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Abstract 

 

The main objective of this research is to understand the mechanisms of interlaminar 

toughness using non-woven veils as the interleaf materials. The vacuum assisted resin 

transfer moulding (VaRTM) method was chosen for making specimens. Several types of 

non-woven veils were used as the toughening materials, because the non-woven veil 

was expected for good resin permeability. Three types of carbon fabrics, (plain, 

5-harness satin, and unidirectional) and two types of resins (epoxy and vinyl ester) were 

selected for base materials.  

 

Firstly, the Mode-I and Mode-II interlaminar toughness tests, which are double 

cantilever beam (DCB) and four-point end notched flexure (4ENF) tests, were carried 

out to evaluate the effect of toughening by the interleaf veils. The mechanisms of the 

improvement by the interleaf veils were evaluated by microscopy. The adhesion 

between veil fibres and matrix is an important factor of the improvement of the 

interlaminar toughness. If veil fibres have poor adhesion to resin, these fibres would be 

pulled out from the matrix and work as fibre-bridging. In contrast, good adhesion of veil 

fibres is not necessary improvement of the interlaminar fracture toughness. Because 

these fibres are embedded in the matrix and interleaf veil cannot contribute to 

suppression of the crack propagation. 

 

The second stage of experiments was impact and compression after impact (CAI) tests. 

In this stage, the base materials were plain weave fabric only. Impact damage was 

evaluated using ultrasonic C-scan. The polyamide veils interleaved samples had 

superior impact and CAI resistance properties in all interleaved materials. 

 

In the final stage, correlation between each mechanical property was analysed and 

discussed. It was found that the relationship between each fracture toughness is affected 

by fabric and resin. Moreover, this work and previous literature data were compared. It 

can be found that the non-woven veils are effective toughening materials. 
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Chapter 1 
 

 

Introduction 

 

 

1.1 What are Composites? 

Composites have a very long history. In ancient Babylon, bitumen reinforced 

with plaited straw was made. Straw and horse hair have been used to reinforce mud 

bricks, improving their fracture toughness, for at least 5000 years. Almost all, natural 

materials which must bear load, such as wood, bone, paper, or muscle, are composites 

[1]. 

 

The composite materials, in particular fibre reinforced plastic (FRP), are one of 

the most interesting materials in both academic and industrial areas. The composite 

industry, however, is new. It has grown rapidly over the past 30 years with development 

of fibrous composites. The roots of the advanced composite materials (ACM) can be 

found with glass fibre reinforced plastics (GFRP) developed in World War II. In the 

1950s, FRP using glass fibre and unsaturated polyester was developed [2]. In the 1960s, 

carbon fibre as reinforcement material was invented. Compared to glass fibres, the 

carbon fibres have a high elastic modulus. As a result, the FRPs have progressed 

dramatically as new structural materials, and fields of application have also evolved. 

Subsequently, the other reinforcements with high strength and elastic modulus have 

been developed, for example, aramid fibre, silicon carbide and so on. The matrices have 

also been improved.  

 

 Composites are versatile materials that are artificially made, as opposed to 

materials that occur naturally [3]. In addition, the constituent phases must be chemically 

dissimilar and separated by a distinct interface. In contrast, most metallic alloys and 

many ceramics do not adapt to this definition because their multiple phases are formed 

as a consequence of natural phenomena. Many composite materials are composed of 

just two phases. One is termed the matrix, which is continuous and surrounds the other 

phase. The other phase is called the reinforcement, which toughens the matrix. The 
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classification of the composite materials is shown in Figure 1.1. From Figure 1.1, the 

composites are arranged in three main divisions: Particle-reinforced, Fibre-reinforced, 

and Structural composites. There are at least two subdivisions for each main division. 

The dispersed phase for the particle-reinforced composites is equiaxed, i.e., particle 

dimensions are approximately the same in all directions. For the fibre-reinforced 

composites, the dispersed phase has the geometry of fibres. Finally the structural 

composites are combinations of composites and homogeneous materials [4]. 

Particle-reinforced Fibre-reinforced Structural

Composites

Dispersion-

strengthened

Large-

particle

Continuous 

(aligned)

Discontinuous 

(short)

Laminates Sandwich 

panels

Aligned Randomly 

oriented  

Figure 1.1 A classification scheme for the various composite types [4] 

 

At present composite materials are used in wide variety of areas, including 

aerospace, ships, architectures, sports goods, energy and so on. The composite materials 

possess characteristics of high specific stiffness and strength, corrosion resistance, and 

good electrical properties. Moreover they are superior to other multipurpose materials 

such as metals. One major advantage of the composite materials is that they can be 

made according to specific needs, by selecting fibre, fibre orientation, and matrices. The 

FRP in structural application is superior in cost effectiveness and weight to metal 

materials. Consequently, FRP, especially carbon fibre reinforced plastic (CFRP), is an 

attractive material as an alternative to conventional materials.  

 

 The point, where the composite materials are different from the other materials, 

is their anisotoropy. Isotropic materials have identical properties in any direction. Metal 

is a typical isotropic material. On the other hand, anisotropic materials have properties 

such as strength and elastic modulus, which are different according to reinforcement 

orientation. A special case is an orthotropic material which has properties that are 

different in orthogonal direction. The FRP, in particular unidirectional composite, is 

strong anisotropy materials. Consequently, when the structure is designed using 
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composite materials, the anisotropy is a key consideration.  

 

One of the major drawbacks for the FRPs, especially laminated materials, is 

their susceptibility to damage from external impacts. When FRP receives low velocity 

impact such as dropped tools, interlaminar damage, in the form of delaminations, would 

occur with little or no external evidence of the damage. The strength, nevertheless, may 

be severely reduced, in particular the compression strength. One of the goals of 

composite materials designers is to develop the material with damage resistance and 

damage tolerance.  

 

1.2 Main Objective of Research 

 The overall objective was to achieve improvement of the interlaminar toughness 

for the composite materials using interleaf veils as toughening materials, understanding 

the mechanisms of the toughening by the interleaf veils, and discussing correlation 

between Mode-I, Mode-II, impact, and compression after impact (CAI) properties. A 

multitude of research for interlaminar fracture toughness has been undertaken by many 

researchers. To take an example, the matrices are toughened by particles or added 

rubber, thermoplastic films have been interleaved in interlaminar region, laminate 

fabrics are stitched, etc. In this research, the non-woven veils as interleaf materials have 

been used for the improvements of the interlaminar toughness of the composites. The 

interleaf techniques based on polymer films were introduced in 1980s, and interleaved 

composites exhibited superior fracture toughness compared to the non-interleaved cases 

using the same resin.  

 

 Various methods are available for manufacturing composites: Prepreg moulding, 

Resin transfer moulding, Autoclave method, Filament-winding method, etc. Resin 

transfer moulding (RTM), in particular vacuum assisted resin transfer moulding 

(VaRTM), has become well established in the industrial field, because the VaRTM 

method can provide low cost and high quality for large FRP structures [5]. However, 

when composites are made by the VaRTM technique, some toughening techniques, such 

as interleaf materials, would be restricted. Because the interleaf materials will prevent 

resin flow though the thickness direction. In this research, therefore, non-woven veils 

were used for interleaf materials. It can be expected that the non-woven veils possess 

good resin permeability for the VaRTM method. 
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 Some specific objectives of this research are: 

1. To examine Mode-I and Mode-II interlaminar toughness of the non-woven veil 

interleaved laminates by double cantilever beam (DCB) and four-point end notched 

flexure (4ENF) tests. Base materials are selected woven and unidirectional carbon 

fabrics. The interleaf veils are used polyester/carbon hybrid, carbon, polyester, and 

polyamide samples. 

2. To determine mechanisms of the interlaminar toughening by the non-woven veils. 

The mechanisms of the toughening by the interleaf veils are evaluated by 

observation of fracture surfaces and cross-sections of damaged laminates. 

3. To perform impact tests on the non-interleaved and interleaved specimens. Damage 

of the impacted specimens is detected using ultrasonic wave C-scan. 

4. To perform CAI tests of the non-impacted and impacted specimens. The CAI 

behaviour with interleaf veils is evaluated and discussed using results of test and 

microscopy. 

5. To analyse for correlation between Mode-I, Mode-II, impact resistance, and CAI 

properties and discuss comparison between this work and previous reference data. 

 

 The DCB and 4ENF tests were tested by tensile and compression loading, 

respectively. A drop-impact test was carried out followed by a CAI test performed using 

an anti-buckling fixture to support the plates in compression. 

 

 The work written in this thesis has been undertaken at Queen Mary, University 

of London (QMUL) from 2005 to 2008. This thesis is mainly an investigation into 

CFRP with several non-woven veils, fracture testing by double cantilever beam 

(Mode-I), four-point end notched flexure (Mode-II), impact, and CAI tests. Fracture 

mechanisms were evaluated for cross-section and fracture surface using scanning 

electron microscope (SEM) and optical microscopy, and impact damage area was 

detected by ultrasonic C-scan. 

 

1.3 Outline of Thesis 

 This thesis consists of seven chapters and three appendices. Chapter 1 is an 

introduction to composites and the research. This chapter describes the composite 

materials briefly and explains objective of this work and construction of this thesis.  

 

The literature reviews of previous researches are mentioned in Chapter 2. In 

this chapter, firstly characteristics of the composite materials and the RTM method are 
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introduced. In this chapter, details of the composites and RTM method are indicated. 

Secondly, various toughening techniques for the composites are reviewed. Thirdly, each 

toughness properties for Mode-I, Mode-II, and CAI resistance are compared using 

previous literature data. Fourthly, the interlaminar fracture tests are summarised. The 

interlaminar fracture toughness tests are divided into four types: Mode-I, Mode-II, 

Mixed mode, and Mode-III interlaminar toughness tests. Details of each test are 

mentioned in this section. Finally, the compression after impact test is reviewed and 

summarised. This section is divided into three part, low-velocity impact test, 

non-destructive investigation (NDI), and CAI test. 

 

 Chapter 3 reports on the Mode-I interlaminar toughness tests. Three types of 

carbon fabrics and two types of resin were chosen as the base materials. The non-woven 

veils as the interleaf material were 5 types. Mode-I energy release rate, GI, was 

measured using the DCB test. Firstly, the Mode-I energy release rate values, GI, for all 

specimens are illustrated and summarised in result section. In discussion section, 

mechanisms of the Mode-I toughening by the interleaf veil are evaluated and discussed 

using microscopy images.  

 

 Mechanisms of the Mode-II interlaminar toughening by the non-woven interleaf 

veils are discussed in Chapter 4. For the Mode-II tests, 4ENF test was carried out and 

the same materials as the Mode-I test were used. Construction of the chapter is almost 

the same as chapter 3. Resistance-curves (R-curves) and Mode-II energy release rate 

values, GII, are illustrated and explained in result section. The mechanisms of the 

Mode-II interlaminar toughness by the interleaf veils are evaluated in discussion 

section. 

 

 Chapter 5 shows impact and CAI resistance properties by the non-woven veils. 

In this chapter, the base materials were plain weave and two types of resin. A result 

section is divided into three parts: Impact damage resistance, Results of compression 

test, and CAI strength. The impact damage of specimens was detected by ultrasonic 

C-scan machine. In the discussion part, the impact and CAI resistance properties are 

evaluated using microscopy images.  

 

In Chapter 6, discussion and analysis of the research has been carried out. 

Correlations between Mode-I and Mode-II, impact, and CAI properties are evaluated: 

Mode-I and Mode-II, interlaminar toughness and impact resistance, both modes of 
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interlaminar toughness and CAI properties, and impact and CAI resistance properties. 

For the Mode-I and Mode-II energy release rates, initial and propagation values are used. 

Finally, this work and previous literature data are compared. 

 

 The toughness mechanisms of FRPs have been investigated by many methods 

and aspects. Of course, improvement of toughening techniques for the composite 

materials is developing still. Chapter 7 is final conclusions of this research and 

suggestion for future works. 

 

Appendix A and B show results of the DCB and 4ENF tests, respectively. 

Appendix C mentions correlation between damage area and other properties. 
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Chapter 2 
 

 

Literature Review 

 

 

2.1 Introduction 

 Composites are comprised of more than 2 types of materials and are used in 

various fields of engineering. For composite materials, the interface between the 

composition materials divides clearly, unlike metals. They have many attractive 

properties, such as high specific strength and stiffness, and light weight as compared to 

metal materials [2]. Figure 2.1 shows a diagram of evolution for engineering materials. 

Composite materials started to be used rapidly after 1960s. The use of composites is 

expected to spread in the future. The most important properties for composite materials 

are high specific strength and stiffness. Table 2.1 shows properties of various materials. 

The strength and stiffness properties of steels are superior to most other materials, 

except for the composite materials. However, a drawback of steel is that the specific 

gravity is very high. On the other hand, composite materials have good strength and 

stiffness, with a low specific gravity.  

 

Figure 2.1 The evolution of engineering materials with time [6] 
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Table 2.1 Properties of various materials [7] 

Material 
Density 

[g/m
3
] 

Elastic modulus 

[GPa] 

Tensile strength 

[MPa] 

Soft steel 7.8 210 300 

Structural steel 7.8 210 450 

Chrome Molybdenum steel 7.8 210 1000 

Aluminum 2.7 70 150 

Aluminum base alloy 

[2017: Duralumin] 
2.73 70 280 

Aluminum base alloy 

[2024: Super duralumin] 
2.77 73 450 

Aluminum base alloy 

[7075: Extra super duralumin] 
2.80 75 500 

Polyethylene 0.9 0.3 10 

Polyester matrix 1.3 2 40 

Epoxy resin 1.3 3 50 

Glass 2.2 75 50 

Wood 0.5 10 100 

Glass fibre 2.5 75 2500 

Carbon fibre 1.7 230 3000 

Aramid fibre [Kevlar] 1.4 130 2800 

Unidirectional glass fibre  

reinforced epoxy plastic 
2.0 40 1200 

Unidirectional carbon fibre  

reinforced epoxy plastic 
1.7 140 1500 

 

2.2 Moulding of Composites 

 Compared to the other engineering materials, the FRPs can be moulded using a 

number of methods. They have various moulding methods by changing figure of 

reinforcement materials. The moulding techniques are of 2 types, which are open 

moulding (mould with only one side) and closed moulding (mould with both side). 

Representative FRP moulding methods are indicated as follows: 
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� Hand lay-up 

� Spray-up 

� Filament winding 

� Resin transfer moulding 

� Press moulding 

� Drawing moulding 

� Vacuum bag moulding 

� Autoclave moulding 

 

2.3 Resin Transfer Moulding (RTM) Method 

 Resin transfer moulding (RTM) or resin injection moulding (RIM) are methods 

where laminated dry fibre materials are bagged in a mould and resin is infused into the 

mould, as shown in Figure 2.2. The RTM method has merits of low cost, high efficiency. 

Especially, the RTM method has been able to mould effectively large structures [8]. The 

RTM technique is steadily gaining importance, as it provides cost effective and more 

accurate part geometries than prepreg based lay-up structures [9-10]. 

 

 

 

Figure 2.2 Schematic diagram of RTM method [11] 

 

The vacuum assisted resin transfer moulding (VaRTM) method is one of the 

liquid moulding process that offers advantages to reduce tooling costs for large or 

complex composite structures [12-15]. In the VaRTM process, the dry fibrous materials, 

which are called the perform, are placed onto a single hard sided mould and sealed with 

a vacuum bag. This method is infusing resin by applying vacuum. Hence, compared to 

the conventional RTM method, voidless products can be produced. For the RTM 

method, the resin viscosity is an important factor for the injection process. If the resin 

Preform Mould 

Curing agent Resin bath 
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has high viscosity, the infusing process would be difficult. Therefore it is important to 

find the optimum moulding condition. The resin flow or distribution of voids by the 

VaRTM have been analysed using experimental and numerical methods [16-18].  

 

2.4 Failure of Composites 

 It is necessary to distinguish fracture and failure to discuss the strength of 

composites. The former indicates a state where materials separation or breakup has 

occurred, and the latter means that the damage disappears on the surface. Generally, 

when the strength of the engineering materials is considered, the failure strength is used 

for criteria.  

 

 Although composite materials have desirable properties, the defect of the 

materials is their susceptibility to damage, such as impact damage. When composites, in 

particular the FRPs, receive impact loads, the materials can delaminate at interlaminar 

regions. This fracture would cause serious problems for structural materials even if the 

damage is barely visible on the surface. When the laminate materials are damaged from 

out-of-plane loads, the failure is mainly interlaminar delamination, and in-plane 

compression strength of this laminate reduces significantly. Consequently, a lot of 

research on interlaminar fracture toughness has been carried out. Figure 2.3 shows 

models of fracture processes for the composite materials. 

 

          

 

 

 

Figure 2.3 Schematic diagram of fracture of composites [19] 
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2.5 Interlaminar Fracture Toughness of Composites 

2.5.1 Introduction for Interlaminar fracture Toughness 

 Laminated materials have poor transverse or thickness-through strengths. They 

tend to delaminate or interlaminar separate due to external loads. The delamination is 

the most predominant and life-limiting failure mechanism in composite structures [20]. 

The delaminations occur only at interfaces between plies with different fibre 

orientations, not with same fibre orientations [21-22]. Improvement of the delamination 

resistance can be devided into two ways, improving materials and tailoring the laminate 

in construction [23]. 

 

2.5.2 Toughened Matrix 

 Matrix toughening technique is the simplest way of improving interlaminar 

fracture toughness. Various resins have been used as the matrix. To take an example, the 

thermoset resins are unsaturated polyester (UP), epoxy, vinyl ester (VE) or polyimide 

(PI). The UP is key material of GFRP. This resin has been used widely because of good 

flexibility of use and its low cost. Epoxy provides better adhesion between matrix resin 

and reinforcement. Moreover, it has good mechanical properties, dimensional stability, 

heat tolerance, electrical properties. The VE has better adhesion than the UP. 

Mechanical property and heat tolerance are similar to the epoxy resin. Acid and alkali 

resistance are very good. The PI has more heat resistance than the epoxy resin. However, 

this resin is quite hard to process and requires a high cure temperature (>300oC). 

 

 Epoxy resin is now used widely for composite materials especially CFRP. 

However, FRP with unmodified epoxy has poor fracture toughness. Therefore, 

toughened matrices have been investigated by many researches. Rubber has been used 

as one of the toughening materials, typically liquid carboxyl terminated 

butadiene-acrylonitrile co-polymer (CTBN), as liquid rubber or addition rubber particles. 

The GIC value of bulk resin with added rubber was significantly increased, up to a 

maximum 3.2kJ/m2 [24]. The resin toughness, however, is only partially transferred to 

the composites, because the reinforcements restrict plastic deformation of the crack tip 

in matrix [25]. The GIC of rubber added composites were moderately increased, up to 

0.5kJ/m2. This was due to the improvement by the rubber toughening mechanism and 

associated with resin film thickness [24]. Increasing resin toughness by increasing the 

rubber content may not lead to increase composite toughness. It is likely to weaken 

strength or thermal properties [26]. J. Kim et al. investigated modified epoxy resin 

using rubber, Al2O3 fibre or powder as toughened materials [27]. The resistance curve 
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(R-curve) for the rubber modified matrix composites, both with and without Al2O3 

fibres or powder, were superior to that of the controls. However, the addition of rigid 

fillers to the matrix did not improve the crack growth resistance. The rubber toughening 

was used for not only epoxy resin but also VE resin [28]. 

 

 Bismaleimide (BMI) resin has a significantly higher thermal stability than the 

other thermoset resins such as epoxy resin [29]. The glass transition temperature (Tg) of 

the BMI is approximately 230oC and above. The BMI resin, however, is inherently 

brittle. Therefore, various approaches have been carried out on improving composites 

with the BMI resin. S. Chou et al. studied properties of three dimension (3-D) and five 

dimension (5-D) composites (see in Figure 2.4) with the BMI resin. Various mechanical 

properties such as tensile, flexure, and impact resistance are affected by weaving density. 

Moreover at a high temperature, which is over 250oC, reduction of mechanical 

properties for the BMI composites was moderate [30]. S.P. Wilkinson et al. suggested 

that the BMI resins were modified using thermoplastic toughness modifiers. 

Poly(arylene ether sulphone) and polyimide were used as toughening materials. The 

modified BMI composites for Mode-I and Mode-II energy release rates indicated 

excellent results. Addition tougheners of 15 and 20% of maleimide-terminated 

poly(ether sulphone) yielded composite GIC values of 0.490 and 0.735kJ/m2, 

respectively. On the other hand, unmodified composite GIC value was about 0.360kJ/m2 

[31]. 

 

Figure 2.4 Structural geometry of three dimension (3-D) and five dimension (5-D) 

fabrics [30] 

 



 
Chapter 2  Literature Review 

 42

 Modifiers for the improvement of matrices are quite a useful toughening 

technique. However, they may lead to degradation of thermo-mechanical properties, and 

mould of the composites would be difficult by high resin viscosity. Furthermore, the 

modifier might be filtered out during composites manufacturing. A toughener is 

preferred which does not affect the viscosity of the uncured resin and risk toughener 

segregation or filter [32]. The toughness implies energy absorption and can be achieved 

through various deformation mechanisms. The toughening of composites can be 

realised by reduction of the cross-linking density or use of plasticisers which lead to 

increased plastic deformation in interlaminar regions. The most effective toughening 

techniques, on the other hand, are induced by the addition of a second phase in the form 

of particles [32-34]. Toughening process is that liquid reinforcement is dissolved in 

matrix at uncured condition. Afterwards, phase-separation occurs during cure, as shown 

in Figure 2.5.  

 

Fibre Fibre Fibre 

Resin Resin 

Impregnation Phase separation 

Flow Modifiers 

 

Figure 2.5 Model of phase separation process [33] 

 

A high molecular weight toughener will facilitate control of the phase 

separation process. A high molecular weight, however, has a high viscosity. In order to 

satisfy both requirements, which are a low viscosity and a high molecular weight, a 

spherical molecular structure is more suitable than a linear structure. Dendritic polymers 

which consist of a spherical structure have a lower viscosity than linear polymers for 

equivalent high molecular weights [32]. Hyper-branched polymer (HBP) has similar 

properties to the dendritic polymer as shown in Figure 2.6. This polymer is composed of 

three parts: (a) A multi-functional core, (b) Several layers of monomers, (c) A 

multi-functional shell. The core influences the mechanical properties of the HBP, 

because chemical properties of hull controls the phase separation process and can be 

tailored for each type of resin [35]. The specific advantage of the HBP are three: (a) 

Their chemistry can be easily tailored to have suitable mechanical properties for 



 
Chapter 2  Literature Review 

 43

inducing the most efficient toughening mechanisms, (b) They are reactive, (c) They can 

readily be made compatible with the matrix [35].  

 

 

Figure 2.6 (a) A dendric hyperbranched polymer molecule with a structure composed of 

a multifunctional core (I), several layers of repeating units building up the bulk structure 

(II) and a multifunctional shell (III); (b) Viscosity behaviour as a function of molecular 

weight for linear polymers and hyperbranched polymers (HBPs) [32] 

 

In some studies, the HBP modified epoxy resins demonstrate improving 

toughness compared with the unmodified resins. L. Boogh et al. indicated that a 6 times 

increase in the GIC could be obtained for DGEBF-epoxy resin system using 5% by 

weight of a HBP modifier [32]. R. Mezzenga et al. investigated to work the 

structure-properties relations of the epoxy functional HBP in epoxy composite materials 

[33]. The HBP modifier could realise the improvement of DGEBA-based and 

TGMDA-based epoxy composites. These composites were able to induce more than a 2 

times increase in the GIC values compared to the unmodified composites. Moreover, 

they pronounced an effect of fibre/matrix adhesion on the interlaminar fracture 

toughness of the composite with the HBP modified resins. A specific amino-silane 

sizing improved interlaminar fracture toughness. Toughened resin using the HBP 

modifier can improve significantly interlaminar toughness. However, an increase in 

fracture toughness of the composites would not increase necessarily according to the 

kind of resin type. This is due to poor adhesion between the fibre and the modified resin. 

In order to solve this problem, the adhesion properties could be restored by using an 

excess of amine (hardener) [35].  

 

Thermoplastic resins have also been developed as matrices for high 

performance composites. The thermoplastic resins are more ductile than the thermoset 

(a) (b) 



 
Chapter 2  Literature Review 

 44

resins. The thermoplastic matrices possess some advantages in terms of higher strain to 

failure and impact tolerance, recyclability, repeatability, and longer storage in 

comparison to thermoset matrices [34-35]. Fibre reinforced thermoplastics (FRTP) are a 

tougher material. Especially, the fracture toughness is superior to the FRP. The poly 

(ether ether ketone) (PEEK) is one of the most attractive materials with respect to 

interlaminar fracture toughness. Since the early 1980s, a lot of research for the PEEK 

composites has been undertaken [38]. The PEEK is not hydrolysed by acid or alkali, 

however, the Tg is 143oC, and use of high temperature cannot be endured. For the 

Mode-I interlaminar fracture toughness, the CF/PEEK composites were significantly 

high GIC value, around 1.7kJ/m2. The CF/epoxy composites, on the other hand, were 

about GIC value of 0.2kJ/m2. P. Davies et al. reported that the specimens have 

dependence on specimen thickness by Mode-I test using the thermoplastic resin [39]. 

The thicker specimens are, the higher GI values increase. This was due to increase 

fibre-bridging in thicker specimens. The PEEK composites with various reinforcements 

were evaluated. G. von Bradsky et al. investigated the Mode-I fracture toughness of the 

PEEK matrix with various base fibres, which were glass, carbon, and aramid fibres [40]. 

The GIC value of the glass fibre and carbon fibre composites was in the range of 2.9 to 

3.3 kJ/m2, whereas that of aramid fibre composites was a lower value, approximately 

1.1kJ/m2. They mentioned that fibre/matrix adhesion is the most important factor for 

interlaminar fracture toughness of continuous fibre PEEK composites. The AF/PEEK 

composite has poorer fibre/matrix adhesion than the other fibres, therefore the GIC value 

is quite small. R. Frassine et al. reported rate and temperature dependence in PEEK and 

polyetherimide (PEI) matrix with the carbon fibres. In comparison to the PEI-matrix 

composite, fracture toughness of the PEEK matrix is strongly influenced by test 

condition such as loading rate and temperature [38, 41]. On the other hand, although the 

fracture toughness of the PEI matrix is insensitive to the test condition, that of the 

CF/PEI composite is influenced by temperature [41-42]. There are some works using 

the poly-ethersulphone (PES) composites [43-44]. The crack propagation for the PES 

system composites was stable. T. Kuboki et al. examined for the Mode-I and Mode-II 

interlaminar toughness and impact properties of GFRP composites with isophthalic 

polyester and polyurethane matrices. The polyurethane-based composite showed a more 

stable Mode-I crack propagation than the polyester-based composite. GIC value of the 

polyurethane-based composite was significantly high, 1.6kJ/m2 (initial) and 3.8kJ/m2 

(propagation) [45]. Poly(2,6-dimethyl-1,4-phenylene ether) (PPE) have been exhibited 

interest as tough thermoplastic composite. In particular, it has high glass transition 

temperature (approximately Tg=220oC) and excellent mechanical properties. R.W. 
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Venderbosch et al. discussed interphase behaviour of the PPE composite by using epoxy 

resin as a reactive solvent [46]. This tailoring dramatically improved the adhesion 

between the fibre and the thermoplastic matrix. As the other thermoplastic resin, there is 

polypropylene (PP) matrix. The PP matrix has good mechanical and chemical 

performance, recyclability, and low organic compound emission during moulding [47]. 

However, the PP matrix is quite sensitive to moulding condition, because of its 

semicrystalline nature. This strongly affects mechanical properties. The thermoplastic 

matrices are influenced by environmental condition, such as temperature, test rate and 

so on. The design of the thermoplastic composites, therefore, should consider conditions 

of test and fabrication. 

 

2.5.3 Particles and Whiskers Modificaion 

 In section 2.5.2, the polymer additives as modifiers are mentioned. In this 

section, inorganic additives are reviewed as toughners. The addition of rigid particles, 

such as alumina, silica, glass beads [48-50] or block copolymer [51], has been 

conducted to improve the stiffness and toughness of the resin. J. Spanoudakis and R.J. 

Young evaluated the fracture toughness using glass particles in the epoxy resin [49-50]. 

They focused on the effect of particle volume fraction and size, and particle/matrix 

adhesion. The crack propagation behaviour can be explained as crack pinning, which is 

dependent on the particle volume fraction and size [49]. Moreover, the strength of the 

particle/matrix adhesion affects both the crack propagation behaviour and the 

appearance of the fracture surface [50]. The particle toughened composites can improve 

also post-impact compression strength [52]. V.K. Srivastava and P.J. Hogg studied 

damage performance using particles, which were polyethylene and Al(OH)3 [53]. The 

GIC value for particles modified composites was marginally increased. They suggested 

that the suppression of crack propagation by particles has the limit. On the other hand, 

the GIIC values were significantly affected. The GIIC induced by ductile thermoplastic 

particles was larger than that induced by hard ceramic particles. The thermoplastic 

particles have good fracture toughness property as modifiers [53-54].  

 

The modifications of resin using whiskers as an alternative technique have 

been approached for improving fracture toughness.  Silicon carbide (SiC) whiskers have 

been used for many studies of fracture toughness. For the whisker, the SiC whisker is 

the most widely used as whisker reinforcements for composites, because its physical 

properties are well known and the cost is not expensive [55-56]. In mid-1990s, a short 

fibre reinforcement technique using Kevlar fibres of 5 to 7mm length was used to 
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improve interlaminar fracture toughness. The fracture toughness mechanisms by the 

short fibre reinforcement are mainly fibre-bridging [57]. As the other short fibre 

reinforcements, there are alumina fibre [58], glass fibre [59], or Zylon fibre [57, 60]. L. 

Walker et al. investigated that the addition of short fibre produces a randomly oriented 

heterogeneous layer. This created the potential for random and disturbed crack path. On 

the other hand, the orientation of the whiskers was magnetically controlled to the 

direction of thickness [61]. The oriented whiskers improved fracture toughness due to 

bridging. Moreover, the short fibres absorb energy dependent upon the creation of 

laminate damage. Hence, overall laminate damage reduces due to the increased fracture 

toughness of the short fibres modified materials. Recently, nanoclay has been attempted 

as a reinforcement materials, interlaminar fracture toughness of the nanoclay-filled 

composites was significantly increased [62]. 

 

2.5.4 Fibre/Matrix Adhesions 

 The fibre/matrix interfaces are weaker than the matrix. Composites can fracture 

often in the fibre/matrix interface at an early stage [63]. The strength of the fibre/matrix 

adhesion affects the fracture toughness in FRPs. A strong interface bond is essential for 

improvement of high strength for the composite materials. However, this generally leads 

to a catastrophic fracture through the fibre/matrix interface [64]. On the other hand, 

weak interface bonding leads to fibres debonding or pulling-out from the matrix. This 

may contribute to the improvement of fracture toughness for composite by 

fibre-bridging [64-65]. Many researches have been carried out evaluating and 

improving the fibre/matrix adhesion. It is well-known that the surface treatment of 

fibres changes morphology and chemical properties of the fibre surface, and can 

improve the fibre/matrix interfacial bonding [66-69]. Some researchers reported that 

release agent as the fibre treatment was used to establish the extreme case of poor 

interface adhesion due to identify the pure behaviour of fibre/matrix interface [63, 70]. 

S.M. Lee mentioned the fibre/matrix interface strength influenced strongly the crack 

initiation stage, but did significantly affect the not propagation stage [63]. J. Kim and 

Y.–W. Mai investigated the fracture behaviour of Kevlar and carbon fibres in epoxy 

composites using three types of coating, which are the CTBN copolymer, polyvinyl 

acetate (PVA), and polyvinyl alcohol (PVAL) [71]. The CTBN and PVA coating were 

not improved significantly. In contrast, KFRP and CFRP with the PVAL coating 

improved impact fracture toughness. The PVAL coating induces an increase in the 

interfacial debonding and fibre pull-out. These pull-out fibres work as fibre-bridging 

and therefore fracture toughness can increase [64-65]. Fibre-bridging is a quite 
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important phenomenon for the interlaminar fracture toughness, particularly in 

delamination mode. The fibre-bridging occurs when fibres are pulled from one side of 

the delamination plane to the other side. The interlaminar fracture toughness will be 

increased by occurring fibre-bridging [72-74]. Figure 2.7 shows schematic of fibre 

bridging. However, the fibre-bridging effect may be undesirable when a relationship 

between matrix toughness and composite toughness is trying to be understood [72], 

because the damage behaviour would be complicated. 

 

Figure 2.7 Schematic of fibre-bridging 

 

2.5.5 Improvement of Fabric Architecture 

 In order to improve through-thickness strength of the composites, various woven 

or 3-D fabrics have been introduced. The woven fabric composites are considered for 

high performance applications because they have superior impact resistance and damage 

tolerance properties [75-77]. The woven fabrics are made by interlacing two or more 

sets of fibre tows or yarns. Figure 2.8 illustrates diagrams of representative woven 

fabrics. Orthogonal woven fabrics have good dimensional stability in the warp (the 

longitudinal yarns) and weft (the widthwise yarns) directions [78]. B.J. Briscoe et al. 

investigated the relationship between fabric surface properties and interlaminar fracture 

toughness using various aramid fabrics [79]. They found that a coarse fabric with higher 

areal weight had higher fracture toughness than a fine woven fabric with lower areal 

weight. The type of fabric weave has a small effect on fracture toughness. A rough 

surface of the woven fabrics creates a thicker resin-rich region than the non-woven 

unidirectional composites. As a result, the plastic zone can be developed ahead of the 

crack tip during delamination [78]. As the other fabric materials, felt composites have 

been suggested recently [80-82]. J. Kim et al. introduced carbon fibre felts produced by 

needle-punching the stack of loose fibre webs and woven fabrics [80-81]. They 

investigated the influences of weave pattern and needle-punching density using carbon 

fibre woven and felt composites. The felt/epoxy composite could improve interlaminar 

Bridging fibres 
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fracture toughness and damage tolerance as compared with the woven laminates. These 

mechanical properties of the felt/epoxy composites improve with increasing 

needle-punching density. 

 

 

 

Figure 2.8 Schematic diagrams of representative 2-D woven fabric 

 

 Alternative approaches are to the advanced fabric manufacturing technologies of 

knitting, braiding, through-the-thickness stitching and so on. The 3-D structure consists 

of in-plane yarn for stiffness and strength and z-binder yarns for through-thickness 

reinforcement [83-84], as shown in Figure 2.9. Figure 2.10 shows schematic diagrams 

of the advanced textile fabric. The 3-D composites have two important advantages 

compared with the traditional laminated composites. Firstly, complex shaped 

components, such as I-beams, stiffened panels, cylinders and nozzles, can be 

manufactured rapidly using a variety of fibres, and secondly, the impact resistance is 

improved due to presence of the reinforcement in the through-thickness direction 

[84-89]. The 3-D composite possesses good fracture toughness performance. K.–Y. Kim 

et al. studied to characterise delaminarion behaviour of the composites using several 

weft-knitted fabrics [89]. It was established that the GIC values for the knitted 

composites were approximately 10 or 20 times higher than for the control. The GIC 

values of the knitted composites were influenced by fibre volume fraction of the 

composites, or tightness factor of the knitted preforms. 

(a) Plain weave (b) 2-2 twill weave 
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Figure 2.9 Schematic of representative 3-D fabric [2] 

 

    

 

Figure 2.10 Schematic diagram of the textile fibre architectures: (a) Triaxial braided 

fibre. (b) Milano weft knit rib. (c) Through-the-thickness stitching pattern. (d) 

Orthogonally woven fibre. (e) Layer interlock woven fibre [85] 

 

 Since the 1980s, the use of through-the-thickness stitching with FRP has been 

developed dramatically. A large number of researches have been conducted to 

investigate the impact delamination resistance or damage tolerance of the composites 

made with a 3-D fibre structure, in which fibres extend in through-the-thickness 

direction. For the stitching, K. Dransfield et al. [90] and A.P. Mouritz et al. [91] 

reviewed the effect of stitching for the FRP from many previous researches. The merits 

of through-the-thickness stitching are: (1) Cost-effective method because of easy 

improvement of handling prior to liquid moulding, (2) Effective method to produce high 

in-plane and through-thickness strength, and (3) Improvement of the interlaminar 

fracture toughness and impact damage tolerance [91-92]. The mechanical properties of 

stitched composites, therefore, have been evaluated experimentally [85, 93-95] and 

(a) (b) (c) 

(d) (e) 
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analytically [94, 96-100] by many researchers. The stitching technique can improve 

significantly interlaminar fracture toughness, in particular the Mode-I fracture. V.A. 

Guenon et al. found to a ten times increase in the Mode-I interlaminar fracture 

toughness for the stitched composites [93]. On the other hand, the Mode-II fracture 

toughness of the stitched composites is moderately improved. Parameters of stitch, such 

as stitch separation, stitch type, and stitch orientation affect interlaminar fracture 

toughness [94].  

 

Although the 3-D woven composites have many advantages over 2-D 

composites, there is a disadvantage that the in-plane mechanical properties are degraded 

during manufacture, for example by fibre damage or fibre curvature. It is often found 

that the in-plane tension, compression and flexural properties of the 3-D composite are 

10-40% lower than the 2-D composite with the same in-plane fibre content [80, 101]. 

The decreased mechanical property is due to crimping and misalignment of the 

load-bearing fibres by insertion of the z-binder yarns during weaving [83, 85-86, 101]. 

The twisted fibre yarns for reinforcement might cause a resin rich pocket and decrease 

some internal mechanical properties. In order to avoid this degradation the plain stitch, 

which is untwisted fibre roving, was introduced [102]. In the plane stitch, thread cross 

and resin rich pockets were not formed. The GIC values were increased up to 20 times 

more than the control samples. 

 

2.5.6 Geometric of Specimens 

 Composite materials possess quite strong anisotropic properties. The mechanical 

strength of composites is dependent on stacking sequence. Therefore, the fibre 

orientation is a significantly important factor for composite designing. Figure 2.11 

shows representative fibre orientation patterns. 
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[0/0] [90/90] [+45/+45] 

[0/90] [+45/-45] 
 

Figure 2.11 Schematic diagrams of representative fibre orientation 

 

The mode of fracture is significantly dependent on stacking sequence and fibre 

orientation of composites [103]. If there are no 0o plies in crack propagation area, the 

crack tends to jump from ply to ply and as a test result it is invalid and complex 

[104-106]. On the other hand, the symmetric laminates minimise crack jumping [104]. 

When the crack was propagated between [0/0], which is stacking sequence at mid-plane, 

the GIC value was lower than stacking sequence of [0/90] or [90/90]. In the [0/90] and 

[90/90] specimens, ruptures of fibres or fibre-bridging were occurred. The presence of 

90
o plies in the interlaminar region influences the crack propagation behaviour [105]. 

Many researches for changing fibre orientation have been undertaken experimentally 

and analytically [106-109]. A.B. de Morais et al. reported the Mode-I interlaminar 

fracture properties for the asymmetric cross-ply [0/90]12 specimens and [0/0]24 

specimens [110]. They presented crack behaviour between two neighbouring [0/90] 

interfaces, as shown Figure 2.12. A Similar zigzag propagation has been reported in 

[110] for plain weave specimens. A.B. Pereira and A.B. de Morais presented the results 

of the DCB tests for the multi-directional CF/epoxy specimens on [0/θθθθ] interfaces 

[111]. 
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Figure 2.12 Schematic representation of crack propagation in [0/90]12 specimens [110] 

 

The Mode-II interlaminar fracture is also affected by the fibre orientation in the 

crack propagation region. In the fracture of low angle specimens is by single interface 

Mode-II interlaminar cracking. The higher angle specimens, on the other hand, intra-ply 

cracking and multiple delamination occur [112]. S.L. Bazhenov investigated the fracture 

toughness of different fracture modes, which are interlaminar and intralaminar, using 

[0/90] cross ply GF/epoxy system composites [113]. Figure 2.13 shows schematic 

diagrams of both fracture modes. 

 

 

Figure 2.13 Schematic diagrams of fracture modes: (a) Intralaminar, (b) Interlaminar 

[113] 

 

The thickness of the specimens also influences fracture toughness and mode. 

The effect of specimen size, hence, has been examined [114-119]. The thin laminates 

have generally superior damage resistance properties [120]. In short thick specimens, 

damage initiated at the edge of impact point because of locally high impact stresses. In 

the long thin specimens, the fracture occurred as a result of splitting between lower 

surface fibres. The geometrical parameters are one of the factors for dependence of 
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damage [121]. 

 

2.5.7 Hybrid Composites 

 A hybrid composite material consists of two or more types of fibre in a common 

matrix. The research for the hybrid composites was examined using glass/carbon or 

carbon/Kevlar fibres from the 1970s. The hybrid composites possess excellent 

properties that cannot be realised in a single fibre composite. The failure strain and 

strength of carbon fibre, which is low-elongation, appears to be larger in a hybrid 

composite than all carbon fibre composite [122]. Moreover, more cost-effective 

utilization of the expensive fibre, such as carbon fibres, can be expected using less 

expensive fibres such as the glass fibres. These merits encourage the extensive 

application of the hybrid composites. The glass/carbon hybrid composites have been 

investigated by many researchers [122-125]. P.W. Manders and M.G. Bader reviewed 

and discussed for strength of the glass/carbon fibres hybrid composites [122-123]. They 

investigated the tensile properties of the hybrid composites covering a range of 

glass/carbon ratios. Other combinations of fibres have been also investigated as hybrid 

composites. The glass or carbon fibres with thermoplastic fibres hybrid composites have 

been introduced [126-129]. The Mode-I and Mode-II interlaminar fracture toughness 

increases significantly using the thermoplastic fibres [129]. Recently, hybrid composites 

with non-woven tissue and natural plant fibres have been used to improve the 

mechanical properties [130-131]. The natural fibres can be economically and 

ecologically useful alternatives to reinforcement fibres in polymeric composites [131].  

 

2.5.8 Interleaving Techniques 

 The interleaving technique is to insert reinforcement materials, such as 

thermoplastic films, at the interlaminar region. The concept of the interleaving 

technique is that the plastic zone in the interlaminar region can be extended [132]. The 

mechanisms of the interleaving technique for interlaminar fracture toughness are shown 

in Figure 2.14 and 2.15. As the interlaminar spacing is increased by interleaf materials, 

higher fracture toughness may be expected correspondingly. 
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 Epoxy Crack path Crack direction 

Carbon fibre Damage zone 
 

 

Figure 2.14 Schematic diagrams of crack growth under Mode-I loading: (a) Control 

sample, (b) Epoxy interleaved sample [132] 

 

 Microcrack 

(Tensile fracture) 

Carbon fibre Epoxy 

Damage zone 

 

 

Figure 2.15 Schematic diagrams of crack growth under Mode-II loading: (a) Control 

sample, (b) Epoxy interleaved sample [132] 

 

A cross-section of the interleaved laminate is shown in Figure 2.16. The 

interleaved composites have a superior behaviour in the CAI strength compared to the 

non-interleaved material. However, the major drawback of this system is a weight 

penalty [20]. Moreover, the mechanical properties, like flexural or thermal properties, 

may decrease by interleaf materials [133-134]. Therefore, interleaving techniques have 

to be developed without sacrificing various properties. 

(a) (b) 

(a) (b) 
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Figure 2.16 Picture of a cross-section of a interleaved laminate 

 

 In order to solve the weight penalty, a selective toughening concept has been 

suggested [20, 135-137]. This technique is that interleaf materials are placed at critical 

locations that are potential sites for premature failure. O.Ishai et al. evaluated the effect 

of the selective interleaving technique using CFRP laminates [135]. The selective 

toughening realised a significant effect on the Mode-I and Mode-II interlaminar fracture 

toughness. It improved the GIC up to six times and the GIIC up to four times compared 

with the controls. The adhesive thickness is also an important factor on interlaminar 

fracture toughness of the interleaved composites [137-141]. However, increasing 

adhesive thickness was not necessarily improving interlaminar fracture toughness [142]. 

There is an optimum adhesive thickness for effective improvement of interlaminar 

fracture toughness. 

 

 Various interleaf materials as tougheners have been developed by many 

researches, such as thermoplastic films [139-146], thermoset films [135-138, 142, 145], 

non-woven tissue veils [147-152], self-same resin interleaf materials [132, 153], and so 

on. F. Ozdil and L.A. Carlsson reported the Mode-I interlaminar fracture properties 

using thermoset and thermoplastic interleaf materials of various thicknesses [142]. The 

thermoplastic interleaf increased the GIC value compared with the thermoset interleaf. 

They mentioned that the low adhesion between the interleaf/matrix causeed poor 

toughness. Both high toughness and good adhesion are essential to improve the 

interlaminar fracture toughness. A. Aksoy and L.A. Carlsson evaluated the Mode-II 

interlaminar fracture toughness for the thermoplastic and thermoset interleaved 

composites [145]. In the Mode-II fracture, the thermoplastic interleaf materials were 

also superior to the thermoset interleaf materials. For the thermoplastic interleaf 

materials, an ionomer film possesses superior fracture toughness. This is a polymer 

which is partially ionised by metallic ions and has been utilised as a package material 

Interleaf layer
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and an adhesive film [139-141]. The ionomer has high ductility and good adhesion to 

epoxy resin. Figure 2.17 shows the structure of ionomer. In ref [141], the GIIC of the 

ionomer interleaved CFRP was over 9.0kJ/m2. 

 

Figure 2.17 Schematic diagram of structure of ionomer [140] 

 

The non-woven fabric or perforated films have been also used as the interleaf 

materials [129, 147-152]. These publications mentioned that the non-woven fabrics 

could improve the Mode-I and Mode-II interlaminar fracture resistance, or the impact 

damage. The non-woven fabrics have good permeability of the resin, therefore they may 

be used as the interleaf materials using liquid resin moulding, such as the RTM and 

VaRTM. M. Kuwata et al. investigated impact resistance for non-woven fabrics 

interleaved CFRP using the VaRTM [152]. They found that the adhesion properties 

between matrix and non-woven fibres are an important factor in the damage resistance 

of interleaved CFRP. However, research into the interlaminar fracture toughness using 

non-woven fabric is scarce. O. Jorgensen and A. Horsewell studied indentation failure 

of the interleaved CFRP experimentally and numerically [154]. The interleaf layers can 

contribute to toughening the interface between interlaminar regions and reduce matrix 

cracking. The presence of a high strain and low modulus interleaf layer may 

significantly improve interlaminar fracture [155]. Some researches have used self-same 

matrix resin-rich layers as the interleaf materials [132, 153-155]. Significant 

improvements in the interlaminar fracture toughness have been realised by this 

technique without the use of any specialised interleaf materials. In order to use same 

matrix interleaf, the resin rich region is enlarged in interlaminar fracture areas. A thicker 

resin rich layer contributes to an enlarged plastic deformation zone, and the interlaminar 

fracture toughness would be influenced strongly.  

 

The interleaving technique can improve not only interlaminar toughness but 
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also impact tolerance and resistance [136]. J.E. Masters discussed impact and 

delamination resistance using the interleaving technique [143-144]. The CAI strength 

was increased up to 80% by the addition of the interleaf films. He evaluated a 

correlation between the delamination and post-impact compression resistance. The 

residual compression strength after impact against the Mode-I strain energy release rate 

shows a poor correlation, as shown in Figure 2.18 (a). In contrast, the residual 

compression strength against the Mode-II strain energy release rate indicates good 

correlation, as illustrated in Figure 2.18 (b). The extent of impact-induced delamination 

is a function of the critical shear strain energy release rate of the matrix.  
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Figure 2.18 Correlation of Mode-I and Mode-II energy release rates and impact 

resistance: (a) Mode-I energy release rate against CAI strength, (b) Mode-II energy 

release rate against CAI strength [143] 

 

The interleaved system has been used not only for interlaminar fracture 

toughness, but also damping performance [133-134, 156-159]. H. Kishi et al. evaluated 

damping properties of the interleaved CFRP. They focused on visco-elastic behaviour of 

the interleaf materials [134, 159]. The damping properties of the interleaved laminates 

depended not only on the visco-elastic properties of the interleaf materials, but also on 

the stacking sequence.  

 

2.6 Comparison of Fracture Toughness for Previous Works 

 In this section, comparisons of the results from previous literatures are 

mentioned. Figure 2.19 plots range of GIC for various resin types. For the thermoset 

resins, the epoxy and VE resin possess moderate fracture toughness, around 0.05 to 

0.45kJ/m2. The BMS resin possesses a wider range of the GIC values compared with the 

other thermoset matrices. The polyester resin has the lowest fracture toughness. The 

toughening matrix can improve the Mode-I energy release rate. The maximum GIC of 

(a) (b) 
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the toughened epoxy is over 5kJ/m2. The rubber toughened resin is also significantly 

improved. On the other hand, the thermoplastic resins are significantly higher in the 

Mode-I interlaminar fracture toughness than the thermoset resins. In particular, PEEK 

has excellent Mode-I interlaminar toughness and over 10kJ/m2 as a maximum value 

[160]. 
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Figure 2.19 Comparison of Mode-I energy release rates for various matrices [24-25, 31, 

38, 41-42, 160-163] 

 

 For the composites, the GIC and GIIC values of various interlaminar fracture 

toughness methods is compared. Figure 2.20 shows a diagram of Mode-II interlaminar 

toughness as function of Mode-I interlaminar toughness for the composites. For the 

thermoset resin system composites, whereas the GIC values are relatively lower than for 

the other reinforced composites, the range of the GIIC values is moderate, up to 3kJ/m2. 

The toughened epoxy system is improved in Mode-I interlaminar toughness, but not the 

Mode-II interlaminar toughness. In thermoplastic resin system, the PEEK and PEI 

matrices show different fracture toughness behaivours. Whereas the PEEK composites 

have significantly superior GIC values, the PEI system composites have quite high GIIC. 

The rubber or whiskers toughened composites do not have high toughness for both 

fracture modes. For the interleaving, although the GIC values are not improved, the GIIC 

values are spread over a significantly wide range. The stitching technique is the most 

superior for both fracture modes toughness properties. In particular, the Mode-I fracture 

toughness is significantly high, over 9kJ/m2 [141]. 
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Figure 2.20 Comparison of Mode-II interlaminar toughness against Mode-I 

interlaminar toughness for composites [20, 27-28, 31, 41-42, 45-46, 53, 56, 89-90, 94, 

102, 108, 112, 130, 141, 162] 

 

 The relationship between resin GIC and composite GIC is plotted in Figure 2.21. 

This correlation was mentioned by D.L. Hunston [25]. This figure is an addition of 

further data from other literatures. The general trend of relationship is not changed. 

With the brittle matrix the resin toughness is transferred to the composite toughness. 

With the tougher matrix, on the other hand, the resin toughness cannot be transferred 

enough. Two chain lines in Figure 2.21 indicate the relationship of resin GIC and 

composite GIC in brittle and tougher matrix region from ref [25]. The correlation in 

brittle and toughner matrix region is good, except for the PEEK matrix composites. The 

long chain line indicates a slope of 2.3. On the other hand, the short chain line is 0.31. 

Although the PEEK matrix has significantly high GIC values, the PEEK composite is 

not improved much. It is thought that high Mode-I toughness characteristic of the PEEK 

matrix cannot be transferred to the composite by the existence of reinforcements. The 

blue chain line means the relationship in tougher matrix region including the PEEK 

matrix. The gradient of blue double line is approximately 0.1. Even if the matrix 

toughness is quite high, it would be significantly difficult that toughness of the matrix 

transfers to that of the composite materials. Because the existence of reinforcement 

restricts improving fracture toughness of composites [25].  
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Figure 2.21 Relationship between Resin GIC and Composites GIC values [20, 24-25, 31, 

41-42, 46, 62, 66, 72, 130, 136, 160. 162-164] 

 

 Figure 2.22 indicates the relationship of resin GIC and composite GIIC. The 

correlation does not appear clearly unlike the Mode-I interlaminar toughness. V. Altstadt 

et al. evaluated a correlation between the composite Mode-II interlaminar toughness and 

the resin Mode-I interlaminar toughness [165]. However, it has been shown that these 

properties did not correlate. Figure 2.22 indicates that there is no correlation between 

resin GIC and composite GIIC values. The composite GIIC may not be affected by the 

matrix types. 
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Figure2.22 Relationship between Resin GIC and Composites GIIC values [20, 25, 42, 46, 

66, 130, 136, 162, 164] 

 

 Figure 2.23 illustrates the relationship between Mode-I interlaminar toughness 

and the CAI strength. The epoxy system composites have relatively higher CAI strength 

than the other thermoset resin system samples. Surprisingly, the stitching technique 

cannot improve the residual compressive strength unlike the Mode-I interlaminar 

fracture toughness. On the other hand, the PEEK and interleaving have significantly 

high CAI strength. In particular, the PEEK system composites have good mechanical 

properties for both of the Mode-I interlaminar toughness and the CAI resistance. 

Although the interleaved composites do not show a wide range of GIC values, the 

residual compressive strength has quite a wide range and the maximum strength is over 

400MPa compressive strength [143-144]. 
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Figure 2.23 Comparison of CAI resistance against various Mode-I interlaminar 

toughness techniques of composites [20, 27, 31, 41-42, 45, 63, 89-90, 95, 102, 130, 143, 

148, 162, 165-171] 

 

 Figure 2.24 shows the diagram of the Mode-II interlaminar toughness against 

the CAI strength. The tendency of the relationship between GIIC and CAI strength is 

similar to that of GIC and CAI strength. The interleaving technique has good properties 

of both GIIC and CAI strength [143-144, 148]. Although, the PEEK-matrix composites 

have not got good properties for the Mode-II interlaminar toughness compared with the 

other toughened composites, the CAI resistance is significantly high [171]. The 

stitching and epoxy-matrix composites have moderate CAI resistance [95, 166, 168]. 
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Figure 2.24 Comparison of CAI resistance against various Mode-II interlaminar 

toughness techniques of composites [28, 46, 53, 56, 63, 94-95, 108, 112, 141, 143, 148, 

165-166, 168-172] 

 

2.7 Interlaminar Toughness Tests 

2.7.1 Introduction 

 FRP structures such as aeroplanes and automobiles are constructed from the 

laminates of stacked plies with several fibre orientations. It has been mentioned already 

that laminated materials are especially susceptible to damage from out-of-plane impact. 

In this case, the fracture mode is mainly interlaminar delamination. If the laminate 

composites receive impact damage, residual strength, in particular the compression 

properties will be significantly reduced.  

 

 For the laminated composite materials, the evaluation of the interlaminar 

fracture is important. There are three fracture modes for interlaminar fracture, Mode-I 

(Open mode), Mode-II (In-plane shear mode), and Mode-III (Out-of-plane shear mode). 

Figure 2.25 shows models of each fracture mode. P. Davies et al. summarised various 

interlaminar fracture toughness tests [173].  
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Figure 2.25 Schematic diagrams of each fracture mode [174] 

 

 The strain energy release rate, G, is defined as the potential energy of dynamic 

system when the crack propagates per unit area. The total kinetic energy, U, means the 

energy conserved by object and external force system. The equation for calculating G is 

as follows: 

Bda

dU
G −=     (2.1) 

where B is width of specimen and da is amount of crack propagation. The ratio of 

displacement, δ, and load, P, is called compliance, C. If the crack propagates under 

constant load, the increment of displacement is PdC. Therefore, the energy release rate 

G can be calculated using the following equation. 

da

dC

B

P
G

2

2

=     (2.2) 

 

 For the strain energy release rate, initiation and propagation values are used as 

toughness values of the composites. They increase with growth of delamination from 

the initial cracks or starter film. This behaviour is often influenced by fibre-bridging. 

The effect of the fibre-bridging depends on laminate thickness, ply orientation and 

moulding condition. Therefore, the initial value of energy release rate value, GIC, is the 

most conservative criteria [175]. The non-linearlity (NL) and the 5% offset or maximum 

load (5%/MAX) values are often used as the initial toughness properties. The 5%/MAX 

value defines initiation at the lowest displacement point among the 5% offset and the 

maximum load. The former is obtained by intersecting the load-displacement curve with 

a line corresponding to a compliance 5% higher than the initial case, as shown in Figure 

2.26.  

 

(a) Mode-I (b) Mode-II (c) Mode-III 
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Figure 2.26 Crack initiation criteria [176] 

 

2.7.2 Mode-I Interlaminar Toughness Test 

 The Mode-I interlaminar toughness tests are carried out using the double 

cantilever beam (DCB) test, as shown Figure 2.27. The DCB test has been standardised 

by JIS, ASTM, and ISO [177-179]. 

 

Figure 2.27 Double cantilever beam (DCB) specimens [178] 

 

In order to introduce a starter crack, a non-adhesive film, such as Teflon, 

aluminum and so on, is inserted at mid-plane. Alternatively, an initiation crack is made 

by inserting a wedge. The DCB test has attracted attention over the 30 years. The test 

has been generally performed on unidirectional specimens. Round robin tests for the 

DCB tests have been carried out by many researchers or societies [180-182]. Various 

parameters for the DCB specimens, such as specimen thickness, insert film type, and 

with/without pre-crack have been investigated in these round robin tests [175, 182]. 

Many researches indicated that the GIC value decreased as the starter film thickness was 

decreased. However if a starter film is below a certain thickness, a constant GIC value 

was measured. The threshold thickness appeared to be approximately 15μm. If the 
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specimen is too thin or the toughness of the materials is too high, an arm of the 

specimens might fail in bending before the delamination grows. In order to prevent this 

fracture, a reinforcement panels are put on both top and bottom surfaces of the specimen 

[183]. The data reduction methods to obtain the critical energy release rate, GIC, have 

been developed experimentally and analytically [184-188]. L. Ye characterised 

correlation between the Mode-I interlaminar toughness GIC and the Mode-I critical 

stress intensity factor KIC [189]. The calculation method of GIC value has four types 

[185].  

 

2.7.2.1 The Area Method 

Firstly, the value of GIC for the Area method is defined by 

aB

U
G IC ∆

∆
=     (2.3) 

where B is the width of crack, ΔU is the area under the load-displacement trace, and 

Δa is length of crack, as illustrated in Figure 2.29. GIC value is calculated by energy 

change ΔU with crack propagation Δa. If the load-displacement relationship in crack 

propagation is assumed to be linear, the GIC is as follow 

aB

PP
G ABBA

IC ∆

−
=

2

δδ
   (2.4) 

where P is the load and δ is the displacement. Subscripts, A and B, mean the value at 

A and B, as shown in Figure 2.28. 

 

 

Figure 2.28 Calculation of GIC by the area method [4] 

 

2.7.2.2 The Compliance Method 

 The compliance method is presented as follows 

Displacement 

L
o

ad
 

ΔU 
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da

dC

B

P
G IC

2

2

=     (2.5) 

where C is the compliance, given by 

P
C

δ
=      (2.6) 

where δ is the displacement corresponding to load P. 

 

2.6.2.3 The Load Method 

 The value of the compliance, C, from simple beam theory, is given by 

EI

a

P
C

3

2 3

==
δ

    (2.7) 

and, I = Bh3/12 

3

38

BEh

a
C =     (2.8) 

where E is the flexural modulus, I is the second moment of area and 2h is the total 

thickness of the DCB specimen. Therefore, from Equations 2.5 and 2.8 

BEI

aP
G IC

22

=     (2.9) 

 

2.7.2.4 The Displacement Method 

 For the displacement method, Equation 2.7 is substituted into Equation 2.9. To 

give GIC: 

Ba

P
G IC

2

3 δ
=     (2.10) 

 

2.7.3 Mode-II Interlaminar Toughness Test 

 As the typical Mode-II interlaminar toughness test, the end notched flexure 

(ENF) test has been carried out mainly. Figure 2.29 illustrates a typical ENF test 

configuration.  
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Figure 2.29 End notched flexure (ENF) test specimen [173] 

 

The geometry of the ENF specimens is the same as the DCB specimens, and 

pure Mode-II deformation can be obtained by loading using a three-point bending 

fixture. The ENF test was standardised by JIS in 1993 [177]. Some researchers reported 

results of round robin tests by the ENF tests [190-191]. The Mode-II interlaminar test 

remains controversial, because of unstable crack propagation, friction effects, and 

difficulty in defining a starter defect [173]. In order to solve this problem, several 

Mode-II interlaminar test methods have been suggested by organisations and many 

researchers [173, 177, 190-192]. 

 

2.7.3.1 Three-Point End Notched Flexure (3ENF) Test 

 The development of the ENF specimen, as shown Figure 2.30, was based on 

work on the fracture of wood. The three-point ENF test (3ENF) is the most widely used 

Mode-II configuration [193]. The following analyses were applied [173]. 

 

 

 

Figure 2.30 Three-point end notched flexure (3ENF) test specimen 

 

The following analyses are applied,  

Compliance method: C = C0+ma
2 

B

maP
G IIC

2

3 22

=     (2.11) 

 

Load 

Loading rollers 
Support rollers 
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Simple beam theory 
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hEB
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Corrected beam theory 
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where C is compliance, C0 is uncracked compliance, m is an experimental parameter, a 

is the crack length, B is the width of specimen, E is the longitudinal modulus, h is half 

thickness, and F and N are corrections for large displacements. The disadvantage of this 

method is that propagation is unstable except for very long crack length (a/L > 0.7) 

[173]. 

 

2.7.3.2 Stabilised End Notched Flexure (SENF) Test 

 The Work in Japan has led to a number of procedures for stabilising the test on 

the ENF specimen (SENF) by feedback control of the test machine [177]. Two methods 

were applied in the Versailles Project on Advanced Materials and Standards (VAMAS) 

test program. The first is referred to as crack share displacement (CSD) control, in 

which CSD is measured as shown in Figure 2.31. This is then used as the input 

parameter fed negatively into a feedback loop and the CSD rate is kept constant.  

 

 Clip gauge 

 

Figure 2.31 Stabilised end notched flexure (SENF) test specimen 

 

An alternative is to use the coordinate conversion control (CCC) method [190]. 

In this case, the load P and cross-head displacement δ are input to a circuit which 

gives an output C=δ–αP. When C is controlled so as to increase monotonically, the 

crack propagation is stabilised. For both these tests, a servo-controlled test machine is 

needed. Two test procedures based on the SENF specimen were proposed by the JIS 

Load 
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group for the VAMAS exercise [173, 191]. 

 

2.7.3.3 End Loaded Split (ELS) Test 

 The specimen is held in a clamp which is free to slide horizontally, as shown 

Figure 2.32. The crack propagation along this specimen is basically stable provided the 

ratio of crack length to free length exceeds 0.55 [173].   

 

 
Sliding 

clamp 

 

Figure 2.32 End loaded split (ELS) test specimen 

 

The analyses are applied [191], 

Simple beam theory 
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G IIC =     (2.14) 

 

Experimental compliance calibration 
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2
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=     (2.15) 

where m is the slope of a plot of compliance versus the cube of crack length.  

 

Corrected beam theory 
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where θ1 and θ2 are large displacement and loading block corrections respectively, 

and L is the free length of the specimen. 

 

2.7.3.4 Four-Point End Notched Flexure (4ENF) Test 

 The modified version of the 3ENF configuration, as shown in Figure 2.33, was 

proposed by R.H. Martin and B.D. Davidson [192]. The delamination tip may be to the 

left of or in between the loading rollers. The connection between load fixture and the 

Load 



 
Chapter 2  Literature Review 

 71

load frame is pinned. For a pinned configuration with the delamination front within the 

loading roller span, the shear force is zero and the bending moment is constant. This 

provides a reduction of delamination face friction compared with the conventional 

Mode-II interlaminar tests. Therefore, crack growth in this configuration is stable. The 

analysis is by experimental compliance calibration only, and the slope m is determined 

from a plot of compliance, C, versus crack length, a. The GIIC value is given by 

B

mP
GIIC

2

2

=     (2.17) 

where P is the load, m is the gradient from CC curve, and B is the width of specimen. 

 

 

 

Figure 2.33 Four point end notched flexure (4ENF) test specimen 

 

This method is new and developing. Recently, some researches using 4ENF test have 

been reported [94, 194-196]. Table 2.2 summarises some of the advantages and 

disadvantages of each test [173]. The Mode-II tests have to consider several factors, 

such as type of starter crack, definition of initiation, stability, friction, and data 

analysis.  

 

Table 2.2 Comparison of specimens for each Mode-II test [173] 

Methods Advantage Disadvantage 

ENF 
Simple 

The Most used 
Unstable propagation 

SENF Stable propagation 
Complicated 

Special equipment 

ELS Stable propagation Clamping variability 

4ENF Stable propagation Little experience and developing 

 

Loading rollers 

Support rollers 

Load 
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2.7.4 Effect of Test Condition 

Some researchers have suggested that the Mode-I interlaminer fracture 

toughness is loading rate sensitive [197-201]. Figure 2.34 shows rate dependency of the 

fracture toughness for the CFRP.  

 

Figure 2.34 Rate dependency of Mode-I interlaminar toughness [197] 

 

If the displacement rate is rapid, a plastic zone in the interlaminar region cannot 

be enlarged enough. This reflects the rate sensitivity of the matrix resin. Figure 2.35 

shows the influence of rate effect on the plastic zone. In other researches, the effects of 

loading rate on CF/epoxy and CF/PEEK composites have been undertaken [197-201]. 

The test rate was 0.2 to 250mm/min. The GIC value for the CF/epoxy composites were 

not affected strongly by loading rate. In contrast, the CF/PEEK was significantly 

dependent on loading rate [199]. They concluded that the dependence of rate in GIC for 

the CF/PEEK composite is affected by transition from a ductile to brittle behaviour of 

the polymer in the process zone. 

Rapid rate 
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2rf 
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2rf rpc 

2rf rpc 

Slow Rate Test 

Critical Rate Test 

High Rate Test 

Plastic deformation zone 

 

Figure 2.35 Rate effects on plastic zone size of composites [197] 

 

Mode-II interlaminar toughness also is affected by loading rate. P. Compston et 

al. investigated loading rate dependency on the Mode-II interlaminar fracture toughness 

using the GF/VE composites [161]. They, however, mentioned that the displacement 

rate effect for GIIC is not significant, as compared with the GIC. It is thought that the rate 

effect for the Mode-II interlaminar toughness may be more complex than for the Mode-I 

interlaminar toughness. Moreover, test temperature also affects results [201]. 

 

2.7.5 Mixed-Mode Interlaminar Toughness Test 

 A Mixed-Mode bending (MMB) test was introduced in the late 1980s. 

Thereafter a modified method to reduce non-linearity has become the most widely used 

specimen for MMB test, as shown in Figure 2.36. The MMB configuration has two 

advantages [173]: 

 

(i) The possibility of using the same specimen geometry as for the Mode-I tests 

(ii) The means to vary simply the mixed mode ration over the whole range from 

pure Mode-I to pure Mode-II. 

 

However, it has many disadvantages. It requires a complex fixture and bonded 

steel hinged tabs [202-203]. 
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Figure 2.36 Schematic of Mixed-Mode bending (MMB) specimen 

 

In this method the loading technique combines the DCB and ENF tests. The 

characteristics of the MMB test are that specimens can be the same as the DCB or ENF 

specimens, mode ratio can be varied continuously and does not change with crack 

propagation. The energy release rate for each mode is as following 
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where χ is the crack length correction for crack tip rotation. If the specimen is 

unidirectional CFRP, χI and χII are approximately 2 and 1, respectively. The MMB 

test was standardised by ASTM [204]. Many researches for the Mixed-Mode have been 

carried out experimentally and analytically [43, 155, 188, 200, 202-203, 205-208]. 

 

 For the mixed mode specimens, several methods were suggested. Figure 2.37 

show some of the specimens for the mixed mode ratio specimens, cracked lap shear 

(CLS), asymmetric double cantilever beam (ADCB), single leg bend (SLB) and four 

point bend (FPB) specimens. Table 2.3 indicates advantages and disadvantages of each 

mixed-mode fracture toughness test. 
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Figure 2.37 Various single Mixed-Mode (I/II) ratio specimens [207] 

 

Table 2.3 Comparison of Mixed-Mode test method [207] 

Test method Advantages Disadvantages 

MMB 
Simple specimen geometry 

Variable mode mix ratio 

Requires complex fixture, bonded 

hinged tabs, and complex data reduction 

techniques 

CLS 

Simple fixture and specimen geometry 

Small crack opening displacement 

Constant mode ratio 

Requires non-linear numerical analysis 

Large rotations at crack tip 

Different ply lay-ups needed for 

different mode ratio 

ADCB Simple specimen geometry 
Requires complex fixture and bonded 

hinged tabs 

SLB Simple fixture and specimen geometry 

Mode ratio changes with crack length 

Different specimen geometry needed for 

different mode ratio 

FPB 
Simple fixture and specimen geometry 

Constant mode ratio 

Two cracks growing simultaneously at 

different rates 

Different specimen geometry needed for 

different mode ratio 

 

(a) CLS 

(c) SLB 

(b) ADCB 

(d) FPB 
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2.7.6 Mode-III Interlaminar Toughness Test 

 In the late 1980s, some researches suggested the way of introducing out-of-plane 

shear (Mode-III) test for the composite materials. However, compared to the Mode-I 

and Mode-II tests, there has been little research into Mode-III Interlaminar toughness 

properties. Moreover, none are considered a very satisfactory method. It is also not clear 

whether the GIIIC is an important factor. Recently, several researchers have reported 

work on the Mode-III test. 

 

2.7.6.1 Cracked Rail Shear (CRS) Test 

G. Becht and J.W. Gillespie suggested the cracked rail shear (CRS) specimen 

for the Mode-III interlaminar fracture toughness test, as shown in Figure 2.38 [209]. 

This test uses a two-rail shear specimen [210] and release film is used for introducing a 

delamination crack. The specimen is strained using two-rail test rig, and the crack is 

loaded in Mode-III. 

 

A B C
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w 
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Figure 2.38 Cracked rail shear (CRS) test specimen [211] 

 

The Mode-III interaminar toughness, GIIIC, is calculated by 
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where PC and P are the critical load and load respectively, L is the length, γAB is shear 

strain at AB cross-section, and b is the total thickness of specimen. γAB is calculated by 

ABAB
LbhG

P
=γ      (2.22) 

where GAB is shear modulus at cross-section AB. 

 

Crack tip 

Hole 
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2.7.6.2 Split Cantilever Beam (SCB) Test 

 S.L. Donaldson suggested that the split cantilever beam (SCB) test method was 

used similar to the DCB specimen and loaded in the shear direction [212]. Figure 2.39 

shows a schematic of the SCB specimen. The laminate material with inserted crack is 

adhered between two aluminum plates, and the edges of the two aluminum plates are 

loaded to give a parallel crack surface, as shown in Figure 2.39. P. Robinson and D.Q. 

Song modified the loading pattern for the SCB test [213]. They tried to eliminate the 

unwanted Mode-II component. The GIIIC,i value for crack length, ai, at No. i followed as 

i

ii

iIIIC
ba

nP
G

2
,

δ
=     (2.23) 

where Pi and δi are the critical load and displacement for crack length at No.i, 

respectively, b is the depth of cantilever, n is the coefficient.  

 

Figure 2.39 Split cantilever beam (SCB) test specimen [211] 

 

2.7.6.3 Edge Crack Torsion (ECT) Test 

 For this test a series of specimens with different initial film crack length is 

prepared [173]. The lay-up is typically: [90/(+45/-45)n/(-45/+45)n/90]S with n=3. These 

are loaded in torsion by pushing down on one corner and the initial part of the 

load-displacement plots allows a compliance calibration to be determined of the form. 
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where C is the compliance, a is the crack length and B is the specimen width. Plotting 

1/C versus a/B gives gradient, m. the GIIIC value is as followed. 
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where P is the critical load point. Figure 2.40 presents the ECT specimen. 
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Figure 2.40 Edge crack torsion (ECT) test specimen [173] 

 

2.8 Compression After Impact (CAI) Properties 

2.8.1 Low Energy Impact 

  In this section, impact, damage assessment, and CAI responses are reviewed. 

Comprehensive reviews on impact responses of the composites can be found in various 

literatures [22, 214-216]. Impact damage resistance is described as “the measure of the 

ability of a composite structure to resist damage due to a foreign object impact” 

[217-218]. On the other hand, damage tolerance is defined as “the ability of a structure 

to contain representative weakening defects under representative loading and 

environment without suffering excessive reduction in residual strength, for some 

stipulated period of service” [215, 218-219]. The response of the composite materials to 

impact loading and dissipation of incident impact energy are completely different as 

compared to that of metal materials [216]. For low or medium incident impact energies, 

the metals can absorb impact energy through elastic and plastic deformation. Although 

the plastic deformation causes some permanent deformation, the reduction of residual 

strength is small. In contrast, the energy for the composite materials is largely absorbed 

in creating large areas of damage. Therefore, a reduction of the residual strength is 

higher than for metals. When the composite materials such as the laminated FRP have 

damage from out-of-plane impact, the composites exhibit various damages, such as 

intralaminar failure, delamination, and fibre failure, under the impact [22, 77, 119, 172, 

215, 220]. Figure 2.41 is a schematic representation of damage modes. The intralaminar 

failure and delamination include matrix cracking. The matrix cracks do not significantly 

contribute to the reduction in residual mechanical properties of the laminate. The 

damage process such as the delamination, however, is initiated by the matrix cracks 

[21].  
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Figure 2.41 Three basic damage modes of composite laminates: (A) Intraply cracking 

mode, (B) Delamination mode, (C) Fibre breakage mode [22] 

 

 The matrix cracks can be divided two types: Tensile cracks and Shear cracks 

(see in Figure 2.42). The tensile cracks are introduced when in-plane normal stresses 

exceed the transverse tensile strength of the ply. On the other hand, the shear cracks are 

at an angle from the mid-surface, which indicates that transverse shear stresses play a 

significant role in their formation. 

 

   

 

 
 

Figure 2.42 Schematic diagrams of matrix cracks: (a) Tensile crack, (b) Shear crack 

[21] 

 

 An impact damage develops under the impact area. The area of cracks increases 

with the distance from the impact point and forms the well-defined pine tree or cone [21, 

166, 172, 220]. Figure 2.43 illustrates schematically impact damage for the composites. 

This impact event is affected by geometry of the laminates such as thickness or length 

[21, 121]. With thick and long laminates, the matrix cracks first occurred in the first 

layer impacted by the striker, because contact stresses concentrate locally. Therefore, the 

damage grows from the top down, as shown in Figure 2.44 (a). On the other hand, for 

thin and long laminates bending stresses in the back side of the laminate and matrix 

cracks induce in the lowest layer, as shown in Figure 2.44 (b). 

 

Cracks 
(a) (b) 
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Impact 

Delamination 

Matrix crack 

 

Figure 2.43 Schematic model of impact damage for laminate materials [19] 

 

 

     

 

 

 

Figure 2.44 Schematic of pine tree: (a) Thick and short laminate, (b) Thin and long 

laminate [21] 

 

Impacts can be divided briefly into low-energy impact and the high-energy 

impact [22, 119, 214-216, 221]. Figure 2.45 shows schematic diagrams of impact 

behaviour for low-energy and high-energy conditions. The low-energy impact loading is 

such that the contact time of the striker is relatively long and the target response is 

global, as shown in Figure 2.45 (a). Internal fracture may progress easily so that the 

specimen deforms over a wide range. The high-velocity impact loading, on the other 

hand, gives a localised damage of the target and the contact time of the striker is 

relatively short, as shown in Figure 2.45 (b). Under the high-energy impact, geometric 

parameters of the specimens, i.e. length, width and thickness, have little influence on 

the impact behaviour. The composite materials under the high-energy impacts are 

completely ruptured or penetrated by the striker [216]. In contrast, the geometric 

parameters of the specimens under the low-energy impact loading significantly 

influence results [117, 214, 216].  

(a) (b) 
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Figure 2.45 Schematic of the response to impact under (a) Low energy and (b) High 

energy conditions [216] 

  

Several impact tests have been suggested and reviewed [119]. The impact 

damage can be divided into two conditions. One is the low-energy impact by a large 

mass (dropped tools) and the other is high-energy impact by small mass (runway debris, 

hail stones, etc.). The low-energy impact tests are generally evaluated using a swinging 

pendulum or a drop weight test. For example, the Charpy and Izod pendulums, and drop 

weight fixtures have been used for simulating the low-energy impact behaviour. In 

particular, the charpy impact test has been standardised by ASTM [222] for metallic 

materials, and JIS for CFRP [223]. The high-energy impact tests, on the other hand, 

have used a gas gun or other ballistic launcher. Standard impact tests for composite 

materials, however, are developing [214]. 

 

2.8.2 Non-Destructive Identification (NDI) 

The failure for composite materials is surface failure and internal failure briefly. 

The surface failure appears on surface of the composite. Therefore, its detection is 

relatively easy. Internal failure, however, is a quite difficult issue, because the damage is 

normally barely visible on the surface. Consequently, the damage detection of 

composite materials is quite difficult. Non-destructive identification (NDI) testing plays 

a significantly important role in assessing damage of composite materials and supplying 

information on the damage behaviour. Various defects for GFRP have been defined by 

ASTM-D2563 [224]. The defects that require evaluation are crack, internal 

delamination, dry spot, foreign inclusion, void, blister, porosity, resin rich, and so on. 

These defects are internal defection which is target of the NDI.  

 

The main problem of the NDI test, however, is the choice of best way to detect 

(a) 

(b) 
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damages. In GFRP, there is some degree of clearness, and the visual detection of the 

fracture may be easy. Meanwhile the visual observation of CFRP is significantly 

difficult, because of it is completely opacity. NDI for the composite materials uses the 

phenomenon which changes the physical property of the material by the existence of the 

failure. There are sound waves, X-rays, electromagnetic or thermal properties for 

physical characteristic using the NDI. Some detecting methods have been suggested 

such as ultrasonic, acoustic emission, X-ray and so on. Table 2.4 summarises types and 

characteristics of the NDI. It is well-known that the ultrasonic detecting is the most 

versatile technique. It is necessary to look for the optimum detecting method 

corresponding to the material because each detecting method has advantages and 

disadvantages. 

 

Table 2.4 Characteristic of NDI test [225] 

Properties Method of NDI 

Sound waves 
Ultrasonic wave 

Acoustic Emission (AE) 

Radioactive ray X-ray 

Electromagnetic Electromagnetic wave 

Thermal or kinetic 
Thermography 

Laser-horography 

 

 Ultrasonic testing makes use of behaviour which is reflection, absorption or 

refraction, and mechanical oscillation at frequencies above 20kHz [225-226]. This 

method obtains information from the ultrasonic wave which is changed by the existence 

of flaws. The ultrasonic wave is transmitted through the specimen to be investigated, 

and the reflected signal from the specimen passes to the receiver. If a flaw is present in 

the specimen, the wave is reflected from the damaged area and does not reach the 

receiver. The lack of signal will be registered as a damage spot on the scanning image. 

The ultrasonic wave which propagates through solid materials exists as longitudinal, 

transversal, or surface waves. The ultrasonic wave used in the NDI of the composites is 

always the longitudinal wave. There are three ways of displaying the ultrasonic signals, 

which are termed A, B, and C-scan [227]. An ultrasonic A-scan refers to data presented 

as signal amplitude versus time. An ultrasonic B-scan is the presentation of ultrasonic 

data in the form of a depth profile versus position along a specimen. The C-scan gives a 

map view of the component showing defect areas, however obtains no information on 
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depth of the defect. The ultrasonic C-scan is probably the most used in the NDI test 

method for the composite materials [226-228].  

 

2.8.3 Compression After Impact (CAI) 

 There are three types of mechanical properties, which are compression, tension, 

and flexure, and fatigue of post-impact residual strength. The compression and tensile 

strength have received large attention [21, 229]. In particular, the compression after 

impact (CAI) property is recognised as the most important mechanical property, because 

strength reductions under compressive loading are the largest [229]. The compression 

test for the composite materials is one of the most difficult types of testing, because of 

tendency for premature failure due to crushing or buckling [171]. The CAI test has been 

used widely as one of the important criteria for the aerospace industry. Hence, some 

specifications for the CAI tests have been suggested, for example NASA [230], CRAG 

[231], and Boeing [232]. Moreover, SACMA have standardised the CAI test method 

[233]. A large number of the CAI tests are currently being carried out by aerospace 

industries and advanced material suppliers. The full size Boeing, SACMA, and Airbus 

tests have the high cost of producing specimens. For example, the geometry of NASA 

type is 250 x 125 x 6mm, and that of SACMA is 150 x 100 x 4mm. Therefore a 

miniaturised version of the test coupons has been required. J.C. Prichard and P.J. Hogg 

developed the miniaturised CAI fixture at Queen Mary and Westfield College (QMW) 

[171]. The QMW test specimen consists of a plate specimen, 89 x 55mm. A summary of 

some of the CAI tests is indicated in Table 2.5. The CAI test consisting of mainly three 

processes [234]: 

 

(1) Introducing initial delamination by impact load 

(2) Inspection of interlaminar delamination by NDI such ultrasonic test 

(3) Measurement of CAI behaviour and strength by compression test 

 

 In contrast, residual flexure and fatigue strength have received less attention than 

the other two properties [22, 220]. Flexure testing introduces a complex stress pattern in 

the specimens. Hence, post-impact flexure properties are very difficult to analyse. For 

post-impact fatigue property, it is difficult to evaluate by only few numbers of studies 

[229].  
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Table 2.5 Summary of common CAI test methods [171, 229] 

Conditions NASA Boeing CRAG Prichard & Hogg 

Lay-up [45,0,-45,90] [-45,0,45,90] [45,-45,0,90] [-45,0,45,90]2S 

Thickness 6.35mm 4 to 5mm 3mm 2mm 

Striker diameter 12.7mm 15.75mm 10mm 20mm 

Striker mass 4.5kg 4.6 to 6.8kg As required 3.96kg 

Drop height 0.63m As needed 1m As needed 

Specimen size 

h = 243–317mm 

w = 178mm 

h = 152mm 

w =102mm 

h =180mm 

w =50mm 

h =89mm 

w =55mm 

Test loading End loading End loading End tabs End loading 

Loading rate 1.27mm/min 0.5mm/min 
Adjusted to achieve 

failure in 30–90s 
0.3mm/min 

 

The delaminations at low-energy impact damage have little effect on the tensile 

property but significantly decrease the compression property [22, 214-216, 235]. The 

residual strength normally indicates as shown in Figure 2.46. As shown in Figure 2.46, 

the residual tensile strength is little affected at low impact energy. However, the residual 

tensile strength reduces rapidly after fibre fractures occur [215-216]. On the other hand, 

reduction of the compressive strength is rapid even at the low impact energy. 

 

 

Figure 2.46 Characteristic residual strength against impact energy [215] 

 

 CAI specimens are generally flat plates although curved plates have also been 

evaluated for CAI properties [236-237]. Moreover, P.J. Hogg and co-workers 

investigated miniaturising curved specimens also [167]. Currently, the CAI test has been 

standardised by ASTM and JIS [238-239].  
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Caprino [240] suggested a model based on linear elastic fracture mechanics for 

predicting the residual strength, σr (tension and compression) of impacted notched 

laminates: 

m

r

C

C







= 0

0σ
σ

    (2.26) 

where σ0 represents the strength of unnotched material, C0, the dimension of a 

characteristic defect of the materials and C, the dimension of the notch. The parameters 

m and C0 must be experimentally determined and depend uniquely on the examined 

materials. The above equation is valid for 

0CC ≥      (2.27) 

when C = C0, the strength of notched materials is equal to its unnotched strength. From 

a physical point of view, Equation 2.26 indicates that the laminate strength is not 

influenced by notches smaller than C0. If the relationship between the notch of 

dimension, C, and the impact energy, U, can be expressed by a power law, then 
nkUC =      (2.28) 

Because of the increase of C with the increase of U, of course n must be > 0. From 

Equation 2.26 and 2.28, we get: 

α

σ
σ









=

U

Ur 0

0

    (2.29) 

where 

mn=α      (2.30) 

and U0, given by: 

nkUC 00 =     (2.31) 

Equation 2.31 gives a model for predicting residual strength as a function of impact 

energy, U0, and α are experimentally determined. If impact energy, U, is less than the 

critical energy, U0, the residual strength is equal to the unnotched strength. 

 

The residual compressive strength is influenced significantly by the low-energy 

impact. This is due to susceptibility for delamination of the composite materials. Under 

the compressive load, the specimen has undergone buckling failure. The buckling 

modes are briefly two types which are local buckling and global buckling [237]. These 

buckling modes are illustrated in Figure 2.47. The local mode occurs when the 

delamination is near the surface of the laminate and the area of the delamination is large. 
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The global mode, on the other hand, occurs when the delamination is deeper within the 

laminate and has a small area. The CAI testing has to avoid buckling failure due to the 

difficulty in evaluating results caused by complex fractures. Therefore, an anti-buckling 

rig for the CAI testing has been produced to prevent global buckling failure.  

 

 

Figure 2.47 Local and global modes of delamination induced buckling [237] 

 

2.9 Conclusions 

 Various aspects of the relevant literature have been reviewed, focusing on 

obtaining previous research of the moulding method and the interlaminar fracture 

toughness for composite materials. This chapter is divided into five divisions: RTM 

moulding methods of the composite materials, Interlaminar fracture toughness 

techniques, Comparison of previous researches, Various mode fracture tests, and finally 

Compression after impact properties.  

 

� There are manual and automatic moulding methods of the composite materials. The 

hand lay-up method is the basic manual moulding technique. Moulding methods 

should be selected appropriately in response to the type of composite structure. In 

this research, the VaRTM derived from the RTM technique was chosen for 

moulding of the specimens. The VaRTM method is a low cost moulding process 

with the capability of producing huge and complex composite materials. However, 

the resin viscosity and permeability of the toughening materials are a significantly 

important factor for moulding. If the resin possesses high viscosity or the 

toughening materials do not have permeability, the resin injection will be 

significantly difficult. 

Load 

Load 

Local mode 

Global mode 
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� The history of research into interlaminar fracture toughness for the composite 

materials is long, over 30 years. One of the simplest toughening method is 

toughened matrix using rubber particles. Although the matrix can be improved by 

the rubber toughening significantly, interlaminar fracture toughness of the rubber 

toughnend composite is only moderately improved, because the existence of 

reinforcement, such as fibres, restricts extension of the plastic zone at the 

interlaminar region. For the other toughening techniques, there are improving 

adhesion between fibre and matrix, changing fibre orientation, stitching, 

interleaving and so on. In this work, suitable materials for the VaRTM method are 

focused on and the non-woven veils are chosen because of good resin permeability.  

 

� For the Mode-I fracture, stitching, fabric improvement and PEEK resin realise high 

fracture toughness. The interleaving, thermoplastic resins, and stitching methods 

lead to superior characteristics of the Mode-II fracture toughness. For the 

post-impact resistance, the toughening techniques which possesses high GIC values 

do not necessary lead to high CAI resistance. On the other hand, the relationship 

between the GIIC and CAI values show a relatively better correlation than that 

between the GIC and CAI values. For the resin GIC and composites GIC, high resin 

toughness does not transfer to high composites toughness necessarily, in particular 

PEEK composite. It is thought that the plastic zone is restricted by existence of the 

reinforcements. The GIC value, therefore, cannot be increased largely. The 

relationship between the resin GIC and composites GIIC is not seen completely. 

 

� Interlaminar toughness tests for each fracture mode have been suggested over many 

years. For the Mode-I interlaminar fracture test, the DCB test is established 

completely. Mode-II interlaminar fracture tests are developing and being tested. The 

3ENF test is the most used for the Mode-II interlaminar fracture test. Crack 

propagation during testing, however, is unstable for the 3ENF test. Therefore, the 

other Mode-II interlaminar fracture tests have been established by researchers, 

which are the SENF, ELS, and 4ENF tests. Each Mode-II test has some merits and 

demerits. In this work, the 4ENF test was selected as the Mode-II interlaminar 

fracture test. The mixed-mode combined Mode-I and Mode-II interlaminar fracture 

tests have been also carried out and evaluated by many researchers. Finally, the 

Mode-III interlaminar fracture tests have had little investigation.  

 

� Impact damage can be divided briefly into two: Low-energy and High-energy 
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impact. There are clear different behaviour between low- and high-energy impact 

damage. The low-energy impact may show barely visible damage on surface. The 

composites, however, would receive internal damage, such as delamination, matrix 

cracking, or fibre breakage. These damages cause a significant reduction of the 

residual strength, in particular compression strength. On the other hand, 

high-energy impact is basically local damage. The high-energy impact damage is 

not influenced by geometric parameters of the specimens, unlike the low-energy 

impact. 

 

� The NDI is an important technique for assessment of the damage. Especially, the 

ultrasonic C-scan is the most used of the NDI methods. The NDI has several 

techniques, and each technique possesses merit and demerit. Hence, researchers 

have to select a suitable NDI method for inspection of the damaged specimens. 

 

� There are four types of residual strength properties, such as compression, tensile, 

flexure, and fatigue. In particular, post-impact compression strength is the most 

important property, because the reduction of residual strength is the largest. CAI 

test has been developed from the aerospace industrial area. Various geometric 

parameters of the CAI specimens have been developed by researchers and 

industries. 
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Chapter 3 
 

 

Toughening Mechanisms of Mode-I Interlaminar Fracture 

using Non-woven Veils as Interleaf Materials 

 

 

3.1 Introduction 

In this chapter, the main objective is to investigate the mechanisms of Mode-I 

interlaminar toughness for interleaved laminate composites. Several types of non-woven 

fabrics were chosen as the interleaf materials. The laminated specimens and the 

non-woven veil-interleaved composites can be made by the VaRTM technique [129, 

152]. DCB tests were carried out for evaluating the Mode-I interlaminar toughness. The 

fracture surfaces and cross-sections of tested specimens were observed using 

microscopy. The mechanisms of enhancing the toughness by non-woven veils are 

discussed using the test results and the microscopy observations. 

 

3.2 Materials and Experiment Methods 

3.2.1 Materials Information 

 To investigate interlaminar toughness, three types of carbon fabrics were 

selected as the base materials. The carbon fabrics were plain and 5-harness satin weaves, 

and a unidirectional fabric. The plain weave fabric (38399 and 38422) was supplied by 

Carr Reinforcement Limited, in two different areal weights, 300 and 375g/m2. A ply 

thickness of the plain weave fabrics is approximately 0.48 (38399) and 0.54mm (38422), 

respectively. The 5-harness satin weave fabric (P1726) was supplied by Cytec having an 

areal weight of 275g/m2 and a ply thickness of approximately 0.35mm. The 

unidirectional non-crimped fabric (CT300) was supplied by Saint-Gobain Technical 

Fabrics having an areal weight of 615g/m2 and a ply thickness of approximately 0.5mm. 

Figure 3.1 shows schematic of weave pattern for the carbon fabrics. 
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Figure 3.1 Schematic of weave pattern for carbon fabrics: (a) Plain weave, (b) 

5-harness satin weave, (c) Unidirectional non-crimped fabric (Chain lines are stitches) 

 

 Two types of resin were used for interlaminar toughness tests, epoxy and vinyl 

ester and there were two types of epoxy resins. One epoxy was CYCOM 823R, which 

was supplied by Cytec. The other epoxy was MVR444, which was supplied by 

Advanced Composites Group. The vinyl ester resin used DION9102-500, was supplied 

by Reichhold. Table 3.1 shows the characteristics of the resins. 

 

Table 3.1 Characteristics of resins for experiments [from data sheets] 

Property Epoxy 1
+
 Epoxy 2

++
 Vinyl ester

*
 

Density (g/m
3
) 1.23 1.14 1.03 

Tensile strength (MPa) 80 77.6 79 

Tensile modulus (GPa) 2.9 3.1 3.4 

Flexural strength (MPa) 114 - 130 

Flexural modulus (GPa) 3.4 - 3.25 

Strain energy release (kJ/m
2
) 0.9 0.3 - 

+: CYCOM 823
R
. ++: MVR444, *: DION9102-500 

 

 Five types of non-woven veils were used: two variants of Polyester/Carbon fibre 

hybrid (Hyb1 and Hyb2), and veils based on Carbon, Polyester (PE), and Polyamide 

(PA) fibres. The two types of hybrid veils differ in the polyester fibre content. Two 

variants of the pure polyester veils were also used with different areal weights. The 

hybrid, carbon, and PE1 (10g/m2) veils were supplied by Technical Fibre Products. The 

PE2 (20g/m2) and PA veils were supplied by Japan Vilene. Table 3.2 gives 

(a) (b) (c) 
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characteristics of the interleaf veils. Figure 3.2 shows SEM pictures of the interleaf veils. 

The carbon veil is quite stiff. In contrast, the PE and the PA veils are soft materials. The 

hybrid veils are moderately stiff. For the structure of veils, the hybrid, carbon, and PE1 

are that the individual fibres are predominantly straight. The PE2 and PA veils often 

exhibit bent and curved fibres. The hybrid and PE2 veils have a relatively high fibre 

density. Therefore, these veils are opaque. The carbon and PE1 veils have a lower areal 

weight and a more open structure that allows easy resin percolation. The PA veil is 

different from the other veils. The fibre diameter is larger than the other veil fibres. 

Nevertheless the areal weight of the PA veil is about 20g/m2, it is very porous with 

apertures below the fibres.  

 

Table 3.2 Characteristics of interleaf veils [from data sheets] 

Properties Hyb1+ Hyb2++ Carbon PE1 PE2 PA 

Areal weight [g/m2
] 20 20 10 13 23 21 

Thickness [mm] 0.018 0.017 0.007 0.012 0.07 0.010 

Tensile strength 

[N/Length] 
-$ 7* 8* 12* 19** -$ 

Fibre diameter [um] 9 - 13 13 7 14 12 59 

Content Polyester 70% Polyester 80% Carbon 100% 
Polyester 

100% 

Copolymer 

Polyester 

Copolymer 

Polyamide 

+: Polyester/Carbon (70:30), ++: Polyester/Carbon (80:20), *: N/15mm, **: N/5cm, $: No data 
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Figure 3.2 SEM pictures of non-woven interleaf veils: (a) PE/C (70:30) hybrid, (b) 

PE/C (80:20) hybrid, (c) Carbon, (d) Polyester (10g/m2), (e) Polyester (20g/m2), (f) 

Polyamide 

 

3.2.2 Fabrication Methods of Composites for Mode-I Test 

 A schematic diagram of the moulding process is illustrated in Figure. 3.3. A steel 

mould was wiped with three layers of release agent to make sure that the composite 

panels could be removed easily from the mould. A tacky tape was placed on the 

surround of the mould. For specimens for interlaminar toughness testing, the fabrics and 

(a) (b) 

(c) (d) 

(e) (f) 

2mm 2mm 

2mm 2mm 

2mm 2mm 
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interleaf veils were cut into 400mm (in length) x 210mm (in width) rectangles. 

5-harness satin and plain weave (2-D) and unidirectional (UD) fabrics were laid in 

stacks of 10 plies (2-D) or 6 plies (UD) on the rigid mould, respectively. A single 

interleaf veil (400mm x 210mm), except for pure polyester/pure carbon (PE/C) and 

carbon veils, and release film (A6000, supplied by Aerovac, 470mm x 100mm) were 

placed at the mid layer of the stack. PE/C veils were overlapped PE1 and carbon veils 

before lay-up. For the carbon veil, 2 plies of interleaf veils were used, in order to 

provide corresponding areal weights of the interleaf materials. A purpose of the release 

film was to provide the starter crack for specimens cut from panels for toughness tests. 

The starter crack length was set at 50mm.  

 

 The laminate fabrics were covered by a peel ply, which prevents the panel 

adhering to the bag film. A flow media, which is a knitted thermoplastic monofilament, 

was put on the peel ply. The flow media is to accelerate resin flow across the dry 

materials. Two spring coils were connected to PVC inlet/outlet pipes at each end. These 

coils were put on the mould, as shown in Figure 3.3. 

 

During infusion processing, epoxy1 (Ep1) resin and mould were pre-heated to 

45oC. The Ep1 was degassed for 30min using vacuum oven, thereafter the resin was 

infused into the mould. When impregnation was finished, the resin infused mould was 

put into the oven at 130oC for 1h. The epoxy2 (Ep2) resin was also heated and degassed 

before infusion. After infusion, the mould was put in an oven where the temperature 

was programmed to increase from 30oC to 120oC ramping at 2oC/min. When the 

temperature reached 120oC, the oven was held at 120oC for 4h. After curing, the infused 

panel was removed from mould and post-cured. The post-curing temperature was set to 

increase from 30oC to 180oC ramping at 7oC/min, followed by holding at 180oC for 2h.  

 

The vinyl ester (VE) resin was mixed with 2wt% methyl ethyl ketone peroxide 

(MEKP) beforehand. After the VE resin had infused completely, the mould was held at 

ambient temperature for 24h. The composite panel was removed from mould, and 

post-cured for 3h in the oven at 80oC. 
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Figure 3.3 Schematic diagrams of fabrication 

 

3.2.3 Mode-I Interlaminar Toughness Tests 

 The Mode-I interlaminar toughness of the composites was evaluated using the 

double cantilever beam (DCB) test. The dimensions and test conditions of DCB test 

were in accordance with ASTM D5528 and ISO 15024 [178-179]. Figure 3.4 illustrates 

schematically the DCB test specimen. The DCB specimens were rectangular in shape, 

142mm (in length) x 20mm (in width). The side face of the specimens were polished 
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and painted with a white spray. One side of the specimens was marked from the insert 

film with vertical lines every 1mm up to 60mm. The piano hinges used to hold the 

specimens in the test machine fixture were made from 1mm thickness continuous 

hinges, and cut to 20mm lengths. The ends of the specimens and hinges were 

sandblasted using 320-grade grid to provide a clean and rough surface for adhesive 

bonding. The blasted surfaces of the specimens and hinges were wiped with acetone to 

remove all contaminants. The hinges were bonded to the specimens with Hysol HY932, 

a two-part epoxy adhesive. Bulldog clips were used to clamp the piano hinges until the 

resin was cured. Excess adhesion that squeezed out was removed with a spatula. 

Clamped specimens were put in oven at 50oC for 24 hours. 

 

 

Increment of 1mm 

3-4 mm 
Depending on 

specimens 

a0=50mm 

142mm 

2
0
m

m
 

12μm release film 

12μm release film 

Piano hinge 

Interleaf veil 

12mm 

 

Figure 3.4 Dimensions of the DCB specimen 

 

 The DCB tests were carried out using a multipurpose test machine (Hounsfield) 

equipped with a 1kN load cell. The DCB specimens were clamped via the piano hinges 

in the fixtures. The crosshead speed was set at a constant 1mm/min. During loading, the 

load-displacement data were recorded, and the onset of delamination crack propagation 

was visually observed on the edge of specimen and the crack length noted. When the 

crack length grew 3 to 5mm, the specimen was unloaded at a constant crosshead speed 

of 10mm/min, except for 5-harness satin weave specimens. Thereafter the specimen was 

reloaded at the same constant crosshead speed of 1mm/min, until the final delamination 

crack length increment (50mm to 60mm) was reached. The 5-harness satin weave 
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specimens were loaded to failure directly. Figure 3.5 and 3.6 show pictures of the test 

machine and DCB test, respectively. 

 

 

Figure 3.5 Picture of test machine, Hounsfield 

 

 

Figure 3.6 Picture of DCB test 

 

3.2.4 Thickness and Volume Fraction of Each Laminate 

 Table 3.3 – 3.5 show the information of the thickness and volume fraction (Vf) 

for each laminate. Volume fractions of specimens were calculated using weight fraction 

of specimen and density of carbon fibre and resin. 
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Table 3.3 Summary of thickness and volume fraction (Vf) for 5-harness satin weave 

specimens 

Fabric Resin Interleaf veils Thickness [mm] Vf (%) 

Non-interleaved 4.48 57 

PE/C (70:30) 3.90 55 

PE/C (80:20) 4.05 55 

Carbon 4.03 57 

Polyester 4.06 51 

Epoxy1 

Polyamide 4.06 55 

Non-interleaved 3.65 57 

PE/C (70:30)  -* - 

PE/C (80:20) - - 

Carbon - - 

Polyester 3.85 55 

5-harness satin weave 

Vinyl ester 

Polyamide 3.88 56 

*: Not examined 

 

Table 3.4 Summary of thickness and volume fraction (Vf) for unidirectional fabric 

specimens 

Fabric Resin Interleaf veils Thickness [mm] Vf (%) 

Non-interleaved 3.44 61 

PE/C (70:30) 3.69 60 

PE/C (80:20) 3.69 58 

Carbon 3.84 63 

Polyester 3.48 62 

Epoxy1 

Polyamide 3.44 60 

Non-interleaved 3.47 51 

PE/C (70:30) 3.46 56 

PE/C (80:20) 3.49 56 

Carbon 3.44 57 

Polyester 3.46 56 

Unidirectional 

Vinyl ester 

Polyamide 3.43 56 
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Table 3.5 Summary of thickness and volume fraction (Vf) for plain weave specimens 

Fabric Resin Interleaf veils Thickness [mm] Vf (%) 

Plane (LAW+) Non-interleaved 3.01 56 

Plain (HAW*) Non-interleaved 3.90 57 

PE/C (100:100) 3.22 54 

PE/C (80:20) 3.32 52 

Polyester 3.23 53 

Plane (LAW) 

Epoxy2 

Polyamide 3.29 53 

Non-interleaved 3.87 52 

PE/C (100:100) 4.29 45 

PE/C (70:30) 3.93 53 

PE/C (80:20) 4.05 51 

Carbon 4.12 51 

Polyester 4.10 50 

Plain (HAW) Vinyl ester 

Polyamide 4.07 51 

+: Law areal weight, *: High areal weight 

 

3.2.5 Data Reduction Methods for Calculation of Strain Energy Release Rate 

 The methods for Mode-I strain energy release rate were determined according to 

ASTM D5528-94 [178] which describes the derivation of interlaminar toughness of FRP. 

The following is from ASTM D5528-94. 

 

3.2.5.1 Interpretation for Test Results 

 Two initiation energy release rate values are determined from the 

load-displacement plots and used along with subsequent propagation values to generate 

the R-curve. These initiation values are indicated on a typical R-curve shown in Figure 

3.7 and described below. For each of these techniques, the initial delamination length, 

a0, should be used to calculate GI. For this study, the initial energy release rate values 

at the non-linear (NL) and 5%/MAX points were defined as GIC. The energy release rate 

at propagation, GI-prop, was calculated using average propagation values from max GI 

value. 
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Figure 3.7 A typical crack propagation resistance curve (R-curve) 

 

3.2.5.2 Deviation from Linearity (NL) 

 An initiation (or onset) value for GIC should be calculated from the load and 

displacement at the point of deviation from linearity, or onset of non-linearity (NL). This 

calculation assumes that the delamination starts to grow from the insert in the interior 

of the specimen at this point. The NL value represents a lower bound value for GIC. For 

brittle matrix composites, this is typically the same point at which the delamination is 

observed to grow from the insert at the specimen edge, as shown in Figure. 3.8 (a). For 

tough matrix composites, however, a region of nonlinear behaviour may precede the 

visual observation of delamination onset at the specimen edges, even if the unloading 

curve is linear, as shown in Figure.3.8 (b). 

 

Figure 3.8 Load-displacement curve obtained by DCB test [178] 

 

3.2.5.3 5% Offset/Maximum Load (5%/MAX) 

 A value of GIC may be calculated by determining the intersection of the 

load-displacement curve, once it has become nonlinear, with a line compliance from the 

original linear region of the load-displacement curve (Figure.3.8). If the intersection 

5%/MAX 

Non-linear 

Averaged Propagation value, GIC-prop 

(a) brittle matrix (b) tough matrix 
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occurs after the maximum load point, the maximum load should be used to calculate 

this value. 

 

3.2.6 Calculation of GIC 

 Three data reduction methods for calculating GIC values were used. These 

consisted of a Modified Beam Theory (MBT), a Compliance Calibration (CC) method 

and a Modified Compliance Calibration (MCC) method. The following is also from 

ASTM D5528-94 [178]. 

 

3.2.6.1 Modified Beam Theory (MBT) Method 

 The beam theory expression for the strain energy release rate of a perfectly 

built-in (that is, clamped at the delamination front) DCB is as follows: 

ba

P
G I

2

3 δ
=     (3.1) 

where P is the load, δδδδ is the load point displacement, b is the specimen width, and a 

is the delamination length. 

 

 In practice, this expression will overestimate GI because the beam is not 

perfectly built-in (that is, rotation may occur at the delamination front). One way of 

correcting for this rotation is to treat the DCB as if it contained a slightly longer 

delamination,  a+|ΔΔΔΔ|, where ΔΔΔΔ may be determined experimentally by generating a 

least square plot of the cube root of compliance, C
1/3
, as a function of delamination 

length (Figure.3.9). The compliance, C, is the ratio of the load point displacement to the 

applied load, δδδδ/P. The values used to generate this plot should be the load and 

displacements corresponding to the visually observed delamination onset on the edge 

and all the propagation values. Calculate the Mode-I interlaminar fracture as follows: 

    ( )∆+=
ab

P
GI

2

3 δ
    (3.2) 
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Figure 3.9 Sample C1/3 versus displacement, a, diagram to determine crack offset for 

MBT method 

 

3.2.6.2 Compliance Calibration (CC) Method 

 Generate a least squares plot of log(δδδδi/Pi) versus log(ai) using the visually 

observed delamination onset values and all the propagation values. Draw a straight line 

through the data which results in the best least-square fit. Calculate the exponent n from 

the slope of this line according to n = ΔΔΔΔy/ΔΔΔΔx, where ΔΔΔΔy and ΔΔΔΔx are defined in 

Figure. 3.10. Calculating the Mode-I interlaminar toughness as follows: 

     
ba

nP
G I

2

δ
=     (3.3) 
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Figure 3.10 Sample log C versus log a diagram to determine the slope, n, for CC 

method 

 

3.2.6.3 Modified Compliance Calibration (MCC) Method 

 Generate a least squares plot of the delamination length normalised by specimen 

thickness, a/h, as a function of the cube root of compliance, C
1/3
, as shown in Figure 

3.11, using the visually observed delamination onset values and all the propagation 



 

Chapter 3  Mode-I Interlaminar Toughness 

 102

values. The slope of this line is A1. Calculating the Mode-I interlaminar toughness as 

follows: 

     
bhA

CP
G I

1

322

2

3
=     (3.4) 
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Figure 3.11 Sample C2/3 versus a/h diagram to determine the slope, A1, for MCC 

method                                                                                                                                                                                                                                                                

 

3.2.7 Observation by Microscopy 

 The fracture surfaces were observed using two scanning electron microscopes 

(SEM), the Jeol JSM-6300 or FEI Inspect F. Tested specimens were cut about 10mm in 

length from the crack initiation point. SEM specimens were coated with a thin layer of 

gold prior to observation. The acceleration voltage is 15kV (Jeol JSM-6300) or 10kV 

(FEI Inspect F). The SEM observation was used to evaluate the suppression behaviour 

of crack propagation in each interleaved specimen. All SEM pictures show regions that 

are near to the crack initiation point. Cross-sections of tested specimens were viewed 

using an optical microscope, Olympus BX60. Tested specimens were cut along the 

longitudinal direction and polished by abrasive papers. 
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3.3 Results 

3.3.1 Classification of the Load-Displacement Curve 

 Load-displacement curves obtained by DCB tests were classified three types: (a) 

Jagged shape, (b) Bow shape, and (c) Triangle shape. Figure 3.12 indicates 

representative load-displacement curves. Figure 3.13 indicates the examples of the 

load-displacement curves. The Ep1 and Ep2 resin system specimens were basically 

jagged shape. The satin and UD with the VE system laminates were bow type. On the 

other hand, the plain weave with the VE system samples were triangle type. 

Representative results of the DCB test are shown in Appendix A. 
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Figure 3.12 Classified load-displacement curves: (a) Jagged shape, (b) Bow shape, (c) 

Triangle shape 
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Figure 3.13 Representative examples of the load-displacement curves: (a) Jagged shape, 

(b) Bow shape, (c) Triangle shape 
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3.3.2 Resistance-Curves for Non-interleaved Specimens 

 In this section, the representative R-curves calculated by the MBT method for 

various interleaved laminates are shown. Figure 3.14 and 3.15 show typical R-curves 

for the non-interleaved Ep and VE resin system specimens respectively. In the Ep resin 

composite, the load-displacement curves were basically jagged shape, type A curve. 

These specimens were where the crack jumped extensively during the DCB test. For the 

weave specimens, while the initiation values for the each woven fabric laminate are 

varied, the propagation values are similar. In the UD composite, the load-displacement 

curve was type B shape. The crack propagation was gradual and slow, unlike the woven 

specimens. The propagation values of the UD specimen are the twice as high as those of 

the woven fabric cases. 

 

 On the other hand, the tendency of the R-curves in the VE system specimens is 

similar to the Ep1 system samples. In the satin weave and unidirectional fabrics, the 

increase of the GIC values tends to be gradual. In the plain weave specimen, the 

propagation values appear earlier than the other fabric cases. The UD fabric laminate 

possesses the highest propagation values of all fabric with the VE system materials. The 

propagation values in the plain weave specimen are slightly higher than that of the satin 

weave laminates. 
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Figure 3.14 R-curves for non-interleaved epoxy system specimens – calculated by 

MBT method 
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Figure 3.15 R-curves for non-interleaved vinyl ester system specimens – calculated by 

MBT method 
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3.3.3 Resistance-Curves for Interleaved Specimens 

3.3.3.1 5-harness Satin Weave Fabric Specimens 

 Figure 3.16 and 3.17 illustrate the R-curves for the interleaved 5-harness satin 

weave with both resin composites. In the Ep1 system laminates, the typical 

load-displacement curves were basically type A (jagged) shape. The crack jumped 

extensively, except for the non-interleaved and PE veil interleaved laminates. In 

particular, carbon and PA veil interleaved laminates exhibited crack propagation that 

was significantly rapid and large. Therefore, the number of GIC data points recorded for 

these interleaved specimens were limited. Both interleaved composites have 

significantly low GI values, especially the PA interleaved case. The propagation values 

for both hybrid veil interleaved laminates are slightly lower than that for the 

non-interleaved case. For the PE veil interleaved laminate, the GIC values are the highest 

of all interleaved specimens. The crack propagation was relatively slow compared to the 

other interleaved samples.  

 

 For the VE resin system, only the PE and PA veil interleaved specimens were 

examined. Both interleaved laminates show quite similar GIC values, as shown in Figure 

3.17. The tendency of the load-displacement curves for the VE system was type B 

(bow) shape. The crack propagation was quite slow and gradual. Therefore, a lot of data 

points could be obtained. Both veil-interleaved laminates possessed higher GI values 

than the non-interleaved case. The transition of GI values is different from the Ep1 

system. The propagation values for both interleaved laminates are quite similar.  
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Figure 3.16 R-curves for non-interleaved and interleaved 5-harness satin weave fabric 

specimens with epoxy1 system – calculated by MBT method 
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Figure 3.17 R-curves for non-interleaved and interleaved 5-harness satin weave fabric 

specimens with vinyl ester system – calculated by MBT method 
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3.3.3.2 Unidirectional Fabric Specimens 

 The R-curves for both resin systems interleaved composites are shown in Figure 

3.18 and 3.19. The typical load-displacement curves in the Ep1 system are divided into 

two types. The non-interleaved, Hyb1, and PE veil interleaved laminates were type C 

(triangle) curve. In these specimens, the crack propagation was gradual. The 

propagation values for these composites are significantly higher than the satin weave 

cases. On the other hand, the other interleaved laminates were type A shape. The crack 

propagated sharply and rapidly. These interleaved specimens exhibit lower GIC values 

than the other interleaved samples. In particular, the carbon veil interleaved composite 

exhibited almost the same GI values as the satin weave specimen. Moreover, the initial 

and propagation values are almost the same. The PA veil interleaved specimen in the 

UD fabric showed a moderate improvement, compared with the satin weave laminate. 

 

 The typical load-displacement curves for the VE system were all type B shape. 

The behaviour of the crack propagation was significantly slow and gradual. The GI 

values between all interleaved cases are quite similar, as shown in Figure 3.19. Both 

hybrid veil interleaved specimens are almost same GIC values as the control. The PE and 

PA veil interleaved laminates possess higher Mode-I toughness than the other 

interleaved cases. However, the carbon-veil interleaved specimen has the lowest 

propagation values. Compared to the Ep1 system specimens, the GIC values in all of the 

interleaved VE laminates are significantly high, including the carbon veil interleaved 

VE specimens.  
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Figure 3.18 R-curves for non-interleaved and interleaved unidirectional fabric 

specimens with epoxy1 system – calculated by MBT method 
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Figure 3.19 R-curves for non-interleaved and interleaved unidirectional fabric 

specimens with vinyl ester system – calculated by MBT method 
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3.3.3.3 Plain Weave Fabric Specimens 

 Figure 3.20 and 3.21 shows the R-curves for composites with both resin systems. 

In the Ep2 system composites, the LAW plain weave was used as the base material. The 

load-displacement curves for the Ep2 system were all type A shapes. Compared to the 

satin weave with the Ep1 system laminates, the crack jumps and propagation rates in the 

interleaved specimens were significantly smaller and slower, except for the PA veil 

interleaved composite. The PE/C and Hyb2 veil interleaved specimens have almost the 

same propagation values as the non-interleaved cases. The PE veil interleaved laminate 

possesses high GIC values. Surprisingly, the PA veil interleaved specimen in the Ep2 

system exhibits significantly high GIC values, over 1.0kJ/m2. The crack propagation was 

significantly large but the time that took the crack propagation was very long. 

 

 In the VE system, the typical load-displacement curves were all type C shape. 

The base materials for the VE resin system were HAW fabric. The crack propagation 

speed was faster than the Ep2 system cases. From Figure 3.21, the GIC values for all 

interleaved specimens exhibit a similar tendency. The PE and PA veil interleaved 

laminates have a slightly higher propagation values than the other interleaved samples. 

In the VE resin system, the difference of the GI values for all interleaved specimens was 

small, compared with the Ep system. The Mode-I interlaminar toughness for the plain 

weave laminates is almost the same as the 5-harness satin weave materials. 
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Figure 3.20 R-curves for non-interleaved and interleaved plain weave fabric specimens 

with epoxy2 system – calculated by MBT method 
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Figure 3.21 R-curves for non-interleaved and interleaved plain weave fabric specimens 

with vinyl ester system – calculated by MBT method 
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3.3.4 Mode-I Critical Energy Release Rate (GIC) 

3.3.4.1 5-harness Satin Weave Fabric Specimen 

 The GI values for 5-harness satin with the Ep1 system from the three methods 

are shown in Table 3.6 with the standard deviations (S.D.) and coefficient of variations 

(C.V.). Figure 3.22 gives diagrams of GIC-NL, GIC-5%/MAX, and GI-prop values. The GIC 

values of Hyb1, Hyb2, and PE veil interleaved laminates are higher than the control. 

The Hyb1 veil interleaved specimens are slightly improved with moderate GIC values, 

0.20kJ/m2 (MBT). The GIC values of the Hyb2 and PE veil interleaved specimens 

increased more than the Hyb1 veil interleaved case. The carbon and PA veil interleaved 

specimens, however, are lower than the non-interleaved samples. In particular, the 

PA-veil interleaved composite has the lowest Mode-I critical energy release rate, 

GIC-NL=0.06kJ/m2. Compared to the non-interleaved case, the gap between NL and 

5%/MAX values for interleaved is quite small. In particularly, the Hyb1, carbon and PE 

veil interleaved specimens exhibit the same values.  

 

For the GI-prop values, the PE veil interleaved specimen is the highest, 

approximately 0.77kJ/m2. The non-interleaved laminate is the second highest GI-prop 

value, 0.42kJ/m2. The other veil-interleaved specimens, however, are lower GI-prop 

values than the non-interleaved case. In particular, the carbon and PA veil interleaved 

specimens exhibit significantly lower values, about 0.16 and 0.13kJ/m2 respectively. 

These interleaved samples are where the crack jumped sharply. Therefore, the GIC 

values decrease compared to the non-interleaved laminate. The S.D. values (standard 

deviations) of initiation and propagation values are small.  
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Table 3.6 Mode-I critical strain energy release rate values of 5-harness satin weave 

epoxy1 system specimens with/without interleaf veils 

MBT CC MCC 

Interleaf Veil GI 

[kJ/m2] 

S.D. C.V. 

GI 

[kJ/m2] 

S.D. C.V. 

GI 

[kJ/m2] 

S.D. C.V. 

 

Non-interleaved 

0.16 

0.25 

0.42 

0.047 

0.111 

0.039 

0.305 

0.435 

0.091 

0.17 

0.28 

0.42 

0.059 

0.131 

0.042 

0.340 

0.467 

0.099 

0.17 

0.28 

0.46 

0.052 

0.123 

0.036 

0.306 

0.450 

0.079 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb1 

0.20 

0.20 

0.29 

0.034 

0.034 

0.030 

0.168 

0.168 

0.104 

0.21 

0.21 

0.27 

0.035 

0.035 

0.028 

0.168 

0.168 

0.105 

0.23 

0.23 

0.31 

0.053 

0.053 

0.038 

0.234 

0.234 

0.123 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb2 

0.26 

0.20 

0.37 

0.025 

0.112 

0.031 

0.098 

0.089 

0.083 

0.29 

0.25 

0.37 

0.033 

0.121 

0.031 

0.115 

0.075 

0.083 

0.37 

0.29 

0.51 

0.040 

0.165 

0.059 

0.108 

0.100 

0.115 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Carbon 

0.15 

0.15 

0.16 

0.027 

0.027 

0.010 

0.174 

0.174 

0.063 

0.16 

0.16 

0.17 

0.020 

0.020 

0.010 

0.122 

0.122 

0.061 

0.18 

0.18 

0.18 

0.019 

0.019 

0.021 

0.106 

0.106 

0.113 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PE 

0.31 

0.31 

0.77 

0.042 

0.004 

0.031 

0.134 

0.139 

0.042 

0.35 

0.35 

0.74 

0.032 

0.034 

0.020 

0.090 

0.096 

0.027 

0.34 

0.35 

0.80 

0.038 

0.040 

0.023 

0.112 

0.117 

0.028 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PA 

0.06 

0.09 

0.13 

0.026 

0.096 

0.018 

0.467 

0.201 

0.143 

0.07 

0.10 

0.13 

0.037 

0.028 

0.017 

0.573 

0.295 

0.133 

0.07 

0.11 

0.16 

0.047 

0.038 

0.020 

0.636 

0.345 

0.131 

GIC-NL 

GIC-5%/MAX 

GI-Prop 
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Figure 3.22 Comparison of Mode-I initiation and propagation energy release rate values 

(calculated by MBT) for 5-harness satin weave epoxy1 system with/without interleaf 

veils 

 

 The GI values calculated by the three calculation methods are shown in Table 3.7 

with the S.D. and C.V. for the VE system composites. Figure 3.23 shows a graph of 

Mode-I initial and propagation energy release rates. The GIC values of all specimens are 

almost the same with GIC-NL values about 0.07kJ/m2. The GIC-5%/MAX, are around 0.11 to 

0.14kJ/m2. The GIC-5%/MAX of the PA veil interleaved laminate is slightly larger than the 

other specimens. Compared to the Ep1 system, the GIC initial values for the VE system 

are smaller. The S.D. values for all samples are quite small, and these specimens have 

good repeatability. 

 

 For the GI-prop values for the VE system, the propagation values for three 

laminates increase significantly from the initiation values. The GIC value of the 

non-interleaved specimen is approximately 0.52kJ/m2. On the other hand, the GI-prop 

values for the PE and PA veil interleaved specimens are about 0.70 and 0.65kJ/m2, 

respectively. The PA veil interleaved composites exhibit a significantly increased GI-prop 

value compared with the Ep1 system samples. The S.D. for propagation values is larger 

than that for initial values. In particular, the PA veil interleaved specimen shows the 

largest deviation for the propagation value, approximately 0.08. 
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Table 3.7 Mode-I critical strain energy release rate values of 5-harness satin weave 

vinyl ester system specimens with/without interleaf veils 

MBT CC MCC 

Interleaf veil GI 

[kJ/m2] 

S.D. C.V. 

GI 

[kJ/m2] 

S.D. C.V. 

GI 

[kJ/m2] 

S.D. C.V. 

 

Non-interleaved 

0.06 

0.11 

0.52 

0.019 

0.014 

0.046 

0.304 

0.137 

0.088 

0.07 

0.11 

0.51 

0.020 

0.015 

0.044 

0.302 

0.143 

0.085 

0.06 

0.10 

0.52 

0.020 

0.014 

0.046 

0.309 

0.138 

0.088 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PE 

0.07 

0.11 

0.70 

0.011 

0.029 

0.046 

0.146 

0.269 

0.066 

0.07 

0.11 

0.70 

0.011 

0.029 

0.048 

0.156 

0.272 

0.068 

0.07 

0.11 

0.71 

0.011 

0.028 

0.046 

0.153 

0.266 

0.066 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PA 

0.07 

0.14 

0.65 

0.014 

0.018 

0.083 

0.197 

0.132 

0.127 

0.07 

0.14 

0.65 

0.014 

0.019 

0.084 

0.197 

0.134 

0.130 

0.07 

0.14 

0.65 

0.014 

0.017 

0.084 

0.190 

0.123 

0.128 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

*: Hyb1 and 2, and Carbon veil interleaved specimens were not examined. 
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Figure 3.23 Comparison of Mode-I initiation and propagation energy release rate values 

(calculated by MBT) for 5-harness satin weave vinyl ester system specimens 

with/without interleaf veils 
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3.3.4.2 Unidirectional Fabric Specimens 

 The Mode-I energy release rate values for the Ep1 system specimens from the 

three calculation methods are shown in Table 3.8 together with the S.D. and C.V. values. 

Figure 3.24 illustrates the GIC-NL, GIC-5%/MAX, and GI-prop values. The tendency of the GIC 

values is similar to the satin weave with the Ep1 system composites. The 

non-interleaved, hybrid and PA veil interleaved laminates possess similar GIC, values, 

range from 0.36 to 0.46kJ/m2. The PE veil interleaved case has the highest GIC value, 

around 0.61kJ/m2. The carbon veil interleaved specimens, on the other hand, are 

significantly low GIC values compared with the control, about 0.14kJ/m2. In this fabric 

system, interleaving with the PA-veil moderately improved the Mode-I interlaminar 

toughness. The S.D. values for interleaved specimens are larger than the non-interleaved 

samples. Both hybrid veil interleaved laminates show quite a large deviation. 

 

 Surprisingly, the GI-prop value of the non-interleaved specimen is increased 

significantly from the initiation values. However, the GI-prop values of interleaved 

specimens, except for the PE veil interleaved case, are lower rather than the control 

laminate. The Hyb1, Hyb2, and PA veil interleaved samples have similar propagation 

values, range of 0.47 to 0.57kJ/m2. The carbon veil interleaved specimen does not show 

an improvement for the propagation value, 0.14kJ/m2. In contrast, the PE veil 

interleaved specimen has the highest GIC-prop value and good interlaminar toughness, 

GIC-prop=0.99kJ/m2. The S.D. values of the non-interleaved, carbon and PE veil 

interleaved specimens exhibit small values, nearly 0.04. However, the other interleaved 

specimens have a significantly large deviation, range from 0.09 to 0.12. 
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Table 3.8 Mode-I critical strain energy release rate values of unidirectional fabric 

epoxy1 system specimens with/without interleaf veils 

MBT CC MCC 

Interleaf veils GI 

[kJ/m2] 

S.D. C.V. 

GI 

[kJ/m2] 

S.D. C.V. 
GI 

[kJ/m2] 

S.D. C.V. 

 

Non-interleaved 

0.39 

0.44 

0.86 

0.037 

0.032 

0.032 

0.097 

0.072 

0.037 

0.39 

0.45 

0.85 

0.043 

0.037 

0.036 

0.108 

0.081 

0.042 

0.38 

0.44 

0.86 

0.039 

0.030 

0.034 

0.102 

0.068 

0.040 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb1 

0.46 

0.51 

0.57 

0.048 

0.073 

0.118 

0.111 

0.143 

0.207 

0.45 

0.52 

0.57 

0.051 

0.061 

0.102 

0.113 

0.118 

0.181 

0.48 

0.56 

0.60 

0.115 

0.085 

0.073 

0.239 

0.153 

0.121 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb2 

0.39 

0.40 

0.47 

0.108 

0.099 

0.091 

0.276 

0.248 

0.194 

0.41 

0.42 

0.47 

0.103 

0.100 

0.113 

0.252 

0.238 

0.242 

0.42 

0.46 

0.53 

0.112 

0.158 

0.123 

0.266 

0.342 

0.232 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Carbon 

0.14 

0.16 

0.14 

0.041 

0.055 

0.037 

0.291 

0.350 

0.264 

0.15 

0.46 

0.14 

0.020 

0.054 

0.038 

0.292 

0.341 

0.277 

0.04 

0.21 

0.18 

0.186 

0.099 

0.045 

0.270 

0.474 

0.246 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PE 

0.61 

0.83 

0.99 

0.085 

0.085 

0.049 

0.139 

0.104 

0.050 

0.62 

0.83 

0.99 

0.081 

0.085 

0.050 

0.132 

0.103 

0.051 

0.61 

0.81 

0.99 

0.082 

0.080 

0.050 

0.135 

0.098 

0.050 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PA 

0.36 

0.39 

0.48 

0.109 

0.138 

0.100 

0.346 

0.358 

0.209 

0.31 

0.38 

0.48 

0.089 

0.111 

0.093 

0.285 

0.292 

0.196 

0.36 

0.46 

0.58 

0.099 

0.142 

0.090 

0.174 

0.310 

0.154 

GIC-NL 

GIC-5%/MAX 

GI-Prop 
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Figure 3.24 Comparison of Mode-I initiation and propagation energy release rate values 

(calculated by MBT) for unidirectional fabric epoxy1 system specimens with/without 

interleaf veils 

 

 The GI values obtained by the three calculation methods are shown in Table 3.9 

with the S.D. and C.V. values for unidirectional fabric with the VE system. Figure 3.25 

illustrates diagrammatically the initial and propagation values. The Mode-I initial 

energy release rate values for all specimens are similar. The range of GIC-NL of all 

specimens is around 0.25 to 0.39kJ/m2. On the other hand, the GIC-5%/MAX values vary 

more widely than the NL values and range from 0.33 to 0.57kJ/m2. Within the VE 

system specimens the difference between initial values of non-interleaved and 

interleaved laminate is small. The S.D. of all specimens is small. 

 

 The GI-prop values for all specimens are significantly increased from the GIC 

values. The propagation value in the non-interleaved specimen is 1.17kJ/m2. The PE 

veil interleaved laminate has an especially high GI-prop value of approximately 1.53kJ/m2. 

Surprisingly, even the carbon veil interleaved specimens exhibit a value of 0.91kJ/m2. 

The other interleaved samples are slightly higher than the control, approximately 

1.2kJ/m2. The S.D. values of the control, Hyb2, carbon, and PA veil interleaved samples 

are small, about 0.02 to 0.07. The Hyb1 and PE veil interleaved cases, on the other hand, 

have large S.D. values, approximately 0.13 and 0.19, respectively.  
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Table 3.9 Mode-I critical strain energy release rate values of unidirectional fabric vinyl 

ester system specimens with/without interleaf veils 

MBT CC MCC 

Interleaf veils GI  

[kJ/m2] 

S.D. C.V. 

GI  

[kJ/m2] 

S.D. C.V. 
GI 

[kJ/m2] 

S.D. C.V. 

 

Non-interleaved 

0.29 

0.40 

1.17 

0.045 

0.079 

0.031 

0.156 

0.199 

0.027 

0.30 

0.41 

1.13 

0.047 

0.081 

0.033 

0.154 

0.195 

0.029 

0.29 

0.39 

1.17 

0.045 

0.075 

0.031 

0.153 

0.191 

0.027 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb1 

0.25 

0.33 

1.24 

0.034 

0.040 

0.126 

0.137 

0.119 

0.102 

0.26 

0.35 

1.21 

0.036 

0.038 

0.132 

0.141 

0.111 

0.109 

0.25 

0.33 

1.24 

0.035 

0.035 

0.125 

0.140 

0.105 

0.101 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb2 

0.34 

0.43 

1.21 

0.036 

0.047 

0.018 

0.104 

0.109 

0.015 

0.36 

0.45 

1.17 

0.036 

0.046 

0.021 

0.101 

0.103 

0.018 

0.34 

0.43 

1.21 

0.036 

0.049 

0.018 

0.105 

0.114 

0.015 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Carbon 

0.29 

0.40 

0.91 

0.066 

0.065 

0.050 

0.231 

0.163 

0.055 

0.29 

0.41 

0.90 

0.071 

0.067 

0.050 

0.243 

0.166 

0.055 

0.28 

0.39 

0.91 

0.068 

0.060 

0.050 

0.241 

0.154 

0.055 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PE 

0.35 

0.57 

1.53 

0.032 

0.087 

0.190 

0.091 

0.152 

0.124 

0.36 

0.58 

1.53 

0.031 

0.084 

0.187 

0.088 

0.144 

0.123 

0.34 

0.56 

1.54 

0.030 

0.085 

0.190 

0.086 

0.151 

0.124 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PA 

0.39 

0.54 

1.25 

0.074 

0.083 

0.070 

0.190 

0.156 

0.056 

0.40 

0.55 

1.23 

0.074 

0.084 

0.074 

0.185 

0.153 

0.061 

0.39 

0.53 

1.25 

0.072 

0.080 

0.069 

0.186 

0.15 

0.055 

GIC-NL 

GIC-5%/MAX 

GI-Prop 
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Figure 3.25 Comparison of Mode-I initiation and propagation energy release rate values 

(calculated by MBT) for unidirectional fabric vinyl ester system specimens 

with/without interleaf veils 

 

3.3.4.3 Plain Weave Fabric Specimens 

 The Mode-I energy release rate values from the three calculation methods are 

shown in Table 3.10 with the S.D. and C.V. values for the Ep2 system. Figure 3.26 is a 

graph of GIC-inii and GI-prop values. For this resin system, most testing was performed on 

LAW plain weave specimens, except for the non-interleaved specimen. The 

non-interleaved specimens used for tests consisted of both of HAW and LAW plain 

weave fabrics. 

 

 In the non-interleaved laminates, the GIC-NL values of both woven specimens are 

around 0.45 and 0.30kJ/m2, respectively. Although the load-displacement curves show 

different load behaviour, the HAW specimens have only a slightly higher GIC-NL value 

than the LAW specimens (see in Figure 3.14). Basically the GIC of HAW specimen is 

higher than that of LAW specimen. The PE/C and Hyb2 veil interleaved laminates show 

similar GIC values to the non-interleaved sample, as indicated in Table 3.10 and Figure 

3.26. The PE/C and Hyb2 veil interleaved specimens are almost same GIC values, about 

0.41 to 0.44kJ/m2 respectively. On the other hand, the PE and PA veil interleaved 

composites exhibit quite different properties from the other interleaved cases. The GIC 

value of the PE veil interleaved specimen is approximately 0.81kJ/m2. The PA veil 

interleaved laminate has the highest GIC value, over 1.09kJ/m2. Surprisingly, this 
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interleaved sample has a significantly improved toughness unlike the Ep1 system case. 

The S.D. values of all specimens are small. The deviation range is from 0.07 to 0.09, 

except for GIC-5%/MAX of the PA veil interleaved case. The PA veil interleaved laminates 

have the highest S.D. value in all specimens, range of 0.17 (MBT) to 0.30 (MCC). 

 

 For the GI-Prop values, the propagation value for the control increases only 

slightly from the initial value. The GI-prop values of the PE/C and Hyb2 veil interleaved 

specimens are slightly increased compared with the initial values, 0.53kJ/m2 and 

0.48kJ/m2. Those of the PE and PA veil interleaved specimens, on the other hand, are 

significantly increased. The GI-prop values of the PE and PA veil interleaved laminates 

are about 1.10 and 1.52kJ/m2, respectively. The S.D. values of the control, and 

interleaved laminates, except for the PE veil interleaved sample, are approximately 0.02 

to 0.07. The data of these specimens have low scatter. On the other hand, that of the PE 

veil interleaved cases has higher than the other specimens, about 0.11. 
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Table 3.10 Mode-I critical strain energy release rate values of plain weave epoxy2 

system specimens with/without interleaf veils 

MBT CC MCC 

Interleaf veils GI  

[kJ/m2] 

S.D. C.V. 

GI  

[kJ/m2] 

S.D. C.V. 
GI 

[kJ/m2] 

S.D. C.V. 

 

Non-interleaved 

(HAW) 

0.45 

0.38 

0.41 

0.090 

0.082 

0.026 

0.239 

0.217 

0.063 

0.46 

0.38 

0.41 

0.091 

0.082 

0.029 

0.239 

0.215 

0.070 

0.46 

0.38 

0.42 

0.094 

0.086 

0.027 

0.250 

0.229 

0.064 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Non-Interleaved 

(LAW) 

0.30 

0.31 

0.40 

0.033 

0.020 

0.022 

0.109 

0.064 

0.056 

0.30 

0.31 

0.40 

0.035 

0.021 

0.022 

0.114 

0.068 

0.057 

0.30 

0.31 

0.40 

0.032 

0.020 

0.023 

0.108 

0.067 

0.057 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PE/C 

0.41 

0.45 

0.53 

0.072 

0.046 

0.065 

0.176 

0.102 

0.121 

0.42 

0.46 

0.53 

0.069 

0.047 

0.061 

0.163 

0.102 

0.115 

0.44 

0.48 

0.57 

0.052 

0.053 

0.081 

0.119 

0.109 

0.142 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb2 

0.44 

0.46 

0.48 

0.072 

0.075 

0.045 

0.164 

0.163 

0.094 

0.45 

0.47 

0.48 

0.073 

0.078 

0.047 

0.162 

0.167 

0.098 

0.44 

0.46 

0.49 

0.073 

0.071 

0.043 

0.165 

0.154 

0.087 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PE 

0.81 

0.87 

1.10 

0.082 

0.096 

0.113 

0.102 

0.111 

0.102 

0.83 

0.87 

1.10 

0.079 

0.092 

0.113 

0.095 

0.103 

0.103 

0.81 

0.87 

1.12 

0.075 

0.087 

0.114 

0.092 

0.100 

0.102 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PA 

1.09 

1.21 

1.52 

0.084 

0.169 

0.022 

0.077 

0.139 

0.014 

1.11 

1.24 

1.56 

0.077 

0.189 

0.054 

0.069 

0.152 

0.035 

1.11 

1.35 

1.65 

0.068 

0.295 

0.071 

0.061 

0.219 

0.043 

GIC-NL 

GIC-5%/MAX 

GI-Prop 
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Figure 3.26 Comparison of Mode-I initiation and propagation energy release rate values 

(calculated by MBT) for plain weave epoxy2 system specimens with/without interleaf 

veils 

 

 Table 3.11 shows GI values obtained by the three calculation methods with the 

S.D. and C.V. values for the VE system composites. Figure 3.27 gives a diagram of 

GIC-NL, GIC-5%/MAX, and GIC-prop values. Compared to the satin weave with the VE system 

specimens, the GIC values of the control, PE, and PA veil interleaved laminates are 

significantly higher. The non-interleaved and both hybrid veil interleaved cases have 

almost the same GIC values, around 0.38J/m2. The GIC-NL values of the PE/C and carbon 

veil interleaved specimens, on the other hand, are slightly smaller than that of the 

non-interleaved case, nearly 0.3kJ/m2. The energy release rate values of the PE and PA 

veil interleaved specimens have higher than the other laminates, approximately 

0.45kJ/m2. The S.D. values for all specimens are not so large. However, the PE and PA 

veil interleaved laminates show a slightly larger deviation than the other interleaved 

samples. 

 

 For the propagation values, the non-interleaved sample is nearly GI-prop of 

0.61kJ/m2. Both hybrids and carbon veil interleaved specimens are around 0.47 to 

0.53kJ/m2. The PE/C veil interleaved sample is almost the same GI-prop values as the 

control. Values for both hybrid and carbon veil-interleaved laminates, however, are 

slightly lower than the non-interleaved case. The PE and PA veil interleaved specimens 

possess higher values, approximately 0.70kJ/m2. The propagation values of the PE and 



 

Chapter 3  Mode-I Interlaminar Toughness 

 124

PA veil interleaved materials are similar to that of the satin weave samples (see in Table 

3.7). The difference of GIC values between interleaved materials is smaller than the Ep2 

system cases. The S.D. of the propagation values is larger than that of the initial values. 

The S.D. of the PE interleaved is the highest value, approximately 0.08. 

 

Table 3.11 Mode-I critical strain energy release rate values of plain weave vinyl ester 

system specimens with/without interleaf veils 

MBT CC MCC 

Interleaf veils GI  

[kJ/m2] 

S.D. C.V. 

GI  

[kJ/m2] 

S.D. C.V. 
GI 

[kJ/m2] 

S.D. C.V. 

 

Non-interleaved 

(HAW) 

0.40 

0.48 

0.61 

0.042 

0.050 

0.052 

0.105 

0.104 

0.086 

0.40 

0.48 

0.62 

0.044 

0.049 

0.052 

0.111 

0.103 

0.084 

0.40 

0.48 

0.61 

0.042 

0.047 

0.053 

0.105 

0.097 

0.086 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PE/C 

0.32 

0.38 

0.57 

0.036 

0.051 

0.039 

0.112 

0.134 

0.069 

0.32 

0.37 

0.58 

0.035 

0.049 

0.039 

0.112 

0.132 

0.067 

0.32 

0.38 

0.57 

0.037 

0.049 

0.040 

0.113 

0.130 

0.070 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb1 

0.39 

0.43 

0.53 

0.037 

0.010 

0.046 

0.097 

0.023 

0.088 

0.38 

0.42 

0.53 

0.038 

0.006 

0.058 

0.100 

0.014 

0.090 

0.38 

0.43 

0.53 

0.036 

0.011 

0.047 

0.094 

0.025 

0.088 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Hyb2 

0.37 

0.41 

0.51 

0.028 

0.032 

0.036 

0.076 

0.078 

0.070 

0.36 

0.40 

0.52 

0.026 

0.029 

0.035 

0.072 

0.072 

0.069 

0.37 

0.41 

0.51 

0.027 

0.030 

0.035 

0.074 

0.073 

0.068 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

Carbon 

0.31 

0.36 

0.47 

0.039 

0.041 

0.027 

0.126 

0.114 

0.058 

0.31 

0.36 

0.47 

0.035 

0.035 

0.028 

0.112 

0.099 

0.060 

0.31 

0.36 

0.47 

0.036 

0.036 

0.027 

0.115 

0.102 

0.059 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PE 

0.46 

0.58 

0.69 

0.056 

0.089 

0.084 

0.122 

0.153 

0.121 

0.46 

0.58 

0.70 

0.058 

0.086 

0.083 

0.127 

0.148 

0.119 

0.46 

0.59 

0.70 

0.056 

0.088 

0.084 

0.120 

0.150 

0.121 

GIC-NL 

GIC-5%/MAX 

GI-Prop 

PA 

0.44 

0.51 

0.69 

0.041 

0.045 

0.069 

0.094 

0.087 

0.085 

0.44 

0.51 

0.70 

0.044 

0.048 

0.060 

0.100 

0.094 

0.086 

0.44 

0.52 

0.70 

0.046 

0.047 

0.060 

0.105 

0.091 

0.086 

GIC-NL 

GIC-5%/MAX 

GI-Prop 
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Figure 3.27 Comparison of Mode-I initiation and propagation energy release rate values 

(calculated by MBT) for plain weave vinyl ester system specimens with/without 

interleaf veils 

 

 In this section, the Mode-I energy release rates for the non-woven interleaved 

specimens have been evaluated. For the 5-harness satin weave with Ep1 system 

laminates, the PE veil interleaved specimen has the highest GI values. In contrast, the 

carbon and PA veil interleaved samples exhibit poor toughness properties. The PE and 

PA veil interleaved VE system specimens do not show much difference in the Mode-I 

energy release rates.  

 

 The tendency of the unidirectional fabric with the Ep1 system is almost the same 

as the 5-harness satin composites. While the carbon veil interleaved sample exhibits 

significantly low GIC values, the PA veil interleaved case has a moderate toughness with 

lower GIC values than the control. For the VE system, the general trend is similar to the 

Ep1 system laminates. The propagation values are significantly increased for all 

specimens. 

 

 The plain weave specimens with the Ep2 system exhibit different toughness 

behaviour compared with the other fabric systems. Surprisingly, the PA veil interleaved 

laminate has a significantly increased GIC value. The PE veil interleaved specimen has 

the second highest GIC value. The PE/C and Hyb2 veil interleaved samples, however, do 

not improve toughness enough. For the VE system, the influence of the interleaf veil on 
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the Mode-I toughness is smaller than the Ep2 system. 

 

Figure 3.28 shows the relationship between the Mode-I initial energy release 

rate with the fabric and resin system. The GIC values are influenced slightly by both 

factors of fabric and resin. The satin weave specimens have the lowest GIC values of all 

fabrics. The plain weave laminates have higher initiation values compared with the 

other fabric samples. Compared with areal weight of fabric, the HAW specimen has a 

slightly higher initial value than the LAW sample. It is thought that surface of the HAW 

plain weave specimen is coarser than the other woven fabric. Therefore, crack initiation 

was delayed and GIC values increased. As far as resin systems are concerned, the Ep 

resin laminates are higher than the VE cases.  
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Figure 3.28 Relationship of Mode-I initial energy release rate between fabric and resin 

system for non-interleaved specimens 

 

3.4 Discussion 

3.4.1 Mechanisms of Mode-I Interlaminar Toughness for Non-interleaved 

Specimens 

 Figure 3.29 shows fracture surface pictures taken by SEM. In the satin and plain 

weave with the Ep-system specimens, it can be seen that the fracture surface is covered 

with the matrix, as shown in Figure 3.29 (a) and (c). The fracture surface in the satin 

weave specimen is smooth overall. It can be found that the crack propagated in the 

matrix region from SEM pictures. This suggests that the adhesion between carbon 

woven fibre and epoxy matrix is good [241], and the crack propagated in the weakest 

area, which is resin rich zone between layers. This is confirmed by the observation that 

both sides of the fracture surfaces are covered with the matrix resin. The Ep2 resin for 
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the plain weave specimen is also adhered to both fracture side surfaces. The plain weave 

fibres are not pulled out from fracture surface, therefore the carbon woven fibres cannot 

provide a bridging reinforcement. The fracture surface of the UD specimen shows the 

matrix and carbon fibres are exposed on the surface, as shown in Figure 3.29 (b). 

Although a few exposed fibres are pulled out, most carbon fibres are not unravelled on 

the fracture surface. However, these pulled out fibres would be responsible for some 

bridging. Therefore, the GI values would increase. 

 

On the other hand, the fracture surfaces for the VE system reveal that the 

carbon fabrics are exposed. These fibres are unravelled on the fracture surface, as 

illustrated in Figure 3.29 (d) – (f). For the VE system, the crack propagation behaviour 

was different from the Ep1 system. It is thought that the crack propagated between the 

woven fabric and the matrix. In the UD laminates, it can be seen that many carbon 

fibres are pulled out and unravelled, as shown in Figure 3.29 (e). The extent of the 

fibre-bridging region spread, and the GI-prop values were increased [162, 164]. The crack 

of the non-interleaved specimen went through the lower side or upper side of the woven 

surface. The fracture surface in the plain weave composite reveals almost the same 

tendency for the crack growth as the satin weave sample. The fracture surface contains 

the woven fabric that is exposed, as shown in Figure 3.29 (f). The adhesion between 

carbon fibre and matrix would be poorer in the VE resin system than the Ep resin. 

Therefore, some carbon fibres are pulled out and provide a fibre-bridging effect. It is 

thought that this effect would contribute to moderately improving GIC values. 

 

      

Figure 3.29 Micrographs of fracture surface taken by SEM for non-interleaved 

specimens: (a) Satin weave Ep1 system, (b) UD fabric Ep1 system, (c) Plain weave Ep2 

system, (d) Satin weave VE system, (e) UD fabric VE system, (f) Plain weave VE 

system 
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Figure 3.29 (Continued) 

 

 Figure 3.30 illustrates cross-section images observed by optical microscope for 

the non-interleaved laminates. For the satin weave and UD fabric specimens, the 

interlaminar crack is straight for both resin systems, as shown in Figure 3.30 (a) – (b) 

and (d) – (e). For the plain weave with the Ep2 system, it can be seen that some bundles 

of woven fibres are broken, as shown in Figure 3.30 (c). The GIC values of plain 

specimens values are larger than that of 5-harness satin samples. The plain weave has a 

coarser surface and crack propagation would start later than in the satin specimen. 

Therefore, it is thought that the GIC initial values are somewhat higher. However, the 

GI-prop values are similar to those of 5-harness satin laminates. Although this surface 

condition affects the initiation values, the propagation values are not influenced. For the 

UD specimen, both the initial and propagation values are higher than the satin and plain 

weave cases. Some carbon fibres are exposed and unravelled on the surface, as 

illustrated in Figure 3.29 (c). It is thought that these unravelled fibres would contribute 
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to increase the Mode-I energy release rate. 

 

The crack paths of the VE system specimens are similar to those of the Ep1 

system laminates. It can be seen that the carbon fibres are unravelled on the fracture 

surface, as shown in Figure 3.30 (d) – (f). When the crack went though woven surface, 

woven fibres were unravelled and worked as fibre-bridging. As a result, the crack 

propagation was more stable than the Ep resin system samples. Moreover, these 

unravelled fibres contribute to improve delamination resistance during the DCB test. 

Consequently, the propagation values for the VE system laminates can be increased 

significantly. 

 

 

 

 

Figure 3.30 Micrographs of cross-section taken by optical microscope for 

non-interleaved specimens: (a) Satin weave Ep1 system, (b) UD fabric Ep1 system, (c) 

Plain weave Ep2 system, (d) Satin weave VE system, (e) UD fabric VE system, (f) Plain 

weave VE system 
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3.4.2 Mechanisms of Mode-I Interlaminar Toughness for Interleaved Specimens 

3.4.2.1 5-harness Satin Weave Fabric Specimens 

 Figure 3.31 shows SEM pictures of the fracture surface for the Ep1 system 

specimens. The fracture surface was selected at a place near the crack initiation point. 

The condition of the fracture surface is divided into two types. The veil fibres are either 

pulled out from the matrix or embedded in the matrix. The hybrid and PE veil 

interleaved laminates are classified into the former. On the other hand, the carbon and 

PA veil interleaved laminates are categorised by the latter. For the Hyb1 veil interleaved 

specimens, the interleaf veil fibres are mainly embedded in the matrix. However, it can 

be found that a few veil fibres are pulled out from the matrix, as shown in Figure 3.31 

(a). The fracture behaviour in the Hyb2 veil interleaved composite is similar to the 

Hyb1 veil interleaved case. Pulled out Hyb2 veil fibres from the matrix are much than 

the Hyb1 veil fibres. The fracture surface for the PE veil interleaved laminate is covered 

with many pulled out veil fibres, as shown in Figure 3.31 (b). These pulled out veil 

fibres would work for bridging when the crack propagated in the interlaminar region. 

The Mode-I interlaminar toughness is therefore improved. However, hybrid veil cannot 

considerably improve the delamination resistance, because many veil fibres are 

embedded in the matrix. The initiation values of both hybrid veil interleaved specimens 

are relatively higher than the non-interleaved specimens (see in section 3.3.2.1). 

Nevertheless, the difference in the propagation values between the non-interleaved and 

hybrid veil interleaved samples is small. If the crack propagates rapidly, the bridging 

effect of veil fibres may not contribute to the suppression of crack growth. Compared to 

both hybrid veils, the extent of fibre pull-out with the PE veils is considerable. As a 

result, the PE veil interleaved laminate possesses high GIC values.  

 

The fracture surface in the carbon-veil interleaved specimen is completely 

covered with the matrix. Although a few veil fibres are pulled out from the matrix, most 

remain embedded in the matrix, as shown in Figure 4.31 (c). From the SEM picture, it is 

seen that the carbon veil fibres exhibit brittle fracture. When the crack propagated in the 

interlaminar area, the veil fibres would not be working effectively bridging for crack 

suppression. The carbon veil fibres, therefore, would not contribute to the delamination 

resistance. Both fracture sides in the PA veil interleaved composite are also covered 

with the matrix, as illustrated in Figure 3.31 (d). The PA veil fibres are not clearly found 

on the fracture surface. The veil fibres may be embedded in the matrix and this aspect of 

the fracture surface differs from the carbon veil interleaved specimen.  
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Figure 3.32 shows cross-section images taken by optical microscope for the PE 

and PA veil interleaved specimens. From Figure 3.32 (a), the crack goes through in the 

interleaf veil region. The PE veil fibres formed bridging during the crack growth. This 

bridging effect can contribute to the improvement of the initiation and propagation 

values. The hybrid veils are similar in behaviour to the PE veil. On the other hand, it can 

be seen that the crack propagates in the PA veil fibres, as shown in Figure 3.32 (b). The 

PA veil fibres are adhered to the matrix, not pulled out from the matrix completely. The 

surface of the PA veil fibres appears on the fracture surface (see in Figure 3.31 (d)). 

 

 The hybrid and PE veil fibres would be expected to exhibit poor adhesion to the 

matrix. As a result, these veil fibres are pulled out from matrix, and contribute to stable 

crack propagation via bridging effects. Consequently, the toughness can be improved 

significantly. In contrast, the carbon veil fibres would possess good adhesion to the 

epoxy resin, and the interleaf veils would not pull out from the matrix. Moreover, the 

interleaf veil reduces the interlaminar region and would prevent the formation of a 

plastic zone. The crack propagation, therefore, was significantly rapid and jumped. The 

adhesion between the Ep1 matrix and the PA veil fibres may not be good. Therefore, the 

veil fibres cannot improve delamination resistance. 

 

      

Figure 3.31 Micrographs of fracture surface taken by SEM for 5-harness satin weave 

epoxy1 system specimens: (a) Hyb1 veil interleaved, (b) PE veil interleaved, (c) Carbon 

veil interleaved, (d) PA veil interleaved 
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Figure 3.31 (Continued) 

 

      

Figure 3.32 Micrographs of cross-section taken by optical microscope for 5-harness 

satin weave epoxy1 system specimens: (a) PE veil interleaved, (b) PA veil interleaved 

 

The fracture surfaces of the interleaved VE system laminates are shown in 

Figure 3.33. The fracture surfaces for the PE and PA veil interleaved composites are a 

combination of the exposed woven fabric and the matrix, the same as the 

non-interleaved specimen (see in Figure 3.29 (d)). The PE veil fibres are pulled out in 

selected areas only, unlike the Ep1 system specimens. Moreover, the carbon woven 

fibres are unravelled, as illustrated in Figure 3.33 (a). The PA veil fibres are exposed 

from matrix, however the fibres are adhered to the matrix, as shown in Figure 3.33 (b). 

It can be seen that the tip of PA veil fibre is extended. The veil fibres were deformed, 

when the crack propagated in the interleaf veil region.  

 

In the VE system, the carbon woven fibres are unravelled and would provide a 

bridging effect. Therefore, the crack growth in this resin system was made stable. It is 

thought that the adhesion between the carbon woven and the VE resin is poorer than the 
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Ep1 resin. In VE system specimens, only a limited number of veil fibres are pulled out 

from the fracture surface and this improved the Mode-I interlaminar toughness 

marginally. 

 

      

Figure 3.33 Micrographs of fracture surface take by SEM for 5-harness satin weave 

vinyl ester system specimens: (a) PE veil interleaved, (b) PA veil interleaved 

 

3.4.2.2 Unidirectional Fabric Specimens 

Figure 3.34 shows micrographs of the fracture surfaces taken by SEM for the 

Ep1 system specimens. The fracture surface is basically a similar condition to the satin 

weave cases. The Hyb1 veil fibres are pulled out in a partial area, as shown in Figure 

3.34 (a). The fracture surfaces for the Hyb2 veil interleaved laminates also showed a 

few pulled out fibres, as shown in Figure 3.34 (b). However, the GIC values in the both 

hybrid veil interleaved samples are not increased (see in section 3.3.4.2). It is thought 

that pulled out fibres are not many. Hence, the delamination resistance cannot improve 

much. The fracture surface of the PE veil interleaved specimen reveals many veil fibres 

pulled out from the matrix, as shown in Figure 3.34 (c). These fibres would provide 

crack bridging and improve the Mode-I initial energy release rate significantly. 

Moreover, the pulled out PE veil fibres are much than the hybrid veil fibres. Therefore, 

the Mode-I interlaminar toughness can be increased considerably. 

 

In the carbon and PA veil interleaved laminates, the fracture surface is almost 

the same as in the satin weave specimen. The carbon veil fibres are embedded in the 

matrix, as shown in Figure 3.34 (d). It is thought that the adhesion between the carbon 

veil fibres and the Ep1 resin is good. Therefore, the interleaf veil fibres would not pull 

out and provide a bridging effect. Consequently, the Mode-I toughness is significantly 

poor. The surface for the PA veil interleaved specimen is completely covered with the 

(a) (b) 

1mm 100um Pulled out PE fibres 

PA veil fibre 



 

Chapter 3  Mode-I Interlaminar Toughness 

 134

matrix, as shown in Figure 3.34 (e). The fracture surface is similar to that of the satin 

specimens (see in Figure 3.31 (d)). Although the interleaf veil fibres are not seen on the 

fracture surface clearly, a smooth area appears on some parts of the surface. It is thought 

that this would be the PA veil fibres. 

 

Figure 3.35 shows cross-section pictures for the PE and PA veil interleaved 

specimens. In the PE veil interleaved sample, the crack goes through in the interleaf veil 

region, as shown in Figure 3.35 (a). The extensive pull-out of veil fibres has improved 

the Mode-I toughness. On the other hand, the crack for the PA veil interleaved laminate 

passes through the surface of the interleaf veil. In the UD fabric specimens, the 

behaviour of the veil fibres is almost same as the satin weave cases. 

 

      

 

      

Figure 3.34 Micrographs of fracture surface take by SEM for unidirectional fabric 

epoxy1 system specimens: (a) Hyb1 veil interleaved, (b) Hyb2 veil interleaved. (c) PE 

veil interleaved, (d) Carbon veil interleaved, (e) PA veil interleaved 
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Figure 3.34 (Continued) 

 

      

Figure 3.35 Micrographs of cross-section taken by optical microscope for 

unidirectional fabric epoxy1 system specimens (a) PE veil interleaved, (b) PA veil 

interleaved 

 

The SEM pictures of the fracture surface for the VE system laminates are 

illustrated in Figure 3.36. The fracture behaviour for the UD specimens is different from 

the satin weave cases. In the hybrid and carbon veil interleaved composites, while one 

surface side is covered with the matrix, another side shows that the UD fibres are 

exposed and unravelled, as shown in Figure 3.36 (a) and (b). From SEM images, the 

crack would pass through between the fabric surface (lower side) and matrix (upper 

side). However, the interleaf veil fibres cannot be recognised on the surface. The veil 

fibres are completely embedded in the matrix. The interleaf veil fibres, therefore, could 

not work for crack resistance and contribute to an improvement of Mode-I interlaminar 

toughness. Nevertheless, the GIC values are increased in all interleaved samples, even in 

the carbon-veil interleaved materials. It is thought that these unravelled carbon fibres 

provide bridging and contribute to the improvement of delamination resistance. For the 
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PE and PA veil interleaved laminates, the fracture surfaces are the same as the satin 

weave specimens. The surface in the PE veil interleaved composite reveals exposed 

woven fabric and matrix surface. Moreover, many PE veil fibres are pulled out from the 

matrix and some UD fabrics are also unravelled, as shown in Figure 3.36 (c). The PE 

veil and carbon fabric would lead to a considerable improvement of delamination 

resistance. Consequently, the GIC values can significantly increase. The fracture surface 

in the PA veil interleaved specimen is almost the same as the PE veil interleaved case. 

From Figure 3.36 (d), although the PA veil fibres are also pulled out from the matrix, the 

pull-out fibre length is smaller than for the PE veil fibres.  

 

Figure 3.37 shows cross-sections of the Hyb1, PE, and PA veil interleaved 

laminates, It can be seen that the Hyb1 veil fibres are embedded in the matrix, as shown 

in Figure 3.37 (a). The crack behaviour for the Hyb2 and carbon veil interleaved 

specimens is almost the same as the Hyb1 veil interleaved sample. These veil fibres are 

completely embedded in the matrix. Moreover, the UD carbon fibres are unravelled on 

one fracture side. The unravelled fibres would work to provide a bridging effect. These 

would contribute to increase the Mode-I interlaminar toughness moderately, even in the 

carbon veil interleaved material. For the PE veil, some PE veil fibres are pulled out 

from the matrix, as shown in Figure 3.37 (a). Although the PA veil fibres are adhered to 

the matrix, it seems that the veil fibres are elongated. These veil fibres and unravelled 

carbon fibres can improve the Mode-I interlaminar toughness compared with the other 

interleaved cases. 

 

      

Figure 3.36 Micrographs of fracture surface taken by SEM for unidirectional fabric 

vinyl ester system specimens: (a) Hyb1 veil interleaved on lower side, (b) Hyb1 veil 

interleaved on upper side, (c) PE veil interleaved, (d) PA veil interleaved 
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Figure 3.36 (Continued) 

 

      

 

 

Figure 3.37 Micrographs of cross-section taken by optical microscope for 

unidirectional fabric vinyl ester system specimens: (a) Hyb1 veil interleaved, (b) PE veil 

interleaved, (c) PA veil interleaved 

 

3.4.2.3 Plain Weave Fabric Specimens 

Figure 3.38 shows the fracture surface photographs taken by SEM for the Ep2 

system specimens. For the PE/C veil interleaved laminate, it can be seen that the 
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interleaf veil fibres are pulled out in a small area, as shown in Figure 3.38 (a). The 

pulled out fibres are bent and curved. It seems that these fibres are the PE veil fibre. The 

carbon veil fibres cannot be found on the fracture surface. These pulled out PE veil 

fibres would be responsible for bridging and suppress crack propagation during the 

DCB test. The fracture surface in the Hyb2 veil interleaved specimen is almost the same 

as the PE/C veil interleaved sample. A few veil fibres are pulled out from the matrix and 

appeared only in a partial area. The pulled out Hyb2 veil fibres are less compared with 

the PE/C veils fibres. It is thought that many Hyb2 veil fibres would be embedded in the 

matrix. Hence, the crack suppression effect by the interleaf veil is not considerably 

improved. Consequently, the Mode-I interlaminar toughness can barely improve. For 

the PE veil interleaved laminates, the fracture surface is similar to the satin and UD 

fabric Ep1 system specimens. Many PE veil fibres are pulled out on the fracture surface, 

as shown in Figure 3.38 (c). These pulled out veil fibres would work as crack-bridging 

fibres and suppress crack propagation. The fracture surface for the PA veil interleaved 

composite is covered with the matrix, as shown in Figure 3.38 (d). The PA veil fibres 

cannot be clearly found on the fracture surface, same as the satin and UD cases. 

Although the fracture behaivour is almost the same as the other fabric specimens, the 

fracture surface seems slightly different from the Ep1 system specimens. Practically, the 

surface for the Ep2 system specimen is coarser than that for the Ep1 system specimens. 

 

The cross-section pictures taken by the optical microscope for the PE and PA 

veil interleaved composites are shown in Figure 3.39. In the PE veil, it can be seen that 

many veil fibres are pulled out from the matrix, as shown in Figure 3.39 (a). These 

pulled out fibres can significantly improve the Mode-I interlaminar toughness. On the 

other hand, the PA veil fibres are adhered to the matrix, as illustrated in Figure 3.39 (b). 

However, the delamination resistance is completely different from the Ep1 system 

specimens. In the Ep2 system, the GIC values are significantly higher than the Ep1 

system specimens (see in section 3.3.3.1 and 3.3.3.3). It is thought that the epoxy type 

in the PA veil interleaved specimens may strongly affect the Mode-I interlaminar 

toughness. The Ep2 resin would have superior adhesion to the Ep1 resin in the PA veil. 

Therefore, the GIC values can be increased considerably. 
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Figure 3.38 Micrographs of fracture surface taken by SEM for plain weave epoxy2 

system specimens: (a) PE/C (100:100) veil interleaved, (b) Hyb2 veil interleaved, (c) 

PE veil interleaved, (d) PA veil interleaved 
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Figure 3.39 Micrograph of cross-section taken by optical microscope for plain weave 

epoxy2 system specimens: (a) PE veil interleaved, (b) PA veil interleaved 

 

Figure 3.40 illustrates the fracture surface photographs taken by the SEM for 

the VE resin composites. The fracture surface in the PE/C veil interleaved specimen 

shows the exposed woven fibres and matrix. The interleaf veil fibres, however, cannot 

be found on the surface, as shown in Figure 3.40 (a). It is thought that both PE and 

carbon veil fibres would be embedded in the matrix. The crack passed through between 

matrix and woven surface. For the Hyb1 and carbon veil interleaved laminate, the 

fracture surface is almost the same as the PE/C veil interleaved sample. The surface is 

covered with the matrix, and the interleaf veil fibres do not appear on the matrix. These 

veil fibres are completely embedded in the matrix. Hence, the delamination resistance 

cannot be improved. The fracture surface in the Hyb2 veil interleaved material, on the 

other hand, is a mixture of the exposed woven fabric and matrix, as shown in Figure 

3.40 (b). It can be seen that some Hyb2 veil fibres are pulled out in a small area. Many 

Hyb2 veil fibres, however, are still embedded in the matrix. Therefore, the GIC values 

could not increase considerably. In all resin systems, the carbon veil fibres are 

embedded in the matrix. It is thought that the adhesion between the carbon veil and 

matrix is too good and the veil fibres cannot pull out. Moreover, the interleaf veil would 

reduce the plastic zone in the interlaminar region. Consequently, the carbon veils may 

not be improved and contribute to the Mode-I interlaminar toughness. The fracture 

surfaces in the PE and PA veil interleaved laminates are similar to the Hyb2 veil 

interleaved case. The PE veil fibres are pulled out from part of the fracture region, as 

illustrated in Figure 3.40 (c). Some of pulled out veil fibres and unravelled fabric would 

improve the toughness. The fracture surface in the PA veil interleaved sample is that 

some PA veil fibres are pulled out from the matrix, as shown in Figure 3.40 (d). The PA 

veil fibres in the VE resin system provide a bridging effect for the suppression of crack 
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propagation. Compared to the PE veil fibres, the pulled out PA veil fibres are fewer and 

adhered to the matrix. It is thought that the PA veil fibres may possess better adhesion to 

the VE matrix than the PE veil fibres. On the other hand, the adhesion between the PA 

veil and matrix in the VE system would be poorer than the Ep2 system. Therefore, some 

veil fibres are pulled out from the matrix. 

 

      

 

      

Figure 3.40 Micrographs of fracture surface taken by SEM for plain weave vinyl ester 

system specimens: (a) PE/C (100:100) veil interleaved, (b) Hyb1 veil interleaved, (c) 

PE veil interleaved, (d) PA veil interleaved 

 

3.5. Conclusion 

 Evaluating the study for the Mode-I interlaminar toughness of non-woven 
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the resin. For the VE resin samples, the crack mainly has propagated between the 

matrix and woven surface. Also the carbon fibres are unravelled. 

 

(2) For the 5-harness satin weave with the Ep1 system specimens, the PE veil 

interleaved case had the highest Mode-I interlaminar toughness. Many PE veil fibres 

were pulled out on the fracture surface. These pulled out fibres seem to work as 

bridging and suppress crack propagation. The GIC value, therefore, was significantly 

increased. The fibres of both hybrid veils were also pulled out from the matrix, but 

less than the PE veil fibres. In the Ep1 resin system, the GIC values of the hybrid veil 

interleaved laminates were same or slightly lower than the non-interleaved case. In 

contrast, the carbon and PA veil interleaved composites had a significantly lower 

value of GIC than the other samples. Both veil fibres were not completely pulled out 

on the surface. The carbon veil fibres were embedded in the matrix and could not be 

worked as bridging. The PA veil fibres behaved differently. The PA veil fibres were 

exposed on the fracture surface, but adhered to the matrix. The crack passed on the 

surface of PA veil fibres. The adhesion property could not contribute to the 

improvement of Mode-I interlaminar toughness. For the VE system, the crack 

propagated between the carbon fabric and the matrix. The carbon fabric was 

exposed and unravelled over a partial area. Moreover, the PE and PA veil fibres 

were exposed at part of the matrix region. These exposed veil fibres would work as 

bridging and suppress crack growth.  

 

(3) For the UD fabric with the Ep1 system laminates, the toughening behaviour of the 

interleaf veil was similar to the satin samples. The PE veil interleaved specimen had 

the highest GI value. Both hybrid veil interleaved composites had a slightly higher 

value than the control. The carbon veil interleaved specimen had the poorest Mode-I 

interlaminar toughness in all interleaved cases. The PA veil interleaved laminate, on 

the other hand, had higher value of the GIC compared with the satin weave specimen. 

For the VE system, all of the specimens had similar GIC values. The GI-prop values of 

specimens, on the other hand, were significantly increased even in the carbon veil 

interleaved case. It is thought that the UD fabres are unravelled and worked to 

provide bridging. These unravelled fibres would improve the delamination 

resistance including the carbon veil interleaved materials. 

 

(4) For the plain weave with the Ep2 system laminates, the Mode-I interlaminar 

toughness of the PA veil interleaved specimen was significantly changed compared 
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with the Ep1 system samples. The PA veil interleaved case was enormously 

improved for GIC values. The PE veil interleaved laminate had the second highest 

Mode-I interlaminar toughness. The toughness for the PE/C and Hyb2 veil 

interleaved composites, on the other hand, was only slightly increased compared 

with the non-interleaved case. For the VE system, the difference of the GIC values 

between each specimen was not so much compared with the Ep2 system materials. 

The GIC values of the plain weave specimens were quite higher than that of the 

5-harness satin weave samples. The surface of the plain weave is coarse, and crack 

initiation would be more difficult than with the satin weave. On the other hand, both 

woven specimens had similar GI-prop values, in particular the PE and PA veil 

interleaved specimens. Once the crack propagates, weave types would not affect the 

propagation values. 

 

(5) The Ep resin system specimens showed clear difference of the GIC values between 

each veil interleaved laminate, whereas the GIC values between each interleaved VE 

resin system composite were similar. For the VE system laminates, when the crack 

propagated in the interlaminar region, the woven fibres were unravelled and caused 

fibre-bridging. Consequently, it is thought that a low interlaminar toughness 

specimen such as the carbon veil interleaved specimen even has moderate GIC 

values. On the other hand, in the Ep system specimens fibre-bridging by the woven 

fibres did not occur. Therefore, the interlaminar toughness was directly influenced 

only by properties of interleaf veil. 
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Chapter 4 
 

 

Toughening Mechanisms of Mode-II Interlaminar Fracture 

using Non-woven Veils as Interleaf Materials 

 

 

4.1 Introduction 

In this chapter, the main objective is to investigate the mechanisms of Mode-II 

interlaminar toughness for the interleaved composites. Several types of the non-woven 

veils were chosen as interleaf materials. The four-point end notched flexure (4ENF) 

tests were carried out for evaluating the Mode-II interlaminar toughness properties. The 

mechanisms of the inerlaminar toughness and the contribution to the toughness by the 

non-woven veils were examined and discussed using the test results and microscopy.  

 

4.2 Materials and Experiment Methods 

4.2.1 Materials Information 

 The materials using this study are the same as in chapter 3. These are described 

in section 3.2.1. 

 

4.2.2 Fabrication Methods of Composites for Mode-II Test 

The fabrication of the specimens is the same as chapter 3. The details of 

moulding are explained in section 3.2.2. 

 

4.2.3 Mode-II Interlaminar Toughness Tests 

The Mode-II interlaminar toughness properties of the composites were evaluated 

using the 4ENF test. The 4ENF test specimens were rectangular in shape, 140mm (in 

length) x 20mm (in width), as shown in Figure 4.1. The side faces of the specimens 

were polished and painted using a white spray. The specimens were marked from the 

edge of the insert film with vertical lines every 1mm up to 40mm 
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Figure 4.1 Dimensions of the 4ENF specimen 

 

For the 4ENF test fixtures, the spans of the support rollers and the loading 

rollers are 100mm and 60mm, respectively. The 4ENF specimens were loaded in a 

Hounsfield testing machine with a 25kN load cell. The Mode-II pre-cracking was 

performed as follows. The specimen was loaded at a constant crosshead speed of 

0.5mm/min. The load and displacement, at which the delamination crack moved from 

the insert film, were recorded up to crack propagation of 4mm. The specimen was then 

unloaded at a constant crosshead speed of 10mm/min. Thereafter the specimen was 

reloaded at the same constant crosshead speed of 0.5mm/min without stopping and the 

crack length was recorded until the final crack length increment. The load and 

displacement were recorded for every 1mm mark if possible. If bending fracture started, 

the crack would not grow and the test was stopped. Finally, the specimen was unloaded 

at a crosshead speed of 10mm/min until the displacement reached the start point. 

Mode-II energy release rate (GII) was calculated using compliance data reduction 

method (see in section 2.7.3.4). Figure 4.2 and 4.3 show schematic of 4ENF test and 

picture of 4ENF fixture. 
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Figure 4.2 Schematic of the 4ENF test 

 

 

Figure 4.3 Picture of 4ENF rig 

 

4.2.4 The Thickness and Volume Fraction of Each Laminate 

 The details of specimen thickness and volume fraction (Vf) used 4ENF tests are 

same as the DCB specimens and are summarised in section 3.2.4. 

 

4.2.5 Calculation of GIIC 

 For the calibration of the Mode-II energy release rate, the adjusted compliance 

versus the delamination length is plotted and a curve-fitting routine was used to fit a 

straight line to the data of the second loading test (see in Figure 4.4) [94, 192]. The 

gradient of this line, m, is then used to calculate the GII by the following equation: 

B

mP
GII

2

2

=     (4.1) 

where P is the load, m is the gradient from CC curve, and B is the width of specimen. 
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Figure 4.4 Typical 4ENF compliance calibration diagram 

 

The R-curve (resistance curve) can then be plotted and the propagation values of 

the GII are obtained as shown in Figure 4.5. The Mode-II initial energy release rate used 

values at non-linear (NL) and 5%/MAX points. The definition of NL and 5%/MAX 

values is mentioned in the section 2.7.1. The energy release rate at propagation region, 

GII-prop, is calculated as the average of propagation values from the maximum GII value 

(see in Figure 4.5).  
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Figure 4.5 Typical Mode-II crack propagation resistance curve (R-curve) 

 

4.2.6 Observation by Microscopy 

 Tested specimens were observed using SEM and optical microscopy. Details of 

the preparation method are indicated in section 3.2.7. 

 

Non-linear 

5%/MAX 

Average of GII-prop values 
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4.3 Results 

4.3.1 Resistance-Curves for Non-Interleaved Specimens 

 In this section, the representative R-curves for various interleaved laminates are 

shown. Figure 4.6 shows the typical R-curves obtained by 4ENF tests for the 

non-interleaved Ep resin system laminates. The GIIC values for each fabric type appear 

to give different results, as shown in the diagram. The propagation values in the satin 

weave laminate are the highest in all non-interleaved cases. The GIIC values in the UD 

specimen has the second highest. On the other hand, two different areal weight plain 

weave laminates show different behaviour. The HAW specimen possesses higher 

propagation values than the LAW case. The areal weight of the base materials affects 

the Mode-II interlaminar toughness, unlike the Mode-I interlaminar toughness which is 

unaffected (see in Figure 3.14). 

 

 Figure 4.7 illustrates the R-curves for the non-interleaved VE system composites. 

The results are opposite to the Ep-system specimens. The satin weave laminate has the 

lowest GII value in all VE system samples. The propagation values in the UD specimen 

increase to over 2kJ/m2. On the other hand, the propagation values for the plain weave 

laminate rises to over 1.5kJ/m2, but then GII value drops suddenly, as bending fracture 

starts during 4ENF test. Once bending fracture occurred, the crack propagated no 

longer. 
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Figure 4.6 R-curves for the non-interleaved epoxy system specimens 
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Figure 4.7 R-curves for the non-interleaved vinyl ester system specimens 
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4.3.2 Resistance-Curves for Interleaved Specimens 

4.3.2.1 5-harness Satin Weave Fabric Specimens 

 Figure 4.8 illustrates the typical R-curves for control and interleaved Ep1 system 

laminates. The tendency of the GII values is different from the Mode-I interlaminar 

toughness (see in Figure 3.16). The Hyb2 and PE veil interleaved specimens possess 

quite high GII values. In particular, the Hyb2 veil interleaved case is over 5kJ/m2. On the 

other hand, the Hyb1 veil interleaved composite is moderately higher GIIC value than 

the non-interleaved sample. The carbon veil interleaved laminate has the lowest 

propagation value of all interleaved specimens. The PA veil interleaved composite also 

exhibits low GII values. However, the propagation values increase until the end of the 

test. Ultimately, GII-prop values for the PA veil interleaved sample exceed 3kJ/m2. 

 

 The R-curves obtained by the 4ENF tests for the VE system are shown in Figure 

4.9. In the VE system, only the PE and PA veil interleaved specimens were examined. 

Both interleaved laminates have higher GII values than the non-interleaved case. The 

propagation values in both interleaved samples are similar. The PE veil interleaved 

laminate shows slightly lower GII values than the Ep1 laminates. On the other hand, the 

PA veil interleaved samples possess higher propagation values than the Ep1 system 

case. 
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Figure 4.8 R-curves for non-interleaved and interleaved 5-harness satin weave fabric 

specimens with epoxy1 system 
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Figure 4.9 R-curves for non-interleaved and interleaved 5-harness satin weave fabric 

specimens with vinyl ester system 
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4.3.2.2 Unidirectional Fabric Specimens 

 Figure 4.10 shows the R-curves for the control and interleaved Ep1 system 

composites. The general trend in the GII values is similar to the satin specimens. The 

Hyb2 veil interleaved specimen has the highest GII values, over 5kJ/m2. The Hyb1 and 

PE veil interleaved cases have almost the same propagation values. In the PA veil 

interleaved sample, the GII values are same as the Hyb1 and PE veil interleaved cases 

until a crack length of 70mm. Thereafter, the propagation values are increased and over 

5kJ/m2. Surprisingly, the carbon veil interleaved specimen has slightly higher GII values 

than the control.  

 

 Figure 4.11 shows the typical R-curves obtained by the 4ENF tests for the VE 

system composites. The R-curves for all specimens show quite similar behaviour, unlike 

the Ep1 system samples. The PA veil interleaved laminate performs well after 80mm 

crack length. The PE and PA veil interleaved samples possess slightly higher GII values 

than the other interleaved cases. Compared to the satin weave VE system composite, the 

UD samples exhibit low GII values. In Mode-I interlaminar toughness, the UD fabric 

VE resin composites possess excellent GI values compared with the Ep1 system cases. 

However, the Mode-II interlaminar toughness does not appear to be improved by 

fibre-bridging effect. 
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Figure 4.10 R-curves for non-interleaved and interleaved unidirectional fabric 

specimens with epoxy1 system 
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Figure 4.11 R-curves for non-interleaved and interleaved unidirectional fabric 

specimens with vinyl ester system 

 



 

Chapter 4   Mode-II Interlaminar Toughness 
  

 154

4.3.2.3 Plain Weave Fabric Specimens 

 Figure 4.12 shows the representative R-curves for the Ep2 system composites. 

From the graph, the GII values in all interleaved laminates are increased relative to the 

control. The PE/C veil interleaved sample possesses only a slightly higher GIIC value 

than the non-interleaved case. For the Hyb2 veil interleaved specimen, it can be seen 

that the GII values are increased. However, the improvement of the Mode-II interlaminar 

toughness is less than the other fabrics with the Ep1 system. The toughness of the PE 

and PA veil interleaved composites is increased significantly. However, in these 

interleaved laminates bending fracture occurred at an early stage. Therefore, data points 

are less than the other interleaved materials. 

 

The diagram of the typical R-curves for the VE system composites is shown in 

Figure 4.13. The general trend is similar to the Ep2 system specimens. The PE/C, Hyb1, 

and carbon veil interleaved laminates have almost the same propagation values. In 

contrast, the Hyb2 veil interleaved case possesses the lowest GIIC values. The PE and PA 

veil interleaved composites have higher propagation values than the other interleaved 

samples. Basically, the GIIC values in the VE system interleaved specimens are overall 

lower than the Ep system interleaved cases. 
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Figure 4.12 R-curves for non-interleaved and interleaved plain weave fabric specimens 

with epoxy2 system 
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Figure 4.13 R-curves for non-interleaved and interleaved plain weave fabric specimens 

with vinyl ester system 
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4.3.3 Mode-II Critical Energy Release Rate (GIIC) 

4.3.3.1 5-harness Satin Weave Fabric Specimens 

 The GII initiation and propagation values for the satin weave Ep1 system 

specimens are summarised in Table 4.1 with the standard deviations (S.D.) and 

coefficient of variations (C.V.). Figure 4.14 plots diagram of GIIC-NL, GIIC-5%/MAX, and 

GII-prop values. The tendency of the GII initial values is similar to the Mode-I critical 

energy release rate (see in Figure 3.22). The Hyb2 and PE interleaved specimens show 

significantly high initiation values. In particular, the GIC-5%/MAX value of the Hyb2 veil 

interleaved case is significantly large, about 4.87kJ/m2. However, the carbon and PA 

veil interleaved laminates show lower GII values than the non-interleaved specimen in 

the same way as the DCB results. The S.D., except for the Hyb2 and PE veil interleaved 

sample, is around 0.11 to 0.25. The S.D. in the Hyb2 and PE veil interleaved material 

have approximately 0.36 and 0.65, respectively. 

 

 The GII-prop values exhibit a similar tendency to the initial values, except for the 

PA interleaved specimen. The Hyb2 and PE veil interleaved specimens show 

significantly higher GII-prop values, 5.27 and 4.76kJ/m2 respectively. The propagation 

value for the carbon veil interleaved laminate is still lower than the control, nearly 

2.04kJ/m2. The PA veil interleaved specimen has almost the same value as the 

non-interleaved sample, approximately 2.76kJ/m2. The S.D. for the control, Hyb1, 

carbon, and PA veil interleaved materials is moderate with values ranging from 0.14 to 

0.26. The Hyb2 and PE interleaved specimens, however, have quite large values, 

approximately 0.39 and 0.69 respectively.  
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Table 4.1 Mode-II critical strain energy release rate values of 5-harness satin weave 

epoxy1 system specimens with/without interleaf veils 

Interleaf 
GII 

[kJ/m2] 

S.D. C.V. 
 

Non-interleaved 

2.43 

2.74 

2.75 

0.153 

0.175 

0.138 

0.063 

0.060 

0.050 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb1 

2.74 

3.24 

3.19 

0.246 

0.219 

0.165 

0.090 

0.070 

0.052 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb2 

3.14 

4.87 

5.27 

0.360 

0.420 

0.393 

0.114 

0.090 

0.075 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Carbon 

1.93 

2.18 

2.04 

0.241 

0.241 

0.183 

0.125 

0.110 

0.089 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PE 

3.60 

4.31 

4.76 

0.653 

0.632 

0.694 

0.181 

0.150 

0.146 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PA 

1.41 

1.95 

2.76 

0.107 

0.191 

0.256 

0.076 

0.100 

0.093 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 
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Figure 4.14 Comparison of Mode-II initiation and propagation energy release rate 

values for 5-harness satin weave epoxy1 system specimens with/without interleaf veils 

 

 The GIIC initiation values for the VE system specimens are shown in Table 4.2 

with S.D. and C.V. values. Figure 4.15 is a diagram of initiation and propagation values. 

The GII initial value for the non-interleaved laminate is quite low, about 0.45kJ/m2. On 

the other hand, the GII initial values of the PE and PA veil interleaved specimens are 

about 3.11 and 2.53kJ/m2, respectively. Both interleaved samples have higher S.D. 

values than the control. In particular, the PE veil interleaved laminates are 

approximately 0.46 for the initial value. 

 

 For the propagation value, the non-interleaved specimen still has a low GII-prop 

value, approximately 0.7kJ/m2. The GII-prop of the PE and PA veil interleaved laminates 

increases slightly from the GII initial values, 3.76 and 3.20kJ/m2 respectively. Compared 

to the control, the PE and PA veil interleaved cases have significantly high GII values. 

However, the Mode-II interlaminar toughness values for the VE system are lower than 

the Ep1 system. The S.D. value of the non-interleaved specimen is quite small and test 

results have good repeatability. On the other hand, the S.D. of both interleaved samples 

are moderate, approximately 0.28 (PE) and 0.19 (PA) respectively.  
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Table 4.2 Mode-II critical strain energy release rate values of 5-harness satin weave 

vinyl ester system specimens with/without interleaf veils 

Interleaf 
GII  

[kJ/m2] 

S.D. C.V. 
 

Non-interleaved 

0.45 

0.61 

0.73 

0.034 

0.040 

0.034 

0.076 

0.066 

0.047 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PE 

3.11 

3.49 

3.76 

0.459 

0.464 

0.280 

0.148 

0.124 

0.074 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PA 

2.53 

2.84 

3.20 

0.256 

0.264 

0.186 

0.101 

0.093 

0.058 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

*: Hyb1 and 2, and carbon veil interleaved specimens were not examined. 
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Figure 4.15 Comparison of Mode-II initiation and propagation energy release rate 

values for 5-harness satin weave vinyl ester system specimens with/without interleaf 

veils 
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4.3.3.2 Unidirectional Fabric Specimens 

 Table 4.3 shows the GII initiation and propagation values with the S.D. and C.V. 

values for unidirectional fabric Ep1 system. Figure 4.16 illustrates diagram of GIIC-NL, 

GIIC-5%/MAX, and GII-prop values. The GII initial values for all specimens are similar 

tendency to the satin weave Ep1 system laminates. The Hyb2 interleaved specimen has 

the highest GII-NL initial values, approximately 3.06kJ/m2. The Hyb1 and PE veil 

interleaved composites have moderately high GIIC-NL values, approximately 1.97 and 

2.29kJ/m2 respectively. The carbon and PA veil interleaved specimens are slightly 

higher than the control, approximately 1.9kJ/m2. The tendency of the GIC-5%/MAX values 

is similar to that of the GIIC-NL values. The S.D. values of the non-interleaved, Hyb1, 

carbon, and PA veil interleaved specimens are not large, ranging from 0.09 to 0.18. 

Those of the Hyb2 and PE veil interleaved specimens, however, are higher than the 

other specimens. In particular, that of the Hyb2 interleaved sample is quite high, nearly 

0.59. 

 

 The GII-prop values of the Hyb2 veil interleaved specimen are increased 

significantly, about 5.78kJ/m2. Surprisingly, the PA veil interleaved laminate has a 

significantly high GII-prop value, approximately 4.73kJ/m2. The Hyb1 and PE veil 

interleaved materials have almost the same value, 3.79 and 3.74kJ/m2 respectively. Even 

the carbon veil interleaved specimen is slightly higher than the non-interleaved case, 

about 2.74kJ/m2. In the UD composites, the Mode-II interlaminar toughness is 

improved for all interleaved samples, unlike the satin weave cases. The S.D. values of 

both hybrid veil interleaved samples are quite larger than the other specimens, 

approximately 0.42 (Hyb1) and 0.56 (Hyb2). The carbon, PE and PA veil interleaved 

specimens are moderate S.D. values, around 0.16 to 0.28. 
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Table 4.3 Mode-II critical strain energy release rate values of unidirectional fabric 

epoxy1 system specimens with/without interleaf veils 

Interleaf 
GII 

[kJ/m2] 

S.D. C.V. 
 

Non-interleaved 

1.47 

1.80 

2.53 

0.155 

0.332 

0.206 

0.106 

0.185 

0.081 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb1 

1.97 

2.81 

3.79 

0.155 

0.324 

0.420 

0.079 

0.115 

0.111 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb2 

3.06 

4.45 

5.78 

0.592 

0.453 

0.561 

0.193 

0.102 

0.097 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Carbon 

1.90 

2.23 

2.74 

0.179 

0.250 

0.174 

0.094 

0.112 

0.063 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PE 

2.29 

2.93 

3.74 

0.269 

0.236 

0.162 

0.117 

0.080 

0.043 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PA 

1.85 

2.95 

4.73 

0.086 

0.247 

0.282 

0.046 

0.084 

0.060 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 
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Figure 4.16 Comparison of Mode-II initiation and propagation energy release rate 

values for unidirectional fabric epoxy1 system specimens with/without interleaf veils 

 

 The GIIC initiation and propagation values for the UD fabric VE system 

specimens are indicated in Table 4.4 and Figure 4.17 with the S.D. and C.V. values. The 

GII initial values for all specimens are overall lower than the Ep1 system samples. The 

differences in the initial values between each interleaved specimen are quite small. The 

range of the GIIC-NL values for all specimens is 0.74 to 1.03kJ/m2. The GIIC-5%/MAX values, 

on the other hand, varied more widely than the GIIC-NL values, in a range from 0.88 to 

1.42kJ/m2. The S.D. values of all specimens are quite lower than the Ep1 system, and 

these specimens have good repeatability.  

 

 The propagation values for all specimens show a similar tendency to the initial 

values. The GII-prop value of the non-interleaved laminate is approximately 1.36kJ/m2. 

Both hybrid and carbon veil interleaved specimens have similar GII-prop values, about 

1.54kJ/m2 (Hyb1), 1.53kJ/m2 (Hyb2), and 1.43kJ/m2 (carbon) respectively. The PE and 

PA veil interleaved specimens have higher GII-prop values than the other interleaved cases, 

approximately 1.98 and 2.14kJ/m2, respectively. The Mode-II propagation energy 

release rates are also lower than the Ep1 system. The S.D. for all specimens is quite 

small. Hence these results seem to be reliable. 
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Table 4.4 Mode-II critical strain energy release rate values of unidirectional fabric vinyl 

ester system specimens with/without interleaf veils 

Interleaf 
GII 

[kJ/m2] 

S.D. C.V. 
 

Non-interleaved 

0.74 

0.88 

1.36 

0.090 

0.101 

0.216 

0.122 

0.115 

0.159 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb1 

0.93 

1.13 

1.54 

0.081 

0.085 

0.035 

0.087 

0.075 

0.023 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb2 

0.83 

1.08 

1.53 

0.016 

0.058 

0.055 

0.020 

0.054 

0.036 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Carbon 

0.92 

1.12 

1.43 

0.051 

0.089 

0.065 

0.055 

0.079 

0.046 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PE 

1.03 

1.42 

1.98 

0.111 

0.055 

0.138 

0.108 

0.039 

0.070 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PA 

0.84 

1.23 

2.14 

0.091 

0.103 

0.276 

0.108 

0.084 

0.129 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 
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Figure 4.17 Comparison of Mode-II initiation and propagation energy release rate 

values for unidirectional fabric vinyl ester system specimens with/without interleaf veils 

 

4.3.3.3 Plain Weave Fabric Specimens 

 Table 4.5 and Figure 4.18 show the GII initiation and propagation values with the 

S.D. and C.V. values for the Ep2 system specimens. For the non-interleaved samples, 

the GIIC-NL values of the HAW and LAW laminates are about 1.66 and 1.54kJ/m2, 

respectively. The HAW specimen has slightly higher GIC value than the LAW case. The 

PE/C veil interleaved laminates have slightly lower GIIC-NL values than the control, 

around 1.51kJ/m2. The GIIC-NL value in the Hyb2 veil interleaved composite, on the 

other hand, is slightly higher than the non-interleaved case, nearly 1.72kJ/m2. The PE 

and PA veil interleaved specimens have higher GII initial values than the other 

interleaved samples, 2.18 and 2.78kJ/m2 respectively. In particular, the Mode-II initial 

property for the PA veil interleaved laminate has the highest GIIC value. The S.D. values 

for all specimens, except for the Hyb2 veil interleaved sample, are large. In particular, 

the S.D. values of the PE and PA veil interleaved composites are around 0.5. 

 

The GII-prop values exhibit almost the same trends as the GII initial values. The 

non-interleaved and PE/C veil interleaved specimens are the same values, about 

1.61kJ/m2. The Hyb2 veil interleaved specimen is slightly higher than the control and 

PE/C veil interleaved cases around 2.15kJ/m2. The GII-prop value of the PE veil 

interleaved laminate is nearly 3.05kJ/m2. The PA veil interleaved specimen has the 

highest propagation value, approximately 3.71kJ/m2. The GII-prop values of interleaved 
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specimens are substantially increased from the initial values, except for the PE/C veil 

interleaved sample. For the S.D. values, all specimens have deviations between 0.25 and 

0.30, except for the PE veil interleaved material. The S.D. value of the PE veil 

interleaved composite is the largest, around 0.70. 

 

Table 4.5 Mode-II critical strain energy release rate values of plain weave epoxy2 

system specimens with/without interleaf veils 

Interleaf 
GII 

[kJ/m2] 

S.D. C.V. 
 

Non-interleaved 

(HAW) 

1.66 

1.91 

1.66 

0.214 

0.235 

0.339 

0.129 

0.123 

0.204 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Non-interleaved 

(LAW) 

1.54 

4.59 

1.56 

0.223 

0.475 

0.199 

0.144 

0.299 

0.128 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PE/C 

1.51 

1.81 

1.61 

0.376 

0.366 

0.262 

0.249 

0.202 

0.163 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb2 

1.72 

2.27 

2.15 

0.101 

0.161 

0.302 

0.059 

0.071 

0.141 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PE 

2.18 

3.12 

3.05 

0.505 

0.615 

0.698 

0.212 

0.197 

0.229 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PA 

2.78 

3.48 

3.71 

0.526 

0.100 

0.254 

0.189 

0.029 

0.068 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 
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Figure 4.18 Comparison of Mode-II initiation and propagation energy release rate 

values for plain weave epoxy2 system specimens with/without interleaf veils 

 

 The GIIC initiation and propagation values for the VE system composites are 

shown in Table 4.6 with the S.D. and C.V. values. Figure 4.19 plots GIIC-NL, GIIC-5%/MAX, 

and GII-prop values. The GII initial values of the non-interleaved, PE/C, hybrid, and 

carbon veil interleaved specimens are similar values, range from 1.47 to 1.78kJ/m2. The 

PE and PA veil interleaved laminates have quite higher GII initial values than the other 

interleaved cases, 2.48 and 2.69kJ/m2 respectively. Some of these specimens exhibited 

bending fracture when 4ENF tests were carried out. Some data was of a too large a 

value and therefore omitted. The S.D. values for the non-interleaved, PE/C, hybrid, and 

carbon veil interleaved specimens are not such a large value. On the other hand, the 

other two interleaved composites have significantly large S.D. values. For these 

specimens, the crack growth rate was quite slow and bending failure occurred at an 

early stage. Consequently, some results would not be reliable.  

 

 The GII-prop values for all specimens are slightly increased only. The reason for 

this seems to be that the gap between GIIC-NL and GII-prop values are quite small. The 

propagation value of the non-interleaved specimen is 2.11kJ/m2. Both hybrid veil 

interleaved laminates have slightly lower GII-prop values than the control, about 1.7kJ/m2. 

The PE/C and carbon veil interleaved samples have marginally higher propagation 

value than the non-interleaved case, nearly 2.03 to 2.30kJ/m2. The GII-prop values of the 

PE and PA veil interleaved composites are approximately 3.38 and 3.63kJ/m2, 
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respectively. The GII-prop values for the VE system interleaved composites are similar to 

the Ep2 system cases, except for the PE veil interleaved sample. The PE interleaved 

samples have slightly higher GII-prop values than the Ep2 system cases. The tendency of 

the S.D. is similar to the initial results. The Hyb1 veil interleaved laminate has the 

smallest S.D. value, 0.12. The control and other interleaved specimens, except for the 

PA veil interleaved case, have similar S.D. values, range from 0.26 to 0.31. The 

deviation in the PA veil interleaved sample is the highest, approximately 0.51.  

 

Table 4.6 Mode-II critical strain energy release rate values of plain weave vinyl ester 

system specimens with/without interleaf veils 

Interleaf 
GII 

[kJ/m2] 

S.D. C.V. 
 

Non-interleaved 

(HAW) 

1.78 

2.07 

2.11 

0.326 

0.388 

0.310 

0.183 

0.188 

0.147 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PE/C 

1.66 

1.92 

2.03 

0.257 

0.308 

0.270 

0.155 

0.161 

0.133 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb1 

1.57 

1.72 

1.70 

0.117 

0.142 

0.122 

0.074 

0.083 

0.072 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Hyb2 

1.47 

1.56 

1.66 

0.285 

0.343 

0.275 

0.194 

0.219 

0.165 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

Carbon 

1.61 

1.85 

2.30 

0.131 

0.200 

0.258 

0.081 

0.108 

0.112 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PE 

2.48 

2.97 

3.38 

0.298 

0.211 

0.283 

0.120 

0.071 

0.084 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 

PA 

2.69 

2.93 

3.63 

0.568 

0.904 

0.507 

0.212 

0.308 

0.140 

GIIC-NL 

GIIC-5%/MAX 

GII-Prop 
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Figure 4.19 Comparison of Mode-II initiation and propagation energy release rate 

values for plain weave vinyl ester system specimens with/without interleaf veils 

 

 In this section, the Mode-II energy release rates for the non-woven veil 

interleaved specimens are mentioned. The general trend of 5-harness satin Ep1 system 

is similar to that of the Mode-I interlaminar toughness. The Hyb2 and PE veil 

interleaved specimens show a good improvement of the Mode-II interlaminar toughness, 

in particular propagation values. In contrast, the carbon and PA veil interleaved 

laminates are degraded in Mode-II interlaminar toughness in the same way as the 

Mode-I interlaminar toughness. For the VE system, both the PE and PA veil interleaved 

cases show significantly increased toughness compared with the control. 

 

 The UD fabric Ep1 system specimens are that the interleaved are improved by 

the interleaf veils, even the carbon veil interleaved case. On the other hand, the Mode-II 

interlaminar toughness for the VE system is a small overall. Moreover, the difference in 

the GII values between each interleaved specimen is quite small.  

 

 In the plain weave Ep2 system, the GII values for all specimens are lower than 

the Ep1 system cases. Whilst the Mode-II interlaminar toughness in the PE and PA veils 

is greatly improved, those in the PE/C and Hyb2 veils are only slightly increased. The 

tendency of the GII values in the VE system is similar to the Ep2 system composites. 

The tendency of the Mode-II interlaminar toughness in the UD fabric VE system is 
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completely different from that of the Mode-I interlaminar toughness. 

 

 Figure 4.20 illustrates the relationship of the Mode-II initial energy release rate 

with the fabric and resin system. The GIIC values in the control are affected strongly by 

both factors, fabric and resin. The satin weave Ep1 system laminate has the highest GIIC 

value in all fabric and resin systems. In contrast, the satin weave VE system specimen 

has the lowest Mode-II initial toughness. For the unidirectional fabric composite, the 

GIIC value in the Ep1 system is the lowest of all Ep system cases. The VE system 

specimen also has a low GIIC value. It is thought that surface of the UD fabric is smooth, 

and the crack can propagate more easily than in the woven fabrics. In the plain weave 

fabric system, the fabric surface is coarser than the other fabric. The initial value, 

therefore, is moderately high. Moreover, the areal weight of the fabric in the Ep2 system 

affects slightly the initial value. In the plain weave specimens, some test samples 

suffered bending fracture during 4ENF test. Therefore, some samples did not give 

adequate data. 
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Figure 4.20 Relationship of Mode-II initial energy release rate between fabric and resin 

system for non-interleaved specimens  

 

4.4 Discussion 

4.4.1 Mechanisms of Mode-II Interlaminar Toughness for Non-Interleaved 

Specimens 

 Figure 4.21 shows SEM pictures of fracture surface for the non-interleaved 

specimens. For the satin weave Ep1 system laminate, the fracture surface is covered 

with the matrix on the both fracture surfaces. It is found that there are many hackles on 
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the surface, as illustrated in Figure 4.21 (a). These hackles would contribute to 

improving the Mode-II initial value [19]. The crack propagation tends to pass through 

the matrix region, same as the Mode-I fracture behaviour. It is thought that the adhesion 

between woven fabric and matrix is good. The crack, therefore, can propagate only in 

the matrix area. In the VE system composite, the matrix and exposed woven fibres 

appear on the fracture surface, as illustrated in Figure 4.21 (b). The exposed woven 

fibres are unravelled. The hackles are not seen on the surface. The adhesion between the 

carbon woven fabric and VE resin may not be as good as the Ep1 resin system. 

Consequently, the woven fibres are unravelled on the surface. This poor adhesion of the 

VE resin would lead to the crack propagating easily. Therefore, the initial values are 

significantly smaller than the Ep1 case. 

 

The fracture surface in the UD fabric Ep1 system laminate is similar to the 

satin weave Ep1 system specimens. Both fracture surfaces are covered with the matrix. 

Although the fracture surface reveals trace of the UD fibres, they are not unravelled on 

the surface, as shown in Figure 4.21 (c). It can be seen that the hackles appear on the 

fracture surface. It seems that these hackles are less than the satin weave samples. 

Hence, the Mode-II interlaminar toughness may be low, compared with the satin weave 

case. The fracture surface in the VE system is similar to the satin with VE system. The 

UD carbon fibres are exposed and unravelled (see in Figure 4.21 (d)). However, these 

frayed fabrics would not work as fibre-bridging reinforcements significantly. In the UD 

fabric VE system laminate, the poor adhesion and flat surface would lead to be poor 

GIIC values, compared with the satin weave materials. Therefore, the Mode-II 

interlaminar toughness could not improve considerably. 

 

In the plain weave Ep2 system laminate, the fracture surface is covered with 

the matrix, as shown in Figure 4.21 (e). The woven fibres are not unravelled completely. 

In Ep2 system, the hackles also appear on the fracture surface. Moreover, the fracture 

surface seems to be coarser than samples made with the other fabrics. On the other hand, 

the fracture surface for the VE system is the same as the 5-harness satin weave cases. 

Some of woven fibres are frayed over a partial area, as shown in Figure 4.21 (f). These 

fibres would work for bridging during crack propagation.  
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Figure 4.21 Micrographs of fracture surface taken by SEM for non-interleaved 

specimens: (a) Satin weave Ep1 system, (b) Satin weave VE system, (c) UD fabric Ep1 

system, (d) UD fabric VE system, (e) Plain weave Ep2 system, (f) Plain weave VE 

system 

 

The cross-sections taken by the optical microscope are illustrated in Figure 4.22. 

From Figure 4.22 (a), it can be seen that the crack path is not straight, unlike the DCB 
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tested specimen (see in Figure 3.30 (a)). The crack propagates in the matrix region. For 

the VE system, the crack would propagate along one side weave surface and then some 

of the carbon woven fibres seem to work as fibre-bridging. The fracture surface is 

almost the same as the Mode-I fracture surface (see in Figure 3.29(b)). It can be seen 

that the woven fibres are unravelled, as shown in Figure 4.22 (b). The crack paths in UD 

specimens with both resin systems are straight, as shown in Figure 4.22 (c) and (d). 

Therefore, it is thought that the crack growth would be easier than the satin weave case. 

The crack paths in the plain weave with both composites of either resin are not straight 

in the interlaminar region, as shown in Figure 4.22 (e) and (f). This is because the 

surface of the plain weave is rougher than that of the 5-harness satin weave and UD 

fabric samples. The fibre-bridging does not contribute to the improvement of the 

Mode-II interlaminar toughness unlike the Mode-I interlaminar toughness. The 

behaviour of the crack propagation in the Ep2 system laminate is almost the same as the 

satin weave Ep1 system case. Compared to the areal weight of the fabrics, the HAW 

specimen has higher GIIC values than the LAW sample. In the Mode-II interlaminar 

toughness, surface of the fabric would influence crack growth strongly. The 

non-interleaved specimen in the VE system has a crack path that is a mixture of 

intralaminar and interlaminar regions. The crack propagation in the plain weave VE 

system laminate was significantly slow. Therefore, bending fracture was initiated at an 

early stage. It is thought that the roughness of the fabric surface is a cause. 

 

 

 

 

Figure 4.22 Micrographs of cross-section taken by optical microscope for 

non-interleaved specimens: (a) Satin weave Ep1 system, (b) Satin weave VE system, (c) 

UD fabric Ep1 system, (d) UD fabric VE system, (e) Plain weave Ep2 system, (f) Plain 

weave VE system  
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Figure 4.22 (Continued) 

 

4.4.2 Mechanisms of Mode-II Interlaminar Toughness for Interleaved Specimens 

4.4.2.1 5-harness Satin Weave Fabric Specimens 

 Figure 4.23 shows SEM pictures for the interleaved Ep1 system specimens 

examined after 4ENF tests. The veil fibres in the Hyb1 veil interleaved laminate are 

found on the fracture surface and pulled out (see in Figure 4.23 (a)). The satin weave 

fibres, however, are barely unravelled, and the surface condition is similar to the 

non-interleaved sample. These pulled out Hyb1 veil fibres may contribute to the 

suppression of the crack propagation. The Hyb2 veil fibres adhere widely on the 

fracture surface, as shown in Figure 4.23 (b). When the crack propagated, the Hyb2 veil 

fibres would be pulled out from matrix and work to provide fibre-bridge in the same 

way as the Hyb1 veil fibres. The Hyb2 veil fibres, on the other hand, are pulled out 

more than the Hyb1 veil fibres. The Hyb2 veil interleaved laminate, therefore, possesses 

better Mode-II interlaminar toughness than the Hyb1 veil interleaved case. In the carbon 

veil interleaved composite, it can be found that there are many scratches on the surface, 

as shown in Figure 4.23 (c). The carbon veil fibres, however, cannot be found on the 

fracture surface. It is thought that the carbon veil fibres are embedded in the matrix 

completely. The fracture surface with the PE veil interleaved specimens are covered 

with the matrix, as illustrated in Figure 4.23 (d). Moreover, the PE veil fibres are found 

to pull out from the matrix. The pulled out veil fibres are significantly more numerous 

than from both hybrid veils. When the crack grew during the 4ENF test, the PE veil 

fibres pulled out from the matrix and would have worked to provide fibre-bridging. The 

fracture surface in the PA veil interleaved laminate is covered with the matrix resin, as 

shown in Figure 4.23 (e). It can be seen that the PA veil fibres are adhered to the matrix. 

It seems that the crack propagates in the 4ENF test in the PA veil region, unlike the 

(e) 

(e) 

(d) 

1mm 
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DCB tested specimens.  

 

Figure 4.24 shows micrographs of the cross-section taken by the optical 

microscope for the interleaved composites. Both hybrid veils show similar behaviour. 

Some veil fibres are pulled out on the surface, as shown in Figure 4.24 (a). However, 

many veil fibres are embedded in the matrix. Compared to the Hyb1 veil interleaved 

sample, there seem to be many Hyb2 veil fibres pulled out from the matrix. Therefore 

the Hyb2 veil fibres can contribute to a significant improvement of the Mode-II 

interlaminar toughness. For the carbon veil interleaved case, it can be seen that the veil 

fibres are embedded in the matrix completely, as shown in Figure 4.24 (b). Therefore, 

the carbon veil cannot contribute to improvement of the Mode-II interlaminar toughness, 

same as the Mode-I interlaminar toughness. Moreover, the existence of the carbon veils 

may reduce the resin rich region and growing plastic zone. Consequently, the toughness 

is less than that of the non-interleaved material. Many PE veil fibres are pulled out on 

the fracture surface widely, as shown in Figure 4.24 (c). The PE veil interleaved 

specimens can realise significant improvement of the Mode-II interlaminar toughness, 

compared with the hybrid veil interleaved laminates. Because pulled out veil fibres are 

much more numerous and these fibres could contribute to high GIIC values. For the PA 

veil, it can be found that the crack goes through in the veil fibre, as shown in Figure 

4.24 (d). It is thought that the crack propagation would be suppressed by deformation or 

elongation of the PA veil fibres. 

 

      

Figure 4.23 Micrographs of fracture surface taken by SEM for 5-harness satin weave 

epoxy1 system specimens: (a) Hyb1 veil interleaved, (b) Hyb2 veil interleaved, (c) 

Carbon veil interleaved, (d) PE veil interleaved, (e) PA veil interleaved 
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Figure 4.23 (Continued) 

 

      

Figure 4.24 Micrographs of cross-section taken by optical microscope for 5-harness 

satin weave epoxy1 system specimens: (a) Hyb2 veil interleaved, (b) Carbon veil 

interleaved, (c) PE veil interleaved, (d) PA veil interleaved 
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Figure 4.24 (Continued) 

 

Fracture surface photographs taken by SEM for the VE system specimens are 

illustrated in Figure 4.25. The crack passes through between the woven fabric surface 

and the matrix. It can be seen that the PE veil fibres are pulled out locally, as shown in 

Figure 4.25 (a). The pulled out PE veil fibres in the VE system specimen are fewer 

compared with the Ep1 system laminate. It is thought that the crack suppression by veil 

fibres cannot work adequately. The GIIC value, therefore, is lower than the Ep1 system 

case. The fracture surface in the PA veil interleaved composite is similar to the PE veil 

interleaved sample. The PA veil fibres are adhered to the matrix, not pulled out from the 

matrix, as seen in Figure 4.25 (b). The PA veil fibres are also partially exposed, same as 

the PE veil interleaved case.  

 

Figure 4.26 shows cross-sections of tested specimens. From Figure 4.26 (a), the 

pulled out fibres in the PE veil are not many compared with the Ep1 system sample (see 

in Figure 4.24 (a)). Many interleaf veil fibres would be embedded in the matrix. On the 

other hand, the PA veil fibres are different in behaviour from the PE fibres. The PA veil 

fibres would be deformed and elongated, as shown in Figure 4.26 (b). When the crack 

propagated in the interlaminar region, the PA veil fibres were deformed. This may 

contribute to improving the Mode-II interlaminar toughness. 
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Figure 4.25 Micrographs of fracture surface taken by SEM for 5-harness satin weave 

vinyl ester system specimens: (a) PE veil interleaved, (b) PA veil interleaved 

 

      

Figure 4.26 Micrographs of cross-section taken by optical microscope for 5-harness 

satin weave vinyl ester system specimens: (a) PE veil interleaved, (b) PA veil 

interleaved 

 

4.4.2.2 Unidirectional Fabric Specimens 

The images of the fracture surface in the Ep1 system taken by SEM are shown 

in Figure 4.27. The fracture surface in the Hyb1 interleaved laminate is similar to the 

satin weave case. The fracture surface is covered with the matrix and some Hyb1 veil 

fibres are pulled out, as shown in Figure 4.27 (a). The fracture surface in the Hyb2 veil 

interleaved laminate is almost the same as the Hyb1 veil interleaved sample. However, 

there are more fibres pulled out as compared with the Hyb1 veil. For the carbon veil 

interleaved composite, both fracture surface sides are covered with the matrix. The 

surface is similar to the non-interleaved sample (see in Figure 4.23 (c)). The interleaf 

veil fibres do not appear on the surface. The veil fibres would be embedded in the 

matrix. The fracture surface in the PE veil interleaved specimen is similar to the satin 
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weave Ep1 system case. Both fracture surface sides are covered with the matrix and the 

PE veil fibres are pulled out, as shown in Figure 4.27 (c). The pulled out PE veil fibres 

appear widely on the fracture surface. The fracture surface in the PA veil interleaved 

material is covered with the matrix. A few PA veil fibres appear on the surface, as 

shown in Figure 4.27 (d). From the picture, it can be seen that the PA veil fibres are 

deformed on the surface. It is thought that the veil fibres would work to suppress the 

crack propagation. 

 

Figure 4.28 shows the cross-section pictures taken by the optical microscope. It 

can be seen from Figure 4.28 (a) that a few Hyb1 veil fibres are pulled out. However, 

many veil fibres are embedded in the matrix. The GIIC values, therefore, can increase 

only moderately. The Hyb2 veil interleaved specimen has more pulled out fibres than 

the Hyb1 interleaved case. In contrast, the carbon veil fibres are embedded in the matrix, 

as shown in Figure 4.28 (b). The carbon veils in the Ep1 system cannot improve GIIC 

values for satin weave and UD fabrics specimens. Moreover, the existence of the carbon 

veils may prevent the extension of the plastic zone. This would tend to degrade the 

interlaminar toughness. It can be seen that the PE veil fibres are pulled out from the 

matrix, as illustrated in Figure 4.28 (c). These PE veil fibres seem to cause suppression 

of crack propagation by a fibre-bridging effect. For the PA veil fibres, it can be seen that 

the crack goes through the surface of the veil fibre, as illustrated in Figure 4.28 (d). 

From SEM and optical micrographs, the interleaf veil fibres are not pulled out from the 

matrix completely. It is though that the adhesion of the PA veil would contribute to the 

improvement of the Mode-II interlaminar toughness. 
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Figure 4.27 Micrographs of fracture surface taken by SEM for unidirectional fabric 

epoxy1 system specimens: (a) Hyb1 veil interleaved, (b) Hyb2 veil interleaved, (c) PE 

veil interleaved, (d) PA veil interleaved 

 

      

Figure 4.28 Micrographs of cross-section taken by optical microscope for 

unidirectional fabric epoxy1 system specimens: (a) Hyb1 veil interleaved, (b) Carbon 

veil interleaved, (c) PE veil interleaved, (d) PA veil interleaved 

 

200um 

Some of Hyb1 veil 

fibres are pulled out 

(b) 

Hyb1 veil fibre 

Hackles 

100um 

(b) 

Hyb2 veil fibres 
100um 

(c) (d) 

100um 

200um 

Carbon veil fibres are embedded 

or adhered to matrix 

(a) (b) 

PE veil fibres 

Polyamide veil fibre 
100um 



 

Chapter 4   Mode-II Interlaminar Toughness 
  

 180

      

Figure 4.28 (Continued) 

 

Figure 4.29 illustrates SEM pictures of the fracture surface for the VE system 

laminates. The hybrid and carbon veil interleaved specimens have the same type of 

fracture surface. Whereas one side of the fracture surface is covered with the matrix, the 

UD carbon fibres on the other fracture side are exposed and unravelled, as illustrated in 

Figure 4.29 (a) and (b). The crack seems to propagate between the surface of the fabric 

material and the matrix. However, the interleaf veil does not appear on the surface. It is 

thought that these veils would be embedded in the matrix. In the PE veil interleaved 

sample, many pulled out veil fibres appear on the fracture surface, as shown in Figure 

4.29 (c). Compared to the Ep1 system specimens, the VE resin case has less pulled out 

veil fibres. The fracture surface in the PA veil interleaved laminate is a combination of 

covered with the matrix and exposed UD carbon fibres. It can be found that the PA veil 

fibres are exposed on the matrix resin, as shown in Figure 4.29 (d). These exposed 

fibres in the PE and PA interleaved cases would contribute to improving the Mode-II 

interlaminar toughness.  

 

Micrographs of cross-sections of VE resin laminate are shown in Figure 4.30. 

From Figure 4.30 (a), it can be seen that the Hyb1 veil fibres are completely embedded 

in the matrix. The Hyb2 and carbon veil fibres show the same behaviour as the Hyb1 

veil. The interleaf veil cannot contribute to improvement of the Mode-II interlaminar 

toughness considerably. On the other hand, the PE and PA veil fibres are pulled out or 

exposed on the surface, unlike the other interleaved cases. However, it can be seen that 

many PE veil fibres are embedded in the matrix, as illustrated in Figure 4.30 (b). 

Therefore, the GIIC values can increase only moderately. The PA veil fibres are also 

embedded in the matrix, same as the PE veil. Moreover, the veil fibres are not pulled out 

much, but adhered to the matrix. It is thought that the adhesion of the PA veil would be 
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good in the VE resin system. When the crack propagated, the PA veil fibres would be 

deformed or elongated, but not pulled out. This behaviour would contribute to 

improvement of the Mode-II interlaminar toughness. In the UD fabric VE system, the 

fibre-bridging of carbon fabric does not considerably improve the Mode-II interlaminar 

toughness. It is thought that the bridging effect would not contribute to the improvement 

of the Mode-II interlaminar toughness. Moreover, the GIIC values would not increase 

significantly, because the crack can propagate easily by poor adhesion between the VE 

matrix and UD fabric or smooth surface of fabric. 

 

      

 

      

Figure 4.29 Micrographs of fracture surface taken by SEM for unidirectional fabric 

vinyl ester system specimens: (a) Hyb1 veil interleaved on lower side, (b) Hyb1 veil 

interleaved on upper side, (c) PE veil interleaved, (d) PA veil Interleaved 
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Figure 4.30 Micrographs of cross-section taken by optical microscope for 

unidirectional fabric vinyl ester system specimens: (a) Hyb1 veil interleaved, (b) PE veil 

interleaved 

 

4.4.2.3 Plain Weave Fabric Specimens 

 Figure 4.31 illustrates the fracture surface images taken by SEM for the Ep2 

system specimens. The fracture surfaces in the PE/C veil interleaved laminate are 

covered with the matrix. On the other hand, it can be seen that some veil fibres are 

pulled out on the fracture surface, as shown in Figure 4.31 (a). These pulled out fibres 

seem to be PE veil fibres, because the carbon veil fibres are stiff and predominantly 

straight but the pulled out fibres are curled. The carbon veil fibres, therefore, would be 

embedded in the matrix. When the crack passed through, some pulled out veil fibres 

would cause fibre-bridging. The fracture surface in the Hyb2 veil interleaved sample is 

almost the same as the PE/C veil interleaved case. A few pulled out veil fibres could be 

found on the surface. However, many veil fibres seem to be embedded in the matrix. In 

the PE veil interleaved composite, the fracture surface are covered with the matrix and 

appeared many pulled out PE veil fibres, as shown in Figure 4.31 (b). When the crack 

passed through in interlaminar region, the veil fibres were pulled out and would be 

worked for bridging. This effect leads to contribute to improvement of the Mode-II 

interlaminar toughness significantly. In the PA veil interleaved laminate, the fracture 

surface is basically covered with the matrix. A few PA veil fibres are found at partial 

area, as shown in Figure 4.31 (c). It can be found that resin are adhered to the PA veil 

fibres. This adhesion between the resin and veil fibres would contribute to improvement 

of the Mode-II crack resistance.  

 

The cross-section pictures of specimen examined by 4ENF test are shown in 

Figure 4.32. Unfortunately, both veil fibres in the PE/C interleaved laminate are 
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embedded in the matrix, as shown in Figure 4.32 (a). In this interleaved specimen, the 

interleaf veils would not work suppression of the crack propagation considerably. 

Because, many veil fibres are embedded in the matrix. In the Hyb2 veil, the interleaf 

fibres are also embedded in the matrix, same as the PE/C veils. In this fabric and resin 

system, the Hyb2 veil worked little suppression of Mode-II interlaminar fracture, unlike 

the satin and UD fabric Ep1 system specimen. For the PE veil interleaved sample, it can 

be seen that the veil fibres are pulled out from the matrix, as shown in Figure 4.32 (b). 

The pulled out fibres are longer than the PE/C veils. As a result, the GII values can 

increase significantly. In the PA veil, the interleaf veil fibres are adhered to the matrix, 

as illustrated in Figure 4.32 (c). For the Mode-II fracture behaviour, some of PA veil 

fibres are found on the surface unlike the Mode-I tested cases. From Figure 4.32 (c), the 

crack would mainly propagate in the veil region. Consequently, the interleaf veil can 

improve the GIIC values due to deform or elongate veil fibres. 

 

      

Figure 4.31 Micrographs of fracture surface taken by SEM for plain weave epoxy2 

system specimens: (a) PE/C (100:100) veil interleaved, (b) PE veil interleaved, (c) PA 

veil interleaved 
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Figure 4.31 (Continued) 

 

      

 

 

Figure 4.32 Micrographs of cross-section taken by optical microscope for plain weave 

epoxy2 system specimens: (a) PE/C (100:100) veil interleaved, (b) PE veil interleaved, 

(c) PA veil interleaved 
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Fracture surfaces for the VE system laminates are shown in Figure 4.33. For 

the PE/C veil interleaved specimen, it can be found that the fracture surface is covered 

with the matrix, as shown in Figure 4.33 (a). A few PE veil fibres appear on the surface. 

The carbon veil fibre, however, cannot be recognised on the surface. Almost all veil 

fibres would be embedded in the matrix. For the hybrid and carbon veil interleaved 

samples, the fracture surface is similar. The woven fibres in the plain weave are barely 

unravelled on the fracture surface. The interleaf veil fibres also do not appear on the 

surface. The veil fibres seem to be embedded in the matrix. The PE and PA veil 

interleaved specimens have fracture surfaces that are similar to the satin and UD fabric 

VE system cases (see in Figure 4.25 and 4.29). The crack path for the plain weave 

specimen is between the matrix and surface of the woven fabric. The PE veil fibres in 

plain weave laminate are not pulled out but adhered to the matrix, as shown in Figure 

4.33 (c). During 4ENF testing, the flexure failure began at an early stage. Therefore, it is 

thought that the veil fibre could not pull out enough. On the other hand, the fracture 

surface in the PA veil interleaved sample is that some PA veil fibres are pulled out from 

a partial region, as shown in Figure 4.33 (d). These interleaf veil fibres and woven fibres 

would work as fibre-bridging effect and contribute to improvement of the Mode-II 

interlaminar toughness. 

 

Figure 4.34 shows cross-section of the PE/C veil interleaved specimen. The 

crack behaviour in all interleaved specimens is similar. Basically, the interleaf veil is 

embedded in the matrix. From Figure 4.34, it can be seen that the PE/C veil fibres are 

embedded in the matrix. Consequently, the interleaf veils, except for the PE and PA 

veils, cannot contribute to improvement of the Mode-II interlaminar toughness 

considerably. In the case of the PE and PA veils, some veil fibres appear on the fracture 

surface. These veil fibres can moderately increase the GIIC values. In the plain weave 

specimens, the crack propagation was significantly slow. Therefore, some specimens 

were undergone bending failure before the crack propagated enough. It is thought that 

the surface of plain weave is coarse. Hence, the crack growth would be difficult. In 

particular, in the PE and PA veil interleaved samples crack propagation was 

significantly slower than the other interleaved cases. As a result, data points for these 

interleaved specimens are less than the other interleaved materials (see in Appendix B).  
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Figure 4.33 Micrographs of fracture surface taken by SEM for plain weave vinyl ester 

system specimens: (a) PE/C (100:100) veil interleaved, (b) Hyb1 veil interleaved, (c) 

PE veil interleaved, (d) PA veil interleaved 

 

 

Figure 4.34 Micrographs of cross-section taken by optical microscope for plain weave 

PE/C (100:100) veil interleaved vinyl ester system specimen  
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4.5 Conclusion 

 As a result of evaluating the study for the Mode-II interlaminar toughness of 

non-woven interleaved CFRP, the following conclusions are drawn: 

 

(1) The many hackles in the Ep1 system composites appeared on the fracture surface. 

These hackles would work to improve the Mode-II interlaminar toughness. 

Moreover, the hackles in the Ep2 system laminate were also seen. On the other hand, 

the hackles in the VE system specimens did not appear. In this resin system, the 

crack propagated in between the fabric and matrix, the same as the Mode-I 

interlaminar fracture. It is thought that the hackle would be affected by the type of 

the resin. 

 

(2) For the 5-harness satin weave Ep1 system composites, the Hyb2 and PE veil 

interleaved specimens had a considerably higher Mode-II initial critical energy 

release rate. The Hyb1 veil interleaved laminate improved slightly the toughness. 

For the carbon and PA veil interleaved composites, the GIIC values were lower than 

the non-interleaved sample. The GII-prop value of the PA veil interleaved laminate, on 

the other hand, was almost the same as the control. The carbon veil interleaved 

specimen, however, still had lower toughness than the other interleaved cases. The 

tendency of the Mode-II interlaminar toughness for interleaved samples was similar 

to the Mode-I interlaminar toughness. 

 

(3) For the UD fabric Ep1 system, the Hyb2 veil interleaved laminate had the highest 

GIIC value in all materials. The PE veil interleaved specimen had the second highest 

Mode-II initial toughness. The other veil interleaved composites had a moderate 

improvement in the Mode-II crack resistance behaviour. The GII-prop values of the 

interleaved samples were significantly increased, except for the carbon veil 

interleaved case. The hybrid and PE veil fibres were pulled out from the fracture 

surface. These pulled out fibres would work as bridging for the crack suppression. 

The PA veil fibres, on the other hand, were not pulled out completely. The PA veil 

fibres, however, seemed to improve crack propagation resistance by deformation or 

elongation of the veil fibres. For the VE system, the difference of the GIIC between 

each interleaved case was quite small. The crack propagated between the carbon 

fabric and the matrix. Moreover, the interleaf veil fibres, except for the PE and PA 

veil, were embedded in the matrix. These interleaved specimens, therefore, would 

not improve the Mode-II interlaminar toughness considerably. In the UD fabric VE 
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system, the fibre-bridging by UD carbon fabric could not contribute to the 

improvement of the Mode-II interlaminar toughness. 

 

(4) For the plain weave Ep2 system composites, the PA veil interleaved specimen had 

the highest GIIC value of all interleaved cases in the same way as the Mode-I 

interlaminar toughness. The PE veil interleaved laminate had the second highest 

Mode-II interlaminar toughness. The PE/C and Hyb2 veil interleaved specimens, 

however, had almost the same GIIC values as the non-interleaved sample. For the VE 

system, the tendency of the GII value was almost the same as the Ep2 system cases. 

The PE and PA veil interleaved specimens had superior Mode-II interlaminar 

toughness compared with the other interleaved cases. Some 4ENF test specimens 

underwent bending fracture during the 4ENF test. It is thought that crack 

propagation by coarse surface may be more difficult than the other fabric 

composites. When the specimen starts to undergo bending fracture before crack 

growth, a toughness measurement is impossible [183].  

 

(5) In all fabric and resin system, the PE veils are superior interleaf materials for 

Mode-I and Mode-II interlaminar toughness. The hybrid veils give a modest 

improvement of both modes of fracture toughness for the Ep system. However, 

these veils do not contribute to the interlaminar toughness for the VE system. 

Although the PA veils had significantly poor interlaminar toughness for the Ep1 

system, they improved the interlaminar toughness for the Ep2 system. On the other 

hand, the PA veils for the VE system contributed to the moderate improvement of 

both modes of the fracture toughness. As a result, the PA veils are strongly affected 

by the resin system. The carbon veils had the poorest toughness for both fracture 

modes, and all fabric and resin systems. 
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Chapter 5 
 

 

Mechanisms of Impact and CAI Resistance Behaviour using 

Non-Woven veils as Interleaf Materials 

 

 

5.1 Introduction 

 In this chapter, the main objectives are to evaluate the damage resistance 

provided by the non-woven interleaf veils under impact and post-impact compression 

loading. The low-energy impacted composite materials were inspected using ultrasonic 

C-scanning and observed in cross-section by microscopy. In this work, the plain weave 

fabrics with epoxy2 and vinyl ester resin matrices, and five different interleaf veils were 

selected for evaluation of the impact and the CAI resistance. Low-impact energies were 

applied to the laminated specimens using a drop weight testing machine. Afterwards, 

non-impacted and impacted laminates were tested in compression. The effects of the 

impact damage and CAI resistance were evaluated experimentally.  

 

5.2 Materials and Experiment Methods 

5.2.1 Materials Information 

 Information on the materials is given in section 3.2.1. In this study, only the 

plain weave fabric was selected as the base material, with epoxy2 and vinyl ester resins. 

 

5.2.2 Fabrication Methods of Composites for Impact and CAI Tests 

 The method of fabrication of the CAI specimens was the same as the 

DCB/4ENF test specimens. Details of the moulding method have been given in section 

3.2.2. For the CAI laminates, the fabrics and interleaf veils were cut into 480mm (in 

length) x 370mm (in width) rectangles. The plain weave fabrics were laminated with 6 

plies onto the rigid mould. The HAW weave fabric was chosen in both resin system 

specimens. For the VE system, the non-interleaved and the PA veils interleaved samples 

used the LAW fabrics for comparison to the HAW materials. The interleaf veils were 

prepared with 5 plies of each placed between the carbon weave layers. The PE/C veils 
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were overlapped before laminating, and inserted between the carbon woven fabric 

layers. Figure 5.1 illustrates model of stacking diagrams of impact and CAI specimens. 
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Figure 5.1 Stacking diagrams of (a) Non-interleaved specimen and (b) Interleaved 

specimen 

 

5.2.3 Impact Test 

In the CAI test, non-penetrating low-energy impact tests were performed on a 

rectangular shape coupon of 89 x 55mm, using an instrumented drop-weight machine. 

Figure 5.2 illustrates the impact/CAI specimen. The impact tests were carried out using 

two machines, CEAST “Dartvis” (at Queen Mary, University of London) and “Fractovis 

Plus” (at Brunel University). The impact machine pictures are shown in Figure 5.3. For 

the Dartvis, as shown in Figure 5.3 (a) and (b), the striker shape and mass are a 

hemisphere of 20mm diameter and 0.78kg respectively. The specimen was clamped 

between two plates each with a circular (40mm diameter) opening window and held 

together by compressed air pressure. The incident impact energy of the striker during 

impact test was varied by adjusting the drop height of striker and adding weight. For the 

Fractovis Plus, as illustrated in Figure 5.3 (c) and (d), the striker shape was the same as 

Dartvis (20mm of diameter and hemisphere), and the striker mass was 5.045kg. The 

laminates were not clamped, but just placed on the fixture. The incident impact energy 

was varied by changing drop height. The input energies of all specimens were set 4, 8, 

and 12J.  

 

(a) (b) 
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Figure 5.2 Schematic of impact and CAI test specimen 

 

            

         

Figure 5.3 Pictures of Impact machine: (a) CEAST “Dartvis”, (b) Striker (CEAST 

“Dartvis”) (c) Fractovis Plus, (d) Striker (Fractovis Plus) 
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5.2.4 Compression After Impact (CAI) Test 

 The CAI tests were employed to evaluate the impact damage resistance of the 

composites. The CAI test was carried out using an anti-buckling fixture, as shown in 

Figure 5.4. The detail of the geometry for the rig is also illustrated in Figure 5.5. The 

CAI specimen was not supported completely by the anti-buckling fixture, and there was 

short unsupported length. The CAI specimens were put into a slot at the bottom of the 

fixture and supported by knife edge side anti-buckling guides. The fixture can prevent 

out-of-plane buckling of the specimens during the compression test. This CAI fixture 

can accommodate variable specimen thicknesses. 

 

    

Figure 5.4 Anti-backling rig: (a) Front view, (b) Top view 
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Figure 5.5 Schematic of CAI rig 
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 The CAI tests were conducted using a screw driven mechanical testing machine, 

Instron 6025, at a constant crosshead rate of 0.5mm/min at room temperature. The load 

and displacement were logged using a computer. During the compression test, the 

anti-buckling guide was used to support the laminate. The compression strengths of the 

non-impacted specimens were also measured. Figure 5.6 shows compression test 

machine, Instron 6025. 

 

Figure 5.6 Picture of Instron 6025 for compression test 

 

5.2.5 Damage assessment 

 Ultrasonic C-scan was used to assess the impact damage. Figure 5.7 shows the 

Physical Acoustics C-scan machine. The specimens were placed in the air, as shown in 

Figure 5.7 (b) and (c), and then scanned. The Physical Acoustics unit has 5MHz flat 

probes which act as the transmitter and receiver. The transmitter and receiver were 

connected to Pulser/Receiver module DIO 2000 BP LF, as shown in Figure 5.7 (a). 

Figure 5.8 is a schematic of C-scanning. This information was passed to a computer 

storage device which built up the images on a 1 mm spaced grid. In the assessment of 

damage resistance, the damage width, obtained by measuring the end of delamination 

perpendicular to load direction from the C-scan [171], was used.  
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Figure 5.7 Pictures of C-scanning: (a) Configuration of C-scan, (b) Front view of 

C-scanning (c) Side view of C-scanning 
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Figure 5.8 Schematic of ultrasonic C-scanning 
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5.2.6 Thickness and Volume Fraction of Each Laminates 

 Table 5.1 gives information of the thickness and volume fraction (Vf) for each 

laminate. Volume fractuions of specimens were calculated using weight fraction of 

specimen and density of carbon fibre and resin. 

 

Table 5.1 Summary of thickness and volume fraction (Vf) for impact and CAI 

specimens 

Fabric Resin Interleaf veils Thickness [mm] Vf (%) 

Non-interleaved 2.85 36 

PE/C (100:100) 3.10 42 

PE/C (80:20) 3.10 42 

Polyester 2.71 48 

Plain weave (HAW*) Epoxy2 

Polyamide 2.53 52 

Plain weave (HAW) Non-interleaved 2.33 54 

Plain weave (LAW**) Non-interleaved 1.95 51 

PE/C (100:100) 3.32 36 

PE/C (70:30) 2.92 43 

PE/C (80:20) 3.07 40 

Polyester 2.82 44 

Plain weave (HAW) 

Polyamide 2.81 41 

Plain weave (LAW) 

Vinyl ester 

Polyamide 2.42 41 

*: High areal weight, **: Low areal weight 

 

5.2.7 Observation by Microscopy 

Cross-sections of impacted specimens were viewed using an Olympus BX60 

optical microscope. Tested specimens were cut along the longitudinal direction and the 

cross-section was polished by abrasive papers. The CAI tested specimens were also 

observed by the optical microscope. These specimens were cut in the transverse 

direction and polished. Cross-sections of the CAI tested specimens were observed using 

a scanning electron microscope, FEI Inspect F. The specimens were cut along the width 

direction and polished using abrasive papers. The SEM specimens were coated with a 

thin layer of gold prior to observation. The acceleration voltage was 10kV. The SEM 

observations were used to evaluate the suppression behaviour of the crack propagation 

in each interleaved specimen. All SEM pictures show regions that are near to the impact 

point.  
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5.3 Results 

5.3.1 Impact Damage Width 

The damage width caused by impact test is plotted in Figure 5.9 as a function 

of impact energy normalised by specimen thickness for the Ep2 system laminates. For 

all impact energies, the non-interleaved samples have the largest damage width, as 

shown in Figure 5.9. The damage width at the lowest energy (4J) is approximately 

22mm in the control. Afterwards, the increase in the width is gradual. For the 

interleaved laminates, the general trend of the damage extension is the same as the 

non-interleaved samples, but the impact damage resistance is improved by the veils. At 

the lowest impact energy, the damage width for all interleaved laminates is almost the 

same. The interleaved specimens, except for the PA veil interleaved case, are similar in 

behaviour for all substantial impact energies. The PE/C, Hyb2, and PE veils contribute 

to damage resistance slightly. For the PA veil interleaved composite, however, the 

increase in damage width is small compared with the other interleaved samples. The PA 

veils possess the greatest damage resistance of all interleaf veils. Table 5.3 indicates the 

summary of the damage width for all specimens as a function of incident impact energy. 
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Figure 5.9 Damage width obtained by impact test as a function of normalised impact 

energy for epoxy2 system specimens with/without non-woven interleaf veils 
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Table 5.2 Summary of damage width by each incident impact energy for epoxy2 system 

specimens with/without non-woven interleaf veils 

Incident impact energy [J]  

4 8 12 

Interleaf veil Damage width [mm] S. D. Damage width [mm] S. D. Damage width [mm] S. D. 

Non-interleaved 21.6 2.111 28.8 1.161 33.7 1.220 

PE/C 16.4 0.892 26.1 2.053 31.3 2.036 

Hyb2 18.6 1.646 26.4 1.538 30.8 1.451 

PE 19.4 0.719 27.9 1.086 31.9 1.031 

PA 18.0 1.930 23.1 1.702 29.1 1.170 

 

Figure 5.10 is a diagram of damage width for the VE system specimens as a 

function of the impact energy normalised by the specimen thickness. The damage width 

for the VE composites is overall much larger than that of the Ep2 samples. Compared to 

the Ep2 resin specimens, the damage resistance by the veils show a different behaviour. 

In the lowest impact energy (4J), the damage width of the Hyb2 veil interleaved 

specimen is the smallest of all interleaved materials. However, the damage width at 8 

and 12J of impact energy is not the smallest. The PE/C and PA veil interleaved 

laminates possess superior damage resistance at high impact energies. On the other had, 

the Hyb1 and PE veil interleaved cases have similar damage widths for all impact 

energies. The PA veils contribute to the impact damage resistance in both resin systems. 

Table 5.43 gives a summary of the damage width for all VE resin specimens. In 

previous researches, the Hyb2 and PA veils interleaved with the VE resin composites 

possessed good impact damage resistance [129, 152]. However, the results for the Hyb2 

veils are different from previous studies. The impact damage would be influenced by 

the difference of the fabric areal weight. For the PA veil interleaved laminates, the 

damage width of the HAW fabric samples has larger than that of the LAW fabric cases. 

 



 

Chapter 4   Mode-II Interlaminar Toughness 
  

 198

0

10

20

30

40

50

60

0 1 2 3 4 5 6

Normalised impact energy [J/mm]

D
am

ag
e 

w
id

th
 [

m
m

] Non
PE/C
Hyb1
Hyb2
PE
PA

 

Figure 5.10 Damage width obtained by impact test as a function of normalised impact 

energy for vinyl ester system specimens with/without non-woven interleaf veils 

 

Table 5.3 Summary of damage width by each incident impact energy for vinyl ester 

system specimens with/without non-woven interleaf veils 

Incident impact energy [J]  

4 8 12 

Interleaf veil Damage width [mm] S. D. Damage width [mm] S. D. Damage width [mm] S. D. 

Non-interleaved 30.3 2.853 45.7 1.643 49.7 1.209 

PE/C 22.7 1.739 34.5 1.451 41.8 2.859 

Hyb1 24.8 1.494 38.5 0.956 46.7 1.352 

Hyb2 19.0 1.703 36.8 2.222 45.4 1.171 

PE 25.8 1.857 39.0 1.500 47.3 1.764 

PA (HAW)* 22.1 2.504 35.1 1.293 45.1 1.606 

PA (LAW) ** 23.6 0.587 32.1 1.606 37.5 0.587 

*: used HAW plain weave fabric, **: used LAW plain weave fabric 

 

The width of specimen 
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 The PA veil interleaved both resin systems specimens possess excellent damage 

resistance. In particular, significant suppression of the impact damage can be realised in 

the Ep2 system. The PE/C and hybrid veils have moderately improved damage 

resistance for both resin systems. However, the PE veil interleaved specimens exhibit 

relatively poor impact resistance compared with the other interleaved samples.  

 

5.3.2 Compression After Impact Test 

5.3.2.1 Non-Interleaved Specimens 

 Representative results of compression tests for the non-impacted and impacted 

specimens with both resin systems are illustrated in Figure 5.11. In the Ep2 system 

laminates, the fracture behaviour for all non-impacted and impacted cases is the same. 

The collapse after the compression load is clear, as shown in figure 5.11. Although the 

maximum compression load and extension in the non-impacted case are about 42kN 

and 1.65mm, those in the impacted specimens drop significantly even for 4J-impacted 

specimen. The maximum load values for the impacted specimens are approximately 

24kN (4J), 20kN (8J), and 19kN (12J) respectively.  

 

 For the VE system composites, both the maximum compressive load and 

extension are significantly smaller than the Ep2 system cases. Cracking was audible 

quite early. The compressive collapse behaviour for 0 and 4J impacted specimens was 

similar to the Ep2 system samples. However, those of 8 and 12J impacted specimens 

were different. For these specimens, the compressive collapse was gradual and slow. 

Moreover, the drop of compression load was small. The maximum load values for the 

non-impacted and impacted laminates are 14kJ (0J), 11kN (4J), 6kN (8J), and 5kN (12J) 

respectively. 
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Figure 5.11 Representative CAI test results of non-impacted and impacted specimens 

for non-interleaved both resin systems 

 

5.3.2.2 Polyester/Carbon Veil Interleaved Specimens 

 Results of the CAI tests for both resin systems are shown in Figure 5.12. 

Compared to the non-interleaved Ep2 resin specimens, both the compression load and 

extension in the PE/C veil interleaved laminates have almost the same values. Moreover, 

the fracture behaviour by compression load is the same as the control. The maximum 

loads for all laminates are about 42kN (0J), 27kN (4J), 23kN (8J), and 19kN (12J) 

respectively.  

 

Compared with the Ep2 system specimens, the maximum load values for the VE 

system laminates are again much smaller. The maximum load for the non-impacted 

specimen is about 20kN. The maximum compressive loads for each impacted case are 

about 17kN (4J), 14kN (8J), and 12kN (12J) respectively. The maximum load values of 

the PE/C veil interleaved laminates have higher than those of the non-interleaved 

samples. In PE/C veil interleaved laminates, the compressive collapse behaviour tended 

to be sudden and be sharp, unlike the non-interleaved specimens. 
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Figure 5.12 Representative CAI test results of non-impacted and impacted specimens 

for PE/C (100:100) veil interleaved both resin systems 

 

5.3.2.3 Polyester/Carbon (70:30) Hybrid Veil Interleaved Specimens 

 Figure 5.13 illustrates typical results of the CAI tests for composites. In the 

Hyb1 veil interleaved laminates, only the VE resin system specimens were tested, not 

the Ep2 system specimens. For the non-damaged specimens, the maximum load was 

19kN. The fracture started early stage, around 3 to 7kN. The maximum loads for all 

impacted laminates are about 15kN (4J), 12kN (8J), and 7kN (12J) respectively. The 

maximum compressive extensions for all specimens are almost the same as the 

non-interleaved samples. It can be seen that the Hyb1 veils do improve the CAI 

resistance slightly (compare to Figure 5.11 and 5.13). 
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Figure 5.13 Representative CAI test results of non-impacted and impacted specimens 

for PE/C (70:30) hybrid veil interleaved vinyl ester system 

 

5.3.2.4 Polyester/Carbon (80:20) Hybrid Veil Interleaved Specimens 

 Figure 5.14 shows a diagram of the CAI test results for both resin systems. The 

maximum load for the non-damaged specimens is approximately 43kN. The 

compressive fracture progressed quite slowly, afterwards the collapse occurred suddenly. 

The maximum loads for all impacted laminates are approximately 26kN (4J), 22kN (8J), 

and 20kN (12J) respectively. The maximum compression load values are almost the 

same as the PE/C veil interleaved cases. 

 

For the non-damaged VE system specimens, the maximum load is about 18kN. 

The fracture started around 3 to 7kN of compression load. The maximum compressive 

loads for all impacted specimens are about 16kN (4J), 12kN (8J), and 8kN (12J) 

respectively. The maximum load values are almost the same as the Hyb1 veil 

interleaved samples. The compressive fracture was also the same in behaviour as the 

Hyb1 veil interleaved laminates. 
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Figure 5.14 Representative CAI test results of non-impacted and impacted specimens 

for PE/C (80:20) hybrid veil interleaved both resin systems 

 

5.3.2.5 Polyester Veil Interleaved Specimens 

 Figure 5.15 shows typical CAI test results for both resin systems. The average 

maximum load values for the non-impacted specimens is approximately 34kN. 

Compared to the PE/C and Hyb2 veil interleaved cases, the maximum compressive load 

in the non-impacted material has smaller values. The maximum load values for all 

impacted samples are about 28kN, (4J), 25kN (8J), and 23kN (12J) respectively. The 

maximum compression loads in the impacted cases are slightly higher than the PE/C 

and Hyb2 veil interleaved laminates. Moreover, the reduction of the compression load 

for impacted specimens is relatively small, compared with the other interleaved 

composites. 

 

For the VE resin system, the maximum load of the non-damaged specimen is 

about 20kN. The maximum compressive loads for all impacted laminates are 

approximately 16kN (4J), 13kN (8J), and 8kN (12J) respectively. The maximum load 

values are slightly higher than the non-interleaved samples and almost the same as the 

other interleaved cases. 
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Figure 5.15 Representative CAI test results of non-impacted and impacted specimens 

for PE veil interleaved both resin systems 

 

5.3.2.6 Polyamide Veil Interleaved specimens 

 Representative results of the CAI tests are plotted in Figure 5.16 for both resin 

systems. The maximum load value of the non-damaged specimens is approximately 

35kN. The fracture initiation was significantly later than the other veil interleaved cases. 

The maximum compressive load values for all impacted specimens are about 28kN (4J), 

25kN (8J), and 23kN (12J) respectively. Compared to the other interleaved laminates, 

the reduction of the maximum load for impacted samples is significantly small. It is 

thought that the PA veil interleaved specimens would possess good compressive fracture 

resistance. 

 

In the VE system, the maximum compression load for the non-impacted 

laminate is approximately 17kN. The maximum load values for all impacted specimens 

are approximately 16kN (4J), 13kN (8J), and 8kN (12J) respectively. While the Ep2 

system laminates improve compression resistance, the VE resin composites are almost 

the same as the other interleaved cases. 
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Figure 5.16 Representative CAI test results of non-impacted and impacted specimens 

for PA veil interleaved both resin systems 

 

 Compressive fracture behaviour would be influenced by the resin system. The 

Ep2 system specimens undergo a sudden compression collapse and the compressive 

load dropped substantially. For the Ep2 system specimens, the crack initiation was 

significantly delayed compared to the VE system specimens. Moreover, time from the 

crack initiation to the collapse was short compared with the VE system cases. On the 

other hand, the VE system specimens exhibited slow and gradual collapse progression. 

The crack initiation for the VE resin specimens occurred relatively earlier than the Ep2 

system laminates. Crack propagation started at quite an early stage and grew gradually 

during compression test. 

 

5.3.3 Compression After Impact Strength 

 Figure 5.17 shows a diagram of CAI strength against impact energies normalised 

by specimen thickness for the Ep2 system composites. The compression strength values 

for all non-impacted specimens are approximately 250MPa. For the PE/C and Hyb2 veil 

interleaved cases, the CAI strength is almost the same values as the non-interleaved 

samples. The CAI strength values for these specimens are range from 150 to 155MPa at 

4J of impact energy. The reduction of the CAI strength from non-impact is 

approximately 40%. The compression strength for the PE veils interleaved laminates 

has higher value than the PE/C and Hyb2 veil interleaved specimens, about 178MPa. 
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For the PA veils interleaved specimens, the CAI strength has the highest value of all 

interleaved laminates, approximately 207MPa. The reduction of compression strength 

from undamaged specimen was the smallest, a decrease of only 18%. While the 

reduction of CAI strength from 0J to 4J impacted specimens, except for the PA veil 

interleaved composites, is large, that of the compression strength from 4J to 8J and 8J to 

12J reveals quite a small drop. The PE/C and Hyb2 veil interleaved laminates have 

almost the same CAI strength at each impact energy as the non-interleaved sample. 

These interleaf veils would not contribute to the improvement of the CAI strength for 

the CFRP. Nevertheless the impact damage resistance for the PE veil interleaved 

composites shows a poor improvement, the CAI strength is the second highest value. 

The PA veil interleaved specimens are significantly improved for the CAI resistance, 

even if the maximum compression load is lower than the other interleaved samples. The 

reduction of CAI strength with increasing impact energy is small for all specimens. The 

deviations of the CAI strength for all impact energies are quite small. Table 5.4 

summarises the CAI strengths and standard deviations for all specimens. 
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Figure 5.17 CAI strength against incident impact energy normalized by thickness for 

epoxy2 system specimens with/without non-woven interleaf veils 
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Table 5.4 Summary of CAI strengths and standard deviations for epoxy2 system 

specimens with/without non-woven interleaf veils 

Impact energy [J]  

0 4 8 12 

Interleaf CAI [MPa] S.D. CAI [MPa] S.D. CAI [MPa] S.D. CAI [MPa] S.D. 

Non-Interleaved 249.70 13.75 155.05 10.89 130.13 5.06 118.92 3.64 

PE/C 244.13 14.94 155.45 2.28 132.00 5.06 110.72 7.89 

Hyb2 252.46 26.84 149.93 4.84 128.28 7.36 113.61 3.82 

PE 244.26 9.83 177.86 1.61 149.38 3.05 130.40 7.05 

PA 251.34 21.52 206.64 7.45 177.84 4.93 170.09 6.97 

 

In the VE resin composites, the CAI strengths as a function of normalised 

impact energies are shown in Figure 5.18. Compared to the Ep2 resin composites, the 

CAI strength of the VE system specimens is overall lower. For the non-interleaved case, 

the CAI strength of non-impacted specimens is approximately 123MPa. The CAI 

strength from 4J to 8J impact energy decreases at a faster rate. For interleaved 

specimens, the reduction in CAI strength is gradual. In this resin system, the 

improvement of the CAI resistance by the interleaf veils is moderate. Previous literature 

mentioned that the PE/C (80:20) hybrid veil interleaved specimens had higher CAI 

strength than PE veil interleaved [129]. In this research, the Hyb2 veil cannot be 

obtained the highest CAI strength of all interleaved samples. The difference between 

each veil interleaved is quite small. The PA veil interleaved specimens show relatively 

higher CAI strengths than the other veil interleaved cases. The HAW and LAW fabrics 

were compared to the CAI properties using the PA veils interleaved specimens. As a 

result, the LAW specimens are slightly smaller CAI strength than the HAW cases, 

except for 12J impacted specimens. The influence by areal weight of fabric seems small. 

Table 5.6 summarises the results of the CAI test with standard deviations. 
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Figure 5.18 CAI strength against incident impact energy normalised by thickness for 

the vinyl ester system specimens with/without non-woven interleaf veils 

 

Table 5.5 Summary of CAI strengths and standard deviations for vinyl ester system 

specimens with/without non-woven interleaf veils 

Impact energy [J]  

0 4 8 12 

Interleaf CAI [MPa] S.D. CAI [MPa] S.D. CAI [MPa] S.D. CAI [MPa] S.D. 

Non-Interleaved 125.53 5.46 102.91 3.82 48.15 3.19 36.90 2.24 

PE/C 116.18 11.96 90.36 2.26 75.01 3.07 60.22 8.29 

Hyb1 123.45 6.49 95.36 4.68 75.10 10.83 41.95 2.59 

Hyb2 113.19 12.59 91.74 1.40 73.58 6.25 49.92 11.84 

PE 130.69 2.96 99.84 5.32 87.16 3.59 47.08 3.98 

PA (HAW) 128.92 5.14 103.64 2.29 85.92 3.00 49.17 11.82 

PA (LAW) -* - 97.14 9.81 81.17 1.44 69.66 2.38 

*: Not examined 
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 For the Ep2 system specimens, the trend of the CAI resistance for interleaved 

composites differs from that of impact resistance. Specifically, although the PE/C and 

Hyb2 veil interleaved specimens possess good impact resistance, these veils do not 

contribute to the CAI resistance properties. In contrast, the PE veil interleaved laminates 

improve the CAI resistance but not impact resistance. The PA veil interleaved 

specimens have excellent both impact and CAI resistance properties. The tendency of 

the CAI strength for the VE system composites is similar to that of impact resistance. 

The CAI strengths for the VE resin specimens are overall lower than the Ep2 system 

samples.  

 

5.4 Discussion 

5.4.1 Impact Resistance 

5.4.1.1 Non-interleaved Specimens 

 Figure 5.19 shows C-scans of the impacted specimens for the Ep2 system. The 

increase of damage width from 4J to 8J is spread along the transverse direction, as 

illustrated in Figure 5.19 (a) and (b). The spread from 8J to 12J is slightly increased, as 

shown in Figure 5.19 (b) and (c). Figure 5.20 is a micrograph of the cross-section of a 

12J impacted specimen. From Figure 5.20, it can be seen that the fracture is localised 

around the impact point consisting of matrix fracture and fibre breakage. In flexible 

specimens, the impact damage tends to initiate in the lowest ply due to flexural fracture 

[242]. When the laminated composites receive impact loads, one or more failure modes 

such as matrix cracking, surface micro-buckling, delamination, ply shear-out and fibre 

breakage can become dominant [116, 220]. In this resin system, matrix cracking, 

delamination, and fibre breakage seem to be main failure modes. The length of 

transverse cracking is not great. It seems that the impact energy passed in the 

through-thickness direction. It is thought that the impact energy could not be dissipated 

sufficiently through the interlaminar region due to strong adhesion between the matrix 

and the carbon fabric. 
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Figure 5.19 C-scan images of non-interleaved specimens for epoxy2 system with 

measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 

 

 

Figure 5.20 Cross-section image of 12J impacted specimen for non-interleaved epoxy2 

system (Broad arrow indicates impact point) 

 

Figure 5.21 shows C-scan images of the impact damaged specimens for the VE 

system. Compared to the Ep2 system laminates, spread of the damage width is larger. In 

particular, the fracture by impact for 12J-damaged specimen reaches the edge of the 

specimen, as shown in Figure 5.21 (c). The crack behaviour of 12J impact damaged 

specimen is illustrated in Figure 5.22. The impacted specimen is deformed over a wider 

area than the Ep2 system cases (see in Figure 5.20). The length of the crack propagation 

is also longer than for the Ep2 resin laminates. In this resin system, the damage modes 

would be dominated mainly by the delamination. In chapter 3 and 4, the adhesion 

properties between the VE resin and carbon fabrics are revealed to be poor by 

microscopy observations. The transverse cracks, therefore, can pass through the 

interlaminar region easily. Moreover, the impact energy seems to pass through the 

transverse direction and the crack can propagate at the interlaminar region.  
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Figure 5.21 C-scan images of non-interleaved specimens for vinyl ester system with 

measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 

 

 

Figure 5.22 Cross-section image of 12J impacted specimen for non-interleaved vinyl 

ester system (Broad arrow indicates impact point) 

 

5.4.1.2 Polyester/Carbon Veil Interleaved Specimens 

 C-scanning images for the Ep2 system specimens are shown in Figure 5.23. The 

damage width for the 4J impacted specimen is approximately 17mm. For 8J impact 

energy, the damage width is spread widely, about 24mm. The increase of damage from 

8J to 12J impact energy, on the other hand, is not so much. Figure 5.24 shows 

micrographs of the cross-section of a 12J impact damaged specimen. Compared to the 

non-interleaved laminates, the PE/C veil interleaved specimen does not fracture at the 

impact point. However, some short cracks are spread in the interlaminar area, as shown 

in Figure 5.24. For this resin system, it is thought that transverse cracking is the 

dominant damage mode. The PE veil would work to provide modest toughening for 

impact resistance.  
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Figure 5.23 C-scan images of PE/C (100:100) veil interleaved specimens for epoxy2 

system with measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 

 

 

 

Figure 5.24 Cross-section image of 12J impacted specimen for PE/C (100:100) veil 

interleaved epoxy2 system (Broad arrow indicates impact point) 

 

The images of damaged area taken by C-scan for the VE resin composites are 

shown in Figure 5.25. The damage width increases greatly with increasing impact 

energy. In particular, in the 12J impacted specimen the damage spread is significantly 

large, as shown in Figure 5.25 (c). The impact damage of the PE/C veil interleaved 

laminates is smaller than that of the non-interleaved cases. Hence the interleaf veils 

would contribute to the suppression of crack propagation during the damage spread. 

Figure 5.26 shows a cross-section image of a 12J impacted specimen. It can be seen that 

there are many small cracks in the interlaminar region. Compared to the Ep2 system 

samples, the cracks are widely distributed. The interleaf veils could suppress long crack 

propagation. However, the growth of short cracks could not be controlled. 
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Figure 5.25 C-scan images of PE/C (100:100) veil interleaved specimens for vinyl ester 

system with measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 

 

 

Figure 5.26 Cross-section image of 12J impacted specimen for PE/C (100:100) veil 

interleaved vinyl ester system (Broad arrow indicates impact point) 

 

5.4.1.3 Polyester/Carbon (70:30) Hybrid Veil Interleaved Specimens 

The C-scans of the VE system specimens are shown in Figure 5.27. The trend 

of increase in the damage width is similar to the PE/C veil interleaved VE system cases 

(see in Figure 5.25). For the 12J impacted specimen, impact damage reaches the edge of 

the specimen. A micrograph of the cross-section of a 12J impact damaged specimen is 

shown in Figure 5.28. The crack propagated over a long range in the interlaminar region. 

The interleaf veils seem not to work to provide crack resistance.  

 

     

Figure 5.27 C-scan images of PE/C (70:30) hybrid veil interleaved specimens for vinyl 

ester system with measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 
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Figure 5.28 Cross-section image of 12J impacted specimen for PE/C (70:30) hybrid 

veil interleaved vinyl ester system (Broad arrow indicates impact point) 

 

5.4.1.4 Polyester/Carbon (80:20) Hybrid Veil Interleaved Specimens 

Figure 5.29 shows C-scan images for the Ep2 system specimens with damage 

width indicated. The damage spread is similar in tendency to the PE/C veil interleaved 

Ep2 system samples. The crack distribution is also similar to the PE/C veil interleaved 

case. The damage width increases significantly from 4J to 8J impact energy. The impact 

damage width from 8J to 12J, however, increases only slightly. A micrograph of the 

cross-section for a 12J impact damaged specimen is shown in Figure 5.30. The impact 

damage is a combination of intralaminar and interlaminar fractures, as shown in Figure 

5.30. The damage behaviour is similar to the PE/C veil interleaved case. Some small 

delaminations are distributed in the interlaminar region. Moreover, the specimen is 

fractured under the impact point, unlike the PE/C veil interleaved cases. 

 

     

Figure 5.29 C-scan images of PE/C (80:20) hybrid veil interleaved specimens for 

epoxy2 system with measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 
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Figure 5.30 Cross-section image of 12J impacted specimen for PE/C (80:20) hybrid 

veil interleaved epoxy2 system (Broad arrow indicates impact point) 

 

C-scan images for the VE system specimens are shown in Figure 5.31. 

Compared to the Hyb1 veil interleaved laminates, the damage width is smaller. Figure 

5.32 is a micrograph of cross-section for a 12J impacted specimen. The cracks are 

spread over a wide range. The fracture, on the other hand, cannot be recognised around 

the impact point. In the VE system specimen some short cracks propagated in the 

interlaminar region. The crack distribution is over a narrower range than the Hyb1 veil 

interleaved cases. Moreover, the suppression of the crack propagation is also better than 

the Hyb1 veil interleaved samples. 

 

     

Figure 5.31 C-scan images of PE/C (80:20) hybrid veil interleaved specimens for vinyl 

ester system with measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 

 

 

 
 

Figure 5.32 Cross-section image of 12J impacted specimen for PE/C (80:20) hybrid 

veil interleaved vinyl ester system (Broad arrow indicates impact point) 
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5.4.1.5 Polyester Veil Interleaved Specimens 

 Figure 5.33 shows C-scan images of the impact damage for the Ep2 system 

specimens. The damage width is slightly larger than the other veil interleaved laminates. 

Figure 5.34 shows a cross-section of a 12J impacted specimen for the Ep2 system. 

Although the cracks appear widespread, the crack propagation length is not long. In the 

Mode-I and Mode-II interlaminar toughness, the PE veil possesses superior toughening 

properties in all interleaf veils. The impact resistance, nevertheless, is not improved 

significantly. It is thought that the impact damage would grow rapidly. Consequently, to 

the suppression of the crack the interleaf veils could not contribute considerably. 

 

     

Figure 5.33 C-scan images of PE veil interleaved specimens for epoxy2 system with 

measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 

 

 

 

Figure 5.34 Cross-section image of 12J impacted specimen for PE veil interleaved 

epoxy2 system (Broad arrow indicates impact point) 

 

C-scans of the VE system specimens are shown in Figure 5.35. The increase in 

damage width from 4J to 8J impact energy is larger than PE/C and Hyb2 veil 

interleaved composites. For 8J to 12J impact energy, the trend of the increase in damage 

width is similar to the other interleaved cases. Figure 5.36 indicates micrograph of the 

cross-section for a 12J impact damaged specimen. The crack length is longer than the 

Ep2 system samples, in particular at higher impact energies. Compared to the PE/C and 

hybrid veil interleaved specimens, the crack length seems short. However, the crack 

distribution is almost the same as the PE/C and hybrid veil interleaved samples.  
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Figure 5.35 C-scan images of PE veil interleaved specimens for vinyl ester system with 

measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 

 

 
 

Figure 5.36 Cross-section image of 12J impacted specimen for PE veil interleaved 
vinyl ester system (Broad arrow indicates impact point) 

 

5.4.1.6 Polyamide Veil Interleaved Specimens 

 Figure 5.37 shows C-scan images for the Ep2 system specimens. The damage 

width is quite smaller than the other interleaved cases. Moreover, it seems that the 

damage distribution is quite discontinuous. This phenomenon may contribute to the 

decreased impact damage by the PA veil. A microscope picture of the cross-section for a 

12J impacted specimen is illustrated in Figure 5.38. From the image, the crack can 

barely be found in the interlaminar region. The fracture is also significantly smaller than 

the other interleaved samples. It is thought that the impact resistance can be improved 

considerably by the PA veils.  

 

    

Figure 5.37 C-scan images of PA veil interleaved specimens for epoxy2 system with 

measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 
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Figure 5.38 Cross-section image of 12J impacted specimen for PA veil interleaved 

epoxy2 system (Broad arrow indicates impact point) 

 

Figure 5.39 shows C-scans of the VE system composites. The impact damage 

distribution is smaller than the other interleaved samples. The increase of the damage 

width is relatively moderate, compared to the other interleaved samples. Figure 5.40 is a 

micrograph of a cross-section of a 12J impact damaged specimen. The crack 

propagation length is significantly short. On the other hand, the specimen is fractured at 

the opposite side of impact point. It is thought that the PA veil can improve impact 

resistance in both resin systems. 

 

     

Figure 5.39 C-scan images of PA veil interleaved specimens for vinyl ester system with 

measured damage width: (a) 4J, (b) 8J, (c) 12J impacted 

 

 

 

 

Figure 5.40 Cross-section image of 12J impacted specimen for PA veil interleaved vinyl 

ester system (Broad arrow indicates impact point) 
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 For the Ep2 system specimens, growth of the damage width is quite small with 

increasing impact energy. The fracture modes are mainly two types, interlaminar 

delamination and intralaminar fracture under the impact point. The delaminations are 

not global but local in area. The damage resistance effects using the interleaf veils 

appear clearly. In particular, the PA veils provide an excellent contribution to the 

suppression of the impact damage spread. The delamination of the PA veil interleaved 

laminates is distributed unevenly. For the VE resin system specimens, the impact 

damage is dominated by delamination. Compared to the Ep2 system laminates, 

intralaminar fracture did not occur under impact point, except for the PA veil interleaved 

case. The difference of the damage width between each interleaved sample is not so 

much compared with the Ep2 system composites. However, the interleaf veils can 

improve impact damage moderately. In this resin system, the PE/C and PA veils 

contribute to the improvement of the impact damage resistance. 

 

5.4.2 Compression After Impact Resistance 

5.4.2.1 Non-Interleaved Specimens 

 Figure 5.41 shows micrographs of cross-sections of the CAI tested specimens. 

For the Ep2 system specimen, the compressive fracture is dominated mainly by 

interlaminar delmination and intralaminar breakage around the impact point, as shown 

in Figure 5.41 (a). The crack propagation speed at the interlaminar region was slow 

during CAI test, because the adhesion strength between the resin and carbon fabrics is 

strong. Hence it is thought that the impacted specimen was suddenly broken and 

fractured extensively. The crack behaviour for the VE system, on the other hand, is 

different from the Ep2 system. The fractured zone is narrower than the Ep2 resin cases, 

however the interlaminar crack length is longer as shown in Figure 5.41 (b). The 

catastrophic fracture of the VE system specimen did not occur so that the crack 

propagated gradually and constantly during the compression test. As a result, the CAI 

strength could not increase considerably. 
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Figure 5.41 Cross-section images of CAI tested specimens for non-interleaved: (a) 

Epoxy2 system, (b) Vinyl ester system (White arrow indicates impact point) 

 

5.4.2.2 Polyester/Carbon Veil Interleaved Specimens 

 Cross-section pictures of the CAI tested specimens are shown in Figure 5.42. 

For the Ep2 system, the tested specimen possesses a combination of the fracture and the 

crack propagation, as shown in Figure 5.42 (a). In particular, a large delamination is 

exhibited around the impact point. However, the fracture area is significantly smaller 

than the non-interleaved laminate. It is thought that the fracture could not grow largely 

because the crack propagation was gradual during the CAI test. On the other hand, the 

VE system specimen is not fractured at the surface, but the crack propagates in the 

interlaminar regions, as illustrated in Figure 5.42 (b). Compared to the non-interleaved 

VE system specimens, the crack distribution is not wide ranging. The interleaf veils 

would contribute to limiting the crack growth. The crack behaviour for both resin 

systems is similar. The crack propagated in the interlaminar region. SEM pictures of the 

cross-section are illustrated in Figure 5.43. From Figure 5.43 (a), it can be seen that 

some PE veil fibres are pulled out from the fracture surface. These pulled out fibres 

would work as bridging for crack suppression. For the VE system, pulled out veil fibres 

like the fibres that pulled out of the Ep2 system specimen are not seen in Figure 5.43 (b). 

The carbon woven fibres, on the other hand, are unravelled from the matrix. These 

unravelled fibres may suppress the crack propagation to some degree. 
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Figure 5.42 Cross-section images of CAI tested specimens for PE/C (100:100) veil 

interleaved: (a) Epoxy2 system, (b) Vinyl ester system (White arrow indicates impact 

point) 

 

    

Figure 5.43 SEM pictures of CAI tested cross-section by 12J impact energy for PE/C 

(100:100) veil interleaved specimens: (a) Epoxy2 system, (b) Vinyl ester system 

 

5.4.2.3 Polyester/Carbon (70:30) Hybrid Veil Interleaved Specimens 

 Figure 5.44 shows a micrograph of the cross-section for the CAI tested specimen. 

As seen in Figure 5.44, the specimen is not completely fractured, but many cracks have 

propagated at the interlaminar region. It seems that the interleaf veils could not suppress 

crack propagation at the interlaminar region. The CAI strength for 12J impact energy, 
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however, is slightly higher than the non-interleaved case (see in Figure 5.18 and Table 

5.5). The Hyb1 veils, therefore, provide a partial suppression of the compression 

fracture. Figure 5.45 shows a SEM photograph of the cross-section of a 12J impacted 

laminate. It can be seen that some Hyb1 veil fibres are pulled out. However, many Hyb1 

veil fibres may be embedded in the matrix and seem not to contribute considerably to 

the suppression of the crack propagation. 

 

 

Figure 5.44 Cross-section image of CAI tested specimens with for PE/C (70:30) hybrid 

veil interleaved vinyl ester system (White arrow indicates impact point) 

 

 

Figure 5.45 SEM picture of CAI tested cross-section by 12J impact energy for PE/C 

(70:30) hybrid veil interleaved vinyl ester system specimen 

 

5.4.2.4 Polyester/Carbon (80:20) Hybrid Veil Interleaved Specimens 

 The cross-section pictures of the CAI tested specimens are shown in Figure 5.46. 

The fracture situations in both resin systems are almost the same. Many cracks pass 

through the interlaminar region. For the Ep2 system specimen, the crack distribution 

extends by going to the bottom of the sample, as illustrated in Figure 5.46 (a). When the 

CAI test was carried out, the compressive fracture of the specimen seemed to progress 
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gradually. The specimen, therefore, did not fracture sharply. On the other hand, the 

crack for the VE system specimen propagated through every layer, as shown in Figure 

5.46 (b). The crack behaviour is similar to the Hyb1 veil interleaved laminates. The 

Hyb2 veils contribute slightly to the crack suppression. SEM micrographs of the 

cross-section for 12J-impacted specimens are shown in Figure 5.47. For the Ep2 system, 

it can be seen that some Hyb2 veil fibres are pulled out from the matrix, as shown in 

Figure 5.47 (a). When the crack passed through interlaminar areas, some pulled out veil 

fibres would work as bridging. Nevertheless, the CAI strength is only slightly improved. 

It is thought that the fracture resistance by the interleaf veils could not appear, because 

pulled fibres were not many. Many veil fibres would be embedded in the matrix. On the 

other hand, pulled out veil fibres for the VE system are not seen in the cross-section, as 

illustrated in Figure 5.47 (b). The Hyb2 veils seem to be embedded in the matrix. 

However, the unravelled carbon fabric and a few pulled out veil fibres in the VE resin 

work to provide marginally suppression of the crack progress. 

 

 

 

 
 

Figure 5.46 Cross-section images of CAI tested specimens for PE/C (80:20) hybrid veil 

interleaved: (a) Epoxy2 system, (b) Vinyl ester system (White arrow indicates impact 

point) 
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Figure 5.47 SEM pictures of CAI tested cross-section by 12J impact energy for PE/C 

(80:20) hybrid veil interleaved specimens: (a) Epoxy2 system, (b) Vinyl ester system 

 

5.4.2.5 Polyester Veil Interleaved Specimens 

 Figure 5.48 shows cross-section images of the CAI tested specimens. The 

specimen in the Ep2 system is fractured around the impacted point, as shown in Figure 

5.48 (a). The crack length in the interlaminar area is significantly short, as compared 

with the PE/C and Hyb2 veil interleaved cases. It has been mentioned that the PE veils 

interleaved specimens possess high Mode-I and Mode-II energy release rates in Chapter 

3 and 4. The PE veils could suppress crack propagation during compressive fracture. 

The specimen, therefore, was catastrophically broken at the impacted point, because 

crack propagation was significantly slow. The VE system specimen is not fractured 

around the impact point, as illustrated in Figure 5.48 (b). Some long cracks can be seen 

in the interlaminar region. The cracks are distributed through some layers, but not every 

layer. Figure 5.49 shows SEM pictures of the cross-section of 12J impacted laminates. 

From Figure 5.49 (a), many PE veil fibres are pulled out from the fracture area 

compared with the other interleaved specimens. The PE veil would contribute 

significantly to the improvement of the CAI resistance because many pulled out veil 

fibres will provide fibre-bridging and suppress fracture progress. The CAI fracture is a 

static fracture progress. It is thought that the pulled out veil fibres can work for the static 

fracture mode, not dynamic fracture mode. Therefore, the interleaf veils can contribute 

to the improvement of the CAI resistance property, unlike the impact damage. For the 

VE system, the PE veil fibres adhered to matrix, not pulled out, as shown in Figure 5.49 

(b). Therefore the CAI strength is improved moderately only. 
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Figure 5.48 Cross-section images of CAI tested specimens for PE veil interleaved: (a) 

Epoxy2 system, (b) Vinyl ester system (White arrow indicates impact point) 

 

    

Figure 5.49 SEM pictures of CAI tested cross-section by 12J impact energy for PE veil 

interleaved specimens: (a) Epoxy2 system, (b) Vinyl ester system 

 

5.4.2.6 Polyamide Veil Interleaved Specimens 

 Figure 5.50 shows micrographs of the cross-section for of CAI tested specimens 

with both resin systems. Some black points in the cross-section images, as shown in 

Figure 5.50 (a), indicate the PA veils. The specimen was fractured catastrophically and 

locally. A few cracks propagated in intralaminar region. However the cracks in the 

interlaminar area barely propagated. It is thought that the crack hardly propagated 
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during compressive collapse because the adhesion between the PA veils and the Ep2 

resin is quite strong. The PA veils interleaved specimens, therefore, seem to be 

catastrophically collapsed over a critical compressive strength, even if the crack hardly 

progressed. For the VE system, the specimen has many cracks in the interlaminar region, 

as shown in Figure 5.50 (b). The crack length is shorter than the other interleaved 

samples. The PA veils can improve the crack propagation resistance in the interlaminar 

zone. SEM photographs of the cross-section for 12J impacted laminates are illustrated 

in Figure 5.51. The compressive fracture in the Ep2 system specimen appears at the 

intralaminar region, as shown in Figure 5.51 (a). On the other hand, the interlaminar 

crack would hardly grow due to the PA veils. The fracture mode in the Ep2 system 

specimen is dominated by fibre breakage and intralaminar fracture. Consequently, the 

compression collapse would be catastrophic and the CAI strength can increase 

considerably up to a critical point. From both Figure 5.50 (a) and 5.51 (a), The PA veil 

fibres in the Ep2 system are seen not to pull out completely. On the other hand, some PA 

veil fibres for the VE system are seen to pull out, as illustrated in Figure 5.51 (b). In this 

resin system, the PA veil fibres would contribute to the improvement of the CAI by 

pulled out fibres. 

 

 

 

 
 

Figure 5.50 Cross-section images of CAI tested specimens for PA veil interleaved: (a) 

Epoxy2 system, (b) Vinyl ester system (White arrow indicates impact point) 
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Figure 5.51 SEM pictures of CAI tested cross-section by 12J impact energy for PA veil 

interleaved specimens: (a) Epoxy2 system, (b) Vinyl ester system 

 

 The crack propagation in the interlaminar region is significantly small in the Ep2 

system specimens. These specimens tend to be fractured around the impacted point. 

From observation of cross-section of the tested samples, the adhesion between the 

matrix and carbon woven fabrics is quite strong. Therefore, it is thought that the crack 

hardly propagates at the interlaminar region, and the specimen would collapse 

catastrophically over the critical point. The PE/C and Hyb2 veils contribute to the CAI 

strength only slightly. The CAI property in the PE veil interleaved laminate is improved 

considerably. In these veil interleaved specimens, pulled out veil fibres would work for 

crack suppression. Surprisingly, the PA interleaved veils possess excellent post-impact 

compression resistance, even if the veil fibres are not pulled out. In this veil, the 

adhesion between the matrix and veil fibres seems to contribute to the suppression of 

the fracture progress. For the VE system, the CAI strength values between each 

interleaved laminate are quite similar (see in section 5.3.3). The fracture resistance by 

interleaf veils would be improved slightly by some pulled out veil fibres. Moreover, the 

carbon woven fabric was also pulled out and unravelled from the matrix. The unravelled 

carbon fabrics and pulled out veil fibres worked marginally to provide a bridging effect 

for crack suppression. Consequently, the difference of the CAI strength between 

interleaved specimens is not so much.  

 

Previous work mentioned that the CAI property is affected by resin [216]. The 

Ep2 system specimens are dominated by a combination of intralaminar and interlaminar 

fracture modes. The VE system specimens, on the other hand, are mainly interlaminar 
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delamination. It is thought that the adhesion between the matrix and fabric may 

influence the fracture mode. 

 

5.5 Conclusions 

As a result of evaluating the study for impact and CAI resistances by 

non-woven veil interleaved CFRP, the following conclusions are drawn: 

 

(1) For impact damage tolerance by interleaf veils with the Ep2 system, the PA veil 

interleaved specimens exhibited an excellent improvement for all impact energies. 

The PE/C veil interleaved laminates showed the second smallest damage area after 

impact at 4J impact energy. However, the damage width for higher impact energies 

is similar value to the Hyb2 and PE veil interleaved cases. The PE veil interleaved 

samples did not show a considerable increase in impact damage resistance, unlike 

their improvement in Mode-I and Mode-II interlaminar toughness. 

 

(2) The impact damage widths of all VE system were overall larger than those of the 

Ep2 system laminates. In this resin system, the tendency of the damage resistance 

by the interleaf veils was almost the same as the Ep2 system, except for the PE/C 

veil interleaved case. The PE/C and PA veils in this resin system contributed to the 

improvement of the impact resistance considerably. 

 

(3) The CAI strengths for the PE/C and Hyb2 veil interleaved specimens are almost the 

same values as the non-interleaved samples, nevertheless the impact resistance is 

good. In contrast, the PE veils interleaved specimens have the second highest CAI 

strength, even if the impact resistance is poorer than the other veil interleaved cases. 

The crack suppression by pulled out veil fibres would be effective only in static 

fracture. Therefore, the interleaf veils could not contribute to the suppression of 

impact damage which is a dynamic fracture. The PA veil interleaved laminates 

significantly improve the CAI resistance. The adhesion between the PA veil fibres 

and matrix resin would play an important role in improving impact and CAI 

resistance. 

 

(4) The CAI strengths in the VE resin system composites are quite lower than that in the 

Ep2 system cases. Compared to the Ep2 system specimens, the CAI behaviour for 

the VE system laminates showed a different tendency. For the non-interleaved 

specimens, the CAI strength reduced at a faster rate after 4J impact energy. On the 
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other hand, the reduction of CAI strength for the interleaved specimens was 

gradual. In this resin system, the PE/C and PA veil interleaved specimens are 

superior in CAI strength to the other interleaved samples, in particular after a high 

impact energy. The fracture in the VE system would initiate at an early stage 

because of poor adhesion between the matrix and carbon fabric. 
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Chapter 6 
 

 

Correlation between Mode-I & Mode-II Interlaminar 

Toughness, Impact, and CAI Properties 

 

 

6.1 Introduction 

 Each property (Mode-I and Mode-II energy release rate, GI and GII, impact 

damage width, and CAI strength) of the non-woven veil interleaved CFRP has been 

evaluated and discussed in previous chapters. In this chapter, the correlation between 

each property obtained by each fracture tests is evaluated and discussed. Moreover, the 

results of this research are compared with previous literatures.  

 

6.2 Materials and Experiments Information 

 The details of materials and specimens are mentioned in previous chapters. 

Tables 6.1 and 6.2 show lists of specimens for four tests, DCB, 4ENF, impact, and CAI 

tests. For the Mode-I and Mode-II tests, the Ep1 and the VE resins were chosen for the 

5-harness satin weave and the unidirectional fabrics. The Ep2 and the VE resins, on the 

other hand, were selected for the plain weave fabric. 6 types of the interleaf veils were 

used. For the impact and CAI tests, the base material was the plain weave fabric only, 

and the resins were Ep2 and VE matrices.  
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Table 6.1 List of specimens for Mode-I and Mode-II interlaminar toughness tests (The 

circle mean experimented specimen) 

 5-harness satin Unidirectional Plain (HAW¥) Plain (LAW¥¥) 

Interleaf Ep1* Ep2** VE+ Ep1 Ep2 VE Ep1 Ep2 VE Ep1 Ep2 VE 

Non ○  ○ ○  ○  ○ ○  ○  

PE/C#      ○   ○  ○  

Hyb1$ ○   ○  ○   ○    

Hyb2$$ ○   ○  ○   ○  ○  

Carbon ○   ○  ○       

PE ○  ○ ○  ○   ○  ○  

PA ○  ○ ○  ○   ○  ○  

¥: High areal weight, ¥¥: Low areal weight, *: CYCOM 823R, **: MVR444, +: DION9102-500, #: 

Polyester/Carbon (100:100) veils, $: Polyester/Carbon (70:30) hybrid veil, $$: Polyester/Carbon 

(80:20) hybrid veil 

 

Table 6.2 List of specimens for impact and CAI tests 

 Plain (HAW) Plain (LAW) 

Interleaf Ep2 VE Ep2 VE 

Non ○ ○  ○ 

PE/C ○ ○   

Hyb1  ○   

Hyb2 ○ ○   

PE ○ ○   

PA ○ ○  ○ 
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6.3 Correlation between Mode-I and Mode-II Interlaminar Toughness Properties 

6.3.1 5-harness Satin Weave Fabric Specimens 

Figure 6.1 plots the Mode-II initial energy release rate as a function of the 

Mode-I initial energy release rate for the 5-harness satin weave specimens. The GIC-NL 

data used in this chart are the MBT (modified beam theory) values. In the diagram, blue 

line means the fitted line for the Ep resin specimens. Blue chain line indicates the fitted 

line for the VE system laminates. For the Ep1 system, there can be seen a good 

correlation between the GIC-NL and GIIC-NL values. The general trend is that the GIC-NL 

values increase with an increase in the GIIC-NL values. A correlation for the VE system is 

also good, but with a flat relationship. The GIC-NL values for all VE specimens are 

almost the same. The Mode-II initial energy release rate for the VE system is influenced 

relatively more than the Ep1 system samples. In contrast, the Mode-I initial energy 

release rate is not affected by interleaf veils. The difference of the matrix types would 

affect the relationship between the GIC and GIIC values. 

 

Figure 6.2 shows the correlation between the GI-prop and GII-prop values. 

Compared to the initiation values for both fracture modes, the correlation for the Ep1 

system specimens is quite poor. In particular, the Hyb2 interleaved case has an outlier in 

the GII-prop value. The propagation values for the Ep1 system do not show a clear 

correlation, unlike the initial values. The improvement of the Mode-I energy release rate 

values by the interleaf veil is less than that of the Mode-II interlaminar toughness. In 

other words, the interleaf veils contribute more to the improvement of shear mode than 

to the delamination mode. On the other hand, it can be seen that the correlation in the 

VE system materials is better than the Ep1 system cases. As compared with the initial 

value, both GI-prop and GII-prop values are widely spread. The interleaf veils in the VE 

system bring about an effect to the shear fracture resistance rather than the delamination 

fracture resistance. In the Ep1 system interleaved specimens, except for the PE veil 

interleaved laminates, crack propagation was unstable and jumped. This behaviour 

would affect a correlation between GI-prop and GII-prop values. In the VE resin composites 

the cracks propagated in a stable and gradual manner. Therefore, a correlation between 

both modes propagation values would appear clear. 
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Figure 6.1 Relationship between GIC-NL and GIIC-NL for 5-harness satin weave fabric 

both resin system specimens (Diamond is Ep1 system and Triangle is VE system) 
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Figure 6.2 Relationship between GI-prop and GII-prop for 5-harness satin weave fabric 

both resin system specimens (Diamond is Ep1 system and Triangle is VE system) 
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6.3.2 Unidirectional Fabric Specimens 

Correlations between the Mode-I and Mode-II initial energy release rate values 

for the unidirectional fabric composites are shown in Figure 6.3. For the Ep1 system, 

the correlation is not seen clearly, unlike the satin weave specimens. While the GIIC 

values in the Ep1 system seem to be strongly influenced by interleaf veil, the difference 

in the GIC values between each interleaved sample is small. However, data variation for 

the Ep1 resin system is larger than the VE system specimens. In particular, the Hyb2 

veil interleaved specimens have wide error bars. For the VE system, the data spread of 

the both GIC-NL and GIIC-NL is significantly smaller than the Ep1 system cases.  

 

The correlation between the propagation values of both fracture modes is 

illustrated in Figure 6.4. In the case of the Ep1 system, there is no clear relationship 

between the GI-prop and GII-prop. The increase of the propagation values from the 

initiation values is moderate, except for the carbon veil interleaved specimen which 

does not show any improvement. For the VE system, the trend is similar to the 

relationship for the initial properties. While the GI-prop values are increased significantly 

by the type of the interleaf veil, the increase of the GII-prop values is small. Compared to 

the 5-harness satin weave laminates, the UD samples with the VE system did not exhibit 

a large improvement in the Mode-II interlaminar toughness. In this resin and fabric 

system, the UD carbon fabrics occurred fibre-bridging during crack propagation. This 

effect leaded to the high GIC value. However, it did not contribute to the GIIC values. In 

section 6.3.1, it is mentioned that the resin system affects both fracture mode energy 

release rates. In this section, it is suggested that the type of the fabric used as the basis 

for the material also has an influence on the correlation between the interlaminar 

toughness properties in each mode. 
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Figure 6.3 Relationship between GIC-NL and GIIC-NL for unidirectional fabric both resin 

system specimens (Diamond is Ep1 system and Triangle is VE system) 
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Figure 6.4 Relationship between GI-prop and GII-prop for unidirectional fabric both resin 

system specimens (Diamond is Ep1 system and Triangle is VE system) 
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6.3.3 Plain Weave Fabric Specimens 

Figure 6.5 shows a diagram of the GIIC-NL against GIC-NL values. The correlation 

between Mode-I and Mode-II interlaminar toughness in both resin systems has a similar 

tendency to the results of the 5-harness satin weave materials. The relationship between 

the initial values is linear for the Ep2 system, but flat for the VE system. The PE and PA 

veil interleaved specimens exhibit excellent interlaminar toughness properties. In 

particular, the PA veil interleaved specimen has high GIC for Ep2 system and GIIC values 

for both resin systems. However, the PE/C and Hyb2 veil interleaved laminates do not 

show the improvements of the interlaminar toughness. For the VE system, the results 

are similar to the satin weave data. While spread of the GIC-NL values is quite narrow, the 

GIIC-NL values are extended over a wide range.  

 

 The relationship of the propagation values in both modes is plotted in Figure 6.6. 

For both resin systems, the relationships between the Mode-I and Mode-II propagation 

values show almost the same trend as the initial values. In both resin systems, the PE 

and PA veil interleaved composites possess superior initial and propagation values 

compared with the other interleaved systems. For the VE system, the gradient of the line 

linking Mode-I and Mode-II propagation values is slightly steeper than that linking the 

initiation values, which is a very flat relationship.  
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Figure 6.5 Relationship between GIC-NL and GIIC-NL for plain weave fabric both resin 

system specimens (Diamond is Ep2 system and Triangle is VE system) 
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Figure 6.6 Relationship between GI-prop and GII-prop for plain weave fabric both resin 

system specimens (Diamond is Ep2 system and Triangle is VE system) 
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In this section, the correlation between the Mode-I and Mode-II interlaminar 

toughness is discussed. Firstly, the difference of the resin system is considered with 

respect to its influence on interlaminar toughness properties in both modes. For the Ep 

system, the spread of the GIC values is larger than for the VE system specimens. It is 

thought that the Mode-I energy release rate would be affected strongly by resin system. 

On the other hand, the difference between energy release rate values in both modes in 

the VE system is small. Secondly, the type of the fabric also affects the correlation 

between Mode-I and Mode-II interlaminar toughness. Although the woven specimens 

exhibit a linear relationship between GIC and GIIC values, the UD specimens do not 

show any clear correlation. The VE system composites show only a small variation 

between each interleaved system. For UD fabric and VE system, the interleaf veils do 

not contribute significantly to the Mode-II interlaminar toughness. The carbon fabrics 

are unravelled and the interleaf veils are embedded in the matrix. 

 

6.4 Correlation between Mode-I and Mode-II Interlaminar Toughness, and Impact 

Damage Width 

 The correlation between the Mode-I energy release rate and the damage width is 

shown in Figures 6.7 and 6.8. The damage width data is that resulting from a 4J impact 

energy. The difference of the correlation within each resin system is clear. For the Ep2 

system, the variation of the damage width is small even for wide variations in GIC-NL 

values. It can be seen that the relationship is flat. On the other hand, the damage width 

in the VE system laminates is distributed widely compared with the Ep2 system 

laminates. In contrast, the GIC-NL values are in a narrow range. For the propagation 

values and damage width, the tendency is similar to the initial values. For Mode-I 

energy release rate and damage width, correlation for the Ep2 system specimens appears 

flat. However, there is no clear correlation for the VE system laminates. 
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Figure 6.7 Relationship between GIC-NL versus damage width (4J of impact energy) for 

both resin system specimens with error bars (Diamond is Ep2 system and Triangle is VE 

system) 
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Figure 6.8 Relationship between GI-prop versus damage width (4J of impact energy) for 

both resin system specimens with error bars (Diamond is Ep2 system and Triangle is VE 

system) 
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 Figures 6.9 and 6.10 show the comparison of the relationship of the Mode-II 

initial and propagation values with the damage width for both resin system. In the Ep2 

system, the correlation between the Mode-II initial values and the damage width is 

similar in behaviour to the Mode-I initial values. In the VE system, the relationship 

between initiation values and damage width is different behaviour from the Mode-I 

interlaminar toughness as shown in Figure 6.7 and 6.9. The GIIC-NL values for the VE 

system distribute over a wide range. The correlation between GII-prop and damage width 

is the same trend as that between GIIC-NL values and damage width. In the Mode-II 

energy release rate, a clear correlation does not appear in the same way as the Mode-I 

energy release rate. The DCB and 4ENF tests are static fracture. However, the impact 

damage progresses dynamical. Therefore the clear correlation would not appear to be 

due to the different behaviour between the Mode-I and Mode-II fracture, and the impact 

damage 
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Figure 6.9 Relationship between GIIC-NL versus damage width (4J of impact energy) for 

both resin system specimens with error bars (Diamond is Ep2 system and Triangle is VE 

system) 
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Figure 6.10 Relationship between GII-prop versus damage width (4J of impact energy) 

for both resin system specimens with error bars (Diamond is the Ep2 system and 

Triangle is the VE system) 
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6.5 Correlation between Mode-I and Mode-II Interlaminar Toughness, and CAI 

Strength 

 Figure 6.11 plots the Mode-I initial energy release rate against CAI strength for 

both resin systems. The tendency of increasing CAI strength with increasing GIC is 

observed. Masters mentioned that the GIC did not produce a good correlation to residual 

compressive strength [143-144]. However, a linear relation between the GIC-NL and the 

CAI strength is seen in this research. The correlation between the Mode-I energy release 

rate and CAI strength would appear to be linked to the base material, i.e. the fabric and 

resin system. For the VE system, both data for GIC-NL and CAI occur in a narrow range, 

and the difference of the toughness due to the interleaf veils is quite small. The Mode-I 

initial energy release rates in this resin system are only moderately improved. Moreover, 

the CAI resistances are also barely improved.  

 

 The Mode-I propagation properties and CAI strength are also compared as 

shown in Figure 6.12. The general trend of the correlation is quite similar to the 

initiation values. For the Ep2 system, the PA and PE veils interleaved specimens are 

significantly improved in the Mode-I propagation values and the CAI resistance 

properties. On the other hand, the toughness is not improved by the PE/C and Hyb2 

veils. In this resin system, the Mode-I toughness seems to affect the CAI resistance via 

the interleaf veils interaction. The propagation values for the VE system also has a clear 

relationship, similar to that of initiation toughness. The spread of data, however, is quite 

narrow. In the VE system, the improvement of GIC value by the interleaf veils seems 

small. This result leads to the conclusion that the CAI strength improves only slightly. 

 

 The relationship between the Mode-I interlaminar toughness and the post-impact 

compression resistance would be influenced by the resin system. In this research, it can 

be seen that the Ep2 system specimens possess a good correlation. The VE system 

specimens, on the other hand, provide results in a range that is quite narrow. The 

improvement of the Mode-I interlaminar toughness and CAI resistance by interleaf veils 

is smaller than the Ep2 system specimens. The adhesion between the VE resin and the 

carbon fabric would be weaker than the Ep2 system. It is thought that the improvement 

effect by interleaf veils may reduce because fibre-bridging by the base material is the 

main toughening mechanism. As a result, it may mean that the difference between the 

GIC and the CAI values is hardly seen. 
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Figure 6.11 Relationship between GIC-NL versus CAI strength (4J of impact energy) for 

both resin system specimens with error bars (Diamond is Ep2 system and Triangle is VE 

system) 
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Figure 6.12 Relationship between GI-prop versus CAI strength (4J of impact energy) for 

both resin system specimens with error bars (Diamond is Ep2 system and Triangle is VE 

system) 
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 The correlation between the Mode-II critical energy release rate values as 

against the CAI strengths is shown in Figure 6.13. The trend is almost the same as the 

Mode-I interlaminar toughness versus the CAI strength. In this case, all data for the Ep2 

system fall along the line. Although the relationship between the Mode-I interlaminar 

toughness and the CAI resistance for the VE system specimens is over a narrow range, 

the correlation between the Mode-II interlaminar toughness and CAI strength can be 

seen clearly. Compared to the Ep2 system specimens, the difference in the CAI strength 

for the non-interleaved and interleaved samples is quite small and the relationship is 

flat.  

 

In Figure 6.14 the relationship between the propagation values and the CAI 

strength is evaluated to see if there is a correlation. The tendency of both resin systems 

is almost the same as correlation between the Mode-II initial energy release rate and the 

post-impact compression resistance. For the Ep2 system, the GII-prop values are similar 

tendency to the GIIC-NL results. The VE resin composites are also spread widely for 

propagation values. Thus, the Mode-II energy release rate seems to be a better 

correlation of CAI resistance for the non-woven interleaved composites irrespective of 

the resin system. For both resin systems, a large improvement in the Mode-II energy 

release rate is realised through the non-woven interleaf veils, as compared with the 

Mode-I energy release rate.  
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Figure 6.13 Relationship between GIIC-NL versus CAI strength (4J of impact energy) for 

both resin system specimens with error bars (Diamond is Ep2 system and Triangle is VE 

system) 
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Figure 6.14 Relationship between GII-prop versus CAI strength (4J of impact energy) for 

both resin system specimens with error bars (Diamond is Ep2 system and Triangle is VE 

system) 
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 For the Ep2 system, the GIC and GIIC values are improved significantly by the PE 

and PA veils. These interleaf veils also improve the CAI strength. For the VE system, 

although the Mode-II interlaminar toughness realises significant improvement by the 

interleaf veils, the CAI strength is hardly changed by interleaf veils. It appears that the 

composites with high Mode-I and Mode-II interlaminar toughness offer superior 

compression after impact strength. 

 

 In some publications, it was mentioned that there is a relationship between 

toughness and residual compressive resistance [214-215]. These papers, however, 

mainly used data by Masters. He mentioned that Mode-I interlaminar toughness and 

CAI strength give a poor correlation [143-144]. However, data from this research and 

reference [81] seem to show a linear relationship. The correlation between the GIC and 

the CAI strengths may appear by an optimum combination of the fabric and the resin 

system. In the Mode-II interlaminar toughness, a clear correlation between the GIIC and 

the CAI strength can be seen. Both of the Mode-I and Mode-II interlaminar toughness 

correlate with the CAI resistance. It is thought that the CAI behaviour is a combination 

of delamination and shear fracture modes. However, the references comparing the 

relationship between Mode-I and Mode-II interlaminar toughness, and CAI resistance 

are very few.  

 

6.6 Correlation between Impact Damage Width and CAI Strength 

 Figure 6.15 plots the damage width as a function of the normalised CAI strength 

for the Ep2 system specimens. The damage width chosen is that caused by 4J of impact 

energy, and the CAI strength is normalised by undamaged compression strength. The 

relationship between the damage width and CAI strength appears to be linear for all 

composites. For the PE/C and Hyb2 veil interleaved laminates, although the CAI 

strength values for all impact energies are almost the same as the non-interleaved cases, 

the damage width has lower values than the non-interleaved composites. Therefore, the 

gradient of the fitted line is larger than that of the non-interleaved samples. In the Ep2 

system, the PE/C and Hyb2 veils do not contribute to any improvement in the CAI 

resistance properties. For the PE veil interleaved specimens, the damage width has 

similar values to the control at all impact energies. In contrast, the CAI strength values 

are higher than the non-interleaved materials. Both the damage width and the CAI 

strength for the PA veil interleaved laminates are superior to the other interleaved 

laminates. It suggests that the PA veils can significantly contribute to the improvement 

of impact resistance and CAI strength. While the PE veils improved the CAI strength 
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only, the PE/C and Hyb2 veils could contribute to the suppression of the impact damage 

only.  
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Figure 6.15 Compression after impact strength for non-interleaved and interleaved 

epoxy2 system specimens plotted as a function of damage width 

 

 Figure 6.16 shows the relationship between the damage width and the 

normalised CAI strength for the VE system with the fitted lines. Compared to the Ep2 

system composites, the fitted lines show different behaviour. While the PE/C and Hyb2 

veil interleaved specimens show a linear relationship between the damage width and the 

CAI strength, the non-interleaved and other interleaved laminates are different. In the 

PE/C and Hyb2 veil interleaved laminates, the CAI strength values at the lowest impact 

energy are lower than the other interleaved cases. However, the reduction of the CAI 

strength with the increase in impact energy is more gradual than the other interleaved 

samples. On the other hand, in the Hyb1, PE, and PA veil interleaved specimens the CAI 

strengths after the lowest impact energy possess moderately high values. However, the 

reduction of the CAI strength with increase of impact energy is larger than the PE/C and 

Hyb2 veil interleaved composites. In particular, the reduction from 8J to 12J is great. In 

the VE system, it seems that the reduction of the CAI strength with increase of impact 

energy is large compared with the Ep2 system laminates.  
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Figure 6.16 Compression after impact strength for non-interleaved and interleaved 

vinyl ester system specimens plotted as a function of damage width 

 

6.7 Comparison of this research and previous works 

 Figure 6.17 shows range of the GI and GII values for this research with data from 

references. The range of GI and GII values in this study is 0.4 to 1.5kJ/m2 and 0.5 to 

5.8kJ/m2, respectively. While the non-woven veils can improve moderately the Mode-I 

interlaminar toughness, the Mode-II interlaminar toughness exhibits a large range 

compared with the other toughening techniques. It is thought that the non-woven veils 

are valid for the improvement of the interlaminar toughness, in particular Mode-II 

interlaminar toughness. If an optimum combination of the resin and non-woven veil can 

be found, a considerable improvement in the interlaminar toughness may be able to be 

expected. 
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Figure 6.17 Comparison between this research and previous literatures for Mode-I and 

Mode-II energy release rates of composites [from Figure 2.20] 

 

 The relationship between the resin GIC and the composite GIC is plotted in 

Figures 6.18. Figure 6.19 indicates enlarged image of Figure 6.18 in low GIC and GIIC 

region. The data of the interleaved Ep2 system specimens takes a position near the 

long-chain line, as shown in Figure 6.19. The Ep2 system, which is the unmodified 

matrix, composites seem to show a good correlation in the brittle matrix region. On the 

other hand, laminates with the Ep1 system, which is the modified matrix, exhibit a poor 

correlation in the tougher matrix region. The PE and PA veils with the Ep2 system 

specimens have superior Mode-I interlaminar toughness compared with the other 

toughening techniques. Figure 6.20 shows the correlation of the resin GIC and the 

composite GIIC values. In data obtained by this study, there is no clear correlation. It can 

be confirmed that there is no correlation between the resin GIC and composite GIIC. 

 

Range of data from this study 
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Figure 6.18 Relationship between resin GIC and composite GIC values in this work and 

previous researches [from Figure 2.21] 
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Figure 6.19 Enlarged illustration of Figure 6.19 (Marks and lines indicate the same as 

Figure 6.18) 
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Figure 6.20 Relationship between resin GIC and composite GIIC values in this work and 

previous researches [from Figure 2.22] 

 

Figure 6.21 compares the impact resistance properties of the CAI strength for 

this study and previous literatures. It can be seen that the damage width and the CAI 

strength are inversely proportional, as shown in Figure 6.21. The CAI strengths in the 

interleaved specimens are relatively lower than the data obtained from reference 

[143-144, 148]. In particular, the VE system laminates show the lowest CAI strength.  
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Figure 6.21 Diagram compares effect of impact resistance (damage width) on the CAI 

strength for this work and literatures [63, 166-168, 171] 

 

 The CAI strength between this study and previous works is compared in Figure 

6.22. The impact energy range for post-impact properties is 4 to 6J. The range of the 

CAI strength in this work is around 100 to 220MPa. Compared to the other previous 

literatures, the non-woven interleaf veils can realise a moderate improvement of the 

post-impact resistance. An optimum combination between the resin and the fabric 

systems would realise more improvement of the post-impact compression strength. 
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Figure 6.22 Comparison between this research and previous literatures for post-impact 

resistance of composites [63, 81, 95, 143, 148, 165-171] 

 

6.8 Conclusion 

 The correlation between each fracture mode discussed in this chapter leads to the 

following conclusions. 

 

(1) The correlation between the GIC and GIIC values of the composites is affected 

strongly by the resin and the fabric. For the woven fabric (satin and plain) and the 

Ep system, the relationship of GIC and GIIC values appeared to be linear. In the VE 

system, the relationship between GIC and GIIC values was flat. For the 

unidirectional specimens, there was no clear correlation between GIC and GIIC 

values. In particular, both modes of energy release rate values for the Ep1 system 

distributed over a wide range. On the other hand, the relationship between Mode-I 

and Mode-II interlaminar toughness for the VE system was in a narrow range. 

 

(2) For the relationship between the interlaminar toughness and the impact resistance, 

the correlation did not appear clearly for each fracture mode. As a result, the 

fracture behaviour in the impact damage may not be a simple mode. In other words, 

the crack propagation for the impact fracture would be combined fracture modes, 

i.e. delamination and shear fracture modes, etc. It is thought that the impact 

damage and interlaminar fracture growth by DCB or 4ENF tests show a different 

behaviour. While the impact damage is a dynamic process, the interlaminar 
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fracture growth is static. Therefore, the correlation could not appear clearly. 

 

(3) The relationship between the CAI and the interlaminar toughness is discussed. In 

both fracture modes, the correlation appeared linear unlike that between impact 

resistance and interlaminar toughness. The Ep2 system interleaved specimens had 

better fracture toughness than the VE system. The Mode-I and Mode-II 

interlaminar fractures would be similar in behaviour to the CAI fracture. The 

relationship between Mode-II interlaminar toughness and CAI strength had better 

compared with the Mode-I interlaminar toughness.  

 

(4) The non-woven veils interleaved specimens can give various results according to 

the combination of the fabric and the resin system. The Mode-I and Mode-II 

interlaminar toughness for some interleaf veils could realise an improvement, 

compared with previous works. The impact and CAI resistance have also shown 

changes. From these results, it is thought that the non-woven interleaf veils are 

valuable for the interlaminar toughness of the composites. However, it is necessary 

to consider that the non-woven veil interleaved composites are affected by a 

combination of the resin and the fabric. Consequently, it is important in the 

improvement of the interlaminar toughness to find the optimum combinations 

between the fabric, resin, and interleaf veils. 
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Chapter 7 
 

 

Summary of Conclusions and Future Work 

 

 

7.1 Introduction 

The objectives of this research are to evaluate and understand the mechanisms 

of the interlaminar toughening using non-woven veils and its influence on post-impact 

compression properties. Chapter 2 reviewed previous work for toughening composite 

materials, interlaminar toughness tests, and post-impact compression properties. Data 

form the literature, moreover, was summarised, and the effect on fracture toughness by 

different toughening methods was investigated. The mechanisms of Mode-I and 

Mode-II interlaminar toughening by non-woven veils were described and evaluated in 

Chapters 3 and 4. In Chapter 5, the impact and CAI resistance properties were 

investigated using non-woven veils as interleaf materials. Chapter 6 discussed the 

correlation between each toughness property. Furthermore, the effectiveness of the 

non-woven interleaf veils obtained in this research was evaluated by comparing 

previous work and data from this work. In this chapter, final conclusions of this thesis 

and future work are mentioned and suggested. 

 

7.2 Conclusion on Fabrication of Specimens 

 The validation of non-woven veils for the VaRTM technique was indicated in 

previous works [129, 151-152]. In this work, it was confirmed that non-woven veils as 

interleaf materials were valid for the VaRTM method. Moulding of voidless panels 

could be realised. The fibre volume fraction of specimens was in a range of 45 to 

61vol% (DCB/4ENF specimens) and 36 to 54vol% (CAI specimens).  

 

7.3 Conclusion on Fracture Tests 

 Four tests for fracture toughness were used in this research. The DCB and 4ENF 

tests were selected as the Mode-I and Mode-II interlaminar toughness tests. The DCB 

test was carried out based on ASTM and ISO standards [178-179]. The 4ENF test, on 

the other hand, was referred to previous literatures [94, 192]. The specimens during the 

DCB test were not broken and gave realistic data. On the other hand, some of the plain 

weave specimens tended to undergo bending fracture when 4ENF tests were carried out. 
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It is thought that the thickness of specimen was thinner than the other fabric samples. 

Moreover, the fabric surface was coarse and the crack initiation and propagation seemed 

to be relatively slow. If bending fracture occurred, interlaminar cracks no longer 

propagated. Consequently, adequate stiffeners need to be attached to specimens for 

suppression of bending fracture.  

 

 For the impact and CAI tests, the miniaturised specimens which are called 

QMW size [171] were chosen. The impact test machines used were two different types, 

Dartvis and Fractovis Plus. Although the strikers on both machines were the same shape, 

specimen crimping was different. The former machine crimped the material under a ring 

mould by compressed air whereas the material was not clamped on the latter machine. 

The difference of damage width between both of impact machines was not seen using 

same samples. The specimens during CAI test fractured at the center, i.e. through the 

impact damage region. While the Ep2 system specimens tended to collapse 

catastrophically, the general trend of the VE system specimens was slow and gradual 

fracture. 

 

7.4 Conclusion on Improvement by Non-Woven Veils as Interleaf Materials 

 In Chapter 3, the Mode-I interlaminar toughness mechanisms using non-woven 

veils were investigated and discussed. Three types of carbon fabrics and two resin 

systems were chosen as the base materials for this work. The PE veil improved the 

Mode-I interlaminar toughness in all fabric and resin system. Both hybrid veils showed 

a moderate improvement of the GIC values. The non-woven veils, however, did not 

necessarily improve interlaminar toughness. In particular, the carbon veil interleaved 

specimens for all fabric and the Ep resin system had significantly poorer Mode-I 

interlaminar toughness than the non-interleaved laminates. The PA veil interleaved 

composites were affected strongly by fabric and resin system. While the satin weave 

and UD fabrics Ep1 system samples had significantly poor Mode-I interlaminar 

toughness, the plain weave fabric Ep2 system specimens were significantly increased 

GIC values. It is thought that the adhesion between the matrix and veil fibres is an 

important factor for interlaminar fracture toughness. If the adhesion strength is weak, 

the veil fibres may pull out but work as bridging. This effect seems to contribute to the 

improvement of the interlaminar toughness. Many PE veil fibres were pulled out on the 

fracture surface and worked as fibre-bridging. Hence the PE veil interleaved laminates 

realised a significantly high Mode-I energy release rate. In contrast, the carbon veil 

fibres were embedded completely in the matrix. The veil fibres thus could not contribute 

to the Mode-I interlaminar toughness. The PA veils with the Ep resin system were not 

pulled out on the fracture surface but exposed. In this resin system, the PA veil may 
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contribute to the interlaminar toughness by adhesion between veil fibres and matrix. 

However, the PA veil for fracture toughness seems to be affected significantly by the 

resin system. On the other hand, the PA veil fibres for the VE system were different 

behaviour from the Ep system specimens. In the VE system, the PA veil fibres were 

deformed or elongated during crack propagation. This would contribute to moderate 

improvement of the Mode-I interlaminar toughness. 

 

The influences on Mode-II interlaminar toughness mechanisms by interleaf 

veils were evaluated in Chapter 4. The base materials were the same as in Chapter 3. 

For the 5-harness satin weave and UD fabric Ep1 system specimens, the Hyb2 and PE 

veils significantly improved Mode-II interlaminar toughness properties. The PA veil 

contributed to the improvement of the propagation values. The carbon veil interleaved 

laminates had lower Mode-II interlaminar toughness compared with the other 

interleaved cases. The plain weave Ep2 resin composites were similar tendency to the 

Mode-I test results. For the VE system samples, the difference between each interleaved 

laminate was small compared with the Ep resin system specimens. 

 

The post-impact compression resistance of CFRP using non-woven veils was 

discussed in Chapter 5. For the CAI resistance properties, the plain weave and two 

resins were examined. The impact damage resistance was improved using non-woven 

veils. In particular, the PA veils significantly contributed to the suppression of damage 

spread for the Ep2 system. In previous work, the PA veil with the VE system had 

superior impact resistance to the PE veil system [152]. In this research, the PA veil had 

also excellent damage resistance in both resin systems. The PE/C and hybrid veils had 

also good impact resistance. The PE veils showed only a slight improvement. The 

tendency of CAI strength differed from that of impact resistance. Reduction of the CAI 

strength for the PA veil interleaved samples was the smallest in all interleaved cases. 

The PE veil interleaved specimen had the highest CAI value. In contrast, the PE/C and 

hybrid were improved only slightly.  

 

7.5 Suggestion for Future Work 

 It had already been mentioned that VaRTM is an attractive method in the 

academic and industrial areas. Some interleaving technique for the VaRTM, however, 

may restrict its use. However, this moulding method can be used enough by using 

appropriate interleaf materials. It is thought that the interleaf materials are not only 

non-woven veils but also that porous films may also be used as toughening materials. 

 

In this study, Mode-I & II, impact, and CAI tests were undertaken for 
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evaluation of the interlaminar fracture toughness, but other mechanical tests such as 

flexural and tensile tests were not carried on. These properties would contribute to 

evaluate imterlaminar toughness. Furthermore, this research focuses mainly on 

experimental approaches for means of improving interlaminar toughness using 

non-woven veils. The modelling analysis as future work would produce more useful 

results. It is thought that the fracture mechanism would be clarified by evaluating the 

correlation of experimental and analytical approaches. 

 

From the study, it was found that there were relationships between interlaminar 

fracture toughness and post-impact compressive resistance. However, there are few 

literatures, which mention the correlation between the interlaminar toughness and 

post-impact resistance. The literature by Maters is representative reference [143-144]. It 

is thought that evaluation of the relationship between each fracture toughness would get 

useful information for understanding interlaminar fracture toughness. 
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Appendix A 
 

 

Load-Displacement Curves Obtained by DCB Tests 

 

 

A.1 Load-Displacement Curve 

 In this chapter, results obtained by the DCB tests are given. The representative 

load-displacement curves are shown. 

 

A.1.1 Non-interleaved Specimens 

 Figure A.1 shows results of the DCB test for the non-interleaved specimens with 

the Ep system. A typical load-displacement curve of the satin weave sample Ep1 system 

has a jagged shape (classifications of curve shapes are given in section 3.3.1). The 

maximum load and displacement are approximately 57N and 20mm, respectively. The 

crack propagation sharply jumped. A non-linear point appears after about 5mm of 

displacement, and is quite near the maximum load point.  

 

The curve shape in the UD laminate is a bow type. In the linear region the 

load-displacement curve exhibited similar behaviour to the satin weave case. However, 

the crack initiation was later than the satin weave composite, at about 6mm of 

displacement. The maximum load and displacement values are around 60N and 30mm, 

respectively. The crack behaviour was different from the satin weave specimens. The 

crack propagated gradually, without jumping. Therefore, the curve is a smooth shape.  

 

In the plain weave Ep2 resin composites, two types of areal weight fabrics 

were used in experiments. For the HAW plain weave specimen, the load increased until 

40N. The load kept around 40N for a while, and then gradually decreased. The LAW 

plain weave specimen was similar in behaviour to the HAW case. However, the 

maximum load in the LAW specimen was lower than the HAW sample. Moreover, the 

gradient in linear region for the LAW laminate was smaller than that for the HAW 

laminate. The behaviour at the linear stage seemed to be influenced significantly by the 

areal weight of the fabric. The load increased to around 25N, afterwards gradually 

decreasing. The crack propagation speed was significantly slower than in the HAW 

composite. 
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Figure A.1 Typical DCB load-displacement curves of non-interleaved specimens for 

epoxy resin system 

 

Figure A.2 illustrates the typical load-displacement curves for the 

non-interleaved VE system composites. The crack in the VE system specimens 

propagated gradually, exhibiting slow growth. Compared to the satin weave Ep1 system 

specimens, the non-linear point appeared significantly early, about 3mm of 

displacement. The load increased until 11mm of displacement and then kept constant 

around 30N. The maximum load was significantly lower than the Ep1 system case 

which was about 57N.  

 

In the UD laminate, the maximum load and displacement values are higher 

than the Ep1 system sample, which are 68N and 35mm. The crack growth in both resin 

system specimens was similar in behaviour, being gradual and slow propagation. The 

linearity in the UD fabric system was similar to the Ep1 system samples.  

 

For the plain weave composite, the load increased up to 40N. Afterwards it 

gradually reduced until the test finishes. The slope in the linear region of the VE system 

laminate was similar to the HAW Ep1 system case. It is thought that the plain weave 

fabric has a coarser surface than the satin weave fabric. Hence, the crack initiation 

would be later than the satin composites. However, the crack propagation in both fabric 

specimens was quite similar. The condition of the fabric surface would affect the 

initiation only. 
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Figure A.2 Typical DCB load-displacement curves of non-interleaved specimens for 

vinyl ester resin system 
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A.1.2 Interleaved Specimens 

A.1.2.1 Polyester/Carbon Veil Interleaved Specimens 

 Figure A.3 illustrates typical results of the DCB test for the PE/C veil 

interleaved specimens. For the plain weave specimens, the Ep2 system laminates used 

the LAW plain fabric. On the other hand, for the VE resin samples the HAW plain 

weave fabric were chosen. Although the load in the Ep2 system laminate fell slightly at 

10mm, it increased to a maximum of 35N. Afterward the load dropped suddenly and 

kept around 20N to 25N until the test finished. The maximum load in the VE system 

sample, on the other hand, reached approximately 35N and the load was keeping up to 

15mm of displacement. The rate of crack propagation for the Ep2 system laminate was 

significantly slower than that of the VE system. The slope at the linear stage for the Ep2 

system specimen was smaller than the VE system specimen. This difference of the slope 

is due to the difference of the areal weight. The gradient at linear area would be affected 

by the areal weight of fabric in the same way as the non-interleaved cases. 
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Figure A.3 Typical DCB load-displacement curves of PE/C (100/100) veil interleaved 

specimens for plain weave fabric with both resin systems 
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A.1.2.2 Polyester/Carbon (70:30) Hybrid Veil Interleaved Specimens 

 Figure A.4 shows results of the DCB test for the Hyb1 veil interleaved 

specimens. The load-displacement curve in the satin weave specimen has a jagged 

shape, as shown in Figure A.4 (a). The crack jumping was large compared with the 

non-interleaved case. The maximum load and displacement values were approximately 

44N and 24mm, respectively. In the linear stage, the load increased quite linearly up to 

32N. The load-displacement curve was linear throughout. Although the crack growth in 

Hyb1 veil interleaved specimens was slower than the non-interleaved sample, the 

maximum load was smaller.  

 

For the UD fabric Ep1 system laminates, the crack growth behaviour exhibited 

significantly small jumps compared with the satin weave specimen, as shown in Figure 

A.4 (b). The maximum load and displacement values were about 60N and 25mm, 

respectively. For the VE system composite, the load-displacement curve is a bow shape. 

The crack propagation speed was slow and gradual compared with the Ep1 system case. 

The maximum load was almost the same as the Ep1 system laminates, however the 

displacement was larger, approximately 35mm.  

 

In the plain weave VE resin laminates, the load-displacement curve is triangle 

shape, as illustrated in Figure A.4 (c). The maximum load and displacement were about 

40N and 30mm, respectively. In this system, the gap between the non-linear point and 

maximum load point was small. The crack propagation was gradual. The maximum load 

is lower than the control. 
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Figure A.4 Typical DCB load-displacement curves of PE/C (70:30) hybrid veil 

interleaved specimens with both resin systems: (a) 5-harness satin weave fabric, (b) 

Unidirectional fabric, (c) Plain weave fabric 
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A.1.2.3 Polyester/Carbon (80:20) Hybrid Veil Interleaved Specimens 

 Figure A.5 shows the load-displacement curves for the satin weave composites 

with both resin systems. The crack propagation was similar in behaviour to the Hyb1 

veil interleaved samples. The maximum load and displacement were approximately 50N 

and 22mm, respectively. Although the maximum load is higher than the Hyb1 veil 

interleaved samples, the maximum displacement was lower. The crack propagation was 

faster compared with the Hyb1 veil interleaved laminates.  

 

In the UD fabric Ep1 system composite, the Hyb2 veil interleaved laminate 

shows different behaviour from the Hyb1 veil interleaved cases. The crack propagation 

for the Ep1 system was slip-stick, as shown in Figure A.5 (b). The maximum load and 

displacement were around 60N and 23mm, respectively. Compared to the Hyb1 veil 

interleaved specimens, both maximum load and displacement had smaller values. On 

the other hand, the load-displacement curve for the VE system is a bow shape. The 

crack propagation was slow, stable and gradual. In the VE system, the crack growth was 

similar in behaviour to the Hyb1 veil interleaved case. The maximum load and 

displacement values were approximately 61N and 37mm, respectively.  

 

In the plain weave Ep2 system specimen, the maximum load and displacement 

were about 30N and 35mm, respectively. The behaviour of the crack growth was 

completely different from the satin weave samples, as shown in Figure A.5 (a) and (c). 

The crack propagated slowly and gradually. For the VE system, the maximum load and 

displacement were 40N and 25mm, respectively. The initial rise of slope was swifter 

than the Ep2 system specimen. 
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Figure A.5 Typical DCB load-displacement curves of PE/C (80:20) hybrid veil 

interleaved specimens with both resin systems: (a) 5-harness satin weave fabric, (b) 

Unidirectional fabric, (c) Plain weave fabric 
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A.1.2.4 Carbon Veil Interleaved Specimens 

 The typical load-displacement curves obtained by the DCB tests for the carbon 

veil interleaved specimens are shown in Figure A.6. The curve for the satin weave Ep1 

system laminate is a jagged shape, as shown in Figure A.6 (a). Both the maximum load 

and displacement were significantly lower compared with the non-interleaved case. The 

maximum load and displacement were about 38N and 13mm, respectively. The crack 

propagation was quite rapid with large jumps. In the carbon veil interleaved samples, 

the cracks tended to propagate quite easily compared with the other interleaved cases.  

 

The load-displacement curves in the UD fabric Ep1 and VE system composites 

showed different behaviour, as illustrated in Figure A.6 (b). For the Ep1 system, the 

crack growth was similar in behaviour to the satin weave laminates. The maximum load 

and displacement were almost the same values as the 5-harness satin specimen, 

approximately 34N of load and 13mm of displacement. The maximum load and 

displacement for the VE system, on the other hand, were significantly higher than those 

for the Ep1 system composite, approximately 60N and 33mm. The crack propagation 

for the VE system was slow and stable compared with the Ep1 system sample.  

 

For the plain weave specimens, the crack propagation was similar in behaviour 

to the UD fabric VE system, which was stable growth, as shown in Figure A.6 (c). The 

maximum load and displacement were nearly 37N and 28mm, respectively. Compared 

to the UD fabric VE system composite, the increase of the load was lower, up to 40N. 
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Figure A.6 Typical DCB load-displacement curves of carbon veil interleaved specimens 

with both resin systems: (a) 5-harness satin weave fabric, (b) Unidirectional fabric, (c) 

Plain weave fabric 
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A.1.2.5 Polyester Veil Interleaved Specimens 

 Figure A.7 shows representative load-displacement curves obtained by the DCB 

tests. The PE veil interleaved specimen, which is 5-harness satin fabric for the Ep1 resin 

system, is jagged in shape, as illustrated in Figure A.7 (a). The maximum load and 

displacement were larger than the other veil interleaved cases, about 55N and 32mm. 

When the crack propagated the PE veil fibre was pulled out from the fracture surface 

resulting in bridging. This effect would contribute to a significant increase of the 

maximum load and displacement. For the VE system, the maximum load was slightly 

lower than the Ep1 system laminate, approximately 42N. In contrast, the maximum 

displacement was almost the same value, 33mm. In the linear region, while the load for 

the Ep1 system laminate increased linearly until the first load drop, the non-linear point 

for the VE system sample appeared at an early stage.  

 

For the UD specimens, the curves for both resin systems were similar shapes. 

The crack propagation for the Ep1 system was quite gradual, unlike the other 

interleaved samples. The maximum load and displacement for the Ep1 system were 

approximately 72N and 32mm. In the VE system sample, both maximum load and 

displacement were slightly larger than the Ep1 system case, about 75N and 36mm. In 

contrast, the non-linear point appeared earlier than the Ep1 resin composite.  

 

In the plain weave specimens, the fracture progress was completely different 

from the other fabric with the Ep2 system samples. The crack propagation for the Ep2 

system was significantly slow and gradual compared with the Ep1 system laminates. 

The maximum load and displacement are about 43N and 50mm, respectively. Compared 

to the satin weave specimens, the reduction of the load at each crack mini-jump was 

quite small, as shown in Figure A.7 (c). Moreover, the maximum displacement was 

significantly larger than the other fabric samples. For the VE system, the maximum load 

was almost the same value as the Ep2 system case, about 43N. In contrast, the 

displacement was smaller than the Ep2 system specimen, approximately 32mm. The 

crack propagation was gradual until the crack reached around 28mm of displacement. 

Although the slope for both resin systems was different, the increase of the load was 

similar in behaviour. The non-linear points of both resin systems were quite near to the 

maximum load point. 
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Figure A.7 Typical DCB load-displacement curves of PE veil interleaved specimens 

with both resin systems: (a) 5-harness satin weave fabric, (b) Unidirectional fabric, (c) 

Plain weave fabric 
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A.1.2.6 Polyamide Veil Interleaved Specimens 

 Figure A.8 illustrates the typical DCB test results for the PA veil interleaved 

specimens. The load-displacement curve in the satin weave Ep1 system laminate was 

similar in tendency to the carbon veils interleaved sample. The curve is jagged shape 

and crack propagation is large by jumping, as illustrated in Figure A.8 (a). The 

maximum load is nearly 40N. The maximum displacement was quite a short length, 

about 10mm. For the VE system, the crack propagation was similar in behaviour to the 

PE veil interleaved case (see in Figure A.7 (a)). The maximum load and displacement 

were around 40N and 32mm, respectively. 

 

For the UD fabric Ep1 system, the crack propagation showed similar in 

behaviour to the satin weave laminate. The crack in the Ep1 system specimen 

propagated sharply and quickly, as shown in Figure A.8 (b). The maximum load and 

displacement were nearly 50N and 22mm. In particular, the displacement was 

substantially increased compared with the satin case. The graph of the VE system 

specimen, on the other hand, was similar to the other interleaved samples. The crack 

propagation was gradual and slow. The maximum load and displacement were 

approximately 70N and 40mm.  

 

For the plain weave Ep2 system laminate, the crack propagation was similar in 

behaviour to the other fabric materials. The crack propagated quite sharply and jumped, 

as illustrated in Figure A.8 (c). However, the crack propagation speed was completely 

different from the other fabric cases. The crack propagated significantly slowly. 

Moreover, the crack initiation was suppressed longer than the Ep1 system laminates 

before a sharp jump. The maximum load and displacement were nearly 70N and 50mm, 

respectively. Some of the PA veil interleaved specimens exceeded displacements of 

50mm. For the VE system, crack propagation was also slow and gradual. The growth 

showed similar in behaviour to the other fabric specimens. The maximum load and 

displacement were around 40N and 35mm, respectively. Compared to the Ep2 system 

composites, both maximum load and displacement values were considerably small. 
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Figure A.8 Typical DCB load-displacement curves of PA veil interleaved specimens 

with both resin systems: (a) 5-harness satin weave fabric, (b) Unidirectional fabric, (c) 

Plain weave fabric 
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 The crack propagation behaviour for the Ep system specimens was basically 

jumping. On the other hand, the crack growth for the VE system laminates was stable 

and gradual propagation. Tables A.1 to A.3 summarise the DCB test results for each 

fabric specimen. For Table A.3, the Ep2 system samples used the LAW fabric, and for 

the VE system specimens the HAW fabric was chosen. The non-interleaved composites 

with the Ep2 system are shown for both areal weight fabric specimens. 

 

Table A.1 Summary of DCB test results for 5-haness satin weave fabric specimens 

(Load and displacement are maximum values) 

 Epoxy1 Vinyl ester 

Interleaf Crack Load [N] Displacement [mm] Crack Load [N] Displacement [mm] 

Non Jump (S)+ 57 20 Stable$ 35 30 

Hyb1 Jump (L)++ 44 24 -# - - 

Hyb2 Jump (L) 50 22 - - - 

Carbon Jump (L) 34 12 - - - 

PE Jump (S) 55 32 Stable 47 32 

PA Jump (L) 43 11 Stable 31 44 

+: Crack jumps shortly, ++: Crack jumps largely, $: Crack propagates stable, #: Not examined 

 

Table A.2 Summary of DCB test results for unidirectional fabric specimens (Load and 

displacement are maximum values) 

 Epoxy1 Vinyl ester 

Interleaf Crack Load [N] Displacement [mm] Crack Load [N] Displacement [mm] 

Non Stable 62 29 Stable 68 33 

Hyb1 Jump (L) 68 25 Stable 66 35 

Hyb2 Jump (L) 60 22 Stable 61 36 

Carbon Jump (L) 34 13 Stable 59 33 

PE Stable 73 32 Stable 75 36 

PA Jump (L) 49 22 Stable 72 38 
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Table A.3 Summary of DCB test results for plain weave fabric specimens (Load and 

displacement are maximum values) 

 Epoxy2 Vinyl ester 

Interleaf Crack Load [N] Displacement [mm] Crack Load [N] Displacement [mm] 

Non Jump (S) 25*/41** 35*/24** Stable 41 34 

PE/C Jump (S) 35 40 Stable 35 29 

Hyb1 - - - Stable 37 30 

Hyb2 Jump (S) 29 36 Stable 44 27 

Carbon - - - Stable 37 28 

PE Jump (S) 44 50 Stable 43 32 

PA Jump (L) 68 50 Stable 43 33 

*: LAW specimen, **: HAW specimen 
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Appendix B 
 

 

Load-Displacement Curves Obtained by 4ENF Tests 

 

 

B.1 Load-Displacement Curve 

 In this section, the results obtained by 4ENF tests are given. Representative 

load-displacement curves are shown. 

 

B.1.1 Non-interleaved Specimens 

 The load-displacement curves for the non-interleaved specimens are shown in 

Figure B.1. The maximum load for the Ep1 system specimen is approximately 2kN. The 

crack initiation was quite late, over displacement of 3mm. The load kept constant at 

around 1.9kN. The load dropped slightly at a displacement of 4.1mm.  

 

The UD specimen has a different load-displacement curve shape from the satin 

sample. The load dropped at a displacement of 4mm, afterwards it increased again until 

the test finished, as shown in Figure B.1. The maximum load and displacement values 

were approximately 2kN and 5.6mm, respectively. The maximum load was similar 

values to the satin weave case.  

 

In the plain weave (HAW) Ep2 system, the maximum load and displacement 

were around 1.4kN and 6.4mm, respectively. Those of the LAW composite, on the other 

hand, gave a lower load value (0.8kN) than the HAW specimen, but the displacement 

was almost the same as the HAW case, about 6.5mm. The slope of the linear region for 

the LAW specimen was significantly smaller than that of the HAW laminate. 
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Figure B.1 Typical 4ENF load-displacement curves of non-interleaved specimens for 

epoxy resin systems 

 

Figure B.2 shows the load-displacement curves for the VE system specimens. 

The maximum load and displacement values in the satin laminate were approximately 

0.7kN and 3.3mm, respectively. Both of the maximum load and displacement values 

were significantly smaller compared with the Ep1 system composite. The crack velocity 

was quite faster than the Ep1 system specimens.  

 

For the UD specimen, the maximum load and displacement values were about 

1.9kN and 5.3mm, respectively. The curve shape was different from the Ep1 system 

sample. While the load in the Ep1 system specimen dropped once, for the VE system 

laminate it was increasing until the test finished. The slope in linear region was almost 

the same for both resin system laminates. However, the non-linear point for the VE 

system sample appeared earlier than the Ep1 system case. 

 

In the plain weave specimen, only the HAW fabric was used. The maximum 

load and displacement were 0.7kN and 4.2mm, respectively. The maximum load was a 

similar value to the satin weave case. However, the crack propagation had a completely 

different behaviour. The crack propagation was quite slow. Moreover bending fracture 

started for some specimens during the 4ENF test. The crack could then propagate no 

longer. 

 



 
Appendix B  Results of 4ENF Tests 

 277

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

Displacement [mm]

L
o
ad

 [
k
N

]

VE (Satin) Crack (VE Satin)

VE (UD) Crack (VE UD)

VE (Plain HAW) Crack (VE Plain HAW)  

Figure B.2 Typical 4ENF load-displacement curves of non-interleaved specimens for 

vinyl ester resin system 
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B.1.2 Interleaved Specimens 

B.1.2.1 Polyester/Carbon Veil Interleaved Specimens 

 The load-displacement curves for plain weave specimens are plotted in Figure 

B.3. The maximum load and displacement in the Ep2 system specimen were 

approximately 0.9kN and 6.7mm, respectively. In the Ep2 system laminate, the 

non-linear point appeared around 3.5mm. An increase of the load was slower than the 

VE system samples. The maximum load and displacement in the VE system specimen 

were 0.78kN and 4.4mm, respectively. The crack propagation speed of the Ep2 system 

specimen was slower than that of the VE system case. For both resin systems, the 

maximum load values were higher than the control. 
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Figure B.3 Typical 4ENF load-displacement curves of PE/C (100:100) veil interleaved 

specimens for plain weave fabric specimens with both resin systems 
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B.1.2.2 Polyester/Carbon (70:30) Hybrid Veil Interleaved Specimens 

 Figure B.4 shows 4ENF test result for the Hyb1 veil interleaved specimens. The 

curve is similar to the control, as shown in Figure B.1 and B.4 (a). The maximum load 

and displacement in the satin laminate Ep1 system were about 1.8kN and 5.7mm, 

respectively. The load increased linearly up to 1.8kN. The load remained stable after the 

maximum load point. The maximum load was lower compared with the non-interleaved 

case.  

 

For the UD specimens, the load-displacement curves for both resin system 

laminates have a completely different behaviour, as shown in Figure B.4 (b). The 

maximum load and displacement values for the Ep1 system specimen were larger than 

the VE system case. Both values for the Ep1 system specimen were approximately 

2.4kN and 6.2mm, respectively. On the other hand, the maximum load and displacement 

for the VE system sample were around 1.6kN and 5mm, respectively. The crack 

initiation and non-linear point of the VE system laminate appeared earlier than those of 

the Ep1 system material. Moreover, the crack speed for the VE system composites was 

faster compared with the Ep1 system samples. 

 

Figure B.4 (c) shows a result of the plain weave with the VE system specimen. 

The specimen in the plain weave composite gave 0.8kN of the load and 6.1mm of the 

displacement. The maximum load was the lowest value of all fabric samples. The crack 

propagation velocity was significantly slower than the other fabric specimens. After the 

displacement went beyond 5mm, the crack propagated no longer. Because bending 

fracture occurred.  
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Figure B.4 Typical 4ENF load-displacement curves of PE/C (70:30) hybrid veil 

interleaved specimens with both resin systems: (a) 5-harness satin weave fabric, (b) 

Unidirectional fabric, (c) Plain weave fabric 

 

Bending fracture initiated 
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B.1.2.3 Polyester/Carbon (80:20) Hybrid Veil Interleaved Specimens 

 The typical load-displacement curves for the Hyb2 veil interleaved specimens 

are plotted in Figure B.5. The maximum load and displacement values for the satin 

laminate Ep1 system were approximately 2.2kN and 6.7mm, respectively. Both values 

have larger than the Hyb1 veil interleaved case, as shown in Figure B.4 (a) and B.5 (a). 

The load kept constant over 5.2mm of displacement. Once the crack initiated, it 

propagated rapidly until the end of the test. The crack propagation behaviour was 

similar to the Hyb1 veil interleaved case.  

 

In the UD laminates, the load-displacement curves in both resin systems have 

almost the same in behaviour as the Hyb1 veil interleaved samples, as shown in Figure 

B.4 (b) and B.5 (b). The Ep1 system specimen produced a significantly high maximum 

load and longer displacement, which were approximately 2.8kN and 7.1mm respectively. 

The VE system specimen, on the other hand, gave a maximum 1.5kN of load and 

4.7mm of displacement. Both the maximum load and displacement values for the VE 

system specimen were significantly lower than the Ep1 system laminate. Moreover, the 

initiation of the crack propagation of the Ep1 system specimen was significantly later 

than the VE system case.  

 

In the plain weave laminates, the maximum loads for both resin system 

specimens were similar values, approximately 0.98kN (Ep2) and 0.91kN (VE). The 

maximum load values for VE resin systems were slightly higher than the Hyb1 veil 

interleaved samples. The crack propagation behaviour for both resin system specimens, 

however, was different, as shown in Figure B.5 (c). The crack initiation of the Ep2 

system composite was quite later than that of the VE system laminate. While the crack 

started for the Ep2 system around 3.5mm displacement, the crack for the VE system 

specimen initiated at about 2.2mm displacement. In both resin system specimens, the 

crack progressed constantly, and the propagation rate was almost the same.  
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Figure B.5 Typical 4ENF load-displacement curves of PE/C (80:20) hybrid veil 

interleaved specimens with both resin systems: (a) 5-harness satin weave fabric, (b) 

Unidirectional fabric, (c) Plain weave fabric 
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B.1.2.4 Carbon Veil Interleaved Specimens 

 The typical load-displacement curves for the carbon veil interleaved composites 

are shown in Figure B.6. The maximum load and displacement values in the satin weave 

specimen were approximately 1.5kN and 4.4mm, respectively, as shown in Figure B.6 

(a). The maximum load was lower than the non-interleaved case. Once the crack had 

initiated, the crack propagation was constant and fast. The crack initiation was earlier 

than the other interleaved specimens, except for the PA veil interleaved case.  

 

In the UD laminates, the curve shapes for both resin system samples were 

similar, as illustrated in Figure B.6 (b). The maximum load and displacement in the Ep1 

system specimen were around 2.1kN and approximately 5.4mm, respectively. The 

maximum load had slightly higher than for the non-interleaved material. The maximum 

load and displacement for the VE system composite were about 1.6kN and 4.7mm, 

respectively. The crack propagation for both system cases was constant over the 

non-linear point. The non-linear point of the VE system specimen appeared earlier than 

that of the Ep1 system laminate. 

 

In the plain weave laminate, the maximum load value was approximately 

0.9kN. The maximum load was similar in value to the hybrid veil interleaved samples. 

The crack no longer propagated after 4.5mm of displacement because bending fracture 

for 4ENF specimen was initiated. The crack propagation rate of the plain weave 

specimens was relatively slower than the other fabric samples. 
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Figure B.6 Typical 4ENF load-displacement curves of carbon veil interleaved 

specimens with both resin systems: (a) 5-harness satin weave fabric, (b) Unidirectional 

fabric, (c) Plain weave fabric 
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B.1.2.5 Polyester Veil Interleaved Specimens 

 Typical load-displacement curves obtained by 4ENF test for the PE veil 

interleaved specimens are plotted in Figure B.7. The maximum displacement for both 

resin system specimens were similar, values around 6.3mm. On the other hand, the 

maximum load of the Ep1 system case was higher, nearly 2.0kN, than that of the VE 

system sample, approximately 1.3kN. The crack initiation for the Ep1 system laminate 

was slightly later than the VE system laminate. The crack propagation rate for both resin 

systems was similar.  

 

For the UD specimens, although curve shapes in both resin systems were 

different, the crack propagation behaviour was similar, as illustrated in Figure B.7 (b). 

The Ep1 system specimen in the UD fabric gave 2.4kN of maximum load and 6.9mm of 

displacement. For the VE system composite, the maximum load and displacement were 

approximately 1.8kN and 4.9mm, respectively. The results of the VE system composites 

were similar to that of the control. The crack velocity of both resin systems seemed to 

be similar.  

 

In the plain weave Ep2 system specimen, the maximum load and displacement 

values were around 1.2kN and 7.6mm, respectively. The crack propagated gradually up 

to 5.6mm displacement. Afterwards, it progressed rapidly until 7mm. The load dropped 

slightly at around 6.7mm displacement. The maximum load of the VE system laminate, 

on the other hand, was lower than that of the Ep2 system case, approximately 0.83kN. 

The crack propagation in the VE system sample was quite slow and did not grow over 

3.2mm displacement due to the initiation of bending fracture, when the crack could 

propagate no longer. 
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Figure B.7 Typical 4ENF load-displacement curves of PE veil interleaved specimens 

with both resin systems: (a) 5-harness satin weave fabric, (b) Unidirectional fabric, (c) 

Plain weave fabric 
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B.1.2.6 Polyamide Veil Interleaved Specimens 

 Typical load-displacement curves for the PA veil interleaved composites are 

shown in Figure B.8. The load kept increasing gradually over the non-linear point, as 

shown in Figure B.8 (a). The maximum load and displacement were around 1.7kN and 

5.7mm, respectively. The maximum load obtained by the 4ENF test was moderately 

high, unlike the result of the DCB test. For the VE system, a load was constant over the 

maximum load point. The VE system case gave the maximum 1.2kN of load and 5.4mm 

of displacement. The curve shape was similar to that of the PE veil interleaved 

specimen. 

 

In the UD laminate, the curve shapes for both resin systems are similar, as 

shown in Figure B.8 (b). The maximum load and displacement values for the Ep1 

system sample were approximately 2.7kN and 7.6mm, respectively. Those of the VE 

system laminate, on the other hand, were lower than the Ep1 system case, nearly 2.2kN 

and 6.4mm. The crack propagation speed of the Ep1 system specimen was slower than 

that of the VE system material. In the VE system, the crack growth was constant and 

gradual. 

 

In the plain weave composites, the crack propagation speed for both resin 

system specimens was significantly slow. For the Ep2 system specimen, the maximum 

load and displacement were 1.2kN and 6.4mm, respectively. The Ep2 system sample 

initiated bending fracture at around 6.3mm displacement and finally underwent at 

6.4mm, as illustrated in Figure B.8 (c). The VE system laminate gave a maximum load 

of 0.8kN and displacement of 4.5mm. Bending fracture initiated at a displacement over 

3.2mm. Once bending fracture started, the crack could grow no longer and therefore 

data points were significantly less. 
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Figure B.8 Typical 4ENF load-displacement curves of PA veil interleaved specimens 

with both resin systems: (a) 5-harness satin weave fabric, (b) Unidirectional fabric, (c) 

Plain weave fabric 
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 The crack growth in the Mode-II interlaminar fracture test was normally stable 

propagation. The maximum load and displacement for the Ep system laminates were 

higher than the VE system specimens. The VE system samples tended to show the 

non-linear point earlier than the Ep system cases. For the plain weave materials, the 

crack propagation speed was significantly slower compared with the other fabric cases. 

Moreover, some plain weave interleaved samples underwent bending fracture during 

4ENF tests. Tables B.1 to B.3.5 show the summaries of the results for the 4ENF test.  

 

Table B.1 Summary of 4ENF test results for 5-haness satin weave fabric specimens 

(Load and displacement are maximum values) 

 Epoxy1 Vinyl ester 

Interleaf Load [kN] Displacement [mm] Load [kN] Displacement [mm] 

Non 2.0 4.5 0.7 3.3 

Hyb1 1.8 5.8 -# - 

Hyb2 2.2 6.8 - - 

Carbon 1.5 4.4 - - 

PE 2.0 6.3 1.3 6.3 

PA 1.8 6.9 1.2 5.4 

#: Not examined 

 

Table B.2 Summary of 4ENF test results for unidirectional fabric specimens (Load and 

displacement are maximum values) 

 Epoxy1 Vinyl ester 

Interleaf Load [kN] Displacement [mm] Load [kN] Displacement [mm] 

Non 2.0 5.8 1.9 5.4 

Hyb1 2.4 6.2 1.6 5.0 

Hyb2 2.8 7.1 1.5 4.7 

Carbon 2.1 5.5 1.6 4.7 

PE 2.4 6.9 1.8 5.1 

PA 2.7 7.6 2.2 6.4 



 
Appendix B  Results of 4ENF Tests 

 290

Table B.3 Summary of 4ENF test results for plain weave fabric specimens (Load and 

displacement are maximum values) 

 Epoxy2 Vinyl ester 

Interleaf Load [N] Displacement [mm] Load [N] Displacement [mm] 

Non 0.7*/1.4** 6.4*/6.3** 0.7 4.6 

PE/C 0.9 6.8 0.8 4.4 

Hyb1 - - 0.8 6.1 

Hyb2 1.0 6.2 0.9 5.1 

Carbon - - 0.9 4.9 

PE 1.2 7.5 0.8 4.5 

PA 1.2 6.4 0.8 4.5 

*: LAW specimen, **: HAW specimen 
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Appendix C 
 

 

Damage Area Obtained by Impact Tests 

 

 

C.1 Introduction 

 Damage areas for all impacted specimens were measured by C-scan. In this 

section, correlations between the damage area and other mechanical properties are 

indicated and discussed. 

 

C.2 Correlation between Mode-I and Mode-II Interlaminar Toughness, and 

Impact Damage Area 

Diagrams of the correlation between the Mode-I initial and propagation values 

as a function of the damage area are shown in Figures C.1 and C.2, respectively. For the 

Ep2 resin system, the correlation between the GIC-NL and damage area does not appear 

clearly, as shown in Figure C.1. The trend of the correlation is different from the 

relationship between GIC values and damage width (see in Figure 6.7). There is no clear 

correlation between GI-prop values and the damage area. For the VE resin system, the 

relationship between GIC-NL values and the damage area is similar to the correlation 

between GIC-NL values and the damage width (see in Figure 6.7). However, there is no 

correlation between GI-prop values and the damage area, as shown in Figure C.2. It can 

be seen that there is no clear relationship between Mode-I interlaminar toughness and 

the damage area in both resin systems, unlike the relationship between Mode-I 

interlaminar toughness and the damage width. 
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Figure C.1 Relationship between GIC-NL versus damage area (4J of impact energy) for 

both resin systems with error bars (Diamond is Ep2 system and Triangle is VE system) 
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Figure C.2 Relationship between GI-prop versus damage area (4J of impact energy) for 

both resin systems with error bars (Diamond is Ep2 system and Triangle is VE system) 
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 Figures C.3 and C.4 show the comparison of the relationship between the 

Mode-II initial and propagation values, and damage area. In the Ep2 system, the 

correlation between Mode-II interlaminar toughness and damage area is similar to the 

relationship between the Mode-II interlaminar toughness and damage width, as shown 

in Figure 6.9 and C.3. However, data spread in the damage area is larger than the 

damage width. For the VE system, the correlation is also quite similar to the relationship 

between GIIC-NL values and the damage width (see in Figure 6.9 and C.3). For the 

propagation values, the tendency of the correlation is almost the same as the initial 

values. There is no clear relationship between GII-prop values and damage area for both 

resin systems. The correlation between interlaminar toughness and damage area does 

not appear clearly. When the relationship between the interlaminar toughness and 

impact resistance is discussed, the damage width may be more suitable than the damage 

area, It is thought that the damage width would indicate the impact damage more clearly 

compared with the damage area. 
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Figure C.3 Relationship between GIIC-NL versus damage area (4J of impact energy) for 

both resin systems with error bars (Diamond is Ep2 system and Triangle is VE system) 
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Figure C.4 Relationship between GII-prop versus damage area (4J of impact energy) for 

both resin systems with error bars (Diamond is Ep2 system and Triangle is VE system) 
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C.3 Correlation between Impact Damage Area and CAI Strength 

 Figure C.5 plots the impact damage area as a function of normalised CAI 

strength for the Ep2 system specimens. The CAI strengths are normalised by 

compression strength for undamaged composites. While the relationship between 

damage width and CAI strength is linear (see in Figure 6.15), the correlation between 

damage area and CAI strength is a non-linear relationship, as shown in Figure C.5. The 

damage width increases largely at the lowest impact energy. Thereafter the increase in 

the damage width is small with increase in impact energies. On the other hand, the 

increase in the damage area is different from the increase in the width. For the PE/C, 

Hyb2, and PA veil interleaved composites, the increase in the damage area at the lowest 

energy is small. Thereafter, an increase in the damage area grows steadily. In contrast, 

an increase of the damage area for the control and PE veils interleaved samples becomes 

small as the impact energy increases.  
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Figure C.5 Compression after impact strength for non-interleaved and interleaved 

epoxy2 system specimens plotted as a function of damage area 
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 Figure C.6 shows the relationship of the damage area as a function of the 

normalised CAI strength for the VE systems. Compared to the Ep2 system specimens, 

the increase of the damage area shows a different behaviour. On the other hand, the 

relationship between the damage area and CAI strength is similar to the correlation 

between the damage width and CAI strength, except for the PE/C and Hyb2 veils 

interleaved cases (see in Figure 6.16 and C.6). The increase of the damage area tended 

to be small from 0J to 4J and 8J to 12J. However, the damage area increased largely 

from 4J and 8J of impact energy. The increase of damage area for the PA veil 

interleaved materials is quite smaller than the other interleaved samples. Moreover, the 

reduction of CAI strength is relatively small. On the other hand, while CAI strength for 

the PE/C veil interleaved samples reduces large at 4J impact energy, the reduction in 

higher energies is smaller than the other interleaved materials. For the Hyb2 veil 

interleaved samples, although the damage area are smaller than the other interleaved 

cases, the CAI strengths are lower. Compared to the relationship between damage width 

and CAI strength, it is seemed that the correlation between damage area and CAI 

strength is not good.  
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Figure C.6 Compression after impact strength for non-interleaved and interleaved vinyl 

ester system specimens plotted as a function of damage area 
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C.4 Comparison of this research and previous works 

 Figure C.7 compares the influence of the impact damage area on CAI strength 

for this study and previous other researches. The relationship between the damage area 

and CAI strength from previous literatures is similar to this study’s finding. The CAI 

strength at the lowest impact energy dropped rapidly. However, reduction of the CAI 

strength at higher impact energies is small. The damage area of the specimens in this 

work is relatively smaller than the other data in the literature, in particular the Ep2 

system composites. In contrast, the CAI strength is poor compared with previous 

literatures, in particular the VE system laminates. 
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Figure C.7 Diagram compares effect of impact resistance (damage area) on the CAI 

strength for this work and literatures [57, 77, 88, 95, 148, 163] 
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