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Abstract

In this thesis we investigate astrophysical phenomena which arise in models with compact
extra dimensions, focussing on the cosmological consequences of strings which wrap cycles
in the internal space. Embedding our strings in the Klebanov-Strassler geometry we develop
a concrete model of cosmic necklaces and investigate the formation of primordial black holes
and dark matter relics from necklace collapse. Using data from the EGRET cosmic ray ex-
periment, we place bounds on the parameters which define the warped deformed conifold,
including the value of the warp factor and the radius of the compact space. Chapter 1
provides a brief overview, while background material is included in chapter 2, and these
results are presented in chapter 3.

In chapter 4 we analyse the dynamics of wound strings with angular momentum in the
compact dimensions and determine the equation of motion for a self-oscillating loop. Fi-
nally, in chapter 5 we suggest a field-theoretic dual for wound-string necklaces based on a
modification of the standard Abelian-Higgs model. After introducing spatially-dependent
couplings for the scalar and vector fields, we propose a static, non-cylindrically symmetric
solution of the resulting field equations which describes a “pinched” string with neigh-
bouring vortex and anti-vortex regions. The similarities between pinched strings and the
four-dimensional appearance of wound-string states are then examined and a correspon-
dence between field theory and string theory parameters is suggested.

We find that the topological winding number of the field theory vortex may be expressed in
terms of parameters which define the winding of the dual string around the compact space.
According to this relation, the topological charge is equal to unity when the string has zero
windings, and the standard Nielsen-Olesen duality is recovered in this limit. One key result
of this work is an estimate of the Higgs boson mass (at critical coupling) in terms of the
parameters which define the Klebanov-Strassler geometry and which, in principle, may be
constrained by cosmological observations.
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CHAPTER 1

GENERAL INTRODUCTION

In this thesis we investigate astrophysical phenomena which may arise in models with com-
pact extra dimensions, focussing in particular on the cosmological consequences of string-like
defects which wrap cycles in the internal space. For concreteness, we choose the Klebanov-
Strassler (KS) model of the warped deformed conifold in which to embed our strings [5].
The KS background represents one of the best understood compactifications of type IIB
string theory and is of particular cosmological interest because it provides a natural mech-
anism for brane inflation. In the most general models, inflation ends when the D3-brane
of our universe collides with D3-branes at the low energy or “Infra-red” (IR) tip of the
throat. One consequence of this scenario is the copious production of defects at the end of
the inflationary epoch, including large numbers of F - and D-string bound states which lie
at the tip. We consider two separate winding formation mechanisms, the so-called random
walk and velocity-correlations regimes, and argue that the first of these leads naturally to
the creation of static cosmic string loops, while the second leads to the creation of loops
with non-zero angular momentum in the compact directions.

As the manifold at the IR tip is simply connected, the question of stability arises. In
the static case we demonstrate that the presence of a lifting potential in the compact space
traps the windings, giving rise to loops with step-like winding configurations, referred to
in the literature as cosmic necklaces. From a four-dimensional perspective the windings
appear as a series of monopoles or “beads” connected by ordinary sections of string. Su-
perficially these resemble the standard string-monopole networks found in field-theoretic
models but their behaviour is, in many ways, fundamentally different. In stark contrast to
previous predictions based on field theory defects, we find that the gravitational collapse of
necklaces leads to the formation of primordial black holes (PBHs) during a “window” in the
early universe, followed by the formation of Planck-scale relics in the scaling regime, which
may act as dark matter (DM) candidates [6, 7]. The length of this window is extremely
sensistive to the KS warp factor and may be small, or comparable to the cosmological time-
scale, depending on its value.

The root cause of this difference appears to be the existence of a time-dependent bead
mass in the necklace model as opposed to the constant bead mass of true monopoles con-
nected by strings. This arises from the time-dependence of the lifting potential and is a
somewhat unexpected result. Previous investigations of string necklaces assumed the ex-
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istence of a constant potential and hence a constant bead mass, though these were based
solely on generic arguments [6]-[9]. Our model is the first explicit realisation of necklace
formation in string theory and shows that these assumptions must be modified, at least for
the class of backgrounds we consider.

This raises two interesting possibilities: Either the formation of necklace-like objects is
possible only in string theory, or there exists a previously unknown solution in a dual four-
dimensional gauge theory which is equivalent to the objects we have described. 1 Using
data from the EGRET cosmic ray experiment [12]-[14], which provides a bound for the
PBH density of the universe, we are also able to constrain the underlying string-theoretic
parameters which define the KS geometry at the tip of the throat, namely the warp factor
a0 and the radius of the S3 which regularises the conifold, R.

In the non-static case we see that the windings are dynamically stabilised due to the pres-
ence of the angular momentum term which interacts with the string tension to influence the
dynamics of the loop. We see that it is possible for the loop to oscillate between alternate
phases of contraction and expansion or to remain stable at a constant radius, depending
on the value of a0. For a2

0 < 1/2 the loop undergoes an initial phase of expansion before
recollapsing but for a2

0 > 1/2 the loop initially contracts. The critical case corresponds to
a2

0 = 1/2. The period of oscillation is also determined by the ratio of the initial loop radius
to the square of the warping.

Although we do not present a detailed analysis of the cosmological effects of these ob-
jects, we note that, in principle, such oscillations should give rise to distinct gravitational
wave (GW) signatures, the future detection of which could provide indirect evidence for the
existence of extra dimensions.

In the final part of this thesis we investigate the relationship between wound strings in
type IIB string theory and topological defect strings. We propose a modification of the
standard Abelian-Higgs model which introduces spatial dependence into the scalar and vec-
tor field couplings, such that

√
λ→

√
λ
eff

(z) and e→ eeff (z) in the Lorentz frame of the
string. This leads naturally to an ansatz for a static, non-cylindrically symmetric solution of
the resulting field equations, since these couplings imply the existence of spatial-dependence
in the corresponding boson masses and their associated Compton wavelengths (which set

1A third possibility arises, whereby topological defect strings in gauge theory models with extra dimen-
sions wrap windings in the compact space, rather than F/D-string bound states. However, the existence of
extra dimensions is optional in field theories, whereas string theory requires a ten or eleven-dimensional space-
time manifold to ensure mathematical consistency [10, 11]. Therefore, although the existence of necklace-like
objects does not necessarily provide evidence for string theory, any observations which favour a compact-
dimensional model may be interpreted as lending support to the string paradigm. We will return to the
interesting question of wound gauge field strings in greater detail in our discussion of “model mixing” at the
end of chapter 5.
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the length scales for the string core radii).

The field configuration describes a “pinch” which interpolates between degenerate vac-
uum states along the string, labelled by equal but opposite winding numbers ±|n|. This
corresponds to a vortex which shrinks until it reaches the Planck scale lp and re-emerges
as an anti-vortex, resulting in the formation of a bead pair, with one bead either side of
the intersection. The solution is then topologically stable. The key assumption is that
quantities such as phase and winding number, along with those which depend on them such
as the magnetic flux of the gauge field, become undefined at the Planck scale so that one
region may be joined to the next via a Planck-sized segment of “neutral” string. Although
this necessarily involves several further, and admittedly speculative, assumptions about the
Planck-scale physics of vortices, our conclusions are important because the effective models
may be matched smoothly onto existing well known solutions valid at larger scales.

The underyling physics of this solution is, in principle, scale-independent. In both the stan-
dard and modified Abelian-Higgs models the phase θ acts as an order parameter, changes
in which (we suggest) are defined over a minimum characteristic scale ∼ lp. Any field
theory, or effective field theory model (such as a condensed matter system), which allows
symmetry-breaking phase transitions to occur and which admits stable vortex solutions must
be endowed with some form of order parameter, which may be defined over a characteristic
scale much larger than lp. The size of the “neutral string” segment between neighbouring
vortex/anti-vortex regions would then be determined by the characteristic scale of the or-
der parameter in question, though we note that some analogue of the spatially-dependent
field couplings would also be required, in order to generate a non-cylindrical vortex solution.

This work is motivated by the results presented in chapters 3 and 4. As mentioned previ-
ously, there is no known field theory analogue of necklaces formed from extra-dimensional
windings. In particular, there is no known way to produce string-monopole networks with
time-varying bead masses. The question of whether a dual field theory model exists is
important because, if necklace-type objects are string-specific, their predicted effects on ob-
servable cosmological parameters could be used to obtain experimental evidence in favour
of string theory.

However, we propose the pinched string solution as a dual necklace model and argue that a
time-dependent bead mass may be obtained. Similarities between the pinched string and the
effective four-dimensional appearance of wound strings are discussed and a correspondence
between Higgs model and string theory parameters is suggested. In particular, we equate
the radius of the defect string (at critical coupling), rs ≈ (

√
λη)−1 = rv ≈ (

√
2eη)−1 = rc,

with the radius of the the compact space, R. This allows us to interpret the effective cou-
plings

√
λ
eff

(z) and eeff (z) in terms of the effective radius of the windings Reff (z). In

16



the KS model, R is proportional to the square root of the string coupling
√
gs, so that

the wound-string embedding generates an “effective” coupling geffs (z), which may also be
expressed in terms of field-theoretic parameters. Hence the (somewhat bizarre) phenomeno-
logical device introduced to obtain the pinched string solution admits a relatively natural
interpretation in terms of the dual string picture.

In addition to equating rc and R, we draw correspondences between string theory parame-
ters and the symmetry-breaking energy scale η and topological winding number |n|. These
suggest that the pinched string solution represents a generalisation of the Nielsen-Olesen
vortex since we recover the standard n = ±1 duality for a string in flat space, proposed in
[15], in the limit that the string becomes unwound. An unexpected implication of this work
is that it casts doubt on the proposal that wound-string relics may be viable DM candi-
dates, as suggested in some of the literature (see [6]-[9] and [16]), since the dual defect string
necessarily includes a gauge field vortex, which implies that it may emit and absorb the
associated bosons. In the Abelain-Higgs model, these bosons resemble photons (i.e., they
are spin-1) with non-zero mass. The study of wound-string interactions and their associated
duals, with particular focus on electromagnetic (EM), or similar gauge field emission, may
therefore be a useful avenue for future research.

Finally, perhaps the most interesting result is an estimate of the mass of the toy Abelian-
Higgs model bosons (at critical coupling) in terms of the KS model parameters. In princi-
ple, these may be constrained using a number of cosmological observations, including CMB
anisotropy and power-spectrum data, constraints from baryogenesis and large-scale struc-
ture (LSS) formation and the extragalactic gamma-ray flux, as in chapter 3. This analysis
also suggests that it may be possible to construct dualities between defects formed in more
complex (and more realistic) non-Abelian gauge theories and string species formed in other
string compactification schemes. We may imagine equating field theory and string theory
parameters in these models and constraining the former via cosmological bounds on the
latter. Ideally, one could even hope to infer bounds on the standard model Higgs mass from
cosmological data, using models containing strings.

Although an analysis of all these possibilities is clearly beyond the scope of this thesis,
the work presented here provides a useful contribution to the increasing body of literature
which aims to probe the structure of extra dimensions (if they exist) and the phenomenology
of the early universe using cosmic strings.

1.0.1 A note on additional work

As part of my PhD, I have also investigated astrophysical phenomena in models with large
extra dimensions, focussing on gravitational collapse in the Randall-Sundrum brane-world.
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While this work was carried out by myself and Prof. Harko at the University of Hong Kong,
it was in part supported by my STFC studentship and undertaken while I was a registered
PhD student at Queen Mary, University of London.

My original plan was for this work to be included in this thesis and for it to form a counter-
part to the analysis of phenomenology in models with compact internal manifolds. However,
due to space limitations, it was necessary to omit these results, so a brief summary is given
below.

Following the Shiromizu-Maeda-Sasaki formulation [17, 18] of the Randall-Sundrum type II
braneworld [19, 20], we solved the field equations for the spherically symmetric collapse of a
null fluid described by the barotropic and polytropic equations of state [21], as well as for a
Hagedorn fluid [22, 23] and for strange quark matter described by the so-called “bag” model
(where the bag constant is estimated using first order QCD calculations) [24]. The general
class of spacetimes which correspond to this process was found to be characterised by two
arbitrary functions of the advanced Eddington time coordinate, which determine both the
initial (generally inhomogeneous) distribution of matter and the time-dependent dynamics
of the collapse. Using natural ansatz choices for these functions, the causal structure of the
resulting singularities was determined for each fluid.

In each case, the number and positions of the horizons were found to depend on the pa-
rameters which determine the equation of state, suggesting that brane-world models may
give rise to black holes with “null fluid hair” [25]-[27], that is, to singularities with causal
structures which retain information about the process of collapse leading to their formation.
These results suggest that the No Hair Theorems [28, 29] formulated in four-dimensional
general relativity may not extend to higher-dimensional brane-worlds (see [30, 31] for re-
lated articles). The possibility of naked singularity formation at future null infinity was
also investigated and its implications for the Cosmic Censureship Conjecture [32]-[37] were
briefly discussed. Finally, the implications of this work for the so-called Information Loss
Paradox [38]-[42], in which the condition for unitary evolution of a quantum mechanical
system is apparently broken, were also considered. A full account of this work is given in
[4].
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CHAPTER 2

BACKGROUND: PRIMORDIAL BLACK

HOLES, COSMIC STRINGS, EXTRA

DIMENSIONS AND COSMIC NECKLACES

2.1 Primordial black holes - history and overview

The term primordial black hole (PBH) was first introduced to describe black holes which
may have formed from the gravitational collapse of overdense regions in the early universe
[43]-[45]. The extremely high cosmological density during the first few moments of the big
bang meant that even small-scale fluctuations could create regions in which gravitational
attraction was able to overcome the supporting radiation pressure. In pre-inflationary mod-
els the existence of large primordial inhomogeneities was simply assumed, though bounds
resulting from the cosmological consequences of PBHs could then be used to constrain the
perturbation spectrum [46]-[48].

In a simplistic analysis it is necessary to assume that the overdensities are spherically
symmetric regions larger than the Jeans length λJ (the wavelength below which stable os-
cillations rather than gravitational collapse will occur), but smaller than the horizon size
[49], as perturbations on scales larger than the horizon would collapse to form separate,
closed universes [45]. Here the Jeans length is simply

√
γ times the horizon distance,

λJ(t) = cs(t)
(

π

Gρ(t)

) 1
2

∼ √γct (2.1)

where cs denotes the speed of sound, G is the (four-dimensional) Newton constant and γ is
the constant of proportionality in the equation of state, p = γρ (0 < γ < 1).

Combining these two considerations has two important consequences: first, that PBHs
formed from the collapse of inhomogeneities should have a mass of the order of the horizon
mass

MH(t) ∼ c3t

G
; (2.2)

and second, that the fractional overdensity at the horizon epoch δ must satisfy δ > γ.
Assuming the primordial density fluctuations to be Gaussian, the fraction of regions of
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2.1. PRIMORDIAL BLACK HOLES - HISTORY AND OVERVIEW

mass MH which undergo gravitational collapse is given by

β(MH) ∼ ε(MH) exp
(
− γ2

2ε2(MH)

)
(2.3)

where ε(MH) is the root-mean-square of the fluctuation amplitude at the time correspond-
ing to the horizon mass MH . Assuming also that the power spectrum of the fluctuations is
Harrison-Zeldovich (scale-invariant), we see that PBHs formed in this manner will have an
extremely extended mass spectrum. Those formed at the Planck time (tp ∼ 10−34s) have a
mass of the order of the Planck mass (mp ∼ 104g), whereas those formed at, for example,
t ∼ 1s have masses of order 105 M�, comparable to the mass of the supermassive black
holes thought to reside in the centres of galaxies [50].

Using (2.3) and the expression for the horizon mass (2.2), it is possible work out the num-
ber density of PBHs as a function of time and hence the mass-spectrum, which is given by
equation (2.4).

dnPBH
dM

= (α− 2)
(
M

M∗

)−α
M−2
∗ ΩPBH(M)ρc(M) (2.4)

Here M∗ ∼ 1015g is the current mass-spectrum cut-off due to Hawking evaporation [51]-[55],
ΩPBH is the total PBH density in units of the critical density ρc and

α =
1 + 3γ
1 + γ

+ 1. (2.5)

This implies that the density of PBHs with masses greater than M scales as M−
1
2 , so that,

although the masses of individual PBHs may vary over an incredibly large range, most of
the total mass formed from collapsing scale-invariant perturbations would be contained in
the smallest ones.

This is significant as we would expect the Hawking radiation from low-mass PBHs to con-
tribute to both the extragalactic gamma-ray background flux and the galactic gamma-ray
flux, if some are clumped in galaxy halos. It is highly likely that the PBHs exhibit some
degree of clumping as those with masses M ≥ 1015g are dynamically cold at the present
epoch and even those of mass M ∼ 1015g will have been cold throughout the process of
galaxy formation. PBHs are therefore viable cold dark matter (CDM) candidates and no
constraints exist excluding them in either the sublunar mass range (1020g < M < 1026g)
[56]-[58] or intermediate mass range (102M� < 104M�) [59, 60]. However, the tightest
constraints on the cosmological density of PBHs across all mass ranges (excluding a small
range ∼ 1013 − 1014g in which the damping of CMB anisotropies dominates) come from
the extragalactic photon background and from the effects of their evaporations on big bang
nucleosynthesis (BBN) [63].
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2.1. PRIMORDIAL BLACK HOLES - HISTORY AND OVERVIEW

Hawking’s radiation formula [51] shows that black holes radiate with a temperature

TBH =
~c3

8πGMkB
∼ 107

(
M

M�

)−1

K, (2.6)

and hence that they evaporate completely on a timescale

τ(M) ∼ ~c4

G2M3
∼ 1064

(
M

M�

)3

yr, (2.7)

Applying this to the mass spectrum above, we see that the smaller black holes contribute
the most energy to gamma-ray flux, so that the integrated emission may be approximated
by its lower bound at M∗ ∼ 1015g. PBHs with masses of this order are expected to produce
gamma-rays with peak energy of order 100MeV at the current epoch [61] and comparing
the expected emission with the observed flux in this range implies

ΩPBH(t0) < 10−8 (2.8)

which is equivalent to nPBH(t0) < 104 pc−3. Although many other models of PBH forma-
tion have now been studied (see [63, 64] and references therein), in most the masses are
concentrated in a narrow range centred on the value given in equation (2.2), so that the
bound (2.8) remains valid.

In particular, since the inception of the inflationary paradigm [65, 66] the quantum fluc-
tuations predicted by various inflationary scenarios have been studied as a means of pro-
ducing a primordial perturbation spectrum. In some of these scenarios the fluctuation
amplitude decreases as the characteristic scale of the fluctuation increases, so that PBHs
form shortly after reheating (see [67]-[68], plus additional references within the more recent
articles [69, 70]). In others the power spectrum contains a peak (resulting in a peak in
the function dnPBH/M) or exhibits a running spectral index (see [57]-[59], plus references
within [71]).

Whatever the underlying spectrum of density perturbations, the cosmological effects of
PBHs may be grouped into three categories, determined by their mass: As already men-
tioned, PBHs with masses M > 1015g would survive today to contribute to the mass-density
within the galactic halo. Large PBHs might also influence the development of LSS [72]-
[74], seed supermassive black holes [75]-[76] and generate observable GW signitures [77]-
[79]. PBHs with mass M ∼ 1015g would contribute to both the galactic and extragalactic
gamma-ray flux, but may also generate gamma-ray and radio bursts [80]-[82] and the an-
nihilation line radiation emitted from the centre of the galaxy [83, 84]. Lastly, PBHs with
masses M < 1015g will have completely evaporated by the present epoch, but may have
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influenced processes in the early universe, such as entropy generation [85], baryogenesis
[86]-[89], neutrino generation [84, 90] and reionisation [91, 92]. It has also been proposed
that PBHs may swallow magnetic monopoles (providing a possible non-inflationary solution
to the monopole problem) and puncture domain walls [93]-[95]. If black hole evaporation
leads to the production of Planck-mass relics, as suggested by some authors (see [57, 68]
and [96]-[99]), these may also contribute to the present CDM density. However, even if
PBHs did not cause any of these effects, or even if they never existed, it is still useful to
study them as each process outlined above is associated with an upper limit on the fraction
of the universe’s mass-density which goes into PBH production, and a corresponding limit
on primordial inhomogeneities.

Several other mechanisms have also been proposed as a means of creating PBHs. Among
these are:

• The collapse of over-densities during a temporary softening of the equation of state.
In this scenario the pressure support is spontaneously removed when the mass-energy
of the universe is channeled into the production of particles which are sufficiently
massive to behave non-relativistically at their epoch of formation [100]-[102]. This
may happen during a phase transition (for example, at the onset of the QCD era [103]-
[104]) or during slow reheating after inflation [68]. In either case, it may be shown that
the probability of PBH formation depends only upon the fraction of regions which
are sufficiently spherical to undergo collapse [49, 100] and that, for any underlying
perturbation spectrum, PBH masses are concentrated in a narrow range, associated
with the phase transistion epoch.

• The gravitational collapse of domain walls [105]. These walls must be both sufficiently
large and closed, though suitable candidates could be formed during a second order
phase transition in the vacuum state of a scalar field associated with inflation [106,
107]. The resulting PBHs would have a characteristic mass-scale corresponding to that
of a thermal phase transition under equilibrium conditions, though non-equilibrium
scenarios have also been invoked [108] and these imply an extended mass distribution
(with a fractal structure of smaller PBHs clustered around larger ones) [109].

• The collision of bubbles of broken symmetry in the early universe [110, 111]. However,
this requires the bubble formation rate to be finely tuned so that it is approximately
equal to the Hubble rate. If it is much less, bubbles are very rare and never collide,
whereas, if it is much greater, the entire universe undergoes a phase transition and
bubbles do not form at all. PBHs formed via this mechanism would also have a
characteristic mass of the order of the horizon mass at the symmetry-breaking epoch.
Those formed at the GUT epoch, at electroweak unification and at the QCD (quark-
hadron) phase transition would therefore have masses of order 103g, 1028g and M� ∼
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2.2. COSMIC STRINGS - FORMATION AND EVOLUTION

2× 1033g, respectively. The production of PBHs from bubble collisions at the end of
inflation has also been studied in [112, 113].

• The collapse of cosmic string loops. In this scenario cosmic strings are formed during
phase transitions in the early universe (see section 2.2.1 for a more detailed discussion
of this topic). String loops then “chop-off” from the resulting network and shrink
through the emission of gravitational radiation. Assuming that the network reaches a
scaling regime [114], the radius of a typical loop will be larger than the Schwarzschild
radius associated with its mass by a factor of (Gµ)−1, where µ is the string tension
(mass per unit length). However, in a small percentage of cases it is possible for the
loop to enter a configuration in which its entire mass lies within the gravitational
radius, causing it to collapse into a black hole. This process was first studied by
Hawking [115], but this initial analysis has now been extended by a number of authors
[116]-[122]. Generally, the probability of collapse depends on both µ and the string
correlation scale ξ. For a scaling network it may be shown that PBHs form with equal
probability at every epoch, resulting in an extended mass spectrum MPBH(ti) ∼ µti,
where ti is the time of loop formation.

Although it is not yet clear which, if any, of these processes took place, the study of
PBHs (or at least “mini” black holes, even if their origin was not strictly primordial) in
each of the contexts above has nevertheless enabled cosmologists to gain valuable insights.
In many cases these insights take the form of constraints, for example, on inflationary
parameters, primordial fluctuations or the cosmic string number and mass-density. The
latter mechanism, the formation of PBHs from the collapse of cosmic string loops, is of
particular relevance to this thesis and is discussed more fully in the next section.

2.2 Cosmic strings - formation and evolution

2.2.1 Formation of topological defect strings

Cosmic strings are a type of topological defect [114],[123]-[125] which may have formed dur-
ing symmetry-breaking phase transitions in the very early universe [127]-[131]. Although
there is no conclusive evidence for their existence, theories of Grand Unification (see [132]-
[134]) strongly favour the formation of zero and one-dimensional defects (i.e. strings and
monopoles). In addition, it has recently been proposed that anomolous gamma-ray bursts
at high redshifts may be interpreted as observational evidence for superconducting strings
[135]. 1

1Most cosmological gamma-ray bursts (GRBs) may be separated into two distinct classes characterised
by either long durations and soft emission spectra, or short durations and hard emission spectra, where an
observer frame time of t ∼ 2s is usually taken as the separation line (see [136] for a review). Bursts in
the first class, which generally originate in irregular galaxies undergoing intense star formation, are thought
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In quantum field theories (QFTs), particles are created and annihilated by the action of
field operators on the vacuum state of the theory. These operators correspond to gauge
field variables in the Lagrangian of the theory and become operators when the theory is
quantised. The group of gauge transformations which leave the Lagrangian invariant is
called the gauge group G and determines the particle spectrum described by the theory.
For example, standard electromagnetism is a U(1) gauge field theory and the standard
model is an SU(3)× SU(2)× U(1) gauge theory.

However, finite-temperature corrections in QFTs lead to temperature-dependent effective
potentials in the Lagrangian. This means that the field configuration can change as the po-
tential changes shape according to temperature. At high temperatures the potential terms
in realistic gauge field theories typically have one energetically favourable minimum, the
position of which determines the vacuum expectation values (VEVs) of the field operators.
At lower temperatures a new global minimum or a number of energetically favourable local
minima may occur. These may be finite or infinite in number and may be degenerate. The
temperature at which the new global minimum or new local minima become energetically
favourable is called the critical temperature Tc and marks the point of a phase transition.

Symmetry-breaking occurs when the field configuration drops into one of these new minima,
which typically reduces the gauge group of the Lagrangian to a subgroup H ⊂ G (although
it is possible to restore symmetry at low temperatures in some models [143]). The origi-
nal symmetry is said to be spontaneously broken and the vacuum state now varies, either
continuously or discontinuously, as a function of the spacetime coordinates. For example,
in one of the simplest spontaneous symmetry-breaking models, the Abelian-Higgs model,
the Langrangian for a complex scalar field φ at the top of a “Mexican hat” potential obeys
U(1) symmetry and has VEV 〈φ〉 = 0. This symmetry is broken when φ falls to bottom
of the potential and the scalar acquires a non-zero VEV such that φ = ηeiθ, where the

to be produced by type Ib/c supernovae (i.e., by the collapse of very massive stars). Bursts belonging to
the second class typically occur in nearby (early) galaxies with little star formation, and are thought to be
associated with mergers of compact binaries. However, recent observations of GRBs with highly energetic
emission spectra, typical for long duration bursts, but short emission periods (namely GRB 080913 at z=6.7
[137] and GRB 090423 and z=8.2 [138]) do not fall into either of these progenitor models. In addition,
the star formation rate (SFR) predicted on the assumption that all hard-spectrum GRBs are produced by
collapsars is too high to be in good agreement with data obtained from high redshift galaxy surveys [139].
This implies the presence of other astrophysical objects in the early universe capable of producing highly
energetic bursts, of which superconducting strings [140] may be the most plausible candidates. Such strings,
oscillating in the presence of cosmological magnetic fields, act as superconducting wires and the induced
current leads to the emission of highly beamed gamma-ray bursts from the cusp regions (see [141] for a
recent article). In the model proposed by Cheng, Yu and Harko, strong magnetic fields are assumed to
emanate from charged domain walls. They show that, using this assumtption in conjunction with known
constraints on cosmic string parameters, both the anomolous GRB results quoted above and the SFR inferred
from recent galaxy survey data (see also [142]) may be accounted for. This work holds out the possibility
that future high redshift GRB observations, corresponding to times before the epoch of star formation, may
be able to demonstrate conclusively the existence, or non-existence, of superconducting strings.
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real constant η is the radius of the S1 which defines the minimum and eiθ is the phase
factor. Physically, η has units of mass and represents the symmetry-breaking energy scale.
2 In this case the phase acts as an order parameter and the S1 is known as the vacuum
manifold - the space of degenerate vacuum states which the field may adopt after the phase
transition. This is illustrated for the Mexican hat potential V (|φ|) = λ

2 (|φ|2 − η2)2 (where
λ is the dimensionless scalar field coupling) in figure 2.1.

Figure 2.1: The Mexican hat potential for a broken U(1) symmetry group showing a de-
generate circle of minima. Taken from Vilenkin and Shellard [114].

In general the details of the symmetry-breaking process determine the vacuum manifold
M in that M = G/H. The topology of the vacuum manifold is key to the formation of
topological defects. For example, in the case of the Albelian-Higgs model, it is possible to
imagine a configuration where, as one circles a particular point in the plane, the phase θ
varies continuously between 0 ≤ θ < 2πn (n ∈ Z). Such a configuration is known as a
vortex and a continuum of vortex “slices” threading a section of three-dimensional space
forms a cosmic string, whose mass per unit length (or tension) µ is related to the symmetry-
breaking energy scale η, and the topological winding number n such that µ ∝ η2n2. This is
illustrated for an n = 1 vortex string by figures 2.2 and 2.3.

The string is topologically stable as there exists no diffeomorphism (that is, no continuous
deformation) which will map the configuration of vacuum states into a uniform or random

2Note that when 〈φ〉 = 0 the phase of the complex field is undefined and so can be set equal to zero (i.e.
θ = 0) without loss of generality. In this model, at high temperatures such that E > η, the field has enough
energy to “sit” at the top the potential (i.e. at the maximum where 〈φ〉 = 0), whereas at lower temperatures
φ rolls down the potential slope to the circle of degenerate minima.
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Figure 2.2: Field configuration for a vortex string (b). A loop in physical space enclosing
the vortex is mapped non-trivially into the degenerate circle of minima of the potential
shown in (a). For a string with winding number ±n, the circle of degenerate minima is
traversed completely either clockwise (+) or anti-clockwise (−) (by convention) |n| times
as the loop is traversed in physical space. Taken from Vilenkin and Shellard [114].

Figure 2.3: The string in three dimensions can be located by encircling it with a closed loop
L. A non-zero winding number in the phase as the loop is traversed discloses the string
within. Taken from Vilenkin and Shellard [114].
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distribution. The VEV at the centre of the vortex is still 〈φ〉 = 0 (its pre-symmetry-breaking
value) and the field at this point in space still lies at the top of the potential V (|φ|) 3 but
the VEV of the scalar field tends asymptotically to the post-symmetry-breaking value η, so
that

φn(r, θ) = ηf(r)einθ (2.9)

where f(r) is a dimensionless function with real values such that

f(r)→ 0, r → 0

f(r)→ 1, r →∞. (2.10)

One way to ensure that f is dimensionless is to rescale the r-coordinate so that it too is
dimensionless, though we will leave our discussion of the appropriate scale to use until the
end of this section.

If only the kinetic and potential terms for a complex scalar field are present in the La-
grangian of the theory, a global U(1) symmetry exists and the resulting string, described
above, is known as a global string. One, potentially unattractive, feature of global strings
is that their tension is logarithmically divergent at large and small r [114, 124]. Physically,
this problem is resolved by introducing an upper cut-off ∆ corresponding to the distance
between neighbouring strings and a lower cut-off δ corresponding to the width of the string
core, so

µ ∼ 2πη2n2ln

(
∆
δ

)
. (2.11)

On dimensional grounds, one expects δ ∼ (
√
λη)−1. However, one way to obviate the need

for taking the upper cut-off ∆ to be the inter-string distance (which is potentially very large
on cosmological scales) is to introduce a gauge field contribution. In this case the symmetry-
breaking process is similar, but the broken symmetry is now a local U(1) symmetry and
the resulting string is known as a local, or gauge string. Taken schematically, the figures
above may then represent not only the configuration of the scalar field (where the arrows
in the vortex represent the phase of the complex scalar φ) but also the vortex structure
of the gauge field, whose only non-zero component is the angular component Aθ. In order
to cancel the logarithmic contributions to the energy desnity from the scalar field at large
distances, the value of the gauge field must also be proportional to the winding number n,

3In fact, along the centre of the string the symmetry is essentially unbroken and in this respect a cosmic
string may be thought of as a line-like section of “ancient space” in which the the high temperature gauge
symmetries of the field Lagrangian and the corresponding energy-density are preserved.
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with opposite sign [114, 124]. We may then label the resulting field by 4

Anθ(r) = − n
er
α(r) (2.12)

where e is the (dimensionless) gauge coupling and α(r) is also a dimensionless function such
that

α(r)→ 0, r → 0

α(r)→ 1, r →∞ (2.13)

if we work with a rescaled r-coordinate. Note that the factor of e in the denomenator is
necessary so that the magnetic flux Φn is quantised in units of the basic quantum 2π

e [15],

Φn =
∮
B
Anθrdθ =

2πn
e

(2.14)

where the subscript B in the integral indicates the boundary at r → ∞. Hence the gauge
field also adopts a vortex configuration, with equal but opposite vorticity to the scalar field,
and the resulting tension for the gauge string is

µ = 2πη2n2ln

(
rv
rs

)
(2.15)

where rv and rs are the widths of the vector and scalar cores, respectively. Physically we
require rv ≥ rs, but both these values may be estimated directly by considering a more
detailed analysis of the behaviour of the fields. 5

The Lagrangian density for full the Abelian-Higgs model, with Aµ 6= 0, is simply the
sum of the kinetic energy and gradient energy terms for both the scalar and vector fields
(including interaction terms) and the potential. Using the (+ − −−) metric convention,
this may be written succinctly in terms of the covariant derivative Dµ as

L = DµφD
µφ− 1

4
FµνFµν −

λ

2
(|φ|2 − η2)2 (2.16)

4Here we quote the standard results given in the literature (see [15, 114, 124, 125]). In chapter 5 we
review the validity of the ansatz choice for Aθ, given in these sources, within the context of a fully covariant
approach to the Abelian-Higgs vortex. As we shall see, the expression (2.12) is not consistent with the usual
definition of the covariant derivative. We propose a fully covariant derivation of the equations of motion,
though our results do not differ substantially with those presented in this chapter, and which may be found
in the usual references.

5A subtlety arises here as may be shown that, in the so-called Bogomol’nyi limit (i.e. critical coupling
rs = rv ≡

√
λ/
√

2e = 1), the tension of a stable gauge string is µ = 2πη2|n|. However, we postpone
discussion of this point until chapter 5, when the tension of the Abelian-Higgs string will be dealt with in
detail.
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where
Dµ = ∂µ + ieAµ (2.17)

and Fµν is the usual EM field tensor,

Fµν = ∂µAν − ∂νAµ. (2.18)

This is manifestly invariant under the group of U(1) gauge (i.e. local) transformations,

φ(x)→ eiΛ(x)φ(x)

Aµ(x)→ Aµ(x) + e−1∂µΛ(x) (2.19)

where x = x0, x1, x2... are the spacetime coordinates and Λ(x) ∈ R, even though the under-
lying vacuum state after sponaneous symmetry-breaking is not.

The gauge bosons corresponding to the quantized fluctuations of both the scalar and vector
fields in the radial direction of the configuration space (in the post-symmetry-breaking field
configurations) now acquire masses, which we label ms and mv, respectively. Rewriting the
complex scalar φ in terms of two real scalars φ1 and φ2 with zero VEVs

φ = η +
1√
2

(φ1 + iφ2), (2.20)

allows us to rewrite the Lagrangian as

L =
1
2

(∂µφ1)2 − 1
2
m2
sφ

2
1 −

1
4
FµνFµν +

1
2
m2
vAµA

µ + Lint (2.21)

where

ms =
√
λη

mv =
√

2eη (2.22)

and Lint contains all cubic and higher order terms. Thus the spontaneous symmetry-
breaking does not result in the production of a massless (Goldstone) boson, as may have
been expected to result from angular fluctuations, but the corresponding degree of freedom
is absorbed into the vector field which now has three independent polarisations instead of
the usual two. We also expect the Compton wavelengths corresponding to these mass scales
to serve as good order of magnitude estimates of the radii of the scalar and vector vortex
cores, rs and rv, introduced above:

rs ≈ (ms)−1 = (
√
λη)−1

rv ≈ (mv)−1 = (
√

2eη)−1 (2.23)
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where rv > rs ≡
√
λ/
√

2e > 1 corresponds to a type II superconducing regime. The creation
of massive vector bosons is a generic feature of all Higgs field mediated symmetry-breaking
processes, although the example discussed here is the simplest, and for non-Abelian models
the number of massive bosons produced is equal to the number of unbroken symmetry
generators [114]. Returning to the question of rescaling the r-coordinate, we see that rs
and rv - which are well defined to within an order of magnitude - are natural scales to use
in redefining the scalar and vector field ansatzes, which now become

φn(Rs, θ) = ηf(Rs)einθ

Anθ(Rv) = − n
er
α(Rv) (2.24)

where

Rs =
r

rs
, Rv =

r

rv
. (2.25)

Technically, the form (2.24) is found to be most convenient when determining (and solving)
the equations of motion for the vortex configuration. Although exact solutions are not
known, approximate asymptotic and small r solutions for the scalar field of the global
string and for both the scalar and vector fields in the case of local strings may be obtained.
These solutions are used to calculate the string tension by substituting into the standard
formula

µn =
∫
rdθdr

[
|∇φ|2 +

1
2

( ~E2 + ~B2) + V (|φ|)
]
. (2.26)

which gives the results (2.11) and (2.15) quoted above. 6 The Euler-Lagrange equations for
the Abelian-Higgs model, and their solutions, will be studied extensively in chapter 5.

However, cosmic strings are not the only kind of topological defects able to form during cos-
mological phase transitions. If the vacuum manifold is disconnected, it is possible to form
domain walls - two-dimensional kink-like soliton solutions which interpolate between discon-
nected minima in the vacuum manifold and mark the transition between regions of physical
space in different degenerate vacuum states. It is also possible to form zero-dimensional
defects such as magnetic monopoles (which form generically in any phase transition which
leaves a U(1) subgroup belonging to H) and three-dimensional configurations known as
textures.7

As stated above, the type of defects which form in a given phase transition depends on
the topology of the vacuum manifold. In particular, this is determined by the structure of

6The three terms in (2.26) represent the contributions to the total energy density of the vortex caused
by the scalar field gradient, the magnetic flux and the potential, respectively.

7In theories containing extra dimensions the possibility of forming higher-dimensional textures also arises.
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its homotopy groups. The mth homotopy group πm(M = G/H) classifies distinct mappings
from the m-dimensional sphere Sm into M . If M contains disconnected components, differ-
ent types of domain walls (classified by the freely homotopic conjugacy classes of π0(M))
may be formed. If M is not simply connected, i.e. if it contains unshrinkable loops, different
types of strings (classified by the conjugacy classes of π1(M)) may form. If M is simply
connected, different types of monopoles (classified by the conjugacy classes of π2(M) may
occur. Higher dimensional textures are classified by the conjugacy classes of the third ho-
motopy group π3(M). Clearly, each string species in the Abelian-Higgs model is classified
simply by specifying the winding number n, so that π1(M = S1) = Z and each conjugacy
class contains a single element of π1(M = S1). However, for vacuum manifolds with with
non-Abelian first homotopy groups, strings must be classified by the loop automorphism
classes of π1(M) (see [114, 123]).

2.2.2 String evolution

After the initial phase transition it is believed that the cosmic strings should form a network,
with individual strings threading their way continuously through a volume of free space of
order ξ3, where ξ is the correlation length of the symmetry-breaking field [114, 123]. This
determines the characteristic scale of the string network, or equivalently the typical length
of a segment of “long” string. The energy density of the string network at any point in
time, denoted ρ∞(t), is then given by

ρ∞(t) =
µ

ξ2(t)
(2.27)

where we note that the correlation length itself is time-dependent. However, when sec-
tions of the string network collide, there is a non-zero probability that the resulting string
loop will “chop-off” from the network. For intersecting strings, specified by the elements
a, b ∈ π1(M) belonging to distinct conjugacy classes, it may be shown that there exists a
correspondence between a curve L enclosing the intersection and the class associated with
the element aba−1b−1 [114]. For Abelian groups π1(M), aba−1b−1 = I (where I is the
identity element) and the strings may simply pass through one another, as no topological
obstruction exists to prevent this. Alternatively, it is possible for the product element (ab)−1

to define a vertex from which both a and b emanate. Finally, if a = b, complete reconnec-
tion may occur where a and b “exchange partners” This is refered to as intercommutation
and is the process which results in loop formation when single strings intercommute with
themselves.

While all three of these outcomes are topologically acceptable, which process in fact oc-
curs is determined by the string dynamics [114]. For strings classified by non-Abelian
groups π1(M), aba−1b−1 = g, where in general g 6= I. In this case, the intersection of
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two such strings results in the formation of a third string, specified by the conjugacy class
associated with the element g, which stretches between a and b. However, as we will deal
mainly with Abelian strings in the course of this thesis, we now return to a discussion of
the consequences of string intercommutation.

Following the chopping off of a loop from the network, resulting from a single string inter-
commuting with itself, the loop is free to “wiggle” in free space, causing it to emit gravita-
tional radiation and shrink according to

l(t, ti) = l(ti)− ΓµG(t− ti) (2.28)

where l(ti) is the loop length at the time of formation, Γ is a constant which determines the
rate of radiative loss (determined by numerical simulation) and µ is the string tension. The
precise network dynamics are extremely complicated but an important simplifying assump-
tion can often be made which is in good agreement with more advanced simulations. In the
one-scale model [144]-[146] it is assumed that the typical size of a loop l which chops-off
from the network at ti is some significant fraction α of the horizon size.

This scaling behaviour occurs as a result of the interaction of different processes affecting
the evolution of the network: expansion due to the Hubble flow and entropic considerations
favouring the complete fragmentation of the network into separate loops (see [147]-[150]).
The two processes effectively compete to respectively increase/decrease the characteristic
scale of the network, resulting in steady-state scale-invariant evolution. The expression for
l(ti) is therefore

l(ti) = αti (2.29)

where 0 < α < 1 and numerical simulations (for a single string species in a Friedman-
Robertson-Walker (FRW) background) suggest a value for α of around 5×10−3 [114]. Note
that here we are also using natural units so that c = 1. Using these assumptions, it is
possible to compute the number density of loops of a given length l at time t in both the
radiation and matter-dominated eras,

nr(l, t) ∼
νr

t
3
2 (l + ΓGµt)

3
2

nm(l, t) ∼ νm
t2(l + ΓGµt)2

(2.30)

where νr and νm are the number of long strings per Hubble volume in each era, respectively.
These parameters are determined by the correlation length and, in the radiation era, the
characteristic size of the loops which chop off from the string network. At very early times
the string experiences a damping force due to the high background radiation density which
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also damps the evolution of the correlation length of the network according to

ξ(t) ∼ (tdt)
1
2 (2.31)

where td is the characteristic time-scale for the damping, which is generally temperature-
dependent. At later times the correlation length is expected to scale with the horizon size,
so that

ξi(t) = γit, i ∈ {r,m} (2.32)

where 0 < γi < 1. Here the γs are simply numerical constants and are not related to the
equation of state, as in section 1.1. It may be shown that they are related to the root-mean-
square velocity of the string (in each epoch)

〈
v2
i

〉
and to the measures of loop formation

efficiency ci via [114, 125]

cr =
(
1−

〈
v2
r

〉)
γr

cm =
2
3
(
1− 2

〈
v2
m

〉)
γm. (2.33)

The paramteters νr and νm are then given by

νr = gcr
√
αγ−3

r = g
√
α
(
1−

〈
v2
r

〉)
γ−2
r

νm = gcmγ
−3
m =

2
3
g
(
1−

〈
v2
m

〉)
γ−2
m , (2.34)

where g is a Lorentz factor, so that ν ∼ ξ−3 in each case, as expected. From a simplistic
analysis it is then possible to estimate the number of string loops which will, by chance,
wiggle themselves into a configuration which is sufficiently spherical and sufficiently compact
that the entire mass of the string lies within its own Schwarzschild radius. The fraction is
given approximately by

f ∼ (Gµ)2p−4 (2.35)

where p is the number of approximately straight segments of the loop [115]. Although this
analysis has been refined by numerical simulations [116, 117], it is clear that the fraction
of loops undergoing collapse to form PBHs must be extremely small and is usually taken
to be of order f ∼ 10−20. However, using equations (2.30) and (2.35), it is possible to
estimate the mass-spectrum and density of PBHs formed in this way. Current constraints
on their total density from the observed gamma-ray background at 100 MeV (taken from
the EGRET experiment [12]-[14]) are comparable to the gamma-ray constraints on PBHs
formed from cosmological density perturbations, namely ΩPBH(t0) < 10−9 [118]. Clearly,
the exact constraints on ΩPBH(t0) implied by the data depend on the underlying mass
spectrum and therefore on the mechanism(s) responsible for PBH formation. However, it
seems reasonable to assume that ΩPBH(t0) < 10−9− 10−8 gives a “ball park” upper bound
for the PBH contribution to the current mass density of the universe.
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2.2.3 String theory models: extra dimensions, cycloops and necklaces

Since the second superstring revolution 8 in the late 1990s cosmologists have become increas-
ingly interested in the phenomenological implications of string theory. Indeed, as “stringy”
effects such as the production of new types of particles and physics beyond the standard
model are only likely to occur at very high energies, the early universe may prove to be a
valuable testing ground for the theory. Much energy has therefore been devoted not only to
explaining current phenomenological paradigms, such as inflation, in terms of string theory
but also to the the study of potentially unique string phenomenology in cosmology.

An example of the latter approach is a series of papers by Avgoustidis and Shellard [16, 154],
in which they consider cosmic strings wrapping non-trivial cycles in compact extra dimen-
sions. Superstring theory requires the existence of nine spatial dimensions and one time
dimension for mathematical consistency [10, 11]. As only three spatial dimensions are ob-
served in our universe, one explanation for the apparent absence of the other six is that they
are compactified on an internal manifold too small to be observed at ordinary length/energy
scales, or those available in current particle accelerators. 9 For mathematical consistency
it is also necessary that the internal manifold belong to a class known as Calabi-Yau (CY)
manifolds, that is, Ricci-flat Kahler manifolds [157]-[160].

In [16] the authors considered an internal manifold which is not simply connected. In
their scenario the end points of the string are free to move in the extra dimensions as long
as it is connected to the cosmic string network, creating windings. However, when a string
intercommutes with the network and chops off to form a loop, these windings become topo-
logically trapped, forming an object they called a “cycloop”. The cycloop then shrinks as
it loses mass-energy through the emission of GWs, eventually forming what appears to be a
massive point-like particle from a four-dimensional perspective, that is, a type of monopole
which only interacts with the rest of the universe gravitationally and acts as a DM candidate.

In particular, Avgoustidis and Shellard proposed two cosmologically viable winding for-
mation mechanisms, the random walk and velocity-correlations regimes. In the first of
these the “end point” of the string - the point which later intersects with the network and
chops off to form a loop - undergoes continuous random motion in the compact space, prior
to loop formation. In the second, the movement of the string in the extra dimensions is

8The term “second superstring revolution” refers to the discovery of Dp-branes [151]. Polchinski [152, 153]
later showed that the p-dimensional hypersurfaces on which open strings could end were solitonic, thereby
opening up the possibility that our universe exists as a three-dimensional hypersurface (D3-brane) in a
higher-dimensional “bulk” space.

9However, there is some hope that extra-dimensional effects will be observable at future colliders. If at
least some of the directions in the internal manifold are of order 0.1mm, then the fundamental Planck mass
is reduced to the TeV scale, which will be within the reach of the Large Hadron Collider (LHC) [49, 156]
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coherent (i.e. correlated) over some time tcor, but changes direction randomly after at the
end of each coherent phase. If the velocity of the string end-point in the extra dimen-
sions vE is constant, this will result in correlated windings occuring over some length scale
ξcor ∼ vEtcor. 10 In the random walk regime, therefore, the number of windings nw(ti)
contained in a string loop of initial length l(ti) = αti is given approximately by

nw(ti) ≈
√
αωlεlti
R

(2.36)

where ωl is the total fraction of the string length present in the windings, εl < ξcor is the
step length and R is the radius of the extra dimensions. In the velocity correlations regime
the equivalent expression is [16]

nw(ti) ≈
ωlα

R
ti. (2.37)

The two scenarios are illustrated schematically in figures 2.4 and 2.5.

Figure 2.4: Winding formation in the random walk regime. The spatial structure of the
strings in the extra dimensions, which is assumed to be Brownian, can give rise to non-trivial
windings. Taken from Avgoustidis and Shellard [16].

Finally, we note that the presence of velocity-correlations is likely to lead to the pres-
ence of a non-zero angular momentum the compact space. This leaves open the possibility

10In chapters 3 and 5 we investigate the possibility of identifying the correlation length ξcor for F/D-
strings with extra-dimensional windings with the ordinary definition of the correlation length ξ which, as
stated above, is the characteristic scale of the string network (or equivalently the typical length scale of a
long string segment). In chapter 5 we will also investigate the possibility if identifying this with the length
scale over which succesive vortex slices of a topological defect string with winding number n are correlated.
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Figure 2.5: Winding formation in the velocity-correlations regime. String velocities in the
extra dimensions cannot be correlated over distances greater than the correlation length of
the network at the time of loop formation ξ(t0). Thus the endpoints of a string segment
of length ξ(t0) can be expected to have different velocities. This would tilt the string, as
shown, to produce windings. Loops which then chop off from the network, even on scales
l(ti) = αti < ξ(ti), will also contain non-trivial windings. Taken from Avgoustidis and
Shellard [16].
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of dynamical stabilisation for the windings, even for spaces with simply connected internal
manifolds - such as the KS geometry [5] - leading to the existence of “non-topological cy-
cloops”. This possibility is explored in chapter 4 but we point out here that, even in the case
of static strings wrapping a simply connected space, there exists an alternative stabilisation
process which results in the production of at least quasi-stable windings, which persist over
some period ∆t.

As an alternative to cycloops Matsuda argued that in realistic string theory scenarios the
end points of the string would not be free to move in the extra dimensions due to the
presence of a “lifting potential” [6]-[9]. In reality the lifting potential is a geometric effect
which results from the way the string wraps the internal space during the winding formation
process. Physically, the distribution of the string tension (viewed as a vector quantity, i.e.
as orientated along the direction of the string) is determined by the initial form of the wind-
ings. This determines the subsequent evolvution and what stable (or quasi-stable) state is
formed. The string acts as though it were in the presence of a potential energy density
which is a function of the spatial coordinates of the compact dimensions - that is, as though
it were in the presence of a potential which “lifts” the extra dimensions. Mathematically
this is expressed via the Hamiltonian, which depends on both the metric gµν and the ansatz
for the string configuration (see chapter 3).

In particular, Matsuda proposed that, if the potential contains a number of degenerate
minima, then kink-type solutions would exist, in which the string interpolates between po-
tential wells in the compact directions. From a four-dimensional perspective these kinks
appear as beads on the string. The mass of the beads is then determined by the height
of the potential hill which the end of string “overcame” in the internal directions in order
to reach the new minimum. Figure 2.6 illustrates this scenario and is taken from [8]. The
bottom picture shows a generic example of a lifting potential along one of the compact
directions, while the difference between cycloops and necklace-windings is indicated in the
two pictures above. A necklace configuration is illustrated schemtically in the case of an S1

internal manifold in the picture on the right.

This raises another interesting possibility. If the string configuration in the compact di-
mensions is now fixed by the potential, the string need not wrap non-trivial cycles in the
internal manifold to ensure stability. 11 Indeed, as stated above, it is not even necessary
that the internal manifold be simply connected. This means that the mass-energy contained
in the extra dimensions - that is in the beads - is not topologically trapped.

In this scenario necklace loops chop off from the network and shrink through the emis-

11However, there remains a subtlety here regarding whether integer windings are necessary in order to
ensure the presence of a lifting potential initially. This matter is dicussed in greater detail in chapter 3.
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Figure 2.6: This figure illustrates the difference between cycloops and necklace coils. A
schematic representaion of a periodic lifting potential V with degenerate minima (as a
function of the spatial coordinates of the extra dimensions) is given below and its impact
on winding formation is illustrated in the two pictures above. The right-hand-side shows
a schematic representation of a necklace configuration for windings around an S1 compact
manifold. Taken from Matsuda [8].
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sion of gravitational radiation in the usual way. In principle, this may reduce the inter-bead
distance but not the bead mass, which remains “trapped” in the extra dimensions by the
presence of the lifting potential. 12 If sufficient mass remains in the form of beads for
the Schwarzschild radius to be larger than the final loop radius (which is limited by the
fundamental string width), then the necklace collapses to form a black hole. The key dif-
ference between this scenario and the one proposed by Avgoustidis and Shellard is that,
as the bead mass is not topologically trapped, collapsing necklaces form black holes which
decay via Hawking evaporation, rather than DM monopoles which cannot decay, even if
their mass is sufficiently concentrated to fall within the Schwarzschild radius.

In fact, it is also possible for the necklace to wrap non-trivial cycles if the compact mani-
fold, or part of the compact manifold, is not simply connected. In this case, after collapse,
some of the bead mass will will be emitted as Hawking radiation and we may conjecture
that the remaining topologically trapped mass of the string (from windings in the non-
simply-connected part of the internal space) will produce a DM relic which survives the
black hole’s evaporation. In addition, if the compact dimensions are of the order of the
Planck-scale, then the resulting relics will be of the order of the Planck-mass [8, 9]. In any
case, a schematic analysis indicates that the mass of black holes formed from the collapse
of cosmic necklaces is small. Hence they are referred to as PBHs, even though they are are
not necessarily primordial in the strict sense of the word.

This process should be contrasted with the standard scenario, where the fraction of cosmic
string loops which collapse to form PBHs is extremely small (f ∼ 10−20). In this case, it
is at least conceivable that nearly all the string loops which contain beads will eventually
collapse to form PBHs (f ∼ 1). 13 As mentioned above, this also allows the interesting
possibility of placing tight constraints on the necklace density (and density of PBHs formed
from necklace collapse, ΩPBH) from the observed gamma-ray flux, and hence potentially
on certain free parameters in string theory models of flux-compactification.

In fact, the origin of the lifting potential is also related to the problem of flux-compactifications
in string theory [161]-[164]. Ten-dimensional general relativity predicts that, if the four

12There remains a subtlety here regarding whether or not it is meaningful to talk about one section of the
string “shrinking” while another remains fixed. By definition F/D-strings have no substructure and the same
is true for topological defect strings along the direction of their length. The reparamaterisation invariance
of the Nambu-Goto action - which is the mathematical expression of this assumption - then suggests that
the string must either contract or expand along its entire length. This possibility is also discussed at greater
length at the end of chapter 3. However, in the main part of our analysis we follow Matsuda [8] in his initial
assumption that the bead mass remains fixed after loop formation.

13Those necklaces which do not contain sufficient mass in their beads to undergo gravitational collapse,
even once their four-dimensional radius has shrunk to the scale of the fundamental string width, form relics
which may also act as DM candidates (see chapter 3). However, this assumption may also be questioned
(see chapter 5).
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spacetime dimensions we observe today are expanding, then the additional six spatial di-
mensions should also expand. The ten-dimensional spacetime manifold must either contract
or expand (or be stabilised by a fine-tuned cosmological constant) as a whole. However,
as mentioned above, in string theory there exist non-perturbative objects called Dp-branes.
These are (p + 1)-dimensional surfaces in spacetime on which the end points of the string
are free to move in the p spatial directions; they are the string theory analogues of solitons
in field theory. Such branes can both “wrap” dimensions in the internal manifold and be
the source of fluxes which create an effective potential for the the internal directions. This
potential stabilises the CY moduli at certain values corresponding to the potential minima,
fixing its size and topology. As the size and topology of the compact space (together with
the string embedding, which we expect to be influenced by the winding formation mecha-
nism, see chapters 3 and 4) determines the form of the lifting potential, the phenomenol-
ogy associated with wound strings is clearly influenced by the parameters controlling the
compactification. An example of a flux-compactification scheme of particular relevence to
cosmology is the class of spacetime backgrounds described by the warped deformed conifold,
first defined by Klebanov and Strassler [5]. The stabilisation of the moduli for this model
and a brief overview of the method of brane inflation is given in the next section.

2.3 The Klebanov-Strassler geometry as an example of a flux-compactification

and brane inflation

In the scenario of the warped deformed conifold our universe exists as a D3-brane at the
bottom of an orbifold “throat” attatched to the ten-dimensional bulk of a CY manifold. In
this model the presence of fractional D3 and anti-D3-branes (D3-branes) distorts the CY
space, generically giving rise to a singularity which lies at the tip of a higher-dimensional
cone. For this reason conifold singularities are the most common type of singularity arising
from compactifications in string theory - making them important objects to study in their
own right - but they are of special interest to cosmologists since they also provide a natural
mechanism for brane inflation [165, 166]. However, in order for physically viable theories to
be constructed some method of regularising the singularity must first be found. One such
method is described in the following section.

Generically the conifold is topologically equivalent to a non-compact singular manifold fi-
bred over a T 1,1 base space [167] and may be conveniently described as a complex algebraic
curve satisfying

f(z1, z2, z3, z4) =
4∑
i=1

z2
i = 0 (2.38)

40



2.3. THE KLEBANOV-STRASSLER GEOMETRY AS AN EXAMPLE OF A
FLUX-COMPACTIFICATION AND BRANE INFLATION

where zi = xi + iyi. It is clear that (2.38) defines a cone as, if zi lies on the surface f(zi),
then so does λzi, λ ∈ C. Intersecting the surface f(zi) with a seven-sphere of radius ρ, we
see that the intersection is then defined by the equations

xix
i = yiy

i =
1
2
ρ2

xiy
i = 0, (2.39)

which describe the surface of a two-sphere fibred over a three-sphere. In this case, the
structure group G is simply the trivial group consisting of the identity element, G = {I},
so that the resulting bundle is the Cartesian product, S2×S3. The singularity then occurs
when both the S2 and the S3 to shrink to zero size, so that it may be regularised by allowing
either or both spheres to remain finite.

The Einstein metric for the general conifold may also be written explicitly [167] as

ds2
6 = dρ2 +

ρ2

9

(
dΨ +

2∑
i=1

cosθidφi

)2

+
ρ2

6

2∑
i=1

(dθ2
i + sin2θidφ

2
i ). (2.40)

where Ψ ∈ [0, 4π), θi ∈ [0, π) and φi ∈ [0, 2π). Here the base space is represented as a
coset space T 1,1 = (SU(2) × SU(2))/U(1) (with symmetry group SU(2) × SU(2) × U(1))
and is equivalent to two S2s linked by a U(1) fibre. The S2 × S3 topology remains. If we
then allow the S2 to shrink to zero radius, the resulting manifold is known as the resolved
conifold, whereas if we allow the S3 to shrink to zero radius we obtain the deformed conifold.

Mathematically the conifold geometry forms a perfectly consistent class of string back-
grounds, but physically interesting scenarios arise when we take into account the action
of gauge field fluxes from the Ramond-Ramond (R-R) and Neveu-Schwarz-Neveu-Schwarz
(NS-NS) sectors. 14 Physically this is necessary in order to create an effective potential

14Worldsheet fermions in superstring theories ΨI(τ, σ) must be either periodic or anti-periodic with respect
to the spatial worldsheet coordinate σ. The condition for periodicity is also called Ramond boundary
condition ΨI(τ, π) = +ΨI(τ,−π), whereas that for anti-periodicity, ΨI(τ, π) = −ΨI(τ,−π), is referred to
as the Neveu-Schwarz boundary condition. These conditions define a number of inequivalent ground states,
denoted |NS > and |RA >. Ramond fermions are more complicated than Neveu-Schwarz fermions because
the eight classical zero modes (labelled dI0, I ∈ {1, 2, ..8}) correspond to four creation and four annihilation
operators when the theory is quantised. Requiring the existence of a unique vacuum |0 > therefore gives rise
to 24 = 16 degenerate Ramond ground states |RA >, A ∈ {1, 2, ..16}, which may be split into eight ground
states with an even number of fermionic operators, |Ra1 >, a ∈ {1, 2, ..8}, and eight ground states with an
odd number of fermionic operators, |Ra2 >, a ∈ {1, 2, ..8}. The state space basis of the open superstring
theory is then obtained by taking all |NS > and |Ra2 > vectors with an odd number of fermions together with
all |Ra1 > states with an even number of fermions and this is known as performing a Gliozzi-Scherk-Olive
(GSO) projection [168](also see Zwiebach [155]). For the closed string theory we must also add left and
right moving operators so that the four inequivalent sectors of the string are |NS >L ⊗|NS >R ⊗|p0, ~pT >,
|NS >L ⊗|Rbj >R ⊗|p0, ~pT >, |Rai >L ⊗|NS >R ⊗|p0, ~pT > and |Rai >L ⊗|Rbj >R ⊗|p0, ~pT > where
i, j ∈ {1, 2} and |p0, ~pT > represents the energy-momentum state. The first of these sectors, the NS-NS,
gives rise to three massless bosonic fields: one spin-2 field gµν , whose states are interpreted as gravitons, a
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for the CY moduli (in this case, the radii of the S2 and S3 manifolds), stabilising them at
values corresponding to the potential minima (see [164]). In these models the D3-branes
and fractional D3-branes at the tip of the throat are the sources of fluxes which wrap cy-
cles in the compact directions. The resulting back-reaction on the large dimensions then
gives rise to a “warped throat” geometry. Adding M fractional D3-branes (i.e. D5-branes
wrapped over the S2 of T 1,1) gives rise to M units of R-R 3-form flux (F3) through the S3

sub-cycle and adding N ordinary D3-branes gives rise to N units of NS-NS 5-form flux
(F5) through the whole T 11, so that

1
(2π)2α′

∫
S3

F3 = M,
1

(2π)2α′

∫
T 11

F5 = N (2.41)

where M,N ∈ Z and each flux satisfies the Dirac quantisation condition [160]. Here α′ is
the slope parameter, which is related to the fundamental string length ls via

ls =
√
α′ (2.42)

in natural units (c = ~ = 1). The presence of the NS-NS 5-form flux is also related to the
existence of additional non-trivial R-R 2-form and 4-form fluxes, which we label B2 and C4,
so that F5 may be written as [5]

F5 = dC4 +B2 ∧ F3. (2.43)

and the R-R 2-form flux is related to an NS-NS 3-form flux via

H3 = dB2. (2.44)

In particular, the warped deformed conifold arises from the back-reaction of the R-R 3-form
flux F3, threaded through the S3, and the NS-NS 3-form flux, H3, through the dual cycle
B ∼ ρ× S2 which creates the warped throat [5, 169]. We may expect the presence of these
fluxes to deform the surface f(zi) defined in (2.38) so that

f(z1, z2, z3, z4)→ f̃(z1, z2, z3, z4) =
4∑
i=1

z2
i = ε2, (2.45)

spin-1 Kalb-Ramond field Bµν (see later), and a spin-0 covariant scalar, known as the dilaton Φ. The last
of these sectors, the R-R may then give rise to two separate closed string (type II) theories, known as type
IIA and type IIB. In the type IIB theory the left and right R ground states are chosen to be the same, i = j,
whereas in the type IIA they are different, i 6= j. The massless bosonic fields of the type IIB theory then
include a scalar A, an additional Kalb-Ramond field Aµν and a totally anti-symmetric gauge field Aµναβ ,
whereas the type IIA theory contains a Maxwell field Aµ and another anti-symmetric gauge field Aµνα.
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where ε is a small real paramter. Rewriting the metric (2.40) using a basis of 1-forms [170],

g1 =
e1 − e2

√
2

, g2 =
e2 − e4

√
2

g3 =
e1 + e3

√
2

, g4 =
e2 + e4

√
2

g5 = e5 (2.46)

where

e1 = − sin θ1dφ1

e2 = dθ1

e3 = cosψ sin θ2dφ2 − sinψdθ2

e4 = sinψ sin θ2dφ2 + cosψdθ2

e5 = dψ + cos θ1dφ1 + cos θ2dφ2, (2.47)

and accounting for the effect of the fluxes on the large dimensions, the full ten-dimensional
metric of the warped throat geometry may be written as

ds2
10 = h−

1
2 (τ)dxµdxµ

+
1
2
ε

4
3h

1
2 (τ)K(τ)

[
1

3K3(τ)
(dτ2 + g2

5) + cosh2
(τ

2

)
(g2

3 + g2
4) + sinh2

(τ
2

)
(g2

1 + g2
2)
]

(2.48)

where µ ∈ {0, 1, 2, 3} and h(τ), K(τ) are defined via

h(τ) = α
22/3

4

∫ ∞
τ

x coth(x)− 1
sinh2(x)

(sinh(2x)− 2x)1/3 dx

K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh(τ)
. (2.49)

Here gs is the string coupling, which is related to the size of the dilaton Φ by

eΦ = gs (2.50)

and α is a normalisation constant proportional to (gsM)2 [5]. It is important to note that
the dilaton, and hence the string coupling, is constant in this background, though in chapter
5 we will see how an effective string coupling, which varies as a function of the spacetime
coordinates, may be obtained for wound strings.

In (2.48) τ parameterises the radius of the S2, so that in the small limit τ limit the metric
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reduces to

ds2 = a2
0dxµdx

µ + b0gsMα′
[

1
2
dτ2 + dΩ2

3 +
1
4
τ2(g2

1 + g2
3)
]
, (2.51)

where b0 is a numerical constant of order one, dΩ2
3 is the metic for the unit three-sphere

and
a2

0 = Limτ→0h
− 1

2 (τ) (2.52)

is a real constant such that 0 < a2
0 < 1. 15 The parameter a0 is called the warp factor. For

τ → 0 the first and last terms inside the square brackets (2.51) vanish which allows us to
interpret b0gsMα′ as the square of the radius of the remaining S3, which we will label R,
so that

R2 = b0gsMα′. (2.53)

The squares of the warp factor and the radius of the compact space, a2
0 and R2, are related

via the deformation parameter ε (which remains a free parameter in the theory) via

a2
0 ∼

ε̃4/3

R2
. (2.54)

Here ε is rescaled to ε̃ so that ε̃4/3 ∝ α′ and we are assuming the supergravity (SUGRA)
limit

gsM >> 1. (2.55)

Physically viable theories can then be constructed since for practical purposes the bottom
of the throat has been “smoothed-off” with an S3 to remove the conifold singularity. The
remaining CY modulus (i.e. the radius of the three-sphere R) depends on the value of the
integral 3-form flux which wraps the space itself, as expected from a flux-compactification.

Finally, we note that there also exists an R-R 2-form flux C2 which is proportional to
M (and inversely proportional to gs) and which, in addition to its relation to the CY mod-
uli, also directly influences the dynamics of branes in the throat via its contribution to the
Chern-Simons (CS) term of the action (see section 2.4.3).

By explicitly assuming the background gauge choice

θ = θ1 = −θ2

φ = φ1 = −φ2 (2.56)

15Here we choose a different notation to that used in the original paper by Klebanov and Strassler [5] who
showed that in the small τ limit, h(τ) ∼ a0+a1τ

2 where a0, a1 are positive real constants. In [5] a0 necessarily

satisfies a0 > 1. The a0 defined in (2.52) is therefore equivalent to the quantity h−1/2(τ → 0) ∼ a−1/2
0 defined

in that paper and the two “a0s” must not be confused.

44



2.3. THE KLEBANOV-STRASSLER GEOMETRY AS AN EXAMPLE OF A
FLUX-COMPACTIFICATION AND BRANE INFLATION

(see [245]), we may write the 2-form flux in terms of the volume form, ω2, along the two-cycle
parameterised by the variables θ and φ, and a simple function of ψ, so that

C2 =
1
gs
Mα′F (ψ)ω2 (2.57)

where F (ψ) ∼ ψ−sin(ψ) cos(ψ). As mentioned previously, there also exists a corresponding
R-R 2-form B2 which wraps the S2. However, at the tip the conifold is regularised as S2 → 0
and B2 → 0. In terms of the parameter τ which controls the blow-up of the two-sphere, the
2-form may be written explicitly as [5, 276]

B2 = gsMα′
(
τ coth(τ)− 1

4 sinh(τ)

)
dτ ∧ (cosh(τ)− 1)g1 ∧ g2 + (cosh(τ) + 1)g3 ∧ g4 (2.58)

which clearly vanishes as τ → 0. The R-R scalar charge C0 is trivial and may be set equal
to zero, via an appropriate gauge transformation, throughout the KS background. For the
sake of completeness we include the effective metric at the tip, in canonical coordinates: 16

ds2 = a2
0ηµνdx

µdxν +R2(dψ2 + sin2ψ(dθ2 + sin2θdφ2)) (2.59)

where ψ ∈ [0, 4π) is the azimuthal angle and θ ∈ [0, π), φ ∈ [0, 2π) are the polar angles
(note that the ψ-coordinate here is not the same as the Ψ-coordinate labelling the U(1)
fibre in equation (2.40)).

There then exist two mechanisms for brane inflation - otherwise known as DBI inflation
after the Dirac-Born-Infeld action which describes the dynamics of D-branes 17 [157]-[159].
In the most generic scenario, known as ultra-violet (UV) inflation [171, 172], the D3-brane
of our universe “begins” somewhere in the bulk space of the CY manifold but is attracted
down the throat by the presence of D3-branes at the IR tip, and the moduli corresponding
to the inter-brane distances along the various spatial coordinates of the throat act as the
inflaton fields. 18. Inflation then ends when we reach the bottom of the conifold.

16In chapter 5 we will find it convenient to parameterise the compact space in terms of Eulerian variables,
using the so-called Hopf fibration of the three-sphere. This description turns out to be convenient when
considering the dynamics of geodesic windings (which form a specific type of geodesic cycloop), whereas the
parameterisation in canonical coordinates is more suited to the analysis on non-geoedesic (i.e. necklace)
configurations.

17We will return to the DBI action later in this chapter when we come to discuss its relation to the
Nambu-Goto action in the case of D-strings (D1-branes).

18In the simplest possible scenario the brane moves down the centre of the cone, so that only one coordinate
distance matters - the distance between the brane and the tip. This is a model of single field inflation where
the energy driving the inflationary expansion of the brane is provided by the potential energy between
it and the D3-branes. Multi-field inflationary models can be constructed by having the brane follow a
more complicated trajectory, introducing other coordinate distances which act as multiple fields [173]-[176].
One way to do this is to add angular momentum to the brane which then “cycles” around the throat
[177]. Additional phenomenological models can be obtained by introducing other branes/anti-branes into
the throat (i.e. not just at the tip), in addition to the brane of our universe, giving rise to the so called
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At the base of the conifold then, the flux parameter M denotes the quantised 3-form flux
in the extra dimensions (in units of the slope paramter α′) and is given by the integral of
this flux (from the type IIB SUGRA solution) over the S3. It is also equal to the number of
fractional D3-branes at the bottom of the conifold and so is generally positive, as expected
for the SUGRA limit M >> g−1

s with gs > 0. In addition, throat geometries naturally
reduce the amount of supersymmetry (SUSY) that the solution preserves and it may be
shown that for the warped deformed conifold only N = 1 SUSY remains [5].

In the second scenario, known as IR inflation [182, 183], the D3 probe brane starts at
the tip of the throat and is attracted “upward” toward the bulk space by the presence of
branes/fluxes in other CY warped throats. However, this model requires some fine-tuning
in order for inflation to end with a stable D3-brane (representing our universe) lying at the
tip. One way of doing this is to insert some number N of D3-branes into the background
“above” some number M of D3-branes, i.e. with the D3-branes lying closer to the bulk
space. The anti-branes (rather than the branes, as in the UV model) are then attracted
down the throat and annihilate with the branes. For a warped deformed conifold with M

units of D3-brane flux threading the S3, there are exactly N = M−N D3-branes remaining
after the annihilation process. 19

The simplest IR models assume N = 1 (i.e. the result is fine tuned), though generically N
remains a free paramter. For N > 1 we would expect the remaining branes to be distributed
randomly in the region of the tip and it has been shown that, if the inter-brane distance
is greater than the string scale (dD >> ls), their evolution is capable of creating a form of
assisted inflation [184]-[189]. For large N the dynamics of branes near the tip are similar
to those of the N = 1 models but for small N the brane actions are highly non-linear and
specific solutions for N = 2 and N = 3 are given in [190].

The warped throat geometry is illustrated in figure 2.7, while figure 2.8 gives a schemtic
representation of the difference between the general conifold and the warped deformed coni-
fold, taken from Majumdar [191].

Although the KS geometry allows us to construct a realistic and relatively natural infla-
tionary mechanism, the question remains as to whether DBI inflation may be distinguished
from other inflationary paradigms provided by string theory and field-theoretic models (see
[192]). In order to answer this question, we must search for “stringy signatures” from the

DBI N -flation paradigm [178, 179], which is related to other N -field inflationary models in string theory
[180, 181]

19Note that this N is not the same as that in (2.41), which refers to the number of units of 5-form flux
used in the construction of the throat itself.
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Figure 2.7: This figure illustrates the geometry of the warped throat and is taken from
lectures presented by F. Quevedo (The cosmology of string theory - inflation and beyond)
at UniverseNet (2007). Here the coordinate r refers to the inter-brane distance, which is
equal to the distance between the probe D3-brane and the tip of the throat.

Figure 2.8: This figure illustrates the difference between the geometry of the general conifold
and the warped deformed conifold. Taken from Majumdar [191].
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inflationary epoch and investigate the cosmological consequences of any specific predictions
of the DBI model. One such prediction is the production of string-like defects at the end
of inflation, when the D3-brane of our universe collides and annihilates with a D3-brane.
K-theory tells us that the remnant branes have co-dimension two (see [10]) and these ob-
jects may be interpreted as D-strings which are charged under a linear combination of the
original U(1)×U(1) gauge symmetry. It has also been shown that annihilation leads to the
production of confining flux tubes, which may be interpreted as F -strings via gauge/gravity
duality [193] (see also [194] and [195] for reviews of the AdS/CFT conjecture). The exis-
tence of single F/D-strings on the standard model brane then allows for the formation of
bound states known as (p, q)-strings, where the letters p and q refer to the number of F - and
D-strings, respectively. The dynamics of these objects is reviewed in the next section, with
special emphasis on determining the spectrum of effective tensions in the warped throat
geometry.

It has been shown that string networks with effective tensions comparable to the fundamen-
tal string tension (i.e. T ∼ α′−1) are automatically ruled out if we assume the fundamental
string mass (ms ∼

√
α′
−1

) to be of the order of the Planck mass mp [196]. In fact, obser-
vational bounds place strict constraints on the spectrum of primordial density fluctuations
in the early universe, and hence on the parameters which control them, in either stringy or
field-theoretic models (see [197]-[209]). In particular the tensions of any string species must
obey the bound

Gµ ≤ O(10−6) (2.60)

and their present day number density is required to be ∼ O(1) per horizon volume [114].
More specifically, various bounds of this order have been obtained by considering cosmic
strings as both sources of CMB anisotropy and as potential seeds for LSS. The unusual
gravitational properties of strings create “stringy signatures” 20 in the CMB which may be
distinguished from the effects of other massive objects. The passing of a string between a ra-
diation source (such as the surface of last scattering) and an observer causes a discontinuous
shift in the observed wavelength/temperature of the radiation, and this effect is unique to
string gravity. This is more pronounced in certain regions due to the presence of small-scale
structure along the string as the temperature shift is proportional to the string velocity,
and local velocities, especially in the region of a cusp, may greatly exceed the drift velocity.
Using the COBE data [210], Bennett et al [211] obtained the bound Gµ ≤ 2× 10−6, while
a bound of Gµ ≤ 10−6

(
ςα2
)−1/3 was obtained by Turok and Brandenburger [212] based

on considering strings as seeds for LSS formation using the “old string evolution scenario”
[114]. Here the string motion is assumed to be Brownian on scales L > ξ = γt, so that
ρ∞ = ςµ/t2 where ς ∼ γ−2, and ς ∼ α ∼ 1. Although normalisation of Gµ on the scale of

20Note that here this phrase refers simply to the presence of strings of any kind and not to the presence
of F/D- or (p, q)-strings, as opposed to topological defect strings.
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rich clusters eventually ruled out this scenario for strings as seeds for LSS [114], the bound
itself remains valid. Generically, we expect Gµ ∼ η2/m2

p, so that, for GUT-scale strings,
Gµ ∼ 10−6 [125], though recent pulsar data suggests Gµ ≤ 10−7 [213]. 21 Similar bounds
have also been obtained from more recent CMB power-spectrum observations [199, 200].

Current observations may even favour a ΛCDM model [215]-[223] in which string-like de-
fects may play a significant, but by no means dominant role in the creation of primordial
CMB fluctuations [126]-[131]. Using field theory simulations of Abelian-Higgs strings (at
critical coupling) and normalising the resulting perturbation spectrum to the WMAP 3-year
data at multipole ten (l = 10), 22 Bevis et al obtained an upper bound of Gµ ∼ 2 × 10−6

[126]. Adding a stringy component to the primordial spectrum (resulting from inflation)
with power-law tilt ns, a subsequent multi-parameter fit [127] found a 2σ detection of
strings giving a fractional contribution to the temperature power-spectrum (at l = 10) of
f10 ∼ 0.11. In fact, a Harrison-Zeldovich model (ns = 1) including strings was found to
be marginally favoured over the standard (zero-strings) model with variable tilt. Incorpo-
rating additional non-CMB data from the Hubble Key Project (HKP) [224] and big bang
nucleosynthesis (BBN) [225] showed these models to be equally favourable and, in addi-
tion, allowed generic constraints of f10 < 0.11 and Gµ < 0.7 × 10−6 to be obtained for
ns 6= 1. 23 Subsequent improved calculations confirmed these results and demonstrated
that an Abelian-Higgs string contribution to the power-spectrum, making up f10 ∼ 0.10 at
l = 10, would be larger than the primary Silk-damped adiabatic contribution on small scales
(l > 3500) [128]. This opens up the possibility that observations from the Planck satellite
[226] and other sub-orbital CMB projects may be able to detect them and, although the
relevent calculations have not yet been performed, the same is clearly true for more exotic
strings.

Similar hopes are raised by an analysis of the expected polarization power-spectra produced
by adiabatic and stringy components (with special refernce to the so-called B-modes) in
which the string contribution is expected to dominate [130]. It has recently been argued
that, even if defects contribute less than one percent to the total CMB temperature power-
spectrum, their signatures in the local B-mode polarisation correlation function ought to
dominate on small angular scales [131]. The same authors claim that B-mode observa-
tions from Planck will be able to constrain the tension of any string species to the level

21Gravitational radiation produced by string loops would add to the stochastic background [214], which
introduces noise into the arrival times of millisecond pulsars. The observed delay is related to the string
tension and allows bounds to be placed on Gµ.

22This l denotes CMB power-spectrum multipole and is not to be confused with the l which labels the
angular momentum in the compact space (see chapter 3).

23This was true even for ns > 1, which is otherwise ruled out by existing data. The inclusion of cosmic
strings into the ΛCDM paradigm (taking ns as a free parameter) shows that no pressure in placed on such
models.
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of Gµ < 10−7, while future CMBpol [227] data should improve this to Gµ < 10−9. Spe-
cific calculations for Abelian-Higgs strings suggest that, taking a null hypothesis (i.e. that
strings make no contribution), observations from the Clover experiment [228] will limit the
string tension to Gµ < 0.12× 10−6, above which detection should be possible [129]. What-
ever the technical dificulties, similar calculations may, in principle, be performed for more
exotic strings species (including (p, q)-strings and necklaces in warped throat scenarios - see
section 5.10) and the possibility of detection remains.

As we shall see in the next section, in flux-compactified models the warping caused by
the back-reaction of the fluxes on the large dimensions may reduce the effective tension of
the strings, allowing existing observational bounds to be avoided. This possibility was first
suggested in [191, 193], and the current bounds from brane inflation on the warped tension
of F/D-strings are 10−11 ≤ Gµ ≤ 10−6 [201]-[203].

Although DBI inflation is by no means the only cosmological paradigm that leads to the
production of string-like defects - indeed, different string species arise in many other string
theory and field theory models of the early universe - the prediction of potentially copi-
ous numbers of F - and D-strings does seem to be a specific feature of the model. Hence
the phenomenology and cosmological consequences of (p, q)-string networks in the warped
throat background are worth investigating as a potential means of providing evidence for
or against the theory.

As mentioned above, recent analsysis of the CMB power spectrum using a ΛCDM model
with Abelian-Higgs strings suggested that this provides a better fit to the current data than
stringless ΛCDM models, with strings obeying the bound (2.60) contributing around ten
percent of the primordial fluctuations [126, 127]. Theoretically it is therefore possible that
other string species, for example (p, q)-strings with warped tension, or stringy objects such
as networks of necklaces and cycloops, may yet provide an even better fit to the data. This
is likely to prompt renewed interest in cosmological models which generate such defects,
including DBI inflation. In particular, extra-dimensional effects may prove to be crucial
in distinguishing different theories. Therefore, although a fit to CMB data using neck-
lace/cycloop models is not attempted here, this thesis contributes to the analysis of the
cosmological effects of exotic stringy objects in viable cosmological models.
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2.4 Topological defect strings vs “stringy strings”: (p, q)-strings in the

KS throat

2.4.1 String species, internal structure and effective actions

In the preceeding sections of this chapter we have introduced the notion of cosmic strings
as topological defects formed during symmetry-breaking phase transitions, given a brief
overview of string evolution, and developed the idea of wound strings in theories with com-
pact extra dimensions. In particular we have introduced generic phenomenological models
of two types of qualitatively different winding configuration - strings with “smooth” wind-
ings, which we term cycloops, and strings with step-like windings, which we refer to as
cosmic necklaces. However, as these terms refer only to the winding state of the string (i.e.
its geometric embedding in the spacetime background) and not to its nature, it is clear that,
even in a single background geometry, many possible cycloop/necklace models are possible
for different string species.

We must first draw the distinction between field-theoretic strings (i.e. topological defects)
and “stringy strings”, i.e. macroscopic string networks which play the role of defects in
models of string cosmology. It is important to remember that field-theoretic strings are
essentially field configurations and not string-like objects in their own right, even though
they may be treated as such once formed. One consequence of this is that field-theoretic
strings always posses some degree of internal structure - at least radially, though not along
their length - due to the vortex configuration of the field(s).

However, when analysing the dynamics of free string loops, it is common to ignore the
thickness of the vortex core and to approximate the string as a truly one-dimensional ob-
ject. The key parameter is the ratio of the vortex width δ to the curvature radius of the
string R, so that for δ << R the string thickness may be neglected [15, 114]. To lowest
order in δ/R, the effective action for a topological defect string is then

S = −µ
∫
d2ζ
√
−γ (2.61)

where µ ∼ η2 is the string tension (in units of [E][l]−1) and γ is the determinant of the
induced metric on the resulting worldsheet:

γab(ζ) =
∂Xµ

∂ζa
∂Xν

∂ζb
gµν(X(ζ)) (2.62)

where µ, ν ∈ {0, 1, ...d} label the coordinates of the background and a, b ∈ {0, 1} label the
worldsheet coordinates.
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Thus the integrand d2ζ
√
−γ is simply the worldsheet area dA and (2.61) is the general-

isation for a one-dimensional object of the action for a zero-dimensional relativistic point-
particle, S = −m

∫
ds. This is known as the Nambu or Nambu-Goto action [229, 230]

and is the fundamental action which describes the dymanics of a free F -string. However,
in this case the string tension depends directly on a fundamental constant, i.e. the slope
parameter/fundamental string scale ls ∼

√
α′, not on the integration of an energy density

over a vortex, and we must perform an appropriate replacement, µ → T ∼ α′−1, in the
action. For an F -string in flat space the fundamental tension is

T =
1

2πα′
(2.63)

but in general the effective tension will depend upon the background geometry such that
T = T (g), although in all cases T ∝ α′−1 is required to ensure that the action is dimen-
sionless.

However, unlike single F -strings (and defect strings such as the flux-confining vortex-line
strings considered in section 2.2.1, to which they are dual in the KS geometry [5]), D-branes
may carry an additional world-volume gauge field Aa(ζ) and an antisymmetric tensor field
Bab(ζ) (see [155]) so that for D-strings

S = −T
∫
d2ζ
√
−det(γab +Bab + λFab). (2.64)

Here Fab is analogous to the usual EM field tensor Fµν (discussed earlier), but is now defined
only on the world-sheet by

Fab = ∂aAb − ∂bAa (2.65)

where a, b ∈ {0, 1} and λ is a constant with dimensions of [l]2. 24 It may be shown that the
appropriate multiplying constant for the field tensor is [155]

λ = 2πα′ = T −1. (2.66)

The antisymmetric tensor field Bab is given by the pull-back of the bulk space Kalb-Ramond
field Bµν (see footnote 13 on page 41)

Bab(ζ) =
∂Xµ

∂ζa
∂Xν

∂ζb
Bµν(X(ζ)) (2.67)

24This λ is not to be confused with the dimensionless coupling constant of the scalar field in the Abelian-
Higgs model, which was introduced in chapter 2.

52



2.4. TOPOLOGICAL DEFECT STRINGS VS “STRINGY STRINGS”: (p, q)-STRINGS
IN THE KS THROAT

and, although Bµν is Abelian, we note that its pull-back to the world-sheet (or world-
volume) Bab is not. For a general Dp-brane this gives the following lowest order action:

Sp = −Tp(g)
∫
dp+1ζe−Φ

√
−det(γab +Bab + λFab) (2.68)

where λFab is defined according to (2.65) and (2.66), and we have accounted for the change
from the two-dimensional worldsheet to the - possibly higher-dimensional - worldvolume
coordinates, labelled by the indices a, b ∈ {0, 1...p+ 1}.

This is known as the Abelian Dirac-Born-Infeld (DBI) action, as mentioned previously, and
is a modification of the Born-Infeld action used in the study of non-linear electrodynamics
[231]. However, this “simple” action may also couple to the closed string R-R fields in
the background, resulting in an additional contribution which is proportional to the vector
potential. Specifically, the interaction term is proportional to the anti-symmetrised combi-
nation of the gauge potential with each of the field strengths taking part in the interaction
and is given by the pull-back of the R-R form in the bulk space to the world-sheet [152].
The correction is known as a CS term as it is a geometric invariant of the worldvolume,
that is, independent of the relation between the embedding and the background space [232].
For simplicity, we chose to ignore such corrections in the analysis that follows (see chap-
ters 3-5) but it is important to appreciate that in an extended analysis such problems may
need to be addressed. For the Abelian DBI action, we expect that the additional CS term
will also be Abelian, for any string background, so this problem should at least be tractable.

The dynamics of the basic one-dimensional objects in string theory, the fundamental string
(or F -string) and the D1-brane (or D-string), may therefore differ considerably. In general
we would expect the dynamics of an F -string to correspond more to those of a topological
defect string (in the same background), at least within the limit for which the Nambu-Goto
action is a valid approximation for the latter, though differences between field-theoretic
strings and stringy strings still exist. In particular we note that unwound F/D-strings
posses no characteristics which are determined by a single dimensionless integer n, unlike
defect strings, whose properties depend on the winding number. 25

However, as also mentioned above, the worldsheet of the D-string may carry a U(1) gauge
field flux and bound states of F/D-strings may form to create generic objects known as
(p, q)-strings. Here both p and q are integers and refer to the number of F -strings and
D-strings in the bound state, respectively. It has also been shown that forming a (p, q)
bound state is equivalent to dissolving p units of “electric” flux and q units of “magnetic”

25In chapter 5 we investigate a possible relation between the topological winding number n of a defect
string and the physical winding number nw of an F/D-string wrapping the compact space. In the former
case, n denotes an “internal” property of the string, whereas in the latter, nw is a geometric property
determined by the embedding.
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flux on the worldsheet of a single F -string (see [193] and [201, 233]). This is due to the
presence of an SL(2, Z) symmetry which interchanges the B2 field with the R-R 2-form
C2, hence transforming F -strings into D-strings and vica-versa [234]. The correct action
to describe the dynamics of (p, q)-strings is therefore the full non-Abelian DBI action for
coincident Dp-branes, where in this case p = 1, which here refers to the dimensionality of
the branes. 26 We now briefly discuss the origin of this action.

2.4.2 The non-Abelian DBI action

It is known that the coalescing of multiple branes generates enhanced symmetry in the
gauge fields on the worldsheet of the resulting bound state. For example, when N Dp-
branes, each carrying a U(1) gauge field, reach a brane separation of the order of the string
scale ls ∼

√
α′, the massive modes of the independent world-sheet fields become massless,

resulting in the symmetry enhancement

U(1)N → U(N) (2.69)

as the branes coalesce [235, 236]. This is a non-Abelian gauge group and hopes that the
gauge group of the standard model, or supersymmetric extensions of the standard model,
may be constructed from coincident D-branes are based on such interesting and promising
results, though a full string/brane description of standard particle physics has not yet been
realised [237]-[239]. 27

The appropriate transformation for the worldvolume vector field is

Aa = AiµTi

Fab = ∂[aAb] + i[Aa, Ab] (2.70)

where {Ti}, i ∈
{

1, 2, ..N2
}

are the U(N) group generators, which satisfy the standard
relation

Tr(TiTj) = Nδij . (2.71)

The scalar fields must also transform under the gauge group and choosing them to transform
under the adjoint (Lie algebra) representation allows us to write the covariant derivative in

26We must not confuse this p with the number of F -strings.

27We also note that, just as symmetry enhancement and the conversion of massive to massless modes
occurs as branes coalesce, brane separation results in symmetry-breaking and in previously massless string
modes acquiring mass. D-brane dynamics therefore provide an exact analogue of the Higgs process in field
theory, though here the symmetry-breaking is dynamic, rather than “static” as it is when mediated by the
presence of a Higgs field. Further remarks on possible dynamical methods of breaking symmetry are also
given at the end of chapter 5.
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terms of the Lie bracket:
Daφ

i = ∂aφ
i + i[Aa, φi] (2.72)

where φi are the world-volume scalars. If the scalars commute, they may be simultaneously
diagonalised with respect to the position operator and the corresponding N eigenvalues
interpreted as the positions of the N individual Dp-branes. Thus we see that, despite the
non-Abelian nature of the gauge group for the worldvolume of coincident branes, and the
resulting complexity of the action, we may still interpret the worldvolume scalars φi by
analogy with the case of a single Dp-brane, in which they represent the embedding coordi-
nates Xi(τ, σ).

Although their matrix-valued nature allows the scalar fields to be interpreted intuitively,
in practice it makes calculating the exact form of the action for N coincident branes of
arbitrary dimensionality p very difficult. However, this has been achieved by Tseytlin [240]
using scattering amplitudes, and the resulting action can be transformed using T-duality
(see [155]) to interchange the scalar and vector fields such that

φ(p+1) → A(p+1)

Ap → φp. (2.73)

This technique was used by Myers [241, 242] and the resulting form of the non-Abelian DBI
action for N coincident Dp-branes, given below, is known as the Myers action:

S = −Tp
∫
d(p+1)ζSTr

[
e−Φ

√
det(Qij)

√
−det(Êab + Êai(Q−1 − δ)ij)Êjb + λFab

]
. (2.74)

Here Êab denotes the pull-back of the spacetime metric Gµν and Kalb-Ramond field Bµν to
the worldvolume

Êab = P[Gµν +Bµν ] (2.75)

and we have defined the tensor Qij by

Qij = δij + iλ[φi, φk]Êkj . (2.76)

The notation STr indicates that the trace is completely symmetric with respect to all non-
Abelian terms of the form Fab, Daφ

i and i[φi, φj ] [241]. In (2.75) and (2.76) µ, ν ∈ {0, 1, ...p}
label the worldvolume coordinates ζ, as before, and i, j, k ∈

{
1, 2, ..N2

}
, whereas Tp now

represents the total tension of the brane, which again in general depends on both the ge-
ometry of the embedding space and on the properties of the Dp-branes which coalesce to
create the bound state [243]. There is also a CS term, as in the case of a single Dp-brane,
though this too is generally non-linear.

In the rest of this thesis, we restrict our detailed analysis to the cosmological consequences
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of cycloops/necklace loops formed from single F - and D-strings (when dealing specifically
with string theory models). This allows us to model the dynamics using the standard
Abelian DBI/Nambu-Goto actions, which we will see reduce to the same form at the tip
of the warped throat where B2 ∼ 0 (see chapter 3). However, for general (p, q)-strings the
analysis is far more complicated as we must use the full non-Abelian DBI action to model
the string dynamics. In the case of the warped throat geometry, there is an important
caveat: It has been shown that, in the large p or large q limit, general (p, q)-strings “blow
up” and become dual to D3-branes at the tip of the throat [244, 245]. This occurs when
the non-Abelian DBI action couples to R-R forms with dimensionality greater than one,
allowing a brane-dialectric effect which causes the lower dimensional brane to expand into
a higher-dimensional one (in this case Dp → Dp+2, [246]). These D3-branes wrap 2-cycles
in the throat geometry, so that the brane still behaves like a one-dimensional string close to
the tip. Mathematically we “recover” the Abelian DBI action in D = 3+1 dimensions from
its non-Abelian counterpart (including the CS term) in D = 1 + 1 dimensions as p, q →∞,
so that the analysis again becomes simplified in this limit.

Although it is also possible to investigate the consequences of cycloop/necklace formation
from (p, q)-strings with high p and/or q within our analysis, we do not pursue this here
as the formation probability for such bound states remains extremely uncertain. Although
much work has been done to determine the tension spectrum of (p, q)-strings in a variety of
backgrounds, including the KS throat (see [245]), comparatively little is known about the
relative abundances of the (p, q) species. Even if the overall spectrum of number densities
could be normalised somehow, it is still not clear how to determine the probability of form-
ing a general (p, q) bound state.

We therefore assume (1, 0)-strings (F -strings) and (0, 1)-strings (D-strings) to be the most
common stringy objects able to play the role of cosmic strings. However, other authors,
notably Sarangi and Tye [247], have suggested that the most common stringy objects in
any geometry are likely to be Dp-branes wrapping (p − 1)-dimensional cycles in the com-
pact space. In a more refined analysis, it would, in principle, be possible to peform some
kind of weighted summation over all string species with respect to the calculations which
determine their impact on cosmologically observable parameters (for example with respect
to PBH and DM formation, as investigated in the following chapters). In this case, the rel-
ative abundance of each type of (p, q)-string could be estimated by their relative formation
probabilities. However, as the full non-Abelian action would be needed to determine the
dynamics of the higher order contributions, the resulting anaylsis is likely to be complicated
considerably by the addition of each new string species.

Despite this, the non-Abelian DBI (Myers) action is still of importance to our model in
one other respect as yet another complication arises from the fact that each species has its
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own specific effective tension for a given background. Even if we restrict ourselves to single
F - and D-strings, we still need a way to calculate the tension T (g) for these objects in the
warped deformed conifold. For “macroscopic” (p, q)-strings, i.e. strings with high p/high
q, 28 this may be calculated relatively easily by considering the dual D3-brane wrapped
on a 2-cycle within the S3 [245], but for strings with small p and/or small q it remains
an open problem. In order for the description of (p, q)-strings to arise naturally from the
hybrid D3−D3 inflation scenario, we also need a “microscopic” theory for the lowest lying
string modes. This can only be achieved by considering the effective action of the strings
themselves. Thankfully, some progress has been made in this direction, at least in the large
q limit [248].

In the following sections we outline the origin of the existing formulae for the tensions
of macroscopic and microscopic (p, q)-strings in the warped deformed conifold. We then
return to considering the differences and similarities between field-theoretic and stringy
strings, in light of our knowledge concerning their respective effective actions and tensions.
The chapter concludes with a discussion of questions which may arise in the context of
“model mixing”, where defect strings wrap non-trivial cycles in extra-dimensional scenarios
which are often (though not exclusively) motivated by string theory.

2.4.3 Macroscopic and microscopic (p, q)-strings

For the D3-brane dual of a macroscopic (p, q)-string to behave as a one-dimensional object
in the warped throat geometry it must wrap a stable 2-cycle in the three-sphere which
regularises the tip. This implies that we must switch on a non-zero magnetic flux on the
worldvolume in order to stabilise the brane [245, 248]. 29

For simplicity we may assume that this flux is parallel to the U(1) gauge field and we
are free to choose a gauge such that only two components of Fab, F01 and F23, are non-zero.
If the brane is extended in two of the non-compact directions (i.e. if the three-dimensional
brane behaves like a one-dimensional string with respect to the non-compact space) and is
wrapped on an S2 within the S3, it may be shown that the Hamiltonian density takes the
form

H =
a2

0

λ

√
q2

g2
s

+
b20M

2

π2
sin4(ψ) +

[
M

π

(
ψ − sin(2ψ)

2

)
− (p− qC0)

]
(2.77)

28Note that here “macroscopic” does not refer to the physical size of the string.

29Although the formula for the effective tension of a wrapped brane was derived separately in each of
these references, we follow [248] in the analysis that follows for the sake of notational convenience.

57



2.4. TOPOLOGICAL DEFECT STRINGS VS “STRINGY STRINGS”: (p, q)-STRINGS
IN THE KS THROAT

where ψ ∈ [0, 4π) is the azimuthal angle on the three-sphere and C0 is the R-R scalar charge,
which is simply a numerical constant (as are a0 and b0, introduced earlier). However, as
mentioned earlier, C0 is trivial in the KS background. We may therefore set C0 = 0 without
loss of generality, though we choose to keep it as a free paramater in the discussion that
follows, in order to ensure consistency with the results presented in [248, 255]. If we then
minimise the energy with respect to the radius of the S2, we find that

ψmin ∼
b20 − 1

2
=

(p− qC0)π
M

. (2.78)

This yields the following value for the S2 radius:

RS2 = R

∣∣∣∣sin(π(p− qC0)
M

)∣∣∣∣ (2.79)

where R is the radius of the S3. Substituting this back into the Hamiltonian density then
gives the effective tension for a macrocopic (p, q) bound state (see also [249, 250])

Hmin ≡ T(p,q) =
a2

0

λ

√
q2

g2
s

+
(
b0M

π

)2

sin2

(
π(p− qC0)

M

)
. (2.80)

Strictly speaking we would expect this simple macroscopic description to be in need of modi-
fication, as Witten showed that turning on fluxes introduces non-commutative effects on the
brane worldvolume [251]. Following on from this work, Seiberg and Witten identified the
limit in which the string dynamics in the warped throat are described by a non-commutative
gauge theory. They showed that a formal equivalence exists between the ordinary (dual)
commutative gauge theory and the new non-commuting gauge fields, whereby the non-
commutative effects may be incorporated into the model by defining a suitable Hodge-star
product in place of the usual product function [252]. For large fluxes the non-commutative
effects are negligible, but for small fluxes they result in important corrections to the string
dynamics.

Ward and Thomas used the Myers action together with a “fuzzy sphere” ansatz for the
worldvolume scalars [253, 254] to incorporate some of these effects, though their results
were consistent with the macroscopic description [245] and the resulting string tension
(2.80), as well as with the previous results in [252] in that the non-commutative corrections
were “washed out” in the large flux/large string number limit. They began by constructing
the appropriate form of the Myers action for q coincident D-strings with non-zero electric
flux on the worldvolume. 30 At the tip of the throat the Kalb-Ramond field tends to zero

30In this description q is already quantised and the U(1) worldvolume flux is characterised by some real
number p. We will later find that this too is quantised naturally in the context of q coincident D-strings,
leading to a dual description of (p, q)-strings.
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and in the strongly coupled regime

gs = eΦ ∼ 1 (2.81)

the string frame then coincides with the Einstein frame. Taking the non-commutative
coordinates φi to be non-vanishing in the directions of the S3 and expanding the determinant
of the potential term in the action, they found

det(Qij) = 1− λ2

2
[φa, φb][φc, φd]Ω3

ac(y)Ω3
bd(y) + ... (2.82)

and hence

S = −T
∫
d2ζSTr

(
a2

0

√
1− I.

λ2ε2

a4
0

√
1− λ2

2
[φa, φb][φc, φd]Ω3

ac(y)Ω3
bd

)
(2.83)

to lowest order, where Ω3 ≡ Ω3 is the metric on the unit three-sphere, whose coordinates
are labelled by {ya}, a ∈ {1, 2, 3}. 31 32 For simplicity, the dynamic part of the action was
neglected.

A “fuzzy sphere” ansatz for the transverse scalars (see [253]-[256]) was then introduced
so that

φa = R̂eai α
i (2.84)

where αi are the generators of the SU(2) algebra, 33 eai are the vielbeins on the three-sphere
and R̂ is the so-called “canonical radius” of the fuzzy sphere, which is related to the physical
radius RF via

R2
F = R̂2λ2Ĉ. (2.85)

Here Ĉ represents the quadratic Casimir invariant of the representation, which is related to
the R-R 2-form and the transverse scalars by

Ĉ = λ∂cCabφ
c. (2.86)

31Here we have fixed the gauge such that A0 = 0, which is equivalent to setting F01 = ε, so that the gauge
field is proportional to the identity matrix I. This breaks the original symmetry of the coincident branes, so
that U(q)→ SU(q)× U(1), where the U(1) field now commutes with the SU(q) sector.

32See [255] for a summary of the main results of [253, 254] as applied specifically to (p, q)-strings in the
KS geometry. See also [256] for a related article.

33Recall that SU(2) is the double cover of SO(3) ≡ S3
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Expanding the R-R 2-form C2 in the CS contribution gives

SCS = T gs
∫
d2ζSTr

(
P[C0 + eiλiφiφC2]

)
(2.87)

where iφ denotes the interior product by φi, regarded as a vector in the transverse space
[241, 242] and the symmetrised trace operation may be approximated by a trace over the
gauge group in the large q limit, i.e. neglecting terms in 1/q2 and higher order powers 34

[255]. This yields a field strength Fabc which gives rise to quantised flux when integrated
over the S3. Hence it is possible to write

Fabc = fΩabc (2.88)

where Ωabc is the volume element on the S3 and f ∈ R. After imposing the usual flux
normalisation condition (2.41), this gives

f =
2

b0gsR
. (2.89)

The canonical momentum of the EM field may then be determined by varying the total
Lagrangian density (including the CS term) for the fuzzy-sphere ansatz. The resulting
displacement field (i.e. p) is now quantised in terms of the string tension, such that

p = qT

(
a2

0

√
1 + 4R2

F R̂
2
λ2ε2

a4
0

(
1− λ2ε2

a4
0

)− 1
2

+ gsλC0 +
4λ
3b0

R2
F R̂

R

)
(2.90)

(see [255]). Substituting this into the appropriate expression for the Hamiltonian density
and minimising with the respect to the fuzzy sphere radius (as we did in the macroscopic
case with the radius of the 2-cycle for the D3-brane, RS2), we obtain

RF ∼ π
(
gs
b0

)
(p− qC0)

(
R

α′

)−1

(2.91)

in the large M limit, which is in agreement with the equivalent Abelian expression (2.79)
to leading order ∼ O(1/M). The resulting expression for the string tension is then

Hmin ≡ T(p,q)

=
a2

0

λ

√√√√q2

g2
s

(
1 +

1
4

(
gs
b0

)4 (p− qC0)4λ2

R4Ĉ

)
+ (p− qC0)2

(
1− 1

4

(
gs
b0

)4 (p− qC0)4λ2

R4

)
(2.92)

34Due to the inclusion of the S3 vielbeins in the fuzzy sphere ansatz, we may rewrite the Casimir invariant
directly in terms of the matrix representation of the SU(2) group elements, i.e. ĈIq = αiαjδij where Iq is
the rank q identity matrix. This feature simplifies the calculation of the symmetrized trace for both large
and finite q, though the form is especially simple in the limit q →∞.
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which agrees with the equivalent Abelian expression (2.80) up to ∼ O(1/M2). Thus we
have an expression for the tension in the large q and large M limits, but which is valid for
finite and potentially small p. Progress towards an expression which is also valid for small
M may be made by first taking the large M limit, as above, and then expanding the gen-
eral expression for the Hamiltonian density in powers of 1/M before minimising the energy.
Taking the SUGRA approximation gsM >> 1, (2.55) allows us to ignore large corrections
to the S3 metric caused by the back-reaction and this ensures the validity of the effective
action on which the resulting analysis is based. However, it has been suggested that further
perturbative analysis of H may provide a reasonably good approximation for the effective
tension even in the limit gsM ∼ O(1) [255].

To account properly for microscopic strings an exact prescription for the symmetrized trace
of the Myers action integrand is needed, though this is unknown in the general case. How-
ever, a prescription for the symmetrized trace of SO(3) was proposed in [257] and this was
later used by Ward to construct a preliminary investigation in the case of two coincident
D-strings, i.e. q = 2 [255]. He found that, even in this simple case, the resulting minimisa-
tion conditions for H were highly non-linear and difficult to solve analytically, though the
expression for H itself was relatively simple and dependent on an overall factor of a2

0/λ, as
in (2.80) and (2.92) above.

The important point is that there is very strong evidence to suggest that

T(p,q) ∼
a2

0

λ
[...] (2.93)

for all values of p and q. Perhaps even more importantly, all known expressions for the
effective tension agree with one another in both the p = 0 and q = 0 cases, so that

T(1,0) ∼
a2

0

λ
×O(1) (2.94)

and

T(0,1) ∼
a2

0

λ
×O

(
1
gs

)
, (2.95)

irrespective of the precise ansatz for the worldvolume scalars. As we shall see in the fol-
lowing chapter, using the Nambu-Goto action or Abelian form of the DBI action (i.e. the
appropriate actions for F - and D-strings), with an ansatz describing wound strings at the
tip of the throat, leads to a similar dependence of the effective tension on the warp factor.
In other words, T1 → a2

0T1 where T1 labels the “fundamental” tension of the string species
(i.e. either T(1,0) or T(0,1)) in the warped throat, and the factor of a2

0 arises from the pull-back
of the spacetime metric to the worldsheet.

In this case the “fundamental” tension of the string species in the background geometry is
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always proportional to the truly fundamental string tension T = λ−1, from (2.63), but con-
tains additional metric-dependent factors, so that T1 = T1(g). For the warped throat geom-
etry these corrections will, in general, depend on the parameters which control the blow-up
of the S3, i.e. b0 ∼ O(1), gs and M (regarding ls =

√
α′ as the fundamental unit) and on

the values of p and q themselves (as in equations (2.94)-(2.95)). We therefore expect similar
criteria to hold for more general (p, q)-strings (p, q > 1), with T(p,q) = T(p,q)(p, q, gs,M),
T(p,q) ∝ T = λ−1 in all cases and T(p,q) → a2

0T(p,q) in the final action. This suggests that
equation (2.93) provides a reasonably good order of magnitude estimate for the effective
tension of all (p, q)-string species. In turn, this suggests that our results provide a rea-
sonably accurate picture of certain cosmological consequences of (p, q)-string networks in
general, even though we restrict our analysis to the lowest lying string modes.

The main point is that, although branes composed of p F -strings and q D-strings “blow
up” for p, q >> 1, we may continue to use string-like ansatz for the embedding if the extra
“blown up” dimensions wrap stable cycles in the transverse space. All effects of the string’s
“expansion” into a higher-dimensional brane may then be incorporated into the dynamics
simply by replacing the original flat-space string tension, T = λ−1, with an appropriate
formula depending on p, q and the parameters which define the metric gµν .

Finally, we turn our attention to certain problems which may arise in the context of “model
mixing”. We will argue in chapter 5 that the effective action for so-called “pinched” field-
theoretic strings is equivalent to the Nambu action with a worldsheet-coordinate-dependent
tension. Building on previous results in chapter 3, we will see that this is also one way of
interpreting the four-dimensional effective action for a wound F - or D-string in an extra-
dimensional background. Thus we see that two types of structure - one a geometric property
of the embedding and one internal to the string itself - appear, phenomenologically, to be
equivalent. The fundamental result of chapter 5 implies that extra-dimensional effects in-
volving strings with no internal structure are able to “mimic” field-theoretic structure in
defect strings. One particularly important aspect of this correspondence is an interpretation
of the topological winding number n of an unwound vortex string in terms of the physical
winding number nw of a wound string with no internal structure.

The question then arises: what happens if we place a field-theoretic string in an extra-
dimensional background? Although such scenarios are often motivated by string theory,
which is mathematically inconsistent in (3+1)-dimensions, they are not exclusive to it, and
it is reasonable to ask what happens if a vortex string wraps windings in the internal space.
One possible answer is that, for R ≤ rs (rs ≤ rv) 35 such windings are unphysical and that,
for R >> rv, the Nambu action provides an adequate approximation. In this case, the

35i.e. if the length scale of the compact space is less than or comparable to the size of the vortex core(s).
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internal structure of the field-theoretic string may be neglected. However, although this
seems plausible in the case of an n = ±1 string (as considered as an F -string dual in the
original paper by Nielsen and Olesen [15]) it is unclear whether a vortex string with topo-
logical winding |n| > 1 and physical winding |nw| also admits a dual string-theory model
in which |n| may be be interpreted as a purely geometric effect.

The situation is even less clear if we imagine a pinched string wrapping windings in the
internal space. In both cases, two phenomenologically equivalent but physically different
types of structure are combined, and it is by no means clear what the resulting phenomenol-
ogy may be, or how it may relate to the phenomenology of more complex string species,
such as (p, q)-strings in higher dimensional scenarios. Although we do not investigate this
possibility in great detail, a preliminary answer to these questions is suggested at the end
of chapter 5, where it is argued that all field-theoretic strings - even those embedded in
higher-dimensional geometries - may admit dual models in terms of wound strings with no
internal structure. We note however, that an extended analysis of this problem may pro-
vide interesting avenues for future research, and help to shed further light on the relation
between field theory and string theory strings.

The preceeding sections conclude our discussion of the relevent background material for this
thesis. We now move on to consider the formation of necklace loops and non-topological cy-
cloops in chapters 3 and 4, before considering the relation of wound F/D-strings to pinched
vortex strings in chapter 5.
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CHAPTER 3

PRIMORDIAL BLACK HOLES AND DARK

MATTER FROM NECKLACE COLLAPSE

3.1 Introduction

There has, in recent years, been a renewed effort to test string theory in a cosmological
context. This is due in part to the availability of increasingly precise data from experiments
such as WMAP [258, 259] and SDSS [260, 261]. However, it is also due to theoretical ad-
vances which have resulted in a better understanding of the compactifications of the theory
down to (3 + 1)-dimensions. Since such compactifications are typically warped, this means
that mass-scales in the effective theory can be significantly reduced. One important con-
sequence of this is that superstrings may have a much smaller tension than first realised
[191, 193].

Originally Witten [196] ruled out the notion that F -strings could play the role of cosmic-
strings because of their extremely high mass density. The unwarped string tension is so large
that the presence of cosmic F -strings (formed after inflation) would be immediately evident
in the CMB. This effectively killed the subject until GKP (Giddings-Kachru-Polchinski)
[262] showed, in the context of type IIB strings, that by turning on non-trivial fluxes thread-
ing cycles in a class of compact manifolds one could obtain highly warped four-dimensional
backgrounds. The warping then acts in such a way as to reduce the overall tension of any
object, allowing observational bounds to be evaded.

Simultaneously, there has also been renewed interest in models of open string inflation.
In such models the energy density of the inflaton field(s) is provided by the geometric dis-
tance between the D3-brane of our universe and parallel branes or anti-branes. Since such
branes/anti-branes are charged under massless R-R form fields, it is expected that large
numbers of F - and D-strings will be produced at the end of inflation [191, 245, 247], as
well as (p, q) bound states of multiple strings [234, 248, 256]. Observationally, however,
this raises a potential problem as these strings are not redshifted away and therefore (pre-
sumably) fine-tuning is required to restrict their number to O(1) per Hubble volume. In
the following analysis we will simply assume that some phase of open string inflation has
occurred, though it remains an open problem to generate such a configuration in an explicit
model of string theory inflation.
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Given that these strings exist in a higher-dimensional theory, one could also imagine that
they wrap cycles within the internal space [154]. Such cycles could be either “smooth” or
“lumpy” from a four-dimensional perspective. A string that wraps a series of internal cycles
at separate points in four-dimensional space would appear as a necklace: that is, as a system
of monopoles or “beads” connected by string segments. Alternatively, strings which wrap
the compact directions smoothly along their four-dimensional length would appear to have
a continuously varying mass density in the case of non-geodesic windings (as considered
in the present chapter), or a constant mass density in the case of geodesic windings (as
considered in chapter 4). The exact nature of the variation depends on the geometry of
the compact space, as well as the string embedding, though in general we would expect the
effective tension to be periodic.

Matsuda proposed that a necklace structure may form from a smoothly varying config-
uration as the string relaxes to a quasi-stable state [6]. In this case the periodic variation
of effective string tension is viewed as the sum of the standard string tension plus a lifting
potential in the (angular) compact directions. If the angular directions are flat, the en-
ergy of the string is minimised for a smoothly varying configuration, but in the presence
of a potential a necklace structure is energetically favoured. Furthermore, the existence or
absence of a potential affects the stability of the extra-dimensional windings when strings
chop off from the network to form loops. In the absence of a lifting potential, windings
must be stabilised topologically giving rise to objects called “cycloops”. This is not true for
necklace solutions which may exist, at least over cosmologically relevant time scales, even
if the compact space is simply connected. The quasi-stability of the necklace solution is
discussed in greater detail in section 3.5.

The cosmological consequences of cycloops were first investigated by Avgoustidis and Shel-
lard [16]. They showed that, unlike an ordinary string loop, a decaying cycloop leaves a
topologically trapped remnant when it reaches zero radius. This remnant appears as a
monopole to a four-dimensional observer and may be interpreted as a DM particle. Like
ordinary string loops, cycloops also have a small probability (f ∼ 10−20) of collapsing to
form PBHs in the course of their first oscillation [115]. These PBHs may then decay to
leave topologically stable Planck-mass relics. Although many authors have considered the
production of Planck-mass relics from decaying black holes (beginning with MacGibbon
[96]) the possibility that these relics may be topologically trapped string remnants has not
been thoroughly investigated [6, 16].

By contrast, Matsuda has claimed that a large fraction f ∼ 1 of all necklace loops eventually
collapse to form PBHs via a separate necklace-specific process. This claim is based on the
assumption that mass-energy may only be lost, via GW emission, from the four-dimensional
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string segments, leaving the bead mass unchanged. Thus when the necklace loop reaches its
minimum radius, it will undergo collapse if the mass of the beads is large enough to produce
a Schwarzschild radius greater than the string width. 1 He therefore proposed that small
loops produced at very early times may form stable relics which also act as DM candidates.
Conversely, he argued that loops created at later times would be larger and hence likely to
contain enough mass in their beads to cause them to collapse into PBHs [8].

However, this original schematic analysis involved a number of simplifying assumptions,
such as the existence of a time-independent lifting potential and hence a constant bead
mass for necklace loops formed at different epochs. The initial inter-bead spacing was also
assumed to scale like the entropy distance at the time of network formation 2 and the dy-
namical evolution of the inter-bead distance was modeled by the standard string-monopole
network evolution equations, originally proposed by Berezinsky and Vilenkin [263].

In the following analysis we attempt to construct a more concrete model of necklace for-
mation, based on ideas from type IIB string theory. We calculate the explicit form of the
lifting potential for a loop of string with extra-dimensional windings in the KS geometry
[5, 169]. Using realistic models of winding and loop formation, we see that the potential
itself evolves dynamically, resulting in a time-dependent bead mass. This shows that the
first of these assumptions must be modified, at least for certain backgrounds.

Additionally, the decay signature of necklace loops in our model is in many ways the op-
posite of what Matsuda predicted. We find that PBH formation is favoured at early times,
with potential DM relics forming later. This is indeed an unexpected result (c.f. [8]), though
one which appears to follow naturally from the consideration of monopole/bead formation
as a dynamical process rather than as the result of a separate phase transition prior to
string formation. We argue that this is the correct approach to take when considering
“monopoles” which form from extra-dimensional windings and a comparison of our results
with field-theoretic string-monopole networks is given in section 3.6. This suggests that the
usual evolution equations for string-monopole networks do not apply to necklaces formed
from wound-strings.

In addition to a renewed interest in the role of F/D-string networks in cosmology, many
physicists are still devoted to the study of field-theoretic cosmic strings [124, 264, 265].
Whilst a stringy origin of the CMB perturbations has been ruled out by observation, the
best ΛCDM model fit to the data suggests that these strings may contribute at the level of

1We assume here that the minimum radius of the loop is determined by the effective width of the string,
δ ∼ ls =

√
α′.

2The entropy distance is defined to be dS(ts) ∼ t
1
2
M t

1
2
s , where ts is the formation time of the string network

and tM ≤ ts is the time of monopole formation [6].

66



3.1. INTRODUCTION

∼ 10% [126, 127] (for a review see also [266]), making them extremely important objects
to study. Unfortunately, a best fit for (p, q)-strings, necklaces or cycloops has not yet been
investigated [267].

However, recent discoveries of dualities between gauge field strings and F/D-strings have
raised the possibility of unifying these two approaches. Indeed, if string theory really is a
theory of everything (TOE), and if we accept QFTs to be valid low-energy approximations,
we may also hope to find string theory analogues of all field theory phenomena. If therefore
we expect topological defects, including strings, to arise generically in symmetry-breaking
processes, we must investigate the relationship between fundamental strings and field the-
ory strings in much more detail. This forms the motivation behind our identification of the
inter-bead distance with the correlation length of a field-theoretic string network, ξ(t), in
section 3.4, though the possible relationship between wound F/D-strings and field-theoretic
strings is investigated in greater depth in chapter 5 through the introduction of the notion
of a “pinched” string.

The aim of this chapter is to consider a simple model of wound-string necklaces in a well
understood SUGRA background using type IIB string theory, thereby extending the initial
phenomenological approach begun in [8]. Following the considerations above, we also con-
sider the possible relation of these objects to field-theoretic strings, restricting ourselves to
generic considerations. Since the background yields an explicit form for the lifting potential
in terms of the number of extra-dimensional windings, we may compute the bead mass
precisely if this number is known for a string loop formed at any epoch. Following [16],
we assume that the motion of a string in the compact space, prior to the chopping off of a
loop, is random. This allows us to estimate both the time-dependent bead mass and the
average inter-bead distance. We find that the results depend the definition of the parameter
ωl, which gives the fraction of the total string length contained in the extra-dimensional
windings. Two definitions are suggested: Identifying the inter-bead distance in the string
picture with the correlation length in the field theory picture, we see that the first definition
leads naturally to a scaling solution - similar to that for field theoretic strings but with a
correlation length ξ(t) ∼ γt (0 < γ ≤ 1) much smaller than the horizon. The second defini-
tion leads to a sub-scaling solution ξ(t) ∼ t

3
4 .

More importantly, we are able to compute the PBH mass spectrum produced by collaps-
ing necklaces. Since the mass of an individual necklace depends upon the structure of the
internal manifold as well as the string tension, the resulting PBH spectrum yields infor-
mation about the size of the of the extra dimensions and the warp factor. This influences
the background cosmic ray flux via the Hawking radiation of PBHs expiring at the present
epoch. We are thus able to provide observational bounds on string theory parameters using
measurements of the extragalactic gamma-ray flux at 100MeV from EGRET [13].
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An interesting result is that both definitions of ωl give the same qualitative behaviour,
with PBH formation occurring only over a limited time period in the early universe. How-
ever, the upper and lower limits of this window - and hence the resulting bounds on the
model parameters - do vary significantly in each case.

The layout of this chapter is as follows: In section 3.2 we construct the worldvolume action
for string loops before analysing their stability in section 3.3. Section 3.4 deals with the
formation of these loops and their cosmological impact, focusing on the predictions for PBH
abundance and section 3.5 contains a brief discussion of our main results and suggestions
for future work.

We conclude this introduction with a note regarding terminology. The “necklaces” which
are the subject of the present chapter and of Matsuda’s original work should not be confused
with “necklaces” formed via other string-monopole interactions. For example, Leblond and
Wyman [268] have shown that D0-branes (monopoles) may be formed at junctions between
strings in a (p, q)-string network. The resulting necklaces are of no relation to the ones
considered here. Related work can be found in [269]-[272].

3.2 Strings with non-trivial windings in the internal space

The background we wish to consider is that of the KS throat [5, 169] since it is one of the
better understood backgrounds of the type IIB theory. 3 Recall that conical singularities are
the most generic kind of singularities arising within compactifications of IIB string theory
on manifolds of SU(3)× SU(3) structure [164]. Since explicitly realistic compactifications
are difficult to construct, we will take a more phenomenological approach by considering
(non-compact) conical backgrounds such as the conifold T 1,1 that can be glued to a (con-
formal) CY manifold. Provided we work in a region far from this gluing, we can (locally)
work with the conifold geometry without worrying too much about the precise details of
the compactification mechanism. With this in mind, we can regularise the singular conifold
by allowing the S2 to shrink to zero size. This is just the deformation of the conifold, which
is topologically equivalent to the cotangent bundle over the three-sphere T ∗S3, where the
S3 has some minimal size. 4

3Our choice for the background is also inspired in part by the AdS/CFT duality, since the KS geometry
is known to be dual to an N = 1 confining gauge theory (see section 2.3). Viewed from this perspective,
the strings are effectively the confining strings of the gauge theory with non-trivial wrapping. Whilst this is
interesting in its own right, our motivation here will be to model cosmic necklaces rather than gauge theory
necklaces. As we will demonstrate in chapter 5, it may be possible to generate necklace-type objects from
gauge theory strings without requiring them to adopt non-trivial winding configurations.

4We should also point out that there is nothing special about the deformed conifold solution. One could
equally well use the resolved conifold where the S2 is blown up instead [273, 274]. Indeed the resulting string
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Recall that in canonical coordinates the metric at the tip is

ds2 = a2
0ηµνdx

µdxν +R2(dψ2 + sin2 ψ(dθ2 + sin2 θdφ2))

ψ ∈ [0, 4π), θ ∈ [0, π), φ ∈ [0, 2π) (3.1)

where the square of the warp factor, 0 < a2
0 < 1, is inversely proportional to the square

of the three-sphere radius, R2, (with a constant of proportionality determined by the de-
formation parameter of the conifold) and that the latter is proportional to the number of
units of quantised R-R 3-form flux, M and the string coupling gs. The basic point is that
the warping varies like 1/gsM , where we are assuming the SUGRA limit gsM >> 1, so
that, for fixed R, constraints on the warping can be interpreted as directly constraining the
background geometry. In what follows we will assume that (3.1) is representative of a large
class of warped geometries, without necessarily having an explicit realisation in a fully UV
complete construction.

The action for both fundamental strings (F -strings) and D1-branes (D-strings) - or in
more general (p, q) notation (1, 0)- and (0, 1)-strings respectively - in the warped deformed
conifold is the Nambu-Goto action with additional worldsheet flux, plus a possible CS term
for the D-string,

S = −T1

∫
dσdt

√
−X + SCS (3.2)

where T1 denotes either T(1,0) or T(0,1) and X = detXab with

Xab = γab + λFab, a, b ∈ {0, σ} (3.3)

where γab is the usual induced metric on the worldsheet

γab = GMN (X(σ, t))∂aXM (σ, t)∂bXN (σ, t), M,N ∈ {0, ..., 9} , (3.4)

and λ = 2πl2s . The simple form of the Lagrangian density
√
−X arises because we are

neglecting the coupling of the worldsheet to the NS-NS 2-form field, which is vanishing in
our background (at least in the limit we are considering). The flux tensor is anti-symmetric
in that λF00 = λFσσ = 0 and λF0σ = −λFσ0, λF0σ ≥ 0. Note that we are absorbing the
definition of the string coupling into the field-strength tensor, since this allows us to identify
the string frame with the Einstein frame. The CS coupling is given by the integral of the
pull-back of the R-R 2-form over the worldsheet for the case of D-strings:

SCS = T1

∫
Mα′(ψ − sinψ cosψ)dθ ∧ dφ. (3.5)

tension scales directly with the resolution parameter and is therefore highly constrained by observations.
The resulting solution is then very similar to the model considered in [276].
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However, for simplicity we choose to ignore this correction in the following analysis and
instead concentrate solely on the Nambu-Goto component of the action.

We wish to take the following general ansatz for the string embedding:

XM = (t, r(t) sinσ, r(t) cosσ, z0, τ → 0, 0, 0, ψ(σ, t), θ(σ, t), φ(σ, t)) (3.6)

where ψ ∈ [0, 4π), θ ∈ [0, π) and φ ∈ [0, 2π), as before. This describes a circular string in
the Minkowski directions which is wrapped over the S3 in the internal space. 5 Using the
metric (3.1) and the embedding ansatz (3.6), the action becomes

S = −T1a
2
0

∫
dσdt

√
(1− ṙ2)(r2 + a−2

0 R2s′2)− a−2
0 r2R2ṡ2 − a−4

0 λ2F 2
0σ − a

−4
0 R4ṡ2s′2 + a−4

0 R4(ṡs′)2

(3.7)
where we have introduced the slightly abusive notation

ṡ2 = ψ̇2 + sin2 ψ(θ̇2 + sin2 θφ̇2)

s′2 = ψ′2 + sin2 ψ(θ′2 + sin2 θφ′2) (3.8)

(ṡs′) = ψ̇ψ′ + sin2 ψ(θ̇θ′ + sin2 θφ̇φ′).

Here a dot or dash indicates differentiation with respect to t or σ, respectively, and we
have chosen the gauge so as to identify the worldsheet time coordinate with the proper
time in the Lorentz frame of the loop, t. We have also included a non-zero “electric”
gauge field contribution for generality. For the D-string case, this corresponds to the dis-
solving of F -string charge on the worldsheet and the strings are essentially superconducting.

There are two constants of motion for this configuration, the total energy of the string
H and the angular momentum l, due to the motion of the string in the internal dimensions.
6, 7 We parameterise these conserved charges as [276]

H =
∂L

∂q̇I
q̇I − L, l =

∂L

∂q̇I
q′I (3.9)

5In this model the strings sit at the tip of the warped throat, which is also a choice made for the sake
of simplicity. However, there is no a priori reason why we should make this assumption and a more general
analysis would follow the lines of [275].

6Note that although the string “rotates” around the S3, no centripetal force is acting upon it. The
internal (compact) dimensions are parameterised in terms of the angular variables ψ, θ and φ and so the
motion through the S3 is measured in rad× [t]−1, the units of angular velocity.

7We have not here considered the more general case of a loop with non-trivial windings in the internal
manifold which also rotates in Minkowski space. Such a scenario would require the action of a genuine
centripetal force provided by the string effective tension.
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where L is the Lagrangian and qI are the canonical coordinates, which are themselves func-
tions of the world-volume coordinates through qI = (r(t), σ, ψ(σ, t), θ(σ, t), φ(σ, t), Aa(σ, t)).
Using (3.7) and neglecting the CS term, we find the following expressions for these conserved
charges

H = T1

∫
dσ

a2
0(r2 + a−2

0 R2s′2)√
(1− ṙ2)(r2 + a−2

0 R2s′2)− a−2
0 r2R2ṡ2 − a−4

0 λ2F 2
0σ − a

−4
0 R4ṡ2s′2 + a−4

0 R4(ṡs′)2

l = T1

∫
dσ

R2r2(ṡs′)√
(1− ṙ2)(r2 + a−2

0 R2s′2)− a−2
0 r2R2ṡ2 − a−4

0 λ2F 2
0σ − a

−4
0 R4ṡ2s′2 + a−4

0 R4(ṡs′)2
.

However, it is more useful to rewrite the Hamiltonian in canonical form using the momenta

P 2 =
(
∂L

∂ṙ

)2

, Π2 =
(
∂L

∂Ȧ

)2

L2
ψ =

(
∂L

∂ψ̇

)2

, L2
θ =

(
∂L

∂θ̇

)2

, L2
φ =

(
∂L

∂φ̇

)2

. (3.10)

This will simplify the form of our solutions for stable string windings with non-zero world-
sheet flux (λF0σ 6= 0). This is especially true in the static (l = 0) case, which we will
consider in section 3.3.

After a long but straightforward calculation we find that the canonical form of the Hamil-
tonian reduces to

H =
∫
dσ

√
r2 + a−2

0 R2s′2

√
T 2

1 a
4
0 +

P 2

(r2 + a−2
0 R2s′2)

+
Π2

a−4
0 λ2

+ L̃2
ψ + L̃2

θ + L̃2
φ (3.11)

where we have written

L̃ψ
2

=
a4

0ψ̇L
2
ψ

T 2
1 a

2
0R

2r2ψ̇ + sin2 ψ[θ′(ψ̇θ′ − θ̇ψ′) + sin2 θφ′(ψ̇φ′ − φ̇ψ′)]

L̃θ
2

=
a4

0θ̇L
2
θ

T 2
1 a

2
0R

2 sin2 ψr2θ̇ + [ψ′(θ̇ψ′ − ψ̇θ′) + sin2 ψ sin2 θφ′(θ̇φ′ − φ̇θ′)]
(3.12)

L̃φ
2

=
a4

0φ̇L
2
φ

T 2
1 a

2
0R

2 sin2 ψ sin2 θr2φ̇+ [ψ′(φ̇ψ′ − ψ̇φ′) + sin2 ψ(φ̇θ′ − θ̇φ′)]
.

In the next section we will specify the ansatz (3.6) completely by identifying the functions
ψ(σ, t), θ(σ, t) and φ(σ, t). We will then use equation (3.11) to determine the stability
conditions in the static case by minimising the total energy of the string. Finally, we see
how this leads naturally to a concrete model of necklace loops in the warped throat scenario
when these solutions are perturbed.
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3.3 Stability analysis for string loops in the static (l = 0) case and necklace

formation

In the static case we assume that there is no motion in the compact dimensions and that
the loop is neither expanding nor contracting in Minkowski space. Setting ψ̇ = θ̇ = φ̇ = 0
and ṙ = 0 (or equivalently L2

ψ = L2
θ = L2

φ = 0 and P 2 = 0) gives the static potential

V =
∫
dσa2

0

√
T 2

1 +
Π2

λ2

√
r2 + a−2

0 R2s′2 (3.13)

and l = 0, as expected. Even static strings of this kind may lose mass-energy over time due
to the emission of gravitational radiation, causing them to shrink. However, we refer here
to the stability of extra-dimensional windings in the static gauge over an epoch in which
the loop size r and energy V are roughly constant. The shrinking of necklace loops over
cosmological time scales and its implications are dealt with explicitly in section 3.4.

We must now complete the ansatz (3.6). Choosing ψ(σ, t), θ(σ, t) and φ(σ, t) so that the
angular winding is linear in σ 8

ψ(σ, t) = 2nψσ + ψ(t),

θ(σ, t) = nθσ + θ(t), (3.14)

φ(σ, t) = nφσ + φ(t).

with nψ, nθ, nφ ∈ N and 0 < σ ≤ 2π, this gives

V =
∫
dσa2

0T1

√
1 +

Π2

T 2
1 λ

2

√
r2 + a−2

0 R2(4n2
ψ + sin2 ψ(n2

θ + sin2 θn2
φ)) (3.15)

where ψ and θ are themselves functions of σ and we have set ψ̇(σ, t) = ψ̇(t) = 0 etc in
(3.14). Here nψ, nθ and nφ represent the number of physical windings in each of the ψ, θ
and φ-directions respectively. The factor of two in the ansatz for ψ(σ, t) is an artifact of
the coordinate system and is due to the fact that the principle range of ψ is twice that of
the polar angle φ.

We see immediately that V = V (ψ, θ), indicating that the φ-direction is flat, whereas
the ψ and θ-directions are “lifted” by the presence of a potential energy density V, which
is the integrand in (3.15). It is now possible to make a connection between wound-strings

8This configuration corresponds to a situation in which the end point of the string is equally likely to
move in each of the angular directions prior to the moment of loop formation. As we shall see in section 3.4,
when we consider the random walk regime, this assumption is well motivated from a physical point of view.
We also note for future reference that in canonical coordinates, windings of this form do not wrap geodesics
in the S3. This has important implications for the σ-dependence of both H and l.
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at the tip of the conifold throat and the cosmic necklaces predicted generically by Matsuda
[9]. First we must determine the conditions under which the wrappings described above are
stable, which is done by minimising the total energy V . Perturbations of this configuration
are then seen to give rise to beads, whose mass can be estimated from the functional form
of the potential.

However, rather than simply minimising the potential, it is useful (and easier) at this point
to develop a physical intuition for the string configuration. Treating ψ and θ as independent
variables, we may sketch the lifting potential (strictly speaking, the lifting potential energy
density, but from here on these two terms will be used interchangeably) which the string
“sees” throughout the whole S3. This is done by plotting the integrand V in (3.15) and is
shown for the range (0 ≤ ψ < 4π, 0 ≤ θ < 2π) in figure 3.1.

Figure 3.1: Plot of the static potential V, setting the tension pre-factor term to unity and
also r2 = 1, a−2

0 R2 = 1 and n2
ψ = n2

θ = n2
φ = 1.

The critical points and associated field masses may be found by diagonalising the corre-
sponding Hessian matrix. We verify that V has equal local maxima at (ψ = (2n+1)π/2, θ =
(2m+1)π/2), saddle points of equal magnitude at (ψ = (2n+1)π/2, θ = mπ) and flat direc-
tions which are also local minima (i.e. “troughs” not “ridges” or points of inflection) given
by (ψ = nπ, θ), where m,n ∈ Z. This gives rise to two local maxima, two saddle points and
two flat directions in the principle range. The associated field masses are given below,

• ψ = (2n+1)π
2 , θ = (2m+1)π

2 (local maxima)

m2
θ = −

T1R
2n2

φ√
r2 + a−2

0 R2(4n2
ψ + n2

θ + n2
φ)
,m2

ψ = −
T1R

2(n2
θ + n2

φ)√
r2 + a−2

0 R2(4n2
ψ + n2

θ + n2
φ)

(3.16)
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• ψ = (2n+1)π
2 , θ = mπ (saddle points)

m2
θ =

T1R
2n2

φ√
r2 + a−2

0 R2(4n2
ψ + n2

θ)
,m2

ψ = −
T1R

2n2
θ√

r2 + a−2
0 R2(4n2

ψ + n2
θ)

(3.17)

• ψ = nπ, θ (flat directions)

m2
θ = 0,m2

ψ =
T1R

2(n2
θ + sin2θn2

φ)√
r2 + 4a−2

0 R2n2
ψ

. (3.18)

It is now intuitively clear that minimal energy configurations correspond to strings wrapping
flat directions in the two-dimensional submanifold described by ψ and θ. Physically this
corresponds to strings wrapping some point in the S3 which is uniquely determined by the
condition ψ = nπ for some n ∈ Z. This may be seen from the metric (3.1) and is the reason
why nθ and nφ do not contribute to the total energy. Even though, technically, nθ, nφ ≥ 0,
windings around points have zero length and are not physically meaningful. This result is
precisely what we should expect, since the minimum energy configuration corresponds to a
situation in which the string has zero length contained in extra-dimensional windings.

We may verify this by substituting ψ = nπ and setting Π2 = 0 in (3.15), showing that
the total energy of a string wrapping flat directions in the potential V is given by

V = 2πa2
0rT1, (3.19)

which is simply the rest mass of a string loop with radius r in warped Minkowski space.

This is certainly a very complicated way of verifying an intuitively obvious result but the
above analysis will prove useful when we consider perturbations which result in different
sections of a single string lying along equivalent local minima, that is, when the string in-
terpolates between degenerate minima (flat directions) in the (ψ, θ) submanifold, resulting
in the formation of beads.

The flat directions in figure 3.1 effectively define degenerate vacuum states for the string.
For this reason we propose identifying the inter-bead distance in the string picture with
the correlation length of field-theoretic strings. This forms the basis for identifying the
field-theoretic parameter γ (which defines the correlation length as a fraction of the horizon
distance) with the parameters which define the KS geometry in the following section. Also,
though we refer to the bead-forming states as perturbations from the minimum energy (zero
winding) configuration, this is true only in an energetic sense. Such states differ locally from
the minimum energy configuration only in the vicinity of a bead.
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Indeed, it is unclear whether it is possible to create a necklace from a standard F - or
D-string loop via physical perturbations of a section of the string after the formation of the
loop. This is the same as asking whether it is meaningful for an open string section (which
may itself form part of a string loop or part of a string section connected to the network)
to contain fractional windings which result in the formation of beads.

It is subtle point but in his generic argument Matsuda [9] predicted that, due to the presence
of the lifting potential, integer windings would not be necessary for stability. In principle,
this should allow for the formation of beads in open string sections due to local fractional
windings. Though there is no reason why this could not happen generically, the possibility
is not explicitly realised in our model. As discussed in the following section, we assume
that any small-scale structure due to local partial windings will quickly disappear due to
the annihilation of beads/anti-beads.

In our model the existence of the potential barrier which stabilises the windings after the
loop chops off from the network (and which allows for the formation of beads) depends upon
the presence of non-zero integer windings at the moment of loop formation. What is more,
this may be generally true in this class of models since the form of the lifting potential in
the extra dimensions ought always to be determined by the parameters that characterise
the internal windings. Alternatively, however, it may be possible to acccount for the stabil-
isation of fractional windings in an extended analysis by allowing non-integer values of nψ,
nθ and nφ. Appropriate boundary conditions for the functions ψ(σ, t), θ(σ, t) and φ(σ, t)
would then have to be fixed to ensure that the general ansatz (3.6) described a continuous
string. Though this is an interesting question, and one which merits further investigation,
we restrict ourselves here to considering configurations containing integer windings. 9

What happens physically is the following: Before the loop chops off from the network,
the string is free to move and create windings in the compact dimensions. If the internal
manifold were not simply connected, these would become topologically trapped, resulting
in the formation of cycloops [16]. However, as the S3 is simply connected, these windings
cannot be topologically stabilised. Instead they are stabilised by the presence of the lifting

9In addition, the dual field theory model for wound-strings developed in chapter 5 strongly suggests that
- in the KS geometry at least - fractional windings are unstable. In order to create a fractional winding
within a sub-section of the string (in a closed string loop the net number of windings along the total string
length must of course be integer) it is necessary for the winding direction to change by ±π (i.e. from
clockwise to anti-clockwise or vica-versa), at some point in the compact space which is not a pole of the
S3. In the field picture this represents a discontinuous change from positive to negative topological winding
number in the dual vortex string, so that vortices and anti-vortices of finite size then directly neighbour one
another. Clearly, such a situation would lead to an instability as we would expect such configurations to
immediately annihilate. As we expect duality to hold even in the case of long strings, this then suggests
that fractional windings are generically unstable. In the string picture, an argument for the instabilty of
non-integer windings can also be obtained from considering the interaction of the string tension (viewed as
vector quantity) with the lifting potential (see section 5.9.2).
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potential V, which is itself a function of the number of windings.

We may imagine that, at the moment of loop formation, the string ansatz is described
accurately by (3.14) as sketched in figure 3.2a. However, as soon as the string chops off
from the network to form a loop, the total energy (V ) is no longer minimised for such a
smoothly varying configuration. Although windings may continue to vary smoothly in the
φ-direction, they will then adopt a step-like configuration in the (ψ, θ) sub-manifold, as
illustrated in figure 3.2b.

This is only an approximation. Technically, if the string configuration (i.e. the ansatz)
changes, then the form of the lifting potential also changes. This results in a complicated
iterative process with complicated string dynamics before the eventual formation of a steady
state.

However, if we consider V to be approximately constant, we see that the integral V =
∫
dσV

is minimised precisely for the step-like configuration shown in figure 3.2b, in which the string
interpolates between degenerate minima by crossing the potential barrier perpendicularly
at its lowest point, i.e. at a saddle point (ψ = (2n+ 1)π/2, θ = mπ). This may be thought
of energetically as a series of small perturbations away from the genuine minimum energy
configuration of zero-windings (described above), which is equivalent to a string wrapping
a single flat direction in the (ψ, θ) sub-manifold. Looking at it from this perspective helps
us to justify our original assumption that V remains approximately constant, so long as we
remember to set nψ = 0 in (3.15).

This leads to an apparent contradiction. We may assume, at the moment of loop for-
mation, that nw ∼ nψ ∼ nθ ∼ nφ > 0. After this, windings in the φ-direction will still be
able to vary smoothly, though they will not be stable and may in principle contract until
they are point-like. This possibility is discussed in detail in section 3.4.6.

Nevertheless, so long as nφ > 0, windings in the (ψ, θ) sub-manifold will relax into the
step-like configuration shown in figure 3.2b, resulting in the formation of approximately
2nψ beads. This forces us to view the configuration as a series of small perturbations (in
fact, a series of 2nψ perturbations) away from the configuration described by ψ = nπ and
nψ = 0. We must therefore continue to regard nψ > 0 (the number of windings in the
ψ-direction at the moment of loop formation) as physically meaningful when estimating the
number of beads, but we must regard it as approximately zero when estimating the bead
mass. This is a little strange but it is quite consistent with the physical picture we have
been sketching.

To obtain our estimate for the bead mass (Mb), we first expand (3.15) with nψ set equal
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Figure 3.2: (a) shows strings winding smoothly across the effective potential V on the (θ, φ)
sub-manifold. (b) shows step-like configurations which minimise the total string energy
within V.

to zero. Assuming a0r >> nwR at the moment of loop formation, which corresponds to a
large loop in the Minkowski directions, we obtain the approximate expression

V ∼

√
1 +

Π2

T 2
1 λ

2

(
2πa2

0rT1 + T1

∫ 2π

0
dσ
R2 sin2 ψ(n2

θ + sin2 θn2
φ)

r

)
. (3.20)

We then move from the smooth windings picture shown in figure 3.2a to the step-like
configuration in figure 3.2b by setting ψ = mπ globally, except in the vicinity of a bead,
where θ = mπ, mπ ≤ ψ ≤ (m+ 1)π and

dψ ∼ dσ. (3.21)

Our expression for the total energy is then

V ∼

√
1 +

Π2

T 2
1 λ

2

(
2πa2

0rT1 + 2nψ ×
1
2
T1
R2

r
n2
θ

∫ ψf=(m+1)π

ψi=mπ
sin2 ψdψ

)

∼

√
1 +

Π2

T 2
1 λ

2

(
2πa2

0rT1 + 2nψ ×
π

4
T1
R2n2

θ

r

)
. (3.22)

As the first term is simply the rest mass of the string in the Minkowski directions, the
second term corresponds to the rest mass of Nb = 2nψ beads. Finally, setting nψ ∼ nθ ∼ nw
explicitly, we have the following estimates for the initial number of beads Nb and the bead

77



3.4. COSMOLOGICAL IMPLICATIONS OF NECKLACE LOOPS

mass Mb:
Nb ∼ 2nw

Mb ∼
π

4
T1

√
1 +

Π2

T 2
1 λ

2

(
R2n2

w

r

)
(3.23)

That the bead mass is inversely proportional to r makes sense on the assumption that the
total length of the string remains constant so that if there is less string length involved in
internal windings (resulting in less massive beads), more length is added to the ordinary
four-dimensional part of the loop. The converse is also true. Thus the first term in the
expression for the total string mass-energy increases in magnitude as the second decreases
and vice-versa. Interestingly, Mb is effectively quantised in terms of the number of windings
present in the θ-direction.

Let us now also consider the full expression for the bead mass. One can integrate the
potential over the above range and the result is roughly the sum of the bead mass and the
rest mass associated with an unwound string (with nw = 0). We can then rewrite the bead
mass, including all the higher order terms, with an appropriate normalisation to yield

Mb ∼ 2a2
0T1r

√
1 +

Π2

T 2
1 λ

2

(
EllipticE

(
nwRi

a0r

)
− π

2

)
(3.24)

which is valid for non-zero winding number nw. 10 One can easily check that in the limit
where nwR << a0r the mass reduces exactly to (3.23).

3.4 Cosmological implications of necklace loops

We now investigate the cosmological implications of necklace loops based on the assump-
tion that they retain their necklace structure after formation. As we have already seen, the
θ-dependence of the lifting potential depends on the presence of windings in the φ-direction
(nφ > 0) and its ψ-dependence requires the presence of windings in the θ-direction (nθ > 0).
However, since the φ-direction is flat, windings along this direction are unstable. If these
windings contract, this “flattens” the θ-direction, leaving the θ-windings free to contract as
well. This in turn flattens the ψ-direction and necklace structure disappears as the bead
mass (which comes from extra-dimensional windings) is converted into the ordinary rest
mass of a loop in Minkowski space. Due to the presence of single flat direction in the S3,
the entire necklace structure of the loop is therefore unstable and may unravel in time.

We consider this possibility later in this section where we introduce a time-dependent model

10The EllipticE function used here is defined via the elliptic integral of the second kind, EllipticE(β, k) =∫ β
0

√
1− k2sin2θdθ where k2 = sin2(α) (0 < k2 < 1) is known as the elliptic modulus and α is the modular

angle [277].
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for the number of windings. For the moment we will consider nw ∼ nψ ∼ nθ ∼ nφ to be
roughly constant. We can now use Matsuda’s original assumption that the four-dimensional
part of the loop loses mass-energy via the emission of gravitational radiation in Minkowski
space (just like an ordinary cosmic string in four dimensions) but that the bead-mass which
is formed from the winding of the string in internal space is unaffected by this process.

To investigate the cosmological implications of necklace loops, we must therefore mod-
ify equation (3.22) by inserting a time-dependent radius r(t, ti) into the first term of the
expansion (the loop mass in Minkowski space) and the initial radius r(ti) into the second
term (the bead mass). The time-dependent radius of a shrinking loop in warped Minkowski
space is given by

a0r(t, ti) = a0(αti − ΓGT1(t− ti)) (3.25)

where ti is the time of loop formation and t ≥ ti is the cosmic time coordinate. The
parameter Γ is a measure of the rate of energy loss due to the emission of gravitational
radiation, G is Newton’s constant (which is determined by the volume of the S3) and
0 < a0α < a0 determines the characteristic initial loop radius as a fraction of the horizon,
dH ∼ a0ct. The initial loop radius as a function of ti is then

a0r(ti) = a0αti. (3.26)

The bead mass now explicitly depends on the time of loop formation, ti via (3.26). How-
ever, we also expect that the initial number of beads, Nb, to depend in some way on ti.
We therefore need some way of estimating the initial number of windings in each direction
nw = nw(ti).

Following Avgoustidis and Shellard [16] (and taking into account the warp factor a0), we
use the random walk regime to estimate the initial number of windings present in each
angular direction, nw(ti), as 11

nw(ti) =
√
a0αωlεlti
R

(3.27)

11Although in general a random walk will not give rise microscopically to completely smooth windings,
as described by the embedding ansatz, it should on average produce something similar from a macroscopic
point of view. Any extra beads formed by microscopic structure would quickly annihilate one another if we
assume that they are free to move around the shrinking loop in a random walk. This random motion occurs
when small sections of the string momentarily acquire enough energy to jump between adjacent minima in
the effective potential causing the bead to move from a four dimensional perspective. In his original paper
[8] Matsuda predicted that, based on the idea of a random walk, approximately

√
nw(ti) beads/anti-beads

created in pair formation would survice until late times. However, we contest that this is valid only for
a static loop. For a shrinking loop it seems clear that all bead-anti-bead pairs will eventually collide and
annihilate, at least if the minimum radius of the string (∼ string thickness) is comparable to or less than
the initial spacing. This implies that only beads formed from net windings will contribute to the mass of
any PBHs/DM relics eventually created. Further discussion of this point is given in section 3.5.
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where 0 ≤ ωl < 1 is the fraction of the total string length l (not to be confused with the
angular momentum) contained in the windings and εl is the step length. This definition
tells us that string-necklace networks will tend to form once the correlation length becomes
larger than the scale of the internal dimensions.

The parameter ωl may be defined as the ratio of the string length in the internal dimensions
to the total length of the string in all dimensions. Following [154], but using the notation
defined earlier, the concise definition is

ωl =

√∫ (
R2s′2

a2
0r

2 +R2s′2

)
Vdσ/

∫
Vdσ (3.28)

where V(σ) denotes the integrand in (3.15). In order to simplify the above expression, we
make the approximation

ωl ∼

√ ∫
R2s′2dσ∫

(a2
0r

2 +R2s′2)dσ

∫
Vdσ/

∫
Vdσ

∼

√
n2
wR

2
∫

(4 + sin2(nwσ) + sin4(nwσ))dσ
a2

0r
2 + n2

wR
2
∫

(4 + sin2(nwσ) + sin4(nwσ))dσ
(3.29)

where in the second step we have ignored the numerical coefficient in front of the r2 term,
and again assumed nw ∼ nψ ∼ nθ ∼ nφ. Finally, it is straightforward to show that∫

(4 + sin2(nwσ) + sin4(nwσ))dσ ∼ O(10) (3.30)

for all possible values of nw(ti). Therefore, ωl can be well approximated by

ωl ∼
nwR√

a2
0r

2 + n2
wR

2
(3.31)

up to various numerical factors which would have appeared in the above expression if the in-
tegral in (3.28) been performed in full. It is clear, however, that ωl has the correct functional
dependence on both nw and r. This means that, whatever time-dependent models we use
for r(ti), nw(ti) and ωl(ti), they must satisfy (3.31) for consistency. At this stage we are not
imposing any additional conditions on a0r and therefore ωl is just a parameter of the theory.

If we use (3.26) as our model for r(ti) and substitute ωl from (3.31) into our previous
expression for nw(ti) (which also uses the approximation r(ti) ∼ αti), we find a cubic
equation in the variable (nwR)2,

(nwR)6 + a2
0(αti)2(nwR)4 − a2

0(αti)2ε2l (nwR)2 = 0. (3.32)
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This has the trivial solution (nwR)2 = 0 (no windings) and the more physically relevant
solution

(nwR)2 =
a2

0(αti)2

2

(
−1±

√
1 +

4ε2l
a2

0(αti)2

)
, (3.33)

although the reality of nw requires us to take the positive sign before the square root. The
time-dependence of nw(ti) in the expression above is then consistent with the definition of
ωl in (3.31).

Next we move on to consider to size of the step length εl. The maximum velocity of
the string in the compact dimensions is c (where c = 1 in natural units), which corresponds
to a step length per unit time (∆t = a−1

0 ts = a−1
0

√
α′) of εl = a−1

0 ls = a−1
0

√
α′. 12 However,

only the end points of the string at the horizon move at the speed of light. For two points
on the string within the horizon, separated by a distance d ∼ αct, the relative velocity
between them is v ∼ αc which corresponds to an effective step length of

εl ∼ αa−1
0

√
α′. (3.34)

This definition also implies nw(ti) ∝ α, as we would expect. This ensures that the number
of beads on a long string, which stretches across the entire horizon nH(ti), is independent
of α. In fact, the assumption of a constant step length εl at all points along the string (as
in [16]) is problematic, as this leads to a measure of nH(ti) which is proportional to 1/

√
α.

Using (3.34) and (3.33) the condition for bead formation, nw(ti)2 ≥ 1, is equivalent to

ti ≥
R2

α
√
α2α′ − a2

0R
2

(3.35)

and the reality of the above solution translates into the constraint

a2
0 ≤

α2α′

R2
. (3.36)

Strictly speaking, a2
0 is fixed by the ratio of the fluxes arising in a full string compactifica-

tion and is therefore highly sensitive to the magnitude of string coupling, the string scale
and the flux parameters. In the non-compact case which we are considering we also require

12Here we have used the fact that the standard string tension T1 ∼ α′−1 is given by the fundamental

string mass divided by the fundamental string length T1 = ms
ls
∼
√
α′
−1

√
α′
∼ α′−1) together with the fact that

the effective tension of the string in the warped throat is T̃1 ∼ a2
0T1. We then treat this as the division of

the “warped” string mass m̃s ∼ a0

√
α′
−1

by the “warped” string scale l̃s ∼ a−1
0

√
α′, so that the velocity of

light is given by c = l̃s
t̃s

=
a−1
0

√
α′

a−1
0

√
α′
≡ ls

ts
=
√
α′√
α′

= 1. In the next chapter we will see that there may be good

reason to suppose that the end points of the string at the horizon move at some velocity v ∼
√

1− a2
0c < c.

However, for phenomenologically favoured small values of a2
0, this overall factor is close to unity and makes

little difference to the results of the argument presented here.
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a2
0 < 1 in order to ensure that the solution is warped. Therefore the existence condition for

beads appears to impose a strict upper bound on the value of a2
0, which imposes a strong

constraint on the deformation parameter of the conifold geometry. If a2
0 = α2α′/R2, this

allows necklaces to form only at infinity, and so only the strict inequality in (3.36) is phys-
ically meaningful.

One can now substitute the solution for nwR into the generalised mass function in (3.24).
If we define the function

G(ti) = −1 +

√
1 +

4α′

a4
0t

2
i

, (3.37)

then we see that there is a remarkable cancellation of terms and we are left with

Mb ∼ 2a2
0T1αti

√
1 +

Π2

T 2
1 λ

2

(
EllipticE

(
i

√
G(ti)

2

)
− π

2

)
, (3.38)

which is not a monotonic function of time. For vanishingly small ti, the mass is increasing
until it reaches a maximum value, before decreasing monotonically. This leads to the
interesting possibility that one can have sustained PBH formation during a “window”, where
the mass function is greater than the critical value required to produce a gravitational radius
larger than the string width. This possibility is dealt with in section 3.4.2. The explicit
form of ωl(ti) is

ωl ∼
a2

0ti

2
√
α′

(
−1 +

√
1 +

4α′

a4
0t

2
i

)
=

a2
0ti

2
√
α′
G(ti) (3.39)

which tends to unity as ti → 0 and zero as ti →∞, as we would expect.

To aid visualisation in the discussions that follow, we plot the functions Mb(ti), Nb = 2nw(ti)
and ωl(ti) and the inter-bead distance d(ti) in figure 3.3, for fixed values of our model pa-
rameters, in order to illustrate the qualitative behaviour of each.

What is clear from these plots is that, assuming no gravitational emission, there are initially
a few beads per loop, with large mass. However, as ti increases, the number of beads and the
average inter-bead distance increase, while their corresponding mass decreases. The total
mass lost due to the decreasing mass of individual beads outweighs the mass gained by the
increase in bead number, which eventually tends to a constant value. Therefore, one expects
the system to eventually become dominated by a large number of (almost) massless beads.
Of course, including the effects of gravitational emission from the beads, as well as from
the connecting string segments (or equivalently, considering the string as “structureless”,
so that it must contract equally along its entire length, including the wound sections), may
change this result significantly. In this case, the heavier beads will lose mass more quickly
and the resulting spectrum of necklace bead masses will depend on both ti and t explicitly.
It is an interesting open question as to how this emission affects PBH formation.
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Figure 3.3: Plots of the dynamic variables associated with winding formation as a function
of the time of loop formation, ti. The bead mass Mb(ti), number of beads Nb(ti) ∼ 2nw(ti),
fraction of the total string length contained in the windings ωl(ti), and the average inter-
bead distance d(ti) are shown. In all plots model parameters have been set such that
a0 = 0.1, α′ = 1, R = 5, α = 0.8 and T1

√
1 + Π2

T 2
1 λ

2 = 1.
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3.4.1 Late time formation - the scaling regime

Using the fact that the product nwR is fixed by the parameters of the theory, let us consider
the asymptotics to better understand the physics at early and late epochs. Let us initially
focus on the late-time regime where

ti >>
2
√
α′

a2
0

(3.40)

which, using (3.33), implies that the initial number of windings per loop (for a loop formed
at late ti) is constant,

n2
w ∼

α2α′

a2
0R

2
. (3.41)

The condition for bead formation nw(ti)2 ≥ 1 simply reproduces (3.36), ensuring the reality
of t(min)

i - the minimum time at which necklaces formation begins - and is consistent with our
expectations. Assuming, however, that the strict inequality in (3.36) is almost saturated,
so that necklaces are able to form at (large) finite time, we are able to estimate the average
inter-bead distance for necklaces formed at late times,

d(ti) ∼
a0r(ti)
Nb

∼ a2
0Rti

2
√
α′
. (3.42)

Identifying this with the correlation length along the string, ξ(ti), as mentioned in the
previous section, we see that our solution corresponds to a scaling regime in which we may
identify the scaling parameter γ with the KS parameters, i.e.

d(ti) ∼ ξ(ti) ∼ a0γti, (3.43)

implying

γ ∼ a0R

2
√
α′
. (3.44)

This might be compared with the result of field theory calculations, where the initial number
of beads on a loop of radius r(ti) in the scaling regime is given by [114]

Nb(ti) ∼
r(ti)
ξ(ti)

∼ α

γ
. (3.45)

Hence we see that the condition for bead formation at late times in the string picture (3.43)
is equivalent to the condition for bead formation in the scaling regime of the field theory,
γ ≤ 1

2α. Both conditions ensure Nb ≥ 2, implying that beads come in pairs. This is also
consistent with the identification of the inter-bead distance with the correlation distance of
the degenerate vacuum states along the string. Thus we see that a scaling solution arises
naturally at late times in the string picture, allowing us to identify various string parameters
with their field theory counterparts.
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Using the condition on γ and α for bead formation, i.e. 0 < γ ≤ 1
2α, this simply re-

covers our previous constraint on a0R (3.36). However, by setting α to the maximum value
allowed by causality (α = 1) we may place a maximum upper bound on the radius of the
S3,

R ≤ a−1
0

√
α′. (3.46)

This means that beads/windings will not form unless the radius of the S3 is smaller than
the warped string scale, irrespective of the value of α. It also implies

a2
0 ≤

1
Mgs

, b0 ∼ O(1) (3.47)

in order for windings to form. We now ask what happens to the time-dependence of the
mass function in the late-time limit. The argument of the EllipticE term becomes small
and therefore we may expand the mass term to obtain

Mb(ti) ∼ T1

√
1 +

Π2

T 2
1 λ

2

π

2
α2α′

3
2

a3
0ti

(
1− 3

16
α′

a4
0t

2
i

+ . . .

)
, (3.48)

from which we see that the mass is inversely proportional to ti and that Mb → 0 as ti →∞.
This implies that any necklace structure should disappear at sufficiently late times. In other
words, it is unlikely that any necklaces formed at late times would be distinguishable from
ordinary string loops. One should quantify this by noting that the mass is also inversely
proportional to the scale of the warping, so that for highly warped throats the mass will be
approximately constant over a much longer time scale.

3.4.2 Early time formation

Returning now to the cubic solution for (nwR)2, let us consider early time formation subject
to the condition ti ≤ 2

√
α′

a2
0

. This gives

n2
w(ti) ∼

(αti)
√
α′

R2
− 1

2

(a0

R

)2
(αti)2 (3.49)

to second order, which also implies

ωl(ti) ∼ 1− 1
2
a2

0√
α′

(αti) (3.50)

from the definition of ωl. Clearly therefore ωl → 1 as ti → 0, that is, as a0r(ti) →
O(nwR). Utilising the bead-formation condition then allows us to place a bound on the
bead formation time via

R2

α
√
α2α′ − a2

0R
2
≤ ti ≤

2
√
α′

a2
0

. (3.51)
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The average distance between beads, should necklaces begin to form, 13 may then be ap-
proximated by

d(ti) ∼
a0R
√
ti

2α′1/4

(
1 +

a2
0ti

4
√
α′

+ . . .

)
(3.52)

which, unlike the the late-time approximation, does not correspond to any known regime in
the field theory if we continue to identify d(ti) with the correlation distance ξ(ti). However,
the second term is sub-dominant at very early times when ti ≤ 4

√
α′

a2
0

, suggesting that it may

be reasonable to keep only first order terms in the expansion especially if ti << 2
√
α′

a2
0

. Such
a very early time approximation may correspond to a damping regime in the field theory
picture. The above equation would then represent an intermediate regime, where damped
and scaling solutions can be joined together. Assuming now that ti << 2

√
α′

a2
0α

and keeping
only the first order term in (3.49), we see that the condition for bead formation n2

w(ti) ≥ 1
is equivalent to

ti ≥
R2

α2
√
α′
. (3.53)

This is consistent with our previous estimates and shows that bead formation will occur in
the very early time regime 14 only when a2

0R
2 << α2α′. With this in mind, we see that the

inter-bead distance is set by the leading factor in (3.52), which is consistent with the field
theory picture at early times during the damping regime, where we expect the correlation
distance ξ(ti) to be given by a power-law solution of the form [114]

ξ(ti) ∼ t
1
2
d t

1
2
i (3.54)

with td corresponding to the characteristic damping time of small-scale oscillations on the
string (and where we have effectively identified td ∼ a2

0R
2/4
√
α′).

However, a damping regime is usually obtained by considering collisions of the string with
an external plasma. In this case the damping term comes from the internal dynamics of
the model, suggesting that the inertia of the beads (when Mb is large) is sufficient to cause
the correlation length to scale as ξ(ti) ∼

√
ti at very early times.

Furthermore, unless the warping is extraordinarily large, the time-scales over which this
effect takes place are likely to be insignificant compared to the cosmological timescale. As
a future amendment to the current work it will be useful to impose an external damping
regime and to study the effect of the interaction of the windings with the external plasma.
Naively we may expect collisions of the string with particles in the compact space to inhibit
the formation of windings, resulting in the delayed on-set of a scaling regime. This to is

13We have assumed t
(min)
i ∼ R2

α
√
α2α′−a20R2

≤ 2
√
α′

a20
, which is equivalent to assuming a2

0R
2 ≤ 0.83α2α′.

14The condition t
(min)
i ∼ R2

α2
√
α′
≤ 2

√
α′

a20
implies that a2

0R
2 ≤ 2α2α′, which is automatically satisfied by

(3.36).
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likely to mirror the field theory case, though further investigation is needed to establish
whether the correlation distance scales according to (3.54).

Once again, for the sake of completeness, we consider how the mass function changes as
a function of time in this epoch. The elliptic integral is actually divergent in this limit,
but we can consider the leading order divergence which will dominate the spectrum. The
resulting expression for the mass function is

Mb(ti) ∼ 2T1

√
a0α′1/4

√
1 +

Π2

T 2
1 λ

2
(αti)3/4, (3.55)

which tends to zero as ti → 0. This is within the regime where we may expect PBH
formation to occur, since the mass of the necklace plus beads steadily increases with time.

3.4.3 PBH formation

We now calculate the contribution to the PBH mass spectrum from collapsing necklace
loops, based on the assumption that loops which chop off from the string network retain
their necklace structure indefinitely. We will initially take the number of beads per loop to
be constant from the time of formation.

The minimum radius to which a contracting loop may shrink, δl, is limited by the string
width, which we assume to be comparable to the inverse of the symmetry-breaking scale ηs
[6, 8], that is, δl ∼ η−1

s . 15 The condition for gravitational collapse then becomes

RS > η−1
s (3.56)

where RS is the Schwarzschild radius of the loop. We may estimate the Schwarzschild radius
using the spherically symmetric approximation

RS(ti) ∼ 2GMT (ti) (3.57)

where G is the modified Newton’s constant (see later) and MT (ti) is the total mass of the
necklace. A necklace formed at time ti will therefore collapse to form a PBH if

MT (ti) ≥
η−1
s

2G
. (3.58)

15Recall that for Abelian field theories the tension of a string is proportional to the square of the symmetry-

breaking scale, µ ∼ η2. An Abelian F/D-string with the same assumption gives ηs ∼
√
α′
−1

. However, we
will leave ηs as a free parameter in the discussion that follows.
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Assuming that δl is small, the bead mass will provide the dominant contribution to MT (ti)
so that

MT (ti) ∼ Nb(ti)Mb(ti)

∼ 8T1a
3
0√

2R

√
1 +

Π2

T 2
1 λ

2
(αti)2

√
G(ti)

(
EllipticE

(
i

√
G(ti)

2

)
− π

2

)
, (3.59)

which is a non-monotonic function. We can approximate the solution at early times by

MT (ti) ∼ T1

√
1 +

Π2

T 2
1 λ

2

π

4
α2
√
α′

R
a0ti + . . .

(3.60)

and late times by

MT (ti) ∼ T1

√
1 +

Π2

T 2
1 λ

2

π

2
α2α′

3
2

a3
0R

1
ti

(
1− 3α′

16a4
0t

2
i

)
. (3.61)

We note that MT is linearly increasing with a0ti at very early times, whilst we find that it
scales as 1/(a3

0ti) at late times. Thus the sensitivity to the warp factor is most pronounced
at late times, since a vanishingly small value of a0 means that the total mass remains larger
over a wider time-scale. Ultimately however, the total mass will tend to zero asymptotically.
The complete mass function MT (ti), using the definition of the elliptic integral, is sketched
in figure 3.4 to illustrate the time-dependence. In figure 3.5 this is shown together with the
early and late-time approximations.

Figure 3.4: The total mass MT contained within the beads of a necklace as a function of
ti. The model parameters have been fixed so that a0 = 0.1, α′ = 1, R = 5, α = 0.8 and
T1

√
1 + Π2

T 2
1 λ

2 = 1.
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Figure 3.5: The total mass MT contained within the beads of a necklace as a function of ti,
together with the early and late-time approximations given by (3.60)/(3.61), respectively.
The same parameter choices were made as in figure 3.4. The blue (green) curves are the
early (late) time approximations respectively. Note that the late time approximation seems
to over-estimate the maximum mass.
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Without precise values for the model parameters, it is difficult to determine the accu-
racy (as a percentage estimate) of either the early or late-time approximations. However,
it is interesting that the late-time approximation also qualitatively captures the behaviour
of MT (ti) in the early-time regime. In fact, the peaks of the two functions are in approxi-
mately the same position, although the peak of the approximation is roughly twice as high
as the peak of the true curve.

It is also clear that the peak of the full mass function, which is potentially the region
of greatest interest with respect to PBH formation, lies between the regions in which either
the early or late-time approximations are valid. As we shall see, in order to calculate the
PBH spectrum analytically in terms of our model parameters, we must integrate over the
region of the curve (3.59) which satisfies (3.58). This is not possible in general, as any such
region (if it exists) will certainly include the peak itself. We must therefore find some way
of approximating the elliptic integral in this crucial region.

While this can be done in many ways, we will use the following method. To begin with, we
estimate the maximum height of the full mass function by utilising the fact that the peak of
the late-time approximation lies at roughly the same value of ti. Differentiating the second
equation in (3.60) and solving the resulting expression dMT /dti = 0 gives

t
(peak)
i ∼ 3

4a2
0

. (3.62)

Substituting this back into (3.59) then gives

M
(peak)
T = MT (t(peak)

i ) ∼ 5.47 T1

√
1 +

Π2

T 2
1 λ

2

α2α′
3
2

8a0R
. (3.63)

Substituting the full expression for nw(ti) (3.33) into (3.23) and using MT (ti) ∼ Nb(ti)Mb(ti)
from (3.59) also gives a function which shows the same qualitative behaviour as the true
MT (ti) curve (as we would expect). Taking this approach corresponds to expanding the
elliptic integral only to first order in nw(ti), but keeping the full time dependence of this
function (which is valid even at early times) as opposed to keeping higher order terms in the
expansion of the elliptic integral and using the late-time approximation nw(ti) ∼ α

√
α′/a0R

as in (3.60). The resulting expression for MT (ti) is

MT (ti) ∼
π√
32
T1

√
1 +

Π2

T 2
1 λ

2

a3
0(αti)2

R

(
−1 +

√
1 +

4α′

a4
0t

2
i

) 3
2

. (3.64)

Although this is still highly inaccurate within the region of the peak, a function of this form
may be used to capture the behaviour of the full expression down to all but the earliest
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times (where the early-time expansion above must again be used). 16 We may then fit a
curve of the form

MTapprox(ti) ∼ A T1

√
1 +

Π2

T 2
1 λ

2

a3
0(αti)2

R

(
−1 +

√
1 +

Cα′

a4
0t

2
i

) 3
2

(3.65)

where A and C are free parameters, to the true MT (ti) curve by demanding that the
approximate function satisfies the following conditions:

• It passes through the point (t(peak)
i ,M

(peak)
T ) =

(
3

4a2
0
, 5.47 T1

√
1 + Π2

T 2
1 λ

2
α2α′

3
2

8a0R

)
• It has the same asymptotic behaviour as as the full elliptic integral. This is equivalent

to the requirement that A = π√
32
C−

3
2 .

These two condition are sufficient to fix A and C uniquely, giving

A → 0.368657,

C → 5.25648. (3.66)

The resulting fit is remarkably good both at late times and in the vicinity of the peak and
is shown for a selection of parameter values in figure 3.6. Only at very early times does the
approximation appear to break down, which becomes clear if we “zoom in” near ti = 0, as
shown in figure 3.7. However, if we are required to integrate over a time range that includes
a region in which (3.65) becomes invalid, we may always split the resulting integral into two
parts. It would then be necessary to integrate, using the early-time approximation in (3.60)
expanded to arbitrary order, over some range 0 ≤ ti ≤ tE (where tE marks the time at
which the approximation starts to break down), whilst using the expressions (3.65)-(3.66)
over the remainder of the range tE ≤ ti ≤ tF .

Starting with (3.56) we may now estimate the range of time over which necklaces will form
that will eventually collapse to produce black holes, i.e necklaces with sufficiently high mass
contained in their beads to produce a Schwarzschild radius larger than the string width.
From our previous discussion we see that the mass function peaks at earlier times, therefore
favouring PBH formation in this regime - that is, from the collapse of small necklace loops
with a relatively low number of high mass beads.

In fact, it is clear from the plots of Nb(ti) and Mb(ti) in figure 3.3, and especially from
the plot of MT (ti) ∼ Nb(ti)Mb(ti) in figure 3.4, that the increase in bead number at late
times is insufficient to compensate for the reduction in the mass of individual beads. Simi-

16It is more useful in this respect to keep the full time dependence in nw(ti), while expanding to only first
order in nw, than it is to expand to two or more orders in the argument of the EllipticE for large ti.
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Figure 3.6: Plot of the exact necklace mass MT (red curve) and the approximate fit function
MTapprox (green curve) as a function of ti for a0 = 0.1, 0.05, 0.01, 0.001 (top left to bottom

right). In all the plots α′ = 1, R = 5, α = 0.8 and T1

√
1 + Π2

T 2
1 λ

2 = 1.

Figure 3.7: Zoom in of the four plots shown in figure 3.6, clearly exhibiting the early-time
breakdown of the fit function MTapprox(ti)
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larly, at very early times, there are an insufficient number of extra-dimensional windings to
produce enough beads to create a large Schwarzschild radius, even though the individual
bead mass is high. This results in the formation of a window in the early universe, during
which necklaces suitable for PBH formation are produced.

The limits of this window, t±PBH , may be estimated by solving (3.58) with the appropri-
ate expression for MT (ti). Let us assume that the energy scale of the symmetry-breaking
process which gives rise to the (p, q)-string network is the unwarped string energy scale

ηs ∼
√
α′
−1

(3.67)

and consider the limits which arise from inserting (3.65) with the values of A and C given
above. The resulting time bounds can be solved for analytically but yield rather compli-
cated expressions which we do not give here.

These analytic expressions are valid so long as the (3.65) provides a relatively good ap-
proximation to the true MT (ti) curve. However, the validity of the lower bound, t−PBH ,
should always be checked (for a given set of parameter values) by plotting the full mass
function together with the PBH formation bound

η−1
s

2G
∼ R3(α′)2

2
1

G(10)
, (3.68)

where we have used the fact that the effective four-dimensional gravitational coupling is
related to the ten-dimensional one through

G =
G(10)

Vol(X6)
, (3.69)

where X6 is the internal manifold. We can approximate the coupling via

G ∼
G(10)

R3(α′)3/2
, (3.70)

although we will typically assume G(10) ∼ O(1) (in units where α′ = 1) for simplicity. If
this forms a poor estimate of the true t−PBH , it is necessary to expand the early-time ap-
proximation given in (3.60) to as many orders as required to reach an accurate value and
to resolve (3.58).

For the sake of completeness, we note that the early-time expansion given to first order
in (3.60) remains reasonably accurate up to

tE ∼
√
α′

2a2
0

, (3.71)
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beyond which the function (3.65) is undoubtedly valid. The resulting estimate of t−PBH
(where t−PBH < tE ∼

√
α′

2a2
o

) is

t−PBH ∼
R4

8a0α′
5/2α2T1

√
1 + Π2

T 2
1 λ

2

. (3.72)

In order to be safe, therefore, we may choose to split up any integral involving the necklace
mass MT (ti) into two pieces: the first using the early-time approximation (3.60) between
the limits 0 ≤ ti ≤ tE and the second using (3.65) between tE ≤ ti ≤ tF where tE is given
by (3.71).

An estimate for t+PBH can also be obtained using the late-time expansion for MT (ti) and
this yields the simple expression

t+PBH ∼
πα′7/2α2T1

√
1 + Π2

T 2
1 λ

2

a3
0R

4
. (3.73)

The next step towards calculating the necklace contribution to the present day PBH spec-
trum is to estimate the time at which a collapsing loop reaches its minimum radius δl ∼
η−1
s ∼

√
α′. This depends on ti via

t′(ti) ∼
(

1 +
α

ΓGT1

)
ti −

η−1
s

ΓGT1
. (3.74)

Our approximations suggest that δl will be small and therefore the second term will be
sub-dominant. This implies that the corresponding time range over which PBHs actually
form from the collapse of these loops is t−PBH ≤ t′(ti) ≤ t

+
PBH where

t′
±
PBH ∼

(
1 +

α

ΓGT1

)
t±PBH . (3.75)

The initial mass of a black hole forming at t′(ti) is therefore MT (ti), which can be compared
with the mass of a black hole formed from an ordinary string loop, MPBH(ti) ∼ µαti, which
yields the present day mass spectrum [118]

dnPBH(M)
dM

∝M−2.5. (3.76)

Clearly the mass spectrum for PBHs formed via the collapse of necklaces is far more com-
plicated, although the relevant calculation of the present day spectrum proceeds in a similar
fashion. Firstly, we identify

MPBH(t′(ti)) = MT (ti). (3.77)

Assuming also that the PBH formation window lies in the radiation-dominated epoch, the
number density of string loops with initial length r(ti) = αti which chop off from the
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network at time ti is
n(r(ti), ti) ∼

νr

t
3
2
i r(ti)

3
2

=
νr

α
3
2 t3i

(3.78)

where νr is the number of long strings per Hubble volume. Now, in field theoretic models

νr = gγ−3c̃ (3.79)

where g is a Lorentz factor, γ is the scaling parameter (which we identify with the KS
parameters so that γ ∼ a0R/2

√
α′) and c̃ is the loop production parameter. For ordinary

four-dimensional strings, c̃ is extracted from simulations and is of order unity. For higher-
dimensional strings it is suppressed by a factor

P ∼
(
δ

R

)d−3

(3.80)

where δ is the string thickness and d is the number of spatial dimensions. In our model
δ ∼ η−1

s ∼
√
α′ and d = 6, giving

P ∼

(√
α′

R

)3

(3.81)

and hence

νr ∼
8g
a3

0

(√
α′

R

)6

. (3.82)

In higher-dimensional theories the scaling parameter γ (which determines the correlation
length) is also expected to be suppressed by a factor of P during the scaling regime, but
small-scale structure on the strings is likely to lead to weaker P -dependence, Peff = f(P )
[16, 154]. However, as the correlation length has already been determined directly in terms
of the model parameters, it is likely that this effect has already been accounted for. In
the warped geometry it also appears consistent to account for the warping of both space
and time by introducing the transformations ti → a0ti, r(ti) → a0r(ti) into the expression
(3.78), yielding an additional factor of a−3

0 . However, we believe this effect too is already
incorporated via the derivation of νr in terms of the warped throat model parameters. In
fact, such an explanation gives a nice interpretation of the formula (3.82), which is then
seen as the product of three terms: a “warping term” which accounts for the back-reaction
on the large dimensions a−3

0 , a term accounting for extra-dimensional effects (
√
α′/R)3 and

a standard Lorentz factor ∼ g.

The PBH formation rate at t′(ti) is (minus) the rate of necklace formation at ti

dnPBH(t′(ti))
dt′(ti)

= −dn(r(ti), ti)
dti

∼ 3νr
α

3
2 t4i

, (3.83)
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so finally we may use the relation

dnPBH(t′(ti))
dMPBH(t′(ti))

=
dnPBH(t′(ti))

dt′(ti)
× dt′(ti)
dMPBH(t′(ti))

∼ 3νr
α

3
2 t4i
×
(
dMT (ti)
dti

)−1

(3.84)

to find the contribution to the PBH mass-spectrum from collapsing necklaces by substitut-
ing for t′(ti) and redshifting to the current epoch. However, the expression is extremely
complex and is not given here.

Of more interest is the calculation of the total contribution of the spectrum to the fraction
of the critical density of the universe at the current epoch, ΩPBH(t0). The standard formula
for ΩPBH(t0) from collapsing cosmic string loops is [8]

ΩPBH(t0) =
1

ρcrit(t0)

∫ t0

max(tc,t∗)
dt
dnPBH
dt

M(t, t0) (3.85)

where t∗ is the formation time of a black hole with mass M∗ ≈ 4.4× 1014h−0.3 gm (∼ 1020

in Planck units for h = 0.72 [279]), whose lifetime would be the present age of the universe.
17 The variable M(t, t0) is the current mass of a black hole that formed at a time t, and tc
is the time at which loops first begin to form.

Again assuming that most of the loop production occurs in the radiation dominated era,
the rate of black hole formation is then given by,

dnPBH
dt

=
3νrf

α
3
2 t4

a(t)3

a(t0)3
(3.86)

where f is the fraction of loops which collapse on the first oscillation, which is expected to
be small. In the standard calculations it is typical to neglect the effect of Hawking radia-
tion by making the approximation M(t, t0) ∼M(t) ∼ µGt, which has been shown to make
a difference of less than six per cent to the final value of ΩPBH(t0) [118], though in our
model the difference may be substantially greater and is therefore something which should
be checked for completeness.

Adjusting the standard calculations to account for the effect of necklace formation, we ex-
pect there to be contributions to ΩPBH(t0) from two qualitatively different sources: First,
we expect to find a spike in PBH formation in the very early universe due to the gravita-

17This value was calculated in a four-dimensional FRW model using the standard value of G = 6.67 ×
10−11Nm2kg−2. But, in a higher-dimensional model, gravity is expected to become much stronger on very
small scales, resulting in a significantly higher rate of Hawking evaporation for the smallest PBHs. However,
for simplicity, we will neglect such small corrections.
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tional collapse of necklace loops which shrink to their minimum radius δl ∼ η−1
s within a

time t′ ∼
(

1 + a0α
ΓGT1

)
ti, although on cosmological time-scales we may simply assume t′ ∼ ti.

The total mass of all the beads contained in these loops is large and therefore dominates the
contribution to the initial mass of the black hole. This corresponds to the first term in (3.87).

The second contribution to ΩPBH(t0) comes from loops which collapse before shrinking
to their minimum size, by adopting a sufficiently compact and spherically symmetric con-
figuration on their first oscillation [114, 115]. In principle, this process is continuous through
the history of the universe, although at late times we may neglect the contribution of the
beads to the masses of black holes formed in this way, leaving just the first term in the sec-
ond integral. At early times the beads must be included and therefore both terms become
important.

The expression for the (approximate) contribution of PBHs formed from collapsing loops
to the current mass-density of the universe is therefore

ΩPBH(t0) ≈ 1
ρcrit(t0)

∫ t+∗

t−∗

dti
3νr
α

3
2 t4i

a(ti)3

a(t0)3
MT (ti)×

(
t+∗
tr

) 1
2
(
tr
t0

) 3
2

+
1

ρcrit(t0)

∫ t0

t+∗

dti

6πνrfT1

√
1 + Π2

T 2
1 λ

2

α
1
2 t3i

+
3νrfMT (ti)

α
3
2 t4i

 a(ti)3

a(t0)3
(3.87)

where t±∗ are the times between which the necklace mass exceeds M∗. In practice, however,
the factor f ∼ 10−20 multiplying the integral on the second line indicates that (without fine
tuning of the parameters) by far the largest contribution will come from the first integral
between t−∗ and t+∗ . In other words, we expect the necklace-specific channel to dominate
the production of PBHs and therefore choose to neglect the latter two terms.

The two factors in large brackets outside the first integral account for the redshifting from
the end of PBH production (with MPBH ≥M∗) from necklace collapse to the present day.
For our purposes it is convenient to use the parameterisation,

ρcrit(t0) ∼ 3H2
0m

2
p, t0 ∼

2
3
H−1

0 . (3.88)

For PBHs to form via the necklace-specific process outlined above and to survive to the
present day, thus contributing to the current mass density of the universe, we require

MT (ti) ≥M∗ (3.89)

for at least some range of ti within t−PBH ≤ ti ≤ t+PBH . There are then three possible
scenarios:
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• M∗ ≤ η−1
s
2G . If this condition is satisfied for all ti in which black holes are produced,

we can integrate the first term in (3.87) over the range t−PBH ≤ ti ≤ t
+
PBH .

• η−1
s
2G < M∗ < M

(max)
T . With M∗ in this range, the expression above will automatically

be satisfied for times between t−∗ ≤ ti ≤ t+∗ .

• M∗ > M
(max)
T . All PBHs formed by this process will evaporate long before the present

epoch.

In reality the first of these scenarios will not occur if ηs ∼
√
α′
−1

(≡ mp) unless R is hierar-
chically larger than the fundamental string scale. This is theoretically compatible with the
bound (3.36) for small enough values of the warp factor, though we need not assume that
the bound is close to saturation. Working in Planck units and using (3.69) together with
ηs ∼

√
α′
−1 ∼ mp, it is possible to show that M∗ > η−1

s /2G, so we need only “tune” the
values of our model parameters so that MT (ti) > M∗ for at least some range of ti. It turns
out that the most important parameters for ensuring this condition are the warp factor
a0 and the worldsheet flux momentum Π. We shall discuss later a (somewhat restrictive)
region of the whole parameter space of a0, R,Π for which this condition is met. But it seems
that one is either required to have small values of a0 and/or large values of Π. That large
Π should help ensure PBH production is understandable since the pre-factor

√
1 + Π2

T 2
1 λ

2

simply multiplies the expression for MT (ti), whereas increasing worldsheet flux does not
affect the value of M∗. However, the relation between MT (ti) and a0 is more complicated
as this factor appears in a complex way inside the Elliptic function.

For the sake of completeness, we calculate t±∗ (M∗) explicitly by setting MT (ti) = M∗.
We then use the early-time expansion of MT (ti), given previously, to estimate t−∗ and the
late-time approximation to MT (ti) to obtain t+∗ . The result is

t−∗ (M∗) ∼
M∗R

4T1a0α2T1

√
1 + Π2

T 2
1 λ

2

α′−
1
2

t+∗ (M∗) ∼
πα2T1

√
1 + Π2

T 2
1 λ

2

2a3
0M∗R

α′
3
2 . (3.90)

Although one could also obtain t+∗ by equating MTapprox(ti) with M∗, the resulting ex-
pression for t+∗ is rather unwieldy and does not significantly differ in its value from the
approximate form given here. The evaluation of (3.87) between the limits t−∗ and t+∗ (given
by (3.90)) is then obtained by integrating between t−∗ and tE using the early-time approx-
imation (3.71) and between tE and t+∗ using the numerical fit. The full expression is well
approximated by
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Ω(t0) ∼

10−25g
√
α
√
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√
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where 2F1 is the usual hypergeometric function and we have defined

F (a0, R,M∗, α, λT1,Π) ≡ 16a2
0M

2
∗R

2

α4(Π2 + λ2T 2
1 )
. (3.91)

As noted above, the fulfillment of the condition MT (ti) ≥ M∗ requires small values of the
warp factor and/or large values of the flux parameter Π, though the exact relationship
between MT (ti) and a0 is complex. We must also ensure, for consistency, that t−∗ (M∗) <
t+∗ (M∗) (where these values are given by (3.90)). Exactly how small a0 is required to be
in order to fulfill both of these requirements depends on how large Π is. We see from the
explicit expression

Π =
2T1λ

2F 2
0σ

a2
0

√
r2 + a−2

0 R2s′2 − a−4
0 λ2F 2

0σ

(3.92)

that, in principle, 0 ≤ Π ≤ ∞ for a flux λF0σ in the allowable range 0 ≤ λ2F 2
0σ ≤ a2

0(a2
0r

2 +
R2s′2). As causality requires that F 2

0σ < a4
0λ
−2(r2 + a−2

0 R2s′2) we may assume

F 2
0σ = βa4

0λ
−2(r2 + a−2

0 R2s′2) (3.93)

where 0 ≤ β < 1. Equation (3.92) may then be rewritten in terms of β as

Π =
2T1
√
βλ√

1− β
, (3.94)

from which it is clear that β = 0 corresponds to Π = 0 and that Π → ∞ as β → 1.
However, the bound for PBH formation is not the only condition we must consider, as
the predictions of our model must also be consistent with observational bounds. Current
observational constraints on the PBH energy density come from the EGRET experiment,
which measures the extragalactic gamma ray flux at 100MeV [13, 63]. By calculating the
expected contribution to this flux from black holes expiring at the present epoch [118, 278]
(see also [63, 280] for bounds derived for the standard PBH spectrum using the latest data),
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3.4. COSMOLOGICAL IMPLICATIONS OF NECKLACE LOOPS

it has been shown that the current PBH density created from the collapse of cosmic strings
is bounded by

ΩPBH(t0) < 10−9. (3.95)

This bound is based on the prediction that the PBH mass spectrum follows the profile pre-
dicted by the standard Hawking collapse process, such that MPBH(t) ∼ t and the number
density per mass interval is given by (3.76). Technically, one should recalculate this bound
using the spectrum predicted by the necklace-specific collapse channel in order to place
bounds on the model parameters from experimental data. Although it would be fruitful to
recalculated the bound on ΩPBH(t0) at a later date, we use ΩPBH(t0) < 10−9 as a “ball
park” figure with which to proceed.

Not all the region of parameter space allowing PBH production is compatible with ob-
servation. For example, “typical” values of a0 ∼ 10−11 and Π ∼ 1012 are sufficient to ensure
MT (ti) > M∗ for at least some ti but the resulting value of the ΩPBH(t0) integral (3.91)
is huge (ΩPBH(t0) ∼ 103 >> 1) if R is comparable to the string scale. However, due to
the large R-dependence in the denominator caused by the extra-dimensional contribution
to νr we (happily) see that values of R ∼ O(102) are sufficient to bring ΩPBH(t0) within
the observable bound ΩPBH(t0) < 10−9. Thus the dimensions of the compact space need
not be hierarchically larger than the string scale in order for the predictions of our model
to be consistent with observational constraints.

To systematically explore the values of a0, R and Π which are consistent with all the con-
straints above, we can express the value of the peak of the necklace mass function, MTapprox

given by (3.65), in terms of M∗:

MT
peak ∼ 5.47 T1

√
1 +

Π2

T 2
1 λ

2

α2α′
3
2

8a0R
= κM∗ (3.96)

where κ > 1 is a parameter that for given values of (a0, α,R,Π, T1, α
′) expresses how far

the peak value of MT is above the mass scale M∗. Using this definition we can express
the quantity

√
1 + Π2

T 2
1 λ

2 in terms of (a0, α,R, κ, T1, α
′) and the above terms for t±∗ simplify

considerably to

t−∗ =
0.171α′−1/2

a2
0T1κ

, t+∗ =
2.297T1κα

′3/2

a2
0

. (3.97)

It is interesting that both t−∗ and t+∗ depend on the warp factor as a−2
0 . It may be thought

that the times t−∗ and t+∗ should approach one another for κ = 1, since the definition of
t∗ requires values of ti for which MT = M∗. However, we have assumed the early-time
approximation for MT in determining t−∗ , and not the late-time approximation MTapprox.
This assumption then requires that we take κ > 1. We could, of course, consider situations
where κ is closer to unity, but then one has to use MTapprox in the determination of both
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3.4. COSMOLOGICAL IMPLICATIONS OF NECKLACE LOOPS

t−∗ and t+∗ , which is technically complicated.

Now evaluating (3.91) using the above, we obtain an expression that depends on the pa-
rameters (a0, α,R,Π, T1, α

′, t0, ρcrit). In figure 3.8 we present a contour plot showing the
values of R, κ that are consistent with the condition ΩPBH(t0) < 10−9. In this plot we have
taken, as typical values, a0 = 0.1 and α = 0.8, set T1 = α′−1 = 1 and input the standard
values of ρcrit, t0 and M∗. The resulting bounds on {R, κ} are remarkably insensitive to
the actual value of a0 because the latter only appears in ΩPBH(t0) via logarithmic factors.
For given (allowed) values of {R, κ} we can then deduce the value for Π via (3.96), which
is of course sensitive to the value of a0.

Figure 3.8: Contour plot showing the allowed regions of {R, κ} consistent with the bound
Ω(t0) < 10−9. Only a few contours are plotted. We have chosen a0 = 0.1, α′ = 1, α = 0.8
and T1 = 1.
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To visualize the allowed values of Π corresponding to those of a0, R and κ, we use the
three-dimensional contour plot shown in figure 3.9. We illustrate six typical surfaces in
the {Log[a0],R, κ} plane, corresponding to Π = 1012, 1010, 108, 106, 104, 102 (from front to
back). These surfaces also take into account the observational allowed values of {R, κ}
illustrated in figure 3.8.

Figure 3.9: Three-dimensional contour plots showing values of the flux parameter Π in the
(Log[a0],R, κ) plane. Six surfaces are shown corresponding (from front to rear) to the values
of Π = 1012, 1010, 108, 106, 104, 102. These plots take into account the observational bounds
on {R, κ} shown in figure 3.8. The remaining choice of parameters are as in figure 3.8.

3.4.4 Quasi-stable necklaces

Let us now drop the assumption that the loops retain their necklace structure indefinitely.
As outlined earlier, it is reasonable to expect that wrappings in the flat φ-direction may
unwind over time leading to the “flattening” of the θ-direction. This in turn flattens the
ψ-direction, and so on, until the whole necklace structure unravels.

Assuming that the motion of the string in the φ-direction remains random after the for-
mation of a loop, and that the motion is also random in any newly flattened direction, we
should expect the characteristic lifetime of the beads in any necklace to be comparable to
the formation time, ti. This is because the average warped time taken for a single φ-winding
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to contract to a point is a0t1 ∼ R2

a−1
0

√
α′

. 18 The warped time taken for nw(ti) windings to
contract is therefore

a0tn(ti) ∼
n2
w(ti)R2

a−1
0

√
α′

(3.98)

As we are only considering that part of the string which forms the extra-dimensional wind-
ings, we may compare the expression above with (3.27), in which ωl and α have been set to
unity. We then see that

tnw(ti) ∼ ti. (3.99)

This implies that the number of necklaces originally formed at ti which survive for a time
∆t >> ti after formation will be negligible, with most having become standard string loops.
However, it is difficult to estimate the fraction of necklaces surviving for an arbitrary length
of time ∆t using such generic arguments, though this is exactly what we must calculate
to determine the true contribution of necklace collapse to the PBH mass spectrum. In
particular, we must calculate the fraction of loops which retain their necklace structure
for an interval ∆t ∼ α

ΓGT1
ti. To do this, we consider the probability distribution which

describes fluctuations of the radial coordinate. For a random walk this is simply a Gaussian
distribution with mean µ = 0 and variance

σ2(∆t) ∼ a−1
0

∆t
δt
ε2l ∼ a−2

0

√
α′∆t (3.100)

where δt ∼ a−1
0

√
α′ is the time interval between steps, εl ∼ a−1

0

√
α′ is the step length and

∆t is the total (unwarped) time elapsed. The total probability density function is
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2πσ(∆t)

e
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2
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2

2
√
α′∆t

)
. (3.101)

Since a loop forming at time ti has nw(ti) windings to lose, the radial coordinate must
“travel” a distance approximately equal to nw(ti)R in order for the loop to lose its necklace
structure. The fraction of necklaces f(∆t) which survive for an interval ∆t after ti is then
given by the integral of the above expression between t ∼ ±a−1

0 nw(ti)R ∼ ±a−1
0

(√
α′ti
) 1

2 ∼

18Here we have used the fact that the radius of the winding must contract by a distance ∼ R. Assuming
a step length εl ∼ a−1

0

√
α′ for the change in the radial coordinate, this requires a total displacement of

∼ R

a−1
0

√
α′

steps. This requires on average ∼ R2/a−2
0 α′ random steps, which takes (warped) time a0t ∼

R2

a−2
0 α′

× a−1
0

√
α′ = R2

a−1
0

√
α′

.
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±σ(ti), which can be well approximated using the error function,

f(∆t) ∼ Erf

(
σ(ti)√
2σ(∆t)

)
∼ Erf

(
1√
2
a−1

0 (
√
α′ti)

1
2

a−1
0 (
√
α′∆t)

1
2

)

∼ Erf

(√
ti

2∆t

)
. (3.102)

Thus when ∆t ∼ ti the fraction of loops which have retained their extra-dimensional wind-
ings is approximately

f(ti) ∼ Erf
(

1√
2

)
∼ 0.68, (3.103)

which matches well with our result (3.99). 19 The fraction of necklaces which survive until
they reach the minimum radius is

f

(
∆t ∼ α

ΓGT1
ti

)
∼ Erf

(
1√
2

(
α

ΓGT1

)− 1
2

)
. (3.104)

Strictly speaking, therefore, the integral (3.87) should be multiplied by the additional nu-
meric factor above to account for the the loss of necklaces which unravel before reaching
the point at which they can undergo gravitational collapse.

Since f
(

∆t ∼ α
ΓGT1

ti

)
≤ 10−20, the necklace-specific channel becomes comparable (or sub-

dominant) to the standard Hawking process when when α ≥ 1.591×1039ΓGT1. Practically,
however, the values of α, Γ, G and T1 here are such that this is unlikely to occur without
significant fine-tuning.

3.4.5 Comparison with the standard string-monopole network

The dynamics of string-monopole network evolution depends crucially upon the ratio of
the monopole energy density to the string tension [6, 263]. This dimensionless parameter,
denoted R in the literature, is

R =
m

µd
(3.105)

where m is the the monopole mass, µ is the tension and d is the distance between monopoles.
For R << 1 the network behaves like an ordinary string network, reaching a scaling solution
at late times, but forR >> 1 the mass of the beads dominates the dynamics of the evolution.
In our case, these energy scales are time-dependent and the corresponding parameter is

R(ti) =
Mb(ti)
T1d(ti)

, (3.106)

19We see that f(∆t) < 0.68 for all ∆t > ti. In fact, Erf(1/2) ∼ 1/2, so the majority of loops (f(∆t) > 1/2)
will have lost all their windings by ∆t ∼ 2ti. This helps to quantify our earlier result (3.99) more precisely.
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which scales as R ∼ t−2
i for ti >> 2

√
α′

a2
0α

and R ∼ t
− 1

2
i for ti << 2

√
α′

a2
0α

. Thus, as ti → ∞,
R → 0 and vice-versa. Our results are therefore consistent with the standard analysis in
that the necklaces behave like an ordinary string network for R << 1 but like a string-
monopole network when R >> 1 since the mass of the beads becomes significant.

However, the dynamics of R differ profoundly in our model. This indicates that the ef-
fect of beads formed from extra-dimensional windings is different to the effect created by
monopoles 20 with regard to network evolution. To understand this in more detail let us
consider the latter. The standard equation for the evolution of R is [7]

Ṙ
R

= −κst−1 + κgt
−1 (3.107)

where the first term on the right-hand side describes the stretching of the string due to
the cosmic expansion and the the second term describes the contraction due to emission of
gravitational radiation. It is a reasonable to assume that

κ = κg − κs > 0 (3.108)

which allows us to solve (3.107) up to some constant of integration,

R ∼ tκ. (3.109)

Using (3.105) the evolution of the inter-monopole distance then scales like

d ∼ R−1 ∼ t−κ. (3.110)

This was the crucial assumption Matsuda used to identify d(t) with the step length of the
random walk χ(t) of the monopole along the string [8]. From this point, the estimated
initial number of beads per loop is taken to be

Nb(ti) ∼ nw(ti) ∼
r(ti)

d(ts)×
(
t
ts

)k−1
(3.111)

where d(ts) ∼ (tM ts)
1
2 is the initial bead spacing in the network at the time of string forma-

tion ts (where ts ∼
√
α′) and k = 0 corresponds to the (natural) κ = 1 solution of (3.107). 21

20For example, monopoles formed after a separate phase transition at some temperature TM > Ts.

21The initial conditions of Matsuda’s model are consistent with ours if we identify the initial damping time
td ∼ a2

0R
2/4
√
α′ with the time of initial monopole formation tM and the time of initial loop formation ti

with the initial string formation time ts. The difference between the two models is that, while both tM and ts
are fixed parameters related to a single specific time of string-monopole network formation, ti is continuous
a paramter which defines a continuosly varying bead mass, determined by the dynamical evolution of the
windings. In addition, as mentioned earlier, in an extended analsysis the collision of the string network
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Assuming that ∼ √nw beads would survive without annihilation (as in [6]), we find that
mcoil ∝

√
nw and hence

mcoil ∼ t
2−k

2
i , (3.112)

which favours black hole production at late times and DM production for small ti. This is
the standard result assuming that necklaces which reach their minimum radius but which
have insufficient mass to undergo collapse to form PBHs can only interact with other matter
gravitationally, leading to the production of Planck-scale DM relics. In Matsuda’s original
scenario, based on the assumptions above, large numbers of Planck-scale DM “particles”
are formed at early times with smaller numbers of increasingly massive black holes formed
at later times. In our model this process is essentially reversed with a window of PBH
production in the early universe (though potentially this window may be quite large for
small a0, so the last epoch of PBH formation is not necessarily “early”, even on cosmolog-
ical time-scales) when MT (ti) > M∗, with potential DM candidates forming well into the
scaling regime when MT (ti) < M∗.

Physically the above equations describe the shrinking of the string sections connecting
neighbouring monopoles. Effectively the contraction of the string is able to pull these
monopoles through the horizon at an ever increasing rate. 22 Hence we find that the early
and late-time limits of R, as defined above, are opposite to those obtained from (3.106),
namely that R → ∞ as time increases, while R → 0 as ti → 0. Similarly the natural
solution, κ = κg − κs ∼ 1, obtained from an order of magnitude estimate, gives d ∼ t−1 in
the standard case as opposed to d ∼ t in our case. In yet another respect, therefore, we
have obtained the opposite results to the standard analysis.

Again it is not immediately obvious that what applies to monopoles formed in a separate
phase transition also applies to beads formed by extra-dimensional windings. Although a
contracting string may pull ordinary monopoles through the horizon at an ever increasing
rate, a winding may not cross the horizon “ready-made” and concentrated at a point from
a four-dimensional perspective. This is because insufficient time will have elapsed to estab-
lish correlations in the compact dimensions. Put another way, if the horizon advances by a
distance a0cδt, the end point of the string formerly localised at the horizon, can move by
at most a distance cδt from its original position in the compact space. Causality therefore
places a limit on the rate at which new windings can enter the horizon, whereas no such

with the background plasma should be taken into account implying that td should become temperature (and
hence time) dependent. Ultimately, therefore, it would seem that the idea of a fixed bead formation time
is inappropriate in the context of beads formed dynamically from wound-strings over an extended period of
time, rather than from a phase transition at a specific time, as in field-theoretic models.

22Alternatively this can be viewed as the expanding horizon uncovering monopoles, separated by increas-
ingly short distances, the distances having been shortened by the contraction of the string.
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limit exists for ordinary monopoles. 23

In fact, the considerations above help to explain why the number of windings nw(ti) is
proportional to the ratio a0/R not simply to 1/R in the warped throat model. Although
larger R results in a slower rate of winding formation (as we would expect) this effect is, at
least potentially, dwarfed by the effect of the warp factor a0 (c.f. (3.41)) which is related
to R via the deformation parameter, a2

0 ∼ ε̃
4
3R−2. This is because a0 limits the increase of

the horizon distance in the infinite directions (but not in the compact space) via

dH(δt) = a0cδt. (3.113)

As the resultant velocity of the end point of the string is c = 1, smaller a0 results in a
greater velocity in the compact spaces and hence a larger limiting value for nw(ti) (c.f. the
introduction of the factor

√
1− a2

0 into the formula for nw(ti) in the velocity correlations
regime in the next chapter).

In general, however, beads may enter the horizon more rapidly the smaller their effec-
tive radii. In fact, this at least partially accounts for the falling bead mass at late times:
since ti →∞, we expect that ωl → 0 for a random walk in the extra dimensions. This could
be achieved through either:

• Falling number density (per unit distance along the string), at late times, nw ∼ d−1

• Windings wrapping ever smaller effective radii in the S3.

The fact that d−1 ∼ t−1
i at late times highlights the first effect and Mb ∼ t−1

i indicates the
second. In practice, however, we would expect both effects to play some role.

The question then arises, does the shrinking bead mass have a counterpart in field the-
ory? It is natural to consider whether the arguments for the limitation of windings entering
the horizon hold true for the “bead-equivalents” of field-theoretic strings in the dual Abelian
(or non-Abelian) Higgs models. This question is addressed in chapter 5.

Finally we note that the predictions of our model (specifically that PBH production is
favoured at early times with potential DM production at later epochs, in contrast to pre-
vious predictions) are highly dependent on the assumption of a random walk regime which
produces the extra-dimensional windings. It is not immediately clear how this behaviour
might be modified by the introduction of a velocity correlations regime, though it is pos-
sible that the results may be more in line with those of previous studies. It is also highly

23An alternative way to view this result is to consider windings as correlations in the compact space. All
windings must therefore form within the horizon to preserve the causal structure.
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dependent upon the assumption that only beads formed from net windings, not from bead-
anti-bead (b−b) pair formation, contribute to the mass of PBH/DM relics. As we have seen,
assuming that ∼ √nw b/bs survive until the string reaches its minimum radius (where nw
must be taken to include all beads/anti-beads created from random steps along the string,
not simply those formed by net displacement in the compact space) leads to (3.112) and to
qualitative behaviour which is the very opposite to that obtained in our model. However,
as stated previously, we believe that such an argument is valid only for a static string and
that in a contracting loop all beads will eventually collide with their anti-bead counterparts
before the minimum radius is reached. In particular, in our model we may expect the initial
b − b spacing to be approximately equal to the step length εl ∼ a−1

0 α
√
α′, which is most

certainly greater than the minimum radius δl ∼ η−1
s ∼

√
α′ for all reasonable values of α

and a0.

3.5 Discussion

In this chapter we have investigated a simple cosmic string model using several key ideas
from string theory. Our starting point was the assumption that there is some initial stage
of inflation that leads to the creation of strings (along the lines of [247]) and that these
strings may undergo dynamical evolution leading to the creation of non-zero windings in
the internal space. We argued that the string feels a lifting potential due to the non-trivial
geometry of the background, causing it to form a step-like winding configuration which
appears as a necklace form a four-dimensional perspective. By estimating the mass of such
a string configuration we were able to show that formation at late times reduces to a scaling
solution, which one may hope to identify with a relic DM phase. We also note in passing
that, in principle, we require DM production from necklaces between t+PBH and t0 not to
over-close the universe. However, as the present day DM density bound is (approximately)
ΩDM (t0) < 0.3 and because of the t−3 suppression of the loop production function, we find
that in all but pathological cases the PBH density bound ΩPBH(t0) < 10−9 is by far the
most stringent constraint.

In some sense, this has been a bottom-up approach to the problem. The warp factor is
simply a parameter of the metric, depending only on the extra-dimensional flux and the
deformation parameter of the (non-compact) SUGRA background. A fully realised UV ap-
proach will precisely fix the warping as a function of the closed-string moduli VEVs and the
flux, thereby leading to a more tightly constrained theory. However, the general features of
our approach should remain intact. In particular, the formation window for PBHs at early
times contrasts strongly with the original field theory/string necklace model proposed by
Matsuda [8]. Although we initially feared that this result may be in some sense disappoint-
ing, due to the likelihood of PBHs formed at early times having evaporated by the present
epoch, we have shown that it is possible to satisfy the condition MT (ti) > M∗ and current
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observational constraints within the model constructed here.

It is worth stressing that, for very small a0, the window of black hole formation may
be sufficiently large for the assumption of a constant M∗ to become inaccurate. A more
detailed analysis would therefore take into account the rate of black hole evaporation in the
extra-dimensional background by introducing a time-dependent lower bound on the PBH
mass M∗(ti). An improved analysis would also consider how the abundance of PBHs formed
through necklace collapse in the very early universe affects BBN and subsequent structure
formation. In fact, there are many theoretical and observational constraints which any such
model must satisfy concurrently (see [63] for a recent review), thereby potentially allowing
the KS model parameters to be bounded with even greater precision.

It is clear from our model that generating any PBHs of mass M∗ restricts us to a small
region of the (a0, R,Π) parameter space, as is shown in figures 3.8 and 3.9. This is not
surprising if we recall that M∗ ∼ 1020 in Planck units and so there is a hierarchy issue here.
On the other hand, since the warp factor a0 depends exponentially on background fluxes,
obtaining small enough values to generate a hierarchically large MT is not so unnatural.

In order to satisfy the PBH observational bounds, one requires larger background flux
M if there is larger worldvolume flux Π. This is inherently obvious, since the additional
worldvolume flux can be treated as an effective mass correction to the necklace. This ad-
ditional mass will back-react on the solution and the probe limit will be rendered invalid,
unless the background flux is also increased to compensate. What is interesting is that, for
fixed warping, there is a large parameter space where bounds are satisfied. Another inter-
esting feature is that, as is clear from figure 3.8, the allowed values of R for regions where
MT >> M∗ (corresponding to large κ) are still in the “mild” hierarchy region R ∼ 103ls.
Indeed, the only way a value of R ∼ ls may be consistent with observational evidence is if
the peak of MT is fine-tuned so as to be very close to, but just above, M∗. This reduces
the time interval between t−∗ and t+∗ , which can be made small enough to allow the value
of R to be reduced while still obtaining ΩPBH(t0) < 10−9.

Our construction is very model-dependent in some sense, since it is only valid for a special
class of SUGRA backgrounds of the type IIB string. Another interesting class of cosmic
string models arises from considering heterotic M-theory on the orbifold CY3 × S1/Z2.
The strings in this case can arise from wrapping membranes (or five-branes) over various
cycles within the internal space [281, 282]. Topologically stable strings are only possible
for five-branes wrapping a complete four-cycle within the CY space [283]. However, other
wrappings are potentially possible if there is a lifting potential and a similar analysis could,
in principle, be performed.
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One other issue that remains is the validity of substituting the expression r(ti) = αti for the
variable r in the bead mass terms of the EllipticE expansion and r(t, ti) = αti−ΓT1G(t− ti)
into the leading order term representing the mass of the four-dimensional sections of the
string. As stated previously, this is entirely consistent with Matsuda’s original assumption
that the bead mass remains constant after loop production due to the “trapping” effects of
the lifting potential, whereas the sections of string not contained in the extra-dimensional
windings shrink through the emission of gravitational radiation. However, the reparama-
terisation invariance of the Nambu-Goto action implies that it may not be possible to talk
of one “section” of the string expanding/contracting while other sections remain fixed. By
definition strings have no substructure which seem to imply that they must expand or con-
tract along their entire length. In our model this would mean that the contraction of the
string due to gravitational radiation in the warped Minkowski directions in fact produces
a contraction of the string along the internal direction as well. If true, this implies that
the expression r(t, ti) should be substituted in both the bead-mass and four-dimensional
parts of the string mass integral, creating an explicitly time dependent bead-mass Mb(t, ti)
for t > ti. Potentially this may alter the present results significantly, as we would expect
the number of necklaces which retain sufficient mass in their extra-dimensional windings to
produce PBHs when reaching their minimum radius to diminish sharply. This is therefore
likely to lead to a much smaller amount of black hole production and greatly increased
DM/stable relic formation. It is hoped that the question of the explicit time-dependence of
the bead mass may be resolved conclusively by investigating field theory duals of the string
necklaces discussed here and some preliminary work aimed at answering this important
question is presented in chapter 5. Interestingly though, this work also suggests necklace
relics may be dual to topological defect strings containing gauge field vortices. This, in
turn, implies that such relics do not represent viable DM candidates, as we therefore expect
them to emit/absorb gauge field radiation.

A further aside concerns the question of binding energy between b− b or b− b pairs which
coallesce, or of the related “anti-binding” energy between b − b pairs (i.e. the energy re-
leased when they annihilate). In field-theoretic models the situation is essentially reversed
and a binding energy exists between neighbouring monopoles/anti-monopoles (which at-
tract one another) while an “anti-binding” energy exists between true monopole or anti-
monopole pairs (which repel each other). However, these energies (and the strengths of the
attractive/repulsive forces they generate) may be calculated if the topological charges of
the monopoles and field couplings are known (see [114]). We may suspect that, if similar
but somehow opposite binding energies exist between beads formed from extra-dimensional
windings, their presence may alter the string dynamics so that the evolution of a string
configuration with Nb “one step” beads into a single bead formed from Nb steps will be en-
ergetically favoured. Once formed, it is also possible that such a configuration may unwind
more rapidly than its corresponding Nb-bead counterpart, leading to a necessary modifica-
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tion of the arguments in section 3.4.3.

In such a scenario we may also expect an attractive force to operate between neighbouring
b−b or b−b pairs, and a repulsive force to operate between neighbouring sets of b−b. While
for true monopoles these forces are caused by the interaction of the fields resulting from the
topological charge, it is not difficult to imagine an explicitly stringy origin for forces which
behave in a qualitatively similar manner: In this case the attraction/repulsion may be seen
to result from the action of the string tension (viewed as a vector quantity in the compact
space) in a manner similar to that which results in the formation of step-like winding con-
figurations. In effect, a section of string lying between two beads formed from opposing
windings is “pulled” from either end, or equivalently the beads are “pushed” further apart
(though the total string length remains constant), whereas a section of string lying between
two beads formed from like windings is “pushed” from either side, while the beads are
“pulled” closer together (again the total string length is constant). This possibility, and
its relation to beads formed from “pinched” strings, is also discussed further in chapter 5,
though the argument presented is schematic and no specific calculations are performed.

As a first approximation then we have assumed in the analysis above that there is no bind-
ing energy between the winding states. We note also that, in the absence of a full Boundary
Superstring Field Theory (BSFT) picture [284], this seems intuitively likely given that the
string configuration must be considered as a collective phenomena, which suggests that the
unwinding of Nb single steps will be just as hard as unwinding a a single Nb-step wrapping.
However, it is not clear how one can really understand this problem without a more detailed
anlaysis of the boundary theory and, by contrast, the arguments above would seem to sug-
gest that an addequete boundary theory must include a description of the forces between
similar and dissimilar winding pairs.

Finally, it is interesting to speculate further on the recent result implied by the PAMELA ex-
periment [285, 286], which suggests that there is an over-abundance of high energy positrons
in the cosmic background. Rather than interpreting this as a signal for DM, it has also
been suggested that this is in agreement with predictions from cosmic strings [287]. It would
certainly be interesting to extend the present analysis along those lines.
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CHAPTER 4

NON-TOPOLOGICAL CYCLOOPS

4.1 Introduction

In this chapter we propose a mechanism for the creation of cosmic string loops with dy-
namically stabilised windings in the internal space. Assuming a velocity correlations regime
in the post-inflationary epoch, such windings are seen to arise naturally in string networks
prior to loop formation. The angular momentum of the string in the compact space may
then be sufficient to ensure that the windings remain stable after the loop chops off from
the network, even if the internal manifold is simply connected. For concreteness we again
embed our model in the KS geometry, with strings lying at the tip. Our results may there-
fore be compared with those of the previous chapter, in which we saw that the adoption of
a random walk regime led to the creation of static loops with step-like windings, i.e. cosmic
necklaces. This work represents a direct extension of the previous l = 0 case to a scenario
where l > 0.

We see that, in contrast to the static case, energy minimisation of the string loop in the
dynamical case favours a smoothly varying winding configuration, so that the resulting ob-
ject resembles a cycloop [16] as opposed to a necklace [8]. However, as the internal space
at the conifold tip is simply connected, the loops do not contain topologically stabilised
windings. In their original conception, Avgoustidis and Shellard used this term to refer
only to loops with windings which are topologically trapped and we therefore propose the
term “non-topological cycloops” to refer to string loops with dynamically stabilised smooth
windings around a simply connected compact manifold.

One of the most interesting results of this investigation is the discovery of the interac-
tion between the string tension and the angular momentum in the compact space which, as
we shall see, causes the loop to oscillate between alternate phases of expansion and contrac-
tion. We note that this, in principle, should give rise to a distinct GW signature, the future
detection of which could provide indirect evidence for the existence of extra dimensions.
Unfortunately, it is not possible to investigate this idea within the scope of this thesis,
though some preliminary remarks regarding future work in this direction are given in the
discussion section at the end of this chapter.

The existence of string loops with dynamically stabilised windings in the KS geometry
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[5] was first demonstrated by Iglesias and Blanco-Pillado [276] and the following work con-
tains significant overlap with their paper. They considered strings at the tip of the throat,
with geodesic wrappings in the S3 which regularises the conifold singularity. In particular,
in considering geodesic windings, we will find it convenient to use so-called Hopf coordi-
nates, as they did, to describe the geometry of the three-sphere.

Although they derived a lower bound for the angular momentum of a loop with a given
number of windings - below which the windings became unstable - the result must remain
of purely theoretical interest to cosmology as long as a specific mechanism for winding for-
mation (and hence for string angular momentum formation) is not considered. The purpose
of the following work is to find a mechanism which leads to the formation of string configu-
rations such as those investigated in [276] and to investigate the resulting string dynamics
with specific reference to their cosmologically observable consequences.

Assuming that a velocity correlations regime in the post-inflationary epoch leads natu-
rally to the formation of geodesic windings [16], we show that the winding number (nw),
total energy (E) and angular momentum (l) of the string are specified precisely by the
model parameters, that is, by the parameters which define the KS geometry (i.e. the value
of the warp factor a0 and the radius of the three-sphere R) and those which determine the
characteristic scale of the string loops (α, ti). 1 Substituting for l and nw in the bound
referred to above then demonstrates the stability of these windings, at least under the as-
sumption that l remains approximately constant over small time scales after the moment of
loop formation. By assuming also that the total energy of the string remains approximately
constant (i.e. by neglecting the loss of E and l via GW emission), we then determine the
equation of motion (EOM) for the four-dimensional string radius r(t), and solve it to find
a (generically) oscillating solution.

Crucially, we observe that the qualitative behaviour of the loop depends on the value of
the warp factor a0, with a2

0 < 1/2 leading to an initial expansion phase and a2
0 > 1/2 to

an initial contraction phase. The fixed point solution a2
0 = 1/2 is a static, non-oscillatory

solution. In both oscillatory modes (initially contracting and expanding) we find that the
period of the oscillation is inversely proportional to a2

0, and proportional to the initial size
of the loop r(ti) = (αti).

The layout of the chapter is as follows: In section 4.2 we briefly review the relevant KS
background, focusing in particular on the description of the tip geometry in our new coor-
dinate system. In section 4.3 we show how the assumption of a velocity correlations regime

1However, this assumption may be questioned. Unfortunately, the anaylsis of the string dynamics in the
case of non-geodesic windings is extremely complicated and must be omitted here. Further discussion of this
point is given in section 4.6.
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yields a dynamical model of winding formation after the end of inflation. Section 4.4 recaps
the generic results of [276] which we then combine with the results of the previous section to
give explicit expressions for nw, E and l at the moment of loop formation. The EOM for the
loop radius is then derived and solved in section 4.5. A brief summary of the main results,
together with a discussion of their cosmological implications and possible consequences for
experimental observations, is presented in section 5.6. Finally, the two appendices at the
end of this thesis deal with issues arising in the current chapter: Appendix A outlines the
method of Eulerian substitution of the third kind, which is used to integrate the differen-
tial equation involving ṙ(t) and r(t) derived in section 4.5. Appendix B gives a detailed
description of the Hopf fibration of the three-sphere, which is introduced briefly in section
4.2 and used throughout the following analysis.

4.2 Description of the tip geometry in Hopf coordinates

The KS geometry is the canonical example of a background which resolves a conifold sin-
gularity in type IIB string theory. As we have already given an extended discussion of this
geometry in chapter 2, we refer the interested reader to the original paper [5] for further
details. As noted previously, the essential point is that the conifold is the cone over an
S2 × S3 base space. When we deform the conifold, the S2 shrinks to zero size, and the
ten-dimensional metric factorises into the (warped) product R1,3 n S3.

To recap: In canonical coordinates the effective metric of the KS geometry at the tip
of the warped throat takes the form

ds2 = a2
0ηµνdx

µdxν +R2(dψ2 + sin2 ψ(dθ2 + sin2 θdφ2))

ψ ∈ [0, 4π), θ ∈ [0, π), φ ∈ [0, 2π) (4.1)

where ηµν is the usual four-dimensional Minkowski metric, a2
0 is the square of the warp

factor (0 < a2
0 < 1) and the radius of the three-sphere is defined by

R2 = b0Mgsα
′. (4.2)

Here M is the number of units of flux wrapping the internal space, which is also the number
of fractional D3-branes at the bottom of the throat, gs is the string coupling, ls =

√
α′ is

the fundamental length scale of the string, and b0 is a numerical constant of order one. The
relation between the size of the S3 and the warp factor induced by the back reaction of the
fluxes is

a2
0 ∼

ε̃−4/3

R2
(4.3)

where the constant ε̃−4/3 is related to the deformation parameter of the conifold.

114



4.3. A DYNAMICAL MODEL OF WINDING FORMATION

Of course, the relations (4.2) and (4.3) remain true in any coordinate system and, as men-
tioned above, we will find it convenient to use the Hopf fibration of the three-sphere when
considering the formation of geodesic windings. These are the kind of windings we expect
to form in the presence of velocity correlations which imparts an initial (constant) angular
momentum density to each point along the string. In Hopf coordinates the S3 is described
as a one-parameter family of flat two-tori (to which it is topologically equivalent) [288] and
the canonical metric (4.1) reduces to a much simpler form,

ds2 = −a2
0ηµνdx

µdxν +R2(dθ2 + (dψ + cos θdφ)2) (4.4)

where ψ, θ and φ retain their original principle ranges, ψ ∈ [0, 4π), θ ∈ [0, π) and φ ∈ [0, 2π).

The Killing vectors also adopt a simple form and are always parallel to the unit vectors in
the ψ, θ and φ-directions. Fixing the value of the θ-coordinate such that θ = θ0 then selects
a flat T 2 sub-manifold and windings which follow the Killing directions in this manifold are
necessarily geodesic in the full S3. However, the choice of gauge in this respect is somewhat
arbitrary and we are free to choose θ0 = 0. This simplifies both the resulting metric and the
Killing vectors of the T 2, the latter now being identical to the unit vectors in the remaining
ψ and φ-directions. Although it may be shown explicitly that the Lagrangian density L for
a string loop with geodesic windings in the S3 is σ-independent in any coordinate system,
the simple form of the Killing vectors in Hopf coordinates allows us to more easily calculate
L =

∫
dσL = 2πL. A thorough treatment of the Hopf fibration of the three-sphere, and

a full description of geodesic windings in both canonical and Hopf coordinates, is given in
Appendix B, along with a coordinate-independent geometric analysis.

4.3 A dynamical model of winding formation

We now proceed to construct our dynamical model of winding formation. In the velocity
correlations regime the initial number of windings per loop, for a loop of size r(ti) = αti, is
[16]

nw(ti) ∼
ωlαti
R

(4.5)

where ωl is the fraction of the total string length which lies in the extra dimensions and is
defined via [1]

ωl ∼
nwR√

a2
0r

2 + n2
wR

2
. (4.6)

Substituting this back into the expression above gives a unique physical physical solution,

nw(ti) ∼
√

1− a2
0αti

R
. (4.7)
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The condition a2
0 < 1 ensures that nw(ti) > 0 for all ti > 0. Also important is that the

number of windings increases linearly with time, with an overall coefficient modulated by
the presence of the warp factor.

Alternatively, one can choose to solve for wl rather than the winding number, where

ωl(ti) ∼
√

1− a2
0, (4.8)

indicating that the magnitude of the warping imposes a physical constraint on the length of
the string in the extra dimensions. We can also identify this quantity with the velocity of
the string in the compact space. Imagine that the “end point” of the string at the horizon
moves with a fixed velocity v < 1 in the extra dimensions. Then at time ti there will be
approximately

nw(ti) ∼
vti
R

(4.9)

windings within the horizon and the number of windings within a fraction α of the horizon
distance is therefore

nw(ti) ∼
vαti
R

. (4.10)

This is equal to the number of windings per loop for loops formed at time ti in the scaling
regime. With this identification we see that

ωl(ti) ∼ v(ti) ∼
√

1− a2
0 (4.11)

and the physical conditions 0 < v < 1 and 0 < ωl < 1 are automatically satisfied by the
condition 0 < a2

0 < 1. Furthermore, it is intuitively obvious that ωl(ti), v(ti), nw(ti) → 0
as a2

0 → 1 because the a2
0 = 1 solution of the KS model corresponds to Minkowski space in

(9 + 1) dimensions. 2 In this case, there are no internal fluxes and thus no compact extra
dimensions, implying that no windings can exist.

We can also understand why ωl(ti), v(ti) → 1 as a2
0 → 0 if we realise that windings are

effectively correlations which can only form within the horizon (see sections 3.4 and 3.5).
The horizon in the infinite dimensions advances according to

d∞H (t) = a0t, (4.12)

2Although this is not obvious from (4.3), the rationale behind this statement is the following; if no fluxes
exist to provide an effective potential with which to compactify the extra dimensions, there can be no back-
reaction on the ordinary four-dimensional Minkowski manifold. Hence a2

0 = 1 and R2 → ∞ automatically,
leading to a flat six-dimensional space in place of the metric (4.1)/(4.4). Similarly the other dimensions of
the bulk CY space are no longer flux-compactified. In such a scenario, the formula (4.3) would not be valid
as, by definition, it holds only for a2

0 < 1.
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whereas in our background the horizon distance in CY space (S3) is

dCYH (t) = t. (4.13)

Although the expression a2
0 = 0 is strictly unphysical (corresponding to an extremal hori-

zon), the limit a2
0 → 0 corresponds to a situation in which the infinite dimensions are

“closed off” so that the string exists only in the compactified space (hence ωl = 1). In a
time interval δt, the value of a2

0 limits the increase of the horizon distance in the infinite
directions (but not in the compact space) via

δd∞H = a0δt, (4.14)

which places a limit on how fast the correlations can form. Strictly speaking, the horizon
in the infinite direction advances by a distance a0δt when the horizon in the compact space
advances by δt. The end point of the string, which must move with resultant velocity
vres = 1, must therefore cover a total distance in the compact space given by

δd =
√

1− a2
0δt, (4.15)

which limits the effective velocity of the string in the extra dimensions to v ∼ δd
δt =

√
1− a2

0.
The parameter ωl(ti) is then given by the ratio of the string velocity in the compact space
to the speed of light, ωl(ti) ∼ v(ti) ∼

√
1− a2

0. Happily we find that the details of the
compactification scheme determine v(ti), ωl(ti) and nw(ti) uniquely. 3

4.4 Comparison with the results of Blanco-Pillado and Iglesias

We wish to consider a string loop which has windings over the full S3. In a previous study
[276], Euler variables were used to describe the S3 as an SU(2) group manifold. This foliates
the three-sphere into a one-parameter set of flat tori, so that, for fixed angle θ0, the metric
reduces to that of a flat two-torus. The strings therefore wrap only a two-dimensional sub-
manifold of the full three-sphere.

We wish to generalize this result to consider windings over the full S3 using the Hopf map.

3In the preceding section it could be argued that, accounting for the effects of warping, the original
formula for nw(ti) in unwarped space (4.5) (which was taken directly from [16]) should be modified to give

nw(ti) ∼ ωla0(αti)
R

. However, using this in conjunction with (4.6) gives nw(ti) = ωl(ti) = 0 as the only
possible solution. As there are good physical grounds (outlined above) for believing that the identification
ωl(ti) ∼ v(ti) ∼

√
1− a2

0 is valid, we therefore choose to leave the formula (4.5) unchanged, even in the
presence of warped space. However, this approach does conflict with the method used in chapter 3, where we
assumed that the standard formula for nw(ti) in the random walk regime (in unwarped space, [16]) should

be modified to include the effect of the warping via nw(ti) ∼
√
αωlεlti
R

→
√
a0αωlεlti

R
. This is based on the

substitution r(ti) → a0r(ti). We must therefore admit that, at present, it remains unclear exactly how to
incorporate the effects of warping in the infinite dimensions into the existing dynamical models.
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We therefore use the following ansatz to describe a string loop, with general, non-specific
windings around the S3,

XM (σ, t) = (t, r(t) sin(σ), r(t) cos(σ), z0, 0, 0, 0, ψ(σ, t), θ(σ, t), φ(σ, t)) (4.16)

Here we have again chosen our gauge so as to identify the worldsheet time coordinate with
the proper time in the Lorentz frame of the loop. In keeping with the physical scenario
we are considering, we now specify the ansatz more completely, so that ψ(σ, t), θ(σ, t) and
φ(σ, t) describe geodesic windings. As previously stated, in Hopf coordinates the Killing
vectors of the three-sphere take a particularly simple form and are parallel to the unit
vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1), so that geodesic windings are described by

ψ(σ, t) = 2nψσ + ψ(t),

θ(σ, t) = nθσ + θ(t), (4.17)

φ(σ, t) = nφσ + φ(t),

where nψ, nθ, nφ ∈ Z represent the number of physical windings in each angular direction.
As in canonical coordinates, the factor of two in front of the nψ term results from the fact
that the principle range of ψ is twice that of the polar angle φ. Even though (technically)
we have retained exactly the same ansatz used to descibe non-geodesic windings in the pre-
vious chapter, its meaning in the new coordinate system is now completely different. It is
a strange but convenient coincidence that the same choice of ansatz in different coordinate
systems describes appropriately the different kinds of windings we expect to form in both
the random walk regime (l = 0) and velocity correlations regime (l > 0).

Plugging (4.16) and (4.17) into the standard Nambu-Goto term of the F/D-string action
(and ignoring the topological CS term in the case of the D-string, and other flux-dependent
contributions), we then have

S = −T1

∫
dσdt

√
a2

0(1− ṙ2)(a2
0r

2 +R2s′2)− a2
0r

2R2ṡ2 (4.18)

where s = ψ + θ + φ and T1 denotes either the F - or D-string tension, as before. In fact,
we may simplify our result even further by an appropriate gauge choice with respect to
the angular coordinates. Since we know that geodesics of the compact space correspond to
great circles on the S3, we may set either of the winding numbers nθ or nφ to zero without
loss of generality. The resulting string action with geodesic windings on the S3 (in Hopf
coordinates) is

S = −T1

∫
dσdt

√
a2

0(1− ṙ2)(a2
0r

2 +R2(2nψ + nφ)2)− a2
0r

2R2(ψ̇ + φ̇)2. (4.19)
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The constants of motion are again given by

E =
dL

dq̇I
q̇I − L, l =

dL

dq′I
q′I , (4.20)

where qI ∈ {t, σ, ψ, θ, φ} (and we have now assumed that ~A = 0, c.f. chapter 3). The first
expression is the Hamiltonian and the second corresponds to the total angular momentum
of the string in the compact directions, which we now expect to be non-zero. 4 Again, using
our ansatz (4.16)-(4.17) we see that these expressions become

E = 2πT1
a2

0(a2
0r

2 +R2(2nψ + nθ)2)√
a2

0(1− ṙ2)(a2
0r

2 +R2(2nψ + nφ)2)− a2
0r

2R2(ψ̇ + φ̇)2
,

l = 2πT1
a2

0r
2R2(2nψ + nθ)(ψ̇ + θ̇)√

a2
0(1− ṙ2)(a2

0r
2 +R2(2nψ + nφ)2)− a2

0r
2R2(ψ̇ + φ̇)2

. (4.21)

Iglesias and Blanco-Pillado [276] have shown that, for a loop which is stationary in (3+1)-
dimensions (i.e. for ṙ = 0), the energy of the string configuration is minimised precisely
for

r2 =
l

2πT1a2
0

(4.22)

and

ṡ2 = (ψ̇ + θ̇)2 =
a2

0

R2
. (4.23)

These results are obtained by first rewriting ṡ2 = (ψ̇ + θ̇)2 in terms of l, r, R and
s′2 = (2nψ + nθ)2 and substituting into the expression for E (so that E = E(r, l, R, s′)),
before minimising with respect to r. This gives the first condition (4.22), and the second
condition (4.23) is obtained by further substitution into the expression for l.

Any dynamical model we construct for the formation of geodesic windings and for the
motion of the string after loop formation must be consistent with these general results. At
first sight our model suggests v2(ti) = ṡ2(ti)R2 ∼ (1 − a2

0), which does not correspond (in
general) to the energy minimisation condition v2 = ṡ2R2 = a2

0. In fact, these two condi-
tions only coincide for the specific value a2

0 = 1/2, where the velocity in both compact and
non-compact dimensions is v ∼ 1/

√
2. We would not expect such a string configuration to

undergo time evolution under the influence of its own internal dynamics, although it may

4Recall that, although the string “rotates” around the S3, no centripetal force is acting upon it. The
internal (compact) dimensions are parameterised in terms of the angular variables ψ, θ and φ, and so the
motion through the S3 may be measured in rad × [t]−1. As the effective radius of “rotation” for any point
along the string is simply the radius of the three-sphere, multiplication by R converts this “angular velocity”
into the “true velocity” of the string. However, even here we must be careful - as the string has no internal
structure, the “velocity” of the string parallel to itself (in this case parallel to the geodesic windings) is not
clearly defined. It is therefore possible (in principle) to have v(t) ∼ ṡ(t)R > 1 though this does not violate
causality due to the boost invariance of the string along its length.
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still shrink via the loss of mass-energy (and angular momentum) due to GW emission and
this possibility is discussed in section 4.6. We conclude that if the value of the warp factor
is exactly a0 = 1/

√
2, the energy of the string configuration will be automatically minimised

from the moment of loop formation, i.e. the initial radius of the string loop r(ti) and the
initial angular momentum l(ti) will be related via r2 = l/2πT1a

2
0, and the velocity of the

string in the compact space will be v ∼
√

1− a2
0 = a0 = 1/

√
2 for all t ≥ ti.

However, when a2
0 > 1/2, the string velocity in the compact space is too small to pro-

vide enough angular momentum to “match” the radius of the loop, that is, the angular
momentum required for a cycloop of radius r to minimise the energy of its configuration.
Alternatively, one can understand this as a string loop with fixed energy changing configu-
ration in order to minimise the surface-to-energy ratio. Hence, from the arguments in [276],
we expect that a2

0 > 1/2 implies l < 2πT1a
2
0r

2. Similarly, if a2
0 < 1/2, this should imply

that the initial angular momentum of the loop exceeds the optimum value for a loop of that
size and we find the converse result, l > 2πT1a

2
0r

2. In a full string theory compactification,
the warp factor is exponentially small and therefore this would appear to be the dominant
string channel. However, we will take a more phenomenological approach and consider the
full range of values for the warping. Furthermore, as stated above, these results should hold
true for any physically viable dynamical model. It is therefore worth testing the theory
developed in section 4.2 to ensure consistency in this matter. In short, the arguments of
Iglesias and Blanco-Pillado regarding the energy minimisation condition (for all r and l)
[276], ought to be consistent with our own dynamical model of l(ti) and r(ti) outlined above.

Because we are dealing with geodesic windings, we may always redefine our coordinate
system so as to identify the variable nw from (4.5) with the variable s′, both of which rep-
resent the total number of physical windings in the compact space. Hence nw ∼ 2nψ + nθ.
We now insert the expressions for nw(ti), v2 = ṡ2R2 = a2

0 and r(ti) = αti into (4.21) (with
ṙ(ti) = 0) to find 5

E(ti) = 2πT1
a0(αti)√

1− a2
0

,

l(ti) = 2πT1a
2
0(αti)2. (4.24)

Hence the second part of the energy minimisation condition (4.23) implies the first, and
vice-versa, as expected for consistency. However, as noted above, in general we have v2(ti) =
ṡ2(ti)R = (1 − a2

0) from (4.11), which is not equal to a2
0 unless a2

0 = (1 − a2
0) = 1/2 giving

5We could have substituted n(ti) = a2
0(αti)

2/R2 in place of the usual expression (4.5), taking advantage
of the fact that v2 ∼ a2

0R
2 in this case. This leads to the expression E(ti) = 2πT1 × 2a2

0(αti), which is
equivalent to (4.24) for a2

0 = (1− a2
0) = 1/2. We therefore see that the total energy is split equally between

the rest mass of the loop in warped Minkowski space and the kinetic energy due to motion in the S3.
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the constant values:

E = E(ti) = 2πT1(αti),

l = l(ti) = πT1(αti)2. (4.25)

Under such special circumstances we would not expect the string configuration to evolve
due to its own internal dynamics, though the emission of GWs due to accelerated motion
of the string and the resulting shrinkage of the loop radius r must still be accounted for, as
mentioned previously.

Considering the more general case (a2
0 6= 1/2) and substituting (4.5), (4.11) and r(ti) = αti

into (4.21) (keeping ṙ(ti) = 0) gives

E(ti) = 2πT1(αti)

l(ti) = 2πT1(1− a2
0)(αti)2, (4.26)

which implies

l(ti) > 2πT1a
2
0(αti)2 (a2

0 < 1/2),

l(ti) < 2πT1a
2
0(αti)2 (a2

0 > 1/2). (4.27)

We find that the total energy of a cycloop with radius r(ti) = αti is independent of a2
0. At

first glance this seems nonsensical: the value of the warp factor determines the velocity in
the compact space at the moment of loop formation via v(ti) ∼ ṡ(ti)R ∼

√
1− a2

0, which
in turn determines the initial number of loops via nw(ti)R ∼ v(ti)r(ti) ∼

√
1− a2

0(αti). A
cycloop moving with greater velocity in the compact space would therefore have a greater
number of windings than a slower moving string with the same radius in the non-compact
directions. Consequently, an increase in the kinetic energy of the loop would seem to go
hand in hand with an increase in the total rest mass. However, although this is clearly true
in unwarped space, we must remember that the presence of the warp factor also reduces
the four-dimensional energy density via the effective tension T̃1 = a2

0T1. Equation (4.26)
suggests that, even though a smaller warp factor implies a greater rate of winding formation
and a greater kinetic energy for the windings in the compact space, the would-be increase
in the total energy of the cycloop is completely off-set by the reduction in four-dimensional
energy density. This is yet another example of the subtleties involved in transferring ideas
and results which are intuitively obvious in flat space to highly warped backgrounds.

The question then remains: what happens if the energy minimisation conditions are not
automatically satisfied at the moment of loop formation? This is equivalent to the ques-
tion: What happens dynamically when either a2

0 < 1/2 or a2
0 > 1/2? Intuitively, we would

expect that if l(ti) > 2πT1a
2
0r(ti)

2 (a2
0 < 1/2), the radius of the loop would rapidly expand,
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introducing a non-zero ṙ(t) term for t > ti. 6 Physically, this corresponds to the conversion
of kinetic energy from the motion of the string in the compact space into rest-mass energy
in four dimensions. The conservation of angular momentum also suggests that any fraction
of l(ti) “lost” in this process is carried away by the gravitational radiation produced by the
the accelerating loop, though as a first approximation we may neglect this. Hence we must
allow for the most general case by including the explicitly time-dependent term ṙ = ṙ(t) in
the expressions for E and l, whose derivative r̈(t) we expect to be initially positive for an
expanding loop (i.e. r̈(ti) > 0). We must also reintroduce a time-dependent velocity term
v(t) = ṡ(t)R for t > ti, whose derivative v̇(t) we expect initially to be negative in this case
(v̇(ti) = s̈(ti)R < 0).

Similarly, if l(ti) < 2πT1a
2
0r(ti)

2 (a2
0 > 1/2), we expect the opposite process to occur -

with rest-mass energy of the loop being converted into kinetic energy in the extra dimen-
sions. For t > ti, we again introduce the extra dynamical terms ṙ(t), whose derivative r̈(t)
we now expect to be initially negative (r̈(ti) < 0), and v(t) = ṡ(t)R, whose derivative v̇(t)
we now expect to be initially positive (v̇(ti) = s̈(ti)R > 0). Again we face the possibility
that a significant proportion of the initial angular momentum of the loop will eventually be
lost through the emission of gravitational radiation during dynamical evolution.

As a first approximation, however, we will assume the loss of angular momentum via grav-
itational wave emission to be negligible, taking l ≈ l(ti) for all t > ti. We will also assume
that the total energy lost via GW emission during the dynamical evolution of the loop
is negligible, i.e. that E ≈ E(ti) for t > ti. What drives the evolution in this case is not
changes in the energy of the system to “match” the conditions, but changes in the conditions
to match the given energy, that is, the mutual and interdependent evolution of r(t) and ṡ(t)
toward a loop configuration which meets the energy minimisation criteria (4.22)-(4.23).

The approach outlined above has the added advantage that in both cases we may assume
that the number of windings remains fixed. As we shall see in the next section, the stability
of the extra-dimensional windings places a lower bound on the value of l. If l remains con-
stant, all that is required to ensure stability of the windings throughout dynamical evolution
towards the minimum energy state is that the string have sufficient angular momentum to
stabilise its windings at the moment of loop creation. In the next section we will demon-
strate (following the analysis in [276]) that the stabilisation of windings places a bound on
l, with more windings requiring a larger angular momentum to remain stable. 7 Thus, if

6This inequality is strict since at t = ti we still have that ṙ(ti) = 0. If this were not the case, then the
energy minimisation condition (4.22) would itself be different.

7We will also see that angular momentum required for the stability of the string configuration is pro-
portional to the number of windings in the loop. The angular momentum required per winding is therefore
constant.
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the value of l were to change significantly during the evolution process, the dynamics of the
loop may be considerably more complicated, with windings “falling off” the S3 as the loop
expands/contracts.

4.5 Loop dynamics after formation

We now investigate the stability requirements for the extra-dimensional windings, both
generically and in light of our specific dynamical model. We find that the rate of wind-
ing production in our model ensures the stability of the ansatz (4.16)-(4.17) at the mo-
ment of loop creation for all possible formation times ti. We then leave this result and
consider the loop dynamics in each of the regimes (l(ti) > 2πT1a

2
0r(ti)

2, a2
0 < 1/2 and

l(ti) < 2πT1a
2
0r(ti)

2, a2
0 > 1/2) discussed above, on the assumption that the loops retain

their windings during the evolution towards an energy-minimising state, 8 which is equiva-
lent to the assumption that l = l(ti) for all t > ti.

By introducing a small perturbation in one of the bulk-space directions perpendicular to
the S3, it is possible to show, from the resulting expansion for the ten-dimensional action,
that the string configuration (4.16)-(4.17) is stable [276] (this corresponds to moving the
entire string “up” from the bottom of the throat by a small amount). The ansatz (4.17)
(with nθ = 0) also implicitly assumes that the motion of the string in the compact space is
parallel to the direction of the windings, so it is not physically meaningful to perturb the
string in either the ψ or φ-directions. We may, however, investigate the effect of perturbing
the string in the θ-direction in order to determine the stability of the winding configuration.
Turning on a small perturbation δθ results in the following perturbation of the Lagrangian
[276]:

δL =
(

l

2πT1a2
0

+R2(2nψ + nθ)2

)
δθ̇2 − a2

0

R2

(
l

2πT1a2
0

−R2(2nψ + nθ)2

)
δθ2 (4.28)

which results in the stability condition

l > 2πT1a
2
0R

2(2nψ + nθ)2. (4.29)

In other words, the total angular momentum must satisfy this bound (note the strictness
of the inequality) in order for the number of windings (2nψ + nθ) to remain stable. Again,
identifying nw ∼ 2nψ + nθ and substituting for nw(ti) using (4.7) and l(ti) using (4.24), we
may investigate the stability of the windings in our dynamical model at the moment of loop

8We will also find, in the next section, that the loop does not remain stable at the energy-mininimising
configuration. However, it still evolves from the initial radius towards such a configuration. As we will show,
the loop actually “overshoots” its own energy-minimising configuration due to the non-zero velocity of the
radial coordinate at that point, leading to an oscillating solution.
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formation. The resulting condition reduces to

a2
0 < 1, (4.30)

which is automatically satisfied by the definition of a2
0 in the KS geometry. Thus we see

that the stability condition is satisfied and that all windings are stable at the time of loop
formation for all ti and for all physical values of a2

0, R2 and α.

We now introduce non-zero time-dependent terms ṙ(t) and v(t) = ṡ(t)R for t > ti in
(4.21), which initially satisfy

r̈(ti) > 0 (a2
0 < 1/2)

r̈(ti) < 0 (a2
0 > 1/2) (4.31)

s̈(ti)R = v̇(ti) < 0 (a2
0 < 1/2)

s̈(ti)R = v̇(ti) > 0 (a2
0 > 1/2) (4.32)

and the boundary conditions

ṡ(ti)R = v(ti) ∼
√

1− a2
0, ṙ(ti) = 0. (4.33)

Henceforth we assume that the number of windings remains constant from the moment
of loop formation, nw = nw(ti), and attempt to determine the corresponding dynamical
evolution of the loop in the warped Minkowski directions. Using l = l(ti) and E = E(ti),
we then have

l = l(ti) = 2πT1(1− a2
0)(αti)2

=
2πT1a

2
0

√
1− a2

0(αti)r2(t)ṡ(t)R√
a2

0(1− ṙ2(t))(a2
0r

2(t) + (1− a2
0)(αti)2)− a2

0R
2r2(t)ṡ2(t)

(4.34)

and

E = E(ti) = 2πT1(αti)

=
2πT1a

2
0(a2

0r
2(t) + (1− a2

0)(αti)2)√
a2

0(1− ṙ2(t))(a2
0r

2(t) + (1− a2
0)(αti)2)− a2

0R
2r2(t)ṡ2(t)

. (4.35)

Rearranging (4.34) gives

a2
0r

2ṡ2R2 = a2
0(1− a2

0)(1− ṙ2)(αti)2 (4.36)
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and rearranging (4.35) gives

a2
0r

2ṡ2R2 =
a2

0(a2
0r

2(t) + (1− a2
0)(αti)2)[(1− ṙ2)(αti)2 − a2

0(a2
0r

2(t) + (1− a2
0)(αti)2)]

(αti)2
,

(4.37)
so that equating these two expressions yields a non-linear first order differential equation
in r(t): 9

ṙ2 +
a4

0

(αti)2
r2 + (−1 + 2a2

0(1− a2
0)) + (1− a2

0)2(αti)2 1
r2

= 0. (4.38)

We note that the constant terms involving a2
0 and the terms involving powers of r form a

perfect square, so that this equation may be rewritten as

ṙ2 − 1 +
(

a2
0

(αti)
r +

(1− a2
0)(αti)
r

)2

= 0. (4.39)

It is then explicitly clear that there exist two critical values of r at which ṙ = 0, i.e. at
which the expansion of the loop (at least momentarily) comes to a halt. These are

rc1 = (αti) (4.40)

and

rc2 =
(1− a2

0)
a2

0

(αti). (4.41)

Although it is not possible to show this directly without the explicit form of the solution
r(t), the first of these values must correspond to the boundary condition ṙ(ti) = 0, which
we imposed when calculating E(ti) and l(ti), as well as when determining the energy-
minimisation conditions (4.22)-(4.23). However, the second of these values is intriguing as
it does not correspond to the minimum energy condition. We can tell immediately therefore
that the dynamical evolution of the loop will not lead to a steady energy-minimising state,
and we may instead expect a solution which oscillates between the two values rc1 = (αti)
(the initial radius of the loop) and rc2 = (1−a2

0)

a2
0

(αti).

To see if such a solution is consistent with the physical arguments above, i.e that a2
0 < 1/2

leads to an initially expanding loop, a2
0 > 1/2 to an initially contracting loop and a2

0 = 1/2
to a static loop of radius r(t) = (αti) for all t > ti, we must now ask two questions: First,
which is greater, the initial radius or the second critical value? This will determine whether
the loop initially expands or contracts; Second, which is greater, the second critical value
or the radius corresponding to the energy-minimisation condition? This will determine

9Alternatively we may substitute either of the expressions (4.37) or (4.36) into the original string action
(4.19) and then determine the Euler-Lagrange equations. The resulting equations must necessarily have the
same solution as (4.38) but the method adopted here, which utilises the string constants of motion, is far
simpler.
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whether the behaviour of the loop is in accordance with our assumptions.

Whether rc1 = r(ti) < (>)rc2 depends on whether (1 − a2
0)/a2

0 > (<)1, or equivalently
whether a2

0 < (>)1/2, with a2
0 < 1/2 implying that the loop must expand from its initial

value r(ti) = (αti) to r = (1−a2
0)

a2
0

(αti) > (αti) and a2
0 > 1/2 implying that the loop must

contract from its initial value r(ti) = (αti) to r = (1−a2
0)

a2
0

(αti) < (αti).

The second question may be answered as follows: By equating our expression for l(ti)
(4.26) with the second part of the energy-minimisation conditions (4.23), the critical radius
corresponding to the fulfillment of this condition on rmin may be written in terms of a2

0 and
the initial radius r(ti) = (αti), as

rmin =

√
1− a2

0

a0
(αti). (4.42)

Whether rc2 < (>)rmin then depends on whether (1 − a2
0)/a2

0 < (>)
√

1−a2
0

a0
, which is also

equivalent to the condition a2
0 > (<)1/2.

Therefore, a2
0 < 1/2 implies that the loop expands from its initial value r(ti) = (αti) towards

the radius corresponding to the energy-minimising configuration rmin =
√

1−a2
0

a0
(αti) > r(ti)

but overshoots it and continues expanding to the second critical value rc2 = (1−a2
0)

a2
0

(αti) >
rmin. Similarly, a2

0 > 1/2 implies that the loop contracts from its initial value r(ti) =
(αti) towards the radius corresponding to the energy-minimising configuration rmin =√

1−a2
0

a0
(αti) < r(ti) but overshoots it and continues contracting to the second critical value

rc2 = (1−a2
0)

a2
0

(αti) < rmin. In both cases, we expect the loop to oscillate back and forth
between rc1 = r(ti) and rc2 but our findings are consistent with the assumptions about
the initial behaviour of the loop expressed in the boundary conditions (4.31)-(4.33). For
a2

0 = 1/2, r(ti) = rc2 = rmin = (αti) and the loop remains static in four dimensions.

Interestingly, there is also another way to interpret both the fixed point and oscillatory
solutions in terms of the distance between neighbouring windings, d ∼ a0r/nw. At the first
critical radius (corresponding to t = ti) we have

dc1 =
a0√

1− a2
0

R, (4.43)

whereas at the second critical radius

dc2 =

√
1− a2

0

a0
R. (4.44)
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For a2
0 > 1/2 we have tha dc1 > dc2, whereas for a2

0 < 1/2 we have dc1 < dc2 (as expected),
and the fixed point solution a2

0 = 1/2 corresponds to dc1 = dc2 = R. The stability of the
string configuration therefore appears to depend on the ratio of the inter-winding distance
to the radius of the compact space, with d/R = 1 giving rise to an equilibrium position,
where the string tension exactly balances the effects of the angular momentum.

The paramter ωl ∼ nwR√
a2

0r
2+n2

wR
2
∼ R

d

(
1 + R2

d2

)− 1
2 also undergoes dynamical evolution be-

tween the two critical values

ωl(c1) ∼
√

1− a2
0 (4.45)

and

ωl(c2) ∼ a0 ∼
√

1− ω2
l(c1). (4.46)

Here a2
0 > 1/2 implies ωl(c1) < ωl(c2), a2

0 < 1/2 implies ωl(c1) > ωl(c2) and a2
0 = 1/2 implies

ωl(c1) = ωl(c2) = 1/
√

2.

It is interesting to speculate that, from a four-dimensional perspective, the value of ωl
is somehow related to a measure of torsion. If this is so, the succesive phases of loop expan-
sion and contraction may be viewed as the string “winding” and “unwinding” (or “twisting”
and “untwisting”) in the process of evolving between equivalent (i.e. degenerate) energy
states. Intuitively, this would seem to be the analogue of the motion of a loop of elastic
band, with an intrinsic tension and an initial number of “twists” along its length: The
tension of the band acts to contract the loop radius, whereas the torsion resulting from the
presence of the twists acts to make the loop expand. Whether the loop expands or contracts
(initially) then depends on which of these forces dominates the dynamics. 10

Having now determined the general behaviour of our solution in each of the three cases
a2

0 < 1/2, a2
0 = 1/2 and a2

0 > 1/2, we now find the explicit form of r(t). By making the
substitution y = r2, (4.38) may be rearranged to give

dt = ±1
2

dy√
−ay2 + by − c

(4.47)

10The suggestion that ωl is related to a measure of torsion is also supported by the dual defect-string
model proposed in chapter 5. Under the proposed duality, ωl is related to the topolgical winding number
via |n| ∼ 1/

√
1− ω2

l , so that a change in the fractional string length contained in the extra-dimensional
windings - either over a region of space or through evolution in time (or both) - corresponds also to a change
in vorticity (or “winding”/“twisting”) from a field-theoretic perspective. This appears to be a natural
definition of torsion in such models.
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where we have defined the coefficients a, b and c to be explicitly positive for a2
0 in the range

0 < a2
0 < 1:

a =
a4

0

(αti)2
,

b = 1− 2a2
0(1− a2

0),

c = (1− a2
0)2(αti)2. (4.48)

The discriminant of the quadratic,

∆ = b2 − 4ac = 1− 4a2
0(1− a2

0) = (1− 2a2
0)2, (4.49)

is positive for all 0 < a2
0 < 1, except at a2

0 = 1/2, where ∆ = 0. Integrating (4.47) yields the
following explicit expression for t in terms of y, where K is the usual integration constant
and A, B are the real roots of the equation −ay2 + by − c = 0: 11

t = ∓ 1√
a

tan−1

(
±

√
B − y
y −A

)
∓K, (4.50)

which may be rearranged to give

y(t) =
B +A tan2 (

√
a(t+K))

1 + tan2 (
√
a(t+K))

. (4.51)

The roots of the quadratic −ay2 + by − c = 0 are

y = (αti)2

y =
(1− a2

0)2

a4
0

(αti)2 (4.52)

but choosing A = (αti)2 and B = (1−a2
0)2

a4
0

(αti)2 does not allow us to fix K in order to satisfy

the boundary conditions. We must therefore choose B = (αti)2 and A = (1−a2
0)2

a4
0

(αti)2 in
(4.51) before setting y(ti) = (αti)2 to determine

K = −ti. (4.53)

Our final solution for r(t) is given by taking r = +
√
y

r(t) =

√√√√√(αti)2 + (1−a2
0)2

a4
0

(αti)2 tan2
(

a2
0

(αti)
(t− ti)

)
1 + tan2

(
a2

0
(αti)

(t− ti)
) , (4.54)

11This solution was obtained by performing a Eulerian transformation of the third kind. A brief sketch of
this method is given in Appendix A.
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which may be rewritten in terms of basic trigonometric functions:

r(t) = (αti)

√
1 +

(
1− 2a2

0

a4
0

)
sin2

(
a2

0

(αti)
(t− ti)

)
. (4.55)

It is clear that for a2
0 6= 1/2, the solution (4.54)/(4.55) oscillates between r(ti) = (αti)

at t = nπ (αti)
a2

0
for n ∈ Z+ and rc2 = (1−a2

0)

a2
0

(αti) at t = (2m + 1)π2
(αti)
a2

0
, m ∈ Z+. For

a2
0 = 1/2 we have A = B (∆ = 0) and r(t) = (αti) for all t > ti, as expected. It is tedious

but straightforward to twice differentiate (4.54) in order to verify the boundary conditions
(4.31). We obtain

ṙ(t) =
(1− 2a2

0)
a2

0

sin(x) cos(x)
{

1 +
(

1− 2a2
0

a4
0

)
sin2(x)

}− 1
2

,

r̈(t) =
(1− 2a2

0)
(αti)

{
1 +

(
1− 2a2

0

a4
0

)
sin2(x)

}− 1
2

(4.56)

×

[
cos2(x)− sin2(x)−

(
1− 2a2

0

a4
0

)
sin2(x) cos2(x)

{
1 +

(
1− 2a2

0

a4
0

)
sin2(x)

}− 3
2

]
,

where we have defined x ≡ a2
0

(αti)
(t − ti), from which it can be seen that ṙ(ti) = 0 and

r̈(ti) = (1−2a2
0)

(αti)
, and hence r̈(ti) > 0 for a2

0 < 1/2 and r̈(ti) < 0 for a2
0 > 1/2, in accordance

with the boundary conditions (4.31).

Figure 4.1 illustrates the qualitatively different behaviour of the solution (4.55) for dif-
ferent values of a2

0. The three curves show the three different types of dynamical evolution
that a loop (formed with initial radius r(ti) = αti) may undergo in the a2

0 < 1/2, a2
0 = 1/2

and a2
0 > 1/2 cases. We plot the behaviour of v(t) ∼ ṡ(t)R for the same test values of a2

0,
α and ti in figure 4.2. The full expression for v(t) may be obtained by taking either (4.36)
or (4.37) and substituting for r(t) from (4.55) and ṙ(t) from (4.56), though we omit it here
for the sake of brevity. As expected, the behaviour of v̇(t) satisfies the boundary conditions
(4.32). Even though, for any given model, the values of a2

0 and α are constant, string loops
are continuously formed throughout the history of the universe, meaning that ti will be
a free parameter. In each of the oscillating regimes we would therefore expect to see a
spectrum of oscillation periods, with smaller loops formed at earlier epochs oscillating more
rapidly between their initial and maximum radii than larger loops formed at late times.
This is illustrated for the a2

0 < 1/2 regime in figure 4.3. The corresponding behaviour of
v(t) ∼ ṡ(t)R is shown in figure 4.4, using the same values for the parameters.
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Figure 4.1: This figure illustrates the behaviour of the solution (4.55) in the three qualita-
tively different regimes. For convenience, we have chosen ti = 1, α = 0.5 for all three curves
and set a2

0 = 0.4, 0.5 and 0.6.

Figure 4.2: This figure illustrates the behaviour of v(t) ∼ ṡ(t)R in the three qualitatively
different regimes. Again we have chosen ti = 1, α = 0.5 for all three curves and the values
a2

0 = 0.4, 0.5 and 0.6.
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Figure 4.3: This figure illustrates the behaviour of r(t) for loops formed at three different
epochs in the a2

0 < 1/2 regime. For the sake of convenience we have fixed a2
0 = 0.4 and

α = 0.5 for all three curves and set ti = 1, ti = 1.2, and ti = 1.5.

Figure 4.4: This figure illustrates the behaviour of v(t) ∼ ṡ(t)R for loops formed at three
different epochs in the a2

0 < 1/2 regime. As in figure 4.3 we choose to set a2
0 = 0.4 and

α = 0.5 for all three curves and consider ti = 1, ti = 1.2, and ti = 1.5.
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4.6 Discussion

In this chapter we have argued that a velocity correlations regime in the post-inflationary
epoch leads naturally to the formation of string loops with geodesic windings in the compact
space. For strings at the tip of the conifold throat of the KS geometry, we were able to
show that the quantities which determine the dynamical evolution of a circular loop (i.e.
the initial winding number nw(ti), energy E(ti) and string velocity/angular momentum in
the compact space, ṡ(ti)/ l(ti)), are uniquely determined by the parameters a2

0, R, α and ti.
Crucially, these windings were found to have sufficient angular momentum in the compact
directions to remain stable after the string chops off from the network to form a loop.

The interaction between the tension and the angular momentum in the compact space
was found to play a significant role in the dynamical evolution of the string, including,
perhaps surprisingly, the evolution in four dimensions. By assuming energy and angular
momentum loss via gravitational radiation to be negligible, we determined EOM for the
four-dimensional radius r(t) and the string velocity v(t) ∼ ṡ(t)R, which we believe to be
valid over small time scales after loop formation.

We found that the qualitative behaviour of the string depends crucially on the square of
the warp factor, 0 < a2

0 < 1, with a2
0 < 1/2 leading to an oscillatory solution characterised

by an initial expansion phase and a2
0 > 1/2 to oscillations with an initial contracting phase.

In each case the string was seen to oscillate between its initial radius r(ti) = (αti) and a
secondary critical value defined by rc2 = (1−a2

0)

a2
0

(αti), with period of oscillation T = (αti)
a2

0
.

In the two oscillatory regimes, it is the interaction of the angular momentum with the
string tension which “drives” the dynamical evolution, converting kinetic energy into rest
mass during expansion (with the inverse process occurring in the contracting phase). The
string is seen to evolve towards a static minimum energy configuration where l = 2πa2

0T1

and ṡ2 = a2
0/R

2, but is unable to satisfy these two conditions simultaneously at a point
where ṙ(t) = 0. By contrast, in the a2

0 = 1/2 case we find that the energy-minimising
conditions are satisfied simultaneously at the moment of loop formation. In this case the
tension exactly offsets the effect of the angular momentum, so the string remains static at
its original radius r(ti) = (αti).

The meaning of the term “small” above is somewhat ambiguous, but it seems reasonable to
assume that our solution will provide a valid approximation over at least one full oscillatory
cycle of the loop, that is, over a period ∆t ∼ T = (αti)

a2
0

. For periods ∆t >> T our analysis
must be extended to include the effects of GW emission on E(t) and l(t) (or equivalently on
r(t) and ṡ(t)). We may expect the qualitative effect of energy and angular momentum loss
to be relatively simple, as long as the string retains sufficient angular momentum for the
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extra-dimensional windings to remain stable. In this case, it is likely that the loss of E and
l due to GW emission will act to damp the oscillations of r(t) and ṡ(t). What is unclear,
however, is whether the damping coefficient itself will be time-dependent. For example, it
is possible that smaller oscillations lead to greater rates of emission per unit length (as the
rate of acceleration r̈(t) is higher in this case), so that the damping itself increases with
time (for an individual loop).

In the case that the windings eventually become unstable (as l(t) drops below the threshold
for ensuring their stability), the string dynamics are likely to become complicated and it
is not clear whether the process of winding contraction (i.e. of windings “falling off” the
S3) may even be accommodated within an analysis which uses an ansatz of the form (4.16)
to describe the string configuration. This is because the coordinates r(t) sinσ, r(t) cosσ,
ψ(σ, t), θ(σ, t) and φ(σ, t) are treated as independent variables with respect to the the EOM.
We are therefore unable to take account of the continuously connected nature of the string
when string sections “move” from one direction to another (e.g. in “falling off” the S3 to
form part of the four-dimensional rest mass).

The present analysis could still be improved by accounting for the effects of GW emission
under the assumption that that loops retain their windings, which would indeed be valid
up to the point where l(t) drops below the critical value (which may also be calculated).
Such an improved analysis could proceed as follows: one could compute the stress-energy
tensor for an oscillating loop and look for solutions with this as a source to the Einstein
equations. This should allow us to estimate the rate of loss of E and l via GW emission
and, as stated, we expect this to produce a damping term in the equations for r(t) and ṡ(t).

Calculating the emission spectrum for an oscillating loop would also be of immense practical
interest. The GW signature of such a loop, whose self-oscillation is caused by the presence
of angular momentum in the compact space, may differ significantly from that of a string
whose oscillations, though superficially similar, do not result from self-interaction. GW
emission from loops oscillating with period ω ∼ L−1 (where L is the loop size) have been
studied in four dimensions [289]-[292]. However, in such cases the loop is not undergoing
genuine phases of expansion and contraction, but rather experiencing “wiggles” of a size
comparable to its own length. Although Weinberg [293] has has shown that (in an FRW
universe) the power of a weak, isolated, periodic source (to lowest order in G) may be given
by a single formula regardless of the exact nature of the source, it is not immediately clear
that this should hold in extra-dimensional scenarios.

Additionally, such sources (i.e. loops) have no angular momentum to shed in the pro-
cess of emission. In fact, even if we were to study loops whose self-oscillation was due to
their “rotational” motion in Minkowski space (see [114, 294]), we would expect the angular
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momentum carried away by gravitational radiation to be very different from that lost via
emission from oscillating cycloops. 12 In particular, we expect the gravitons emitted from
oscillating cycloops to carry momentum in the compact directions. This implies that their
associated wavelengths must be quantized in terms of integer multiples of the length-scale
of the compact space. It is this crucial fact that would allow us to distinguish between
“extra-dimensional” and “four-dimensional” GW spectra and may enable us to extract in-
formation about compact dimensions in future observations: for example, using data from
the forthcoming LISA [295]-[299] or existing LIGO experiments [300]-[301].

However, a note of caution must be added. We have shown that the interaction between
the string tension and the angular momentum term which causes the string to oscillate me-
diates the interconversion of potential and kinetic energy. In addition, as noted previously,
the “angular momentum” in the compact space is not “true” angular momentum, in the
sense that it is not associated with a centripetal force. It is linear momentum defined on
a space with periodic boundary conditions. It is therefore possible to imagine that, during
the period of loop oscillation, the momentum in the compact space is converted - via the
action of the string tension - into momentum in the Minkowski directions, and vica-versa.
Although we would expect gravitons emitted at an arbirtary point in the cycle to carry
some combination of “extra-dimensional” and ordinary momentum, it is at present unclear
how the former could be measured experimentally. 13

Although the full string theory compactification favours exponentially small values of a2
0,

there is also the possibility of obtaining evidence from the GW signature of wound strings
exists even in the case of static loops (i.e. the a2

0 = 1/2 case). These loops, which form
automatically with a configuration which meets the energy minimising-conditions, look just
like ordinary string loops from a four-dimensional perspective. However, they contain an
“unseen” angular momentum which is not directly manifested in their dynamical evolution
in Minkowski space. As stated above, we expect that even ordinary four-dimensional string
loops may undergo periodic oscillations with ω ∼ L−1, creating ripples in spacetime and
giving rise to GWs. Such fluctuations along the length of the string - though not in the total
four dimensional length itself - would likely still occur in this case (though it is possible that
the existence of the angular momentum term may lend a certain “rigidity” to the circular
string configuration, making it more resistant to deformation) but the string must also now

12One possible further extension of the current analysis would be to consider a wound string with rotational
motion in both the compact and Minkowski directions.

13See [302]-[306] for articles on the detection of general periodic sources using LIGO. Reference [307] also
gives an overview of how GW signatures from the inflationary stage of string cosmology scenarios may be
detected using the same experiment (though periodic sources are not considered). More general material
on sources and spectra of GWs in string cosmology scenarios are given in [308]-[315], while [316] deals
specifically with expected dilation contributions. Much of this material is also presented in Gasperini [317].
The review by Cline [318] specifically covers GW emission from strings in warped throat models as well as
providing an excellent introduction to many areas of string cosmology.
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shed its angular momentum. The GW signature of even a non-self-oscillating loop in the
extra-dimensional scenario is therefore also likely to differ significantly from the standard
case of an unwound string, though perhaps to a lesser degree than in the self-oscillating
case. Nonetheless, the possibility of the indirect detection of compact dimensions from cos-
mic strings remains, even in the absence of self-oscillating loops.

Finally, we conclude this discussion by outlining some of the possible limitations of the
above analysis. We have assumed throughout the present work that the velocity correla-
tions regime leads naturally to (a) geodesic windings and (b) movement of the string parallel
to itself (i.e. along the geodesics). However, both these assumptions may be questioned.
The rationale for adopting such an approach (which simplified the resulting analysis consid-
erably) was that velocity correlations should impart a constant angular momentum density
to each point along the string. Therefore we expect each “point” (or infinitesimal string
segment) to travel along a geodesic curve, both before and after loop formation. However, it
has not been proven that each point along the string traversing a separate geodesic leads to
a winding configuration that is itself geodesic. Likewise, it does not necessarily follow that
the resulting motion of the string as a whole is parallel to itself. In general, we may expect
that the geometry of the internal space plays a role in determining the exact nature of the
winding configuration and the resulting string motion. Moreover, we have not included the
contribution from the Ramond-Ramond (R-R) sector which, in principle, will couple to the
string. This charge term may also be ultimately crucial for distinguishing between cosmic
strings and cosmic superstrings.

While, in principle, motion of the string perpendicular to its length may easily be ac-
counted for (see end of Appendix B), the most significant problem in the analysis of string
loops with non-geodesic windings arises from the resulting σ-dependence of the integrands
in the expressions for E and l. The present analysis may therefore be improved by a more
thorough investigation of the winding process itself and, though we expect our expressions
for nw(ti) and v(ti) ∼ ṡ(ti)R to remain valid in the KS case, the appropriate string ansatz
may well be more complicated. Although it seems unlikely that the qualitative behaviour
of the string will differ significantly from that described in the scenarios above, finding
analogous (and quantitatively different) results may be extremely difficult. But, ultimately,
exact quantitative predictions will be needed for any comparison with future experimental
data and such a project would be extremely worthwhile.
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CHAPTER 5

PINCHED STRINGS IN A MODIFIED

ABELIAN-HIGGS MODEL

5.1 Introduction

Having investigated the possibility of dynamically stabilised windings in the internal space,
we now return to our discussion of quasi-stable static configurations. In chapter 3 it was
shown that such windings may remain stable (or quasi-stable) only by adopting a step-like
winding configuration, leading to the production of “cosmic necklaces”. This is due to the
existence of a “lifting potential” in the internal space, which arises from the geometric em-
bedding of the the worldsheet.

From a four-dimensional perspective the windings appear as a series of monopoles or “beads”
connected by ordinary sections of string. Superficially these resemble the standard string-
monopole networks found in field-theoretic models [114] but their behaviour is in many ways
fundamentally different. In contrast to previous predictions based on field theory defects,
it is found that the gravitational collapse of necklaces formed in the class of backgrounds
defined by the KS geometry [5] leads to the formation of PBHs during a window in the early
universe, followed by the formation of potential DM relics in the scaling regime [1]. This is
almost the complete reverse of the standard predictions for string-monopole networks [263].

The root cause of this difference appears to be the existence of a time-dependent bead
mass in the necklace model, as opposed to the constant bead mass of true monopoles con-
nected by strings. This arises from the time-dependence of the lifting potential and is a
somewhat unexpected result. Initial investigations of string necklaces assumed the existence
of a constant potential and hence a constant bead mass, though these were based solely on
generic arguments [6]-[9]. The summary in chapter 3, based on the work presented in [1],
represents the first explicit realisation of necklace formation in string theory, in which it
was shown that these assumptions must be modified, at least for the class of backgrounds
considered.

As mentioned previously, this raises two interesting possibilities: Either the formation of
necklace-like objects is possible only in string theory, or there exist previously unknown so-
lutions in dual gauge theory models which are equivalent to the objects described by strings
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with step-like windings.

At present there is no known field theory analogue of necklaces formed from extra-dimensional
windings. In particular, there is no known way to produce string-monopole networks with
time-varying bead masses. The question as to whether a dual field theory model exists is
therefore important because, if the formation of necklace-type objects is a string-specific
(or specifically extra-dimensional) effect, then their predicted effects on observable cosmo-
logical parameters could be used to obtain experimental evidence in favour of string theory
(or at least in favour of higher-dimensional models).

The aim of this chapter is to investigate the possibility of such a dual configuration. A
crude way to understand this would be to say that we seek to establish a relation between
the topological winding number n of a defect string (in four space-time dimensions) and
the physical winding number, nw, of an F/D-string (or (p, q) bound state) in an extra-
dimensional scenario. We also seek to establish a field-theoretic model in which “bead”
formation occurs dynamically as the configuration “relaxes” to an energy-minimising state
in which mass density becomes highly localised in spatially separated regions along the
string.

For simplicity, we take the simplest of all field-theoretic models of string formation - the
Abelian-Higgs model - as our starting point. As we shall see, it is possible to propose
a relatively natural model for such a “pinched” string (based on a generalisation of the
well known Nielsen-Olesen vortex [15]) after introducing an appropriate modification of the
usual Abelian-Higgs action to include coordinate-dependent couplings in both the scalar
and vector fields (i.e.

√
λ
eff

(z) and eeff (z) in our gauge choice). This then appears to
mimic the behaviour of the wound-string necklaces discussed in chapter 3.

We propose the pinched string solution as a dual necklace model and argue that a time-
dependent bead mass may be obtained, though this possibility is not rigorously analysed
here and uncertainties remain which must be addressed in future publications. The main
basis for the proposed correspondence is an analysis of the four-dimensional effective tension
of the wound strings, together with the periodically varying tension of the pinched string,
which may be made to take the same form for appropriate ansatz choices. Following the
correspondence between string theory and field theory parameters suggested by this com-
parison, an argument is then put forward for a geometric interpretation of the field-theoretic
terms, such as gauge flux and topological winding number, in the string picture. Further-
more, we find that, although the introduction of z-dependence in the original field couplings
may seem somewhat strange and even “unatural”, it has a very natural interpretaion in the
dual string picture due to the relation between the three-sphere radius R and the string
coupling gs (R2 ∼ b0Mgsα

′).
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As the interchange between vortices and anti-vortices in the field-theoretic model neces-
sarily involves the consideration of sub-Planck scales, we present a hypothetical model for
discretising the Planck-scale structure of the vortex. Though such discretisation is necessary
to prevent the emergence of divergences in the Euler-Lagrange equations, it is not intended
as a literal, but only as an effective model. Whatever the exact nature of the physical limit
imposed by the Planck scale it is likely that it determines some sort of limit on the process
of measurement 1 rather than implying the outright discretisation of spacetime or of fields
on a spacetime background. We adopt this method only as an approximation to an (as yet)
unknown theory of the quantum structure of fields on the smallest scales and present an
argument for its validity (as an effective/approximate model) based on matching solutions
at the boundary of Planck-sized regions to well known solutions valid on scales ∆r, ∆z ≥ lp.
However, we find that the localisation of the (classical) field-theoretic string core on scales
r ≥ O(lp) admits a very natural interpretation in terms of the quantum constraints on the
dual wound F/D-strings.

The structure of this chapter is as follows: In section 5.2 we present a brief overview of the
Abelian-Higgs model, including the general (covariant) form of the Euler-Lagrange equa-
tions. We then determine their specific form for a cylindrically symmetric ansatz. However,
the covariant equations we obtain differ from those given in the standard literature (c.f.
[15, 114, 124]), which we believe to be a consequence of confusion regarding the appropri-
ate metric terms to include in the action. One consequence of this is that the gauge field
ansatz we must adopt in order to obtain consistency differs from that found in the usual
references, though the net effect is to obtain equations very similar to the standard EOM
quoted for the functions which characterise the scalar/vector field solutions, f(r) and α(r).
We take this opportunity to review the current literature, including the covariant form of

1The general uncertainty principle for any two quantum mechanical operators acting on a system de-
scribed by the wavevector ~ψ (i.e. corresponding to physical observations made on that system), Ô1 and

Ô2, is ∆ψO1∆ψO2 ≥ 1
2
|
〈
~ψ, [Ô1, Ô2]~ψ

〉
|, where the notation

〈
~A, ~B

〉
represents the overlap between the

vectors ~A and ~B [319]. As the commutator may be written in the general form [Ô1, Ô2] = i~ + Ô3, this

may then be rewritten as ∆ψO1∆ψO2 ≥ ~/2 + |
〈
~ψ, Ô3

~ψ
〉
|, i.e. ∆ψO1∆ψO2 ∼ ~/2 + f(~ψ) where f(~ψ) is

the wavefunction-dependent part. However, setting Ô1 = x̂ and Ô2 = p̂ (so that [Ô1, Ô2] = [x̂, p̂] = i~) and

∆ψO1 = ∆ψx = lp, ∆ψO2 = ∆ψp = mp/c gives ∆ψx∆ψp = ~/2, regardless of the state vector ~ψ. This
implies that, regardless of the system in question, it is meaningless to simultaneously probe length/energy
scales smaller than the Planck length/Planck energy. In addition, we note that a Planck-mass object has
a gravitational radius of order RS ∼ O(lp), so that a critical energy-density for any physical system not
sheathed within an event horizon is ρc ∼ mp/lp ∼ 1. Combining these two results then suggests that it is
impossible to define the wavefunction of a quantum mechanical system (other than a black hole) on a length
scale less than ∼ lp. Furthermore, in the condensed matter (superconductor) analogue of the Abelian-Higgs
model, the specific analogue of the phase θ (which acts as an order parameter in the theory of symmetry-
breaking) is the so-called Bogolubov wave-function (see [114]). As we expect all order parameters to have
characteristic physical scales, below which they cannot be consistently defined, we infer that the correct
“cut-off” below which the phase in the Abelian-Higgs model (and hence the vorticity/winding number |n|
of an Abelian-Higgs vortex) becomes undefined, is ∼ lp.
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the Euler-Lagrange equations, the usual scalar and gauge field ansatzes, the resulting spe-
cific form of the EOM and their asymptotic and small r solutions in the both the uncoupled
and coupled regimes (following [320] for the latter). Despite subtle differences, our results
largely agree with those quoted in the literature, though we believe the approach outlined
here contains a greater degree of mathematical rigour. For completeness, and in order to
allow easy comparison with later calculations of the z-dependent tension of the “pinched”
string µ|n|(z), explicit calculations of the constant string tension µ|n| for the cylindrically
symmetric ansatz are given in section 5.3.

In section 5.4 we introduce a non-cylindrically-symmetric ansatz for the scalar and gauge
field contributions, based on a specific discretisation scheme in the Planck-scale region of
the vortex core (in which vorticity itself may no longer be defined) and introducing the
z-dependent couplings

√
λ
eff

(z) and eeff (z). From this, we derive the specific form of the
Euler-Lagrange equations in the non-cylindrically-symmetric case in order to verify that the
pinched string configuration is a valid solution of the EOM. For certain physically reason-
able assumptions these are found to reduce to simplified forms which, for a given value of
z, are structurally equivalent to the EOM for the cylindrically symmetric case obtained in
section 5.2. This allows analogous large and small r solutions for the scalar and gauge fields
but the behaviour of these fields is now, in general, z-dependent. These results are given
in sections 5.5 and 5.6 and the resulting z-dependent tension of the string is calculated in
section 5.7. We show that this new z-dependent tension depends crucially on the form of
a generic, dimensionless, periodic function G(z), which varies between zero and one but is,
to good approximation, independent of the exact physics of the vortices in the Planck-scale
regions.

In section 5.8 the effective four-dimensional tension of an F/D-string with linear wind-
ing ansatz at the tip of the KS throat is compared with the previous result for the pinched
string. For an appropriate and natural choice of G(z), this enables a correspondence be-
tween the field theory and the string theory parameters to be drawn. This section also
contains a deeper analysis of the relation between the scalar and vector fields in the Higgs
model and their geometric interpretation in the theory of wound strings. A brief argument
for a time-dependent bead mass in the former, which is equivalent to that of the latter, is
also presented. Finally, section 5.9 addresses a number of minor points which arise through-
out the previous analysis and section 5.10 contains a brief summary of the main conclusions
and a discussion of proposals for future work.

5.2 Revisiting the Abelian-Higgs model

In much of the standard literature on cosmic strings the EOM for the Abelian-Higgs model
are obtained by treating the Lagrangian density as fundamental, that is, by setting δL = 0.
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However, it is the covariant form of the action which truly determines the dynamics of the
system, so that we must set δS =

∫
d4xδ(

√
−gL) = 0 in order to determine the EOM.

Looking directly at the action, we see that, for fields in Minkowski space which are de-
scribed in terms of the usual Cartesian coordinates, xµ ∈ {t, x, y, z}, these two approaches
lead to the same set of EOM since

√
−g = 1. In this case

√
−g is dimensionless, d4x has

units of [l]4 and L has units of [E][l]−3 = [l]−4 so that the action is also dimensionless,
as required. However, when describing field configurations in cylindrical polar coordinates
where xµ ∈ {t, r, θ, z}, d4x has dimensions of [l]3 and the square root of the determinant be-
comes

√
−g = r, with dimension [l]. Technically, it is always the covariant product d4x

√
−g

which has dimensions [l]4, so the Lagrangian density cannot be taken to be fundamental un-
less all four of the coordinate labels have dimension [l] and

√
−g is a dimensionless constant.

One way to interpret the tendancy in the existing literature to treat L as fundamental
is to say that, in doing so, we simply neglect the coupling of the Abelian-Higgs field to
gravity. This would seem to be a valid approximation, even for strings in highly curved
backgrounds, as for any reasonable values of rs and rv (c.f. equation (2.23)), the widths of
both the scalar and vector cores occupy only small portion of the total spacetime manifold
and local flatness may be assumed. The effects of macroscopic curvature on the string
dynamics may then be incorporated into the string effective action (i.e. the Nambu action)
in the usual way, by using the full space-time metric gµν to determine the intrinsic metric
on the worldsheet, γab = gµν∂aX

µ∂bX
ν , before contracting to find the determinant term

dA =
√
−γ.

When working in global Minkowski space - as in this chapter - it is possible to put for-
ward this argument and to assume that the coupling to the background does not influence
the structure of the vortices which make up the string core. However, since it is just as
convenient to work with the full covariant action as the Lagrangian density, we choose to
adopt the former approach for the sake of thoroughness. We will also opt to work in polar
coordinates, so that, as noted above, our metric determinant is non-trivial. This implies
that our gauge connection must be dimensionless, since the only non-zero component of the
vector field in the vortex ansatz is the angular part, Aθ.

Using the (+ − −−) metric convention, and introducing the covariant derivative Dµ =
∂µ + ieAµ (together with its conjugate), the covariant form of the Abelian-Higgs action is

S =
∫
d4x
√
−g
(
Dµφg

µνDνφ−
1
4
FµνF

µν − 1
4
λ(φφ− η2)2

)
. (5.1)
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Varying this action with respect to the scalar and gauge fields yields the resultant EOM,
assuming that the gauge field and scalar derivatives vanish at the boundary,

0 =
1√
−g

Dµ

(√
−ggµνDνφ

)
+
λ

2
φ(φφ− η2)

0 =
1√
−g

Dµ

(√
−ggµνDνφ

)
+
λ

2
φ(φφ− η2), (5.2)

with the corresponding Maxwell equation now taking the form

1√
−g

∂µ
(√
−gFµν

)
= jν . (5.3)

The U(1) current is
jν = −iegµν

(
φDµφ− φDµφ

)
, (5.4)

where we have defined

Fµν = ∂µAν − ∂νAµ, (5.5)

and

Fµν = gµνgµνFµν , (5.6)

as usual. The static, cylindrically symmetric ansatz then takes the form

φn (Rs, θ) = ηf(Rs)einθ

Anθ(Rv) = −n
e
α(Rv) (5.7)

where
Rs =

r

rs
, Rv =

r

rv
(5.8)

are dimensionless variables and rs, rv are the length scales of the scalar and vector cores,
respectively. These are fixed by the Compton wavelengths of the associated scalar and
vector bosons to be

rs = (ms)−1 ≈ (
√
λη)−1

rv = (mv)−1 ≈ (2eη)−1 , (5.9)

as noted previously. Here f(Rs) and α(Rv) are dimensionless real functions satisfying the
conditions

f(Rs) =

{
0 if Rs = 0 (r = 0)
1 if Rs →∞ (r >> rs)

(5.10)
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and

α(Rv) =

{
0 if Rv = 0 (r = 0)
1 if Rv →∞ (r >> rv).

(5.11)

We also note that the definition of the ansatz (5.7) corresponds to the definition of the
physical field ~A according to

~A = Aµê
µ = Aθê

θ = Aθg
θθêθ =

Aθ
r2
êθ ≡ Aθêθ = Aµêµ. (5.12)

Or, equivalently, using Aθ = Aθ
r2 and ~A2 = AθAθ = gθθAθ, so that

Aθn = − n

er2
α(Rv) (5.13)

and

~A2 =
n2

e2r2
α2(Rv). (5.14)

We can then define the scalar and gauge field equations by

0 =
d2f

dR2
s

+
1
Rs

df

dRs
+
n2f

R2
s

(α2 − 1) +
f(f2 − 1)

2
, (5.15)

0 =
d2α

dR2
v

− 1
Rv

dα

dRv
− f2(α− 1), (5.16)

where we have manipulated the original forms of the EOM (which come from substituting
the ansatz (5.7) into (5.2)-(5.3)) by multiplying the original scalar equation by r2

s to get
(5.15) and the original vector equation by r2r2

v in order to get (5.16). This allows us to
define both the scalar and vector EOM purely in terms of the dimensionless variables Rs
and Rv.

Although multiplying the original form of our equations by powers of r is potentially haz-
ardous in the asymptotic limit, as the resulting mathematics may become meaningless or
trivial (e.g. “∞ =∞”), multiplying the vector EOM through by r2 causes no problems for
r →∞ as each term in the equation still goes to zero independently. In fact, each term in
both the scalar and vector EOM goes to zero as Rs, Rv →∞, and f(Rs), α(Rv)→ 1.

However, defining the parameter

β =
(
rv
rs

)2

(5.17)

allows us to rewrite the scalar equation as

0 =
d2f

dR2
v

+
1
Rv

df

dRv
+
n2f

R2
v

(α2 − 1) +
1
2
βf(f2 − 1). (5.18)
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and treating the ratio β as a numerical constant allows us to rewrite both the scalar and
vector EOM in terms of a single dimensionless variable Rv. Adopting the form (5.18) for the
scalar EOM is then equivalent to assuming f = f(Rv) instead of f = f(Rs) in the ansatz
(5.7). This would seem to be counter-intuitive as, physically, we expect the length scale rs
to determine the width of the scalar core (i.e. the region over which f ≈ 0 → f ≈ 1), as
stated above. However, the fact that (5.15) and (5.18) are algebraically equivalent shows
that we may assume either functional form for f in our initial ansatz. Both equations have
the same approximate solutions in the large and small r limits. As we shall see, it is the
value of rs which characterises the small r solution, though both scales rs and rv play a role
in the asymptotics, at least when the EOM are solved as a coupled pair.

We will find it convenient to use the form (5.18) instead of (5.15) for the scalar EOM,
though “large” and “small” r for both forms of the equation must still be defined with
respect to rs, rather than rv as for the vector EOM (5.16).

Reviewing the literature

At this stage it is useful to comment on our EOM, as they are slightly different to the
ones quoted in the standard literature. Taking the Lagrangian density as fundamental, the
“covariant” form of the scalar EOM is quoted in the review by Hindmarsh and Kibble (HK)
[124] as [

D2 + λ

(
|φ|2 − 1

2
η2

)]
= 0. (5.19)

This equation differs from that given in (5.2) because of the exclusion of factors of
√
−g and

1√
−g from the derivative term but is otherwise identical, if we use the definition D2 = DµD

µ

and account for the differing numerical factor used in front of the potential term of the
Lagrangian (which is arbitrary). 2 It is therefore equivalent to that used in Vilenkin and
Shellard (VS) [114];

DµDµφ+
λ

2
φ(φφ− η2) = 0. (5.20)

The vector EOM is also given as
∂νF

µν = jν (5.21)

in both sources, which again differs from the expression given in (5.3) because of the exclu-
sion of factors of

√
−g and 1√

−g in the derivative. VS [114] then go on to define the U(1)

2In other words, setting
√
−g = 1 in (5.2) and exchanging λ→ −λ recovers the scalar EOM (5.19).
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current as

jν = 2eIm[φDνφ]. (5.22)

Accounting for the difference in notation, this is again equivalent to that given in HK [124]

jν = −ie(φ∗Dνφ− φDνφ∗), (5.23)

and to the expression (5.4) where we recognise that Dνφ∗ ≡ D
ν
φ. The specific forms of

the scalar and vector EOM are not quoted explicitly in [124], though [114] uses a vector
equation equivalent to (5.16) and a scalar equation equivalent to

0 =
d2f

dR2
v

+
1
Rv

df

dRv
− n2f

R2
v

(α− 1)2 +
1
2
βf(f2 − 1), (5.24)

which still differs from the scalar EOM (5.18) by the interchanging of the terms +n2f
r2 (α2−1)

and −n2f
r2 (α−1)2. Although this will effect the numerical solution in the intermediate range

rs < r << ∞, it is clear that (5.18) and (5.24) have the same approximate forms for both
r ≤ rs and r → ∞ (r >> rs), so that their respective analytic solutions remain the same
in both these limits.

In order to obtain the derivative term in (5.24) from that in (5.20) it is necessary to define

DµD
µφ = ∂µ∂

µφ− 2ieAµ∂µφ− e2AµA
µ

≡ ∇2φ− 2ieAθ∂θφ− e2(Aθ)2φ. (5.25)

However, the covariant expression ∂µ∂µ = gµν∂µ∂ν is only equivalent to the ∇2 operator in
a Cartesian coordinate system. Covariantly, ∇2 is defined as

∇2(..) =
1√
−g

gµν∂µ(
√
−g∂ν(..)). (5.26)

Likewise, although we may consistently define Aθ∂θφ = Aθ∂θφ = gθθAθ∂θφ and AθA
θ =

gθθAθAθ = n2

e2r2α
2 using the definition (5.7) together with the standard definition of metric

contraction, it is the practice in the usual literature to define

Aθn ≡ Anθ = − n
er
α (5.27)

and to use the “ad hoc” definitions

~A2 = AθnAnθ =
n2

e2r2
α2 (5.28)
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and

∂θ = ∂θ ≡
1
r

∂

∂θ
. (5.29)

This corresponds to defining the covariant derivative not by its individual covariant com-
ponents (i.e. Dµ = ∂µ − ieAµ) but by

D = ∇− ie ~A (5.30)

where ∇ represents the gradient operator in any coordinate system. This is the same as
defining ∇(..) = ∂µ(..)êµ = ∂µ(..)êµ (i.e. covariantly) but then “absorbing” one factor of r−1

into the “component” part ∂µ(..) and one factor of r−1 into the vector part êµ. It is then not
possible to define the gradient operator consistently in terms of its components, ∇µ(..) ≡
∂µ(..) 6= ∂µ(..). Likewise, we must then use the “ad hoc” definition of the θ-component of
the vector field in order to maintain consistency in the units so that and ~A ≡ Anθ ∝ 1

r ,
though this is strictly inconsistent with the covariant definition ~A = Aµê

µ = Aµêµ. Finally,
an appropriate covariant modification to the formula for the quantised flux Φn given by
(2.14) (following VS [114]) 3 may be defined via either

Φn =
∮
B

∣∣∣ ~A∣∣∣ rdθ =
∮
B

√
~A2rdθ =

∮
B

√
AµAµrdθ, (5.31)

which in our case implies

Φn =
∮
B

√
AθAθrdθ =

∮
B

√
n2

e2r2
rdθ =

2πn
e
, (5.32)

as expected, or

Φn = −
∮
B
Aµdx

µ = −
∮
B
Aθdθ =

2πn
e
, (5.33)

where again B denotes the boundary at radial infinity.

Turning our attention now to the solutions of the EOM given in the usual literature, we
consider (5.18)/(5.24) and (5.16) in both the small and large r limits. As stated above, we
may in principle take either (5.18) or (5.24), as their small and large r forms are equivalent.
Hence the solutions to our EOM do not differ substantially to those given in the usual
sources. 4

3Φn =
∮
B
Anθrdθ = 2πn

e

4We do later uncover a minor discrepancy between the sub-leading order term in the small r expansion
for α quoted in [124] and the one obtained independently here. However, such considerations are of minor
importance.
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We may choose to solve these equations, in either limit, as either a coupled pair or us-
ing the uncoupled approximation. Specifically, we may “uncouple” the scalar EOM from
the vector EOM (or equivalently f from α in the scalar EOM) in either the small or large
r limit by assuming the boundary condition α ∼ 0 or α ∼ 1, respectively, and solving for f .
Similarly we may “uncouple” the vector EOM from the scalar EOM (or equivalently α from
f in the vector EOM) by assuming the boundary condition f ∼ 0 or f ∼ 1 and solving for α.

Alternatively, we may solve the EOM as a coupled pair by substituing appropriate ansatzes
for both f and α in the small and large r limits and setting the coefficients of the leading
order terms to zero. This approach was first adopted (for r →∞) by Perivaropolous [320]
and we review his results (which are also quoted in HK [124]), together with the “uncou-
pled” solutions given in VS [114] and in the original paper by Nielsen and Olesen [15]. In
the small r limit, coupling the equations has no effect (to first order) on the approximate
solutions for f and α but, in the large r limit, the value of β plays a role in determining the
asymptotics of f . In particular, it is found that a critical value of β exists which separates
two qualitatively different asymptotic regimes.

Beginning with the assumption f = f(Rs), the asymptotic form of f in the uncoupled
regime (i.e. setting α→ 1 in the scalar EOM), is given by VS [114] as

f(Rs) ≈ 1−K0(Rs)

≈ 1−O (exp(−Rs)) (5.34)

where K0 is the zero-order modified Bessel function of the second kind. This form comes
directly from solving (5.15), whereas solving the alternative form (5.18) gives f(Rv) ≈
1−K0(

√
βRv), which is equivalent.

However, beginning with the assumption that f = f(Rv), HK [124] give the expansion
in this limit (for β ≤ 2) 5 as

f(Rv) ≈ 1− f1R
− 1

2
v exp(−

√
βRv)

= f(Rs) ≈ 1− f1

(
Rs√
β

)− 1
2

exp(−Rs) (5.35)

5Here we are using the definition β = r2
v/r

2
s ≡ (

√
λη)2/(

√
2ηe)2 = λ/2e, following VS [114], but

Perivaropolous [320] and HK [124] use the definition β = r2
v/r

2
s ≡ (

√
λη)2/(ηe)2 = λ/e, so that β = 2

in our units is equivalent to β = 4 (the quoted critical value) in theirs. The definition of β and the critical
value of β = 4 given in [114] (citing [320]) are in fact inconsistent. However, the situation is compli-
cated even further by the fact that VS [114] and HK [124] use one definition of the Lagrangian density
(i.e. that defined above in (5.1)), whereas Nielsen and Olesen [15] and Perivaropolous [320] use another,
including a factor of 1/2 in front of the derivative term. The asymptotic form of f quoted in [320] (i.e.

f(Rv) ≈ 1 − f1R
− 1

2
v exp(−

√
2βRv)) is therefore similar, but not identical to (5.35) given above, but the

difference is easily accounted for. HK [124] also adopts a factor of 1/
√

2 in front of the scalar field ansatz,
though this is optional, and makes no difference to any results of physical importance.
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where f1 is an arbitrary constant (necessarily in the range 0 < f1 < 1 and typically assumed
to be of order one). We therefore see that that the long-range behaviour is determined to
some extent by rv as well as rs (or equivalently by the value of the ratio β). Physically, this
may be understood intuitively as we would expect the long range fall-off of the scalar field to
be determined, at least in part, by the gauge field contribution to the energy density which
“cancels” the logarithmic divergence of the global string energy density on scales r > rv.

As stated above, mathematically our freedom to choose either f = f(Rs) or f = f(Rv)
comes from the fact that they give rise to algebraically equivalent EOM, with both the
resulting equations being structurally equivalent to the un-rescaled scalar EOM derived
from assuming f = f(r). As also stated above, and as we shall see later, assuming either
f = f(Rs) or f = f(Rv) gives rise to the same small r solution for f , which is characterised
by the length-scale rs rather than rv, again in accord with our physical intuition. The
real difference between the asymptotic solution (5.34) and (5.35) is that (5.34) is obtained
by assuming α → 1 in (5.51) (which effectively decouples the gauge field contribution α

from the scalar EOM in the asymptotic limit), whereas (5.35) represents a solution to the
genuinely coupled EOM.

Perivolaropolous’ [320] approach to solving the equations of motion (perturbatively) as
a coupled pair in the large r limit involved adopting the ansatz

f → 1 + δf

α→ 1 + δα. (5.36)

Subsitituting (5.36) and assuming |δα| > |δf | (given that rv > rs) allows us to keep terms
in δf , δα and (δα)2 but to ignore terms in (δfδα), (δf)2 and (δf)3, so that the EOM reduce
to, 6

0 = δf ′′ +
1
Rv

δf ′ − (δα)2

R2
v

+ βδf (5.37)

0 = δα′′ − 1
Rv

δα′ − δα (5.38)

where a dash represents differentiation with respect to Rv. The resulting vector EOM
contains no terms in δf , so it may be solved directly by substituting the following ansatz

6The original EOM quoted in Perivaropolous’ paper are δf ′′+ 1
Rv
δf ′− (δα)2

R2
v
−2βδf = 0 and δα′′− 1

Rv
δα′−

2δα = 0, not those quoted here. This results from the differing definitions of the Lagrangian density and the
paramter β. Although we have followed exactly the same approach to that used in [320], we have modified
our results to ensure consistency with the definitions of L and rv used throughout this work.
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for δα,

α = c1e
−γRvRχv + c2e

−γRvRχ−1
v , c1, c2 ∼ O(1), (5.39)

and setting the coefficients of the two leading order terms to zero. This yields two constraint
equations which allow the values of γ and χ to be fixed: 7

δα = c1e
−RvR

1
2
v + c2e

−RvR
− 1

2
v

≈ c1e
−RvR

1
2
v . (5.40)

Using a similar ansatz for f ,

f = c0e
−aRvRbv, c0 ∼ O(1), (5.41)

and performing the same procedure for both the homogenous and particular forms of the
resulting equation, then gives

f(Rv) ≈ 1− f1R
− 1

2
v exp(−

√
βRv)− f2R

−1
v (β − 2)−1e−2Rv (5.42)

where f2 is a constant satisfying the same conditions as f1. 8 Hence, for β ≤ 2, equation
(5.35) is valid, whereas for β > 2 we have

f(Rv) ≈ 1−O
(
R−1
v e−2Rv

)
. (5.43)

It had previously been assumed that the solution given in the original paper by Nielsen and
Olesen [15],

f(Rv) ≈ 1−K0(Rv)

≈ 1−O
(
R
− 1

2
v exp(−Rv)

)
, (5.44)

was roughly valid in all cases, though like the solution (5.34) quoted in [114] (which possi-

bly contains a misprint in neglecting the factor of ∼ R
− 1

2
v in front of the exponential, but

which is correct in replacing Rv by Rs in the argument of the exponential), this is essen-
tially a solution to the uncoupled scalar EOM. Reference [320] was the first to demonstrate
conclusively that the coupling of the gauge field to the scalar field is capable of modifying
the asymptotics of the latter. Perhaps surprisingly, this work showed that the modification
depends on a critical value of β which separates two qualitatively different regimes.

7Perivapolous’ original paper uses δα = c1e
−
√

2RvR
1
2
v .

8The method adopted here is identical to that in [320] but takes into account our redefinition of the
parameter β, which differs from the one used in that paper. The critical value of β given here, i.e. β = 2,
therefore corresponds to the value β = 4 quoted as the critical value by Perivaropolous.
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Turning our attention now to the vector EOM, the asymptotic solution to the uncoupled
vector EOM (5.16) (i.e. assuming f → 1), is quoted by both VS [114] and Nielsen and
Olesen [15] as

α(Rv) ≈ 1− a1RvK1(Rv)

≈ 1− a1R
1
2
v exp(−Rv) (5.45)

where K1 is the first order modified Bessel function of the second kind and a1 is a constant
such that 0 < a1 < 1, which we typically assume to be of order one (like f1 and f2). This
is also in agreement with Perivaropolous’s results [320] (again accounting for the differ-
ing definition of the action) and hence with those quoted in HK [124], which we expect,
as Perivaropolous’ approach shows that δf has no effect on the vector EOM to lowest order.

Turning our attention now to the r → 0 limit, both VS [114] and HK [124] agree in citing,
f ∝ r|n| and α ∝ r2 (to first order) for small r. However, again we are faced with the
problem of defining “small” with reference to a single length scale for each function. Taking
both f and α to be functions of Rv, HK use

f(Rv) ≈ f0R
|n|
v , (5.46)

α(Rv) ≈ a0R
2
v −

|n| f2
0

4(|n|+ 1)
R2|n|+2
v , (5.47)

where f0 and a0 are again constants of order one, 9 whereas defining f = f(Rs), α = α(Rv)
leads to

f(Rs) ≈ R|n|s (5.48)

α(Rv) ≈ R2
v +O(R2|n|+2

v ) (5.49)

instead. It may then be argued that there exists a contradiction between the small and
large r forms of f , with one taking the functional form f = f(Rs) and the other tak-
ing (almost) the form f = f(Rv). However, as argued previously, this contradiction is
only apparent. On the other hand, these results do conform to our intuition that rs = m−1

s

should set the length-scale for the scalar core (at small r), whereas the large-scale fall-off for
f should to some extent be controlled by the gauge field and hence the parameter rv = m−1

v .

By contrast, the results given in (5.46) imply that rv = m−1
v also sets the scale for the

9Here a0 ∼ O(1) must not be confused with the warp factor of the KS metric.
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scalar field core, which seems counter-intuitive. However, for r << rv, equation (5.24)
reduces to

0 =
d2f

dR2
v

+
1
Rv

df

dRv
− n2f

R2
v

+
1
2
βf (5.50)

whose true solution is

f(Rv) ≈ (
√
βRv)|n|

= f(Rs) ≈ R|n|s (5.51)

(see later) which leads us to question the result given in HK [124].

Clearly, in either case, the approximate forms of f and α for small r depend on the absolute
value of the winding number |n|. Realistically though, we might also expect |n| to have
some influence on the asymptotics of either of these functions. However, we see that the
reason why |n| plays no part in determining the long-range behaviour of f is that the term
containing n2 in (5.24) is proportional to (α− 1)2, which goes to zero for large r. A similar
result also holds, even for the corresponding scalar EOM derived from the action (5.15), in
which the term containing n2 is proportional to (α2−1). In addition, the function α cannot
depend on |n| in the asymptotic limit, as n does not appear even in the coupled vector EOM.

Finally, we note that the first term ∼ O(R2
v) in (5.47) comes from solving the vector

EOM using the uncoupled approximation (i.e. setting f2 ≈ 0), whereas a second term
in the expansion ∼ O(R2|n|+2

v ) (which satisfies O(R2|n|+2
v ) ≥ O(R4

v) for |n| ≥ 1) comes
from solving the EOM as a coupled pair in the small r limit. This is done by substituing
f ∼ f0R

kf
s = (f0

√
βRv)kf and α ∼ a0R

kα
v , kf , kα > 0 into (5.18) and (5.16), giving

0 = f0

√
β
kf [k2

f − n2]Rkf−2
v + f0

√
β
kf
n2R

kf+2kα−2
v

+ f0

√
β
kf
n2R

kf+2kα−2
v − 1

2
f0

√
β
kf+2

R
kf
v +

1
2

(f0)3
√
β

3kf+2
R

3kf
v (5.52)

and

0 = a0[k2
α − 2kα]Rkα−2

v − (f0)2
√
β

2kf
R

2kf+kα
v + (f0)2

√
β

2kf
R

2kf
v . (5.53)

Beginning with (5.52) and requiring that the leading order terms (i.e. those with the
smallest exponents) cancel exactly implies

kf = |n| . (5.54)
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Equation (5.53) then implies either kα − 2 < 2kf , and hence kα = 2, or

kα = 2 |n|+ 2 (5.55)

and

a0 = − (f2
0 )β|n|

4 |n| (|n|+ 1)
, (5.56)

which differs from the result quoted in (5.47) by the interchange of terms β|n|/|n| and |n|.
Using (5.24) instead of (5.18) gives rise to identical results.

5.3 Calculation of the (constant) string tension for a cylindrically sym-

metric string µ|n|

The formula for the tension of an Abelian vortex string is given in VS [114] (quoting Preskill
[321]) as

µ =
∫
rdrdθ

{∣∣∣(∇− ie ~A)φ
∣∣∣2 +

1
2

( ~E2 + ~B2) + V (|φ|)
}

(5.57)

where the three terms inside the curly brackets correspond to the gradient energy density,
the electromagnetic energy density and the potential energy density, respectively. However,
again accounting for differences in notation and recognising that Dµφ∗ ≡ Dµφ, Preskill’s
original lecture notes give

µ =
∫
rdrdθ

{
DµφD

µ
φ+

1
2

( ~E2 + ~B2) + V (|φ|)
}

(5.58)

where D denotes the covariant derivative, with components Dµ = ∂µ − ieAµ. The “deriva-
tive” term in (5.59) therefore corresponds to the incorrect definition D = ∇ − ie ~A (5.30)
given earlier, where ∇ = ∂

∂r+ 1
r
∂
∂θ+ ∂

∂z in cylindrical polars and ~A is taken to be proportional
to r−1, as in (5.27), though this is not consistent with the proper covariant definition of
the gauge field.

Although using (5.59) together the “ad hoc” definition of vector multiplication and the
ansatz (5.27) gives rise to the same expression for the final tension as using Preskill’s
original formula (5.58), the gauge field ansatz (5.7) and the standard definition of metric
contraction, the latter is more rigorous from a mathematical perspective.

Despite this, for |n| ∼ 1 VS [114] give the resulting tension as

µ ≈ 2πη2ln
(√

β
)

(5.59)
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which, as we shall see, is the correct result. They again attribute this to Preskill [321],
whose original lectures give

µ ≈ πη2

[
ln
(√

β
)

+
1

e2η2r2
v

+ λη2r2
s

]
≈ 2πη2 + πη2ln

(√
β
)
, (5.60)

which is approximately equivalent to (5.59) for ln
(√
β
)
>> 1.

We now verify these results explicitly using the formula (5.58) together with the ansatz
(5.7), though we include the most general case |n| ≥ 1, which we will need for comparison
with the general case of wound F/D-strings with nw ≥ 0 in section 5.7. The calculations
are shown in full, so that they may be compared with the calculations to determine the
z-dependent tension µ|n|(z) for the pinched string, given in section 5.6.

The correct definitions of D and Aθ lead to the gradient term

DµφD
µ
φ = (∂µ − ieAµ)φgµν(∂ν + ieAν)φ

= ∂rφg
rr∂rφ+ (∂θ − ieAθ)φgθθ(∂θ + ieAθ)φ

= η
∂f

∂r
einθη

∂f

∂r
e−inθ +

1
r2

(
∂

∂θ
+ inα

)
ηfeinθ

(
∂

∂θ
− inα

)
ηfe−inθ

= η2

(
∂f

∂r

)2

+
η2 |n|2

r2
f2(α− 1)2. (5.61)

The resulting integral may then be split into three parts. Within the scalar core region,
0 ≤ r ≤ rs, we may approximate the functions f and α by f ∼ r|n|

r
|n|
s

and α ∼ r2

r2
v
, giving

∫ 2π

0
dθ

∫ rs

0
DµφD

µ
φrdr =

∫ 2π

0
dθ

∫ rs

0
η2

(
∂f

∂r

)2

rdr +
∫ 2π

0
dθ

∫ rs

0

η2 |n|2

r2
f2(α− 1)2rdr

≈ 2× 2π
η2 |n|2

r
2|n|
s

∫ rs

0
r2|n|−1dr ≈ 2πη2 |n| . (5.62)

In the region rs ≤ r ≤ rv, we may assume α ∼ r2

r2
v

and f ∼ 1, giving

∫ 2π

0
dθ

∫ rv

rs

DµφD
µ
φrdr =

∫ 2π

0
dθ

∫ rv

rs

η2

(
∂f

∂r

)2

rdr +
∫ 2π

0
dθ

∫ rv

rs

η2 |n|2

r2
f2(α2 − 1)2rdr

≈ 0 + 2πη2 |n|2
∫ rv

rs

dr

r
≈ 2πη2 |n|2 ln

(√
β
)
. (5.63)

On scales r > rv, we may assume f ∼ 1 and α ∼ 1, so that DµφD
µ
φ ∼

(
∂f
∂r

)2
+ f2(α−1)2

r2 ∼ 0
and the gauge field contribution effectively “cancels” the energy density contribution of the
scalar field gradient. The overall contribution to the energy density of the covariant gradient
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term is therefore∫ 2π

0
dθ

∫ ∞
0

DµφD
µ
φrdr ≈ 2πη2 |n|+ 2πη2 |n|2 ln

(√
β
)
. (5.64)

Turning our attention to the gauge field flux term, we see that ~E = 0 and that the only
non-zero component of ~B is

Bz = Frθ = ∂rAθ = −n
e

dα

dr
, (5.65)

so that

~B2 = FrθF
rθ = grrgθθFrθFrθ =

n2

e2r2

(
dα

dr

)2

. (5.66)

Integrating over the vector core region, 0 ≤ r ≤ rv, for which α ∼ r2

r2
v

then gives

∫ 2π

0
dθ

∫ rv

0

1
2
~B2rdr ≈ 2π |n|2

e2r4
v

∫ rv

0
rdr = 2πη2 |n|2 (5.67)

where we have used the definition rv ≈ (
√

2eη)−1. For r > rv we may take α ∼ 1 so that
~B2 ∝

(
dα
dr

)2 → 0.

Finally, we consider the potential term. Within the scalar core the potential energy density
may be approximated by

V (|φ|) =
λη3

2
f(f2 − 1) ≈ 1

2
η2 r|n|

r
|n|+2
s

, (5.68)

so the contribution to the tension becomes∫ 2π

0
dθ

∫ rs

0
V (|φ|)rdr ≈ πη2

r
|n|+2
s

∫ rs

0
r|n|+1dr =

πη2

|n|+ 2
, (5.69)

whereas for r > rs we can assume f ∼ 1 and V (|φ|) ∝ (f2 − 1)→ 0.

Summing all the contributions, the total tension is

µ|n| ≈ 2πη2 |n|2
(

1 + ln
(√

β
)

+
1 + 4|n|+ 2|n|2

2|n|2(2 + |n|)

)
, (5.70)

which is clearly dominated by the terms proportional to |n|2, (i.e. higher order terms are
suppressed by the 1/|n| expansion) and which, to leading order, gives

µ|n| ≈ 2πη2 |n|2
(

1 + ln
(√

β
)

+ . . .
)
. (5.71)
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At critical coupling, β = 1, we may approximate µ|n| by

µ|n| ≈ 2πη2 |n|2 . (5.72)

The leading order contribution arises from the gauge field component. However, we note
that this result is dependent upon the form of α(r) (and hence also f(r), since the two
must be related in a way which ensures the cancellation of the gauge field and scalar
gradient contributions to the energy density on large scales). When β = 1 the general
ansatz for Anθ and φn remains valid but the the solutions for α(r) and f(r) used here
(α(r ∼ (r/rv)2 (r ≤ rv)), f(r) ∼ (r/rs)|n| (r ≤ rs)), do not minimise the energy of the field
configuration for |n| > 1. Bogomol’nyi [322, 323] showed that α(r) and f(r) which satisfy

df

dr
=
nf

r
(1− α),

1
r

dα

dr
= ∓ 1

n
(f2 − 1) (5.73)

automatically satisfy the Euler-Lagrange equations and also minimise the vortex energy,
giving

µ|n| = 2π|n| (5.74)

instead of (5.72). Explicit solutions of these equations were later found by de Vega and
Shaposnik [324] who showed that the energy-minimising form of α(r) is

α(r) = − 1
n

∞∑
k=1

βk

(
r√
2

)2k

(5.75)

where the coefficients βk are given by the recursion relation

βk =
1

k(k − 2)

k−1∑
l=2

lβlβk−l, β1 = −1, β2 ≈ 0.7279. (5.76)

The function f can then easily be found by inverting the vector equation in (5.73) to make
f the subject and substituting (5.75)-(5.76).

The string described here is therefore unstable and may decay into |n| strings with unit
windings. Alternatively, the fields may undergo dynamical evolution (while maintaining a
single n-vortex string configuration) towards a state in which the energy-minimising condi-
tions are satisfied. Whether it is possible for an n-vortex string with tension µ|n| = 2π|n|2 to
dynamically evolve into a static state in which µ|n| = 2π|n| is an interesting open question
and it at least convievable that such an instability would result in an oscillating solution,
similar to that encountered in chapter 4 for wound strings. Furthermore, as our main pur-
pose in constructing the string described above (with µ|n| = 2π|n|2, rather than µ|n| = 2π|n|)
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is to be able to generalise this result to the non-cylindrical case in which µ|n| = 2π|n|2 is
simply the leading-order contribution to the tension and there exists an additional periodic
part.

Although the Bogomol’nyi result demonstrates that the pinched string described in sec-
tions 5.4-5.7 is unstable for |n| > 1 and must therefore break apart or undergo dynamical
evolution to a stable state, our purpose in constructing it is (at least in part) to demonstrate
its equivalence to the wound-string states considered earlier in this thesis. In chapters 3
and 4 we found string congigurations with ωl > 0 which were generically unstable (i.e. not
static, as in chapter 4, or quasi-stable as in chapter 3), which, according to the duality
proposed in section 5.8, correspond to field-theoretic strings with |n| > 1. It is therefore
unlikely that the solutions presented here are in conflict with existing results, though it is
clear that more work is needed to clarify the relation between the energy-minimising (stable)
vortex-line string (with |n| > 1, β = 1) and the corresponding energy-minimising (stable)
F/D-string configuration with ωl > 0. Ideally we would like to develop a fully dynamical
theory of both wound-string and vortex-line string evolution and to study the dynamics
of both F/D-strings with non-zero windings and field-theoretic strings with topological
charge greater than unity that begin life in a non-energy-minimising state. If the duality
suggested in section 5.8 is valid, full dynamical equivalence must also be demonstrated.
Unfortunately, such work is beyond the scope of this thesis, though some further remarks
on possible extensions of the current work to the fully dynamical case are given in section
5.10.

In the following section we introduce a non-cylindrically symmetric ansatz for the pinched
string and the resulting EOM are then solved in section 5.5. We show that, for a set of rea-
sonable physical assumptions, these equations and their solutions take on exactly analagous
forms to those of the more familiar cylindrical case, but with the substitution rs → reffs (z),
rv → reffv (z). In other words, the structure of the vortices remains essentially the same,
except that the radii of the scalar and vector cores become functions of their position along
the string. Therefore, the calculation of the tension for a given value of z also remains
substantially the same as that outlined above, apart from the introduction of a new radial
magnetic flux term ∼ FzθF

zθ (associated with the z-dependent variation of Aθ) and of a
new z-derivative component in the DφDφ term, which give rise to an additional periodic
part.

Although the resulting tension µ|n|(z) is periodic in z, it still carries a leading order con-
stant term ∼ 2πη2 |n|2 (as mentioned above), derived in an analogous fashion to that in
(5.72), which may be identified with a similar leading order constant term ∼ 2πa2

0T1 in
the expression for the effective four-dimensional tension of a wound F/D-string. In ad-
dition, although the analogue of the parameter β = (rv/rs)2 can clearly be defined (i.e.
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βeff (z) ≡ (reffv (z)/reffs (z))2), it may be shown that, for an appropriate choice of ansatz
for reffs (z) and reffv (z), βeff (z) = β = 1 for rs = rv and the resulting analogue of the
logarithmic term ln(

√
β) (i.e. ln(

√
βeff (z))) also vanishes.

5.4 Introduction of the modified action and pinched string ansatz

We now introduce z-dependent couplings in both the scalar and vector fields of the standard
Abelian-Higgs model. However, although the couplings are coordinate dependent, they are
not treated as fundamental fields in the same way as φ and ~A. 10

We are interested in static, non-cylindrically-symmetric solutions to the resulting covariant
EOM 11 and must therefore modify the ansatz (5.7) to include some form of z-dependence.
Crucially, we wish our new solution to represent a string which interpolates between en-
ergetically degenerate regions of vortex/anti-vortex solutions to the EOM and hence we
anticipate the existence of Planck-sized regions in which vorticity itself cannot be defined
and which separate neighbouring string sections labelled by ± |n|. To this end, we find it
necessary to paramaterise our new couplings in terms of the winding number, such that 12

√
λ→

√
λ
eff

|n| (z) =
√
λG√λ|n|(z)

e→ eeff|n| (z) = eGe|n|(z) (5.77)

where G√λ|n|(z) ∈ [1, rs/|n|lp] and Ge|n|(z) ∈ [1, rv/|n|lp] are dimensionless functions.

This implies the existence of z-dependent scalar and vector boson masses (also parama-
terised by |n|) and hence of z-dependent effective radii for the scalar and vector cores. In
other words, a non-cylindrical string can be found from the correspondence

rs → reffs|n|(z) = (
√
λ
eff

|n| (z)η)−1

rv → reffv|n|(z) = (
√

2eeff|n| (z)η)−1. (5.78)

10We will see later that this “phemonenologigal device” admits a relatively natural interpretation in the
proposed dual wound-string picture.

11Following some reasonable simplifying assumptions, these solutions become formally equivalent to the
cylindrically symmetric vortex solutions of the standard Abelian-Higgs model, using the substitutions√
λ←→

√
λ
eff

(z) and e←→ eeff (z) (see section 5.5).

12We will later see that the approximation rs, rv >> |n|lp allows us to dispense with the paramaterisation

of the couplings in terms of |n| when calculating the periodic tension (i.e. so that
√
λ
eff

|n| (z) →
√
λ
eff

(z)

and eeff (z) → eeff (z)). For now though, we must retain them in order to demonstrate the validity of our
solution.
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By analogy with the cylindrically symmetric case, we may define new dimensionless variables
by

Rs → Reffs|n|(z) =
r

reffs|n|(z)

Rv → Reffv|n|(z) =
r

reffv|n|(z)
(5.79)

and new r and z-dependent functions (also paramaterised in |n|) F|n|(r, z) and A|n|(r, z) via

F (r) ≡ F (Rs)→ F|n|(r, z) ≡ F (Reffs|n|(z))

A(r) ≡ A(Rv)→ A|n|(r, z) ≡ A(Reffv|n|(z)). (5.80)

However, for now we leave the form of the z-dependence in these functions unspecified and
deal with the most general EOM.

In order to descibe the existence of regions of +|n| and −|n| winding, as well as to account
for the Planck-sized regions which mark the transitions and in which |n| itself becomes
undefined, we must introduce a step-like function H|n|(z) into the scalar and gauge field
ansatzes, with three discrete ranges

H|n| : z → {−1, 0,+1} ∀z ∈ R. (5.81)

Our general modified ansatz then takes the form

φ|n|(r, θ, z) = F|n|(r, z)e
i|n|H|n|(z)θ

A|n|θ(r, z) = −
|n|H|n|(z)
eeff|n| (z)

A|n|(r, z). (5.82)

Specifically, we choose to define the function H|n|(z) as

H|n|(z) =


0 if m∆− |n| lp ≤ z ≤ m∆ + |n| lp

+1 if 2m∆ + |n| lp < (2m+ 1) < ∆− |n| lp
−1 if (2m+ 1)∆− |n| lp < (2m+ 1) < ∆ + |n| lp,

where m ∈ Z and ∆ is some scale characterising the length of a section of ± |n| string (which
we expect to satisfy ∆ ≥ rs, rv). We then see that H|n|(z) admits a representation in terms
of a superposition of Heaviside step functions Θ(z), specified over appropriate ranges, such
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that

H|n|(z) =


Θ (z − 2m∆− |n| lp) , 2m∆− |n| lp ≤ z < (2m+ 1)∆− |n| lp
Θ (− (z − (2m+ 1)∆− |n| lp)) , 2m∆ + |n| lp < z ≤ (2m+ 1)∆ + |n| lp
−Θ (z − (2m+ 1)∆− |n| lp) , 2(m+ 1)∆− |n| lp ≤ z < 2(m+ 1)∆− |n| lp
−Θ (− (z − 2(m+ 1)∆− |n| lp)) , (2m+ 1)∆ + |n| lp < z ≤ 2(m+ 1)∆ + |n| lp.

For future reference we note that the square of H|n|(z) is

H2
|n|(z) =

{
0 if m∆− |n| lp ≤ z ≤ m∆ + |n| lp
1 if (m+ 1)∆ + |n| lp ≤ z ≤ (m+ 1)∆− |n| lp

or equivalently

H2
|n|(z) =

{
0 if Θ (z −m∆− |n| lp) , m∆− |n| lp ≤ z < (m+ 1)∆− |n| lp
1 if Θ (z −m∆ + |n| lp) , m∆ + |n| lp < z ≤ (m+ 1)∆ + |n| lp.

and that its first derivative, the square of its first derivative and its second derivative, are
defined as

dH|n|(z)
dz

=
∞∑

m=−∞
[δ (z − 2m∆− |n| lp) + δ (z − 2m∆ + |n| lp)] (5.83)

−
∞∑

m=−∞
[δ (z − (2m+ 1)∆− |n| lp) + δ (z − (2m+ 1)∆ + |n| lp)] ,

(
dH|n|(z)
dz

)2

=
∞∑

m=−∞

[
δ2 (z −m∆− |n| lp) + δ2 (z −m∆ + |n| lp)

]
, (5.84)

and

d2H|n|(z)
dz2

=
∞∑

m=−∞

[
δ′ (z − 2m∆− |n| lp) + δ′ (z − 2m∆ + |n| lp)

]
(5.85)

−
∞∑

m=−∞

[
δ′ (z − (2m+ 1)∆− |n| lp) + δ′ (z − (2m+ 1)∆ + |n| lp)

]
,

where the prime represents differentiation with repsect to z. Although the mathematical
definition of H|n|(z) is complicated, the function itself is easy to visualise and is shown in
figure 5.1.

Note that the Planck-sized regions where H|n|(z) = 0 do not represent genuine discontinu-
ities in the phase of the complex field or in the rotational direction of the gauge current.
Rather they represent regions where both the phase θ and the winding number |n| (or
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Figure 5.1: H|n|(z) in the range −3∆ ≤ z ≤ 3∆ with ∆ = 1 and |n|lp = 0.1.

equivalently the magnetic flux quantum number) are undefined. We may therefore set

θ = |n| = A|n|(r, z) = 0 ∀r ≤ |n|lp, z ∈ [m∆± |n|lp] (5.86)

without loss of generality. 13 It is not possible (or meaningful) to localise the string core
on length scales ∆r < O(lp) or ∆z < O(lp). Furthermore, we may asssume that only a
change in topolological number of ±1 will occur (on average) within a Planck-sized region,
so that it is not possible to define continuous changes in |n| over scales of ∆r < lp or
∆z < lp, though we propose that this does not necessarily mean that discrete jumps in the
topological winding number cannot take place over Planck-sized distances. 14 The change
from a + |n| to a − |n| winding state must therefore take place over a distance ∆z ≈ 2 |n| lp.
The winding number |n| is still undefined over the entire range ∆z ≈ 2 |n| lp, but a change
in winding number of ±2 |n| cannot take place over a smaller distance. It is not, however,
meaningful to ascribe a definite change in topological winding number of ±1 to a specific
Planck length within ∆z.

13This is like setting θ = 0 when r = 0 in a polar coordinate system. Technically, an angular position may
only be defined for r > 0, so that assigning θ a value at r = 0 is not physically meaningful. By convention,
it may be set equal to zero.

14Topological considerations prevent an |n1| vortex from morphing continuously into an |n2| vortex (|n1| 6=
|n2|) over length scales ∆z >> lp, as there exists no diffeomorphism which smoothly maps one state to the
other. Discontinuities are also usually considered unphysical. However, on distances ∆z ∼ lp there exist
no smooth maps at all! We argue that there is nothing, in principle, to prevent the topological winding
number from changing discontiuously as long as it does so in a region where the discontinuity of space is
also manifest, i.e. over ∆z ∼ O(lp).
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It therefore seems natural to assume that |n| may change (on average) by at most ±1
over a single Planck length lp and that the winding number is genuinely undefined at r = 0
(where θ is also undefined), so that it may be set equal to zero without loss of generality.
This implies that, as we traverse the fundamental string core, the absolute value of the
winding number changes from |n| to zero and then back up to |n|. This requires a distance
of ∆r = 2 |n| lp, so that

rs, rv ≥ |n| lp. (5.87)

The same bound can also be obtained in a different way. If we assume that is not meang-
ingful for the phase of a complex field θ to vary continuously over Planck sized distances, we
may estimate the maximum rate of change with respect to the physical angular coordinate
ϑ at the string core boundary ri, i ∈ {s, v}, via

∣∣ dθ
dϑ

∣∣
r=ri
≈ ∆θ

∆ϑ ≤
2πri
lp

. But when ∆ϑ = 2π,
we have ∆θ = 2π |n|, which recovers the relation above (5.87). This is the same as the
statement that if the natural unit of phase is one radian, a phase change of ∆θ = 1 rad

cannot take place over a distance ∆s = r∆θ < lp on the circumference of a circle. 15

5.5 Equations of motion for a pinched string

Turning our attention now to the EOM for the non-cylindrical string, we see that subsituting
the ansatz (5.82) into the appropriately modified versions of (5.2)-(5.4) gives rise to the
following scalar and vector equations

0 =
∂2F|n|

∂r2
+

1
r

∂F|n|

∂r
+
|n|2H2

|n|

r2
(A2
|n| − 1) +

1

(reffs|n|)
2
.
1
2
F|n|(F

2
|n| − 1) +

∂2F|n|

∂z2

− i |n| θ

{
F|n|

d2H|n|

dz2
+ 2

∂F|n|

∂z

dH|n|

dz

}
− |n|2 θ2F|n|

(
dH|n|

dz

)2

(5.88)

15The fact that, for a string with winding number ± |n|, it is not possible to localise the string core on scales
∆r < 2 |n| lp may also be explained in yet another way. As stated in the first footnote of this chapter, the
Abelian-Higgs model has a condensed matter analogue [325]-[331] in the field of superconductivity [332, 333].
In this analogue system (see [114]), symmetry is broken dynamically when free electrons “coalesce” to form
Cooper pairs, resulting in a transition to a lower energy (superconducting) state with degenerate effective
vacua in which magentic flux lines (from any external magnetic field) are confined within highly localied
flux tubes (see also [332, 333]). This implies that the Higgs field which mediates spontaneous symmetry-
breaking statically may not be fundamental, and may instead be interpreted as a phenomenological device
which effectively models some underlying (but as yet unkown) dynamical process. Formally, the order
parameter of the Ablelian-Higgs model (i.e. the phase θ) is equivalent to the Cooper pair (Bogolubov)
wavefunction of a superconducting fluid. Considering this in conjunction with the uncertainty principle
(including wavefunction-dependent terms) suggests that the minimum scale on which θ can be defined is
∼ lp. We take this to imply that the minimum range over which graduated changes in the scalar field φ may
occur is also ∼ lp. This applies equally to the real and imaginary parts, or equivalently to both the phase
and the magnitude of the complex field. In addition, the natural unit for the phase θ is one radian, which
together with the considerations above, implies that a phase change of ∆θ = ±1 may not take place over a
distace ∆r < lp and hence gives rise to the condition (5.87).
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and

0 = H|n|

∂2A|n|

∂r2
− 1
r

∂A|n|

∂r
− 1

(reffv|n|)
2
(A|n| − 1)


+

1

reffv|n|

reffv|n|H|n|
∂2A|n|

∂z2
+ reffv|n|

d2H|n|

dz2
A|n| +

d2reffv|n|

dz2
H|n|A|n|


+

2

reffv|n|

reffv|n|
dH|n|

dz
A|n| +

dreffv|n|

dz
H|n|A|n| + reffv|n|H|n|

∂A|n|

∂z

 . (5.89)

Considering (5.88) first, we see that the imaginary part must be set equal to zero indepen-
dently. However, the considerations above imply that the phase θ is effectively undefined
not only at r = 0 but for all r ≤ |n| lp over the Planck-sized regions in which H|n|(z) = 0,
z ∈ [m∆ − |n| lp,m∆ + |n| lp]. We may therefore set θ = 0 in this region without loss of
generality, according to (5.86).

In the regions where H|n|(z) = ±1 (z /∈ [m∆− |n| lp,m∆ + |n| lp]), θ may be defined consis-
tently but each term in the curly brackets goes to zero independently and so the imaginary
component vanishes for all z. This argument is equivalent to multiplying the entire equation
by H|n|(z) and setting either H|n|(z) = 0 or the sum of terms which it multiplies equal to
zero in alternate regions. Similar considerations hold for the term proportional to θ2 on the
third line, so the final form of the scalar EOM is

0 =
∂2F|n|

∂r2
+

1
r

∂F|n|

∂r
+
|n|2

r2
(A2
|n| − 1) +

1

(reffs|n|)
2
.
1
2
F|n|(F

2
|n| − 1) +

∂2F|n|

∂z2
(5.90)

where we consider only the regions in which H2
|n| = 1.

We may adopt the same strategy when dealing with the vector EOM, which shows that
all the terms in the curly brackets go to zero for all z except the term proportional to
H|n|

∂2A|n|
∂z2 . This must be included in the final form of the EOM,

0 =
∂2A|n|

∂r2
− 1
r

∂A|n|

∂r
− 1

(reffv|n|)
2
(A|n| − 1) +

∂2A|n|

∂z2
(5.91)

where again we need only consider regions in which H2
|n| = 1.

This approach is equivalent to treating the Planck-scale regions as a “black box” for which
we have no effective theory in the field picture. Although we have no explicit expressions
for the scalar and vector field functions F|n| and A|n| with which to calculate the tension of
the string within the ranges z ∈ [m∆± |n|lp], we will later assume a tension of ∼ 2πη2|n|2
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in these regions to ensure the continuity of µ|n|(z). Although this is somewhat unsatisfac-
tory, we will see that both the assumed tension for the Planck-scale sections and the spatial
localisation of the string core on scales ∼ |n|lp admit natural explanations in the string
picture (see section 5.7), which we propose as a justification for the assumptions made here.

However, we must acknowledge that, using our current approach, it is impossible to ob-
tain solutions for F|n|(r, z) and A|n|(r, z) in the regions for which H2

|n| = 0 and that these
remain essentially untreated in our present analysis. Clearly, if the solutions we obtain in
the regions where H2

|n| = 1 are to be viewed as physical, the Planck-sized regions which
connect sections of vortex/anti-vortex string must be dealt with independently, in such a
way as to ensure continuity with respect to the string tension µ|n|(z). This problem will be
dealt with in the following section, in which µ|n|(z) is calculated explicitly. 16

Although we have yet to specify the exact form of the z-dependence of F|n|(r, z) and A|n|(r, z)
(in the regions for which H2

|n| 6= 0), we may still use our physical intuition to impose appro-
priate boundary conditions. It is reasonable to assume that boundary conditions analogous
to those imposed on f(r) and α(r) still hold for any value of z - just as they did in the
cylindrically symmetric case - so

F|n|(r, z) =

{
0 if r = 0 ∀z
1 if r →∞ ∀z

(5.92)

and

A|n|(r, z) =

{
0 if r = 0 ∀z
1 if r →∞ ∀z.

(5.93)

The only problem that remains is how to specify “large” and “small” r for a given value of
z. In the cylindrically symmetric case, this was easily solved, as the length scales rs and
rv determined the radii of the scalar and vector cores, respectively, at every point along
the string. In the non-cylindrically symmetric case, therefore, we may expect the proposed
substitutions (5.78)-(5.80) to imply the following (more specific) boundary conditions on
the related functions F and A:

F (Reff|n|s(z)) =

{
0 if Reff|n|s(z)→ 0 (r << reff|n|s(z))

1 if Reff|n|s(z)→∞ (r >> reff|n|s(z))
(5.94)

and

A(Reff|n|v(z)) =

{
0 if Reff|n|v(z)→ 0 (r << reff|n|v(z))

1 if Reff|n|v(z)→∞ (r >> reff|n|v(z)).
(5.95)

16Many thanks to V.M Red’kov for his insightful questions and comments regarding this point.
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We then need only specify the forms of reff|n|s(z) and reff|n|v(z) precisely by introducing appro-
priate additonal ansatzes and by verifying that these offer solutions to the EOM. To begin
with we note that

∂F|n|

∂r
=

1

reffs|n|

dF

dReffs|n|
,

∂2F|n|

∂r2
=

1

(reffs|n|)
2

d2F

d(Reffs|n|)
2
, (5.96)

∂F|n|

∂z
= − 1

reffs|n|
Reffs|n|

dreffs|n|

dz

dF

dReffs|n|
,

∂2F|n|

∂z2
=

1

reffs|n|
Reffs|n|

 2

reffs|n|

dreffs|n|

dz

2

−
d2reff|n|s

dz2

 dF

Reff|n|s

+
1

(reffs|n|)
2
(Reffs|n|)

2

dreffs|n|

dz

2

d2F

d(Reffs|n|)
2
, (5.97)

with similar relations between A|n|(r, z) and A(Reffs|n|). The scalar EOM then becomes

0 =

1 + (Reffs|n|)
2

dreffs|n|

dz

2 d2F

d(Reffs|n|)
2

+

1 + (Reffs|n|)
2

2

dreffs|n|

dz

2

− reffs|n|

d2reffs|n|

dz2


 1

Reffs|n|

dF

dReffs|n|

+
|n|2F

(Reffs|n|)
2

+
1
2
F (F 2 − 1)

reffs|n|

rs

 . (5.98)

By analogy with the cylindrically symmetric case, we may also write

0 =

1 + (Reffv|n|)
2

dreffv|n|

dz

2 d2F

d(Reffv|n|)
2

+

1 + (Reffv|n|)
2

2

dreffv|n|

dz

2

− reffv|n|

d2reffv|n|

dz2


 1

Reffv|n|

dF

dReffv|n|

+
|n|2F

(Reffv|n|)
2

+
1
2
βeff|n| F (F 2 − 1) (5.99)
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where we have defined

βeff|n| (z) =

reffv|n|(z)

reffs|n|(z)

2

. (5.100)

Hence we see that, in the case of the pinched string, the assumptions F = F (Reffs|n|) and

F = F (Reffv|n|) are equivalent, in correspondence with the cylindrically symmetric case.

The vector EOM becomes

0 =

1 + (Reffv|n|)
2

dreffv|n|

dz

2 d2A

d(Reffv|n|)
2

+

−1 + (Reffv|n|)
2

2

dreffv|n|

dz

2

− reffv|n|

d2reffv|n|

dz2


 1

Reffv|n|

dA

dReffv|n|

− F 2(A− 1)

reffv|n|

rv

2

, (5.101)

so in the limit reffs|n|(z) → rs, r
eff
v|n|(z) → rv we recover the usual cylindrically symmetric

equations (5.15)/(5.18) and (5.16).

We may proceed by specifying the conditions we wish reffs|n|(z) and reffv|n|(z) to satisfy. Let us

assume that each function reff|n|i (z), i ∈ {s, v}, varies between two values |n|lp ≤ reffi|n| (z) ≤ ri
(in accordance with conditions imposed along with the definitions (5.77) and (5.78)), such
that

reffi|n| (z = (m+ 1/2)∆) = ri (5.102)

and

reffi|n| (z) = |n| lp ∀z ∈ [m∆± |n|lp] . (5.103)

Additionally, we impose the following constraint on the derivatives in order to ensure con-
tiuity at the points z = m∆± |n|lp,∣∣∣∣∣∣

dreffi|n| (z)

dz

∣∣∣∣∣∣
z=m∆±|n|lp

= 0, (5.104)
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which together with (5.103) also implies∣∣∣∣∣∣
d2reffi|n| (z)

dz2

∣∣∣∣∣∣
z=m∆±|n|lp

= 0. (5.105)

The most general form for the two functions reff|n|i (z) is

reffi|n| (z) = Ai|n|Gi
(
Bi|n|

(
z + Ci|n|

))
+Di|n| (5.106)

where {Gi(z)}, i ∈ {s, v}, are periodic functions in z, valued between 0 and 1. The val-
ues of the constants Ai|n|, Bi|n|, Ci|n| and Di|n| may be uniquely determined by requir-
ing that reffi|n| (z) pass through the three points (m∆ + |n| lp, |n| lp), ((m+ 1/2)∆, 1) and
((m+ 1)∆− |n| lp, |n| lp) ∀m ∈ Z, together with the requirement that the first derivatives
with respect to z are zero at the first and last points. Assuming that the functions Gi(z)
both have natural period π, this gives

reffi|n| (z) = (ri − |n| lp)Gi
(
z −m∆− |n| lp
π−1 (∆− 2 |n| lp)

)
+ |n| lp. (5.107)

The variation of the scalar and vector core profiles (assuming non-critical coupling rv 6= rs)
for a non-cylindrical “pinched” string are illustrated in figure 5.2 using Gs(z) = Gv(z) =
sin2(z) as an example ansatz.

Figure 5.2: Profile of the pinched string solution in the range −3∆ ≤ z ≤ 3∆, with ∆ = 1,
|n|lp = 0.1, rs = 0.5 (blue curve) and rv = 0.75 (red curve).

For later convenience, we note that for large ri satisfying ri >> |n| lp, we can make the
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approximation

reffi (z) ≈ riGi
(πz

∆

)
, (5.108)

so that reffi|n| (z)→ reffi (z) which becomes effectively independent of |n|. This also implies∣∣∣∣∣dGi
(
πz
∆

)
dz

∣∣∣∣∣
z=m∆

=

∣∣∣∣∣dGi
(
πz
∆

)
dz

∣∣∣∣∣
Z=(m+1/2)∆

= 0, (5.109)

together with ∣∣∣∣∣d2Gi
(
πz
∆

)
dz2

∣∣∣∣∣
z=m∆

> 0,

∣∣∣∣∣d2Gi
(
πz
∆

)
dz2

∣∣∣∣∣
z=(m+1/2)∆

< 0. (5.110)

In this limit, we may approximate the function H|n|(z) by the function H(z), which is also
independent of |n| and defined via

H(z) =

{
2Θ (z − 2m∆)− 1, (2m− 1)∆ < z < (2m+ 1)∆
−2Θ (z − (2m+ 1)∆) + 1, 2m∆ < z < (2m+ 2)∆,

whose square is given by

H2(z) = 1 ∀z. (5.111)

For future reference we note that

dH

dz
=

∞∑
m=−∞

[δ(z − 2m∆)− δ(z − (2 + 1)m∆)] , (5.112)

d2H

dz2
=

∞∑
m=−∞

[
δ′(z − 2m∆)− δ′(z − (2 + 1)m∆)

]
, (5.113)

(
dH

dz

)2

=
∞∑

m=−∞
δ2(z −m∆). (5.114)

In addition, in the limit ri >> |n|lp, we also have βeff|n| (z)→ βeff (z) where

βeff (z) =

(
reffv (z)

reffs (z)

)2

= β

(
Gv(z)
Gs(z)

)2

. (5.115)
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If the z-dependence of rs and rv has the same functional form, i.e. if Gs(z) = Gv(z) = G(z)
so that

reffi (z) ≈ riG
(πz

∆

)
, (5.116)

then the parameter βeff (z)→ β and becomes effectively independent of both |n| and z. At
critical coupling, therefore, it is also equal to unity.

Finally, defining the dimensionless variable Z by

Z ≡ πz

∆
, (5.117)

the functionsH(z), reffi (z) ≈ riGi(πz/∆) and βeff (z) may be rewritten asH(Z), reffi (Z) ≈
riGi(Z) and βeff (Z) (this notation will be used later).

5.6 Solutions to the pinched string EOM

We are now at last able to turn our attention to the solutions of (5.98)/(5.99) and (5.101).
If the terms in the square brackets in each equation satisfy

(Reffi|n| )
2

dreffi|n|

dz

2

≤ O(1) (5.118)

and

(Reffi|n| )
2

2

dreffi|n|

dz

2

− reffi|n|

d2reffi|n|

dz2

 ≤ O(1) (5.119)

within the region of the effective string core (i.e. Reffi|n| ≤ 1, or equivalently r ≤ reffi|n| ), then
the EOM take functional forms which are identical (to within an order of magnitude in the
coefficients of the derivative terms) to those for the cylindrical symmetric ansatz, under the
correspondences (5.78)-(5.80). They therefore admit functionally equivalent solutions under
the same correspondences in both the small and large r limits, which may now be defined
(for a given value of z) with respect to reffs|n| for the scalar EOM and reffv|n| for the vector EOM.

Let us consider first the constraint (5.118) which, using the definitions above, is approxi-
mately equivalent to

Reffi|n| .
r2
i

∆2
(G′i)

2 ≤ 1 (5.120)
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where Reffi = r/reffi and a dash represents differentiation with respect to Z = πz/∆. Let
us further assume that G′i ≤ O(1) ∀Z, 17 giving

∆ ≥ Reffi|n| ri. (5.121)

Since we are interested in the physics at scales Reffi|n| ≤ O(1), this constraint is equivalent
to the stronger condition

∆ ≥ ri, (5.122)

which appears reasonable on cosmic scales. As long as this condition is satisfied, we may
be certain that the terms in the first set of square brackets in both the scalar and vector
EOM are ∼ O(1) for all r within the effective scalar and vector cores.

In fact, even for the limiting case rs ∼ ∆, this still holds. Another way to think about
this is to note that the former constraint (5.121) is equivalent to

r ≤ ∆
reff|n|i (z)

ri
. (5.123)

Since r|n|i(z) ∈ [|n| lp, ri] ∀z , this reduces to the minimum/maximum conditions,

r ≤ ∆ |n| lp
ri

, z ∈ [m∆± |n| lp] (5.124)

or
r ≤ ∆, z → (m+ 1/2)∆. (5.125)

Hence the condition ∆ ≥ ri implies that (5.121) is fulfilled for all r ≤ |n| lp even at the
boundaries of the region, i.e z = m∆± |n| lp (that is, for all r within the effective radius at
any value of z).

It is also possible in this scenario to identify the distance between neighbouring pinches, ∆,

17In the absence of a specific ansatz for Gi(z), this assumption may be questioned. Realistically it is
probably necessary to input an initial, smoothly varying, function Gi(z) and to use that to calculate the
initial forces acting on neighbouring string sections due to the interaction of the opposing magnetic fields.
Ideally a dynamic theory will be developed, which describes the evolution of the string core “pinching” under
the action of such forces. We may expect the pinching of the string to become increasingly localised in the
central area of the neighbouring ± |n| regions, resulting in ever-increasing localisation of the string energy
density. Ultimately, this would result in the formation of highly localised “beads”, and of neighbouring bead-
antibead pairs which repel each other. Furthermore, as we shall see later, each “pinch” in the physical radius
of the string gives rise to two peaks in the effective tension (i.e. two beads or antibeads), associated with
the points of maximum absolute gradient (dreffi /dz)2. Increasing localisation of the pinching therefore also
corresponds to the coalescing of neighbouring b− b and b− b pairs, as well as the repulsion of neighbouring
bs and bs. It is therefore possible that this is the analogue of the creation of step-like windings in the
formation of cosmic necklaces from smoothly wound strings, discussed in detail in chapter 3, which gives rise
to similar phenomenona. If so, we may hope that ultimately a future analysis of the interaction between
neighbouring pinches may provide insights into the binding energy between neighbouring bead/antibead
pairs in the wound-string picture (c.f. end of chapter 3 for a discussion of this point).
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with twice the (average) distance between peaks in the periodic tension, i.e. between neigh-
bouring beads or anti-beads (see later). In this case, by analogy with the wound-string
necklaces discussed in chapter 3, it is possible to identify this with twice the correlation
length of the string, ξ, so that the number of strings per Hubble volume is ν ∝ ∆−3 ∝ ξ−3

and the average distance between neighbouring strings is of order ∆. It is likely therefore
that condition (5.125) will always be fulfilled. 18

A similar argument can be used to show that the terms in the second set of square brackets
are also of order one (for the scalar EOM), or of order minus one (for the vector EOM), for
all z. Imposing the bound (5.119) for all values of z requires

r2
{

2(G′i)
2 −G′′i

}
≤ ∆2G2

i . (5.126)

Now assuming that G′′i (z) ∼ G′i(z) ∼ O(1) ∀z, we have that

r ≤ ∆Gi(z) (5.127)

which, accounting for the two limiting values of reff|n|i , again gives rise to the minimum/maximum
constraints (5.124) and (5.125) above.

These arguments imply that the rate of change of F|n| (r, z) (or F (Reffs|n|(z))) and A|n| (r, z)

(or A(Reffv|n|(z))) with respect to z is sufficiently small at any value of r to make z-derivative
terms in the Euler-Lagrange equations negligible, so long as we are restricted to the ranges
r ≤ reffs|n| and r ≤ reffv|n|, respectively, and so the long as the condition rs, rv ≤ ∆ holds.
Though it is possible, in principle, that the physics of non-cylindrically symmetric strings
in the asymptotic limit differs substantially from that of cylindrically symmetric strings
beyond these ranges, it seems unlikely that this would cause significant problems, as the en-
ergy density of the field configuration tends rapidly to zero for r ≥ reffv|n|(z) since F ≈ A ≈ 1.
In addition, if we are able to identify ∆ with the correlation length ξ, then ∆ >> rs, rv

becomes a natural cut-off for r in accordance with (5.125).

It is reasonable to assume ri ≤ ∆ if we regard the pinch as a “kink” or “twist” in the
string (by analogy with our common sense ideas about ordinary lengths of string/rope).
The condition is then equivalent to the statement that it is impossible to twist a length of
rope through 360 degrees over a region less than the length of its diameter.

18However, in principle, ∆ ∼ rs, rv, may occur, in which case it is doubtful whether the correspondence
∆ ∼ ξ may be maintained, except shortly after the epoch of the string network formation. Nonetheless, in
a fully dynamical theory of pinched string formation/evolution an explicit model of ∆(t) could be obtained,
which may also allow the correspondence ∆(t) ∼ ξ(t) to hold for all t. This prospect is discussed briefly in
section 5.8.
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In the limit rs ≤ ∆, therefore, the scalar EOM reduces to either

0 =
d2F

d(Reffs|n|)
2

+
1

Reffs|n|

dF

dReffs|n|
+
|n|2F

(Reffs|n|)
2

+
1
2
F (F 2 − 1) (5.128)

or

0 =
d2F

d(Reffv|n|)
2

+
1

Reffv|n|

dF

dReffv|n|
+
|n|2F

(Reffv|n|)
2

+
1
2
βeff|n| F (F 2 − 1) (5.129)

for all r ≤ reffs|n|(z). In the limit rv ≤ ∆ (rs ≤ rv), 19 the vector EOM reduces to

0 =
d2A

d(Reffv|n|)
2
− 1

Reffv|n|

dA

dReffv|n|
− F 2(A− 1)

reffv|n|

rv

2

(5.130)

for all r ≤ reff|n|v(z). In the uncoupled regime (i.e. setting A = 0), equation (5.128) has the
small r solution

F (Reffs|n|) ≈ (Reffs|n|)
|n| (5.131)

for r ≤ reffs|n|(z), which is in accord with our physical intuition regarding the effective radius
of the scalar core. Likewise, equation (5.129) has the small r solution

F (Reff|n|v) ≈ (
√
βeff|n| R

eff
v|n|)

|n|, (5.132)

which is equivalent.

Similarly, in the uncoupled regime (i.e. setting F = 0), equation (5.130) admits the approx-
imate solution

A(Reffv|n|) ≈ (Reffv|n|)
2 (5.133)

for r ≤ reffv|n|(z). Clearly, the correct asymptotic solutions in both the uncoupled and coupled
regimes (together with the higher order corrections to the small r solutions in the latter)
will be formally analogous to thse given for the cylindrical string in the previous section,
under the correspondences (5.78)-(5.80). However, we need not state them explicitly here.
More important to our immediate task are the results (5.131) and (5.133), which we now
use to to calculate the periodic string tension µ|n|(z) for the pinched string ansatz in the
next section.

19This is automatically satisfied for a type II superconducting regime.
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5.7 Calculation of the (periodic) string tension for non-cylindrically sym-

metric string µ|n|(z)

When calculating the approximate z-dependent tension µ|n|(z) for the pinched string, we
begin by considering the limit ri >> |n|lp, i ∈ {s, v}. 20 There then exist exact analogues of
all the terms which appear in the (constant) string tension µ|n| of a cylindrically symmetric
string, according to the correspondence

f ←→ F,

α←→ A,

ri ←→ reffi (z),

β ←→ βeff (z) (5.134)

and d ←→ ∂ where necessary. 21 The Dr and Dθ terms of the gradient energy give
contributions of the form∫ 2π

0
dθ

∫ reffs (z)

0
DrφD

r
φrdr +

∫ 2π

0
dθ

∫ reffs (z)

0
DθφD

θ
φrdr

= 2πη2

∫ reffs (z)

0

(
∂F

∂r

)2

rdr + 2πη2

∫ reffs (z)

0

|n|2F 2

r2
(A− 1)2rdr

≈ 2× 2πη2|n|2

(reffs (z))2|n|
× 1

2|n|
(reffs (z))2|n| ≈ 2πη2|n|, (5.135)

so exchanging rs ←→ reffs (z) makes no difference to the result of the calculation, as all
factors of either rs or reffs (z) cancel exactly in the final step. In the range reffs (z) ≤ r ≤
reffv (z), the interchange of variables also makes no difference to the form of the contribution
from the angular term, which is given by

∫ 2π

0
dθ

∫ reffv (z)

reffs (z)
η2 |n|2F 2

r2
(A2 − 1)2rdr ≈ 2πη2|n|2

∫ reffv (z)

reffs (z)

dr

r

= 2πη2|n|2ln
(√

βeff (z)
)
. (5.136)

20In all the calculations that follow, we use the approximations
√
λ
eff

|n| (z) →
√
λ
eff

(z) and eeff|n| (z) →
eeff (z), so that the field couplings are effectively independent of |n|. This is equivalent to assuming reffv|n|(z)→
reffv (z) and reffs|n|(z)→ reffs (z) for rv, rs >> |n|lp.

21We have also used the fact that H2
|n|(z)→ H2(z) = 1 ∀z.
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However, in addition there now exists a new Dz term in the derivative, which leads to

∫ 2π

0
dθ

∫ reffs (z)

0
DzφD

z
φrdr = 2π

∫ reffs (z)

0
η2

(
∂F

∂z

)2

rdr

≈ 2πη2|n|2 1
|n|+ 1

× 1

(reffs (z))2|n|+2

(
dreffs

dz

)2 ∫ reffs (z)

0
r2|n|+1dr

≈ πη2|n|2 1
|n|+ 1

(
dreffs

dz

)2

≈ πη2|n| × r2
s

∆2
(G′s)

2. (5.137)

Likewise, the contribution from the potential term is formally equivalent under the corre-
spondence rs ←→ reffs (z), which gives

∫ 2π

0
dθ

∫ reffs (z)

0
V (|φ|)rdr = 2πη2 × 1

2(reffs )2

∫ reffs (z)

0
F (F 2 − 1)2rdr

≈ πη2

(reffs (z))2

∫ reffs (z)

0
Frdr ≈ πη2

|n|+ 2
. (5.138)

Turning our attention to the gauge field term, we see that the contribution from the z-
component of the magnetic flux Bz is analogous to that for the cylindrically symmetric
case, so

∫ 2π

0
dθ

∫ reffv (z)

0

1
2
BzB

zrdr = π × |n|2

2(eeff (z))2

∫ reffv (z)

0

1
r2

(
∂A

∂r

)2

rdr

≈ 2π|n|2

(eeff (z))2
× 1

2
1

(reffv (z))2
≈ 2πη2|n|2. (5.139)

The only contribution left to calculate comes from the new radial ~B-field component, Br =
Fzθ. Recall that our new gauge field ansatz is

A|n|θ = −|n|H(z)
eeff (z)

A(r, z)

= −
√

2η|n|reffv (z)H(z)A(r, z), (5.140)

so

Br = Fzθ = ∂zAθ

= −
√

2η|n| ∂
∂z

(reffv (z)HA)

= −
√

2η|n|

{
reffv (z)

∂A

∂z
H + reffv (z)A

dH

dz
+
dreffv

dz
AH

}
. (5.141)

In the limit rv, rs >> |n|lp, we have that dH
dz = 0 for all z where reffv (z) 6= 0 and A 6= 0

(i.e. for z 6= m∆). We also have reffv (z) = A = 0 for all z where dH
dz 6= 0 (i.e. at z = m∆).
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Together, these imply that the second term inside the brackets is zero for all z. 22 The
second term inside the curly brackets therefore vanishes, so that

Br = −
√

2η|n|

{
reffv (z)

∂A

∂z
H +

dreffv

dz
AH

}
(5.142)

and

1
2
FzθF

zθ =
|n|2

r2

reffv (z))2

(
∂A

∂z

)2

+ 2reffv (z)
dreffv (z)
dz

A
∂A

∂z
+A2

(
dreffv (z)
dz

)2
 .(5.143)

The first term inside the brackets of (5.143) gives

2π
∫ reffv (z)

0

|n|2

r2
(reffv )2

(
∂A

∂z

)2

rdr ≈ 8πη2|n|2 1

(reffv (z))4

(
dreffv

dz

)2 ∫ reffv

0
r3dr

≈ 2πη2|n|2
(
dreffv

dz

)2

≈ 2πη2|n|2 × r2
v

∆2
(G′v)

2 (5.144)

but this is cancelled by the contribution of the second term, which is

2π
∫ reffv (z)

0

|n|2

r2
A
∂A

∂z
rdr ≈ 2πη2|n|2.2reffv (z)

dreffv

dz
×− 2

reffv (z)5

dreffv

dz

∫ reffv

0
r3dr

≈ −2πη2|n|2 × r2
v

∆2
(G′v)

2, (5.145)

so the only remaining contribution is the third term:

2π
∫ reffv (z)

0

|n|2

r2
A2

(
dreffv (z)
dz

)2

rdr ≈ 2πη2|n|2. 1

(reffv (z))4

(
dreffv

dz

)2 ∫ reffv (z)

0
r3dr

≈ π

2
η2|n|2 × r2

v

∆2
(G′v)

2. (5.146)

The final approximate expression for the total string tension is then

µ|n|(z) ≈ 2πη2|n|+ 2πη2|n|2ln
(√

βeff (z)
)2

+ πη2|n| 1
|n|+ 1

× r2
s

∆2
(G′s)

2

+
πη2

|n|+ 2
+
π

2
η2|n|2 × r2

v

∆2
(G′v)

2. (5.147)

22Similar considerations hold true even if we neglect to take the limit ri >> |n|lp and consider the
Planck-sized regions explicitly.
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Setting Gs = Gv = G and rv = rs = rc (critical coupling) gives, to an order of magnitude,
23

µ|n|(z) ≈ 2πη2|n|2 + 2πη2|n|2 × r2
c

∆2
(G′)2. (5.148)

As mentioned above, we have assumed that the function G has period π, so that G(Z) has
period ∆. This implies that G′(Z) and G′(Z)2 have period ∆/2, so we may express the
latter in form (G′)2 = (G′)2(2πz/∆). If we also assume, as above, that G′ ∼ (G′)2 ∼ O(1)
for all z, a relatively simple and “natural” ansatz for (G′)2 is

(G′)2(z) =
1
2

[
sin2

(
2πz
∆

)
+ sin4

(
2πz
∆

)]
, (5.149)

though, in principle, there are an infinite number of possible ansatz choices. Our final
expression for the approximate z-dependent tension of a pinched string is therefore

µ|n|(z) ≈ 2πη2|n|2 + 2πη2|n|2 × r2
c

∆2
× 1

2

[
sin2

(
2πz
∆

)
+ sin4

(
2πz
∆

)]
. (5.150)

In the next section we look at F/D-strings wrapping cycles around the S3 manifold at the
tip of the KS throat. From the Lagrangian of the theory we then determine an approximate
formula for the effective four-dimensional tension of the configuration. We find that, for an
appropriate “natural” ansatz choice for the winding state, this is formally analogous to the
result (5.150) and this allows us to draw a correspondence between the parameters which
define the Abelian-Higgs model and those which define the tip geometry of KS background.

5.8 Relation of the pinched string to wound F/D-strings

Recall that the ansatz

Xµ = (t, ρ sinσ, ρ cosσ, z0, 0, 0, 0, ψ(σ) = 2nψσ, θ(σ) = 2nθσ, φ(σ) = 2nφσ) (5.151)

describes a static string loop of radius ρ with windings in all three angular directions in the
S3 at the tip of the warped deformed conifold. We have now chosen to label the loop radius
ρ instead of r, as in chapter 3, in order to avoid confusion with the r-coordinate used in
the previous section. For a string with no intrinsic worldsheet flux Fab (i.e. Π2 = 0), and

23There is a discrepancy between the numerical factors multiplying the constant and periodic parts.
Striclty speaking, these should be 2π and π/2 using the definitions we have adopted. As mentioned previously,
changing the definition of rv may alter the factor in front of the constant term to π, though there is still
a factor of 2 “missing” in front of the (G′)2 term. We have also neglected the factor of π2 which comes
from the differentiation of G with respect to z. However, even if such numerical factors were included
explicitly, we would still be free to choose the ansatz for (G′)2 (whose only physical restriction is that

(G(z)′)2 ∈ [0,O(1)] ∀z), so that µ|n|(z) ≈ 2π|n|2 + 2π|n|2 × r2c
∆2 × G̃(z) where G̃(z) is some function which

varies exactly between 0 and 1.
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adopting canonical coordinates so that the ansatz above describes non-geodesic windings,
the total energy is given by the Lagrangian

V = a0T1

∫
dσ
√
a2

0ρ
2 +R2(4n2

ψ + sin2(nψσ)(n2
θ + sin2(nθσ)n2

φ)) (5.152)

where T1 denotes the tension of either an F - or a D-string. In chapter 3 we employed the
technique of “splitting up” the total string mass into a constant piece - corresponding to the
mass of the string sections connecting the “beads” formed by extra-dimensional windings
- and the mass of the beads themselves. In order to accomplish this, it was necessary to
set nψ = 0 when calculating the mass of an individual bead, but to use Nb = 2nψ > 0
when calculating the number of beads in the loop. This was to avoid double counting the
mass-contribution of the ψ-direction windings. We now perform the same procedure when
calculating the effective four-dimensional tension. 24

We begin by setting nψ ∼ nθ ∼ nφ ∼ nw in (5.152), except in the case of the constant
piece (∝ 4n2

ψ), in which we must set nψ = 0. Taking the limit a2
0ρ

2 >> n2
wR

2, we then
expand our expression for V (to first order) before dividing through by ρ to obtain

µ(σ) ≈ 2πa2
0T1 + 2πa2

0T1 ×
1
2
n2
wR

2

a2
0ρ

2

[
sin2(nwσ) + sin4(nwσ)

]
. (5.153)

We may now make a change of variables

z = a0ρσ (5.154)

and define a new variable

d =
2πa0ρ

nw
(5.155)

which represents the interbead distance (or equivalently, the interwinding distance, i.e. the
four-dimensional length over which a single full winding in the compact space is “spread”).
This gives

µ(z) ≈ 2πa2
0T1 + 2πa2

0T1 ×
1
2
R2

d2

[
sin2

(
2πz
d

)
+ sin4

(
2πz
d

)]
, (5.156)

24Although seemingly counter-intuitive, this is certainly necessary in the case of a true necklace configura-
tion, when the bead mass is almost totally localised in space from a four-dimensional perspective. However,
we also expect it to be necessary even if the beads are less highly localised than in the situation considered
in the previous chapter. Although we require nψ > 0 in order for beads, or fluctuations in the effective
four-dimensional mass-density to occur at all, we must still set nψ ∼ 0 when calculating the approximate
mass contained in localised areas.
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which is formally equivalent to (5.150) under the correspondence

a2
0T1 ←→ η2|n|2,

R ←→ rc,

d ←→ ∆. (5.157)

Physically, what happens in the string picture is, when z = d/2 the string is instantaneously
wrapping its maximal effective radius Reff (z) = R in the S3 (i.e. a great circle), whereas at
z = d the string is instantaneosuly wrapping the “pole” of the S3 (i.e. a point), so that the
effective radius of the winding is Reff (z) = 0. 25 At all values of z the string wraps some
effective radius in the region 0 ≤ Reff (z) ≤ R and the maximum increase in “winding rate”
with respect to the z-coordinate, dReff (z)

dz ∼ dreffc (z)
dz , occurs at the points z = d/4, 3d/4.

From the wound-string perspective, these are points at which the greatest length of string
is “hidden” in the compact space (for a given interval dz), giving rise to maxima in the
effective four-dimensional tension. Likewise, the periodic part of the tension in the pinched

string picture is proportional to
(
dreffc (z)

dz

)2

and we may draw the general correpondence 26

Reff (z)←→ reffc (z). (5.158)

This also explains why we must set reffv (z) = reffs (z) in the field theory picture in order to
obtain the correspondence (5.157) - in this picture there is only one string, which cannot
give rise to two separate radii. This allows us to interpret the (previously somewhat bizarre)
z-dependence of the field couplings

√
λ
eff

(z) and eeff (z) via the relation

R2 ∼ b0gsMα′, b0 ∼ O(1). (5.159)

The parameter M is fixed and quantised, and α′ is a fundamental unit, so that a string
wrapping an effective radius in the S3, Reff (z) ≤ R, experiences an effective coupling of
approximately

geffs (z) =
(Reff (z))2

b0Mα′
. (5.160)

This allows us to establish a relation between geffs (z),
√
λ
eff

(z) and eeff (z), which will be
investigated shortly.

25However, at both these points, dReff (z)
dz

= 0, so the effective four-dimensional tension is µ(z) ≈ 2πa2
0T1.

26We may also interpret this result in the following manner: As shown in chapter 3, there exist two
degenerate minima in the fundamental domain of the ψ-coordinate of the S3, giving rise to two beads per
winding. If one full winding in the string picture corresponds to one full “pinch” in the field picture, we
would therefore expect to find two peaks in the periodic part of the tension µ|n|(z) for every one peak in
the physical radius of the string core.
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Importantly, we can also imagine a situation where the string completes one full wind-
ing in (say) the clockwise direction before reversing and wrapping the S3 anticlockwise.
The four-dimensional regions over which these windings take place may then correspond
to regions of ±|n| string in the field picture. In addition, although we still have no ef-
fective description of the Planck-sized regions of the pinched string in the classical field
theory, in the string picture we see that they admit a relatively natural interpretation, with
|reffc |min = |n|lp ≡ |Reff |min corresponding to the minimum width of the string due to
quantum effects.

In effect, when the string wraps a “point” at the pole of the S3 at z = d, the approxi-
mation of the string as a one-dimensional object breaks down. It is therefore meaningless
to consider the position of the string localised in the S3 on scales smaller than the fun-
damental string width. Furthermore, the four-dimensional effective tension of the string
in this region is clearly equal to the intrinsic warped tension T̃1 ∼ a2

0T1, which under the
correspondence in (5.157) is equivalent to the tension of a non-cylindrical defect string in
the region of the “pinch”, µ|n|(z ≈ m∆) ∼ η2|n|2. As stated in section 5.5, this goes some
way towards justifying our original assumption that µ|n|(z) ∼ η2|n|2 within the regions
z ∈ [m∆± |n|lp].

In addition, how tightly wound the string is from a four-dimensional perspective may affect
the length-scale over which it is able to move from one winding orientation to the other,
as well as to how localised Reff (z) may be. For example, if we identify the fundamental
Planck length lp with the fundamental string length ls ∼

√
α′, the fact that |reffc |min ∝ |n|

(in addition to lp ≡
√
α′) may be related to this effect, and we may use this to identify |n|

explictly with a combination of string theory parameters based on physical arguments.

Intuitively, we expect a more tightly wound string to correspond a higher value of |n|
in the field picture, so the simple correspondence nw ←→ |n| must be rejected. We may,
however, arrive at a hypothetical correspondence between |n| and the dynamical parameters
which control winding formation in the string picture via the following argument: In the
field theory picture we have assumed that the sections of “neutral” string which connect
neighbouring regions of ±|n| string are of length ∼ 2|n|lp. We now justify this in the dual
string picture by assuming that the four-dimensional length over which the string “sits” at
the pole of the S3 is proportional to (twice) the tangent of the angle of incidence (so that a
more tightly wound string takes a greater distance to “unwind” in proportion to its angle
of incidence), giving

∆z ∼ 2|n|lp ∝ 2
R

d

√
α′. (5.161)
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Indentifying lp ∼
√
α′, we then have

|n| ∝ R

d
. (5.162)

However, clearly this cannot be our final expression, as for d > R we have that |n| < 1.
From the definition

ωl ∼
nwR√

a2
0ρ

2 + n2
wR

2
∼ R

d

(
1 +

R2

d2

)− 1
2

(5.163)

we see that ωl → 0 as d→∞. We therefore propose the correspondence

|n| ∼ R

ωld
∼ nwR

a0ρωl
∼
√

1 +
R2

d2
∼ 1√

1− ω2
l

(5.164)

which implies |n| → ∞ as ωl → 1 and |n| → 1 as ωl → 0, as expected. In other words, in
the limit that we obtain and unwound F -string, the original duality proposed by Nielsen
and Olesen [15] is recovered. 27 Topological winding numbers of opposite signs (±n) way
be obtained by taking either physical winding numbers of opposite signs (±nw) or opposite
signs in front of the square root.

Recall that the tension of a general (p, q)-string at the tip of the warped throat is

T(p,q) ≈
1

2πα′

√(
q

gs

)2

+
(
b0M

π

)2

sin2
(pπ
M

)
, (5.165)

so in the limit M >> 1, the approximate tension of the F -string is

T(1,0) ≈
1

2πα′

(
b0M

π

)
sin
(pπ
M

)
≈ 1

2πα′
× b0M

π
× π

M
, M >> 1

≈ α′−1, b0 ∼ O(1). (5.166)

and that of the D-string is

T(0,1) ≈
1

2πα′
1
gs
≈ α′−1g−1

s . (5.167)

Dealing first with the F -string, we see that under the general correspondence given in
(5.157), the only consistent correspondence between the individual elements η and |n| in

27However, in order for |n| to be an integer greater than one (which corresponds to the limit d >> R), we
require d < R, which is equivalent to ∆ < rc in the pinched string picture. Hence, dealing with models in
which |n| > 1 is potentially problematic, as the assumptions made in order to simplify the pinched string
EOM break down. This suggests that further and more in depth analysis is needed in this limit, at least
regarding the field-theoretic necklace model, though for the time being we will neglect such considerations.
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the field theory picture and the parameters of the string theory is

η ∼ a0

√
α′
−1
, |n| ∼ 1. (5.168)

In chapter 3 it was necessary to identify the energy corresponding to the epoch of the (p, q)-
string network formation (ηs) with the fundamental string energy scale (not the warped
string energy scale), so that ηs ∼

√
α′
−1

not ηs ∼ a0

√
α′
−1

. Although this appears to con-
tradict our identification (5.168), it is not immediately clear that this is so, since we have
chosen to identify the fundamental string width δ ∼ η−1

s with the fundamental string scale
(so that δ ∼ η−1

s ≡ ls ∼
√
α′), which is in perfect agreement with our previous results. The

identification of η with the warped string scale then tells us that it is inequivalent to ηs.
In the string picture, the F/D-string network forms at ts ∼ η−1

s ∼
√
α′, but the windings

begin to form some time later at tw > ts, where tw ∼ a−1
0

√
α′, at which point wound-strings

are dual to defect strings with |n| > 1. The effective formation time is dependent on the
warped string scale. What happens in the regime ls ≤ t < tw remains unclear within the
field theory picture, though one possibility is suggested by combining the correspondences
(5.169) and (5.170), which follow shortly, with (5.168).

Alternatively, it may not be possible to associate specific expressions involving string theory
parameters with the individual elements η and |n|, but only to arrive at a composite expres-
sion of the form η|n| ∼ f(a0, gs,M) (e.g. η|n| ∼ a0

√
α′
−1

, as suggested by the expression
for the F -string tension above). However, we will arrive at three separate, but physically
intuitive, expressions for both η and |n|, which seem to correspond to two separate dynam-
ical models of winding formation in the string picture.

Consider now the expression for the the total energy of the wound-string loop, obtained in
chapter 4, for geodesic windings formed via the velocity correlations regime, E = 2πT1ρ

(c.f. (4.26) and substitute ρ(ti) = (αti)). By the arguments given above, geodesic windings
in the string picture correspond to cylindrically symmetric strings in the dual field theory
model, whose total energy we expect to be E = 2πη2|n|2ρ and whose (constant) tension is
therefore µ = 2πη2|n|2 (where |n| ∼ 1/

√
1− ω2

l as in (5.164)). Two self-consistent corre-
spondences between the individual elements η and |n| and the string theory parameters for
the F -string then exist:

η ∼
√
α′
−1
, |n| ∼ 1 (5.169)

and

η ∼ a0

√
α′
−1
, |n| ∼ 1

a0
. (5.170)
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Clearly, the second correspondence accounts for the possibility |n| > 1 through the condi-
tion a0 < 1, though a strict correspondence would imply a quantisation of a0. In the first
expression (5.169), the symmetry-breaking energy scale is the fundamental string energy
scale, whereas in the second (5.170), it the warped string energy scale.

It is unclear whether the string width should be set by the fundamental string length-
scale or the warped string length-scale, as it is unclear whether the energy associated with
F/D-string network production should be the fundamental string energy, or the warped
string energy. Furthermore, it is unclear if the string width can be determined by the
fundamental scale (i.e. ∼

√
α′), while the energy associated with network formation (in

the string picture) or symmetry-breaking (in the field theory picture) is determined by the
warped string scale (i.e. ∼ a0

√
α′
−1

) or vica-versa. Though the following comments are
therefore highly conjectural and tentative, interesting interpretations will be put forward
for the existence of all of the correspondences above, as well as for those suggested by the
expression for the D-sring tension (5.167).

We first consider the F -string correspondences. In the range
√
α′ ≤ t < a−1

0

√
α′ there

exists no difference between the random walk and velocity correlations regimes (as both
create an equal number of windings over the period taken to move a single step length εl).
We then propose that the correspondence (5.169) holds within this region, so that there ex-
ist simply unwound F -strings (in the string picture) which are dual to |n| = 1 defect strings
(in field picture). For t > a−1

0

√
α′, we must adopt one of the correspondences (5.168) or

(5.170), depending on our model of winding formation.

In the random walk regime of winding formation, ωl(ti) → 0 as ti → ∞ (see chapter
3), so |n| → 1 according to the general proposed correspondence (5.164). These results
are in complete agreement with (5.168). By contrast, in the velocity correlations regime,
ωl ∼

√
1− a2

0, so |n| ∼ 1√
1−ω2

l

∼ 1
a0

in accordance with (5.170). 28

We are then left with two correspondences between the field theory parameters η and
|n| and the string theory parameters a0 and ls ∼

√
α′ (valid for t > tw ∼ a−1

0

√
α′) which we

interpret in terms of different winding formation mechanisms for the F -string. In addition,
we have proposed a general correspondence between the dynamical parameters governing
winding formation in the string picture and the topolgical winding number |n| in the field

28In the velocity correlations regime the string oscillates between states of maximal/minimal ωl, deter-
mined by the value of a0, but here we deal only with its initial state at t = ti. In the dual field picture,
such expansion/contraction of the four-dimensional loop radius could correpsond to expansion/contraction
caused by quantised transitions between different topological winding states, e.g. the transistion of a string
of radius ρ and winding number |n| to an identical energy state with radius ρ/2 and winding number 2|n|
etc. This would be consistent with the idea, proposed in chapter 4, that the oscillations of a wound-string
loop with l > 0 correspond to the “twisting” and “untwisting” of the string if we identify the field theory
and string theory parameters |n| ∼ 1/

√
1− ω2

l with a measure of torsion.
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picture, which holds in both scenarios.

Turning our attention to the D-string tension and considering both winding formation
mechanisms, we see that this also allows three possible identifications. These are

η ∼ a0

√
α′
−1
, |n| ∼ 1

√
gs

(5.171)

in the random walk regime, and

η ∼
√
α′, |n| ∼ 1

√
gs

(5.172)

or

η ∼ a0

√
α′, |n| ∼ 1

a0
√
gs

(5.173)

in the velocity correlations regime. Here the condition |n| ≥ 1 may be realised by imposing
either gs ≤ 1 or gs ≤ a−1

0 (together with appropriate quantisation conditions for a0 and
gs). Following the same arguments as before, we may now account for the existence of
(5.171)-(5.173) by supposing that the D-string also follows either a random walk regime
with step length εl ∼ a−1

0

√
α′ or velocity correlations regime with c = l̃s/t̃s = 1 as the ad-

ditional factors of
√
gs
−1 in these expressions (as opposed to the F -string case) are simply

accounted for via the differing string tension.

Clearly, we may explore any of the proposed correspondences (5.168)-(5.170) or (5.171)-
(5.173) in greater detail and in conjunction with (5.157), though we here restrict ourselves
to considering (5.168) in order to illustrate the general procdure.

Combining the expression R2 ∼ gsMα′ with the general correspondence in (5.157), R2 ∼
r2
s ∼ (

√
λη)−2 ∼ rv ∼ (eη)−2, and the specific correspondence (5.168) gives

λ ∼ e2 ∼ 1
a2

0Mgs
∼ α′

a2
0R

2
(5.174)

and

λeff (z) ∼ (eeff (z))2 ∼ 1

a2
0Mgeffs (z)

∼ α′

a2
0(Reff (z))2

. (5.175)

Using the definition of the deformation parameter for the conifold (and adjusting the units
so that ε̃−4/3 = ε4/3α′), we may then write

λ ∼ e2 ∼ 1
a2

0Mgs
∼ α′

a2
0R

2
∼ ε4/3. (5.176)
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On the left-hand-side of (5.176) we have the Abelian-Higgs couplings which, together with
the symmetry-breaking energy scale η, determine the effective masses of the particles present
in the universe according to that model (i.e. the bosons associated with scalar and vector
fields). On the right-hand-side we have string theory parameters which determine the large-
scale geometry of the universe according to the KS model (including both the large and
compact dimensions) and which control the fundamental mass-scales of the particles associ-
ated with that theory (i.e. the masses associated with the excitations of F/D-strings). Most
importantly, if we also include the correspondence η ∼ a0

√
α′
−1

, the field theory parameters
which set the mass-scales for the particles at the current (post-symmetry-breaking) epoch
may be equated with the parameters which control inflation and the cosmological expansion
in the dual string picture.

At first sight, this may seem strange. However, according to the present cosmological
paradigm, the presence of an inflaton field caused a period of rapid expansion in the very
early universe. The inflaton then “decayed” and its energy was channelled into the pro-
duction of defects and particles, whose remnants or “descendents” (following temperature
changes and further symmetry-breaking phase transitions caused by the expansion and cool-
ing of the universe) may be observed today. On reflection, therefore, the correspondences
above appear quite natural as we may expect the parameters which control inflation to set
the present day mass-scale of the universe.

We note that the Abelian-Higgs model is a “toy” symmetry-breaking model, in that there
are only two fields (and two associated bosons). However, it is possible that a similar
analysis may be performed for more realistic field theories (e.g. for standard model fields),
allowing correspondences to be drawn between the parameters which control the mass-scales
and couplings of observable particles and the dual string theory parameters which control
the large scale evolution of the universe (though again, more refined models than the KS
compactification may be needed, even in the string picture). If such duality correspondences
are correct, we would expect agreement between the results of particle physics experiments
and cosmological observations. This is an interesting prospect, since in principle, such du-
alities may be tested by comparing data from these related fields. Ultimately, we may even
hope to search for constraints on the standard model Higgs mass in data from future CMB
observations.

In this connection, it is worth considering two more important questions raised by the
analysis above. The first regards the nature of the symmetry-breaking phase transition in
the dual string picture. In the Abelian-Higgs model, the phase transition which gives rise to
string formation is well-defined and it is the U(1) symmetry of the vacuum which is broken.
The transition is an example of a “static” symmetry-breaking process - the Higgs potential
(i.e. the Mexican hat), may be interpreted as really existing and not as a phenomenological
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device to describe the effects of a dynamical process, as in its condensed matter analogue
(see [114]). However, from a philosophical point of view, such “static” symmetry-breaking
processes are extremely unsatisfactory because the parameters which define the Higgs field
must be put into the theory by hand (i.e fine-tuned) and it is hard to imagine how they may
be derived from some underlying theory (e.g. one governing a more fundamental dynamical
process).

According to the analysis above, we may equate the parameters which determine the size
and shape of the Mexican hat potential with their string analogues. But what is the
“symmetry-breaking” process which takes place in the string model? Does it break a U(1)
symmetry? Is it static or somehow dynamic? Although the following argument is somewhat
naive, in that we imagine a string “sitting” in space and evolving in time (as opposed to
considering a relativistic string embedded in a spacetime geometry), a long, straight (i.e.
unwound), F - or D-string should obey U(1) symmetry with respect to rotation around its
central axis. When windings form, this symmetry is broken and each point along the string
adopts a “phase” factor, determined by its position in a U(1) ≡ S1 submanifold of the
full S3. 29 In the string picture the dynamic nature of the symmetry-breaking process in
therefore manifest, and this helps us to understand why we may write all the parameters
which define the field-theoretic strings (including |n|) in terms of the parameters which con-
trol the F/D-string dynamics, and in particular those which control the process of winding
formation (regardless of the exact model of winding formation we adopt).

The second question relates to a point first raised in chapters 1 and 3. Cosmic neck-
laces formed from extra-dimensional windings were first proposed by Matsuda as possible
DM candidates [6, 7]. The idea was that necklaces which had shrunk to their minimal size
(determined by the fundamental string thickness) and which contained insufficient mass
to undergo collapse would only be able to interact with other fields/matter gravitation-
ally. However, the proposed correspondence between necklace configurations and “pinched”
gauge strings suggests that this is unlikely as the presence of dual Aθ term (however this is
defined) implies that necklaces may emit and absorb gauge field radiation as well as gravi-
tons. Bearing this in mind, we suggest the following definitions for the effective scalar and
vector fields in the wound-string model:

φ(r, θ, z) = φ(r, θ, reffs (z)) = ηF

(
r

reffs (z)

)
e±i|n|θ

≡ a0√
α′
F

(
r

Reff (z)

)
exp

(
±i
∣∣∣∣ nwRωla0ρ

∣∣∣∣ θ) , (5.177)

29Rotating the string around its fundamental axis will no longer leave the configuration invariant. It
will instead be analogous to the turning of a screw, causing windings to change their position in the large
dimensions, just as the threads of a screw move along its axis.
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and

Aθ(r, z) = Aθ(r, reffs (z)) = ηreffv (z)|n|A

(
r

reffv (z)

)

≡ a0√
α′
Reff

∣∣∣∣ nwRωla0ρ

∣∣∣∣A( r

Reff (z)

)
, (5.178)

where F and A are subject to boundary conditions analogous to those imposed before. Here
θ may also be interpreted as the angular coordinate of a point on the S1 sub-manifold that
defines the effective radius of the winding (for any value of z) and r as the distance from the
“centre” of the S1 to its circumference. Physically, a section of the wound string effectively
“occupies” a volume ∼ 2πReff (z)dz in the large dimensions, so that r and θ also admit
their usual interpretations for a string of finite width.

This gives rise to a flux at each point z which is quantised in terms of nw in the string
picture (for fixed values of the other parameters) and in terms of n in the field picture, so
that

Φnw(z) =
2πa0√
α′
Reff (z)

nwR

ωla0ρ
≡ Φn(z) =

2πn
eeff (z)

. (5.179)

5.8.1 Argument for a time-dependent bead mass

We now use physical arguments to construct explicit dynamical models of pinch formation
which are the direct analogues of dynamical winding formation in the random walk and
velocity correlations regimes. To construct the analogue of the former, consider a field con-
figuration corresponding to an |n1|-vortex string undergoing random quantum fluctuations
in both its phase θ and magnitude f(r)η at every point in the string. In order for a sec-
tion of string within the horizon to undergo a spontaneous transition to a new topological
state |n2| 6= |n1|, the fluctuations in θ would need to be perfectly correlated at least over
some distance ∆z ≥ lp (i.e. within a volume of approximately ∼ r2

c∆z). For example, a
transition from a +|n| state to a −|n| state at even a single point z would correspond to
each degenerate vaccuum state 〈φ〉 = ηf(r)ei|n|θ (r ≤ rs, rv, θ ≤ 2π) tunnelling through
the Mexican hat potential, so that θ → θ + δθ = θ + π. Clearly, this is highly unlikely,
regardless of the tunnelling amplitude for such a transition at any individual point.

It is also possible, in principle, for random fluctuations in the magnitude δ(f(r)η) at each
point to result in a total reduction of the size of the vortex to a sub-Planck scale. However,
if this were to occur within the horizon, it would again be necessary for such fluctuations to
be correlated, at least over some length-scale ∆z ≥ lp, in order for a finite section of string
to “re-emerge” with a different topological winding number. Even if this constantly takes
place over small regions (which would be the analogue of continuous Brownian motion at
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every point along a wound string), it is clear that the net effect would be to to leave the
macroscopic structure of the string, and the total number of pinches, unchanged.

The situation is different, however, for the vortex slice which lies (instantaneously) on
the horizon. In this case the vortex is “free” to re-emerge in a differing topological state,
so that only fluctuations at the horizon may contribute to the net number of pinches. Let
us assume that the radius of the vortex at the horizon moves with velocity v, but randomly
increases or decreases within the range [lp, rc], so that its net velocity may be estimated via

〈v〉 ∼
√
v ∼ nprc√

ρ2 + n2
pr

2
c

(5.180)

where np denotes the number of pinches and we have again assumed critical coupling. We
note that np ∼ ρ

∆ ∼
ρ
d , whereas, crucially, in the dual model nw ∼ a0ρ

d , so

np ∼
nw
a0
. (5.181)

Clearly, using R ∼ rc, the expression for 〈v〉 is equivalent to that for ωl:

〈v〉 ∼
√
v ∼ nprc√

ρ2 + n2
pr

2
c

= ωl ∼
nwR√

a2
0ρ

2 + n2
wR

2
. (5.182)

The number of pinches per loop for loops formed at t = ti is then

np(ti) ∼
√
〈v〉 εlαti
rc

(5.183)

where εl is again the step length. Setting εl ∼ αη−1 ∼ αa−1
0

√
α′ then results in expressions

for np(ti), 〈v〉 (ti) and ∆(ti) in the field picture which are the analogues of those for nw(ti),
ωl(ti) and d(ti) in the string picture:

np ≈
1√
2

(αti)
rc

(
−1 +

√
1 +

4m2
p

η4t2i

) 1
2

=
nw
a0
≈ 1√

2
(αti)
R

(
−1 +

√
1 +

4α′

a4
0t

2
i

) 1
2

(5.184)

〈v〉 (ti) ≈
1
2

(
η

mp

)2

(αti)

(
−1 +

√
1 +

4m2
p

η4t2i

)

= ωl ≈
1
2
a2

0(αti)

(
−1 +

√
1 +

4α′

a4
0t

2
i

)
(5.185)
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∆(ti) ≈
√

2rc

(
−1 +

√
1 +

4m2
p

η4t2i

)− 1
2

= d(ti) ≈
√

2R

(
−1 +

√
1 +

4α′

a4
0t

2
i

)− 1
2

(5.186)

where we have also identified lp ∼ tp ∼
√
α′ and mp ∼

√
α′
−1

. One may check that these
correspondences imply

|n|(ti) ∼
R

ωl(ti)d(ti)
∼
√
α′

a0R
|nw(ti)|−1 ∼

(
mc

η

)
|np(ti)|−1, (5.187)

(where mc = r + c−1), so as nw(ti) →
√
α′

a0R
for ti → ∞, we have that |n|(ti) → |n| ∼ 1, as

required. Importantly, we can now predict the vorticity of the field theoretic strings, at least
in terms of the velocity associated with the fluctuations at the horizon (or equivalently, the
observed number of pinches).

This opens up the possibility that, if a suitable quantum theory of the vortice configu-
ration is developed, it may be possible to predict both |n| and ∆ (or np) in terms of some
more fundamental underlying dynamics. As a first step towards this, we note that in the
scaling regime

d(ti) ∼
1
2
a2

0R√
α′
ti. (5.188)

In chapter 3 we used the standard field theory scaling model in an explicitly warped space
(so that ξ(ti) ∼ a0γti) to infer d(ti) ∼ ξ(ti), yielding γ ∼ 1

2
a0R√
α′

. However, we have now
constructed an explicit duality between a wound-string model in warped space and a defect
string in unwarped space (where we expect ξ(ti) ∼ γti). Identifying ∆(ti) ∼ d(ti) ∼ ξ(ti) ∼
γti then yields

γ ∼ 1
2
a2

0R√
α′
∼ 1

2
a0α

|nw(ti →∞)|
∼ 1

2
1√
λ

(
η

mp

)
∼ 1

2
α

|np(ti →∞)|
. (5.189)

The physical constraints |nw(ti →∞)| ≥ 1 and α, γ ≤ 1 then imply

λ ∼ e2 ≥ 1, (5.190)

which in conjunction with (5.174) yield Mgs ≤ a−2
0 , though this is perfectly consistent with

the SUGRA approximation Mgs >> 1 for a2
0 << 1.
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Recall now that the total mass of the pinched string loop is

MT ∼ 2πη2|n|2ρ+ 2πη2|n|2 × 1
2
r2
c

∆2

∫ z=np∆

z=0
|G′|2dz (5.191)

which may be approximated by

MT ∼ 2πη2|n|2ρ+ 2πη2|n|2 × 1
2
r2
c

∆2
× np∆|G′|2max. (5.192)

As well as controlling the exact mass of the bead itself, the value of |G′|2max indicates the
“spread” of the density fluctuation, with a higher maximum gradient indicating a higher
degree of localisation.

Until now we have assumed that |G′|2max ∼ O(1). However, in order for our expression
for the pinched string bead mass to “match up” with our expression for the wound-string
bead mass (3.23), using the correspondences already established, we must now make the
additional assumption |G′|2max ∼ np. While this seems physically reasonable, as a greater
number of pinches (for a given value of ∆) should result in proportionately greater concen-
tration of the bead mass, at present we have no way of testing the validity of this assumption
and it is likely that a full dynamical theory of pinch evolution would be required for this. In
addition, for np > O(1), this directly contradicts the assumptions made in order to obtain
the simplified forms of the pinched string EOM, whose solutions we used to calculate µ|n|(z)
and on which the expressions for MT above are based.

Although more work is needed, we content ourselves here demonstrating an order of mag-
nitude equivalence between the pinched string bead mass and the wound-string bead mass,
based on the assumption that |G′|2max ∼ np in the latter (which roughly corresponds to
multiplying the ansatz (5.150) in section 5.7 by np), and using the correspondences already
established). This gives

Mb ∼
π

2
η2|n|2 × r2

c

∆
|G′|2max ∼

π

2
η2|n|2 × r2

cnp
∆

, (5.193)

where we have assumed the mass of an individual bead is half that associated with the a
single pinch. We then make use of the previously established correspondences η ∼ a0

√
α′
−1

,
T1 ∼ T(1,0) ∼ α′−1, rc ∼ R, np ∼ nw

a0
and d ∼ ∆ to obtain

Mb ∼
π

2
T1
nwR

2

d
|n|2. (5.194)

The correspondence d ∼ a0ρ
nw

then yields

Mb ∼
π

2
T1
n2
wR

2

ρ
|n|2 ∼ π

2
T1
n2
wR

2

ρ
(5.195)
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if |n| ∼ O(1). As shown above, for pinches formed from random fluctuations in the string
radius, |n|2 ∼ 1. Ignoring an arbitrary factor of 1/2, the expression (5.195) is then exactly
equivalent to the expression for the bead mass (3.23), obtained from the wound-string lifting
potential (setting Π = 0). Clearly, in this case, the late-time fall-off of Mb(ti) is proportianal
to t−1

i and the behaviour of pinched string networks matches that of necklaces formed from
wound strings.

We may now hope to use the dual pinched string model to help answer the question first
posed at the end of chapter 3: does the bead mass remain fixed after the time of loop
formation ti? Unfortunately, in the absence of a full dynamical model of pinch evolution,
we are still unable to answer this question with any certainty. As the bead mass in this

model depends on the quantity
(
dreffc
dz

)2
∼ r2

c
∆2 |G′|2, two competing factors come into play

- the time evolution of ∆ (i.e. ∆(ti, t) in an explicitly dynamic model) and that of |G′|2. In
principle it is possible for either factor to outweigh the other, so that the bead mass may
even increase. This too may have an analogue in the string picture, since the contraction
of the string causes neighbouring windings to move closer together, thereby increasing their
effective radii. Clearly, much more work is needed in both the string and field theory models
in order to develop a full dynamical theory. 30

Finally, we note that a model of pinch “formation” which is the analogue of winding pro-
duction in the velocity correlations regime may also be constructed. In this case, we must
assume that the radius of the vortex at the horizon has a classical velocity which causes
the string core to shrink to the Planck scale before regrowing to its maximum radius and
again reversing its direction to repeat the cycle. It is unclear dynamically why this should
be so, but an alternative view of this scenario is simply that the defect string formed “ready
pinched” at the symmetry-breaking phase transistion, so that succesive pinches (separated
by a characteristic length-scale ∆) are then uncovered by the advancing horizon at a rate

30It is also possible that our expression for the bead mass (3.23) is incorrect. That Mb ∝ n2
w results

directly from the identification of dψ ∼ dσ in the region of a bead. However, traversing the four-dimensional
circumference of the loop once, we traverse the ψ-direction nψ times. This suggests we should integrate over

a region dσ ∼ dψ/nψ instead and gives Mb ∼ π
4
T1

R2nw
ρ

(where we have identified nw ∼ nψ and set Π = 0).

We may obtain agreement between this expression and (5.193) by continuing to assume |G′|2max ∼ O(1)
and |n| ∼ O(1) and by modifying our estimate of the distance between neighbouring windings so that
d ∼ a2

0ρ/nw. Our original identification, d ∼ a0ρ/nw, is motivated by the Minkowski part of the conifold
metric, ds2 ∼ a2

0ηµνdx
µdxν + . . ., which suggests dxµ → a0dx

µ in the transition from unwarped to warped
space. However, the expression for the four-dimensional rest mass of an unwound string, MT ∼ 2πa2

0T1ρ
(c.f. (3.19)), suggests instead the modified form above and is equivalent to assuming np ∼ nw/a

2
0. By

identifying nw ∼ 2nψ (c.f. chapter 4), we may also account for the discrepancy in the numerical factor, so
that π/4→ π/2 in the expression for the wound-string bead mass. Using the assumptions above, this is then
in complete agreement with (5.193). If correct, these remarks imply that the results presented in chapter 3
must be modified and the bounds on PBH production recalculated, which may also require an erratum for
[1] to be issued. These subtleties are yet another example of the difficulty in transfering intuitively obvious
ideas from unwarped to warped-space models.
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proportional to t. 31

5.9 Additional Notes

In this section we brielfy address a number of issues raised in this chapter, some of which
relate to questions raised earlier in this thesis. We aim to tie up loose ends and to identify
open questions.

5.9.1 Effective actions

In our chosen gauge the pinched string tension is a function of the position along the string,
z = ρσ. However, covariantly - even in a static gauge - it must be expressed as function
of all the spatial coordinates. In addition, intuitively we may expect the dynamics of the
pinched string to differ profoundly from those of its cylindrical counterpart. Even ignoring
the prospect of pinch evolution/bead localisation along the string itself, perturbations along
the length of the string ought to lead to genuine density fluctuations, equivalent to longi-
tudinal waves. Furthermore, for a pinched string, a drift velocity v < c may be uniquely
defined along its length. Because the pinched string has internal structure along its central
axis, it becomes meaningful to talk about “part” of the string moving.

We therefore propose a generalisation of the standard Nambu-Goto action to describe the
pinched string dynamics. Assuming that rv << R (rs ≤ rv), where R is the curvature
radius of the string, and parameterising the effective two-dimensional worldsheet in terms
of the space and time-like variables σ and τ , we have

S = −
∫
dσdτµ(σ, τ)

√
−γ(σ, τ) (5.196)

where γ = detγab, a, b ∈ {τ, σ} and the induced metric is now

γab = Gµν(X(σ, τ))∂aXµ(σ, τ)∂bXµ(σ, τ) (5.197)

where Xµ(σ, τ) represents the embedding of the string in four dimensions.

We may make contact with the wound-string theory by defining an effective four-dimensional

31In the pinched string model in unwarped space, the number of pinches uncovered, per unit time, by the
advancing horizon is Np(t) ∼ t/∆ ∼ npt/ρ (in either model of pinch formation). In the wound-string model
in warped space, the number of windings uncovered is Nw(t) ∼ a0t/d ∼ nwt/ρ. Thus, the four-dimensional
appearance and phenomenology of wound-string and pinched string necklaces are indistinguishable. In other
words, direct observations of necklaces cannot be used to determine if the space we live in is warped.
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tension

µ(4)(σ, τ) ∼ T1

√
−γ(10)(σ, τ) (5.198)

where γ(10)(σ, τ) is the determinant of the induced metric on the wound-string embedded
in the full ten-dimensional spacetime, i.e.

γ(10)ab(σ, τ) = GMN (X(σ, τ))∂aXM (σ, τ)∂bXN (σ, τ) (5.199)

where M,N ∈ {0, 1, ..., 9}. We then use the four-dimensional (e.g. Minkowski) part of the
the string embedding to define an induced metric for the effective worldsheet in the large
dimensions γ(4)(σ, τ) and define an effective four-dimensional action as

S = −
∫
dσdτµ(4)(σ, τ)

√
−γ(4)(σ, τ). (5.200)

Ultimately, if the correspodence between static defect strings and static wound F/D-strings
is to hold with regard to the string dynamics, the EOM derived from (5.196) and (5.200)
should take the same form for pinched/wound-string ansatz choices intuitively expected to
correspond to equivalent configurations from a four-dimensional perspective. As well as
providing an important confirmation of the (less general) static gauge work given above,
such dynamics would be well worth studying in their own right and a possible program of
extension of the current work in this direction is outlined in section 5.10.

5.9.2 Model mixing

As promised in chapters 1 and 3, we now add a brief note on “model mixing”, that is, we
ask what happens if we embed a defect string with topological winding number |n| in a
geometry with compact extra-dimensions and require it to wrap windings in the internal
space? This question may be answered along the following lines: Let us first consider an
unwound |n| = 1 string, which is dual to an unwound F -string in the higher-dimensional
geometry. Suppose that this string wraps windings and acquires an apparent topological
winding number |m| ∼ 1/

√
1− ω2

l > 1. Beginning instead with an unwound string of
topological charge |n| > 1, the net apparent winding from a four-dimensional perspective
should then be

|m| ∼ 1√
1− ω2

l

+ |n| − 1. (5.201)

However, we may also construct a purely string-theoretic model of this scenario. Instead of
a background geometry in which the string may wrap windings with a single effective radius
at any point (t, r, θ, z) in the four-dimensional manifold, consider a compact space with a
hierachical structure. For example, instead of a single S3, suppose that we have an internal
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manifold of the form S3×S3. At any point in the Minkowski directions (t, r, θ, z), the string
may wind in two spearate S1 ≡ U(1) sub-manifolds. This would give rise to two winding
parameters, ω(1)

l , which measures the proportion of the total string length contained in
the windings around the first S3, and ω

(2)
l , which measures the proportion contained in

windings around the second S3. Hence the total apparent winding number would become

|m| ∼ 1√
1− (ω(1)

l )2

+
1√

1− (ω(2)
l )2

− 1, (5.202)

so we have

|n| ∼ 1√
1− (ω(2)

l )2

. (5.203)

In addition, as the windings may wrap S1 sub-manifolds (in either S3) with continually
changing effective radii, we may even mimic the effect of a pinched string wrapping an
internal manifold.

5.9.3 A note on the magnetic fields generated by pinched string beads

From the work presented in chapter 3 it is clear that, though superficially similar, neck-
laces formed from wound strings behave very differently to true string-monopole networks.
The main difference between beads formed from pinches/windings and monopoles formed
in discrete phase transistions is the existence of a time-dependent bead mass for the former.
However, there exists yet another, perhaps even more fundamental reason why necklace
“beads” are not true monopoles.

To see this directly, we consider the pinched string dual, and then extrapolate our findings
to the wound-string model. The magnetic field around a pinched string with neighbouring
±|n| sections is illustrated schematically in figure 5.3. In the model presented above, which
contains only a single non-zero gauge field component Aθ, the key point is that Br = 0 at
the points z ≈ m∆ and z = m∆/2 (taking the limit ∆ >> rc >> |n|lp), whereas Bz = 0
only at z ≈ m∆ and Bθ = 0 for all z. In this case, field lines emanating from the core
do a “U-turn” and meet at r = ∞, though one can easily imagine adapting the model
to include an Ar term in the gauge field ansatz, which allows the ~B-field lines to meet at
some finite value of r, perhaps corresonding to the average interstring distance. Alterna-
tively, we may even imagine placing strings with neighbouring ±|n| regions side by side, but
“out of phase” by a length scale ∼ m∆, so that field lines flow from one string into the next.

However, despite these technicalities, whatever the precise form of the magnetic field lines
generated by the pinches, they may not flow from +|n| to −|n| vortex pinches (and vica-
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Figure 5.3: This figure illustrates the magnetic field around a pinced string with neighbour-
ing ±|n| regions. Here we have assumed critical coupling and taken the limit |n|lp << rc.
The key point is that the magnetic flux is zero in the region of the pinch, so that flux lines
cannot flow between neighbouring “beads”.

versa) along the same string. This is in stark contrast to the field lines emanating from true
magnetic monopoles, which by definition can begin on one monopole and end on any other
monopole of opposite topological charge with which the former is in causal contact.

The term “monopole” should therefore be used with great caution when refering to lo-
calised masses associated with extra-dimensional windings, and the term beads, which has
largely been adopted in the literature, is far more appropriate. 32

5.9.4 On the instability of non-integer windings

As mentioned in chapter 3, the question of the stability of non-integer windings in the string
picture may now be addressed in the dual field theory. The transistion from a positive to
a negative winding state (i.e. from |nw| → −|nw|), corresponds to a transisition from pos-
itive to negative topological winding (|n| → −|n|), in the dual defect string. Although
this occurs explicitly in the pinched string ansatz developed above, it may only occur in
the region of the pinch, where the string core is localised in a Planck scale region ∆r ∼ |n|lp.

In the string theory picture this corresponds to the point at which the string crosses the
“pole” of the S3 after completing a full winding. A string which changed direction in the

32Many thanks are due to Yuri Sitenko for his insightful questions, which helped to clarify these points.
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internal space mid-winding would therefore correspond to a defect string with neighbouring
vortex/anti-vortex regions of radius ∆r > |n|lp. At these radii vorticity can be consistently
defined and we would expect such regions to immediately annihilate.

This instability can also be demonstrated explicitly (though only qualitatively within the
limits of the present, non-dynamical analysis) in the string picture with the help of diagrams:
Figure 5.4 represents a winding configuration in which the string wraps a half-winding in
the positive ψ-direction of the S3, before changing direction and wrapping a half-winding
in the negative ψ-direction. From figures 3.2a and 3.2b, we see that the necklace configu-
ration is formed by successive half-integer windings “falling off” the potential hump in the
“same direction” with repsect to the θ-coordinate of the diagram (i.e, both string sections
fall either to the left or to the right), leading to the production of two beads at separate
values of θ. Similarly, if succesive half-integer windings were to fall off the potential hump
in opposite directions, this would simply lead to the creation of two beads at the same value
of θ and the necklace structure would be preserved.

Figure 5.4: Succesive half-integer windings of a string in the ψ-direction of the three-sphere.
Such a configuration is clearly unstable and its collapse results in the annihilation string
section involved in the wrapping.

In the case of succesive half-integer windings in opposite directions, however, we see that
it is not possible for these to fall off the potential hump in this way, as it would imply a
discontinuity in the string. The only possibility that remains is for both string sections to
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fall off the hump in the same direction, but this leads to the annihilation of the winding.

Dynamically, we may interpret this as resulting from the action of the string tension (viewed
as a vector quantity in the compact space), which causes the point at which the string un-
dergoes an inflection to feel a force “pulling” it back to the ψ = θ = φ = 0 configuration
and into line with the four-dimensional string axis. At the point at which a whole winding
has been completed, this force is not present - even if the string undergoes an inflection -
as the string already “sits” on the four-dimensional axis of the loop (i.e. at the pole of the
S3).

On a related note regarding string transisitions, we also see that requiring each point in a
finite section of F/D-string to have enough energy to “jump” the potential barrier is equiv-
alent to each point in a finite section of a vortex string aquiring enough energy to “jump”
the central region of the Mexican hat potential. In the field picture, the topological defect
must “melt away” and then “reform” in a new but energetically equivalent winding state,
i.e. with +|n| → −|n|. This in turn implies that b − b annihilation in the wound-string
picture, which corresponds to a collision arising through the transition of the connecting
string section to a degenerate vacuum state, is likely to be a fairly rare occurence, which
is perhaps far less trivial and less easily realised than previously envisaged (see [6]-[9]).
However, there also exists an alternative form of b − b collision in the string picture, aris-
ing through the outright annihilation of neighbouring string sections in degenerate vacuum
states. This too has an analogue in the field theory model, as neighbouring sections of ±|n|
string may annihilate if they collide.

5.9.5 Alternative pinched/wound-string configurations

The pinched string ansatz which interpolates between degenerate +|n| and −|n| vortex re-
gions is not the only model we may develop. We may imagine, for example, making the
transistion H|n|(z)→ ±(H|n|(z))2 in (5.82) so that our string interpolates between identical
+|n| and +|n| or −|n| and −|n| regions. Such a model would correspond to wound strings
with net windings in only a single direction, which may in fact be the most realistic possi-
bility, given the dynamical models of winding formation we have considered.

Alternatively, we could imagine defining a function H|ni|(z) where i ∈ {1, 2, 3...} in which
neighbouring pinch regions contain vortices of arbitrary topological charge. In addition,
these regions may or may not be of equal length. Clearly there are an infinite number of
specific pinched string models, even if we restrict ourselves to varying the form of the H-
function in the ansatz and do not worry about the functions Gs and Gv, each of which should
correspond in some way to a different model of winding formation in the dual string picture.
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What is important is that we have shown the generic possibility of a pinched string which
may interpolate between regions of |n1| and |n2| vortex slices (for |n1| 6= |n2|) via Planck-
sized segments in which vorticity becomes undefined. The only remaining question is, how
to link segments with different minimal widths, i.e. ∆r = |n1|lp and ∆r = |n2|lp? Clearly,
an effective model could be constructed by creating |n2−n1| string sections of length ∆z = lp

and radii ∆r = |n2 − 1|, |n2 − 2|, . . .|n1 + 1|, |n1| (assuming |n2| > |n1|), though again, a
full field-theoretic description would require a theory of sub-Planck-scale physics.

5.10 Conclusions and discussion of prospects for future work

We have shown that, by introducing spatially-dependent field couplings into the standard
Abelian-Higgs model, we may obtain static vortex solutions to the resulting EOM which
describe non-cylindrical strings. By hypothesising the existence of Planck-sized regions in
which vorticity itself becomes undefined, it has also been possible to construct a model in
which neighbouring sections of string carry different topological charges.

Assuming a periodic variation in the pinched string profile, a formal correspondence be-
tween the resulting periodic tension and the effective four-dimensional tension of a wound
F/D-string in the KS geometry was then obtained. Using a specific but natural ansatz for
the string embedding, which describes non-geodesic windings, we were able to obtain spe-
cific correspondences between the string theory parameters which define the KS geometry
and the field theory parameters which define the Abelian-Higgs model. In the dual string
picture, the spatial-dependence of the field couplings was found to be related to the effective
radius of the windings.

Though there are many possible ways in which to improve and build upon the research
presented in this thesis, perhaps the most valuable would be to extend the present analysis
from the purely static case to the more general dynamical one. Ideally, complete dynamical
models of pinched string formation and evolution would be developed, which allow the cos-
mological consequences of pinched string networks to be determined with greater accuracy.
It would also be instructive to compare these with general dynamical models of wound
(p, q)-strings in order to detrmine if correspondences exist for all string species. To these
ends, we therefore propose the following research plan:

Project 1 - String theory/field theory dualities; Dualities between the dynamics of pinched
field-theoretic strings in four-dimensional space and F/D-strings with windings in the extra
dimensions may be established by perturbing our existing static solutions and studying the
resultant time-dependent behaviour. We may then conjecture effective actions for each con-
figuration (in four-dimensional space) and determine the resulting EOM. If these equations
admit solutions which match the expansion obtained previously, equivalence will have been

195



5.10. CONCLUSIONS AND DISCUSSION OF PROSPECTS FOR FUTURE WORK

demonstrated. Specifically, if the two descriptions are equivalent, the motion of the wound-
string states should give rise to a time-dependent variation in the four-dimensional effective
tension. We therefore expect the four-dimensional effective action for each string to be a
variant of the standard Nambu action for F/D-strings and cylindrical field-theoretic strings,
but with a modified tension term whose value is a function of the worldsheet coordinates (as
proposed in section 5.8.1). Dynamically we expect these perturbations to represent longitu-
dinal waves in four dimensions, in contrast to the behaviour of standard relativistic strings.
In the string picture, such longitudinal waves would correspond to genuine compressions
and rarefractions in the winding density, analogous to motion of waves on a “slinky”.

Project 2 - Gravitational wave spectrum of an oscillating string loop; This may be calculated
by determining the time-dependent energy-momentum tensor for the loop and searching for
approximate or exact solutions to the Einstein equations using this as a source. If deter-
mining the full, exact, solution proves to be intractable analytically, we may instead search
for a solution to the linearised field equations or solve the full non-linear equations numer-
ically. In either case we expect the resulting gravitons to carry momentum in the compact
directions. This implies that their wavelengths must be quantized in terms of integer mul-
tiples of the length-scale of the compact dimensions. It is this crucial fact that allows us
to distinguish between “extra-dimensional” and “four-dimensional” GW spectra and which
may enable us to extract information about compact dimensions in future observations.

Project 3 - Macroscopic behaviour of (p, q)-string networks; Using the Compton wavelength
associated with the mass-scale of the string tension as an estimate of the string width, and
combining this with the length-scale and dimensionality of the compact space (as free pa-
rameters of the theory), we may estimate the probability P of a string intersection resulting
in the formation of a loop which chops off from the network. This will allow us to calculate
the loop production efficiency parameter c̃ and to determine the macroscopic behaviour of
the network. In particular, Jun’ichi Yokoyama has suggested33 that the presence of extra
dimensions, combined with randomly distributed motion in the compact space, may greatly
decrease the probability of either static or dynamically stabilized loops chopping off from
the string network. This may result in the failure of the network to reach a scaling so-
lution, which is the usual assumption applied to all models of field-theoretic networks in
the existing literature. It is therefore possible that the effects of microscopic, perhaps even
Planck-sized, extra dimensions may be manifested in the large-scale structure of the early
universe, greatly influencing its subsequent evolution. However, detailed calculations are
needed to confirm this and to determine exactly what influence this may have on cosmo-
logically observable parameters.

33Private corresponence.
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Project 4 - Gravitational field around a pinched/wound string ; It is worth calculating the
gravitational field surrounding both a static, long, straight string-necklace and a static neck-
lace loop. As in project 3, we may begin by determining the energy-momentum tensor of
the string configuration before solving the Einstein equations with this as a source, or we
may adopt an inverse method (c.f. [4]) by selecting an ansatz for the metric of the space-
time surrounding the necklace and determining the resulting energy-momentum tensor by
substituting this into the field equations. It is well known that the spacetime surrounding
a long, straight, uniform string is conical, with an angular deficit proportional to the string
tension. We may therefore conjecture that, as the tension of a necklace varies periodically
along the length of the string, the surrounding spacetime resembles a “fluctuating” cone,
with the angle deficit varying as we move parallel to the string. Again, detailed calculations
are needed to confirm this. It would also be interesting, ultimately, to extend this analysis
to the full dynamical case.

Project 5 - Fitting models of pinched/wound string networks to CMB anisotropy data; As
mentioned in chapter 2, the best fit to existing CMB anisotropy data uses a ΛCDM model
incorporating Abelian-Higgs strings which contribute to the temperature fluctuations at the
surface of last scattering to the level of approximately ten percent (at multipole l = 10)
[126, 127]. This exciting result also suggests that still better fits may be obtained us-
ing models containing more exotic string species. The work presented here implies that, at
least in extra-dimensional models, wound-strings/necklaces are likely to be the most generic
string-like objects present in the early universe. The dual pinched string model also sug-
gests that this may be the case, even in the absence of extra dimensions. Unfortunately, no
necklace/pinched string fit to the CMB data has been attempted and it would be interesting
to extend our present anlysis along these lines.
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CHAPTER 6

FINAL CONCLUSIONS

In this thesis we have considered a model of static cosmic string loops in the KS back-
ground of type IIB string theory where the strings wrap cycles in the internal space. As the
compact manifold of this geometry is simply connected, these cycles are not topologically
stabilised. However, it was shown that the presence of a lifting potential (resulting from the
string embedding) traps sections of string in the compact space, giving rise to strings with
step-like winding configurations. From a four-dimensional perspective these configurations
then appear as a series of beads connected by strings, which are refered to in the literature
as cosmic necklaces.

Before chopping off the network to form a loop, the end point of the string was assumed to
undergo random motion in the internal directions. This allowed us to develop an explicit
model of non-geodesic winding formation which was found to give rise to a time-dependent
lifting potential, in direct contrast to existing models of necklace formation, which assumed
the presence a constant bead mass. In this model the bead mass was not a monotonic func-
tion of time, but increased from zero initially before peaking and monotonically decreasing
at late times. However, the bead number density quickly reached a constant value, so the
interbead distance scaled with the horizon. Identifying this with the correlation length of
the string network therefore allowed us to propose the existence of a scaling regime, equiv-
alent to that assumed in field-theoretic models of cosmic strings.

As the late-time increase in the number of beads per loop was insufficient to compensate
for the fall in individual bead mass, we found that only necklaces formed within a certain
window were able to undergo gravitational collapse to form PBHs. Necklaces formed at
later times in the scaling regime formed stable relics, with a minumum radius correspond-
ing to the fundamental string width. By considering the contribution to the extragalactic
gamma-ray flux from PBHs expiring at the current epoch, we were able to use experimental
data from the EGRET experiment to impose bounds on the bead mass, and hence on the
underlying string theory parameters which determine it. These bounds were found to di-
rectly constrain the background geometry via the deformation parameter, which determines
both the size of the S3 which regularises the conifold and the warping of the Minkowski
directions caused by the back-reaction of the fluxes which stabilise its radius.

Throughout this analysis, we have followed previous models in assuming that the bead
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mass remains constant after the epoch of loop formation. However, the reparameterisa-
tion invariance of the Nambu-Goto action suggests that this approximation may not be
valid and further work may be required to determine the full time-dependent behaviour of
wound-string networks.

Extending our initial static model, we then proposed a mechanism for the creation of cosmic
string loops with dynamically stabilised windings in the internal space. Assuming a velocity
correlations regime in the post-inflationary epoch, such windings were seen to arise naturally
in string networks prior to loop formation. Considering strings with geodesic windings, the
angular momentum of the string in the compact space was found to be sufficient to ensure
that the windings remained stable after the loop chops off from the network, even though
the internal manifold is simply connected. In addition, we found that the interaction of
angular momentum with the string tension may cause the loop to oscillate between alter-
nate phases of expansion and contraction, though a critical solution exists in which the
two forces are exactly balanced. This raises the possibility that an oscillating wound-string
loop could produce a distinct GW signature, the future detection of which could provide
evidence for the existence of extra dimensions.

In the final part of our work we proposed a modification of the standard Abelian-Higgs
model, introducing spatially-dependent couplings for the scalar and vector fields. We in-
vestigated static, non-cylindrically-symmetric solutions of the resulting field equations and
proposed a pinch solution which interpolates between degenerate vacuum states along the
string, labelled by ± |n|. This configuration corresponds to a vortex which shrinks until
it reaches the Planck scale, before re-emerging as an anti-vortex, and which results in the
formation of a bead pair with one bead either side of the intersection. The string is then
topologically stable and was shown to be a valid solution to the EOM, except in the Planck-
scale regions where no solution could be obtained.

The key assumption governing our treatment of these regions was that quantities like phase
and winding number, along with others which depend on them, such as the magnetic flux of
the gauge field, become undefined at the Planck scale, so that string sections with opposite
winding may be joined via a Planck-sized segment of neutral string. The pinched string
ansatz was found to give rise to a periodic tension, which required us to assume a value in
the pinch regions equal to the tension of a cylindrically symmetric string, in order to ensure
continuity.

Similarities between this solution and the wound-string states considered previously were
then explored. Using natural ansatz choices for the pinched string profile and wound-string
embedding, a formal correspondence between the pinched string tension and the effective
four-dimensional tension of the wound string was established. This allowed a formal cor-
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respondence between the field-theoretic parameters which define the Abelian-Higgs model
and the string theory parameters which define the KS geometry to be infered. The spatial-
dependence of the field couplings was then interpreted as resulting from the spatial variation
in the effective radius of the windings which leads to a varying string coupling.

One especially interesting result was an estimate of the Higgs mass at critical coupling,
which was found to be equal to the energy scale associated with the three-sphere radius.
This may also be written in terms of a product involving the deformation parameter and
warp factor which distorts the Minkowski directions and which, as demonstrated by the
work presented here, may be constrained by cosmological observations.
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Appendix A: Eulerian substitution of the third kind

The quadratic equation in the integral defined by (4.47) and (4.48) has a discriminant
∆ = b2 − 4ac which is everywhere non-negative for values of a2

0 in the range 0 < a2
0 < 1.

We may therefore evaluate the integral using a Eulerian transformation of the third kind,
which takes advantage of the fact that there exist two real roots in y. Let A and B be
the two real roots of the quadratic equation −ay2 + by − c = 0. We then define a dummy
variable u by √

−ay2 + by − c = (y −A)u. (A-1)

In general, we have
−ay2 + by − c = a(y −A)(B − y), (A-2)

so combining (A-1) and (A-2) implies

a(B − y) = (y −A)u2 (A-3)

or equivalently

y =
aB +Au2

a+ u2
(A-4)

and
y√
a

= ±

√
B − y
y −A

. (A-5)

Using the second solution for y as function of u and differentiating the expression above,
then gives

dy =
2du
a+ u2

{
−
(
aB +Au2

a+ u2

)
+A

}
u. (A-6)

Finally, substituting (A-1), (A-4) and (A-6) into the right-hand-side of (4.47) gives∫
dt = ±1

2

∫
dy√

−ay2 + by − c
= ±1

2

∫
dy

(y −A)u

= ±1
2

∫ 2du
a+u2

{
−
(
aB+Au2

a+u2

)
+A

}
u{(

aB+Au2

a+u2

)
−A

}
u

= ∓
∫

du

a+ u2
. (A-7)

Using the standard integral
∫

dx
κ2+x2 = tan−1

(
x
κ

)
and (A-5) then gives (4.50).

Appendix B: The Hopf fibration of the three-sphere

As stated in the introduction, we chose to use the Hopf fibration of the S3 when consid-
ering geodesic windings, as this allows the metric and Killing vectors to be written in a
particularly simple form, viz, (4.4) and (4.17). Choosing windings which wrap only Killing
directions in the S3 then leads to manifest σ-independence in the constants of motion (4.21).
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The ansatz corresponding specifically to geodesic windings is the linear ansatz (4.17) and
this choice of coordinates naturally reflects the SO(3) symmetry of the internal space.

We will now discuss the origin of the Hopf fibration from a geometric point of view. How-
ever, it will also be useful to discuss the origin of the canonical coordinate system from a
similar perspective. By comparing the two (equivalent) descriptions, we hope to clarify the
advantage of using the former coordinate system in the present work and to demonstrate
explicitly the coordinate-independence of our results.

One very natural choice of coordinates on the S3 is the so-called “canonical parameter-
isation”. In this case, the group element of the S3 manifold is

g = e(i/2)[xσ1+yσ2+zσ3], (B-1)

where σi, i ∈ {1, 2, 3} are the usual Pauli matrices. Writing the usual Cartesian coordinates
x, y and z in terms of polars r, θ, φ, the line element becomes

ds2 = −1
2
Tr([dgg−1]2) = dr2 + sin2 r(dθ2 + sin2 θdφ2) (B-2)

which is exactly that given in (4.1) if we identify ψ = r and multiply the whole metric by R2.

By contrast, following Iglesias and Blanco-Pillado [276], we chose to parameterise the S3

using Eulerian variables. We regard the S3 as an SU(2) group manifold with element g
given by [288]

g(ψ, θ, φ) = ei(ψ/2)σ1ei(θ/2)σ2ei(φ/2)σ3 , (B-3)

where σi are the Pauli matrices as before. The group-invariant metric (i.e. the metric on
S3 in these coordinates) can then be written in the form

ds2 = −1
2
Tr([dgg−1]2) =

1
4

(dθ2 + (dψ + cos θdφ)2). (B-4)

It may be seen that, in these coordinates, the submanifolds where θ = θ0 is constant
correspond to flat two-tori with metrics

ds2 =
1
4

(dψ + cos θ0dφ)2. (B-5)

This shows that the Hopf fibration corresponds to describing the three-sphere as a one-
parameter family of flat two-tori (to which it is topologically equivalent). Again we follow
Iglesias [276] in choosing θ0 = 0 in order to simplify the metric as much as possible. It is
also necessary to rescale the metric so that 1/4→ R2, as we are dealing with a physical S3

of radius R.
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Let us now consider an arbitrary string embedding which is a function of both space and
time, Xi(σ, t) where i ∈ {0, 1, . . . 9}. The general - coordinate-independent - expression for
the string Lagrangian is

L = −T1a
2
0

∫
dσ

√
(1− ṙ2)(r2 + a−2

0 R2W )− a−2
0 R2r2P + a−4

0 R4Q (B-6)

where

W = X ′i(σ, t)gij(X(σ, t))X ′j(σ, t) (B-7)

P = Ẋi(σ, t)gij(X(σ, t))Ẋj(σ, t)

Q = (Ẋi(σ, t)gij(X(σ, t))X ′j(σ, t))2

− (Ẋi(σ, t)gij(X(σ, t))Ẋj(σ, t))(X ′i(σ, t)gij(X(σ, t))X ′j(σ, t))

and a dash/dot indicates differentiation with respect to σ/t, respectively. In the static case,
the term W (σ) = X ′i(σ)gij(X(σ))X ′j(σ) corresponds to the length of the wrapped string
on the S3. Demanding dW

dσ = 0, one obtains the geodesic equation

X ′′i(σ) + ΓijkX
′j(σ)X ′k(σ) = 0 (B-8)

where Γijk are the usual Christoffel symbols. Thus minimal (i.e. geodesic) windings on a
general manifold (in our case, S3) with metric gij is enough to guarantee σ-independence
of the winding terms.

This statement still holds if we allow time-dependence into the string ansatz, Xi(σ, t),
as long as for each instant in time the latter still satisfies the geodesic equation. Physically
this means that the wrapped loop only ever evolves along geodesic curves. A simple example
on the S2 would be a great circle passing through the north and south poles and rotating
about an axis through the poles. Thus we require our embedding function to satisfy

X ′′i(σ, t) + ΓijkX
′j(σ, t)X ′k(σ, t) = 0. (B-9)

With time-dependence we also have a non-zero kinetic energy term of the wrapped string
inside the square root factor in our Lagrangian

P (σ, t) = Ẋi(σ, t)gij(X(σ, t))Ẋj(σ, t). (B-10)

Demanding that dP
dσ = 0, we find

Ẋ ′i(σ, t) + ΓijkẊ
j(σ, t)X ′k(σ, t) = 0. (B-11)

Geometrically this states that the velocity vector, Ẋi, is preserved under parallel transport
along a geodesic curve that is wrapped by the string. One can equally interpret this equa-
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tion as saying that under parallel transport of the tangent vector to the geodesic curve, X ′i,
along a curve whose tangent vector is Ẋi, the former is preserved. Mathematically, this is
simply the statement that ∇γ̇γ′ ≡ ∇γ′ γ̇ = 0.

The nice consequence of demanding the above is that that the winding term is not only
σ-independent (if we take geodesic wrapping) but also time-independent, i.e. dW

dt = 0. Thus
σ-independence of the kinetic function P guarantees time-independence of W . This is an
important statement.

Let us now consider what the situation above implies for the case where the wrapping
is over flat submanifolds, as in the case of Iglesias, where the Γijk all vanish. The geodesic
equation (B-9) and (B-11) trivially imply X ′′i = 0, Ẋ ′i = 0 and the solution of these equa-
tions is

Xi(σ, t) = Xi
0 + niσ + ui(t). (B-12)

This provides the origin of the linear σ anasatz of Iglesias. Apart from the winding and
kinetic terms mentioned above, there are additionally the two R4 terms appearing inside
the square root in the Lagrangian in Q(σ, t). The σ-independence of the second term follows
from our previous results, because this term is simply WP . The σ-independence of the first
term above follows after a simple calculation making use of (B-9) and (B-11). In the case
of wrapping along a flat submanifold, one sees that Q vanishes identically.

However, what is important is that σ-independence of all the relevant terms in the La-
grangian is guaranteed by requiring the strings to wrap geodesics and that the velocity
vector is preserved under parallel transport along this geodesic. Thus L =

∫
dσL = 2πL,

as stated in the introduction.

We now have the possibility of working in any coordinate system, though the choice of
explicit string wrapping ansatz is constrained by the requirement of solving (B-9), (B-11)
if we require geodesic windings. In general, explicit solutions to the geodesic equations are
hard to come by but for very symmetric spaces - like spheres - they are known. 1

Let us now compare the form of these explicit solutions in canonical coordinates to the
simple linear ansatz in (B-12). In order to determine the appropriate ansatz for geodesic
windings in canonical coordinates, we must first calculate the Killing vectors in this coor-
dinate system. We know that the Killing fields corresponding to the SU(2) rotations of
the S3 generate isometries of the above metric. Therefore, if we think of the S3 as being

1For general wrappings of the string around the full S3, however, the ansatz will certainly never be linear
in σ and nor will the σ- and time-dependence factorize in an additive way, as it did in the flat space case,
no matter what the choice of coordinates.
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embedded in R4 where X,Y, Z, U represent the four Cartesian coordinates,

X2 + Y 2 + U2 + Z2 = 1, (B-13)

the three independent isometries are generated by

J1 = JXU + JY Z , J2 = JXZ + JY U , J3 = JXY + JZU , (B-14)

where JZU = Z∂U − U∂Z is the generator of rotations in the Z − U plane etc. The above
Ji clearly generate an SU(2) algebra. Then the three Killing vectors are

ki1 = (−U,−Z,X, Y ); ki2 = (−Z,U,−Y,X); ki3 = (−Y,X,Z,−U) (B-15)

which define an orthonormal basis for the SU(2) Lie algebra. However, unlike the Killing
vector fields of the two-torus, those of the whole S3 are in general coordinate-dependent.

Since we work with coordinates {ψ, θ, φ} rather than the embedding coordinates {X,Y, U, Z}
one can re-express the above Killing vectors in terms of kia(ψ, θ, φ) with i = 1 . . . 3 of the
S3. To obtain these, consider the left-action of rigid group elements

ga = eiεσa (B-16)

on the group element g of SU(2) written in terms of canonical coordinates described above.
Explicitly we have that

g11 = cos(ψ) + i sin(ψ) cos(θ), (B-17)

g12 = i sin(ψ) sin(θ)e−iφ,

g21 = i sin(ψ) sin(θ)eiφ,

g22 = cos(ψ)− i sin(ψ) cos(θ).

Expanding to linear order in ε in the gi, reading off the infinitesimal variations δψ, δθ, δφ
and equating

δXi = εkja∂jX
i, (B-18)

we can then read off the components of the Killing vector kia for each of the isometries
induced by left-action with group element ga, a = 1, 2, 3 of SU(2). This gives

k1 = [sin(θ) cos(φ), sin(φ)− cot(ψ) cos(θ) cos(φ),− cot(θ) cos(φ)− cot(ψ)
sin(φ)
sin(θ)

],(B-19)

k2 = [− sin(θ) sin(φ), cos(φ)− cot(ψ) cos(θ) sin(φ),− cot(θ) sin(φ)− cot(ψ)
cos(φ)
sin(θ)

],

k3 = [cos(θ),− cot(ψ) sin(θ),−1].
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One can check that the above Killing vectors are orthonormal with respect to to the canon-
ical metric on S3,

kiagijk
j
b = δab. (B-20)

Using the above results, it is possible to show the σ-independence of the Lagrangian for
geodesic windings, but even when working in canonical coordinates, the resulting expres-
sions are complicated. If we now return to our coordinate-independent description, armed
with the knowledge that the Lagrangian density must be σ-independent for geodesic wind-
ings, we find that we can reproduce most of our results without reference to a specific
coordinate system.

Looking at the effective potential (setting all time derivatives to zero), we find

V = a2
0T1

√
r2 + a−2

0 R2W (B-21)

and we now know that the second term is just the warped length squared of the wrapped
string on the S3. The tangent vector to a geodesic x′i (where a dash here refers to differ-
entiation with respect to the affine parameter along the curve) can always be defined to
have unit length ie x′igijx′j = 1. In our case, the string wraps closed curve geodesics with
different winding numbers in general. A nice example of closed curve geodesics on the S3

are the integral curves whose tangent vectors are the three Killing vectors kia, a = 1, 2, 3
that generate the SU(2) isometry group of S3 (see above). Thus it is natural to take the
following ansatz for our static wrapped string:

X
′i
G(σ) =

∑
a

nax
′i
a =

∑
a

nak
i
a(X(σ)) (B-22)

where we have used the fact that the tangent vectors to the SU(2) generated geodesics
are the Killing vectors kia (and where the subscript G implies that the embedding ansatz
satisfies (B-9) and (B-11)). The Killing vectors not only have unit length with respect to
the canonical metric on the S3 but they are orthonormal. Using this, it is easy to see that
W =

∑
a nana, which is a constant and so consistent with our previous analysis.

The above makes sense because it is known that flows of the Killing vector fields on S3

induced by rigid SU(2) rotations are geodesics. Our wrapping ansatz is guaranteed to be
“minimal” - in the same sense as the linear ansatz of Iglesias for winding around the torus
- because the flows of the Killing vectors in that case are geodesic circles around the torus.

In equation (B-22) we have written the expression for X
′i(σ) and not Xi(σ). The lat-

ter can be obtained in principle by integration. In the simple case where the Killing vectors
are coordinate-independent (e.g. Abelian isometries, shift isometries), integration directly
gives us Xi

G = Xi
0 + σnak

i
a, as found in the case of flat submanifolds discussed earlier. The
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SU(2) Killing vectors, however, are not constant, so integration is non-trivial and will lead
to non-linear dependence on σ in general.

It is a general result that if a Killing vector field has constant length, then it will gen-
erate geodesics along the manifold. In our case, we know that the kia(X) have unit length
with respect to the canonical metric on the S3. Therefore we can be sure that equation
(B-9) will be solved by X ′i(σ) ∼ kia(X) on the three-sphere according to the ansatz in
(B-22). One can see this more clearly by taking the normalisation constraint gijkiak

j
b = δab

and differentiating this with respect to some arbitrary vector field Y . The resultant Killing
equation gives us ∇kakb = 0, which more generally implies

∇nakanbkb = 0. (B-23)

This is just a restatement of the fact that nakia is a geodesic.

Since we are interested in the dynamics of such an embedding, we now need to extend
our solution to incorporate time-dependence. This means that we need to preserve the
geodesics under time evolution. To ensure this, let us use the SU(2) transformations, since
these are isometries which preserve the canonical metric and map geodesics to geodesics.
The modified ansatz for the embedding functions reads

X ′i(σ, t) =
∑
a

nak
i
a(X(σ, t)),

Ẋi(σ, t) =
∑
a

λak
i
a(X(σ, t)), (B-24)

where we have introduced new variables λa ∈ R. The string modes will therefore be wrapped
along any curve defined by nakia, and this curve will evolve via the second geodesic equation
(with tangent vector λakia). This means that the functions in the action will take a simplified
form,

W →
∑
a

nana, P →
∑

λaλa, (B-25)

which are both constant, and λa is related to the average speed of the string along the S3.

If na and λa are such that the X ′i and Ẋi are parallel, then the R4 terms will vanish
from the action. If these vectors are not parallel, there is no cancellation, which means that
the wrapped geodesic must have a perpendicular component along the winding direction
satisfying ẊiX ′jgij = 0.

How does this affect the resultant action constructed in equation (B-6)? We can define
a unit vector pointing parallel to the winding direction in the usual manner. This allows
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us to split the velocity into components Ẋi = Ẋi
‖ + Ẋi

⊥. After some manipulation we find
that the Lagrangian simplifies to

L = −T a2
√

(1− ṙ2 − a−2R2Ẋi
⊥gijẊ

j
⊥)(r2 + a−2R2W )− a−2R2r2Ẋi

‖gijẊ
j
‖ (B-26)

where the R4 terms have cancelled, as already stated. Physically this makes sense, since
the perpendicular modes lie in the normal bundle and therefore contribute to the transverse
boost of the string, much like the velocity in the Minkowski directions. The net effect is an
enhancement of the relativistic “gamma” factor.

In the simplest case, where we neglect the transverse modes, the resultant energy and
momentum are

E = 2πT1
a2

0(r2 + a−2
0 R2W )√

(1− ṙ2)(r2 + a−2
0 R2W )− a−2

0 R2r2P
,

l = 2πT1
R2r2λana√

(1− ṙ2)(r2 + a−2
0 R2W )− a−2

0 R2r2P
, (B-27)

where we have defined l in the same manner as [276]:

l =
δL

δẊi
X ′i. (B-28)

For the case where there is no velocity in the Minkowski direction, we can write the energy
as a function of l and minimise it to obtain

r4
∗ =

l2

a4
0(2π)2T 2

1

, (B-29)

which is the generalisation of the r ∼
√
l dependence obtained in Iglesias. Moreover, the

velocity at the minimal radius is

Ẋ2
‖ = λaλa =

a2
0

R2
. (B-30)

Considering the general case, where there is non-zero Ẋi
⊥, we see that solutions which min-

imise the energy with non-zero l require us to set ṙ = Ẋi
⊥ = 0. This is easily understood

since non-zero velocity in these directions only ever increases the energy through enhance-
ment of the “gamma” factor.
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In the general case we see that the above expressions can be written in the modified form

E = 2πT1
(r2 + a−2

0 R2nana)√
(1− ṙ2 − a−2

0 R2Ẋi
⊥gijẊ

j
⊥)(r2 + a−2

0 R2nbnb)− a−2
0 R2r2λbλb

,

l = 2πT1
R2r2λana√

(1− ṙ2 − a−2
0 R2Ẋi

⊥gijẊ
j
⊥)(r2 + a−2

0 R2nbnb)− a−2
0 R2r2λbλb

. (B-31)
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