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Abstract

A communication network is a complex network designed to transfer information from a

source to a destination. One of the most important property in a communication network is

the existence of alternative routes between a source and destination node. The robustness

and resilience of a network are related to its path diversity (alternative routes). Describing

all the components and interactions of a large communication network is not feasible. In

this thesis we develop a new method, the deforestation algorithm, to simplify very large

networks, and we called the simplified network the skeleton network. The method is general.

It conserves the number of alternative paths between all the sources and destinations when

doing the simplification and also it takes into consideration the properties of the nodes, and

the links (capacity and direction).

When simplifying very large networks, the skeleton networks can also be large, so it is

desirable to split the skeleton network into different communities. In the thesis we introduce

a community-detection method which works fast and efficient for the skeleton networks.

Other property that can be easily extracted from the skeleton network is the cycle basis,

which can suffice in describing the cycle structure of complex network.

We have tested our algorithms on the Autonomous System (AS) level and Internet Protocol

address (IPA) level of the Internet. And we also show that deforestation algorithm can be

extended to take into consideration of traffic directions and traffic demand matrix when

simplifying medium-scale networks.

Commonly, the structure of large complex networks is characterised using statistical mea-

sures. These measures can give a good description of the network connectivity but they do

not provide a practical way to explore the interaction between the dynamical process and

network connectivity. The methods presented in this thesis are a first step to address this

practical problem.
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Chapter 1

Introduction

1.1 Research motivation and objectives

A communications network is a complex network designed to transfer information from a

source to a destination. As the information travels through the network it passes through

a large number of heterogeneous devices. Today’s Internet is a well-known example, which

is a large-scale, highly engineered, yet highly complex communications network [60]. It has

experienced an explosive development and continues to undergo significant changes over

time. In terms of size, by mid-2009, the Internet consisted of about 1.67 billion hosts or

endpoints, and more than 100,000 distinct networks, totalling hundreds of millions of routers

and links connecting the hosts to the routers and the routers to one another [64, 79]. In

the UK [63], in 2008 there were 7.5 million internet banking customers, 40% of business

transactions were on-line in 2008, and NHS and social services targeted a 50% increase

in the number of people using community equipment services (including tele-care remote

monitoring of symptoms). Thus there are substantial economic and social benefits to be

gained by improving both our understanding of structure and behaviour of the Internet and

its properties. Accordingly to the growth of network size, a substantial movement of focus in

network research was shifted away from the analysis of single small networks or properties of

individual nodes to consideration of large-scale statistical properties of networks. Therefore,

19
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the availability of computers and the data that allow us to gather from communication

networks are on a scale far larger than previously possible. This change of scale then forces

upon us a corresponding change in our analysing and modelling approach.

Companied with the network’s size increasing, the likelihood of one or more network ele-

ments failing also increases. Consequently, network reliability becomes an important issue

in the design of large-scale complex networks. Generally, the connection between two nodes

in a network is considered resilient if there are at least two independent paths between

them, so that the failure of a single path would not cause the network to be disconnected.

The number of alternative paths in the network gives an idea of the network robustness to

failure. Understanding the resilience of the network can be used to assist adaptive routing

if a failure occurs, optimise the network performance under unusual conditions, and predict

or avoid the congestion.

The aim of our research primarily concentrates on simplifying large scale network structure

while keeping the network’s resilience, characterising the large communications network

topological features and exploring the interaction between topological features and network

dynamics.

Simulation plays a vital role in studying the complex behaviour of both existing small to

medium size communications networks, and proposed future architectures. Using simulation

to study Internet–scale networks is not presently feasible [66] and is not likely that it would

be [59]. The challenge that a researcher confronts when developing or testing new Internet

services is to test a concept designed to work on networks of tens of millions of elements using

simulations of only few thousand elements. There exist some methods to simulate networks

with tens of thousands of connections. The simulators are based on parallel computing or

in some abstraction of the simulation process. For example the straw-man approach [66],

where the concept/protocol to test is first modelled in a small network. The next step is to

increase the size of the network and look for invariants in the behaviour of interest. Other

possible approach is selective abstraction [34] of the Internet elements and dynamics, such

that, the results from a computationally feasible network simulation can be extrapolated to
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Internet size networks.

1.2 Research contributions

Based on selective abstraction, we have developed new algorithms to simplify very large

networks. The simplified network has the same path diversity as the original network. Path

diversity is related to the existence of many different routes, which in turn is associated with

the robustness of the network to failures. Thus the new algorithm conserves the number of

alternative paths between all the source and destinations when simplifying. The algorithms

are general and they have also been extended to take into consideration the properties of

the nodes, the capacity and directions of links [40–43].

The work reported in this thesis is novel, and the main contributions being:

∙ A novel network simplification algorithm has been implemented in the thesis. It

conserves the number of alternative paths when simplifying and it has been done

based on graph theory (chapter 3).

∙ The connectivity of the simplified network is not unique when the algorithm starts

from different initial nodes. This could be an advantage point that we may construct

a simplified network that satisfies given network traffic constraints, and we explore

this to extend our simplification algorithm (chapter 3).

∙ Extended network simplification algorithms have been done, taking into consideration

the properties of the nodes, the capacity and direction of links. For example, all

the links of the network are weighted and a condition is imposed to simplify the

network following the importance of the links, thus the order of topology contraction

is controlled, such as the least important links are contracted first, then the more

important links, and leave the most important links till the end. This extended

algorithm also works in directed and undirected networks (chapter 5, 6 and 7 ).

∙ There are several methods to reveal the community structure in networks. The accu-
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racy of these methods depend on the special properties of the network. By studying

the properties of the simplified network we are able to choose a community-detection

algorithm that is fast and accurate. Using this method, the simplified network can be

further decomposed via its community structure (chapter 8).

∙ The simplified network consists of only cycles, the majority are short cycles, from

which the cycle basis can be extracted. The cycle basis is the set of cycles that could

fully describe the cyclical structure of the network, and this basis has a wide range

of applications. In this thesis a heuristic cycle basis algorithm has been implemented,

and possible future work using this cyclical structure is discussed (chapter 9 and 10).

1.3 Organisation of the thesis

In chapter 2 we introduce the concepts behind our approach, including topological descrip-

tion of a network, layouts of global Internet and a brief summary of challenges for modelling

the Internet.

Chapter 3 describes the algorithm used to simplify the network and an analysis of the basic

features of the simplified network is included. Later in chapter 4 we present examples of

the simplification algorithm when applying to the Internet topology.

Chapter 5 shows the simplification algorithm can be extended to take into consideration

network dynamics. This is done by guiding the order of the network simplification according

to the weights of links.

Comparing with chapter 5, chapter 6 and 7 expands the algorithm with the traffic directions

and traffic demand matrix, and shows how the estimation of traffic dynamics affect the order

of network simplification.

To summarise, from chapter 3 to chapter 7, the thesis illustrates the novel algorithm to

simplify networks by topology only, with a consideration of approximated link utilisation,

and with constraints of traffic directions and demands.
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In chapter 8, we take a further step to simplify the network by decomposing the simplified

network into communities. Chapter 9 investigates the cyclic structure of the simplified

networks.

All the work in this thesis is reviewed and concluded in chapter 10, also suggestions on how

to extend the research are presented in this chapter.



Chapter 2

Background

Our research primarily concentrates on characterising the large communications network

topological features, simplifying large network structure while keeping the network’s re-

silience and exploring the interaction between topological features and network dynamics.

We believe the way that the elements of the network are connected to each other have an

impact on the network functionality. In this chapter we introduce the basic concepts behind

our research.

The communication networks can be described where the hosts, routers and switches are

represented by nodes and physical connections between them are represented by directed

or undirected links. A node can transfer information to another node in the form of data

packets if there is a link between them. If there is no direct link between the nodes, then a

path in the network is the sequence of distinct nodes visited when transferring data packets

from one node to another. We consider networks where exists at least one path connecting

any pair of nodes of the network. The links can have a direction. In this thesis we always

consider undirected links at first; and then we would examine if the concepts, algorithms

and statistical measurements can apply to directed networks.

24
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2.1 Topological description of a network

2.1.1 Degree distribution

A network is normally described as an undirected graph 𝐺 = (𝑁,𝐿) where 𝑁 = {𝑛1, 𝑛2,

⋅ ⋅ ⋅ , 𝑛𝑖, ⋅ ⋅ ⋅ , 𝑛𝑁 , 𝑖 ∈ 𝑁} is a finite set of 𝑁 nodes and 𝐿 = {𝑙1, 𝑙2, ⋅ ⋅ ⋅ , 𝑙𝑖, ⋅ ⋅ ⋅ , 𝑙𝐿, 𝑖 ∈ 𝐿}
is a finite set of L links. That is 𝑁 is the number of nodes in the network and L is the

number of links. Two nodes are neighbours if there is a link joining them. The number of

links pointing to a node, k, is known as the degree of the node, whose distribution gives

the network connectivity. The connectivity of the nodes can be described by the adjacency

matrix. An adjacency matrix is a means of representing which nodes of a network are

adjacent to which other nodes. Specifically, the adjacency matrix of a network 𝐺 = (𝑁,𝐿)

is the 𝑁 ∗𝑁 matrix as shown below.

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑀𝑎𝑡𝑟𝑖𝑥 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑗 ⋅ ⋅ ⋅ 𝑎1𝑁

𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑗 ⋅ ⋅ ⋅ 𝑎2𝑁
...

...
...

...
...

...

𝑎𝑖1 𝑎𝑖2 ⋅ ⋅ ⋅ 𝑎𝑖𝑗 ⋅ ⋅ ⋅ 𝑎𝑖𝑁
...

...
...

...
...

...

𝑎𝑁1 𝑎𝑁2 ⋅ ⋅ ⋅ 𝑎𝑁𝑗 ⋅ ⋅ ⋅ 𝑎𝑁𝑁

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

whose entry 𝑎𝑖𝑗(𝑖 ∕=𝑗) = 1 if node 𝑛𝑖 is adjacent to node 𝑛𝑗 and 0 otherwise. For undirected

graphs 𝑎𝑖𝑗 = 𝑎𝑗𝑖. The degree 𝑘 of a node is the number of neighbours that a node has,

𝑘𝑖 =
∑

𝑗 𝑎𝑖𝑗 . The degree is the principal parameter to characterise a node. Two of the

simplest properties of a network are its maximum degree 𝑘𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑘𝑖}, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁
and its average degree 𝑘 =

∑𝑁
𝑗=1 𝑘𝑗
𝑁 .

The spread of nodes degree in the network can be characterised by the node degree dis-

tribution 𝑝(𝑘, 𝑛𝑖, 𝑁), which is the probability that certain node 𝑛𝑖 in the network with 𝑁

nodes has 𝑘 connections. A plot of node degree distribution for any given network can be
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formed by making a histogram of the nodes degree. The total degree distribution is

𝑃 (𝑘,𝑁) =
1

𝑁

(
𝑁∑
𝑖=1

𝑝(𝑘, 𝑛𝑖, 𝑁)

)
. (2.1)

From the degree distribution, it is easy to obtain another way of calculating the mean degree

for a network (average degree): 𝑘 =
∑

𝑘 𝑘𝑃 (𝑘).

Similarly, in directed networks, there are in-degree 𝑘𝑖𝑛 and out-degree 𝑘𝑜𝑢𝑡 for an indi-

vidual node, hence the network has in-degree distribution 𝑝𝑖𝑛(𝑘𝑖𝑛, 𝑛𝑖, 𝑁) and out-degree

distribution 𝑝𝑜𝑢𝑡(𝑘𝑜𝑢𝑡, 𝑛𝑖, 𝑁) [20].

The degree of a node measures the number of nearest neighbours of a node (directly con-

nected). It is a local quantity. However, the node degree distribution of the entire net-

work gives important information about the global properties of a network and can be

used to characterise different network topologies. In a regular-symmetric network, the de-

gree of every node is the same, making the degree distribution a constant value. In a

random network of the type studied by Erdős and Rónyi [21, 22], each link of the net-

work is present or absent with equal probability 𝑝, and hence the degree distribution

forms a Poisson distribution 𝑃 (𝑘) ≃ 𝑒−𝑝𝑁 (𝑝𝑁)𝑘

𝑘! with a peak at 𝑃 (𝑘). As a function of

𝑘, the Poisson distribution can be derived as a limiting case of the binomial distribution

𝑃 (𝑘) ≃ 𝑒−𝑝𝑁 (𝑝𝑁)𝑘

𝑘! = 𝑒−<𝑘><𝑘>𝑘

𝑘! (𝑁 → ∞). Real-world networks are mostly found to be

very unlike random networks in their degree distributions. [23] shows that the majority of

the nodes have few neighbours and there is a small set of nodes that have a very large num-

ber of neighbours. Those networks exhibit a power law decay in their degree distribution

𝑃 (𝑘) ≃ 𝑘−𝛾 where 𝛾 is a constant whose value is typically in the range 2 < 𝛾 < 3 for real

networks. Sometimes this distribution is also called heavy-tailed distribution. The heavy-

tailed distribution is probability distributions whose tails are not exponentially bounded,

that is, the distribution have heavier tails rather than the exponential distribution [1].

Power-law distribution, like many other distributions with heavy tails, is treated as one of

heavy-tailed distributions, which describes the same degree distribution from another point

of view. A network whose degree distribution follows a power law distribution is known
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Figure 2.1: (A) Example of a scale-free network. (B) Example of a random network.
(C) Scale-free network scales in a power-law degree distribution. (D) Random network
demonstrates a poisson degree distribution [17].

as scale-free network. This kind of decay is widely present in the technological, biological

and sociological networks. Typical examples of scale-free network and random network are

shown in figure 2.1, together with the curves of their degree distribution.

2.1.2 Degree correlations

The degree distribution gives only partial information about the network structure. Some

questions about relations between node degree have been asked like: do the high-degree

nodes in a network associate preferentially with other high-degree nodes? Or do they prefer

to attach to low-degree ones?

Assortativity and dissortativity . It has been found that for many real-world networks

the degrees of the nodes at either end of an link are not independent, but correlated with

one another, either positively or negatively [50, 57, 58]. A network in which the degrees of

adjacent nodes are positively correlated is said to show assortative mixing by degree (high-

degree nodes preferentially connect to high-degree nodes), whereas a network in which they

are negatively correlated is said to show disassortative mixing (high-degree nodes tend to

connect to low-degree nodes). Both situations are seen in the networks. It is observed that
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most social networks appear to be assortatively mixed, whereas most technological and

biological networks appear to be disassortative [50].

2.1.3 Transitivity or clustering

In many networks it is commonly found that if node 𝐴 is connected to node 𝐵, node 𝐵

connects to node 𝐶, and node 𝐴 also connects to node 𝐶. In the language of social networks,

the friend of your friend is likely also to be your friend. In terms of network topology,

transitivity means the presence of a heightened number of triangles in the network - sets

of three nodes each of which is connected to each of the others. It can be quantified by

defining a clustering coefficient 𝐶(3) thus:

𝐶(3) =
3𝑁△
𝑁3

, (2.2)

where 𝑁△ is the number of triangles in the network and 𝑁3 is the number of connected

triples. A triangle is a set of three nodes with links between each pair of nodes; a connected

triple is a set of three nodes where each node can be reached from each other (directly or

indirectly), i.e. two nodes must be adjacent to another node (the central node), shown in

figure 2.2. In effect, the clustering coefficient 𝐶(3) measures the fraction of triples that have

their third link connected such that they form a triangle. The number of triangles and

triples are given by

𝑁△ =
∑

𝑘>𝑗>𝑖

𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘, (2.3)

𝑁3 =
∑

𝑘>𝑗>𝑖

(𝑎𝑖𝑗𝑎𝑖𝑘 + 𝑎𝑗𝑖𝑎𝑗𝑘 + 𝑎𝑘𝑖𝑎𝑘𝑗), (2.4)

where the 𝑎𝑖𝑗 are the elements of the adjacency matrix and the sum is taken over all triples

of distinct nodes 𝑖, 𝑗, and 𝑘 only once.

An alternative definition of the clustering coefficient, also widely used, has been given by
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Figure 2.2: (a) A triangle. (b) A triple.

Watts and Strogatz [77], who proposed defining a local value

𝐶
(3)
𝑖 =

𝑁△(𝑖)

𝑁3(𝑖)
. (2.5)

For nodes with degree 1, for which both numerator and denominator are zero, we put

𝐶
(3)
𝑖 = 0. Then the clustering coefficient for the whole network is the average

𝐶(3) =
1

𝑛

∑
𝑖

𝐶
(3)
𝑖 . (2.6)

Eq.(2.6) calculates the mean of the ratio, rather than the ratio of the means in Eq.(2.2).

Eq.(2.6) tends to weight the contributions of low-degree nodes more heavily than using

Eq.(2.2) where such nodes have a small denominator, and hence the two equations can give

quite different results.

Newman has measured the property of clustering coefficient for several types of published

networks [52], shown in table 2 − 1. From the table, most of networks have low clustering

coefficient, except for the train routes network. This property is very important and it will

be used in the following chapter (Chapter 8).

Link clustering coefficient . The link clustering coefficient is defined in analogy with

the node clustering coefficient; it is the number of triangles to which a given link belongs,
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Network type n l 𝐶
(3)
1 𝐶

(3)
2

Internet (Autonomous System level) undirected 11× 103 32× 103 0.035 0.39
email messages directed 60× 103 86.3 × 103 0.16

email address books directed 16.9 × 103 57× 103 0.17 0.13
WWW nd.edu directed 270× 103 1, 497 × 103 0.11 0.29

peer-to-peer network undirected 880 1, 296 0.012 0.011
electronic circuits undirected 24× 103 53× 103 0.010 0.030

train routes undirected 587 19.6 × 103 0.69
power grid undirected 4, 941 6, 594 0.10 0.080

student relationships undirected 573 477 0.005 0.001
metabolic network undirected 765 3, 686 0.090 0.67
marine food web directed 135 598 0.16 0.23
neural network directed 307 2, 359 0.18 0.28

Table 2-1: Basic statistics for a number of published networks. The purpose of this table is
to compare two definition of clustering coefficient and also to show the value of clustering co-
efficient for real networks. The properties measured are: type of network graph, directed or

undirected; total number of nodes n; total number of links l ; clustering coefficient 𝐶
(3)
1 from

Eq.(2.2); and clustering coefficient 𝐶
(3)
2 from Eq.(2.6). Blank entries indicate unavailable

data. This table is cited from [52].

divided by the number of triangles that might potentially include it, given the degrees of the

adjacent nodes. More formally, for the link connecting node 𝑖 to node 𝑗, the link clustering

coefficient is

𝐶
(3)
𝑖,𝑗 =

𝑁△(𝑖, 𝑗) + 1

𝑚𝑖𝑛[(𝑘𝑖 − 1), (𝑘𝑗 − 1)]
, (2.7)

where 𝑁△(𝑖, 𝑗) is the number of triangles that share the (𝑖, 𝑗) link and 𝑚𝑖𝑛[(𝑘𝑖−1), (𝑘𝑗−1)]

is the maximal possible number of triangles that can be shared by the link.

Regardless of which definition of the clustering coefficient is used, the clustering coefficient

measures the density of triangles in a network, and how closely the nodes connect to their

neighbours.

2.1.4 Rich-Club coefficient

There exists another phenomenon in a network; a small number of nodes have large numbers

of links, called rich nodes. In some networks, these nodes are well interconnected between

themselves, forming a Rich-Club, and their connectivity tend to dominate the organisation
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of the network structure.

The connectivity between the nodes belonging to the rich-club can be characterised by the

rich-club coefficient. Nodes in the network are sorted by decreasing degree. The rank 𝑟 of

a node is its position in the list, i.e. the best-connected is ranked 𝑟 = 1, the second best-

connected node 𝑟 = 2 and so on. Rich nodes can be defined as nodes with large degrees or

small ranks. The density of connections between the 𝑟 richest nodes is quantified by the

rich-club coefficient [83]

Φ(𝑟) =
2𝐸≤𝑟

𝑟(𝑟 − 1)
, (2.8)

where 𝐸≤𝑟 is the number of links between the 𝑟 nodes and 𝑟(𝑟 − 1)/2 is the maximum

number of links that these nodes can share. If Φ(𝑟) = 0 the nodes do not share any link

at all, if Φ(𝑟) = 1 the nodes form a fully connected sub-graph, a clique. As a function of

degree, the rich-club coefficient can also be given as [15]

𝜙(𝑘) =
2𝐸≥𝑘

𝑁≥𝑘(𝑁≥𝑘 − 1)
, (2.9)

where 𝑁≥𝑘 is the number of nodes with degree greater or equal to 𝑘 and 𝐸≥𝑘 is the number

of links between the 𝑁≥𝑘 nodes. Recently there has been a considerable effort to characterise

and model the rich-club connectivity in a variety of complex networks [49, 83]. It is noticed

that two networks can have the same 𝜙(𝑘) and the same degree distribution 𝑃 (𝑘) for all 𝑘,

but different Φ(𝑟) [49]. In the network, having a well connected rich-club means that there

is a large number of alternative routing paths between the rich-club members(their average

path length is very small, 1 or 2 hops). Hence the rich-club acts as a super traffic hub and

provides a large selection of short-cuts. The connectivity between rich nodes can be crucial

for network properties, such as network routing efficiency, redundancy and robustness.
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2.1.5 Betweenness centrality based on shortest path

In a network, a node can transfer information to another node in the form of data packets

if there is a link between them. If there is no direct link between the nodes, then a path in

the network is the sequence of distinct nodes visited when transferring data packets from

one node to another. We consider networks where exists at least one path connecting any

pair of nodes of the network, especially in cases where data packet flow primarily follows

the shortest available path. The journey time for a packet to go through two shortest-paths

with the same length can be very different, due to different traffic patterns and the usage

of the routes (paths). Packets can be delayed on the path as they can be accumulated in

the nodes’ buffers (queues). Therefore, in the network, there are nodes that are much more

busier or highly utilised to transfer packets, while other nodes spend most of the time idle.

From the network’s topological properties, it is possible to approximate the traffic load on

the nodes and the bandwidth utilisation of the links. The betweenness centrality measures

the “importance” of the nodes and can be used to approximate the loads on the nodes.

Given a source 𝑠, and a destination 𝑑, the number of shortest-path between them is 𝑔𝑠,𝑑.

The number of shortest-path that contains the node 𝜈 is 𝑔𝑠,𝑑(𝜈). Then the proportion of

shortest-paths, from 𝑠 to 𝑑, which contain node 𝜈 is 𝑝𝑠,𝑑(𝜈) =
𝑔𝑠,𝑑(𝜈)
𝑔𝑠,𝑑

. The proportion of

shortest-paths and shortest-path length are related by ℓ𝑠,𝑑 =
∑

𝜈∈𝑉 𝑝𝑠,𝑑(𝜈) − 1, where 𝑉

is the set of nodes that contains the nodes visited by the shortest-paths from 𝑠 to 𝑑. The

definition of betweenness centrality of a node 𝐵(𝜈) given by [26]

𝐵(𝜈) =
∑

𝑠 ∕=𝑑∈𝑁
𝑝𝑠,𝑑(𝜈) =

∑
𝑠 ∕=𝑑∈𝑁

𝑔𝑠,𝑑(𝜈)

𝑔𝑠,𝑑
, (2.10)

where N is the set of nodes in the network. A fast algorithm to calculate the betweenness

centrality in large-scale networks has been developed by Brandes [9].

Link betweenness centrality . Similar to the node betweenness centrality Eq.(2.10), the

link betweenness centrality is calculated as the proportion of shortest paths that travel

through an specific link.



Chapter 2. Background 33

1 1

1/3 2/3

2/3 1/3

source destination

Figure 2.3: Traffic splitting for source s to destination d according to Equal Cost Multi-path
(ECMP) rule.

Figure 2.3 shows a simple network, which has three shortest paths between source s and

destination d accordingly to Equal Cost Multi-path (ECMP)1 rule. The traffic between

nodes (𝑠, 𝑑) is considered to equally split and distribute among these three paths. We

denote this ratio of traffic splitting as the factor 𝛼 = 1/𝑔𝑠,𝑑.

The nodes or links with high betweenness centrality are relatively more important in the

network as they are visited by more routes. It is expected that the removal of these nodes

will worsen the network performance. In the worst situation the failure of a node with high

betweenness centrality could cause severe congestion.

Other centrality measures. Conventionally, the betweenness centrality assumes that

traffic traverses the network following shortest paths, however there are other centrality

measurements that can be used instead of the shortest-path betweenness centrality to de-

scribe network traffic properties [25, 51]. Table 2− 2 gives a summary of these measures.

2.1.6 Path diversity and cycles

In the networks, a packet would be re-routed if the traffic flow is congested or blocked on

the pre-selected shortest-path. If nodes are removed from a network, the typical length

of these shortest paths will increase, and ultimately node pairs will become disconnected

1Equal-Cost Multi-Path (ECMP) is a forwarding mechanism for routing packets along multiple paths of
equal cost with the goal to achieve almost equally distributed link load sharing. This significantly impacts
a router’s next-hop (path) decision, and multipath routing can be used in conjunction with most routing
protocols.
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Ways of transition Network dynamics Centrality measurement

traffic property centrality
shortest path packet traffic node betweenness

link betweenness

paths Internet closeness
name server degree

email closeness
Trail broadcast degree

virus

Table 2-2: Other centrality measurements

Figure 2.4: An example of path diversity topology. In the network there are more than
one alternative path between any pair of paths. If a node, a link or a part of network is
congested or broken, the rest of network can still be reach one another. Thus the number
of alternative paths gives an idea of the network robustness to failure.

and communications between them through the network will become impossible. Hence the

number of alternative paths in the network gives an idea of the network resilience to failure.

Path diversity describes the number of disjoint paths between pair of nodes. The simplest

and smallest path diversity unit is a cycle, as it provides two path choices to go from any

node in the cycle to any other node in the same cycle. The number of alternative paths

is strongly related to the existence of cycles. Routing can exploit path diversity to achieve

network resilience to congestion and link or node failures. Figure 2.4 shows the alternative

paths between each pair of nodes in the network.

Cycles. Cycle structure of graphs is an old topic that has occupied electrical engineers for

nearly a century [38]. To obtain more information about the cycle structure of a network
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recall that the collection of all cycles form a vector space [32, 44], called the cycle space. In

this space, a cycle is a vector indexed by links, where the 𝑖 entry of the cycle vector 𝑍𝑚 is

one if the link belongs to the cycle 𝑍𝑚 and zero otherwise. A cycle basis of the graph 𝐺

is defined as a basis for the cycle space. Any cycle 𝑍 can be expressed as
∑𝑀(𝐺)

𝑖=1 𝑍𝑖 where

𝑍1, 𝑍2, 𝑍3, . . . , 𝑍𝑀(𝐺) form the cycle basis. The number of cycles in the cycle basis, also

called cyclomatic number [44], is

𝑀(𝐺) = 𝑁 − 𝐿+ 𝐾, (2.11)

where 𝑁 is the number of nodes, 𝐿 is the number of links and 𝐾 is the number of connected

component2 in the networks. In here we consider only connected networks, that is 𝐾 = 1.

As can be seen in the example of figure 2.4 , the network totally has 11 nodes and 14 links.

Then the cyclomatic number, which is the number of cycles in the graph, is quantitied as

follows: 𝑀 = 𝑁 − 𝐿+ 𝐾 = 14− 11 + 1 = 4.

Intuitively, there are 4 cycles in the graph, which is the same as the result obtained from

the calculation.

2.1.7 Community structure

It is widely assumed that most real-world networks show community structure [29, 53],

the division of network nodes into communities; within the community the connections are

dense while the connections are sparse between communities, see figure 2.5. The ability to

find and analyse such communities can provide invaluable help in visualising the structure of

networks and understanding network’s dynamical evolution. It is common experienced that

people divide themselves into communities along lines of interest, occupation, age and so

forth. In the case of the World Wide Web, for instance, pages related to the same subject

are typically organised into communities, so that the identification of these communities

can help the task of seeking for information. Similarly, in the case of the communications

2In graph theory, a connected component of an graph is a subgraph in which any two nodes are
connected to each other by paths.
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Figure 2.5: The nodes in many networks fall naturally into communities, sets of nodes
(shaded) within which there are many links, with only a smaller number of links between
nodes of different communities [55].

network, information about communities formed by routers geographically close to one

another can be considered in order to improve the flow of data.

Despite the importance of the concept of community, there is no consensus about its defini-

tion. An intuitive definition was proposed by Radicchi et. al. [61] based on the comparison

of the link density among nodes. Communities are defined in a strong and a weak sense.

In a strong sense, a subnetwork is a community if all of its nodes have more connections

between them than with the rest of the network. In a weak sense, on the other hand, a

subnetwork is a community if the sum of all node degrees inside the subnetwork is larger

than outside it. One of the consequences is that every union of communities is also a com-

munity. This comparative definition is intuitive, and to some extent, describes the search

for communities in large complex networks. Several other possible definitions are described

in [75].

A wide variety of heuristic algorithms for revealing the community structure have been de-

veloped and it is worth reviewing them here. Basically they are classified into agglomerative

methods, divisive methods, spectral methods, methods based on optimising the modularity

measure [17, 19], which are briefly reviewed as follows.
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Figure 2.6: A hierarchical tree or dendrogram illustrating the type of output generated by
the community algorithms. The circles at bottom represent the individual nodes of the
network and the dots at each level represent subnetwork, which can be considered as a
community. The dot at the top of the tree represents the whole network.

Agglomerative methods. The traditional method for extracting community structure

from a network is cluster analysis [75], sometimes also called hierarchical clustering. For

every pair (𝑖, 𝑗) of nodes in the network, one calculates a weight 𝑤𝑖,𝑗, which measures how

closely connected the nodes are. Starting from the set of all nodes and no links, links are

iteratively added between pairs of nodes in order of decreasing weight. In this way nodes

are grouped into larger and larger communities. Alternatively, the entire progression of the

algorithm from the empty graph to complete graph can be represented in the form of a

tree or dendrogram such as that shown in figure 2.6. In the figure, as we move up the tree,

the node join together to form larger and larger communities, as indicated by the lines,

until we reach the top, where all are joined together in a single community. Alternatively

the dendrogram depicts an initially connected network splitting into smaller and smaller

communities as we go from top to bottom. A cross section of the tree at any level. such

as that indicated by the dotted line, will give the communities at that level. The vertical

height of the split points in the tree are indicatively only of the order in which the splits (or

joins) take place, although it is possible to construct more elaborate dendrograms in which
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these heights contain other information [56].

Divisive methods. By looking at the problem from a different perspective, we can start

with the network as a whole. Intuitively, the simplest way to partition a network is to cut

some links until the network is no longer connected, which is the method called divisive

method, and in which we are interested in our research. This method attempts to find

the least similar connected pairs of nodes, and then remove the links between them. By

doing this repeatedly, we divided the network into smaller and smaller components and

again we can stop the process at any stage, and take the components at that stage to be the

network communities. Again, the process can be represented as a dendrogram depicting the

successive splits of the network into smaller and smaller communities (also see figure 2.6).

And the crucial point in a divisive algorithm is the selection of the links to be cut.

Spectral Methods. Spectral methods are based on the analysis of the eigenvectors of

matrices derived from the network [70]. These methods have been discussed in a recent

survey by Newman [54]. The measurement is related to the eigenvalues of the adjacency

matrix minus a probability matrix. The adjacency matrix describe the connectivity between

nodes in the network, which is already defined at the beginning of this chapter.

𝑎𝑖𝑗 =

⎧⎨
⎩

1 if there is a link joining nodes i, j,

0 otherwise.

The probability matrix is the expected number of links between nodes 𝑖 and 𝑗, which is

calculated as

𝑝𝑖𝑗 =
𝑘𝑖𝑘𝑗
2𝐿

,

where 𝑘𝑖, 𝑘𝑗 is the degree of the nodes 𝑖 and 𝑗, and 𝐿 is the number of links of the net-

works. In order to split the network into communities, the largest eigenvalue is determined.

According to the signs of the elements of the eigenvector, the network is divided into two

parts, that is, nodes with positive elements are assigned to a community and nodes with

negative elements to anther.
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Methods based on optimising the modularity measure. An approach that has be-

come widely accepted was proposed by Newman and Girvan in [53], called modularity.

Modularity is a benefit function used in the analysis of networks such as communication

networks or social networks. It quantifies the quality of a division of a network into com-

munities. Good divisions, which have high values of the modularity, are those in which

there are dense internal connections between the nodes within communities but only sparse

connections between different communities. The most common use of the modularity is as

a basis for optimization methods for detecting community structure in networks. Consider

a network composed of 𝑁 nodes connected by 𝐿 links and let 𝑎𝑖𝑗 be an element of the

adjacency matrix of the network, which gives the number of links between nodes 𝑖 and 𝑗.

And suppose a candidate division of network communities is given. The modularity of this

division is defined to be the fraction of the links that fall within the given communities

minus the expected such fraction if links were distributed at random. Commonly, the ran-

domization of the links is done so as to preserve the degree of each nodes. In this case,

the expected number of links falling between two nodes 𝑖 and 𝑗 following randomization

is 𝑘𝑖 ∗ 𝑘𝑗/2𝐿, and hence the actual minus expected number of links between the same two

nodes is 𝑎𝑖𝑗 − 𝑘𝑖 ∗ 𝑘𝑗/2𝐿. Summing over all pairs of nodes in the same community, the

modularity, denoted Q, is then given by

𝑄 =
1

2𝐿

∑
𝑖𝑗

[
𝑎𝑖𝑗 − 𝑘𝑖 ∗ 𝑘𝑗

2𝐿

]
𝛿(𝑐𝑖, 𝑐𝑗), (2.12)

where 𝑐𝑖 is the community to which node 𝑖 belongs and 𝛿(𝑐𝑖, 𝑐𝑗) is the Kronecker delta3

symbol. The modularity can be either positive or negative and the value of the modularity

lies in the range [−1, 1]. The positive values indicate the possible presence of community

structure. Thus this method has the ability not only to divide networks effectively, but also

stops dividing when no good division exists.

Above we review the concepts of the network topological features and their conventional

3In mathematics, the Kronecker delta or Kronecker’s delta, named after Leopold Kronecker (1823-1891),
is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. So, for example,
𝛿(1, 2) = 0, but 𝛿(3, 3)=1.
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measurements behind our research. As we are studying the large-scale communications

network, i.e. the Internet, it is invaluable to explore the orgnisation of the Internet, its

network properties and the challenges for modelling it.

2.2 Layouts of the global Internet

2.2.1 AS level network

For management purposes, the Internet is divided into subnetworks. Each subnetwork

adheres to common routing conventions, usually the Interior Gateway Protocol (IGP). The

management of a subnetwork and its routers fall under one administrative entity called

an Autonomous System (AS). Each AS is a collection of routers and links under a single

administrative domain, and the Internet can be considered in an abstract space where the

relevant property is the connectivity between ASs. At this level we tend to disregard many

physical properties of the network like the geographical location of the ASs, which could be

in different continents, or the direction of the links and their capacities.

A coarser view of the Internet can be obtained by aggregating IP address or router into

their corresponding ASs. In this way CAIDA [10] is providing a visualisation of the AS

core by converting each IP address in the AS responsible for its routing. The mapping

is made by using the Border Gateway Protocol (BGP) routing tables collected by the

Oregon route-views project by CAIDA. BGP tables contain the AS paths to destination

IP addresses. This data aggregation allows AS connectivity maps to be reconstructed and

provides logical layouts that can be used to study the role of specific ASs in routing traffic

across the Internet.

Oregon route-views is one of the very few publicly available data sets that allows a dynamical

analysis of the time evolution of the Internet, hence it is at the core of many studies of the

Internet’s AS connectivity structure. With the aim of establishing the completeness of the

AS level topology, Qian et. al. [13] supplemented and compared these data set with BGP
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summary information from a number of different sources. This remarkable work provides

an extended AS graph (𝐴𝑆+) of the Internet, which contain 20% − 50% more physical

connections, but only 2% more ASs. This finding demonstrates that the graphs obtained

from Oregon route-views is not complete, and misses a noticeable fraction of the Internet

connectivity. Therefore, the extended AS+ map is an essential benchmark from which to

test the stability and consistency of statistical measurement of the AS graph.

2.2.2 Router level network

A basic physical description of the Internet should include the geographical position of the

nodes and links, the capacity of the links and the direction that the Internet traffic follows.

At the router level the nodes and links of the network represent physical entities. The nodes

describe the routers and switches that manage the passage of traffic through the network.

The links represent the different physical connections between nodes, e.g. optical fibres,

coppers, wires etc.. The idea is therefore to find the geographical location of each router

or AS, place the node at that very position, and draw lines between physically connected

nodes. This strategy sounds simple but is unfortunately very difficult, due to business and

security reasons, many ISPs do not want the exact positions of their machines to be publicly

available. In many cases it is difficult to exact even an approximate location from the host

name, and many routers just have an IP address. Therefore, it s not possible to have an

accurate description of the Internet at the route level.

2.2.3 IP address level

Instead, the Internet can be interpreted at the Internet Protocol address (IPA) level. The

strategies are to establish a correspondence between IP addresses, domain names, and ASs

using the whois4 database, which provides the registered headquarters’ address of ISPs.

4Whois is a query/response protocol that is widely used for querying databases in order to determine the
registrant or assignee of Internet resources, such as a domain name, an IP address block, or an autonomous
system number. It is publicly available to anyone who chooses to check domain names using the Whois
search tool. Whois services are typically communicated using the Transmission Control Protocol (TCP).
Servers listen to requests on the well-known port number 43.
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2.3 Features of the global Internet

Here we shall focus on some metrics which provide a basic characterisation of the Internet.

2.3.1 Small-world properties

The average shortest-path length among nodes found in the Internet is very small if com-

pared with the size of the Internet. This observation was reported in early analysis of

Internet data [23], and it has been confirmed for all recent data sets. This small separation

among Internet routers and ASs is a striking example of the so-called small-world effect.

This concept has been popularized in the sociological context, where it is sometimes referred

as “six degree of separation” [47], later it has been observed in many natural networks [76].

Statistical result reveal that the shortest distance between two random nodes is short, and

the average shortest path of the Internet is about 14 hops [13].

2.3.2 Heavy tailed distribution

Recently the study of the Internet’s AS topology reported that the node degree distribution

of snapshots of the measured AS-connectivity graph follows a power law [23]. This finding

implies that, whereas most of the ASs have a node degree of one or two, the probability

of encountering a few ASs that are highly connected is significant. This data-driven obser-

vation is in sharp contrast to the traditionally theoretical topology models [12, 78], which

yield node degree distributions that decay exponentially fast, essentially ruling out the oc-

currence of high-degree node and giving high probability to “typical” node degrees on the

order of the average node degree of the graph. In contrast, no such preferred or “typical”

node degree can be identified for power-law node degree distribution and, because of this

absence of a characteristic scale, the resulting structures are termed scale-free networks.
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2.3.3 Rich-club phenomenon

The Internet ASs are very well connected between each other. The statistical result shows

the top 1% rich ASs have 32% of the maximum possible number of links, and are connected

preferentially to each other. The number of links between the top 5% rich ASs is significantly

larger than the numbers of links connecting the rich ASs to other ASs with smaller degree

[83].

In [49], the researchers show that two networks can have the same degree distribution

and same small-world property, but different rich-club coefficient. Therefore the rich-club

coefficient is very important network property in the network modelling. An Internet model

without rich-club phenomenon may under-estimate the efficiency and flexibility of the traffic

routing in the AS graph.

As we study the simplification of the large-scale communication networks, among those net-

work properties shown above, some properties are very important and they are kept during

the simplification, some properties may be not very important so that they could be sacri-

ficed, and some properties that studied in the simplification may have changes to reveal the

underlying network characteristics. For example, in the communication networks, passing

the information from a source to a destination all the time is important, therefore, the re-

silience of networks is interested by our research and retained in the network simplification.

Whereas the average shortest path is always reduced after the simplification because the

network size is reduce and the distance between any pair of node may be shorter. This

parameter (the average shortest path) is already a small value comparing to its size for the

original network, so it does not make much difference if it is reduced after the simplification,

so that this parameter could be ignored or sacrificed in the research. (For further details,

refer to Chapter 4.)
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2.4 Challenges of the IP networks modelling

Besides the Internet’s features shown above, many simulations and analysis are widely used

as an essential tool to explore other metrics of the Internet. However there are several key

factors that make the Internet exceedingly hard to characterize and thus to simulate.

First , it is the Internet’s size and continued growth. The Internet is growing exponentially

and its size has already increased by five orders of magnitude since its birth. State of the art

simulations can only accurately simulate relatively small networks, around 0.001% of the size

of the Internet. An extremely conservative estimate [66] of Internet behaviour calculated

an average of 2.9 × 1011 events per second (assuming a network with 1.1 𝑡𝑖𝑚𝑒𝑠108 hosts,

with one router for every 100 hosts). The sheer size of the resources needed to simulate

such a large network is beyond existing simulations tools (software and hardware).

Secondly , the Internet is heterogeneous. The Internet’s great success is to unify and to

seamlessly interoperate diverse networking technologies, which have administered by vastly

different policies. While conceptually, the Internet’s study uses a unified set of protocols

etc, in reality, each protocol (likewise traffic or bandwidth) has been implemented by many

different communities and the mix of different applications are used at different sites, often

with significantly different features. For example, the bandwidth via different types of

links used in the network span a very large range. Some are slow modems, capable of

moving only hundreds of bytes per second, while others are state-of-the-art fibre optic

links with bandwidths millions of times faster. Some traverse copper or glass wires, while

others increasingly, are radio- or infrared-based and hence wireless with much different

loss characteristics and sometimes complex link layers. Thus, the specifics of traffic types,

bandwidth, and protocols become another challenge to tackle.

Thirdly , the Internet is a self-organising system, whose properties cannot be traced back

to any blueprint or chart. It evolves and drastically changes over time according to evolu-

tionary principles dictated by the interplay between cooperation (the network has to work

efficiently) and competition (providers wish to earn money). So that routers and links are
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added by competing entities according to local economic and technical constraints, leading

to a very intricate physical structure. In a complex network, form and functionality are

closely related. Therefore, an accurate topological description – the specifics of how the

individual nodes in the network are connected (directly or indirectly) with each other, and

the properties of the links that foster the interconnection is very important. Since the Inter-

net’s topology is constantly changing and not all of the Internet traffic carriers are willing

to provide fully topological information, there is agreement in the research community on

which properties of the network topological models should be based, or how to test their

accuracy. Consequently, the Internet structure is difficult to characterize.

To summarise, modelling the large-scale communication networks behaviour is an immensely

challenging undertaking because of its sheer size, complex structure and great heterogene-

ity. The topology of the Internet may be not very complex, but employing various routing

protocols/policies within or outside the Internet Autonomous System is the very compli-

cated. The combination of all of these factors result in a general lack of understanding about

the large-scale topological structure and performance properties of the Internet. This poor

knowledge of the Internet results in no tools being available to evaluate and forecast growth

trends and performance problems. For these reasons, in recent years, many research groups

have started to deploy technologies and infrastructures in order to obtain a more global

picture of the Internet.

Besides the simulation challenges, network reliability has recently become an important

issue in the design of large-scale complex networks. That is because the likelihood of one

or more network elements failing constantly increases along with the growth of Internet.

In the network, path diversity is given by the number of cycles, and is strongly related to

the resilience and robustness of the network. Thus, our research primarily concentrates on

simplifying large networks to a size that can be modelled, while keeping the network’s path

diversity. This supports the studying of the Internet’s topological characteristics and the

interactions between the topology and dynamics in the abstract network.
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2.5 The OSI Model

The Internet can also be interpreted as the Open System Interconnection Reference Model

(OSI Reference Model or OSI Model), which is an abstract description for layered com-

munications and computer network protocol design. It was developed as part of the Open

Systems Interconnection (OSI) initiative [80]. In its most basic form, it divides network

architecture into seven layers which, from top to bottom, are the Application, Presentation,

Session, Transport, Network, Data Link, and Physical Layers. It is therefore often referred

to as the OSI Seven Layer Model, see figure 2.7.

A layer is a collection of conceptually similar functions that provide services to the layer

above it and receives service from the layer below it. For example, a layer that provides

error-free communications across a network provides the path needed by applications above

it, while it calls the next lower layer to send and receive packets that make up the contents

of the path. Conceptually within one layer two individuals are connected by a horizontal

protocol connection on that layer. The function of each layer can be found in [80].

In previous section, we introduce the Internet can be interpreted at three different granular-

ity levels: the AS level, the IP-Address level and the router level. They are corresponding

to lower layers of the OSI model: network layer, Data link layer and physical layer. These

three layer are related, i.e. layer 3 is mapped to layer 2 and layer 2 is mapped to layer

1. Although they have relations, they represent different levels of the network connectivity

and could have high degree of independence. The network layer is the logical representation

of the Internet, the data link layer is traced following by a data packet through a series

of IP addresses, and the physical layer reflects the geographical information of network

connectivity. Our novel algorithm is general. It can work for all these three layers and

simplifies the network at the each layer. Therefore the network simplification at different

levels exhibit different information of the network connectivity. An example of the Internet

simplification at two granularity level, the AS level and the IP-Address level, are shown in

Chapter 4, and we will do the further discussion in that chapter.
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Figure 2.7: Description of the OSI seven layer model [48].

2.6 Summary

The global Internet is a prime example of a large-scale network. As there is a strong inter-

action between the network’s topology and its functionality, it is invaluable to investigate

the interesting features arising along with the growth of Internet. Due to its sheer size, com-

plex structure and great heterogeneity, modelling the large-scale communication networks

behaviour is an immensely challenging undertaking. Network robustness and resilience re-

cently have become important issues in the design of large-scale complex networks and they

are related to its path diversity (alternative routes), thus our research primarily concen-

trates on simplifying large network structures, while keeping the network’s resilience, and

also characterising the topological features in their abstract network structure.
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Topology Simplification

3.1 Introduction

In this chapter we are going to develop the techniques to simplify the network’s topology.

First, we introduce a new technique which could simplify large-scale telecommunication

networks. This algorithm simplifies networks by conserving the number of alternative paths,

whilst preserving network routing properties. Afterwards, we review some related network

simplification algorithms.

3.2 Complexity, resilience and simplification

As the number of elements (nodes and links) in a network increases, the likelihood of

failure also increases. Consequently, network reliability becomes an important issue in the

design of large-scale complex networks. Network resilience is the ability to resist failure

and the adaptivity of routing. Resilience has been studied extensively in communications

networks [2, 11, 14]. Generally, the connection between two nodes in a network is considered

resilient if there are at least two independent paths between them, so that the failure of

a single path would not cause the network to be disconnected. The number of alternative

48
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Figure 3.1: Comparison between (a) the original topology and (b) the simplified topology
of the network.

paths in the network gives an idea of the network robustness to failure. In the context of

communications networks, the multipath structure of a network is used for a number of

purposes, such as; increasing fault-tolerance and enhancing reliability, distributing traffic,

bandwidth aggregation, and improvement in QoS metrics such as delay.

3.3 Conserving alternative routes

We postulate that a fundamental property for resilience is the number of alternative paths,

known as path diversity. Without this property there are no routing decisions to be made

and adaptivity in routing becomes irrelevant. For example, a tree is a graph where all the

nodes are connected and there is only one path between any pair of nodes; that is, there

are no alternative routes between two nodes in a tree [37]. A routing decision on a network

whose topology is a tree is unique and can be computed trivially [37].

In a network, it is possible to find a subset of the nodes which are all connected and form

a tree. If this subset of nodes are grouped together, and represented by a “big” node, the

network would be simplified and maintain the same number of alternative paths as the
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original network. A simple example is in figure 3.1. The nodes in the network can be

clustered into three groups, namely 𝐴 = {1, 2, 3, 4}, 𝐵 = {6, 12} and 𝐶 = {5, 7, 8, 9, 10, 11}.
Each cluster consists of a tree, so there is only one route between any pair of nodes belong

to the same cluster, i.e. in the cluster 𝐶 there is one and only one path between node 5 and

node 11. However, the path between the nodes which belong to different clusters may not

be unique, and all the alternative routes are kept, such as routes from node 3 to node 7.

Figure 3.1(b) shows the contracted network which retains the same number of alternative

routes between the clusters and it is more intuitive to see the alternative routes.

3.4 Deforestation

The reduction from the original network to a smaller network is done by node contraction.

A set of nodes are contracted to a single node if they do not reduce the number of alternative

paths in the contracted network. We call the nodes that contain the set of contracted nodes,

super-nodes. Figure 3.2 shows an example of node contraction. The nodes inside a super-

node forms a tree, and the super-node and two adjacent nodes forms a triangle, i.e. the

smallest unit of path diversity.

3.4.1 The procedure

We refer to the procedure of contracting all subsets of nodes in the network as deforestation.

The deforestation algorithm is the depth-first search (DFS) algorithm [37] and is described

as follows:

1. Start from any node.

2. Choose one of its neighbours (go one level down in the search of trees).

3. If there is another neighbour; do they form a triangle?

∙ Yes:



Chapter 3. Topology Simplification 51

Figure 3.2: Contraction of a set of nodes. The group of nodes inside the dotted line on
the upper graph are contracted to a “big” single node at the bottom, because they do not
introduce multiple paths when contracted and they form a tree. The “big” node and its two
adjacent nodes form the smallest path diversity unit, a triangle. We call the “big” node,
the super-node. The nodes contained in a super-node form a tree. In the figure, it is not
possible to include more nodes in the super-nodes as this would result in the introduction
of double links between the nodes or super-nodes.

– If there are more neighbours choose another one. Go to 3.

– If there are no more neighbours go up one level in the depth–search. Go to

2.

– If there are no more neighbours and the depth–search is finished then all the

nodes belonging to one super–node have been obtained.
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∙ No: Group the node and its neighbour by giving them the same name (super–

node). Go to 2.

The procedure is also shown in the flow chart, see figure 3.3 on the next page.

The algorithm runs recursively. Nodes in trees, along with their corresponding links are

collected into super-nodes. We call the contracted network the skeleton network.

3.4.2 Implementation of the deforestation algorithm

The implementation of the deforestation algorithm uses the representation of the graph as

a linked list (see figure 3.4) [37]. Each node has a pointer to its neighbours. If a set of nodes

are grouped into a super–node, a new node is created with the linked list to its neighbours.

Notice that in the linked list, a super–node can contain a pointer to itself.

The algorithm is recursive (it is possible to implement the algorithm using a LIFO (Last

In First Out stack for expansion) based on the depth-first search. The maximum depth

searched by the algorithm depends on the number of neighbouring nodes and if the inclusion

of a node in the list means we have a triangle in the skeleton network.

The pseudo code of the algorithms are the following. Algorithm 1 checks if any three

neighbouring nodes form a triangle or not. More intuitively, we use mother, daughter,

granddaughter as nodes in the algorithms to represent the triangular relationship. Algo-

rithm 2 describes the procedure of contraction. It starts with the discovery of one of the

trees in the original graph. The nodes that belong to that tree are collected in a temporary

list (referred as 𝐿). The collection of nodes ends when the algorithm runs out of nodes, or

when the inclusion of a new node creates a cycle (i.e. a triangle) in the nodes collected in the

temporary list. And algorithm 3 give the general procedure of the deforestation algorithm.

Algorithm complexity. As the deforestation algorithm is based on the DFS algorithm,

the total time to perform the deforestation is 𝑂(𝑛 + 𝑙), where n is the number of nodes

and l is the number of links. For an arbitrary node a, its neighbours and the neighbours of
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If more neighbours? 
NoYes

Choose any neighbour node C

Check if there is a triangle 
among node A, B and C 

Group node A and B 

Yes

Yes

No

No

Choose one of its 
neighbours, say node B 

If  more B’s neighbours 
( nodeA, nodeB)

If more unvisited node in 
the network? 

Stop
Yes

No

Start from a visited 
node in the network, 
say node A 

Figure 3.3: The flow chart for the procedure of the deforestation algorithm.
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𝑛𝑎

𝑛𝑏 𝑛𝑐 𝑛𝑑

𝑛𝑐

𝑛𝑠 𝑛𝑤

(a)

𝑁𝐴

𝑛𝑏 𝑁𝐴 𝑁𝐵

𝑁𝐴

𝑛𝑠 𝑛𝑤

(b)

Figure 3.4: The network is represented as a linked list of nodes. (a) Node 𝑛𝑎 has a pointer
to a list containing its neighbours, 𝑛𝑏, 𝑛𝑐 and 𝑛𝑑. The two nodes 𝑛𝑐 connected by the dot
line are actually the same nodes, which means node 𝑛𝑐 has another two neighbours 𝑛𝑠 and
𝑛𝑤, besides node 𝑛𝑎. (b) A super-node (𝑁𝐴) is represented with a similar linked list but
the nodes belonging to the super-node have the same name. For example, comparing with
figure 3.4(a), node 𝑛𝑎 and 𝑛𝑐 are grouped into the super-node 𝑁𝐴 in figure 3.4(b), so that
node 𝑛𝑠 and 𝑛𝑤 are also the neighbours of the super-node 𝑁𝐴. The node 𝑛𝑑 is grouped into
the super-node 𝑁𝐵 , so that it is represented by the name 𝑁𝐵.

Algorithm 1 Triangle(𝑚,𝑑)

Require: the mother node 𝑚, the daughter node 𝑑 and a global list of daughters 𝐿
𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝑝𝑚 {check the daughters}
if pointer is equal to pointer original daughter then
𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑛𝑑 ← 𝑝𝑚 + 1 {pointer to new daughter 𝑛𝑛𝑑 }

end if
while there is a daughter in 𝐿 do

if the new daughter 𝑛𝑑 and the original daughter 𝑑 share a link then
RETURN TRUE {they form a triangle}

end if
end while
return FALSE {there is no triangle}

the neighbour are added to a LIFO stack to verify if there is a triangular relationship. The

number of comparisons to check if there is a triangular relationship depends on the number

of the first and second neighbours of node a, which is related to the degree of nodes. The

algorithm is efficient for sparse networks. The worst case is when the network is a tree, in

this case, each node should verify the triangle with its neighbours, which takes 2 ∗ l steps.
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Algorithm 2 Contraction(𝑛, 𝑝)

Require: mother node 𝑛, pointer to daughters 𝑝 and a global list 𝐿
𝐿← 𝑛𝑚 {append mother node to temporary list}
𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝑝𝑑 {pointer to daughter node}
if any more daughters then

while there is the daughter in 𝐿 do
𝑝𝑜𝑖𝑛𝑡𝑒𝑟← 𝑝𝑑 + 1{pointer to next daughter}

end while
if there is a Triangle(mother, daughter, grandaughter) then

while there is the daughter in 𝐿 do
𝑝𝑜𝑖𝑛𝑡𝑒𝑟← 𝑝𝑑 + 1

end while
else
𝐿← 𝑛𝑑 {append daughter to the list}
Contraction(𝑛𝑑, 𝑝𝑑)

end if
else

return {no more daughters or a triangle}
end if

Algorithm 3 Deforestation(𝐺)

Require: the network 𝐺
Choose a starting node
while There is an unvisited node do
𝑛𝑜𝑑𝑒← 𝑛 {the unvisited node.}
𝑝𝑜𝑖𝑛𝑡𝑒𝑟← 𝑝 {get the position of the unvisited node in the linked list of nodes}
Contraction(n, p)

end while
return FALSE {All the nodes have been visited.}

Estimate the size of skeleton networks. To obtain an estimate of the number of nodes

and links in the skeleton network, prior to the contraction, we assume that the skeleton

network consists only of triangles, that the network can be embedded in a torus which is

tessellated with these triangles. With these assumptions the number of links will be three

times the number of nodes, that is 𝐿 ≤ 3𝑁 . From the definition of the cyclomatic number

𝑀(𝐺), we know 𝑀(𝐺) = 𝐿−𝑁 + 1 (see chapter 2). Therefore, the number of nodes 𝑁 in
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the skeleton network is bound by

𝑀(𝐺) = 𝐿−𝑁 + 1

≤ 3𝑁 −𝑁 + 1

≤ 2𝑁 + 1

𝑁 ≥ (𝑀(𝐺) − 1)/2. (3.1)

3.4.3 An example

Figure 3.5 shows an example of the deforestation algorithm. The original network is shown

at the top. The nodes belonging to the super-nodes are represented in different colours

in the original network (middle), and the skeleton network (bottom). Each colour (except

white) represents a different super-node, while the white nodes are retained from the original

network. The skeleton network has the same cyclic structure as the original network. In

the figure the size of a super-node is proportional to the number of nodes contained inside

the super-node. The more nodes contracted, the bigger the super-node is.

We also tested the deforestation algorithm using the AS-Internet graph and IPA-Internet

graph. The results will be presented in chapter 4.

3.5 Basic features of the skeleton network

From the previous example, we conclude that in the skeleton network the number of nodes

and links of the skeleton network are reduced. The nodes inside a super-node form a tree,

i.e. there are no alternative routes (no routing decision needs to be made) in the nodes

contained in a super-node. The nodes of the skeleton network are a mixture of super-nodes

and original nodes.

The skeleton network consists of only cycles, the majority short cycles, i.e. triangles. The
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Figure 3.5: The deforestation algorithm simplifies a network, which originally has 50 nodes
and 59 links to a network of 11 nodes and 20 links. The first graph at the top is the original
network topology. The one in the middle shows how the deforestation groups the nodes
into super-nodes. Each colour except white represents a different super-node, i.e. purple,
green, pink, yellow. The white nodes are nodes retained from the original network. The
graph at the bottom is skeleton network, which are the simplified representations of original
network. It is reduced to 11 nodes and 20 links.
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triangle is the simplest diversity unit. Therefore the skeleton network keeps the same path

diversity as the original network. From the figure, it is easily to notice that the diameter 1

of skeleton network is smaller than the original network. That is, the network diameter is

reduced.

Super–nodes can be considered as communities defined by the condition that there is only

one path between any two members of the community. Hence the nodes inside the super–

nodes can be visualised as hierarchies if depicted in a dendrogram.

In terms of degree of network size, the deforestation algorithm works more efficiently in

sparse networks or networks with low clustering coefficient.

3.5.1 Uniqueness of the Topological Representation

One interesting question is if the connectivity of the skeleton networks is unique, that is, if

two skeleton networks obtained by contraction using different initial nodes have the same

connectivity. Two graphs that have the same number of nodes and are connected in the

same way are called isomorphic [62, 65], see appendix A for more details. There are several

ways to find out if two graphs are isomorphic, for example a necessary condition will be that

the two graphs have the same number of nodes and the same degree distribution. However,

in our case, it is very simple to show that the skeleton networks obtained from different

initial nodes are not isomorphic. Figure 3.6 shows that the connectivity of the skeleton

networks is not unique when the deforestation started from different initial nodes. The

property that the skeleton network is not unique can work to our advantage so that we may

construct a skeleton network that satisfies given network traffic constraints, and we explore

this using extended deforestation algorithm that will be introduced in chapter 5.

1The diameter of a network is the longest shortest-path in this network.
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Figure 3.6: Deforestation of a network using different starting points. The skeleton networks
(right) are not isomorphic.

3.6 Visualization

There exist some algorithms for the visualisation of large networks of 10000 nodes [35],

however for very large networks, the visualisation is still an intractable problem. The

deforestation algorithm could also be considered as a way of reducing the complexity of the

graph layout problem, which can be done by grouping the nodes belonging to the super–

nodes together when drawing the graph. Figure 3.7 shows the network of Figure 3.5 where

the nodes belonging to the super-nodes are plotted near each other. The layout of the

graph can be done using a force-direct method [33, 74]. The basic idea of the method is

to represent the network as a graph of electric charges and springs. The charges (nodes)
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Figure 3.7: Graph of the network of figure 3.4 where the nodes belonging to the same
super-node (labelled by color) are drawn near one another. This graph clearly shows how
the nodes belonging to different super-nodes interact with each other.

repel each other while the springs (links) attract the charges. For each node, attractive and

repulsive forces are evaluated with respect to the other nodes in the network. The positions

of the nodes are changed according to the forces acting upon them until the network settles

into a minimum-energy state. The graph layout is given by this minimum-energy state. In

this procedure, strongly connected nodes appear close to each other, while weakly connected

nodes are far apart. In this method the nodes are represented as repelling charges and the

links as springs. The method finds the position of the nodes in space which minimises the

total energy of the system. The method produces visually pleasing graphs.

3.7 Relationship with previous work

Large-scale networks containing hundreds of thousands of nodes are difficult to study. For

example, in the visualisation of large networks, displaying all nodes and links provides no
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real benefits to understanding the network’s connectivity. The density and complexity of the

network overwhelms standard computer displays due to their limited resolution. Network

simplification provides a way of making large network comprehensible, without removing the

relevant structure of the network, so that modelling and research studies can be conducted

on such network simplification, and then approaches and results could be extrapolated to

Internet size networks. With the aim of making large-scale network simulation feasible

and also reducing their complexity for visualization purpose, several methods have been

proposed.

3.7.1 Simplification using Spanning-Trees

An algorithm widely used in telecommunications networks is the Minimum Spanning Trees

(MST), which generates a simple tree to span (reach out to) all the nodes of the network.

The MST algorithm can be considered as a way to simplify the network as all the other

possible paths not contained in the spanning tree are ignored. The MST algorithm reduce

the number of links used by the network, however the total number of nodes does not change

at all.

Our simplification algorithm is also looking at “trees” of the network but in a reverse way.

Instead of ignoring possible shortest-paths between each pair of nodes, all the alternative

routes are kept in the network simplification. That’s because in the traditional network

routing, only single path is allowed to deliver information and alternative paths are consid-

ered to decrease the probability of blocking. However nowadays Internet applications and

online services require high-bandwidth and best QoS (Quality of Service) for end-to-end de-

livery. And hence multipath routing is increasing in importance, i.e. for example for video

streaming. Multipath routing exploits the physical network resources by utilising multiple

alternative paths between a source-destination pair. This can yield a variety of benefits

such as fault tolerance, increasing bandwidth or improve security.
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3.7.2 Visual simplification by the k-core decomposition algorithm

Some related work has been proposed primarily on visualising the structure of complex

networks. To the best of our knowledge, the algorithms presented by Baur et. al. [8] and

Alvarez-Hamelin et. al. [4] are the only methods that are directly targeted to the study

of large communications networks, i.e. the AS-Internet map. The algorithms presented

by these authors are based on the k-core decomposition algorithm [7, 71], which consists

in identifying particular subsets of the graph, called k-cores. These cores are obtained by

recursively removing all the nodes of degree smaller than k, until the degree of all remaining

nodes is larger than or equal to k. This algorithm is used as a visualisation tool for very large

sparse networks, and it is easy to discover that larger values of “coreness” clearly correspond

to nodes with larger degree and more central position in the network’s structure. Comparing

to our methods, we can not only preserve the core of network during the simplification but

also keep the connectivity of the network.

3.7.3 Simplification via community algorithms

Simplification may also be accomplished through the use of community decomposition al-

gorithms. Girvan and Newman [29] defined one clustering-based algorithm to visualise the

community structure of networks. The simplified network obtained by the new simplifi-

cation algorithm introduced in this chapter, just has a right property for applying such

clustering-based algorithm. So that we can make use of this method to analyse and under-

stand the community structure of the simplified network and do further reduction on it.

We will fully discuss this approach in chapter 8.

3.8 Conclusion

In terms of network size, the deforestation algorithm simplifies the network graph efficiently

by clustering the trees into super-nodes. The resulting skeleton network conserves the same
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path diversity as the original network. However the deforestation algorithm does not give

a unique simplification of the network. We could take advantage of this variability of

the skeleton network to select a skeleton network which satisfies some traffic constraints

(chapter 5). Moreover, the grouping of nodes into the super–nodes are quite beneficial for

the network visualisation.



Chapter 4

Deforestation of Real Networks

In this chapter we provide specific examples in which the deforestation algorithm is applied

to the Internet at two different granularity levels. More precisely, we consider the Internet

at the AS (Autonomous System) level and IPA (Internet Protocol Address) level.

4.1 Data sets of real networks

As introduced in the chapter 2, the Internet can be described at the AS level, at the

router level and at the IPA level. For management purposes the Internet is divided into

subnetworks, which are considered as an entity called an Autonomous System or AS. At the

AS level the Internet can be considered in an abstract space where the relevant property

is the connectivity between ASs. At the router level the nodes and links of the network

represent physical entities. The nodes represent the routers and switches, and the links

represent the different physical connections between nodes. Measuring the connectivity

at the router level is a difficult and unresolved problem. Instead, the strategies are to

establish a correspondence between IP addresses, domain names, and ASs using the whois

database, which provides the connectivity of the registered headquarter’s Internet Protocol

(IP) interfaces, which is at the IPA level.

64
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Here we consider two data sets describing the connectivity of the Internet: the AS level

and the IPA level, referred as the AS-Internet and the IPA-Internet. Both the AS network

data and IPA network data that we used are obtained from CAIDA1 [10]. The AS-Internet

is composed of approximately 11, 000 nodes and 23, 000 links. For the IPA-Internet, it is

named as the macroscopic Internet topology data kit (ITDK) with the reference number of

“𝑖𝑡𝑑𝑘0304” and it was collected between April 21st and May 8th, 2003. The IPA-Internet

network consists of around 200, 000 nodes and 600, 000 links.

4.2 Simplifying the AS-Internet network

Firstly, we review some basic statistical description of the Internet which was discussed in

chapter 2.

The Internet has small-world properties, that is the average shortest path length among

nodes is very small, normally 12 to 14. It has a heavy-tailed degree distribution so that

the node degree distribution follows a power law decay, in which the high-degree nodes are

preferred for connection by the rest of nodes and links. It has a rich-club phenomenon, that

is, the high-degree nodes, also called “rich nodes”, are very well connected to one another,

which form the core of the Internet.

4.2.1 The size of skeleton networks

Applying the deforestation algorithm to the AS-Internet, figure 4.1 shows the distribution of

the number of nodes for the AS-skeleton network when the contraction is started at different

nodes. The distribution is well approximated with a Gaussian distribution. Table 4 − 1

lists three typical reduced size of skeleton networks for AS-Internet: the minimum size, the

most occurrence and the maximum size of the skeleton network. The contraction produces

skeleton networks in a narrow range of sizes, so that we can take the most frequent solution

as a good reduction of the original AS-Internet network. In this case the skeleton network

1www.caida.org
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Figure 4.1: (a) Probability density of the number of nodes in the skeleton networks. (b)
The length of shortest-path distribution for the AS-Internet and the AS-skeleton networks.

Original Skeleton Network
minimum most occurrence maximum

Nodes 11, 174 5, 223 5, 257 5, 292
Links 23, 409 17, 458 17, 492 17, 527

Table 4-1: Three typical reduced sizes of the skeleton network for AS-Internet are listed
here: the minimum size, the most occurrence and the maximum size of the AS-skeleton
network.

has approximately 50% fewer nodes and 36% fewer links than the original network. Also

in figure 4.1, we show the skeleton network have the smaller diameter than the original

network. In this case, the AS-network’s diameter is reduced from 10 hops to 6 hops.

From Eq.(3.1) we obtain that the number of nodes of the skeleton network is around 6117

nodes. This result is slightly different from the network size obtained from the experiments,

which is around 5250 nodes. In mathematics, the approximation is always a nondetermin-

istic polynomial time (NP) hard problem, so that this result shows that Eq.(3.1) could give

a reasonable approximation to the size of the skeleton network.

4.2.2 The correlations between the AS-Internet and AS-skeleton

Cyclomatic number. Besides figure 4.1(𝑎), we also plot the probability density of the

number of links in the skeleton network. The density of links has the same shape (Gaussian

distribution) as the density of nodes. That because the statistics are conditioned by the
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cyclomatic number (introduced in Chapter 2):

𝑀 = 𝐿−𝑁 + 1

= 23409 − 11174 + 1 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)

= 17492 − 5257 + 1 (𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛)

= 12236.

The deforestation algorithm contracts the trees. The networks different number of alterna-

tive paths are related to the number of cycles. As the cyclomatic number of the original

network and skeleton network are the same, the cyclical structure of the AS-skeleton net-

work is the same as the original AS network.

Degree distribution. Figure 4.2(𝑎) shows the degree distribution for the AS–Internet

and its skeleton network both decay in similar fashion. This illustrates that the AS-skeleton

network exhibits a statistical invariance with respect of the contracted trees. This is because

for the AS-Internet, its skeleton network inherits the characteristics of its core. The AS

nodes with highest degrees are well connected with each other, they tend to form the core

of the network [83]. In the skeleton network, these highest degree nodes belong to different

super–nodes. The links between these super–nodes are the same as the core of the AS

network, so the skeleton network has the same core as the original network.

Statistics of super–nodes. The number of nodes inside the super–nodes also scale as a

power law, see figure 4.2(𝑏), that is there are many super–nodes that contain few nodes while

there are some very large super–nodes. The reason for the existence of large super–nodes

is because in the AS–network the nodes with high degree connect to many nodes of low

degree, forming a star–like connectivity. Hence all these low-degree nodes are contracted

into one super–node.

In the network we cannot assume that the importance of a node is simply related to its



Chapter 4. Deforestation of Real Networks 68

10− 5

10− 4

10− 3

10− 2

10− 1

100

100 101 102 103 104

de
gr
ee

di
st
irb

ut
io
n

degree

AS Internet

(a)

10− 3

10− 2

10− 1

100

100 101 102 103

pr
ob

ab
ili
ty

de
ns
ity

number of nodes in the trees

AS Internet

(b)

100

101

102

103

104

100 101 102 103

de
gr
ee

of
su
pe

r-
no

de

max degree of node inside super-node

AS Internet

(c)

Figure 4.2: (a) Degree distribution for the AS-network (blue) and its skeleton network
(red). The other graphs show the properties of the trees contained in the super–nodes. (b)
Probability density of the number of nodes in a super–node. (c) Correlation between the
maximum degree of a node inside the super–node and the super–node’s degree. The green
lines in figure (b) and (c) show the expected distributions which follow the power-law.

degree. The low-degree node may be an intermediate node, and has the same importance

as the high-degree node that it connects to. Imagine that a low-degree node between two

high-degree nodes acts as a bridge to transmit the traffic between them. If the low-degree

node is broken down, the distance between the high-degree nodes should be considerably

increased, or even worse that the network would be split into two parts. Deforestation

algorithm collects high-degree node and its directly connected low-degree nodes into the

same super-node, and may treat them as an integrated node because of the possible same

importance for them in the network.

The distribution of the number of nodes in the super–nodes hints to a sort of global self-

similarity2 in the network structure of the Internet. This could have implications when

modeling the dynamics of the network [79].

Figure 4.2(𝑐) shows that the degree of the super–node and the node with maximal degree

contained in the super–node are correlated, which implies that there is a strong correlation

between the original network and the skeleton network. This correlation is due to the

interconnectivity of the high degree nodes.

2In mathematics, a self-similar object is exactly or approximately similar to a part of itself.
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Triangles in the skeleton networks. In chapter 3, we expect that the skeleton network

consists of cycles only, the majority are triangles. After the simplification, the average

transitivity, here measured by the average link clustering coefficient, has increased from

0.89 for the AS-Internet to 1.29 for the AS-skeleton network. We counted that 11, 516

independent triangles in the skeleton network and 12, 236 cycles totally. The number of

triangles comprises 94% percentage of number of cycles, thus the majority of cycles in the

skeleton AS-Internet are triangles.

The statistical distribution of cycles has recently been acknowledged as particular by im-

portant for defining not only the topology of the networks, but also the dynamics of the

system (i.e. network traffic) [5, 50]. In addition to that, Bagrow et. al. in [6] reveals that

short cycle detection would help the identification of communities in complex networks.

Hence the skeleton network that consists of only short cycles has many applications for the

AS-Internet network, and we will discuss it in chapter 9.

The rich-club connectivity. The rich-club coefficient for AS-Internet and AS-skeleton

network are similar. The rich-nodes are tightly connected, so that the deforestation algo-

rithm cannot simplify them. These rich nodes are the core tier of the network structure,

acting as super traffic hubs and providing a large selection of short-cuts for routing. Both

networks (AS-Internet and AS-skeleton) have nodes with very large degrees, i.e. the max-

imum degree of the skeleton graph is 5, 333. Removing one of these nodes, the network

would break into several unconnected components. For example, the maximum degree of

the skeleton network is 5, 333. Removing this node and its links, the new cyclomatic num-

ber becomes 12, 236 − (5, 333 − 1) = 6, 902, which has a reduction of 56% in the number

of cycles. In brief, it is very important for the AS-skeleton to conserve the rich-nodes of

the AS-Internet, as in the AS-Internet the rich nodes are fundamental for the existence of

alternative paths.
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Original Skeleton

nodes links nodes links
190,914 607,610 97,859 514,555

Table 4-2: The number of nodes and links for the IPA network, and its typical size of
IPA-skeleton network.
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Figure 4.3: (a) The degree distribution of the IPA–network (blue, lower) and its skeleton
network (red, top). (b) Probability density of the number of nodes in a super–node. And
the green line is the expected line which follows the power-law distribution.(c) Rich–club
coefficient for the IPA–network (blue, lower) and its skeleton network (red, top), which
shows rich nodes in the skeleton network are more tightly connected than the original
network.

4.3 Simplifying the IPA-Internet network

We also applied the deforestation algorithm to the IPA-Internet.

4.3.1 The reduction of IPA-skeleton network

Table 4− 2 shows the typical reduction of the skeleton networks for the IPA-Internet. The

IPA-skeleton network has approximately 50% less nodes than the original network. The

decay of the degree distribution of the IPA–network and its skeleton behave like power-law,

see figure 4.3(𝑎). Similar as the AS-Skeleton, the number of nodes in the super-nodes also

scale as a power-law (figure 4.3(𝑏)), that is there are many super-nodes that contain few

nodes, and there are some very large super-nodes.
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4.3.2 The rich-club coefficient

Compared to the AS-Internet the high degree nodes in the IPA–network share very few con-

nections. In chapter 2, we introduced the density of connections between the nodes with de-

gree greater than 𝑘, is measured by the rich–club coefficient [83] 𝜙(𝑘) = 2𝐸≥𝑘/(𝑁≥𝑘(𝑁≥𝑘−
1)) where 𝐸≥𝑘 is the number of links between the nodes with degree higher than 𝑘 and

𝑁≥𝑘 is the number of nodes with degree higher than 𝑘. Figure 4.3(𝑐) shows the density of

connections for the IPA-Internet and its skeleton network. For the IPA-Internet the high

degree nodes are sparsely connected in contrast with its skeleton network which are tightly

connected.

This suggest that the rich nodes in the IPA Internet do not form a single core. We confirm

this suggestion in chapter 8 when we evaluate the community structure of the IPA network.

4.4 The measurement of algorithm

We run our algorithms in a 16 core computer cluster with 48GB of RAM and 2GHz Wood-

crest processors, and it took the deforestation algorithm less than one minute to simplify

the AS graph, and approximately 10 minutes to simplify the IPA level network graph.

4.5 Conclusion

For the AS-Internet and IPA-Internet the deforestation algorithm generates a skeleton net-

work which has approximately half the number of nodes of the original network. The

cyclomatic number is retained, and hence the number of alternative path are conserved.

The majority of cycles are triangles, up to 94% for AS-Internet. The distribution of nodes

inside the super-nodes, the correlation between the degree of a super-node and the max-

imum degree of node contracted in that super-node scale as a power-law. This shows a

strong correlation between the original network and the skeleton network. The rich-club
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connectivity in the AS-Internet exhibits very high for both original network and skeleton

network, which means the very rich nodes in the AS-Internet are very tightly connected

and they cannot simplify more during the reduction. These rich nodes may be a set of

high hierarchical node and exist like a single core to act as a huge hub in the ”middle”

of the Internet. However unlike the AS-Internet, the rich-club connectivity for IPA net-

work changes after the reduction. The IPA-skeleton is more compact than its original IPA

network. From the properties of the IPA-skeleton network it seems that in this case the

network does not have a single core. The comparison between the statistical properties of

the original network and its skeleton can reveal important features, like the existence of a

core.



Chapter 5

Simplification with Traffic

Approximation

As the connectivity of the skeleton network is not unique, this allows us to include other

properties of the network when doing the contraction, in particular properties like capacity

of the nodes and links. With this purpose, we are going to impose the conditions that

we visit the network by considering the “importance” of links, where this “importance” is

related to the usage of the links. An approximate measure of this “importance” can be

obtained by link betweenness centrality, which has been introduced in Chapter 2 [26].

5.1 Estimation of traffic properties using betweenness cen-

trality

Before showing the extended deforestation algorithm with link betweenness centrality, we

would like to introduce how the network connectivity influences the dynamics of traffic

flow and how to measure the traffic using network properties, i.e. betweenness central-

ity. A theoretical analysis for estimating the critical point for traffic transmission in the

communications networks is presented as follow.

73
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In a packet network, i.e. the Internet, the traffic is queued on all the nodes that it visits

except for the destination node. To consider this situation we modify the betweenness

centrality to

𝐵(𝑣) =
∑
𝑠∈𝑁

∑
𝑑∕=𝑠∈𝑁,𝑑∕=𝑣

𝑝𝑠,𝑑(𝑣). (5.1)

If the packets on the network are distributed evenly through all the shortest paths then the

normalise betweenness

�̂�(𝑣) =
𝐵(𝑣)∑
𝑖∈𝑁 𝐵(𝑖)

(5.2)

gives the proportion of usage of node 𝑣.

Link traffic

The link betweenness centrality 𝐵(𝑙) gives an estimation of the link load. If 𝐵(𝑙) can

represent bits/second, packets/second or bandwidth and 𝐵𝑚𝑎𝑥(𝑙) is defined as the maximum

load that link can carry, the 𝐵(𝑙)/𝐵𝑚𝑎𝑥(𝑙) is an approximation to the utilization of the link.

Node traffic

The node betweenness centrality 𝐵(𝑣) gives an estimate of the average traffic arriving at the

node (traffic load). In this case, it is more useful to estimate the average size of the queues

that the total amount of traffic the node can transmit (network load).

Mean Field Approximation to the network load

The critical load in terms of the betweenness centrality can be obtained using Little’s

law[39]. Little’s law is a flow conservation law which can be stated that, in a steady state,

the number of delivered packets (𝑃𝑘𝑡) is equal to the number of generated packets [27], or

𝑑𝑃𝑘𝑡(𝑡)

𝑑 𝑡
= Λ𝑁 − 𝑃𝑘𝑡(𝑡)

𝜏(𝑡)
, (5.3)

where Λ is the average rate of packets generated per unit of time, 𝜏(𝑡) is the average time

that a packet spends in the system, and 𝑃𝑘𝑡(𝑡)/𝜏 (𝑡) is the number of packets delivered per

unit of time. Little’s law does not depends on the arrival distribution of packets to the
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queue, the service time distribution of the queues, the number of queues in the system or

upon the queuing discipline within the system. The law holds only when a steady state

exist, that is below the critical load Λ𝑐. If the load is low and the delay 𝜏 (𝑡) is approximated

using a constant delay 𝜏 , the queues on the nodes tend to be empty and the average delay

time is the average shortest path ℓ̄, that is 𝜏 ≈ ℓ̄. For higher loads the transit time can be

approximated by the average shortest path plus the average time that a packet spends on

the queues plus the service time (time in the system)

𝜏 =
1

𝑁

𝑁∑
𝑖=1

𝑇𝑖, (5.4)

where 𝑇𝑖 is the time spent in queue 𝑖, shortest-path plus the service time of the server tending

that queue. If the network is not congested from the steady state solution 𝑑𝑃𝑘𝑡(𝑡)/𝑑𝑡 = 0

gives

𝑃𝑘𝑡 = Λ𝑁𝜏 = Λ

𝑁∑
𝑖=1

𝑇𝑖. (5.5)

To evaluate 𝑃𝑘𝑡 in terms of the betweenness centrality we consider that the queues are all

M/M/1 queues [18] with average arrivals 𝜆𝑖, service rate 𝜇𝑖 and traffic intensity 𝜌𝑖 = 𝜆𝑖/𝜇𝑖

then 𝑇𝑖 = 1/((1 − 𝜌𝑖)𝜇𝑖). Notice that the betweenness centrality and the average shortest

path can be related by
𝑁∑
𝑖=1

𝐵(𝑖) = 𝑁(𝑁 − 1)ℓ̄, (5.6)

Thus the average number of packets that arrive to node 𝑖 is [82]

𝜆𝑖 = Λ𝑁ℓ̄�̂�(𝑖) =
Λ𝐵(𝑖)

𝑁 − 1
(5.7)

where Λ𝑁 is the number of packets generated by unit of time by the whole network, ℓ̄ is

the average shortest path of the network to account for the average number of packets that

were produced in the past and they are still in transit. �̂�(𝑖) is the proportion of all the
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packets in transit that pass through the node 𝑖. The total number of packets on the network

𝑃𝑘𝑡 =

𝑁∑
𝑖=1

Λ(𝑁 − 1)

𝜇𝑖(𝑁 − 1)− Λ𝐵(𝑖)
, (5.8)

The Onset of Congestion

For high loads the majority of the packets of the network are on the busiest queue. If 𝑚

labels the busiest queue then 𝑃𝑘𝑡 ≈ �̄�𝑚, at the congestion point 𝑃𝑘𝑡→∞ and the critical

load is

Λ𝑐 =
𝜇𝑚(𝑁 − 1)

𝐵(𝑚)
, (5.9)

which is the same expression obtained by Zhao et al.[82]. From Eq.(5.9), we know that the

bigger the betweenness centrality is, the smaller the onset of congestion load. That means

a node or a link with high betweenness would easily cause traffic congestion itself.

5.2 Deforestation extension

The extension of deforestation algorithm to include the link betweenness centrality can

be easily take into consideration. The new procedure is to weight links by evaluating the

betweenness centrality before the contraction. The contraction of nodes can follow the order

of increasing importance of links (or decreasing importance of links). Thus the extended

deforestation algorithm has two parameters, the initial node to start the contraction and a

condition based on the flow. This condition will determine how the nodes are visited, hence

how the contraction is done. First we contract the nodes which connecting links have a

small flow. After no more contractions can be made, the flow-bound is increased, and the

network is contracted again, and so on. In this way, we simplify the networks considering

not only the network connectivity (topology) but also the approximate to the dynamics of

the network (traffic).

The pseudo codes for the extended deforestation algorithm are shown below:
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Algorithm 4 Deforestation(G)

Require: the network 𝐺 = (𝑁,𝐿)
BetweenCentrality(void)
find the minimum and maximum value in centrality[], i.e. 𝐵𝑚𝑎𝑥, 𝐵𝑚𝑖𝑛

𝑔𝑎𝑝 = (𝐵𝑚𝑎𝑥 −𝐵𝑚𝑖𝑛)/𝑁
set 𝑏𝑜𝑢𝑛𝑑 = 𝐵𝑚𝑖𝑛 + 𝑔𝑎𝑝
Choose a starting node
while There is an unvisited node or the flow-bound beyond the maximum value of link
betweenness do
𝑛𝑜𝑑𝑒← 𝑛 {the unvisited node.}
𝑝𝑜𝑖𝑛𝑡𝑒𝑟← 𝑝 {get the position of the unvisited node in the linked list of nodes}
Contraction(n, p)
𝑏𝑜𝑢𝑛𝑑+ = 𝑔𝑎𝑝

end while
return FALSE {All the nodes have been visited.}

Algorithm 5 BetweenCentrality(void)

𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦[]← 0.0
𝑙𝑖𝑛𝑘𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦[]← 0.0
𝑓𝑙𝑜𝑦𝑑(𝑛𝑢𝑚𝑏𝑒𝑟𝑁𝑜𝑑𝑒𝑠) {calculate all the shortest path using floyd algorithm}
for 𝑎 ∈ 1, ⋅ ⋅ ⋅ , 𝑠𝑜𝑢𝑟𝑐𝑒 do

for 𝑏 ∈ 1, ⋅ ⋅ ⋅ , 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 do
searchTreeRoute(𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑠, 𝑠, 𝑑)
for 𝑘 ∈ 𝑁 do
𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦[𝑘]+ = 𝑟𝑜𝑢𝑡𝑒𝑠𝑈𝑠𝑒𝑑/𝑛𝑢𝑚𝑏𝑒𝑟𝑅𝑜𝑢𝑡𝑒𝑠

end for
for 𝑘 ∈ 𝐿 do
𝑙𝑖𝑛𝑘𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦[𝑘]+ = 𝑙𝑖𝑛𝑘𝑠𝑈𝑠𝑒𝑑/𝑛𝑢𝑚𝑏𝑒𝑟𝑅𝑜𝑢𝑡𝑒𝑠

end for
end for

end for

The algorithm of searchTreeRoute describes the procedures of discovering the number of

shortest paths if given a source 𝑠 and a destination 𝑑, and keep the track of links on each

shortest path, accounting for caculating the link betweenness centrality.

The extended algorithm is slow for large networks because of the calculation of link between-

ness centrality. However recently Brandes [9] has introduced a very efficient algorithm to

evaluate the betweenness centrality.
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Algorithm 6 searchTreeRoute(𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑣, 𝑠, 𝑑)

Require: source 𝑠, destination 𝑑, the search starting node 𝑣, the length of shortest path
between (𝑠, 𝑑) + 1 𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡[]← 𝑠, 𝑑 {stack of the route between (𝑠, 𝑑)}
𝑟𝑜𝑢𝑡𝑒𝑠𝑈𝑠𝑒𝑑[𝑣]← 0
𝑙𝑖𝑛𝑘𝑠𝑈𝑠𝑒𝑑← 0
𝑛𝑢𝑚𝑏𝑒𝑟𝑅𝑜𝑢𝑡𝑒𝑠← 0
𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝑣 + 1 {pointer to the node next to the 𝑠}
𝑛𝑒𝑤𝑉 ← 𝑝𝑜𝑖𝑛𝑡𝑒𝑟
while there are more nodes between the source 𝑠 and destination 𝑑 and 𝑛𝑒𝑤𝑉 exists do

if the node 𝑛𝑒𝑤𝑉 is already in the 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡 then
if the node 𝑛𝑒𝑤𝑉 is equals to the destination 𝑑 and length of the 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡 equals
to 𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ then
𝑛𝑢𝑚𝑏𝑒𝑟𝑅𝑜𝑢𝑡𝑒𝑠+ + {found one route}
for 𝑖 ∈ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡 do

if length of 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡 ∕= 𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ then
𝑟𝑜𝑢𝑡𝑒𝑠𝑈𝑠𝑒𝑑[𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡[𝑖]] + +

end if
end for
for 𝑗 is larger than 3 and 𝑗 ∈ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡 do

for 𝑘 ∈ 𝑛𝑢𝑚𝑏𝑒𝑟𝐿𝑖𝑛𝑘𝑠 do
compare each link of route in 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡 to the 𝑙𝑖𝑛𝑘𝑃𝑎𝑖𝑟𝑠 {𝑙𝑖𝑛𝑘𝑃𝑎𝑖𝑟𝑠 records
two nodes end of each link}
𝑙𝑖𝑛𝑘𝑠𝑈𝑠𝑒𝑑[𝑘]+ = 1

end for
end for

end if
else

length of 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡 is not equals to 𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ {the node 𝑛𝑒𝑤𝑉 is not in the
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡}
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑖𝑠𝑡← 𝑛𝑒𝑤𝑉
searchTreeRoute(𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑛𝑒𝑤𝑉, 𝑠, 𝑑)

end if𝑝𝑜𝑖𝑛𝑡𝑒𝑟 + + 𝑛𝑒𝑤𝑉 ← 𝑝𝑜𝑖𝑛𝑡𝑒𝑟
end while
RETURN

5.3 An example: extended deforestation in a small network

We apply the extended deforestation to the network shown in chapter 3. Figure 5.1 shows

an example of the extended deforestation algorithm where the link betweenness centrality

has been used as an approximation of the flow passing through the links.
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Figure 5.1: Extended deforestation contracts network following the “importance” of links.
Nodes are contracted in the order of decreasing link-betweenness (a) and increasing link-
betweenness (b).
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5.3.1 The order of contraction

Figure 5.1(𝑎) shows the original network, the order of contraction and its skeleton graph

when the contraction is done by considering first the links with the largest betweenness

centrality. The skeleton graph consists of a few nodes connected by “weak” links. All the

important links are contained in the largest super-node. Figure 5.1(𝑏) show the original

graph, the order of contraction and skeleton network obtained by considering first the

links with smallest betweenness centrality. In this case the skeleton network is a set of

super-nodes connected by “strong” links. The skeleton networks obtained in this example

represent the same network and have the same number of alternative paths, however they

represent different view of the alternative paths. In figure 5.1(𝑏) the majority of the links

in the skeleton graph are important.

5.3.2 Communities & hierarchies

Directing the contraction by weighing the links (nodes) can be used to split the network into

different hierarchies. The construction of the super-nodes will happen in different stages,

each stage defining a hierarchy. The middle column of figure 5.1 shows the hierarchies of

nodes in a super-node. In the dendrogram, a set of nodes is grouped together if the flow

between their links is less than a given value. Moreover, nodes belonging to the same super-

node can be considered as a community that are defined by having only one path between

the members of the community.

5.3.3 The contraction of network for visualisation

The skeleton network displays cyclical structure of the network. The number of cycles

implies of the number of alternative routes among the nodes, and they are retained in the

skeleton graph. The size of a super-node is corresponding to the number of nodes collected

in that super-node. Comparing the two contraction, figure 5.1(𝑎) groups almost all the busy

links and nodes into the “fat” super-node (shown in green) so that about 70% traffic may
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be transmited inside it. On the contrast, figure 5.1(𝑏) distributes the busy links between

the super-nodes.

5.4 The comparison between the deforestation algorithm and

its extension

We applied the deforestation algorithm and its extension, i.e. the deforestation algorithm

with link betweenness centrality, to a large network, and the skeleton networks are shown

in figure 5.2. In the figure, the size of super-node is proportional to the number of nodes

contained in the super-node, and the inside of the biggest super-node for each skeleton

network are drawn at the bottom. If we assume that all the nodes in the both skeleton

networks carry the same amount of traffic, the skeleton network obtained by deforestation

algorithm with link betweenness centrality has a more evenly traffic-distributed in the super-

nodes than the one by deforestation.

We also applied two algorithms to the Internet AS network. We noticed that the range of

size of super-nodes is reduced when applying deforestation algorithm with link betweenness

centrality, e.g. the biggest super-nodes obtained by deforestation contains 5333 nodes, while

3187 nodes for the extended algorithm. This shows that link betweenness centrality as a

traffic approximation can guide the node contraction to produce a more balanced traffic-

distributed skeleton network. The Internet IPA network has more than 600, 000 links and

Brandes’ algorithm [9] takes a very long time to calculate the betweenness centrality for all

the links, so that we did not carry out this comparison in the IPA network.

5.5 Conclusion

In this chapter, we extended the deforestation algorithm to contract networks following

the “importance” of links, which is considered as the approximation of traffic load for links.

Therefore the extended deforestation algorithm has two parameters, the initial node to start
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Figure 5.2: The comparison between the deforestation algorithm and its extension, i.e. the
deforestation algorithm with link betweenness centrality. The skeleton network obtained
by deforestation algorithm is shown on the left, while the skeleton network on the right
is obtained by its extension. The biggest super-nodes (the green nodes) for each skeleton
network are drawn at the bottom. And the size of the super-node is proportional to the
number of nodes that it contains.

the contraction and a condition based on the flow. Different directions of contracting nodes

would obtain a different skeleton graph. And the process of the network contraction will

happen in several stages, so that it can be used to split the network into different hierarchies.

Same as the deforestation, the extended deforestation also has made sizeable reduction, and

provide a clear cyclical network structure for analysing and visualising. However it can

produce a more balanced traffic-flow distribution in the super-nodes than the deforestation,

and would be good for parallel computing when simulating a very large communications

network.



Chapter 6

Traffic and Topology

6.1 Introduction

When studying a large-scale telecommunication network, a network-wide view of the traffic

demands is needed. Shifts in user behaviour, changes in routing policies, and failures of

network elements can result in significant fluctuations in traffic flows. This leaves network

operators trying to tune the configuration of the network to adapt to changes in the traffic

demands. In this chapter, we review how the topology and the traffic are related via routing

protocol and estimate the network traffic via the traffic demand model. In the last chapter,

we employ the betweenness centrality to approximate the traffic in the network and to

guide the deforestation algorithm to simplify the network. Comparing with betweenness

centrality, we would also like to extend the deforestation algorithm with the traffic demand

estimate when doing the simplification. In this chapter we introduce the background and

justification for this, and the example of medium-scale scenario is shown in the next chapter

(Chapter 7).
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Figure 6.1: Four possible traffic scenarios

6.2 Traffic flow through ISP backbone networks

First, we have a brief overview of the Internet Service Provider (ISP) backbone architectures

and routing protocols. A backbone network consists of a collection of routers and links.

All the links are bi-directional, and they are usually divided into backbone links and edge

links. Backbone links connect routers inside the ISP backbone, while edge links connect

to downstream customers or neighbouring providers. When carrying traffic into the ISP

backbone, an edge link is called an ingress link; when carrying traffic away from the ISP

backbone, the link is called an egress link. Figure 6.1 illustrates the four possible scenarios:

∙ internal traffic that travels from an ingress link to an egress link within one domain

or provider;

∙ transit traffic that travels from an ingress link in a neighbouring domain to an egress

link in another neighbouring domain;

∙ inbound traffic that travels from an ingress link in the neighbouring domain to an

egress link within the domain;

∙ outbound traffic that travels from an egress link within the domain to an egress link

in the neighbouring domain.
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Much of the traffic in the Internet must travel through multiple domains. The interplay be-

tween intra-domain and inter-domain routing has important implications for how we define

traffic demand. The ISP employs an intra-domain routing protocol, such as Open Shortest-

Path First (OSPF) or Intermediate System-to-Intermediate System (IS-IS), to select paths

through the backbone. The routers exchange link-state information and forward packets

along shortest paths, based on the sum of link weights chosen by the ISP. Communicating

across domains requires the exchange of reachability information. The Border Gateway

Protocol (BGP) is used to exchange dynamic reachability information with the remaining

customers and neighbouring provider. The ISP backbone network lies in the “middle” of

Internet, and may not have a direct connection to the sender or the receiver of any par-

ticular flow of packets. Also an ISP may have multiple links connecting to a neighbouring

provider. When a router learns multiple routes to the same destination, the ultimate de-

cision of which route to use depends on the BGP route-selection process, which considers

the length of the path, in terms of the number of autonomous systems involved, followed

by several other criteria [31, 73].

6.3 Traffic demand model

How should traffic demands be modelled and inferred from network measurements? At

one extreme, the network traffic could be represented at the level of individual source-

destination pairs, possibly aggregating sources and destinations to the network address or

autonomous system level. Such an end-to-end traffic matrix is one of the existing measure-

ments. Other techniques would provide views of the effects of the traffic demands, such as

end to end performance (e.g. high delay and low throughput) and heavy load (e.g. high

link utilization and long queues). These effects are captured by the measurements of delay,

loss, or throughput on a path through the network. To be practical, the representation of

traffic demands should enable experimentation with changes to the network topology and

routing configuration.
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6.3.1 Traffic demand estimation

Traffic matrix reflects the volume of traffic demands that flows between all possible pairs

of sources and destinations in a network. The knowledge represented by a traffic matrix is

very valuable to a wide variety of traffic engineering tasks including load balancing, routing

protocols configuration, dimensioning, provisioning and fail-over strategies [30, 45].

In the networking scenario, we can assume that a variety of application can be delivered

across the network, like audio (VoIP), video conferencing and FTP file transfers.

Connections are set up between the traffic sources and the ingress edge routers. New

connections are established at each edge router with exponentially distributed inter-arrival

times △𝑡 with a mean △𝑡. That means, the creations of connections at each edge router

follow Poisson process, in which, the inter-arrival times △𝑡1,△𝑡2, ...,△𝑡𝑛 are independent

of each other and each have an exponential distribution with mean 1/𝜆, where 𝜆 represents

the average number of connections per unit time. We call 𝜆, the connection established

intensity, and we have

𝜆 = 1/△𝑡. (6.1)

Holding time 𝐻 of audio and video connections are also exponentially distributed with

a mean 𝐻, usually 50 seconds per connection for the average holding time of the audio,

100 seconds per connection for the video, and the holding time of FTP transfer sessions is

variable by the file size Φ and mean sending rate.

Given the connection established intensity 𝜆 and average holding time 𝐻, we can calculate

the average number of simultaneous connections 𝑁 mapped onto a network physical routing

path for a certain source to destination pair (𝑠, 𝑑) by using Little’s Law, which states that

“the average number of customers in a stable system (over some time interval) is equal to

their average arrival rate, multiplied by their average time in the system” [39]. Then we

have
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Figure 6.2: Traffic splitting for source s to destination d accordingly to ECMP rule.

𝑁 = 𝜆 ⋅𝐻. (6.2)

6.3.2 Traffic and routing

In the OSPF routing context, each node is aware of the weights 𝑊 (𝑤1, 𝑤2, ..., 𝑤𝑛) of the

links, which are evaluated by traffic load of individual links. The traffic is routed along

the shortest paths which can be determined based on the link’s weights 𝑊 (𝑤1, 𝑤2, ..., 𝑤𝑛).

Additionally, the Equal-Cost Multi-Path (ECMP) rule is used to distribute the traffic on

several possible routes. ECMP states that given a graph 𝐺(𝑉,𝐸), a source node 𝑠 and

destination node 𝑑. All the packets arrive at source node 𝑠 are directed along the shortest

path to destination 𝑑. If there is more than one link outgoing from 𝑠 and belonging to the

shortest path from 𝑠 to 𝑑, then the packets will be distributed evenly among these links.

Figure 6.2 shows a simple network, where has three shortest paths between source s and

destination d. According to the ECMP rule, the traffic between nodes (𝑠, 𝑑) will be equally

split and distributed among these three paths. We denote this ratio of traffic splitting as

the critical factor 𝛼. The critical factor of a physical network link is also considered as

the betweenness centrality of that link (already defined in Chapter 5). The bigger 𝛼 of a

physical link implies more flows routed through that link.

Suppose the inter-arrival times and holding times of the connections follows an exponential

distribution with mean of △𝑡𝑖 and 𝐻 𝑖. According to Little’s Law, we know that the average
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number of simultaneous connections 𝑁 𝑖, is

𝑁 𝑖 = 𝜆𝑖 ⋅𝐻 𝑖. (6.3)

We assume that there are 𝛾 sources of each type of traffic connected to the source edge

router, so the traffic load Ψ for each traffic class on an arbitrary link 𝑙 can be calculated as

Ψ𝑙𝑖 = 𝛼𝑖 ⋅ (𝛾𝑖 ⋅𝑁 𝑖 ⋅ �̄�𝑖) = 𝛼𝑖 ⋅ (𝛾𝑖 ⋅ 𝜆𝑖 ⋅𝐻 𝑖 ⋅ �̄�𝑖), (6.4)

where 𝛼 is the critical factor percentage of traffic splitting by using different links, and �̄� is

the mean sending rate of each traffic source.

Thus, based on the observation above, we can derive the traffic demand matrix 𝕄 of the

overall network as

𝕄 = 𝕄𝛼 ⋅ (𝛾 ⋅ 𝜆 ⋅𝐻 ⋅ �̄�), (6.5)

where 𝕄𝛼 is the matrix of 𝛼𝑖𝑗, as

𝕄𝛼 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝛼1,2 𝛼1,3 ⋅ ⋅ ⋅ 𝛼1,𝑗 𝛼1,𝑗+1 ⋅ ⋅ ⋅ 𝛼1,𝑁−1 𝛼1,𝑁

𝛼2,1 0 𝛼2,3 ⋅ ⋅ ⋅ 𝛼2,𝑗 𝛼2,𝑗+1 ⋅ ⋅ ⋅ 𝛼2,𝑁−1 𝛼2,𝑁

...
... 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝛼𝑖,1 𝛼𝑖,2
... 0 ⋅ ⋅ ⋅ 𝛼𝑖,𝑗 𝛼𝑖,𝑗+1 ⋅ ⋅ ⋅ 𝛼𝑖,𝑁

𝛼𝑖+1,1 𝛼𝑖+1,2
...

... 0 ⋅ ⋅ ⋅ 𝛼𝑖+1,𝑗+1 ⋅ ⋅ ⋅ 𝛼𝑖+1,𝑁

...
...

...
...

... 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
...

...
...

...
...

... 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝛼𝑁−1,1 𝛼𝑁−1,2 𝛼𝑁−1,3

...
... 𝛼𝑁−1,𝑗

... 0 𝛼𝑁−1,𝑁

𝛼𝑁,1 𝛼𝑁,2 𝛼𝑁,3
...

... 𝛼𝑁,𝑗 ⋅ ⋅ ⋅ 𝛼𝑁−1,𝑁 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.6)

However, representing all hosts or network nodes would result in an extremely large traffic
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matrix.

6.4 Deforestation extensions

The deforestation algorithm contracts the network, taking into consideration only the con-

nectivity of the nodes (see chapter 3) and considering both connectivity and traffic approx-

imation of links (see chapter 5). This allows us to include other properties of the network

when doing the contraction, in particular, like direction of the links and traffic demand

matrix.

Extension with directions. The modification of the deforestation algorithm to include

the links direction is straightforward. In the algorithm a link (𝑏, 𝑐) means node 𝑏 connects

with 𝑐, but not vice versa.

Extension with traffic demand matrix. The inclusion of property like the traffic

demand matrix can also be easily taken into consideration. The extension is very similar

to the deforestation with traffic approximation in chapter 5. In this case the capacity

(weight) of links are determined by traffic demand matrix. The while statements in the

Contraction algorithm (algorithm 2 in chapter 3) are changed to include the link capacity,

and a condition based on the capacity will direct how the contraction is done. For example,

first we contract the nodes which connecting links have a small capacity, and then links

with a higher capacity till no more contraction can be made.

6.5 Summary

By looking at the ISP backbone, there are four types of traffic scenarios. It gives us an idea

to extend the deforestation with traffic direction. And in the traffic engineering, the traffic

demand matrix is considered as an initial way to model the network traffic. It can also be

included during the network contraction.



Chapter 7

Deforestation of the Medium-scale

Scenario

7.1 Introduction

The purpose of this chapter is to investigate how deforestation algorithms are applied to a

medium-scale network scenario. Given a medium-scale network, it can be represented in two

ways: the logical scenario and the physical scenario. We are going to simplify both logical

and physical scenarios using a traffic approximation (see chapter 5) and also using traffic

directions and demands (see chapter 6). It is worth simplifying the network in different

cases in order to fully illustrate the network contraction by deforestation.

7.2 Medium-scale network scenario

Figure 7.1 shows the scenario of the medium-scale network. This network is from [81]. At the

end of this chapter, we would like to compare our results with the experiment results from

[81], so that the properties of network are all kept as follows. This irregularly connected

network consists of nine backbone nodes and fifteen bi-directional links. It is assumed

90
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Figure 7.1: The medium-scale network scenario [81]

that each backbone node in the network is connected to one or more sub-networks, where

traffic flows originate and terminate. The physical links connecting the backbone nodes

(routers) within the network have capacity of 2048kps (E1 link) with fixed propagation

delay of 10𝑚𝑠, and local high-speed links interconnecting the backbone nodes and sub-

network nodes operate at 155Mps (OC-3) with fixed propagation delay of 1 microsecond.

This ensures that network congestion occurs only within the network core. The network

is configured as an OSPF (Open Shortest Path First) domain and we use the hop count

metric as a benchmark for default shortest paths. Because of the speed difference between

backbone links and local links, there is no traffic control included at the edge of the domain.

Also here it is assumed that it’s a single-service network, where it consists only of one type

of traffic.
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Figure 7.2: Logical representation of medium-scale network

7.3 Logical scenario

7.3.1 Representation of logical scenario

The medium-scale scenario in figure 7.1 has nine backbone nodes, fifteen bi-directional

backbone links. The local high-speed link between each backbone node and its star sub-

network could be thought as one node. Therefore, the nine backbone nodes are considered

not only as router nodes, but also being a place where traffic flows originate and terminate.

Thus the logical representation of the medium-network is shown in figure 7.2.

Applying the deforestation algorithms to the logical scenario of the medium-scale network

are studied as follows.

7.3.2 Results for logical scenario

Case 1 - Deforestation algorithm

In chapter 3, we discussed how the deforestation algorithm could produce skeleton networks

with different network connectivities if the starting nodes are different. For the logical

scenario of a medium-scale network, there are two different network simplifications, see

figure 7.3. Both skeleton networks are simplified to a network of 7 nodes with 13 links.
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Figure 7.3: Two simplifications of logical scenario

However the network nodes are grouped differently when looking inside the super-nodes

𝐴 & 𝐵. The figure 7.3(a) groups node 1, 3 and node 8, 9 into super-nodes, while in

figure 7.3(b), super-node 𝐵 is contracted in the same way but super-node 𝐴 aggregates the

node 3, 7 instead.

Back to the original network shown in figure 7.2, there exist 2 quadrangles, i.e. {1, 3, 5, 7}
and {4, 5, 8, 9}, which have the potential to be simplified into a triangle. Considering their

positions with other nodes, the quadrangle {4, 5, 8, 9} has only one way to contract whereas

there are two ways of contraction for quadrangle {1, 3, 5, 7}, which are the same as the

skeleton networks shown in figure 7.3.

Case 2 - Deforestation algorithm with link betweenness centrality

In this case, the deforestation algorithm is extended to impose the link betweenness centrality

as a condition of network contraction.

Before the deforestation is performed, the betweenness centrality (𝐵) for the network nodes

and links are calculated, see table 7 − 1. In this case, the deforestation only returns one
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Figure 7.4: The skeleton network of logical scenario obtained by the deforestation algorithm
with betweenness centrality

network simplification no matter which starting node is chosen, shown in the figure 7.4. In

the graph, the node 8, 9 and node 1, 3 are grouped separately into the super-nodes.

The reason that there is only one simplification obtained by the deforestation algorithm

with link betweenness centrality is easy to understand. From the extended algorithm itself,

the links with low betweenness centrality are always contracted before the links with a high

value.

In figure 7.4, the quadrangle {1, 3, 5, 7} has two ways of contraction into the triangle, either

contracting the link 1−3 or contracting the link 3−7. From the table 7−1, the betweenness

centrality for the link 1 − 3 is 8.33, while the value for the link 3 − 7 is 9.00. According

to the algorithm, the link with low betweenness is contracted before the link with a higher

value, then the only one network simplification is obtained when the contraction is done.

Therefore the link betweenness centrality, which approximates the utilisation of the links,

can be considered as one of the factors that could guide the network contraction.

Case 3 - The deforestation algorithm with traffic demand matrix
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Nodes 𝐵

1 15.17
2 8.00
3 8.67
4 30.50
5 12.33
6 8.00
7 15.50
8 11.17
9 10.17

Links 𝐵
Nodes - Nodes

1− 2 5.50
1− 3 8.33
1− 5 7.17
2− 4 10.50
3− 7 9.00
4− 5 7.17
4− 6 12.00
4− 7 11.50
4− 8 10.50
5− 7 3.67
5− 9 6.67
6− 8 4.00
7− 9 6.83
8− 9 7.83

Table 7-1: The betweenness centrality for network nodes and links

When real traffic is applied to a network, it does not follow a uniformed traffic distribution,

and these fluctuating traffic flows can be defined using a traffic demand matrix. A total of

72 source-destination paths are established to carry the traffic between any pair of nodes in

their 9-node example.

Here we are going to consider two traffic demand matrices, which are constructed in different

ways to represent different levels of network traffic dynamics. For the first traffic demand

matrix (𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥1), the amount of traffic at each source-destination pair follows the same

traffic distribution (Poisson) except for the node 1. The traffic flows traversing node 1 are

three times as the traffic flow for the rest of the nodes pairs. The second traffic demand

(𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥2) is also a symmetric matrix, as the logical scenario that we used here is a

undirected network. For a source-destination pair the amount of traffic is related to the

smaller label of the pair, i.e. if the packets sent by source 1 is assumed to be a unit of the

traffic, then a source-destination pair (𝑖, 𝑖+ 1) and (𝑖+ 1, 𝑖) would sent 𝑖 times of that unit

over the link between the pairs.
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𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3 3 3 3 3 3 3 3

3 0 1 1 1 1 1 1 1

3 1 0 1 1 1 1 1 1

3 1 1 0 1 1 1 1 1

3 1 1 1 0 1 1 1 1

3 1 1 1 1 0 1 1 1

3 1 1 1 1 1 0 1 1

3 1 1 1 1 1 1 0 1

3 1 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 1 1

1 0 2 2 2 2 2 2 2

1 2 0 3 3 3 3 3 3

1 2 3 0 4 4 4 4 4

1 2 3 4 0 5 5 5 5

1 2 3 4 5 0 6 6 6

1 2 3 4 5 6 0 7 7

1 2 3 4 5 6 7 0 8

1 2 3 4 5 6 7 8 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As expected, the two traffic demand matrices produce different skeleton networks. The

skeleton network for the (𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥1) is show in figure 7.5, which groups node 3, 7 and

8, 9 into super–nodes. While for the (𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥2), the skeleton network is same as the

network simplification shown in figure 7.4, which contracts node 1, 7 instead of 3, 7. That’s

because in the first traffic matrix, node 1 generates three times more packets than the other

nodes. The links connecting to node 1 are busier than the rest of links, and they are to be

contracted later than other links. When the traffic demand matrices apply to the logical

scenario, it estimates the fluctuating traffic as it travels the network, and shows that the

traffic dynamic can change the order of the network contraction.



Chapter 7. Deforestation of the Medium-scale Scenario 97

1

2 3

4
5

6

7

8 9

Figure 7.5: The skeleton network of the logical scenario is obtained by the deforestation
algorithm with traffic demand matrix, when applying 𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥1.

In summary, in real networks, the traffic demands may not be as simple as our scenarios,

and also the measurements to obtain the traffic matrix could be very complicated. We

used this simple example to explain how the deforestation algorithms are used to simplify

the network, with the traffic approximation (link betweenness) and the estimate of traffic

dynamic based on the demand matrix, and we notices that the traffic characteristics are

fundamental for the simplification.

7.4 Physical scenario

The physical scenario reflects how the queues are working for each of the router nodes, how

busy they are, and how traffic flows go through a certain link on different directions. The

physical scenario of the medium-scale network (figure 7.2) is shown in figure 7.6.

7.4.1 Representation of physical scenario

According to [81], the backbone links are all output links, and the queues only exist on the

direction that the backbone nodes (routers) are sending out packets. These router nodes
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Figure 7.6: The physical scenario of the medium-scale network [81].

usually have more than one link connected to the rest of the nodes, thus they would have

more than one output queue. Each link of a backbone node may have one output queue.

Before the packet from a local sub-network enters the core network, they have to go through

an edge router. These edge routers identify where the traffic is going to, classify it, and

guide it to enter different queues of the core router nodes. For example, in the figure 7.6,

node 7 has 4 output links, which are 7− 3, 7− 4, 7− 5, 7− 9. When the traffic comes from

local clients, it should first go through an edge router and then distribute into one of the

four forth-going queues. In order to describe the performance of the queues, the physical

scenario of medium-scale network is represented in figure 7.7.

In figure 7.7, each link has a direction. The purple nodes are the core-router nodes, the

yellow nodes represent the output queues for each core router, and pink nodes are source

or sinks of traffic. Let us have a look at node 1. It has four queue nodes (yellow), i.e.

node 10, 11, 12, 13, which are output queues for different directions of traffic flows. For

example, the connection between node 1 and 2 is bidirectional, and that is represented by

two directional links in the physical scenario. Yellow queue node 10 is the output queue for

traffic traversing from node 1 to 2, while yellow queue node 14 for traffic going out from

node 2 to node 1. The pink node 40 is the sink and source of traffic for node 1.
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Figure 7.7: Physical representation of medium-scale network scenario

7.4.2 Results for physical scenario

Case 1 - Deforestation algorithm with link betweenness centrality

Figure 7.8 show the skeleton network of the physical scenario where the link utilisation

is approximated using the link betweenness centrality. The algorithm groups the core
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Figure 7.8: The skeleton network of the physical scenario obtained by deforestation (case 1).

router node, the corresponding source/sink nodes and queue nodes. In this respect, the

skeleton of the physical scenario is similar to the logical scenario. Notice that this extended

deforestation algorithm leaves some of the busy queue nodes outside the super-nodes rather
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than collecting them into the super-nodes, reflecting the importance of these busy queues

when doing the contraction.

Case 2 - Deforestation algorithm with traffic demand matrix

In the physical representation of network, the nodes numbered from 1 to 9 are core router

nodes, which could be considered as traffic sources, while from the node 40 to node 48 are

sinks where the traffic terminates. Thus there are 81 (9 ∗ 9) pairs of source and destination.

As the physical scenario is directional, we apply an asymmetrical matrix (𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥3) to

the network. In 𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥3, the amount of traffic imposed at each source-destination pair

is proportional to its node source number, i.e. if the packets sent by source 1 is assumed as

a unit, then source 𝑖 would sent 𝑖 times that unit to the nine sink nodes. For example the

traffic amount sent by the source node 3 to the destination node 46 is 3 units, so that the

traffic imposed on the directed links between node 3 and 46 is 3 units. Whereas the traffic

amount for the source-destination pair 7 − 42 is 7 and also 7 units for the links between

them.

𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this case, the skeleton network produced by deforestation with 𝑇𝐷𝑀𝑎𝑡𝑟𝑖𝑥3 is very

similar to the skeleton network obtained in case 1 (see figure 7.8). The skeleton network

contracts first the light-loaded queue nodes, and leaves the busiest queue nodes outside the

super-nodes.
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Generally, the deforestation algorithms do not work effectively for the skeleton network of

the physical scenario, and they always produce the skeleton networks very similar to the

logical representation of the medium-scale network. That is because the physical represen-

tation looks more complicated than the logical scenario, and it already has many triangles

in the network, thus the network can not be further simplified.

7.5 Results analysis and comparison

From the previous two sections, we applied the deforestation algorithms on both the logical

scenario and the physical scenario throughout different cases. The deforestation may return

various simplifications depending on different selected starting nodes. The link betweenness

centrality approximates the traffic status on that link, busy or not busy. This measure is

used to guide the node contraction, so that high-utilised links are contracted after the low-

utilised links. The simplification tends to produce a more balanced traffic distribution in

super-nodes. The network traffic demands can have a great impact on the order of the

contraction.

We compared our results with Qiang Yang’s work [81], who also did the research in the same

medium-scale scenario. Basically, his experiments are carried out using simulation tools

(i.e. TOTEM toolbox), with a uniform traffic demand matrix based on the OSPF routing

matrix. Thus, the link utilisation matrix obtained in his experiments are all asymmetric.

That is because if there is more than one shortest-path in the network, the OSPF routing

chooses only one of them as the default path. In our experiment, we applied the symmetric

traffic demand matrix to the undirected logical scenario and the asymmetric matrix to the

directed physical scenario. Both Qiang’s and our experiments showed the same busy nodes

and high-utilised links. In addition to that, the betweenness centrality of queue nodes in

the physical scenario approximate how the traffic distributed to those queue nodes, and

how busy the individual queue node is, which is similar to the queues’ behaviour in Qiang’s

work.
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7.6 Conclusion

To summarise, the deforestation algorithm can simplify the network with its connectivity

only, and also can consider traffic directions and traffic demands. These traffic properties

can change the order of the node contraction. The algorithm works well for both the logical

scenario of networks and the physical scenario of networks. The experiments prove that

the traffic dynamics on the network can have a great impact on the network simplification,

hence we can conclude that a good approximation of the traffic through the network is the

fundamental of a good network simplification.



Chapter 8

Network Communities

When simplifying a very large network, its skeleton network can also be large, so it is

desirable to split the skeleton network into different communities. As discussed in chapter 2,

many large-scale networks seem to have a community structure, a community of network

nodes are more densely interconnected with each other than with the rest of the network,

see figure 8.1. The ability to find and analyse such communities can provide invaluable help

in understanding and visualizing the structure of a network.

8.1 Definition of community

The study of community structure in networks has a long history. It is closely related to the

ideas of graph partitioning in graph theory, computer science and hierarchical clustering in

sociology [28, 69]. There are many different definitions of what is a community, here we

follow the definition by Radicchi et. al [61] of a weak community. A set of nodes in the

network form a community if the sum of all the links inside the community is larger than

the links connecting from outside to the community, i.e.

∑
𝑖∈𝑁

𝑘𝑖𝑛𝑖 (𝑁) >
∑
𝑖∈𝑁

𝑘𝑜𝑢𝑡𝑖 (𝑁) ∀𝑖 ∈ 𝑆, (8.1)

104
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Figure 8.1: A small network with community structure. In this case there are three com-
munities, denoted by the dashed circles, which have dense internal links but between which
there is only a lower density of external links.

where 𝑆 is a subgraph of a network and 𝑁 is a finite set of nodes of subgraph 𝑆. 𝑘𝑖𝑛𝑖 is the

number of connections for node 𝑛𝑖 connecting to the nodes inside while 𝑘𝑜𝑢𝑡𝑖 is the number

of connection for 𝑛𝑖 connecting to the nodes outside the community. Community in strong

sense [61] means that in the subgraph 𝑆,

𝑘𝑖𝑛𝑖 (𝑁) > 𝑘𝑜𝑢𝑡𝑖 (𝑁) ∀𝑖 ∈ 𝑆. (8.2)

Clearly a community in a strong sense is also a community in a weak sense, while the

converse is not true. Several other possible definitions are described in [75]. In general,

finding an exact solution to find the community structure is believed to be an NP-hard

problem, making it prohibitively difficult to solve exactly for large networks, but a wide

variety of heuristic algorithms have been developed. The choice of the best method to be

used depends on the configuration of the problem and the kind of desired result.
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8.2 Previous work

Our work is based upon two approaches, one introduce in 1977 by Sangiovanni et. al [68],

and the other proposed by Radicchi et al. in [61].

The network is described by a graph 𝐺 = (𝑁,𝐿) which consists of a set of nodes 𝑁 =

{𝑛1, 𝑛2, ⋅ ⋅ ⋅ , 𝑛𝑖, ⋅ ⋅ ⋅ , 𝑛𝑁 , 𝑖 ∈ 𝑁} and a set of links 𝐿 = {𝑙1, 𝑙2, ⋅ ⋅ ⋅ , 𝑙𝑖, ⋅ ⋅ ⋅ , 𝑙𝐿, 𝑖 ∈ 𝐿}. To

discover a community the nodes are divided into three different sets. An iterating set ℐ,
an adjacent set 𝒜 and the rest of the nodes 𝒳 , so that 𝒳 = 𝑁 − ℐ − 𝒜. The adjacent

set contains all the nodes that are neighbours of the iterating set. If the adjacent set is

removed then the network splits into two disconnected parts, the iterating set and the rest

of the nodes.

The search for a possible community starts by putting one node in the iterating set and all

its neighbours in the adjacent set. The community algorithm defines a local rule to choose

which node from the adjacent set should be moved to the iterating set and also when the

iterating set is a community.

In Sangiovanni et. al algorithm the community is defined via the number of nodes in the

adjacent set, i.e. ∣𝒜∣. The main step is to move one node from the adjacent set to the

iterating set and re-evaluate the adjacent set. If the iterating step is labelled by the index

𝑖 then the node selected from 𝒜(𝑖) is the one that yields the smallest ∣𝒜(𝑖 + 1)∣. This last

step is repeated until the size of the adjacent set goes through a minimum, at this value

the iterating set forms a community. In other word the cut set 𝒜, which separates ℐ from

𝒳 , has a minimum number of nodes.

The local rule to choose which node from the adjacent set should be moved to the iterating

set is a crucial point. Girvan and Newman (GN) have introduced the idea that the selection

of links can be based on the value of their link betweenness centrality in [29]. However, the

community divisive algorithm with link betweenness centrality is computationally costly,

as already remarked by [56]. Evaluating the score (betweenness centrality) for all links in

general requires a time 𝑂(𝑙 ∗ 𝑛), where 𝑙 is the number of links and 𝑛 the number of nodes.
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For the worst case, the computational time is 𝑂(𝑙2𝑛), which makes the analysis practically

infeasible already for moderately large networks.

To overcome this problem another method is introduced which requires the consideration of

local quantities only and is therefore much faster than the GN’s link-betweenness algorithm.

It is proposed by Radicchi et al. in [61] and based on the idea that linked nodes belonging

to the same community should have a larger number of “common friends”. In other words,

links inside communities should be part of a large proportion of possible loops, and links

connecting to nodes outside the community should have few or no loops. Instead of using the

link betweenness centrality, the algorithm proceeds by using the link clustering coefficient

- 𝐶(𝑔), which represents the fraction of possible loops of order 𝑔 that share a link. The

algorithm is implemented for triangles (𝑔 = 3), see chapter 2. The algorithm computes the

𝐶(𝑔=3) values for all links, and removes the ones with the minimum value. These two steps

are repeated recursively as long as the partition fulfils the community definitions defined in

Eq.(8.1).

This algorithm is very fast, since calculating the clustering coefficient can be done with local

information only. This method is not appropriate for trees, sparse graphs and disassortative

networks due to the small number of triangle and squares, and it also fails if the network

has a small average clustering coefficient.

8.3 Finding communities via clustering coefficient

The deforestation generates only short cycles in the skeleton network, most of which are

triangles. Hence the average clustering coefficient of skeleton network should be relatively

large, so it has the right property for applying Radicchi’s clustering coefficient division

method.
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Figure 8.2: A simple example of link clustering coefficient.

8.3.1 Evaluation for link clustering coefficient

Recall from chapter 2, the clustering coefficient of link (𝑖, 𝑗) is calculated as

𝐶
(3)
𝑖,𝑗 =

𝑁
(3)
△ (𝑖, 𝑗) + 1

𝑚𝑖𝑛[(𝑘𝑖 − 1), (𝑘𝑗 − 1)]
, (8.3)

where 𝑁
(3)
△ (𝑖, 𝑗) is the number of triangles to which (𝑖.𝑗) belongs, and 𝑘𝑖, 𝑘𝑗 are the degrees

of node 𝑖, 𝑗 respectively. Therefore the number of triangles belonging to a certain link (𝑖, 𝑗)

can be effectively evaluated as

𝑁
(3)
△ (𝑖, 𝑗) =

𝑁∑
𝑘 ∕=𝑖,𝑘 ∕=𝑗

𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘, 𝑖𝑓(𝑎𝑖,𝑗 ∕= 0), (8.4)

where 𝑎𝑖𝑗 is the element of adjacency matrix. A simple example of the link clustering

coefficient is shown in figure 8.4. The number of triangles belonging to link (𝐵,𝐶) can be
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calculated as follows.

𝑁
(3)
△ (𝐵,𝐶) =

𝑁∑
𝑘 ∕=𝐵,𝑘 ∕=𝐶

𝑎𝐵𝐶𝑎𝐵𝑘𝑎𝐶𝑘

= 𝑎𝐵𝐶𝑎𝐵𝐴𝑎𝐶𝐴 + 𝑎𝐵𝐶𝑎𝐵𝐷𝑎𝐶𝐷 + 𝑎𝐵𝐶𝑎𝐵𝐸𝑎𝐶𝐸

= 1 + 1 + 1

= 3.

The pseudo code for the link clustering coefficient is

Algorithm 7 Evaluate 𝐶
(3)
𝑖,𝑗

Require: Initialise a vectors 𝐶(3), and built adjacency matrix 𝐴

𝑁
(3)
△ (𝑖, 𝑗) ← 0 {where 𝑖, 𝑗 ∈ 𝑁 ; 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠}

𝑎𝑖𝑗 =

{
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8.5)

for 𝑖 = 1 to 𝑁 do
for 𝑗 = 𝑖 + 1 to 𝑁 , notice that it is 𝑖 + 1 not 1, because 𝐴 is symmetric do

if 𝑎𝑖𝑗 ∕= 0 then

𝑁
(3)
△ (𝑖, 𝑗)←∑𝑁

𝑘 ∕=𝑖,𝑘 ∕=𝑗 𝑎𝑖𝑘𝑎𝑗𝑘 {because 𝑎𝑖𝑗 = 1}
end if
Evalute 𝑘𝑖 and 𝑘𝑗
𝑘𝑖 = 𝑘𝑗 = 0

𝑘𝑖 =
∑𝑁

𝑖=1 𝑎𝑖𝑘; 𝑘𝑗 =
∑𝑁

𝑗=1 𝑎𝑗𝑘

𝐶
(3)
𝑖𝑗 =

𝑁
(3)
△ (𝑖,𝑗)+1

𝑚𝑖𝑛(𝑘𝑖−1,𝑘𝑗−1)

end for
end for

8.3.2 Procedures for network partition

The idea behind the link clustering coefficient for community detection is that the links

connecting nodes in different communities have few or no triangles and tend to have small

values of 𝐶
(3)
𝑖,𝑗 . Hence, the clustering coefficient 𝐶

(3)
𝑖,𝑗 quantities whether its link belongs to

a community. The procedure for identifying network communities is shown in Algorithm

8 (see next page).
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Algorithm 8 Community detection algorithm with link clustering coefficient

Require: Network 𝐺 = (𝑁,𝐿)
Require: Initialise a vector Community
Require: Initialise the distance matrix 𝑅 from adjacency matrix 𝐴.

𝑟𝑖𝑗 =

{
1 𝑎𝑖𝑗 = 1

infinite 𝑎𝑖𝑗 = 0
(8.6)

Evaluate the distance matrix 𝑅 via Floyd algorithm (see appendix 2)
while There are connected links in the set 𝐿 do

Evaluate 𝐶(3)

Find the minimum value of 𝐶
(3)
𝑖𝑗 , and obtain 𝑖, 𝑗

Set 𝑎𝑖𝑗 = 0
Re-calculate the distance matrix 𝑅
if there is any 𝑟𝑖𝑗 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 then

m++
Move all the nodes connecting to the node 𝑖 to 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦[𝑚]
m++
Move all the nodes connecting to the node 𝑗 to the set 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦[𝑚]

end if
end while

8.4 Examples

8.4.1 The community algorithm applied to a small network

As a controlled test of how well the community algorithm performs, we carried out the

experiment on a small network with a clear community structure (figure 8.1).

The whole process is completely shown in figure 8.3 (see next page). Notice that once the

first link in the network is removed in such an algorithm, the clustering coefficient values

for the remaining links will no longer reflect the network as it is, so the clustering coefficient

needs to be re-calculated. The values of all the links are shown in the table of figure 8.3,

and they are also individually updated when changed. After two rounds of removals, the

network is split into 3 parts.
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Link Clustering coefficient Link Clustering coefficient
Node-Node Before 1𝑠𝑡 removal 2𝑛𝑑 removal Node-Node Before 1𝑠𝑡 removal 2𝑛𝑑 removal

1− 2 1.00 12− 15 0.67
1− 3 1.50 12− 27 1.00
1− 4 1.00 13− 14 1.00
2− 3 1.00 13− 27 1.00
2− 5 0.67 14− 17 0.67
2− 26 1.00 14− 27 1.00
3− 4 1.00 15− 16 1.00
3− 26 1.00 15− 18 1.00
4− 6 0.67 15− 27 1.00
4− 26 1.00 16− 18 1.50
5− 7 1.00 16− 17 1.00
5− 8 0.67 16− 27 1.00
5− 26 1.00 17− 18 1.00
6− 7 1.00 17− 27 1.00
6− 8 0.67 19− 20 1.00
6− 26 1.00 19− 22 0.67
7− 8 1.00 19− 28 1.00
7− 26 1.00 20− 21 1.00
8− 9 1.00 0.50 0.00 20− 28 1.00
8− 11 0.50 0.00 0.00 21− 24 0.67
9− 10 1.00 0.50 0.00 21− 28 1.00
9− 11 1.50 0.50 0.00 22− 23 1.00
10 − 11 0.50 0.00 0.00 22− 25 1.00
10 − 12 0.67 22− 28 1.00
10 − 13 1.00 23− 24 1.00
10 − 14 0.67 23− 25 1.50
11 − 19 0.67 23− 28 1.00
11 − 20 1.00 24− 25 1.00
11 − 21 0.67 24− 28 1.00
12 − 13 1.00

Figure 8.3: A simple example of community algorithm based on link clustering coefficient.

8.4.2 Deforestation and community algorithm applied to a small network

The deforestation algorithm itself can divide the original network into communities. The

super–nodes are communities that are defined by having only one path between the members

of the community. In order to simplify more, we apply the community divisive algorithm
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Figure 8.4: A network with community structure represented by the dashed lines. The
communities are the groups of more intensely interconnected nodes. [17]

Link Clustering coefficient
Node-Node Original 1𝑠𝑡 removal 2𝑛𝑑 removal 3𝑟𝑑 removal 4𝑡ℎ removal 5𝑡ℎ removal

1− 2 2.00 2.00
1− 3 2.00 2.00
2− 3 2.00 2.00
3− 4 1.00 2.00 1.00
3− 12 0.67 0.00
4− 5 0.50 0.00
4− 12 1.00 2.00 1.00
5− 6 0.67 1.00
5− 9 1.00 1.50 inf
5− 10 1.00
6− 7 2.00 inf
6− 8 1.00
6− 9 1.00
7− 8 2.00 inf
8− 9 1.00
8− 10 1.00
8− 11 0.67 0.33 0.00
8− 12 0.40 0.00
9− 10 1.50 inf
11− 12 1.00 0.67 1.00
11− 13 0.67 1.00
11− 14 1.50 inf
12− 14 1.00
12− 15 2.00 1.00
12− 16 0.67 0.00
13− 14 1.00
13− 16 0.67 0.00
13− 17 2.00 1.00
15− 16 2.00 1.00
16− 17 2.00 1.00

Table 8-1: The clustering coefficient value for each link are recorded and correspondingly
updated after the removal every time. And here the “inf” means the Infinite.

to the skeleton network obtained by deforestation. In the following, we applied both de-

forestation algorithm and Radicchi et al. method to a simple network, which has a known

community structure delimited by the dashed line (see figure 8.4).
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Figure 8.5: Algorithms of deforestation and Radicch et. al. division method detect the
community structure for a simple network.
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Figure 8.5 illustrates the whole process that the network was simplified and was finally

split by progressively removing the links. After the 3rd round of the removal, the network

is splitting into 2 parts, one of which is matched to one of three communities shown in

the original network (see figure 8.4). And after the 5th removal, the network seems to

be split into a number of small fractions, i.e. isolated nodes and pieces of still connected

subnetworks. The only triangle left, is the one that was composed of super–nodes 1, 2 and 3,

and which actually contain the original nodes 1, 2, 3, 4 and 6. So this fraction of the triangle

also corresponds to one of the three communities of the original network. This example

demonstrates that deforestation and Radicchi et al. method can work together to divide

the network into communities. Although some communities were extracted at the final step,

it can show the major division of the network at the first few steps. Table 8 − 1 recorded

and updated the clustering coefficient value for all the links during the whole experiment.

8.4.3 Internet AS network & IPA networks

In practical situations the algorithms will normally be used on networks for which the

communities are not known ahead of time. The correct partition of the network sometimes

can be found at the early stages of the Radicchi’s algorithm and sometimes at the last

stage. However we believe that methods like the one presented here can reduce the network

complexity, and are invaluable to understand the structure of large-scale networks.

Applying the Radicchi et. al method to reveal the community structure of the Internet AS–

skeleton network (the one in chapter 4), we noticed that the AS–skeleton network forms

a tight community. The continuous application of Radicchi et. al method removes the

peripheral nodes but there is always a core set of nodes that remain well connected. The

same observation has also been found in the independent study of [3]. This finding is very

important and shows that the AS network has a single core, which is tightly connected.

And this core is conserved during the simplification.

The IPA–skeleton is different, as the algorithm removes some of the peripheral links the

network splits into two parts. The smaller part contains 1/3 of the network nodes. This
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suggests that there is a bottleneck in the number of alternative routes within these two

parts and there is no single core in the IPA network. It may be the result of geographic

factors or by some other reasons. At the moment, we can not give an accurate reason for

the existence of this bottleneck. In general, the deforestation and Radicchi et. al method

together can provide a solution to not only detect the community structure but also reveal

important properties of network structure during the simplification.

8.5 Conclusion

The deforestation algorithm produces a skeleton network which has a high average clustering

coefficient, so it is appropriate to use the Radicchi et al. method to split the skeleton

networks into communities. This method is simple and fast. The practical example of the

Internet shows that the structure of AS network and IPA network are different. The AS

network has a core that is well-connected and cannot be split into different communities.

This reflects that there is a set of AS nodes (the core) that play a fundamental role in

the functionality of the whole network. However, the IPA network can be split into two

major communities. That means there are two major “address” space communities. From

the data (CAIDA), we were not able to confirm if this is the case as the data has been

anonymised.



Chapter 9

Network Structure Revealed by

Short Cycles

In chapter 8, we have studied the community structure of the Internet. And we observed

that the AS-Internet has a tightly connected core, and it is hard to simplify the core further.

The core is the part of the skeleton network, which consists of cycles only. This provides us

a hint of how to study the tightly-connected network from another feature of the network.

Cycles has been acknowledged as particularly important for the complex network, and their

statistical distribution of cycles underlies the connectivity of the networks [67], and also

have an impact on the dynamics running though the networks [5]. In this chapter, we

investigate the cycles of different lengths of the networks.

9.1 The importance of cycle basis

The cycle structure of networks is an old topic that has occupied electrical engineers for

nearly a century, and it has recently become an attractive topic again in many real-world

applications, e.g. analysis of chemical and biological pathways, periodic scheduling, graph

drawing, and routing mechanisms [67].

116
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Stable, scalable, adaptive, distributed routing schemes are important attributes for current

and future communications networks. Traditionally, routing protocols represent the con-

nectivity of a network as a small number of distinct trees, one tree for every source. This

information is translated into routing table entries. This table of connectivity alone tells

little about the intrinsic diversity of the network and, therefore, its resiliency to attacks

or attrition. However recently, more and more new routing schemes have been proposed,

i.e. the 𝑅3 protocol1 introduced by Alexander Stepanenko et al. [72], which summarises

and exploits the network’s potentially rich path diversity. Central to this routing scheme

is the Logical Network Abridgement (LNA) procedure, which makes use of the concept of

minimal cycle basis to complete a hierarchical topological abstraction [16]. This procedure

is performed iteratively till the network can not be abstract any more. Then every level

of abstraction summarises path diversity information for the previous level. Therefore,

routing can take place at the LNA abstraction of all the lower level. This procedure also

summarises path diversity information of fairly large networks in a scalable fashion and can

be augmented with a number of forwarding rules to create a resilient recursive routing (𝑅3)

protocol.

It is also possible to simplify the skeleton network by dividing it into different communities

by using the cycle basis. James Bagrow et la. [6] apply short cycle detection, e.g. minimum

cycle basis, to help to identify communities in complex networks. In terms of communities,

most inter-community links contain few (if any) short cycles, but intra-community links

tend to contain both long and short cycles, since a long cycle can coil inside the community.

The network cycles can also aid visualisation of the topological structure of large-scale net-

works, and they may give a better understanding the general organization and involvement

of such complex structures.

1The 𝑅3 protocol (Resilient Recursive Routing) is a dynamic link-state protocol, providing a scalable
routing solution that is capable of automatically optimising performance of highly dynamic traffic flows in
large, packet-switched connectionless networks. Such traffic flows could be associated with large numbers
of broadband hosts on a public network, large numbers of enterprise hosts on a private network, or large
numbers of military hosts on a defence network.
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Figure 9.1: The basic cycle of size 3.

9.2 Transitive connectivity and resilience

In communications networks, the fundamental property is path diversity, which is strongly

related to the existence of cycles. The cycle of nodes is simplest and smallest diversity

topological unit, and it affords two path choices to go from any node in the cycle to any

other node in the same cycle.

Cycles such as the basic cycle of size 3 in figure 9.1 occur sooner or later along the net-

work evolution. For instance, indirect information exchange between nodes 2 and 3 (i.e.

through node 1) is likely to foster the appearance of the direct link between those two

nodes. In other words, the formation of such cycles can be understood as a reinforcement

of the connectivity between the involved nodes, possibly implied by intensive information

interchange. Therefore, the density of cycles (such as 3-cycle) is likely to provide interest-

ing insights about the growth dynamics and connectivity properties of complex networks.

Another important aspect intrinsic to the cycles is the transitivity of connections along the

network. In other words, if node 1 is connected to node 𝑖1, node 2 is connected to node 𝑖2

and node 3 is connected to node 𝑖3, the eventual presence of virtual link (path) is established

extending direct from node 𝑖1 to nodes 𝑖2 and 𝑖3, which can be understood as an indication

of transitivity in the network connectivity.

Without path diversity there are no routing decisions to be made and adaptivity via routing

becomes irrelevant. Routing must exploit path diversity to achieve network resilience to

congestion and link or node failures. The density of cycles of different lengths can be used



Chapter 9. Network Structure Revealed by Short Cycles 119

as an indicator of path diversity. In other words, the larger the number of shortest cycles

among a subset of nodes, the more connected such nodes are to one another. Therefore

the number of alternative paths in the network gives an idea of the network robustness to

failure.

The collection of all cycles in a network can form a vector space [32], called the cycle space

𝑍𝑚 (see the definition in chapter 2). A cycle basis of the graph 𝐺 is defined as a basis for the

cycle space. Any cycle 𝑍 can be expressed as
∑𝑀(𝐺)

𝑖=1 𝑍𝑖 where 𝑍1, 𝑍2, 𝑍3, . . . , 𝑍𝑀(𝐺) form

the cycle basis. The number of cycles in the cycle basis, or cyclomatic number 𝑀 . The cycle

basis is a compact description of the set of independent cycles that suffice in describing the

cycle structure of a network. In previous chapters, we know the deforestation algorithms

simplify all the trees in the network, and conserve the same number of cycles in the skeleton

network; the majority of which are short cycles, from which the cycle basis can be easily

extracted.

In this chapter, we start by presenting an algorithm for finding the minimum cycle basis,

and then show its application in the very large complex networks.

9.3 Minimum cycle basis algorithm

As the deforestation process does not change the number of cycles, the cyclomatic number

of the original graph and and the skeleton graph are the same. The skeleton network has

the same number of alternative paths as the original network, however, the length of the

paths are different.

9.3.1 The algorithm

The problem of computing a minimum cycle basis (MCB) in an undirected network graph

has been extensively studied [36]. Here we briefly describe and implement an efficient

algorithm proposed by Kurt Mehlhorn et al. [46]
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The links of network graph 𝐺 have non-negative weights. The weights of a cycle is the sum

of the weights of its links, and the weight of a cycle basis is the sum of the weights of its

cycles. We simply consider each link has the same weight, which equals to 1. Let 𝑇 be any

spanning forest of 𝐺, and let 𝑙1, ⋅ ⋅ ⋅ , 𝑙𝑀 be the links of 𝐺 ∖𝑇 in some arbitrary but fixed

order. Note that the cyclomatic number 𝑀 is exactly the dimension of the cycle space.

The algorithm below computes the cycles of an MCB and their witness. A witness 𝒮 of a

cycle 𝑍 is a subset of 𝑙1, ⋅ ⋅ ⋅ , 𝑙𝑀 which will prove that 𝑍 belongs to the MCB. Both cycles

and witnesses are vectors in the space 0, 1. < 𝑍,𝒮 > stands for the standard inner product

of vectors 𝑍 and 𝒮. We observe that < 𝑍,𝒮 >= 1 if and only if the cardinality of the

intersection of the two link set is odd. Finally, adding two vectors 𝑍 and 𝒮 is the same as

the symmetric difference of the two link sets. The algorithm gives a full description, and

the symbol
⊕

denotes the symmetric difference2. The algorithm in phase 𝑖 has two parts,

one is the computation of the cycle 𝑍𝑖 and the second part is the update of the sets 𝒮𝑗 for

𝑗 > 𝑖. Note that updating the sets 𝒮𝑗 for 𝑗 > 𝑖 is nothing more than maintaining a basis

𝒮𝑖+1, ⋅ ⋅ ⋅ ,𝒮𝑀 of the subspace orthogonal to 𝑍1, ⋅ ⋅ ⋅ , 𝑍𝑖.

Algorithm 9 Construct a MCB

Require: Set 𝒮𝑖 = 𝑙𝑖 for all 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀, 𝑎𝑛𝑑 𝑀 = 𝑐𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐𝑛𝑢𝑚𝑏𝑒𝑟
for 𝑖 = 1 to 𝑀 do

Find 𝑍𝑖 as the shortest cycle in 𝒮 s.t. < 𝑍𝑖,𝒮𝑖 >= 1
for 𝑗 = 𝑖 + 1 to 𝑀 do

if < 𝑍𝑖,𝒮𝑗 >= 1 then
𝒮𝑗 = 𝒮𝑗

⊕𝒮𝑖
end if

end for
end for

9.3.2 Examples

Figure 9.2 is an example of a small network consisting of cycles of different lengths. Intu-

itively, it has 4 triangles (3-cycles), 1 quadrangle (4-cycle) and couples of 5-cycles, 6-cycles,

etc, all of which form the cycle space for the network. We also observe that the cyclomatic

2In mathematics, the symmetric difference of two sets is the set of elements which are in one of the
sets, but not in both. This operation is the set-theoretic kin of the exclusive disjunction (XOR operation) in
Boolean logic.
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Link Node - Node
l1 A − B
l2 A − H
l3 B − E
l4 E − F
l5 E − H
l6 B − F
l7 F − C
l8 F − G
l9 C − G
l10 D − G
l11 G − H
l12 D − H

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12

S1 1
S2 1
S3 1
S4 1
S5 1
S4

∗ 1 1
Z1 1 1 1
Z2 1 1 1
Z3 1 1 1
Z4 1 1 1
Z5 1 1 1 1

Figure 9.2: The vectors of the cycle basis and the witness for the network in the figure.
And 𝒮4∗ is an update witness for 𝒮4.

number of the network is 5, as 𝑀(𝐺) = 𝐿 − 𝑁 + 𝐾 = 12 − 8 + 1 = 5. Hence the cycle

basis of this network is composed of 5 independent simplest cycles, which are from the cycle

space and also can be used to describe all the other cycles in the cycle space. The table in

figure 9.2 demonstrates the process of constructing the minimum cycle basis. The witnesses

can be obtained from the minimum spanning tree algorithm. Every witness belongs to

one of cycles in cycle basis, so 5 witnesses are corresponding to 5 cycles in the cycle basis

separately. In the table, 𝒮4∗ is an update witness for 𝒮4, where 𝒮4∗ is orthogonal to the

accepted witnesses. Hence, from the table, the cycle basis 𝑍 =< 𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5 > of the

network in figure 9.2 are the cycles < 𝐴𝐸𝐻 >, < 𝐵𝐸𝐹 >, < 𝐶𝐹𝐺 >, < 𝐷𝐺𝐻 > and

< 𝐸𝐹𝐺𝐻 >.
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9.3.3 An example of the real world network

We also computed the minimum cycle basis in the AS-Internet skeleton network. As de-

forestation procedure generates short cycles (i.e. all possible triangles) in the AS skeleton

network, from which the cycle basis can be easily extracted. Among 12236 cycles in the

cycle basis, there are 11516 triangles (94.12%) and 179 quadrangles, which shows the tran-

sitivity of AS skeleton network is very high. This shows that the AS skeleton gives a very

compact representation of the AS graph, from which the minimum cycle basis can be easily

extracted, and hence many relevant applications can be applied.

9.4 Conclusion

Commonly, the structure of large complex networks is characterized using statistical mea-

sures. These measures can give a good description of the network connectivity but they do

not explore the interaction between the dynamical process and network connectivity. De-

forestation algorithms produce the skeleton network consisting of short cycles only, which

provides us a different way of studying network structure and dynamics. The short cycles

existing in the skeleton network can be used as an indicator of network transitivity and re-

siliency, and also can easily form a set of independent simplest cycles, called the cycle basis.

This fundamental diversity space motivates a wide range of application in the context of

telecommunication networks: A novel resilient recursive routing (𝑅3) protocol, visualisation

of a hierarchical topological abstraction of large networks, and the methods of community

structure identification.
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Conclusion & Future Work

This thesis has presented a novel method, the deforestation algorithm, to simplify very

large networks. The deforestation is general and it conserves the same number of alternative

paths between all the sources and destinations, hence that the the network’s resilience (path

diversity) is retained. However the deforestation does not give a unique simplification of

the network; it depends on the order in which the nodes were contracted. We have taken

advantage of this property and extended the deforestation algorithm to include several

restrictions when doing the simplification, for example the direction of the links and the

flow through the links.

In the thesis we also show that the properties of the original network, like the density of

connections, determines the properties of the super-nodes and the skeleton network. Once

the deforestation is applied, other methods developed for complex network can be used

in the skeleton network to obtain relevant information. The deforestation process divides

the original network into communities, which are defined by having only one path between

the members of the community. However, the skeleton networks can also be large, so it is

desirable to simplify the skeleton networks further to split into different communities. In this

case a community is defined as a collection of nodes that are more densely connected than

expected. We show that the splitting of the skeleton network reflect the characteristics that

there are relatively few alternative paths between communities. Other property that can be
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easily extracted from the skeleton network is the cycle basis, which can suffice in describing

the cycle structure of complex network. This cycle basis has been used for adaptive routing

(𝑅3 protocol) and visualisation of large complex graphs.

We have tested the new algorithm, the deforestation algorithm on the Autonomous System

(AS) level and Internet Protocol address (IPA) level of the Internet. For both the AS and

IPA network, the skeleton graph has approximately 50% fewer nodes than the original net-

work. The AS skeleton network inherits the characteristics of its core due to the correlation

of the interconnectivity of the high degree nodes. However, for the IPA network the high

degree nodes are sparsely connected in contrast with its skeleton network which are tightly

connected. We also notice that if we contracted the AS network considering the weights of

the links, we obtain a more balanced reduction of the network, where the weights between

the super–nodes tend to be more homogeneous. From the community detection algorithm

we find that the skeleton of the AS network forms a tight community and always has a core

set of nodes that remain well connected under continuous removal. However the skeleton

of the IPA network is different; it is split into two parts. This suggests that there is a

bottleneck in the number of alternative routes within IPA network.

We also show that deforestation algorithm can be used to simplify a medium scale network

with traffic directions and traffic demand matrix. The network simplification takes into

consideration the traffic constraints, and that some nodes represent sources or sinks of

traffic and other nodes as queues.

Based on the above, the deforestation algorithm is general, also simple, fast and flexible. It

is a promising method for analysing large-scale complex network, and has a wide range of

applications and extensions.
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relationship between cycles as a bipartite graph
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B
D A B C D

C1 C2 C3 C4 C5

Further simplification

A B C D

C1 C2 C3 C4 C5

X D

C C4 C5

Figure 10.1: The relationship between the cycles expanding the network and their common
links (left) are represented with a bipartite graph (right).

10.1 Further work

10.1.1 Using cycle basis to detect network hierarchies

. One aspect of this work that could be extended is to divide the simplified network into

different hierarchies by using the cycle basis. Consider all the cycles of the basis and the

links that are shared by these cycles. Build a new graph where there are two kind of nodes,

the cycles of the original network and links shared by these cycles. A link in this new graph

represents that at least two cycles share a link of the original networks (see figure 10.1).

This gives a bipartite graph which relates cycles and links. This bipartite graph can be split

into hierarchies depending on the connectivity of the nodes and the weights of the nodes

representing the links of the original network. In figure 10.1 circuit 𝐶5 can be split from

the rest of the network as it does not shares a link with the other cycles. The rest of the

network can be considered as divided into two hierarchies, cycles 𝐶1, 𝐶2, and 𝐶3 belong

to one hierarchy defined by a tighter connectivity between the cycles. Cycle 𝐶4 is weakly

connected to the other cycles (also see figure 10.1).
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(a) (b)

(c) (d)

Figure 10.2: Abstraction of cycle of cycles into elementary units of diversity. And a simple
network is applied by the abstraction and deforestation recursively till no more cycles can
be abstracted.

10.1.2 Cycle of cycles for visualisation and routing mechanism.

The skeleton network can determine a cycle basis (see chapter 9), e.g. minimal cycle ba-

sis. We can abstract all cycles in the basis as a dot node and join the dot nodes where

adjacent cycles share a common link. An abstraction of the skeleton network has obtained

(see figure 10.2). Then we apply the deforestation algorithm and the abstraction method

recursively till no cycles can be abstracted. An example of a simple network is shown in

figure 10.2. From the figure, we noticed that every level of abstraction summarises path

diversity information for the previous level, and the abstraction of cycle of cycles can be

aggregated into elementary units of diversity. It is beneficial for visualisation very large

networks and also agglomeration path diversity for routing at each level.



Appendix A

Graph Isomorphism

Given two networks, it is difficult and also interesting to discover if they are same or

not. In graph theory, it is called isomorphism. The exact isomorphism and the sub-graph

isomorphism detection play a key role and are used in a variety of real applications, such

as chemistry, information retrieval, networking and linguistics, etc. Two isomorphic graphs

must have exactly the same set of parameters as given in figure 𝐴.2. In figure 𝐴.1, two

graphs, 𝐺 = (𝑁,𝐿) and 𝐻 = (𝑉,𝐸), are isomorphic (normally written in the form 𝐺 = 𝐻)

if there are bijections 𝑔 : 𝑁 → 𝑉 and ℎ : 𝐿→ 𝐸 [62, 65].

N1
V1

N1

V4V5N2 N3 V4V5
E5

N4 N5L5
V2 V3

Graph G Graph H

Figure A.1: A pair of isomorphic graphs

127



N d t Li k tNodes sets Links sets

N1 V1 L1 E1
g h

N2

N3

V2

V3

L2

L3

E2

E3N3

N4

V3

V4

L3

L4

E3

E4

N5 V5 L5 E5

Graph G Graph HGraph GGraph Hp ppp

Figure A.2: One to one correspondence of nodes and links for graph 𝐺 and 𝐻

We often identify that two graphs are not isomorphic by showing that invariants under

isomorphism. The invariants used for comparison are as follows:

1. Number of nodes should be same in both matrices.

2. Number of links in both matrices should be equal.

3. In both of the matrices the nodes having same degree are grouped to form classes.

The number of classes should be equal.

4. Total degree of matrices should be same.

After the above invariants are checked, if any of these quantities differ in two graphs,

then the two graphs are not isomorphic. However, when these invariants are the same,

it does not necessarily means that the two graphs are isomorphic. It is often difficult to

determine whether two simple graphs are isomorphic or not. There are 𝑁 ! possible one-to-

one correspondences between the node sets of two simple graphs with n nodes. Testing each

such correspondence to see whether it preserves adjacency and non-adjacency is impractical

if 𝑁 is large. Thus an algorithm guaranteeing a solution in running time proportional to a

constant power of 𝑁 - the number of nodes, is desirable, but no such algorithm has been

discovered for determining if two arbitrary graphs are isomorphic.
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Floyd Algorithm

The Floyd algorithm (also variously known as Floyd-Warshall algorithm, the Roy-Floyd

algorithm, or the WFI algorithm) is named after Robert Floyd and Stephen Warshall [24]; is

an algorithm for efficiently and simultaneously find the shortest paths (i.e. graph geodesics)

between every pair of nodes in a weighted and potentially directed graph. A single execution

of the algorithm will find the shortest paths between all pairs of nodes.

Given a graph 𝐺 = (𝑁,𝐿), which comprises a set of N nodes {𝑛𝑖}, and a set of 𝐿 ⊆ 𝑁 ∗𝑁
links connecting nodes in 𝑁 . In a directed graph, each link also has a direction, so links

(𝑛𝑖, 𝑛𝑗) and (𝑛𝑗, 𝑛𝑖), 𝑗 ∕= 𝑖, are distinct. A graph can be represented as an adjacency matrix

𝐴 in which each element (𝑖, 𝑗) represents the link between element 𝑖 and 𝑗. 𝐴𝑖𝑗 if there is

an link (𝑛𝑖, 𝑛𝑗); otherwise, 𝐴𝑖𝑗 = 0. A path from node 𝑛𝑖 to node 𝑛𝑗 is a sequence of links

(𝑛𝑖, 𝑛𝑘), (𝑛𝑘, 𝑛𝑚), ⋅ ⋅ ⋅ , (𝑛𝑡, 𝑛𝑗) from 𝐿 in which no nodes appears more than once.

Algorithm. Floyd’s all-pair shortest-path algorithm is given as below, see pseudo code. It

take as input an 𝑁 ∗𝑁 adjacency matrix 𝐴 and compute an 𝑁 ∗𝑁 matrix 𝐷, with 𝐷𝑖𝑗 the

length of the shortest path from 𝑛𝑖 to 𝑛𝑗, or distinguished value (∞) if there is no path.

The algorithm derives the matrix 𝐷 in 𝑁 steps, constructing at each step 𝑘 an interme-

diate matrix 𝐼(𝑘) containing the best-known shortest distance between each pair of nodes.

Initially, each 𝐼𝑖𝑗(0) is set to the length of the link (𝑛𝑖, 𝑛𝑗), if the link exists, and to ∞
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Algorithm 10 Floyd(𝐺)

Require: Nodes 𝑁 , Links 𝐿
𝐼𝑖𝑗(0)← 0 {if 𝑖 = 𝑗}
𝐼𝑖𝑗(0)← 𝑙𝑒𝑛𝑔𝑡ℎ((𝑛𝑖, 𝑛𝑗)) {if link exists and 𝑖 ∕= 𝑗}
𝐼𝑖𝑗(0)←∞ {otherwise}
for 𝑘 = 0 to 𝑁 − 1 do

for 𝑖 = 0 to 𝑁 − 1 do
for 𝑗 = 0 to 𝑁 − 1 do
𝐼𝑖𝑗(𝑘 + 1) = 𝑚𝑖𝑛(𝐼𝑖𝑗(𝑘), 𝐼𝑖𝑘(𝑘) + 𝐼𝑘𝑗(𝑘))

end for
end for

end for
D=I(N)

otherwise. The 𝑘𝑡ℎ step of the algorithm considers each 𝐼𝑖𝑗 in turn and determines whether

the best-known path from 𝑛𝑖 to 𝑛𝑗 is longer than the combined lengths of the best-known

paths from 𝑛𝑖 to 𝑛𝑘 and from 𝑛𝑘 to 𝑛𝑗. If so, the entry 𝐼𝑖𝑗 is updated to reflected the

shortest path. This comparison operation is performed a total of 𝑁3 times.
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