRAF (downstream of NRAS) at position V600 are 

responsible and occur in up to 70% of melanomas (Davies et al. 2002; Forbes et al. 

2008; Garnett and Marais 2004; Smalley and Flaherty 2009) [Figure 1.8]. Activated 

RAS/MAP kinase signalling strongly upregulates expression of the POU domain 

transcription factor, Brn-2 (Goodall et al. 2004b). High levels of Brn-2 are expressed 

in melanoma compared with primary melanocytes (Eisen et al. 1995; Sturm et al. 

1994; Thomson et al. 1995) and it was demonstrated to be an effector of BRAF 

downstream of the MAP kinase cascade linking BRAF signalling to proliferation 

(Goodall et al. 2004a).  

 

Recently an inhibitor of activated BRAF V600E, plexxikon (PLX4032), has shown 

promising results in phase I/II clinical trials (Flaherty and Smalley 2009) and currently 

recruitment is taking place for the BRIM3 trial, an international phase III trial for this 

drug for use in metastatic melanoma (Plexxikon, Inc). Other selective BRAF inhibitors 

are also being tested in pre-clinical phase trials e.g. PLX4720, 885-A and GDC-0879, 
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providing new possibilities for therapeutic success in melanoma (Hatzivassilliou et al. 

2010, Heidorn et al. 2010).   

 

1.1.4.2.2 KIT 

Possibly the greatest therapeutic potential in melanoma comes from evidence 

confirming that specific molecular events are associated with particular 

clinicopathological subtypes of melanoma. Curtin et al. (2006) demonstrated 

frequently occurring genetic aberrations affecting the KIT oncogene in mucosal and 

acral melanomas and in melanomas from chronically sun-exposed areas. No KIT 

mutations were found in melanomas from intermittently sun-exposed skin. Improved 

understanding of such genotype-phenotype correlations is impacting on the 

development of novel therapies as major progress has been achieved in the targeted 

treatment with tyrosine kinase inhibitors (TKI) of gastrointestinal stromal tumours 

(GISTs), where KIT mutations are present in up to 80% of cases.  

 

To date, most of the KIT mutations reported in melanoma are of the type predicted to 

be sensitive to TKI; major responses to TKI, such as imatinib, have been seen in 

patients with melanoma harbouring KIT mutations (Jiang et al. 2008; Wyman et al. 

2006). Furthermore, a phase II clinical trial of imatinib reported clinical response in an 

acral melanoma which expressed high levels of c-KIT receptor but no c-KIT mutation 

(Kim et al. 2008). There is also evidence that targeting c-KIT mutated melanomas 

with imatinib simultaneously inhibits the MAPK and PI3K/AKT pathways, suggesting 

an interconnected network of these pathways exists to perpetuate melanoma (Jiang 

et al. 2008). 

 

1.1.4.2.3 PI3K/AKT/PTEN Pathway 

Activation of the MAPK pathway does not account for all aspects of melanoma 

progression and there is evidence that the PI3K/AKT/PTEN signalling pathway may 

be equally important [Figure 1.8]. PTEN expression is reduced in up to 30% of 

primary melanomas as a result of mutation or transcriptional silencing suggesting 

inactivation of PTEN is a late but frequent event in melanomagenesis (Birck et al. 

2000; Lin et al. 2008; Whiteman et al. 2002; Zhou et al. 2000). PTEN can also 

function as a haploinsufficient tumour suppressor with allelic loss in up to 50% 

melanoma metastases (Birck et al. 2000) and reports of PTEN methylation have 

demonstrated it to be an independent predictor of poor survival in melanoma (Lahtz 

et al. 2010). 
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Up to 50% of melanomas have selective constitutive activity of AKT3 (Stahl et al. 

2004) and activating mutations, although rare, have also been reported in this gene 

(Davies et al. 2008) [section 1.2.4.4.2]. This pathway is therefore a suitable candidate 

for therapeutic intervention and the clinical development of small molecule inhibitors 

of PI3K and AKT are currently undergoing evaluation.  

 

1.1.4.2.4 Microphthalmia-associated transcription factor (MITF) 

 MITF encodes basic helix-loop-helix-leucine-zipper transcription factors, among 

which the M-isoform is specifically expressed in melanocyte (Hodgkinson et al. 1993). 

It is the earliest known marker for the melanocyte lineage and is essential for 

melanocyte development. It is considered the master gene of melanocyte 

differentiation and induces the transcription of genes involved in melanin production 

including TYR and TYRP1 [section 1.1.2.2.2] (Steingrimsson et al. 2004). Although 

conflicting data exist regarding the role of MITF in melanoma development, evidence 

supporting a specific tumourigenic role is mounting (Fecher et al. 2007). MITF 

increases the transcription of bcl-2 (McGill et al. 2002), CDK2 (Du et al. 2004), INK4A 

(Loercher et al. 2005), and p21 (Carreira et al. 2005). Further, MITF resides 

downstream of the ERK and the PI3-kinase survival pathways, suggesting that MITF 

integrates extracellular pro-survival signals (Goding 2000). These observations 

directly implicate MITF in melanoma survival (Larribere et al. 2005). The role of MITF 

is still under intense investigation and clinical agents are not yet available to target 

this gene.  

 

1.1.4.2.5 NF-κB Pathway 

In melanoma cells, the NF-κB pathway is altered by upregulation of the NF-κB 

subunits, p50 and Rel-A (McNulty et al. 2001; Meyskens et al. 1999) and by 

downregulation of the NF-κB inhibitor, IκB (Dhawan and Richmond 2002; Yang and 

Richmond 2001). Gene transfer approaches have been used in melanoma to 

therapeutically inactivate Rel-A and overexpress IκB with pre-clinical success (Bakker 

et al. 1999; Huang et al. 2000; McNulty et al. 2001). 
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Figure 1.8: Dysregulation of survival pathways in melanoma. Signals from receptor 

tyrosine kinases can promote proliferation through the mitogen-activated protein (MAP) kinase 

(left branch) and survival through the phosphatidylinositol 3‟ kinase (PI3K) pathway (right 

branch). Frequency of mutations is shown in brackets. mut – mutation, del – deletion. Figure 

adapted from Curtin et al. (2005). 
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1.1.5  Role of microRNAs in melanoma progression 

MicroRNAs (miRNA) are a class of small non-coding RNAs, first described in 

Caenorhabditis elegans in 1993 (Lee et al 1993, Wightman et al 1993). They are 

~22-nucleotide long, double-stranded, non-coding RNAs, excised from longer (60-

110 nucleotides) stem-loop containing RNA precursor structures. They constitute an 

important layer of post-transcriptional regulation of gene expression via degradation 

of target mRNAs and/or impairment of mRNA translation, mediated by the RNA-

induced silencing complex (RISC) which is a cytosolic ribonucleoprotein complex 

[Figure 1.9]. Many miRNAs are well conserved, especially in vertebrates, and display 

distinct temporal and spatial expression patterns (Farh et al. 2005; Landgraf et al. 

2007). The roughly 500 mammalian miRNAs regulate up to 30% of protein-coding 

genes and are involved in both physiological and pathological processes including 

development and cancer. As part of known signalling pathways and regulatory 

circuits, miRNAs can exert oncogenic or tumour suppressor functions and miRNA 

expression profiles are emerging as viable markers for diagnosis and treatment of 

cancer.  

 

Initially, miRNA expression profiling was performed in melanoma tissue samples (Lu 

et al. 2005) but more recently was extended to include melanoma cell lines (Gaur et 

al. 2007; Zhang et al. 2006); Lu et al. demonstrated that miRNA expression profiles 

reflect the developmental lineage and differentiation state of the melanoma; Zhang et 

al. demonstrated that 85.9% of genomic loci harbouring one or more of the 283 

examined miRNA genes exhibited DNA copy number alterations in melanoma and 

Gaur et al. identified 15 miRNAs which were significantly dysregulated in melanoma 

cell lines. However, none of these studies compared the differential expression of 

miRNAs in melanoma to the normal biological correlate, normal human melanocytes. 

The first study to address this issue demonstrated a number of novel miRNAs 

dysregulated in melanoma when compared with melanocytes (Mueller et al. 2009). 

Their relevance was confirmed in vivo and the functional characterisation of the 

effects of each miRNA is detailed in table 1.4. 
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Figure 1.9: Biogenesis of microRNAs. MicroRNAs are ~22-nucleotide double stranded non-

coding RNAs endogenously encoded by the genome. They are transcribed by RNA 

polymerase II into the primary miRNAs (pri-mRNA) which have 5‟ caps and poly-A tails. The 

pri-miRNAs are processed by RNAse II, Drosha with its partner Pasha, into the precursor 

miRNAs (pre-miRNAs). These are exported into the cytoplasm and further processed by 

another RNAse II, Dicer, into mature miRNAs. The mature miRNA is incorporated into the 

RISC complex which negatively regulates target mRNA via degradation of target mRNAs 

and/or impairment of translation. RISC - RNA-induced silencing complex miRNA – microRNA.  

  



 
Page | 51  

 

Table 1.4: Functional effects of single miRNAs dysregulated in melanoma  

Effect of 

melanoma 

progression on 

miRNA 

miRNA 
Functional effect in 

melanoma 
Reference 

Upregulated  

miR137 Negative regulator of MITF* 
(Bemis et al. 

2008) 

miR182 

Overexpression results in 

increased survival and 

invasive potential by 

repression of MITF & FOXO3 

(Segura et al. 

2009) 

miR 

221/222 

Reduced expression of c-KIT 

receptor during melanoma 

progression with increased 

invasive chemotactic 

capabilities in mouse model 

(Felicetti et al. 

2008a; Felicetti 

et al. 2008b) 

Downregulated 

Let-7a 

Mechanism for regulation of 

integrin-β3. Depletion results 

in increased migration and 

invasion  

(Muller and 

Bosserhoff 

2008) 

Let 7b 

Directly & indirectly targets 

cell cycle regulators (e.g. 

cyclin D1) and interferes with 

anchorage-independent 

growth 

(Schultz et al. 

2008) 

*MITF – microphthalmia-associated transcription factor - master regulator of melanocyte 

growth, maturation, apoptosis and pigmentation, 

FOXO3 – forkhead box 03 
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1.1.6  Prognostic factors 

Overall, males diagnosed with melanoma have a 5-year survival of 78%, for females 

this is 91% (Cancer Research UK) but advanced disease has a dismal prognosis with 

a 5-year survival reaching only 11% (Barth et al. 1995).  The AJCC predicts 5-year 

survival for individuals with early (stage I/II) melanoma to be 85% (Balch et al. 2001a; 

Balch et al. 2009) which falls to approximately 6% in cases with visceral metastases 

where the median survival is 7.5 mths (Barth et al. 1995) [Figure 1.10]. Increases in 

Breslow thickness (the vertical distance measured in millimetres from the granular 

cell layer to the deepest part of the tumour), dermal mitotic rate and microscopic 

ulceration are the most important histological determinants of prognosis, all inversely 

correlated with survival [Table 1.5]. However, nodal status as determined by sentinel 

lymph node biopsy has emerged as the most powerful predictor of recurrence and 

survival and in patients with stage III regional nodal disease the 5-year survival 

ranges from 24% to 69.5% depending on the number of lymph nodes affected and 

the tumour burden (Balch et al. 2001a; Balch et al. 2009).  

 

1.1.7  Management of melanoma 

Early detection of melanoma renders the disease curable in patients undergoing 

surgical excision. For a vast majority of patients with metastatic disease, there are no 

effective treatments and despite testing of numerous novel therapeutic strategies 

over the past three decades, there has been little improvement in survival rates from 

advanced disease (Atkins et al. 2002; Chapman et al. 1999; Gause et al. 1998; 

Gogas et al. 2004a; Grossman and Altieri 2001; Helmbach et al. 2001; Hochster et al. 

1999; Hwu et al. 2003; Marsoni et al. 1987; Samuel et al. 1994). Advanced 

melanoma is notoriously chemo- and radioresistant. Most available therapies provide 

a short-lived palliative benefit (Middleton et al. 2000). These studies have 

demonstrated that very few of the drugs in our chemotherapeutic armamentarium 

have been successful in treating melanoma thus the development of effective 

therapies for this cancer remains a priority [Table 1.6]. Melanoma cells have acquired 

the ability to evade the diverse range of actions employed by cytotoxic agents e.g. 

DNA damage (e.g. by alkylation, methylation or crosslinking), microtubule 

destabilisation or topoisomerase inhibition. Complete responses to chemotherapeutic 

regimens rarely benefit more than 20% of patients with remission in melanoma rarely 

reported. It is therefore unlikely that drug resistance is due primarily to acquired 

genetic alterations selected during or after therapy, but rather inherent to the 

malignant behaviour of cells at diagnosis.  
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Figure 1.10: Clinical photographs of metastatic melanoma. a) Solitary large cutaneous 

nodule of metastatic melanoma on right upper arm. (b) Multiple haemorrhagic, macerated 

locoregional skin metastases affecting the left lower limb. (c) Multiple haemorrhagic and 

necrotic nodules of cutaneous metastatic melanoma with cervical, parotid and widespread 

lymphatic involvement (courtesy of A. Sahota, Whipps Cross Hospital). Patient consent 

obtained for images. 
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Table 1.5: AJCC classification for staging of cutaneous melanoma (Balch et al. 2001a; 

Balch et al. 2009) 

Stage Description 

5-year 

survival 

(%) 

0 Melanoma in situ 100 

IA 

IB 

Tumour thickness ≤1.0mm (T1) 

Tumour thickness ≤1.0mm with ulceration* OR tumour 

thickness 1.01 – 2.0mm (T2) without ulceration 

95.3 

89 – 90.9 

IIA 

 

IIB 

 

IIC 

Tumour thickness 1.01 – 2.0mm with ulceration OR tumour 

thickness 2.01 – 4.0mm (T3) without ulceration 

Tumour thickness 2.01 – 4.0mm with ulceration OR tumour 

thickness >4.0mm (T4) without ulceration 

Tumour thickness >4.0mm with ulceration  

77.4 – 78.7 

 

63 – 67.4 

 

45.1 

IIIA 

 

IIIB 

 

 

 

IIIC 

Any tumour thickness, no ulceration, 1-3 microscopic nodes 

involved 

Any tumour thickness with ulceration and 1-3 microscopic 

nodes OR any tumour thickness without ulceration and 1-3 

macroscopic nodes OR any tumour with satellite(s) / in-transit 

metastases 

Any tumour thickness with ulceration and 1-3 macroscopic 

nodes / satellite(s) / in-transit metastases OR any tumour with 

>4 metastatic nodes 

63.3 – 69.5 

 

46.3 – 52.8  

 

 

 

26.7 – 29 

 

IV 
Any tumour thickness, any number of nodes, any distant skin, 

subcutaneous, nodal or visceral metastases 
6.7 – 18.8  

 

*Melanoma ulceration is the absence of an intact epidermis overlying a major portion of the 

primary melanoma based on microscopic examination of histological sections (Balch et al. 

1978; Balch et al. 1979; Balch et al. 1980; McGovern et al. 1982). 
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Table 1.6: Selection of chemotherapeutic drugs used in the treatment of melanoma  

Chemotherapy Mode of action Use in melanoma 

Platinum 

Cisplatin 

 

 

 

 

 

Carboplatin 

DNA and protein crosslinking  

Induces single (ss) & double-

stranded (ds) DNA breaks 

activating signal-transduction 

pathways e.g. DNA-damage 

repair, cell-cycle arrest, 

apoptosis (Siddik 2003) 

Induces changes in DNA 

structure and inhibits DNA 

and RNA synthesis 

Definite (though minor) 

degree of activity in 

melanoma (Casper and 

Bajorin 1990; Chang et al. 

1993; Evans et al. 1987; 

Karakousis et al. 1979) 

Taxanes 

Taxol 

Paclitaxel 

Docetaxel 

Microtubule disruption 

(prevent depolymerisation 

altering cell division and 

motility) 

Minor clinical activity in 

clinical trials (Aamdal et al. 

1994; Bedikian et al. 1995; 

Einzig et al. 1991; Legha et al. 

1990) 

Epipodophyllotoxin 

Etoposide 

 

Inhibits topoisomerase II 

Induces dsDNA breaks 

(Hande 1998) 

Chemoresistant 

(Atkins 2002) 

Anthracyclines 

Doxorubicin 

DNA intercalating agents 

Induces ssDNA breaks, DNA 

crosslinking, inhibits DNA 

and RNA replication 

Chemoresistant 

(Atkins 2002) 

Alkylating agents 

Dacarbazine (DTIC) 

 

Temozolomide 

DNA alkylation & methylation 

Inhibits nucleic acid and 

protein synthesis 

DTIC derivative  

Only FDA approved drug 

used in melanoma (Lee et 

al. 1995; Serrone et al. 2000) 

Used in patients with 

brain metastasis (Quirbt et 

al. 2007) 
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1.2  TP53  

1.2.1  Background 

TP53 was first discovered 30 years ago as a cellular partner of simian virus 40 large 

T-antigen, the oncoprotein of this tumour virus (Lane and Crawford 1979). It is among 

the most extensively investigated of all genes and proteins. The first decade of 

research confirmed p53 to be a tumour suppressor with a major role in the cellular 

response to a diverse range of stress signals including DNA damage, genomic 

instability, hypoxia or oncogene activation (Vogelstein et al. 2000) [Figure 1.11]. TP53 

is described as the „guardian of the genome‟ because its activation induces a range 

of responses from cell cycle arrest or DNA repair to apoptosis or senescence. These 

responses contribute to tumour suppression either by preventing or repairing 

genomic damage or through elimination of potentially oncogenic cells from the 

proliferating population (Vousden 2006). Although the best studied functions of p53 

are the control of cell cycle arrest and apoptosis, more recently it has been implicated 

in other cellular processes, including regulation of glucose metabolism and oxidative 

stress (Bensaad and Vousden 2007).   

 

The p53 protein is a transcription factor and cellular response to p53 activation is 

determined by the differential activation of p53 target genes (Liu and Chen 2006). 

Based on several studies, a model has begun to emerge in which p53 drives two 

broad categories of response (Bensaad and Vousden 2005; Sablina et al. 2005) 

[Figure 1.11]. The first of these, elicited under mild or transient stress, induces p53-

dependent cell cycle arrest and DNA repair before the cell re-enters a normal 

proliferative state upon resolution of the stress. The second induces permanent 

inhibition of cell proliferation, through apoptosis or senescence, in response to 

severe, irreparable stress.  

 

p53 activity depends on its quantity within a cell and on qualitative changes in its 

structure, intracellular localisation, DNA binding activity and interaction with other 

proteins. A multitude of parameters govern expression, modification, accumulation 

and localisation of p53 proteins, which may explain how a single gene can display 

such an extensive repertoire of activities. 
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Figure 1.11: Simplified scheme showing activation of the p53 pathway. The p53–MDM2 

feedback loop is central to the p53 pathway. Under normal conditions, it maintains low steady-

state levels of p53. Various stress signals activating p53, act on this central loop to release 

p53 from MDM2-mediated inhibition. This increases p53 protein levels and activity, inducing 

various phenotypic changes. The downstream effects of p53 are a result of its ability to 

transactivate and repress various subsets of target genes. The phenotypic response to p53 

activation is, at least in part, proportionate to the amplitude, duration and nature of the 

activating signal. Severe stress induces apoptosis and senescence, whereas milder stress 

leads to a transient growth arrest and repair of stress-induced damage. Recent evidence 

indicates that p53 has an additional role to adjust cell metabolism in response to mild 

physiological fluctuations. Adapted from Levine and Oren (2009). 
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1.2.2  Structure of TP53 

The recent discovery that all p53 family members possess a dual gene structure, has 

added complexity to our understanding of the role of p53 pathway abnormalities in 

cancer. Bourdon et al. (2005) showed that the p53 gene encodes at least nine protein 

isoforms as a result of alternative splicing, alternative promoter usage and alternative 

translation initiation. Most of these isoforms retain their DNA binding domains (DBD) 

but differ in their N‟ and C‟ terminal regions (Bourdon et al. 2005; Courtois et al. 

2004). p53, p53β, p53γ, Δ133p53, Δ133p53β and Δ133p53γ isoforms result from 

alternative splicing of intron 9 and usage of an alternative promoter in intron 4. 

Isoforms Δ40p53, Δ40p53β and Δ40p53γ are due to alternative splicing of intron 9 

and alternative initiation of translation or alternative splicing of intron 2 (Ghosh et al. 

2004) [Figure 1.12]. Furthermore p53 variant mRNA is expressed in several normal 

human tissues in a tissue-dependent manner, indicating that the internal promoter 

and the alternative splicing of p53 can be regulated. Tissue-specific expression of the 

p53 isoforms may explain the tissue-specific regulation of p53 transcriptional activity 

in response to stressors such as ionising radiation, UVR, pH and hypoxia (Bourdon et 

al. 2005).  

 

1.2.3  Regulation of p53 

As p53 is such a potent inhibitor of cell growth, its function must be tightly controlled 

to allow normal growth and development. This is achieved through several 

mechanisms including regulation of protein stability, subcellular localisation and 

activity.   

 

1.2.3.1 Post-translational modifications of TP53 

Active p53 is subject to a complex and diverse array of post-translational 

modifications, which markedly influence the expression of p53 target genes. Post-

translational modification of p53 involves the covalent addition of a functional group to 

the p53 protein after its translation. The most commonly reported post-translational 

modifications of p53 include phosphorylation of serines and/or threonines and 

acetylation, ubiquitylation and sumoylation of lysine residues [Figure 1.13]. 

Phosphorylation and acetylation have been associated with stabilisation and 

transcriptional activation of p53 (Meek 1998). Neddylation of p53 has also been 

recently reported involving covalent addition of the C-terminal glycine residue of the 

ubiquitin-like protein NEDD8 to Lys370, Lys372 and/or Lys373 of p53 (Xirodimas et 

al. 2004). Sumoylation is catalysed by small ubiquitin modifier–1 (SUMO-1) which 

targets a C-terminal lysine in human p53 (K386), blocking acetylation by p300, and 
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impairing DNA binding capabilities (Stehmeier and Muller 2009a; Wu and Chiang 

2009). Other reported modifications of p53 include glycosylation (Shaw et al. 1996) 

and ribosylation (Wesierska-Gadek et al. 1996), but the significance of these 

modifications in carcinogenesis is unclear.  

 

 

 

 

 

Figure 1.12: Schematics for human p53 gene structure and p53 protein isoforms. (A) 

Schematic of the human p53 gene structure. (B) The p53 gene encodes at least nine protein 

isoforms. p53, p53β, p53γ, Δ133p53, Δ133p53β and Δ133p53γ isoforms result from 

alternative splicing of intron 9 and usage of an alternative promoter in intron 4. Isoforms 

Δ40p53, Δ40p53β and Δ40p53γ are due to alternative splicing of intron 9 and alternative 

initiation of translation or alternative splicing of intron 2. TA – transactivation, Oligo – 

oligomerisation domain. Adapted from Bourdon et al. (2005).  

 

 

  



 
Page | 60  

 

 

 

 

Figure 1.13: Post-translational modification sites on p53. The p53 protein consists of 393 

amino acids. The TA domain is required for transactivation activity and interacts with various 

transcription factors, acetyltransferases and MDM2. Examples of stressors (denoted by red 

panels) which are reported to activate upstream pathways in cancers to result in 

phosphorylation (pink P circles) of specific serine (S) and threonine (Thr) residues are shown. 

Neddylation involving the covalent addition of NEDD8 to Lysine 372 (K372) is shown 

(Xirodimas et al. 2004). Sumoylation catalysed by small ubiquitin modifier–1 (SUMO-1) 

targets a C-terminal Lysine 386 (K386), blocking acetylation (lysine residues green S circles) 

by p300, and impairing DNA binding capabilities (Stehmeier and Muller 2009a; Wu and 

Chiang 2009). UVR – ultraviolet radiation, IR – ionising radiation, Chk1/2 – checkpoint kinase 

1/2, ATM – ataxia telangiectasia mutated, ATR – ataxia telangiectasia and Rad3 related, 

ERK2 – extracellular signal-related kinase 2, GSK3β – glycogen synthase kinase 3β, CBP – 

CREB-binding protein, MDM2 – mouse-double-minute 2.    
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1.2.3.2 Cellular localisation of p53  

p53 is best characterised as a nuclear transcription factor that binds to specific DNA 

sequences and transactivates a number of genes with a variety of functions (Riley et 

al. 2008). In addition, p53 possesses biological activities that are cytosolic and 

transcription-independent. p53 mutants lacking a transactivation domain can induce 

apoptosis (Kakudo et al. 2005) and activation of p53 in the absence of a nucleus also 

triggers apoptosis (Chipuk et al. 2003), supporting the notion that cytoplasmic p53 

can induce apoptosis through a transactivation-independent mechanism.  

 

The transcription-independent p53-death pathway couples the nuclear and extra-

nuclear actions of p53. In unstressed cells, cytosolic p53 is sequestered into an 

inactive complex by soluble cytosolic bcl-XL. In response to stress, nuclear p53 first 

transactivates its target gene PUMA, which liberates p53 from its cytosolic bcl-XL 

inhibition by forming a PUMA/bcl-XL complex instead. p53 is then free to activate 

monomeric Bax in the cytosol (Chipuk et al. 2005). 

 

Upon exposure to apoptotic stimuli, total cellular levels of p53 quickly stabilise and a 

fraction accumulates at the mitochondria, where it induces an apoptotic programme. 

Activated p53 rapidly translocates to the outer membrane of mitochondria, where it 

engages in inhibitory and activating complexes with the anti- and pro-apoptotic 

members of the Bcl-2 family of mitochondrial permeability regulators (bcl-XL/bcl-2 

and BAK respectively). This translocation precedes changes of mitochondrial 

membrane potential, cytochrome c release and caspase activation. This induces 

outer membrane permeabilisation and the release of apoptotic activators (Arima et al. 

2005; Mihara and Moll 2003; Moll et al. 2006; Nemajerova et al. 2005; Sansome et al. 

2001). Mitochondrial translocation of endogenous wt-p53 occurs both in vitro and in 

vivo, in response to a wide spectrum of p53-activating cellular stresses in different 

cell types (Arima et al. 2005; Mihara and Moll 2003; Moll et al. 2006; Sansome et al. 

2001).  

 

The targeting of p53 to the mitochondria has received considerable interest. There is 

no reported mitochondrial translocation motif within the p53 polypeptide sequence 

and N- and C-terminal phosphorylation / acetylation modifications play no major role 

in mitochondrial targeting of p53 (Nemajerova et al. 2005). Recent evidence supports 

a process whereby monoubiquitylation of p53 provides a trafficking signal that 

redirects it from MDM2-mediated degradation in unstressed cells, to mitochondrial 

translocation and activation, early during the stress response (Marchenko et al. 
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2007). Nuclear export of p53 is not necessary for mitochondrial translocation upon 

DNA damage and instead distinct nuclear and cytoplasmic p53 pools become 

simultaneously and rapidly stabilised after genotoxic stress.  

 

1.2.3.3 p53-Binding Proteins 

There are at least 80 p53-binding proteins, of which two or more independent in vivo 

observations of complex formation have been reported (Braithwaite et al. 2006). 

These interactions frequently dictate how p53 behaves and a few key proteins linking 

p53 to its apoptotic function have been selected for review.  

 

1.2.3.3.1 p53 family members 

Identification of p53 homologues, p63 and p73, both of which exist in multiply spliced 

isoforms, has added considerable complexity to delineating the role of individual p53 

family members in cell death (Kaghad et al. 1997; Yang et al. 1998). Proteins 

encoded by these two genes are more structurally similar to each other than to p53; 

however all three family members possess several conserved protein domains 

[Figures 1.12, 1.14, 1.15]. These include an N-terminal transactivation (TA) domain, a 

central DNA binding domain (DBD) and an oligomerisation domain (OD) (Yang and 

McKeon 2000). Both homologues share approximately 80% amino acid identity within 

the DBD with each other and >60% amino acid identity with p53, thus regulating an 

overlapping set of target genes (Kaghad et al. 1997; Yang et al. 1998). Conservation 

of all essential DNA contact residues (De Laurenzi et al. 2000) allows p63 and p73 to 

share functions of p53 such as induction of cell cycle arrest and apoptosis (Melino et 

al. 2003; Moll and Slade 2004; Osada et al. 1998; Vousden and Woude 2000). 

Nevertheless, a number of functional differences exist between the three family 

members making them distinct proteins.  

 

p63 and p73 each have two promoters, resulting in two proteins with opposing 

functions: p53-like proteins containing the TA domain, and inhibitory proteins (called 

ΔN) lacking the TA domain. The full-length TA isoforms of these proteins are pro-

apoptotic, whereas naturally occurring N-terminal truncated ΔN variants act as pro-

survival factors, at least in part by antagonising activities of the full-length family 

members (Melino et al. 2002; Melino et al. 2003; Moll and Slade 2004; Yang et al. 

1999a; Zaika et al. 2002). In addition both of these genes undergo alternative splicing 

at the COOH- terminus [Figures 1.14, 1.15].  
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1.2.3.3.2 p53 family co-operation  

Interactions among p53 family members appear to be supported by evolutionary, 

genetic and biochemical evidence (Yang et al. 2002) and there is intense debate as 

to whether, and how, p63 and p73 interact with p53 in apoptosis and tumour 

suppression (Benchimol 2004). Although initial evidence suggests that induction of 

death by p53 requires the partnership of p63 and p73 in E1a-expressing mouse 

embryo fibroblasts and in primary neuronal cultures (Flores et al. 2002), this has 

been challenged in thymocytes where p53-dependent apoptosis occurred 

independently of p63 and p73 (Senoo et al. 2004). In neuronal cells, whilst p63 alone 

is sufficient to promote neuronal apoptosis, it is also an obligate pro-apoptotic partner 

for p53 and essential for p53-induced apoptotic cell death (Jacobs et al. 2005). In 

hepatocellular carcinoma all three p53 family members were involved in the DNA 

damage response to genotoxic agents and revealed a central role for the 

p53/p63/p73 network in treatment response and prognosis of this cancer (Gressner 

et al. 2005; Muller et al. 2006; Seitz et al. 2009). 
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Figure 1.14: Schematic of human p63 gene and protein isoforms. (A) Schematic of 

human p63 gene structure demonstrating alternative promoters indicated (P1 and P2) giving 

rise to TA and ∆N isoforms and alternative splicing sites giving rise to α, β and γ, C-terminal 

splice variants. (B) p63 protein isoforms: TAp63 proteins encoded from promoter P1 contain 

the transactivation (TA) domains. ∆Np63 proteins encoded from promoter P2 are amino-

truncated variants containing a different N-terminal domain to the TAp63 proteins. The 

numbers indicate the exons encoding p63 protein isoforms. Recent discovery of two new C-

terminal splice variants are also shown – δ variant derived from exclusion of exon 12 and 13 

and ε variant generated by a premature transcriptional termination in intron 10, retaining the 5‟ 

portion of intron 10 which immediately presents a stop codon. Oligo – oligomerisation domain, 

SAM – sterile alpha motif, TID – transactivation inhibitory domain. Adapted from Murray-

Zmijewski et al. (2006) and Mangiulli et al. (2009). 
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Figure 1.15: Schematic showing human p73 gene and protein structure. (A) Schematic 

of the human p73 gene structure. Alternative promoters (P1 and P2) are indicated and 

alternative splicing results in seven C-terminal splice variants. (B) p73 protein isoforms: 

TAp73 proteins are encoded from promoter P1 and contain a conserved N-terminal TA 

domain. Ex2p73 proteins are due to alternative splicing of exon 2. They have lost the 

conventional TA domain but retain part of it (exon 3). Ex2/3p73 proteins arise due to 

alternative splicing of exons 2 and 3. They have entirely lost the TA domain and are initiated 

from exon 4. The protein encoded by ∆N‟p73 mRNA has not been described yet. ∆N‟p73 

variant is often overexpressed at the mRNA level in tumours. It is due to alternative splicing of 

exon 30 contained in intron 3. Theoretically ∆N‟p73 mRNA would encode for either a short 

p73 protein or p73 protein isoforms identical to ∆Np73. ∆N‟p73 mRNA contains the normal 

initiation site of translation in exon 2 (ATG) and a stop codon in exon 30 and could therefore 

encode for a short p73 protein composed only of the TA domain. It is possible that translation 

of ∆N‟p73 mRNA is initiated from the third ATG present in exon 30, leading to a p73 protein 

identical to ∆Np73 isoforms. ∆Np73 proteins encoded from promoter P2 are amino-truncated 

proteins containing a different N-terminal domain to that of TAp73 proteins. Numbers indicate 

the exons encoding p73 protein isoforms. For brevity, all C-terminal splice variants are only 

shown for the TA isoforms. Adapted from Murray-Zmijewski et al. (2006). 
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1.2.3.3.3 Mouse double minute 2 (MDM2) 

The main regulator of p53 levels is the human homologue of MDM2. MDM2 is a 

RING-finger E3 ubiquitin ligase which is a nuclear protein which binds to, promotes 

the nuclear export of, and subsequently degrades p53 through its intrinsic E3 

ubiquitin ligase activity (Honda et al. 1997). In addition to its role in proteosomal 

degradation, the mdm2 binding site domain of p53 overlaps with its transactivation 

domain enabling mdm2 to inhibit the transcriptional activity of p53 through specific 

binding (Momand et al. 1992). In unstressed cells, mdm2 and p53 are kept at low 

levels and mutually regulate their levels through a negative feedback loop [Figures 

1.7, 1.11].  

 

1.2.3.3.4 MDM4  

MDM4 (formerly named MDMX) is historically considered to be a negative regulator 

of p53 function under basal or sub-lethal conditions. It binds to and inhibits 

transactivation of p53. In contrast to MDM2, it does not possess intrinsic ubiquitin 

ligase function but does co-operate with MDM2 to potentiate its activity towards p53 

ubiquitination and degradation (Kawai et al. 2007; Linares et al. 2003; Linke et al. 

2008; Okamoto et al. 2009) [Figure 1.7]. More recently, under severe genotoxic 

stress, MDM4 has been shown to anchor at the mitochondria, facilitate localisation of 

phosphorylated p53 (at Serine 46) and promote its binding to bcl-2 resulting in 

release of cytochrome c and mitochondrial apoptosis (Mancini et al. 2009). This 

highlights a novel role for MDM4 as a positive regulator of p53-intrinsic apoptosis and 

suggests that p53 regulators have an important function in the p53-mediated decision 

between cell life and death.   

 

1.2.3.3.5 ASPP Family of Proteins 

The ASPP (Apoptotic-Stimulating Proteins of p53 or ankyrin-repeat-, SH3-domain- 

and proline-rich-region-containing protein) family are transcriptional co-activators 

which enhance the DNA binding and transcriptional activity of p53 (Samuels-Lev et 

al. 2001). Members of the ASPP family have been identified as specific regulators of 

the p53 family, selectively regulating the apoptotic function of p53. The family 

comprises three members of which two, ASPP 1 and 2, are pro-apoptotic and the 

third, inhibitory ASPP (iASPP), is anti-apoptotic [Figure 1.16].  

 

1.2.3.3.6 ASPP and p53 family members  

All members of the ASPP family interact with all three p53 family members 

(Bergamaschi et al. 2004; Robinson et al. 2008; Samuels-Lev et al. 2001). ASPP1 
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and 2 enhance the apoptotic function of p53 by selectively stimulating binding and 

transactivation of p53, p63 and p73 on specific downstream apoptotic gene 

promoters (e.g. BAX and PIG3) without acting on cell cycle arrest promoters (e.g. 

CDKN1A, MDM2 and cyclin G1) (Samuels-Lev et al. 2001) [Figure 1.17].  

 

Unlike ASPP1/2, evidence indicates that iASPP is predominantly an anti-apoptotic 

gene and this function is evolutionarily conserved (Bergamaschi et al. 2003b). The 

importance of the ASPP family in regulating p53 function is supported by genetic 

evidence in C.elegans (in which ASPP1/2 do not exist), C.elegans iASPP can inhibit 

the function of human p53 in human cells as effectively as human iASPP 

(Bergamaschi et al. 2003b). iASPP selectively inhibits p53 apoptotic function by 

inhibiting transcriptional activity of p53 bound to BAX and PIG3 promoters, but not 

p53 that is bound to the MDM2 and p21 promoters (Bergamaschi et al. 2003b). 

 

 

 

 

Figure 1.16: Structure of ASPP family of proteins. The members of the ASPP (ankyrin-

repeat-, SH3-domain- and proline-rich-region containing protein) family are specific regulators 

of p53-, p63- and p73-mediated apoptosis. The family comprises three members; two pro-

apoptotic proteins, ASPP1 and ASPP2 and a third, iASPP, originally reported as a REL-

A/p65-associated inhibitor (RAI) that inhibits the transcriptional activity of REL-A/p65 (Yang et 

al. 1999b). Subsequent studies showed that the full-length iASPP protein is 828 amino acids 

in length (Herron et al. 2005; Slee et al. 2004) and its homologue in Caenorhabditis elegans is 

a protein of 769 amino acids which functions as an inhibitor of p53 (Bergamaschi et al. 

2003b). aa – amino acids, PXXP – proline repeats. 
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Figure 1.17: ASPP function in cellular pathways. Pro-apoptotic ASPP1 and ASPP2 are 

induced by E2F1 transcription factor and cooperate with the p53 family in transactivating pro-

apoptotic genes such as the BCl2-family member BAX, the BCl2-binding component PUMA 

and PIG3. The inhibitory family member iASPP, functions as a transrepressor of the same 

genes. It also affects the NFκB pathway by inhibiting its subunit REL-A/p65. NFκB might also 

inhibit ASPP1 and ASPP2.  IκB – inhibitor of NFκB; IKK – IκB kinase, TNFα – Tumour-

necrosis factor-α, PIG3 – p53-induced gene 3, PUMA – p53-upregulated mediator of 

apoptosis. Image reproduced from Trigiante and Lu (2006).  
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1.2.3.3.7 ASPP and cancer 

ASPP expression correlates with apoptotic sensitivity (ASPP1 and 2 increase 

sensitivity and iASPP increases resistance) and, given that disruption of the apoptotic 

pathway is a hallmark of cancer, it is reasonable that the ASPP family has an 

important function in tumourigenesis. Deregulation of ASPP1/2 has been 

demonstrated in several cancers including lung cancer and breast cancer 

(Bergamaschi et al. 2004; Liu et al. 2005; Mori et al. 2004; Mori et al. 2000; Samuels-

Lev et al. 2001). Lowered ASPP2 levels correlate with poor prognosis and metastasis 

in diffuse large B cell lymphoma and breast cancer (Cobleigh et al. 2005; Lossos et 

al. 2002) and ASPP2 expression is associated with breast cancer progression (Sgroi 

et al. 1999). More recently, ASPP2 was described as a haploinsufficient tumour 

suppressor in mice developing lymphomas and sarcomas (Vives et al. 2006).   

 

iASPP, a proto-oncogene is upregulated in a number of cancers including leukaemia, 

and breast cancer (Bergamaschi et al. 2003a; Liu et al. 2009a; Zhang et al. 2005) 

and in some cases occurs with a concomitant downregulation of ASPP expression 

thus providing a further option for targeting the p53 family in the treatment of cancers 

(Bell and Ryan 2008). 

 

1.2.3.3.8 Prolyl isomerase Pin1 

The prolyl isomerase Pin1 catalyses phosphorylation-directed prolyl isomerisation. 

Upon phosphorylation, Pin1 regulates p53 activation by rendering p53 suitable for 

subsequent modifications and modulating its interaction with DNA and co-factors. 

Genotoxic stress increases the interaction between p53 and Pin1 by recruiting Pin1 

to Ser33, Thr81 and Ser315 (and under certain circumstances Ser46) of p53 (Wulf et 

al. 2002; Zacchi et al. 2002). Isomerisation of specific proline residues of p53 by Pin1 

changes the conformation of p53 thus affecting its interaction with proteins that 

modulate p53 abundance or function. It is required for the dissociation of Mdm2 and 

full stabilisation of p53 following UVR (Zacchi et al. 2002). Cells lacking Pin1 fail to 

efficiently stabilise p53 upon genotoxic stress and consequently, cell cycle arrest and 

apoptotic responses are compromised (Mantovani et al. 2004a; Zacchi et al. 2002). 

 

Pin1 activity can also restore the occupancy of p53 pro-apoptotic promoters. Pin1 

was deemed essential for the apoptotic function of p73, by modifying p73 

conformation and promoting its acetylation by p300/CBP (CREB binding protein) in a 

c-abl dependent fashion under genotoxic stress (Mantovani et al. 2004b). The 

presence of Pin1 at the p53 and p73-target promoters suggests that it contributes to 
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promoter selection by stabilising transcriptional complexes involving the p53 family 

and co-activators, including ASPP and p300. In support of this, Pin1 has recently 

been demonstrated to orchestrate p53 acetylation at Ser46, by p300 upon genotoxic 

stress, further mediating dissociation of p53 from iASPP and promoting cell death 

(Mantovani et al. 2007). These data highlight the complex interactions between p53 

family members and p53 co-activator proteins in regulating the transcriptional activity 

of p53.  

 

1.2.3.3.9 p300/CBP 

One group of p53 family regulators is p300/CBP. Although both p300 and CBP are 

distinct proteins encoded by two individual genes (Chrivia et al. 1993; Eckner et al. 

1994), both proteins often mediate transcription by binding to similar sets of 

transcriptional activators and are therefore often referred to as p300/CBP (Kawasaki 

et al. 1998; Kwok et al. 1994; Lee et al. 1996). p300/CBP acetylates p53 and 

contributes to its stability and transcriptional activity (Barlev et al. 2001; Gu and 

Roeder 1997; Gu et al. 1997; Lill et al. 1997). Consequently these effects mediate 

activation of downstream apoptotic pathways (Mantovani et al. 2007). 

 

1.2.4  TP53 and melanoma 

1.2.4.1 TP53 and UVR 

TP53 has an important role in protecting against skin cancer induced by UVR 

(Cleaver and Crowley 2002). UVB is considered to be the most carcinogenic 

wavelength (280-320nm) inducing erythema, sunburn and is associated with cancer 

risk. To facilitate survival, melanocytes have developed an attenuated p53-dependent 

apoptotic response after UV exposure. In keratinocytes, p53 functions as a master 

regulator of skin cytokine signalling. In normal skin, p53 is a transducer of the tanning 

signal, thus an essential component of a keratinocyte-melanocyte signalling cycle 

that regulates skin pigmentation optimally in skin of dark pigmentation (Box and 

Terzian 2008). In lightly pigmented Caucasian skin, there is diminished pigment 

synthesis and diminished photoprotection. In response to UVR, p53 is highly induced 

leading to expression of target genes including paracrine factors which are 

responsible for upregulating melanogenesis and melanocyte proliferation. These 

paracrine signalling molecules are highly mitogenic for melanocytes and capable of 

acting as tumour promoters (Berking et al. 2004; Yamaguchi et al. 2006).    

 

Absorption of UVB by DNA results in the generation of 6-4 photoproducts or 

pyrimidine dimers leading to genetic mutations such as C→T or CC→TT transitions; 
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the latter mutation representing the hallmark of UV-induced mutagenesis (Jhappan et 

al. 2003). These UVB-signature mutations in p53 are common in situations of 

defective DNA repair (Spatz, Giglia-Mari et al. 2001). Despite the high frequency 

(>90%) of UV-signature p53 mutations in non-melanoma skin cancer (McGregor et al. 

1997), such mutations occur with a low frequency (<10%) in melanoma (Hocker and 

Tsao 2007; Weiss et al. 1995a; Zerp et al. 1999).  

 

The p53 gene itself may be a melanoma risk gene. The Arg72Pro allele of p53 is 

associated with melanoma risk, particularly in individuals with dark skin phototypes 

who do not carry the MC1R variants (Stefanaki et al. 2007). While a clear picture is 

still emerging as to the functional consequences of p53 activation in melanocytes, 

studies suggest p53 plays a tumour-suppressive role in melanocytes (Box and 

Terzian 2008).  

 

1.2.4.2 p53 mutations in melanoma  

Mutational inactivation of p53 is rare in melanoma but can occur anywhere in the 

gene, and is usually a result of a point mutation (Albino et al. 1994; Avery-Kiejda et 

al. 2008; Gwosdz et al. 2006; Li et al. 2006; Montano et al. 1994; Papp et al. 1996; 

Soto et al. 2005; Sparrow et al. 1995b; Weiss et al. 1995a; Zerp et al. 1999). 

Functional studies of p53 mutant protein activity have revealed that over 70% of 

melanoma-associated p53 mutations retain >50% of wild-type (wt) p53 protein 

function (Soussi and Lozano 2005). Moreover these mutations tend to occur at later 

stages of disease suggesting that they are not essential for melanoma progression 

(Kanoko et al. 1996; Lassam et al. 1993; Stretch et al. 1991; Zerp et al. 1999). 

Ectopic expression of wt-p53 in melanoma cells harbouring an endogenous mutation 

of p53 results in apoptosis whereas the same does not occur with ectopic expression 

of wt-p53 in cells without mutations, suggesting that inactivation of p53 in melanoma 

is due to inhibition of the function of wt-p53 itself (Kichina et al. 2003). 

 

1.2.4.3 p53 expression in melanoma 

High levels of p53 mRNA and protein expression has been reported in melanoma 

cells and tissue samples (Akslen and Morkve 1992; Bartek et al. 1991; Hussein et al. 

2003; McGregor et al. 1993; Sparrow et al. 1995b; Stretch et al. 1991; Weiss et al. 

1995b; Yamamoto et al. 1995) often in the absence of point mutations in the gene 

(Albino et al. 1994; McGregor et al. 1993; Sparrow et al. 1995b). TP53 detection was 

associated with better prognosis and longer survival for patients with superficial 

spreading melanomas (Essner et al. 1998; Florenes et al. 1994) but in other studies 
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p53 immunoreactivity correlates with advanced melanoma and adverse prognostic 

factors (McGregor et al. 1993; Sparrow et al. 1995a; Yamamoto et al. 1995). Isoforms 

of p53 have also been demonstrated in melanoma cell lines and fresh isolates of 

melanoma. In some cases variants were expressed at higher levels than the full 

length wt-p53 suggesting that they might play an inhibitory role for p53 transactivation 

(Avery-Kiejda et al. 2008). 

 

1.2.4.4 p53 pathway dysregulation  

The ubiquitous loss of the p53 pathway in melanoma occurs rarely by p53 gene 

mutation and more commonly in tumours expressing the wt-p53 gene, through 

presumed dysregulated upstream or downstream cell signalling. Understanding p53 

tumour suppressor activity has provided insight into melanomagenesis. Evidence 

from a transgenic zebrafish model expressing mutant BRAF (V600E) revealed 

expression of mutant, but not wild-type, BRAF led to dramatic patches of ectopic 

melanocytes, termed fish naevi. In p53-deficient fish, activated BRAF induced 

formation of melanocytic lesions that rapidly developed into invasive melanomas, 

resembling human melanomas (Patton et al. 2005). In support of this, an increased 

incidence of melanoma was observed in BRAF mutant mice with p53 deficiency 

(Goel et al. 2009) and p53 inactivation promotes malignant transformation in BRAF 

mutant human melanocytes demonstrating a dysfunctional p53 pathway in vivo (Yu et 

al. 2009). These data confirm that BRAF activation is among the primary events in 

melanoma development, but more importantly provide direct evidence that the p53 

and BRAF pathways interact genetically to produce melanoma. 

 

1.2.4.4.1 Defective activation of p53 

Activating pathways upstream of p53 are likely to be disrupted in melanomas 

expressing wt-p53 protein and there is evidence supporting this hypothesis. DNA 

damage leads to an increase in p53 protein levels (Avery-Kiejda et al. 2008; Bae et 

al. 1996; Maltzman and Czyzyk 1984) and an increase in the functional activity of the 

protein (Chernov and Stark 1997; Haapajarvi et al. 1997). The molecular mechanism 

for increased p53 levels in response to ionizing radiation (IR) involves a signalling 

pathway including ATM (ataxia telangiectasia mutated) and Chk (checkpoint) 

kinases; ATM activates Chk1 and Chk2/hcds1, which in turn phosphorylates p53 on 

ser-20 (Chehab et al. 2000; Hirao et al. 2000; Matsuoka et al. 1998; Shieh et al. 

2000) [Figure 1.13]. The latter phosphorylation leads to dissociation of p53 from 

mdm2 (Chehab et al. 2000) whose normal function is to target p53 for degradation 

[Figure 1.7]. Dephosphorylation of ser-376 of p53 in response to IR, increases 
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binding with 14-3-3 proteins enabling transactivation of p53 target genes, inducing 

cell cycle arrest or apoptosis (Kastan et al. 1991; Kubbutat et al. 1997).  

 

The inhibition of wt-p53 function by upstream signalling pathways that activate p53 in 

response to DNA damage is supported by mutations in chk2/hcds1 (Chehab et al. 

2000; Hirao et al. 2000; Matsuoka et al. 1998; Shieh et al. 2000), which have been 

identified in a subset of families with the hereditary Li-Fraumeni cancer predisposition 

syndrome (Bell et al. 1999). An overall increase in phosphorylation of p53 is observed 

in melanoma cells (Minamoto et al. 2001) and decreased p53 transcriptional activity 

is demonstrated in melanoma cells exposed to γ-radiation (Bae et al. 1996). In 

addition, defective activation of p53 occurs in response to DNA damage providing 

possible explanations for the radioresistance commonly observed in melanoma 

(Satyamoorthy et al. 2000).  

 

1.2.4.4.2 Dysregulation of p53 co-activators 

The most commonly cited explanation for p53 inactivation in melanoma is through 

increased expression of the negative regulator, mdm2 [section 1.2.3.3.3]. However 

INK4a or CDK4 loss or mutation occurs in only 25-40% of sporadic human 

melanomas (Ghiorzo and Scarra 2003) resulting in increased mdm2 protein which 

degrades p53 (Bardeesy et al. 2001). Overexpression of mdm2 protein contributes to 

the functional inactivation of p53 (Polsky et al. 2002) and in the setting of 

amplification of 12q14 in a subset of melanomas, may substitute for loss of p14ARF 

expression (Muthusamy et al. 2006). One possible explanation for MDM2 

overexpression is AKT3 which is commonly amplified in melanoma (Stahl et al. 2004) 

and has been demonstrated to upregulate MDM2 (Moumen et al. 2007). MDM2 may 

also be elevated because of elevated p53 levels as they are both involved in an 

autoregulatory loop where mdm2 is a transcriptional target of p53. Other studies have 

reported that melanoma cells, with few exceptions, do not express high levels of 

mdm2 (Gelsleichter et al. 1995) implicating alternative methods of attenuation of wt-

p53 activity in melanoma. 

 

Although MDM4 is overexpressed in melanoma cell lines (Ramos et al. 2001), the 

exact relationship between p53 function and mdm2/mdm4 expression in melanoma is 

yet to be defined. A role for MDM4 in regulating p53 activity was demonstrated when 

potent activation of wt-p53 in chemoresistant melanoma cells induced by an 

organometallic glycogen synthase kinase 3β (GSK3β) compound, downregulated 

both MDM2 and MDM4, subsequently leading to cell death (Smalley et al. 2007).   
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Dysregulation of the p53 family members, TP63 and TP73 in melanoma has not been 

robustly investigated, although there is evidence to suggest involvement of TP73 

(Tuve et al. 2006), and examination of the co-ordination of activities of each of the 

members has not been undertaken. 

 

1.2.4.4.3 Dysregulation of p53 downstream pathways 

Disruption of apoptosis downstream of p53 may alleviate pressure to mutate p53 and 

simultaneously reduce chemosensitivity in cancers (Schmitt et al. 2002; Schmitt and 

Lowe 2002). The failure of IR to induce either cell cycle arrest or apoptosis in 

melanoma cells expressing wt-p53 (ectopically or endogenously), suggests defective 

signalling pathways downstream of p53 (Bae et al. 1996; Satyamoorthy et al. 2000). 

In support of this, one of the key mediators of p53-dependent apoptosis, Apoptosis 

protease-activating factor-1 (Apaf-1), is frequently lost or downregulated in melanoma 

cell lines and tissue samples, an effect which is associated with melanoma 

progression and an example of how melanoma cells evade apoptosis (Campioni et 

al. 2005). Moreover, restoration of physiological levels enhances chemosensitivity by 

re-establishing the p53 pathway (Soengas et al. 2001).  

 

p53 upregulated modulator of apoptosis (PUMA) is a p53-inducible target gene 

(Nakano and Vousden 2001; Yu et al. 2001) which shows decreased expression 

during melanoma progression correlating with lower survival rates (Karst et al. 2005). 

Anti-senescence factors Tbx2 and Tbx3 are also upregulated in melanoma (Vance et 

al. 2005) and provide another example of dysregulation of the p53 pathway through 

suppression of p53-mediated activation of its downstream target, p21 (Hoek et al. 

2004; Prince et al. 2004; Vance et al. 2005). Thus, dysregulation of the p53 pathway 

in melanoma occurs at all levels and is likely to contribute to both pathogenesis and 

chemoresistance of the disease.  
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1.3  TP63  

1.3.1  Background 

TP63 was the third member of the p53 family to be discovered in 1998 by McKeon 

and Caput (Yang et al. 1998). Phylogenetically, it is the oldest evolutionarily 

conserved member of the p53 family (Blandino and Dobbelstein 2004).  

 

1.3.2  Structure of p63 

The gene is tissue-specifically transcribed into different isoforms whereby two 

alternative promoters give rise to TA and ΔN isoforms [Figure 1.14] (Osada et al. 

1998; Yang et al. 1998). The distal promoter generates TAp63 isoforms with a 

transactivation domain (TA domain) in their NH2-terminus capable of transactivating 

various p53-responsive promoters. The use of the proximal promoter generates 

ΔNp63 isoforms with a short peptide substituting for the TA domain, which exerts 

dominant-negative activity against TA isoforms and p53 (Hibi et al. 2000; Patturajan 

et al. 2002; Ratovitski et al. 2001; Stiewe et al. 2002; Wu et al. 2003a; Yang et al. 

1998). Whilst initial studies showed that the TAp63 isoform was a transcriptional 

activator and ∆Np63 was a dominant negative inhibitor (Yang et al. 1998) later 

studies confirmed that the ∆Np63 isoform is capable of inducing cell cycle arrest and 

apoptosis (Dohn et al. 2001) through a second transcriptionally active domain (TA2) 

between residues 410 and 512 (Duijf et al. 2002; Ghioni et al. 2002; Ponassi et al. 

2006; Wu et al. 2003a). 

 

In addition, both isoforms undergo three alternative splicing events at the COOH-

terminus generating six different isoforms (Ikawa et al. 1999; Mills 2006; Yang and 

McKeon 2000). More recently two new C-terminal p63 variants named p63 δ and ε 

have been identified bringing the total number of p63 isoforms to ten [Figure 1.14] 

(Mangiulli et al. 2009).  

 

1.3.2.1 Transactivation domains 

Biochemical studies of p63 show that, like p53, p63 proteins act as sequence-specific 

DNA-binding transcription factors. TAp63 isoforms activate the transcription of 

reporter genes from heterologous promoters through p53 DNA binding sites, as well 

as from endogenous promoters of p53 target genes such as p21 (Ghioni et al. 2002; 

Westfall et al. 2003; Yang et al. 1998). Structurally the γ forms of p73 and p63 most 

closely resemble p53 itself. However, whilst TAp63γ is as powerful as p53 in 

transactivation and apoptosis assays (Westfall et al. 2005), TAp63α is relatively weak 
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(Dohn et al. 2001; Ghioni et al. 2002; Yang et al. 1998). This is due to the presence 

of an additional domain in the C-terminus of α isoforms of p63 known as the 

transactivation inhibitory domain (TID) (Serber et al. 2002). The TID domain interacts 

with the TA domain of p63, limiting the transactivation capability of TAp63α (Serber et 

al. 2002).   

 

1.3.2.2 Sterile alpha motif 

In contrast to p53, the p63α proteins contain an additional region known as the sterile 

alpha motif (SAM) domain. This is a protein-protein interaction domain implicated in 

developmental processes (Schultz et al. 1997; Thanos and Bowie 1999). The TID 

confers the transcriptional repressor activity of ∆Np63α contained within the SAM 

domain. SAM containing proteins are more stable as the TID domain, bound to the 

TA domain, hides the sites used by the degradation pathway. The SAM domain plays 

a role in activation of p63, binding to other activating partners, such as kinases which 

phosphorylate the TA or TID domain and thus open the protein into an active form. 

 

1.3.2.3 Proline rich domain 

The N-terminal of the p63 protein contains a proline rich region which can bind to a 

number of cellular proteins. TAp63 contains two repeats of PXXP motif (P – proline 

and X – any amino acid) between amino acids 60 and 130. The transcriptional activity 

of TAp63 requires the presence of both transactivation domain and the proline-rich 

domain. Deletion of the proline-rich domain attenuates the ability of TAp63β to induce 

endogenous gene expression, confirming that the proline-rich domain is essential for 

the transactivation and apoptotic potential of TAp63 without affecting its ability to bind 

to DNA or inhibit cell proliferation (Helton et al. 2008).  

 

1.3.3  p63 function 

1.3.3.1 Epithelial tissues  

p63 is essential for normal embryonic development. Major evidence linking p63 to 

development of the epidermis comes from analysis of the p63 knockout mouse 

phenotype. p63-/- mice die at birth with severe developmental abnormalities, 

including truncation of limbs, craniofacial malformations and defects in the epidermis 

(Laurikkala et al. 2006; Mills et al. 1999; Yang et al. 1999a). The mice die within 

hours of birth, presumably because of dehydration. These mice are characterised by 

severe defects in epidermis, teeth, breast and uroepithelial tissues, all structures 

dependent on epithelial-mesenchymal interactions. The phenotypes observed in two 

independent lines of p63-/- mice share remarkable similarities, however distinctions 
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between them reflect a role for p63 in two processes critical to normal epidermal 

morphogenesis: stem cell maintenance (Yang et al. 1999a), and commitment to 

differentiation and a stratified epithelium (Mills et al. 1999).  

 

1.3.3.1.1 Embryonic tissues 

TA and ∆N p63 isoforms are expressed during distinct stages of embryonic epidermal 

development. TAp63 isoforms are the first p63 isoforms expressed during 

embryogenesis and are required for commitment to epithelial stratification while 

simultaneously blocking a differentiation programme. A shift towards ∆Np63 isoforms 

during later stages is required to counterbalance the activity of TAp63 thereby 

allowing cells to respond to signals required for maturation of embryonic epidermis. 

Ectopic expression of a TAp63 isoform in a simple epithelium in vivo results in the 

induction of squamous metaplasia, confirming the role of p63 as a master molecular 

switch. p63 therefore plays a dual role: it initiates epithelial stratification during 

development and maintains the proliferative potential of basal keratinocytes in mature 

epidermis (Candi et al. 2006; Koster et al. 2004; Truong et al. 2006).  

 

1.3.3.1.2 Adult tissues 

Studies of p63+/- mice, in conjunction with conditional p63 deletion in stratified 

epithelia, uncovered a function for p63 in adult tissues, as these mice manifested 

decreased longevity associated with characteristics of accelerated ageing, including 

skin lesions and alopecia (Flores et al. 2005; Keyes et al. 2005). Evidence suggests 

that both isoforms of p63 are implicated in the ageing process; overexpression of 

∆Np63α results in a premature ageing phenotype in mice through decreased 

expression of the deacetylase, Sirt1 (Sommer et al. 2006) and knockout mice 

selectively lacking TAp63 display a reduced lifespan accompanied by features of 

premature ageing including severe ulcerations, impaired wound healing, kyphosis, 

disrupted integrity of skin and hair follicles leading to hair loss (Su et al. 2009a; Su et 

al. 2009b). Further analysis found TAp63 expression in skin to include epidermal cells 

but also the dermal sheath and dermal papilla, niches for dermal precursor cells 

known as skin derived precursors (SKPs) (Fernandes et al. 2004; Su et al. 2009b). 

Lack of TAp63 in stem cells of these compartments results in cellular senescence 

and a similar response associated with hair loss is observed in ageing wild-type mice, 

suggesting that TAp63 is critical for maintaining both epidermal and dermal precursor 

cells in a healthy, functional state with intact genomes.  
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1.3.3.2 Germline 

Primordial follicles are highly sensitive to radiotherapy and anti-cancer therapy, thus 

depletion of the follicular reserve and premature ageing occur during these 

treatments. A new function for p63 underlying the mechanism responsible for this 

loss has recently been proposed. TAp63α is constitutively expressed in mouse 

oocytes perinatally and protects the female germline by inducing oocyte death in 

response to DNA damage (Livera et al. 2008; Suh et al. 2006). TAp63 expression 

correlates with oocyte radiosensitivity and is essential for DNA-damage induced 

death within the primordial follicle, arguing a role for p63 as the „guardian of the 

germline‟. The mechanism underlying the DNA damage response involves c-abl 

kinase sensing the DNA insult and changing the cellular programme by activating 

TAp63 transcriptional activity towards apoptotic genes (Gonfloni et al. 2009).  

 

1.3.4  Regulation of p63 

1.3.4.1 Post-translational modifications 

Post-translational modifications play an important role in regulating protein stability 

and function of p53 (Bode and Dong 2004) [section 1.2.3.1]. Regulation of p63 

through post-translational modifications is less well defined but appears to result in 

rapidly changing p63 protein levels [Figure 1.18] (Ghioni et al. 2005; Huang et al. 

2004).   

 

1.3.4.1.1 Phosphorylation  

Phosphorylation on serine / threonine residues has been reported to result in 

stabilisation of exogenous TAp63α and γ isoforms upon genotoxic treatment (Katoh 

et al. 2000; Okada et al. 2002) [Figure 1.18]. Like p53, ΔNp63α also exists as a 

phosphoprotein and upon UVR and chemotherapy ΔNp63α is phosphorylated at 

serine 66/68 (in TAp63α, ser 160/162), subsequently leading to ubiquitination and 

proteosomal degradation (Fomenkov et al. 2004; Westfall et al. 2005).  

 

In female perinatal oocytes, TAp63 is phosphorylated upon DNA damage increasing 

its binding to p53 cognate DNA sites (Gonfloni et al. 2009; Suh et al. 2006). The 

cellular response to genotoxic stress requires phosphorylation of the tyrosine 

residues in the region of p63 flanked by the TA and the DNA-binding domains by the 

tyrosine kinase c-abl, resulting in accumulation of TAp63 and activation of p63-

mediated transcription of pro-apoptotic genes (Gonfloni et al. 2009).  
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Phosphorylation of TAp63γ (but not ∆Np63γ) by IκB kinase β (IKKβ) is reported 

although the exact amino acid residue for phosphorylation was not determined 

(MacPartlin et al. 2005). Another kinase, Polo like kinase-1 (Plk-1), phosphorylates 

TAp63α at Serine-52 (in the transcriptional domain) in liver cells, leading to 

suppression of its transcriptional activities as a result of accelerated protein 

degradation (Komatsu et al. 2009) which is similar to decreased transcriptional 

activities reported for p53 (Ando et al. 2004) and p73α (Koida et al. 2008). 

 

1.3.4.1.2 Acetylation 

The transcriptional activator p300, is a well established acetylator of p53 family 

members and acts as a co-activator of both p53 and p73 (Irwin and Kaelin 2001a; 

Levrero et al. 2000; Yang and McKeon 2000). Similarly, p300 acetylates TAp63γ but 

not ∆Np63γ, and this acetylation is induced by DNA damage demonstrating a role for 

p300 to act as a co-activator of p63γ to mediate induction of p21 and subsequently 

p63-dependent cell cycle arrest (MacPartlin et al. 2005). 

 

1.3.4.1.3 Sumoylation 

Sumoylation of p63 regulates protein/protein interactions, intracellular localisation as 

well as protecting modified targets from ubiquitin-dependent degradation (Huang et 

al. 2004). ΔNp63α (but not β or γ) is conjugated both in vitro and in vivo by small 

ubiquitin modifier-1 (SUMO-1) and SUMO-2 (Ghioni et al. 2002; Huang et al. 2004). 

SUMO-1 modification is demonstrated on the only sumoylated lysine 637 in exon 14, 

in the TID domain within the p63 sequence (in p63α isoforms only) (Ghioni et al. 

2002). This modification is crucial for regulating p63 protein stability. Expression of 

SUMO-1 destabilises wild-type p63 but not a sumoylation-deficient p63 variant 

(p63K637R) in a proteosome-dependent process. Accordingly, the variant is less 

efficiently ubiquitinated than the wild-type p63 (Bakkers et al. 2005; Ghioni et al. 

2005). More recently, ∆Np63α was preferentially sumoylated by SUMO-2 and 

p14(ARF) promoted this process, leading to proteosomal degradation (Vivo et al. 

2009). 

 

Sumoylation plays a critical role in controlling p63 activity during developmental 

processes since p63α mutations which abolish the sumoylation of p63α protein are 

associated with isolated split hand/foot malformation (Huang et al. 2004). The 

absence of sumoylation enhances transcriptional regulation of gene targets involved 

in bone and tooth development which contributes to the underlying molecular 
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mechanisms predisposing to the split hand/foot malformation phenotype (Huang et al. 

2004; van Bokhoven and McKeon 2002). 

 

1.3.4.1.4 Ubiquitylation 

Protein degradation occurs through lysosomal and proteosomal pathways. 

Proteosomal degradation requires prior ubiquitylation of the protein which is a highly 

ordered multistep enzymatic process. The sequential enzymatic cascade involves an 

E1 activating enzyme, an E2 conjugating enzyme and an E3 ubiquitin ligase before 

transfer to the 26S proteosome and degradation into individual amino acids. 

Increasing evidence suggests that protein ubiquitination and degradation are crucial 

for p63 activity (Bakkers et al. 2005; Fomenkov et al. 2004; Rossi et al. 2006a; Rossi 

et al. 2006b). p63 isoforms appear to demonstrate a distinctly differing degree of 

ubiquitylation, suggesting that it might be a mechanism used to distinguish the 

specific activity of individual isoforms (Gallegos et al. 2008). 

 

1.3.4.2 Itch 

Itch is a Hect (homologous to the E6-associated protein C terminus)-containing 

Nedd4-like ubiquitin protein ligase shown to functionally associate with p63 by 

binding, ubiquitylating and degrading p63 (Melino et al. 2006; Rossi et al. 2006a). Itch 

interacts with both TAp63α and ΔNp63α but preferentially for the latter. Furthermore 

in Itch-/- primary keratinocytes, ΔNp63 levels are increased, suggesting a relevant 

role for Itch in regulating p63 in vivo.  

 

Itch activity is also regulated at the post-translational level (Chang et al. 2006; 

Gallagher et al. 2006; Yang et al. 2006) adding additional levels of complexity to the 

function of this enzyme. In addition, Nedd-4 binding partner-1 (N4BP1) associates 

with itch, interfering with E3 binding to its substrates. By acting as a negative 

regulator of itch, N4BP1 causes inhibition of the polyubiquitylation of p63 by itch 

increasing steady state levels of p63 (Oberst et al. 2007).  
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Figure 1.18: Post-translational modifications in p63. Regulation of p63 through post-

translational modifications is not well established. A selection of phosphorylation sites (pink 

circles with P) and acetylation sites are shown (green circles of S) for TAp63α. 

Phosphorylation is the most investigated modification; upon UVR and treatment with various 

chemotherapeutic agents including cisplatin and paclitaxel, phosphorylation of serine 160/162 

occurs in TAp63α subsequently leading to ubiquitination and proteosomal degradation. TA – 

transactivation domain, PRO – proline rich domain, SAM – sterile alpha motif.  
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1.3.4.3 WW domain containing E3 ubiquitin protein ligase 1 (WWP1) 

WWP1 is an intrinsic E3 ubiquitin ligase targeting both TAp63α and ∆Np63α for 

ubiquitin-mediated proteosomal degradation, by binding p63α proteins through the 

WW/PY motif interaction, ubiquitinating and promoting p63α for proteosomal 

degradation (Li et al. 2008). In addition, WWP1 sensitised immortalised breast 

epithelial cells to chemotherapeutic drug-induced apoptosis through destabilisation of 

∆Np63α and targeted endogenous TAp63α protein (in colon cancer cell lines) for 

degradation conferring cell survival in a p53-independent manner. To support these 

data, a negative correlation between WWP1 and p63 (mostly ∆Np63) was also 

reported in a panel of prostate and breast cancer cell lines (Li et al. 2008).  

 

1.3.4.4 SCFβTrCP1 

SCF is an E3 ubiquitin ligase complex which works in conjunction with IKK kinase to 

degrade IκB and subsequently upregulate NFκB (Fuchs et al. 2004). βTrCP1 (β-

Transducin Repeats Containing Protein-1) is one of the many substrate recognition 

components of the SCF complex (Fuchs et al. 2004). SCFbetaTrCP1 binds to both the N‟ 

and C‟ termini of TAp63γ (and to a lesser extent ∆Np63γ) which through 

ubiquitylation stabilises and activates TAp63γ to induce p21, which subsequently 

leads to cell cycle arrest (Gallegos et al. 2008).  

 

1.3.4.5 Receptor for activated protein kinase C – 1 (RACK1) 

RACK1 functions as one of the E3 ubiquitin ligases to promote ubiquitination and 

proteosomal degradation of ∆Np63α, regulating its levels in HNSCC (Fomenkov et al. 

2004). One mechanism for the preferential degradation of ∆Np63 isoforms in 

response to genotoxic stress has been proposed to involve stratifin-mediated nuclear 

export of ∆Np63α followed by RACK1-mediated proteosomal degradation (Fomenkov 

et al. 2004).  

 

1.3.4.6 Upstream signalling pathways 

1.3.4.6.1 Notch pathway  

Reciprocal negative regulation between Notch1 and p63 expression and activity has 

consequences for the balance between self-renewing and committed keratinocyte 

cell populations as well as carcinogenesis (Nguyen et al. 2006). Active Notch 

signalling suppresses p63 expression in keratinocytes in vitro and in vivo, while 

sustained p63 function inhibits the ability of Notch to promote cell cycle arrest and 

epidermal differentiation (Nguyen et al. 2006; Okuyama et al. 2008). TP63 is 
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regulated by Notch but it also controls the Notch expression and downstream notch 

signalling (Dotto 2009; Laurikkala et al. 2006; Nguyen et al. 2006). TP63 is also able 

to induce activation of this pathway in neighbouring cells by positive transcriptional 

regulation of the Notch ligands, Jagged 1 and Jagged 2 (Sasaki et al. 2002; Wu et al. 

2003a). Induction of these genes by p63 is important for normal skin homeostasis. 

Moreover, Notch signalling has recently been shown to play a vital role in maintaining 

melanoblasts and melanocyte stem cells in skin (Moriyama et al. 2006) while Notch-

1, -2 and Notch ligands are upregulated in melanoma tissue samples compared with 

benign melanocytic naevi (Massi et al. 2006). 

 

1.3.4.7 microRNA regulation of TP63 

Evidence is accumulating that the p53 family and microRNAs (miRNA) form a dense 

functional network: p53 family proteins are extensively regulated by miRNAs (Bailey 

et al. 2010) and act as regulators of miRNAs or downstream effectors which 

modulate anti-apoptotic and pro-apoptotic responses (Antonini et al. ; Georges et al. 

2008). 

 

p63 is expressed in a tissue-specific manner and a picture has recently emerged for 

regulation by specific miRNAs in this tissue context [Table 4.1]. Although a number of 

miRNAs have been reported, the two most widely investigated are miR-203 and miR-

302. miR-203 was identified as a repressor of ∆Np63 in the skin (Lena et al. 2008; Yi 

et al. 2008) and miRNAs of the 302 cluster were identified using an 

immunofluorescence-based screen of germline cells, as novel antagonists of TAp63 

(Scheel et al. 2009) [Figure 1.19]. These data gave rise to two classes of miRNAs 

which regulate the two major isoforms of p63; ∆Np63 isoforms which maintain the 

adult stem cell population in the skin are repressed by miR-203 during differentiation 

and TAp63-isoforms which mediate apoptosis in damaged oocytes prior to 

maturation, are kept in check by miR-302 [Figure 1.19]. Besides their physiological 

function, both miRNAs are also involved in disease; miR-203 is induced upon DNA 

damage in HNSCC and miR-302 is upregulated in germ cell tumours (Lena et al. 

2008).  

 

Increasing evidence from cancer biology continues to identify new miRNA regulators. 

In chronic lymphocytic leukaemia cells induction of miR-106b has been reported to be 

associated with downregulation of itch associated with a reciprocal accumulation of 

its pro-apoptotic substrate, p73, resulting in apoptosis (Sampath et al. 2009). It is 
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therefore possible in tumours where reciprocal regulation of itch and p63 are 

demonstrated, miR-106b may display a similar function.  

 

 

 

 

Figure 1.19: MicroRNA regulation of p63 isoforms. The most well established miRNAs 

regulating p63 are shown. (A) miR-203 was identified as a repressor of ∆Np63 in the skin 

(Lena et al. 2008; Yi et al. 2008) and (B) miR-302 was a novel antagonist of TAp63 (Scheel et 

al. 2009). These two classes of miRNAs regulate the two major isoforms of p63; miR-203 

inhibits translation of p63 mRNA and miR-302 promotes degradation of p63 mRNA. ∆Np63 

isoforms which maintain the adult stem cell population in the skin are repressed by miR-203 

during differentiation and TAp63 isoforms which mediate apoptosis in damaged oocytes prior 

to maturation, are kept in check by miR-302. In addition, miRNAs are demonstrated in 

disease; miR-203 is induced upon DNA damage in HNSCC and miR-302 is upregulated in 

germ cell tumours (Lena et al. 2008).  In addition, it is likely that there are as yet, unidentified 

miRNAs which regulate the expression of p63 isoforms in these tissue contexts. Figure 

adapted from Blandino and Moll (2009).    
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1.3.5  Role of p63 in response to DNA damage 

A consistent picture emerges whereby certain forms of DNA damage induce an 

apoptotic response mediated, at least in part, through degradation of anti-apoptotic 

ΔN isoforms and stabilisation of pro-apoptotic TA isoforms. ΔNp63α transcript levels 

decline in epidermal tissue and mammary cell lines following treatment with UVB, 

cisplatin and doxorubicin (Harmes et al. 2003; Liefer et al. 2000). Following DNA 

damage, this may be mediated by the recruitment of ΔNp63α protein to a binding site 

in its own promoter, therefore repressing its own transcription (Harmes et al. 2003) or 

the downregulation of p63 allows p53 to protect the cell from perpetuating damaged 

DNA (Liefer et al. 2000). Dysregulated p63 expression would interfere with the 

protective role of p53, possibly by competing with p53 for binding to DNA targets 

and/or exclusion from the nucleus.  

 

A recent study provided insight into the DNA-damage induced post-translational 

regulation of ∆Np63α protein stability by the ATM pathway suggesting that ATM has 

evolved to act as a master regulator in the skin stem cell. ATM acts to co-ordinately 

switch off ∆Np63α and switch on p53 after irradiation which is needed to attenuate 

the proliferative capacity of the stem cell in order for DNA damage to be repaired by 

the p53 response (Huang et al. 2008b). The expression of both p53 and ∆Np63α in 

basal cell populations raises the question of whether regulation of the pro-proliferative 

∆Np63α and anti-proliferative p53 pathways are co-ordinated after DNA damage i.e. 

∆Np63α protein is de-stabilised after DNA damage in vitro and in vivo systems whilst 

upregulation of p53 phosphorylation occurs at the CDK2 and ATM sites in basal skin 

cells in vivo (Finlan et al. 2006). Huang et al. (2008b) showed that ∆Np63α is 

sequentially phosphorylated after DNA damage by ATM, CDK2 and p70s6K leading 

to a dramatic decrease in ∆Np63α protein levels in HNSCC cells, an effect which is 

attenuated in the absence of these kinases. The data provided a co-ordinated 

mechanism for switching ∆Np63α off and p53 on involving the p53 activator ATM as 

the master switch in this axis to maintain genomic stability after DNA damage (Shiloh 

2003). Similarly, as CDK2 has been implicated in stimulating p53 function after 

irradiation (Blaydes et al. 2001) this kinase pathway might also co-ordinate the 

activation of p53 and ∆Np63α protein degradation. These data suggest that at least 

two protein kinase pathways play dual roles in controlling p53 family function after 

DNA damage.   

 

The tissue-specific response of p63 to DNA damage is variable. The only study 

investigating p63 response in melanocytes, reported expression of two isoforms: 
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TAp63β and either TAp63γ or ΔNp63β (undetermined) in mouse melanocytes and no 

endogenous upregulation in mouse melanoma cells. In this mouse model, p63 

isoforms were not induced upon DNA damage (either IR or UVB) (Johnson et al. 

2005; Kulesz-Martin et al. 2005). In contrast, ectopically expressed TAp63α and γ 

isoforms accumulate in leukaemic cells in response to UVB, UVC, doxorubicin and 

etoposide (Katoh et al. 2000; Okada et al. 2002). To support this, topoisomerase II 

inhibitors (doxorubicin and etoposide), but not UVB, induced endogenous expression 

of TAp63α (and p53-target genes p21, 14-3-3-ζ, GADD45 and PIG3) but not ΔNp63 

in mouse hepatocytes and human hepatocellular carcinoma cells (Petitjean et al. 

2005).  

 

1.3.6  p63 and apoptosis  
TAp63 induces apoptosis in a similar way to p53, promoting both death receptor and 

mitochondrial apoptotic pathways (Gressner et al. 2005). In an inducible stable-cell 

system, TAp63β possessed the greatest ability to induce apoptosis, followed by 

TAp63γ and then by TAp63α, consistent with their transcriptional activity (Helton et al. 

2008). In neuronal cells, TAp63γ alone is sufficient to promote neuronal apoptosis 

and essential for p53-induced apoptotic cell death (Jacobs et al. 2005).  

 

In contrast, overexpression of ΔNp63α in mouse epidermis results in a reduction in 

UVB-induced apoptosis (Liefer et al. 2000); disruption of ΔNp63α in squamous 

carcinoma cells increases sensitivity to apoptosis-inducing agents (Westfall et al. 

2005); and p63 does not appear to contribute to radiation-induced apoptosis in 

thymocytes (Senoo et al. 2004). Although ΔNp63α opposes p53-mediated apoptosis 

in baby hamster kidney cells (Yang et al. 1998), in H1299 cell lines and keratinocytes, 

both inducible TAp63α and ΔNp63α causes cell death associated with increased 

expression of p53 target genes (Dohn et al. 2001; Zhu et al. 2007).  

 

The literature to date proposes that the p63 family of proteins display a diverse range 

of biological activities and impact cells in an isoform-dependent but also cell type- 

and stimulus-specific manner. 

 

1.3.7  p63 and cancer 

1.3.7.1 p63 mutations  

The p63 gene maps to chromosome 3q27-28, a region that is frequently amplified in 

a variety of squamous cell cancers including those of the lung, cervix, ovary and skin 

(Casciano et al. 2002; Flores et al. 2002; Melino et al. 2003; Moll and Slade 2004; 
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Purdie et al. 2009; Westfall et al. 2003; Westfall and Pietenpol 2004; Wu et al. 2005; 

Yang et al. 1998). Germline mutations in TP63 (in the DNA binding domain) occur in 

human developmental syndromes and are associated with skin, hair, tooth and 

skeletal patterning defects (Brunner et al. 2002; Celli et al. 1999). These mutants vary 

in their ability to transactivate p53 and p63 target genes and it is likely that the 

phenotypic variations observed within p63-related syndromes are due to the 

differential effects of the mutants on canonical and non-canonical downstream 

signalling pathways of p63 (Khokhar et al. 2008). Somatic missense mutations of 

TP63 are rarely detected in human cancers supporting the notion that p63 is not a 

canonical tumour suppressor (Hagiwara et al. 1999; Ikawa et al. 1999; Irwin and 

Kaelin 2001b; Kato et al. 1999; Osada et al. 1998; Park et al. 2000; Sunahara et al. 

1999; Tani et al. 1999; Trink et al. 1998). 

 

1.3.7.2 p63 and carcinogenesis 

p63 does however, play a complex role in tumourigenesis that is likely to be context 

specific. Two p63+/- mice models have led to conflicting hypotheses for the role of 

p63 in carcinogenesis [Table 1.7]. Both models were used to determine if mice with 

reduced p63 levels were predisposed to develop spontaneous tumours. The results 

were quite different with only heterozygote p63+/- mice developed by Yang and 

colleagues predisposed to develop spontaneous tumours (Flores et al. 2005). The 

alternative model by Mills and colleagues, generated p63+/- mice which were not 

predisposed to develop spontaneous tumours (Keyes et al. 2005), γ-irradiation 

induced lymphomas (Perez-Losada et al. 2005) or chemically-induced skin tumours 

(Keyes et al. 2005). In support of these findings, over 80% of HNSCC demonstrate 

p63 genomic locus amplification and/or overexpression of ΔNp63, signifying its role 

as a putative oncogene (Choi et al. 2002; Hibi et al. 2000; Hu et al. 2002; Massion et 

al. 2003; Mills 2006; Yang and McKeon 2000). Furthermore, overexpression of 

ΔNp63α preferentially represses induction of apoptosis by p73 mediated via 

transactivation of NOXA and PUMA (Rocco et al. 2006). In addition, ΔNp63 can 

inhibit p53, TAp63 and TAp73 transactivation and apoptosis (Liefer et al. 2000; 

Ratovitski et al. 2001; Yang et al. 1998), and overexpression is required to maintain a 

stem cell-like state, allowing continuous proliferation and promoting tumour growth 

(Deyoung and Ellisen 2007). These findings explain a selective advantage of 

overexpression of ΔN p63 isoforms in tumours indicating how they could act as 

oncogenes. 
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Table 1.7: Summary of phenotypic differences between two lines of independently 

generated p63 knockout mice. Adapted from Koster et al (2007) 

Mouse 

model 

Phenotype of 

p63+/- mice 

Interpretation Supporting evidence 

 Yang 

et al 

(2005) 

Develop 

spontaneous 

tumours 

p63 is a tumour 

suppressor 

Loss of p63 expression occurs in 

a subset of advanced tumours 

and may lead to increased 

metastatic potential (Park, Lee et al. 

2000; Urist, Di Como et al. 2002; Koga, 

Kawakami et al. 2003). 

TAp63 induces senescence and 

suppresses tumourigenesis in 

vivo (Guo et al. 2009). 

 Mills et 

al (2006) 

Do not develop 

spontaneous 

tumours and are not 

predisposed to 

develop skin 

tumours 

p63 is an 

oncogene 

Upregulated expression of 

∆Np63 expression is common in 

epithelial tumours (Mills 2006). 

p63 mutations are rare in human 

cancer (Mills 2006). 

Reactivated TAp63α expression 

accelerates skin tumour 

development and progression 

(Koster, Lu et al. 2006). 

 

1.3.7.3 p63 expression and prognosis  

Several studies have implicated p63 expression as a positive prognostic factor in 

cancer progression and outcome; p63 expression is associated with favourable 

prognosis in lung cancer and diffuse large B-cell lymphoma patients (Hallack Neto et 

al. 2009; Massion et al. 2003), overexpression of ΔNp63α in squamous cell 

carcinomas (lung and head/neck) is an indicator of favourable response to therapy 

and overall clinical outcome (Massion et al. 2003; Zangen et al. 2005) and loss of p63 

expression in urothelial cancers is associated with progression to more invasive and 

metastatic tumours (Koga et al. 2003; Tuna et al. 2009; Urist et al. 2002).  

 

In contrast, p63 expression is correlated with poor prognostic factors and outcome in 

breast cancer and follicular cell lymphoma (Fukushima et al. 2006; Ribeiro-Silva et al. 

2003). Aberrant expression of p63 in the cytoplasm was demonstrated to be 

associated with increased prostate cancer-specific mortality up to 20 years after 



 
Page | 89  

 

diagnosis. Cytoplasmic expression was associated with reduced apoptosis and 

higher proliferative activity suggesting an oncogenic role in prostate cancer 

progression and survival (Dhillon et al. 2009). 

 

One possible model to reconcile these findings would be that ΔNp63α contributes to 

the early stages of tumourigenesis while maintaining epithelial cell fate (Green et al. 

2003; Truong et al. 2006). In contrast loss of p63 may mark tumours that have 

accumulated additional genetic events and have acquired mesenchymal properties, 

both of which are correlated with refractory clinical behaviour (Barbieri et al. 2006). 

 

1.3.7.4 p63 and melanoma  

The expression pattern of p63 isoforms has not been widely investigated in 

melanoma. Most studies have used immunohistochemistry techniques to investigate 

expression of p63 protein in melanoma using it as an example of negative reactivity 

[Table 3.11]. In two tissue microarrays, ∆Np63 was expressed in a small fraction; 

2/59 and 2/25 human melanomas (Brinck et al. 2002; Reis-Filho et al. 2003a). In one 

study, 2/3 spindle cell melanomas expressed p63 (Morgan et al. 2008). A more 

recent study investigating the expression of p73 in primary and metastatic uveal 

melanomas also reported expression of TAp63 and ΔNp63 (using RT-PCR) in 12/18 

and 1/18 uveal melanoma cell lines respectively (Kilic et al. 2008). Other reports have 

suggested that p63 is not expressed in melanoma in situ or invasive melanoma 

(Bourne et al. 2008; Sakiz et al. 2009). 
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1.4  HYPOTHESIS 

Apoptotic dysregulation is a hallmark of melanoma pathogenesis and 

chemoresistance. Mutations in TP53 occur infrequently in melanoma and are not 

critical for tumour development. Nevertheless the TP53 apoptotic pathway is 

abrogated; this may alternatively result from either upstream or downstream TP53 

pathway defects or from alterations in other members of the TP53 family, including 

the TP53 homologue, TP63. To date, there is no robust evidence explaining the 

mechanism(s) of inactivation or attenuation of p53 tumour suppression in 

melanomagenesis. A better understanding of dysregulation of the p53 pathway is 

necessary to delineate the molecular pathogenesis of melanoma and to develop 

more targeted chemotherapeutic strategies.  

 

There is significant evidence to support a role for TP63 in carcinogenesis and the 

existence of multiple isoforms expressed in a tissue-specific manner warrants 

exploration of this p53 family member in melanoma. Literature to date has not 

thoroughly investigated expression or function of TP63 in melanoma.  

 

Against this background, the hypothesis of this thesis is that TP63 has a biological 

role in melanoma, which negatively regulates apoptosis and thus ultimately 

contributes to the chemoresistance demonstrated in melanoma.  

 

1.5  AIMS OF THIS THESIS 

This thesis therefore aims to systematically explore:  

(1) The biological role of p63 in melanoma  

(2) The regulation of expression of p63 in melanoma 

(3) The role of p63 in apoptosis and determine its function in relation to 

chemosensitivity of melanoma.  
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1  Cell and tissue culture 

2.2  Nucleic acid procedures 

2.3  Protein manipulation 

2.4  DNA damage analysis techniques 

2.5  Flow cytometry techniques 

2.6  Clinical resource 

2.7  Immunocytochemistry methods 

2.8  Microscopy methods 

2.9  Gene microarray analysis 

 

 

2.1  CELL AND TISSUE CULTURE 

2.1.1  Primary melanocyte cultures 

Neonatal human embryo melanocytes (NHEM 1 and 2; Cascade biologics) and 

human epithelial melanocytes from adults (HEMa 3; Cascade biologics) were 

maintained in 254 medium (Invitrogen™) supplemented with Human Melanocyte 

Growth Supplement-2 (Invitrogen™) (containing bovine pituitary extract, foetal calf 

serum (FCS), bovine insulin, bovine transferrin, basic fibroblast growth factor, 

hydrocortisone, heparin, and endothelin-1). In addition, HEMa lines (HEMa V3 and 

HEMa V4) developed from freshly isolated patient tissue samples (courtesy of V. 

Senatore) were maintained in DMEM:F12 media detailed below. 

 

DMEM: F12 media (Ratio 3:1) 

Supplemented with  FCS   20% 

Glutamine  1% 

Gentamicin  50 µg/ml 

TPA   100 µM 

hSCF   2 µg/ml 

Cholera Toxin  0.1 µM 

Endothelin  10 µM 

 

TPA – tissue plasminogen activator, hSCF – human stem cell factor 
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2.1.2  Melanoma cell cultures 

Established melanoma cell lines from the Centre for Cutaneous Research Cell bank 

[Table 2.1] and non-melanoma cell lines were used for experiments in this thesis 

[Table 2.3].  

 

2.1.3  Cell culture conditions 

Cells were grown at 37°C in 10% CO2 / 90% air using the appropriate media. All 

melanoma cell lines used in experiments detailed in this thesis, with the exception of 

those detailed in table 2.2, were cultured in RPMI 1640 media supplemented with 

10% FCS and 1% glutamine. Cell culture conditions for non-melanoma cell lines are 

detailed in Table 2.3. 

 

2.1.4  Freezing and recovery of cells 

Cells were washed in phosphate buffered saline (PBS) (PAA) and detached from 

flasks with trypsin:EDTA 1:1 (PAA), pelleted by centrifugation and resuspended in a 

solution of 60% FCS, 30% culture media and 10% dimethyl sulphoxide (DMSO). 

Aliquoted cells in cryotubes were stored in liquid nitrogen. To recover cells from 

frozen, vials were quickly thawed at 37°C and resuspended in the relevant media. 

Media was replaced 24 hours later to remove any traces of DMSO.  
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Table 2.1: Melanoma cell lines  

Cell line Provided by: TP53 

status 

BRAF 

status 

Radial 

growth 

phase cells 

(RGP) 

WM35 D.C. Bennett (London) wt V600E 

WM1575 L. Lanfrancone (Milan) wt N/A 

WM1552C L. Lanfrancone (Milan) wt V600E 

SBCl2 B.C. Giovanella (Texas) wt wt 

 

 

Vertical 

growth 

phase cells 

(VGP) 

WM793 Wistar Institute wt V600E 

WM115 Wistar Institute wt V600E 

WM278 Wistar Institute wt V600E 

VMM39 Kam. C Yeung wt wt 

1402P M. Rodolfo (Milan) mutant V600E 

ME10538 M. Rodolfo (Milan) wt V600E 

5810P M. Rodolfo (Milan) wt wt 

Mel 224 M. Rodolfo (Milan) wt wt 

Mel 505 Kam. C Yeung wt wt 

 

 

Metastatic 

melanoma 

cells 

26258M M. Rodolfo (Milan) wt wt 

3988M M. Rodolfo (Milan) wt V600E 

21768M M. Rodolfo (Milan) wt wt 

Mel 501 Kam. C Yeung wt V600E 

Sk mel 5 Kam. C Yeung wt V600E 

DX3 J. Marshall (BLT) wt wt 

LT51 J. Marshall (BLT) wt wt 

WM1158 Wistar Institute wt V600E 

WM9 Wistar Institute wt V600E 

WM852 Wistar Institute mutant wt 

A375M J. Marshall (BLT) wt V600E 

C8161 M. Hendrix wt wt 

Sk mel 31 Jiri Vachtenheim (Prague) wt wt 

MALME-3 Jiri Vachtenheim (Prague) wt V600E 

SK mel 24 Kam. C Yeung wt V600E 

HBL G.E. Ghanem (Belgium) wt wt 

WM239A Wistar Institute wt wt 

MM-AN B. Gilchrest (Boston) wt N/A 

U1SO T.K. DasGupta (Chicago) Null N/A 

wt – wild-type, V600E mutation in BRAF [section 1.1.4.2.1], N/A – information  not available. 
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Table 2.2: Culture media for melanoma cell lines. 

Cell line Culture media Supplements* 

WM1575 TU 2% #^ - 

WM1552C TU 2% #^ - 

VMM39 DMEM - 

Mel 224 RPMI 1640 0.5% non-essential amino acids 

Mel 505 RPMI 1640 0.5% non-essential amino acids 

Mel 501 HAMS-F10 - 

Sk mel 5 MEM - 

C8161 RPMI 1640 20mM Hepes+0.1% gentamicin sulphate 

Sk mel 31 MEM - 

MALME-3 DMEM - 

SK mel 24 MEM - 

HBL DMEM - 

MM-AN DMEM - 

U1SO MEM# 

15% FCS, 1% glutamine, 1% non-

essential amino acids, 0.1% gentamicin 

sulphate 

* all media except cell lines marked with # are supplemented with 10% FCS & 1% glutamine 

^
TU 2% comprises 80% MCDB153 (Sigma), 20% Leibovitz‟s L-15 (Sigma), 2% FCS, 5 µg/ml 

insulin (Sigma), 1.68 mM calcium chloride (Sigma).  

 

Table 2.3: Non-melanoma cell lines. 

Name Cell type Source Media used* 

HaCaT 
Immortalised 

keratinocytes 

Karin Purdie 

(ICMS) 

DMEM + 1% 

Penicillin/Streptomycin 

HEK 293T 
Immortalised 

embryonic kidney 

Karin Purdie 

(ICMS) 

DMEM + 1% 

Penicillin/Streptomycin 

Phoenix™ 

retrovirus 

producer cells 

 

Transformed HEK 

293T cells (Packaging 

cell line) 

Monika Cichon 

(ICMS) 
DMEM 

CaCo2 
Human colonic 

adenocarcinoma cells 

Cheen Khoo 

(Diabetes, 

ICMS) 

MEM with Earle‟s salts 

*All media was supplemented with 10% FBS and 1% L-glutamine (Invitrogen) 

  



 
Page | 95  

 

2.1.5  Transfection of mammalian cells 

2.1.5.1 Liposomal mediated transfection 

Human embryo kidney (HEK 293T) cells were seeded at 70-80% confluency, 24 hrs 

prior to use in 100 mm dishes. DNA was mixed at a ratio of 1 g DNA : 2 μl 

Lipofectamine 2000 (Invitrogen™). 10 g DNA and 250 l DMEM media were 

incubated for 5 mins at room temperature. 20 l of Lipofectamine 2000 and 250 l 

DMEM media were incubated in another eppendorf for 5 mins at room temperature. 

Finally, DNA and Lipofectamine were mixed and incubated for a further 20 mins at 

room temperature. 5 mls of DMEM were added to each 100 mm plate. The DNA-

Lipofectamine mixture was added to the cells. After 6 hrs, media was replaced with 

fresh DMEM. Cells were harvested 24 hrs after the transfection. 

 

2.1.5.1.1 Melanoma cell line 

Mel 505 cells were seeded at 50% confluency 16 hrs prior to use in 60 mm dishes. 

DNA was mixed at a ratio of 1 μg DNA: 3 μl FuGENE® 6 Transfection Reagent 

(Roche). FuGENE® 6 was added to serum-free media and vortexed. The mixture 

was left to incubate at room temperature for 5 mins. 5 μg DNA (TAp63α, TAp63β, 

TAp63γ) or 10 μg DNA (ΔNp63α, ΔNp63β, ΔNp63γ) was added to the FuGENE® 6-

media mixture, briefly mixed and incubated at room temperature for 20 mins prior to 

addition to cells in drops. After 6 hrs, fresh serum-containing media was added to the 

cells.  

 

2.1.5.1.2 Phoenix cells 

Cells were seeded in two 60 mm dishes for each construct [Table 2.9] in addition to 

two control dishes. 1.5 million cells were seeded with a confluency of around 50%. 

The following day 1 ml of serum-free DMEM was mixed with 25 µl FuGENE® 6 in a 

bijou tube and left for 5 mins at room temperature. 10 µg of DNA was added and left 

to incubate at room temperature for a further 20 mins. Media was aspirated from the 

cells and the DNA/FuGENE® 6 mix was added to the plate and left to incubate at 

room temperature for 10 mins. 1 ml of serum-free DMEM was added and the plate 

was left in the incubator at growth conditions for 5 hrs after which a further 2 mls of 

complete DMEM was added to the plates. 

 

2.1.5.2 Retroviral infection 

Melanoma cells were seeded at 40-50% confluency in 6-well plates. After 16 hrs, 

media was aspirated and replaced with 1 ml / well of media supplemented with 5 µg 

polybrene (Millipore) for 10 mins at room temperature. Supernatant containing the 
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virus was defrosted and transferred to a bijoux tube where polybrene (5 µg/ml) was 

added. Polybrene-media was aspirated from the cells and replaced with 2 mls 

polybrene-supernatant mixture / well. The plate was centrifuged for 1 hour at 350 g at 

32ºC and polybrene-supernatant mixture was aspirated. Cells were washed once in 

PBS. 2 mls of fresh media was added to each well and cells were transferred to 37ºC 

incubator and left for 48 hrs. After this time, selection of infected cells was undertaken 

using puromycin (0.9 – 1.25 µg/ml).    

 

2.2  NUCLEIC ACID PROCEDURES 

2.2.1  Plasmid DNA preparation 

p63 plasmids were kindly donated by G. Melino (MRC, Leicester). The pcDNA3.1 

vector with an HA epitope at the N-terminus of the protein was used. The cDNAs of 

the six isoforms were inserted using the NheI-NotI restriction sites [Figure 2.1]. 

 

2.2.1.1 Luria Bertani (LB) growth medium 

To support bacterial growth, LB medium was used (containing 10 g/L Bacto-tryptone, 

5 g/L yeast extract and 5 g/L NaCl). To ensure selectivity of bacterial growth 150 

μg/ml of ampicillin was added to the media. LB agar was melted by heating in a 

microwave and cooling to 50ºC before pouring into 10 cm petri dishes. For selection 

of antibiotic resistant bacteria, ampicillin (150 μg/ml) was added and plates were 

stored at 4ºC. Cells were spread onto an agar plate in LB broth with ampicillin (50 

μg/ml) and left overnight to incubate at 37°C. 

 

2.2.1.2 Transformation of competent bacteria 

Chemically competent Escherichia coli (E. coli) cells (One shot® TOP10; Invitrogen) 

were thawed on ice for 20 mins. For the transformation, 50 μl of competent E.coli 

cells were mixed with 20 ng DNA and held on ice for a further 20 mins. The mixture 

was subjected to heat shock for 30 s at 42°C followed by 1 min chill on ice. 500 μl of 

room temperature media was added and incubated at 37°C for 1 hr to allow 

expression of the antibiotic resistance marker. A 200 μl aliquot of transformed cell 

suspension was plated onto agar plates containing ampicillin and incubated overnight 

at 37ºC to allow colonies to form.   

 

2.2.1.3 Storage of transformed bacteria 

Transformed bacterial colonies were maintained for up to 2 weeks on agar plates, 

tightly sealed and stored at 4ºC. For long term storage, 850 μl of overnight cultures 

were added to 150 μl of glycerol and vortexed before storing at -20ºC.  
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2.2.1.4 Small scale plasmid DNA purification 

Plasmid DNA was prepared from single colonies inoculated into 5 ml LB (containing 

150 μg/ml ampicillin) overnight at 37ºC on a shaker. Cultures were pelleted at 8000 

rpm for 3 mins and the pellet was either used immediately or frozen at -80ºC. The 

QIAprep® Spin MiniPrep Kit (Qiagen®) was used to isolate plasmid bacterial DNA 

from small scale culture according to the manufacturer‟s protocol. DNA was eluted in 

sterile water and stored at -20ºC.  

 

2.2.1.5 Large scale plasmid DNA preparations 

Bacterial colonies (E.coli) were grown overnight in 500 ml of LB broth (containing 100 

μg/ml ampicillin) at 37°C on a shaker. Bacteria were pelleted by centrifugation at 

4000 rpm for 15 mins using the Beckman JA-10 rotor. The Qiagen® Plasmid Maxi Kit 

(High Speed) protocol was used to isolate DNA from the large scale bacterial cultures 

according to the manufacturer‟s protocol. DNA was re-dissolved in 250 µl of sterile 

water and stored at -20ºC.  

 

2.2.2  DNA quantification 

The concentration of DNA in solution was determined spectrophotometrically 

(Nanodrop® ND-1000 Spectrophotometer) using water as a blank. The quality of 

RNA was assured by an OD260/280 greater than 1.9. 

 

2.2.3  RNA extraction and first strand cDNA synthesis 

Total RNA was extracted from cells using RNeasy Mini Kit (Qiagen®) following the 

manufacturer‟s recommended protocol. From total RNA (500 ng – 1 µg) first strand 

cDNA was synthesised using Superscript™ III Reverse Transcriptase (Invitrogen™). 

For all reactions except for detection of ∆Np63 cDNA, oligo(dT)12-18 primer 

(Invitrogen™) was used for cDNA synthesis. For generation of ∆Np63 cDNA, gene-

specific primers were used to maximise detection of the gene.  
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Figure 2.1: pcDNA3.1 vector. cDNAs of six isoforms of p63 (TAα, β, γ and ∆N α, β and γ) 

were inserted using the Nhel-Notl restriction sites (red boxes).  
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2.2.4  Reverse transcriptase - Polymerase chain reaction (RT-PCR) 

2.2.4.1 Preparation of oligonucleotides 

Oligonucleotides were supplied as dried pellet from Sigma-Aldrich® oligonucleotide 

synthesis service. Oligonucleotides were resuspended in DNase- and RNAse-free 

distilled water (Qiagen®) to make a 100 mM stock. These were stored at -20ºC. 

 

2.2.4.2 PCR reaction 

PCR was carried out using 1.1x ThermoStart™ Reddymix™ (Thermo Scientific) for 

TA and ΔN (all isoforms) and GAPDH reactions [Table 2.6]. Primer sequences 

(Borrelli et al. 2007; Koga et al. 2003; Yang et al. 1998) are shown in figures 2.2 and 

2.3 and are detailed in table 2.4. The PCR reaction was consistently performed using 

the same thermocycler (DNA Engine Tetrad 2) [cycling protocol – Table 2.7]. 

 

2.2.4.3 Agarose gel electrophoresis 

Agarose gels of 1-2% (wt/vol) were prepared in 100 ml of 1 x Tris-Borate-EDTA 

(TBE) (Sigma-Aldrich®) buffer in a microwave and allowed to cool before addition of 

ethidium bromide (final concentration 0.5 μg/ml). Reddymix™ PCR buffer contains an 

inert red tracker dye and DNA samples were loaded directly onto the agarose gel. 

TBE buffer was used as a running buffer for electrophoresis at 120 V. DNA fragments 

were visualised by UV light.  

 

2.2.4.4 Optimisation 

Hek293T and Mel 505 cells transfected with each of the p63 isoforms were used to 

assess the efficiency of the PCR reaction for each primer set. GAPDH was used as 

the housekeeping gene. RT negative samples and PCR negative (water only) 

samples were run with each PCR reaction as a control.  
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Figure 2.2: Specific annealing region of primers used to detect TP63 isoforms. Specific 

region of primer sets to anneal to p63 isoforms [Table 2.4]; top panel shows region used to 

detect all TA isoforms of p63 (296 bp product) (Koga et al. 2003) and lower panel shows 

region used to detect all ∆N isoforms of p63 (252 bp product) (Yang et al. 1998). Primer sets 

used for RT-PCR and Q-PCR. 

 

 

Figure 2.3: Specific annealing region of primers used to detect p63 splice variants. 

Primer set [Table 2.4] positions for annealing to TP63 are shown, to detect individual splice 

variants of p63 by RT-PCR. Primer sequences from Borrelli et al. (2007). 
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Table 2.4: Oligonucleotide primer sequences used for RT-PCR and

Primer 

Sequence (5’ to 3’) Annealing temperature (⁰C) 

 Forward Reverse 

TAp63 # GGTGCGACAAACAAGATTGAG GAAGGACACGTCGAAACTGTG 62.4  

TAp63α^# TTAGCATGGACTGTATCCGC ACTTGCCAGATCATCCATGG 58.3 

TAp63β^# TTAGCATGGACTGTATCCGC TCAGACTTGCCAGATCCTG 59 

TAp63γ^# TTAGCATGGACTGTATCCGC AAGCTCATTCCTGAAGCAGG 54 

ΔNp63 ~# GGAAAACAATGCCCAGACTC GAAGGACACGTCGAAACTGTG 60  

ΔNp63α^# CCAGACTCAATTTAGTGAGC ACTTGCCAGATCATCCATGG 54 

ΔNp63β^# CCAGACTCAATTTAGTGAGC TCAGACTTGCCAGATCCTG 56 

ΔNp63γ^# CCAGACTCAATTTAGTGAGC AAGCTCATTCCTGAAGCAGG 54 

p53 GTCACTGCCATGGAGGAGCCGCA GACGCACACCTATTGCAAGCAAGGGTTC 67 

∆Np73** CAACAAACGGCCCGCATGTTCCCC GCGACATGGTGTCGAAGGTGGAGC 60 

GAPDH CTCCTCCACCTTTGACGCTG CCACCCTGTTGCTGTAGCCA 55  

GUS# AAACGATTGCAGGGTTTCAC CTCTCGTCGGTGACTGTTCA 60 

* (Koga et al. 2003); ^ (Borrelli et al. 2007); ~ (Yang et al. 1998); ** (Petitjean et al. 2008). Primers in bold detect all isoforms of a gene
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Table 2.5 Oligonucleotide primer sequences used to detect C-terminal isoforms by Q-PCR (Mangiulli et al. 2009) 

Primer 

Sequence (5’ to 3’) Annealing temperature (⁰C) 

 Forward Reverse 

p63α GATGGGCACCCACATGCCAAT CAGCCCAACCTCGCTAAGAAAC 60  

p63β GATGGGCACCCACATGCCAAT TTTCAGACTTGCCAGATCCTGAC 60 

p63γ CAGCAGCACCAGCACTTACTTC CTATGGGTACACTGATCGGTTTG 60 

p63δ CAGCAGCACCAGCACTTACTTC ATTTTCAGACTTGCCAGATCTGTTG 60  

p63ε CAGCAGCACCAGCACTTACTTC AAGGTTGCAACTGAAAGAGGG 60 
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Table 2.6: Mastermix components for RT-PCR reaction. 

Thermostart™ Reddymix™ Master Mix (x1)  Volume for 25 µl 

reaction (µl) 

Thermostart™ 

Reddymix™ 

0.625 units ThermoStart™ Taq DNA 

polymerase 

21 

1x ThermoStart™ reaction buffer 

3 mM MgCl2 

0.2 mM each of dATP, dCTP, dGTP, 

dTTP 

Forward primer (10 µM) 1 

Reverse primer (10 µM) 1 

DNA template (100 ng) 2 

 

 

 

Table 2.7: RT-PCR amplification cycling protocol 

Cycle step Duration of cycle Temperature 

(ºC) 

Cycles 

Initial 

denaturation 

15 mins 95 1 

Denaturation 25 s 95 40 

Annealing 35 s 50-60* 

Extension** 1 – 2 mins 72 

Final extension 5 mins 72 1 

*annealing temperature variable [Table 2.4/2.5]  

** extension time varied according to size of amplicon – Taq polymerase extended up to 1000 bp/min 
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2.2.5  Quantitative RT-PCR (Q-PCR) 

2.2.5.1 Generation of standards 

Primers were tested by RT-PCR as described [section 2.2.4]. The StrataPrep DNA 

gel extraction kit (Stratagene) was used to extract gel fractionated DNA from an 

agarose gel according to the manufacturers‟ instructions. The desired fragment was 

cut from the gel, placed in a microcentrifuge tube, combined with the DNA extraction 

buffer, incubated at 50°C, and transferred to a microspin cup containing a silica-

based fibre matrix. The DNA bound to the fibre matrix in the microspin cup and 

contaminants were washed from the microspin cup with a wash buffer. The purified 

DNA was eluted from the fibre matrix with a low-ionic strength buffer and captured in 

a microcentrifuge tube. Double-stranded DNA ≥100 bp was retained. The 

concentration of purified products was quantified using a Nanodrop® 

Spectrophotometer and samples were diluted 1:2. Prior to each Q-PCR experiment 

original standards were serially diluted 1:5 to obtain 6 standards of decreasing 

concentration to create a standard curve. 

 

2.2.5.2 Q-PCR reaction 

Q-PCR reactions were set up in 96-well plates using Brilliant II SYBR® Green QPCR 

Master Mix (Agilent Technologies). This Master Mix includes a SureStart Taq DNA 

polymerase with hot start capability and contains MgCl2 at a concentration of 2.5 mM 

in the 1x solution. A passive reference dye (ROX) was added to the mix to 

compensate for non-PCR related variations in fluorescence. Reactions were set up 

by combining components in the order shown in Table 2.8 for 25 µl reactions. 

Experimental reactions were performed in triplicate and duplicate no-template 

controls were also run.  

 

Once sample cDNA was added, the 96-well plate was briefly centrifuged to remove 

bubbles and ensure mixing. Data were collected by running a three-step cycling 

protocol using the AB7500 Fast Realtime PCR System (Applied Biosystems) [Table 

2.9]. The temperature cycler was set to detect and report fluorescence during the 

annealing and extension step of each cycle. Formation of non-specific products was 

checked using gel analysis. 
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Table 2.8: Mastermix components for Q-PCR reaction 

 

Master Mix (x1) 

 

Volume (µl) 
 

H20 8.125 

SYBR® green mix 12.5 

Forward primer (5 µM) 1 

Reverse primer (5 µM) 1 

Rox reference dye (1:500) 0.375 

Sample DNA 2 

 

Table 2.9: Three-step cycling protocol for Q-PCR reaction 

Cycles Duration of cycle Temperature (ºC) 

1 10 mins 95 

40 

30 s 95 

1 min 50-60*  

30 s 72 

*variable annealing temp [Table 2.4] 

 

2.2.5.3 Analysis of Results and Normalisation 

The comparative threshold (CT) method was used to determine the relative ratio of 

transcripts. Fold changes of expression were calculated using the formula 2-∆∆CT 

where the CT represented the threshold cycles of the specific gene and the 

endogenous control, GUS. ∆CT was calculated as the average CT for target variant 

minus the average CT of endogenous GUS or GAPDH in each sample, and the 

∆∆CT was calculated as the ∆CT of the sample minus the ∆CT of the calibrator. For 

expression of p63, the mean expression in five primary melanocyte cultures was 

used as the comparator. For shRNA and cell toxicity experiments, sh-scramble and 

untreated cells, were used as comparators, respectively.  

 

2.2.6  Cloning 

Cloning was undertaken to construct short hairpin RNA expression vectors for 

transfection into melanoma cell lines [section 2.1.5.2]. The vector used for cloning 

these sequences was the pSUPERIOR.retro.puro vector [Oligoengine; Figure 2.4]. 

Forward and reverse strands of the oligonucleotide sequences containing the siRNA-

expressing sequence targeting p63 [Table 2.10] were annealed according to the 
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design strategy shown in Figure 2.5. 10 μl of the forward and reverse strand of the 

oligonucleotide sequences were blocked at 95ºC for 10 mins and then cooled down 

to room temperature. Phosphorylation was carried out using E kinase (New England 

Biolabs) using the following components:  

Primer mix 2 µl  

E kinase  1 µl  

ATP   1 µl  

Buffer   1 µl  

H2O   5 µl  

 

Samples were incubated at 37ºC for 30 mins then 65ºC for 20 mins and stored at  

–20ºC.  

 

2.2.6.1 Restriction enzyme digestion 

10 µg of the pSUPERIOR.retro.puro vector was linearised by digestion with BglII and 

HindIII overnight at 37ºC in a water bath. To check that the digestion had worked, 2 µl 

of the products were run on a 1% agarose gel. Following digestion of the vector, 5‟ 

phosphate groups were dephosphorylated from the linearised plasmid by treatment 

with calf intestinal alkaline phosphatase 0.1 units (CIP, Promega) for 1 hr at 37ºC, to 

prevent re-circularisation of the plasmid. The digested vector was run out on a 1% 

agarose gel and the band visualised under a UV lamp was isolated and cut out using 

a scalpel. The resulting vector DNA was extracted by gel purification using 

StrataPrep® DNA gel extraction kit (Stratagene) according to the manufacturers 

protocol [section 2.2.5.1].  

 

2.2.6.2 Ligation of DNA fragments 

Ligation of the dephosphorylated vector and purified insert DNA was performed at a 

ratio of insert:vector DNA of 3:1. Insert and vector DNA were combined in the 

presence of T4 DNA ligase buffer and enzyme (Promega) to a final volume of 10 µl 

and incubated at 16ºC overnight. Half of the ligation mixture was used to transform 

competent bacterial cells as previously described [section 2.2.1.3].  

 

T4 DNA ligase reaction buffer (10X)   

Tris-HCl (pH 7.8 at 25°C) 300 mM 

MgCl2     100 mM 

DL-Dithiothreitol (DTT) 100 mM 

ATP    10 mM 
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2.2.6.3 Verification of plasmid constructs 

To ensure that cloning was successful, constructs were directly sequenced using 

sequencing primers specific to sequences cloned into vectors used [Table 2.10]. The 

vector was transformed in bacteria. 

 

2.2.7  RNA interference procedures 

2.2.7.1 Transient transfection with short interfering RNA (siRNA) 

Silencing of genes was achieved by transfection of DNA sequences [Table 2.10] into 

melanoma cells using HiPerFect transfection reagent (Qiagen®). A stable, 

fluorescent form of Cyclophilin B, siGLO Cyclophilin B Control siRNA (Dharmacon), 

was used to assess transfection efficiency. A pool of three validated Silencer® siRNA 

sequences (Applied Biosystems™) – siRNA-A; siRNA-B and siRNA-C, was used for 

silencing all p63 isoforms.  

 

2.2.7.2 Stable infection with short hairpin RNA (shRNA) 

The pSUPERIOR.retro.puro vector constructs containing annealed oligonucleotide 

sequences targeting all p63 isoforms and TAp63 and ΔNp63 individually [Table 2.10] 

was transfected into the packaging cell line Phoenix cells, before introducing the 

retrovirus into the melanoma cell lines. Infected cells were selected using puromycin 

(0.9 - 1.25 µg/ml) to establish a stable cell line for shRNA expression which is 

transcribed in cells from a DNA template as a single-stranded RNA molecule [Figure 

2.6]. Effects on mRNA levels of p63 were subsequently assayed [section 2.2.5].  
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Figure 2.4: pcDNA for shRNA construct. The pSuperior.retro.puro vector was used for 

shRNA cloning of oligonucleotide sequences targeting p63 [Table 2.10].  Length of plasmid 

7296 bp. Vector was linearised using digestion sites BGlII 2424 and  HindIII 1441 (shown by 

red boxes).  

 

  

 

 

Figure 2.5: Design strategy for creating short hairpin RNA template insert. Annealed 

complementary oligonucleotides are used to create a synthetic DNA duplex for cloning. This is 

the most commonly reported method for making shRNA constructs (74% of surveyed studies) 

which requires the synthesis, annealing and ligation of two complementary oligonucleotides 

into an expression vector. Image reproduced from McIntyre and Fanning (2006).  
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Table 2.10: RNAi targeting sequences  

Gene target  Source Target sequence 

Itch (pool)  Dharmacon 

GUUGGGAACUGCUGCAUUA 

CAACAUGGGACGUAUUUAU 

GAAAUUAAGAGUCAUGAUC 

CGAAGACGUUUGUGGGUGA 

p63 siRNA-A*  
Applied Biosystems™ 

(ID 217143) 

CAUGCAAAGUUAACACACGAC 

 

p63 siRNA-B*  
Applied Biosystems™ 

(ID 4893) 

GCACUUAAGUCACGGUUGGAC 

 

p63 siRNA-C*  
Applied Biosystems™ 

(ID 217144) 

AAGUCAAGUCACCUUAUGCAG 

 

p63 siRNA-D~ 
Mario Rossi, MRC 

Leicester 

AACUUUGUGGAUGAACCAUCA 

 

p63 siRNA-E# 
Mario Rossi, MRC 

Leicester 
AAGCCCAGACUCAAUUUAGUG 

*siRNA sequences used in combination for siRNA-p63 pool 

~ siRNA sequence designed to target TAp63 only 

# siRNA sequence designed to target ∆Np63 only 

 

 

 

Figure 2.6: shRNA expression in cells. shRNA has the advantage of long-term and stable 

silencing with improved delivery of silencing to all cells. Expressed shRNA is transcribed in 

cells from a DNA template as a single-stranded RNA molecule (~50 – 100 bases). 

Complementary regions spaced by a small 'loop' cause the transcript to fold back on itself 

forming a 'short hairpin' - a stem-loop structure, in a manner analogous to natural microRNA. 

Recognition and processing by the RNAi machinery converts the shRNA into the 

corresponding siRNA. ssRNA – single stranded RNA. Figure adapted from McIntyre and 

Fanning (2006). 
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2.3  PROTEIN MANIPULATION 

2.3.1  Preparation of whole cell lysates 

Cells were trypsinized and washed with PBS followed by lysis in TGN buffer (150 

μl/100 mm dish) in an Eppendorf. They were subjected to three rapid freeze/thaw 

cycles between dry ice and a 37°C water-bath. After a minimum of 30 mins on ice, 

lysates were clarified by centrifugation at 13 000 rpm for 15 mins at 4°C and then 

stored at -20ºC. 

 

TGN Buffer (Total 50 ml) 

Tris 1 M   2.5 ml 

NaCl 2.5 M   3 ml 

Glycerol   5 ml  

Glycerophosphate 0.5 M 5 ml   

Tween® 20   0.5 ml 

Nonidet® P40   100 µl 

H20    33.9 ml 

 

Complete mini protease inhibitor cocktail (PIC; Roche) 1 tab in 5 ml TGN buffer 

prepared freshly. 

 

2.3.2  Preparation of mitochondrial extracts  

This method was adapted from Mihara and Moll (2003) and Arnoult (2008). Three x 

10 cm dishes of cells at a confluency of 70-80% were required to obtain sufficient 

levels of mitochondrial protein. All steps were performed on ice or at 4°C. Each plate 

was washed once with 1 ml ice cold PBS/1 mM EDTA before scraping the cells into a 

15 ml falcon tube. Cells were pelleted at 750 g for 5 mins and then washed in ice cold 

PBS (3 mls). The cells were pelleted again for 5 mins at 750 g. The pellet was then 

resuspended in 400 µl of cold mitochondrial isolation buffer (MIB) buffer with protease 

inhibitor cocktail (PIC) (1:20). Cells were transferred to an ice-cold Dounce 

homogeniser (Wheaton) and homogenised with a minimum of 150 strokes, whilst 

monitoring under the microscope. Trypan blue staining was used to confirm cell 

membrane disruption. The solution was transferred to an Eppendorf and centrifuged 

for 5 mins at 800 g to isolate the nuclear fraction. The pellet was used in the nuclear 

isolation protocol [Section 2.3.3]. The supernatant was centrifuged for 30 mins at 10 

000 g where the resulting pellet contained the mitochondrial fraction. The supernatant 

containing cytoplasmic proteins was added to the Eppendorf containing the nuclear 
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fraction which was to be used in the nuclear isolation protocol. The mitochondrial 

pellet was washed in 500 µl of 1 x MS buffer (+ PIC) and centrifuged again at 10 000 

g for 15 mins. The mitochondrial fraction was resuspended in 50 µl of MIB buffer with 

1% Triton-X 100. Protein concentration was determined [Section 2.3.4] and assayed 

using SDS-polyacrylamide gel electrophoresis (SDS-PAGE). 

 

MIB buffer (stored at 4ºC)   MS buffer (stored at 4°C) 

Mannitol  210 mM  Mannitol  210 mM 

Sucrose   70 mM   Sucrose  70 mM 

EDTA    1 mM   EDTA   5 mM 

HEPES  10 mM   Tris-Cl, pH 7.6  5 mM 

 

Hepes buffer (stored at 4ºC for <1 mth) RIPA buffer 

Hepes-KOH, pH 7.4 20 mM   NaCl    150 mM 

KCl   10 mM   Tris pH 7.5   50 mM 

MgCl2   1.5 mM  Nonidet®-P40    1% 

EGTA pH7.4  1 mM   Sodium deoxycholate  0.05% 

EDTA pH7.4  1 mM   SDS    1% 

 

PIC solution was freshly prepared (1 tab in 2 ml H2O) and added to each solution 

(1:20).  

 

2.3.3  Preparation of nuclear and cytoplasmic extracts 

The nuclear pellet and cytoplasmic supernatant from the mitochondrial extract 

method was resuspended and centrifuged at 900 g for 5 mins at 4ºC. The 

supernatant was discarded. The pellet was resuspended in 300 µl nuclear isolation 

lysis buffer (NI) supplemented with PIC and incubated on ice for 15 mins. This was 

centrifuged at 3500 rpm for 10 mins at 4ºC. The supernatant was transferred to a 

new Eppendorf labelled cytoplasmic fraction. The pellet was resuspended again in 

300 µl ice cold NI lysis buffer (+ PIC), centrifuged at 3500 rpm for 10 mins at 4ºC and 

supernatant was transferred to the cytoplasmic fraction Eppendorf. The nuclear pellet 

was washed in 1 ml ice-cold Tris-EDTA twice and centrifuged at 3500 rpm for 10 

mins at 4ºC between each wash. The supernatant was discarded each time. The 

pellet was resuspended in 300 µl ice cold TGN buffer (+PIC) and incubated on ice for 

a total of 30 mins; vortexing every 10 minutes. The sample was centrifuged again at 

15 000 rpm for 30 mins at 4ºC. The protein concentration of the supernatant 
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containing nuclear proteins was determined [section 2.3.4] and assayed using SDS-

PAGE. 

  

NI lysis buffer 

Tris pH 6.5  10 mM 

Sodium bisulphate 50 mM 

MgCl2   10 mM 

Sucrose  8.6% 

Triton X-100  1% 

Made up with H2O 

 

PIC solution was freshly prepared (1 tab in 2 ml H2O) and added to each solution 

(1:20).  

 

Tris-EDTA 

Tris pH 7.4  10 mM 

EDTA   13 mM 

 

2.3.4  Protein concentration 

Protein concentration of extracts was estimated using the Bio-Rad protein assay 

reagent, based on the Bradford dye-binding procedure (Bradford 1976). This 

colorimetric assay allows determination of protein concentration by reading 

spectrophotometric differences at a wavelength of 595 nm. Protein extracts were 

thawed on ice and 1 µl added to 200 µl of Bio-Rad reagent (1:5 dilution) in a 96-well 

plate. Solutions were left to incubate for 10 mins at room temperature. The Synergy 

HT Multi-Mode Microplate Reader (Bio-Tek) was used at 595 nm to measure the 

optical density of the samples. Protein concentration was calculated using the 

constant obtained from a bovine serum albumin (BSA) (1 mg/ml) standard curve, by 

plotting optical density generated by increasing BSA concentrations on the y-axis 

against quantity of protein in the BSA sample (0-15 µg) on the x-axis. Protein lysates 

at concentrations between 50 and 80 µg were loaded for separation using SDS-

PAGE.  

 

2.3.5  Sodium Dodecyl Sulphate (SDS) polyacrylamide gel electrophoresis 

Gel mixture was prepared [Table 2.11] and poured between a sandwich of two clean 

glass plates separated by spacers, then overlaid with isopropanol (200 µl) and left to 

polymerise at room temperature. Once set, isopropanol was removed with residual 
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traces absorbed by blotting paper. An SDS stacking gel was prepared and added to 

the polymerised resolving gel, and a 10- or 15-lane well-forming comb was inserted, 

enabling loading of the protein sample. Stacking gels (3 ml) were prepared as 

described in Table 2.12. Once polymerised the gel was transferred to an 

electrophoresis running tank filled with 1 x SDS-PAGE running buffer, and the comb 

removed.  

 

10x SDS-PAGE Running Buffer 

Trizma Base 30 g 

Glycine 144 g 

SDS  10 g 

Distilled water to 1 L 

 

Prior to loading, the protein samples were denatured by boiling at 95ºC for 5 mins in 

1 x NuPage® LDS Loading Buffer (Invitrogen™). Electrophoresis was performed at 

100 V until separation of the Benchmark Protein marker (Invitrogen™) was visualised 

and then continued at 150 V. The gel was transferred to a solid support for 

immunodetection. 

 

2.3.6  Transfer of proteins to solid support 

Nitrocellulose transfer membrane (Protran®, Whatman®) was cut to size (9 x 7 cm) 

and directly wetted in 1 x Transfer Buffer prior to being placed on the SDS gel. Two 

sheets of 3 mm Whatman paper were used to cover the membrane and gel on either 

side, ensuring no air bubbles remained trapped between the layers. The apparatus 

was transferred in the transfer electrophoresis chamber (Hoefer) filled with 1 x 

Transfer buffer (with 20% methanol) for 3 hrs at a constant voltage of 55 V or for 18 

hrs at 25 V.  

 

10X TRANSFER BUFFER 

Trizma Base 30 g 

Glycine 144 g 

Distilled water up to 1 L 
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Table 2.11: Volume of components for resolving gel 

Resolving gel (10 ml total) 8% gel (ml) 10% gel (ml) 

 

12% gel (ml) 

 

30% acrylamide solution 

(National Diagnostics) 
1.3 1.7 2 

1M Tris pH 8.8 1.3 1.3 1.3 

10% SDS 0.05 0.05 0.05 

10% ammonium persulphate 0.05 0.05 0.05 

TEMED (Sigma) 0.003 0.002 0.002 

Distilled water 2.3 1.9 1.6 

TEMED – Tetramethylethylenediamine 

SDS – sodium dodecyl sulphate 

 

Table 2.12: Volume of components for stacking gel 

 

Stacking gel (3 ml total) 

 

Volume (ml) 

30% acrylamide solution 

(National Diagnostics) 
0.5 

1M Tris pH 6.8 0.38 

10% SDS 0.03 

10% ammonium persulphate 0.03 

TEMED (Sigma) 0.003 

Distilled water 2.1 

TEMED - Tetramethylethylenediamine 

SDS – sodium dodecyl sulphate 
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2.3.7  Immunodetection 

Following protein transfer, membranes were blocked in either PBS-Tween 0.1% or 

TBS-Tween 0.1% supplemented with 5% (wt/vol) powdered milk (BioRad) for 1 hr at 

room temperature with gentle agitation. The membrane was incubated with the 

primary antibody [Table 2.13] diluted at the appropriate concentration in the same 

solutions, for 2 hrs at room temperature or overnight at 4ºC. Membranes were 

washed three times for 5 mins in PBS-Tween 0.1% at room temperature and 

incubated for 1 hr at room temperature with species specific horseradish peroxidase-

conjugated secondary antibody (DAKO), at a dilution of 1:10,000 (vol/vol) in PBS-

Tween 0.1% supplemented with 5% (wt/vol) powdered milk (BioRad) [Table 2.14]. 

Membranes were washed a further three times for 5 mins with PBS-Tween 0.1%, and 

bound secondary antibody was detected using an enhanced chemiluminescence 

method with ECL Plus Western blotting detection method (GE Healthcare) according 

to the manufacturer‟s protocol. Briefly the two components of the kit, solutions A and 

B, were mixed just prior to covering the air-dried membranes in a 40:1 proportion and 

incubated for 5 mins exposure. The reagent was then removed, membranes were 

briefly air dried and placed securely within a transparency in a film cassette and 

exposed for autoradiography.  

 

TBS (10X) 

Trizma Base  24.2 g 

NaCl   80 g 

Distilled water up to 1 L 

Adjust pH to 7.5 with HCl 

 

Where possible, a single membrane was probed for multiple proteins of varying 

molecular weight, in particular p63 and loading controls were always probed using 

the same membrane. A number of p63 antibodies detecting different amino acid 

regions of the p63 protein were used [Figure 2.7].  
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Table 2.13: Primary Antibodies used for protein detection 

Target 

(name) 

Primary 

antibody 

Supplier  Dilution 

for WB 

Conditions 

Cox IV 

(12C4) 

Mouse 

monoclonal 

Molecular Probes  1:500 Room temp, 

2 hrs 

GAPDH 

(G9545) 

Rabbit 

polyclonal 

Sigma-Aldrich®   1:2500 Room temp, 

2 hrs 

Itch Mouse 

monoclonal 

BD Biosciences 1:500 4ºC O/N 

Lamin A/C Rabbit 

polyclonal 

Cell signalling 1:500 4ºC O/N 

Mt-Hsp70 

(Grp75; JG1) 

Mouse 

monoclonal 

Abcam 1:500 4ºC O/N 

p53 

(DO-1) 

Mouse 

monoclonal 

Cancer Research 

UK  

1:300 Room temp, 

2 hrs 

p63* 

(Ab-1 or Ab-4) 

Mouse 

monoclonal 

Neomarkers, CA  1:200 – 

1:500 

4ºC O/N 

p63 * 

(4A4) 

Mouse 

monoclonal 

Santa Cruz  1:200 4ºC O/N 

p63 * 

(H129) 

Rabbit 

monoclonal 

Santa Cruz  1:300 4ºC O/N 

p63α*  

(H137) 

Rabbit 

monoclonal 

Santa Cruz  1:300 4ºC O/N 

PARP Rabbit 

polyclonal 

Cell signalling 1:1000 4ºC O/N 

β-Actin 

(A5441) 

Ascites fluid Sigma-Aldrich®  1:1500 Room temp, 

2 hrs 

WB – western blotting, PARP – poly-(ADP ribose) polymerase, GAPDH – glyceraldehyde 3-

phosphate dehydrogenase 

*Position of anti-p63 antibodies targeting p63 protein shown in figure 2.7 
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Table 2.14: Secondary Antibodies used for protein detection 

Conjugated Target Secondary antibody Source Dilution 

HRP Mouse IgG Goat polyclonal Dako 1:10 0000 

HRP Rabbit IgG Goat polyclonal Dako 1:10 0000 

HRP Goat IgG Rabbit polyclonal Dako 1:10 0000 

HRP - Horseradish peroxidase 

 

 

 

 

Figure 2.7: Specificity of different anti-p63 antibodies. Protein structure of the full length 

TA and ∆N isoforms of p63 shown in the top panel. Lower panel showing blue line which 

marks region of protein that the anti-p63 antibody (labelled in red on left) detects. The amino 

acid target of each antibody is shown on the right side of the corresponding blue line. AA – 

amino acid.  
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2.4  DNA DAMAGE ANALYSIS TECHNIQUES 

2.4.1  DNA damaging agents 

2.4.1.1 UVB irradiation 

Cells were seeded at a density of 1x106 cells / cm2 in 100 mm culture dishes. Prior to 

irradiation, cells were washed with PBS, which was then completely aspirated. A CL-

1000 ultraviolet cross linker (UVP) fitted with F8-T5 UVB lamps with peak output at 

312 nm, was used to irradiate cells with a single dose ranging from 5 mJ/cm2 to 50 

mJ/cm2 (depending on the experiment). Following irradiation, fresh media was 

replaced and cells were cultured as described until harvested.  

 

2.4.1.2 Chemotherapeutic agents 

Cells were seeded at a density of 1x106 cells / cm2 in 100 mm culture dishes. Prior to 

treatment with DNA damaging agents, cells were washed with PBS, which was then 

completely aspirated. Cells were treated with chemotherapeutic agents at various 

doses [Table 2.15]. All chemotherapeutic agents were diluted from a stock solution in 

distilled sterile water and then diluted to the final concentration in fresh media. 

Treated cells were harvested at different time points from 90 mins to 72 hrs.  

 

2.4.2  Thiazolyl Blue Tetrazolium Bromide (MTT) assay 

The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was 

used as a measurement of cell proliferation and thus indirect measure of cell death. 

MTT (Sigma-Aldrich®) is a yellowish solution which is converted to water-insoluble 

MTT-formazan of dark blue colour by mitochondrial dehydrogenases of living cells. 

These blue crystals are solubilised with DMSO and the intensity is measured 

colourimetrically.  

 

Cells were seeded at a density of 7 500 cells / well in 96-well plates and treated with 

chemotherapeutic drugs at various doses. Media was removed from the cells and 

replaced with 200 µl MTT solution diluted in growth media (final concentration 0.6 

mg/ml), and cells were incubated for 3 hrs. The solution was removed and 25 µl of 

Sorensen‟s glycine buffer was added to each well and left at room temperature for 10 

mins. 200 µl of DMSO was added to each well and plates were gently agitated for a 

further 10 mins. Readings were taken using a spectrophotometer (Synergy HT Multi-

Mode Microplate Reader; Bio-Tek) reading at wavelength of 690 nm and then at a 

wavelength of 570 nm. The former reading was deducted from the latter and 

normalised to the untreated cells. Experimental readings were performed in triplicate 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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and expressed as mean readings ± SEM for a minimum of two independent 

experiments. 

 

Sorensen‟s Glycine Buffer (pH 10.5) 

Glycine  0.1 mM 

NaCl  0.1 M 

Adjust pH using 0.1 M NaOH 

 

 

Table 2.15: Chemotherapeutic agents  

Drug Source Dose (µM) 

Cisplatin  Oncon-Tain®, Mayne Pharma PLC 1 – 20 

Etoposide Medac UK, Pharmachemie BV 1 – 20 

Doxorubicin  Teva UK, Pharmachemie BV 0.5 – 2 

Paclitaxel  Peter Szlosarek, Institute of Cancer 0.5 – 2  

Dacarbazine  Medac, Germany 100 – 1000 µg/ml 

Tenovin-6  Sonia Lain, Karolinska Institute 5 – 15  

Trichostatin A (TSA) Sigma 500 – 1000 

5-Azacytidine (5-Aza) Sigma  5 – 10  
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2.5  FLOW CYTOMETRY METHODS 

Flow cytometry methods are used to measure a variety of physical and chemical 

characteristics, such as cell size and shape, of whole cells or organelles as they 

travel in suspension past a source of light. Flow cytometry was used in a number of 

assays:  

1) To analyse apoptotic cell death in response to DNA damage (Annexin V) 

2) To detect the presence and translocation of intracellular proteins 

3) To detect the presence of extracellular proteins (CD133) 

4) To use fluorescence activated cell sorting (FACS) to separate cells 

 

2.5.1  Flow cytometric analysis of apoptosis 

In normal cells, phosphatidylserine (PS) residues are found in the inner membrane of 

the cytoplasmic membrane.  During apoptosis, the PS residues are translocated in 

the membrane and are externalised.  In general, this is an early event in apoptosis 

and considered a signal to neighbouring cells that a cell is ready to be 

phagocytosed.  Annexin-V, a specific PS-binding protein was used to detect apoptotic 

cells.   

 

Cells were treated with chemotherapeutic agents for 16-24 hrs, with or without prior 

DNA transfection or shRNA infection. Cells were trypsinized and all cells (living and 

dead) were pelleted. Cells were resuspended in 400 µl of 1 X Binding Buffer (BD 

Pharmingen™). 5 µl of Annexin V-FITC (BD Pharmingen™) was added and 

incubated in the dark, at room temperature for 15 mins. Samples were analysed on 

the flow cytometer (LSR II, Beckton Dickinson) within an hour. Viability dye was 

added just prior to reading; 4'-6-Diamidino-2-phenylindole (DAPI; 200 ng/ml) was 

used for experiments co-staining with anti-CD133 antibody; propidium iodide (PI, 5 

µg/ml) was used for all other experiments.  

 

2.5.1.1 Data analysis 

The following controls were used to set up compensation and quadrants: unstained 

cells, cells stained with Annexin V-FITC only (no PI or DAPI), cells stained with PI or 

DAPI only (no Annexin V-FITC). Apoptotic cell population included Annexin V-FITC 

positive, PI/DAPI negative and Annexin V-FITC positive, PI/DAPI positive (right upper 

and lower quadrants of scatter plot). Results were analysed using the FACSDiva™ 

software (BD Biosciences) and expressed as mean ± SEM values of three 

independent experiments performed in triplicate. 

 



 
Page | 121  

 

10X Binding Buffer (stored at 4ºC) 

Hepes (pH 7.4) 0.1 M 

NaCl   1.4 M 

CaCl2   25 mM 

 

2.5.2 Flow cytometric analysis of translocation of intracellular proteins 

(Leverrier et al. 2007). 

Upon induction of apoptosis, p53 translocates to mitochondria and nucleus from 

cytoplasm (Marchenko et al. 2000; Mihara and Moll 2003; Sansome et al. 2001). 

Translocation of p63 and p53 between subcellular compartments can be monitored 

by quantifying p63 or p53 fluorescence intensity by flow cytometry. Three different 

fluorescent stains were used: 

1) MitoTracker Orange (CMTMRos, Molecular Probes) for the mitochondria 

2) Hoechst (Bisbenzimide Hoechst 33342; Sigma-Aldrich®) for the nucleus 

3) Secondary antibodies conjugated to Cy5 (Cy5-conjugated AffiniPure F(Ab)2 

fragment goat anti-mouse IgG; Jackson ImmunoResearch Laboratories) for 

p63 or p53 labelling. 

 

2.5.2.1 Analysis of whole cell antibody labelling 

Cells were seeded in 100 mm plates at a confluency of 70-80% >16 hrs prior to 

treatment. Live cells were fluorescently stained with MitoTracker Orange (to label 

mitochondria) prior to treatment with chemotherapeutic agents. MitoTracker Orange 

stock solution (1 mM) was diluted (100 nM) in pre-warmed growth medium (1/10 000) 

and cells were incubated with 5 mls / 100 mm plate, for 30-40 mins under growth 

conditions. Media was aspirated and cells were washed twice in 1 X PBS to remove 

remaining MitoTracker Orange and replaced with pre-warmed growth medium. Cells 

were either untreated or treated with genotoxic agents and at specific time-points (3-

16 hrs), media was discarded and cells washed twice in cold PBS. Cells were fixed 

with 500 μl PBS/0.25% paraformaldehyde (PFA – Sigma-Aldrich®) for 10 mins and 

harvested by scraping and transferring to an Eppendorf tube. Cells were pelleted at 

9000 rpm for 1 min and resuspended in 1 ml PBS. At this point cells could be kept at 

4°C for up to 24 hrs until the next stage of labelling. All the following steps were 

separated by a 1 min spin at 9000 rpm: cells were permeabilised using 1 ml 

PBS/0.01% Saponin (Sigma-Aldrich®) for 5 mins, then incubated on a wheel at 4°C 

for 30 mins with the primary antibody [Table 2.16] at a dilution of 1/50 in 200 μl 

PBS/0.01% Saponin.  This was followed by incubation in 1 ml PBS/0.01% Saponin 

for 3 mins. Cells were incubated for 30 mins on a wheel at 4oC with the secondary 
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Cy5 conjugated goat anti-mouse or anti-rabbit antibody at a dilution of 1/60 in 200 μl 

PBS/0.01% Saponin. Cells were washed in 1 ml PBS/0.01% Saponin containing 

Hoechst (20 g/ml) diluted 1/2000 for 5 mins at room temperature and resuspended 

in 1 ml PBS before reading on a FACS flow cytometer (LSRII, Beckton Dickinson) 

[Section 2.5.2.3]. Data subsequently were analysed using FlowJo® V7.5 software 

(Tree Star, Inc).  

 

2.5.2.2 Analysis of labelled cellular organelles 

Cells were centrifuged at 9 000 rpm for 5 mins, the supernatant discarded and cells 

resuspended in Hepes buffer to determine the degree of translocation of p63 or p53 

between organelles. This was achieved by homogenisation in Hepes buffer (750 µl) 

for 100 strokes using an ice-cold Dounce homogeniser (Wheaton). Homogenised 

cells were then re-analysed (1 x 106 events collected) using the same instrument 

settings to detect presence of p53-Cy5 or p63-Cy5 (530/30nm filter), MitoTracker 

Orange (575/26nm filter), Hoechst 33342 (440/40nm filter). Isotope controls were 

analysed for each experiment using primary mouse IgG2a antibodies (Santa Cruz). 

 

Hepes Buffer 

Hepes-KOH pH7.4  20 mM  

KCl    10 mM  

MgCl2     1.5 mM  

EGTA    1 mM  

EDTA   1 mM 

 

2.5.2.3 Flow cytometer 

A Becton Dickinson LSRII fitted with 488, 405, 350-360 and 633nm lasers with FACS 

Diva software version 4.1.2 was used to acquire 30,000 whole cells using the Argon 

488 nm laser line and a 575/26nm band pass filter to detect MitoTracker Orange; the 

UV 350-360 laser and a 440/40nm band pass filter was used to detect Hoechst 

33342; the Red HeNe 633nm line and 660/20nm band pass filter was used to detect 

Cy5. No compensation was required because of the use of separate laser lines to 

detect fluorophores that did not display any spectral cross-talk. 
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Table 2.16: Flow cytometry primary antibodies 

Target (name) Primary antibody Source 

p53 (DO-1) Mouse monoclonal 
Cancer Research UK 

Laboratories 

p63 (4A4) Mouse monoclonal Santa Cruz 

IgG2a Mouse monoclonal (isotype) Santa Cruz 

Phospho-p63 

(Ser160/162) 
Rabbit polyclonal Cell signalling 

IgG XP™ Rabbit monoclonal (isotype) Cell signalling 

 

 

2.5.3  Flow cytometric detection of extracellular proteins 

Up to 1 x 107 cells (untreated, treated or infected with shRNA) were trypsinized and 

washed in PBS. Cells were centrifuged at 300 g for 10 mins and then resuspended in 

a 1:11 dilution of CD133/1 (AC133)-phycoerythrin [PE] conjugated antibody (Miltenyi 

Biotec) in 100 µl of PBS. Cells were refrigerated for 15 mins in the dark. Cells were 

washed again in 1 ml PBS and centrifuged for a further 10 mins at 300 g. The 

supernatant was completely aspirated and cells were resuspended in PBS before 

analysing samples on the flow cytometer (LSR II Becton Dickinson). For each cell 

line, mouse IgG isotype PE-conjugated was used for the baseline. Results were 

analysed using the FACSDiva™ software (BD Biosciences) and expressed as mean 

± SEM values of three independent experiments performed in triplicate. 

 

2.5.4  Fluorescence Activated Cell Sorting (FACS)  

2.5.4.1 CD133 labelled cell populations [section 2.5.3]  

Cells (either treated or untreated) were labelled with anti-CD133/1 (AC133)-PE 

antibody (Miltenyi Biotec) and passed through a cell strainer cap before reading on 

the FACS Aria™ Flow Cytometer (BD Biosciences) fitted with an Argon 488 nm laser. 

Sort gates were placed on CD133-positive and CD133-negative cells once compared 

to the isotype controls to isolate the two cell populations.   

 

2.5.4.2 Subcellular fractions of homogenised cells labelled with fluorophores 

Subcellular fractions identified from section 2.5.2.3 were sorted according to 

fluorophores using a FACS Aria™ Flow Cytometer (Becton Dickinson) fitted with an 

Argon 488 nm laser, violet diode laser 405nm and a red HeNe 633nm laser. A 
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homogenised mixture of intact whole A375M melanoma cells, naked nuclei and 

mitochondria labelled with Hoechst 33342, MitoTracker Orange and p63-Cy5 were 

sorted. Sort gates were placed on whole cells (double positive for Hoechst 

33342+ve/MitoTracker Orange+ve), nuclei (Hoechst 33342+ve/MitoTracker Orange-ve) 

and mitochondria (Hoechst 33342weak+ ve/MitoTracker Orange+ve). Three-way sorting 

isolated whole cells, nuclei and mitochondria which were subsequently pelleted by 

centrifugation at 10 000 g for 30 mins. The supernatant was removed and the pellet 

was air dried onto glass slides. Cells were mounted in Vectashield (Vector Labs, CA) 

and overlaid with a cover slip sealed with clear colourless nail varnish. Images were 

acquired using an LSM 510 inverted confocal microscope (Carl Zeiss MicroImaging, 

Inc.) 

 

2.6  CLINICAL RESOURCE 

All cases of melanoma with a Breslow thickness greater than 1 mm, presenting within 

the North East London Cancer Network are referred to the Multidisciplinary Skin 

Cancer Clinic at Bart‟s and The London NHS Trust (BLT) in conjunction with all 

melanomas presenting in patients directly under the care of BLT. The supervising 

dermatologists are Professor Rino Cerio (Professor of Dermatopathology) and Dr 

Catherine Harwood (Senior Lecturer within the CR-UK Skin Tumour Laboratory). The 

team also comprises surgical, medical and clinical oncologists, a MacMillan 

melanoma nurse specialist and an oncology research nurse specialist. In 2009, over 

120 new cases of melanoma were seen in this clinic; of these, 15 patients had stage 

III or IV disease (locoregional or distant metastases respectively), of whom 10 died 

from metastatic disease. Clinicopathological information, staging and outcome data 

are available for all patients. In addition, a large archive of clinicopathologically 

characterised, paraffin-embedded material representing all stages of melanoma 

development (benign melanocytic naevi, dysplastic naevi, melanoma in-situ, primary 

melanoma and melanoma metastases) was accessed.  

 

2.6.1  Ethical approval 

For analysis of archival melanoma tissue samples and to prospectively collect 

melanocytic lesions, a COREC application (REC approval number 07/QO604/23) 

was submitted on 12th March 2007 and ethical approval was granted on 9th May 2007 

[Appendix 1]. Patients with melanocytic skin lesions (benign and malignant) were 

identified in the Skin Cancer Multidisciplinary clinic, and in general dermatology 

clinics when attending for their standard clinical care. Patients were requested to 

complete a clinician−delivered questionnaire, a clinical examination (part of routine 
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clinical care) and to provide a venous blood sample (20mls). All patients with known 

or suspected melanocytic lesions (malignant or benign) removed for clinical reasons, 

were approached to obtain fresh tissue samples from melanocytic lesions and peri-

lesional tissue and blood samples for DNA extraction. Electronic medical records for 

patients who had a history of melanoma were also accessed to correlated expression 

of p63 with clinicopathological factors and patient outcome data.   

 

2.7  IMMUNOCYTOCHEMISTRY METHODS 

2.7.1  Fluorescent immunocytochemistry: cultured cells 

Cultured cells were plated onto glass coverslips at a confluency of 150 000 cells/cm2 

in 12-well culture plates and allowed to attach overnight at 37°C. Media was 

discarded and replaced with media containing MitoTracker Orange (CMTMRos, 

Molecular Probes, dilution 1/10 000). Cells were incubated with MitoTracker Orange 

for 30-40 mins prior to washing twice in PBS followed by treatment with either UVB or 

pharmacological drug. Cells were washed in PBS for 5 mins at 5-24 hrs after 

treatment, fixed in 1 ml of 4% formaldehyde/PBS for 10 mins at room temperature, 

washed twice in fresh PBS for 5 mins and stored at 4°C in PBS. 

 

2.7.1.1 Cell permeabilisation 

PBS was removed from the cells and 1 ml of 0.1% Triton X-100 in PBS was added 

for 3 mins at room temperature to allow permeabilisation of the cell membranes. Cells 

were washed twice with PBS for 10 mins to remove any residual detergent.  

 

2.7.1.2 Blocking 

To avoid non-specific reaction with the secondary antibody, cells were incubated with 

500 μl of 5% goat serum / PBS for 30 mins. 

 

2.7.1.3 Detection 

After removal of the serum, cells were incubated with primary antibody diluted in 5% 

goat serum / PBS overnight at 4°C [Table 2.17]. Cells were washed three times for 10 

mins in PBS and incubated with secondary antibody for 1 hr at room temperature in 

the dark [Table 2.18]. Cells were washed again three times for 10 mins in PBS and 

incubated with 500 µg/ml DAPI (Invitrogen™) for 10 mins followed by two further 

washes in PBS for 10 mins at room temperature. Coverslips were mounted onto a 

glass slide using Vectashield Mounting Medium (Vector Laboratories, CA) to prevent 

photobleaching over time. Mounted slides were sealed with clear colourless nail 

varnish and stored at 4ºC protected from light.  
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2.7.2  Fluorescent immunocytochemistry: Tissue Microarray 

A melanoma paraffin-embedded tissue array (Biomax US ME481) comprising a panel 

of 8 normal skin cores and 40 melanoma cores each of 1.5 mm diameter and 5 μM 

thickness were used for p63 immunohistochemistry [Figure 2.8; Appendix 2].  

 

2.7.2.1 Preparation of tissue sections 

The slide was initially baked at 60°C for 2 hrs. Tissue sections were subjected to 

deparaffinisation and rehydration using a xylene and ethanol (EtOH) series: 

1. Xylene: x 2 at 5 mins each 

2. 100% EtOH: x 2 at 5 mins each 

3. 90% EtOH: x 1 at 3 mins 

4. 70% EtOH: x1 at 3 mins 

5. 50% EtOH: x1 at 3 mins  

6. Distilled water: x1 at 5 mins  

7. PBS: x1 at 5 mins 

 

2.7.2.2 Antigen retrieval 

The slide was incubated in citrate buffer, pH 6, placed in a microwave at 300 W for 5 

mins for 3 cycles and subsequently cooled for 15 mins. It was returned to the 

microwave for 5 mins at 300 W, and again cooled to room temperature. 

 

2.7.2.3 Blocking of section 

The slide was incubated in 5 % goat serum / PBS for 2 hrs at room temperature. 

 

2.7.2.4 Antibody incubation 

The slide was placed in a humid chamber and incubated with the primary antibody 

(1:50 H137 and H129 anti-p63 antibodies) overnight at 4°C. It was washed in PBS 

buffer x 3 for 10 mins and incubated with the secondary antibodies [Table 2.18] for 1 

hr at room temperature in 5% goat serum / PBS. It was washed twice for 10 mins in 

PBS followed by one wash for 10 mins in DAPI in PBS (500 µg/ml) and washed twice 

more for 10 mins in PBS to remove excess DAPI. The slide was then mounted using 

Vectashield (Vector Labs, CA) to prevent bleaching of the fluorophores.  

 

2.7.3  Immunohistochemistry: Paraffin embedded tissue 

Automated immunohistochemistry was performed on a selection of melanoma tissue 

samples collected from the pathology archive at Bart‟s and the London NHS Trust. 
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Cases were identified from the Skin Cancer Database held by the Skin Cancer 

Multidisciplinary Team. Clinical and demographic details for the naevi tissue samples 

and melanoma tissue samples are detailed in table 3.3 and Appendix 3, respectively. 

The RedMap™ kit was used with the Ventana Discovery® instrument to detect p63 

reactivity (using anti-p63 antibodies – H129 or 4A4) in formalin-fixed paraffin-

embedded (FFPE) tissue sections. 

 

2.7.3.1 Preparation of FFPE sections 

FFPE sections of melanocytic lesions were cut into 4 µM sections and placed on 

APES (3-Aminopropyltriethyoxysilane/acetone)-coated slides. This was carried out by 

the Royal London Hospital Experimental Pathology Service, Lincoln ‟s Inn Fields 

Pathology Service and Bart‟s Pathology Service.  

 

2.7.3.2 Immunohistochemical staining 

Detection of proteins by immunohistochemistry was performed using paraffin-

embedded tissue sections fixed with paraformaldehyde. Slides were subjected to the 

following steps: 

1. Deparaffinisation     75 ºC for 8 mins 

37 ºC for 2 mins 

2. Long cell conditioner     95 ºC for 8 mins 

3. Medium cell conditioner #1   100 ºC for 4 mins  

4. Mild CC1 (cell conditioner 1) buffer wash 10 x 4 mins 

5. Standard CC1 buffer    37 ºC for 2 mins 

6. Primary antibody 1:50 dilution – incubate for 60 mins 

7. Universal secondary antibody – (1 drop) incubate for 30 mins 

8. Blocker R1 – (1 drop) incubate for 2 mins 

9. Counterstain with 1 drop SA-Alk Phos R  (red chromogen) – incubate for 30 

mins 

10. Rinse slide x 4 

11. Haematoxylin – (1 drop) incubate for 2 mins 

12. Bluing reagent – (1 drop) incubate for 2 mins 

13. Rinse x 3 

 

2.7.3.3 Statistical analysis 

Statistical analysis was undertaken in collaboration with Dr D. Mesher (Centre for 

Epidemiology, Mathematics and Statistics, QMUL). Clinicopathological variables were 

tabulated and compared with p63 status. For survival (overall and melanoma-specific 
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analysis), patients were censored at date of death or date of last follow-up. For 

recurrence and metastases, patients were censored at date of 

recurrence/metastases, date of death or date of last follow-up. Analysis of end points 

was performed by Cox proportional hazards model. Variables were examined 

univariately and subsequently a multivariate model was constructed using backwards 

stepwise selection method. A p-value was then presented comparing the multivariate 

model with and without p63 status included. All p-values were two-sided and all 

statistical analyses were carried out using Stata 10.0. 

 

 

 

                           (http://www.biomax.us/tissue-arrays/Melanoma/ME481) 

 

Figure 2.8: Tissue microarray slide. Haematoxylin and Eosin slide image of tissue 

microarray of melanoma samples and normal skin (x2). Magnified images supplied from 

website in Appendix 2. 
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Table 2.17: Summary of primary antibodies used for IHC/IF/immunogold EM 

Antibody 

specificity  

Supplier (antibody 

name) 

Dilution for 

immunofluorescence 

α-tubulin Abcam  1:500 

Calnexin BD Biosciences 1:100 

Cleaved 

caspase-3 

Cell signalling (Asp175) 1:300 

GM130 BD Biosciences 1: 100 

HMB-45* DakoCytomation 1:50 

LAMP1 BD Biosciences 1:100 

mtHsp70 Abcam (Grp75) 1:50 

p53 Cancer Research UK 

(DO1) 

1:50-100 

p63*# Santa Cruz (H129) 1:50  

p63* Santa Cruz (4A4) 1:50 

p63α# Santa Cruz (H137) 1:50  

γ-H2AX Cell signalling 1:500 

*Antibodies used for immunohistochemistry, #used in combination for IF  

Antibodies in bold are used for EM 

IHC – immunohistochemistry, IF – immunofluorescence, EM – electron microscopy 

 

Table 2.18: Antibodies used for fluorescent immunocytochemistry 

Secondary antibody Dilution 

Alexa fluor ® 594 goat anti-rabbit SFX kit (Invitrogen™) 1:400 

Alexa fluor ® 594 goat anti-mouse SFX kit (Invitrogen™) 1:400 

Alexa fluor ® 488 goat anti-rabbit SFX kit (Invitrogen™) 1:400 

Alexa fluor ® 488 goat anti-mouse SFX kit (Invitrogen™) 1:400 
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2.8   MICROSCOPY METHODS 

2.8.1  Light microscopy 

Images were acquired using the LSM 510 inverted confocal microscope (Carl Zeiss 

MicroImaging, Inc.). A Plan-Neofluor 10 x lens and a Plan-Apochromat 60 x lens 

were used to acquire images. Excitation was kept to a minimum to avoid bleaching of 

samples. Lasers used for confocal microscopy are detailed in Table 2.19. 

 

Table 2.19: Lasers used in confocal microscopy 

Dye Wavelength (nm) Laser unit 

DAPI 405 Laser diode 405 

FITC 488 Argon 2 

Cy3/MitoTracker Orange 543 HeNe 1 

DAPI - 4'-6-Diamidino-2-phenylindole  

FITC – fluorescein isothiocyanate 

 

 

2.8.2  Transmission electron microscopy 

Electron microscopy experiments were performed at the Centre for Ultrastructural 

Imaging (CUI) at Kings College London. The experiment was supervised by the 

director of the CUI, Dr Alice Warley. 

 

2.8.2.1 Immunogold localisation of p63  

The Tokuyasu method for immunogold labelling (1980) was employed.  

 

2.8.2.2 Preparation of cell extracts 

Cells were seeded at 70% confluency in two 100 mm plates and treated with 

paclitaxel (2 µM) for 6 hrs. 8% formaldehyde + 0.2 % glutaraldehyde in 100 mM 

PIPES buffer (pH 7.2) was added to the media (1:1) and plates were refrigerated for 

1 hr. Cells were scraped into an Eppendorf tube and centrifuged at 1500 rpm for 5 

mins. The supernatant was discarded and cells were resuspended in PIPES buffer 

for transport. The pellet was washed twice in PIPES buffer and the supernatant was 

discarded to ensured removal of all fixative. The pellet was resuspended in warm 

gelatin (10%) and centrifuged at 6000 rpm for 3 mins. The pellet of cells in gelatin 

was incubated at 4ºC for 30 mins to solidify the gelatin. Gelatin containing the cells 

was cut into small cubes approx 1 mm3 which were incubated in 2.3 M sucrose at 4°C 
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overnight for cryoprotection. The cubes were mounted on specimen pins, excess 

sucrose was blotted away and the cubes were cryofixed by plunging into liquid 

nitrogen. 

 

2.8.2.3 Cryosectioning 

Cryosections, 90 nm thick, were cut from these blocks with glass knives at -100°C 

using a RMC MTXL ultramicrotome with a RMC CRX cryo-adaptation. Groups of 

sections were picked up on a droplet of 2.3 M sucrose and transferred onto 

Pioloform-coated nickel grids. The grids were floated onto standard buffer consisting 

of PBS + 1% BSA 0.1% sodium azide (pH 7.4).  

 

2.8.2.4 Immunogold labelling.  

Grids were incubated for 3 x 5 min on PBS-0.05 M glycine to remove any remaining 

aldehyde groups leftover from the fixation process before being washed in incubation 

buffer (PBS + 0.1% BSA-c (Aurion) + 0.1% azide, pH 7.4) and transferred onto 

droplets of primary antibody [Table 2.17] diluted in incubation buffer (1:50) for 

overnight incubation at 4ºC. The primary antibody was removed by passing over six 

droplets, of incubation buffer solution, 5 mins per droplet, before incubation for 1 hour 

at room temperature with the secondary antibody, diluted in incubation buffer (1:100).  

Secondary antibody was removed by passing grids over three droplets of PBS for 5 

mins each and the reaction was fixed by exposing the grids to PBS-2% 

glutaraldehyde. The grids were then washed over distilled water 3 x 5 mins each. 

Sections were finally embedded in a solution of 2% methyl cellulose and 3% uranyl 

acetate in a 9:1 ratio.  

 

2.8.2.5 Transmission electron microscopy of cryosections  

Sections were examined and micrographs were obtained using a FEI T12 

transmission electron microscope at an accelerating voltage of 120 kV.  
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2.9  GENE MICROARRAY ANALYSIS 

2.9.1  Agilent array 

2.9.1.1 Clinical samples 

All samples and clinical data were collected with the Institute for Cancer Research 

and Treatment (IRCC) Ethics Committee‟s approval and patients' informed consent. 

This work was performed in collaboration with Giovanna Chiorino, (Fondo Edo 

Tempia, Biella, Italy). A total of 57 excisional biopsies were analysed [Table 2.20] 

which were obtained from an Italian patient population detailed in Scatolini et al. 

(2009).  

 

2.9.1.2 Gene array technology 

RNA extraction, microarray probe preparation, hybridisation and scanning are 

detailed in Scatolini M (2009). This was performed in Fondo Edo Tempia, Biella, Italy. 

 

2.9.1.3 Microarray data analysis 

Images were analysed in Fondo Edo Tempia, Biella, Italy using Feature Extraction 

software (Agilent Technologies) version 7.6. Output files containing feature and 

background intensities and the related statistical parameters for red and green 

signals were then loaded into the Resolver SE System (Rosetta Biosoftware, Seattle, 

WA) together with the scan images and the Agilent Human Whole Genome pattern 

file. Data processing and normalisation were performed using the Agilent Human 

Whole Genome platform specific error model. Replicated expression profiles were 

combined to form ratio experiments where each gene is associated with an 

expression fold-change and a p-value to assess the statistical significance of its 

modulation in the sample compared to the reference.  

 

Analysis of intensities of p53 family members in these melanoma tissue samples 

compared with the Universal control was undertaken by the author of this thesis by 

extracting data from the complete microarray data analysis (Scatolini et al. 2009).  
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Table 2.20: Excisional biopsies used for Agilent gene array (Scatolini et al. 2009) 

Tissue sample Number of samples 

Benign melanocytic naevi 18 

Dysplastic naevi 11 

RGP melanoma 8 

VGP melanoma 15 

Metastatic melanoma 5 

RGP – radial growth phase 

VGP – vertical growth phase 

 

2.9.2  microRNA Microarray 

2.9.2.1 miRNA extraction 

Using the miRNeasy Mini Kit (Qiagen®), total RNA was extracted from cell pellets. 

Briefly this combined phenol/guanidine-based lysis of samples and a silica 

membrane–based purification of total RNA. Cells were homogenised in QIAzol Lysis 

Reagent which facilitated lysis of tissues, and inhibited RNases, removing most 

cellular DNA and proteins from the lysate by organic extraction. After addition of 

chloroform, the homogenate was separated into aqueous and organic phases by 

centrifugation. RNA partitioned to the upper, aqueous phase, while DNA partitioned 

to the interphase and proteins to the lower, organic phase or the interphase. The 

upper, aqueous phase was extracted, and ethanol was added to provide appropriate 

binding conditions for all RNA molecules ≥18 nucleotides. The sample was then 

applied to the RNeasy Mini spin column, where total RNA bound to the membrane, 

phenol and other contaminants were washed away. Total RNA was then eluted in 

RNase-free water. 

 

2.9.2.2 Array technology 

Total RNA quality and quantity was verified on the Nanodrop Spectrophotometer 

(Celbio) and on a Bioanalyzer (Agilent Technologies). Samples were labelled and 

hybridised according to Agilent Technologies miRNA Microarray System protocol. 

The following work was undertaken by Giovanna Chiorino, (Fondo Edo Tempia, 

Biella, Italy). 

 

2.9.2.2.1 Dephosphorylation 

Briefly, on the basis of spectrophotometer evaluation, an aliquot of each total RNA 

sample was diluted in nuclease-free water (final concentration 65 ng/µl) and read 
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again using the Nanodrop: for labelling, the reaction started from 100 ng diluted in a 

maximum of 2 µl. Samples were dephosphorylated with CIP at 30°C for 30 mins.  

 

2.9.2.2.2 Denaturation 

The reaction was stopped by adding 5 µl DMSO to each sample, incubating at 100°C 

for 10 mins and then immediately transferring to an ice-water bath to ensure the 

samples remain properly denatured and prevent the RNA from re-annealing.  

 

2.9.2.2.3 Ligation 

Labelling of samples was achieved by ligation. Samples were gently mixed by 

pipetting with Ligation Master Mix, briefly centrifuged and incubated at 16°C for 2 hrs. 

After the reaction, samples were completely dried in a vacuum concentrator at 50ºC 

for up to 1 hr.  

 

Ligation Master Mix (Total volume 8 µl per reaction) 

10x T4 RNAse ligation buffer  2 µl 

pCp-Cyanine3    3 µl 

T4 RNA ligase    1 µl 

Nuclease free water   2 µl 

 

2.9.2.2.4 Hybridisation 

For hybridisation, samples were resuspended in nuclease-free water. 10 x GE 

Blocking Agent followed by Hybridisation buffer were added to each sample and 

mixed well. Reactions were incubated at 100°C for 5 mins and immediately 

transferred to an ice-water bath for 5 mins incubation.  

 

Samples were loaded onto gasket slides (up to 8 samples each) and the miRNA 

glass arrays (Human miRNA Microarray Release 12.0, Agilent Technologies) were 

placed with the active surface facing the wells. The hybridisation chambers were 

assembled and tightly closed. Hybridisation was continued for 20 hrs in a 

hybridisation oven set to 55°C, with a rotation speed of 20 rpm. After incubation, 

hybridisation chambers were disassembled and arrays were washed in Gene 

Expression Washing buffer 1 (containing Triton X-10) for 5 mins, and pre-warmed 

Gene Expression Washing buffer 2 (containing Triton X-10) for 5 mins. These were 

air-dried and immediately scanned using the Dual-Laser Microarray Scanner B 

(Agilent Technologies). 
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2.9.2.3 Target prediction and network analysis 

TIFF images were loaded into the Feature Extraction 9.5 (Agilent technologies) 

software and analysed using the microRNA grid template and protocol. Raw data 

were analysed with R, using the “invariant” procedure (Pradervand et al. 2009). 

Replicate probes were combined and then t-tests and Wilcoxon tests were applied to 

normalised log intensities, in order to detect differentially expressed miRs in each cell 

class. Analysis of raw data was undertaken as a collaboration between the author of 

this thesis and Giovanna Chiorino, (Fondo Edo Tempia, Biella, Italy).  
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CHAPTER 3: BIOLOGICAL ROLE OF TP63 

 

3.1 Background 

3.1.1  p63 expression in cell systems 

 3.1.2  Melanoma stem cell characterisation 

3.2 Aims 

3.3 Results 

 3.3.1  TP63 is expressed in melanoma cell lines 

 3.3.2  TP63 gene is expressed during melanomagenesis 

 3.3.3  p63 protein expression is demonstrated in melanoma 

 3.3.4  p63 is not frequently expressed in benign naevi 

3.3.5  p63 is expressed in primary and metastatic melanoma tissue samples 

 3.3.6  Melanoma stem cell characterisation 

3.4 Discussion 

 3.4.1  Biological role of p63 in the melanocyte lineage 

 3.4.2  ∆Np63 is a putative melanoma stem cell marker 

 

 

3.1  BACKGROUND 

3.1.1  p63 expression in cell systems 

In the skin there is extensive evidence for the role of p63 in keratinocytes and its 

upregulation in the keratinocyte cancer squamous cell carcinoma (Choi et al. 2002; 

Hu et al. 2002; Park et al. 2000; Yang and McKeon 2000). However, there has been 

little research investigating its role in the melanocyte cell lineage (Brinck et al. 2002; 

Johnson et al. 2005; Kilic et al. 2008; Kulesz-Martin et al. 2005; Sakiz et al. 2009), 

and no previous study has rigorously examined the expression of this gene and its 

splice variants in melanoma.  

 

3.1.2  Melanoma stem cell characterisation 

Significantly increased expression of stem-cell markers have been demonstrated in 

primary and metastatic melanomas compared with benign naevi (Klein et al. 2007). 

During melanoma progression, stem-cell markers become more evident due to the 

increased dysregulation of stem-/progenitor-cell function and proliferation. The more 

extensively studied stem cell markers demonstrated in melanoma are detailed below: 
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3.1.2.1 CD166 

Activated leucocyte adhesion molecule (CD166) is a member of the immunoglobulin 

super family and is a type 1 transmembrane protein involved in cell adhesion and 

cytoskeletal anchoring. CD166 is expressed on the surface of mesenchymal stem 

cells and in human melanoma cell lines (Swart et al. 2005). There is significantly 

greater expression of CD166 demonstrated in melanoma tissue samples when 

compared with benign naevi (Klein et al. 2007) which correlates with thickness of 

primary tumours (van Kempen et al. 2000) suggesting that CD166 might play an 

important role in melanoma cell invasion and disease progression.   

 

3.1.2.2 Nestin 

Nestin is an intermediate filament expressed in the cytoplasm of neuroepithelial stem 

cells (Dahlstrand et al. 1992; Lendahl et al. 1990). It is also expressed in migrating 

and proliferating cells during embryogenesis and various adult tissues undergoing 

regeneration, such as the central nervous system, liver, pancreas and gastrointestinal 

tract (Wiese et al. 2004). Upregulated expression of nestin is detected in metastatic 

melanoma when compared with primary tumours suggesting a correlation with high 

proliferative and migrational activity in this tumour (Klein et al. 2007; Rodolfo et al. 

2004). More recently, a study using metastatic melanoma cell lines identified cells 

with heterogeneous morphology and antigenic characteristics which included a 

smaller cell population demonstrating nestin reactivity (Grichnik et al. 2006). This 

subset of cells showed a slower proliferative rate but was able to drive cellular 

expansion in culture, leading the authors to speculate that melanoma may be a 

tumour based on a mutant stem cell which expressed nestin, attempting to undergo 

normal developmental processes (Grichnik et al. 2006).  

 

3.1.2.3 CD20 

A population of melanoma cells that had the ability to grow in spheres (a growth 

pattern characteristic of stem cells), self-renew and differentiate into melanogenic, 

adipogenic, chrondrogenic, and osteogenic lineages were identified from metastatic 

melanoma cells (Fang et al. 2005). A subpopulation of these cells, expressing the 

haematopoietic marker CD20, was identified in melanoma tissue samples and in 

culture, formed larger spheres showing greater potential for mesenchymal 

differentiation. In addition, CD20 was identified by gene expression profiling as one of 

the top 22 genes associated with increased aggressiveness of tumours (Bittner et al. 

2000), suggesting it is a marker of a potentially important tumourigenic subpopulation 

of melanoma cells with stem cell properties.   
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3.1.2.4 CD133 

CD133, a transmembrane glycoprotein, also known as prominin-1, labels both normal 

and cancer stem cells. It has no known function but is expressed by developing 

epithelial cells and is rapidly downregulated upon differentiation (Corbeil et al. 2000). 

Expression of CD133 is demonstrated in primary human melanocytes and melanoma 

(Frank et al. 2005; Klein et al. 2007; Monzani et al. 2007). Monzani et al. (2007) 

determined that less than 1% of cells within metastatic melanoma tissue expressed 

CD133. Only CD133-positive cells collected from these biopsies induced tumours 

following xenografts in severe combined immunodeficiency mice, whereas the 

CD133-negative fraction failed to regenerate tumours, indicating that CD133-labelled 

cells are capable of recapitulating tumour growth. The expression of CD133 in 

melanomas supports the notion of a stem-cell component and CD133 has been used 

as a potential stem cell marker to isolate melanoma stem cells from cell lines, which 

are demonstrated to have self-renewal capacity, differentiation potential, and high 

tumorigenicity (Monzani et al. 2007).  

 

Against this background suggesting that CD133 is a marker of a putative stem cell 

population, this thesis has focused on using CD133 to enrich for a melanoma stem 

cell fraction which could be analysed in relation to p63. 

 
3.2  AIMS 

The basis of the research undertaken in this chapter was to understand the biological 

role of p63 in melanoma. The specific aims were:  

1. To establish the pattern of p63 isoform expression at mRNA and protein level, 

in primary melanocyte cultures and melanoma cell lines 

2. To examine the expression of p63 protein in melanoma tissue samples 

3. To analyse the association of p63 expression of melanoma with 

clinicopathological features of tumours and outcome in patients 

4. To characterise melanoma stem cells using CD133 as a marker with respect 

to expression of p63 
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3.3  RESULTS 

3.3.1  TP63 expression in melanoma cell lines  

3.3.1.1 TP63 gene is expressed in melanoma cell lines: RT-PCR 

Initial experiments determined expression of p63 in different cells in the skin. Primers 

designed to detect all splice variants of TAp63 (Koga et al. 2003) and ΔNp63 (Yang 

et al. 1998) were used for RT-PCR analysis [Figure 2.2]. Both TA and ΔN p63 

isoforms were expressed in various skin phototypes in samples obtained from 

different body sites [Figure 3.1]. TAp63 and ΔNp63 were expressed in keratinocytes 

[Figure 3.1] and the relative expression of these isoforms was in keeping with reports 

that ΔNp63 is the predominant isoform expressed in keratinocytes forming the basal 

stem cell compartment of skin (Mills et al. 1999; Pellegrini et al. 2001; Senoo et al. 

2007; Yang et al. 1999a). TAp63 was expressed at low levels in fibroblasts [Figure 

3.1], also in keeping with previous literature reporting either low level or no 

expression of p63 in fibroblasts (Pignolo et al. 1998; Wenig 2003).   

 

RT-PCR analysis failed to detect expression of either isoform in neonatal 

melanocytes (NHEM) or human adult epidermal melanocytes (HEMA) [Figures 3.1, 

3.2] although it is possible that tissue culture conditions could affect gene expression. 

However both isoforms were expressed in a metastatic melanoma cell line (WM1158) 

prompting further analysis of TP63 in melanoma. Despite the apparent lack of p63 

expression in primary melanocytes, TAp63 was detected by RT-PCR in both primary 

and metastatic melanoma cell lines [Figure 3.2A]. ΔNp63 was also detected in 

melanoma cell lines, particularly in metastatic cells, but overall expression levels 

were lower [Figure 3.2B].  

                                 

Figure 3.1: TP63 expression in human normal skin cellular components (RT-PCR). Both 

isoforms are expressed in skin from different body sites, primary keratinocyte cultures and 

WM1158 - a metastatic melanoma cell line. TP63 was not expressed in primary melanocyte 

cultures (NHEM) and barely detectable in fibroblasts. Controls included omission of cDNA. 

Size of amplified product shown in brackets. GAPDH was used as a loading control. 
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Figure 3.2: TP63 expression in primary melanocyte cultures and melanoma cell lines 

(RT-PCR). a) TAp63 expression was demonstrated predominantly in primary melanoma cell 

lines (RGP and VGP cells) but also in metastatic melanoma cell lines. b) HaCaT cells were 

used as a positive control for p63 mRNA. ∆Np63 was expressed predominantly in metastatic 

melanoma cell lines but at lower levels. TP63-positive cell lines are highlighted in red. Neither 

isoform was expressed in primary melanocyte cultures (shown are NHEM – NHEM1 and 

Hema – HEMa 3). PCR control included omission of cDNA. Positive control (+) of exogenous 

transfection of p63 plasmid in HEK 293T cells [Section 2.1.5.1] confirmed size of amplified 

product. Variation in p63 mRNA expression was observed in melanoma cells plated at varying 

confluencies and this was therefore explored further [section 4.3.3.1]. Data shown here are for 

cells plated at the same density and harvested consistently at 60-80% confluency. GAPDH 

was used for mRNA standardisation. RGP – radial growth phase, VGP – vertical growth 

phase. 
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3.3.1.2 Significant upregulation of TP63 mRNA is observed in melanoma cell 

lines: Quantitative RT-PCR 

Although upregulation of TAp63 was readily detected using RT-PCR, the ∆N isoform 

was not consistently detected because of the low levels of mRNA. Quantitative RT-

PCR (Q-PCR) was therefore used as a more specific and sensitive method for 

analysing expression of isoforms and for quantifying upregulation of TP63 compared 

with a physiological control - primary melanocyte cultures. Five primary melanocyte 

cultures (NHEM1, NHEM2, HEMa 3, HEMa V3 and HEMa V4) and 34 melanoma cell 

lines, representing various stages of disease progression, were screened for 

expression of TA and ∆Np63 mRNA [Figure 3.3]. Negative controls included samples 

without reverse transcriptase enzyme and without cDNA. HEK 293T cDNA was also 

used as a negative control as this cell line does not express TP63. HaCaT cells were 

used as a recognised positive control for expression of TP63.  

 

TP63 gene expression levels in samples were standardised to the housekeeping 

gene, beta-glucuronidase (GUS). GUS was chosen because of its stable expression 

in melanoma cell lines and because it was a medium-expressed gene which was 

appropriate because of the medium-low expression levels detected for ∆Np63 in RT-

PCR experiments. TP63/GUS expression levels in samples were compared to the 

mean of gene expression levels in the five primary melanocyte cultures to determine 

the extent of upregulation of p63 in melanoma cell lines [Figure 3.3]. Considering a 

threefold increase in gene expression as a stringent cut-off for significant 

upregulation, the proportion of melanoma cell lines demonstrating significant 

upregulation of the TP63 gene were tabulated [Table 3.1].  

 

Overall 25/34 (74%) melanoma cell lines showed upregulation of TP63 compared 

with primary melanocyte cultures. Data from the Q-PCR analysis [Figure 3.3] 

supported findings from RT-PCR analysis of the same cell lines [Figure 3.2]. In 

general, upregulation of the two isoforms of TP63 appeared to be mutually exclusive. 

Simultaneous upregulation of both isoforms occurred infrequently (only 18%). These 

data raise the possibility that each isoform is redundant i.e. their function is 

overlapping or that the isoforms may interact with each other in a reciprocal manner 

in melanoma cell lines expressing TP63.  
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3.3.1.3 Expression of TP63 in melanoma cell lines is comparable to expression 

in HaCaT cells  

The predominant isoform expressed in HaCaT cells is ∆Np63 and Q-PCR confirmed 

the huge expression of this isoform using primary melanocytes as a comparator 

[Figure 3.3B(ii) solid bar], and significantly greater expression of this isoform when 

TAp63 expression in HaCaT was used as the comparator [Figure 3.4A]. HaCaT cells 

are reported to express low levels of TAp63 (Laurikkala et al. 2006; Yang et al. 1998), 

but this is considerably greater when compared with melanocyte TAp63 expression 

levels [Figure 3.3A (ii) solid bar]. Although TP63 mRNA levels in primary melanocyte 

cultures were significantly lower than for HaCaT cells, detection of p63 was within 35 

cycles of the Q-PCR reaction in 3/5 melanocyte cultures. When TAp63 expression 

was used as the comparator, there was greater expression of ∆Np63 in all three 

melanocyte cultures tested which was similar to the observation demonstrated in 

HaCaT cells [Figure 3.4A]. Although the level of TP63 mRNA in our primary 

melanocyte cultures is significantly less than the expression in keratinocytes, these 

data raise the possibility that ∆Np63 may have a role in the melanocyte lineage. 

Primary melanocytes may exhibit similarities to the role of p63 in the keratinocyte 

lineage in skin warranting further investigation of TP63 in melanoma. 

 

To explore the relevance of upregulation of p63 in melanoma cell lines when 

compared with primary melanocytes, the expression data was re-analysed using 

HaCaT cells as a comparator for each of TA [Figure 3.4B] and ∆Np63 [Figure 3.4C]. 

Using HaCaT cells as a comparator, the majority of melanoma cell lines expressed 

TAp63 at higher levels, which is in keeping with reports that TAp63 is expressed at 

low levels in keratinocytes (Laurikkala et al. 2006; Yang et al. 1998). ∆Np63, normally 

expressed at very high levels in HaCaT cells was expressed to a greater extent in 

one melanoma cell line (Sk mel 31). This was supported by the semi-quantitative 

assessment of ∆Np63 expression using RT-PCR, which demonstrated overall lower 

expression levels of this isoform, when compared with TAp63 [Figure 3.2B]. 
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Figure 3.3: TP63 is upregulated in melanoma cell lines (Q-PCR). (A) TAp63 is upregulated 

in (i) primary melanoma cell lines and (ii) metastatic melanoma cell lines compared with the 

mean expression of TAp63/GUS in five primary melanocyte cultures (NHEM1, NHEM2, HEMa 

3, HEMa V3 and HEMa V4). (B) ∆Np63 is upregulated in (i) primary melanoma cell lines and 
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(ii) metastatic melanoma cell lines compared with mean expression of ∆Np63 in five primary 

melanocyte cultures. HEK 293T cells did not express TP63 and HaCaT cells demonstrated 

upregulation of TAp63 and to a much greater extent, ∆Np63 (last two lanes in A and B (ii)). 

Dotted line marks threefold increase in gene expression compared with expression in 

melanocyte cultures. GUS was used as an endogenous control. 

 

 

Table 3.1: Proportion of melanoma cell lines expressing TP63.  

 

Stage of disease 

Number of cell lines demonstrating upregulation of gene 

(%) 

TAp63 only ∆Np63 only Both Total 

Primary  

 

RGP 

(n=4) 
3 (75) 0 (0) 1 (25) 4/4 (100%) 

VGP 

(n=9) 
1 (11) 3 (33) 2 (22) 6/9 (67) 

Metastatic  (n=21) 4 (20) 8 (38) 3 (14) 15/21 (71) 

Total  (n=34) 8 (24%) 11 (32%) 6 (18%) 25/34 (74) 

 

RGP: radial growth phase, VGP: vertical growth phase 

Values are number of melanoma cell lines at each stage of disease demonstrating significant 

upregulation (in excess of threefold increase) of TP63 compared with primary melanocyte cultures; 

(percentage of cell lines within the category shown in brackets) 
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Figure 3.4: Comparative expression of TP63 mRNA to HaCaT cells (Q-PCR). (A) 

Expression of ∆Np63 in HaCaT cells using expression of TAp63 in same cell line as a 

comparator. Higher levels of ∆Np63 mRNA are expressed compared with TAp63 in HaCaT 

cells & three melanocyte cultures. Expression of (B) TAp63 and (C) ∆Np63 expression in a 

panel of melanoma cell lines (showing >3 fold upregulation of TP63 compared with primary 

melanocytes) to HaCaT cells. TAp63 expression is equal / higher in melanoma cell lines when 

compared with HaCaT cells. One melanoma cell line (Sk-mel 31) expressed greater ∆Np63 

mRNA compared with HaCaT cells. mRNA levels were standardised against the 

housekeeping gene GUS. Values shown are mean +/- SEM of two independent experiments 

performed in triplicate.      
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3.3.1.4 TP63 splice variants are expressed in melanoma cell lines: RT-PCR 

Tissue/cell type-specific expression has been reported for TP63 mRNA transcripts, 

suggesting a putative correlation with their differing cellular functions (Nylander et al. 

2002). Despite only one or two isoforms being expressed in primary cell cultures e.g. 

keratinocytes, a more complex pattern of isoform expression is recognised in cancer 

cells. Having determined that melanoma cell lines express both TA and ΔNp63, it 

was necessary to establish expression of the splice variants. HEK 293T cells 

(normally do not express p63) were transfected with each of the six isoforms of p63 

(TA and ∆N α, β and γ), to use as positive controls for optimisation of isoform-specific 

primers [section 2.1.5.1]. Isoform-specific primers (Borrelli et al. 2007) [Figure 2.3] 

were optimised, confirming successful transfection and specificity of the primers to 

detect only one individual isoform [Figure 3.5A]. A panel of melanoma cell lines 

expressing TAp63 &/or ∆Np63 were screened for expression of the splice variants. 

Although all six splice variants were differentially expressed in melanoma cell lines, 

TAp63β was the predominant variant detected in 6/7 cell lines tested [Figure 3.5B].  

 

In addition to p63, the expression of p53 family members was also investigated in the 

same cell lines. All melanoma cell lines used in this screen were reported to harbour 

wild-type p53 [Table 2.1] and the RT-PCR data supported the expression of TP53 in 

all cell lines [Figure 3.5B]. ∆Np73 has been implicated in mediating chemoresistance 

in several cancers including melanoma (Muller et al. 2005; Tuve et al. 2006) and was 

therefore analysed in the same panel of cell lines. ∆Np73 was expressed in the three 

metastatic cell lines [Figure 3.5B] in keeping with reports that this gene is upregulated 

in metastatic melanoma and may contribute to melanoma progression (Tuve et al. 

2006; Tuve et al. 2004).   
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Figure 3.5: TP63 splice variant expression (RT-PCR). (A) Transfected isoforms of p63 in 

HEK 293T cells used to confirm specificity of isoform-specific primers. GAPDH used as a 

housekeeping gene for mRNA standardisation. (B) p63 splice variant expression in melanoma 

cell lines representing various stages of disease progression. TP53 is differentially expressed 

in all melanoma cell lines. ∆Np73 was expressed in metastatic melanoma cell lines only. RGP 

– radial growth phase, VGP – vertical growth phase, Met – metastatic. Results shown are 

representative of three independent experiments.    
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3.3.1.5 Differential expression of all TP63 splice variants in melanoma: Q-PCR 

The recent discovery of two new p63 transcripts has added further complexity to the 

detection of splice variants of p63 (Mangiulli et al. 2009). As the size of the amplified 

products using primers to detect one of TA or ∆N at the N‟ terminus of TP63 and one 

of α, β, γ, δ or ε at the C‟ terminus exceeds 1kb, these primers could not be used for 

Q-PCR [Figure 2.4]. To detect  p63 splice variants using Q-PCR, primers were used 

which were designed to only detect C-terminal variants (Mangiulli et al. 2009) [Table 

2.3]. A panel comprising of one primary melanocyte culture (HEMa V4) and 6 

melanoma cell lines (2 RGP, 1 VGP and 3 metastatic cell lines) were screened for 

the different C-terminal splice variants using HaCaT cells (reported to express all 

variants) as a comparator (Mangiulli et al. 2009). The δ and ε isoforms of p63 were 

detected within 35 cycles of amplification, in 3/6 and 4/6 melanoma cell lines 

respectively [Figure 3.6]. Furthermore, the expression levels of these two new splice 

variants appeared comparable to that of α, β and γ expression levels in two cell lines 

- SBCl2 and WM1158, both of which expressed both TA and ∆Np63. Although the 

splice variants were expressed at much lower levels compared to expression in 

HaCaT cells, this is the first evidence that both p63δ and p63ε are expressed in 

melanoma cell lines [Figure 3.6].     

 

Figure 3.6: TP63 C-terminal splice variant mRNA expression in melanoma cell lines (Q-

PCR). No expression of TP63 splice variants was detected in the primary melanocyte culture 

(HEMa V4). Differential expression of all five C-terminal splice variants is demonstrated in 

melanoma cell lines using HaCaT cells as a positive control and the comparator. Gene 

expression was standardised using the housekeeping gene, GUS.   
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3.3.2  TP63 gene is expressed during melanomagenesis 

Having confirmed the expression of both TA and ∆Np63 isoforms and a differential 

pattern of expression of splice variants in melanoma cell lines, the TP63 gene profile 

was examined in melanoma tissue samples from a published cohort (Scatolini et al. 

2009). This experiment was carried out in collaboration with Dr Giovanna Chiorino 

(Cancer Genomics Lab, Fondo Edo Tempia, Italy) and involved extracting data from 

analysis of a whole genome microarray [Section 2.9.1] (Scatolini et al. 2009).  

 

Analysis of expression of p53 family members in the melanoma tissue samples were 

compared to a Universal Reference (BD™ Human Universal Reference Total RNA, 

CA). Upregulation of TP63 was detected at all stages of melanoma progression with 

marked upregulation in radial growth phase melanomas when compared with the 

Universal Reference [Figure 3.7]. TP53 and TP73 were not significantly upregulated 

during melanoma progression. A log10 ratio of the mean intensity of the gene in 

melanoma tissue samples compared with the mean intensity for a group of 29 naevi 

analysed, revealed significant upregulation of TP63 in primary melanomas (both RGP 

and VGP stages) suggesting a possible role in early melanomagenesis [Figure 3.7].  
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(A) 

 

(B) 

 

Figure 3.7: Gene expression of TP53 family members in melanoma tissue samples. (A) 

Analysis of TP53 family genes in melanoma tissue samples using gene microarray (Agilent) 

(Scatolini et al. 2009). Significant upregulation of TP63 demonstrated in primary melanoma (in 

particular RGP tumours) and to a lesser extent in metastatic melanomas, when compared 

with a Universal Reference. (B) Log10 ratio of mean intensity of TP53 family members 

compared with naevi confirms significant upregulation of TP63 in early stages of melanoma 

progression. RGP – radial growth phase, VGP – vertical growth phase.   
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3.3.3  p63 protein expression is demonstrated in melanoma  

Having determined that TP63 was upregulated in both melanoma cell lines and 

melanoma tissue samples, the expression of p63 protein was investigated, using 

Western blotting for analysing melanoma cell lines, and immunohistochemistry for 

melanoma tissue samples. 

 

3.3.3.1 p63 protein is expressed in melanoma cell lines 

Protein was extracted from HEK 293T cells transfected with each of the six p63 

isoforms [section 2.1.5.1]. Plasmids for the TA/∆N δ or ε isoforms were not available. 

Figure 3.8A shows the expected molecular weights (kD) for each of the isoforms on a 

Western blot. Exogenously expressed plasmids were used as a reference for 

subsequent Western blots when detecting expression of p63. Actin was the initial 

housekeeping gene used for protein standardisation, but it demonstrated 

considerable variation between melanoma cell lines and was therefore replaced by 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). This exhibited stability 

amongst melanoma cell lines both for RNA and protein analysis. Moreover 

comparison with another housekeeping gene, α-tubulin, confirmed stability of GAPDH 

expression and validated its use as a loading control.  

 

Antibody specificity for p63 was confirmed by using different antibodies to detect the 

six transfected isoforms; AB-1, AB-4 and 4A4 detected all p63 isoforms, H129 

detected α isoforms only and H137 detected mainly ∆N isoforms of p63 [Figure 3.8B]. 

For most Western blotting experiments, AB-1 and AB-4 antibodies were used.   

  

Five primary human melanocyte cultures tested did not express p63 protein [Figure 

3.8C]. Melanoma cells, however, expressed variable combinations of TA and ΔN 

isoforms of p63 (detected using the anti-p63 antibody AB-4) [Figure 3.8C]. Although 

the ∆Np63δ plasmid was not available, it is possible, based on predicted molecular 

weight, that this isoform was also expressed in melanoma cell lines (Mangiulli et al. 

2009). In keeping with findings of TP53 expression [section 3.3.1.4] these melanoma 

cell lines expressed p53 protein which is reported to be wild-type [Figure 3.8C].  
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Figure 3.8: p63 protein expression (Western blotting). (A) Protein lysates of HEK 293T 

cells transfected with plasmids for six p63 isoforms were run on an SDS-PAGE gel and 

probed with anti-p63 antibody to determine molecular weights (MW) of each isoform. (B) 

Antibody specificity for p63 demonstrated using anti-p63 antibodies Ab-1, H129 (detects α 

isoforms) and H137 (detects ∆N isoforms predominantly although also detects TAα isoform). 

(C) Protein lysates (80 µg) from primary melanocyte cultures (NHEM – NHEM 2 and Hema – 

HEMa 3) and melanoma cell lines probed for p63 (using anti-p63 antibody AB-4 which detects 

all isoforms of p63) demonstrating upregulation and differential expression of p63 isoforms in 

melanoma but no expression in primary melanocyte cultures. Additional bands not 

corresponding to exogenously expressed isoforms in HEK 293T are observed in melanoma 

cell lines analysed. GAPDH was used as loading control.   
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3.3.3.2 p63 protein is localised to both nuclei and cytoplasm in melanoma cell 

lines 

Having established the expression of p63 protein in melanoma cell lines, fluorescent 

immunohistochemistry was used to detect the cellular localisation of p63 protein in 

these cells. In basal cells of stratified epithelia such as skin, oral mucosa, cervix, 

vaginal epithelium, urothelium, prostate and breast, p63 is localised to the nucleus 

(Dellavalle et al. 2001; Di Como et al. 2002; el-Deiry et al. 1995). However 

cytoplasmic p63 has been reported in prostate cancer (Dhillon et al. 2009) and in 

lung adenocarcinoma (Narahashi et al. 2006). 

 

Cells were fluorescently stained as outlined, using anti-p63 antibodies (H127 and 

H139) [section 2.7.1]. Slides were subsequently visualised using confocal 

microscopy. Exclusion of the primary antibodies confirmed specificity of p63 detection 

and HEK 293T cells which do not express p63 were used as a negative control 

[Figure 3.9]. To optimise the experimental conditions for fluorescent 

immunocytochemistry, HaCaT cells were used which demonstrated nuclear, non-

nucleolar localisation of p63 [Figure 3.10]. Melanoma cell lines expressed p63 in both 

nuclei and cytoplasm and this finding was reproduced when using different anti-p63 

antibodies.   
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Figure 3.9: Antibody specificity used for immunofluorescence techniques. Left panel 

demonstrates A375M melanoma cells fluorescently stained as outlined [section 2.7.1] omitting 

the primary anti-p63 antibody. Right panel demonstrates no staining in HEK 293T cells (which 

do not express p63) when fluorescently stained using anti-p63 antibodies (H129/H137) 

confirming specificity of antibodies to detect p63 protein. DAPI (blue) was used to stain nuclei.  

 

 

 

 

Figure 3.10: p63 protein expression in melanoma cell lines (IMF). HaCaT cells show 

nuclear, non-nucleolar staining of p63 (Alexa-488, green) using anti-p63 antibodies 

(H129/H137). p63 protein expression confirmed in nuclear and cytoplasmic compartments in 

three melanoma cell lines – two harbouring wild-type p53 (WM1158 and A375M) and one 

p53-null cell line (U1SO). DAPI used to stain nuclei blue.  
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3.3.3.3 p63 is expressed in a melanoma tissue microarray 

To extend findings which confirmed expression of p63 in melanoma cell lines, 

immunohistochemical expression of p63 was investigated in 40 primary melanoma 

tissue samples in a tissue microarray (TMA; Biomax) [section 2.7.2]. Two anti-p63 

antibodies (H129 / H137) were used in combination to detect p63. HMB-45 is a highly 

specific marker routinely used in the diagnosis of primary and metastatic melanoma 

cells. This method uses monoclonal antibodies to a glycoprotein (gp100) present in 

cytoplasmic pre-melanosomes and is a highly specific immunohistochemical stain for 

primary and metastatic melanomas (Baisden et al. 2000; Colombari et al. 1988; Yaziji 

and Gown 2003). 16/40 (40%) samples in the TMA, strongly labelled p63 while co-

staining with HMB-45, confirming expression of p63 in melanoma cells; two examples 

of positive expression of p63 protein in melanoma cell lines are shown [Figure 3.11].  

 

Statistical analysis of clinical data available for the melanoma tissue array samples 

was undertaken [Table 3.2]. No significant differences between p63-positive and p63-

negative melanomas were detected for age at diagnosis or gender of patients. A 

significant difference in body site between p63-positive and -negative melanomas 

was observed (p-value 0.044, chi-squared test), but a site predilection for p63-

positive melanomas could not be determined due to the small sample size.  

 

Although the majority of melanomas are HMB-45 positive, negative reactivity occurs 

in up to 20% cases (Al-Batran et al. 2005), mostly corresponding to rarer melanoma 

subtypes e.g. desmoplastic or spindle cell (Busam et al. 1998; Xu et al. 2002). In the 

TMA, 3/40 (7.5%) melanomas were HMB-45 negative but did demonstrate p63 

reactivity. This could underestimate the number of p63-positive melanomas, 

particularly in light of data reporting 2/3 spindle cell melanomas express p63 (Morgan 

et al. 2008). Due to the nature of the TMA, co-expression studies simultaneously 

analysing other melanoma markers e.g. S100 and melan-A, are not possible, making 

it difficult to confirm the localisation of p63 to melanoma cells (and not keratinocytes 

or non-specific stromal tissue) in these three cases. Moreover, the poor histological 

detail of TMA images limits correlation of histopathological features of melanoma with 

p63-reactivity. To address this, the Bart‟s and the London NHS Trust archive was 

accessed, to obtain clinicopathologically characterised, formalin-fixed paraffin-

embedded (FFPE) material representing all stages of melanoma development; 

benign melanocytic naevi, primary melanoma, recurrent melanoma and metastases, 

for analysis of p63 expression [Ethical approval number 07/QO604/23, section 2.6].  
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(A) 

 

 

(B) 

 

 

Figure 3.11: Expression of p63 in primary cutaneous melanomas (TMA). (A) Primary 

melanoma from left arm (81 y/o ♀). (B) Primary melanoma with heavy melanin deposition 

from right thumb (62 y/o ♀). Panels described left to right, top to bottom: H&E of melanoma, 

DAPI stains nuclei of melanoma cells (blue) (x20), HMB-45 labels melanoma cells (green), 

anti-p63 antibodies (H129/H137) labels cells within tumour for p63 (red), merged image 

demonstrates co-expression of HMB-45 and p63 (yellow) (x20), higher magnification confirms 

melanoma cells express p63 (yellow) (x40). H&E – haematoxylin and eosin.      
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Table 3.2: Statistical analysis of demographic data for p63-expressing primary 

melanoma tissue samples (TMA). 

Demographic data p63–ve tumours 

(n=24) 

p63+ve tumours 

(n=16) 

p-value  

Mean age – yrs (SD)  54 (16.5) 56.3 (14.4) 0.64 (t-test)  

Gender (M:F)  12 : 12 10 : 6 
0.33 (χ-

squared)  

Site of melanoma 

Trunk  

Limbs  

Acral  

Mucosal  

 

6 

4 

11 

3 

 

9 

3 

2 

2 

0.044* (χ -

squared)  

*statistically significant – chi squared test, SD – standard deviation 

 

 

3.3.4  p63 is infrequently expressed in benign naevi 

Paraffin-embedded samples of benign intradermal naevi (BIDN) were analysed using 

immunohistochemistry [section 2.7.3]. To confirm the specificity of staining, only 

sections with an internal control of epidermal keratinocytes positively labelled with 

p63 were included in the analysis. This comprised 12 BIDN samples excised from 9 

individuals [Table 3.3]. Only 2/12 BIDN samples demonstrated positive labelling of 

p63 using the H129 antibody [Figure 3.12]. These two cases are highlighted in Table 

3.3. Both the naevi were located on the back. For both individuals with p63-positively 

labelled BIDN, another naevus excised at the same time from a different body site 

demonstrated no p63 reactivity. These data implicate pathways within specific naevi, 

which might constitute early dysplasia involved in switching on this gene. No 

statistical analysis was undertaken in view of the small number of p63-positive BIDN 

samples.  
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Table 3.3: Demographic details of BIDN cases. 

Sample 

ID  

Patient 

ID  

Gender  Age at 

diagnosis  

Site  Staining 

intensity*  

N5  2  F  33.89  Mid back  ++  

N6  2  F  33.89  L neck     

N7  3  F  61.28  L cheek     

N8  4  F  43.41  L neck     

N9  5  M  51.56  L lower back     

N10  6  M  40.21  L ear     

N11  7  F  45.10  L scalp     

N14  7  F  45.10  Back  +  

N19  12  M  38.28  Lower back     

N21  12  M  38.28  R chin     

N27  14  F  61.46  R upper lip     

N32  18  M  70.18  R scapula     

*All samples demonstrated positive labelling of keratinocytes with p63 as internal control 

Positive p63 reactivity demonstrated in naevi highlighted in pink. M – male, F – female, L – 

left, R – right, + weak, ++ moderate, +++ strong intensity staining.  
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Figure 3.12: Immunostaining of p63 in BIDN. (A) Sample ID N11 [Table 3.3]. Well-

circumscribed melanocytic naevus cells arranged in nests within the dermis denoted N. 

Strong nuclear p63 labelling of epidermal keratinocytes (denoted E) but negative p63 

reactivity of naevus (N). (B) Sample ID N5 [Table 3.3], (i) Rounded, polygonal melanocytes 

grouped in nests within the dermis denoted N, demonstrating moderate intensity nuclear and 

cytoplasmic p63 staining of naevi cells shown by red arrow. Positive internal control for p63 

staining of keratinocytes (black arrow) within epidermis denoted E. (ii) Higher magnification of 

naevi cells showing nuclear and cytoplasmic punctate p63 reactivity. Bar line 50 µm.    
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3.3.5  p63 is expressed in primary and metastatic melanoma tissue samples 

The literature to date suggests that melanoma tissue samples, for the most part, do 

not express p63 [section 1.3.7.4]. However, fluorescent immunocytochemistry of 

melanoma tissue samples from a TMA have demonstrated at least 40% of primary 

melanomas from various body sites express p63. Lack of available outcome data for 

these melanomas prevented a prognostic correlation with p63-reactivity, to be 

undertaken. Immunohistochemistry of archival FFPE tissue overcomes this problem. 

In addition, histopathological analysis of tumours provides a more precise analysis of 

cellular localisation of p63 reactivity in melanoma cells. 

 

3.3.5.1 Analysis of immunohistochemistry labelling of FFPE tissue samples  

Melanoma tissue samples representing different stages of disease progression were 

selected from the archive of FFPE tissue samples at Bart‟s and the London NHS 

Trust. Clinical data were collected from patients attending the skin cancer 

multidisciplinary clinic and through accessing electronic medical records [Appendix 

3]. Pathology reports confirmed the diagnosis of melanoma in all cases and slides 

were subsequently reviewed by a dermatopathologist (R.Cerio). Immunostaining was 

undertaken using the automated Ventana system at the Bart‟s Pathology Service 

(M.Ikram). Alkaline phosphatase (red) was used as the chromogen to avoid 

misinterpretation of a brown chromogen e.g. DAB with melanin pigmentation in 

melanoma. Initial optimisation was carried out using the anti-p63 antibodies, H129 

and 4A4. As both antibodies demonstrated similar p63 reactivity, the H129 antibody 

(routinely used for the analysis of clinical samples and for clinical trials by the Bart‟s 

Pathology Service) was used for all tumour samples.    

 

Positive reactivity to p63 in keratinocytes in the epidermis or ductal/glandular epithelia 

in the dermis, of skin samples were used as positive internal controls. Twenty-five 

sections cut more than one month prior to immunostaining demonstrated reduced or 

no reactivity but when sections were freshly cut and stained within two weeks, 

positive p63 reactivity of internal controls was observed [Figures 3.13A & B]. These 

findings were in keeping with reports in the literature of the negative effect of storage 

of sections on p63 immunoreactivity (Burford et al. 2009; Hameed and Humphrey 

2005). Negative controls comprised omission of the primary antibody. Positive 

reactivity of p63 in melanoma tumour samples was confirmed when melanoma cells 

showed pink staining of nucleus and/or cytoplasm [Figures 3.13C & D]. Melanoma 

sections positively-labelled for p63 were reviewed by two dermatologists (RM and 

CAH) and one dermatopathologist (RC) blinded to clinical outcomes. Intensity of 
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melanoma cell staining was designated to a category - no staining, weak, moderate 

and strong [Figure 3.14]. Staining of melanoma cells was analysed by comparison 

with strong nuclear labelling of p63 in keratinocytes or ductal epithelia within the 

same skin tumour sample. Given the heterogeneity displayed by melanoma cells, 

there were cases where the proportion of cells demonstrating p63 reactivity was < 

50% or cases where only focal staining was observed within a tumour (constituting 

<10% of melanoma cells). These cases were excluded from statistical analyses so as 

not to skew the data. Only tumours showing weak, moderate or strong intensity 

cytoplasmic reactivity in >50% of the melanoma were included for statistical analysis.  

 

3.3.5.2 Cohort of melanoma tissue samples analysed 

Overall, 44 primary melanomas, 11 recurrences and 24 metastatic tumours from 58 

patients were suitable for analysis. Mean age at diagnosis for all melanomas 

examined was 58.9 yrs (range 21.9 – 86.6 yrs), M:F ratio 1:1.5 with a mean follow-up 

of 4.3 yrs (range 0.18 – 13.1 yrs). There were a total of 34 deaths (25 attributable to 

melanoma). For eight cases, matched primary and recurrent and/or metastatic 

tumours were available for analysis [section 3.3.5.5]. In addition one ocular 

melanoma and three metastatic tissue samples from the same individual were also 

tested. Ocular melanomas arise against a considerably different molecular and 

genetic background to cutaneous melanoma, and were therefore excluded from the 

analysis.  

 

3.3.5.3 Primary melanoma tissue samples predominantly express cytoplasmic 

p63  

Overall, 39/79 (49%) melanoma tissue samples showed positive reactivity for p63 at 

any intensity (using H129 anti-p63 antibody) [Table 3.4]. The proportion of primary 

tumours staining positive for p63 was greater than the proportion of metastatic 

tumours staining positive for p63 although no significant difference was detected in 

p63 expression at different stages of disease progression (p-value 0.31, global chi-

squared). The majority of tumours showed weak cytoplasmic reactivity of p63 (n=19, 

51%) with 41% (n=16) tumours showing moderate reactivity, and only three cases 

(8%) showing strong p63 reactivity. In cases where nuclear reactivity of p63 was 

observed, this constituted less than 5% of total melanoma cells within the tumour 

sample. Nuclear reactivity was observed in 23% (n=10) and 18% (n=6) of primary 

and recurrent/metastatic melanoma tissue samples, respectively [Figures 3.13C and 

3.15(h)].  
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3.3.5.3.1 p63 reactivity in primary melanomas is not significantly associated 

with clinicopathological factors   

24 out of 44 (55%) primary melanoma tissue samples showed p63 reactivity in the 

cytoplasm for >50% of tumour cells [Figure 3.15]. The mean age of diagnosis in 

patients harbouring p63-positive melanomas (61 yrs) was higher than the p63-

negative tumours (56.3 yrs) with a M:F ratio of 1:1.4. There was an even distribution 

of p63-positive melanomas according to body site. Statistical analysis revealed no 

significant association between p63 expression of primary tumour with age at 

diagnosis, gender or site of melanoma [Table 3.5].  

 

Analyses of histopathological determinants of prognosis for primary melanoma 

(including Breslow thickness, histological classification, growth phase, ulceration 

status and mitotic rate) did not demonstrate any significant association between 

these factors and expression of p63 [Table 3.6]. However, more than 50% of thicker 

tumours (Breslow thickness category T4 i.e. > 4 mm) were p63-positive compared 

with only 25% of p63-negative tumours.  Nodular melanomas were over-represented 

in p63-positive tumours (almost 70%) compared with p63-negative tumours (45%), 

although this difference did not achieve statistical significance [Table 3.6].  
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Table 3.4: Expression of p63 in melanoma tissue samples  

Tumour stage p63-negative 

tumours (n=40)  

p63-positive 

tumours (n=39) 

P-value* 

Primary (n=44) 20 (45) 24 (55)  

0.31 Recurrence (n=11) 6 (55) 5 (45) 

Metastatic (n=24) 14 (58) 10 (42) 

Values shown are numbers of tumours (percentage of total in each category) 

*p-value for odds comparing proportion of p63-positive tumours between primary and metastatic 

tumours, global chi-squared test 

 

 

Table 3.5: Clinicopathological details of primary melanomas according to p63 status 

 

p63-negative 

tumours (n=20) 

p63-positive 

tumours (n=24) 

Total 

(n=44) 
p-value* 

Age at 

diagnosis (yrs) 
56.3 (40.9, 74.6) 61.0 (46.9, 74.2) 

59.4 (46.0, 

74.2) 
0.71 

Gender  

     Male 7 (35.0) 10 (41.7) 17 (38.6) 
0.65 

     Female 13 (65.0) 14 (58.3) 27 (61.4) 

Site of Melanoma (n=44) 

     Acral 4 (20.0) 4 (16.7) 8 (18.2) - 

     Extremities 7 (35.0) 7 (29.2) 14 (31.8) 1.00 

     Head/Neck 2 (10.0) 5 (20.8) 7 (15.9) 0.40 

     Trunk 7 (35.0) 8 (33.3) 15 (34.1) 0.88 

Values shown are number (percentage) or median (IQR) as appropriate 

* p-values are odds comparing p63-negative with p63-positive tumours (chi-squared test) 
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Figure 3.13: Punctate p63 reactivity in cytoplasm of melanoma cells. Example of primary 

nodular melanoma (22 y/o woman) on neck, Breslow thickness 3.5 mm, (A) sections cut three 

months prior to immunostaining show no p63 reactivity of keratinocytes in epidermis (denoted 

E) cut in cross-section and (B) section cut from same tumour block, one week prior to 

immunostaining showing strong nuclear p63 reactivity of keratinocytes in epidermis (denoted 

E) cut in cross-section and cytoplasmic stippling of p63 staining in melanoma cells (denoted 

M). These data confirmed the negative effect of storage on immunostaining (Burford et al. 

2009) highlighting the potential for false-negative results. (C) Primary nodular melanoma (77 

y/o woman) from left temple, Breslow thickness 4.5 mm showing cytoplasmic punctuate 

staining of p63 in melanoma cells in addition to nuclear staining in <5% of cells (black arrows). 

Co-localisation studies using macrophage markers could help to exclude the possibility that 

these cells are macrophages and not melanoma cells. (D) Metastatic acral lentiginous 

melanoma (84 y/o woman), Breslow thickness 10 mm showing punctate cytoplasmic p63 

reactivity of melanoma cells shown by black arrows. Red chromogen of alkaline phosphatase 

is easily differentiated from brown pigment of melanin deposition (red arrows). Bar – 50 µm. 
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Figure 3.14: Intensity of p63 staining in melanoma tissue samples. (A) Negative p63 

staining of primary superficial spreading melanoma on back (blue arrow), arising from 

intradermal naevus. Strong nuclear p63 staining of glandular epithelium in dermis (black 

arrow). (B) Moderate intensity cytoplasmic p63 reactivity of primary nodular melanoma (M), 

left foot, Breslow thickness 1 mm, high mitotic activity and strong nuclear p63 staining of 

epidermis (top left). (C) Cutaneous metastatic melanoma shown at (i) low power (x20) and (ii) 

higher magnification (x40) composed of round pleiomorphic melanoma cells demonstrating 

weak intensity cytoplasmic p63 reactivity. Comparison is made with strong nuclear reactivity 

of epidermal keratinocytes. M – melanoma cells, E – epidermal keratinocytes. Bar – 100 µm. 
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Figure 3.15: Immunohistochemistry analysis of FFPE primary melanoma tissue sample. 

(a) H & E of recurrent nodular melanoma on back (46.2 y/o male) demonstrating prominent 

melanocytic atypia and high mitotic activity, with minimal radial growth phase. (b) 

Magnification of black box from (a) demonstrating dermal melanoma cells with heavy melanin 
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deposition. (c) HMB-45 using alkaline phosphatase (red) chromogen demonstrates nuclear 

and cytoplasmic reactivity of melanoma cells. (d) Omission of primary antibody excludes non-

specific staining by chromogen. (e) Anti-p63 antibody (H129) demonstrates strong nuclear 

expression of p63 in epidermal keratinocytes (E) in excised lesion containing melanoma. (f) 

Cytoplasmic p63 expression demonstrated in melanoma cells using H129 antibody. (g) Anti-

p63 antibody 4A4 confirms similar positive cytoplasmic staining of p63 in melanoma cells of 

the same tumour (x20). (h) Higher magnification of dyscohesive melanoma cells (x40) stained 

using 4A4 antibody, demonstrates both cytoplasmic p63 and nuclear reactivity (red arrow), in 

<5% of melanoma cells within the tumour sample. Bar – 100 µm. H & E – haematoxylin and 

eosin.  
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Table 3.6: Histopathological details of primary melanomas according to p63 status 

 

p63-negative 

tumours (n=20) 

p63-positive 

tumours (n=24) 

Total 

(n=44) 

p-

value* 

Breslow thickness, mm (n=43) 

     0 – 1  5 (25.0) 4 (17.4) 9 (20.9) 

0.24 
     1.01 – 2  3 (15.0) 1 (4.3) 4 (9.3) 

     2.01 – 4  7 (35.0) 6 (26.1) 13 (30.2) 

     >4 5 (25.0) 12 (52.2) 17 (39.5) 

Clarks Level (n=42) 

     I 3 (15.8) 3 (13.0) 6 (14.3) 

0.42 
     II 5 (26.3) 5 (21.7) 10 (23.8) 

     III 10 (52.6) 11 (47.8) 21 (50.0) 

     IV 1 (5.3) 4 (17.4) 5 (11.9) 

Histological classification (n=43) 

     ALM 4 (20.0) 4 (17.4) 8 (18.6) - 

     NMM 8 (40.0) 15 (65.2) 23 (53.5) 0.45 

     SSM 8 (40.0) 4 (17.4) 12 (27.9) 0.46 

Growth phase (n=39) 

     RGP 3 (16.7) 4 (19.0) 7 (17.9) 
0.85 

     VGP 15 (83.3) 17 (81.0) 32 (82.1) 

Ulceration status (n=43) 

     No 10 (50.0) 12 (52.2) 22 (51.2) 
0.89 

     Yes 10 (50.0) 11 (47.8) 21 (48.8) 

Mitotic rate# (n=33) 

     0 1 (6.7) 4 (22.2) 5 (15.2) 

0.21 
     1 – 4 5 (33.3) 5 (27.8) 10 (30.3) 

     5 – 10 6 (40.0) 8 (44.4) 14 (42.4) 

     ≥ 11 3 (20.0) 1 (5.6) 4 (12.1) 

Regression (n=39) 

     No 19 (95.0) 19 (86.4) 38 (90.5) 
0.34 

     Yes 1 (5.0) 3 (13.6) 4 (9.5) 

Microsatellites (n=43) 

     No 15 (75.0) 20 (87.0) 35 (81.4) 
0.31 

     Yes 5 (25.0) 3 (13.0) 8 (18.6) 
 

Clark level – defines depth related to skin structures: Level I: Melanomas confined to the epidermis, 

Level II: Penetration into the dermis, Level III: Melanoma invades deeper through dermis but still 

contained within skin, Level IV: Penetration of melanoma into fat, Level V: Penetration into the subcutis. 

*t-test (paired); # number/mm
2 

– categories chosen based on significant survival differences 

demonstrated between these groupings (Azzola et al. 2003).  

ALM – acral lentiginous melanoma, NMM – nodular melanoma, SSM – superficial spreading melanoma, 

RGP – radial growth phase, VGP – vertical growth phase.   

http://www.medterms.com/script/main/art.asp?articlekey=3278
http://www.medterms.com/script/main/art.asp?articlekey=2958
http://www.medterms.com/script/main/art.asp?articlekey=3394
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3.3.5.3.2 Co-existing tumours in melanoma cases 

In three cases within the primary melanoma cohort, a second melanoma was 

reported – in two cases this occurred within four months of presentation of the 

melanoma examined, and in one case this preceded the primary melanoma 

examined, by 11 yrs. In all three cases, the second melanoma was of Breslow 

thickness < 1mm and all three tumours analysed demonstrated p63-reactivity. 

Additional co-existing tumours in this cohort of primary melanomas included 2 

patients with co-existing breast carcinoma, 1 patient with non-Hodgkin‟s lymphoma, 1 

patient with marginal zone lymphoma, 1 patient with renal cell carcinoma and 1 

patient reporting co-existing lung adenocarcinoma and bladder carcinoma. It is well-

reported that the risk of secondary cancers is elevated in patients with melanoma and 

these data from a small cohort, support this finding (Bellet et al. 1977; Bhatia et al. 

1999; Goggins et al. 2001; Levi et al. 1997; Schmid-Wendtner et al. 2001; Swerdlow 

et al. 1995). Only melanomas from patients with co-existing breast carcinoma or lung 

adenocarcinoma demonstrated p63 reactivity.  

 

3.3.5.3.3 p63-reactivity affects recurrence rate of primary melanomas  

In the primary melanoma cohort, overall there were 19 deaths with 14 deaths 

attributable to melanoma. Mean follow up was 4.96 yrs (range 0.18 – 13.06 yrs) and 

mean time to recurrence (n=7) was 1.88 yrs (range 0.04 – 6.02 yrs). Univariate and 

multivariate analysis of prognostic factors, including p63 status, for time to recurrence 

was undertaken [Appendix 4]. Univariate analysis of p63 status for time to recurrence 

was not significant [Figure 3.16]. Multivariate analysis was then undertaken including 

only those factors that had a significant effect on outcome. This also failed to 

demonstrate p63-status to be a significant predictor of disease recurrence, although 

an upward trend was observed towards increased recurrence rates in the p63-

positive cohort (HR 2.89; p-value 0.24, Cox proportional hazard ratio). The limitation 

of this analysis is the small sample size – only 7/44 cases in the cohort developed 

recurrent disease.  

 

3.3.5.3.4 p63-reactivity affects rate of metastases of primary melanomas 

Mean time to first metastasis in this cohort (n=20) was 2.07 yrs (range 0.1 – 4.69 yrs). 

Six of the twenty metastatic cases involved lymphatic spread only and 14 cases 

comprised metastatic disease to multiple organs. Univariate and multivariate analysis 

of predictors (including p63 status) of time to metastasis was undertaken [Appendix 

5]. Univariate analysis of p63 status as a predictor of time to metastasis was not 

significant (HR 1.66, p-value 0.28, Cox proportional hazard ratio) [Figure 3.17]. 
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Multivariate analysis demonstrated significantly shortened time to metastases 

associated with increasing Breslow thickness and ulcerated tumours in keeping with 

reported studies (Balch 2001). When these factors were adjusted for, p63-status was 

not significantly associated with shorter times to metastases, although again an 

upward trend for predicting increased metastatic rates was observed in the p63-

positive cohort (HR 1.83; p-value 0.21, Cox proportional hazard ratio).  

 

3.3.5.3.5 p63-reactivity significantly predicts overall worse outcome in primary 

melanomas but not melanoma-specific mortality 

Univariate and multivariate analysis of prognostic factors including p63 status was 

undertaken for predicting time to overall death [Appendix 6]. Univariate analysis 

confirmed a significant predictive effect on outcome for increasing Breslow thickness, 

Clark level and site of melanoma in keeping with reported studies (Balch 2001). In 

addition, p63 status was also demonstrated to be a significant predictor of worse 

outcome (HR 2.79, p-value 0.05, Cox proportional hazard ratio) [Figure 3.18]. 

However, when these other factors were adjusted for, multivariate analysis of p63-

status revealed p63 to be a non-significant predictor of time to overall death (HR 

3.07; p-value 0.12, Cox proportional hazard ratio). 

 

The mean time to melanoma-related death in this cohort was 3.53 yrs (range 0.51 – 

6.55 yrs). Univariate and multivariate analysis of predictors (including p63 status), of 

death attributable to melanoma is shown in Table 3.7. Univariate analysis 

demonstrated increasing Breslow thickness, ulceration status and microsatellitosis as 

significant predictors of melanoma-death, in keeping with reported studies (Balch 

2001). In addition, p63 status demonstrated positive (albeit non-significant) 

association with worse outcome (HR 2.43; p-value 0.13, Cox proportional hazard 

ratio) [Figure 3.19]. When these prognostic factors were adjusted for, multivariate 

analysis of p63-status showed p63 to be a non-significant predictor of death 

attributable to melanoma, although individuals with p63-positive tumours were more 

likely to die from melanoma than those with p63-negative tumours (HR 1.53; p-value 

0.51, Cox proportional hazard ratio) [Table 3.17]. 
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Figure 3.16: Kaplan-Meier failure estimates plot showing time to recurrence for primary 

tumours. Univariate analysis HR comparing p63-positive and p63-negative tumours was 2.28 

(p-value 0.32, Cox proportional hazard ratio). 

 
 

Figure 3.17: Kaplan-Meier failure estimates plot showing time to metastases for primary 

tumours examined. Univariate analysis HR comparing p63-positive and p63-negative 

tumours was 1.66 (p-value 0.28, Cox proportional hazard ratio).  
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Table 3.7: Kaplan Meier and Cox proportional hazard ratios for deaths from melanoma 
in patients with primary melanomas 

  

Univariate analysis Multivariate Analysis 

Hazard Ratio 

(95% CI) 
p-value* 

Hazard Ratio (95% 

CI) 
p-value* 

Age at 

diagnosis (yrs) 
1.03 (1.00, 1.06) 0.06 

  

Gender  

     Male 1 
  

      Female 0.46 (0.19, 1.14) 0.09 
 

Site of Melanoma 

     Acral 1 
 

1 
 

     Extremities 0.30 (0.06, 1.52) 0.15 0.20 (0.03, 1.47) 0.11 

     Head/Neck 1.87 (0.44, 7.91) 0.4 10.27 (1.31, 80.42) 0.03 

     Trunk 0.91 (0.24, 3.48) 0.89 4.42 (0.75, 26.14) 0.10 

Breslow thickness (mm) 

     0 – 1   1 
  

 

     1.01 – 2   0.00 (0.00,    .) 1 
 

     2.01 – 4  5.46 (0.64, 46.78) 0.12 
 

     > 4 9.91 (1.28, 76.59) 0.03 
 

Clarks Level 

     I 1 
 

1 
 

     II 2.34 (0.24, 22.59) 0.46 2.27 (0.15, 33.91) 0.55 

     III 3.57 (0.45, 28.24) 0.23 5.39 (0.45, 65.21) 0.19 

     IV 9.41 (1.09, 80.94) 0.04 34.27(2.06,568.78) 0.01 

Histological classification 

     ALM 1 
   

     NMM 2.77 (0.35, 21.70) 0.33 
  

     SSM 0.60 (0.05, 6.73) 0.68 
  

Growth phase 

     RGP 1 
  

      VGP 4.60 (0.61, 34.94) 0.14 
 

Ulceration status 

     No 1 
  

      Yes 2.61 (0.96, 7.10) 0.06 
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Mitotic rate (no/mm
2
)* 

     0 1 
  

 

     1 – 4 1.23 (0.22, 6.75) 0.81 
 

     5 – 10 2.26 (0.46, 11.04) 0.31 
 

     ≥ 11 3.07 (0.43, 21.96) 0.26 
 

Regression 

     No 1 
  

      Yes 0.00 (0.00,    .) 1 
 

Microsatellites 

     No 1 
 

1 
0.03 

     Yes 2.51 (0.88, 7.13) 0.08 2.94 (1.14, 7.52) 

p63 Status 

     Negative 1 
 

1 
0.12 

     Positive 2.79 (0.99, 7.81) 0.05 3.07 (0.74, 12.83) 

 

*number/mm
2 

– categories chosen based on significant survival differences demonstrated between 

these groupings (Azzola et al. 2003).  

ALM – acral lentiginous melanoma, NMM – nodular melanoma, SSM – superficial spreading melanoma, 

RGP – radial growth phase, VGP – vertical growth phase.   
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Figure 3.18: Kaplan-Meier plot for overall deaths in the primary melanoma cohort. p63-

status was a significant predictor of worse overall outcome (univariate analysis HR 2.79, p-

value 0.05, Cox proportional hazard ratio).    

 

 
 

Figure 3.19: Kaplan-Meier plot for deaths attributable to melanoma in the primary 

melanoma cohort. p63-positive tumours show a markedly positive (albeit non-significant) 

association with worse melanoma-specific mortality (univariate analysis HR 2.43; p-value 

0.13, Cox proportional hazard ratio).  
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3.3.5.4 Recurrent/metastatic melanoma tissue samples demonstrate positive 

reactivity to p63 

3.3.5.4.1 p63-reactivity in recurrent/metastatic melanomas do not show 

significant association with demographic features of tumours 

Thirty-five recurrent/metastatic melanoma tumour samples from 21 individuals were 

analysed. Overall 5/11 (45%) recurrent melanomas and 10/24 (42%) metastatic 

melanoma tissue samples showed weak/moderate positive staining for p63. p63-

positive recurrent/metastatic melanoma samples were a younger cohort with a mean 

age at diagnosis of 60 yrs, compared with the p63-negative group which had a mean 

age at diagnosis of 65 yrs [Table 3.8]. There was no significant difference observed in 

the gender distribution between the two groups. Neither of the tissue samples from 

brain metastases, demonstrated p63 reactivity, and no significant difference for site 

distribution of melanoma was observed between the two groups (p-value 0.42, chi-

squared) [Table 3.8].    

 

3.3.5.4.2 p63-reactivity in metastatic tumours is not a significant predictor of 

survival  

Mean follow up for this cohort was 1.87 yrs (range 0.19 – 6.43 yrs). Overall, there 

were 15 deaths, 13 were attributable to melanoma. Mean time to death from first 

recurrence/metastases in these 13 patients was 1.78 yrs (range 0.19 – 6.43 yrs). 

Univariate analysis of prognostic factors in both recurrent and metastatic tumours is 

shown in Table 3.9. A Kaplan-Meier plot showing failure estimates for individuals with 

metastatic disease was calculated using date of first recurrence/metastases to date 

of death. This showed a trend towards increased mortality in p63-positive metastatic 

melanoma samples (red line) compared with the p63-negative tumours (blue line) 

(univariate analysis HR 1.70, p-value 0.36, Cox proportional hazard ratio) [Figure 

3.20]. Multivariate analysis to include significant predictors of outcome (including p63 

status) is shown in the last two columns of Table 3.9. p63 status in recurrent/ 

metastatic tumours was a positive (albeit non-significant) predictor of worse outcome 

in the multivariate analysis (HR 1.25; p-value 0.72, Cox proportional hazard ratio) 

[Table 3.9].  

 

Taken together, findings from immunohistochemistry analysis of melanoma tissue 

samples demonstrates p63 to be a positive predictor of shorter time to recurrence, 

shorter time to metastases, significantly worse overall outcome and worse outcome 

specifically due to melanoma. Moreover, p63-positive tumours correlate with an older 
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cohort of individuals with primary tumours and a younger cohort of individuals with 

metastatic tumours. The limitation of these data is the small number of tumours 

analysed which resulted in insufficient power to demonstrate statistically significant 

associations.     

 

Table 3.8 Clinicopathological details for metastatic and recurrent tumours 

  
p63-Negative 

tumours (n=20) 

p63-Positive 

tumours (n=15) 
Total (n=35) p-value* 

Age at 

diagnosis (yrs) 
65.0 (57.5, 73.7) 60.2 (46.2, 62.4) 

60.8 (49.7, 

68.7) 
0.07 

Gender  

     Male 8 (40.0) 8 (53.3) 16 (45.7) 
0.43 

     Female 12 (60.0) 7 (46.7) 19 (54.3) 

Site of Melanoma 

     Lymph 3 (15.0) 4 (26.7) 7 (20.0) - 

     Brain 2 (10.0) 0 (0.0) 2 (5.7) - 

     Lung 0 (0.0) 1 (6.7) 1 (2.9) - 

     Skin# 15 (75.0) 10 (66.7) 25 (71.4) 0.42 

 

Values shown are number (percentage) or median (IQR) as appropriate 

* p-values are odds comparing p63 negative with p63 positive 

#skin samples include 11 recurrent melanoma samples–p63-negative n=6, p63-positive n=5 
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Table 3.9: Death from metastases in patients with metastatic tumours 

  

Univariate analysis Multivariate Analysis 

Hazard Ratio (95% 

CI) 

p-

value* 

Hazard Ratio (95% 

CI) 

p-

value* 

Age at diagnosis 

(yrs) 
1.01 (0.97, 1.05) 0.54 - - 

Gender  

     Male 1 
0.78 

- 
- 

     Female 0.85 (0.27, 2.65) - 

Site of Melanoma 

     Lymph 1 
 

1 - 

     Brain  - - - - 

     Lung 4.83 (0.43, 54.15) 0.2 4.13 (0.33, 52.67) 0.27 

     Skin 1.20 (0.31, 4.72) 0.79 1.16 (0.29, 4.62) 0.83 

p63 staining 

     Negative 1 
0.36 

1 
0.72 

     Positive 1.70 (0.55, 5.30) 1.25 (0.38, 4.15) 

 

* p-values are odds comparing p63-negative with p63-positive, Cox proportional hazard ratio 

 

Figure 3.20: Kaplan-Meier plot showing failure estimates for recurrent/metastatic 

melanoma tissue samples. Failure estimates were calculated from date of first recurrence / 

metastasis to date of death. This shows a trend towards increased mortality in p63-positive 

metastatic melanoma samples (red line) compared with the p63-negative tumours (blue line) 

(univariate analysis HR 1.70, p-value 0.36, Cox proportional hazard ratio). 
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3.3.5.5 Matched primary-recurrent-metastatic melanoma tissue samples 

For eight cases, matched primary and recurrent and/or metastatic tumours were 

analysed. In addition, one ocular melanoma and three metastatic tissue samples from 

the same individual were also examined [Table 3.10].  

 

In 5/8 (62.5%) cases where additional tumours from the same individual were 

available, labelling of p63 was uniform between disease stages [highlighted in Table 

3.10]. This included the case in which tumours representing all stages of disease 

were available, which demonstrated p63 reactivity in all three samples [Figure 3.21]. 

Breslow thickness of the primary tumour for this patient was not available as the 

original diagnosis was incorrect and only confirmed to be melanoma following review 

of the case when the patient developed a recurrence 3 years later.  

 
Table 3.10: p63 reactivity in multiple tumours from single individuals.   

Patient 

ID 
Gender 

Age at 

diagnosis 

(yrs) 

Breslow 

thickness 

of 1º 

p63 reactivity* 

Primary Recurrence 
Metastasis 

(site) 

1 M 46.9 7 - - N/A 

2 F 76.7 4.5 + - N/A 

3 M 46.7 N/A + + + (skin) 

4 M 68.6 2.7 - N/A + (lymph) 

8 M 47.1 5.1 + N/A + (lung) 

25 F 84.0 10 + - N/A 

26 M 63.7 6 - N/A - (lymph) 

33 F 33.1 2.9 - N/A - (lymph) 

59 

(Ocular) 
F 36.1 N/A - N/A 

- (skin) 

+ (lung) 

+ (skin) 

M – male, F – female 

* (-) negative reactivity, (+) positive reactivity-any grade of intensity, N/A – not available. 

Tumours showing uniform labelling of p63 across stages of disease highlighted in pink 
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Figure 3.21: Series of p63-positive melanoma tissue samples from individual (male 

aged  46.7 yrs at diagnosis). (A) Primary naevoid melanoma (abdomen) showing (i) strong 

nuclear p63 staining of stromal epithelia (black arrow), (ii) moderate cytoplasmic p63 reactivity 

of giant cell melanocytes (red arrow). (B) Recurrence of amelanotic melanoma in abdomen 

showing (i) strong nuclear p63 labelling of epidermal keratinocytes and (ii) moderate 

cytoplasmic p63 reactivity of melanoma cells. (C) Cutaneous melanoma metastases 

demonstrating moderate intensity cytoplasmic p63 reactivity (red arrow) with sparing of 

necrotic tissue within tumour (blue arrow). Bar represents 50 µm.       
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3.3.6  Melanoma stem cell characterisation 

There is growing evidence for tumour initiation from normal stem cells or their 

immediate descendents and perpetuation by cancer stem cells or tumour initiating 

cells (Burkert et al. 2006). Melanoma is now considered by many, to originate in the 

same way (Fang et al. 2005; Grichnik et al. 2006; Refaeli et al. 2009). Markers that 

allow enrichment for cancer stem cells from a heterogeneous tumour such as 

melanoma, are essential for purification, characterisation and eventual targeting of 

cancer stem cells. A specific antibody designated AC133, which recognises an 

epitope of the glycosylated form of the cell surface antigen CD133, has been widely 

used to detect cancer stem cells (Fang et al. 2005; Mizrak et al. 2008). This includes 

the identification of melanoma stem cells (Frank et al. 2005; Klein et al. 2007; 

Monzani et al. 2007), putative cancer stem cell populations from malignant tumours 

of brain (Singh et al. 2004), prostate (Collins et al. 2005), liver (Suetsugu et al. 2006), 

pancreas (Hermann et al. 2007), lung (Eramo et al. 2008) and colon (Shmelkov et al. 

2008).  

 

3.3.6.1 CD133 population is identified in melanoma cell lines 

Initial screening of a selection of melanoma cell lines was undertaken to identify a 

putative stem cell fraction, by analysing expression of CD133 using the monoclonal 

antibody AC133 clone conjugated to phycoerythrin (PE), by flow cytometry detection 

of -PE [section 2.5.3]. Colon-derived epithelial cells (CaCo-2) expressing endogenous 

CD133 (Corbeil et al. 2000) were used as a positive control to confirm sensitivity and 

specificity of the antibody [Figure 3.22]. Mouse IgG1 PE–conjugated antibody was 

used as the isotype control. In 12/17 melanoma cell lines tested, the CD133-positive 

population was greater than 1% (indicated by the red line) [Figure 3.23]. No 

significant differences were detected between cell lines tested at different passages. 
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Figure 3.22: Flow cytometry analysis of CD133. Left panels show histogram (from flow 

cytometry analysis) of cells labelled with isotope-PE (IgG1-PE) and right panels show 

histograms for CD133-PE labelled cells. (a) Expression of CD133 detected in CaCo-2 cells 

demonstrates 100% positivity (right panel). (b) Significant shift of histogram comparing isotype 

and CD133 labelling in A375M cells demonstrates expression of CD133 in this melanoma cell 

line.    
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Figure 3.23: CD133 expression in melanoma cell lines. Panel of melanoma cell lines 

screened for expression of CD133 using flow cytometry. Baseline for expression using IgG1-

PE isotope control was determined for each cell line. CD133 expression was detected using 

AC133-PE conjugated antibody. Red line denotes CD133-positive population greater than 

1%. Marked expression of CD133 is detected in a proportion of both primary and metastatic 

melanoma cell lines. Values shown are mean percentage of CD133-positive cells +/- SEM of 

three independent experiments performed in triplicate.   
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3.3.6.2 TP63 is expressed in the melanoma stem cell fraction 

p63 is an essential regulator of stem-cell maintenance in stratified epithelial tissues 

(Lee and Kimelman 2002; Mills et al. 1999; Parsa et al. 1999; Senoo et al. 2007; 

Truong et al. 2006; Yang et al. 1999a). It maintains stem-cell populations in epithelial 

tissues by directly promoting the proliferation of progenitor cells and their self-renewal 

in the skin epidermis and by stimulating cell survival in the thymus (Blanpain and 

Fuchs 2007). Studies in mice revealed that clonally derived prostate stem cells 

express p63 (Barclay et al. 2008). Moreover, in the human prostate, cells expressing 

CD133 possess stem cell-like features (Litvinov et al. 2006; Richardson et al. 2004), 

some of which are p63-enriched (Richardson et al. 2004) and rapidly give rise to 

further p63-expressing cells (Litvinov et al. 2006). Based on these data and the 

discovery of p63 expression in melanoma, a putative role for p63 in melanoma stem 

cells was proposed. 

 

3.3.6.2.1 Expression of p63 is significantly enriched in the CD133-positive 

population 

To address this issue and determine if p63 was expressed in the CD133-labelled 

stem cell fraction, the melanoma cell line with the highest level of CD133 expression, 

A375M, was analysed. Live A375M cells were labelled using CD133/1–PE 

conjugated antibody to detect the extracellular protein CD133 [section 2.5.3]. 

Labelled A375M cells were fixed, permeabilised and indirectly labelled using anti-p63 

antibody (4A4) and Cy5-conjugated secondary mouse antibody to determine co-

expression of CD133 with the intracellular protein p63. Isotype controls (Cy5-

conjugated and PE-conjugated IgG mouse antibodies) were used as baseline 

comparators. Expression of p63 detected using flow cytometry was enriched in the 

CD133-positive population of A375M cells [Figure 3.24]. A histogram comparing 

endogenous levels of CD133, p63 and both proteins, showed the proportion of cells 

labelled with both CD133 and p63 was significantly increased when compared to 

individual populations [Figure 3.24(e)]. 
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Figure 3.24: Expression of p63 is enriched in CD133-positive population in A375M 

melanoma cells. (a) Flow cytometry scatter plot of A375M cells labelled with isotope-PE and 

istotope-Cy5. (b) Flow cytometry scatter plot showing 7.5% expression of intracellular p63 in 

A375M cells (p63-positive cells lie in top right quadrant). (c) Expression of extracellular CD133 

in A375M cells (10.8%) using CD133-PE conjugated antibody (CD133-positive population in 

the top right quadrant). (d) Marked increase in population of cells (31.7%) in upper right 

quadrant comprising A375M cells demonstrating double positivity to p63 and CD133. (e) 

Histogram showing data represented by the four flow cytometry scatter plot examples (a)-(d). 

Mean percentage of positively labelled cells +/- SEM of triplicates from three independent 

experiments is shown. Statistically significant differences were observed between co-

expression of CD133 and p63 when compared with p63 alone (p-value 0.0003, paired t-test) 

and CD133 alone (p-value 0.0007, paired t-test).  
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3.3.6.2.2 ∆Np63 is enriched in CD133-positive populations  

To quantify p63 mRNA abundance in the CD133-positive population and to determine 

which isoform(s) of p63 were expressed in this fraction, mRNA expression of TA and 

∆N p63 was analysed in both CD133-positive and -negative populations, using Q-

PCR. Cells were labelled using anti-CD133/1–PE antibody (Miltenyi Biotec) and 

passed through a cell strainer cap before reading on the FACS Aria™ Flow 

Cytometer (BD Biosciences) fitted with an Argon 488 nm laser. Sort gates were 

placed on CD133-positive and CD133-negative cells once compared to the isotype 

controls to identify the two populations [Figure 3.25].  

 

Three cell lines expressing high levels of extracellular CD133 were chosen; A375M, 

Mel 505 and WM1158. RNA was extracted from each cell line after fluorescence 

activated cell sorting (FACS) for the CD133-positive and negative populations 

[section 2.5.4.1]. Q-PCR analysis was undertaken for TAp63 and ∆Np63 mRNA, 

using the expression of these isoforms in the whole population (i.e. unsorted cells) as 

a comparator. In A375M cells there was no significant difference in expression of TA 

between unsorted cells and the CD133-negative population. Although the 

endogenous level of TAp63 in this cell line is low, no TAp63 was detected in the 

CD133-positive fraction.  

 

In WM1158 cells, where the endogenous level of TAp63 was high, this was enriched 

in the CD133-negative population. In keeping with the data obtained using A375M 

cells, no TAp63 was detected in the CD133-positive fraction in WM1158 cells. In the 

third cell line tested, Mel 505, TAp63 was not detected in either unsorted or sorted 

cells [Figure 3.26]. In contrast, ∆Np63 expression was significantly increased in 

CD133-positive populations compared with CD133-negative populations for all three 

cell lines [Figure 3.26]. Taken together, these data demonstrate that ∆Np63 (and not 

TAp63) is the isoform enriched by the CD133-labelled stem cell fraction in melanoma 

cell lines and could therefore be considered a putative melanoma stem cell marker. 

 

3.3.6.2.3 Silencing of ∆Np63 results in reduction of CD133-positive population  

To further confirm that ∆Np63 was expressed by the CD133-positively labelled cell 

population (considered the melanoma stem cell fraction), CD133 expression levels 

were examined in A375M cells in which p63 was silenced by short-hairpin RNA to 

p63 (shRNA-p63) [section 2.2.7.2]. p63 siRNA target sequences were cloned into a 

pSUPERIOR.retro.puro vector (Oligoengine) [Figure 2.4]. As the method used to 

clone the shRNA constructs requires annealing of two long oligonucleotides the 
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chance of mutation due to synthesis error is high  (Miyagishi and Taira 2004) and as 

a result sequencing confirmed successful cloning of target sequences A, C, D and E 

[Table 2.10]. Cloned vectors were transfected into the packaging cell line, Phoenix 

cells, before introducing the retrovirus into the melanoma cell line – A375M. Cells 

were selected using puromycin to establish a stable cell line for shRNA expression of 

shRNA-p63 or shRNA-scramble. Silencing of p63 by four different clones achieved 

>70% stable knockdown of ∆Np63, assessed by Q-PCR [Figure 3.27A]. Each of the 

four clones of A375M cells expressing shRNA-p63 were labelled using anti-CD133/1-

PE antibody and analysed using the LSR II flow cytometer [section 2.5.3]. A 

significant decrease (p-value < 0.001, Anova) in the proportion of CD133-positive 

cells was demonstrated for each clone [Figure 3.27B]. Taken together, these data 

confirm that a putative melanoma stem cell population positively labelled with CD133 

is detected in melanoma cell lines which enriches for ∆Np63 only, suggesting that it 

too could be a stem cell marker in melanoma.       

  



 
Page | 188  

 

 

 

 

 

Figure 3.25: Fluorescence-activated cell sorting of (A) A375M cells and (B) Mel 505 

cells. (i) Gate setting for isotype-PE control (set at 5% positive). (ii) Histogram plot for isotype 

control. (iii) Gate setting for CD133-PE. P5 is CD133-positive population and P8 is CD133-

negative population with significant separation to ensure purity of fractions. (iv) Histogram plot 

showing CD133 positive population collected for mRNA analysis. Flow cytometry scatter plots 

are representative of four independent experiments performed for each cell line. 
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Figure 3.26: TP63 mRNA expression in CD133-populations following FACS (Q-PCR). (a) 

TAp63 expression in cell lines relative to expression in whole cell population i.e. unsorted 

cells. No TAp63 was detected in CD133-positive cells. Mel 505 cells do not express 

endogenous TAp63. ∆Np63 expression is significantly increased in CD133-positive 

populations when compared with expression in CD133-negative populations in (b) A375M 

cells (orange bars), (c) WM1158 cells (red bars) and (d) Mel 505 cells (pink bars). GUS was 

used as the housekeeping gene for mRNA standardisation. Values shown are mean 

expression +/- SEM of three independent experiments performed in triplicate.  
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Figure 3.27: shRNA mediated silencing of p63 significantly depletes CD133-positive 

population. Histogram bars in (A) correspond to those in (B) directly below: lane 1 – shRNA-

sbl, lane 2 – shRNA-A, lane 3 – shRNA-C, lane 4 – shRNA-D and lane 5 – shRNA-E. (A) 

∆Np63 gene expression in A375M cells transfected with four different shRNA-p63 clones 

demonstrating significant depletion of the gene (Q-PCR). Expression of ∆Np63 in shRNA-sbl 

was used as the comparator. Values shown are mean expression +/- SEM of three 

independent experiments performed in triplicate. (B) Depletion of ∆Np63 by shRNA-p63 

results in corresponding reduction of CD133-positive population (assessed using flow 

cytometry), which is significant for all four shRNA-p63 clones (p-values < 0.001, one-way 

Anova). SBL – scramble. Values shown are mean percentage of CD133-positive cells +/- 

SEM of three independent experiments performed in triplicate.    
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3.4  DISCUSSION 

3.4.1  Biological role of p63 in the melanocyte lineage 

The expression pattern of p63 has not been robustly investigated in the melanocyte 

lineage. Previous studies of expression of p63 in melanocytes are conflicting; mouse 

melanocytes express two isoforms of p63 – TAp63β and either TAp63γ or ∆Np63β 

(Kulesz-Martin et al. 2005) and cultured human eye melanocytes do not express 

TP63 (Kilic et al. 2008). Neither of these studies were adequate biological correlates 

for human cutaneous melanocytes; mouse melanocytes predominantly reside in the 

hair follicle within the dermis, and mice do not spontaneously develop melanoma 

(Bardeesy et al. 2000; Merlino and Noonan 2003); and the molecular biology of 

ocular melanoma is distinct to cutaneous melanoma (Belmar-Lopez et al. 2008; Sato 

et al. 2008; Shields et al. 2008). Expression of TP63 reported in these studies was 

analysed using RT-PCR. Data presented in this thesis used Q-PCR analysis, which 

displays increased sensitivity for detecting low expression levels of isoforms, has 

demonstrated that TP63 isoforms are infrequently expressed in five primary human 

melanocytes cultures tested, and when compared with melanoma cell lines and 

primary keratinocyte cultures, expression levels were significantly lower. In 2/5 

primary melanocyte cultures where p63 mRNA was detected, the ∆Np63 isoform was 

elevated when compared with TAp63, in a similar manner to that observed for HaCaT 

cells. In normal skin, p63 has a role in keratinocytes to protect against UVB (Liefer et 

al. 2000) and melanocytes demonstrate resistance to common apoptotic stimuli 

through expression of apoptotic inhibitors (Bowen et al. 2003; Vancoillie et al. 1999). 

Data presented in this thesis raise the possibility that in melanocytes, the ratio of p63 

isoform expression could contribute to protection against UVB damage in skin and 

warrants further investigation.  

 

3.4.1.1 p63 is significantly expressed in melanoma 

This is the first evidence demonstrating marked upregulation of both p63 mRNA and 

protein in melanoma cell lines. A differential expression of splice variants was 

demonstrated in melanoma cell lines suggesting that splicing mechanisms and/or 

transcription of these splice variants are regulated in melanoma. Without the 

availability of more potent isoform-specific and splice-variant specific antibodies one 

can only surmise from the observed molecular weight of exogenous isoforms on a 

Western blot analysis that a similar spectrum of p63 isoform expression might be 

found in melanoma tissue samples. Although these data are not able to define the 

roles of each individual isoform, it is likely that they have specific biological / 

biochemical activities. These activities may be overlapping and in cell lines where 
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both isoforms are expressed, (which constitutes a small proportion of the total 

number of cell lines expressing p63) there may be some redundancy of function, 

which requires further investigation.  

 

Upregulated expression of p63 protein using immunohistochemistry in melanoma 

tissue samples compared with primary melanocytes and benign naevi samples, is in 

contrast to reported literature [Table 3.11]. There are a number of possible reasons 

for these conflicting data. The main discrepancy between immunohistochemistry 

results demonstrated in this thesis and that obtained by others could be explained by 

a difference in reagents and technique. There are multiple variables affecting 

immunostaining including length and type of fixation (Dapson 1993; Leong and 

Gilham 1989), sensitivity and specificity of antibody, chromogen and antigen retrieval 

systems (Bussolati and Leonardo 2008; Grabau 1998). A number of studies 

investigating p63 expression in melanomas used antibody dilutions in the range of 

1:200 (Brinck et al. 2002; Di Como et al. 2002; Reis-Filho et al. 2003b; Sakiz et al. 

2009) compared with the optimised dilution determined to be 1:50 which was used in 

this study. The most plausible explanation however, is the effect of storage of tissue 

samples on p63 reactivity; with increased storage times, a progressive and significant 

decrease in intensity of p63 staining was observed, with evidence of significant 

decline occurring as early as two weeks of storage (Burford et al. 2009; Hameed and 

Humphrey 2005). This effect was observed in our study [Figure 3.13] with 25 slides, 

initially failing to demonstrate p63 reactivity in an internal control (epidermal 

keratinocytes), but upon re-sectioning and staining within two weeks demonstrated 

nuclear p63 reactivity of keratinocytes. Therefore, for optimal detection of p63 in 

tissue samples, slides should be stained within two weeks of sectioning of tumour 

samples. In larger scale studies comprising multiple tumour types where array 

technology was not used, this is likely to have been a problem and could explain the 

higher proportion of p63-negative melanomas reported.  

 

Most studies use the 4A4 murine monoclonal antibody, which is raised against a 

region in the core domain of p63 and recognises all isoforms of p63 by western 

blotting (Yang et al. 1998) but for immunohistochemistry has been cited to be most 

effective in detection of the ∆N isoform only (Nylander et al. 2002). However, mRNA 

analysis data presented here, suggest that a significant proportion of melanoma cell 

lines (in particular primary melanoma cells) express TAp63 [Table 3.1] and the 

expression levels are higher when compared to ∆Np63 expression which would 

otherwise be missed by the 4A4 antibody. Moreover, the use of the H129 antibody 
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(+/- H137) routinely used in diagnostic evaluation and clinical trials at Bart‟s and the 

London NHS Trust is likely to demonstrate increased sensitivity of detection of p63 

protein. Finally, aberrant subcellular distribution of the p63 antigen inside melanoma 

cells could have been overlooked; some studies report using nuclear p63 reactivity 

only, as a determinant for positive staining (Brinck et al. 2002; Di Como et al. 2002; 

Dotto and Glusac 2006). Using these criteria, the majority of melanoma samples from 

the cohort studied in this thesis would have been considered p63-negative. Review of 

cases in the literature could thus, identify p63-reactive melanomas and to support 

this, one study shows a photomicrograph of a p63-positive melanoma, which 

although in monochrome, appears to show both nuclear and cytoplasmic reactivity 

but reported as nuclear only (Brinck et al. 2002).  

 

3.4.1.2 Cytoplasmic p63 expression is associated with worse outcome in 

individuals with melanoma 

These data provide the first evidence for significant expression of p63 in melanoma 

demonstrating predominant cytoplasmic localisation. Although p63 is reported to 

primarily be a nuclear protein (Dellavalle et al. 2001; Di Como et al. 2002; el-Deiry et 

al. 1995), aberrant cytoplasmic expression is reported in lung and prostate cancers 

(Dhillon et al. 2009; Narahashi et al. 2006). Data presented in this thesis support the 

latter, demonstrating cytoplasmic p63-reactivity in 42 – 55% of melanoma tissue 

samples depending on stage of disease progression. Analysis of the p63-positive 

population demonstrated an increased frequency of thicker primary tumours, 

occurring more frequently on the head/neck in an older cohort of individuals in the 

p63-positive primary tumours but without reaching statistical significance. Moreover, 

p63-positive primary tumours demonstrated a positive trend towards shorter time to 

recurrence (Univariate Cox proportional HR 2.89) and shorter time to metastases 

(Univariate Cox proportional HR 1.83) and this trend persisted when adjusting for 

other significant predictors of survival in the same cohort. In addition, individuals with 

p63-postive tumours had significantly worse overall outcome (p-value 0.05, Cox 

proportional hazard ratio) and demonstrated trend towards worse outcome 

specifically due to melanoma (Univariate Cox proportional HR 2.43).  

 

Analysis of recurrent/metastatic tumours showed p63-positive tumours arising in a 

younger cohort of patients were also associated with poorer outcomes when 

compared with the p63-negative tumours (Univariate Cox proportional HR 1.7). The 

consistent positive association between p63-positivity and poor predictors and 

measures of outcome without achieving statistical significance might be addressed by 
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evaluating a larger cohort of melanoma cases. A power calculation using death from 

melanoma as the primary end-point was performed. For 80% power, 200 melanomas 

from individuals with follow-up over 5 yrs need to be analysed, to detect a 5% 

significant difference in outcomes between p63-positive and p63-negative tumours.   

 

The relocalisation of p63 to the cytoplasm demonstrated in at least 50% of melanoma 

tumour samples, suggests an alteration of stability and/or function of the protein 

which could impact apoptotic pathways. The inverse correlation between cytoplasmic 

p63 reactivity and outcomes in melanoma suggests a possible oncogenic effect of 

p63 mediated through interaction with other molecules in the cytoplasm. These data 

warrant further investigation of subcellular localisation of p63 in the cytoplasm. This 

could be achieved by co-localisation studies with subcellular markers. Sequestration 

of p63 to the cytoplasm links the protein to apoptosis and investigation of other 

apoptotic markers in these tumours could be assessed for correlation. A possible role 

for p63 in apoptosis will be investigated in the following chapters of this thesis. 

 

Table 3.11: Summary of expression of p63 in melanoma tissue samples  

Reference 
Archival 

tissue / Array 
p63 Antibody  

p63 reactivity 

(%) 

Di Como et al. (2002) TMA 4A4^ (Santa Cruz) 0/15 (0)* 

Brinck et al. (2002) TMA 4A4^ (Santa Cruz)  2/59 (3)* 

Reis-Filho et al. 

(2003a) 
TMA 4A4^ (Neomarkers) 2/25 (8) 

Bourne et al. (2008) 
Mucosal 

melanomas 
4A4 (DAKO) 0/7 (0) 

Dotto and Glusac 

(2006) 

Desmoplastic 

melanomas 
4A4 (DAKO) 0/8 (0)* 

Morgan et al. (2008) 
Spindle cell  

melanoma 
4A4 (Dako Corps) 2/3 (66.7)# 

Sakiz et al. (2009) 
Melanoma in 

situ 

4A4 + Y4A3 ^ 

(Neomarkers) 
0/7 (0)* 

 Kanner et al. (2010) Melanoma 4A4 (DAKO) 1/20 (5)* 

TMA – tissue microarray, ^ p63 antibody used in 1:200 dilution, *Only nuclear expression of 

p63 was accepted as positive, # no comment made by authors regarding subcellular localisation of 

p63-reactivity nor any photomicrographs shown. 



 
Page | 195  

 

3.4.2  CD133 is used to identify a putative stem cell population 

Analysis of a panel of melanoma cell lines demonstrated a putative stem cell fraction 

(12/17 cell lines) in varying proportions (range 1% - 40%), identified by CD133 

labelling using flow cytometry. However, the role of CD133 as a putative stem cell 

marker in melanoma requires further investigation. Monzani et al. (2007) compared 

abilities of CD133-positive versus CD133-negative melanoma cells to initiate tumour 

formation in vivo. Primary tumour-initiating properties were exclusively contained 

within melanoma cell subsets characterised by expression of CD133, whereas 

CD133-negative melanoma cells were found to lack tumourigenicity (Monzani et al. 

2007). In contrast to findings by Fang et al (2005), more tumourigenic CD133-positive 

melanoma subsets were confined to adherent cell populations, whereas melanoma 

sphere associated cells were devoid of CD133 (Monzani et al. 2007). The role of 

CD133 as a genuine stem cell marker is thus, debated (Fang et al. 2005; Jaksch et 

al. 2008) and more extensive studies including secondary tumour formation and 

stringent self-renewal and differentiation experiments are needed to draw definitive 

conclusions about CD133 as a candidate melanoma stem cell marker.  

 

Future work following on from that presented here, is required to confirm the cancer 

stem cell characteristics of CD133-positive cells in the melanoma cell lines analysed 

in this chapter; namely sphere formation, expression of cancer stem cell markers, self 

renewal and differentiation potential, and tumourigenicity in vivo (Frank et al. 2005; 

Grichnik et al. 2006; Klein et al. 2007; Quintana et al. 2008; Refaeli et al. 2009; 

Schatton and Frank 2008; Schatton et al. 2008; Zabierowski and Herlyn 2008). In 

addition, characterisation of these stem cells for other putative melanoma stem cell 

markers would add support to the validity of CD133 as a melanoma stem cell marker.  

 

3.4.2.1 ∆Np63 is a putative melanoma stem cell marker 

p63 identifies epidermal stem cells in the skin (Pellegrini et al. 2001) and more 

recently, ∆Np63 specifically is reported to confer stemness in skin (Yi et al. 2008). 

Moreover, reports that a subset of CD133-positive prostate stem cells expresses 

TP63 (Litvinov et al. 2006; Parsons et al. 2009; Richardson et al. 2004) led to our 

proposal that p63 may also be a putative marker of melanoma stem cells. Flow 

cytometry analysis confirmed co-expression of extracellular CD133 and intracellular 

p63. FACS sorting of CD133-positive cells confirmed the putative melanoma stem 

cell population labelled with CD133 enriched only for ∆Np63, with no expression of 

TAp63. These data were confirmed in three cell lines providing the first evidence for 
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∆Np63 as a putative stem cell marker in melanoma or at least plays a possible role in 

regulating the CD133-positive cells. 

  

The limitations of these data are the controversy regarding the role of CD133 in 

melanoma cells discussed earlier [section 3.4.2]. To further address this issue, other 

stem cell markers e.g. CD20 and nestin, could be examined to verify enriching of 

∆Np63 expression in these stem cell populations, thus confirming a role for p63 in 

identifying stem cells in melanoma. In addition, expression of cancer stem cell 

markers can be modulated by different experimental and environmental conditions 

which induce expression of stem-cell like surface markers and interfere with gene 

expression (Greijer et al. 2005). Therefore, to provide in vivo proof of concept, 

CD133-positive cells should be isolated from tumour samples and analysed for 

expression of ∆Np63. These experiments would strengthen the proposal that ∆Np63 

is indeed, a putative stem cell marker which could be utilised for novel 

chemotherapeutic strategies.  
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CHAPTER 4: REGULATION OF EXPRESSION OF TP63 

 

4.1 BACKGROUND 

4.1.1  Epigenetic events in melanoma 

4.1.2 microRNA regulation of TP63 gene expression 

4.1.3 Regulation of p63 protein expression 

4.2 AIMS 

4.3 RESULTS 

4.3.1  Epigenetic regulation of TP63 

 4.3.2  MicroRNA regulation of TP63 

 4.3.3  Regulation of p63 stability 

4.4 DISCUSSION 

 4.4.1  TP63 is modulated by acetylation 

4.4.2  Novel miRNAs identified in melanoma could regulate expression of 

p63 

4.4.3  Stability of p63 is dependent on the proteosome 

 

 

4.1  BACKGROUND 

4.1.1  Epigenetic events in melanoma 

Epigenetic modulation refers to changes in gene expression without alterations of 

DNA sequence, comprising chromatin organisation and modification (Egger et al. 

2004). Epigenetic events can be divided into two major classes: DNA methylation and 

histone modifications. DNA is packaged into nucleosomes comprising a histone 

octamer (H2A, H2B, H3 and H4) around which 146 bp of DNA is wrapped (LaVoie 

2005). The flexible histone N-terminal tails protrude from the nucleosome and are 

subject to covalent modifications including acetylation, arginine and lysine 

methylation, sumoylation, neddylation, ubiquitination and phosphorylation. These 

modifications dictate the histone code read by the gene regulatory machinery, 

allowing the cell to either facilitate or inhibit transcription of target genes (Berger 

2002; Fischle et al. 2003; Rountree et al. 2001). The interplay between DNA 

methylation and histone modifications has a profound effect on epigenetic regulation 

of gene expression patterns and is thus an important factor in tumourigenesis (Li 

2002). The precise positioning of nucleosomes and pattern of associated histone 

modifications play a major role in determining access to DNA, thus chromatin 
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modification and remodelling are key determinants of gene expression and DNA 

replication and repair [Figure 4.1].   

 

 

 

 

 

 

Figure 4.1: Chromatin organisation and modification. DNA is methylated by DNMTs. 

Methylated cytosine residues in DNA (solid blue line) subsequently allows recruitment of 

histone enzymes e.g. HDACs, HATs and HMTs. Targeted HAT and HDAC activities 

determine acetylation status of chromatin. Acetylation establishes a structure that permits 

ATP-dependent chromatin remodelling factors to open promoters. Deacetylation, frequently 

followed by histone methylation, may form a solid base for highly repressive structures, such 

as heterochromatin. Acetylated histone tails are shown as yellow circles. Methylations are 

indicated as green rectangles. HAT - histone acetyltransferase; HDAC - histone deacetylase; 

HMT - histone methyltransferase, DNMT- DNA methyltransferase  
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4.1.1.1 DNA methylation 

The transfer of a methyl group to the carbon 5 position of cytosines, almost always in 

the context of CpG dinucleotides, is the only known epigenetic modification of DNA 

itself. Increased methylation of CpG islands (CpG rich regions of DNA usually, 

although not exclusively, associated with gene promoters), is a common mechanism 

of epigenetic gene silencing. Both hypermethylation of CpG islands located in the 

promoters of tumour suppressor genes and global hypomethylation seem to play a 

role during cancer development. DNA methylation occurs via covalent modification of 

cytosine and is catalysed by DNA methyltransferases (DNMT) which add a methyl 

group to the 5‟ carbon of the cytosine residues (Goll and Bestor 2005). Methylated 

DNA can then be bound by methyl-binding proteins which function as adaptors 

between methylated DNA and histone modifying enzymes [Figure 4.1]. Histone 

modifying enzymes then covalently modify the amino-terminal residues of histones to 

induce the formation of chromatin structures that repress gene transcription 

(Jenuwein and Allis 2001).   

 

DNMTs also add methyl groups to cytosines within a CpG island (Baylin 2005). CpG 

islands located in the promoter regions of tumour suppressor genes are mainly 

unmethylated in normal somatic cells, whereas during cancer development aberrant 

hypermethylation of the CpG islands can occur, effectively silencing transcription of 

selected tumour suppressor genes (Robertson 2005b). However, in contrast to 

inherited inactivating gene mutations, epigenetic gene silencing through promoter 

methylation must be actively maintained by continuous re-methylation during each 

cell division and DNA replication cycle. This offers the opportunity to use DNA 

methyltransferase inhibitors as tools for cancer treatment with the aim of reversing 

aberrant hypermethylation of tumour suppressor genes.  

 

The first DNA methyltransferase inhibitor synthesised was 5-azacytidine (5-Aza), a 

derivative of the nucleoside cytidine. It is incorporated into DNA and methylated by 

DNMT together with the regular cytosines. The 5-azacytosine residues however, form 

a covalent DNA-protein complex which leads to inactivation of the DNMT and 

consequently demethylation of DNA (Goffin and Eisenhauer 2002; Lyko and Brown 

2005). Treatment with DNA methyltransferase inhibitors has demonstrated limited 

success in melanoma (Abele et al. 1987; Goffin and Eisenhauer 2002) but is likely to 

represent a powerful tool in combination with other therapeutic approaches. To date, 

in melanoma approximately 50 genes have been identified which are regulated, at 
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least in part, by promoter methylation and have been shown to be silenced during 

disease development and progression (Rothhammer and Bosserhoff 2007). 

 

4.1.1.2 Chromatin remodelling 

Chromatin remodelling mediates the dynamic structural changes in chromatin 

organisation that occurs through the cell cycle. It can be achieved by the concerted 

action of two different types of enzymes: ATP-hydrolysing enzymes and enzymes 

that covalently modify histones (van Grunsven et al. 2005). 

 

4.1.1.2.1 Histone modifications: Acetylation 

Histones are nuclear proteins which are necessary for the organisation of DNA into 

chromatin. The acetylation of lysine residues in the histone tails is one of the best 

characterised chromatin modifications and generally, acetylated histones are 

associated with transcriptionally active chromatin. Acetylation relieves the positive 

charges of histones leading to relaxation of the chromatin that enables interaction of 

transcription regulatory proteins with chromatin. Moreover, histone tails acetylated at 

specific residues provide recognition sites for transcriptional co-factors (Dhalluin et al. 

1999; Zeng and Zhou 2002). Similarly chromatin deacetylation is linked to 

transcriptional repression. The acetylation status of histones is not a permanent event 

and is regulated by (i) histone acetyltrasferases (HATs) which transfer an acetyl 

group to the lysine residue, and (ii) histone deacetylases (HDACs) which remove 

acetyl groups. Consequently there is a dynamic and complex interplay occurring 

between acetylated and deacetylated regions of histones (Carrozza et al. 2003; Grant 

2001; Huang et al. 2003; Santos-Rosa and Caldas 2005). 

 

HDACs reverse the effects of HATs resulting in deacetylation of specific lysine 

residues which is a necessary pre-requisite for modification by methylation and 

ubiquitination. Deacetylation of histones promotes condensation of chromatin which 

reduces accessibility and consequently leads to repression of gene transcription 

(Huang et al. 2003). HDACs are subdivided into three different classes: class I which 

contains human HDACs 1-3 and 8, class II which contains human HDACs 4-7, 9 and 

10 and class III, the Sirtuin family of NAD+ dependent HDACs (Boyle et al. 2005; de 

Ruijter et al. 2003; Holbert and Marmorstein 2005).  

 

The function of HATs and HDACs is often deregulated in tumour cells leading to 

altered gene transcription (Minucci et al. 2001). HDAC inhibitors induce accumulation 

of hyperacetylated nucleosome core histones resulting in transcriptional activation of 
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genes. In addition, they induce acetylation of non-histone proteins providing an 

alternative mechanism for their chemotherapeutic activity in cancers (Gu and Roeder 

1997). HDAC inhibitors (e.g. trichostatin A, depsipeptide FR901228 and SAHA) have 

shown potential as therapeutic agents in vivo and in clinical trials in conjunction with 

current therapeutic approaches (Kelly et al. 2003; Qiu et al. 1999; Sandor et al. 2002) 

but have not been extensively used because of their global effect on multiple 

signalling pathways.  

 

Upregulation of TAp63α and adenoviral-mediated p63γ expression upon treatment 

with HDAC inhibitors is reported in different cell lines including testicular cancers 

(Sasaki et al. 2008; Sayan et al. 2009; Scheel et al. 2009). Furthermore, induction of 

TAp63α coincides with its cleavage, sensitising colon cancer cells to apoptosis 

(Sasaki et al. 2008; Sayan et al. 2007). Based on these reports it seemed reasonable 

to investigate the effects of acetylation on p63 expression in melanocytes and 

melanoma by treatment of cells with HDAC inhibitors.    

 

4.1.1.2.2 Histone modifications: Methylation 

Methylation of histones is generally associated with transcriptional repression with 

methylation of lysine-9 on histone-H3 required to maintain heterochromatin (Noma et 

al. 2001; Peters et al. 2002). In contrast, methylation of lysine-4 on histone-H3 can be 

stimulatory for transcription. The different combinations of histone modifications at 

different residues may act synergistically or antagonistically to influence gene 

expression (Jenuwein and Allis 2001). Histone methyltransferases (HMT) are the 

enzymes responsible for catalysing transfer of one to three methyl groups to lysine 

and arginine residues of histone proteins. Histone methylation has a role in 

epigenetic regulation since DNA is bound more tightly to methylated histones and 

consequently gene transcription is repressed [Figure 4.1].  The development of HMT 

inhibitors is at an early pre-clinical stage. However there is evidence to suggest that 

DNA methyltransferase inhibitors have significant influence on the methylation status 

of histones (Kondo et al. 2003). 

 

Data from this thesis have demonstrated significant upregulation of p63 in up to 50% 

of melanoma cell lines and melanoma tissue samples. However, individual 

expression of TA and ∆N isoforms varied, and only 18% of melanoma cell lines 

tested expressed both isoforms. A possible explanation for the differential pattern of 

isoform expression could be epigenetic modulation. The purpose of the following 

experiments was to explore this by using agents which modulate the acetylation and 
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methylation of TP63. Under certain circumstances, p63 expression has been 

demonstrated to be modulated by methylation although this has not been rigorously 

examined (Park et al. 2000). To explore this in melanoma, cells which do not express 

p63 were treated with the DNA methyltransferase inhibitor 5-Azacytidine (5-Aza) in a 

dose-dependent manner, to examine the possibility of restoration of p63 expression. 

 

4.1.2  MicroRNA regulation of TP63 gene expression 

MicroRNAs (miRNA) are ~22 nucleotide-long small RNA molecules encoded in the 

genome that have a profound effect in controlling gene expression. MicroRNAs bind 

to their target mRNAs and downregulate their stability and/or translation. By binding 

to its target mRNA with complete complementarity, the miRNA can lead to 

degradation of the target, and by binding to targets with incomplete complementarity, 

in the 3‟ UTR regions, this leads to translational suppression of target genes 

(Esquela-Kerscher and Slack 2006; Kim and Nam 2006; Meltzer 2005). It is currently 

estimated that 30% of all human genes may be regulated by microRNAs (Lewis et al. 

2005). Each miRNA is predicted to have many targets, and each mRNA may be 

regulated by more than one miRNA (Lewis et al. 2003; Lim et al. 2005; Rajewsky 

2006). Specific over- or under-expression has been shown to correlate with particular 

tumour types (Lu et al. 2005; Volinia et al. 2006). miRNA over-expression results in 

downregulation of tumour suppressor genes whereas their under-expression leads to 

oncogene upregulation (Calin et al. 2004; Croce and Calin 2005; Gregory and 

Shiekhattar 2005; McManus 2003).   

 

A complex interplay between miRNAs and epigenetics has recently been established; 

miRNAs target key enzymes involved in establishing epigenetic memory e.g. HDACs 

(Tuddenham et al. 2006) and epigenetic mechanisms affect expression of miRNAs 

(Saito et al. 2006). The interaction of epigenetics and miRNAs implies that epigenetic 

modulators may exert anti-tumour effects on two levels: by switching on tumour-

suppressor genes that are silenced epigenetically, but also switch on tumour-

suppressor miRNAs which downregulate target oncogenic mRNAs. 

 

The regulation of p63 in different tissues is substantiated by reports of tissue-specific 

miRNA regulation of p63 expression [section 1.3.4.7, Table 4.1]. As this is the first 

demonstration of p63 in melanoma, it is pertinent to explore the regulation of this 

gene by miRNAs.  
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Table 4.1: Summary of MicroRNA regulation of p63 

microRNA 
Isoform 

targeted 
Cell type Reference 

miR-203 ∆Np63 Epithelia 
(Lena et al. 2008; Yi et al. 

2008) 

miR-302 TAp63 Germline (Scheel et al. 2009) 

miR-21 TAp63 
Glioblastoma 

Cervical cancer 

(Papagiannakopoulos et al. 

2008) 

miR-92 ∆Np63β Myeloid cells (Manni et al. 2009) 

miR-34a ∆Np63 SCC cell lines 
(Chiorino, personal 

communication) 

   SCC squamous cell carcinoma 

 

4.1.3  Regulation of p63 protein expression 

Expression and regulation of p63 in human cancers is still a relatively unexplored 

field. In contrast to frequent p53 mutations, p63 mutations in human cancer are rare 

(Hagiwara et al. 1999; Ikawa et al. 1999; Irwin and Kaelin 2001b; Kato et al. 1999; 

Osada et al. 1998; Sunahara et al. 1999; Tani et al. 1999). However, overexpression 

of wild-type p63 isoforms is detected in epithelial cancers (Choi et al. 2002; Hibi et al. 

2000; Hu et al. 2002; Massion et al. 2003; Mills 2006; Yang and McKeon 2000) and 

this thesis has provided the first evidence of expression of p63 in a significant 

proportion of melanoma cell lines and tumour samples [sections 3.3.3 and 3.3.5].  

 

Studies have demonstrated that p63 mRNA and protein can be regulated by a 

number of factors including DNA damage, interaction with oncoproteins and complex 

signalling pathways (Huang et al. 2008b; Liefer et al. 2000; Nguyen et al. 2006; 

Petitjean et al. 2008). Post-translational modifications are important in regulating the 

stability of p63 [section 1.3.4.1]. p63 activity is also regulated through its physical 

interaction with a number of binding partners including Itch, WWP1 and RACK1 

(Fomenkov et al. 2004; Li et al. 2008; Rossi et al. 2006b). Moreover, there is 

evidence that the p53 family members interact in a manner that is likely to be tissue-

specific (Flores et al. 2002; Jacobs et al. 2005; Senoo et al. 2004) and truncated 

variants of p63 and p73 are able to negatively regulate full-length isoforms of all 

members (Melino et al. 2002; Melino et al. 2003; Moll and Slade 2004; Yang et al. 

1999a; Zaika et al. 2002).  
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4.1.3.1 Stability of p63 protein 

Despite the potent transactivation capabilities of p63, analysis of its expression both 

in melanoma cells and other cell systems, is limited by the availability of sensitive 

antibodies and transcripts of very low abundance. Stability of p63 proteins appears to 

be inversely correlated with their transactivation ability. TAp63γ, the most potent 

transactivator of the p63 isoforms, is often undetectable by Western blot, even in 

amounts that have robust transcriptional activity (Koster et al. 2004; Serber et al. 

2002). TAp63α has a lower transactivation potential, and is more easily detected, but 

deletion of the C-terminal TID from TAp63α increases its transcriptional activity and 

reduces protein expression levels (Serber, Lai et al. 2002). 

 

Following transient transfection in hepatocellular carcinoma cell lines, TAp63 

transcripts were rapidly degraded, with a half life of ~1 hr, the most rapidly degraded 

form being TAp63α (Petitjean et al. 2008). Among the ∆N isoforms, ∆Np63α also 

showed a rapid turnover, whereas ∆Np63γ had a half life of at least 8hrs. ∆Np63β 

(the predominant isoform expressed in melanoma cell lines) was reported to show 

inconsistent degradation patterns in liver cells (Petitjean et al. 2008). 

 

There is evidence that stability of p63 isoforms in different tissue-types is 

proteosome-dependent (Okada et al. 2002; Osada et al. 2001; Petitjean et al. 2008; 

Rossi et al. 2006a; Yin et al. 2002). The peptide aldehyde inhibitor MG-132 inhibits 

proteosomes, calpains and certain lysosomal cysteine proteases (Lee and Goldberg 

1998; Tawa et al. 1997) and has been widely used to demonstrate the dependence of 

protein stability on the proteosome and will be used in experiments presented in this 

chapter. 

 

4.2  AIMS 

The aim of this chapter was to investigate the regulatory mechanisms governing the 

expression of p63 in melanoma. The objectives were: 

a) To explore the epigenetic regulation of gene expression by examining the 

response of TP63 to histone deacetylase inhibitors and a DNA 

methyltransferase inhibitor  

b) To investigate the regulation of TP63 by microRNAs using array technology 

c) To study mechanisms which regulate p63 protein stability 
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4.3  RESULTS 

4.3.1  Epigenetic regulation of TP63 

4.3.1.1 Epigenetic modulation is infrequent in primary melanocyte cultures  

Initial experiments were carried out in primary melanocyte cultures to determine the 

effect of HDAC inhibitors on expression of p63 isoforms. Initially the pan-HDAC 

inhibitor, trichostatin A (TSA) was used (Finnin et al. 1999). A differential effect was 

observed in primary melanocyte cultures upon treatment with low (500 µM) and high 

(1 mM) doses of TSA. In two out of four primary melanocyte cultures tested (NHEM 1 

and NHEM 2), no upregulation of either TA or ∆N p63 was observed upon treatment 

with TSA. In the other two cell lines tested (HEMa V3 and V4), TAp63 was not 

detected in either untreated or treated HEMa cells using Q-PCR. In contrast, 

expression of ∆Np63 was upregulated upon treatment with TSA in HEMa V3 cells, 

although the same effect was not observed in HEMa V4 cells [Figure 4.2]. To 

investigate the possible role of methylation, melanocyte cultures were treated with 5-

Aza in a dose and time-dependent manner. Neither restoration of TAp63 nor 

upregulation of ∆Np63 expression was detected in the four melanocyte cultures 

tested. Taken together, these data suggest that in primary melanocyte cultures, 

epigenetic modulation of p63 is an infrequent event.  

 

4.3.1.2 Epigenetic modulation of TP63 occurs in melanoma cell lines 

To investigate hypermethylation as a possible epigenetic mechanism for p63 

silencing in melanoma cell lines, a search was performed using Ensembl 

(www.ensembl.org) and USC Genome (genome.ucsc.edu) to identify CpG islands in 

the promoter region. This revealed no large CpG islands in the promoter of p63 

suggesting that it was unlikely to be regulated by methylation of its own promoter. It is 

possible, however, that p63 could be subject to modulation of the chromatin (or the 

histone code) (Brown and Strathdee 2002) or by promoter methylation of upstream 

targets (Raman et al. 2000).  

 

Epigenetic mechanisms were explored in five melanoma cell lines which variably 

expressed TA and/or ∆N p63 [Figure 4.3]. Initially sub-lethal doses of TSA (500 µM – 

1 mM) or 5-Aza (5-10 µM) were determined from optimisation experiments using 

various melanoma cell lines. Because DNA methylation and histone acetylation can 

act synergistically to silence tumour suppressor genes in cancer cell lines, the DNA 

methyltransferase inhibitor was used in combination with the HDAC inhibitor to 

enhance reversal of epigenetic silencing (Cameron et al. 1999). TSA and 5-Aza were 
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administered to cells individually for 24 – 48 hrs or in combination at low doses. In the 

latter case each treatment was either given at the same time or in succession, with or 

without a media change between treatments.  

 

Figure 4.2: Epigenetic modulation of p63 in primary melanocyte cultures. Treatment of 

primary melanocyte cultures with high dose (1 mM) and low dose (500 µM) of TSA. ∆Np63 

mRNA was analysed using Q-PCR demonstrating variable upregulation as a result of 

acetylation in HEMa V3 and V4 cells. Values shown are mean expression +/- SEM of three 

independent experiments performed in triplicate.   

 

      

Figure 4.3: mRNA analysis of p63 isoform expression in melanoma cell lines used for 

subsequent epigenetic modulation experiments (Q-PCR). mRNA expression (+/- SEM) of 

p63 isoforms was determined relative to the mean expression of isoforms in five primary 

melanocyte cultures. Four cell lines were analysed, expressing no p63 (Mel 224), TAp63 only 

(5810P), ∆Np63 only (26258M) and both isoforms of p63 (WM278). GUS was the 

housekeeping gene used for mRNA standardisation. TAp63 – red bars, ∆Np63 – blue bars.   
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4.3.1.3 Epigenetic modulation induces de novo synthesis of p63 

To explore the modulation of p63 in melanoma cell lines, initial experiments were 

performed in cells which did not express p63. To determine if restoration of p63 

protein resulted from acetylation or demethylation, expression of TA and ∆Np63 in 

Mel 224 cells was analysed in the first instance using RT-PCR [Figure 4.4A]. Using 

the expression of the gene in untreated cells as the comparator, Q-PCR confirmed 

these results; TAp63 was induced by high dose TSA in the presence or absence of 5-

Aza [Figure 4.4B]; restoration of ∆Np63 expression was much less pronounced and 

only significantly detected upon treatment with both TSA and 5-Aza for 48 hrs [Figure 

4.4C]. In contrast, maximum restoration of TAp63 occurred within 24 hrs suggesting 

that the kinetics of modulation of the two isoforms differs in melanoma cells [Figure 

4.4B]. A similar phenomenon was observed in Mel 505 cells with marked restoration 

of TAp63 expression induced by TSA, and ∆Np63 induced by the combination of TSA 

and 5-Aza at 48 hrs (data not shown). 

 

To localise the expression of p63 protein after treatment with high dose 5-Aza and 

TSA (24 – 48 hrs), immunohistochemistry and confocal microscopy analysis were 

performed [section 2.7.1, Figure 4.5A]. p63 protein was detected in Mel 224 and Mel 

505 cells treated with both 5-Aza and TSA [Figure 4.5A]. In addition, a class III 

specific HDAC inhibitor tenovin-6 (Dr S Lain, Karolinska Institute, Sweden), was also 

able to induce expression of p63 protein but to a lesser extent (data not shown). This 

finding is in keeping with that of a recent report showing greater efficiency of pan-

HDAC inhibitors in upregulating TAp63 compared with class specific inhibitors (Sayan 

et al. 2009). 

 

To confirm restoration of p63 protein, Western blotting of the same cells treated with 

TSA and/or 5-Aza was undertaken. Protein lysates were run on a gel and probed with 

anti-p63 antibody [Figure 4.5B]. This demonstrated efficient restoration of p63 

expression with upregulation of mainly TA isoforms, supporting data from RT-PCR 

experiments.   
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(A) 

 

(B) 

 

(C) 

 

Figure 4.4: Epigenetic modulation of p63 mRNA (Mel 224 cells). (A) RT-PCR shows no 

endogenous expression of TA or ∆Np63 (lane 1). Upregulation of TA and ∆N p63 isoforms is 

observed upon treatment with TSA (pink) and 5-Aza (purple). (B) Q-PCR showing restoration 
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of expression of TAp63 in response to TSA (lane 4) and in conjunction with 5-Aza (lanes 6-9). 

Bars correspond to lane numbers shown in (A). Expression of TAp63 in treated cells is 

relative to expression in untreated cells using GUS as an endogenous comparator for all 

samples. (C) Q-PCR showing marked restoration of expression of ∆Np63 only upon 

prolonged treatment with TSA and 5-Aza in combination (lane 9). Bars correspond to lane 

numbers shown in (A). Expression of ∆Np63 in treated cells is relative to expression in 

untreated cells using GUS as an endogenous comparator for all samples. TSA – trichostatin 

A, 5-Aza – 5-Azacytidine. 

 

(A)                                                                  (B) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Epigenetic modulation of p63 protein expression (Mel 224 cells). (A) 

Confocal microscopy images showing undetectable levels of p63 (green) by 

immunofluorescence in untreated cells (top panels), and upregulation of p63 protein (all 

isoforms detected using H129 & H137 anti-p63 antibodies) demonstrated in cells treated with 

5-Aza (10 µM – middle panels), and upon treatment with TSA (500 µM – bottom panels). 

DAPI (blue) was used to stain nuclei. (B) Western blot showing no p63 expression in 

untreated cells [lane 1 (-)] but upregulation of different isoforms of p63 (detected using anti-

p63 antibody Ab-4 which detects all isoforms of p63) in response to treatment with TSA (500 

µM – lane 2) or 5-Aza (5 – 10 µM lanes 3 and 4) for 24 hrs and in combination for 48 hrs (lane 

5). P63 isoforms determined by comparing molecular weight of exogenously expressed 

isoforms in HEK 293T cells [section 2.1.5.1] (data not shown here).  TSA – trichostatin A, 5-

Aza – 5-Azacytidine. 
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4.3.1.4 Epigenetic mechanisms do not induce de novo synthesis of ∆Np63 

To explore the role of epigenetic mechanisms in modulating specific isoforms of p63, 

a melanoma cell line expressing only TAp63 (5810P) was investigated [Figure 4.6A]. 

This was undertaken primarily to determine if restoration of the unexpressed isoform 

(∆Np63) occurred in response to HDAC inhibition and/or demethylating agents. 

Moderate upregulation of TAp63 was observed at 24 hrs following treatment with 

TSA and 5-Aza individually but to a much lesser degree when the two agents were 

given in combination [Figure 4.6B]. No re-expression of ∆Np63 was observed in this 

cell line upon treatment with either agent individually or in combination up to 72 hrs. 

These data suggest that silencing of ∆Np63 in a cell line already expressing TAp63 is 

not a result of methylation or deacetylation. 

 

4.3.1.5 Epigenetic mechanisms increase endogenous expression of ∆Np63 

To determine if the silencing of TAp63, when it is the unexpressed isoform occurs as 

a result of epigenetic mechanisms, the melanoma cell line 26258M (which expressed 

no TAp63) was subjected to HDAC inhibition and/or demethylation and analysed 

using Q-PCR [Figure 4.7A]. Whilst significant restoration of TAp63 expression was 

observed upon treatment for 24 hrs with TSA alone and in combination with 5-Aza, a 

modest upregulation of the ∆N isoform was only observed when cells were treated 

with the combination for 48 hrs [Figure 4.7B].  Upon treatment with low dose TSA and 

5-Aza in succession for 72 hrs, both TAp63 and ∆Np63 were efficiently upregulated in 

26258M cells [Figure 4.7C].  

 

These data confirm earlier results that TAp63 expression can be epigenetically 

modulated in a cell line with no detectable endogenous TAp63. These findings are in 

keeping with those reported for this isoform of p63 (Sayan et al. 2009). However this 

is the first evidence that epigenetic modulation of ∆Np63 also occurs. Compared with 

TAp63, upregulation of ∆Np63 was less pronounced and required up to 48 hrs to 

observe an effect, suggesting that the mechanism regulating this isoform is a slower 

process.    
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(A) 

(B)               

 

 

Figure 4.6: Modulation of TAp63 in a melanoma cell line expressing no endogenous 

∆Np63 (5810P). (A) Gene expression of TA and ∆Np63 relative to the mean expression of the 

genes in five primary melanocyte cultures demonstrating upregulated TAp63 but no 

endogenous ∆Np63. (B) Histogram showing significantly greater upregulation of TAp63 

expression upon treatment with TSA and 5-Aza at 24 hrs treatment in 5810P cells. The 

combination of TSA and 5-Aza treatment has little effect on the expression of TAp63 at any 

time-point. Values shown are mean expression +/- SEM of two independent experiments 

performed in triplicate. TSA – trichostatin A, 5-Aza – 5-Azacytidine.      
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 (A)                                                  (B) 

   

 (C)    

 

 (D) 

 

Figure 4.7: Epigenetic modulation of TP63 (26258M). (A) p63 mRNA expression relative to 

mean expression of p63 in five melanocyte cultures, showing upregulation of ∆Np63 but not 

TAp63 in this cell line. (B) TAp63 mRNA expression restored in response to TSA with similar 

effect upon combination TSA and 5-Aza treatment. 5-Aza does not restore expression of 

TAp63. (C) ∆Np63 mRNA is upregulated in response to TSA alone and in combination with 5-

Aza, with marked increases observed at 48 hrs. (D) TA (light purple bars) and ∆Np63 (dark 

purple bars) mRNA response to combination treatment of TSA and 5-Aza, given concurrently 

or in 24 hrs succession. Maximal modulation occurs for TAp63. TSA treatment, 24 hrs prior to 

addition of 5-Aza, had the greatest effect on mRNA upregulation of both isoforms. Values 

shown are mean expression +/- SEM of two independent experiments performed in triplicate. 
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4.3.1.6 Epigenetic modulation of p63 is predominantly acetylation 

To complete the analysis of epigenetic modulation of p63, the final group of cell lines 

tested were those expressing both isoforms of p63. TSA treatment of the melanoma 

cell line WM278, resulted in significant upregulation of TA and ∆Np63 at 24 and 48 

hrs respectively [Figure 4.8]. 5-Aza treatment had little effect on the expression of 

either isoform. A modest upregulation of TA and ∆N p63 was observed upon 

treatment with the combination of treatments at 24 and 48 hrs respectively [Figure 

4.8]. 

 

These data confirm the previous results that modulation of both TA and ∆N p63 

occurs predominantly as a result of acetylation. The most readily induced isoform of 

p63 by HDAC inhibitors was TAp63. Epigenetic modulation of ∆Np63 was a more 

gradual process which did not occur consistently. Modulation of p63 gene expression 

did not appear to be due to the direct effects of gene methylation since demethylating 

agents alone had little effect on the expression of either isoform of p63. The 

combination of HDAC inhibition and demethylation of melanoma cells under certain 

circumstances had an additive effect on gene re-expression. This can be explained 

by the HDAC inhibitor allowing increased access of the transcription factors to the 

demethylated gene as a result of increased levels of histone acetylation and the 

consequent chromatin re-modelling (Egger et al. 2007).   
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(A) 

                                   

(B) 

 

 

Figure 4.8: Epigenetic modulation of TP63 mRNA (WM278). (A) TP63 mRNA expression 

relative to mean expression of TP63 in five melanocyte cultures showing upregulation of both 

TAp63 and ∆Np63 in this cell line. (B) TAp63 mRNA expression is significantly upregulated in 

response to TSA at 24 hrs but little effect was observed upon treatment with 5-Aza. ∆Np63 

mRNA expression is markedly upregulated in response to TSA alone, and to a lesser extent 

when treated in combination with 5-Aza at 48 hrs. 5-Aza has little effect in modulating ∆Np63 

mRNA. Values shown are mean expression +/- SEM of two independent experiments 

performed in triplicate. TSA – trichostatin A, 5-Aza – 5-Azacytidine.    
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4.3.2  microRNA regulation of TP63 

To evaluate the dysregulation of microRNAs which could account for variable 

expression of p63 in melanoma cell lines screened [section 3.3.1.2], a panel of cell 

lines consisting of four categories were chosen for analysis: p63-null cell lines and 

three categories comprising of melanomas expressing p63: p63 (both TA and ∆N 

isoforms), TAp63 only and ∆Np63 only [Table 4.2]. Samples were labelled and 

hybridised according to Agilent Technologies miRNA Microarray System protocol 

[section 2.9.2]. TIFF images were loaded into the Feature Extraction 9.5 (Agilent 

technologies) software and analysed using the microRNA grid template and protocol. 

Replicate probes were combined and then t-tests and Wilcoxon tests were applied to 

normalised log intensities, in order to detect differentially expressed miRNAs in each 

cell class. The array itself was undertaken by Dr G Chiorino and Dr P Ostana (Cancer 

Genomics Lab, Italy) but the raw data were analysed in collaboration with Dr P 

Ostana. 

 

Comparisons were performed to explore the regulation of expression of p63 by 

miRNA. Melanoma cells which did not express p63 were used as the reference for all 

comparisons. An absolute log(fold change) > 0.58 was chosen as it corresponds to 

an absolute fold change >~ 1.5. This cut-off point was chosen since small changes in 

miRNA expression can be relevant for their function in the cell. Dysregulation of 

miRNAs with a statistically significant p-value but a small log(FC) were excluded as 

the change in expression was too small to be considered relevant. miRs with a 

marked change in the absolute log(fold change) but which did not reach statistical 

significance were deemed false positives and also excluded.  
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Table 4.2: Expression of p63 isoforms in a panel of melanoma cell lines analysed using 

microRNA array (Agilent Technologies). Cell lines were grouped according to expression of 

TA and/or ∆N isoform of p63 and highlighted with colour; lighter shading within a group 

represents primary melanoma cell lines and darker shading within a group represents 

metastatic cell lines.   

Cell line 
Stage of 

disease 

TAp63 

expression 

∆Np63 

expression 

 

p63-null 

Mel224 
Primary 

- - 

Mel505 - - 

Mel501 Metastatic - - 

 

p63 – both 

isoforms 

SBCl2 
Primary 

+ + 

WM278 + + 

WM1158 Metastatic + + 

 

TAp63 only 

WM115 Primary + - 

WM239A 

Metastatic 

+ - 

Sk mel 24 + - 

C8161 + - 

 

∆Np63 only 

WM793 
Primary 

- + 

1402P - + 

A375M 
Metastatic 

- + 

HBL - + 
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4.3.2.1 Novel miRNAs identified to regulate p63 expression 

Initially the absolute log(fold change) for miRNAs was analysed by comparing p63 

null melanoma cell lines (Mel 224, Mel 505, Mel 501) with all three groups of p63-

expressing melanoma cell lines together (TAp63 only, ∆Np63 only and TA and 

∆Np63 only). The only miRNAs significantly upregulated in p63-null cell lines were 

miR18a and miR18b suggesting they were putative negative regulators of p63 

expression. miR-18a demonstrated significant upregulation when comparisons were 

made with TAp63-expressing cell lines and both isoform-expressing cell lines [Table 

4.3].  

 

To investigate if p63 mRNA is a target of miR-18a, the 3‟ UTR mRNA sequence of 

p63 was analysed by computational algorithms utilising distinct parameters to predict 

the probability of a functional miRNA binding site within the mRNA target. Kuhn et al 

(2008) recommend at least two algorithms to predict a miRNA binding site before 

additional validation experiments should be pursued. Bioinformatic algorithms were 

therefore utilised to predict miRNA binding sites within the 3‟ UTR of p63 mRNA and 

a putative binding site was found (http://www.microrna.org and 

http://mirdb.org/miRDB/download.html) [Figure 4.9].   

 

4.3.2.2 Tissue-specific miRNAs reported to regulate p63 could act in melanoma 

Analysis of the reported miRNAs deemed to regulate p63 [Table 4.1] revealed two 

candidate miRNAs (miR-21, miR-34a) which were dysregulated between melanoma 

cell lines lacking p63 and those expressing p63 [Table 4.4, Appendix 7]. 

Unexpectedly, these two reported microRNAs targeting p63 were significantly 

upregulated in melanoma cell lines variably expressing isoforms of p63 [Table 4.4]. 

Although the more commonly studied mechanism of regulation by microRNAs is a 

direct interaction, a less well understood, indirect effect to activate gene expression 

has also been documented (Krutzfeldt et al. 2006) [Figure 4.10]. A possible 

explanation for the unexpected upregulation of miR-34a and miR-21 in p63-

expressing cell lines could be an effect mediated through inhibition of a transcriptional 

repressor of p63 [Figure 4.10]. 

 

Analysis of the 3‟UTR of TP63 using the same algorithms failed to demonstrate 

alignment for miR-34a (http://www.microrna.org). Putative intermediate targets of 

miR-34a which are known to transcriptionally repress p63 highlighted Notch 1, Notch 

2 and JAG1 as possible candidates (PicTar; http://pictar.bio.nyu.edu and TargetScan 

Human 5.1; http://www.targetscan.org) which are implicated in regulating ∆Np63 

http://www.microrna.org/
http://mirdb.org/miRDB/download.html
http://www.microrna.org/microrna/getMrna.do?gene=uc003frz.1&organism=9606
http://pictar.bio.nyu.edu/
http://www.targetscan.org/
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levels in keratinocytes (Nguyen et al. 2006). In support of this hypothesis, a recent 

report has confirmed targeting of notch 1 / notch 2 in glioblastoma by miR-34a (Li et 

al. 2009). To add complexity to this hypothesis, miR-21 maintains cell cycle 

progression in glioblastoma cells through regulation of TAp63 (Papagiannakopoulos 

et al. 2008) and a very recent report demonstrated ∆Np63 transcriptionally represses 

miR-34 in murine keratinocytes contributing to cell cycle progression (Antonini et al.). 

These data clearly show that microRNA regulation of the different isoforms of TP63 

mRNA targets is complex and likely to be significantly different between primary cells 

and cancer cells. Growing evidence supports the co-ordinate regulation of single 

genes by multiple miRNAs (Krek et al. 2005) implying that significant work is still 

required to delineate the regulation of p63 in melanoma cells.     

 

Table 4.3: MicroRNAs upregulated in p63-null melanoma cell lines compared with three 

groups of p63-isoform expressing melanoma cell lines.  

 

p63 (-) vs. all p63 

(+) groups 

p63 (-) vs. both 

TA and ∆Np63 
p63 (-) vs. TAp63 p63 (-) vs. ∆Np63 

P-value Log(FC) P-value Log(FC) P-value Log(FC) P-value Log(FC) 

miR-18a 0.012 0.77 0.037 0.89 0.036 0.91 0.062 0.54 

miR-18b 0.047 0.74 0.205 0.86 0.039 0.83 0.112 0.55 

 

Numbers in red show miRNAs significantly upregulated in p63-null melanoma cell lines (p63(-)) 

 

 

3' gauAGACG–UGAUC–UACGUGGAAu 5'    hsa-miR-18a 

           |  |  |  |  |    |  |      |  |    |  |  |  |  |     |  |  |  

   2316 5' acuUCUGCAACAAGCAUGCAGCUUu 3'    TP63       

 

Figure 4.9: Putative binding of miR-18a to TP63 (http://www.microrna.org). (A) miR-18a 

target site within the 3‟UTR of p63 mRNA. (B) Alignment of hsa-miR-18a and TP63 3‟ UTR 

demonstrating putative binding.  
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Table 4.4: Dysregulation of microRNAs previously reported to regulate p63 expression 

in other tissue contexts. Two microRNAs were downregulated in p63-null melanoma cell 

lines compared with three groups of p63-isoform expressing melanoma cell lines. 

ID 

p63 (-) vs. all 

p63 (+) groups 

p63 (-) vs. both 

TA and ∆Np63 
p63 (-) vs. TAp63 p63 (-) vs. ∆Np63 

P-value Log(FC) P-value Log(FC) P-value Log(FC) P-value Log(FC) 

miR-21# 0.1276 -1.5098 0.0648 -2.0974 0.0485 -2.2922 0.7727 -0.2866 

miR-34a* 
0.0003 -2.6902 0.0331 -2.6124 0.0174 -3.0419 0.0066 -2.3968 

0.0089 -3.9134 0.0177 -4.0316 0.0074 -4.3374 0.0142 -3.4006 

 

Negative values (in green) represent decreased log(FC) in p63-null melanoma cell lines. p-values in 

green demonstrate significant downregulation of miRNA in p63 null cell lines. 

# (Papagiannakopoulos et al. 2008) 

*Dr G Chiorino, personal communication 

 

 

 

Figure 4.10: Two putative microRNA regulatory mechanisms to explain expression of 

p63 in melanoma cell lines. (A) Direct regulation of p63 mRNA by miR-18a mediated 

through mRNA degradation or inhibition of mRNA translation. (B) Indirect effect of microRNAs 

on p63. miR-34a and/or miR-21 could regulate p63 indirectly through inhibition of mRNA of a 

transcriptional repressor e.g. notch (Li et al. 2009). This results in derepression of p63 thus 

increased expression of p63. 
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4.3.3  Regulation of p63 stability 

To investigate the stability of p63 mRNA and protein in melanoma, general factors 

applicable to cell culture conditions and specific factors previously reported to 

regulate p63 in other cell systems, were explored.  

 

4.3.3.1 Cell culture conditions 

Cell density is a well-recognised phenomenon influencing gene and/or protein 

expression. ∆Np63 mRNA and protein levels increase as a function of confluence in 

human corneal epithelial cells, peaking at 100% confluence (Robertson et al. 2008). 

In addition, a number of E3 ubiquitin ligases are demonstrated to interact with p63, 

targeting it for degradation [section 1.3.4.2 – 1.3.4.5] and polo-like kinase-1-related 

TAp63 protein degradation is negatively regulated by increased cell density of Hep3B 

liver cells (Komatsu et al. 2009). There appear to be no data examining the 

relationship between cell density and p63 in cancer cell lines. Analysis of p63 mRNA 

using RT-PCR in melanoma cell lines revealed low levels of p63 expressed in cells 

plated sparsely, suggesting that expression of p63 could be a function of confluency, 

and was therefore explored using RT-PCR and western blotting.  

 

4.3.3.1.1 Cell density does not induce synthesis of TP63 in TP63-null cell lines 

To investigate cell confluency as a determinant of TP63 gene expression, cells were 

seeded at increasing density varying from 1x104 to 3x106 cells/60 mm dish, and 

expression of TA and ∆N p63 was assessed using RT-PCR [section 2.2.4]. Initial 

experiments were performed in primary melanocyte cultures which did not express 

endogenous TP63. Increasing cell density from 40 to 100% had no effect on 

expression of TP63 in three primary melanocyte cultures tested (NHEM 2, HEMA V3 

and V4), suggesting that cell density does not increase de novo synthesis of p63 

[Figure 4.11]. In keeping with this finding, when a melanoma cell line which did not 

express endogenous p63 (Mel 224), was seeded at increasing cell density (including 

post-confluency), p63 mRNA levels did not increase [Figure 4.11].  

 

4.3.3.1.2 TP63 mRNA expression is a function of cell density  

Further experiments were performed in melanoma cell lines with endogenous 

expression of TAp63 only (WM239A) and ∆Np63 only (A375M), which demonstrated 

increasing cell density positively correlated with expression of the endogenous 

isoform [Figure 4.12]. To exclude the possibility that cell density regulation of p63 was 

cell-line specific, three other cell lines (Mel 501, ME10538 and 1402P) were tested 

and a melanoma cell line expressing both isoforms (WM1158) was also examined. 
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These results confirmed that mRNA expression increased as a function of cell density 

in melanoma cell lines for endogenously expressed p63 isoforms [Figure 4.12]. When 

cells were left in culture for 24 hrs post-confluence TP63 levels declined (data not 

shown). These findings were in keeping with that reported for ∆Np63 in human 

corneal epithelia (Robertson et al. 2008). p63 expression reached a maximal plateau 

in melanoma cells plated at 60% confluency which was then consistently maintained 

for all subsequent experiments.  

 

4.3.3.1.3 p63 protein expression is a function of cell density 

Protein expression of p63 was not consistently reproducible for melanoma cell lines. 

One explanation is the poor sensitivity and specificity of the anti-p63 antibodies used 

to detect endogenous p63, which recognised undefined bands on a Western blot 

which did not correspond to the molecular weights of exogenously transfected p63 

isoforms [section 3.3.3]. This poses a problem when there are a number of isoforms 

of p63 expressed at low levels which are very close in molecular weight on a Western 

blot. In light of data which showed mRNA expression influenced by cell density, the 

same experiment was repeated to establish if confluency affected protein expression, 

with the aim of addressing the issue of poor antibody sensitivity. Protein lysates from 

cells seeded at increasing density were harvested for Western blotting analysis, and 

probed with the anti-p63 antibody Ab-1. Increasing stability of isoforms of p63 was 

demonstrated in response to increasing cell density with evidence of equal protein 

loading confirmed by GAPDH [Figure 4.12].  

 

In summary, these data demonstrate that confluency does not affect de novo 

expression of p63 but levels of p63 gene and protein expression in melanoma cells 

increases throughout the log growth phase with the optimum confluency determined 

to exceed 60%.  
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Figure 4.11: Cell density has no effect on de novo synthesis of p63. Increasing cell 

density of (i) the primary melanocyte culture - Hema V3 and (ii) Mel 224 cells (which did not 

express endogenous p63) had no effect on gene expression. (-) = PCR control with no cDNA. 

GAPDH was used as a loading control.     

 (A) 

 

(B) 

 

 

Figure 4.12: TP63 expression is a function of cell density. Cells were seeded at 

increasing densities and harvested 24 hrs later when cells were at a minimum confluency of 

30% to a maximum confluency of 100%. (A) TAp63 mRNA levels increase as a function of 

confluency in WM239A melanoma cells and ∆Np63 mRNA levels demonstrate a similar 

phenomenon in A375M cells. (B) In WM1158 cells both isoforms of TP63 mRNA increase as 

a function of confluency, with optimal confluency determined to be 60%, and this is confirmed 

by increased p63 protein levels shown in right panel. GAPDH was used a loading control. (-) = 

RT-PCR control with no cDNA, (+) = TAp63 plasmid exogenously transfected in HEK 293T 

cells to confirm successful PCR reaction.  
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4.3.3.2 Stability of p63 protein is dependent on the proteosome 

To explore stability of p63 isoforms in melanoma cell lines, metastatic melanoma 

cells (WM9, WM278, WM1158) were treated with peptide aldehyde inhibitor, MG-132 

(1-30 μM). These experiments showed stabilisation of endogenous p63, although this 

was not consistently demonstrated for all melanoma cell lines [Figure 4.13]. The 

stability of transfected p63 isoforms was tested using MG-132. Mel 505 cells 

transiently transfected with all six isoforms of p63 failed to demonstrate consistent 

stabilisation of transfected isoforms upon treatment with MG-132 (data not shown). 

Taken together, these findings indicate that proteosomal degradation may be one of 

many possible mechanisms affecting the stability of p63 protein in melanoma cells.  

 

 

 

 

 

 

 

Figure 4.13: Stability of p63 is partially dependent on the proteosome in melanoma cell 

lines. Cells were plated at a confluency of 1 x 10
6
 / 10 cm, treated 16 hrs later and harvested 

at 6 – 24 hrs. The identity of isoforms was established by their co-migration with exogenously 

expressed p63 isoforms in HEK 293T cells (left panel). Melanoma cell lines were treated (+) 

with MG-132 (20 µM) and protein lysates were run on a Western blot probed using anti-p63 

antibody (Ab-1) demonstrating possible stabilisation of isoforms of p63 at 24 hrs. GAPDH was 

used as a loading control. Western blot representative of experiments performed in triplicate. 
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4.3.3.3 Stability of p63 protein is dependent on the E3-ubiquitin ligase itch 

As a result of data supporting proteosome-mediated degradation of p63 in melanoma 

cell lines, a number of E3-ubiquitin ligases explored in relation to p63 degradation 

can be considered [sections 1.3.4.2 – 1.3.4.5]. However, the association of p63 with 

Itch is the most widely investigated of these proteins (Fomenkov et al. 2004; Gallegos 

et al. 2008; Li et al. 2008; Rossi et al. 2006b). Itch can bind, ubiquitylate and degrade 

p63, preferentially interacting with ∆N p63 (Melino et al. 2006; Rossi et al. 2006b). 

Itch is co-expressed with p63 in the epidermis and, by controlling its ubiquitin-

dependent degradation, provides evidence for a functional association in vivo. The 

downregulation of p63 by itch protein plays an important role in epithelial 

homeostasis (Rossi et al. 2006a). There are no reports of itch protein expression in 

the melanocyte lineage or in melanoma.  

 

Initial experiments were performed to determine the expression of itch in this lineage. 

Primary melanocyte cultures and melanoma cells were seeded at equal densities and 

lysates were harvested to investigate the endogenous expression of itch. Itch was not 

expressed at detectable levels in three primary melanocyte cultures tested (NHEM, 

HEMa 3 and HEMa V3). To investigate the relationship between itch and p63 levels, 

melanoma cell lines were analysed showing itch was expressed in melanoma 

irrespective of the stage of disease progression [Figure 4.14]. A reciprocal 

relationship between expression of p63 and itch was observed in 3/9 (33%) 

melanoma cell lines tested. These data suggest that regulation of p63 expression in a 

subset of melanoma cell lines could occur through the E3-ubiquitin ligase, itch.  

 

To explore the relationship between itch and p63 further, melanoma cell lines with 

high endogenous expression of itch were selected for transient silencing of the gene 

using RNAi technology to determine the effect on p63 protein. A pool of four siRNA 

targets of itch (Dharmacon) was used to deplete the gene [section 2.2.7.1, Table 

2.10]. Initial experiments were performed in Mel 505 cells to determine the minimum 

dose of siRNA required to significantly deplete itch which was 20 nM [Figure 4.15A]. 

A time-dependent experiment revealed that this silencing was maintained until 96 hrs 

[Figure 4.15B]. Western blot analysis using anti-p63 antibody showed upregulation of 

p63 protein in Mel 505 cells which were depleted of itch, suggesting a role for itch in 

regulating p63 protein [Figure 4.15B].    
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Figure 4.14: Expression pattern of itch and p63 proteins. A panel of primary melanocyte 

cultures and melanoma cell lines were analysed using Western blotting for itch and p63. Itch 

was not expressed in primary melanocyte cultures (NHEM 2, HEMa 3) but was differentially 

expressed in melanoma cell lines representing different stages of disease progression. 

Analysis of p63 expression (using anti-p63 antibody AB-4) in the same lysates demonstrates 

a reciprocal pattern of expression with itch (using anti-itch antibody) in 3/9 cell lines 

highlighted in blue. GAPDH confirmed equal loading of proteins (not shown).    

(A) 

       

(B) 

             

Figure 4.15: Itch depletion results in upregulation of p63 protein (Mel 505 cells). A pool 

of four siRNA-itch sequences was used to silence itch in melanoma cell lines (example shown 

is mel 505 cells). (A) Significant depletion of itch protein was achieved at a dose of 20 nM at 

24 hrs. (B) Depletion of itch protein was maintained for 96 hrs following transfection with 

siRNA-itch when compared with siRNA-scramble and mock transfected cells. Expression of 

p63 in the same cell line showed significant upregulation of p63 isoforms in itch-depleted 

cells. GAPDH was used as a loading control for proteins. The identity of isoforms was 

established by their co-migration with exogenously expressed p63 isoforms in HEK 293T cells 

(data not shown). siRNA-Sbl = siRNA-scramble sequence.    
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4.4  DISCUSSION  

4.4.1  TP63 is modulated by acetylation 

To understand why 25/34 (74%) melanoma cell lines expressed p63 with a 

differential expression of isoforms and 26% of melanoma cell lines did not express 

endogenous p63, epigenetic silencing of p63 was investigated. No CpG islands were 

detected in the promoter of TP63. Melanoma cell lines treated with demethylating 

agents did not induce de novo expression of TA or ∆N p63 suggesting that 

methylation does not influence p63 expression. Moreover, demethylating agents had 

little effect, if any, on endogenous p63 mRNA and protein levels. Acetylation, 

however, was an important mode of modulation of p63. TSA was able to efficiently 

induce de novo expression of TAp63 and upregulate endogenous TAp63 levels in 

melanoma. Modulation of ∆Np63 by acetylation was a more gradual process which 

did not occur consistently. De novo synthesis of ∆Np63 was not shown upon 

treatment with any epigenetic modulator. Moreover, a recent study has suggested 

that the induction of p63 depends on p53 (Sayan et al. 2009) and although this was 

not directly tested, all cell lines tested harboured wt-p53, supporting this hypothesis. 

 

The limitation of these data is that only two HDAC inhibitors were used to 

demonstrate upregulation of p63. Although the focus of these experiments was to 

investigate global epigenetic mechanisms regulating p63, evidence provided here 

that acetylation is important warrants further attention. Investigating the effect of 

different HDAC inhibitors on endogenous expression of p63 in melanoma would 

further delineate the mechanism of acetylation. To confirm that HDAC inhibitors also 

function by modifying protein stability, p63 levels should be assessed using Western 

blotting upon treatment with HDAC inhibitors in the presence and absence of 

cyclohexamide. This would confirm that HDAC inhibitors contribute to increased 

expression of TAp63 through both de novo synthesis of the gene and increased 

protein stability.    

 

4.4.2  Novel miRNAs identified in melanoma which could regulate expression 

of p63  

4.4.2.1 miRNA-18a 

The only microRNA upregulated in p63-null cell lines when compared with those 

expressing p63 was miR-18a, identifying it as a potential novel negative regulator of 

p63. miR-18a is a member of the miR-17-92 cluster which is an example of a miRNA 

cluster with oncogenic properties (Mendell 2008). It comprises 7 mature miRNAs: 

miR-17-5p, -17-3p, -18a, -19a, -19b, -20a and -92a which are transcribed as one 
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common primary transcript. This cluster is located within ~1kb of an intron of the C13-

25Orf locus on human chromosome 13q31, a region frequently amplified in solid 

cancers, lymphoma and uveal melanoma (Hayashita et al. 2005; Hughes et al. 2005; 

Ota et al. 2004; Volinia et al. 2006). Limited information is reported regarding the 

physiological and pathophysiological role of miR-18a; a pro-proliferative effect is 

reported in hepatoma cells but inhibition of proliferation was reported in breast cancer 

cells, providing evidence of a single miRNA exhibiting activities which depend on the 

cellular context (Dews et al. 2006; Hayashita et al. 2005; Liu et al. 2009b; Matsubara 

et al. 2007). Of relevance, miR-92 was demonstrated in murine myeloid cells to 

increase cellular proliferation by downregulating ∆Np63β, but in HaCaT cells was also 

able to repress ∆Np63α (Manni et al. 2009). 

 

Preliminary findings from the miRNA array require further validation [Section 4.4.2.2]. 

A limitation of the methods employed to study the regulation of p63 by microRNAs, is 

that the cell lines analysed correspond to tumour samples from different individuals, 

which raises the possibility that other perturbations in the molecular pathway could 

account for the observed differences. Melanoma displays significant molecular 

heterogeneity indicating the need to approach results from this microRNA array with 

caution. One strategy that could be used to address this problem would be to analyse 

a cell line endogenously expressing TA and/or ∆N isoforms of p63 and compare this 

with the same cell line in which the isoform is silenced by RNAi technology, thus 

providing more specific and p63-centered results. 

 

4.4.2.2 Future experimental validation of miR-18a  

For miR-18a to repress the expression of its biological target, the co-expression of 

miR-18a and p63 would need to be established in melanoma cell lines using Q-PCR. 

Further validation of the role of miR-18a to suppress p63 would involve confirming 

increased expression of miR-18a in p63-null cells (Mel 224, Mel 505 and Mel 501) 

relative to p63-expressing cells using TaqMan Q-PCR assays. The experimental 

approach to confirm the interaction between miR-18a and p63 mRNA would involve 

cloning the 3‟ UTR of p63 downstream of a luciferase or green fluorescent protein 

open reading frame sequence containing the reporter plasmid. The recombinant 

plasmid and the microRNAs of interest (in this case miR-18a but also the reported 

microRNA regulators of p63 should also be considered) would be transiently 

transfected into a melanoma cell line and the luciferase or fluorescence is measured 

24-48 hr after transfection.  
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Finally, to confirm the hypothesis that p63 is a true target of miR-18a, modulation of 

miRNA concentration should correspond to a predictable change in the amount of 

protein encoded by the target mRNA (p63). Transient overexpression of miR-18a in 

melanoma cell lines expressing high levels of p63 e.g. WM1158 should result in 

downregulation of p63 mRNA and protein. Conversely, transfection with antagomir-

18a into p63-null cell lines e.g. Mel 224 should derepress the target gene p63 and 

increase its levels. In addition, experiments should be undertaken to determine the 

effect of miRNAs which were previously validated in other tissue-specific contexts 

[Table 4.1] on p63 protein to determine if these are relevant in a melanoma-specific 

context. This would involve analysing p63 mRNA and protein following transfection of 

these reported miRNAs e.g. miR-34a in melanoma cell lines already expressing p63 

to demonstrate a downregulation. To explore the indirect effect of this miRNA [section 

4.3.2.2] mediated through notch-1, downregulation of this protein would need to be 

established and demonstration of the reciprocal relationship with p63 expression 

confirmed. The converse experiments using antagomirs against miR-34a could be 

used to upregulate expression of p63 (via notch-1) in p63-null cell lines. These 

experiments would form the basis of investigations to prove that miRNA-mediated 

regulation of p63 expression in melanoma cells equates to altered biological function 

and disease progression.  

 

4.4.3  Stability of p63 is dependent on the proteosome  

Expression of p63 mRNA and protein was influenced by cell density with an optimal 

confluency determined to exceed 60%. This cell density was then used in all 

subsequent experiments described in this thesis. Since cell density had no effect on 

de novo synthesis of p63, one can speculate that the increased expression of p63 

was mediated either through increased stability of the protein or inhibition of 

degradation. This was not addressed in this thesis and to establish this, the stability 

of isoforms could be determined using the cyclohexamide chase assay.  

 

Preliminary data presented here suggest that the proteosome could partially 

contribute to stability of the p63 protein. This is in keeping with findings from the 

literature (Okada et al. 2002; Osada et al. 2001; Petitjean et al. 2008). Investigation of 

the most widely investigated E3-ubiquitin ligase itch, demonstrated a reciprocal 

pattern of expression with p63 in a small proportion of melanoma cell lines examined. 

To explore the relationship between itch and p63, itch was efficiently depleted using 

siRNA which resulted in upregulation of isoforms of p63. These data demonstrate 

that itch could be a negative regulator of p63 expression in a subset of melanoma cell 
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lines. This relationship needs to be explored in melanoma tissue samples to 

demonstrate in vivo proof. Future experiments should investigate the influence of 

reported E3 ubiquitin ligases e.g. WWP1, which could be involved in regulating 

expression of p63 in melanoma (Fomenkov et al. 2004; Fuchs et al. 2004; Li et al. 

2008). 

 

It was not possible to delineate which mechanism(s) contributed to the regulation of 

p63 as these were investigated in isolation. However, most significantly, the data 

presented thus far, suggest that regulation of expression of p63 in melanoma cell 

lines is a highly complex process, involving a variety of mechanisms. These would 

include epigenetic modulation (particularly acetylation), melanoma-specific miRNA 

regulation, protein stability and degradation by ubiquitin ligases. It is likely that 

multiple regulatory mechanisms are active in any one cell line. This reflects the 

heterogeneity of melanoma which is a cancer where tightly controlled regulatory 

mechanisms are likely to contribute to the aggressive and chemoresistant nature of 

the disease. 
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CHAPTER 5: ROLE OF TP63 IN CHEMORESISTANCE  

 

5.1 Background 

 5.1.1 Response of p63 to DNA damage 

 5.1.2 TP53 family and the mitochondrial apoptotic pathway 

 5.1.3 TP53 family and chemosensitivity 

 5.1.4 Chemosensitivity testing in melanoma 

5.1.5 A putative role for p63 in melanoma stem cells 

5.2 Aims 

5.3 Results 

 5.3.1 TP63 is responsive to DNA damaging agents in melanoma  

 5.3.2 p53 protein is stabilised in response to DNA damage 

 5.3.3 Translocation of p63 upon DNA damage 

 5.3.4 Quantification of translocation of p63 

 5.3.5 p63 is a determinant of chemosensitivity 

 5.3.6 CD133 has a role in chemoresistance of melanoma 

5.4 Discussion 

 5.4.1 p63 is linked to the mitochondrial apoptotic pathway 

5.4.2 Mitochondrial translocation of p63 was demonstrated using various 

methods 

5.4.3 p63, CD133 and chemosensitivity 

 

 

5.1  BACKGROUND 

5.1.1  Response of p63 to DNA damage 

p63 exhibits several transcriptional and stress-response properties similar to those of 

p53 in a cell-specific manner (Petitjean et al. 2008). A differential response to 

genotoxic agents is exhibited by p63 isoforms, with literature to date suggesting that 

the apoptotic response is mediated at least in part by degradation of ∆N isoforms and 

stabilisation of TA isoforms. These data are predominantly based on findings 

reported in epidermal keratinocytes in the skin (Harmes et al. 2003; Huang et al. 

2008b; Liefer et al. 2000). In cancer cells, accumulation of ectopically expressed and 

endogenous TA isoforms of p63 is demonstrated in leukaemic cells (Katoh et al. 

2000; MacPartlin et al. 2008; Okada et al. 2002; Petitjean et al. 2005) and 

hepatocellular carcinoma (Petitjean et al. 2005), respectively. Moreover, TAp63 

induces apoptosis in response to DNA damage (Gressner et al. 2005) and this effect 
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is more pronounced when there is accumulation of the isoform as a result of 

epigenetic modulation (Sayan et al. 2007; Sayan et al. 2009). In light of the 

demonstration that TAp63 accumulates in melanoma cell lines upon epigenetic 

modulation, the aim of the initial section of this chapter was to determine the 

response of p63 isoforms to genotoxic stress, and to characterise its putative 

role in apoptosis.   

 

5.1.2  TP53 family and the mitochondrial apoptotic pathway  

Although p53 and p73 have been closely linked to apoptosis, there are limited data 

physically connecting the other p53 family member, p63, to the mitochondrial 

apoptotic pathway. Exogenous transfection of TAp63α in hepatoma cells resulted in 

alteration of the mitochondrial membrane, induction of pro-apoptotic genes and 

activation of both extrinsic and intrinsic apoptotic pathways (Gressner et al. 2005), 

but there is no evidence thus far, demonstrating physical translocation of p63 to the 

mitochondria to achieve this effect.   

 

In contrast, translocation of p53 to the mitochondria is well characterised. In response 

to genotoxic stress, mdm-2 mediated monoubiquitylation of p53 promotes its 

translocation to the mitochondria, directly inducing mitochondrial apoptosis 

(Marchenko et al. 2007). Upon arrival at the mitochondria, p53 undergoes de-

ubiquitylation by mitochondrial HAUSP which generates the apoptotically active non-

ubiquitylated p53 (Marchenko et al. 2007). Stress-induced mitochondrial p53 

translocation is a rapid process, detectable within 30 mins and peaking at 2 hrs 

(Erster et al. 2004; Marchenko et al. 2000). In contrast, nuclear p53 export is a slow 

process, requiring 3 – 8 hrs (Stommel and Wahl 2004). Mitochondrially translocated 

p53 arises from a distinct cytoplasmic pool. Taken together, these reported findings 

suggest the presence of two largely independent pools of pre-existing p53 in 

unstressed cells, cytoplasmic and nuclear, which simultaneously respond to 

genotoxic stress.  

 

5.1.2.1 Caspase cleavage of the TP53 family  

Induction of apoptosis by the TP53 family members appears to depend on cleavage 

of proteins which alters their transcriptional activity (Sayan et al. 2008; Sayan et al. 

2006; Sayan et al. 2007). p53 was the first member of the p53 family demonstrated to 

be a caspase target. Cleavage localised p53 fragments to the mitochondria resulting 

in apoptosis induction which was at least partly due to mitochondrial damage (Sayan 

et al. 2006). More recently, cleavage of the C-terminal TI domain of both TA and ∆N 
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p63α isoforms (at amino acid 458) by activated caspases directly or indirectly 

following treatment with UVB, staurosporine, cisplatin, etoposide and taxol was also 

demonstrated to induce apoptosis (Sayan et al. 2007). Cleavage of TAp63α resulted 

in marked increase in its transcriptional activity and increased sensitivity to apoptosis. 

Although the transcriptional activity of ∆Np63α was unaffected, its inhibitory effect on 

TAp63 isoforms was relieved. Moreover, p63 cleavage fragments demonstrated 

specific cellular localisation, namely the N-terminus fragments remained in the 

nucleus, the C-terminal fragment was largely cytoplasmic and mitochondrial 

localisation of either full length p63 or cleaved fragments was not demonstrated 

(Sayan et al. 2007). Taken together, the authors concluded that the effects of 

caspase cleavage of p53 are mitochondrial and non-transcriptional whereas the 

effects of caspase cleavage of p63 are nuclear and transcriptional. Full length p73 

and caspase-cleaved p73 fragments are also able to translocate to the mitochondria 

(Sayan et al. 2008). Moreover, caspase-generated p53 fragments which localise to 

the mitochondria interact with full length p73/cleaved p73 in/on mitochondria 

providing a possible mechanism for p73 entry to the mitochondria (Sayan et al. 

2006).  

 

Demonstration of cytoplasmic p63 expression in melanoma tissue samples [section 

3.3.5] suggests that p63 has an extranuclear role which could involve the 

mitochondrial apoptotic pathway. It seems plausible that if both p53 and p73 can 

translocate to the mitochondria then p63 should also be able to. It is possible that this 

is a tissue specific phenomenon and can only be demonstrated using endogenous 

p63 in a biological system such as melanoma. This work therefore aims to link p63 

to the mitochondrial apoptotic pathway by demonstrating its physical 

translocation to the mitochondria in response to genotoxic stress. 

 

5.1.3  TP53 family and chemosensitivity 

5.1.3.1 p53 and chemosensitivity 

Chemosensitivity in some cancers is dependent on the complex interactions between 

the three p53 family members. The role of wt-p53 as a determinant of 

chemosensitivity in melanoma is conflicting; in two studies melanoma cells typically 

expressing wt-p53 protein sensitised cells to DNA damaging agents when compared 

with those harbouring mutant p53 (Li et al. 2000; Li et al. 1998) whereas the p53 

stabilising compound CP-31398 failed to chemosensitise either wt or mutant p53 

melanoma cells suggesting that p53 is not a determinant of response to therapy. 



 
Page | 233  

 

Small molecular weight p53 isoforms (p53β, ∆40p53, ∆133p53β) have been identified 

and show differential subcellular localisation (nuclear and cytoplasmic) in melanoma 

cells (Avery-Kiejda et al. 2008). In response to cisplatin, these isoforms are 

upregulated and differentially alter transcription of pro-apoptotic p53 target genes 

providing an additional mechanism which regulates sensitivity to DNA damaging 

agents (Avery-Kiejda et al. 2008).  

 

5.1.3.2 p63 and chemosensitivity in melanoma 

p63 has been linked to chemosensitivity in a number of tumours; in head and neck 

squamous cell carcinoma, ∆Np63 was a key determinant of therapeutic response 

(Rocco et al. 2006) and expression correlated with clinical response to cisplatin 

(Zangen et al. 2005); in breast cancer, p63 expression positively correlated with 

chemosensitivity to cisplatin (Rocca et al. 2008); in hepatoma cells, transfection of 

TAp63α sensitised cell lines to chemotherapy and transient depletion led to 

chemoresistance (Gressner et al. 2005). Significant expression of p63 has not 

previously been demonstrated in melanoma and therefore correlation with 

chemosensitivity in this cancer has not been investigated.   

 

5.1.3.3 p73 and chemosensitivity in melanoma 

The third p53 family member, p73, is essential for apoptosis induced by various 

chemotherapeutic agents (summarised in Muller M 2007). ∆Np73 interacts with 

mutant p53 and/or TAp73 and confers chemoresistance in squamous cancers 

(Bergamaschi et al. 2003a; Gasco and Crook 2003; Irwin 2004; Meier et al. 2006; 

Muller et al. 2005; Strano and Blandino 2003). Upregulation of ∆Np73 has been 

demonstrated in metastatic melanoma. The balance between ∆Np73 and TAp73 is a 

factor determining chemosensitivity in melanoma and adenoviral expression of 

TAp73β sensitised cells to chemotherapies (Tuve et al. 2006), although there are no 

findings reporting a role for other p73 isoforms.   

 

5.1.3.4 Interactions within the p53 family 

In addition, there is intense debate on whether, and how, p63 (and p73) interact with 

p53 in apoptosis and tumour suppression (Benchimol 2004). Several complementary 

regulatory loops exist between p53 family members that provide tight control over 

p63 activities. Induction of ∆Np73 expression by TAp63 isoforms was demonstrated 

in hepatocellular carcinoma cells (Petitjean et al. 2008). ∆Np73 has been 

demonstrated to be a transcriptional target of TAp63α and γ, (and p53 and TAp73) 

contributing to the fine balance of transcriptional activities of p63 (Kartasheva et al. 
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2002; Lanza et al. 2006). ∆Np73 has also been demonstrated to negatively regulate 

TAp63γ transcriptional activity (Grob et al. 2001; Kartasheva et al. 2002). Co-

operativity among the three family members has been reported in mouse embryo 

fibroblasts and in primary neuronal cultures (Flores et al. 2002) but in thymocytes and 

hepatocellular carcinoma, p53-dependent apoptosis occurs independently of p63 and 

p73 (Petitjean et al. 2005; Senoo et al. 2004). More recently, chemotherapy was 

shown to engage all three members of the p53 family and promote cell death in 

response to DNA damage via both intrinsic and extrinsic apoptotic signalling 

pathways (Seitz et al. 2009). 

 

5.1.4  Chemosensitivity testing in melanoma 

Dacarbazine is currently the standard treatment regimen in metastatic melanoma 

(Roberts et al. 2002), with reported response rates of up to 20% (Schadendorf et al. 

2006; Therasse et al. 2000). Taxane-based regimens are considered for second-line 

chemotherapy in melanoma (Gogas et al. 2004b; Hodi et al. 2002; Legha et al. 1990; 

Rao et al. 2006; Ugurel et al. 2006). Higher response rates (12 – 41%) were 

observed when taxanes were given in association with other agents, such as 

dacarbazine, cisplatin or carboplatin (Bafaloukos et al. 2002; Hodi et al. 2002; Rao et 

al. 2006; Ugurel et al. 2006). Platinum compounds have shown modest activity as 

single agents in patients with metastatic melanoma (Atkins 1997; Glover et al. 2003; 

Mortimer et al. 1990). 

 

Melanoma demonstrates notorious chemoresistance when compared with other solid 

cancers (Soengas and Lowe 2003) and an incomplete picture exists for the role of 

the p53 family as determinants of chemosensitivity. This thesis has provided the 

first evidence for the expression of p63 isoforms in melanoma and proposes a 

role for p63 in determining the chemosensitivity of melanoma. This will be 

explored in this chapter through depletion of endogenous p63 and determining 

the effect on sensitivity to standard chemotherapeutic agents.  

 

5.1.5  A putative role for p63 in melanoma stem cells 

The chemo- and radio-resistance of melanoma and its high recurrence rates are 

related to the genetic heterogeneity and genomic instability of the tumour. Over the 

last few years, a subpopulation of cells – cancer stem cells – have been 

demonstrated in melanoma and are considered to be the source of the primary 

tumour mass, of tumour recurrence and metastases and deemed responsible for 

drug resistance. Although mounting evidence supports the existence of cancer stem 
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cells, their characterisation is limited by difficulties related to identifying and 

separating these relatively rare cells. To date, markers used to distinguish cancer 

stem cells from other tumour cells are predominantly based on knowledge of 

embryonic stem cell surface markers or cancer drug resistance markers. Assuming 

that cancer stem cells have significantly different biological properties compared with 

the other cancer cells, the poor efficacy of current therapies can be explained 

because the majority were developed by testing activity against the bulk of cancer 

cells which might not be the cells that drive tumour growth.  

 

In melanoma, CD133 is a putative marker of melanoma stem cells (Frank et al. 2005; 

Frank et al. 2003; Klein et al. 2007; Monzani et al. 2007) which is differentially 

expressed in a subset of melanoma cell lines tested in this thesis. The findings from 

the work presented in chapter 3, demonstrated enriched expression of ∆Np63 

(deemed to confer stemness in keratinocytes) in the CD133-positive population of 

melanoma cells [section 3.3.6.2]. The work undertaken in this chapter aims to 

explore a link between the co-expression of p63 and CD133 by investigating the 

function of this isoform of p63 within the CD133-positive population.  

 

5.2  AIMS 

This part of the thesis hypothesises that p63 may at least in part, account for the 

dysregulation of the p53 apoptotic pathway and, as a consequence, contribute to the 

chemoresistance exhibited by melanoma. The aims were: 

1) To explore the response of p63 to DNA damage in melanoma cell lines 

2) To investigate the role of p63 in chemotherapeutic-induced apoptosis  

3) To determine the relationship between p63 and p53 in response to DNA 

damage in melanoma cells  

4) To determine the contribution of p63 to chemoresistance of melanoma cells 

5) To explore the role of the ∆Np63 isoform in CD133-positive melanoma cells   
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5.3  RESULTS 

5.3.1  TP63 is responsive to DNA damaging agents in melanoma   

5.3.1.1 TP63 mRNA is upregulated upon DNA damage 

Melanoma cell lines were treated with various chemotherapeutic agents and RNA 

was extracted at various time-points (range 1.5 hrs to 48 hrs) [section 2.2.3]. Upon 

treatment, TP63 mRNA was not upregulated in primary melanocyte cultures (NHEM, 

Hema 3, V3 or V4 – data not shown). Upregulation of both TA and to a lesser extent, 

∆N isoforms of TP63 mRNA was demonstrated in melanoma cell lines expressing 

endogenous p63 and those that did not [Figure 5.1]. Maximal upregulation was 

observed upon treatment with doxorubicin and paclitaxel, although marked 

stabilisation of p63 isoforms was also demonstrated upon treatment with cisplatin and 

etoposide. No upregulation of TP63 was observed with dacarbazine in any of the 

melanoma cell lines tested.  

 

In addition, stabilisation of other p53 family members, TP53 and ∆Np73 in response 

to genotoxic agents was investigated using RT-PCR. The response to different 

chemotherapeutic agents was assessed in melanoma cell lines expressing wt-p53 

e.g. A375M, and the p53-null cell line U1SO [Figure 5.1C]. Both TA and ∆Np63 were 

induced by all drugs, despite endogenous expression of only one isoform. No TP53 

was detected in the U1SO cells (confirming p53-null status), and marked stabilisation 

of TP53 was not demonstrated in A375M cells. ∆Np73, previously reported to 

contribute to chemoresistance in melanoma (Tuve et al. 2006) was assessed in the 

same melanoma cell lines prior to undertaking functional experiments. ∆Np73 was 

not observed in treated or untreated U1SO cells, but marked upregulation was 

observed in A375M cells upon treatment with cisplatin, etoposide and doxorubicin but 

not with paclitaxel [Figure 5.1C]. These data demonstrate the complex interplay 

between the p53 family members in response to different chemotherapeutic agents 

which could be cell line-dependent, but also provide a basis for further analysis of 

p63 protein induction in melanoma cell lines.  
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Figure 5.1: TP63 is stabilised in response to DNA damage. (A) TAp63, and to a lesser 

extent ∆Np63, was upregulated in primary (WM115) and metastatic (A375M and Mel 501) 

melanoma cell lines, upon treatment with cisplatin (10 µM) for 24 hrs. (B) In melanoma cell 

lines not expressing endogenous p63 (Mel 224 shown here), upregulation of TAp63 was 

consistently observed. GAPDH was the housekeeping gene used for mRNA standardisation. 

(C) Stabilisation of TAp63 (and to a lesser degree, ∆Np63) in response to various 

chemotherapeutic agents (cisplatin and etoposide 10 µM, doxorubicin and paclitaxel 1 µM) 

occurs independently of p53 status of melanoma cells. Stabilisation of wt-TP53 mRNA is not 

consistent although ∆Np73 upregulation was observed in A375M cells. No stabilisation of 

either protein was observed in U1SO cells. Data shown is representative of four independent 

experiments. Cis – cisplatin, Etop – etoposide, Dox – doxorubicin, Pac – paclitaxel.    
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 5.3.1.2 p63 protein is stabilised upon DNA damage in melanoma 

The response of p63 to DNA damage in keratinocytes is well established; the 

predominant isoform endogenously expressed in keratinocytes (and HaCaT cells) 

∆Np63, a nuclear protein, upon UVB treatment is downregulated which is deemed 

necessary for epidermal apoptosis (Harmes et al. 2003; Huang et al. 2008b; Liefer et 

al. 2000). Overexpression of TAp63α in keratinocytes (under physiological conditions 

expressed at low levels) also significantly prevents apoptosis in UVB irradiated 

keratinocytes (Ogawa et al. 2008), despite the fact that it can induce apoptosis in 

other cell systems (Gressner et al. 2005; Yang et al. 1998). Taken together, the role 

of p63 in keratinocytes is to protect against UVB induced damage.  

 

To confirm the specificity of p63 antibodies and experimental conditions for 

immunofluorescence microscopy, initial experiments were undertaken in HaCaT 

cells. In keeping with the literature (Liefer et al. 2000), characteristic downregulation 

of p63 was observed [Figure 5.2]. To evaluate the response of p63 to DNA damage 

in the melanocyte lineage, primary melanocyte cultures (Hema V3) were treated with 

UVB radiation and various chemotherapeutic agents (cisplatin, etoposide, 

doxorubicin, dacarbazine) from 6-48 hrs. No stabilisation or re-activation of p63 was 

observed in melanocyte cultures despite induction of DNA damage and induction of 

an apoptotic pathway, as demonstrated by positive γ-H2AX and cleaved caspase 

staining, respectively [Figure 5.3]. These data were confirmed in another primary 

melanocyte culture (Hema V4) upon treatment with the same chemotherapeutic 

agents (data not shown). 

 

Experiments were extended to include melanoma cell lines which endogenously 

expressed TP63. Expression of p63 was predominantly nuclear but also cytoplasmic 

and upon DNA damage, upregulation of p63 was observed in both compartments, 

with stabilisation occurring as early as 2 hrs, and in some cell lines persisting for 48 

hrs [Figure 5.4]. This effect was observed in more than one cell line suggesting that 

this was a general phenomenon in melanoma cells [Figure 5.5: example of WM1158 

cells].  
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Figure 5.2: Downregulation of p63 in response to UVB in HaCaT cells (IMF). In untreated 

cultures (-), p63 is a nuclear, non-nucleolar protein. Upon treatment with UVB (50 mJ/cm
2
 for 

6 hrs) downregulation of p63 was observed, confirming specificity of the anti-p63 antibodies 

(H129 and H137) and optimisation of immunostaining technique. DAPI was used to label 

nuclei (blue). Images are representative of three independent experiments. Bar 20 µm. 

 

Figure 5.3: p63 is not induced by DNA damage in primary melanocyte cultures (IMF). (a) 

Untreated (-) Hema V3 melanocytes express almost no endogenous p63 protein. (b) 

Omission of primary antibody confirms specificity of anti-p63 antibodies (H129, H137 in 

combination). (c) Hema V3 cells treated with UVB (50 mJ/cm
2
 for 24 hrs) showing evidence of 

induction of DNA damage confirmed by γH2AX staining (red) but no stabilisation of p63 

(green). (d) Upon treatment with cisplatin (10 µM for 24 hrs), no upregulation of p63 was 

observed in Hema V3 cells despite evidence of apoptosis induction by positive cleaved 

caspase staining (red). DAPI was used to stain nuclei (blue). Images are representative of 

three independent experiments. Bar – 10 µm.   
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Figure 5.4: Stabilisation of p63 protein in A375M cells upon genotoxic stress (IMF). (a) 

Untreated A375M cells (-) have low levels of endogenous p63 (detected by anti-p63 

antibodies H129 and H137) which is largely nuclear. Significant upregulation of p63 (green) in 

both nuclear and cytoplasmic compartments of A375M cells was observed upon treatment 

with (b) etoposide (20 µM) (c) paclitaxel (2 µM) and (d) doxorubicin (2 µM) for 6 hrs. DAPI was 

used to stain nuclei (blue). Images are representative of three independent experiments. Bar 

10 µm.  
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Figure 5.5: Stabilisation of p63 protein upon DNA damage (IMF – WM1158 cells). (a) 

Untreated WM1158 cells (-) express predominantly nuclear endogenous p63 (using anti-p63 

antibodies H129, H137). Upon treatment with (b) paclitaxel (2 µM) and (c) doxorubicin (2 µM) 

for 6 hrs, p63 (green) is efficiently stabilised in both nuclear and cytoplasmic compartments. 

DAPI was used to stain nuclei (blue). Images are representative of three independent 

experiments. 
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5.3.1.3 DNA damage induces differential stabilisation of p63 protein isoforms  

To further investigate the response of p63 protein to genotoxic stress, Western 

blotting analysis using the anti-p63 antibody AB-4 (which detects all isoforms of p63) 

was undertaken. GAPDH was used as a loading control. Despite recent reports that 

GAPDH participates in oxidative stress-induced cell death in neuroblastoma cells 

(Nakajima et al. 2009), different loading controls including α-tubulin were used as a 

comparison, consistently demonstrating stability of the GAPDH protein in melanoma 

cell lines treated with different chemotherapeutic agents. Treatment with UVB 

radiation and chemotherapeutic agents (cisplatin, etoposide, doxorubicin) resulted in 

a differential stabilisation of p63 splice variants in melanoma cell lines [Figure 5.6]. 

Upregulation corresponded at least in part, to induction of apoptosis, determined by 

cleavage of poly (ADP ribose) polymerase (PARP) [Figure 5.6]. The pattern of 

stabilisation of isoforms varied between cell lines. A number of slower migrating 

bands were consistently observed and could be explained by poor specificity of the 

antibody, post-translational modification of smaller isoforms of p63 or cleaved 

products of p63 (Sayan et al. 2007). The recent discovery of new isoforms of p63 

(Mangiulli et al. 2009) also raises the possibility that these bands are p63δ or p63ε 

isoforms but one can only speculate this since exogenously expressed plasmids for 

these isoforms in a p63-null cell line were not available for confirmation. 

 

5.3.2  p53 protein is stabilised in response to DNA damage 

To determine the response of p53 protein in response to DNA damaging agents, 

Western blotting analysis was carried out using the anti-p53 antibody DO-1. p53 was 

upregulated in response to genotoxic stress in melanoma cell lines. A dose- and 

time- dependent upregulation was observed in 3/6 melanoma cell lines examined 

although this was not consistent (data not shown). These data confirm stabilisation of 

p53 protein occurs in response to chemotherapeutic agents, in keeping with previous 

reports (Satyamoorthy et al. 2000) but did not delineate a relationship between p63 

and p53 or uncover their contribution to chemoresistance in melanoma cells.   
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Figure 5.6: Upregulation of p63 isoforms in response to DNA damage (WB). (A) A375M 

cells were treated with UVB (50 mJ/cm
2
) and collected for analysis at increasing time-points 

demonstrating upregulation of several isoforms of p63 (detected using anti-p63 antibody AB-

1). (B) Stabilisation of p63 isoforms was demonstrated in Mel 501 cells upon treatment with 

various genotoxic agents (UVB 25 and 50 mJ/cm
2
; etoposide 10 µM and doxorubicin 1 µM) for 

24 hrs. For both cell lines, upregulation of p63 was partially associated with induction of 

apoptosis as demonstrated by cleavage of PARP (c-PARP). A number of slower migrating 

bands were observed and possible explanations are discussed in section 5.3.1.3 including 

poor antibody specificity, post-translational modification of small isoforms of p63, cleaved 

products of p63 (Sayan et al. 2007), or recently discovered new p63 delta or epsilon isoforms 

(Mangiulli et al. 2009). GAPDH was used as a loading control. Molecular weight of 

standardised protein ladder shown (kDa). Western blots shown are representative of three 

independent experiments performed in four different melanoma cell lines (A375M, WM793, 

Mel 501, WM1158). UVB – ultraviolet B radiation, Etop – etoposide, Dox – doxorubicin.    
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5.3.3  Translocation of p63 upon DNA damage  

5.3.3.1 p63 demonstrates aberrant extranuclear expression  

Stabilisation of p63 within the cytoplasmic compartment of melanoma cell lines raised 

the question of relocation of p63 to different subcellular compartments. To investigate 

this, a number of subcellular markers were used; α-tubulin (cytoskeleton), calnexin 

(endoplasmic reticulum), GM130 (Golgi body), Lamp1 (lysosomes), MitoTracker 

Orange and mtHsp70 (mitochondria). A375M cells were treated with 

chemotherapeutic agents for 24 hrs prior to fixing [section 2.7.1]. In untreated A375M 

cells, endogenous p63 protein showed no obvious co-localisation with any of the 

cellular markers. Upon treatment with paclitaxel or doxorubicin, no co-localisation 

with α-tubulin [Figure 5.7] or LAMP1 was observed (data not shown). In contrast, 

partial co-localisation of calnexin and p63 was observed in treated A375M cells 

[Figure 5.7]. However, organisation of the endoplasmic reticulum (ER) in treated cells 

appeared significantly different to untreated cells i.e. ER co-localisation with the 

nuclei was observed, in keeping with reports of re-organisation of the ER and Golgi 

body demonstrated to occur as part of the ER-stress response (Corazzari et al. 

2007). Moreover, cleavage of calnexin is reported, which alters its structure and 

possibly localisation (Takizawa et al. 2004) suggesting that the co-localisation of p63 

with calnexin is unlikely to be genuine.  
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Figure 5.7: Subcellular compartment labelling in A375M cells. (A) Upon treatment with 

paclitaxel (2 µM), p63 protein (green) stabilises in the cytoplasm but does not co-localise with 

tubulin (red). (B) (i) In untreated A375M cells (-) calnexin (red), a marker of the endoplasmic 

reticulum (ER) demonstrates no co-localisation with the nuclei. (ii) A375M cells treated with 

paclitaxel (2 µM) demonstrates stabilisation of p63. Re-organisation of the ER as shown by 

calnexin (red), appears to co-localise with both p63 (green) and the nuclei (blue) 

demonstrating organisation of the ER in response to stress. Similar findings were observed 

when cells were treated with doxorubicin (2 µM) (data not shown). DAPI was used to label 

nuclei (blue). Images are representative of three independent experiments.     
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5.3.3.2 Upon DNA damage p63 relocates to the mitochondrial compartment 

To investigate a connection between stabilisation of extranuclear p63 and induction 

of the intrinsic apoptotic pathway, relocation of p63 to the mitochondrial compartment 

was examined. This was considered in light of evidence that a fraction of wt-p53 

translocates to the mitochondria in response to various apoptotic stimuli (Marchenko 

et al. 2000; Mihara and Moll 2003; Sansome et al. 2001), and more recent reports 

that p73 is also capable of translocation to the mitochondria (Sayan et al. 2008).  

 

For direct visualisation of p63, cells were incubated with MitoTracker Orange (for 

mitochondrial labelling) prior to treatment with various DNA damaging agents. Cells 

were fixed at various time-points, fluorescently stained using anti-p63 antibodies 

(either H127 and H139 in combination or using 4A4) and subsequently slides were 

visualised using confocal microscopy [section 2.7.1]. Figure 5.8 shows subcellular 

localisation of p63 in untreated WM1158 cells and those treated with paclitaxel and 

doxorubicin at different time-points. The merged image in untreated cells 

demonstrates localisation of p63 largely confined to the nucleus [Figure 5.8] but 

following treatment with paclitaxel (6 hrs) there is stabilisation of p63 (shown by a 

greater intensity of green) in the cytoplasm and more specifically in the mitochondria 

[Figure 5.8]. A more pronounced effect was demonstrated upon treatment with 

doxorubicin (1 µM) persisting up to 24 hrs. Dose-dependent stabilisation of p63 was 

demonstrated upon treatment with cisplatin (10–30 µM) or etoposide (10–30 µM) 

(data not shown) resulting in greater translocation of p63 to the mitochondria, without 

induction of cell death.  

 

5.3.3.3 Partial relocation of p63 to the mitochondria is a rapid and persistent 

process  

Extending these observations to other cell lines, e.g. A375M cells, revealed a similar 

phenomenon showing translocation of p63 to the mitochondria occurring as early as 

2 hrs following treatment with paclitaxel (2 µM) and demonstrated to persist up to 24 

hrs [Figure 5.9]. Taken together, these data confirm that p63 is upregulated in 

response to genotoxic stress and is localised to both nuclei and mitochondria. The 

physical localisation of p63 to the mitochondria has previously never been reported 

but appears to be a general phenomenon occurring in melanoma cell lines.  
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Figure 5.8: p63 relocates to the mitochondria upon genotoxic stress (IMF). A375M cells 

were labelled with MitoTracker Orange (red) prior to treatment with paclitaxel (2 µM) and fixed 

at various time-points. p63 is largely nuclear in (A) untreated A375M cells and there is 

stabilisation in both nuclear and cytoplasmic compartments at increasing time-points: (B) 2 

hrs, (C) 4 hrs, (D) 6 hrs and (E) 9 hrs. Merged images (far right panels) demonstrate 

significant co-localisation (yellow) of p63 (green) and MitoTracker Orange (red) confirming 

p63 relocates to the mitochondria in response to genotoxic stress as early as 2 hrs. DAPI was 

used to label nuclei (blue). Images are representative of three independent experiments. 
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Figure 5.9: Relocation of p63 to the mitochondria is a general phenomenon (IMF). 

WM1158 cells were labelled with MitoTracker Orange (red) prior to treatment with (B) 

paclitaxel (2 µM) and doxorubicin (1 µM) and fixed for immunofluorescence staining at (C) 6 

hrs and (D) 24 hrs. p63 is largely nuclear in (A) untreated WM1158 cells (-) and there is 

stabilisation in both nuclear and cytoplasmic compartments upon treatment with different 

chemotherapeutic agents at increasing time-points. Merged images (far right panels) 

demonstrate significant co-localisation (yellow) of p63 (green) and MitoTracker Orange (red), 

confirming p63 relocates to the mitochondria in response to genotoxic stress in WM1158 cells. 

DAPI was used to label nuclei (blue). Images are representative of three independent 

experiments. Bar 10 µm. 
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5.3.3.4 Upon genotoxic stress p63 translocates to the mitochondrial membrane 

and within the matrix 

Having established that p63 was demonstrated to localise to the mitochondria, it was 

necessary to determine whether p63 was localised on/around the mitochondrial 

membranes or within the mitochondrial matrix. To achieve this, immunogold 

localisation of p63 was assessed using transmission electron microscopy [section 

2.8.2]. Treatment with paclitaxel was chosen as this consistently resulted in 

upregulation of p63. A time-point of 6 hrs was chosen based on immunofluorescence 

microscopy experiments that demonstrated significant upregulation of p63 within this 

time-frame in the absence of cell death. The primary antibodies used to detect p63 

were anti-p63; H129, H137, combination of H129 and H137 and 4A4 [Table 2.17]. 

Because MitoTracker Orange could not be used to label the mitochondria in 

transmission electron microscopy, an alternative marker for mitochondria – 

mitochondrial heat shock protein-70 (mtHsp70) was used. To confirm that the anti-

mtHsp70 antibody was a specific mitochondrial marker, cells were fluorescently 

labelled with MitoTracker Orange prior to fixation. Cells were indirectly labelled with 

anti-mtHsp70 antibody and Alexa-488 conjugated secondary antibody [section 2.7.1]. 

Confocal microscopy demonstrated good co-localisation between MitoTracker 

Orange and mtHsp70, suggesting that mtHsp70 would be a valid marker for 

mitochondria for use in transmission electron microscopy experiments [Figure 5.10]. 

 

Treated A375M and WM1158 cells were pelleted, fixed and processed for 

transmission electron microscopy [section 2.8.2]. Ultrastructurally mitochondrion is an 

organelle formed by a peripheral and inner membrane. The peripheral membrane 

encloses the entire contents of the mitochondrion, and the internal membrane forms 

a series of cristae (folds) which project inwards towards the interior space of the 

organelle. The area enclosed by the inner membrane is the mitochondrial matrix. In 

the classic electron micrograph, mitochondria appear as solitary and individual 

organelles. However recent evidence supports a mitochondrial network whereby 

mitochondria display large, elongated and branched structures (Benard et al. 2007; 

Legros et al. 2004) extending throughout the cytosol (Amchenkova et al. 1988). The 

mitochondrial morphology is continuously modified by functional requirements to 

adapt to different cell demands. Mitochondria can exhibit continuous shape changes 

such as branching, bending and retractions, a change in shape or increase in number 

of cristae and may fuse or increase in size to form giant mitochondria. In cancers, 

mitochondria can display considerable heterogeneity within a single cell (Arismendi-

Morillo 2009; Collins and Bootman 2003).  
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 Mitochondria were identified by their characteristic ultrastructure and confirmed by 

the presence of immunogold particles secondary to anti-mtHsp70 antibody [Figures 

5.11, 5.12]. Mitochondria demonstrated considerable heterogeneity within a single 

melanoma cell, in keeping with reported findings (Collins and Bootman 2003). Upon 

treatment with paclitaxel, immunogold particles of p63 were demonstrated in 

mitochondria of both cell lines using the various anti-p63 antibodies [Figures 5.11, 

5.12]. Immunogold particles of p63 were also demonstrated in the nucleus supporting 

the immunofluorescence microscopy data confirming stabilisation of p63 in this 

compartment [section 5.3.3.2]. Furthermore there was no association of the 

immunogold particles with other subcellular structures identified by their characteristic 

ultrastructure e.g. the Golgi body [Figure 5.11]. Negative controls were visualised by 

excluding the primary antibody [Figures 5.11, 5.12].  

 

Taken together, transmission electron microscopy experiments confirm localisation of 

p63 within the mitochondrial matrix, the cytoplasm and the nucleus of melanoma cell 

lines, upon treatment with paclitaxel. This suggests that upon genotoxic stress, p63 is 

able to translocate between the three compartments to effect its function.   

 

 

Figure 5.10: Hsp70 is a valid mitochondrial marker (IMF). A375M cells were labelled with 

MitoTracker Orange (red) to label mitochondria prior to fixation and immunostaining using 

anti-mtHsp70 antibody (green). Merged image (far right panel) demonstrates co-localisation 

(yellow) of Hsp70 with MitoTracker Orange, demonstrating the validity of using mtHsp70 as a 

marker for mitochondria in electron transmission microscopy experiments. Images are 

representative of three independent experiments. 
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Figure 5.11: Transmission electron micrographs of immunogold labelling of p63 in 

mitochondria (A375M cells). (A) Mitochondria characterised by double membrane and 

cristae projections. Negative control comprises exclusion of primary antibody, to confirm 

specificity. Bar – 100 nm (B) Mitochondrion confirmed by electron dense matrix surrounded by 

double membrane with cristae projections showing immunogold labelled-mtHsp70 localisation 

within the mitochondrial matrix (black arrows), bar – 100 nm (C) (i-iv) Electron dense 

mitochondria characterised by remarkably electron dense mitochondrial matrix and cristae. 

Images demonstrate immunogold localisation of p63 (using combination of anti-p63 antibodies 

H129 and H137) in cytosol, on mitochondrial membranes and within mitochondrial matrix 

(white arrows), bar (i) and (iii) 100 nm, (ii) and (iv) – 200 nm (D) Electron micrographs 

showing immunogold labelling of p63 (using 4A4 anti-p63 antibody) in (i) electron dense 

mitochondrion matrix, bar – 50 nm (ii) nucleus labelled N, nuclear membrane denoted NM, bar 

– 100 nm and (iii) no p63 localised to the Golgi apparatus (labelled G), bar – 0.2 µm. (E) 

Negative control for mouse primary antibodies using only secondary anti-mouse antibody to 

confirm specificity, bar – 100 nm.       
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Figure 5.12: Transmision electron micrographs of immunogold labelling of p63 in 

mitochondria (WM1158 cells). (A) Mitochondrion visualised by electron dense matrix 

surrounded by double membrane with cristae projections showing immunogold labelled-

mtHsp70 localisation within the mitochondrial matrix (black arrows). (B) Electron micrograph 

showing both nuclear (labelled N) and extranuclear localisation of p63. (C) Electron dense 

mitochondria characterised by remarkably electron dense mitochondrial matrix and cristae. 

Image demonstrates immunogold localisation of p63 (using combination of anti-p63 antibody 

H129) in transit to mitochondria and within mitochondrial matrix. (D) Electron micrograph 

showing immunogold labelling of p63 (using H137 anti-p63 antibody) within electron dense 

mitochondrion matrix (arrow), Cristae are visible.      
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5.3.3.5 p63 splice variants are differentially localised in melanoma cells 

To further clarify the expression pattern of p63 isoforms in cell organelles and to 

explore translocation of these isoforms to the mitochondria, protein lysates were 

analysed following the subcellular fractionation technique [section 2.3.2]. Melanoma 

cells were treated with chemotherapeutic agents (etoposide 30 µM, doxorubicin 2 µM 

and paclitaxel 2 µM) and harvested at various time-points. Using Western blotting, 

subcellular fractionated protein lysates were probed with anti-p63 antibody (AB-4) 

which detected all isoforms of p63. Although the subcellular fractionation technique 

has a recognised disadvantage of contamination of fractions, the aim of this 

technique was to enrich for proteins of interest within mitochondrial and nuclear 

fractions. Purity of fractions was confirmed by incubation with anti-PCNA (nuclear), 

anti-COX-IV or anti-mtHsp70 (mitochondrial) and anti-GAPDH (cytosolic) antibodies.  

 

Different splice variants of p63 were expressed in different cellular compartments. In 

untreated WM1158 cells, TAp63α was largely expressed in the nuclear fraction and 

TAp63β was largely expressed in the mitochondrial compartment, with upregulation 

of each isoform in their respective compartments in response to various 

chemotherapeutic agents [Figure 5.13].  

 

5.3.3.6 p63 splice variants are differentially stabilised in subcellular 

compartments 

In untreated A375M cells the expression pattern observed was different. Both ∆Np63 

α and β were localised in the nucleus and mitochondria, with stabilisation of both 

isoforms of p63 in both compartments upon treatment with etoposide, paclitaxel and 

doxorubicin [Figure 5.14]. In this situation, p63 isoforms could be stabilised in their 

respective compartments or partially translocate from nucleus to mitochondria upon 

genotoxic stress, thus influencing apoptotic pathways in melanoma. In addition, 

treatment with chemotherapeutic agents revealed a slower migrating band in the 

mitochondrial fraction (arrow) which may be ∆Np63δ (Mangiulli et al. 2009) or a post-

translational modification of ∆Np63γ. p63 has been demonstrated to be a 

phosphoprotein (Westfall et al. 2005) and UVB irradiation results in rapid induction of 

∆Np63α followed by phosphorylation of ser-66/68 which leads to its degradation and 

inactivation by 6 hrs (Papoutsaki et al. 2005; Westfall et al. 2005). This prevents 

apoptosis through activation of the Akt survival pathway (Ogawa et al. 2008). Probing 

with anti-phospho-p63 antibody failed to confirm this on a Western blot. However the 

only commercially available anti-phospho-p63 antibody detects phosphorylation at 

ser 160/162 in TAp63α alone and in A375M cells the predominant isoform expressed 
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is ∆Np63, so an alternative phosphorylation site, e.g. ser-66/68 is a more likely 

explanation for the slow migrating band on the blot.  

 

Very low expression levels of p63 protein were detected using Western blotting in the 

cytosol. This could be a result of instability of the p63 isoforms within this 

compartment and/or the transient nature of the isoforms within the cytosol while 

migrating between nucleus and/or mitochondria upon genotoxic stress.  

 

5.3.3.7 Putative cleavage of p63 is demonstrated upon DNA damage 

∆Np63 isoforms are upregulated in A375M cells upon treatment with 

chemotherapeutic agents but additional bands, not corresponding to specific splice 

variants of p63, were also consistently identified [Figure 5.14]. To explore this further, 

AB-4 antibody (which detects all isoforms of p63) was used to probe for p63 in 

A375M cells treated with doxorubicin [Figure 5.14B]. Putative cleaved fragments of 

p63 were detected in nuclear, cytoplasmic and mitochondrial lysates. Nuclear and 

cytoplasmic localisation of an N-terminal cleaved fragment (molecular weight ~35kD) 

and nuclear and mitochondrial localisation of a C-terminal fragment (molecular weight 

~20kD) was observed [Figure 5.14B]. A similar pattern of putative cleaved products of 

p63 was detected in melanoma cell lines upon treatment with etoposide and 

paclitaxel (data not shown).  

 

5.3.3.8 Detection of p53 protein in subcellular compartments 

Endogenous wt-p53 protein in melanoma accumulates after genotoxic stress and 

retains its transcriptional activity (Kichina et al. 2003; Satyamoorthy et al. 2000). 

Although it is well established that p53 relocates to the mitochondria inducing both 

the transcriptional-dependent and transcriptional-independent apoptotic pathways 

(Marchenko et al. 2000; Mihara and Moll 2003), there is little evidence of this in 

melanoma. A recent study of melanocytes demonstrated translocation of p53 to the 

mitochondria upon UVA irradiation, but not UVB (Waster and Ollinger 2009). 

Subcellular fractionated protein lysates of A375M cells and WM1158 cells treated 

with different chemotherapeutic agents were probed for p53 (using DO-1 antibody) 

revealing predominant stabilisation of p53 in the nucleus, with less pronounced 

stabilisation in mitochondria [Figures 5.13 and 5.15]. In support of this, 

immunofluorescence microscopy of the same cells demonstrated predominant 

nuclear stabilisation upon treatment with doxorubicin and paclitaxel [Figure 5.16]. 

These findings suggest that in melanoma, p53 displays nuclear stabilisation in 

response to genotoxic stress with possible translocation to the mitochondria.     
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Figure 5.13: Differential subcellular expression of p63 splice variants (WB). Untreated 

WM1158 cells (-) shows localisation of specific isoforms in different subcellular compartments; 

TAp63α in nuclear fraction and TAp63β in mitochondrial fraction. This was confirmed by 

comparing molecular weights to exogenously transfected p63 plasmids in HEK 293T cells (far 

left lanes 1-6). Upon treatment with various chemotherapeutic agents (M2/N2 cisplatin, M3/N3 

doxorubicin, M4/N4 paclitaxel, M5/N5 etoposide and M6/N6 UVB, corresponding to 

mitochondrial (M) and nuclear (N) fractions of the same cells), stabilisation of the endogenous 

isoform was observed. p53 expression analysed in the same lysates (using anti-p53 antibody 

DO-1) demonstrates marked stabilisation in the nuclear fractions and much less in the 

mitochondria. mtHsp70 was used as a marker for mitochondrial protein loading and lamin-A 

was used for loading of nuclear proteins. Western blot data is representative of cellular 

fractionation experiments performed in triplicate. MW – molecular weight in kDa. 
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(A) 

 

(B) 

 

 

Figure 5.14: Subcellular fractionation of A375M cells. (A) Left panel demonstrates 

molecular weight markers of exogenously transfected p63 plasmids in HEK 293T cells (using 

anti-p63 antibody AB-4). This was used to confirm the expression of ∆Np63α and β isoforms 

in the mitochondrial fraction of untreated A375M cells (-) and upregulation upon treatment with 

etoposide (lane E), paclitaxel (lane P) and doxorubicin (lane D). In addition, bands not 

corresponding to any of the standard six plasmids were also observed (denoted by black 

arrows) including a putative N–terminal cleaved p63 product around 37 kD (labelled in red). 

The right panel demonstrates stabilisation of the same p63 isoforms in the corresponding 

nuclear fraction of A375M cells treated with the same chemotherapeutic agents. (B) 

Subcellular fractionation of A375M cells treated with (+) and without (-) doxorubicin 

demonstrating differential pattern of isoform expression in subcellular compartments. ∆Np63β 
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is significantly upregulated upon DNA damage in mitochondrial and to a lesser extent, in 

nuclear fractions. Additional protein bands are noted (black arrows) in the nuclear fraction. A 

slower migrating band in the cytoplasmic fraction (~37kD) could correspond to the N terminal 

cleaved product of p63 (Sayan et al. 2007), and another at ~20kD (labelled in red) in both 

mitochondrial and nuclear fractions (labelled in red), could correspond to the C-terminal 

cleaved p63 product deemed to be important for induction of apoptosis (Sayan et al. 2007). 

Other bands could correspond to other, as yet unidentified, cleaved products, could be 

smaller undiscovered molecular weight splice variants of p63 or could be non-specific. 

mtHsp70/COX IV, lamin A and GAPDH were used as loading controls for mitochondrial, 

nuclear and cytoplasmic fractions, respectively. Western blot data is representative of cellular 

fractionation experiments performed in triplicate. Nuc – nuclear fraction, Cyto – cytoplasmic 

fraction, Mito – mitochondrial fraction, MW – molecular weight, Etop – etoposide, pac – 

paclitaxel, dox – doxorubicin. 

 

 

 

Figure 5.15: Stabilisation of p53 in subcellular fractions of A375M cells. Untreated (-) 

and treated (+) cells with doxorubicin (1 µM) for 6 hrs were fractionated prior to Western blot 

analysis of p53 (using anti-p53 antibody DO-1). Stabilisation of p53 protein was observed in 

both nuclear and mitochondrial fractions in response to DNA damage. COX IV and PCNA 

were used as loading controls for purity of mitochondrial and nuclear fractions, respectively. 

PCNA – proliferating cell nuclear antigen, Nuc – nuclear fraction, Mito – mitochondrial fraction. 
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Figure 5.16: Stabilisation of nuclear wt-p53 in A375M cells (IMF). Endogenous expression 

of p53 (using anti-p53 antibody DO-1) demonstrates that it is a nuclear protein in A375M cells 

(not shown). Cells were labelled with MitoTracker Orange (red) to label mitochondria prior to 

treatment and immunostaining for p53 (green). Upon treatment with (A) doxorubicin (2 µM) 

and (B) paclitaxel (2 µM) for 6 hrs, p53 (green) is predominantly stabilised in the nuclei 

(labelled by DAPI - blue) and to a lesser extent in mitochondria. A similar pattern was 

observed upon treatment for 2 – 8 hrs (data not shown). Images are representative of three 

independent experiments.   
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5.3.4  Quantification of translocation of p63  

Subcellular fractionation enriches for p63 protein within each fraction but does not 

allow for assessment of changes in concentration of p63 in response to genotoxic 

stress. To quantify the relative concentration of p63 in different cellular 

compartments, a new method was developed as an alternative to the fractionation 

technique (Leverrier et al. 2007). The advantages of this method include: increased 

sensitivity, requirement for fewer cells, marginal spill over between cellular 

compartments, and reproducible results which allow quantification of relative protein 

concentration within a cellular compartment. Moreover, data from quantification 

studies can be validated using confocal microscopy to confirm purity of the fractions 

[section 5.3.4.1]. 

 

Flow cytometry analysis for quantification of protein translocation was undertaken as 

outlined [section 2.5.2.1]. Live cells were incubated with MitoTracker Orange to 

fluorescently label mitochondria. Cells were labelled with anti-p63 or IgG mouse 

isotype primary antibody and Cy5-conjugated anti-mouse secondary antibody 

followed by Hoechst (to label the nuclei). The anti-p63 antibody used (4A4) detected 

all isoforms of p63 and is unable to distinguish between TA and ∆N isoforms. Intact 

A375M cells, characterised by their double positivity to Hoechst and MitoTracker 

Orange labelling, were analysed [Figure 5.17]. Cells were disrupted using a Dounce 

homogeniser and the resulting homogenates were re-analysed by flow cytometry. For 

each cell line, preliminary control experiments included MitoTracker Orange or 

Hoechst fluorescently labelled cells only, showing location of the fractions in the 

homogenised sample [Figure 5.18]. Hoechst-positive and MitoTracker Orange-

negative population were defined as free nuclei; Hoechst-negative and MitoTracker-

positive population were defined as free mitochondria and the final region gated 

comprised intact cells [Figure 5.18]. After gating for whole cell, mitochondrial and 

nuclear populations, fluorescence intensity of p63 shown by Cy5 histograms were 

analysed using the FloJo software [Figure 5.19].  
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Figure 5.17: Quantitative measurement of p63 localisation in untreated A375M cells 

using flow cytometry. Intact A375M cells were analysed using the LSR II flow cytometer to 

confirm positivity to all dyes - Hoechst, MitoTracker and Cy5-conjugated antibody labelling 

(top left panel – position of intact cells on plot shown). Cells were disrupted using a Dounce 

homogeniser and resulting homogenates were re-analysed using the same gating and 

settings (top right panel – position of different cellular fractions shown). Hoechst-positive and 

MitoTracker-negative population are defined as nuclei (represented by blue histogram - 

middle right panel), and Hoechst-negative and MitoTracker-positive population are defined as 

mitochondria (represented by orange histogram - middle left panel). In each of these 

populations, p63-Cy5 signal is analysed (representative example shown in bottom panel) and 

relative change in Cy5 signal when comparing untreated (-) and treated cells is determined to 

quantify increase/decrease of protein of interest in the different subcellular compartments.  
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Figure 5.18: Example of single fluorescence labelling of fractionated cells confirming 

localisation on flow cytometry scatter plot. Untreated A375M cells were homogenised and 

analysed using flow cytometry according to labelling with (A) Hoechst to show position of 

gating of nuclei and cells and (B) MitoTracker Orange to show position of gating for free 

mitochondria.    

 

Figure 5.19: Optimisation of flow cytometry fractionation technique using isotope-Cy5 

labelling (A375M cells). (A) Analysis of untreated lysed cells labelled with isotope-Cy5 

showing position of cells in scatter plot, using LSR II flow cytometer. (B) Position of gating for 

subcellular fractions shows the isotope control levels in (C) whole cells, (D) nuclei and (E) 

mitochondria, depicted as histograms. Representative images shown from at least three 

independent experiments performed.   
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Figure 5.20: Flow cytometry analysis of p63-Cy5 in fractionated A375M cells. Untreated 

A375M cells were lysed and labelled as described [section 2.5.2.2]. (A) Scatter plot showing 

size distribution of A375M whole cells (red), nuclei (blue) and mitochondria (green). (B) 

Scatter plot of Hoechst vs. MitoTracker Orange demonstrating organelle distribution; blue 

gated region (Hoechst +ve) shows the nuclei; red marked area (Hoechst +ve / MitoTracker 

Orange +ve) shows whole cells; green marked area (Hoechst weak+ve / MitoTracker Orange 

+ve) shows mitochondria. (C) Histograms demonstrating level of p63-Cy5 expression 

corresponding to whole cells, nuclei and mitochondria gated in (B). Representative images 

shown from at least four independent experiments performed. Mito – mitochondria.  
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5.3.4.1 Validation of method 

To establish purity of the nuclear and mitochondrial fractions, homogenised cells 

were sorted according to Hoechst and MitoTracker Orange labelling using the 

FACSAria™ cell sorter. The sorted fractions were then re-analysed to confirm purity 

of each fraction [Figure 5.21]. The sorted mitochondrial fraction was then centrifuged 

at 13 000 g for 30 mins at 4ºC and the supernatant discarded. The mitochondrial 

isolates fluorescently labelled with MitoTracker Orange were mounted on a glass 

slide in Vectashield to prevent bleaching of the fluorescent signal. Coverslips were 

secured using clear nail varnish and the isolates were visualised using confocal 

microscopy [Figure 5.21]. The nuclear fraction was prepared in the same way except 

centrifugation performed at 4 500 rpm for 15 mins at 4ºC before mounting the isolates 

onto a slide. Imaging of the intact cells, nuclei and mitochondria by confocal 

microscopy validated the analysis gates used to separate fractions comprising of 

pure nuclei and mitochondria and not fragments of cells [Figure 5.22]. 

 

Further verification of this technique included detection of p63 protein by visualising 

p63-Cy5 in mitochondrial and nuclear fractions using confocal microscopy, following 

fluorescence activated cell sorting (FACSAria™ flow cytometer). Cy5 was not 

routinely used for immunofluorescence microscopy because it is prone to 

photobleaching. Nevertheless it was possible to detect p63-Cy5 in both nuclear and 

mitochondrial sorted fractions which confirmed the purity of fraction and validated the 

method as a means of quantification of protein within each cellular fraction [Figure 

5.22]. 

 

Cells treated with chemotherapeutic agents (etoposide, paclitaxel and cisplatin) were 

prepared using the same method. Doxorubicin is a red compound with an intrinsic 

fluorescence. Its excitation and emission wavelengths are 480 nm and 550 nm and 

therefore because of spectral cross-talk with Hoechst could not be used for this 

quantification experiment despite data from Western blotting and 

immunofluorescence microscopy suggesting that it may be the most potent inducer of 

p63 in melanoma. The dose of drug used for the flow cytometry fractionation assays 

was the optimal dose required to induce p63 without inducing cell death. For each 

cell line this was optimised by observing the morphology of cells following treatment 

[Figure 5.23] in conjunction with data from immunofluorescence microscopy and 

western blotting analyses of p63 protein expression.   

 



 
Page | 265  

 

 

 

 

Figure 5.21: Validation of flow cytometry fractionation technique. A375M cells were 

labelled as outlined and homogenised prior to analysis using the FACS Aria Cell Sorter (A). 

Gated fractions - whole cells, nuclei and mitochondria were subjected to FACS and then 

reanalysed demonstrating purity of (B)(i) nuclear, (C)(i) mitochondrial and (D) whole cell 

fractions. Scatter plots demonstrating background signal noise from buffers (PBS and 

HEPES) are shown in Appendix 8. Sorted cell fractions were then prepared as outlined 

[section 5.3.4.1] and (B)(ii) nuclear and (C)(ii) mitochondrial isolates were visualised using 

confocal microscopy confirming purity of the sorted fraction. Image examples provided are 

from one of five independent experiments performed.   
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Figure 5.22: p63-Cy5 expression in cellular fractions obtained from FACS of labelled 

A375M cells. Cells were labelled with fluorescence markers for nuclei (Hoechst) and 

MitoTracker Orange (mitochondria) and p63-Cy5 (green) to label p63 in A375M cells. 

Following homogenisation, cells were subjected to FACS sorting and fractionated isolates 

were prepared as outlined [section 5.3.4.1]. Confocal microscopy analysis demonstrated p63-

Cy5 expression in pure (A) nuclear and (B) mitochondrial fractions of A375M cells. (C) Giant 

mitochondria show co-localisation (yellow) of p63-Cy5 and MitoTracker Orange (red) 

confirming validity of the flow cytometry method of quantification of p63 translocation to the 

mitochondria. Images are representative of five independent experiments.       

 

 

Figure 5.23: Effect of chemotherapy on A375M cells used in mitochondrial relocation 

experiments. Morphology of A375M cells (using phase contrast microscopy) treated with 

various chemotherapeutic agents (A) untreated, (B) etoposide 20 µM and (C) paclitaxel 2 µM 

for 6 hrs, demonstrating absence of apoptosis and minor changes in morphology of cells upon 

treatment with paclitaxel. Doxorubicin was not used for flow cytometry experiments because 

of cross-over of intrinsic fluorescence of the drug with Hoechst emission wavelength. 

Magnification x20.  
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5.3.4.2 Genotoxic agents induce a differential p63 expression profile 

A375M cells were treated in a time-dependent manner to determine the effect of 

treatment with etoposide (30 µM) on expression of p63 using flow cytometry. To 

quantify the degree of p63 stabilisation upon treatment, the percentage positive 

events were combined with the relative fluorescent intensity of the Cy5 signal. 

Expression of p63 was determined by comparing the expression of p63 to the IgG 

mouse isotype control for each treatment, using the same Cy5-conjugated secondary 

antibody. The relative concentration of p63 in cells (considered total p63), nuclei and 

mitochondria in A375M cells upon treatment was calculated by comparing 

concentration of p63-Cy5 for each treatment to the untreated sample. p63 was 

stabilised to a maximum at 6 hrs with a reduction thereafter to 24 hrs [Figure 5.24]. 

When cells were lysed and re-analysed, expression of nuclear p63 increased linearly 

up to 24 hrs but the stabilisation profile of mitochondrial p63 was similar to the profile 

for total p63 [Figure 5.24].  

 

The same cells were treated with paclitaxel to determine if a similar phenomenon 

occurred. When compared with etoposide, treatment with paclitaxel resulted in 

marked stabilisation of p63 in all cellular compartments of A375M cells [Appendix 9]. 

To investigate if the increased induction of p63 upon treatment with paclitaxel 

compared with etoposide, in the mitochondrial fraction was attributed to a differential 

splicing pattern for p63 proteins, Western blot analysis of the mitochondrial fraction of 

A375M cells was undertaken. This demonstrated stabilisation of ∆Np63 isoforms 

(detected using anti-p63 antibody AB-4) [Figure 5.25B]. When the same lysates were 

probed with anti-p63 antibody H129, reported to detect cleaved p63 (Sayan et al. 

2007), significant stabilisation of a putative cleaved product (MW ~20 kD) was 

observed upon treatment with paclitaxel which could provide a possible explanation 

for the significantly greater upregulation of p63 detected by the flow cytometry 

quantification [Figure 5.25A].  
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Figure 5.24: Profile of relative change in p63 concentration upon treatment with 

etoposide. (A) Scatter plot (left panel) demonstrating intact A375M cells analysed for p63-

Cy5 expression in whole cells upon treatment with etoposide from 0-24 hrs. Histogram (right 

panel) demonstrates maximal upregulation of p63 in A375M cells occurs within 6 hrs of 

treatment. (B) Scatter plot demonstrates analysis of lysed cells and gating of subcellular 

fractions. (i) Upregulation of p63-Cy5 in the nuclei increases linearly up to 24 hrs of treatment 

with etoposide. (ii) Upregulation of p63-Cy5 in the mitochondrial fraction occurs rapidly within 

6 hrs and then decreases considerably thereafter to 24 hrs. Data show mean expression of 

p63 +/- standard error of mean for three independent experiments performed in triplicate.       
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Figure 5.25: p63 isoforms are stabilised in the mitochondrial fraction. (A) Flow cytometry 

analysis showing relative concentration of p63-Cy5 in A375M cells upon treatment with 

etoposide and paclitaxel. Significant upregulation of p63-Cy5 was demonstrated for treatment 

with both etoposide (p-value 0.0075 t-test) and paclitaxel (p-value 0.0003 t-test). Data show 

mean expression of p63 +/- standard error of mean for three independent experiments 

performed in triplicate. (B) Western blot analysis of untreated cells (-) and those treated with 

etoposide (Etop), doxorubicin (Dox) and paclitaxel (Pac) demonstrates stabilisation of ∆Np63 

isoforms (detected using anti-p63 antibody AB-4). When the same lysates were probed with 

anti-p63 antibody H129, reported to detect cleaved p63, significant stabilisation of this putative 

cleaved product was observed upon treatment with paclitaxel which could provide a possible 

explanation for the significantly greater upregulation of p63 detected by the flow cytometry 

quantification in (A). Cox IV and Lamin A confirmed purity and loading of mitochondrial and 

nuclear lysates respectively. MW – molecular weight.       
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5.3.4.3 Stabilisation of p63 occurs in the nucleus with partial translocation to 

the mitochondria upon genotoxic stress 

Flow cytometry experiments were extended to determine if stabilisation of p63 was a 

general phenomenon occurring in melanoma cell lines. p63 expression was 

determined in WM1158 cells by comparing intensity of fluorescence for p63 to the 

IgG mouse isotype control for each treatment, using the same Cy5-conjugated 

secondary antibody [Appendix 10]. The relative concentration of p63 in cells 

(considered total p63), nuclei and mitochondria in fractionated WM1158 cells upon 

treatment were analysed as described earlier by calculating the change in 

concentration of p63-Cy5 for each treatment relative to the untreated sample [Figures 

5.26, 5.27]. Upon treatment of WM1158 cells (metastatic melanoma cell line) with 

paclitaxel (2 µM), maximal stabilisation of total p63 expression was demonstrated at 6 

hrs, in keeping with the results observed with A375M cells [Figure 5.28]. Overall 

paclitaxel induced greater translocation of p63 to the mitochondria in WM1158 cells 

too, when compared with etoposide [Figure 5.28].  

 

To confirm that translocation of p63 to the mitochondria and nuclei was a general 

phenomenon not confined to metastatic melanoma cell lines, the experiments were 

extended to include primary melanoma cells in radial growth phase (SBCl2). 

Upregulation of p63 was demonstrated using flow cytometry analysis in fractionated 

SBCl2 cells upon treatment with cisplatin, etoposide and paclitaxel [Figure 5.29]. 

Significant stabilisation of mitochondrial p63 (and to a lesser extent, nuclear p63) was 

observed in SBCl2 cells upon treatment with different chemotherapeutic agents 

(cisplatin and paclitaxel) at 6 hrs [Figure 5.29].  

 

Taken together, these data demonstrate stabilisation of p63 in nucleus and 

mitochondria occurs in response to genotoxic stress in melanoma cell lines 

representing different stages of disease progression. Translocation of p63 in the 

mitochondrial compartment resulted in a concomitant increase in nuclear p63 

although in most cases the relative increase in mitochondrial p63 was significantly 

greater than the increase in nuclear p63. This suggests significant mobilisation of p63 

to the mitochondria in response to genotoxic stress. These data support observations 

for p53 (Erster et al. 2004; Marchenko et al. 2007), showing recruitment of p63 to the 

mitochondria is a rapid process (occurring as early as 2 hrs), and stabilisation of p63 

in the nuclei is a more gradual process, (continuing to increase up to 24 hrs) following 

exposure to genotoxic stress.  
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Figure 5.26: Isotope-Cy5 labelling of WM1158 cells (flow cytometry fractionation study). 

Untreated WM1158 cells labelled with isotope-Cy5 were lysed and analysed (A) using the 

LSR II flow cytometer. (B) Gating for subcellular fractions shows the isotope control levels in 

(C) nuclei, (D) mitochondria and (E) whole cells depicted as histograms. Representative 

images shown from at least three independent experiments performed.  

 

Figure 5.27: p63-Cy5 labelling of WM1158 cells (flow cytometry fractionation study).  

Untreated WM1158 cells labelled with p63-Cy5 were lysed using the Dounce Homogeniser 

and analysed (A) using the LSR II flow cytometer. (B) Gating for subcellular fractions shows 

the p63-Cy5 levels in (C) nuclei, (D) mitochondria and (E) whole cells, depicted as 

histograms. Representative images shown from at least three independent experiments 

performed.  
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Figure 5.28: Stabilisation of p63 in mitochondrial and nuclear fractions in WM1158 cells 

(using flow cytometry fractionation technique). WM1158 cells were treated in a time-

dependent manner with (A) paclitaxel and (B) etoposide showing upregulation of p63 in whole 

WM1158 cells occurs in a linear relation up to 6 hrs for both treatments. (C) Analysis of 

relative changes in subcellular fractions of treated cells demonstrates upregulation of p63 in (i) 

mitochondria and (ii) nuclei, upon treatment with paclitaxel and to a lesser extent, with 

etoposide. Data showing mean protein expression +/- SEM for at least three independent 

experiments performed in duplicate.   
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Figure 5.29: Stabilisation of p63 in subcellular fractions in SBCL2 cells (analysed using 

flow cytometry fractionation technique). (A) Pictorial representation of radial growth phase 

(RGP) of melanoma illustrating horizontal growth pattern of SBCl2 cells. (B) Upregulation of 

p63 was demonstrated in whole cells upon treatment (6 hrs) with cisplatin (30 µM), paclitaxel 

(2 µM) and etoposide (30 µM) (data not shown for latter). (C) Analysis of relative changes in 

subcellular fractions of treated cells demonstrates upregulation of p63 in (i) mitochondria and 

(ii) nuclei upon treatment with cisplatin and paclitaxel. Similar findings were observed upon 

treatment with etoposide (data not shown). Data shows mean protein expression +/- SEM for 

at least three independent experiments performed in duplicate.  
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5.3.4.4 Phosphorylation of p63 occurs in response to genotoxic stress 

Post-translational modifications of p63 significantly alter p63 protein levels with a 

number of studies reporting phosphorylation of p63 to achieve this effect (MacPartlin 

et al. 2005; Osada et al. 1998; Suh et al. 2006; Westfall et al. 2005). TAp63α is 

phosphorylated in response to γ-irradiation (Suh et al. 2006) and TAp63γ (but not 

∆Np63γ) is phosphorylated by IKKβ kinase in response to γ-irradiation or TNF-α 

(MacPartlin et al. 2008). Phosphorylation of TAp63γ increases its expression levels 

which is postulated to occur through loss of inhibition of ubiquitylation and thus 

degradation of the protein (MacPartlin et al. 2008).  

 

Probing with anti-phospho-p63 antibody failed to identify phosphorylation of p63 upon 

DNA damage in A375M cells on a Western blot, probably because of involvement of 

an alternative phosphorylation site [section 5.3.3.6]. However, possible 

phosphorylation of TAp63 in WM1158 cells was not detected despite involvement of 

the correct phosphorylation site (ser 160/162). This could be attributed to poor 

stability of the protein in its phosphorylated form or the poor sensitivity of the antibody 

to detect the very small fraction of phosphorylated protein on a Western blot. Flow 

cytometry techniques were therefore used as a more sensitive method to detect 

phosphorylation of TAp63 (at ser 160/162) in WM1158 melanoma cells upon 

treatment with DNA damaging agents.  

 

WM1158 cells treated with paclitaxel (2 µM) for 1.5-6 hrs were indirectly labelled with 

anti-phospho-p63 antibody (detecting phosphorylation of serine 160/162 in TAp63) 

conjugated to Cy5 before analysing on the flow cytometer (LSRII) [section 2.5.2.1]. 

IgG rabbit isotype control conjugated to Cy5 was used as a control for each 

treatment. Exposure to paclitaxel resulted in upregulation of total phosphorylated p63 

[Figure 5.30]. To investigate the kinetics of p63 and phosphorylated-p63 in different 

cellular compartments, both forms of p63 were analysed in the same experiment. 

Protein expression in untreated cells was used as the comparator. The 

phosphorylated form of p63 detected in treated cells constituted a small fraction of 

total p63 stabilised [Figure 5.30]. This was in keeping with reports of phosphorylation 

of p63 in keratinocytes and human squamous cell carcinoma cells upon treatment 

with paclitaxel (Westfall et al. 2005). Stabilisation of phosphorylated p63 was maximal 

at 90 mins and 3 hrs in the nuclear and mitochondrial fractions, respectively. When 

compared with total p63, a marked upregulation of phosphorylated-p63 protein was 

detected in the nucleus suggesting that in this compartment the phosphorylated form 

may have an important functional role.   
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Figure 5.30: Subcellular relocation of total p63 and phosphorylated-p63 (WM1158 cells). 

Histograms showing flow cytometry analysis of untreated cells which are (A) labelled with 

rabbit isotope-APC and (B) labelled with phosphorylated-p63-APC. Shift of histogram to the 

right demonstrates upregulation of phosphorylated-p63 upon treatment with paclitaxel for (C) 

3 hrs and (D) 6 hrs. (E) Comparison of p63-Cy5 and phosphorylated-p63 assessed in whole 

cells demonstrates upregulation of the phosphorylated form of p63 up to 6 hrs treatment with 

paclitaxel. Analysis of subcellular lysates following homogenisation demonstrates maximal 

phosphorylation of p63 occurring within 90 mins and 3 hrs in the (F) nuclei and (G) 

mitochondria, respectively. Data showing mean protein expression +/- SEM for at least three 

independent experiments performed in duplicate. Phospho-p63 – phosphorylated p63.      
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5.3.4.5 Translocation of p63 to the mitochondria is dependent on wt-p53  

Stabilisation of p63 in melanoma in response to genotoxic stress, raises the 

possibility that p63 may substitute for, or affect the apoptotic function of, wild-type 

p53. To determine the possible contribution of p63 on p53 apoptotic activity in 

apoptosis in these cells, immunofluorescence microscopy of p53-null melanoma cells 

(U1SO) was undertaken. Q-PCR analysis of these cells showed expression of TAp63 

[Figure 3.3]. Upon treatment with paclitaxel, stabilisation of TAp63 was predominantly 

observed in the nuclei of U1SO cells [Figure 5.31].  

 

The flow cytometry fractionation experiment was initially used to analyse whole U1SO 

cells. This confirmed upregulation of total p63 protein levels upon treatment with 

paclitaxel (2 µM) and etoposide (30 µM) suggesting that stabilisation of p63 occurred 

independent of p53 [Figure 5.32A]. In contrast, FACS analysis of fractionated U1SO 

cells demonstrated limited upregulation of p63 in either nuclear or mitochondrial 

fractions [Figure 5.32]. Taken together, these data suggest that p63 requires the 

presence of wt-p53 for significant translocation to the mitochondria from the nucleus 

and/or cytosol.  

 

To further understand the contribution of p53, to stabilisation of p63 in the 

mitochondria, a melanoma cell line expressing wt-p53 (A375M) was compared to the 

p53-null cell line (U1SO). Treatment with paclitaxel induced significantly greater total 

p63 and mitochondrial p63 in the wt-p53 melanoma cell line (A375M) compared with 

the p53-null cell line (U1SO) [Figure 5.33], suggesting that translocation of p63 to the 

mitochondria may depend on wt-p53.  



 
Page | 277  

 

 

 

 

Figure 5.31: Expression of p53 family members in p53-null melanoma cells (U1SO). (A) 

p53-null cells were confirmed by negative staining for p53 (using anti-p53 antibody DO-1). (B) 

In keeping with Q-PCR results [Figure 3.3], U1SO cells express p63 (TA isoform), which was 

predominantly nuclear. (C) Upon treatment with paclitaxel (2 µM) for 6 hrs, marked 

upregulation of p63 (green) was observed in the nucleus and cytoplasm. Using MitoTracker 

Orange to fluorescently label mitochondria, no significant localisation of p63 to the 

mitochondria was observed (Merge panel). DAPI was used to label nuclei (blue). Images are 

representative of three independent experiments. 
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Figure 5.32: p63 requires wt-p53 to translocate to the mitochondria. TP53-null cells 

(U1SO) were analysed using the flow cytometry fractionation technique, to detect relative 

expression of p63 in (A) whole cells, demonstrating stabilisation in cells upon treatment with 

paclitaxel and etoposide. Lysed cells were analysed for expression of p63 in (B) nuclei and 

(C) mitochondria. Non-significant changes in p63 were detected in p53-null cells upon 

treatment with paclitaxel (nuclear and mitochondrial p-values 0.58 and 0.43, respectively, t-

test) and etoposide (nuclear and mitochondrial p-values 0.67 and 0.06, respectively, t-test). 

Pac – paclitaxel, etop – etoposide. Data shows mean protein expression +/- SEM for at least 

three independent experiments performed in duplicate. 
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Figure 5.33: p63 translocation to the mitochondria requires wt-p53 (using flow 

cytometry fractionation technique). (A) Significantly greater p63 is upregulated in wt-p53 

expressing melanoma cells, when compared with p53-null cells (p-value 0.0421, t-test) but no 

difference was observed for etoposide (p-value 0.4105, t-test), despite upregulation of p63 

observed in both cell lines. (B) Analysis of p63-Cy5 expression in the mitochondrial fraction of 

wt-p53 expressing cells and p53-null cells upon treatment with paclitaxel, supported 

significant upregulation of p63 in the former (p-value 0.0001, t-test). (C) A significant 

difference between total p53 and p63 concentrations upregulated upon treatment with 

paclitaxel was observed (p-value 0.0345, t-test) but not for etoposide (p-value 0.6365, ns, t-

test) suggesting that p63 was implicated in mediating toxicity of paclitaxel. Data shows mean 

protein expression +/- SEM for at least three independent experiments performed in duplicate. 
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5.3.4.6 Translocation of p53 to the mitochondria requires p63  

It is well established that p53 translocates to the mitochondria inducing apoptosis 

(Marchenko et al. 2000; Mihara and Moll 2003; Sayan et al. 2006) and Western 

blotting data have demonstrated that this may also occur under certain conditions in 

melanoma cells [Figure 5.15]. Flow cytometry fractionation studies were therefore 

undertaken to quantify translocation of wt-p53 to the mitochondria in response to the 

same chemotherapeutic agents in melanoma cells and to further delineate the 

relationship between p53 and p63.  

 

Upregulation of both p53 and p63 was demonstrated using flow cytometry in A375M 

cells upon treatment with chemotherapeutic agents [Figure 5.33C]. Significantly 

greater upregulation of total p63 compared with total p53, was observed in response 

to paclitaxel, a drug previously reported to utilise p63 to effect apoptosis (Westfall et 

al. 2005). To quantify translocation of p53 in the presence and absence of p63, 

A375M cells expressing shRNA-scramble were analysed using flow cytometry 

fractionation studies and compared to A375M cells expressing shRNA-p63 (clone D) 

[section 2.2.7.2]. A375M cells were incubated with MitoTracker Orange and treated 

with paclitaxel and etoposide at different time-points. Early time-points (treatment up 

to 6 hrs) were chosen because p53 is reported to translocate to the mitochondria 

rapidly (Erster et al. 2004; Marchenko et al. 2000).  

 

Cells were fixed, permeabilised and labelled with anti-p53 or IgG mouse isotype 

antibody and secondary Cy5-conjugated anti-mouse antibody followed by incubation 

with Hoechst [Section 2.3.2]. No marked upregulation of total, nuclear or 

mitochondrial p53 was detected upon treatment with paclitaxel or etoposide at 1.5 hrs 

and 3 hrs (data not shown). Stabilisation of total p53 was observed in A375M cells 

upon treatment with etoposide but not paclitaxel [Figure 5.34B]. In A375M cells 

depleted of p63 (shRNA-p63), significantly greater accumulation of total p53 was 

observed, for all treatments [Figure 5.34B]. In conjunction with this, p53 stabilisation 

occurred in the nucleus upon treatment with etoposide but in the absence of p63, 

greater p53 stabilisation was observed upon treatment at 6 hrs [Figure 5.34C]. In 

contrast, depletion of p63 resulted in decreased translocation of p53 to the 

mitochondria [Figure 5.34D]. These data suggest that p53 requires p63 for its 

translocation to the mitochondria but its stabilisation in the nucleus is inhibited by 

p63.  
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Taken together with experiments using the p53-null cell line, these findings 

demonstrate stabilisation of both p63 and p53 in the nucleus and translocation of 

both to mitochondria in melanoma cell lines, upon genotoxic stress. The mechanism 

for the latter process appears to be one of co-dependence, whereby depletion of one 

protein limits translocation of the other. Furthermore, these data support an 

interaction between p63 and p53 suggesting a putative anti-apoptotic role for p63 

which might explain the failure of wt-p53 in melanoma.  
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Figure 5.34: Silencing p63 affects wt-p53 response to DNA damage (using flow 

cytometry fractionation technique). (A) Representative flow cytometry histograms depicting 

(i) isotope-Cy5 expression in untreated A375M cells silenced for p63, and p53-Cy5 expression 

in (ii) untreated, and treated A375M cells silenced for p63 with (iii) paclitaxel for 3 hrs, (iv) 

paclitaxel for 6 hrs and (v) etoposide for 6 hrs. (B) Stabilisation of total p53 was observed in 

A375M cells upon treatment with etoposide but not paclitaxel. shRNA-p63 cells show 

significantly greater accumulation of total p53, for all treatments. (C) p53 stabilisation occurred 

in the nucleus upon treatment with etoposide but in the absence of p63, greater p53 

stabilisation was observed upon treatment at 6 hrs. (D) Depletion of p63 led to reduced 

translocation of p53 to the mitochondria suggesting that p53 requires p63 for its translocation 

to the mitochondria but its stabilisation in the nucleus is inhibited by p63. Data showing mean 

protein expression +/- SEM for at least three independent experiments performed in duplicate. 

Pac – paclitaxel, Etop – etoposide.  
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5.3.5  p63 is a determinant of chemosensitivity in melanoma 

5.3.5.1 Melanoma cell lines display differential sensitivity to chemotherapeutic 

agents 

The translocation of p63 to the mitochondria has been demonstrated by various 

methods and links it to a putative role in apoptosis. To investigate this, initial 

experiments assessed the chemosensitivity of a panel of melanoma cell lines to 

determine if a differential sensitivity might be explained by p63 expression. Initial 

experiments to assess the effect of different chemotherapeutic agents were 

performed using the MTT assay [section 2.4.2]. Although this assay is a metabolic 

analysis of cells, it is an established method with high throughput and reproducibility, 

used to provide an indirect measure of cell death. Moreover, chemosensitivity testing 

using the MTT assay has proven to be clinically useful, with correlation of 

chemosensitivity of drugs and clinical response reported in tumours (Furukawa et al. 

1991). 

 

Various chemotherapeutic agents were chosen based on their varied mode of actions 

[Table 1.6]. Dacarbazine (DTIC) is licensed for first-line treatment of metastatic 

melanoma (Roberts et al. 2002). Both cisplatin and paclitaxel are used as second line 

treatments in metastatic melanoma. Recently there has been great interest in 

activators of p53, particularly in tumours which harbour wt-p53 where the protein 

appears inactive e.g. MDM2 inhibitors (Vassilev 2007). Tenovin-6 is a small-molecule 

p53 activator discovered in a cell based screen which demonstrated potent reduction 

of cell viability in cancer cell lines (Lain et al. 2008). This new drug (provided by Dr S 

Lain, Karolinska Institute) was tested in a panel of melanoma cell lines to determine 

its effect on cell viability and compare its efficacy to the more traditional 

chemotherapies. A dose-dependent reduction in cell viability was observed in cells 

treated with tenovin-6 [Figure 5.35]. A 30% decrease in cell viability in neonatal 

human epidermal melanocytes (NHEM) was observed upon treatment with tenovin-6 

but increasing doses of the drug did not influence this effect [Figure 5.36A]. A 

significantly greater reduction in cell viability was observed in metastatic melanoma 

cell lines upon treatment with tenovin-6 when compared with primary melanoma cells 

[Figure 5.36]. 

  

Cell viability was assessed in a panel of primary melanoma cell lines (Mel 224, Mel 

505, WM115, VMM39) and metastatic melanoma cell lines (A375M, WM9, C8161, 

Mel 501) with differential p63 expression, in response to various chemotherapeutic 

agents. Dose-dependent reductions in cell viability were observed upon treatment 
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with various chemotherapeutic agents at 48 hrs. Figure 5.36 is a representative 

example of dose-dependent toxicity demonstrated in WM1158 cells. Differential 

sensitivity to chemotherapeutic agents was observed in cell lines treated with the 

same chemotherapeutic agents [Figure 5.37]. Tenovin-6 demonstrated comparable 

effects on reduction of cell viability in metastatic melanoma cell lines to paclitaxel and 

doxorubicin [Figure 5.37B]. Although dacarbazine is licensed for use in the treatment 

of metastatic melanoma it did not appear to significantly affect apoptosis in vitro, 

confirming previous reports (Mhaidat et al. 2007) [Figure 5.37].  

 

5.3.5.2 p63 mRNA expression correlates with sensitivity to cisplatin and 

tenovin-6 in melanoma cell lines 

Sensitivity of a panel of melanoma cell lines to cisplatin and tenovin-6 determined 

using the MTT assay, was plotted against the relative mRNA expression of TAp63 

and ∆Np63 (from Q-PCR data – section 3.3.1.2) [Figure 5.38]. Non-parametric 

Spearman correlation analysis was performed demonstrating a significant correlation 

between expression of TAp63 mRNA and ∆Np63 mRNA with sensitivity to cisplatin 

[Figures 5.38A, B]. In addition, a significant correlation between expression of TAp63 

mRNA and sensitivity to tenovin-6 was also demonstrated [Figure 5.38C]. All cell 

lines included in the analysis harboured wild-type p53, excluding the possibility that 

p53 might account for differences. 

 

5.3.5.3 p53 is unlikely to be a determinant of chemosensitivity in melanoma 

Although the MTT assay is a useful screening tool to assess cell viability, it is not a 

direct measure of apoptosis. Therefore a more sensitive method – the Annexin V 

assay – was used to directly measure apoptosis. Apoptotic cells included Annexin V-

FITC+ve/PI -ve and Annexin V-FITC+ve/PI+ve. Four melanoma cell lines (three wt-

p53 and one p53-null) were examined following treatment with cisplatin and paclitaxel 

[Figure 5.39]. Cisplatin induced apoptosis more efficiently than paclitaxel and in 

metastatic cell lines compared with the primary cell line, Mel 505 [Figure 5.39E]. No 

significant differences in apoptosis were detected between p53-null (U1SO) and wt-

p53 (WM1158) melanoma cells which both expressed TAp63 (cisplatin p-value 0.055, 

paclitaxel p-value 0.1, Mann Whitney test), suggesting that the presence of p53 was 

not a determinant of chemosensitivity in these cell lines [Figure 5.39E].    
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Figure 5.35: Dose-dependent toxicity of tenovin-6 in melanoma cell lines. Cell viability 

was determined using the MTT assay for (A) a primary melanocyte culture (NHEM) and 

primary melanoma cell lines, and (B) metastatic melanoma cell lines, treated with increasing 

doses of tenovin-6 for 48 hrs. Tenovin-6 demonstrated increased efficiency in reducing cell 

viability in metastatic melanoma cell lines compared with the primary cells providing in vitro 

evidence that this drug should be tested in vivo. Data show mean cell viability +/- SEM of 

three independent experiments performed in triplicate.  
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Figure 5.36: Dose-dependent reduction in cell viability observed upon exposure to 

chemotherapeutic agents (MTT assay). WM1158 cells were seeded at a uniform density of 

7500 cells/well in a 96-well plate. Sixteen hours later, cells were treated with 

chemotherapeutic agents. Cells were treated for 48 hrs with increasing doses of (A) cisplatin 

and etoposide, (B) tenovin-6, (C) paclitaxel and doxorubicin and (D) dacarbazine. All 

treatments induced a dose-dependent reduction in cell viability for WM1158 with the exception 

of dacarbazine. Data shows mean of three independent experiments performed in triplicate. 

Cis – cisplatin, Etop – etoposide, TNV6 – tenovin-6, Pax – paclitaxel, Dox – doxorubicin, DTIC 

– dacarbazine. 
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Figure 5.37: Differential sensitivity of melanoma cell lines to chemotherapeutic agents. 

A panel of (A) primary melanoma cell lines and (B) metastatic melanoma cell lines were 

treated with various chemotherapeutic agents (tenovin-6 10 µM, cisplatin 5 µM, etoposide 5 

µM, doxorubicin 1 µM, paclitaxel 1 µM and dacarbazine 500 µM) and cell viability was 

measured using the MTT assay. In general, metastatic melanoma cell lines were more 

sensitive to the chemotherapeutic agents tested, compared with primary melanoma cell lines. 

A differential sensitivity to drugs was demonstrated. Tenovin-6 showed significant toxicity in 

metastatic cell lines but dacarbazine showed little reduction in cell viability when used to treat 

either primary or metastatic melanoma cell lines. Data shown are mean cell viability +/- SEM 

of three independent experiments performed in triplicate. Cis – cisplatin, Etop – etoposide, 

Dox – doxorubicin, Pac – paclitaxel, DTIC – dacarbazine. 
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Figure 5.38: TP63 expression is a determinant of chemosensitivity. Sensitivity of 

melanoma cell lines (Mel 224, WM115, VMM39, A375M, C8161, Mel 501, 26258M, WM9) to 

(A), (B) cisplatin and (C), (D) tenovin-6 was plotted against the relative expression of (A), (C) 

TAp63 and (B), (D) ∆Np63. Significant correlation was demonstrated between expression of 

TAp63 and chemoresistance to (A) cisplatin and (B) tenovin-6. ∆Np63 also demonstrated 

significant correlation with chemoresistance to cisplatin (D). Gene expression was determined 

using Q-PCR relative to GUS (endogenous housekeeping gene used for standardisation) 

compared with mean expression of the gene in five primary melanocyte cultures [section 

2.2.5].      
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Figure 5.39: Chemosensitivity of melanoma cell lines is not dependent on wt-p53. Cells 

were treated with chemotherapeutic agents for 24 hrs, trypsinised and all cells (living and 

dead) were pelleted and analysed using the Annexin-V assay [section 2.5.1]. Flow cytometry 

profiles are representative of three independent experiments undertaken in (i)(ii) untreated 

cells, (iii) treatment with cisplatin (10 µM) and (iv) treatment with paclitaxel (2 µM) showing the 

percentage of apoptotic cells in (A) Mel 505 cells, (B) A375M cells, (C) WM1158 cells and (D) 

U1SO (p53-null) cells. Panel (i) demonstrates Annexin-V only flow cytometry profile and panel 

(ii) demonstrates Annexin-V/DAPI labelled cell profile. (E) Histogram showing mean % of 

apoptotic cells +/- SEM for three independent experiments performed in triplicate. No 

significant difference between % apoptotic cells was demonstrated between WM1158 cells 

and U1SO cells (cisplatin p-value 0.055, paclitaxel p-value 0.1, t-test).   
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5.3.5.4 Depletion of p63 increases chemosensitivity in melanoma 

To definitively demonstrate the putative role of p63 in mediating chemosensitivity of 

melanoma cells, experiments to silence p63 were performed in melanoma cells using 

RNA interference technology. This involves small non-coding RNAs, which associate 

with nuclease-containing regulatory complexes and then pair with complementary 

messenger RNA targets, thereby preventing the expression of mRNAs. Five 

sequences were used to silence p63 [Figure 5.40]. Three sequences (A, B and C) 

were designed to knockout both TA and ∆N p63. Sequence D was designed to 

knockout TAp63 alone as the target sequence was in exon 3, not found in ∆Np63 

which has a different promoter. Sequence E was designed to knockout ∆Np63 alone, 

by targeting exon 3‟ which is only found in ∆N isoforms as a result of promoter P2 

[Figure 5.40]. 

 

5.3.5.4.1 siRNA-p63 increases chemosensitivity in melanoma cell lines 

Silencing of TP63 in WM1158 cells was initially achieved by transfection of a pool of 

3 siRNA sequences (siRNA-A, -B and -C) targeting p63 [section 2.2.7.1] and 

comparing response to cells transfected with siRNA-sbl. Depletion of both TA and ∆N 

isoforms of p63 by the siRNA-p63 pool [Figure 5.41A(i)] resulted in a significant 

reduction in cell viability upon treatment with chemotherapeutic agents, when 

compared to cells transfected with siRNA-scramble [Figure 5.41A(ii)].  These data 

provided preliminary evidence that depletion of p63 could sensitise melanoma cells to 

chemotherapy. 

 

The predominant endogenous isoform expressed by WM1158 cells was TAp63 

[section 3.3.1]. To determine if the sensitising effect of depletion of p63 was due to 

depletion of predominantly the TA isoform alone, the same experiment was 

undertaken in WM278 cells which expressed significant endogenous levels of both 

TA and ∆N p63. The same pool of three siRNA-p63 sequences was used to deplete 

both isoforms of p63 resulting in over 70% knockdown of the gene when assessed 

using Q-PCR [Figure 5.41B(i)]. Cells depleted of p63 were treated with different 

chemotherapeutic agents and using the MTT assay significant decreases in cell 

viability were demonstrated in p63 silenced cells [Figure 5.41B(ii)]. When p63 was 

silenced using a different siRNA-p63 clone (D), greater than 70% knockdown of the 

gene was achieved and this depletion resulted in significantly increased sensitivity 

(assessed using the MTT assay) upon treatment with different chemotherapeutic 

agents [Figure 5.41C]. Significant depletion of both TA and ∆N isoforms was 

achieved by clone shRNA-D despite its design to target TAp63. On further 
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examination parts of the target sequence D exhibited sequence similarity in exon 3 

and 10 in ∆Np63, providing a possible explanation for the silencing effect 

demonstrated for this isoform [Figure 5.40(ii)]. An alternative explanation is a 

regulatory loop may exist between the TA and ∆N isoforms whereby silencing of the 

TA isoform has a knock-on effect on stability/expression of the ∆N isoform.   

 

Taken together, these data suggest that resistance to chemotherapy observed in 

melanoma cells could be mediated by the presence of both TA and ∆Np63 isoforms.  

 

 

 

Figure 5.40: RNAi target sequences for silencing TP63. Pictorial representation of (i) 

TAp63 and (ii) ∆Np63 gene demonstrating targeted sequences employed by various RNAi 

oligonucleotides (A – E). Sequences A, B and C were designed to target regions in both TA 

and ∆N isoforms of p63. Sequence D designed to specifically target TAp63 demonstrates 

sequence similarity in two exons of (ii) ∆Np63. Sequence E was designed to specifically target 

∆Np63.      

 

  



 
Page | 292  

 

 

Figure 5.41: siRNA-p63 increases chemosensitivity in melanoma cells. (A) (i) Significant 

depletion of TAp63 and ∆Np63 was observed following transfection of WM1158 cells with 

siRNA-p63 pool of 3 sequences (A, B and C) using RT-PCR. (ii) WM1158 cells transfected 

with either siRNA-scramble sequence or siRNA-p63 pool were seeded in 96-well plates and 

assessed using the MTT assay [section 2.4.2] and treated for 48 hrs with different 

chemotherapeutic agents. Cells depleted of p63 demonstrated significant reduction in cell 

viability in response to treatment with cisplatin, etoposide (both 5 µM) and doxorubicin (1 µM) 

for 48 hrs when compared with cells transfected with siRNA-scramble (siRNA-SBL). (B) 

Significant depletion of TAp63 and ∆Np63 was observed following transfection of WM278 

cells with siRNA-p63 pool using Q-PCR. (ii) WM278 cells depleted of both isoforms of p63 

demonstrated significant reduction in cell viability in response to treatment with cisplatin, 

etoposide and doxorubicin for 48 hrs when compared with cells transfected with siRNA-SBL. 

(C) Significant depletion of TAp63 and ∆Np63 was observed following transfection of WM278 

cells with siRNA-D sequence using Q-PCR. (ii) WM278 cells depleted of both isoforms of p63 

by a different siRNA target sequence (D) confirmed significant reduction in cell viability in 

response to the same chemotherapeutic agents when compared with cells transfected with 

siRNA-SBL. Cis – cisplatin, Etop – etoposide, Dox - doxorubicin.      
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5.3.5.4.2 shRNA-mediated depletion of p63 increases chemosensitivity of 

melanoma cell lines  

Although siRNA was effective in silencing p63 (transfection efficiency 60-70%) for up 

to 72 hrs, short hairpin RNA (shRNA) has the advantage of long-term and stable 

silencing with improved delivery of silencing to all cells. By using shRNA to silence 

p63, a more sensitive method to detect apoptosis (Annexin V assay) could be used to 

confirm that depletion of p63 genuinely affects chemosensitivity in melanoma. As the 

method used to clone the shRNA constructs requires annealing of two long 

oligonucleotides the chance of mutation due to synthesis error is high (Miyagishi M 

2004) and as a result sequencing confirmed successful cloning of target sequences 

A, C, D and E [Table 2.10]. 

 

The morphology of A375M cells depleted of p63 using four different shRNA-p63 

clones was not dissimilar to those stably expressing shRNA-scramble [Figure 5.42] 

and cell growth was not significantly different. The effects on mRNA expression of 

p63 in A375M cells with p63 silenced were assayed [Figure 5.43A]. All clones 

significantly silenced ∆Np63 which was the predominantly expressed isoform of p63 

in A375M cells. No difference in TAp63 and ∆Np63 mRNA expression was observed 

between untransfected A375M cells and A375M cells stably expressing scramble 

sequences, confirming the shRNA-scramble had no effect on p63 gene expression. 

To confirm that the effects demonstrated in these experiments were mediated by p63 

depletion and not attributed to depletion of other p53 family members, the expression 

levels of ∆Np73 and p53 were examined using RT-PCR. No marked reduction of p53 

or ∆Np73 was observed in A375M cells expressing shRNA-p63 clones [Figure 

5.43B].  

 

Apoptosis was assessed at 24 hrs, using the Annexin-V assay, in A375M cells 

expressing each of the four clones of shRNA-p63 upon treatment with different 

chemotherapeutic agents. A significant increase in apoptosis was observed with all 

shRNA-p63 clones when compared with shRNA-sbl in cells treated with cisplatin 

[Figure 5.44]. To extend this experiment, another cell line (WM1158) in which the 

predominant isoform expressed was TAp63 was tested. No difference in morphology 

was observed between cell lines expressing the four shRNA-p63 clones A, C, D and 

E [Figure 5.45]. Significant depletion of both TA and ∆N isoforms was demonstrated 

by clone shRNA-D despite its design to target TAp63 only [Figure 5.46A]. mRNA 

analysis in untransfected cells confirmed no effect of shRNA-sbl on expression of 
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p63. Increased chemosensitivity to cisplatin and paclitaxel was similarly 

demonstrated by shRNA-p63 clone D in WM1158 cells [Figure 5.46C].  

 

Although one could argue for possible depletion of ∆Np73 by the shRNA clones in 

A375M cells accounting for the increased sensitivity to cisplatin, ∆Np73 was not 

detected in WM1158 cells [Figure 5.46A(ii)]. These data therefore support the 

interpretation that the sensitising effect of p63 depletion demonstrated in A375M cells 

was attributed to silencing of p63 alone. To summarise these data, depletion of both 

TA and ∆N p63 results in increased chemosensitivity of melanoma cells, implicating 

p63 as an anti-apoptotic factor in melanoma.  

 

5.3.5.4.3 p63 does not mediate sensitivity to dacarbazine   

To determine if the sensitising effect of p63 depletion might have a clinically relevant 

therapeutic application, experiments were extended to include dacarbazine, a drug 

currently licensed for use in the treatment of metastatic melanoma. Dose dependent 

experiments in WM1158 cells, revealed no increased sensitivity to the drug at various 

doses [Figure 5.47]. These data support earlier experiments using the MTT assay 

demonstrating that dacarbazine does not utilise an apoptotic pathway mediated by 

p63 to achieve its therapeutic effect in melanoma [Figure 5.37].  

 

5.3.5.4.4 Both TA and ∆N isoforms contribute to chemoresistance in melanoma 

One clone (shRNA-E) designed to target ∆Np63 at exon 3‟ [Figure 5.40] had an 

unexpected effect on gene expression by significantly increasing expression of 

TAp63 but silencing ∆Np63 in both A375M and WM1158 cells [Figure 5.48]. In both 

these cell lines, this clone did not affect sensitivity to either cisplatin or paclitaxel 

[Figure 5.48]. Taken together, these chemosensitivity experiments demonstrate 

depletion of p63 is capable of sensitising melanoma cells to cisplatin and possibly 

paclitaxel. To achieve this effect depletion of both TA and ∆N p63 is required, 

implicating an oncogenic role for both isoforms in melanoma. 
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Figure 5.42: Morphology of A375M cells transfected with shRNA-p63 target sequences. 

Phase contrast microscopy images of A375M cells transfected with (i) shRNA-scramble, and 

shRNA-p63 sequences (ii) shRNA-A, (iii) shRNA-C, (iv) shRNA-D, (v) shRNA-E demonstrated 

no obvious change of morphology or proliferation rate following depletion of p63. 

Magnification x20. 

 

Figure 5.43: Expression of p53 family members following transfection with shRNA-p63 

(A375M cells). (A) Q-PCR of cells transfected with three different shRNA-p63 sequences 

demonstrates significant reduction of ∆Np63 for all three when compared with shRNA-

Scramble transfected cells. Significant TAp63 reduction was achieved using shRNA-D 

although endogenous expression of TAp63 in A375M cells was already very low. GUS was 

used as the housekeeping gene for standardisation. Data shown is mean +/- SD expression of 

gene from three independent experiments. (B) Using RT-PCR, depletion of ∆Np73 was noted 

in cells depleted of p63 but no marked depletion of p53 was demonstrated. GAPDH was used 

as the housekeeping gene for mRNA standardisation.   

TAp63 

∆Np63 
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Figure 5.44: Depletion of p63 confers significant chemosensitivity to cisplatin. (A) 

A375M cells transfected with shRNA clones (i-v) shRNA-scramble, (vi – ix) shRNA-A, (x-xiii) 

shRNA-C and (xiv – xvii) shRNA-D were treated with cisplatin (10 µM), etoposide (10 µM) and 

paclitaxel (2 µM). Flow cytometry scatter plots demonstrate Annexin-V assay of apoptosis in 

A375M cells with p63 silenced by different shRNA clones.  (i) Annexin-V only, scatter  plot of 

untreated shRNA-scramble cells. (ii, vi, x, xiv) Annexin-V/DAPI plot for untreated cells with 

different shRNA clones. (B) The percentage of apoptotic cells (Annexin-V positive) are 

displayed in the graph as the mean ± SEM for three independent experiments performed in 

duplicate. Significantly increased apoptosis was detected between shRNA-SBL and shRNA-

p63 clones was shown demonstrating that silencing p63 increases chemosensitivity to 

cisplatin (p-value <0.0001, one way Anova).   
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Figure 5.45: Morphology of WM1158 cells transfected with shRNA-p63 target 

sequences. Phase contrast microscopy images of WM1158 cells transfected with (i) shRNA-

scramble, and shRNA-p63 sequences (ii) shRNA-A, (iii) shRNA-C, (iv) shRNA-D, (v) shRNA-

E demonstrated no obvious change of morphology following depletion of p63. Magnification 

x20. 
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Figure 5.46: Depletion of p63 by shRNA-p63 clones increases chemosensitivity. (A) 

TP53 family members were examined in WM1158 cells. (i) No difference in p63 was observed 

between cells transfected with shRNA-scramble and mock transfection (-) but significant 

reduction of both TA and ∆Np63 was achieved by shRNA-p63 clone D assessed by Q-PCR. 

GUS was used as the endogenous comparator. Data shows mean +/- SD of three 

independent experiments. (ii) Using RT-PCR shRNA-p63 had no effect on TP53 mRNA. 

∆Np73 was not expressed in WM1158 cells. GAPDH was used as the housekeeping gene for 

standardisation. (B) Flow cytometry scatter plots showing Annexin V apoptosis assay for 
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WM1158 transfected with (i – v) shRNA-SBL, (vi – viii) shRNA-p63, (i-iii and vi) untreated and 

treated with (iv and vii) cisplatin, or (v and viii) paclitaxel. (i) Annexin V only shRNA-SBL cells, 

(ii) Annexin V / DAPI scatter plot for shRNA-SBL cells. (C) The percentage of apoptotic cells 

(Annexin-V positive – Q2 + Q4) are displayed in the graph as the mean ± SEM for three 

independent experiments performed in duplicate. Significantly increased apoptosis was 

detected in shRNA-p63 WM1158 cells when compared with shRNA-scramble cells upon 

treatment with either cisplatin (p-value 0.0009, t-test) or paclitaxel (p-value 0.0037, t-test). 

 

 

     

 

 

Figure 5.47: Depletion of p63 has no effect on chemosensitivity to dacarbazine. (A) 

Significant reduction of both TA and ∆Np63 was achieved by shRNA-p63 clone D in WM1158 

cells assessed by Q-PCR when compared to shRNA-scramble (shRNA-SBL). GUS was used 

as the endogenous comparator. Data shows mean +/- SD of three independent experiments. 

(B) The percentage of apoptotic cells (Annexin-V positive) in transfected cell upon treatment 

with dacarbazine at increasing doses are displayed in the graph as the mean ± SEM for three 

independent experiments performed in duplicate. No significant difference in apoptosis was 

detected between WM1158 cells depleted of p63 when compared with shRNA-scramble cells 

upon treatment with any dose of dacarbazine (500 µM p-value 0.742; 750 µM p-value 0.2051 

and 1 mM p-value 0.5073, t-test).   
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Figure 5.48: Depletion of both TA and ∆N isoforms of p63 are required to 

chemosensitise melanoma. Significant reduction of ∆Np63 but marked upregulation of 

TAp63 was achieved by shRNA-p63 clone E in (A) (i) A375M cells and (B) (i) WM1158 cells 

assessed by Q-PCR when compared to shRNA-scramble (shRNA-SBL). GUS was used as 

the endogenous comparator. Data shows mean +/- SD of three independent experiments. The 

percentage of apoptotic cells (Annexin-V positive) in (A) (ii) A375M cells and (B) (ii) WM1158 

cells upon treatment with cisplatin (10 µM) and paclitaxel (2 µM) for 24 hrs are displayed in 

the graph as the mean percentage of apoptotic cells ± SEM for three independent 

experiments performed in duplicate. No significant difference in apoptosis was detected 

between either A375M or WM1158 cells with depletion of ∆Np63 only, when compared with 

shRNA-scramble cells upon treatment with either cisplatin or paclitaxel. (A375M treated with 

cisplatin p-value 0.6973, paclitaxel p-value 0.6531; WM1158 treated with cisplatin p-value 

0.3187, paclitaxel p-value 0.1273; t-test).   
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5.3.5.5 Transfection of p63 isoforms confers chemoresistance in melanoma 

As silencing of p63 conferred sensitivity to chemotherapeutic agents (in particular 

cisplatin), experiments were performed to determine if expression of p63 isoforms in 

a p63-null cell line conferred resistance to treatment. Expression vectors for each p63 

isoform were transiently transfected into Mel 505 cells which express almost no 

endogenous p63 [Section 2.1.5.1.1]. Transfection efficiency was determined to be 

approximately 40-50% as confirmed using immunofluorescence microscopy (data not 

shown). Transfected cells were assayed for protein and mRNA expression of p63. All 

exogenous p63 isoforms were expressed and detected albeit at a variable level for 

each isoform [Figure 5.49]. To further investigate any relationship between p63 and 

∆Np73, the expression of ∆Np73 was assessed in Mel 505 cells transfected with 

each isoform. Both TA and ∆N β and γ isoforms induced expression of ∆Np73. 

Although the TA isoforms have been reported to induce expression of ∆Np73 

(Petitjean et al. 2008) this is the first report that the ∆N isoforms also possess this 

ability [Figure 5.49]. Apoptosis was assessed (using the Annexin-V assay) in Mel 505 

cells transfected with each isoform [Figure 5.50] and upon treatment with cisplatin (30 

µM), etoposide (30 µM) and paclitaxel (2 µM) [Figure 5.51]. All isoforms conferred 

resistance to at least one of the drugs.  

 

Figure 5.49: Successful transfection of Mel 505 cells with p63 plasmids. Plasmids for six 

isoforms of p63 were successfully transfected into Mel 505 melanoma cells and using isoform 

specific primers confirmed specificity using RT-PCR. ∆Np73 expression was also induced by 

transfection of all TA isoforms of p63 (TAα to a very low extent) but also ∆Np63 β and γ 
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isoforms. Gene expression standardisation was confirmed using GAPDH as the 

housekeeping gene. The plasmid pcDNA 3.1 was transfected for control.      

 

Figure 5.50: Apoptosis assay in Mel 505 cells transfected with p63 isoforms. (A) 

Representative flow cytometry scatter plots showing untreated Mel 505 cells (i) Annexin-V 

only plot for untransfected cells, Annexin-V/DAPI plots for (ii) untransfected cells, transfected 

cells with (iii) pcDNA3.1 cells (iv) TAα isoform, (v) TAβ isoform, (vi) TAγ isoform, (vii) ∆Nα 

isoform, (viii) ∆Nβ isoform, (ix) ∆Nγ isoform. (B) The percentage of apoptotic cells (Annexin V 

positive – Q2 + Q4) for Mel 505 cells transfected with plasmids for each isoform is shown. 

Data shown are mean percentage of apoptotic cells +/- SEM of three independent 

experiments each performed in triplicate.      
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Figure 5.51: Chemoresistance in melanoma demonstrated by p63 isoforms. (A), (B), (C) 

Representative Annexin-V/DAPI flow cytometry scatter plots showing mel 505 cells 

transfected with (i) pcDNA3.1, (ii) TA α isoform, (iii) TAβ isoform, (iv) TAγ isoform, (v) ∆Nα 

isoform, (vi) ∆Nβ isoform, (vii) ∆Nγ isoform and treated with (A) cisplatin (10 µM), (B) 

etoposide (10 µM) and (C) paclitaxel (1 µM) for 24 hrs. The percentage of apoptotic cells 

(Annexin V positive – Q2 + Q4) for Mel 505 cells transfected with plasmids for each isoform is 

shown upon treatment with (D) cisplatin, (E) etoposide and (F) paclitaxel. Significant reduction 

in apoptosis upon treatment with cisplatin was demonstrated by transfection with ∆Np63β (p-

value < 0.05, ANOVA). Significant reduction in apoptosis upon treatment with etoposide was 

demonstrated by transfection with ∆Np63α and ∆Np63γ (p-values < 0.05, ANOVA). Significant 

reduction in apoptosis upon treatment with paclitaxel was demonstrated by transfection with 

all TAp63 isoforms (p-values < 0.05, ANOVA). Data shown are mean values +/- SEM of three 

independent experiments each performed in triplicate.    
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5.3.6  CD133 has a role in chemoresistance of melanoma 

5.3.6.1 CD133 labels cells involved in apoptosis in melanoma  

Evidence demonstrating ∆Np63 enrichment in the CD133-positive melanoma stem 

cell population and a role for p63 to confer chemoresistance in melanoma cells, led to 

a series of experiments to link the CD133 stem cell population (enriched with p63) to 

apoptosis. In light of data confirming upregulation of p63 in response to 

chemotherapeutic agents [section 5.3.2] and enrichment of the CD133 population 

with ∆Np63 [section 3.3.6.2], it was necessary to determine if upregulation of the 

CD133 population occurred. Expression of CD133-PE was measured using flow 

cytometry compared to IgG-PE mouse isotype controls. Using two melanoma cell 

lines with low endogenous levels of CD133, upregulation was detected upon DNA 

damage with paclitaxel and UVB [Figure 5.52]. These data provide a possible source 

of chemoresistance in melanoma through upregulation of ∆Np63 in the CD133-

positive cell fraction. In head and neck cancer, ∆Np63 has been demonstrated to be 

an anti-apoptotic, anti-differentiation and pro-survival factor (Rocco et al. 2006; 

Sniezek et al. 2004) and these data suggest that the ∆N isoform is acting in this way 

in the CD133-enriched population.  

  

5.3.6.2 CD133-population mediates chemoresistance in melanoma 

To link the upregulation of CD133+ve expression levels (and ∆Np63) to apoptosis, 

the percentage of apoptotic cells was assayed using Annexin-V in CD133-positive 

and -negative populations. A375M cells (either treated or untreated) were labelled 

with anti-CD133/1 (AC133)-PE antibody (Miltenyi Biotec) and passed through a cell 

strainer cap before analysing on the FACS Aria™ Flow Cytometer (BD Biosciences). 

Sort gates were placed on CD133-positive and CD133-negative cells after comparing 

with the isotype control. Despite upregulation of the CD133-positive population in 

response to various genotoxic agents (cisplatin, paclitaxel and UVB), significantly 

more apoptotic cells were consistently detected in the CD133-negative populations 

[Figure 5.53] suggesting that resistance to apoptosis was mediated at least in part, by 

CD133-positive melanoma stem cells (which are enriched for ∆Np63).  
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Figure 5.52: Upregulation of CD133-positive fraction upon DNA damage. Metastatic 

melanoma cell lines (Mel 501 and WM1158) were treated with paclitaxel (1 µM) and UVB (40 

mJ/cm
2
) for 16 hrs and then labelled with CD133-PE and analysed using flow cytometry. 

Significant upregulation of CD133-positive Mel 501 cells were detected upon treatment with 

paclitaxel (p-value 0.0018, t-test) and UVB (p-value 0.0193, t-test) and CD133-positive 

WM1158 cells upon treatment with paclitaxel (p-value 0.0109, t-test) and UVB (p-value 

0.0215, t-test). Data shown are mean values +/- SEM from three independent experiments 

performed in duplicate.     
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Figure 5.53: CD133-positive population of cells confer resistance to apoptosis. (A) 

Representative examples of flow cytometry scatter plots of A375M cells treated with cisplatin: 

(i) Annexin-V only, isotope-PE labelled untreated cells, (ii) Annexin-V/DAPI and isotope-PE 

labelled untreated cells, (iii) Annexin-V/DAPI and CD133-PE labelled untreated cells, (iv) 

Annexin-V/DAPI and CD133-PE labelled cells treated with cisplatin (Gating – P1=CD133-

positive and P2=CD133-negative, P3=necrotic cells), (v) Annexin-V FITC plot for CD133-

positive population, (vi) Annexin-V FITC plot for CD133-negative population. (B) The 

percentage of apoptotic cells (Annexin-V positive) for CD133-positive (hatched bars) and 

CD133-negative (unhatched bars) is shown. Significantly fewer apoptotic cells are detected in 

the CD133-positive population of cells upon treatment with cisplatin 10 µM (p-value <0.0001, 

t-test), paclitaxel 1 µM (p-value 0.0435, t-test) and UVB radiation 40 mJ/cm
2
 (p-value 0.0039, 

t-test) for 16 hrs. Data shown are mean values +/- SEM of three independent experiments 

each performed in triplicate. 
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5.4  DISCUSSION 

5.4.1  p63 is linked to the mitochondrial apoptotic pathway in melanoma 

Upregulation of p63 (and p53) is demonstrated in melanoma cell lines upon exposure 

to genotoxic agents. Both TA and ∆N p63 isoforms were stabilised in response to 

DNA damage. The specific isoforms stabilised appear to be cell-line dependent but 

the main isoform consistently upregulated was TAp63, supporting evidence 

demonstrated in other cancer cell lines (Petitjean et al. 2005). Endogenous p63 was 

predominantly expressed in the nucleus but also in the cytoplasm. Stabilisation of 

p63 protein was observed in both compartments and, using mitochondrial markers, 

cytoplasmic p63 was observed to partially localise to the mitochondria. The 

stabilisation of p63 in both nuclear and mitochondrial compartments upon genotoxic 

stress in melanoma cells suggests transcriptional and non-transcriptional roles for the 

protein.  

 

5.4.2 Mitochondrial translocation of p63 was demonstrated using various 

methods 

Translocation of p63 to the mitochondria upon genotoxic stress was confirmed using 

a variety of techniques and provides evidence linking p63 to apoptosis in melanoma.  

 

5.4.2.1 Microscopy-based experiments 

Immunofluorescence microscopy utilising MitoTracker Orange, confirmed localisation 

of p63 to the mitochondria upon DNA damage. The limitation of this method is the 

inability to confirm whether p63 enters the mitochondrial matrix or attaches to its 

membrane. Although a z-stack analysis was performed in an attempt to visualise this, 

the resolution needed to detect this level of detail was not possible with confocal 

microscopy. Transmission electron microscopy (EM) was therefore used to confirm 

the presence of p63, at mitochondrial membranes and within the mitochondrial 

matrix, using the characteristic ultrastructure of mitochondria to confirm this, in 

conjunction with detection of a mitochondrial protein, mtHsp70. Stabilisation of p63 

upon genotoxic stress was demonstrated in nuclear, cytoplasmic and mitochondrial 

compartments of the cell suggesting that the protein shuttles between the three 

depending on the stimulus and raises the possibility that distinct subcellular pools of 

p63 could exist. EM experiments were undertaken by analysing endogenous protein 

expression in intact melanoma cells and therefore have the advantage of 

demonstrating physiological translocation of p63 upon genotoxic stress, unlike the 

more artificial methods previously utilised to demonstrate translocation of other p53 

family members to isolated mitochondria (Sayan et al. 2008).  
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5.4.2.2 Protein analysis of subcellular fractions 

Western blotting has historically been used to detect proteins in subcellular fractions. 

In melanoma cell lines, Western blotting revealed two consistent findings; a) the 

presence of specific TA isoforms in the nuclear (TAα) and mitochondrial (TAβ) 

compartments with independent stabilisation of both, suggesting specific isoforms 

translocate to the mitochondria in response to DNA damage; b) the same ∆N 

isoforms (α and β) present in both compartments which are upregulated in response 

to DNA damage suggesting a functional role for these isoforms in both nucleus and 

mitochondria. It is unclear as to which splice variants are able to translocate to the 

mitochondria, although, these findings demonstrate that both TA and ∆N isoforms are 

stabilised at the mitochondria upon DNA damage. Moreover, it appears that both 

p63β isoforms are localised to the mitochondria and in some cell systems, p63β is 

the strongest transactivator of endogenous target genes e.g. p21, mdm2 and PIG3 

(Ghioni et al. 2002; Helton et al. 2008). Further analysis by transfection of individual 

splice variants of p63 in melanoma cell lines could help to determine the downstream 

target gene effects using luciferase assays, and thus delineate more clearly, the 

specific roles of p63 splice variants at the mitochondria.  

 

There are a number of well-recognised limitations of Western blotting cited; poor 

reproducibility, degradation of proteins and the lack of purity of fractions. However, 

cleavage of p63 could only be demonstrated using Western blotting, based on the 

molecular weights of the cleaved products (Sayan et al. 2007). These findings 

suggest that upon DNA damage, cleavage of p63 does occur in melanoma cell lines, 

and both N-terminal and C-terminal cleaved products are observed in the nuclear 

fraction. The cleaved fragments are then released and the N-terminal cleaved 

fragment was observed in the cytoplasm and the C-terminal fragment was observed 

in the mitochondria. This is the first report that both full-length isoforms of p63 and a 

putative cleaved form of p63 can translocate to the mitochondria. These data should, 

however, be approached with caution since interpretation of Western blotting was 

based on estimated molecular weights from a previous report (Sayan et al. 2007). To 

overcome this, each of the p63 cleaved fragments should be cloned into a vector and 

transiently expressed in melanoma cell lines to confirm their molecular weights, thus 

providing more definitive conclusions. Downstream target gene effects following 

observations of cleavage of p63 should be analysed to determine if cleaved products 

in melanoma also have a function in apoptotic signalling.   
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Further work is also required to clarify the localisation of cleavage products of p63 in 

melanoma cell lines. Detection of C-terminal cleaved fragments of p63 are reported 

using the H129 antibody (Sayan et al. 2007). It is therefore possible that significant 

upregulation of p63 detected by immunofluorescence microscopy, following treatment 

with chemotherapeutic agents, could also include upregulation of cleaved p63, 

detected by the use of a combination of the antibodies - H129 (detecting largely C-

terminal cleaved p63) and H137 (detecting largely N-terminal cleaved p63). This 

could lend support to the evidence demonstrating that cleavage of p63 occurs in 

melanoma in response to genotoxic agents, but without antibodies to specifically 

detect cleaved fragments, immunofluorescence microscopy cannot be used to 

confirm the findings demonstrated by Western blotting. Although it is difficult to draw 

conclusions from these data, protein analysis is clearly a method needed to detect 

cleavage of proteins, post-translational modifications and isoform expression in 

different cellular compartments.   

 

5.4.2.3 Flow cytometry analysis of fractionated cells  

This was a new method (Leverrier et al. 2007) developed in this thesis to overcome 

the disadvantages of Western blotting and to determine the relative quantification of 

proteins in subcellular fractions. A multi-laser instrument (BD LSR II) allowed the use 

of fluorescent dyes and antibodies, which precluded the need for electronic 

compensation and thus removed any possibility of incorrect interpretation of the 

degree of translocation. This was achieved by choosing dyes only excited by specific 

laser lines; Hoechst 33342 was excited by a UV laser line, MitoTracker Orange 

excited by 488 nm laser and Cy5 excited at 633nm by the Red HeNe laser diode. 

Mitochondrial dye MitoTracker Orange was chosen as this dye appeared from 

confocal imaging to be specific for mitochondria, does not leach out from the 

organelle upon cell death and has no „cross-talk‟ with other dyes used in the assay. 

The use of Cy5 to detect the presence of proteins in the cell organelles again 

precluded any compensation for „cross-talk‟ between the UV and argon ion laser 

excited dyes used in this assay. Another question arising from this method is the 

specificity of the organelle probes. In this assay, Hoechst 33342 binds to A-T bases 

in DNA and thus not only labels the nucleus but also mitochondrial DNA (mitoDNA). 

Sorting of the fractions confirmed purity and use of confocal microscopy validated the 

technique as a method for separating the subcellular fractions and quantifying the 

presence of Cy5 in each fraction to determine relative concentrations of the protein of 

interest [section 5.3.4.1].  
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5.4.2.3.1 p63 translocates to the mitochondria 

These data provided a quantitative analysis of translocation of p63 to the 

mitochondria which occurred fairly rapidly compared with a more gradual stabilisation 

of the protein in the nucleus, implicating p63 in the mitochondrial apoptotic pathway 

and a nuclear transcriptional pathway. This finding was demonstrated in three 

different melanoma cell lines suggesting that the translocation of p63 to the 

mitochondria in response to genotoxic stress is a general phenomenon. Although 

data suggest that p63 has an anti-apoptotic role in melanoma, further work is needed 

to clarify the downstream apoptotic effects of translocation of p63 to the mitochondria. 

This could be achieved by analysing the apoptotic pathway upon genotoxic stress in 

the presence and absence of p63.     

 

5.4.2.3.2 Phosphorylated p63 localises to both nuclei and mitochondria 

Analysis of phosphorylation of p63 revealed that phosphorylation occurs within three 

hours of exposure to genotoxic agents, predominantly in the nucleus but also in the 

mitochondria. This may affect stability of the protein and/or its transactivation abilities. 

Phosphorylation of p63 in keratinocytes has no effect on subcellular localisation 

(Westfall et al. 2005) and phosphorylation of p53 may have a role in targeting the 

protein to the mitochondria (Mancini et al. 2009; Nemajerova et al. 2005). Based on 

these data, one can speculate that, analogous to p53, phosphorylation of p63 may 

contribute to the stability of the protein in the nucleus and may assist in targeting the 

protein to the mitochondria.  

 

The limitations of these data are that only one method was used to demonstrate this 

mechanism - flow cytometry. The lack of available phospho-antibodies specific for 

different phosphorylation sites on p63 prevents the confirmation by Western blotting. 

By exploring the specific splice variants in subcellular compartments and identifying 

the specific phosphorylation sites involved, the effect on protein stability of p63 could 

be delineated. The significant phosphorylation in the nucleus could regulate stability 

of the protein but also affect transcription of p63 (and/or p53) downstream target 

genes, which have not been investigated in this thesis. Moreover, a number of post-

translational mechanisms are described for p63 [section 1.3.4.1] and these have not 

been considered in this thesis. It is possible that modifications including acetylation 

and sumoylation which regulate stability of p63, may also have specific roles in 

subcellular locations which require further consideration.    
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5.4.2.3.3 Translocation of p63 and p53 to the mitochondria is a co-dependent 

process 

Flow cytometry fractionation experiments demonstrated that p63 prevented 

accumulation of total and nuclear p53 in response to DNA damaging agents, 

suggesting a possible role for p63 in melanoma to inhibit p53 transcriptional function. 

This could be explained in A375M cells where the predominant isoform is ∆Np63, 

which has been demonstrated to inhibit p53 (Crook et al. 2000). In contrast, 

translocation of p63 to the mitochondria was dependent on p53, and vice versa. 

Using a p53-null cell line, p63 was shown to depend on the presence of wt-p53, to 

translocate to the mitochondria upon genotoxic stress.  

 

One limitation of the latter experiment is the use of different cell lines. Although 

chemosensitivity was not significantly different between the two cell lines when 

assessed using the Annexin V assay [Figure 5.39], a more convincing experiment 

would be to compare p63 responses against the same isogenic background. To 

achieve this it is necessary to stably silence TP53 in A375M cells and compare the 

p63 response in A375M cells (with wt-p53) against A375M cells depleted of p53. An 

alternative experiment would be to assess p63 translocation in A375M cells upon 

treatment with pifithrin α, a chemical inhibitor of p53 specifically interfering with the 

interaction between p53 and its mitochondrial binding partners (Strom et al. 2006). 

 

Nevertheless, these data lead to speculation that p63 could interfere with both the 

transcription-dependent and possibly transcription-independent apoptotic pathway of 

wt-p53 in melanoma. To prove this, the negative effect of p63 on recruitment of p53 

to the mitochondria would need to be established, by demonstrating reduced 

transcriptional activation of p53-induced pro-apoptotic genes and thus decreased 

mitochondrial outer membrane permeabilisation and release of cytochrome C 

(Chipuk and Green 2006).  

 

5.4.3  p63, CD133 and chemosensitivity 

5.4.3.1 Both isoforms of p63 (TA and ∆N) are determinants of chemosensitivity 

Both siRNA and shRNA-mediated depletion of p63 revealed that the expression of 

both TA and/or ∆Np63 isoforms confer resistance to chemotherapy in melanoma cell 

lines and provide the evidence for an oncogenic role of p63 in this tumour. 

Confirmation of this comes from data using shRNA-clone E which depleted ∆Np63 

but resulted in significant upregulation of TAp63 and consequentially had no effect on 

chemosensitivity [Figure 5.48]. Although both TA and ∆Np63 isoforms can act as 
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transcription factors when homodimerised, the ∆N isoforms can hetero-oligomerize 

with the TAp63 isoforms (as well as other p53 family members) and modify their 

activity in vitro (Chan et al. 2004; Choi et al. 2002; Hibi et al. 2000; Serber et al. 

2002). ∆Np63α is reported to efficiently inhibit the function of TAp63 and p53 (Serber 

et al. 2002). It is therefore possible that silencing ∆Np63 in melanoma cells, by 

shRNA-clone E could result in loss of inhibition of TAp63, thus increasing its 

expression level. Overall, the increase in TAp63 levels negates any effect that 

depletion of ∆Np63 may have on chemosensitivity. One can further speculate that the 

effect of silencing ∆Np63 and subsequent upregulation of TAp63 may not be a direct 

interaction but instead, mediated through microRNA regulatory mechanisms yet to be 

elucidated.  

 

The net anti-apoptotic effect of translocation of TA and/or ∆Np63 to the mitochondria 

is likely to be mediated through inhibition of pro-apoptotic effectors e.g. p53 in the 

mitochondria, although the two proteins appear to shuttle together. Moreover, the 

inhibitory effect of p63 (especially ∆Np63) on stabilisation of p53 in the nuclei, is likely 

to result in a reduction of transcription of p53-dependent pro-apoptotic genes. 

Analysis of the effect on p53-induced downstream target genes would confirm a 

mechanism by which p63 contributes to oncogenesis in melanoma. 

 

5.4.3.2 All splice variants of p63 are potential determinants of chemoresistance 

Transfection of p63 isoforms in a melanoma cell line demonstrated each isoform to 

confer resistance to chemotherapies. However, a specific pattern of isoform effect 

was not established. One possible reason is that transfection of plasmids was 

transient, and although Western blotting of cells 48 hrs after transfection 

demonstrated expression of the p63 isoforms, a significant percentage of 

untransfected cells would mask the chemoresistance mediated by p63-transfected 

cells. Moreover, the process of liposomal-mediated transfection is itself a stressor for 

cells, which could result in the alteration of signalling pathways, thus affecting the 

sensitivity to genotoxic stress. Cases where resistance was demonstrated but did not 

reach statistical significance could be explained by this, but also by the low 

transfection efficiency, thus underestimating the true resistance p63 confers. To 

overcome this problem, isoforms cloned with GFP-tagged plasmids recognised by 

flow cytometry, could be used to detect apoptosis in a transfected cell only. This 

would ensure that differences in apoptosis observed between cell lines were solely 

attributed to the effects mediated by p63.  
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5.4.3.3 ∆Np63 is a marker of chemoresistance in a putative stem cell population  

Earlier data demonstrated enrichment of the ∆Np63 isoform in CD133-positive cells 

[Section 3.4.2]. The fraction of CD133-positive cells increases upon exposure to 

chemotherapeutic agents and preferentially survives genotoxic stress, thus 

delineating a specific role for ∆Np63 to achieve an anti-apoptotic function in a subset 

of melanoma stem cells. Evidence from this thesis suggests that ∆Np63 is an 

independent predictor of chemoresistance in melanoma cell lines. However, CD133-

positive glioblastoma cell lines prepared from patients also demonstrated resistance 

to chemotherapeutic agents as a result of significantly higher levels of expression of 

anti-apoptotic genes Bcl-2, Bcl-xL, FLIP and XIAP compared with the corresponding 

CD133-negative cells (Liu et al. 2006). Future work to investigate upregulation of 

other anti-apoptotic factors should be undertaken in CD133-positive melanoma cells. 

It is possible that this may be a downstream effect of ∆Np63 (Dohn et al. 2001) and 

this could be explored further by analysing these factors in a FACS sorted 

CD133+ve/p63-ve population.  

 

Furthermore, upregulation of the ATPase pump, adenosine triphosphate-binding 

cassette-5 (ABCB5) was demonstrated in CD133-positive cells, including progenitor 

cells of human epidermal melanocytes and a sub-population of melanoma cells 

(Frank et al. 2003) and these CD133+ve/ABCB5+ve melanoma cells demonstrated 

resistance to doxorubicin (Frank et al. 2005). In this thesis, the ABCB5 status of the 

melanoma cell lines screened was not determined. It is possible that p63 is another 

marker of chemoresistance in the CD133-positive population, but its relation to 

ABCB5 expression needs to be clarified.  

 

The role of CD133 in melanoma cells is not fully characterised and correlation of 

differentiation ability and tumourigenicity by comparing CD133-positive and CD133-

negative fractions is yet to be demonstrated. To define the biological significance of 

CD133 enrichment and to confirm its role in chemosensitivity, in vivo proof is also 

required to show increased resistance of CD133-positive cells to chemotherapeutic 

agents compared with most tumour cells (which are CD133-negative). This could be 

achieved by isolating melanoma tissue from patients, demonstrating high levels of 

both ∆Np63 and CD133 and then demonstrating a resistance to apoptosis in these 

isolated cells.   

Despite the limitations discussed above, these data provide the preliminary evidence 

needed to embark upon translational experiments. If melanoma stem cell populations 
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are indeed associated with chemoresistance and melanoma progression in patients, 

specific targeting of melanoma stem cells via a molecular marker such as CD133 or 

∆Np63 could provide a more potent and selective means for targeted melanoma 

therapy. Cancer stem cell surface molecules e.g. CD133 have been used in clinical 

applications including diagnostic identification in melanoma biopsies and as putative 

prognostic indicators (Gupta et al. 2009). Furthermore they provide potential targets 

for antibody-based therapies that selectively eliminate these cells. By specifically 

inhibiting CD133-positive cells, thus downregulating p63 (specifically ∆Np63), 

melanoma cells could be sensitised to chemotherapies improving overall survival in 

patients.     
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CHAPTER 6: CONCLUDING REMARKS  

 

6.1 Summary of findings 

 6.1.1  TP63 has an oncogenic role in melanoma 

6.1.2  Diverse regulatory mechanisms regulate p63 expression in melanoma 

6.1.3  p63 is an anti-apoptotic effector in melanoma  

6.1.4  Summary 

6.2 Therapeutic applications  

 6.2.1  HDAC inhibitors 

 6.2.2  Identification of novel inhibitors of p63 

 6.2.3  Cancer stem cell therapy 

 

 
6.1  SUMMARY OF FINDINGS 

6.1.1  TP63 has an oncogenic role in melanoma 

This is the first study to systematically explore the expression, regulation and 

functional role of p63 isoforms in melanoma. Upregulation of p63 was demonstrated 

in primary and metastatic melanoma cell lines compared with primary melanocyte 

cultures. Differential expression of isoforms of p63 was observed in 74% of 

melanoma cell lines – 24% expressed TAp63 only, 32% ∆Np63 only and both 

isoforms were expressed in 18% of cell lines [section 3.3.1]. All splice variants of p63 

were expressed in melanoma, including the more recently identified δ and ε variants. 

The predominant variant expressed was TAp63β, but all variants were observed in 

melanoma. Although data are not able to define the role of each individual isoform, it 

is likely that they have specific biological / biochemical activities. These activities may 

be overlapping and the small proportion of cell lines which express both TA and ∆N 

isoforms suggests that there may be redundancy of function. In keeping with this, 

functional data analysing the role of p63 in mediating genotoxic stress suggests that 

both isoforms contribute to the chemoresistance observed in melanoma [section 

5.3.5].  

 

Upregulation of p63 was demonstrated in melanoma tissue samples compared with 

benign intradermal naevi, in 40% of melanomas in a tissue microarray and 49% of 

FFPE archival tissue samples [sections 3.3.3 to 3.3.5]. p63 reactivity was not 

significantly associated with clinical or histological features of the primary tumours. 

Expression of cytoplasmic p63 reactivity demonstrated tendency towards increased 

recurrence rates and time to metastases. Moreover, p63 reactivity was a significant 
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predictor of overall death (HR 2.79, p-value 0.05, Cox proportional hazard) and 

although the trend persisted, it was not a significant predictor of melanoma-deaths 

(HR 2.43, p-value 0.13, Cox proportional hazard). This aberrant expression of p63 

from nucleus to cytoplasm appears to be an important mechanism for the oncogenic 

effect of this gene in melanoma.     

 

6.1.2  Diverse mechanisms regulate p63 expression in melanoma 

Regulation of expression of p63 and its stability in melanoma is shown to be a multi-

factorial process. Epigenetic modulation of p63 by HDAC inhibitors was 

demonstrated in melanoma cells, in keeping with recent reports (Sayan et al. 2009). 

A novel miRNA – miR-18a has been identified to regulate the tissue-specific 

expression of p63 in melanoma [section 4.3.2.2]. Numerous miRNAs are recognised 

to target single mRNAs and evidence suggests that miRNA regulation of p63 is no 

different (Blandino and Moll 2009; Lena et al. 2008; Manni et al. 2009; 

Papagiannakopoulos et al. 2008). Previously identified regulators of p63 were also 

dysregulated in melanoma cell lines expressing p63, thus increasing the complexity 

of p63 regulation. Stability of p63 protein appears to be dependent on the 

proteosome in melanoma, which implicates a number of E3 ubiquitin ligases that 

could be involved in degradation of p63. Data presented in this thesis show itch to be 

one modulator of p63 expression but it is likely that other reported ligases (Fomenkov 

et al. 2004; Gallegos et al. 2008; Li et al. 2008; Rossi et al. 2006a; Rossi et al. 2006b) 

are also involved and deserve investigation. The mechanisms identified in this study 

warrant a detailed analysis of their interplay and interaction with other factors 

determining the tissue-specific expression of this gene in melanoma.    

 

6.1.3  p63 is an anti-apoptotic effector in melanoma  

Upon genotoxic stress, both TA and ∆N isoforms of p63 are stabilised in the nucleus 

and partially translocate to the mitochondria [section 5.3.3]. In conjunction with data 

showing p63 confers chemoresistance [section 5.3.5], one can speculate that for p63 

to achieve this effect in the mitochondria, it could perform one/more of the following 

functions: 

a) Direct anti-apoptotic effect in the mitochondria 

b) Inhibition of apoptosis by indirectly inhibiting pro-apoptotic effectors 

c) Interference with translocation of pro-apoptotic effectors to the mitochondria 

d) Direct or indirect induction of anti-apoptotic regulators in the mitochondria  
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Analysis of the effect of genotoxic stress on wt-p53 revealed that, in the presence of 

p63, translocation to the mitochondria occurs but accumulation in the nucleus is 

inhibited. The latter may be a result of either inhibition of entry of p53 into the nucleus 

or more likely, due to an inhibitory effect on stability of wt-p53 through induction of 

ubiquitin ligases e.g. MDM2. In the absence of p63, p53 does not readily translocate 

to the mitochondria, and vice versa. These data imply a co-dependent mechanism of 

translocation of p63 and p53 to the mitochondria. This could be a result of hetero-

oligomer formation or co-translocation by molecular chaperones recognised to 

transport p53, e.g. hsp90 or hsp70 (Walerych et al. 2004; Walerych et al. 2009; 

Whitesell and Lindquist 2005) [Figure 6.1]. The failure of wt-p53 to activate apoptotic 

pathways in melanoma could therefore be explained by the inhibition of wt-p53 pro-

apoptotic function by p63 in two ways: inhibition of the p53 mitochondrial 

(transcription-independent) apoptotic pathway and/or inhibition of accumulation of wt-

p53 in the nucleus and thus, the transcriptional-dependent apoptotic pathway. 

 

These data identified an unexpected result implicating both TA and ∆N isoforms in 

mediating chemoresistance in melanoma. The oncogenic effect of both TA and ∆N 

isoforms of p63 is reported in other tumour types (Koster et al. 2006; Marchini et al. 

2008; Mills 2006). In addition, the majority of squamous cell cancers express high 

levels of ∆Np63 (Mills 2006) and ∆N isoforms are thought to regulate the 

transcriptional activity of TA isoforms either by the formation of inactive hetro-

oligomers or by competition for specific response elements on DNA. This latter 

property also allows ∆Np63 to act antagonistically towards p53, thus providing a 

theoretical mechanism of p53 functional inactivation during tumourigenesis. In 

melanoma, this thesis provides evidence in favour of preferential upregulation of 

TP63 over TP53 mutation. In contrast, TAp63 has been reported to be pro-apoptotic 

in other cell types (Gressner et al. 2005). However, data from this thesis, have 

demonstrated that shRNA-p63 clone-E which depleted ∆Np63 resulted in 

derepression of TAp63 and had no effect on sensitivity to chemotherapeutic agents. 

The anti-apoptotic effect of TAp63 in melanoma could be an indirect effect although 

this is yet to be established.    

 

Mechanisms controlling export of p63 between cellular compartments were not 

investigated. One can speculate that post-translational mechanisms may be involved.  

There is evidence that MDM4 mediates mitochondrial relocalisation and anchors 

phosphorylated p53 to BCl2 (Mancini et al. 2009). By analogy with p53, the data 

presented in this thesis also show phosphorylated p63 at the mitochondria, although 



 
Page | 318  

 

the function of this is, as yet, undetermined. There is robust evidence for 

ubiquitination of p53 enabling shuttling to the mitochondria (Marchenko et al. 2007) 

and a more recent model hypothesises that nuclear export of p53 could occur by co-

operation of sumoylation with monoubiquitination (Stehmeier and Muller 2009b). 

Equally, it is likely that post-translational mechanisms of p63 are responsible for 

targeting it to the mitochondria and these could interact with modifications already 

reported for targeting p53 to the mitochondria.  

 

6.1.4  Summary 

Taken together, these data propose an oncogenic role for p63 in melanoma, whereby 

expression of p63 in melanoma imparts chemoresistance to tumours and is 

associated with worse outcome in patients with melanoma. The oncogenic role of 

both TA and ∆Np63 isoforms in melanoma could be explained in part, by 

dysregulation of the transcriptional and non-transcriptional function of wt-p53 [Figure 

6.2]. Ultimately, these data could provide a novel therapeutic approach aimed at 

counteracting expression of p63, and sensitising melanoma to standard 

chemotherapeutic agents.         
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Figure 6.1: p63 and p53 response in melanoma to chemotherapeutic agents. Upon 

genotoxic stress, stabilisation of p63 occurs in the nucleus with translocation via the 

cytoplasm to the mitochondria. Data presented in this thesis support a co-dependent 

mechanism for p53 and p63 to shuttle to the mitochondria which could involve the formation of 

hetero-oligomers or involve a molecular chaperone e.g. hsp70 or hsp90 (Walerych et al. 2004; 

Walerych et al. 2009; Whitesell and Lindquist 2005). Stabilisation of p63 in the nucleus results 

in transcription of downstream target genes but additionally, through an unknown mechanism, 

prevents the accumulation of nuclear wt-p53. This could be a result of inhibition of entry into 

the nucleus or through increased protein degradation. This could provide an explanation for 

failure of wt-p53 activity commonly observed in melanoma.         
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Figure 6.2: Models for p63 in carcinogenesis. Schemes (A) and (B) are models for p63 as 

a tumour suppressor in cancers but scheme (C) depicts the model demonstrated in this thesis 

where p63 is an oncogene. (A) Downregulation or loss of TAp63 and/or overexpression of 

ΔNp63 leads to inhibition of functions of TAp63, p53 and TAp73 and results in invasive and 

metastatic tumours such as squamous cell carcinoma of lungs, head and neck or bladder 

carcinoma. (B) Mutant p53 binds to TAp63 and TAp73 inhibiting their function leading to the 

development of an invasive and metastatic tumour such as breast carcinoma. (C) 

Overexpression of TA and/or ΔNp63 has a negative effect on wt-p53 function which in 

melanoma leads to a more aggressive and chemoresistant cancer. Ca – carcinoma, mtp53 – 

p53 harbouring mutation in DNA binding domain. Figure adapted from Flores (2007). 
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6.2  THERAPEUTIC APPLICATIONS 

6.2.1  HDAC inhibitors 

Melanoma is a notoriously chemoresistant cancer. By demonstrating a role for p63 in 

mediating chemosensitivity, these novel findings have provided one possible 

explanation for this. Exposure to a variety of chemotherapeutic agents, including 

HDAC inhibitors, resulted in stabilisation of p63 isoforms. Although the sensitivity to 

apoptosis mediated by HDAC inhibitors was not examined, one can speculate that 

the upregulation of p63 is likely to mediate resistance to apoptosis, similar to that 

demonstrated for other chemotherapeutic agents including cisplatin and paclitaxel. 

HDAC inhibitors have been used in clinical trials but with limited success (Drummond 

et al. 2005; Sandor et al. 2002), and this has been attributed to the widespread effect 

of epigenetic modulation of multiple genes in various molecular pathways. These 

data suggest that in melanoma, one example is the upregulation of oncogenic p63 by 

acetylation, suggesting a possible deleterious effect of this therapy in a subset of 

tumours.  

 

6.2.2  Identification of novel inhibitors of p63 

Evidence that upregulation of both TA and ∆N p63 contributes to the 

chemoresistance of melanoma, presents a novel therapeutic approach which would 

involve downregulation of p63 levels and activation of apoptosis. Depletion of p63 

has only been demonstrated using one currently available pharmacological agent, 

imatinib (Gonfloni et al. 2009; Ongkeko et al. 2006). Imatinib is a tyrosine kinase 

inhibitor with a number of targets including platelet-derived growth factor receptor 

(PDGFR) (Buchdunger et al. 2002), c-abl (Buchdunger et al. 2000; Druker and Lydon 

2000) and c-kit (Heinrich et al. 2000). Of relevance, this drug has shown considerable 

promise in clinical trials for managing metastatic mucosal and acral melanomas (Hodi 

et al. 2008; Jiang et al. 2008; Kim et al. 2008). In these subtypes of melanoma, 

imatinib is used to target c-kit mutations which occur with increased frequency 

(Beadling et al. 2008). The mode of action may be to deplete p63 is through inhibition 

of c-abl, which is reported to stabilise both TAp63 (Gonfloni et al. 2009) and ∆Np63 

(Ongkeko et al. 2006). In vitro demonstration of depletion of p63 isoforms by imatinib 

is required, but if proven, this would identify a further subset of patients with 

cutaneous melanoma, who could benefit from this drug.     

 

Sequence-specific gene silencing using RNA interference technology has 

revolutionised basic scientific research and has been used in this thesis to delineate 

a role for p63 in melanoma. Development of this technique for therapeutic purpose 
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has opened new horizons for targeted therapy in cancer and is currently being 

evaluated in pre-clinical and clinical trials. Approaches for systemic and localised 

delivery of siRNA are being investigated (Ozpolat et al. ; Sanguino et al. 2008) and 

this method could offer one possible route of targeted depletion of p63 in melanoma.      

 

6.2.3  Cancer stem cell therapy 

Data presented in this thesis demonstrate a role for a putative stem cell population 

labelled with CD133 and enriched for ∆Np63, mediating chemoresistance to cisplatin 

and paclitaxel in melanoma [section 5.3.6]. CD133-positive tumour initiating cells 

have demonstrated resistance to chemo- or radiotherapy in other cancer types (Bao 

et al. 2006; Frank et al. 2005; Hambardzumyan et al. 2006). There is theoretical 

evidence that a small proportion of cells with stem-like features escape the effect of 

established chemotherapeutic agents. These cells then give rise to secondary 

tumours that are highly resistant to further treatment, since they were positively 

selected by the original therapy. Since the function of CD133 is unknown, it is not 

clear if CD133 is just a marker of chemoresistant cells (which in melanoma co-

express ∆Np63) or whether high expression of CD133 in tumour initiating cells could 

contribute to the resistance to therapy. Nevertheless, targeted monoclonal antibody 

therapy directed against the CD133-positive cell fraction in melanoma could render 

this cancer sensitive to standard chemotherapeutic agents, and if proven to be true 

tumour initiating cells, then also providing the potential for cure [Figure 6.3].  
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Figure 6.3: Therapeutic potential of anti-CD133 antibodies. Conventional therapies may 

shrink tumours by killing mainly cells with limited proliferative potential. If the putative 

melanoma stem cells are less sensitive to these therapies then they will remain viable after 

therapy and re-establish the tumour (lower path). In contrast, if therapies are targeted against 

melanoma stem cells, then effective killing of stem cells renders the melanoma unable to grow 

or metastasise. The example shown is anti-CD133 antibodies which could target ∆Np63-

positive cells in melanoma, subsequently leading to (a) sensitisation of melanoma cells to 

conventional chemotherapies e.g. cisplatin/paclitaxel and/or (b) degeneration of the tumour by 

targeting a putative stem cell population. Evidence suggests that even if cancer stem cell-

directed therapies do not shrink tumours initially, they are more likely to eventually lead to 

cures. MSC – melanoma stem cells.  



 
Page | 324  

 

Bibliography 

 

Aamdal, S., I. Wolff, S. Kaplan, R. Paridaens, J. Kerger, J. Schachter, J. Wanders, H. 

R. Franklin and J. Verweij. 1994. "Docetaxel (Taxotere) in advanced malignant 

melanoma: a phase II study of the EORTC Early Clinical Trials Group." Eur J Cancer 

30A(8):1061-1064. 

Abele, R., M. Clavel, P. Dodion, U. Bruntsch, S. Gundersen, J. Smyth, J. Renard, M. 

van Glabbeke and H. M. Pinedo. 1987. "The EORTC Early Clinical Trials 

Cooperative Group experience with 5-aza-2'-deoxycytidine (NSC 127716) in patients 

with colo-rectal, head and neck, renal carcinomas and malignant melanomas." Eur J 

Cancer Clin Oncol 23(12):1921-1924. 

Ajithkumar, T. V., C. A. Parkinson, A. Butler and H. M. Hatcher. 2007. "Management 

of solid tumours in organ-transplant recipients." Lancet Oncol 8(10):921-932. 

Akslen, L. A. and O. Morkve. 1992. "Expression of p53 protein in cutaneous 

melanoma." Int J Cancer 52(1):13-16. 

Al-Batran, S. E., M. R. Rafiyan, A. Atmaca, A. Neumann, J. Karbach, A. Bender, E. 

Weidmann, H. M. Altmannsberger, A. Knuth and E. Jager. 2005. "Intratumoral T-cell 

infiltrates and MHC class I expression in patients with stage IV melanoma." Cancer 

Res 65(9):3937-3941. 

Alanko, T., M. Rosenberg and O. Saksela. 1999. "FGF expression allows nevus cells 

to survive in three-dimensional collagen gel under conditions that induce apoptosis in 

normal human melanocytes." J Invest Dermatol 113(1):111-116. 

Albino, A. P., D. M. Nanus, I. R. Mentle, C. Cordon-Cardo, N. S. McNutt, J. Bressler 

and M. Andreeff. 1989. "Analysis of ras oncogenes in malignant melanoma and 

precursor lesions: correlation of point mutations with differentiation phenotype." 

Oncogene 4(11):1363-1374. 

Albino, A. P., M. J. Vidal, N. S. McNutt, C. R. Shea, V. G. Prieto, D. M. Nanus, J. M. 

Palmer and N. K. Hayward. 1994. "Mutation and expression of the p53 gene in human 

malignant melanoma." Melanoma Res 4(1):35-45. 

Amchenkova, A. A., L. E. Bakeeva, Y. S. Chentsov, V. P. Skulachev and D. B. Zorov. 

1988. "Coupling membranes as energy-transmitting cables. I. Filamentous 

mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes." J Cell Biol 

107(2):481-495. 

Ando, K., T. Ozaki, H. Yamamoto, K. Furuya, M. Hosoda, S. Hayashi, M. Fukuzawa 

and A. Nakagawara. 2004. "Polo-like kinase 1 (Plk1) inhibits p53 function by physical 

interaction and phosphorylation." J Biol Chem 279(24):25549-25561. 

Antonini, D., M. T. Russo, L. De Rosa, M. Gorrese, L. Del Vecchio and C. Missero. 

"Transcriptional Repression of miR-34 Family Contributes to p63-Mediated Cell 

Cycle Progression in Epidermal Cells." J Invest Dermatol. 

Arima, Y., M. Nitta, S. Kuninaka, D. Zhang, T. Fujiwara, Y. Taya, M. Nakao and H. 

Saya. 2005. "Transcriptional blockade induces p53-dependent apoptosis associated 

with translocation of p53 to mitochondria." J Biol Chem 280(19):19166-19176. 

Arismendi-Morillo, G. 2009. "Electron microscopy morphology of the mitochondrial 

network in human cancer." Int J Biochem Cell Biol 41(10):2062-2068. 

Arnoult, D. 2008. "Apoptosis-associated mitochondrial outer membrane 

permeabilization assays." Methods 44(3):229-234. 

Atkins, M. B. 1997. "The treatment of metastatic melanoma with chemotherapy and 

biologics." Curr Opin Oncol 9(2):205-213. 

Atkins, M. B. 2002. In ASCO Edcuational Book, ed. M. B Atkins, Sondak, V & 

Keilholz U. Florida. 



 
Page | 325  

 

Atkins, M. B., J. A. Gollob, J. A. Sosman, D. F. McDermott, L. Tutin, P. Sorokin, R. 

A. Parker and J. W. Mier. 2002. "A phase II pilot trial of concurrent biochemotherapy 

with cisplatin, vinblastine, temozolomide, interleukin 2, and IFN-alpha 2B in patients 

with metastatic melanoma." Clin Cancer Res 8(10):3075-3081. 

Avery-Kiejda, K. A., X. D. Zhang, L. J. Adams, R. J. Scott, B. Vojtesek, D. P. Lane 

and P. Hersey. 2008. "Small molecular weight variants of p53 are expressed in human 

melanoma cells and are induced by the DNA-damaging agent cisplatin." Clin Cancer 

Res 14(6):1659-1668. 

Azzola, M. F., H. M. Shaw, J. F. Thompson, S. J. Soong, R. A. Scolyer, G. F. Watson, 

M. H. Colman and Y. Zhang. 2003. "Tumor mitotic rate is a more powerful prognostic 

indicator than ulceration in patients with primary cutaneous melanoma: an analysis of 

3661 patients from a single center." Cancer 97(6):1488-1498. 

Baccarani, U., G. L. Adani, D. Serraino, D. Lorenzin, M. Gambato, A. Buda, G. 

Zanus, A. Vitale, P. Piselli, A. De Paoli, V. Bresadola, A. Risaliti, P. Toniutto, U. 

Cillo, F. Bresadola and P. Burra. 2009. "De novo tumors are a major cause of late 

mortality after orthotopic liver transplantation." Transplant Proc 41(4):1303-1305. 

Bae, I., M. L. Smith, M. S. Sheikh, Q. Zhan, D. A. Scudiero, S. H. Friend, P. M. 

O'Connor and A. J. Fornace, Jr. 1996. "An abnormality in the p53 pathway following 

gamma-irradiation in many wild-type p53 human melanoma lines." Cancer Res 

56(4):840-847. 

Bafaloukos, D., G. Aravantinos, G. Fountzilas, G. Stathopoulos, H. Gogas, G. 

Samonis, E. Briasoulis, N. Mylonakis, D. V. Skarlos and P. Kosmidis. 2002. 

"Docetaxel in combination with dacarbazine in patients with advanced melanoma." 

Oncology 63(4):333-337. 

Bailey, S. G., T. Sanchez-Elsner, A. Stephanou, M. S. Cragg and P. A. Townsend. 

"Regulating the genome surveillance system: miRNAs and the p53 super family." 

Apoptosis. 

Baisden, B. L., F. B. Askin, J. R. Lange and W. H. Westra. 2000. "HMB-45 

immunohistochemical staining of sentinel lymph nodes: a specific method for 

enhancing detection of micrometastases in patients with melanoma." Am J Surg 

Pathol 24(8):1140-1146. 

Bakker, T. R., D. Reed, T. Renno and C. V. Jongeneel. 1999. "Efficient adenoviral 

transfer of NF-kappaB inhibitor sensitizes melanoma to tumor necrosis factor-

mediated apoptosis." Int J Cancer 80(2):320-323. 

Bakkers, J., M. Camacho-Carvajal, M. Nowak, C. Kramer, B. Danger and M. 

Hammerschmidt. 2005. "Destabilization of DeltaNp63alpha by Nedd4-mediated 

ubiquitination and Ubc9-mediated sumoylation, and its implications on dorsoventral 

patterning of the zebrafish embryo." Cell Cycle 4(6):790-800. 

Balch, C. M., A. C. Buzaid, S. J. Soong, M. B. Atkins, N. Cascinelli, D. G. Coit, I. D. 

Fleming, J. E. Gershenwald, A. Houghton, Jr., J. M. Kirkwood, K. M. McMasters, M. 

F. Mihm, D. L. Morton, D. S. Reintgen, M. I. Ross, A. Sober, J. A. Thompson and J. 

F. Thompson. 2001a. "Final version of the American Joint Committee on Cancer 

staging system for cutaneous melanoma." J Clin Oncol 19(16):3635-3648. 

Balch, C. M., J. E. Gershenwald, S. J. Soong, J. F. Thompson, M. B. Atkins, D. R. 

Byrd, A. C. Buzaid, A. J. Cochran, D. G. Coit, S. Ding, A. M. Eggermont, K. T. 

Flaherty, P. A. Gimotty, J. M. Kirkwood, K. M. McMasters, M. C. Mihm, Jr., D. L. 

Morton, M. I. Ross, A. J. Sober and V. K. Sondak. 2009. "Final version of 2009 AJCC 

melanoma staging and classification." J Clin Oncol 27(36):6199-6206. 

Balch, C. M., T. M. Murad, S. J. Soong, A. L. Ingalls, N. B. Halpern and W. A. 

Maddox. 1978. "A multifactorial analysis of melanoma: prognostic histopathological 



 
Page | 326  

 

features comparing Clark's and Breslow's staging methods." Ann Surg 188(6):732-

742. 

Balch, C. M., T. M. Murad, S. J. Soong, A. L. Ingalls, P. C. Richards and W. A. 

Maddox. 1979. "Tumor thickness as a guide to surgical management of clinical stage I 

melanoma patients." Cancer 43(3):883-888. 

Balch, C. M., S. J. Soong, J. E. Gershenwald, J. F. Thompson, D. S. Reintgen, N. 

Cascinelli, M. Urist, K. M. McMasters, M. I. Ross, J. M. Kirkwood, M. B. Atkins, J. 

A. Thompson, D. G. Coit, D. Byrd, R. Desmond, Y. Zhang, P. Y. Liu, G. H. Lyman 

and A. Morabito. 2001b. "Prognostic factors analysis of 17,600 melanoma patients: 

validation of the American Joint Committee on Cancer melanoma staging system." J 

Clin Oncol 19(16):3622-3634. 

Balch, C. M., J. A. Wilkerson, T. M. Murad, S. J. Soong, A. L. Ingalls and W. A. 

Maddox. 1980. "The prognostic significance of ulceration of cutaneous melanoma." 

Cancer 45(12):3012-3017. 

Bao, S., Q. Wu, R. E. McLendon, Y. Hao, Q. Shi, A. B. Hjelmeland, M. W. Dewhirst, 

D. D. Bigner and J. N. Rich. 2006. "Glioma stem cells promote radioresistance by 

preferential activation of the DNA damage response." Nature 444(7120):756-760. 

Barbieri, C. E., L. J. Tang, K. A. Brown and J. A. Pietenpol. 2006. "Loss of p63 leads 

to increased cell migration and up-regulation of genes involved in invasion and 

metastasis." Cancer Res 66(15):7589-7597. 

Barclay, W. W., L. S. Axanova, W. Chen, L. Romero, S. L. Maund, S. Soker, C. J. 

Lees and S. D. Cramer. 2008. "Characterization of adult prostatic progenitor/stem 

cells exhibiting self-renewal and multilineage differentiation." Stem Cells 26(3):600-

610. 

Bardeesy, N., B. C. Bastian, A. Hezel, D. Pinkel, R. A. DePinho and L. Chin. 2001. 

"Dual inactivation of RB and p53 pathways in RAS-induced melanomas." Mol Cell 

Biol 21(6):2144-2153. 

Bardeesy, N., K. K. Wong, R. A. DePinho and L. Chin. 2000. "Animal models of 

melanoma: recent advances and future prospects." Adv Cancer Res 79:123-156. 

Barlev, N. A., L. Liu, N. H. Chehab, K. Mansfield, K. G. Harris, T. D. Halazonetis 

and S. L. Berger. 2001. "Acetylation of p53 activates transcription through 

recruitment of coactivators/histone acetyltransferases." Mol Cell 8(6):1243-1254. 

Bartek, J., J. Bartkova, B. Vojtesek, Z. Staskova, J. Lukas, A. Rejthar, J. Kovarik, C. 

A. Midgley, J. V. Gannon and D. P. Lane. 1991. "Aberrant expression of the p53 

oncoprotein is a common feature of a wide spectrum of human malignancies." 

Oncogene 6(9):1699-1703. 

Barth, A., L. A. Wanek and D. L. Morton. 1995. "Prognostic factors in 1,521 

melanoma patients with distant metastases." J Am Coll Surg 181(3):193-201. 

Baylin, S. B. 2005. "DNA methylation and gene silencing in cancer." Nat Clin Pract 

Oncol 2 Suppl 1:S4-11. 

Beadling, C., E. Jacobson-Dunlop, F. S. Hodi, C. Le, A. Warrick, J. Patterson, A. 

Town, A. Harlow, F. Cruz, 3rd, S. Azar, B. P. Rubin, S. Muller, R. West, M. C. 

Heinrich and C. L. Corless. 2008. "KIT gene mutations and copy number in 

melanoma subtypes." Clin Cancer Res 14(21):6821-6828. 

Bedikian, A. Y., G. R. Weiss, S. S. Legha, H. A. Burris, 3rd, J. R. Eckardt, J. Jenkins, 

O. Eton, A. C. Buzaid, L. Smetzer, D. D. Von Hoff and et al. 1995. "Phase II trial of 

docetaxel in patients with advanced cutaneous malignant melanoma previously 

untreated with chemotherapy." J Clin Oncol 13(12):2895-2899. 

Bell, D. W., J. M. Varley, T. E. Szydlo, D. H. Kang, D. C. Wahrer, K. E. Shannon, M. 

Lubratovich, S. J. Verselis, K. J. Isselbacher, J. F. Fraumeni, J. M. Birch, F. P. Li, J. 



 
Page | 327  

 

E. Garber and D. A. Haber. 1999. "Heterozygous germ line hCHK2 mutations in Li-

Fraumeni syndrome." Science 286(5449):2528-2531. 

Bell, H. S. and K. M. Ryan. 2008. "iASPP inhibition: increased options in targeting 

the p53 family for cancer therapy." Cancer Res 68(13):4959-4962. 

Bellet, R. E., I. Vaisman, M. J. Mastrangelo and E. Lustbader. 1977. "Multiple 

primary malignancies in patients with cutaneous melanoma." Cancer 40(4 

Suppl):1974-1981. 

Belmar-Lopez, C., P. Mancheno-Corvo, M. A. Saornil, P. Baril, G. Vassaux, M. 

Quintanilla and P. Martin-Duque. 2008. "Uveal vs. cutaneous melanoma. Origins and 

causes of the differences." Clin Transl Oncol 10(3):137-142. 

Bemis, L. T., R. Chen, C. M. Amato, E. H. Classen, S. E. Robinson, D. G. Coffey, P. 

F. Erickson, Y. G. Shellman and W. A. Robinson. 2008. "MicroRNA-137 targets 

microphthalmia-associated transcription factor in melanoma cell lines." Cancer Res 

68(5):1362-1368. 

Benard, G., N. Bellance, D. James, P. Parrone, H. Fernandez, T. Letellier and R. 

Rossignol. 2007. "Mitochondrial bioenergetics and structural network organization." J 

Cell Sci 120(Pt 5):838-848. 

Benchimol, S. 2004. "p53--an examination of sibling support in apoptosis control." 

Cancer Cell 6(1):3-4. 

Bensaad, K. and K. H. Vousden. 2005. "Savior and slayer: the two faces of p53." Nat 

Med 11(12):1278-1279. 

Bensaad, K. and K. H. Vousden. 2007. "p53: new roles in metabolism." Trends Cell 

Biol 17(6):286-291. 

Bergamaschi, D., M. Gasco, L. Hiller, A. Sullivan, N. Syed, G. Trigiante, I. Yulug, M. 

Merlano, G. Numico, A. Comino, M. Attard, O. Reelfs, B. Gusterson, A. K. Bell, V. 

Heath, M. Tavassoli, P. J. Farrell, P. Smith, X. Lu and T. Crook. 2003a. "p53 

polymorphism influences response in cancer chemotherapy via modulation of p73-

dependent apoptosis." Cancer Cell 3(4):387-402. 

Bergamaschi, D., Y. Samuels, B. Jin, S. Duraisingham, T. Crook and X. Lu. 2004. 

"ASPP1 and ASPP2: common activators of p53 family members." Mol Cell Biol 

24(3):1341-1350. 

Bergamaschi, D., Y. Samuels, N. J. O'Neil, G. Trigiante, T. Crook, J. K. Hsieh, D. J. 

O'Connor, S. Zhong, I. Campargue, M. L. Tomlinson, P. E. Kuwabara and X. Lu. 

2003b. "iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human." 

Nat Genet 33(2):162-167. 

Berger, S. L. 2002. "Histone modifications in transcriptional regulation." Curr Opin 

Genet Dev 12(2):142-148. 

Berking, C., R. Takemoto, K. Satyamoorthy, T. Shirakawa, M. Eskandarpour, J. 

Hansson, P. A. VanBelle, D. E. Elder and M. Herlyn. 2004. "Induction of melanoma 

phenotypes in human skin by growth factors and ultraviolet B." Cancer Res 

64(3):807-811. 

Berwick, M. and A. Halpern. 1997. "Melanoma epidemiology." Curr Opin Oncol 

9(2):178-182. 

Bhatia, S., L. Estrada-Batres, T. Maryon, M. Bogue and D. Chu. 1999. "Second 

primary tumors in patients with cutaneous malignant melanoma." Cancer 

86(10):2014-2020. 

Birck, A., V. Ahrenkiel, J. Zeuthen, K. Hou-Jensen and P. Guldberg. 2000. "Mutation 

and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma 

biopsies." J Invest Dermatol 114(2):277-280. 



 
Page | 328  

 

Birkeland, S. A., H. H. Storm, L. U. Lamm, L. Barlow, I. Blohme, B. Forsberg, B. 

Eklund, O. Fjeldborg, M. Friedberg, L. Frodin and et al. 1995. "Cancer risk after renal 

transplantation in the Nordic countries, 1964-1986." Int J Cancer 60(2):183-189. 

Bittner, M., P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Radmacher, R. 

Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang, F. Marincola, C. 

Gooden, J. Lueders, A. Glatfelter, P. Pollock, J. Carpten, E. Gillanders, D. Leja, K. 

Dietrich, C. Beaudry, M. Berens, D. Alberts and V. Sondak. 2000. "Molecular 

classification of cutaneous malignant melanoma by gene expression profiling." Nature 

406(6795):536-540. 

Blandino, G. and M. Dobbelstein. 2004. "p73 and p63: why do we still need them?" 

Cell Cycle 3(7):886-894. 

Blandino, G. and U. M. Moll. 2009. "p63 regulation by microRNAs." Cell Cycle 

8(10):1466-1467. 

Blanpain, C. and E. Fuchs. 2007. "p63: revving up epithelial stem-cell potential." Nat 

Cell Biol 9(7):731-733. 

Blaydes, J. P., M. G. Luciani, S. Pospisilova, H. M. Ball, B. Vojtesek and T. R. Hupp. 

2001. "Stoichiometric phosphorylation of human p53 at Ser315 stimulates p53-

dependent transcription." J Biol Chem 276(7):4699-4708. 

Bliss, J. M., D. Ford, A. J. Swerdlow, B. K. Armstrong, M. Cristofolini, J. M. Elwood, 

A. Green, E. A. Holly, T. Mack, R. M. MacKie and et al. 1995. "Risk of cutaneous 

melanoma associated with pigmentation characteristics and freckling: systematic 

overview of 10 case-control studies. The International Melanoma Analysis Group 

(IMAGE)." Int J Cancer 62(4):367-376. 

Bordea, C., F. Wojnarowska, P. R. Millard, H. Doll, K. Welsh and P. J. Morris. 2004. 

"Skin cancers in renal-transplant recipients occur more frequently than previously 

recognized in a temperate climate." Transplantation 77(4):574-579. 

Borrelli, S., B. Testoni, M. Callari, D. Alotto, C. Castagnoli, R. A. Romano, S. Sinha, 

A. M. Vigano and R. Mantovani. 2007. "Reciprocal regulation of p63 by C/EBP delta 

in human keratinocytes." BMC Mol Biol 8:85. 

Bourdon, J. C., K. Fernandes, F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas, 

M. K. Saville and D. P. Lane. 2005. "p53 isoforms can regulate p53 transcriptional 

activity." Genes Dev 19(18):2122-2137. 

Bourne, T. D., A. M. Bellizzi, E. B. Stelow, A. H. Loy, P. A. Levine, M. R. Wick and 

S. E. Mills. 2008. "p63 Expression in olfactory neuroblastoma and other small cell 

tumors of the sinonasal tract." Am J Clin Pathol 130(2):213-218. 

Bouwes Bavinck, J. N., D. R. Hardie, A. Green, S. Cutmore, A. MacNaught, B. 

O'Sullivan, V. Siskind, F. J. Van Der Woude and I. R. Hardie. 1996. "The risk of skin 

cancer in renal transplant recipients in Queensland, Australia. A follow-up study." 

Transplantation 61(5):715-721. 

Bowen, A. R., A. N. Hanks, S. M. Allen, A. Alexander, M. J. Diedrich and D. 

Grossman. 2003. "Apoptosis regulators and responses in human melanocytic and 

keratinocytic cells." J Invest Dermatol 120(1):48-55. 

Bower, C. P., J. T. Lear, S. Bygrave, D. Etherington, I. Harvey and C. B. Archer. 

2000. "Basal cell carcinoma and risk of subsequent malignancies: A cancer registry-

based study in southwest England." J Am Acad Dermatol 42(6):988-991. 

Box, N. F. and T. Terzian. 2008. "The role of p53 in pigmentation, tanning and 

melanoma." Pigment Cell Melanoma Res 21(5):525-533. 

Boyle, G. M., A. C. Martyn and P. G. Parsons. 2005. "Histone deacetylase inhibitors 

and malignant melanoma." Pigment Cell Res 18(3):160-166. 



 
Page | 329  

 

Braig, M. and C. A. Schmitt. 2006. "Oncogene-induced senescence: putting the brakes 

on tumor development." Cancer Res 66(6):2881-2884. 

Braithwaite, A. W., G. Del Sal and X. Lu. 2006. "Some p53-binding proteins that can 

function as arbiters of life and death." Cell Death Differ 13(6):984-993. 

Brinck, U., I. Ruschenburg, C. J. Di Como, N. Buschmann, H. Betke, J. Stachura, C. 

Cordon-Cardo and M. Korabiowska. 2002. "Comparative study of p63 and p53 

expression in tissue microarrays of malignant melanomas." Int J Mol Med 10(6):707-

711. 

Brose, M. S., P. Volpe, M. Feldman, M. Kumar, I. Rishi, R. Gerrero, E. Einhorn, M. 

Herlyn, J. Minna, A. Nicholson, J. A. Roth, S. M. Albelda, H. Davies, C. Cox, G. 

Brignell, P. Stephens, P. A. Futreal, R. Wooster, M. R. Stratton and B. L. Weber. 

2002. "BRAF and RAS mutations in human lung cancer and melanoma." Cancer Res 

62(23):6997-7000. 

Brown, K. M., S. Macgregor, G. W. Montgomery, D. W. Craig, Z. Z. Zhao, K. 

Iyadurai, A. K. Henders, N. Homer, M. J. Campbell, M. Stark, S. Thomas, H. Schmid, 

E. A. Holland, E. M. Gillanders, D. L. Duffy, J. A. Maskiell, J. Jetann, M. Ferguson, 

D. A. Stephan, A. E. Cust, D. Whiteman, A. Green, H. Olsson, S. Puig, P. Ghiorzo, J. 

Hansson, F. Demenais, A. M. Goldstein, N. A. Gruis, D. E. Elder, J. N. Bishop, R. F. 

Kefford, G. G. Giles, B. K. Armstrong, J. F. Aitken, J. L. Hopper, N. G. Martin, J. M. 

Trent, G. J. Mann and N. K. Hayward. 2008. "Common sequence variants on 

20q11.22 confer melanoma susceptibility." Nat Genet 40(7):838-840. 

Brown, R. and G. Strathdee. 2002. "Epigenomics and epigenetic therapy of cancer." 

Trends Mol Med 8(4 Suppl):S43-48. 

Brunner, H. G., B. C. Hamel and H. Bokhoven Hv. 2002. "P63 gene mutations and 

human developmental syndromes." Am J Med Genet 112(3):284-290. 

Buchdunger, E., C. L. Cioffi, N. Law, D. Stover, S. Ohno-Jones, B. J. Druker and N. 

B. Lydon. 2000. "Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal 

transduction mediated by c-kit and platelet-derived growth factor receptors." J 

Pharmacol Exp Ther 295(1):139-145. 

Buchdunger, E., T. O'Reilly and J. Wood. 2002. "Pharmacology of imatinib 

(STI571)." Eur J Cancer 38 Suppl 5:S28-36. 

Buell, J. F., T. G. Gross and E. S. Woodle. 2005. "Malignancy after transplantation." 

Transplantation 80(2 Suppl):S254-264. 

Burford, H. N., A. L. Adams and O. Hameed. 2009. "Effect of storage on p63 

immunohistochemistry: a time-course study." Appl Immunohistochem Mol Morphol 

17(1):68-71. 

Burkert, J., N. A. Wright and M. R. Alison. 2006. "Stem cells and cancer: an intimate 

relationship." J Pathol 209(3):287-297. 

Busam, K. J., Y. T. Chen, L. J. Old, E. Stockert, K. Iversen, K. A. Coplan, J. Rosai, R. 

L. Barnhill and A. A. Jungbluth. 1998. "Expression of melan-A (MART1) in benign 

melanocytic nevi and primary cutaneous malignant melanoma." Am J Surg Pathol 

22(8):976-982. 

Bussolati, G. and E. Leonardo. 2008. "Technical pitfalls potentially affecting 

diagnoses in immunohistochemistry." J Clin Pathol 61(11):1184-1192. 

Calin, G. A., C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. 

Shimizu, S. Rattan, F. Bullrich, M. Negrini and C. M. Croce. 2004. "Human 

microRNA genes are frequently located at fragile sites and genomic regions involved 

in cancers." Proc Natl Acad Sci U S A 101(9):2999-3004. 



 
Page | 330  

 

Cameron, E. E., K. E. Bachman, S. Myohanen, J. G. Herman and S. B. Baylin. 1999. 

"Synergy of demethylation and histone deacetylase inhibition in the re-expression of 

genes silenced in cancer." Nat Genet 21(1):103-107. 

Campioni, M., D. Santini, G. Tonini, R. Murace, E. Dragonetti, E. P. Spugnini and A. 

Baldi. 2005. "Role of Apaf-1, a key regulator of apoptosis, in melanoma progression 

and chemoresistance." Exp Dermatol 14(11):811-818. 

Candi, E., A. Rufini, A. Terrinoni, D. Dinsdale, M. Ranalli, A. Paradisi, V. De 

Laurenzi, L. G. Spagnoli, M. V. Catani, S. Ramadan, R. A. Knight and G. Melino. 

2006. "Differential roles of p63 isoforms in epidermal development: selective genetic 

complementation in p63 null mice." Cell Death Differ 13(6):1037-1047. 

Carreira, S., J. Goodall, I. Aksan, S. A. La Rocca, M. D. Galibert, L. Denat, L. Larue 

and C. R. Goding. 2005. "Mitf cooperates with Rb1 and activates p21Cip1 expression 

to regulate cell cycle progression." Nature 433(7027):764-769. 

Carrozza, M. J., R. T. Utley, J. L. Workman and J. Cote. 2003. "The diverse functions 

of histone acetyltransferase complexes." Trends Genet 19(6):321-329. 

Casciano, I., K. Mazzocco, L. Boni, G. Pagnan, B. Banelli, G. Allemanni, M. Ponzoni, 

G. P. Tonini and M. Romani. 2002. "Expression of DeltaNp73 is a molecular marker 

for adverse outcome in neuroblastoma patients." Cell Death Differ 9(3):246-251. 

Casper, E. S. and D. Bajorin. 1990. "Phase II trial of carboplatin in patients with 

advanced melanoma." Invest New Drugs 8(2):187-190. 

Celli, J., P. Duijf, B. C. Hamel, M. Bamshad, B. Kramer, A. P. Smits, R. Newbury-

Ecob, R. C. Hennekam, G. Van Buggenhout, A. van Haeringen, C. G. Woods, A. J. 

van Essen, R. de Waal, G. Vriend, D. A. Haber, A. Yang, F. McKeon, H. G. Brunner 

and H. van Bokhoven. 1999. "Heterozygous germline mutations in the p53 homolog 

p63 are the cause of EEC syndrome." Cell 99(2):143-153. 

Cerroni, L., H. P. Soyer and H. Kerl. 1995. "bcl-2 protein expression in cutaneous 

malignant melanoma and benign melanocytic nevi." Am J Dermatopathol 17(1):7-11. 

Chan, W. M., W. Y. Siu, A. Lau and R. Y. Poon. 2004. "How many mutant p53 

molecules are needed to inactivate a tetramer?" Mol Cell Biol 24(8):3536-3551. 

Chang, A., M. Hunt, D. R. Parkinson, H. Hochster and T. J. Smith. 1993. "Phase II 

trial of carboplatin in patients with metastatic malignant melanoma. A report from the 

Eastern Cooperative Oncology Group." Am J Clin Oncol 16(2):152-155. 

Chang, L., H. Kamata, G. Solinas, J. L. Luo, S. Maeda, K. Venuprasad, Y. C. Liu and 

M. Karin. 2006. "The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-

induced cell death by inducing c-FLIP(L) turnover." Cell 124(3):601-613. 

Chapman, P. B., L. H. Einhorn, M. L. Meyers, S. Saxman, A. N. Destro, K. S. 

Panageas, C. B. Begg, S. S. Agarwala, L. M. Schuchter, M. S. Ernstoff, A. N. 

Houghton and J. M. Kirkwood. 1999. "Phase III multicenter randomized trial of the 

Dartmouth regimen versus dacarbazine in patients with metastatic melanoma." J Clin 

Oncol 17(9):2745-2751. 

Chehab, N. H., A. Malikzay, M. Appel and T. D. Halazonetis. 2000. "Chk2/hCds1 

functions as a DNA damage checkpoint in G(1) by stabilizing p53." Genes Dev 

14(3):278-288. 

Chernov, M. V. and G. R. Stark. 1997. "The p53 activation and apoptosis induced by 

DNA damage are reversibly inhibited by salicylate." Oncogene 14(21):2503-2510. 

Chipuk, J. E., L. Bouchier-Hayes, T. Kuwana, D. D. Newmeyer and D. R. Green. 

2005. "PUMA couples the nuclear and cytoplasmic proapoptotic function of p53." 

Science 309(5741):1732-1735. 

Chipuk, J. E. and D. R. Green. 2006. "Dissecting p53-dependent apoptosis." Cell 

Death Differ 13(6):994-1002. 



 
Page | 331  

 

Chipuk, J. E., U. Maurer, D. R. Green and M. Schuler. 2003. "Pharmacologic 

activation of p53 elicits Bax-dependent apoptosis in the absence of transcription." 

Cancer Cell 4(5):371-381. 

Choi, H. R., J. G. Batsakis, F. Zhan, E. Sturgis, M. A. Luna and A. K. El-Naggar. 

2002. "Differential expression of p53 gene family members p63 and p73 in head and 

neck squamous tumorigenesis." Hum Pathol 33(2):158-164. 

Chrivia, J. C., R. P. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy and R. H. 

Goodman. 1993. "Phosphorylated CREB binds specifically to the nuclear protein 

CBP." Nature 365(6449):855-859. 

Chudnovsky, Y., P. A. Khavari and A. E. Adams. 2005. "Melanoma genetics and the 

development of rational therapeutics." J Clin Invest 115(4):813-824. 

Clark, W. H., Jr., D. E. Elder, D. th Guerry, M. N. Epstein, M. H. Greene and M. Van 

Horn. 1984. "A study of tumor progression: the precursor lesions of superficial 

spreading and nodular melanoma." Hum Pathol 15(12):1147-1165. 

Cleaver, J. E. and E. Crowley. 2002. "UV damage, DNA repair and skin 

carcinogenesis." Front Biosci 7:d1024-1043. 

Cobleigh, M. A., B. Tabesh, P. Bitterman, J. Baker, M. Cronin, M. L. Liu, R. Borchik, 

J. M. Mosquera, M. G. Walker and S. Shak. 2005. "Tumor gene expression and 

prognosis in breast cancer patients with 10 or more positive lymph nodes." Clin 

Cancer Res 11(24 Pt 1):8623-8631. 

Cohen, C., A. Zavala-Pompa, J. H. Sequeira, M. Shoji, D. G. Sexton, G. Cotsonis, F. 

Cerimele, B. Govindarajan, N. Macaron and J. L. Arbiser. 2002. "Mitogen-actived 

protein kinase activation is an early event in melanoma progression." Clin Cancer Res 

8(12):3728-3733. 

Collins, A. T., P. A. Berry, C. Hyde, M. J. Stower and N. J. Maitland. 2005. 

"Prospective identification of tumorigenic prostate cancer stem cells." Cancer Res 

65(23):10946-10951. 

Collins, K. A. and W. L. White. 1995. "Intercellular adhesion molecule 1 (ICAM-1) 

and bcl-2 are differentially expressed in early evolving malignant melanoma." Am J 

Dermatopathol 17(5):429-438. 

Collins, T. J. and M. D. Bootman. 2003. "Mitochondria are morphologically 

heterogeneous within cells." J Exp Biol 206(Pt 12):1993-2000. 

Colombari, R., F. Bonetti, G. Zamboni, A. Scarpa, F. Marino, A. Tomezzoli, P. 

Capelli, F. Menestrina, M. Chilosi and L. Fiore-Donati. 1988. "Distribution of 

melanoma specific antibody (HMB-45) in benign and malignant melanocytic tumours. 

An immunohistochemical study on paraffin sections." Virchows Arch A Pathol Anat 

Histopathol 413(1):17-24. 

Corazzari, M., P. E. Lovat, J. L. Armstrong, G. M. Fimia, D. S. Hill, M. Birch-

Machin, C. P. Redfern and M. Piacentini. 2007. "Targeting homeostatic mechanisms 

of endoplasmic reticulum stress to increase susceptibility of cancer cells to 

fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57." Br J 

Cancer 96(7):1062-1071. 

Corbeil, D., K. Roper, A. Hellwig, M. Tavian, S. Miraglia, S. M. Watt, P. J. Simmons, 

B. Peault, D. W. Buck and W. B. Huttner. 2000. "The human AC133 hematopoietic 

stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane 

protrusions." J Biol Chem 275(8):5512-5520. 

Courtois, S., C. C. de Fromentel and P. Hainaut. 2004. "p53 protein variants: 

structural and functional similarities with p63 and p73 isoforms." Oncogene 

23(3):631-638. 



 
Page | 332  

 

Croce, C. M. and G. A. Calin. 2005. "miRNAs, cancer, and stem cell division." Cell 

122(1):6-7. 

Crook, T., J. M. Nicholls, L. Brooks, J. O'Nions and M. J. Allday. 2000. "High level 

expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated 

nasopharyngeal carcinoma (NPC)?" Oncogene 19(30):3439-3444. 

Curtin, J. A., K. Busam, D. Pinkel and B. C. Bastian. 2006. "Somatic activation of 

KIT in distinct subtypes of melanoma." J Clin Oncol 24(26):4340-4346. 

Curtin, J. A., J. Fridlyand, T. Kageshita, H. N. Patel, K. J. Busam, H. Kutzner, K. H. 

Cho, S. Aiba, E. B. Brocker, P. E. LeBoit, D. Pinkel and B. C. Bastian. 2005. 

"Distinct sets of genetic alterations in melanoma." N Engl J Med 353(20):2135-2147. 

Dahlstrand, J., L. B. Zimmerman, R. D. McKay and U. Lendahl. 1992. 

"Characterization of the human nestin gene reveals a close evolutionary relationship to 

neurofilaments." J Cell Sci 103 ( Pt 2):589-597. 

Dapson, R. W. 1993. "Fixation for the 1990's: a review of needs and 

accomplishments." Biotech Histochem 68(2):75-82. 

Davies, H., G. R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. 

Woffendin, M. J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. 

Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, 

C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B. A. Gusterson, C. Cooper, 

J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G. J. 

Riggins, D. D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J. W. Ho, S. 

Y. Leung, S. T. Yuen, B. L. Weber, H. F. Seigler, T. L. Darrow, H. Paterson, R. 

Marais, C. J. Marshall, R. Wooster, M. R. Stratton and P. A. Futreal. 2002. "Mutations 

of the BRAF gene in human cancer." Nature 417(6892):949-954. 

Davies, M. A., K. Stemke-Hale, C. Tellez, T. L. Calderone, W. Deng, V. G. Prieto, A. 

J. Lazar, J. E. Gershenwald and G. B. Mills. 2008. "A novel AKT3 mutation in 

melanoma tumours and cell lines." Br J Cancer 99(8):1265-1268. 

De Laurenzi, V., A. Rossi, A. Terrinoni, D. Barcaroli, M. Levrero, A. Costanzo, R. A. 

Knight, P. Guerrieri and G. Melino. 2000. "p63 and p73 transactivate differentiation 

gene promoters in human keratinocytes." Biochem Biophys Res Commun 273(1):342-

346. 

de Ruijter, A. J., A. H. van Gennip, H. N. Caron, S. Kemp and A. B. van Kuilenburg. 

2003. "Histone deacetylases (HDACs): characterization of the classical HDAC 

family." Biochem J 370(Pt 3):737-749. 

Dellavalle, R. P., T. B. Egbert, A. Marchbank, L. J. Su, L. A. Lee and P. Walsh. 2001. 

"CUSP/p63 expression in rat and human tissues." J Dermatol Sci 27(2):82-87. 

Dews, M., A. Homayouni, D. Yu, D. Murphy, C. Sevignani, E. Wentzel, E. E. Furth, 

W. M. Lee, G. H. Enders, J. T. Mendell and A. Thomas-Tikhonenko. 2006. 

"Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster." Nat 

Genet 38(9):1060-1065. 

Deyoung, M. P. and L. W. Ellisen. 2007. "p63 and p73 in human cancer: defining the 

network." Oncogene 26(36):5169-5183. 

Dhalluin, C., J. E. Carlson, L. Zeng, C. He, A. K. Aggarwal and M. M. Zhou. 1999. 

"Structure and ligand of a histone acetyltransferase bromodomain." Nature 

399(6735):491-496. 

Dhawan, P. and A. Richmond. 2002. "A novel NF-kappa B-inducing kinase-MAPK 

signaling pathway up-regulates NF-kappa B activity in melanoma cells." J Biol Chem 

277(10):7920-7928. 

Dhillon, P. K., M. Barry, M. J. Stampfer, S. Perner, M. Fiorentino, A. Fornari, J. Ma, 

J. Fleet, T. Kurth, M. A. Rubin and L. A. Mucci. 2009. "Aberrant cytoplasmic 



 
Page | 333  

 

expression of p63 and prostate cancer mortality." Cancer Epidemiol Biomarkers Prev 

18(2):595-600. 

Di Como, C. J., M. J. Urist, I. Babayan, M. Drobnjak, C. V. Hedvat, J. Teruya-

Feldstein, K. Pohar, A. Hoos and C. Cordon-Cardo. 2002. "p63 expression profiles in 

human normal and tumor tissues." Clin Cancer Res 8(2):494-501. 

Diffey, B. L. 2004. "The future incidence of cutaneous melanoma within the UK." Br 

J Dermatol 151(4):868-872. 

Dohn, M., S. Zhang and X. Chen. 2001. "p63alpha and DeltaNp63alpha can induce 

cell cycle arrest and apoptosis and differentially regulate p53 target genes." Oncogene 

20(25):3193-3205. 

Dotto, G. P. 2009. "Crosstalk of Notch with p53 and p63 in cancer growth control." 

Nat Rev Cancer 9(8):587-595. 

Dotto, J. E. and E. J. Glusac. 2006. "p63 is a useful marker for cutaneous spindle cell 

squamous cell carcinoma." J Cutan Pathol 33(6):413-417. 

Dressel, R., J. P. Johnson and E. Gunther. 1998. "Heterogeneous patterns of 

constitutive and heat shock induced expression of HLA-linked HSP70-1 and HSP70-2 

heat shock genes in human melanoma cell lines." Melanoma Res 8(6):482-492. 

Druker, B. J. and N. B. Lydon. 2000. "Lessons learned from the development of an 

abl tyrosine kinase inhibitor for chronic myelogenous leukemia." J Clin Invest 

105(1):3-7. 

Drummond, D. C., C. O. Noble, D. B. Kirpotin, Z. Guo, G. K. Scott and C. C. Benz. 

2005. "Clinical development of histone deacetylase inhibitors as anticancer agents." 

Annu Rev Pharmacol Toxicol 45:495-528. 

Du, J., H. R. Widlund, M. A. Horstmann, S. Ramaswamy, K. Ross, W. E. Huber, E. 

K. Nishimura, T. R. Golub and D. E. Fisher. 2004. "Critical role of CDK2 for 

melanoma growth linked to its melanocyte-specific transcriptional regulation by 

MITF." Cancer Cell 6(6):565-576. 

Duijf, P. H., K. R. Vanmolkot, P. Propping, W. Friedl, E. Krieger, F. McKeon, V. 

Dotsch, H. G. Brunner and H. van Bokhoven. 2002. "Gain-of-function mutation in 

ADULT syndrome reveals the presence of a second transactivation domain in p63." 

Hum Mol Genet 11(7):799-804. 

Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. Lawrence and 

D. M. Livingston. 1994. "Molecular cloning and functional analysis of the adenovirus 

E1A-associated 300-kD protein (p300) reveals a protein with properties of a 

transcriptional adaptor." Genes Dev 8(8):869-884. 

Egger, G., A. M. Aparicio, S. G. Escobar and P. A. Jones. 2007. "Inhibition of histone 

deacetylation does not block resilencing of p16 after 5-aza-2'-deoxycytidine 

treatment." Cancer Res 67(1):346-353. 

Egger, G., G. Liang, A. Aparicio and P. A. Jones. 2004. "Epigenetics in human 

disease and prospects for epigenetic therapy." Nature 429(6990):457-463. 

Einzig, A. I., H. Hochster, P. H. Wiernik, D. L. Trump, J. P. Dutcher, E. Garowski, J. 

Sasloff and T. J. Smith. 1991. "A phase II study of taxol in patients with malignant 

melanoma." Invest New Drugs 9(1):59-64. 

Eisen, T., D. J. Easty, D. C. Bennett and C. R. Goding. 1995. "The POU domain 

transcription factor Brn-2: elevated expression in malignant melanoma and regulation 

of melanocyte-specific gene expression." Oncogene 11(10):2157-2164. 

el-Deiry, W. S., T. Tokino, T. Waldman, J. D. Oliner, V. E. Velculescu, M. Burrell, D. 

E. Hill, E. Healy, J. L. Rees, S. R. Hamilton and et al. 1995. "Topological control of 

p21WAF1/CIP1 expression in normal and neoplastic tissues." Cancer Res 

55(13):2910-2919. 



 
Page | 334  

 

Elwood, J. M. and J. Jopson. 1997. "Melanoma and sun exposure: an overview of 

published studies." Int J Cancer 73(2):198-203. 

Eramo, A., F. Lotti, G. Sette, E. Pilozzi, M. Biffoni, A. Di Virgilio, C. Conticello, L. 

Ruco, C. Peschle and R. De Maria. 2008. "Identification and expansion of the 

tumorigenic lung cancer stem cell population." Cell Death Differ 15(3):504-514. 

Erster, S., M. Mihara, R. H. Kim, O. Petrenko and U. M. Moll. 2004. "In vivo 

mitochondrial p53 translocation triggers a rapid first wave of cell death in response to 

DNA damage that can precede p53 target gene activation." Mol Cell Biol 

24(15):6728-6741. 

Esquela-Kerscher, A. and F. J. Slack. 2006. "Oncomirs - microRNAs with a role in 

cancer." Nat Rev Cancer 6(4):259-269. 

Essner, R., C. T. Kuo, H. Wang, D. R. Wen, R. R. Turner, T. Nguyen and D. S. Hoon. 

1998. "Prognostic implications of p53 overexpression in cutaneous melanoma from 

sun-exposed and nonexposed sites." Cancer 82(2):309-316. 

Evans, L. M., E. S. Casper and R. Rosenbluth. 1987. "Phase II trial of carboplatin in 

advanced malignant melanoma." Cancer Treat Rep 71(2):171-172. 

Fang, D., T. K. Nguyen, K. Leishear, R. Finko, A. N. Kulp, S. Hotz, P. A. Van Belle, 

X. Xu, D. E. Elder and M. Herlyn. 2005. "A tumorigenic subpopulation with stem cell 

properties in melanomas." Cancer Res 65(20):9328-9337. 

Fargnoli, M. C., K. Pike, R. M. Pfeiffer, S. Tsang, E. Rozenblum, D. J. Munroe, Y. 

Golubeva, D. Calista, S. Seidenari, D. Massi, P. Carli, J. Bauer, D. E. Elder, B. C. 

Bastian, K. Peris and M. T. Landi. 2008. "MC1R variants increase risk of melanomas 

harboring BRAF mutations." J Invest Dermatol 128(10):2485-2490. 

Farh, K. K., A. Grimson, C. Jan, B. P. Lewis, W. K. Johnston, L. P. Lim, C. B. Burge 

and D. P. Bartel. 2005. "The widespread impact of mammalian MicroRNAs on 

mRNA repression and evolution." Science 310(5755):1817-1821. 

Fecher, L. A., S. D. Cummings, M. J. Keefe and R. M. Alani. 2007. "Toward a 

molecular classification of melanoma." J Clin Oncol 25(12):1606-1620. 

Felicetti, F., M. C. Errico, L. Bottero, P. Segnalini, A. Stoppacciaro, M. Biffoni, N. 

Felli, G. Mattia, M. Petrini, M. P. Colombo, C. Peschle and A. Care. 2008a. "The 

promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma 

progression through multiple oncogenic mechanisms." Cancer Res 68(8):2745-2754. 

Felicetti, F., M. C. Errico, P. Segnalini, G. Mattia and A. Care. 2008b. "MicroRNA-

221 and -222 pathway controls melanoma progression." Expert Rev Anticancer Ther 

8(11):1759-1765. 

Fernandes, K. J., I. A. McKenzie, P. Mill, K. M. Smith, M. Akhavan, F. Barnabe-

Heider, J. Biernaskie, A. Junek, N. R. Kobayashi, J. G. Toma, D. R. Kaplan, P. A. 

Labosky, V. Rafuse, C. C. Hui and F. D. Miller. 2004. "A dermal niche for 

multipotent adult skin-derived precursor cells." Nat Cell Biol 6(11):1082-1093. 

Finlan, L. E., R. Nenutil, S. H. Ibbotson, B. Vojtesek and T. R. Hupp. 2006. "CK2-site 

phosphorylation of p53 is induced in DeltaNp63 expressing basal stem cells in UVB 

irradiated human skin." Cell Cycle 5(21):2489-2494. 

Finnin, M. S., J. R. Donigian, A. Cohen, V. M. Richon, R. A. Rifkind, P. A. Marks, R. 

Breslow and N. P. Pavletich. 1999. "Structures of a histone deacetylase homologue 

bound to the TSA and SAHA inhibitors." Nature 401(6749):188-193. 

Fischle, W., Y. Wang and C. D. Allis. 2003. "Histone and chromatin cross-talk." Curr 

Opin Cell Biol 15(2):172-183. 

Fisher, D. E. 1994. "Apoptosis in cancer therapy: crossing the threshold." Cell 

78(4):539-542. 



 
Page | 335  

 

Fitzpatrick, T. B. 1988. "The validity and practicality of sun-reactive skin types I 

through VI." Arch Dermatol 124(6):869-871. 

Flaherty, K. T. and K. S. Smalley. 2009. "Preclinical and clinical development of 

targeted therapy in melanoma: attention to schedule." Pigment Cell Melanoma Res 

22(5):529-531. 

Florenes, V. A., T. Oyjord, R. Holm, M. Skrede, A. L. Borresen, J. M. Nesland and O. 

Fodstad. 1994. "TP53 allele loss, mutations and expression in malignant melanoma." 

Br J Cancer 69(2):253-259. 

Flores, E. R. 2007. "The roles of p63 in cancer." Cell Cycle 6(3):300-304. 

Flores, E. R., S. Sengupta, J. B. Miller, J. J. Newman, R. Bronson, D. Crowley, A. 

Yang, F. McKeon and T. Jacks. 2005. "Tumor predisposition in mice mutant for p63 

and p73: evidence for broader tumor suppressor functions for the p53 family." Cancer 

Cell 7(4):363-373. 

Flores, E. R., K. Y. Tsai, D. Crowley, S. Sengupta, A. Yang, F. McKeon and T. Jacks. 

2002. "p63 and p73 are required for p53-dependent apoptosis in response to DNA 

damage." Nature 416(6880):560-564. 

Fomenkov, A., R. Zangen, Y. P. Huang, M. Osada, Z. Guo, T. Fomenkov, B. Trink, 

D. Sidransky and E. A. Ratovitski. 2004. "RACK1 and stratifin target DeltaNp63alpha 

for a proteasome degradation in head and neck squamous cell carcinoma cells upon 

DNA damage." Cell Cycle 3(10):1285-1295. 

Forbes, S. A., G. Bhamra, S. Bamford, E. Dawson, C. Kok, J. Clements, A. Menzies, 

J. W. Teague, P. A. Futreal and M. R. Stratton. 2008. "The Catalogue of Somatic 

Mutations in Cancer (COSMIC)." Curr Protoc Hum Genet Chapter 10:Unit 10 11. 

Frank, N. Y., A. Margaryan, Y. Huang, T. Schatton, A. M. Waaga-Gasser, M. Gasser, 

M. H. Sayegh, W. Sadee and M. H. Frank. 2005. "ABCB5-mediated doxorubicin 

transport and chemoresistance in human malignant melanoma." Cancer Res 

65(10):4320-4333. 

Frank, N. Y., S. S. Pendse, P. H. Lapchak, A. Margaryan, D. Shlain, C. Doeing, M. H. 

Sayegh and M. H. Frank. 2003. "Regulation of progenitor cell fusion by ABCB5 P-

glycoprotein, a novel human ATP-binding cassette transporter." J Biol Chem 

278(47):47156-47165. 

Fuchs, S. Y., V. S. Spiegelman and K. G. Kumar. 2004. "The many faces of beta-

TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer." Oncogene 

23(11):2028-2036. 

Fukushima, N., T. Satoh, N. Sueoka, A. Sato, M. Ide, T. Hisatomi, N. Kuwahara, R. 

Tomimasu, N. Tsuneyoshi, N. Funai, M. Sano, O. Tokunaga and E. Sueoka. 2006. 

"Clinico-pathological characteristics of p63 expression in B-cell lymphoma." Cancer 

Sci 97(10):1050-1055. 

Furukawa, T., T. Kubota, A. Suto, T. Takahara, H. Yamaguchi, T. Takeuchi, S. Kase, 

S. Kodaira, K. Ishibiki and M. Kitajima. 1991. "Clinical usefulness of 

chemosensitivity testing using the MTT assay." J Surg Oncol 48(3):188-193. 

Gallagher, E., M. Gao, Y. C. Liu and M. Karin. 2006. "Activation of the E3 ubiquitin 

ligase Itch through a phosphorylation-induced conformational change." Proc Natl 

Acad Sci U S A 103(6):1717-1722. 

Gallegos, J. R., J. Litersky, H. Lee, Y. Sun, K. Nakayama and H. Lu. 2008. "SCF 

TrCP1 activates and ubiquitylates TAp63gamma." J Biol Chem 283(1):66-75. 

Gandini, S., F. Sera, M. S. Cattaruzza, P. Pasquini, O. Picconi, P. Boyle and C. F. 

Melchi. 2005. "Meta-analysis of risk factors for cutaneous melanoma: II. Sun 

exposure." Eur J Cancer 41(1):45-60. 



 
Page | 336  

 

Garnett, M. J. and R. Marais. 2004. "Guilty as charged: B-RAF is a human oncogene." 

Cancer Cell 6(4):313-319. 

Gasco, M. and T. Crook. 2003. "p53 family members and chemoresistance in cancer: 

what we know and what we need to know." Drug Resist Updat 6(6):323-328. 

Gaur, A., D. A. Jewell, Y. Liang, D. Ridzon, J. H. Moore, C. Chen, V. R. Ambros and 

M. A. Israel. 2007. "Characterization of microRNA expression levels and their 

biological correlates in human cancer cell lines." Cancer Res 67(6):2456-2468. 

Gause, B. L., W. H. Sharfman, J. E. Janik, B. D. Curti, R. G. Steis, W. J. Urba, J. W. 

Smith, 2nd, W. G. Alvord and D. L. Longo. 1998. "A phase II study of carboplatin, 

cisplatin, interferon-alpha, and tamoxifen for patients with metastatic melanoma." 

Cancer Invest 16(6):374-380. 

Gelsleichter, L., A. M. Gown, R. J. Zarbo, E. Wang and M. D. Coltrera. 1995. "p53 

and mdm-2 expression in malignant melanoma: an immunocytochemical study of 

expression of p53, mdm-2, and markers of cell proliferation in primary versus 

metastatic tumors." Mod Pathol 8(5):530-535. 

Georges, S. A., M. C. Biery, S. Y. Kim, J. M. Schelter, J. Guo, A. N. Chang, A. L. 

Jackson, M. O. Carleton, P. S. Linsley, M. A. Cleary and B. N. Chau. 2008. 

"Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-

192 and miR-215." Cancer Res 68(24):10105-10112. 

Ghioni, P., F. Bolognese, P. H. Duijf, H. Van Bokhoven, R. Mantovani and L. 

Guerrini. 2002. "Complex transcriptional effects of p63 isoforms: identification of 

novel activation and repression domains." Mol Cell Biol 22(24):8659-8668. 

Ghioni, P., Y. D'Alessandra, G. Mansueto, E. Jaffray, R. T. Hay, G. La Mantia and L. 

Guerrini. 2005. "The protein stability and transcriptional activity of p63alpha are 

regulated by SUMO-1 conjugation." Cell Cycle 4(1):183-190. 

Ghiorzo, P. and G. B. Scarra. 2003. "Genetics of melanoma susceptibility." Forum 

(Genova) 13(2):114-122; quiz 187. 

Ghosh, A., D. Stewart and G. Matlashewski. 2004. "Regulation of human p53 activity 

and cell localization by alternative splicing." Mol Cell Biol 24(18):7987-7997. 

Gilchrest, B. A., M. S. Eller, A. C. Geller and M. Yaar. 1999. "The pathogenesis of 

melanoma induced by ultraviolet radiation." N Engl J Med 340(17):1341-1348. 

Glover, D., J. Ibrahim, J. Kirkwood, J. Glick, D. Karp, J. Stewart, M. Ewell and E. 

Borden. 2003. "Phase II randomized trial of cisplatin and WR-2721 versus cisplatin 

alone for metastatic melanoma: an Eastern Cooperative Oncology Group Study 

(E1686)." Melanoma Res 13(6):619-626. 

Goding, C. R. 2000. "Mitf from neural crest to melanoma: signal transduction and 

transcription in the melanocyte lineage." Genes Dev 14(14):1712-1728. 

Goel, V. K., N. Ibrahim, G. Jiang, M. Singhal, S. Fee, T. Flotte, S. Westmoreland, F. 

S. Haluska, P. W. Hinds and F. G. Haluska. 2009. "Melanocytic nevus-like 

hyperplasia and melanoma in transgenic BRAFV600E mice." Oncogene 28(23):2289-

2298. 

Goffin, J. and E. Eisenhauer. 2002. "DNA methyltransferase inhibitors-state of the 

art." Ann Oncol 13(11):1699-1716. 

Gogas, H., D. Bafaloukos, G. Aravantinos, G. Fountzilas, D. Tsoutsos, P. Panagiotou, 

K. Frangia, H. P. Kalofonos, E. Briasoulis, O. Castana, A. Polyzos, D. Pectasides and 

J. Ioannovich. 2004a. "Vinorelbine in combination with interleukin-2 as second-line 

treatment in patients with metastatic melanoma. A phase II study of the Hellenic 

Cooperative Oncology Group." Cancer Invest 22(6):832-839. 

Gogas, H., D. Bafaloukos and A. Y. Bedikian. 2004b. "The role of taxanes in the 

treatment of metastatic melanoma." Melanoma Res 14(5):415-420. 



 
Page | 337  

 

Goggins, W. B., D. M. Finkelstein and H. Tsao. 2001. "Evidence for an association 

between cutaneous melanoma and non-Hodgkin lymphoma." Cancer 91(4):874-880. 

Goldstein, A. M., M. Chan, M. Harland, E. M. Gillanders, N. K. Hayward, M. F. 

Avril, E. Azizi, G. Bianchi-Scarra, D. T. Bishop, B. Bressac-de Paillerets, W. Bruno, 

D. Calista, L. A. Cannon Albright, F. Demenais, D. E. Elder, P. Ghiorzo, N. A. Gruis, 

J. Hansson, D. Hogg, E. A. Holland, P. A. Kanetsky, R. F. Kefford, M. T. Landi, J. 

Lang, S. A. Leachman, R. M. Mackie, V. Magnusson, G. J. Mann, K. Niendorf, J. 

Newton Bishop, J. M. Palmer, S. Puig, J. A. Puig-Butille, F. A. de Snoo, M. Stark, H. 

Tsao, M. A. Tucker, L. Whitaker and E. Yakobson. 2006. "High-risk melanoma 

susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma 

across GenoMEL." Cancer Res 66(20):9818-9828. 

Goldstein, A. M. and M. A. Tucker. 1995. "Genetic epidemiology of familial 

melanoma." Dermatol Clin 13(3):605-612. 

Goll, M. G. and T. H. Bestor. 2005. "Eukaryotic cytosine methyltransferases." Annu 

Rev Biochem 74:481-514. 

Gonfloni, S., L. Di Tella, S. Caldarola, S. M. Cannata, F. G. Klinger, C. Di 

Bartolomeo, M. Mattei, E. Candi, M. De Felici, G. Melino and G. Cesareni. 2009. 

"Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-

induced death." Nat Med 15(10):1179-1185. 

Goodall, J., S. Martinozzi, T. J. Dexter, D. Champeval, S. Carreira, L. Larue and C. R. 

Goding. 2004a. "Brn-2 expression controls melanoma proliferation and is directly 

regulated by beta-catenin." Mol Cell Biol 24(7):2915-2922. 

Goodall, J., C. Wellbrock, T. J. Dexter, K. Roberts, R. Marais and C. R. Goding. 

2004b. "The Brn-2 transcription factor links activated BRAF to melanoma 

proliferation." Mol Cell Biol 24(7):2923-2931. 

Grabau, D. A., Nielsen, O., Hansen, S., Nielsen, M. M.,Laenkholm, A.,Knoop, A.,and 

Pfeiffer, P. 1998. "Influence of storage temperature and high temperature antigen 

retrieval buffers on results of immunohistochemical staining in sections stored for 

long periods." Appl Immunohistochem 6:209-213. 

Grant, P. A. 2001. "A tale of histone modifications." Genome Biol 

2(4):REVIEWS0003. 

Green, H., K. Easley and S. Iuchi. 2003. "Marker succession during the development 

of keratinocytes from cultured human embryonic stem cells." Proc Natl Acad Sci U S 

A 100(26):15625-15630. 

Greene, M. H., T. I. Young and W. H. Clark, Jr. 1981. "Malignant melanoma in renal-

transplant recipients." Lancet 1(8231):1196-1199. 

Gregory, R. I. and R. Shiekhattar. 2005. "MicroRNA biogenesis and cancer." Cancer 

Res 65(9):3509-3512. 

Greijer, A. E., P. van der Groep, D. Kemming, A. Shvarts, G. L. Semenza, G. A. 

Meijer, M. A. van de Wiel, J. A. Belien, P. J. van Diest and E. van der Wall. 2005. 

"Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-

inducible factor 1 (HIF-1)." J Pathol 206(3):291-304. 

Gressner, O., T. Schilling, K. Lorenz, E. Schulze Schleithoff, A. Koch, H. Schulze-

Bergkamen, A. M. Lena, E. Candi, A. Terrinoni, M. V. Catani, M. Oren, G. Melino, 

P. H. Krammer, W. Stremmel and M. Muller. 2005. "TAp63alpha induces apoptosis 

by activating signaling via death receptors and mitochondria." Embo J 24(13):2458-

2471. 

Grichnik, J. M., J. A. Burch, R. D. Schulteis, S. Shan, J. Liu, T. L. Darrow, C. E. 

Vervaert and H. F. Seigler. 2006. "Melanoma, a tumor based on a mutant stem cell?" J 

Invest Dermatol 126(1):142-153. 



 
Page | 338  

 

Grob, T. J., U. Novak, C. Maisse, D. Barcaroli, A. U. Luthi, F. Pirnia, B. Hugli, H. U. 

Graber, V. De Laurenzi, M. F. Fey, G. Melino and A. Tobler. 2001. "Human delta 

Np73 regulates a dominant negative feedback loop for TAp73 and p53." Cell Death 

Differ 8(12):1213-1223. 

Grossman, D. and D. C. Altieri. 2001. "Drug resistance in melanoma: mechanisms, 

apoptosis, and new potential therapeutic targets." Cancer Metastasis Rev 20(1-2):3-11. 

Grossman, D., J. M. McNiff, F. Li and D. C. Altieri. 1999. "Expression and targeting 

of the apoptosis inhibitor, survivin, in human melanoma." J Invest Dermatol 

113(6):1076-1081. 

Grulich, A. E., V. Bataille, A. J. Swerdlow, J. A. Newton-Bishop, J. Cuzick, P. Hersey 

and W. H. McCarthy. 1996. "Naevi and pigmentary characteristics as risk factors for 

melanoma in a high-risk population: a case-control study in New South Wales, 

Australia." Int J Cancer 67(4):485-491. 

Grulich, A. E., M. T. van Leeuwen, M. O. Falster and C. M. Vajdic. 2007. "Incidence 

of cancers in people with HIV/AIDS compared with immunosuppressed transplant 

recipients: a meta-analysis." Lancet 370(9581):59-67. 

Gu, W. and R. G. Roeder. 1997. "Activation of p53 sequence-specific DNA binding 

by acetylation of the p53 C-terminal domain." Cell 90(4):595-606. 

Gu, W., X. L. Shi and R. G. Roeder. 1997. "Synergistic activation of transcription by 

CBP and p53." Nature 387(6635):819-823. 

Gudbjartsson, D. F., P. Sulem, S. N. Stacey, A. M. Goldstein, T. Rafnar, B. 

Sigurgeirsson, K. R. Benediktsdottir, K. Thorisdottir, R. Ragnarsson, S. G. 

Sveinsdottir, V. Magnusson, A. Lindblom, K. Kostulas, R. Botella-Estrada, V. 

Soriano, P. Juberias, M. Grasa, B. Saez, R. Andres, D. Scherer, P. Rudnai, E. Gurzau, 

K. Koppova, L. A. Kiemeney, M. Jakobsdottir, S. Steinberg, A. Helgason, S. 

Gretarsdottir, M. A. Tucker, J. I. Mayordomo, E. Nagore, R. Kumar, J. Hansson, J. H. 

Olafsson, J. Gulcher, A. Kong, U. Thorsteinsdottir and K. Stefansson. 2008. "ASIP 

and TYR pigmentation variants associate with cutaneous melanoma and basal cell 

carcinoma." Nat Genet 40(7):886-891. 

Guo, X., W. M. Keyes, C. Papazoglu, J. Zuber, W. Li, S. W. Lowe, H. Vogel and A. 

A. Mills. 2009. "TAp63 induces senescence and suppresses tumorigenesis in vivo." 

Nat Cell Biol 11(12):1451-1457. 

Gupta, P. B., C. L. Chaffer and R. A. Weinberg. 2009. "Cancer stem cells: mirage or 

reality?" Nat Med 15(9):1010-1012. 

Gwosdz, C., K. Scheckenbach, O. Lieven, J. Reifenberger, A. Knopf, H. Bier and V. 

Balz. 2006. "Comprehensive analysis of the p53 status in mucosal and cutaneous 

melanomas." Int J Cancer 118(3):577-582. 

Haapajarvi, T., K. Pitkanen, M. Tsubari and M. Laiho. 1997. "p53 transactivation and 

protein accumulation are independently regulated by UV light in different phases of 

the cell cycle." Mol Cell Biol 17(6):3074-3080. 

Hagiwara, K., M. G. McMenamin, K. Miura and C. C. Harris. 1999. "Mutational 

analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using 

intronic primers." Cancer Res 59(17):4165-4169. 

Halaban, R., E. Cheng, Y. Smicun and J. Germino. 2000. "Deregulated E2F 

transcriptional activity in autonomously growing melanoma cells." J Exp Med 

191(6):1005-1016. 

Hallack Neto, A. E., S. A. Siqueira, F. L. Dulley, M. A. Ruiz, D. A. Chamone and J. 

Pereira. 2009. "p63 protein expression in high risk diffuse large B-cell lymphoma." J 

Clin Pathol 62(1):77-79. 



 
Page | 339  

 

Hambardzumyan, D., M. Squatrito and E. C. Holland. 2006. "Radiation resistance and 

stem-like cells in brain tumors." Cancer Cell 10(6):454-456. 

Hameed, O. and P. A. Humphrey. 2005. "p63/AMACR antibody cocktail restaining of 

prostate needle biopsy tissues after transfer to charged slides: a viable approach in the 

diagnosis of small atypical foci that are lost on block sectioning." Am J Clin Pathol 

124(5):708-715. 

Han, J., G. A. Colditz and D. J. Hunter. 2006. "Risk factors for skin cancers: a nested 

case-control study within the Nurses' Health Study." Int J Epidemiol 35(6):1514-1521. 

Hande, K. R. 1998. "Etoposide: four decades of development of a topoisomerase II 

inhibitor." Eur J Cancer 34(10):1514-1521. 

Harmes, D. C., E. Bresnick, E. A. Lubin, J. K. Watson, K. E. Heim, J. C. Curtin, A. 

M. Suskind, J. Lamb and J. DiRenzo. 2003. "Positive and negative regulation of 

deltaN-p63 promoter activity by p53 and deltaN-p63-alpha contributes to differential 

regulation of p53 target genes." Oncogene 22(48):7607-7616. 

Hatzivassiliou, G., K. Song, I. Yen, B. J. Brandhuber, D. J. Anderson, R. Alvarado, 

M. J. Ludlam, D. Stokoe, S. L. Gloor, G. Vigers, T. Morales, I. Aliagas, B. Liu, S. 

Sideris, K. P. Hoeflich, B. S. Jaiswal, S. Seshagiri, H. Koeppen, M. Belvin, L. S. 

Friedman and S. Malek. "RAF inhibitors prime wild-type RAF to activate the MAPK 

pathway and enhance growth." Nature. 

Hayashita, Y., H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa, S. Tomida, Y. 

Yatabe, K. Kawahara, Y. Sekido and T. Takahashi. 2005. "A polycistronic microRNA 

cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell 

proliferation." Cancer Res 65(21):9628-9632. 

Heidorn, S. J., C. Milagre, S. Whittaker, A. Nourry, I. Niculescu-Duvas, N. Dhomen, 

J. Hussain, J. S. Reis-Filho, C. J. Springer, C. Pritchard and R. Marais. "Kinase-Dead 

BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF." 

Cell 140(2):209-221. 

Heinrich, M. C., D. J. Griffith, B. J. Druker, C. L. Wait, K. A. Ott and A. J. Zigler. 

2000. "Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective 

tyrosine kinase inhibitor." Blood 96(3):925-932. 

Helmbach, H., E. Rossmann, M. A. Kern and D. Schadendorf. 2001. "Drug-resistance 

in human melanoma." Int J Cancer 93(5):617-622. 

Helsing, P., D. A. Nymoen, S. Ariansen, S. J. Steine, L. Maehle, S. Aamdal, F. 

Langmark, M. Loeb, L. A. Akslen, A. Molven and P. A. Andresen. 2008. "Population-

based prevalence of CDKN2A and CDK4 mutations in patients with multiple primary 

melanomas." Genes Chromosomes Cancer 47(2):175-184. 

Helton, E. S., J. Zhang and X. Chen. 2008. "The proline-rich domain in p63 is 

necessary for the transcriptional and apoptosis-inducing activities of TAp63." 

Oncogene 27(20):2843-2850. 

Hermann, P. C., S. L. Huber, T. Herrler, A. Aicher, J. W. Ellwart, M. Guba, C. J. 

Bruns and C. Heeschen. 2007. "Distinct populations of cancer stem cells determine 

tumor growth and metastatic activity in human pancreatic cancer." Cell Stem Cell 

1(3):313-323. 

Herron, B. J., C. Rao, S. Liu, L. Laprade, J. A. Richardson, E. Olivieri, C. Semsarian, 

S. E. Millar, L. Stubbs and D. R. Beier. 2005. "A mutation in NFkB interacting 

protein 1 results in cardiomyopathy and abnormal skin development in wa3 mice." 

Hum Mol Genet 14(5):667-677. 

Hibi, K., B. Trink, M. Patturajan, W. H. Westra, O. L. Caballero, D. E. Hill, E. A. 

Ratovitski, J. Jen and D. Sidransky. 2000. "AIS is an oncogene amplified in squamous 

cell carcinoma." Proc Natl Acad Sci U S A 97(10):5462-5467. 



 
Page | 340  

 

Hirao, A., Y. Y. Kong, S. Matsuoka, A. Wakeham, J. Ruland, H. Yoshida, D. Liu, S. 

J. Elledge and T. W. Mak. 2000. "DNA damage-induced activation of p53 by the 

checkpoint kinase Chk2." Science 287(5459):1824-1827. 

Hochster, H., M. H. Strawderman, J. E. Harris, M. B. Atkins, M. Oken, R. T. Skeel, S. 

J. Jubelirer and D. Parkinson. 1999. "Conventional dose melphalan is inactive in 

metastatic melanoma: results of an Eastern Cooperative Oncology Group Study 

(E1687)." Anticancer Drugs 10(2):245-248. 

Hocker, T. and H. Tsao. 2007. "Ultraviolet radiation and melanoma: a systematic 

review and analysis of reported sequence variants." Hum Mutat 28(6):578-588. 

Hodgkinson, C. A., K. J. Moore, A. Nakayama, E. Steingrimsson, N. G. Copeland, N. 

A. Jenkins and H. Arnheiter. 1993. "Mutations at the mouse microphthalmia locus are 

associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper 

protein." Cell 74(2):395-404. 

Hodi, F. S., P. Friedlander, C. L. Corless, M. C. Heinrich, S. Mac Rae, A. Kruse, J. 

Jagannathan, A. D. Van den Abbeele, E. F. Velazquez, G. D. Demetri and D. E. 

Fisher. 2008. "Major response to imatinib mesylate in KIT-mutated melanoma." J Clin 

Oncol 26(12):2046-2051. 

Hodi, F. S., R. J. Soiffer, J. Clark, D. M. Finkelstein and F. G. Haluska. 2002. "Phase 

II study of paclitaxel and carboplatin for malignant melanoma." Am J Clin Oncol 

25(3):283-286. 

Hoek, K., D. L. Rimm, K. R. Williams, H. Zhao, S. Ariyan, A. Lin, H. M. Kluger, A. 

J. Berger, E. Cheng, E. S. Trombetta, T. Wu, M. Niinobe, K. Yoshikawa, G. E. 

Hannigan and R. Halaban. 2004. "Expression profiling reveals novel pathways in the 

transformation of melanocytes to melanomas." Cancer Res 64(15):5270-5282. 

Holbert, M. A. and R. Marmorstein. 2005. "Structure and activity of enzymes that 

remove histone modifications." Curr Opin Struct Biol 15(6):673-680. 

Hollenbeak, C. S., M. M. Todd, E. M. Billingsley, G. Harper, A. M. Dyer and E. J. 

Lengerich. 2005. "Increased incidence of melanoma in renal transplantation 

recipients." Cancer 104(9):1962-1967. 

Honda, R., H. Tanaka and H. Yasuda. 1997. "Oncoprotein MDM2 is a ubiquitin ligase 

E3 for tumor suppressor p53." FEBS Lett 420(1):25-27. 

Hu, H., S. H. Xia, A. D. Li, X. Xu, Y. Cai, Y. L. Han, F. Wei, B. S. Chen, X. P. 

Huang, Y. S. Han, J. W. Zhang, X. Zhang, M. Wu and M. R. Wang. 2002. "Elevated 

expression of p63 protein in human esophageal squamous cell carcinomas." Int J 

Cancer 102(6):580-583. 

Huang, C., E. A. Sloan and C. F. Boerkoel. 2003. "Chromatin remodeling and human 

disease." Curr Opin Genet Dev 13(3):246-252. 

Huang, S., A. DeGuzman, C. D. Bucana and I. J. Fidler. 2000. "Nuclear factor-

kappaB activity correlates with growth, angiogenesis, and metastasis of human 

melanoma cells in nude mice." Clin Cancer Res 6(6):2573-2581. 

Huang, Y., J. Minigh, S. Miles and R. M. Niles. 2008a. "Retinoic acid decreases ATF-

2 phosphorylation and sensitizes melanoma cells to taxol-mediated growth inhibition." 

J Mol Signal 3:3. 

Huang, Y. P., G. Wu, Z. Guo, M. Osada, T. Fomenkov, H. L. Park, B. Trink, D. 

Sidransky, A. Fomenkov and E. A. Ratovitski. 2004. "Altered sumoylation of 

p63alpha contributes to the split-hand/foot malformation phenotype." Cell Cycle 

3(12):1587-1596. 

Huang, Y., T. Sen, J. Nagpal, S. Upadhyay, B. Trink, E. Ratovitski and D. Sidransky. 

2008b. "ATM kinase is a master switch for the Delta Np63 alpha 



 
Page | 341  

 

phosphorylation/degradation in human head and neck squamous cell carcinoma cells 

upon DNA damage." Cell Cycle 7(18):2846-2855. 

Hughes, S., B. E. Damato, I. Giddings, P. S. Hiscott, J. Humphreys and R. S. 

Houlston. 2005. "Microarray comparative genomic hybridisation analysis of 

intraocular uveal melanomas identifies distinctive imbalances associated with loss of 

chromosome 3." Br J Cancer 93(10):1191-1196. 

Hussein, M. R., A. K. Haemel and G. S. Wood. 2003. "p53-related pathways and the 

molecular pathogenesis of melanoma." Eur J Cancer Prev 12(2):93-100. 

Hussussian, C. J., J. P. Struewing, A. M. Goldstein, P. A. Higgins, D. S. Ally, M. D. 

Sheahan, W. H. Clark, Jr., M. A. Tucker and N. C. Dracopoli. 1994. "Germline p16 

mutations in familial melanoma." Nat Genet 8(1):15-21. 

Hwu, W. J., S. E. Krown, J. H. Menell, K. S. Panageas, J. Merrell, L. A. Lamb, L. J. 

Williams, C. J. Quinn, T. Foster, P. B. Chapman, P. O. Livingston, J. D. Wolchok and 

A. N. Houghton. 2003. "Phase II study of temozolomide plus thalidomide for the 

treatment of metastatic melanoma." J Clin Oncol 21(17):3351-3356. 

Ikawa, S., A. Nakagawara and Y. Ikawa. 1999. "p53 family genes: structural 

comparison, expression and mutation." Cell Death Differ 6(12):1154-1161. 

Irmler, M., M. Thome, M. Hahne, P. Schneider, K. Hofmann, V. Steiner, J. L. 

Bodmer, M. Schroter, K. Burns, C. Mattmann, D. Rimoldi, L. E. French and J. 

Tschopp. 1997. "Inhibition of death receptor signals by cellular FLIP." Nature 

388(6638):190-195. 

Irwin, M. S. 2004. "Family feud in chemosensitvity: p73 and mutant p53." Cell Cycle 

3(3):319-323. 

Irwin, M. S. and W. G. Kaelin. 2001a. "p53 family update: p73 and p63 develop their 

own identities." Cell Growth Differ 12(7):337-349. 

Irwin, M. S. and W. G. Kaelin, Jr. 2001b. "Role of the newer p53 family proteins in 

malignancy." Apoptosis 6(1-2):17-29. 

Ivanov, V. N., O. Fodstad and Z. Ronai. 2001. "Expression of ring finger-deleted 

TRAF2 sensitizes metastatic melanoma cells to apoptosis via up-regulation of p38, 

TNFalpha and suppression of NF-kappaB activities." Oncogene 20(18):2243-2253. 

Jacobs, W. B., G. Govoni, D. Ho, J. K. Atwal, F. Barnabe-Heider, W. M. Keyes, A. A. 

Mills, F. D. Miller and D. R. Kaplan. 2005. "p63 is an essential proapoptotic protein 

during neural development." Neuron 48(5):743-756. 

Jain, A. B., L. D. Yee, M. A. Nalesnik, A. Youk, G. Marsh, J. Reyes, M. Zak, J. 

Rakela, W. Irish and J. J. Fung. 1998. "Comparative incidence of de novo 

nonlymphoid malignancies after liver transplantation under tacrolimus using 

surveillance epidemiologic end result data." Transplantation 66(9):1193-1200. 

Jaksch, M., J. Munera, R. Bajpai, A. Terskikh and R. G. Oshima. 2008. "Cell cycle-

dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, 

and melanoma cell lines." Cancer Res 68(19):7882-7886. 

Jean, S., C. Bideau, L. Bellon, G. Halimi, M. De Meo, T. Orsiere, G. Dumenil, J. L. 

Berge-Lefranc and A. Botta. 2001. "The expression of genes induced in melanocytes 

by exposure to 365-nm UVA: study by cDNA arrays and real-time quantitative RT-

PCR." Biochim Biophys Acta 1522(2):89-96. 

Jensen, P., B. Moller and S. Hansen. 2000. "Skin cancer in kidney and heart transplant 

recipients and different long-term immunosuppressive therapy regimens." J Am Acad 

Dermatol 42(2 Pt 1):307. 

Jenuwein, T. and C. D. Allis. 2001. "Translating the histone code." Science 

293(5532):1074-1080. 



 
Page | 342  

 

Jhappan, C., F. P. Noonan and G. Merlino. 2003. "Ultraviolet radiation and cutaneous 

malignant melanoma." Oncogene 22(20):3099-3112. 

Jiang, X., J. Zhou, N. K. Yuen, C. L. Corless, M. C. Heinrich, J. A. Fletcher, G. D. 

Demetri, H. R. Widlund, D. E. Fisher and F. S. Hodi. 2008. "Imatinib targeting of 

KIT-mutant oncoprotein in melanoma." Clin Cancer Res 14(23):7726-7732. 

Johnson, J., J. Lagowski, A. Sundberg and M. Kulesz-Martin. 2005. "P53 family 

activities in development and cancer: relationship to melanocyte and keratinocyte 

carcinogenesis." J Invest Dermatol 125(5):857-864. 

Kaghad, M., H. Bonnet, A. Yang, L. Creancier, J. C. Biscan, A. Valent, A. Minty, P. 

Chalon, J. M. Lelias, X. Dumont, P. Ferrara, F. McKeon and D. Caput. 1997. 

"Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in 

neuroblastoma and other human cancers." Cell 90(4):809-819. 

Kakudo, Y., H. Shibata, K. Otsuka, S. Kato and C. Ishioka. 2005. "Lack of correlation 

between p53-dependent transcriptional activity and the ability to induce apoptosis 

among 179 mutant p53s." Cancer Res 65(6):2108-2114. 

Kamb, A., D. Shattuck-Eidens, R. Eeles, Q. Liu, N. A. Gruis, W. Ding, C. Hussey, T. 

Tran, Y. Miki, J. Weaver-Feldhaus and et al. 1994. "Analysis of the p16 gene 

(CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus." Nat 

Genet 8(1):23-26. 

Kanner, W. A., L. B. Brill, 2nd, J. W. Patterson and M. R. Wick. "CD10, p63 and 

CD99 expression in the differential diagnosis of atypical fibroxanthoma, spindle cell 

squamous cell carcinoma and desmoplastic melanoma." J Cutan Pathol. 

Kanoko, M., M. Ueda, T. Nagano and M. Ichihashi. 1996. "Expression of p53 protein 

in melanoma progression." J Dermatol Sci 12(2):97-103. 

Karakousis, C. P., E. P. Getaz, S. Bjornsson, E. S. Henderson, M. Irequi, L. Martinez, 

J. Ospina, J. Cavins, H. Preisler, E. Holyoke and O. Holtermann. 1979. "cis-

Dichlorodiammineplatinum(II) and DTIC in malignant melanoma." Cancer Treat Rep 

63(11-12):2009-2010. 

Karst, A. M., D. L. Dai, M. Martinka and G. Li. 2005. "PUMA expression is 

significantly reduced in human cutaneous melanomas." Oncogene 24(6):1111-1116. 

Kartasheva, N. N., A. Contente, C. Lenz-Stoppler, J. Roth and M. Dobbelstein. 2002. 

"p53 induces the expression of its antagonist p73 Delta N, establishing an 

autoregulatory feedback loop." Oncogene 21(31):4715-4727. 

Kasiske, B. L., J. J. Snyder, D. T. Gilbertson and C. Wang. 2004. "Cancer after kidney 

transplantation in the United States." Am J Transplant 4(6):905-913. 

Kasof, G. M. and B. C. Gomes. 2001. "Livin, a novel inhibitor of apoptosis protein 

family member." J Biol Chem 276(5):3238-3246. 

Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein and R. W. Craig. 1991. 

"Participation of p53 protein in the cellular response to DNA damage." Cancer Res 

51(23 Pt 1):6304-6311. 

Kato, S., A. Shimada, M. Osada, S. Ikawa, M. Obinata, A. Nakagawara, R. Kanamaru 

and C. Ishioka. 1999. "Effects of p51/p63 missense mutations on transcriptional 

activities of p53 downstream gene promoters." Cancer Res 59(23):5908-5911. 

Katoh, I., K. I. Aisaki, S. I. Kurata, S. Ikawa and Y. Ikawa. 2000. "p51A 

(TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell 

regulation." Oncogene 19(27):3126-3130. 

Kawai, H., V. Lopez-Pajares, M. M. Kim, D. Wiederschain and Z. M. Yuan. 2007. 

"RING domain-mediated interaction is a requirement for MDM2's E3 ligase activity." 

Cancer Res 67(13):6026-6030. 



 
Page | 343  

 

Kawasaki, H., R. Eckner, T. P. Yao, K. Taira, R. Chiu, D. M. Livingston and K. K. 

Yokoyama. 1998. "Distinct roles of the co-activators p300 and CBP in retinoic-acid-

induced F9-cell differentiation." Nature 393(6682):284-289. 

Kelly, W. K., V. M. Richon, O. O'Connor, T. Curley, B. MacGregor-Curtelli, W. 

Tong, M. Klang, L. Schwartz, S. Richardson, E. Rosa, M. Drobnjak, C. Cordon-

Cordo, J. H. Chiao, R. Rifkind, P. A. Marks and H. Scher. 2003. "Phase I clinical trial 

of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered 

intravenously." Clin Cancer Res 9(10 Pt 1):3578-3588. 

Kennedy, C., J. ter Huurne, M. Berkhout, N. Gruis, M. Bastiaens, W. Bergman, R. 

Willemze and J. N. Bavinck. 2001. "Melanocortin 1 receptor (MC1R) gene variants 

are associated with an increased risk for cutaneous melanoma which is largely 

independent of skin type and hair color." J Invest Dermatol 117(2):294-300. 

Keyes, W. M., Y. Wu, H. Vogel, X. Guo, S. W. Lowe and A. A. Mills. 2005. "p63 

deficiency activates a program of cellular senescence and leads to accelerated aging." 

Genes Dev 19(17):1986-1999. 

Khokhar, S. K., R. Kommagani and M. P. Kadakia. 2008. "Differential effects of p63 

mutants on transactivation of p53 and/or p63 responsive genes." Cell Res 

18(10):1061-1073. 

Kichina, J. V., S. Rauth, T. K. Das Gupta and A. V. Gudkov. 2003. "Melanoma cells 

can tolerate high levels of transcriptionally active endogenous p53 but are sensitive to 

retrovirus-transduced p53." Oncogene 22(31):4911-4917. 

Kilic, E., H. T. Bruggenwirth, M. Meier, N. C. Naus, H. B. Beverloo, J. P. Meijerink, 

G. P. Luyten and A. de Klein. 2008. "Increased expression of p73Deltaex2 transcript 

in uveal melanoma with loss of chromosome 1p." Melanoma Res 18(3):208-213. 

Kim, K. B., O. Eton, D. W. Davis, M. L. Frazier, D. J. McConkey, A. H. Diwan, N. E. 

Papadopoulos, A. Y. Bedikian, L. H. Camacho, M. I. Ross, J. N. Cormier, J. E. 

Gershenwald, J. E. Lee, P. F. Mansfield, L. A. Billings, C. S. Ng, C. Charnsangavej, 

M. Bar-Eli, M. M. Johnson, A. J. Murgo and V. G. Prieto. 2008. "Phase II trial of 

imatinib mesylate in patients with metastatic melanoma." Br J Cancer 99(5):734-740. 

Kim, V. N. and J. W. Nam. 2006. "Genomics of microRNA." Trends Genet 

22(3):165-173. 

Klein, W. M., B. P. Wu, S. Zhao, H. Wu, A. J. Klein-Szanto and S. R. Tahan. 2007. 

"Increased expression of stem cell markers in malignant melanoma." Mod Pathol 

20(1):102-107. 

Koga, F., S. Kawakami, J. Kumagai, T. Takizawa, N. Ando, G. Arai, Y. Kageyama 

and K. Kihara. 2003. "Impaired Delta Np63 expression associates with reduced beta-

catenin and aggressive phenotypes of urothelial neoplasms." Br J Cancer 88(5):740-

747. 

Koida, N., T. Ozaki, H. Yamamoto, S. Ono, T. Koda, K. Ando, R. Okoshi, T. Kamijo, 

K. Omura and A. Nakagawara. 2008. "Inhibitory role of Plk1 in the regulation of p73-

dependent apoptosis through physical interaction and phosphorylation." J Biol Chem 

283(13):8555-8563. 

Komatsu, S., H. Takenobu, T. Ozaki, K. Ando, N. Koida, Y. Suenaga, T. Ichikawa, T. 

Hishiki, T. Chiba, A. Iwama, H. Yoshida, N. Ohnuma, A. Nakagawara and T. Kamijo. 

2009. "Plk1 regulates liver tumor cell death by phosphorylation of TAp63." Oncogene 

28(41):3631-3641. 

Kondo, Y., L. Shen and J. P. Issa. 2003. "Critical role of histone methylation in tumor 

suppressor gene silencing in colorectal cancer." Mol Cell Biol 23(1):206-215. 

Koster, M. I., D. Dai and D. R. Roop. 2007. "Conflicting roles for p63 in skin 

development and carcinogenesis." Cell Cycle 6(3):269-273. 



 
Page | 344  

 

Koster, M. I., S. Kim, A. A. Mills, F. J. DeMayo and D. R. Roop. 2004. "p63 is the 

molecular switch for initiation of an epithelial stratification program." Genes Dev 

18(2):126-131. 

Koster, M. I., S. L. Lu, L. D. White, X. J. Wang and D. R. Roop. 2006. "Reactivation 

of developmentally expressed p63 isoforms predisposes to tumor development and 

progression." Cancer Res 66(8):3981-3986. 

Krek, A., D. Grun, M. N. Poy, R. Wolf, L. Rosenberg, E. J. Epstein, P. MacMenamin, 

I. da Piedade, K. C. Gunsalus, M. Stoffel and N. Rajewsky. 2005. "Combinatorial 

microRNA target predictions." Nat Genet 37(5):495-500. 

Krutzfeldt, J., M. N. Poy and M. Stoffel. 2006. "Strategies to determine the biological 

function of microRNAs." Nat Genet 38 Suppl:S14-19. 

Kubbutat, M. H., S. N. Jones and K. H. Vousden. 1997. "Regulation of p53 stability 

by Mdm2." Nature 387(6630):299-303. 

Kuhn, D. E., M. M. Martin, D. S. Feldman, A. V. Terry, Jr., G. J. Nuovo and T. S. 

Elton. 2008. "Experimental validation of miRNA targets." Methods 44(1):47-54. 

Kulesz-Martin, M., J. Lagowski, S. Fei, C. Pelz, R. Sears, M. B. Powell, R. Halaban 

and J. Johnson. 2005. "Melanocyte and keratinocyte carcinogenesis: p53 family 

protein activities and intersecting mRNA expression profiles." J Investig Dermatol 

Symp Proc 10(2):142-152. 

Kwok, R. P., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. 

Brennan, S. G. Roberts, M. R. Green and R. H. Goodman. 1994. "Nuclear protein 

CBP is a coactivator for the transcription factor CREB." Nature 370(6486):223-226. 

Lahtz, C., R. Stranzenbach, E. Fiedler, P. Helmbold and R. H. Dammann. 

"Methylation of PTEN as a prognostic factor in malignant melanoma of the skin." J 

Invest Dermatol 130(2):620-622. 

Lain, S., J. J. Hollick, J. Campbell, O. D. Staples, M. Higgins, M. Aoubala, A. 

McCarthy, V. Appleyard, K. E. Murray, L. Baker, A. Thompson, J. Mathers, S. J. 

Holland, M. J. Stark, G. Pass, J. Woods, D. P. Lane and N. J. Westwood. 2008. 

"Discovery, in vivo activity, and mechanism of action of a small-molecule p53 

activator." Cancer Cell 13(5):454-463. 

Landgraf, P., M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfeffer, A. 

Rice, A. O. Kamphorst, M. Landthaler, C. Lin, N. D. Socci, L. Hermida, V. Fulci, S. 

Chiaretti, R. Foa, J. Schliwka, U. Fuchs, A. Novosel, R. U. Muller, B. Schermer, U. 

Bissels, J. Inman, Q. Phan, M. Chien, D. B. Weir, R. Choksi, G. De Vita, D. Frezzetti, 

H. I. Trompeter, V. Hornung, G. Teng, G. Hartmann, M. Palkovits, R. Di Lauro, P. 

Wernet, G. Macino, C. E. Rogler, J. W. Nagle, J. Ju, F. N. Papavasiliou, T. Benzing, 

P. Lichter, W. Tam, M. J. Brownstein, A. Bosio, A. Borkhardt, J. J. Russo, C. Sander, 

M. Zavolan and T. Tuschl. 2007. "A mammalian microRNA expression atlas based on 

small RNA library sequencing." Cell 129(7):1401-1414. 

Landi, M. T., J. Bauer, R. M. Pfeiffer, D. E. Elder, B. Hulley, P. Minghetti, D. Calista, 

P. A. Kanetsky, D. Pinkel and B. C. Bastian. 2006. "MC1R germline variants confer 

risk for BRAF-mutant melanoma." Science 313(5786):521-522. 

Landi, M. T., P. A. Kanetsky, S. Tsang, B. Gold, D. Munroe, T. Rebbeck, J. Swoyer, 

M. Ter-Minassian, M. Hedayati, L. Grossman, A. M. Goldstein, D. Calista and R. M. 

Pfeiffer. 2005. "MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a 

Mediterranean population." J Natl Cancer Inst 97(13):998-1007. 

Lane, D. P. and L. V. Crawford. 1979. "T antigen is bound to a host protein in SV40-

transformed cells." Nature 278(5701):261-263. 

Lanoy, E., D. Costagliola and E. A. Engels. 2009. "Skin cancers associated with HIV 

infection and solid organ transplant among elderly adults." Int J Cancer. 



 
Page | 345  

 

Lanza, M., B. Marinari, M. Papoutsaki, M. L. Giustizieri, Y. D'Alessandra, S. 

Chimenti, L. Guerrini and A. Costanzo. 2006. "Cross-talks in the p53 family: 

deltaNp63 is an anti-apoptotic target for deltaNp73alpha and p53 gain-of-function 

mutants." Cell Cycle 5(17):1996-2004. 

Larribere, L., C. Hilmi, M. Khaled, C. Gaggioli, K. Bille, P. Auberger, J. P. Ortonne, 

R. Ballotti and C. Bertolotto. 2005. "The cleavage of microphthalmia-associated 

transcription factor, MITF, by caspases plays an essential role in melanocyte and 

melanoma cell apoptosis." Genes Dev 19(17):1980-1985. 

Lassam, N. J., L. From and H. J. Kahn. 1993. "Overexpression of p53 is a late event in 

the development of malignant melanoma." Cancer Res 53(10 Suppl):2235-2238. 

Laurikkala, J., M. L. Mikkola, M. James, M. Tummers, A. A. Mills and I. Thesleff. 

2006. "p63 regulates multiple signalling pathways required for ectodermal 

organogenesis and differentiation." Development 133(8):1553-1563. 

LaVoie, H. A. 2005. "Epigenetic control of ovarian function: the emerging role of 

histone modifications." Mol Cell Endocrinol 243(1-2):12-18. 

Le Mire, L., K. Hollowood, D. Gray, C. Bordea and F. Wojnarowska. 2006. 

"Melanomas in renal transplant recipients." Br J Dermatol 154(3):472-477. 

Lee, D. H. and A. L. Goldberg. 1998. "Proteasome inhibitors: valuable new tools for 

cell biologists." Trends Cell Biol 8(10):397-403. 

Lee, H. and D. Kimelman. 2002. "A dominant-negative form of p63 is required for 

epidermal proliferation in zebrafish." Dev Cell 2(5):607-616. 

Lee, J. S., X. Zhang and Y. Shi. 1996. "Differential interactions of the CREB/ATF 

family of transcription factors with p300 and adenovirus E1A." J Biol Chem 

271(30):17666-17674. 

Lee, S. M., D. C. Betticher and N. Thatcher. 1995. "Melanoma: chemotherapy." Br 

Med Bull 51(3):609-630. 

Legha, S. S., S. Ring, N. Papadopoulos, M. Raber and R. S. Benjamin. 1990. "A phase 

II trial of taxol in metastatic melanoma." Cancer 65(11):2478-2481. 

Legros, F., F. Malka, P. Frachon, A. Lombes and M. Rojo. 2004. "Organization and 

dynamics of human mitochondrial DNA." J Cell Sci 117(Pt 13):2653-2662. 

Lena, A. M., R. Shalom-Feuerstein, P. Rivetti di Val Cervo, D. Aberdam, R. A. 

Knight, G. Melino and E. Candi. 2008. "miR-203 represses 'stemness' by repressing 

DeltaNp63." Cell Death Differ 15(7):1187-1195. 

Lendahl, U., L. B. Zimmerman and R. D. McKay. 1990. "CNS stem cells express a 

new class of intermediate filament protein." Cell 60(4):585-595. 

Leong, A. S. and P. N. Gilham. 1989. "The effects of progressive formaldehyde 

fixation on the preservation of tissue antigens." Pathology 21(4):266-268. 

Leveque, L., S. Dalac, A. Dompmartin, S. Louvet, S. Euvrard, B. Catteau, M. Hazan, 

M. Schollhamer, F. Aubin, B. Dreno, P. Daguin, J. Chevrant-Breton, C. Frances, M. J. 

Bismuth, Y. Tanter and D. Lambert. 2000. "[Melanoma in organ transplant patients]." 

Ann Dermatol Venereol 127(2):160-165. 

Leverrier, S., D. Bergamaschi, L. Ghali, A. Ola, G. Warnes, B. Akgul, K. Blight, R. 

Garcia-Escudero, A. Penna, A. Eddaoudi and A. Storey. 2007. "Role of HPV E6 

proteins in preventing UVB-induced release of pro-apoptotic factors from the 

mitochondria." Apoptosis 12(3):549-560. 

Levi, F., C. La Vecchia, L. Randimbison, V. C. Te and G. Erler. 1997. "Incidence of 

invasive cancers following cutaneous malignant melanoma." Int J Cancer 72(5):776-

779. 

Levine, A. J. and M. Oren. 2009. "The first 30 years of p53: growing ever more 

complex." Nat Rev Cancer 9(10):749-758. 



 
Page | 346  

 

Levrero, M., V. De Laurenzi, A. Costanzo, J. Gong, J. Y. Wang and G. Melino. 2000. 

"The p53/p63/p73 family of transcription factors: overlapping and distinct functions." 

J Cell Sci 113 ( Pt 10):1661-1670. 

Lewis, B. P., C. B. Burge and D. P. Bartel. 2005. "Conserved seed pairing, often 

flanked by adenosines, indicates that thousands of human genes are microRNA 

targets." Cell 120(1):15-20. 

Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel and C. B. Burge. 2003. 

"Prediction of mammalian microRNA targets." Cell 115(7):787-798. 

Li, E. 2002. "Chromatin modification and epigenetic reprogramming in mammalian 

development." Nat Rev Genet 3(9):662-673. 

Li, G., J. A. Bush and V. C. Ho. 2000. "p53-dependent apoptosis in melanoma cells 

after treatment with camptothecin." J Invest Dermatol 114(3):514-519. 

Li, G., L. Tang, X. Zhou, V. Tron and V. Ho. 1998. "Chemotherapy-induced 

apoptosis in melanoma cells is p53 dependent." Melanoma Res 8(1):17-23. 

Li, W., A. Sanki, R. Z. Karim, J. F. Thompson, C. Soon Lee, L. Zhuang, S. W. 

McCarthy and R. A. Scolyer. 2006. "The role of cell cycle regulatory proteins in the 

pathogenesis of melanoma." Pathology 38(4):287-301. 

Li, Y., F. Guessous, Y. Zhang, C. Dipierro, B. Kefas, E. Johnson, L. Marcinkiewicz, J. 

Jiang, Y. Yang, T. D. Schmittgen, B. Lopes, D. Schiff, B. Purow and R. Abounader. 

2009. "MicroRNA-34a inhibits glioblastoma growth by targeting multiple 

oncogenes." Cancer Res 69(19):7569-7576. 

Li, Y., Z. Zhou and C. Chen. 2008. "WW domain-containing E3 ubiquitin protein 

ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal 

degradation and regulates apoptosis." Cell Death Differ 15(12):1941-1951. 

Liefer, K. M., M. I. Koster, X. J. Wang, A. Yang, F. McKeon and D. R. Roop. 2000. 

"Down-regulation of p63 is required for epidermal UV-B-induced apoptosis." Cancer 

Res 60(15):4016-4020. 

Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio and D. M. Livingston. 1997. 

"Binding and modulation of p53 by p300/CBP coactivators." Nature 387(6635):823-

827. 

Lim, L. P., N. C. Lau, P. Garrett-Engele, A. Grimson, J. M. Schelter, J. Castle, D. P. 

Bartel, P. S. Linsley and J. M. Johnson. 2005. "Microarray analysis shows that some 

microRNAs downregulate large numbers of target mRNAs." Nature 433(7027):769-

773. 

Lin, W. M., A. C. Baker, R. Beroukhim, W. Winckler, W. Feng, J. M. Marmion, E. 

Laine, H. Greulich, H. Tseng, C. Gates, F. S. Hodi, G. Dranoff, W. R. Sellers, R. K. 

Thomas, M. Meyerson, T. R. Golub, R. Dummer, M. Herlyn, G. Getz and L. A. 

Garraway. 2008. "Modeling genomic diversity and tumor dependency in malignant 

melanoma." Cancer Res 68(3):664-673. 

Linares, L. K., A. Hengstermann, A. Ciechanover, S. Muller and M. Scheffner. 2003. 

"HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53." Proc Natl 

Acad Sci U S A 100(21):12009-12014. 

Lindelof, B., B. Sigurgeirsson, H. Gabel and R. S. Stern. 2000. "Incidence of skin 

cancer in 5356 patients following organ transplantation." Br J Dermatol 143(3):513-

519. 

Linke, K., P. D. Mace, C. A. Smith, D. L. Vaux, J. Silke and C. L. Day. 2008. 

"Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is 

required for their ubiquitylation in trans." Cell Death Differ 15(5):841-848. 



 
Page | 347  

 

Litvinov, I. V., D. J. Vander Griend, Y. Xu, L. Antony, S. L. Dalrymple and J. T. 

Isaacs. 2006. "Low-calcium serum-free defined medium selects for growth of normal 

prostatic epithelial stem cells." Cancer Res 66(17):8598-8607. 

Liu, G. and X. Chen. 2006. "Regulation of the p53 transcriptional activity." J Cell 

Biochem 97(3):448-458. 

Liu, G., X. Yuan, Z. Zeng, P. Tunici, H. Ng, I. R. Abdulkadir, L. Lu, D. Irvin, K. L. 

Black and J. S. Yu. 2006. "Analysis of gene expression and chemoresistance of 

CD133+ cancer stem cells in glioblastoma." Mol Cancer 5:67. 

Liu, H., M. Wang, S. Diao, Q. Rao, X. Zhang, H. Xing and J. Wang. 2009a. "siRNA-

mediated down-regulation of iASPP promotes apoptosis induced by etoposide and 

daunorubicin in leukemia cells expressing wild-type p53." Leuk Res 33(9):1243-1248. 

Liu, W. H., S. H. Yeh, C. C. Lu, S. L. Yu, H. Y. Chen, C. Y. Lin, D. S. Chen and P. J. 

Chen. 2009b. "MicroRNA-18a prevents estrogen receptor-alpha expression, 

promoting proliferation of hepatocellular carcinoma cells." Gastroenterology 

136(2):683-693. 

Liu, Z. J., X. Lu, Y. Zhang, S. Zhong, S. Z. Gu, X. B. Zhang, X. Yang and H. M. Xin. 

2005. "Downregulated mRNA expression of ASPP and the hypermethylation of the 

5'-untranslated region in cancer cell lines retaining wild-type p53." FEBS Lett 

579(7):1587-1590. 

Livera, G., B. Petre-Lazar, M. J. Guerquin, E. Trautmann, H. Coffigny and R. Habert. 

2008. "p63 null mutation protects mouse oocytes from radio-induced apoptosis." 

Reproduction 135(1):3-12. 

Loercher, A. E., E. M. Tank, R. B. Delston and J. W. Harbour. 2005. "MITF links 

differentiation with cell cycle arrest in melanocytes by transcriptional activation of 

INK4A." J Cell Biol 168(1):35-40. 

Lossos, I. S., Y. Natkunam, R. Levy and C. D. Lopez. 2002. "Apoptosis stimulating 

protein of p53 (ASPP2) expression differs in diffuse large B-cell and follicular center 

lymphoma: correlation with clinical outcome." Leuk Lymphoma 43(12):2309-2317. 

Lu, J., G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-

Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R. 

Horvitz and T. R. Golub. 2005. "MicroRNA expression profiles classify human 

cancers." Nature 435(7043):834-838. 

Lyko, F. and R. Brown. 2005. "DNA methyltransferase inhibitors and the 

development of epigenetic cancer therapies." J Natl Cancer Inst 97(20):1498-1506. 

MacPartlin, M., S. Zeng, H. Lee, D. Stauffer, Y. Jin, M. Thayer and H. Lu. 2005. 

"p300 regulates p63 transcriptional activity." J Biol Chem 280(34):30604-30610. 

MacPartlin, M., S. X. Zeng and H. Lu. 2008. "Phosphorylation and stabilization of 

TAp63gamma by IkappaB kinase-beta." J Biol Chem 283(23):15754-15761. 

Maltzman, W. and L. Czyzyk. 1984. "UV irradiation stimulates levels of p53 cellular 

tumor antigen in nontransformed mouse cells." Mol Cell Biol 4(9):1689-1694. 

Mancini, F., G. Di Conza, M. Pellegrino, C. Rinaldo, A. Prodosmo, S. Giglio, I. 

D'Agnano, F. Florenzano, L. Felicioni, F. Buttitta, A. Marchetti, A. Sacchi, A. 

Pontecorvi, S. Soddu and F. Moretti. 2009. "MDM4 (MDMX) localizes at the 

mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway." Embo J 

28(13):1926-1939. 

Mangiulli, M., A. Valletti, M. F. Caratozzolo, A. Tullo, E. Sbisa, G. Pesole and A. M. 

D'Erchia. 2009. "Identification and functional characterization of two new 

transcriptional variants of the human p63 gene." Nucleic Acids Res 37(18):6092-

6104. 



 
Page | 348  

 

Manni, I., S. Artuso, S. Careccia, M. G. Rizzo, R. Baserga, G. Piaggio and A. Sacchi. 

2009. "The microRNA miR-92 increases proliferation of myeloid cells and by 

targeting p63 modulates the abundance of its isoforms." FASEB J 23(11):3957-3966. 

Mantovani, F., M. Gostissa, L. Collavin and G. Del Sal. 2004a. "KeePin' the p53 

family in good shape." Cell Cycle 3(7):905-911. 

Mantovani, F., S. Piazza, M. Gostissa, S. Strano, P. Zacchi, R. Mantovani, G. 

Blandino and G. Del Sal. 2004b. "Pin1 links the activities of c-Abl and p300 in 

regulating p73 function." Mol Cell 14(5):625-636. 

Mantovani, F., F. Tocco, J. Girardini, P. Smith, M. Gasco, X. Lu, T. Crook and G. Del 

Sal. 2007. "The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation 

from the apoptosis inhibitor iASPP." Nat Struct Mol Biol 14(10):912-920. 

Marchenko, N. D., S. Wolff, S. Erster, K. Becker and U. M. Moll. 2007. 

"Monoubiquitylation promotes mitochondrial p53 translocation." Embo J 26(4):923-

934. 

Marchenko, N. D., A. Zaika and U. M. Moll. 2000. "Death signal-induced localization 

of p53 protein to mitochondria. A potential role in apoptotic signaling." J Biol Chem 

275(21):16202-16212. 

Marchini, S., M. Marabese, E. Marrazzo, P. Mariani, D. Cattaneo, R. Fossati, A. 

Compagnoni, R. Fruscio, A. A. Lissoni and M. Broggini. 2008. "DeltaNp63 

expression is associated with poor survival in ovarian cancer." Ann Oncol 19(3):501-

507. 

Marrett, L. D., W. D. King, S. D. Walter and L. From. 1992. "Use of host factors to 

identify people at high risk for cutaneous malignant melanoma." CMAJ 147(4):445-

453. 

Marsoni, S., D. Hoth, R. Simon, B. Leyland-Jones, M. De Rosa and R. E. Wittes. 

1987. "Clinical drug development: an analysis of phase II trials, 1970-1985." Cancer 

Treat Rep 71(1):71-80. 

Massi, D., F. Tarantini, A. Franchi, M. Paglierani, C. Di Serio, S. Pellerito, G. 

Leoncini, G. Cirino, P. Geppetti and M. Santucci. 2006. "Evidence for differential 

expression of Notch receptors and their ligands in melanocytic nevi and cutaneous 

malignant melanoma." Mod Pathol 19(2):246-254. 

Massion, P. P., P. M. Taflan, S. M. Jamshedur Rahman, P. Yildiz, Y. Shyr, M. E. 

Edgerton, M. D. Westfall, J. R. Roberts, J. A. Pietenpol, D. P. Carbone and A. L. 

Gonzalez. 2003. "Significance of p63 amplification and overexpression in lung cancer 

development and prognosis." Cancer Res 63(21):7113-7121. 

Matin, R. N., D. Mesher, C. M. Proby, J. M. McGregor, J. N. Bouwes Bavinck, V. del 

Marmol, S. Euvrard, C. Ferrandiz, A. Geusau, M. Hackethal, W. L. Ho, G. F. 

Hofbauer, B. Imko-Walczuk, J. Kanitakis, A. Lally, J. T. Lear, C. Lebbe, G. M. 

Murphy, S. Piaserico, D. Seckin, E. Stockfleth, C. Ulrich, F. T. Wojnarowska, H. Y. 

Lin, C. Balch and C. A. Harwood. 2008. "Melanoma in organ transplant recipients: 

clinicopathological features and outcome in 100 cases." Am J Transplant 8(9):1891-

1900. 

Matsubara, H., T. Takeuchi, E. Nishikawa, K. Yanagisawa, Y. Hayashita, H. Ebi, H. 

Yamada, M. Suzuki, M. Nagino, Y. Nimura, H. Osada and T. Takahashi. 2007. 

"Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in 

lung cancers overexpressing miR-17-92." Oncogene 26(41):6099-6105. 

Matsuoka, S., M. Huang and S. J. Elledge. 1998. "Linkage of ATM to cell cycle 

regulation by the Chk2 protein kinase." Science 282(5395):1893-1897. 

McGill, G. G., M. Horstmann, H. R. Widlund, J. Du, G. Motyckova, E. K. Nishimura, 

Y. L. Lin, S. Ramaswamy, W. Avery, H. F. Ding, S. A. Jordan, I. J. Jackson, S. J. 



 
Page | 349  

 

Korsmeyer, T. R. Golub and D. E. Fisher. 2002. "Bcl2 regulation by the melanocyte 

master regulator Mitf modulates lineage survival and melanoma cell viability." Cell 

109(6):707-718. 

McGovern, V. J., H. M. Shaw, G. W. Milton and W. H. McCarthy. 1982. "Ulceration 

and prognosis in cutaneous malignant melanoma." Histopathology 6(4):399-407. 

McGregor, J. M., R. J. Berkhout, M. Rozycka, J. ter Schegget, J. N. Bouwes Bavinck, 

L. Brooks and T. Crook. 1997. "p53 mutations implicate sunlight in post-transplant 

skin cancer irrespective of human papillomavirus status." Oncogene 15(14):1737-

1740. 

McGregor, J. M., C. C. Yu, E. A. Dublin, D. M. Barnes, D. A. Levison and D. M. 

MacDonald. 1993. "p53 immunoreactivity in human malignant melanoma and 

dysplastic naevi." Br J Dermatol 128(6):606-611. 

McIntyre, G. J. and G. C. Fanning. 2006. "Design and cloning strategies for 

constructing shRNA expression vectors." BMC Biotechnol 6:1. 

McManus, M. T. 2003. "MicroRNAs and cancer." Semin Cancer Biol 13(4):253-258. 

McNulty, S. E., N. B. Tohidian and F. L. Meyskens, Jr. 2001. "RelA, p50 and 

inhibitor of kappa B alpha are elevated in human metastatic melanoma cells and 

respond aberrantly to ultraviolet light B." Pigment Cell Res 14(6):456-465. 

Meek, D. W. 1998. "Multisite phosphorylation and the integration of stress signals at 

p53." Cell Signal 10(3):159-166. 

Meier, M., M. L. den Boer, J. P. Meijerink, M. J. Broekhuis, M. M. Passier, E. R. van 

Wering, G. E. Janka-Schaub and R. Pieters. 2006. "Differential expression of p73 

isoforms in relation to drug resistance in childhood T-lineage acute lymphoblastic 

leukaemia." Leukemia 20(8):1377-1384. 

Melino, G., V. De Laurenzi and K. H. Vousden. 2002. "p73: Friend or foe in 

tumorigenesis." Nat Rev Cancer 2(8):605-615. 

Melino, G., R. A. Knight and G. Cesareni. 2006. "Degradation of p63 by Itch." Cell 

Cycle 5(16):1735-1739. 

Melino, G., X. Lu, M. Gasco, T. Crook and R. A. Knight. 2003. "Functional 

regulation of p73 and p63: development and cancer." Trends Biochem Sci 28(12):663-

670. 

Meltzer, P. S. 2005. "Cancer genomics: small RNAs with big impacts." Nature 

435(7043):745-746. 

Mendell, J. T. 2008. "miRiad roles for the miR-17-92 cluster in development and 

disease." Cell 133(2):217-222. 

Merlino, G. and F. P. Noonan. 2003. "Modeling gene-environment interactions in 

malignant melanoma." Trends Mol Med 9(3):102-108. 

Meyle, K. D. and P. Guldberg. 2009. "Genetic risk factors for melanoma." Hum Genet 

126(4):499-510. 

Meyskens, F. L., Jr., J. A. Buckmeier, S. E. McNulty and N. B. Tohidian. 1999. 

"Activation of nuclear factor-kappa B in human metastatic melanomacells and the 

effect of oxidative stress." Clin Cancer Res 5(5):1197-1202. 

Mhaidat, N. M., X. D. Zhang, J. Allen, K. A. Avery-Kiejda, R. J. Scott and P. Hersey. 

2007. "Temozolomide induces senescence but not apoptosis in human melanoma 

cells." Br J Cancer 97(9):1225-1233. 

Michaloglou, C., L. C. Vredeveld, W. J. Mooi and D. S. Peeper. 2008. "BRAF(E600) 

in benign and malignant human tumours." Oncogene 27(7):877-895. 

Middleton, M. R., J. J. Grob, N. Aaronson, G. Fierlbeck, W. Tilgen, S. Seiter, M. 

Gore, S. Aamdal, J. Cebon, A. Coates, B. Dreno, M. Henz, D. Schadendorf, A. Kapp, 

J. Weiss, U. Fraass, P. Statkevich, M. Muller and N. Thatcher. 2000. "Randomized 



 
Page | 350  

 

phase III study of temozolomide versus dacarbazine in the treatment of patients with 

advanced metastatic malignant melanoma." J Clin Oncol 18(1):158-166. 

Mihara, M. and U. M. Moll. 2003. "Detection of mitochondrial localization of p53." 

Methods Mol Biol 234:203-209. 

Miller, A. J. and M. C. Mihm, Jr. 2006. "Melanoma." N Engl J Med 355(1):51-65. 

Mills, A. A. 2006. "p63: oncogene or tumor suppressor?" Curr Opin Genet Dev 

16(1):38-44. 

Mills, A. A., B. Zheng, X. J. Wang, H. Vogel, D. R. Roop and A. Bradley. 1999. "p63 

is a p53 homologue required for limb and epidermal morphogenesis." Nature 

398(6729):708-713. 

Minamoto, T., T. Buschmann, H. Habelhah, E. Matusevich, H. Tahara, A. L. 

Boerresen-Dale, C. Harris, D. Sidransky and Z. Ronai. 2001. "Distinct pattern of p53 

phosphorylation in human tumors." Oncogene 20(26):3341-3347. 

Minucci, S., C. Nervi, F. Lo Coco and P. G. Pelicci. 2001. "Histone deacetylases: a 

common molecular target for differentiation treatment of acute myeloid leukemias?" 

Oncogene 20(24):3110-3115. 

Miyagishi, M. and K. Taira. 2004. "RNAi expression vectors in mammalian cells." 

Methods Mol Biol 252:483-491. 

Mizrak, D., M. Brittan and M. R. Alison. 2008. "CD133: molecule of the moment." J 

Pathol 214(1):3-9. 

Moll, U. M., N. Marchenko and X. K. Zhang. 2006. "p53 and Nur77/TR3 - 

transcription factors that directly target mitochondria for cell death induction." 

Oncogene 25(34):4725-4743. 

Moll, U. M. and N. Slade. 2004. "p63 and p73: roles in development and tumor 

formation." Mol Cancer Res 2(7):371-386. 

Moloney, F. J., H. Comber, P. O'Lorcain, P. O'Kelly, P. J. Conlon and G. M. Murphy. 

2006. "A population-based study of skin cancer incidence and prevalence in renal 

transplant recipients." Br J Dermatol 154(3):498-504. 

Molven, A., M. B. Grimstvedt, S. J. Steine, M. Harland, M. F. Avril, N. K. Hayward 

and L. A. Akslen. 2005. "A large Norwegian family with inherited malignant 

melanoma, multiple atypical nevi, and CDK4 mutation." Genes Chromosomes Cancer 

44(1):10-18. 

Momand, J., G. P. Zambetti, D. C. Olson, D. George and A. J. Levine. 1992. "The 

mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-

mediated transactivation." Cell 69(7):1237-1245. 

Montano, X., M. Shamsher, P. Whitehead, K. Dawson and J. Newton. 1994. "Analysis 

of p53 in human cutaneous melanoma cell lines." Oncogene 9(5):1455-1459. 

Monzani, E., F. Facchetti, E. Galmozzi, E. Corsini, A. Benetti, C. Cavazzin, A. Gritti, 

A. Piccinini, D. Porro, M. Santinami, G. Invernici, E. Parati, G. Alessandri and C. A. 

La Porta. 2007. "Melanoma contains CD133 and ABCG2 positive cells with enhanced 

tumourigenic potential." Eur J Cancer 43(5):935-946. 

Mooney, E. E., J. M. Ruis Peris, A. O'Neill and E. C. Sweeney. 1995. "Apoptotic and 

mitotic indices in malignant melanoma and basal cell carcinoma." J Clin Pathol 

48(3):242-244. 

Morgan, M. B., C. Purohit and T. R. Anglin. 2008. "Immunohistochemical distinction 

of cutaneous spindle cell carcinoma." Am J Dermatopathol 30(3):228-232. 

Mori, S., G. Ito, N. Usami, H. Yoshioka, Y. Ueda, Y. Kodama, M. Takahashi, K. M. 

Fong, K. Shimokata and Y. Sekido. 2004. "p53 apoptotic pathway molecules are 

frequently and simultaneously altered in nonsmall cell lung carcinoma." Cancer 

100(8):1673-1682. 



 
Page | 351  

 

Mori, T., H. Okamoto, N. Takahashi, R. Ueda and T. Okamoto. 2000. "Aberrant 

overexpression of 53BP2 mRNA in lung cancer cell lines." FEBS Lett 465(2-3):124-

128. 

Moriyama, M., M. Osawa, S. S. Mak, T. Ohtsuka, N. Yamamoto, H. Han, V. Delmas, 

R. Kageyama, F. Beermann, L. Larue and S. Nishikawa. 2006. "Notch signaling via 

Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem 

cells." J Cell Biol 173(3):333-339. 

Mortimer, J. E., S. Schulman, J. S. MacDonald, K. Kopecky and G. Goodman. 1990. 

"High-dose cisplatin in disseminated melanoma: a comparison of two schedules." 

Cancer Chemother Pharmacol 25(5):373-376. 

Moumen, A., S. Patane, A. Porras, R. Dono and F. Maina. 2007. "Met acts on Mdm2 

via mTOR to signal cell survival during development." Development 134(7):1443-

1451. 

Mueller, D. W., M. Rehli and A. K. Bosserhoff. 2009. "miRNA expression profiling 

in melanocytes and melanoma cell lines reveals miRNAs associated with formation 

and progression of malignant melanoma." J Invest Dermatol 129(7):1740-1751. 

Muller, D. W. and A. K. Bosserhoff. 2008. "Integrin beta 3 expression is regulated by 

let-7a miRNA in malignant melanoma." Oncogene 27(52):6698-6706. 

Muller, M., T. Schilling, A. E. Sayan, A. Kairat, K. Lorenz, H. Schulze-Bergkamen, 

M. Oren, A. Koch, A. Tannapfel, W. Stremmel, G. Melino and P. H. Krammer. 2005. 

"TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in 

hepatocellular carcinoma." Cell Death Differ 12(12):1564-1577. 

Muller, M., E. S. Schleithoff, W. Stremmel, G. Melino, P. H. Krammer and T. 

Schilling. 2006. "One, two, three--p53, p63, p73 and chemosensitivity." Drug Resist 

Updat 9(6):288-306. 

Murray-Zmijewski, F., D. P. Lane and J. C. Bourdon. 2006. "p53/p63/p73 isoforms: 

an orchestra of isoforms to harmonise cell differentiation and response to stress." Cell 

Death Differ 13(6):962-972. 

Muthusamy, V., C. Hobbs, C. Nogueira, C. Cordon-Cardo, P. H. McKee, L. Chin and 

M. W. Bosenberg. 2006. "Amplification of CDK4 and MDM2 in malignant 

melanoma." Genes Chromosomes Cancer 45(5):447-454. 

Nakajima, H., W. Amano, T. Kubo, A. Fukuhara, H. Ihara, Y. T. Azuma, H. Tajima, 

T. Inui, A. Sawa and T. Takeuchi. 2009. "Glyceraldehyde-3-phosphate dehydrogenase 

aggregate formation participates in oxidative stress-induced cell death." J Biol Chem 

284(49):34331-34341. 

Nakano, K. and K. H. Vousden. 2001. "PUMA, a novel proapoptotic gene, is induced 

by p53." Mol Cell 7(3):683-694. 

Narahashi, T., T. Niki, T. Wang, A. Goto, D. Matsubara, N. Funata and M. Fukayama. 

2006. "Cytoplasmic localization of p63 is associated with poor patient survival in lung 

adenocarcinoma." Histopathology 49(4):349-357. 

Nathanson. 1976. "Spontaneous regression of malignant melanoma: a review of the 

literature on incidence, clinical features, and possible mechanisms." Natl Cancer Inst 

Monogr 44:67-76. 

Nemajerova, A., S. Erster and U. M. Moll. 2005. "The post-translational 

phosphorylation and acetylation modification profile is not the determining factor in 

targeting endogenous stress-induced p53 to mitochondria." Cell Death Differ 

12(2):197-200. 

Newton, J. A. 1993. "Familial melanoma." Clin Exp Dermatol 18(1):5-11. 

Nguyen, B. C., K. Lefort, A. Mandinova, D. Antonini, V. Devgan, G. Della Gatta, M. 

I. Koster, Z. Zhang, J. Wang, A. Tommasi di Vignano, J. Kitajewski, G. Chiorino, D. 



 
Page | 352  

 

R. Roop, C. Missero and G. P. Dotto. 2006. "Cross-regulation between Notch and p63 

in keratinocyte commitment to differentiation." Genes Dev 20(8):1028-1042. 

Noma, K., C. D. Allis and S. I. Grewal. 2001. "Transitions in distinct histone H3 

methylation patterns at the heterochromatin domain boundaries." Science 

293(5532):1150-1155. 

Nylander, K., B. Vojtesek, R. Nenutil, B. Lindgren, G. Roos, W. Zhanxiang, B. 

Sjostrom, A. Dahlqvist and P. J. Coates. 2002. "Differential expression of p63 

isoforms in normal tissues and neoplastic cells." J Pathol 198(4):417-427. 

Oberst, A., M. Malatesta, R. I. Aqeilan, M. Rossi, P. Salomoni, R. Murillas, P. 

Sharma, M. R. Kuehn, M. Oren, C. M. Croce, F. Bernassola and G. Melino. 2007. 

"The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch." 

Proc Natl Acad Sci U S A 104(27):11280-11285. 

Ogawa, E., R. Okuyama, S. Ikawa, H. Nagoshi, T. Egawa, A. Kurihara, M. Yabuki, H. 

Tagami, M. Obinata and S. Aiba. 2008. "p51/p63 Inhibits ultraviolet B-induced 

apoptosis via Akt activation." Oncogene 27(6):848-856. 

Okada, Y., M. Osada, S. Kurata, S. Sato, K. Aisaki, Y. Kageyama, K. Kihara, Y. 

Ikawa and I. Katoh. 2002. "p53 gene family p51(p63)-encoded, secondary 

transactivator p51B(TAp63alpha) occurs without forming an immunoprecipitable 

complex with MDM2, but responds to genotoxic stress by accumulation." Exp Cell 

Res 276(2):194-200. 

Okamoto, K., Y. Taya and H. Nakagama. 2009. "Mdmx enhances p53 ubiquitination 

by altering the substrate preference of the Mdm2 ubiquitin ligase." FEBS Lett 

583(17):2710-2714. 

Okuyama, R., H. Tagami and S. Aiba. 2008. "Notch signaling: its role in epidermal 

homeostasis and in the pathogenesis of skin diseases." J Dermatol Sci 49(3):187-194. 

Omholt, K., A. Platz, L. Kanter, U. Ringborg and J. Hansson. 2003. "NRAS and 

BRAF mutations arise early during melanoma pathogenesis and are preserved 

throughout tumor progression." Clin Cancer Res 9(17):6483-6488. 

Ongkeko, W. M., Y. An, T. S. Chu, J. Aguilera, C. L. Dang and J. Wang-Rodriguez. 

2006. "Gleevec suppresses p63 expression in head and neck squamous cell carcinoma 

despite p63 activation by DNA-damaging agents." Laryngoscope 116(8):1390-1396. 

Osada, M., R. Inaba, H. Shinohara, M. Hagiwara, M. Nakamura and Y. Ikawa. 2001. 

"Regulatory domain of protein stability of human P51/TAP63, a P53 homologue." 

Biochem Biophys Res Commun 283(5):1135-1141. 

Osada, M., M. Ohba, C. Kawahara, C. Ishioka, R. Kanamaru, I. Katoh, Y. Ikawa, Y. 

Nimura, A. Nakagawara, M. Obinata and S. Ikawa. 1998. "Cloning and functional 

analysis of human p51, which structurally and functionally resembles p53." Nat Med 

4(7):839-843. 

Ota, A., H. Tagawa, S. Karnan, S. Tsuzuki, A. Karpas, S. Kira, Y. Yoshida and M. 

Seto. 2004. "Identification and characterization of a novel gene, C13orf25, as a target 

for 13q31-q32 amplification in malignant lymphoma." Cancer Res 64(9):3087-3095. 

Ozpolat, B., A. K. Sood and G. Lopez-Berestein. "Nanomedicine based approaches 

for the delivery of siRNA in cancer." J Intern Med 267(1):44-53. 

Palmer, J. S., D. L. Duffy, N. F. Box, J. F. Aitken, L. E. O'Gorman, A. C. Green, N. 

K. Hayward, N. G. Martin and R. A. Sturm. 2000. "Melanocortin-1 receptor 

polymorphisms and risk of melanoma: is the association explained solely by 

pigmentation phenotype?" Am J Hum Genet 66(1):176-186. 

Papagiannakopoulos, T., A. Shapiro and K. S. Kosik. 2008. "MicroRNA-21 targets a 

network of key tumor-suppressive pathways in glioblastoma cells." Cancer Res 

68(19):8164-8172. 



 
Page | 353  

 

Papoutsaki, M., F. Moretti, M. Lanza, B. Marinari, V. Sartorelli, L. Guerrini, S. 

Chimenti, M. Levrero and A. Costanzo. 2005. "A p38-dependent pathway regulates 

DeltaNp63 DNA binding to p53-dependent promoters in UV-induced apoptosis of 

keratinocytes." Oncogene 24(46):6970-6975. 

Papp, T., M. Jafari and D. Schiffmann. 1996. "Lack of p53 mutations and loss of 

heterozygosity in non-cultured human melanocytic lesions." J Cancer Res Clin Oncol 

122(9):541-548. 

Park, B. J., S. J. Lee, J. I. Kim, S. J. Lee, C. H. Lee, S. G. Chang, J. H. Park and S. G. 

Chi. 2000. "Frequent alteration of p63 expression in human primary bladder 

carcinomas." Cancer Res 60(13):3370-3374. 

Parsa, R., A. Yang, F. McKeon and H. Green. 1999. "Association of p63 with 

proliferative potential in normal and neoplastic human keratinocytes." J Invest 

Dermatol 113(6):1099-1105. 

Parsons, J. K., E. A. Saria, M. Nakayama, R. L. Vessella, C. L. Sawyers, W. B. Isaacs, 

D. A. Faith, G. S. Bova, C. A. Samathanam, R. Mitchell and A. M. De Marzo. 2009. 

"Comprehensive mutational analysis and mRNA isoform quantification of TP63 in 

normal and neoplastic human prostate cells." Prostate 69(5):559-569. 

Patel, P., D. L. Hanson, P. S. Sullivan, R. M. Novak, A. C. Moorman, T. C. Tong, S. 

D. Holmberg and J. T. Brooks. 2008. "Incidence of types of cancer among HIV-

infected persons compared with the general population in the United States, 1992-

2003." Ann Intern Med 148(10):728-736. 

Patton, E. E., H. R. Widlund, J. L. Kutok, K. R. Kopani, J. F. Amatruda, R. D. 

Murphey, S. Berghmans, E. A. Mayhall, D. Traver, C. D. Fletcher, J. C. Aster, S. R. 

Granter, A. T. Look, C. Lee, D. E. Fisher and L. I. Zon. 2005. "BRAF mutations are 

sufficient to promote nevi formation and cooperate with p53 in the genesis of 

melanoma." Curr Biol 15(3):249-254. 

Patturajan, M., S. Nomoto, M. Sommer, A. Fomenkov, K. Hibi, R. Zangen, N. Poliak, 

J. Califano, B. Trink, E. Ratovitski and D. Sidransky. 2002. "DeltaNp63 induces beta-

catenin nuclear accumulation and signaling." Cancer Cell 1(4):369-379. 

Pellegrini, G., E. Dellambra, O. Golisano, E. Martinelli, I. Fantozzi, S. Bondanza, D. 

Ponzin, F. McKeon and M. De Luca. 2001. "p63 identifies keratinocyte stem cells." 

Proc Natl Acad Sci U S A 98(6):3156-3161. 

Perez-Losada, J., D. Wu, R. DelRosario, A. Balmain and J. H. Mao. 2005. "p63 and 

p73 do not contribute to p53-mediated lymphoma suppressor activity in vivo." 

Oncogene 24(35):5521-5524. 

Peters, A. H., J. E. Mermoud, D. O'Carroll, M. Pagani, D. Schweizer, N. Brockdorff 

and T. Jenuwein. 2002. "Histone H3 lysine 9 methylation is an epigenetic imprint of 

facultative heterochromatin." Nat Genet 30(1):77-80. 

Petitjean, A., C. Cavard, H. Shi, V. Tribollet, P. Hainaut and C. Caron de Fromentel. 

2005. "The expression of TA and DeltaNp63 are regulated by different mechanisms in 

liver cells." Oncogene 24(3):512-519. 

Petitjean, A., C. Ruptier, V. Tribollet, A. Hautefeuille, F. Chardon, C. Cavard, A. 

Puisieux, P. Hainaut and C. Caron de Fromentel. 2008. "Properties of the six isoforms 

of p63: p53-like regulation in response to genotoxic stress and cross talk with 

DeltaNp73." Carcinogenesis 29(2):273-281. 

Pignolo, R. J., M. O. Rotenberg, J. H. Horton and V. J. Cristofalo. 1998. "Senescent 

WI-38 fibroblasts overexpress LPC-1, a putative transmembrane shock protein." Exp 

Cell Res 240(2):305-311. 

Pjanova, D., A. Molven, L. A. Akslen, L. Engele, B. Streinerte, K. Azarjana and O. 

Heisele. 2009. "Identification of a CDK4 R24H mutation-positive melanoma family 



 
Page | 354  

 

by analysis of early-onset melanoma patients in Latvia." Melanoma Res 19(2):119-

122. 

Pollock, P. M., U. L. Harper, K. S. Hansen, L. M. Yudt, M. Stark, C. M. Robbins, T. 

Y. Moses, G. Hostetter, U. Wagner, J. Kakareka, G. Salem, T. Pohida, P. Heenan, P. 

Duray, O. Kallioniemi, N. K. Hayward, J. M. Trent and P. S. Meltzer. 2003. "High 

frequency of BRAF mutations in nevi." Nat Genet 33(1):19-20. 

Polsky, D., K. Melzer, C. Hazan, K. S. Panageas, K. Busam, M. Drobnjak, H. 

Kamino, J. G. Spira, A. W. Kopf, A. Houghton, C. Cordon-Cardo and I. Osman. 2002. 

"HDM2 protein overexpression and prognosis in primary malignant melanoma." J 

Natl Cancer Inst 94(23):1803-1806. 

Ponassi, R., A. Terrinoni, A. Chikh, A. Rufini, A. M. Lena, B. S. Sayan, G. Melino 

and E. Candi. 2006. "p63 and p73, members of the p53 gene family, transactivate 

PKCdelta." Biochem Pharmacol 72(11):1417-1422. 

Pradervand, S., J. Weber, J. Thomas, M. Bueno, P. Wirapati, K. Lefort, G. P. Dotto 

and K. Harshman. 2009. "Impact of normalization on miRNA microarray expression 

profiling." RNA 15(3):493-501. 

Prince, S., S. Carreira, K. W. Vance, A. Abrahams and C. R. Goding. 2004. "Tbx2 

directly represses the expression of the p21(WAF1) cyclin-dependent kinase 

inhibitor." Cancer Res 64(5):1669-1674. 

Purdie, K. J., C. A. Harwood, A. Gulati, T. Chaplin, S. R. Lambert, R. Cerio, G. P. 

Kelly, J. B. Cazier, B. D. Young, I. M. Leigh and C. M. Proby. 2009. "Single 

nucleotide polymorphism array analysis defines a specific genetic fingerprint for well-

differentiated cutaneous SCCs." J Invest Dermatol 129(6):1562-1568. 

Qiu, L., M. J. Kelso, C. Hansen, M. L. West, D. P. Fairlie and P. G. Parsons. 1999. 

"Anti-tumour activity in vitro and in vivo of selective differentiating agents containing 

hydroxamate." Br J Cancer 80(8):1252-1258. 

Quintana, E., M. Shackleton, M. S. Sabel, D. R. Fullen, T. M. Johnson and S. J. 

Morrison. 2008. "Efficient tumour formation by single human melanoma cells." 

Nature 456(7222):593-598. 

Quirbt, I., S. Verma, T. Petrella, K. Bak and M. Charette. 2007. "Temozolomide for 

the treatment of metastatic melanoma." Curr Oncol 14(1):27-33. 

Raimondi, S., F. Sera, S. Gandini, S. Iodice, S. Caini, P. Maisonneuve and M. C. 

Fargnoli. 2008. "MC1R variants, melanoma and red hair color phenotype: a meta-

analysis." Int J Cancer 122(12):2753-2760. 

Rajewsky, N. 2006. "microRNA target predictions in animals." Nat Genet 38 

Suppl:S8-13. 

Raman, V., S. A. Martensen, D. Reisman, E. Evron, W. F. Odenwald, E. Jaffee, J. 

Marks and S. Sukumar. 2000. "Compromised HOXA5 function can limit p53 

expression in human breast tumours." Nature 405(6789):974-978. 

Ramos, Y. F., R. Stad, J. Attema, L. T. Peltenburg, A. J. van der Eb and A. G. 

Jochemsen. 2001. "Aberrant expression of HDMX proteins in tumor cells correlates 

with wild-type p53." Cancer Res 61(5):1839-1842. 

Rao, R. D., S. G. Holtan, J. N. Ingle, G. A. Croghan, L. A. Kottschade, E. T. Creagan, 

J. S. Kaur, H. C. Pitot and S. N. Markovic. 2006. "Combination of paclitaxel and 

carboplatin as second-line therapy for patients with metastatic melanoma." Cancer 

106(2):375-382. 

Ratovitski, E. A., M. Patturajan, K. Hibi, B. Trink, K. Yamaguchi and D. Sidransky. 

2001. "p53 associates with and targets Delta Np63 into a protein degradation 

pathway." Proc Natl Acad Sci U S A 98(4):1817-1822. 



 
Page | 355  

 

Refaeli, Y., A. Bhoumik, D. R. Roop and Z. A. Ronai. 2009. "Melanoma-initiating 

cells: a compass needed." EMBO Rep 10(9):965-972. 

Reis-Filho, J. S., P. T. Simpson, L. G. Fulford, A. Martins and F. C. Schmitt. 2003a. 

"P63-driven nuclear accumulation of beta-catenin is not a frequent event in human 

neoplasms." Pathol Res Pract 199(12):785-793. 

Reis-Filho, J. S., P. T. Simpson, A. Martins, A. Preto, F. Gartner and F. C. Schmitt. 

2003b. "Distribution of p63, cytokeratins 5/6 and cytokeratin 14 in 51 normal and 400 

neoplastic human tissue samples using TARP-4 multi-tumor tissue microarray." 

Virchows Arch 443(2):122-132. 

Reya, T., S. J. Morrison, M. F. Clarke and I. L. Weissman. 2001. "Stem cells, cancer, 

and cancer stem cells." Nature 414(6859):105-111. 

Ribeiro-Silva, A., L. N. Zambelli Ramalho, S. Britto Garcia and S. Zucoloto. 2003. 

"The relationship between p63 and p53 expression in normal and neoplastic breast 

tissue." Arch Pathol Lab Med 127(3):336-340. 

Ricaniadis, N., A. Kataki, N. Agnantis, G. Androulakis and C. P. Karakousis. 2001. 

"Long-term prognostic significance of HSP-70, c-myc and HLA-DR expression in 

patients with malignant melanoma." Eur J Surg Oncol 27(1):88-93. 

Richardson, G. D., C. N. Robson, S. H. Lang, D. E. Neal, N. J. Maitland and A. T. 

Collins. 2004. "CD133, a novel marker for human prostatic epithelial stem cells." J 

Cell Sci 117(Pt 16):3539-3545. 

Rigel, D. S. and J. A. Carucci. 2000. "Malignant melanoma: prevention, early 

detection, and treatment in the 21st century." CA Cancer J Clin 50(4):215-236; quiz 

237-240. 

Riley, T., E. Sontag, P. Chen and A. Levine. 2008. "Transcriptional control of human 

p53-regulated genes." Nat Rev Mol Cell Biol 9(5):402-412. 

Roberts, D. L., A. V. Anstey, R. J. Barlow, N. H. Cox, J. A. Newton Bishop, P. G. 

Corrie, J. Evans, M. E. Gore, P. N. Hall and N. Kirkham. 2002. "U.K. guidelines for 

the management of cutaneous melanoma." Br J Dermatol 146(1):7-17. 

Robertson, D. M., S. I. Ho and H. D. Cavanagh. 2008. "Characterization of DeltaNp63 

isoforms in normal cornea and telomerase-immortalized human corneal epithelial 

cells." Exp Eye Res 86(4):576-585. 

Robertson, G. P. 2005a. "Functional and therapeutic significance of Akt deregulation 

in malignant melanoma." Cancer Metastasis Rev 24(2):273-285. 

Robertson, K. D. 2005b. "DNA methylation and human disease." Nat Rev Genet 

6(8):597-610. 

Robinson, M. J. and M. H. Cobb. 1997. "Mitogen-activated protein kinase pathways." 

Curr Opin Cell Biol 9(2):180-186. 

Robinson, R. A., X. Lu, E. Y. Jones and C. Siebold. 2008. "Biochemical and structural 

studies of ASPP proteins reveal differential binding to p53, p63, and p73." Structure 

16(2):259-268. 

Rocca, A., G. Viale, R. D. Gelber, L. Bottiglieri, S. Gelber, G. Pruneri, R. Ghisini, A. 

Balduzzi, E. Pietri, C. D'Alessandro, A. Goldhirsch and M. Colleoni. 2008. 

"Pathologic complete remission rate after cisplatin-based primary chemotherapy in 

breast cancer: correlation with p63 expression." Cancer Chemother Pharmacol 

61(6):965-971. 

Rocco, J. W., C. O. Leong, N. Kuperwasser, M. P. DeYoung and L. W. Ellisen. 2006. 

"p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent 

apoptosis." Cancer Cell 9(1):45-56. 

Rodolfo, M., M. Daniotti and V. Vallacchi. 2004. "Genetic progression of metastatic 

melanoma." Cancer Lett 214(2):133-147. 



 
Page | 356  

 

Rossi, M., R. I. Aqeilan, M. Neale, E. Candi, P. Salomoni, R. A. Knight, C. M. Croce 

and G. Melino. 2006a. "The E3 ubiquitin ligase Itch controls the protein stability of 

p63." Proc Natl Acad Sci U S A 103(34):12753-12758. 

Rossi, M., M. De Simone, A. Pollice, R. Santoro, G. La Mantia, L. Guerrini and V. 

Calabro. 2006b. "Itch/AIP4 associates with and promotes p63 protein degradation." 

Cell Cycle 5(16):1816-1822. 

Rothhammer, T. and A. K. Bosserhoff. 2007. "Epigenetic events in malignant 

melanoma." Pigment Cell Res 20(2):92-111. 

Rountree, M. R., K. E. Bachman, J. G. Herman and S. B. Baylin. 2001. "DNA 

methylation, chromatin inheritance, and cancer." Oncogene 20(24):3156-3165. 

Sabatino, M., D. F. Stroncek, H. Klein, F. M. Marincola and E. Wang. 2009. "Stem 

cells in melanoma development." Cancer Lett 279(2):119-125. 

Sablina, A. A., A. V. Budanov, G. V. Ilyinskaya, L. S. Agapova, J. E. Kravchenko and 

P. M. Chumakov. 2005. "The antioxidant function of the p53 tumor suppressor." Nat 

Med 11(12):1306-1313. 

Saito, Y., G. Liang, G. Egger, J. M. Friedman, J. C. Chuang, G. A. Coetzee and P. A. 

Jones. 2006. "Specific activation of microRNA-127 with downregulation of the proto-

oncogene BCL6 by chromatin-modifying drugs in human cancer cells." Cancer Cell 

9(6):435-443. 

Sakiz, D., T. T. Turkmenoglu and F. Kabukcuoglu. 2009. "The expression of p63 and 

p53 in keratoacanthoma and intraepidermal and invasive neoplasms of the skin." 

Pathol Res Pract 205(9):589-594. 

Sampath, D., G. A. Calin, V. K. Puduvalli, G. Gopisetty, C. Taccioli, C. G. Liu, B. 

Ewald, C. Liu, M. J. Keating and W. Plunkett. 2009. "Specific activation of 

microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia 

by targeting the ubiquitin ligase Itch for degradation." Blood 113(16):3744-3753. 

Samuel, L. M., V. J. Harvey, P. L. Mitchell, P. I. Thompson, D. Mak, P. Melville and 

B. D. Evans. 1994. "Phase II trial of procarbazine, vincristine and lomustine (POC) 

chemotherapy in metastatic cutaneous malignant melanoma." Eur J Cancer 

30A(14):2054-2056. 

Samuels-Lev, Y., D. J. O'Connor, D. Bergamaschi, G. Trigiante, J. K. Hsieh, S. 

Zhong, I. Campargue, L. Naumovski, T. Crook and X. Lu. 2001. "ASPP proteins 

specifically stimulate the apoptotic function of p53." Mol Cell 8(4):781-794. 

Sandor, V., S. Bakke, R. W. Robey, M. H. Kang, M. V. Blagosklonny, J. Bender, R. 

Brooks, R. L. Piekarz, E. Tucker, W. D. Figg, K. K. Chan, B. Goldspiel, A. T. Fojo, S. 

P. Balcerzak and S. E. Bates. 2002. "Phase I trial of the histone deacetylase inhibitor, 

depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms." Clin 

Cancer Res 8(3):718-728. 

Sanguino, A., G. Lopez-Berestein and A. K. Sood. 2008. "Strategies for in vivo 

siRNA delivery in cancer." Mini Rev Med Chem 8(3):248-255. 

Sansome, C., A. Zaika, N. D. Marchenko and U. M. Moll. 2001. "Hypoxia death 

stimulus induces translocation of p53 protein to mitochondria. Detection by 

immunofluorescence on whole cells." FEBS Lett 488(3):110-115. 

Santos-Rosa, H. and C. Caldas. 2005. "Chromatin modifier enzymes, the histone code 

and cancer." Eur J Cancer 41(16):2381-2402. 

Sasaki, Y., S. Ishida, I. Morimoto, T. Yamashita, T. Kojima, C. Kihara, T. Tanaka, K. 

Imai, Y. Nakamura and T. Tokino. 2002. "The p53 family member genes are involved 

in the Notch signal pathway." J Biol Chem 277(1):719-724. 

Sasaki, Y., H. Negishi, M. Idogawa, H. Suzuki, H. Mita, M. Toyota, Y. Shinomura, K. 

Imai and T. Tokino. 2008. "Histone deacetylase inhibitor FK228 enhances 



 
Page | 357  

 

adenovirus-mediated p53 family gene therapy in cancer models." Mol Cancer Ther 

7(4):779-787. 

Sato, T., F. Han and A. Yamamoto. 2008. "The biology and management of uveal 

melanoma." Curr Oncol Rep 10(5):431-438. 

Satyamoorthy, K., T. Bogenrieder and M. Herlyn. 2001. "No longer a molecular black 

box--new clues to apoptosis and drug resistance in melanoma." Trends Mol Med 

7(5):191-194. 

Satyamoorthy, K., N. H. Chehab, M. J. Waterman, M. C. Lien, W. S. El-Deiry, M. 

Herlyn and T. D. Halazonetis. 2000. "Aberrant regulation and function of wild-type 

p53 in radioresistant melanoma cells." Cell Growth Differ 11(9):467-474. 

Sayan, A. E., B. S. Sayan, V. Gogvadze, D. Dinsdale, U. Nyman, T. M. Hansen, B. 

Zhivotovsky, G. M. Cohen, R. A. Knight and G. Melino. 2008. "P73 and caspase-

cleaved p73 fragments localize to mitochondria and augment TRAIL-induced 

apoptosis." Oncogene 27(31):4363-4372. 

Sayan, B. S., A. E. Sayan, R. A. Knight, G. Melino and G. M. Cohen. 2006. "p53 is 

cleaved by caspases generating fragments localizing to mitochondria." J Biol Chem 

281(19):13566-13573. 

Sayan, B. S., A. E. Sayan, A. L. Yang, R. I. Aqeilan, E. Candi, G. M. Cohen, R. A. 

Knight, C. M. Croce and G. Melino. 2007. "Cleavage of the transactivation-inhibitory 

domain of p63 by caspases enhances apoptosis." Proc Natl Acad Sci U S A 

104(26):10871-10876. 

Sayan, B. S., A. L. Yang, F. Conforti, S. Bernardini, P. Tucci, M. Vasa-Nicotera, R. 

A. Knight and G. Melino. 2009. "Induction of TAp63 by histone deacetylase 

inhibitors." Biochem Biophys Res Commun. 

Scatolini, M., M. M. Grand, E. Grosso, T. Venesio, A. Pisacane, A. Balsamo, R. 

Sirovich, M. Risio and G. Chiorino. 2009. "Altered molecular pathways in 

melanocytic lesions." Int J Cancer. 

Schadendorf, D., S. Ugurel, B. Schuler-Thurner, F. O. Nestle, A. Enk, E. B. Brocker, 

S. Grabbe, W. Rittgen, L. Edler, A. Sucker, C. Zimpfer-Rechner, T. Berger, J. 

Kamarashev, G. Burg, H. Jonuleit, A. Tuttenberg, J. C. Becker, P. Keikavoussi, E. 

Kampgen and G. Schuler. 2006. "Dacarbazine (DTIC) versus vaccination with 

autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with 

metastatic melanoma: a randomized phase III trial of the DC study group of the 

DeCOG." Ann Oncol 17(4):563-570. 

Schatton, T. and M. H. Frank. 2008. "Cancer stem cells and human malignant 

melanoma." Pigment Cell Melanoma Res 21(1):39-55. 

Schatton, T., G. F. Murphy, N. Y. Frank, K. Yamaura, A. M. Waaga-Gasser, M. 

Gasser, Q. Zhan, S. Jordan, L. M. Duncan, C. Weishaupt, R. C. Fuhlbrigge, T. S. 

Kupper, M. H. Sayegh and M. H. Frank. 2008. "Identification of cells initiating 

human melanomas." Nature 451(7176):345-349. 

Scheel, A. H., U. Beyer, R. Agami and M. Dobbelstein. 2009. "Immunofluorescence-

based screening identifies germ cell associated microRNA 302 as an antagonist to p63 

expression." Cell Cycle 8(9):1426-1432. 

Schmid-Wendtner, M. H., J. Baumert, C. M. Wendtner, G. Plewig and M. 

Volkenandt. 2001. "Risk of second primary malignancies in patients with cutaneous 

melanoma." Br J Dermatol 145(6):981-985. 

Schmitt, C. A., J. S. Fridman, M. Yang, E. Baranov, R. M. Hoffman and S. W. Lowe. 

2002. "Dissecting p53 tumor suppressor functions in vivo." Cancer Cell 1(3):289-298. 

Schmitt, C. A. and S. W. Lowe. 2002. "Apoptosis and chemoresistance in transgenic 

cancer models." J Mol Med 80(3):137-146. 



 
Page | 358  

 

Schultz, J., P. Lorenz, G. Gross, S. Ibrahim and M. Kunz. 2008. "MicroRNA let-7b 

targets important cell cycle molecules in malignant melanoma cells and interferes with 

anchorage-independent growth." Cell Res 18(5):549-557. 

Schultz, J., C. P. Ponting, K. Hofmann and P. Bork. 1997. "SAM as a protein 

interaction domain involved in developmental regulation." Protein Sci 6(1):249-253. 

Segura, M. F., D. Hanniford, S. Menendez, L. Reavie, X. Zou, S. Alvarez-Diaz, J. 

Zakrzewski, E. Blochin, A. Rose, D. Bogunovic, D. Polsky, J. Wei, P. Lee, I. 

Belitskaya-Levy, N. Bhardwaj, I. Osman and E. Hernando. 2009. "Aberrant miR-182 

expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-

associated transcription factor." Proc Natl Acad Sci U S A 106(6):1814-1819. 

Seitz, S. J., E. S. Schleithoff, A. Koch, A. Schuster, A. Teufel, F. Staib, W. Stremmel, 

G. Melino, P. H. Krammer, T. Schilling and M. Muller. 2009. "Chemotherapy-

induced apoptosis in hepatocellular carcinoma involves the p53 family and is 

mediated via the extrinsic and the intrinsic pathway." Int J Cancer. 

Selzer, E., H. Schlagbauer-Wadl, I. Okamoto, H. Pehamberger, R. Potter and B. 

Jansen. 1998. "Expression of Bcl-2 family members in human melanocytes, in 

melanoma metastases and in melanoma cell lines." Melanoma Res 8(3):197-203. 

Senoo, M., J. P. Manis, F. W. Alt and F. McKeon. 2004. "p63 and p73 are not 

required for the development and p53-dependent apoptosis of T cells." Cancer Cell 

6(1):85-89. 

Senoo, M., F. Pinto, C. P. Crum and F. McKeon. 2007. "p63 Is essential for the 

proliferative potential of stem cells in stratified epithelia." Cell 129(3):523-536. 

Serber, Z., H. C. Lai, A. Yang, H. D. Ou, M. S. Sigal, A. E. Kelly, B. D. Darimont, P. 

H. Duijf, H. Van Bokhoven, F. McKeon and V. Dotsch. 2002. "A C-terminal 

inhibitory domain controls the activity of p63 by an intramolecular mechanism." Mol 

Cell Biol 22(24):8601-8611. 

Serrone, L., M. Zeuli, F. M. Sega and F. Cognetti. 2000. "Dacarbazine-based 

chemotherapy for metastatic melanoma: thirty-year experience overview." J Exp Clin 

Cancer Res 19(1):21-34. 

Sgroi, D. C., S. Teng, G. Robinson, R. LeVangie, J. R. Hudson, Jr. and A. G. 

Elkahloun. 1999. "In vivo gene expression profile analysis of human breast cancer 

progression." Cancer Res 59(22):5656-5661. 

Sharpless, E. and L. Chin. 2003. "The INK4a/ARF locus and melanoma." Oncogene 

22(20):3092-3098. 

Shaw, P., J. Freeman, R. Bovey and R. Iggo. 1996. "Regulation of specific DNA 

binding by p53: evidence for a role for O-glycosylation and charged residues at the 

carboxy-terminus." Oncogene 12(4):921-930. 

Sheil, A. G. 1986. "Cancer after transplantation." World J Surg 10(3):389-396. 

Sheil, A. G., S. Flavel, A. P. Disney and T. H. Mathew. 1985. "Cancer development in 

patients progressing to dialysis and renal transplantation." Transplant Proc 

17(2):1685-1688. 

Shieh, S. Y., J. Ahn, K. Tamai, Y. Taya and C. Prives. 2000. "The human homologs 

of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA 

damage-inducible sites." Genes Dev 14(3):289-300. 

Shields, J. A., C. L. Shields, M. Materin, T. Sato and A. Ganguly. 2008. "Role of 

cytogenetics in management of uveal melanoma." Arch Ophthalmol 126(3):416-419. 

Shiloh, Y. 2003. "ATM and related protein kinases: safeguarding genome integrity." 

Nat Rev Cancer 3(3):155-168. 

Shmelkov, S. V., J. M. Butler, A. T. Hooper, A. Hormigo, J. Kushner, T. Milde, R. St 

Clair, M. Baljevic, I. White, D. K. Jin, A. Chadburn, A. J. Murphy, D. M. Valenzuela, 



 
Page | 359  

 

N. W. Gale, G. Thurston, G. D. Yancopoulos, M. D'Angelica, N. Kemeny, D. Lyden 

and S. Rafii. 2008. "CD133 expression is not restricted to stem cells, and both 

CD133+ and CD133- metastatic colon cancer cells initiate tumors." J Clin Invest 

118(6):2111-2120. 

Siddik, Z. H. 2003. "Cisplatin: mode of cytotoxic action and molecular basis of 

resistance." Oncogene 22(47):7265-7279. 

Singh, S. K., C. Hawkins, I. D. Clarke, J. A. Squire, J. Bayani, T. Hide, R. M. 

Henkelman, M. D. Cusimano and P. B. Dirks. 2004. "Identification of human brain 

tumour initiating cells." Nature 432(7015):396-401. 

Slee, E. A., S. Gillotin, D. Bergamaschi, C. Royer, S. Llanos, S. Ali, B. Jin, G. 

Trigiante and X. Lu. 2004. "The N-terminus of a novel isoform of human iASPP is 

required for its cytoplasmic localization." Oncogene 23(56):9007-9016. 

Smalley, K. S., R. Contractor, N. K. Haass, A. N. Kulp, G. E. Atilla-Gokcumen, D. S. 

Williams, H. Bregman, K. T. Flaherty, M. S. Soengas, E. Meggers and M. Herlyn. 

2007. "An organometallic protein kinase inhibitor pharmacologically activates p53 

and induces apoptosis in human melanoma cells." Cancer Res 67(1):209-217. 

Smalley, K. S. and K. T. Flaherty. 2009. "Development of a novel chemical class of 

BRAF inhibitors offers new hope for melanoma treatment." Future Oncol 5(6):775-

778. 

Sniezek, J. C., K. E. Matheny, M. D. Westfall and J. A. Pietenpol. 2004. "Dominant 

negative p63 isoform expression in head and neck squamous cell carcinoma." 

Laryngoscope 114(12):2063-2072. 

Soengas, M. S., P. Capodieci, D. Polsky, J. Mora, M. Esteller, X. Opitz-Araya, R. 

McCombie, J. G. Herman, W. L. Gerald, Y. A. Lazebnik, C. Cordon-Cardo and S. W. 

Lowe. 2001. "Inactivation of the apoptosis effector Apaf-1 in malignant melanoma." 

Nature 409(6817):207-211. 

Soengas, M. S. and S. W. Lowe. 2003. "Apoptosis and melanoma chemoresistance." 

Oncogene 22(20):3138-3151. 

Sommer, M., N. Poliak, S. Upadhyay, E. Ratovitski, B. D. Nelkin, L. A. Donehower 

and D. Sidransky. 2006. "DeltaNp63alpha overexpression induces downregulation of 

Sirt1 and an accelerated aging phenotype in the mouse." Cell Cycle 5(17):2005-2011. 

Soto, J. L., C. M. Cabrera, S. Serrano and M. A. Lopez-Nevot. 2005. "Mutation 

analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, 

CDKN2A, and CDKN2B." BMC Cancer 5:36. 

Soufir, N., M. F. Avril, A. Chompret, F. Demenais, J. Bombled, A. Spatz, D. Stoppa-

Lyonnet, J. Benard and B. Bressac-de Paillerets. 1998. "Prevalence of p16 and CDK4 

germline mutations in 48 melanoma-prone families in France. The French Familial 

Melanoma Study Group." Hum Mol Genet 7(2):209-216. 

Soussi, T. and G. Lozano. 2005. "p53 mutation heterogeneity in cancer." Biochem 

Biophys Res Commun 331(3):834-842. 

Sparrow, L. E., D. R. English, P. J. Heenan, H. J. Dawkins and J. Taran. 1995a. 

"Prognostic significance of p53 over-expression in thin melanomas." Melanoma Res 

5(6):387-392. 

Sparrow, L. E., R. Soong, H. J. Dawkins, B. J. Iacopetta and P. J. Heenan. 1995b. 

"p53 gene mutation and expression in naevi and melanomas." Melanoma Res 5(2):93-

100. 

Stahl, J. M., A. Sharma, M. Cheung, M. Zimmerman, J. Q. Cheng, M. W. Bosenberg, 

M. Kester, L. Sandirasegarane and G. P. Robertson. 2004. "Deregulated Akt3 activity 

promotes development of malignant melanoma." Cancer Res 64(19):7002-7010. 



 
Page | 360  

 

Stefanaki, I., A. J. Stratigos, G. Dimisianos, V. Nikolaou, O. Papadopoulos, D. 

Polydorou, H. Gogas, D. Tsoutsos, P. Panagiotou, E. Kanavakis, C. Antoniou and A. 

D. Katsambas. 2007. "p53 codon 72 Pro homozygosity increases the risk of cutaneous 

melanoma in individuals with dark skin complexion and among noncarriers of 

melanocortin 1 receptor red hair variants." Br J Dermatol 156(2):357-362. 

Stehmeier, P. and S. Muller. 2009a. "Phospho-regulated SUMO interaction modules 

connect the SUMO system to CK2 signaling." Mol Cell 33(3):400-409. 

Stehmeier, P. and S. Muller. 2009b. "Regulation of p53 family members by the 

ubiquitin-like SUMO system." DNA Repair (Amst) 8(4):491-498. 

Steingrimsson, E., N. G. Copeland and N. A. Jenkins. 2004. "Melanocytes and the 

microphthalmia transcription factor network." Annu Rev Genet 38:365-411. 

Stiewe, T., C. C. Theseling and B. M. Putzer. 2002. "Transactivation-deficient Delta 

TA-p73 inhibits p53 by direct competition for DNA binding: implications for 

tumorigenesis." J Biol Chem 277(16):14177-14185. 

Stommel, J. M. and G. M. Wahl. 2004. "Accelerated MDM2 auto-degradation 

induced by DNA-damage kinases is required for p53 activation." Embo J 23(7):1547-

1556. 

Strano, S. and G. Blandino. 2003. "p73-mediated chemosensitivity: a preferential 

target of oncogenic mutant p53." Cell Cycle 2(4):348-349. 

Stretch, J. R., K. C. Gatter, E. Ralfkiaer, D. P. Lane and A. L. Harris. 1991. 

"Expression of mutant p53 in melanoma." Cancer Res 51(21):5976-5979. 

Strom, E., S. Sathe, P. G. Komarov, O. B. Chernova, I. Pavlovska, I. Shyshynova, D. 

A. Bosykh, L. G. Burdelya, R. M. Macklis, R. Skaliter, E. A. Komarova and A. V. 

Gudkov. 2006. "Small-molecule inhibitor of p53 binding to mitochondria protects 

mice from gamma radiation." Nat Chem Biol 2(9):474-479. 

Sturm, R. A. 2009. "Molecular genetics of human pigmentation diversity." Hum Mol 

Genet 18(R1):R9-17. 

Sturm, R. A., B. J. O'Sullivan, J. A. Thomson, N. Jamshidi, J. Pedley and P. G. 

Parsons. 1994. "Expression studies of pigmentation and POU-domain genes in human 

melanoma cells." Pigment Cell Res 7(4):235-240. 

Su, X., M. S. Cho, Y. J. Gi, B. A. Ayanga, C. J. Sherr and E. R. Flores. 2009a. 

"Rescue of key features of the p63-null epithelial phenotype by inactivation of Ink4a 

and Arf." Embo J 28(13):1904-1915. 

Su, X., M. Paris, Y. J. Gi, K. Y. Tsai, M. S. Cho, Y. L. Lin, J. A. Biernaskie, S. Sinha, 

C. Prives, L. H. Pevny, F. D. Miller and E. R. Flores. 2009b. "TAp63 prevents 

premature aging by promoting adult stem cell maintenance." Cell Stem Cell 5(1):64-

75. 

Suetsugu, A., M. Nagaki, H. Aoki, T. Motohashi, T. Kunisada and H. Moriwaki. 

2006. "Characterization of CD133+ hepatocellular carcinoma cells as cancer 

stem/progenitor cells." Biochem Biophys Res Commun 351(4):820-824. 

Suh, E. K., A. Yang, A. Kettenbach, C. Bamberger, A. H. Michaelis, Z. Zhu, J. A. 

Elvin, R. T. Bronson, C. P. Crum and F. McKeon. 2006. "p63 protects the female 

germ line during meiotic arrest." Nature 444(7119):624-628. 

Sunahara, M., T. Shishikura, M. Takahashi, S. Todo, N. Yamamoto, H. Kimura, S. 

Kato, C. Ishioka, S. Ikawa, Y. Ikawa and A. Nakagawara. 1999. "Mutational analysis 

of p51A/TAp63gamma, a p53 homolog, in non-small cell lung cancer and breast 

cancer." Oncogene 18(25):3761-3765. 

Swart, G. W., P. C. Lunter, J. W. Kilsdonk and L. C. Kempen. 2005. "Activated 

leukocyte cell adhesion molecule (ALCAM/CD166): signaling at the divide of 

melanoma cell clustering and cell migration?" Cancer Metastasis Rev 24(2):223-236. 



 
Page | 361  

 

Swerdlow, A. J., H. H. Storm and P. D. Sasieni. 1995. "Risks of second primary 

malignancy in patients with cutaneous and ocular melanoma in Denmark, 1943-1989." 

Int J Cancer 61(6):773-779. 

Takeda, J., T. Maekawa, T. Sudo, Y. Seino, H. Imura, N. Saito, C. Tanaka and S. 

Ishii. 1991. "Expression of the CRE-BP1 transcriptional regulator binding to the 

cyclic AMP response element in central nervous system, regenerating liver, and 

human tumors." Oncogene 6(6):1009-1014. 

Takizawa, T., C. Tatematsu, K. Watanabe, K. Kato and Y. Nakanishi. 2004. 

"Cleavage of calnexin caused by apoptotic stimuli: implication for the regulation of 

apoptosis." J Biochem 136(3):399-405. 

Tang, L., V. A. Tron, J. C. Reed, K. J. Mah, M. Krajewska, G. Li, X. Zhou, V. C. Ho 

and M. J. Trotter. 1998. "Expression of apoptosis regulators in cutaneous malignant 

melanoma." Clin Cancer Res 4(8):1865-1871. 

Tani, M., K. Shimizu, C. Kawahara, T. Kohno, O. Ishimoto, S. Ikawa and J. Yokota. 

1999. "Mutation and expression of the p51 gene in human lung cancer." Neoplasia 

1(1):71-79. 

Tawa, N. E., Jr., R. Odessey and A. L. Goldberg. 1997. "Inhibitors of the proteasome 

reduce the accelerated proteolysis in atrophying rat skeletal muscles." J Clin Invest 

100(1):197-203. 

Thanos, C. D. and J. U. Bowie. 1999. "p53 Family members p63 and p73 are SAM 

domain-containing proteins." Protein Sci 8(8):1708-1710. 

Therasse, P., S. G. Arbuck, E. A. Eisenhauer, J. Wanders, R. S. Kaplan, L. Rubinstein, 

J. Verweij, M. Van Glabbeke, A. T. van Oosterom, M. C. Christian and S. G. 

Gwyther. 2000. "New guidelines to evaluate the response to treatment in solid tumors. 

European Organization for Research and Treatment of Cancer, National Cancer 

Institute of the United States, National Cancer Institute of Canada." J Natl Cancer Inst 

92(3):205-216. 

Thomson, J. A., K. Murphy, E. Baker, G. R. Sutherland, P. G. Parsons, R. A. Sturm 

and F. Thomson. 1995. "The brn-2 gene regulates the melanocytic phenotype and 

tumorigenic potential of human melanoma cells." Oncogene 11(4):691-700. 

Topczewska, J. M., L. M. Postovit, N. V. Margaryan, A. Sam, A. R. Hess, W. W. 

Wheaton, B. J. Nickoloff, J. Topczewski and M. J. Hendrix. 2006. "Embryonic and 

tumorigenic pathways converge via Nodal signaling: role in melanoma 

aggressiveness." Nat Med 12(8):925-932. 

Trigiante, G. and X. Lu. 2006. "ASPP [corrected] and cancer." Nat Rev Cancer 

6(3):217-226. 

Trink, B., K. Okami, L. Wu, V. Sriuranpong, J. Jen and D. Sidransky. 1998. "A new 

human p53 homologue." Nat Med 4(7):747-748. 

Tron, V. A., S. Krajewski, H. Klein-Parker, G. Li, V. C. Ho and J. C. Reed. 1995. 

"Immunohistochemical analysis of Bcl-2 protein regulation in cutaneous melanoma." 

Am J Pathol 146(3):643-650. 

Truong, A. B., M. Kretz, T. W. Ridky, R. Kimmel and P. A. Khavari. 2006. "p63 

regulates proliferation and differentiation of developmentally mature keratinocytes." 

Genes Dev 20(22):3185-3197. 

Tucker, M. A., J. D. Boice, Jr. and D. A. Hoffman. 1985. "Second cancer following 

cutaneous melanoma and cancers of the brain, thyroid, connective tissue, bone, and 

eye in Connecticut, 1935-82." Natl Cancer Inst Monogr 68:161-189. 

Tucker, M. A., A. Halpern, E. A. Holly, P. Hartge, D. E. Elder, R. W. Sagebiel, D. th 

Guerry and W. H. Clark, Jr. 1997. "Clinically recognized dysplastic nevi. A central 

risk factor for cutaneous melanoma." JAMA 277(18):1439-1444. 



 
Page | 362  

 

Tuddenham, L., G. Wheeler, S. Ntounia-Fousara, J. Waters, M. K. Hajihosseini, I. 

Clark and T. Dalmay. 2006. "The cartilage specific microRNA-140 targets histone 

deacetylase 4 in mouse cells." FEBS Lett 580(17):4214-4217. 

Tuna, B., M. Unlu, G. Aslan, M. Secil and K. Yorukoglu. 2009. "Diagnostic and 

prognostic impact of p63 immunoreactivity in renal malignancies." Anal Quant Cytol 

Histol 31(2):118-122. 

Tuve, S., T. Racek, A. Niemetz, J. Schultz, M. S. Soengas and B. M. Putzer. 2006. 

"Adenovirus-mediated TA-p73beta gene transfer increases chemosensitivity of human 

malignant melanomas." Apoptosis 11(2):235-243. 

Tuve, S., S. N. Wagner, B. Schittek and B. M. Putzer. 2004. "Alterations of DeltaTA-

p 73 splice transcripts during melanoma development and progression." Int J Cancer 

108(1):162-166. 

Ugurel, S., D. Schadendorf, C. Pfohler, K. Neuber, A. Thoelke, J. Ulrich, A. 

Hauschild, K. Spieth, M. Kaatz, W. Rittgen, S. Delorme, W. Tilgen and U. Reinhold. 

2006. "In vitro drug sensitivity predicts response and survival after individualized 

sensitivity-directed chemotherapy in metastatic melanoma: a multicenter phase II trial 

of the Dermatologic Cooperative Oncology Group." Clin Cancer Res 12(18):5454-

5463. 

Urist, M. J., C. J. Di Como, M. L. Lu, E. Charytonowicz, D. Verbel, C. P. Crum, T. A. 

Ince, F. D. McKeon and C. Cordon-Cardo. 2002. "Loss of p63 expression is 

associated with tumor progression in bladder cancer." Am J Pathol 161(4):1199-1206. 

van Bokhoven, H. and F. McKeon. 2002. "Mutations in the p53 homolog p63: allele-

specific developmental syndromes in humans." Trends Mol Med 8(3):133-139. 

van Grunsven, L. A., G. Verstappen, D. Huylebroeck and K. Verschueren. 2005. 

"Smads and chromatin modulation." Cytokine Growth Factor Rev 16(4-5):495-512. 

van Kempen, L. C., J. J. van den Oord, G. N. van Muijen, U. H. Weidle, H. P. 

Bloemers and G. W. Swart. 2000. "Activated leukocyte cell adhesion 

molecule/CD166, a marker of tumor progression in primary malignant melanoma of 

the skin." Am J Pathol 156(3):769-774. 

Vance, K. W., S. Carreira, G. Brosch and C. R. Goding. 2005. "Tbx2 is overexpressed 

and plays an important role in maintaining proliferation and suppression of senescence 

in melanomas." Cancer Res 65(6):2260-2268. 

Vancoillie, G., J. Lambert and J. M. Nayaert. 1999. "Melanocyte biology and its 

implications for the clinician." Eur J Dermatol 9(3):241-251. 

Vassilev, L. T. 2007. "MDM2 inhibitors for cancer therapy." Trends Mol Med 

13(1):23-31. 

Vives, V., J. Su, S. Zhong, I. Ratnayaka, E. Slee, R. Goldin and X. Lu. 2006. "ASPP2 

is a haploinsufficient tumor suppressor that cooperates with p53 to suppress tumor 

growth." Genes Dev 20(10):1262-1267. 

Vivo, M., A. Di Costanzo, P. Fortugno, A. Pollice, V. Calabro and G. La Mantia. 

2009. "Downregulation of DeltaNp63alpha in keratinocytes by p14ARF-mediated 

SUMO-conjugation and degradation." Cell Cycle 8(21):3537-3543. 

Vogelstein, B., D. Lane and A. J. Levine. 2000. "Surfing the p53 network." Nature 

408(6810):307-310. 

Volinia, S., G. A. Calin, C. G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. 

Iorio, C. Roldo, M. Ferracin, R. L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. 

Vecchione, M. Negrini, C. C. Harris and C. M. Croce. 2006. "A microRNA 

expression signature of human solid tumors defines cancer gene targets." Proc Natl 

Acad Sci U S A 103(7):2257-2261. 



 
Page | 363  

 

Vousden, K. H. 2006. "Outcomes of p53 activation--spoilt for choice." J Cell Sci 

119(Pt 24):5015-5020. 

Vousden, K. H. and G. F. Woude. 2000. "The ins and outs of p53." Nat Cell Biol 

2(10):E178-180. 

Walerych, D., G. Kudla, M. Gutkowska, B. Wawrzynow, L. Muller, F. W. King, A. 

Helwak, J. Boros, A. Zylicz and M. Zylicz. 2004. "Hsp90 chaperones wild-type p53 

tumor suppressor protein." J Biol Chem 279(47):48836-48845. 

Walerych, D., M. B. Olszewski, M. Gutkowska, A. Helwak, M. Zylicz and A. Zylicz. 

2009. "Hsp70 molecular chaperones are required to support p53 tumor suppressor 

activity under stress conditions." Oncogene 28(48):4284-4294. 

Waster, P. K. and K. M. Ollinger. 2009. "Redox-dependent translocation of p53 to 

mitochondria or nucleus in human melanocytes after UVA- and UVB-induced 

apoptosis." J Invest Dermatol 129(7):1769-1781. 

Weiss, J., M. Heine, K. C. Arden, B. Korner, H. Pilch, R. A. Herbst and E. G. Jung. 

1995a. "Mutation and expression of TP53 in malignant melanomas." Recent Results 

Cancer Res 139:137-154. 

Weiss, J., M. Heine, B. Korner, H. Pilch and E. G. Jung. 1995b. "Expression of p53 

protein in malignant melanoma: clinicopathological and prognostic implications." Br J 

Dermatol 133(1):23-31. 

Wenig, Bruce. 2003. "p63 expression in human normal and tumor tissues." Advances 

in Anatomic Pathology. 10(2):110-111. 

Wesierska-Gadek, J., A. Bugajska-Schretter and C. Cerni. 1996. "ADP-ribosylation of 

p53 tumor suppressor protein: mutant but not wild-type p53 is modified." J Cell 

Biochem 62(1):90-101. 

Westfall, M. D., A. S. Joyner, C. E. Barbieri, M. Livingstone and J. A. Pietenpol. 

2005. "Ultraviolet radiation induces phosphorylation and ubiquitin-mediated 

degradation of DeltaNp63alpha." Cell Cycle 4(5):710-716. 

Westfall, M. D., D. J. Mays, J. C. Sniezek and J. A. Pietenpol. 2003. "The Delta Np63 

alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has 

transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived 

mutations." Mol Cell Biol 23(7):2264-2276. 

Westfall, M. D. and J. A. Pietenpol. 2004. "p63: Molecular complexity in 

development and cancer." Carcinogenesis 25(6):857-864. 

Whiteman, D. C., X. P. Zhou, M. C. Cummings, S. Pavey, N. K. Hayward and C. Eng. 

2002. "Nuclear PTEN expression and clinicopathologic features in a population-based 

series of primary cutaneous melanoma." Int J Cancer 99(1):63-67. 

Whitesell, L. and S. L. Lindquist. 2005. "HSP90 and the chaperoning of cancer." Nat 

Rev Cancer 5(10):761-772. 

Wiese, C., A. Rolletschek, G. Kania, P. Blyszczuk, K. V. Tarasov, Y. Tarasova, R. P. 

Wersto, K. R. Boheler and A. M. Wobus. 2004. "Nestin expression--a property of 

multi-lineage progenitor cells?" Cell Mol Life Sci 61(19-20):2510-2522. 

Working, International Agency for Research On Cancer. 2007. "The association of 

use of sunbeds with cutaneous melanoma and other skin cancers: A systematic 

review." Int J Cancer 120(5):1116-1122. 

Wu, G., S. Nomoto, M. O. Hoque, T. Dracheva, M. Osada, C. C. Lee, S. M. Dong, Z. 

Guo, N. Benoit, Y. Cohen, P. Rechthand, J. Califano, C. S. Moon, E. Ratovitski, J. 

Jen, D. Sidransky and B. Trink. 2003a. "DeltaNp63alpha and TAp63alpha regulate 

transcription of genes with distinct biological functions in cancer and development." 

Cancer Res 63(10):2351-2357. 



 
Page | 364  

 

Wu, H., V. Goel and F. G. Haluska. 2003b. "PTEN signaling pathways in melanoma." 

Oncogene 22(20):3113-3122. 

Wu, M., A. H. Szporn, D. Zhang, P. Wasserman, L. Gan, L. Miller and D. E. Burstein. 

2005. "Cytology applications of p63 and TTF-1 immunostaining in differential 

diagnosis of lung cancers." Diagn Cytopathol 33(4):223-227. 

Wu, S. Y. and C. M. Chiang. 2009. "Crosstalk between sumoylation and acetylation 

regulates p53-dependent chromatin transcription and DNA binding." Embo J 

28(9):1246-1259. 

Wulf, G. M., Y. C. Liou, A. Ryo, S. W. Lee and K. P. Lu. 2002. "Role of Pin1 in the 

regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in 

response to DNA damage." J Biol Chem 277(50):47976-47979. 

Wyman, K., M. B. Atkins, V. Prieto, O. Eton, D. F. McDermott, F. Hubbard, C. 

Byrnes, K. Sanders and J. A. Sosman. 2006. "Multicenter Phase II trial of high-dose 

imatinib mesylate in metastatic melanoma: significant toxicity with no clinical 

efficacy." Cancer 106(9):2005-2011. 

Xirodimas, D. P., M. K. Saville, J. C. Bourdon, R. T. Hay and D. P. Lane. 2004. 

"Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity." Cell 

118(1):83-97. 

Xu, X., A. Y. Chu, T. L. Pasha, D. E. Elder and P. J. Zhang. 2002. "Immunoprofile of 

MITF, tyrosinase, melan-A, and MAGE-1 in HMB45-negative melanomas." Am J 

Surg Pathol 26(1):82-87. 

Yamaguchi, Y., K. Takahashi, B. Z. Zmudzka, A. Kornhauser, S. A. Miller, T. 

Tadokoro, W. Berens, J. Z. Beer and V. J. Hearing. 2006. "Human skin responses to 

UV radiation: pigment in the upper epidermis protects against DNA damage in the 

lower epidermis and facilitates apoptosis." FASEB J 20(9):1486-1488. 

Yamamoto, M., H. Takahashi, K. Saitoh, T. Horikoshi and M. Takahashi. 1995. 

"Expression of the p53 protein in malignant melanomas as a prognostic indicator." 

Arch Dermatol Res 287(2):146-151. 

Yang, A., M. Kaghad, D. Caput and F. McKeon. 2002. "On the shoulders of giants: 

p63, p73 and the rise of p53." Trends Genet 18(2):90-95. 

Yang, A., M. Kaghad, Y. Wang, E. Gillett, M. D. Fleming, V. Dotsch, N. C. Andrews, 

D. Caput and F. McKeon. 1998. "p63, a p53 homolog at 3q27-29, encodes multiple 

products with transactivating, death-inducing, and dominant-negative activities." Mol 

Cell 2(3):305-316. 

Yang, A. and F. McKeon. 2000. "P63 and P73: P53 mimics, menaces and more." Nat 

Rev Mol Cell Biol 1(3):199-207. 

Yang, A., R. Schweitzer, D. Sun, M. Kaghad, N. Walker, R. T. Bronson, C. Tabin, A. 

Sharpe, D. Caput, C. Crum and F. McKeon. 1999a. "p63 is essential for regenerative 

proliferation in limb, craniofacial and epithelial development." Nature 398(6729):714-

718. 

Yang, C., W. Zhou, M. S. Jeon, D. Demydenko, Y. Harada, H. Zhou and Y. C. Liu. 

2006. "Negative regulation of the E3 ubiquitin ligase itch via Fyn-mediated tyrosine 

phosphorylation." Mol Cell 21(1):135-141. 

Yang, J. P., M. Hori, T. Sanda and T. Okamoto. 1999b. "Identification of a novel 

inhibitor of nuclear factor-kappaB, RelA-associated inhibitor." J Biol Chem 

274(22):15662-15670. 

Yang, J. and A. Richmond. 2001. "Constitutive IkappaB kinase activity correlates 

with nuclear factor-kappaB activation in human melanoma cells." Cancer Res 

61(12):4901-4909. 



 
Page | 365  

 

Yaziji, H. and A. M. Gown. 2003. "Immunohistochemical markers of melanocytic 

tumors." Int J Surg Pathol 11(1):11-15. 

Yi, R., M. N. Poy, M. Stoffel and E. Fuchs. 2008. "A skin microRNA promotes 

differentiation by repressing 'stemness'." Nature 452(7184):225-229. 

Yin, Y., C. W. Stephen, M. G. Luciani and R. Fahraeus. 2002. "p53 Stability and 

activity is regulated by Mdm2-mediated induction of alternative p53 translation 

products." Nat Cell Biol 4(6):462-467. 

Yu, H., R. McDaid, J. Lee, P. Possik, L. Li, S. M. Kumar, D. E. Elder, P. Van Belle, 

P. Gimotty, M. Guerra, R. Hammond, K. L. Nathanson, M. Dalla Palma, M. Herlyn 

and X. Xu. 2009. "The role of BRAF mutation and p53 inactivation during 

transformation of a subpopulation of primary human melanocytes." Am J Pathol 

174(6):2367-2377. 

Yu, J., L. Zhang, P. M. Hwang, K. W. Kinzler and B. Vogelstein. 2001. "PUMA 

induces the rapid apoptosis of colorectal cancer cells." Mol Cell 7(3):673-682. 

Zabierowski, S. E. and M. Herlyn. 2008. "Melanoma stem cells: the dark seed of 

melanoma." J Clin Oncol 26(17):2890-2894. 

Zacchi, P., M. Gostissa, T. Uchida, C. Salvagno, F. Avolio, S. Volinia, Z. Ronai, G. 

Blandino, C. Schneider and G. Del Sal. 2002. "The prolyl isomerase Pin1 reveals a 

mechanism to control p53 functions after genotoxic insults." Nature 419(6909):853-

857. 

Zaika, A. I., N. Slade, S. H. Erster, C. Sansome, T. W. Joseph, M. Pearl, E. Chalas and 

U. M. Moll. 2002. "DeltaNp73, a dominant-negative inhibitor of wild-type p53 and 

TAp73, is up-regulated in human tumors." J Exp Med 196(6):765-780. 

Zangen, R., E. Ratovitski and D. Sidransky. 2005. "DeltaNp63alpha levels correlate 

with clinical tumor response to cisplatin." Cell Cycle 4(10):1313-1315. 

Zeng, L. and M. M. Zhou. 2002. "Bromodomain: an acetyl-lysine binding domain." 

FEBS Lett 513(1):124-128. 

Zerp, S. F., A. van Elsas, L. T. Peltenburg and P. I. Schrier. 1999. "p53 mutations in 

human cutaneous melanoma correlate with sun exposure but are not always involved 

in melanomagenesis." Br J Cancer 79(5-6):921-926. 

Zhang, L., J. Huang, N. Yang, J. Greshock, M. S. Megraw, A. Giannakakis, S. Liang, 

T. L. Naylor, A. Barchetti, M. R. Ward, G. Yao, A. Medina, A. O'Brien-Jenkins, D. 

Katsaros, A. Hatzigeorgiou, P. A. Gimotty, B. L. Weber and G. Coukos. 2006. 

"microRNAs exhibit high frequency genomic alterations in human cancer." Proc Natl 

Acad Sci U S A 103(24):9136-9141. 

Zhang, X. D., A. Franco, K. Myers, C. Gray, T. Nguyen and P. Hersey. 1999. 

"Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-

inhibitory protein expression to TRAIL-induced apoptosis of melanoma." Cancer Res 

59(11):2747-2753. 

Zhang, X., M. Wang, C. Zhou, S. Chen and J. Wang. 2005. "The expression of iASPP 

in acute leukemias." Leuk Res 29(2):179-183. 

Zhou, X. P., O. Gimm, H. Hampel, T. Niemann, M. J. Walker and C. Eng. 2000. 

"Epigenetic PTEN silencing in malignant melanomas without PTEN mutation." Am J 

Pathol 157(4):1123-1128. 

Zhu, L., E. A. Rorke and R. L. Eckert. 2007. "DeltaNp63alpha promotes apoptosis of 

human epidermal keratinocytes." J Invest Dermatol 127(8):1980-1991. 

Zimmerman, S. W. and J. Esch. 1978. "Skin lesions treated with azathioprine and 

prednisone. Comparison of nontransplant patients and renal transplant recipients." 

Arch Intern Med 138(6):912-914. 



 
Page | 366  

 

Zuo, L., J. Weger, Q. Yang, A. M. Goldstein, M. A. Tucker, G. J. Walker, N. 

Hayward and N. C. Dracopoli. 1996. "Germline mutations in the p16INK4a binding 

domain of CDK4 in familial melanoma." Nat Genet 12(1):97-99. 

 
 

  



 
Page | 367  

 

Appendix 1: Ethical approval documentation 

 

  



 
Page | 368  

 

Appendix 2: Melanoma tissue array with normal skin tissue, 48 cores (ME481 US 

Biomax). 
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Patient 
ID 

p63 
status 

Gender Age at 
diagnosis 

Site group Breslow 
(mm) 

Clarks 
level 

Histo 
classification 

Growth 
phase 

Ulceration Mitotic Rate 
category 

Regress- 
ion 

Micro-
satellites 

1 N M 46.93 Acral 7 V ALM VGP Yes 3 No No 

4 N M 68.63 Head/Neck 2.7 IV NMM   No 3 No No 

5 N F 84.05 Trunk 6 IV NMM VGP No 1 No Yes 

9 N F 78.62 Acral 4 IV ALM VGP Yes 3 No Yes 

13 N F 36.73 Trunk 1.5   NMM   Yes   No No 

14 N F 52.25 Trunk 0.5 III SSM RGP No   No No 

16 N F 65.03 Extremities 2.3 IV SSM VGP No 3 No No 

20 N M 56.69 Extremities 3.72 IV NMM VGP No 2 No Yes 

21 N M 77.23 Extremities 8 III NMM VGP Yes 4 No Yes 

26 N M 63.76 Extremities 6 IV NMM VGP Yes 3 No No 

29 N F 86.80 Acral 3.2 III ALM VGP Yes 4 No No 

32 N F 45.13 Extremities 1.7 IV NMM VGP Yes 3 No No 

33 N F 33.08 Acral 2.9 IV ALM VGP Yes 2 No No 

34 N M 35.88 Trunk 0.7 III NMM VGP No 2 No No 

35 N F 72.02 Extremities 1 II SSM VGP No   Yes No 

36 N F 33.55 Trunk 0.31 II SSM RGP No   No No 

37 N F 56.07 Trunk 0.35 II SSM RGP No 2 No No 

39 N M 34.47 Head/Neck 10 III SSM VGP Yes 4 No Yes 

40 N F 48.31 Trunk 3.5 IV SSM VGP No   No No 

42 N F 78.46 Extremities 2 IV SSM VGP Yes 2 No No 
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2 P F 76.71 Head/Neck 4.5 IV NMM VGP No 2 No No 

3 P M 46.65 Trunk                 

6 P M 51.05 Trunk 6 III NMM VGP Yes 4 No Yes 

7 P F 69.12 Extremities 5.5 V NMM VGP Yes 1 No No 

8 P M 47.13 Trunk 5.1 IV NMM VGP Yes   No No 

10 P F 74.42 Extremities 5 IV NMM VGP No 2 No No 

11 P M 59.44 Trunk 2.6 IV NMM   No   No No 

12 P F 48.00 Extremities 2.3 IV NMM   Yes 2 No No 

15 P M 33.64 Acral 1 III ALM VGP No 3 No No 

17 P M 66.69 Trunk 5 III NMM VGP No 2 No No 

18 P M 76.51 Head/Neck 7.2 V NMM VGP No   No No 

19 P F 70.07 Trunk 4 IV NMM VGP Yes 3 No No 

22 P F 45.42 Acral 0.5 II ALM RGP No 1 No No 

23 P F 74.15 Acral 4 IV ALM VGP Yes 3 No No 

24 P F 59.37 Extremities 13.5 IV NMM VGP Yes 3 No No 

25 P F 84.02 Acral 10 IV ALM VGP Yes 3 No No 

27 P M 40.13 Extremities 4.1 III SSM VGP No 3 Yes No 

28 P F 71.59 Trunk 6.5 V NMM VGP No 3 No No 

30 P M 86.02 Head/Neck 6 V NMM VGP Yes     Yes 

31 P M 76.71 Head/Neck 2.7 IV NMM VGP Yes 3 No No 

38 P F 33.40 Extremities 0.9 II SSM RGP No 1 Yes No 

41 P F 21.87 Head/Neck 3.5 IV NMM VGP Yes   No Yes 
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43 P F 62.65 Extremities 1.5 III SSM RGP No 1 Yes No 

44 P F 56.06 Trunk 0.5 II SSM RGP No 2 No No 

 

 

Appendix 3: Demographic details of patients with primary melanoma.
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Appendix 4: Univariate and multivariate analysis of clinicopathological factors with 

time to recurrence in patients with primary tumours.  

 Univariate analysis Multivariate Analysis 

Hazard Ratio 
(95% CI) 

p-
value* 

Hazard Ratio 
(95% CI) 

p-
value* 

Age at diagnosis (years) 1.03 (0.98, 1.08) 0.23   

Gender  

Male 1    

Female 0.73 (0.16, 3.28) 0.68  

Site of Melanoma  

Acral 1    

Extremities 0.07 (0.01, 0.68) 0.02   

Head/Neck 0.23 (0.03, 2.09) 0.19   

Trunk 0.08 (0.01, 0.74) 0.03   

Breslow thickness  

0-1 mm 1    

1.01- 2 mm - -  

2.01-4 mm - -  

>4 mm - -  

Clarks Level  

I 1    

II - -  

III - -  

IV - -  

Histological 
classification 

 

ALM 1  1  

NMM 0.06 (0.01, 0.58) 0.01 0.05 (0.00, 0.46) 0.01 

SMM 0.09 (0.01, 0.82) 0.03 0.08 (0.01, 0.85) 0.04 

Growth phase  

RGP 1    

VGP 7.8e+14 (0.00,    
.) 

1  

Ulceration status  

No 1    

Yes 2.70 (0.48, 
15.10) 

0.26  

Mitotic rate  

0 1    

1-4 - -  

5-10 - -  

>11 - -  

Regression  

No 1    
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Yes 1.31 (0.15, 
11.68) 

0.81  

Microsatellites  

No 1    

Yes 1.05 (0.12, 9.00) 0.97  

P63 Status  

Negative 1  1  

Positive 2.28 (0.44, 
11.79) 

0.32 2.89 (0.49, 
16.97) 

0.24 
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Appendix 5: Univariate and multivariate analysis of clinicopathological factors with 

time to metastasis in patients with primary tumours.  

 
 
 

Univariate analysis Multivariate Analysis 

Hazard Ratio (95% 
CI) 

p-
value* 

Hazard Ratio (95% 
CI) 

p-value* 

Age at diagnosis (years) 1.02 (0.99, 1.05) 0.14 - - 

Gender  

Male 1  - - 

Female 0.75 (0.31, 1.85) 0.54 - 

Site of Melanoma  

Acral 1  - - 

Extremities 0.38 (0.11, 1.36) 0.14 - - 

Head/Neck 0.68 (0.16, 2.87) 0.6 - - 

Trunk 0.52 (0.16, 1.69) 0.28 - - 

Breslow thickness  

0-1 mm 1  - - 

1.01- 2 mm 0.00 (0.00, 0.00) . - 

2.01- 4 mm 3.76 (0.78, 18.17) 0.1 - 

>4 mm 4.05 (0.88, 18.55) 0.07 - 

Clarks Level  

II 1  - - 

III 2.33 (0.24, 22.37) 0.47 - 

IV 4.80 (0.62, 37.02) 0.13 - 

V 7.28 (0.75, 70.68) 0.09 - 

Histological classification  

ALM 1  - - 

NMM 0.72 (0.25, 2.11) 0.55 - - 

SMM 0.24 (0.05, 1.01) 0.05 - - 

Growth phase  

RGP 1  - - 

VGP 5.27 (0.70, 39.90) 0.11 - 

Ulceration status  

No 1  1  

Yes 2.99 (1.13, 7.90) 0.03 3.19 (1.20, 8.47) 0.02 

Mitotic rate  

0 1  - - 

1-4 0.63 (0.11, 3.79) 0.62 - 

5-10 2.31 (0.50, 10.64) 0.28 - 

>11 1.98 (0.28, 14.11) 0.49 - 

Regression  

No 1  - - 

Yes 0.00 (0.00, 0.00) . - 

Microsatellites  

No 1  - - 

Yes 2.29 (0.82, 6.37) 0.11 - 
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P63 Status  

Negative 1  1  

Positive 1.66 (0.66, 4.18) 0.28 1.83 (0.71, 4.69) 0.21 
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Appendix 6: Univariate and multivariate analysis of clinicopathological features and 

overall outcome in primary tumours. 

 Univariate analysis Multivariate Analysis 

  Hazard Ratio 
(95% CI) 

p-
value* 

Hazard Ratio 
(95% CI) 

p-
value* 

Age at diagnosis (years) 1.03 (1.00, 1.06) 0.06   

Gender   

     male 1    

     female 0.46 (0.19, 1.14) 0.09  

Site of Melanoma  

     Acral 1  1  

     Extremities 0.30 (0.06, 1.52) 0.15 0.20 (0.03, 1.47) 0.11 

     Head/Neck 1.87 (0.44, 7.91) 0.4 10.27 (1.31, 
80.42) 

0.03 

     Trunk 0.91 (0.24, 3.48) 0.89 4.42 (0.75, 26.14) 0.10 

Breslow thickness  

    0-1 mm 1    

     1.01 – 2mm 0.00 (0.00,    .) 1  

     2.01 – 4 mm 5.46 (0.64, 46.78) 0.12  

     >4 mm 9.91 (1.28, 76.59) 0.03  

Clarks Level     

     I 1  1  

     II 2.34 (0.24, 22.59) 0.46 2.27 (0.15, 33.91) 0.55 

     III 3.57 (0.45, 28.24) 0.23 5.39 (0.45, 65.21) 0.19 

     IV 9.41 (1.09, 80.94) 0.04 34.27 (2.06, 
568.78) 

0.01 

Histological classification 

     ALM 1    

     NMM 1.18 (0.33, 4.19) 0.8   

     SMM 0.20 (0.03, 1.24) 0.08   

Growth phase  

     RGP 1    

     VGP 4.60 (0.61, 34.94) 0.14  

Ulceration status  

     No 1    

     Yes 2.61 (0.96, 7.10) 0.06  

Mitotic rate  

     0 1    

     1-4 1.23 (0.22, 6.75) 0.81  

     5-10 2.26 (0.46, 11.04) 0.31  

     >11 3.07 (0.43, 21.96) 0.26  

Regression  

     No 1    

     Yes 0.00 (0.00,    .) 1  

Microsatellites  
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     No 1  1 0.03 

     Yes 2.51 (0.88, 7.13) 0.08 2.94 (1.14, 7.52) 

P63 Status  

     Negative 1  1 0.12 

     Positive 2.79 (0.99, 7.81) 0.05 3.07 (0.74, 12.83) 
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Appendix 7: Analysis of reported tissue-specific miRNAs dysregulated in melanoma. 

 

ID miR P value logFC 

A_25_P00010975 hsa-miR-21 0.1276 -1.5098 

A_25_P00010976 hsa-miR-21 0.1984 -1.4753 

A_25_P00012085 hsa-miR-34a 0.0003 -2.6902 

A_25_P00012086 hsa-miR-34a 0.0089 -3.9134 

A_25_P00012030 hsa-miR-92a 0.3212 0.5045 

A_25_P00012031 hsa-miR-92a 0.3329 0.5007 

A_25_P00012707 hsa-miR-92b 0.5518 -0.0407 

A_25_P00012708 hsa-miR-92b 0.4672 0.0361 

A_25_P00012709 hsa-miR-92b 0.9418 0.0044 

A_25_P00012710 hsa-miR-92b 0.4685 0.0445 

A_25_P00010163 hsa-miR-302d 0.0273 0.1097 

A_25_P00010505 hsa-miR-302c* 0.0365 0.0848 

A_25_P00010506 hsa-miR-302c* 0.0452 0.1076 

A_25_P00010618 hsa-miR-302b 0.0016 0.1478 

A_25_P00010982 hsa-miR-302a 0.0377 0.0775 

A_25_P00013492 hsa-miR-302a* 0.0042 0.1035 

A_25_P00013493 hsa-miR-302a* 0.0189 0.1112 

A_25_P00013511 hsa-miR-302b* 0.0280 0.1077 

A_25_P00013512 hsa-miR-302b* 0.0126 0.1107 

A_25_P00013513 hsa-miR-302b* 0.0220 0.0765 

A_25_P00013516 hsa-miR-302d* 0.0103 0.1061 

A_25_P00010628 hsa-miR-203 0.0318 0.1431 

A_25_P00010629 hsa-miR-203 0.3686 0.1698 

Values highlighted in green are significantly downregulated in p63-expressing 

melanoma cell lines (both isoforms) compared with p63-null. 
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Appendix 8: Flow cytometry scatter plots demonstrating analysis of buffers. Flow 

cytometry scatter plots demonstrating background noise signals following fluorescence 

activated cell sorting of A375M cells. (A) PBS buffer analysis using FACS Aria Cell Sorter. (B) 

HEPES buffer analysis using FACS Aria Cell Sorter.  Images are representative of three 

independent experiments carried out in triplicate.  
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Appendix 9: Relative change in p63 concentration in A375M cells treated with paclitaxel 

for 1.5 – 6 hrs. (A) Histogram showing relative increase in p63-Cy5 is maximal at 6 hrs 

treatment with paclitaxel in intact A375M cells. Upregulation of p63-Cy5 is maximal in both (B) 

the nuclei and (C) mitochondria at 6 hrs.  
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Appendix 10: Single fluorescence labelling of WM1158 cells fractionated. Untreated 

WM1158 cells were labelled with (A) MitoTracker Orange and (B) Hoechst only prior to 

homogenisation to confirm localisation on flow cytometry plot. Flow cytometry analysis 

demonstrates (i) size of cells and (ii) gating of subcellular fractions within scatter plots. (A) 

Hoechst labelled nuclei enabling gating for cells and nuclei and (B) MitoTracker Orange 

enabled gating for free mitochondria.   

 

 

 

 


