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Abstract 
 

Risk Management has become an important part of Project Management. In spite 

of numerous advances in the field of Project Risk Management (PRM), handling 

uncertainty in complex projects still remains a challenge. An important 

component of Project Risk Management (PRM) is risk analysis, which attempts to 

measure risk and its impact on different project parameters such as time, cost and 

quality. By highlighting the trade-off between project parameters, the thesis 

concentrates on project time management under uncertainty. 

 

The earliest research incorporating uncertainty/risk in projects started in the late 

1950’s. Since then, several techniques and tools have been introduced, and many 

of them are widely used and applied throughout different industries. However, 

they often fail to capture uncertainty properly and produce inaccurate, inconsistent 

and unreliable results. This is evident from consistent problems of cost and 

schedule overrun. 

 

The thesis will argue that the simulation-based techniques, as the dominant and 

state-of-the-art approach for modelling uncertainty in projects, suffers from 

serious shortcomings. More advanced techniques are required.  

 

Bayesian Networks (BNs), are a powerful technique for decision support under 

uncertainty that have attracted a lot of attention in different fields. However, 

applying BNs in project risk management is novel.  

 

The thesis aims to show that BN modelling can improve project risk assessment. 

A literature review explores the important limitations of the current practice of 

project scheduling under uncertainty. A new model is proposed which applies 

BNs for performing the famous Critical Path Method (CPM) calculation. The 

model subsumes the benefits of CPM while adding BN capability to properly 

capture different aspects of uncertainty in project scheduling. 
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1 Introduction 

1.1 Motivation  

Projects inevitably involve risk and concerns about risk are regular worries of 

project managers. Risk Management has become an important part of Project 

Management. Although a variety of writers have proposed a range of processes 

and techniques, Project Risk Management (PRM) is rapidly evolving and 

handling uncertainty in complex projects remains a challenge. 

 

An important component of PRM is risk analysis. Also known as risk 

quantification, it attempts to measure risks and their impacts on different project 

parameters (i.e. time, cost and quality). Traditionally project scheduling under 

uncertainty has attracted more research and attention in the project management 

community. In some of the early project management literature, ‘risk analysis’ 

was equivalent to ‘the analysis of risk on project plan’ (Williams 1995). This 

thesis concentrates on modelling uncertainty in project time management. 

However, it explicitly highlights the three dimensional trade-off between project 

parameters, namely time, cost and quality. 

 

The earliest studies incorporating uncertainty/risk in project scheduling were in 

the  late 1950’s (Malcolm 1959) and (Miller 1962). Since then, a variety of 

techniques have been introduced, several tools have been developed, and many of 

them are widely used throughout different industries. However, they often fail to 

capture uncertainty properly and (or) produce inaccurate, inconsistent and 

unreliable results.  

 

Project uncertainty has several aspects of which only some can be categorised and 

treated as risks. Several authors, for example (Ward and Chapman 2003) and  

(Atkinson et al. 2006), have recently argued that project risk management should 
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be focusing on managing uncertainty and its various sources rather than 

emphasising a set of possible events that might impair project performance. Most 

of quantitative techniques in the current practice of project risk management are 

based on the ‘Probability Impact’ concept, which suffers from serious 

shortcomings. More sophisticated efforts and techniques are needed to recognise 

and manage important sources of uncertainty. 

 

On the other hand Bayesian Networks (BNs) as a powerful technique for decision 

support under uncertainty have attracted a lot of attention in different fields. A BN 

is a graphical model with a rigorous mathematical engine in the background. It 

offers a powerful, general and flexible approach for modelling risk and 

uncertainty. Its capability of modelling causality and also conditional dependency 

between variables make it perfectly suitable for capturing uncertainty in projects. 

Yet, BNs are rarely applied in project risk management.  

 

This thesis introduces a novel approach for incorporating uncertainty in project 

scheduling. The idea is to use BNs to perform the well-known Critical Path 

Method (CPM) calculation. CPM as a simple yet effective scheduling approach 

provides very useful time related information about projects and their activities. 

But it is purely deterministic. The proposed approach enriches the benefits of 

CPM by incorporating uncertainty and adding the strong analytical power of BNs.  

1.2 Research Hypothesis and Methodology 

The hypothesis of this thesis is that it is possible to use BNs to quantify 

uncertainty in project scheduling and improve project risk assessment. 

 

The research methodology comprises a literature review to investigate the current 

state of project scheduling under uncertainty.  This determines the need, scope and 

objectives of the new approach. A literature review follows to investigate the 

background, theory and applications of BNs. This provides the conceptual and the 

functional framework for the new approach. The modeling process as the 

appropriate representation of uncertainty is studied in detail. Two case studies are 

used to verify the models. The first case study, taken from the literature, verifies 
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the model by comparing its numeric results against the result of a simulation-

based model. The second case study is a real construction project that suffered 

from serious delay. It demonstrates how the model can be applied in a real project 

to capture different aspects of time related risks. 

1.3 Structure of the thesis 

An overview of the subsequent chapters is as follows: 

 

Chapter two briefly reviews the project risk management process and explores the 

currently popular techniques in project scheduling under uncertainty. Chapter 

three identifies important issues that are missing in the current practice of project 

risk assessment and reveals the need for more sophisticated techniques to address 

these issues. A modified version of chapter three is published in (Khodakarami 

2005). Chapter four explains BNs and their theoretical and technical framework. 

Chapter five proposes a new model for incorporating uncertainty in project 

scheduling by applying BNs on the famous Critical Path Method (CPM). An 

earlier version of this chapter is published in (Khodakarami et al. 2007a) (a copy 

of this paper is attached in the appendix). Chapter six discusses the various 

sources of uncertainty in activity duration and proposes a prototype BN model for 

modelling these sources. A modified version of this chapter is published in 

(Khodakarami 2007b). Chapter seven evaluates the models by summarising the 

result of two case studies. Chapter eight concludes the thesis and points the way 

forward for future research. 
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2 Current techniques in project scheduling 
under uncertainty 

This chapter explains some important techniques that are applied to handle 

uncertainty in project scheduling. First a brief overview of the project risk 

management processes and their components is presented. Then ‘Risk analysis’ as 

the focus of this thesis is discussed and current techniques are reviewed.  

2.1 Project Risk Management Process 

‘Risk Management’ has become an important part of ‘Project Management’ and 

has attracted a wide range of research during the last decade (Williams 1995). 

Since 1990 various Risk Management Processes (RMP) have been proposed. 

Probably the most popular Project Risk Management Processes (PRMP) are 

chapter 11 of the PMBOK (Project Management Body of Knowledge) guide (PMI 

2004), the PRAM (Project Risk Analysis and Management) guide (PRAM 2004) 

and the RAMP (Risk Analysis and Management for Projects) guide (RAMP 

2005). Most organisations adopt one of these guides or use them to develop their 

own process. This thesis does not intend to explore the detailed differences 

between different guides since, apart from fundamental differences in assumptions 

and methodologies (Chapman 2006), they all aim to capture risk and uncertainty 

in the following three stages: 

 

• Risk Identification 

• Risk Analysis 

• Risk Response 

 

The ‘Risk identification’ stage attempts to discover the main sources of risk. This 

stage is also known as qualitative risk management. By using various data 

gathering techniques (e.g. interviewing, brainstorming, Delphi technique, 
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checklists etc.) from all parties involved in the projects, the possible risks that 

might affect the project are identified.  

 

The usual output of the risk identification stage is a document called the ‘Risk 

Register’. Many authors have discussed risk registers in their works (Barry 1995). 

(Williams 1994) states two main roles for a risk register: 

 

• A repository of a corpus of knowledge. 

• To initiate the analysis and plans that flow from it. 

 

(Chapman and Ward 2003) consider a risk register as documentation of the 

sources of the risks, their responses and also risk classification. (Ward 1999) 

describes the purpose of a risk register ‘to help the project team review project 

risk on a regular basis throughout the project’. (Patterson and Neailey 2002) 

present a risk register database system to aid managing project risk. Risk registers 

can be a good management tool during the course of a project. However, it is not 

possible to identify all risks and capture all aspects of them. There are always 

unknown (i.e. undiscovered, unattended or immeasurable) risks that often are 

more important than the identified risks in the risk register. This will be addressed 

in section 3.3. 

 

The ‘Risk analysis’ stage attempts to measure the risk and its impacts on different 

project outputs (i.e. cost, time, performance). This stage is also known as 

quantitative risk management. The likelihood that each identified risk will occur 

and also its possible impact on the project is estimated. The combination of the 

risks, probabilities and their impact create ‘probability-impact’ (PI) matrices. This 

matrix can be used to assign ranks to risks and then prioritise them. Most of the 

available quantitative tools and techniques (simulation based tools) implement the 

PI values to quantify uncertainty in projects. However, use of PI matrices has 

some important shortcomings (Chapman 2006), which will be addressed in 

chapter 3.  
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The ‘Risk response’ stage attempts to formulate management responses to the 

risk. Also known as ‘Risk Mitigation’, it uses the results of the analysis stage in 

order to improve the chance of achieving the project objectives.  ‘Risk response’ 

is a decision making process. A number of alternative strategies are available 

hen planning risk responses, which can be described under one of the following 

y 

zero. 

ake 

s and responding either actively by 

allocating appropriate contingency, or passively doing nothing except 

ses. Regardless of which risk management process is adopted for 

managing risk/uncertainty, ‘risk analysis’ is always an important component of 

 

nalysis’ or ‘Risk Measurement’ as one stage of ‘Project Risk Management’. In 

w

strategies (Hillson 1999): 

 

• Avoid - seeking to eliminate uncertainty by reducing either the probabilit

or the impact to 

• Transfer – seeking to transfer ownership and/or liability to a third party 

(i.g. insurance) 

• Mitigate – seeking to reduce the size of the risk exposure in order to m

it more acceptable to the project or organization  

• Accept – recognizing residual risk

monitoring the status of the risk. 

 

There are several other publications with different perceptions of project risk 

management processes. For example (Al-Bahar and Crandall 1990), the (UK 

Ministry of Defence 1991), (del CaÃno and de la Cruz 2002), (Wideman 1992), 

British Standard Institute (BSI 1999), NASA (Rosenberg et al. 1999), the U.S. 

Department of Defence (Defense Systems Management College 2000), and the 

(US Dept. of Transportation 2000) suggest the use of processes with different 

stages or pha

the process.  

2.2 Project Risk Analysis 

The term ‘Risk Analysis’ in this thesis is equivalent to ‘Quantitative Risk

A

some of the literature, ‘Risk Analysis’ is synonymous with ‘Risk Management’.   
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Risk analysis is the most formal aspect of the project risk management process  

(PRAM 2004), often involving sophisticated techniques and usually requiring 

omputer software. Such techniques can be applied with varying levels of effort 

s 

at can be started at almost any stage in the life-cycle of a project. However, it is 

ility study and 

lanning) and iteratively update it at intervals during the implementation phase.  

benefits to the project including: 

th timescales and costs. 

• Build-up of statistical information of historical risks that will assist in 

This thesis in particular focuses on quantifying risk/uncertainty involved in 

main approaches and 

techniques. CPM and PERT are the classic approaches for project scheduling. 

c

depending on the available resources for the analysis and also the required level of 

detail. 

 

Risk analysis is usually initiated by a qualitative analysis and its results support 

the decision making process in the Risk Response stage. It is a continuous proces

th

most beneficial to use it in the earlier stages of project (i.e. feasib

p

 

Risk analysis can provide several 

 

• Help to justify decisions and enable more efficient and effective 

management of the risks. 

• Formulation of more realistic plans, in terms of bo

better modeling of future projects. 

• Assistance in evaluation of claims and disputes.   

 

project duration. The next section, reviews some of the 

techniques in project scheduling under uncertainty.  

2.3 Project Scheduling Under Uncertainty 

Project scheduling under uncertainty is the most widely studied area of risk 

quantification in project management. Producing a reasonable and reliable project 

schedule is one of the crucial tasks of project managers. Moreover, having a 

realistic schedule for the project is one of the most cited factors of project success 

(Fortune and White 2006). Several techniques are proposed for modelling risk and 

uncertainty in project scheduling. This section reviews a number of notable 
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Simulation-based techniques are the state-of-the-art approach that is adopted by 

many project management software tools and are arguably the best practice 

vailable. Alternative approaches including Critical Chain Method and Fuzzy 

 or conditional branching. Projects with decision branches, repetitive 

rocess or with alternative ways of approaching activities are not considered in 

this thesis. 

ng the 

port CPM. According 

 (Pollack-Johnson and Liberatore 2005) nearly 70% of project management 

ing activities’ sequences and dependency between them.  

on in activity’s time).  

path in the network) 

by calculating activities time parameters,  

The basic mathematical notation used for CPM calculation is: 

a

logic are reviewed briefly. 

 

In all techniques it is assumed that the project network is fixed and there is no 

probabilistic

p

 

2.3.1 Critical Path Method 

‘Critical Path Method’ (CPM) is the most famous technique in project scheduling. 

Although CPM does not incorporate uncertainty (being purely deterministic), it is 

listed here because many of more sophisticated techniques (includi

proposed technique in this thesis) are derived from the CPM concept or use CPM 

calculations for producing their baseline project schedule (Moder 1988).    

Developed in 1957 (Kelley 1961), CPM has become the standard technique in 

project management and most project management tools sup

to

professionals use CPM.  CPM includes the following steps: 

 

• Specifying individual activities using a ‘Work Breakdown Structure’ 

(WBS), defin

• Drawing a network diagram that models the activities and their 

dependency. 

• Estimating duration for each activity (this is a single point estimation as 

CPM does not take into account any variati

• Identifying the Critical Path (i.e. the longest-duration 

• Updating the CPM diagram as the project progresses. 
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]

]

ime) is the 

ifference in the latest and earliest finish of each activity (Figure 2-1). 

ath then is 

e path(s) through the network that consists of only critical activities. 

 

:

[      

[       

j

j j

j i i

j j j

j k k

j j j

j j j j j

a Activity j

D Duration of a

ES Max ES D i one of the predecessor activities

EF ES D

LF Min LF D k one of the successor activities

LS LF D

F ES LS LF EF

=

= +

= +

= −

= −

= − = −

 
    
  |  
   
  |  
   

 

 

T

 

Informally, the critical path is determined by performing forward and backward 

passes through the project network. The forward path computes the earliest start 

(ES) and the earliest finish (EF) time for each activity. The backward path 

computes the latest start (LS) and the latest finish (LF) time for each activity. The 

Total Float (TF) for each activity (which is the time that the activity’s duration 

can be increased without increasing the overall project completion t

d

 

A critical activity is one with no float time and should receive special attention 

(delay in a critical activity will delay the whole project). The critical p

th

ES LFEF

D                  TF=LF-EF

D                           Float Float

         DTF=LS-ES

LS

 
Figure 2-1 : CPM parameters in an activity 
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Although CPM makes no attempt to handle or quantify uncertainty, it provides 

very useful information about activities time and the overall project schedule.  

2.3.2 PERT 

re 

sed to calculate the expected time and the standard deviation for the activity j: 

 

The earliest research incorporating uncertainty/risk in project management started 

in 1957 with the introduction of PERT (Program Evaluation and Review 

Technique)  [(Malcolm 1959), (Moder 1988), (Miller 1962)]. A distinguishing 

feature of PERT is its ability to deal with uncertainty in activity duration. For each 

activity instead of having a single estimate, PERT assumes a Beta probability 

distribution. Three estimations (optimistic, most likely, and pessimistic times) a

u

Expected Duration :         ( 4 ) / 6

tandard Deviation :        ( ) / 6
j

j

Optimistic Most Likely Pessimistic

Pessimistic Optimistic

μ

σ

= + × +

= −

      
 

S

 

The expected value of a critical path is calculated using the expected value of each 

activity. The variance of the critical path (i.e. the variance of project completion 

time) can be calculated by summing the variances of the activities in the critical 

path. Given this variance and assuming a normal distribution for the critical path 

the probability that the project will be completed by a certain date can be 

alculated. c

 

In the 1960s PERT was a great success and several associated techniques were 

introduced (Levin and Kirkpatrick 1965) and (Pritsker and Happ 1966) and 

(Adlakha and Kulkarni 1989). However, in the 1970s later studies raised doubts 

about the practicality (Sapolsky 1972) as well as theoretical assumptions of PERT 

(MacCrimmon and Ryavec 1964). The assumption of independence between 

activities and also the assumption that the duration of all activities have a Beta 

distribution are not practical. More importantly PERT assumes only one path as 

the critical path and assumes this path does not change. However, it is quite 

possible that the critical path that was identified based on the most likely or 

expected completion time will not necessarily end up being the critical path. In 
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other words PERT ignores other scenarios in which another path takes longer than 

the identified critical path. This produces unrealistic and overly optimistic 

estimates for the project duration. By the 1980s the standard PERT was 

‘effectively dead as a working concept’ (Webb 1997). 

2.3.3 Simulation 

f runs 

rovide a probability distribution for the possible results (i.e. time or cost). 

the ‘risk 

gister’ and apply simulation to perform ‘probability impact analyses’.  

ost likely to 

ause delay on the project (i.e. critical tasks) and prioritising them. 

Monte Carlo simulation (MCS) was first proposed for project scheduling in the 

early 1960s (Van Slyke 1963). However, it was not until the 1980s when 

sufficient computer power became available that simulation became the dominant 

technique for handling risk and uncertainty in projects (Fishman 1986) and 

(Ragsdale 1989). In its simplest approach, MCS uses the project activity diagram. 

The duration of each activity is estimated by shortest, most likely and longest 

duration and also the shape of the distribution (such as Normal, Beta etc.). Then 

critical path calculation is performed several times, each time using random 

values from the activities’ distribution function. A sufficient number o

p

 

More advanced tools, for example PertMaster (Primavera 2008), use simulation 

not only for handling uncertainty in duration and cost, but also for providing a 

whole risk analysis process. They can link the ‘project schedule’ to 

re

 

MCS can also provide a basic sensitivity analysis by measuring the correlation 

between the duration of a task and the duration of the project. This gives an 

indication of how much the duration of each task affects completion of other tasks 

or the entire project. It can also be used for identifying tasks that are m

c

 

Simulation has been adopted as the state-of-the-art technique by several types of 

project management software tools (Cook 2001). A survey by the Project 

Management Institute (PMI 1999) showed that nearly 20% of project management 

software packages support Monte Carlo simulation. Another survey by (Pollack-
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Johnson and Liberatore 2003) found that 17% of project mangers used 

ule. The most effective way to deal with dependence in a statistic is 

 use a causal structure to explain it. MCS is not capable of modelling causal 

ns to affect the activity duration. 

ncertainty in an activity is usually the result of a chain of causes (sources) and 

ects of uncertainty in activity 

(project) duration various known and unknown sources of risk have to be 

addressed. This will be discussed more in chapter 3. 

probabilistic analysis and/or simulation within project management software.  

 

However, simulation has its own drawbacks. One serious methodological flaw in 

traditional MCS of project networks is the assumption of statistical independence 

for individual activities which share risk factors in common with other activities 

(van Dorp and Duffey 1999). Most available simulation packages assume that the 

marginal distributions of uncertainty for individual activities in the project 

completely define the multivariate distribution for project schedule. It is 

intuitively obvious that this assumption is highly suspect for many projects which 

involve multiple activities of a similar type and/or have different activity types, 

which are influenced by common risk factors. An example would be risk of bad 

weather for all activities scheduled under the open sky in the same time period. 

(van Dorp and Duffey 1999) demonstrated that failure to model such types of risk 

dependence during MCS can result in the underestimation of total uncertainty in 

project sched

to

structures.   

 

Another weakness of MCS explained in (Williams 2004), is the inability of 

simulation to capture the actions taken by the managers to recover any slippage in 

activity/project duration. MCS simply runs through a network assigning values to 

random variables on each iteration. It ignores the fact that in reality if an activity 

was running late, management would take actio

U

can be affected by a chain of actions (controls).  

 

Furthermore, MCS is only as good as the information that is fed into it. If the 

duration distributions of the project activities are incorrect or inadequate, the 

simulation results are erroneous and invalid. In reality duration of most activities 

are estimated subjectively. In order to capture all asp
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2.3.4 Critical Chain Method  

In the late 1990’s Critical Chain project management (CCPM) was developed as 

an alternative to the classical methods for project planning and control (i.e. CPM). 

CCPM is an extension of Goldratt’s Theory of Constraints (TOC) (Goldratt 1997). 

TOC is a tool for managing repetitive production systems based on the principle 

that every system has a constraint, and its performance can be improved by 

improving the performance of the constrained resource.  

 

According to CCPM the duration of most activities are overestimated in order to 

be almost certain (for example 90%) of completing the task on time. As a result 

the safety margin allocated to the majority of tasks are more than what is really 

required. Because the safety margin is internal to the activity, if it is not needed, it 

is wasted. In order to minimise the effect of Parkinson’s Law (i.e. activities 

expand to fill the allocated time), CCPM uses a 50% confidence interval for 

estimating duration of each activity. For example, if a typical activity was 

originally estimated to takes 10 days with 90% confidence interval (i.e. we expect 

to complete the activity in 10 days about 90 out of 100 attempts), the 50% 

likelihood estimation would be half that, or 5 days. The safety time associated 

with each activity (i.e. the difference between 50% likelihood estimation and the 

original estimation) is made explicit and shifted to the end of the critical chain 

(longest chain) to form the project buffer. The project buffer is considered as part 

of the project and is used to protect against uncertainty in contingency conditions. 

 

CCPM generated some controversy in the project management community. 

CCPM proponents claim it is a revolutionary way of thinking and the most 

important breakthrough in project management history (Steyn 2001). Others 

dismissed this and argue that CCPM’s uniqueness is in the terminology rather 

than in its substance (Raz et al. 2003). CCPM suffers from following weaknesses: 

 

• It focuses mainly on the uncertainty inherent in the schedule. Instead of 

addressing the root cause of duration uncertainty, CCPM accepts it and 

attempts to overcome it by means of buffer management.   
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• It is presented as a revolutionary concept that replaces, rather than 

complements current project management practice. Therefore it is not 

properly integrated with the accepted body of knowledge and state of the 

practice (Raz et al. 2003). 

• The assumption that all task durations are overestimated by a certain factor 

is questionable and over-simplistic (Pinto 1999).  

• Sound estimation of project and activity duration (and consequently the 

buffer size) is still essential (Trietsch 2005). 

2.3.5 Other techniques 

Project risk management in general (and quantifying risk in projects in particular) 

is an interdisciplinary field with input from various research communities with 

different perspectives including Management Science, Operations Research, 

Manufacturing/Construction Engineering and Risk Analysis. The Project 

scheduling literature is visible among the publications of these communities. 

However, the proposed models seem to work on some small or specially 

constructed networks and it is not apparent if any of them are used in practice. 

Therefore, they are not considered here. (Herroelen and Leus 2005) provides an 

extensive review of fundamental techniques for project scheduling. 

 

An alternative approach that has interested several researchers in the past two 

decades [(Liberatore 2002), (Kuchta 2001)] is Fuzzy project-scheduling. The 

fuzzy set scheduling literature recommends the use of imprecision rather than 

uncertainty, fuzzy numbers rather than stochastic variables and membership 

functions rather than probability distributions. The output of a fuzzy scheduling 

will normally be a fuzzy schedule, which indicates fuzzy starting and ending times 

for the activities. This may be as difficult to generate as probability distributions 

of activity duration and also there is no generally accepted computational 

approach available. Therefore the fuzzy project-scheduling approaches have been 

kept in the academic sphere. A summary of most of the published research works 

in fuzzy project scheduling can be found in (Bonnal et al. 2004). 
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2.4 Current state of practice in project risk analysis 

Quantifying uncertainty in project duration is an important part of project risk 

analysis and project risk management. In the last 50 years a number of techniques 

were proposed to model project scheduling. The classic approaches (i.e. CPM and 

PERT) are not practical any more. The Critical Chain approach is too 

controversial and is not widely accepted/applied by practitioners. Other 

techniques (e.g. fuzzy based approaches and analytical approaches) are only 

applied on small projects and are not generally practical in real projects. MCS 

remains the best practice in modelling uncertainty in project scheduling. In a 

survey (Raz and Michael 2001) revealed that there is a relation between use of 

risk analysis tools and better project management performance. They also found 

that simulation and probability impact assessment are the most commonly used 

techniques.  

 

Simulation software products, often known as ‘risk analysis packages’, represent 

the core of the project risk quantification process. Several of these packages take a 

project plan that has been created by one of the popular project management 

software packages (for example Microsoft Project, Primavera Project Planner or 

Open Plan) and import the durations and the network. They provide advanced 

MCS to quantify the cost and schedule uncertainty associated with project plans. 

The choice of available software packages is wide although some products that 

emerged during the 1990’s  have not survived into the new millennium (Webb 

2003). ‘Pertmaster Project Risk’ by (Primavera 2008), ‘@Risk for projects’ by 

(Palisade 2008),‘Risk+’ by (Deltek 2008) are among the most popular software 

packages. It must also be said that many of these products were created in the 

early 1990s and their general operational characteristics have not altered to any 

great degree since then. When changes have arisen they have tended to integrate 

with other systems rather than adding any significant capability or methodology 

(Webb 2003).  

 

More importantly the following questions arise:  

 

• How well can these techniques model uncertainty/risk in projects?  
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• Do they provide enough information and support for project managers in 

the decision-making process?  

• Are they capable of capturing different aspects of uncertainty?  

 

This chapter summarized the current techniques in project scheduling under 

uncertainty. The next chapter answers the above questions by discussing some 

important issues that are missed in the current practice and need to be addressed 

explicitly. 
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3 The need for a new approach 

Despite the extensive research and availability of several techniques and tools in 

project risk analysis, the dilemma of quantifying uncertainty in projects is still 

challenging. As (Chapman 2006) argues, there are serious limitations in ‘current 

practice’ in project risk management. This chapter explores some key outstanding 

issues that need to be addressed in modelling uncertainty in projects. 

3.1 Causality in project uncertainty 

The current project risk management processes induce a restricted focus on 

managing project uncertainty. As (Ward and Chapman 2003) argue, this is 

because the term ‘risk’ has become associated with ‘events’ rather than more 

general sources of significant uncertainty. The definition of ‘risk’ appears to be 

the most fundamental point of contention in the project risk management 

community (Chapman 2006). The discussion about terminology and various 

definitions of risk is not in the scope of this thesis. However, from a modeling 

point of view it is important to have a broader perspective concerned with the 

concept of risk/uncertainty. 

 

Managing uncertainty in projects is not just about managing perceived events (i.e. 

threats or opportunities) and their implications. It is about identifying and 

managing different sources of uncertainty which shape the perception of possible 

threats/ opportunities. For example, uncertainty in duration of a particular activity 

may arise from a lack of knowledge of what is involved rather than from the 

uncertain consequences of potential threats or opportunities. 

 

The current widespread use of probability and impact assessment as the core 

concept in quantifying risk in projects is not appropriate because: 
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• Risk probability assessment investigates the likelihood that each specific 

risk will occur (PMI 2004). But occurrence of each risk is conditional on 

some triggers (sources) and allocating unconditional probability numbers 

to risk events is not sensible (Fenton and Neil 2005a). For example, if the 

risk is defined as ‘key staff leaves the project team’ the possible source 

might be ‘job satisfaction’ or ‘staff motivation’. 

• The impact assessment investigates the potential effect on a project 

objective such as time or cost (PMI 2004). But this assessment is not 

complete without considering the possible mitigating responses. For 

example, the impact of ‘key staff leaves the project team’ is influenced by 

the possible responses such as ‘recruiting new staff’ or ‘reallocating the 

jobs’. 

 

As (Ward and Chapman 2003) explain, the use of ‘probability impact’ for 

quantifying risks generates unnecessary uncertainty by over-simplifying estimates 

of impact and associated probability. They argue that the use of ‘probability 

impact’ should be completely killed off (Chapman and Ward 2002).  

 

As (Atkinson et al. 2006) discuss, the deliberations about uncertainty in projects 

should focus on appreciating the variety of sources of uncertainty requiring 

management attention. This is well beyond a set of possible events that might 

impair project performance. This has implications for the development of 

quantitative approaches to project risk analysis. These approaches need to 

recognise the full range of sources of significant uncertainty. They also need to be 

able to model the causal relationship (dependency) between the related variables 

and the possible control/response mechanism that affecting their influence on the 

project. 

 

A causal framework for risk can provide an unambiguous and useful description 

of risk for the purpose of modeling and analysis. For example, a risk may be 

characterized by a causal chain involving the risk itself (i.e. event or condition) 

and at least one consequence which characterises the impact (e.g. delay). 

Additionally there may be one or more trigger (source), one or more control, and  
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Figure 3-1 : Causal framework of risk 

 

one or more mitigating (response) as shown in Figure 3-1 (Fenton and Neil 

2005b). 

 

A number of authors, for example (Ackermann et al. 2007), (Eden 2004), 

(Maytorena-Sanchez et al. 2004) and (Rodrigues and Bowers 1996),  suggest 

applying ‘System Dynamics’ and ‘Cognitive Mapping’ technique for modelling 

such causality in complex projects. Cognitive mapping, also known as ‘cause 

mapping’, is a visual representation of subjective data which can demonstrate the 

causal chain between elements of a project. Figure 3-2 shows an example of a 

cognitive map that demonstrates the causal relation between, for example, ‘use of 

state of the art technology’ and ‘potential for schedule delay’ in a complex project 

(Ackermann et al. 2007). It is a useful technique for identifying risks and 

understanding the complex relationship between them. However, it is purely 

qualitative and cannot quantify the project uncertainty. A better alternative, which 

is capable of quantitative modelling, will be introduced and discussed in detail in 

chapter 4. 
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Figure 3-2 : An example of a cognitive map (Ackermann et al. 2007) 

3.2 Estimation and Subjectivity 

One of the most important as well as challenging aspects of project management 

(and project risk management) is the estimation of project parameters (i.e. time 

and cost). The reliability of output of any model depends on the quality of 

estimations (garbage in garbage out). Usually estimation is made by probabilistic 

assessment of future conditions. Understanding the nature of probability helps to 

understand the nature of estimation.  

 

There are two types of probability:  

 

• Frequentist   

• Subjective 

 

Frequentist probability (also known as aleatoric - alea means dice in Latin) arises 

from a complete random/uncertain situation (Shafer 1976). Frequentist 

uncertainty can be estimated by use of historic data. Subjective probability (also 
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known as epistemic) on the other hand, is related to a measure in belief in a 

proposition, or more generally to a lack of complete knowledge (Oakes 1986). 

 

Any estimation is conditionally dependent on some assumptions and conditions 

even if they are not mentioned explicitly. These assumptions and conditions are 

major sources of uncertainty and need to be addressed and handled explicitly.  

For example, the duration of an activity is uncertain because we are not sure how 

much effort (resource) is required to complete the activity. Just because we are 

uncertain about a quantity does not mean that it is random (may take any value in 

the range by chance).  

 

Frequentist uncertainty can be modeled by classical frequentist methods, for 

example MCS. The greater challenge is to model subjective uncertainties. Purely 

subjective probabilities (guestimates) are unreliable and inconsistent and suffer 

from inaccuracy, which may lead to faulty or biased estimations. More 

sophisticated methods that support coherent use of subjective probabilities is 

needed. The Bayesian approach to probability provides a formal framework for 

such methods. Details of Bayesian probability will be discussed in chapter 4. 

3.3 Unknown Risks 

One important category of uncertainty in projects is ‘Unknown Risks’. These are 

important sources of uncertainty because their impact on a project may outweigh 

all other sources of risks.  

 

Although unknown risks are thoroughly acknowledged (perhaps with different 

names) by several authors, none of the existing approaches for project scheduling 

is able to model and quantify this type of risk. The conventional ‘probability 

impact’ approach at best is only capable of modelling ‘known risk’. Most of the 

current quantitative techniques for risk analysis are event-oriented and more 

concerned about ‘risk of something happening’. They assume that a list of events 

(conditions) that may take place is known, the impact of each risk on activity 

duration is also known and even the nature of the response to each risk is roughly 

known.  
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Unknown risks are undiscovered (unpredictable), unattended (too much effort is 

required to clarify them) or immeasurable (their impact is unknown or hard to 

quantify). An example of unknown risks are ‘Internally Generated Risks’ (IGRs) 

as described in (Barber 2005). IGRs have their origin within the project 

organisation, arising from rules, policies, structures, actions, decisions, behaviours 

or culture. They are: 

 

• Common, because organisational issues (e.g. policies, processes, culture 

etc.) are widespread in most projects.  

• Important, because they often influence more that one activity. 

• Poorly managed in projects, because they are hardly documented in risk 

registers and also they are often intangible and hard to quantify. 

  

Current risk analysis approaches are unable to deal with unknown risks. However, 

unknown risks are not developed totally 'out of the blue' and should be considered 

in quantitative techniques. (Chapman and Ward 2003) and (Chapman et al. 2006) 

suggest using a single adjusting factor called ‘cube factor’. Also known as 

‘KUUUB factor’, it reflects three subjective scaling factors for: 

 

• Known Unknowns are explicit assumptions that matter. These are 

identified sources of uncertainty that could have uncertain consequences 

(see risk register as discussed in section 2.1).  

• Unknown unknowns are implicit assumptions that might have uncertain 

consequences. 

• Biases are systematic estimation errors. ‘Availability’, ‘anchoring’ and 

‘selective’ are examples of estimating bias. ‘Availability’ means 

estimators assess the probability of an event simply by the cases that can 

be brought to mind. ‘Anchoring’ refers to human tendency to stay close to 

the initial estimate. ‘Selective’ refers to cases when “you see what you 

want to see”, for example when there is an intention to plan the activity 

time in a deadline or the activity cost in a budget. 
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Using the adjustment factor approach appears to be a practical method for 

modeling unknown risks. However, it also involves a great degree of subjectivity.  

3.4 The Trade-off between time, cost and performance 

By its definition a project has to be completed in a limited time, with a tolerable 

cost and within some expected level of performance. Hence, time, cost and 

performance are the main targets of a project and meeting one or some of these 

targets is the main success criteria (objectives) in most projects.  

 

The concept of success factors in projects has been widely studied (Fortune and 

White 2006). However, defining the ‘true’ success factor of a project is not easy 

and it may even change in different phases of a project.  

 

Most projects usually have a pre-defined time (i.e. deadline), cost (i.e. budget) and 

quality (i.e. requirement and specifications) which are discussed and agreed in the 

project contract. However, in operation these objectives are variables and also 

inter-relate with each other. Working towards achieving one is usually detrimental 

to the other two: "Good! Fast! Cheap! Pick any two" (Kohrs and Welngarten 

1986). In fact, balancing these threefold objectives, also known as trade-off 

analysis, is one of the essential decisions that project managers make. 

 

For example, the minimum possible time to finish an activity can be achieved at a 

maximum level of effort (assuming the quality is not sacrificed). By extending 

activity duration, the effort required is usually reduced. The upper time limit for 

an activity is the point which beyond that further reductions in effort (i.e. cost or 

resources) is small. Within this time range, the project manager can balance time, 

effort, and quality to achieve the overall objective of the project. 

 

Depending on the actual constraints (objectives) of the project, this trade-off 

analysis enables us to minimize the activity (project) duration under budget 

constraints or minimize the budget that is required to accomplish the project on 

the scheduled deadline. 
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The importance of the trade-off problem has long been recognised. A simplified 

version (i.e. assuming duration and cost are deterministic) of the trade-off 

problem known as ‘Resource Constrained Problem’ (RCP), has attracted a wide 

range of research in the operations research literature. Several heuristics and 

approximation methods are proposed (Brucker et al. 1999). They suggest using 

different continuous functions for approximating the time-cost trade-off. The 

problem has been solved for relatively small instances when the time-cost relation 

is approximated by a single scope linear function. But it still remains a challenge 

for more complex (realistic) functions even with the assumption that duration and 

cost are deterministic. The formulation of a stochastic time–cost trade-off is even 

more complex if possible at all (Herroelen and Leus 2005). 

  

In practice, current project scheduling tools require the manual translation of 

design information (i.e. time and cost) to activities and typically do not provide 

dynamic links between time estimates and corresponding costs. This can be 

addressed by defining the conditional dependencies and causal relations between 

different project objectives. 

3.5 Dynamic Learning 

Despite the fact that projects are different and usually one-off experiences, the 

need to learn from one project to the next is clearly of particular importance to 

managing uncertainty in projects. “As managers, executives, and researchers in 

project management, we have yet to learn how to learn” (Cooper et al. 2002).  

 

Complex projects usually have a dynamic behavior. This is due to the influence of 

various known and unknown factors and the management actions taken in 

response. One of the great challenges is to explore this dynamic behavior, identify 

the causes of these behaviors, quantify (at least roughly) the scale of them and 

extract decision-making lessons. This includes both obvious and intuitive lessons 

and also lessons about complex non-intuitive behaviors of projects. Modelling 

(and where appropriate quantitative modelling) plays an essential role in deriving 

these lessons. Causal models can explain project behaviour and enable lessons to 

be identified and learned (Williams 2003b).  
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Learning is also useful for capturing the effect of ‘Unknown Unknowns’. As 

addressed in section 3.3 the unknown risks are difficult to quantify. The 

adjustment factor approach can roughly capture their effect but the estimation of 

this factor is highly subjective. This estimation can be improved by learning from 

new information (i.e. evidence) as the project progresses. 

 

At the start of a project there is little evidence about the distribution of unknown 

factors (unless it is learnt from previous projects). They can be estimated 

subjectively by a non-informative distribution (e.g. uniform distribution) or by a 

distribution with a large variance. As the project progresses new information (e.g. 

actual progress of activities) becomes available. The difference between the actual 

and estimated duration of an activity can update the belief (i.e. distribution) about 

unknown factors. Assuming that unknown factors are common throughout the 

project (for example organisational issues), this learnt distribution of unknown 

factors now can be used for upcoming activities (phases) of the project as well as 

future projects with similar conditions. This will improve the duration estimations 

and in consequence the quality of decision made. Examples of such a learning 

mechanism will be discussed in chapter 6. 

3.6 A new approach is needed 

Project risk analysis techniques have not been fully matured and there are a 

number of areas requiring further development. This chapter discussed a number 

of issues that need to be addressed in order to enhance the effectiveness of project 

risk analysis in general and project scheduling in particular. The current level of 

risk analysis is often shallow, largely driven by the capabilities of the available 

tools and techniques.  

 

Current practice of project scheduling is firmly based on the probability-impact 

concept which limits its ability to model the actual risk (uncertainty) involved in 

projects. It suffers from the following limitations: 
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• It treats risk as external events with known probability, therefore fails to 

address the causal relation between various sources of uncertainty. 

• It assumes the impact is known and definable, therefore fails to address the 

management actions. 

• It is based on the assumption of randomness (i.e. frequentist probability) 

whereas most project uncertainty is subjective (lack of knowledge). 

 

The aim of this thesis is to develop a new approach for analysing project 

uncertainty that explicitly addresses the key issues underlying this chapter. The 

model offers a new methodology for quantifying uncertainty in project scheduling 

and adds significant capabilities to the project risk analysis.  

 

Nevertheless it must be said that uncertainty and ignorance are inevitable on 

projects. Therefore the result of the model (in fact any risk analysis model) should 

not be regarded as a conclusion (i.e. assuming its results are exact). No model can 

remove or even lessen the uncertainty; therefore the analysis should be seen as 

giving a deeper insight, not as a method of increasing certainty. It should quantify 

various sources of uncertainty and explore their effects on project parameters in 

order to support decision-making and prompt possible responses to risk. In other 

words, we analyse risk to understand it and make informed decisions. As (Redmill 

2002) asserts:  

 

“It is often claimed that the greatest value of risk analysis lies not in the 

values derived but in the fact that the process forces us to think deeply 

about, and therefore better understand, the risks”.  

 

Analysing risk/uncertainty in projects is not just about applying some probability 

distribution to project parameters and getting probabilistic results. It should 

capture different aspects of ‘incomplete knowledge’ (Pender 2001), quantify and 

integrate them and provide better understanding of project risk. This means 

providing "decision support" and "what-if analysis" capabilities to decision 

makers. This can be achieved by addressing trade-off analysis, unknown risk and 

dynamic learning explicitly. More sophisticated techniques are required. 
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4 Bayesian inference and Bayesian 
Networks 

The primary vehicle that I have adapted for handling uncertainty in project 

scheduling is Bayesian Networks (BNs). This chapter reviews BNs and all the 

associated theoretical and technical issues related to their development, use and 

validation. It first outlines a brief overview of the Bayesian approach including its 

background, Bayes’ theorem and Bayesian inference. Then BNs and their features 

are discussed. 

4.1 The Bayesian approach to probability and statistics 

In order to understand BNs, it is important to understand the Bayesian approach to 

uncertainty. This section provides an introduction to the Bayesian approach. 

4.1.1 Background 

The term ‘Bayesian’ came into common usage in the 1950s, although the origin of 

the Bayesian approach goes back to 1763, when Thomas Bayes published his 

famous paper (Bayes 1763). This contained the first detailed description of a 

theorem derived from elementary probability theory, which is now associated 

with his name. During the 19th century, when mathematicians and philosophers 

continued to debate the meaning of probability, the idea of ‘inverse probability’ 

(i.e. inferring backwards from the data to parameters) was dominant in practical 

application of statistics (Fienberg 2006). 

 

During the first decades of the twentieth century an alternative approach, later 

named as ‘frequentist’ because of its frequency interpretation of probability, was 

developed. This was based on Fisher’s approach to inference (Fisher 1922), where 

‘likelihood’ was claimed as a distinct form of probability (probability predicts 

unknown outcomes based on known parameters whereas likelihood estimates 

unknown parameters based on known outcomes). Later the method of hypothesis 
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testing and confidence intervals revolutionized both the theory and practice of 

statistics. The frequentist method, which some refer to as ‘classical statistics’, 

quickly spread to diverse areas of applications and supplanted the inverse 

probability in the first half of the twentieth century (Efron 2005).  

 

In the 1950s, there was a renewed interest in foundations and statistical decision 

theory that led to developments surrounding the role of ‘subjective probability’ 

and new statistical tools for scientific inference and decision-making. This was the 

Neo-Bayesian revival that fused the renewed emphasis on the likelihood principle 

with Bayes’ theorem and subjective probability as the mechanisms for achieving 

inferential coherence (Fienberg 2006). 

 

In the following decades the applications of Bayesian statistics grew in the 

number of published papers and users. The modern era of the Bayesian approach 

began in the late 1980s when the introduction of Monte Carlo Markov Chain 

(MCMC) methods made Bayesian computations possible for realistic-sized 

problems. Since then Bayesian methods have spread rapidly into a large variety of 

application areas. 

4.1.2 Bayesian vs. frequentist  

Generally, the field of statistics is concerned about inferring the probability of an 

uncertain event. The difference between classical and Bayesian approach is 

summarised in Table 4-1.   

 

 Frequentist Bayesian 
Variable Random Uncertain 

Probability 
Physical property 

(objective) 

Degree of Belief 

(Subjective) 

Inference Confidence interval Bayes’ theorem 
Table 4-1 : Frequentist vs. Bayesian approach 

 

In the classical approach (i.e. frequentist) parameters (i.e. variables) are random, 

probability is a physical property (also known as relative frequency or objective) 

and confidence interval techniques are used to infer something about relative 
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frequencies. In contrast, in the Bayesian approach variables are uncertain, 

probability is a property of the person who assigns the probability (i.e. subjective 

probability) and Bayes’ Theorem is used to infer unknown probabilities of events 

from known probabilities of other events. 

 

Both approaches have their own advantages and disadvantages, which have led to 

an endless debate (Efron 2005) that is beyond the scope of this thesis.  

 

The frequentist approach for measuring uncertainty requires accurate information 

about many past instances of the event (i.e. repeated trials). The subjective 

approach is based on some prior body of knowledge and measuring uncertainty is 

conditional on this prior knowledge. 

  

In reality most uncertain events of interest do not have a lot of historical data 

associated with them and even where relevant historical data does exist it must 

still usually be informed by subjective judgements before it can be used for 

measuring uncertainty. So we cannot rely on the frequentist approach to measure 

them. The Bayesian approach is the only feasible method for tackling many 

practical problems. For example, for the ‘probability that England win the next 

world cup’, the frequentist approach has no answer but the Bayesian approach can 

assign a value.  

 

The Bayesian approach can also provide a rational way of revising our beliefs in 

the light of new information (i.e. evidence). 

4.1.3 Bayes’ Theorem 

Obtained from the elementary axioms of probability, Bayes’ theorem expresses 

the relationship between conditionally dependent variables. Bayes’ theorem uses a 

numerical estimate of the degree of belief in a hypothesis before some evidence 

has been observed and calculates a numerical estimate of the degree of belief in 

the hypothesis after the evidence has been observed. 
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Formally, Bayes’ theorem is stated as: 

 

( / ) ( )( / )
( )

P E H P HP H E
P E

⋅
=           where ( ) 0P E ≠  

Equation 4-1 

Here: 

• H represents a hypothesis and E represents some evidence.  

• P(H) is called the ‘prior probability’. This is our prior belief about the 

hypothesis before we have observed the evidence. In other words P(H) is 

the uncertainty distribution that represents the state of our knowledge 

about the hypothesis without observing any evidence. In the absence of 

empirical data subjective probability can be used for assessing P(H). 

• P(E/H) is called the ’likelihood function’ . It indicates the probability of 

observing evidence given the hypothesis. 

• P(H/E) is called the ’posterior probability’. This is the description of our 

state of knowledge about the hypothesis after observing the evidence. 

• P(E) is called the ‘marginal probability’ of E. This is the probability of 

witnessing the new evidence E under all possible hypotheses. It can be 

calculated as: 

      

 ( ) ( / ) ( ) ( / ) ( )    (       )P E P E H P H P E H P H H is the copmplement of H= + ¬ ¬ ¬

Equation 4-2 

  

 

In general, given  mutually exclusive and exhaustive hypotheses  

such that  for all 1

n

0

1 2, ,..., nH H H

( )iP H ≠ i n≤ ≤  the full version of Bayes theorem is: 

 

1

( / ) ( )( / )
( / ) ( )

i i
i n

j j
j

P E H P HP H E
P E H P H

=

⋅
=

⋅∑
 

Equation 4-3 

 

In continuous form, Bayes’ theorem is expressed as:  
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( ) ( / )

l Xf X
l X d

π θ θθ
π θ θ θ

⋅
=

⋅∫
 

Equation 4-4 

4.1.4 Bayesian Inference 

Bayesian inference is based on a conceptually simple collection of ideas. We are 

uncertain about the quantity of a parameter. We can quantify our uncertainties as 

subjective probabilities for the parameter (prior probability), and also conditional 

probabilities for observations we might make given the true value of the 

parameter (likelihood function). When data arrives, Bayes’ theorem tells us how 

to move from our prior probabilities to the new conditional probabilities for the 

parameter (posterior distribution) (Goldstein 2006). The following example 

illustrates how Bayesian inference is performed.  

 

Example 4-1:  

 

A project manager is analysing the cause of delay in a particular task in a project. 

A part of the task is done by a sub-contractor. The project manager believes, 

based on the good reputation of the sub-contractor, that there is 95 percent chance 

of delivering the sub-contract on time. There is an 80 percent chance of a delay in 

the task if the sub-contractor fails to deliver on time. Even if the sub-contractor 

delivers on time, there is still a 10 percent chance that the task overruns its 

schedule (as a result of other internal reasons). If the task is actually late, what is 

the probability that the sub-contractor had failed to deliver on time? 

 

Before knowing about this particular task, subjective estimation (e.g. sub-

contractor’s reputation) reflects the prior probability of having the sub-contract 

delivered on time (SC): 

 

( ) 0.95 and hence,
( ) 0.05

P SC
P SC

=
¬ =
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The likelihood function is the conditional probability of delay in the task given the 

actual state of sub-contract delivery: 

 

( / ) 0.1 and hence,
( / ) 0.9
( / ) 0.8 and hence,
( / ) 0.2

P Delay SC
P Delay SC
P Delay SC
P Delay SC

=
¬ =

¬ =
¬ ¬ =

 

 

Using Bayes’ rule (Equation 4-1) to update the probability, the posterior 

probability (i.e. the chance of sub-contract being delivered on time given the task 

is late) is: 

P(Delay/SC) P(SC)P(SC/Delay)=
P(Delay/SC) P(SC)+P(Delay/ SC) P( SC)

0.1 0.95                    = 0.70
0.1 0.95 0.8 0.05

⋅
⋅ ¬ ⋅

×
≈

× + ×

¬  

 

So the prior probability of 95% is revised to 70% as a result of the evidence of a 

delay in the task. 

 

Bayesian inference when there are only two variables involved is fairly simple (as 

shown in the above example). However, it becomes much more complex when 

several variables with several states are involved and a complex set of conditional 

dependencies exists between them. BNs are introduced to overcome this problem.  

4.2 Bayesian Networks 

Bayes’ theorem has been used to perform probabilistic inference in the situation 

where one feature of an entity has a direct influence on another feature of that 

entity (e.g. delay in sub-contract influences the delay in task in example 4-1). 

Now consider the situation in which several features are related through inference 

chains and we are interested in probabilistic inference involving features that are 

not related via a direct influence. In these situations the conditional probabilities 

cannot be computed using a simple application of Bayes’ theorem. BNs have been 

developed to address this situation. BNs (also known as Belief Networks, Bayes 

Nets, Causal Probabilistic Networks, Causal Nets, Graphical Probability 
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Networks, Probabilistic Cause-Effect Models, and Probabilistic Influence 

Diagrams) enable us to perform probabilistic inference among several features in 

an acceptable amount of time. 

 

In addition, the graphical nature of BNs gives us a much better intuitive grasp of 

the relationships among the features (Neapolitan 2004). This section defines a BN 

and shows how it can be constructed. 

4.2.1 BN definition 

A BN consists of a set of nodes (representing variables) and a set of directed 

edges (representing causal influences between variables) between variables 

(Jensen 1996). Each variable has a finite set of mutually exclusive states. The 

variables together with the edges form a directed acyclic graph (DAG) (a directed 

graph is acyclic if there is no directed path  such that ). To 

each variable ‘A’ with parents 

1 nA →⋅⋅⋅→ A 1 nA A=

1,..., nB B

)

 , a conditional probability table 

 is assigned. If the variable has no parents then the table reduces to 

the unconditional probabilities  (i.e. prior probability).  

1( / ,..., )nP A B B

(P A

 

One important property of BNs is their ability to represent the joint probability 

distribution  for all the variables  in a compact form. This is 

done by use of the ‘chain rule’, which says in a BN the full joint probability 

distribution is the product of all conditional probabilities specified in the BN 

(Jensen 1996): 

1( ,..., )nP A A 1,..., nA A

 

1 1( ,..., ) ( / ,..., )n i
i

P A A P A A A= n∏             

Equation 4-5 

 

The more compact representation of the joint probability makes the probability 

calculation easier. If we have access to the joint probability distribution, then we 

can calculate the marginal probability for any variable,  (see section ( )iP A 4.1.3 
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and Equation 4-2), and also the conditional probability of  (see 

section 

( / )j i iP A A a=

4.1.3 and Equation 4-3). 

 

BNs address the problems of storing and representing the joint probability 

distribution of a large number of random variables and also doing Bayesian 

inference with these variables. 

 

Example 4-2:  

Suppose in addition to the sub-contract delay in example 4-1, the project manager 

has noticed that the ‘staff quality’ also has a direct influence on the task’s duration 

and therefore on its delay. Now there are two independent variables that influence 

another variable. Figure 4-1 shows the BN for this example.  

 

‘Sub-contract’ and ‘Staff Quality’ are parents of ‘Delay in Task’. The links 

represent the causal or influential relation between the variables. Each node has a 

set of possible states (e.g. ‘on time’ and ‘late’ for sub-contract node). Attached to 

each node, there is a ‘Node Probability Table’ (NPT). The NPT can be a prior 

probability (e.g. ‘Staff Quality’ in Figure 4-1) or a conditional probability given 

the states of its parents (e.g. ‘Delay in Task’ in Figure 4-1) . The NPT values can 

be assessed by prior knowledge (subjective estimation or expert judgment), 

empirical data, or a combination of both. 

 

 
On time 0.95 

Late 0.05 

 

 

 
Sub-contract On time Late 

 
Good 0.7 

Poor 0.3 
 

Staff Quality Good Poor Good Poor 

False 0.95 0.7 0.7 0.01 

True 0.05 0.3 0.3 0.99 
 

Figure 4-1: BN and NPT for each node for example 4-2 
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We want to know the probability of a variable given observations on other 

variables.  For example the probability that the task finishes on time without any 

evidence is (     ) 0.855P Delay in Task is true = . 

 

This is called the marginal distribution. To see how this can be calculated by 

Equation 4-2 let us define the following notation:  

 

1 2

1 2

1 2

:              ( :    ' ',  :   ' ')
:  -         ( :    ' ',  sc :    '  ') 
:           ( :    ' ',  sq :    ' ')

D Delay in Task d D is false d D is true
SC Sub contract sc SC is late SC is on time
SQ Staff Quality sq SQ is good SQ is poor

 

 

According to the chain rule (Equation 4-5) the joint probability distribution is: 

 

( ,  ,  ) ( / , ) ( ). ( )
                    
P D SC SQ P D SC SQ P SC P SQ= ⋅  

The marginal probability distribution for ‘Delay in Task’ can be calculated using 

Equation 4-2: 

 
2

1

2 2

1 1

2 2

1 1
1 1

( ,  ) ( / , ) ( ). ( )

        ( ) ( / , ) ( ). ( )

( ) ( / , , ) ( ). ( )

                0.95 0.7 0.95  0.7 0.3 0.95  0.7 0.7 0.05  0

j j
j

i j i j
i j

i j i j
i j

P D SC P D SC sq P SC P sq

P D P D sc sq P sc P sq

P D d P D sc sq D d P sc P sq

=

= =

= =

= ⋅

= ⋅

= = = ⋅

= × × + × × + × × +

∑

∑∑

∑∑
.01 0.3 0.05

                0.8559
                    

× ×
=

 

Figure 4-2a shows the probability graph for marginal distribution of ‘Delay in 

Task’. 
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a)  

(     P Delay in Task is true) ) 

b) 

 (     / - .  P Delay in Task is true Sub cont is late

Figure 4-2: Probability of task finishes on time a) with no evidence, b) sub-contract is late 

 

The predictive capability of the model enables us to infer from cause to effect 

(from parent to child). For example, suppose that we know the sub-contractor has 

failed to deliver on time. The new information (evidence) is used to update our 

belief about the probability of finishing the task on time. This is the posterior 

distribution of ‘Delay in Task’ and can be calculated as follows: 

 

2 2 2
2

2
1

( ,  , / ) ( / , ) ( ). ( )

                             ( / , ) ( )

                            0.7 0.7 0.01 0.3
                            0.493
                    

i i
i

P D SC SQ sc P D sc SQ P sc P SQ

P D sc sq P sq
=

= ⋅

= ⋅

= × + ×
=

∑
 

Figure 4-2b shows the probability graph for the posterior distribution of ‘Delay in 

Task’ given the ‘Sub-contract’ was late. 

 

The diagnostic capability of the model enables us to infer from effect to cause 

(from child to parent). For example, suppose the ‘sub-contract’ is delivered on 

time but there is a delay in the task. We want to update our belief  (Figure 4-3a) 

about the distribution of ‘staff quality’. Figure 4-3b shows how new information 

about ‘Sub-contract’ and ‘Delay in Task’ updates the probability graph for ‘Staff 

Quality’. This is the conditional probability and can be calculated by Equation 4-3 

as follows: 
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a) (    ) 0.P staff quality is good 7=  b) (    ) 0.2P staff quality is good =  8

Figure 4-3: Probability of ‘staff quality’ a) with no evidence, b) after observing evidences 

 

 

2 1 1
1 2 1

( , / ). (( / , )
( )

0.05 0.7                                               
0.05 0.7 0.3 0.3

                                               0.28
                  

P D d SC sc SQ sq P SQ sqP SQ sq D d SC sc
P SQ

= = = =
= = = =

×
=

× + ×
=

  

1)

 

4.2.2 BN a method of knowledge representation 

In addition to the basic property of BN (i.e. use of the chain rule for calculating 

joint probability table), a BN is a graphical model. The structure of the network is 

formulated in a graphical communication language. By use of three general 

connections, which are serial, diverging and converging connections (Figure 4-4), 

it can capture all the possible ways in which variables can become 

dependent/independent. The link between two variables can often be interpreted 

as representations of causal relation between them.  

 

 
                     Serial                         Diverging           Converging 

Figure 4-4: Basic causal connections 
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The graphical language of BNs makes it easier to understand and explain the 

causality. In this respect, BNs can be used for interpersonal communication. Its 

graphical specification is easy for humans to read, and it helps focus attention.  

 

In addition to causal knowledge, BNs provide a meaningful way for modeling 

various type of knowledge such as deterministic, statistical and analogical (Neil et 

al. 2000). BNs provide a powerful method for knowledge representation, which 

makes them suitable for a wide range of problems involving uncertainty and 

probabilistic reasoning.   

4.2.3 Constructing a BN 

Building a BN for a domain of application involves three main steps: 

 

Step I) Identify the variables that are of importance, along with their possible 

state values.  

Step II) Identify the relationships between the variables and express them in a 

graphical structure.  

Step III) Assess the probabilities required for its quantitative part. 

 

The above three steps are, in principle, performed one after the other. However, 

building a BN usually requires a careful trade-off between the desire for a large 

and rich model on the one hand and required effort for construction, maintenance, 

and probabilistic inference in the network on the other hand. In practice, therefore, 

building a BN is a creative process that iterates over these steps until a desired 

network is achieved.  

 

The initial step (identifying variables) is not always straightforward. (Heckerman 

1996) suggests the following as a guideline for defining variables:  

 

1) Correctly identify the goals of modeling (e.g. prediction versus 

explanation versus exploration) 

2) Identify many possible observations that may be relevant to the problem 

48 



3) Determine what subset of those observations is worthwhile (considering 

the complexity of the network) to model  

4) Organize the observations into variables having mutually exclusive states. 

 

(Jensen 2001) suggests three type of variables when building a BN model:  

 

1) Hypothesis variables: these are not observable variables (or only 

observable at an unacceptable cost). Identifying these variables is the 

primary task in BN model building. 

2) Information variables: these variables can be observed (and reveal 

something about hypothesis variable) 

3) Mediating variables: these are introduced for a special purpose (for 

example to simplify the conditional probabilities tables). 

 

During development of a BN, variables (nodes) can be easily added or modified. 

The graphical nature of BNs allows variables to be conveniently added or 

removed without significantly affecting the remainder of the network.   

 

After defining the variables, the next step is to construct the graphical part of 

network. This requires identifying the probabilistic dependency between the 

represented variables and capturing them in directed arcs. The direction of arcs 

needs to be defined carefully. (Neil et al. 2000) recommend a category of five 

types of reasoning between variables, called idioms (i.e. definitional/synthesis, 

cause-consequence, measurement, induction and reconciliation), as a guideline for 

constructing the network.  However, for domain experts who do not have a 

background of probability theory this might add unnecessary complexity to the 

modeling process. The simplest way is to take the direction of causality (cause to 

effects) for direction of the arc between variables. This is merely a guideline 

principle, therefore the resulting graphical structure has to be reviewed and 

refined in terms of dependency between variables. 

 

For instance, in example 4-2 the direction of arc is from ‘staff quality’  (i.e. cause) 

to ‘delay in task’ (i.e. effect). 
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The last step in building a BN is assessment of probability values and assigning 

them to the node probability tables (NPT). The NPT represents the strength of the 

causal dependency between connected nodes. Depending on the type of a node 

(i.e. discrete or continuous) , the NPT might be a discrete probability table or a 

continuous probability distribution. In prior nodes (without any parent) the NPT is 

the prior probability, which can be estimated subjectively or based on empirical 

data. In nodes with parents, the probability of every state of the node conditional 

on every instance of its parents is assessed. In example 4-2, the NPT for ‘delay in 

task’ contains the probability values for all possible combination of states for all 

three nodes (see Figure 4-1). 

 

For instance, when the ‘Sub-contract’ is ‘on time’ and ‘Staff Quality’ is good, the 

probability of ‘Delay in Task’ is estimated 0.05. This might come from previous 

data or in most cases from expert opinion. Eliciting these probabilistic values 

appears to be hard and time-consuming.  

 

The most common sources of information for eliciting numeric probabilities are 

(statistical) data, literature, and domain experts. In data-rich application domains, 

statistical data can be used to elicit probabilities. However, in many application 

domains (including project risk management) there are few or no reliable data 

available. Therefore the knowledge and experience of experts in the domain of 

application is the main source of probabilistic information. A number of formal 

methods (e.g. structured interviews with experts) have been developed for 

eliciting probabilities (Renooij 2000), (Meyer and Booker 1991) and (van der 

Gaag et al. 1999). However, these techniques tend to be quite time-consuming 

and given that an expert’s time is usually scarce and expensive, they are 

impractical if not impossible in real-life problems (Druzdzel and van der Gaag 

2000). A number of techniques have been developed that reduce the number of 

probabilities to be assessed. Two such techniques that are used in this thesis will 

be discussed in section 4.4.1. 

 

In many situations (especially for numeric nodes) the NPT for the child node can 

be set as a distribution based around a single expression (such as an arithmetic 

expression or minimum or maximum of the parents). 
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4.2.4 Inference in Bayesian Networks 

Once a BN is constructed, we are able to determine various probabilities of 

interest from the model. These probabilities are not stored directly in the model, 

and hence need to be computed. Since a BN involving a set of variables 

determines a joint probability distribution for the variables, we can (in principle) 

use the BN to compute any probability of interest. However, exact inference in 

BNs is known to be NP-hard (Cooper 1990) and (Dagum and Luby 1993). In 

response, several methods have been developed to improve the efficiency of 

probabilistic inference in BNs including: 

 

• (Shachter 1988) developed an algorithm that reverses arcs in the network 

structure until the answer to the given probabilistic query can be read 

directly from the graph.  

• (Pearl 1986) developed a message-passing scheme that updates the 

probability distributions for each node in a BN in response to observations 

of one or more variables. 

• (Jensen 1996) created an algorithm, called ‘Junction Tree’, that first 

transforms the BN into a tree where each node in the tree corresponds to a 

subset of variables in the BN. The algorithm then exploits several 

mathematical properties of this tree to perform probabilistic inference, also 

called ‘propagation’. The ‘Junction Tree’ algorithm is the most commonly 

used technique and is adopted by the state of the art Bayesian technology 

(AgenaRisk 2007) and  (Hugin 2007). 

4.2.5 Software Tools for BNs  

There are several commercial [(AgenaRisk 2007), (Hugin 2007), (Netica 2007) 

and (Riscue 2007)] as well as non-commercial [(WinBUGS 2007) and 

(OpenBayes 2007)] software tools for developing BN models.  These tools 

provide a graphical editor for building the BN and also a runtime module, which 

takes care of probabilistic calculation and evidence transmission. With such tools 

it is possible to build a BN and also perform the propagation algorithm in a 

reasonable amount of time.  
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In this thesis, I have used the AgenaRisk toolset (AgenaRisk 2007) for building 

and running all the models described later. Given the close relationship between 

the RADAR (Risk Assessment and Decision Analysis Research group in Queen 

Mary University of London) and the Agena company, the choice of AgenaRisk 

software was inevitable. In contrast to other BN tools, AgenaRisk provides the 

following features that were especially important for the kind of models 

developed in this thesis: 

 

• A powerful and highly intuitive user interface 

• Capability of linking pre-defined BNs to construct large-scale networks. 

• A wide range of built-in statistical distributions and expressions for 

constructing NPTs. 

• Capability of mixing discrete and continuous nodes to model qualitative 

and quantitative variables in a model (i.e. hybrid model). 

 

The other major benefit of using AgenaRisk was that I was able to influence its 

development through testing and feedback. This is because AgenaRisk follows an 

Agile development method (Schwaber and Beedle 2002). Agile methodologies are 

an iterative approach to software development. Each iteration delivers more 

functionality but also responds to constant customer feedback (Agile Manifesto 

2008).  The models produced in my study were used to test the functionality of the 

new versions of the toolkit. Feedback and detected bugs were directly reported to 

the AgenaRisk development team. 

 

During the course of my studies several such iterations made major enhancements 

in the AgenaRisk toolkit. A number of these enhancements that are  relevant to 

the type of BN model used in this thesis are explained in section 4.5. 

 

However, there are still limitations in the toolkit (for example efficiency of the 

inference algorithm and also backward propagation between linked networks) that 

need to be addressed.  
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4.3 Applications and Advantages of BNs 

BNs offer a powerful, general and flexible approach for modelling risk and 

uncertainty. The advantages of BNs are now widely recognized and they are being 

successfully applied in diverse fields. During the last decade, researchers have 

incorporated BN techniques into easy-to-use toolsets, which in turn have enabled 

the development of decision support systems in a diverse set of application 

domains. Since 2000 further technology and tool advancements mean that end-

users, rather than just researchers, are now able to develop and deploy their own 

BN-based solutions. The number of applications of BNs has been increasing year-

on-year (Fenton and Neil 2007a). 

 

The first working applications of BNs focused on classical diagnosis in medicine 

(Horvitz et al. 1989).  Companies such as Microsoft and Hewlett-Packard have 

used BNs for fault diagnosis, and in particular printer fault diagnosis (Breese and 

Heckerman 1996). A range of BN-based systems is being used to improve 

decision support and assessing safety in critical systems. These include BN 

models to predict human errors in complex socio-technical systems (Gregoriades 

et al. 2003a) and (Gregoriades et al. 2003b), air traffic management (Neil et al. 

2003), railway safety assessment (Marsh and Bearfield 2004) and terrorist threat 

assessment (Laskey and Levitt 2002). 

 

Recently a number of BN models have been developed for quantification of 

operational risk in investment banking (Ramamurthy et al. 2005) and (Neil et al. 

2005). Software quality and fault prediction in software engineering has been 

another application of BNs (Fenton et al. 2002). In addition, BNs have been used 

in many other fields such as SPAM filtering, personalization systems, legal 

reasoning, ecology and security. The online bibliography in (Fenton 2008) 

provides details of hundreds of references and publications about applications of 

BNs. 
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4.4 BNs and project risk management 

The key benefits of BNs that make them highly suitable for the project risk 

analysis domain are: 
 

• They provide a rigorous method to make formal use of subjective 

information. BNs provide a visual and formal mechanism for recording 

and testing subjective probabilities. This is a particularly attractive feature 

in project risk analysis, as in most cases the only practical choice is the use 

of subjective judgments (see section 3.2). 

• They explicitly quantify uncertainty. Their causal framework provides a 

useful and unambiguous approach for analyzing risk. This is in stark 

contrast with the probability impact approach (as discussed in section 3.1) 

where none of the concepts has a clear unambiguous interpretation. 

• Parameter learning- the probabilistic inference capability of BNs leads to 

updating the posterior probability distribution in the light of observed 

values (i.e. evidence). This specially offers a mechanism for updating the 

belief about unknown factors, which are very difficult to measure and 

were assessed subjectively before (see section 3.5). 

• Complex sensitivity analysis. BNs are capable of reasoning from effect to 

cause as well as cause to effect. This can answer a wide range of ‘what-if?’ 

questions and offer a complex sensitivity analysis when several variables 

change simultaneously. 

• Make predictions with incomplete data. 

 

BNs provide an ideal approach for modelling uncertainty in projects; however 

they are rarely used in project risk analysis. The first efforts to apply BNs in 

project scheduling were conducted by (McCabe 1998) and (Nasir et al. 2003). 

They developed a BN to model the relationship between major risk variables that 

affect duration of activities in a construction project. They identified ten risk 

categories specific to building construction schedules (e.g. environment, 

geotechnical, owner, labor, design, area, contractor, political, non-labor resources 

and material). Detailed risk variables (in total 70 risks) in each category were 

identified. Eight activity groups were identified to represent all types of activities 

54 



in a construction project (e.g. mobilization/demobilization, foundation/piling, 

labor intensive, equipment intensive, technical/electrical, roof/external, 

demolition, and commissioning). In the next step, by reviewing the literature and 

conducting a comprehensive expert survey, the relationships between different 

risks and different activity types were identified and subsequently quantified. For 

each activity group the output of the model suggested a percent increase or 

decrease from the most likely duration to define the pessimistic and optimistic 

durations. The most likely duration of activities is assumed to be known and is 

used as a reference point. The result of the BN model (in the form of upper and 

lower limits of activities duration) was exported to a MCS model to incorporate 

the effect of risks on the project schedule.  

 

The BN model provided a very flexible modelling environment. It was validated 

with historical data from 17 case studies with very good results. However, the 

model had the following limitations:  

 

• The model was specific to building construction projects; therefore it 

cannot be applied to other industries and different type of projects.  

• The BN model predicted the upper and lower bounds of activity duration 

as percentage of the most likely duration.  It assumes that the most likely 

duration is already known and takes it as an input to the model.  

• The output of the model (the upper and lower limits of activity durations) 

needs another approach (i.e. MCS) to calculate decision making results 

such as the expected project duration, the probability of delay/completion 

etc. 

• The upper and lower bounds of activity duration were restricted to a few 

pre-defined values. For example on the pessimistic side the percent 

increase of activity duration is limited to 10, 25, 50 and 100%.  

• All the risk variables were binary types. Variables with more than two 

states could not be modelled properly. 

• The final BN model was overly complex. The graphical structure was 

unorganised and difficult to follow and understand. 
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• Although it provided good predictive results, the most powerful feature of 

BNs namely diagnostic analysis (e.g. reasoning from effect to cause, 

learning and ‘what if?’ type analysis) was not used. 

 

In this thesis I develop a BN model to model and quantify uncertainty in project 

scheduling. The approach is general enough to be applied to any type of project. 

Chapter 5 introduces a BN model for project scheduling. This provides detailed 

information about time parameters of individual activities and also the whole 

project. Chapter 6 proposes a separate BN model that captures the relationship 

between risk variables that affect the duration of a general activity in any type of 

project. The combined BN model takes advantage of all the capabilities of BNs 

and provides a mechanism for modelling all aspects of uncertainty in project 

scheduling. 

 

The ultimate aim is to make this sort of analysis available for use by a typical 

project risk manager. However, there are technical challenges as discussed in the 

next section. 

4.5 Building large-scale BNs for real-sized problems 

Despite the many benefits discussed, there are fundamental barriers that 

dramatically restrict the use of BNs in dealing with large-scale problems (Neil et 

al. 2000). For domain experts (prospective users) who are neither probability 

theorists nor mathematicians, the task of constructing the network is not always 

straightforward and sometimes is a painstaking manual process. The challenge is 

how the power of BNs can be made easily accessible to practitioners and be 

practically applied in real-word problems. This section addresses some of these 

practical issues along with the related emerging research.  

4.5.1 Constructing NPT for qualitative nodes  

BNs may represent either qualitative or quantitative variables. Qualitative nodes 

are used to model real-world variables whose values are typically measured on a 

discrete subjective scale like {low, medium, high}. In most practical cases, 

eliciting complete sets of probability values for this kind of nodes is not possible 
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or cost-effective. So, a key challenge is how to construct the relevant NPTs using 

minimal amounts of information (Fenton et al. 2007b). 

 

For example, consider the small fragment of BN shown in Figure 4-5. 

 

 
Figure 4-5 : Ranked nodes 

 

Assuming each of the nodes has five states ranging from very low to very high, 

the NPT for the node Y has 125 states. Although it is not impossible to 

exhaustively elicit this number of probabilities, experience shows (Fenton et al. 

2007b) that all kinds of inconsistencies arise when experts attempt to do so (for 

example, assigning dissimilar probabilities to similar states). When the number of 

states rises and/or there are additional parents, exhaustive elicitation (i.e. 

assessment of probability values for all the possible combination of states) 

becomes infeasible. In real-world models with typically several dozens of such 

fragments and extremely limited (if any) statistical data available, exhaustive 

elicitation is not possible. This problem has been addressed by many authors 

(Druzdzel and van der Gaag 2000) and (Wellman 1990).  

 

(Fenton et al. 2007b) suggest a solution for this problem by introducing a class of 

BN nodes, called ranked nodes, which provide a semi-automated method for NPT 

construction. Ranked nodes are discrete variables with an ordinal scale, which are 

mapped onto a bounded numerical scale. They are defined on an underlying unit 

interval scale, [0-1], which is discretised to the number of states accordingly. For 

example, a 5-point scale such as {very low, low, average, high, very high} is 

associated with a numeric interval such as {[0-0.2), [0.2-0.4), [0.4-0.6), [0.6-0.8), 
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[0.8-1)}. This underlying numeric scale, which is invisible from the user, is used 

to simplify the task of generating the NPT and therefore constructing and editing 

BNs. Instead of manual derivation of the NPT for all combinations of states, a 

simple averaging scheme (e.g. weighted mean, min, max, weighted min and 

weighted max) can be used to express the ‘central tendency’ of the child node 

based on the value of the parent nodes. For example, suppose the BN of Figure 

4-5 led to expert elicitation as follows:  

 

• When X1
 
and X2 are both ‘very high’ the distribution of Y is heavily skewed 

toward ‘very high’.  

• When X1
 
and X2 are both ‘very low’ the distribution of Y is heavily skewed 

toward ‘very low’.  

• When X1
 
is ‘very low’ and X2 is ‘very high’ the distribution of Y is centred 

below ‘medium’.  

• When X1
 
is ‘very high’ and X2 is ‘very low’ the distribution of Y is centred 

above ‘medium’.  

 

Such assertions suggest intuitively that Y is some kind of weighted average 

function of X1 and X2. Rather than assessment of probabilities for all the 125 

states, the NPT for Y can be simply defined as the weighted average of X1 and 

X2. 

 

Such a scheme works for many practical situations. Obviously, there is a trade-off 

between the benefits of a general method (simplicity of ranked nodes) and the cost 

of developing a bespoke model (exhaustive elicitation of all NPT states). 

However, ranked nodes provide a practical advantage and have proven to be 

acceptable to practitioners (Fenton et al. 2007b). 

4.5.2 Handling continuous nodes 

So far it was assumed that the values that nodes in a BN can take are discrete. But 

for modeling quantitative variables we need to consider continuous numeric 

nodes. In theory they could take any number of possible values. However, exact 

inference in BNs, for example using the ‘Junction Tree’ algorithm (see section 
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4.1.4), for continuous variables (with the exception of Gaussian variables) is 

computationally intractable (Cooper 1990). Hence, most BN tools adopt some sort 

of numerical approximation for quantifying continuous nodes. 

 

In static discretisation, the modeler splits the range of the continuous distribution 

into a finite set of predefined intervals. The number (length) of intervals affects 

the accuracy of the result of BN on one hand and the computational complexity of 

the inference algorithm on the other hand. The higher the number of defined 

intervals, the more accuracy is achieved, but at a heavy cost of computational 

complexity and speed. Therefore the number of intervals needs to be set carefully 

otherwise, it is likely to introduce inaccuracy an error to the model. 

 

Example 4-3:  

Figure 4-6 shows the distribution graphs1 for three nodes with the same 

distribution, , but with different discretisation levels. Nodes 

A, B and C respectively have two, three and five equal intervals in the range of [0-

10].  

2( 5, 1Normal μ σ= = )

 

 
Figure 4-6 : Static discretisation in a continuous node with Normal(5,1) 

 

Various undesirable effects can flow from a poor discretisation: 

 

                                                 

1 In all the distribution graphs presented in this thesis, the vertical axe shows the probability values  

and the horizontal axe shows the numeric range of the variable.  
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• The shape of the distribution can be entirely misleading. For example, 

node A looks like a uniform distribution and graph B looks non-symmetric 

in Figure 4-6. 

• The distorted distribution reports erroneous mean and variance values. For 

example, the variance of nodes A and B are 6.25 and 1.46 respectively. 

• Evidence entered into a poor discretisation becomes “spread out” across 

the whole interval that it belongs to. For example, in node A entering a 

value of 3 means that the [0, 5) range will be selected.  

• Extra care is required when arithmetic functions are involved between 

variables. For example, if two variables are added, the intervals set for the 

child node should be anticipated properly to contain all possible outcomes 

from all combinations of sample values from different intervals in the 

parent nodes. 

 

In order to achieve accurate approximation, it is also important to consider the 

highest density regions (i.e. where the main body of the probability mass will 

reside) for each node. The length of intervals needs also to be anticipated 

carefully. This is cumbersome, error prone and highly inaccurate (Neil et al. 

2006). 

 

To get round the problems of static discretisation (Neil et al. 2007) propose an 

approximate inference algorithm based on a new method of inference called 

Dynamic Discretisation (DD). The approach is a simpler version of (Kozlov and 

Koller 1997)’s scheme for using an iterative method to partition multivariate 

continuous functions. Starting at the full range of the variable, it recursively splits 

the range into two intervals until it converges to an acceptable level of accuracy 

(can be set by user). The NPTs are regenerated (partially or wholly) and the 

propagation algorithm is executed in each iteration.  

 

The resulting DD algorithm, implemented in the AgenaRisk software, overcomes 

the problem of inaccuracy as well as wasted effort over selecting and defining 

discretisation intervals. The modeller only has to specify the variable’s range, for 
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instance [0-10] in the nodes of example 4-3, and the software provides appropriate 

discretisation as shown in Figure 4-7.  

 
Figure 4-7: Dynamic discretisation in a continuous node with Normal(5,1)  

 

However, in terms of efficiency, using DD increases computational time and also 

memory significantly. Faster and more efficient propagation algorithms are still 

required (Neil et al. 2007).  

4.5.3 Object Oriented Bayesian Networks 

The ‘Object Oriented Bayesian Networks’ (OOBN) approach is proposed as a 

general framework for large-scale knowledge representation using Bayesian 

Networks (Koller and Pfeffer 1997). The idea is analogous to the Object-oriented 

programming languages that provide a robust, flexible and efficient framework 

for constructing computer programs. This section provides an overview of the 

OOBN framework. 

 

The basic element in OOBN is an object; an entity with identity, state and 

behavior. Each object is an instance of a class. Classes of objects provide the 

ability to describe a general network that can be used in different instances. In 

OOBN a class is a BN fragment including three sets of nodes (as shown in Figure 

4-8):  

 

• Input nodes, (represented by dashed ellipses in Figure 4-8) have no parent 

in the class. They correspond to the parameter passed from the associated 

object. 
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• Output nodes, (represented by shaded ellipses in Figure 4-8) can be 

parents of nodes outside instances of the class. 

• Encapsulated nodes, (represented by circles in Figure 4-8) can only have 

parents and children inside the instance class. 

 

An instance of a class (i.e. an object) is linked to the network through interfaces. 

An interface, also called as reference link, connects an output node in one object 

to an input node in other objects (represented by a dashed link in Figure 4-8).  

 
Figure 4-8: Structural representation of BN objects  

 

Classes encapsulate the internal details, which enable them to be used as 

templates, formed together as a library, and combined into a model as needed. 

Figure 4-9 shows how Bayesian objects are linked through interfaces to build a 

large BN. 

 

  
Figure 4-9: A large network can be built by connecting objects 

 

By using OOBNs, complex models can be constructed easily using inter-related 

objects. Furthermore, OOBN supports an inheritance hierarchy, which means a 
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sub-class can inherit much of its structure from the super-class. This allows the 

common aspects of related classes to be defined only once. 

 

It is claimed that OOBNs also can speed up the inference process (Koller and 

Pfeffer 1997). The inference algorithm can be improved significantly by making 

additional structural information accessible. By encapsulating the internal 

attributes, probabilistic computation can be localized within the object. Also for 

objects of the same class (i.e. having the same probabilistic model), the inference 

calculation can be reused.  

 

However, none of the BN software tools that support OOBN actually implement 

the inference algorithm in a genuinely Object-oriented manner. For example in 

Hugin, the OOBN is transformed into a big BN, which is used to construct the 

junction tree and perform the inference algorithm. (Bangso et al. 2003) proposed a 

method that keeps the structure of objects and pre-compiles classes locally, then 

‘plug’ in to the junction tree. (Langseth and Bangsø 2001) propose a method for 

learning parameters in OOBNs. AgenaRisk supports a limited version of OOBNs 

which performs forward but not backward inference. 

4.6 BN vs. alternative reasoning methods  

There are a number of alternative methods and technologies for modelling 

uncertainty, including Dempster-Shafer theory (Dempster 1968) and (Shafer 

1976) and Fuzzy causal networks (Zhang et al. 2006) and (Kosko 1986). A 

comprehensive overview and in-depth comparison of these approaches and the 

advantages and disadvantages of each method is provided in (Wright and Cai 

1994). They concluded that no single formalism for uncertainty is superior to all 

others and each of them has unique and significant strength as a modelling tool. 

 

In particular Dempster-Shafer (D-S) belief networks has attracted considerable 

attention for modelling knowledge about propositions in uncertain domains. This 

section briefly describes the D-S method and compares it against the BN method. 
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A D-S belief network graphically describes knowledge and the relationships 

among variables using the so-called theory of belief function. The D-S theory is 

based on two ideas:  

 

• Obtaining degrees of belief for one question from subjective probabilities 

for a related question.  

• Dempster's rule for combining such degrees of belief when they are based 

on independent items of evidence. 

Differences between BN and D-S models exist in the graphical representations, 

numerical details and methods of performing inference (Cobb and Shenoy 2003). 

 

At the numerical level, a D-S belief network assigns a D-S belief function or basic 

probability assignments (bpa’s) to subsets of the variables in the domain, while a 

BN uses the product of all conditional probabilities to represent the joint 

probability distribution for all variables (see Equation 4-5).  

 

A D-S belief network is updated by specifying evidence as bpa’s, whereas 

updating of knowledge in a BN is accomplished by using likelihood functions (see 

section 4.2.1). 

 

The differing numerical representations in BN and D-S belief networks each have 

relative advantages and weaknesses. BNs are easier to construct in domains where 

knowledge is causal, whereas D-S belief networks are easier to represent non-

causal knowledge. 

 

However, the two types of models are also similar in important aspects and their 

underlying structures have many similarities. In principal any BN model can be 

replicated in a D-S belief network model (Zarley et al. 1988). Similarly, any D-S 

belief network model can be approximated by a corresponding BN model (Shafer 

1986).  

 

From a practical point of view, BNs are more attractive than D-S networks 

because: 
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• Computationally, D-S belief networks are much more expensive to 

calculate than BNs. In practice, it is more efficient to transform the D-S 

network to a BN (Simon and Weber 2006). 

• An adequate understanding of the D-S theory requires considerable effort 

and a strong background in probability theory (Zadeh 1986). 

• There is a lack of software tools that implement D-S theory whereas there 

are several well-developed software tools available for implementing BN 

(see section 4.2.5).  

 

4.7 Summary  

This chapter reviewed the background, theory and the state-of-the-art of BNs. In 

the reminder of this thesis I shall make full use of BNs for modelling uncertainty 

in project scheduling. 

65 



5 Bayesian Critical Path Method (BCPM)  

Chapter 3 argued about the need for a new approach to properly incorporate 

risk/uncertainty in projects. Chapter 4 introduced BNs and their proven capability 

of modelling uncertainty. This chapter aims to define a general framework for 

applying BNs to project scheduling. In particular, a new model is proposed which 

incorporates CPM calculations in BNs. The model benefits from advantages of 

both CPM and BNs. Therefore, it has promising capability to handle project 

uncertainty properly.  

 

After a discussion about motivation of the model, the structure of the model is 

explained and then a numerical example illustrates the details of the model.  

5.1 Incorporating CPM in BNs 

CPM (as introduced in section 2.3.1) is a method used and accepted on many 

major projects in the planning, scheduling, and controlling phases. CPM is an 

important management tool that produces a ‘road map’ that shows the 

relationships between activities and also useful information about time parameters 

of each activity (e.g. start and finish time). Proper use of CPM scheduling will 

warn about situations that may lead to time delays. Likewise, CPM provides a 

good communication device between different parties of a project. As an 

analytical tool for comparing the approved work plan with actual performance, 

CPM is also accepted as a valid means of proving liability in courts and other 

administrative boards of appeal (Baki 1998). In addition to all the above 

advantages, simplicity and availability of several software tools have made CPM a 

standard method for project planning and control. Hence, a majority of project 

managers use CPM (Pollack-Johnson and Liberatore 2005). The main drawback 

of CPM is its assumption that all parameters (e.g. activities’ time and cost) are 

deterministic. This is an unrealistic assumption that makes CPM results inaccurate 

and impractical especially in complex and risky projects. 
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On the other hand, as discussed in Chapter 4, BNs provide a method of handling 

uncertainty. The aim of this thesis is to develop a general approach that applies 

BN modelling to incorporate uncertainty in project scheduling and handles the 

issues identified in chapter 3.  

 

As (Neil et al. 2001) argue, the key to the successful design of BNs is a 

meaningful decomposition of the problem. A large BN is too complex to be 

designed and also explained in one stage. Therefore, the approach here is divided 

into following two steps: 

 

1. I show how CPM is mapped to BNs. This will provide a general 

framework that can be applied to any project. The rest of this chapter 

explains this step by introducing the BCPM model. In order to avoid extra 

complexity, the causal structure of ‘duration’ is ignored. It is assumed that 

duration of an activity can be modelled by a single node.   

2. I show how the BCPM model can be expanded to capture causal relations 

and other factors affecting ‘Duration’. This will be discussed in Chapter 6. 

5.2 Structure of the BCPM model 

The building blocks of a CPM network are the project ‘activities’. Activities are 

specified by using a work breakdown structure (WBS). The CPM models 

activities and their sequential dependencies as a network. There are two types of 

CPM networks (Figure 5-1): 

 

 Activity On Node (AON)  

 Activity On Arc (AOA) 

 

Apart from some variations in terminology, these two approaches are essentially 

the same.  AON, also known as precedence diagram, is used in this thesis as it is 

simpler and also is used by most project management software packages. AON 

networks can also model different lead and lag relationship (e.g. start-to-finish, 

start-to-start and finish-to-finish) between activities. In this thesis only the normal  
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Figure 5-1 : Network representation in CPM 

 

relation of finish-to-start is discussed (i.e. the succeeding activity is started 

immediately after the preceding activity is finished). However, other types of 

preceding relationship can be easily modelled by slight changes in the model. 

 

The precedence dependency between activities is modelled by the links between 

immediate precedence activities. Each activity has five main time parameters: 

duration, earliest start, earliest finish, latest start and latest finish. These 

parameters are calculated by forward and backward calculations as explained in 

section 2.3.1. 

 

The building block of the BCPM model is also ‘activity’. Figure 5-2 shows a 

schematic model of the BN fragment associated with an activity. It shows the 

relation between the activity parameters and also the relation with the predecessor 

and successor activities. Each activity in a CPM network is mapped to a set of five 

nodes in the BN, representing the activity’s time parameter as follows: 

 

• The Duration node models the uncertainty associated with the activity’s 

duration. This node is the central component of the BCPM approach and 

will be discussed in detail in chapter 6. In its simplest case, its NPT might 

be any arbitrary probability distribution (e.g. Triangular, Normal, Beta 

etc.). 

• The ES node models the earliest time that an activity may start. The ES for 

an activity is the earliest time that all the predecessor activities are 

finished. This node is a child of EF nodes in all the immediate predecessor 
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activities. The NPT is an arithmetic expression that takes the maximum 

value of EF from all the immediate predecessor activities. 

• The EF node models the earliest time that an activity may finish. It is a 

child node of the ES and the Duration. The NPT is an arithmetic 

expression that adds up ‘Duration’ to ES. EF is the parent of ES node for 

all successor activities. 

• The LF node models the latest time that an activity should finish. This is 

the latest time that all the successor activities should start. This node is a 

child of LS nodes in all the immediate successor activities. The NPT is an 

arithmetic expression that takes the minimum value of LS from all the 

immediate successor activities. 

• The LS node models the latest time that an activity should start. It is a 

child of the LF and the Duration. The NPT is an arithmetic expression that 

subtracts Duration from LF. LS is the parent of the LF node for all 

predecessor activities. 

 

ES

D

EFLF

LS

Predecessor
Activities

Successor
Activities

Successors

Predecessors

Duration 
Model

 
Figure 5-2 : Schematic of BN for an activity 

 

The above five nodes model the CPM parameters for each activity. The next step 

is to define the links in the network. The precedence dependency between 

activities and also the forward and backward path in CPM is modelled through the 

links in the BN: 
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• The EF of each activity is linked to the ES of all immediate successor 

essor 

activities. These links model the backward path in CPM calculation.  

he next section illustrates 

is mapping procedure by means of a simple example. 

 

activities. These links model the forward path in CPM calculation. 

• The LS of each activity is linked to the LF of all immediate predec

 

Finally the NPT for the activity’s parameter should be set. All nodes are numeric 

type with continuous intervals. By using the DD technique (see section 4.5.2) the 

range of variables can be easily set (e.g. [0, ∞]). The NPTs are defined by relevant 

arithmetic expression to model the CPM calculations (see 2.3.1). For example ES 

of each node is defined by the maximum of EF of all the predecessor activities. 

Table 5-1 summarises the properties for all the nodes. T

th

Node Type Intervals NPT 

Du nratio  [0, ]Numeric DD in ∞  ( , )N μ δ  

ES Numeric DD in M [ j     ]j[0, ]∞  ax EF one of the pre cessor activities|  de

EF Numeric DD in [0, ]∞  ES D+  

LS Numeric DD in [0, ]∞  LF D−  

LF Numeric DD in [0, ]∞  [ j    j  ]Min LS one of the successor| activities  

Table 5-1: Summary of nodes’ properties for the BCPM model 

) and the latest 

nish of the last activity is equal to its earliest finish (LF_E=20). 

5.3 BCPM Example 

Consider a small project with five activities A, B, C, D and E. Activity A is the 

predecessor for both B and C, also both activities C and D are predecessors for E. 

The deterministic estimation of duration of activities A, B, C, D and E is 5, 10, 4, 

2 and 5 weeks respectively. Figure 5-3 shows the AON representation of CPM 

network along with time parameters for each activity. Activities A, C and E with 

no float time are critical and the overall project takes 20 weeks (i.e. the earliest 

finish of activity E). In normal CPM calculation it is usually assumed (Ahuja et al. 

1994) that the earliest start of the first activity is zero (ES_A=0

fi
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Figure 5-3 : CPM graph for example 5.3 

ss explained in the previous section, the BCPM network 

 shown in Figure 5-4.  

_C and EF_D to the ES_E. EF_E is the earliest time for project 

ompletion time. 

 A has two successors, so 

ere are two links from both LS_B and LS_C to LF_A. 

 

 

Using the mapping proce

is

 

The forward pass calculation of CPM is done through connecting the ES of 

predecessor activities to the EF of their successor activities (light grey nodes in 

Figure 5-4). The starting activity of the project, A, has no predecessor. So ES_A 

(read earliest start of A) is the start of the project and is set to zero. A is 

predecessor for B and C so EF_A is linked to the ES_B and ES_C. Similarly, 

EF_B is linked to the ES_D. Activity E has two predecessors, so there are two 

links from both EF

c

 

The same approach is used for the backward pass calculation of CPM with 

connecting the LF of successor activities to the LS of their predecessor activities 

(dark grey nodes in Figure 5-4). The last activity of the project, E, has no 

successor. So LF_E (i.e. project deadline) is set equal to EF_E (in this case 20 

weeks).  Activity E is successor of C and D so LS_E is linked to the LF_C and 

LF_D. Similarly, LS_D is linked to the LF_B. Activity

th
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Figure 5-4 : BCPM for example 5.3 

 

For the sake of simplicity it is assumed that all Duration nodes are prior nodes 

(i.e. a node without any parent, see 4.2.1). Their NPT is simply the prior 

probability that can be modelled by a rational subjective probability distribution 

with a suitable expected value and shape. It is assumed that the distribution of all 

activities have a Normal distribution with mean equal to the deterministic 

estimation of the duration and variance equal to one. 
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The NPT for all other nodes is defined by an arithmetic expression to reflect the 

CPM calculations as listed in Table 5-1: 

 

 _ _ES B EF A=   

_ _ES C EF A=   

_ _ES D EF B=   

_  [ _ , _ ]ES E Max EF C EF D=  

  :For all nodes EF ES D= +  

_ _LF D LS E=  

_ _LF C LS E=  

_ _LF B LS D=  

_  [ _ , ]LF A Min LS B LS D= −  

  :For all nodes LS LF D= −  

 

The model successfully incorporates uncertainty into the CPM. Instead of having 

a single point estimate a probability distribution is calculated for all parameters of 

each activity (i.e. ES, EF, LS and LF). For example, Figure 5-5 shows the 

probability graph for ES and EF of activity C where the mean of the graphs are 

equal to the deterministic values in Figure 5-3 (ES_C=5, EF_C=15). The mean 

and variance of the project finish time are 20 weeks (equal to the deterministic 

value) and 4.67 respectively (Figure 5-4).  

 

Figure 5-5 : Probability graph for ES and EF of activity ‘C’ 
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This example showed how the CPM is mapped into a BN. The model provides 

5.4 Criticality 

l concepts in CPM is criticality. Interest in critical paths and 

he definitions of critical path (CP) and critical activity (CA) in the CPM model 

 more relevant concept is activity criticality as it helps to identify the activities 

(1) determine the criticality indices of all paths;  

nterest;  

probabilistic distributions for the time parameters of all activities as well as the 

whole project. But more importantly, it can take advantage of all the capabilities 

of BNs (section 4.3) to capture different aspects of project risk. It offers a robust 

method for modelling risk in project scheduling which is capable of addressing 

the limitations of current practice of project scheduling (e.g. MCS based 

techniques) as defined in Chapter 3 (i.e. causality, subjectivity, trade-off analysis, 

unknown risks and learning). These capabilities will be added to the model 

through the ‘Duration’ network, which will be discussed in detail in Chapter 6. 

One of the most usefu

critical activities stems from the need to focus management's attention on the 

activities that determine the progress of the project. Critical activities require 

special attention (e.g. effective and efficient execution) because if delayed they 

will delay the completion of the project. 

 

T

are straightforward and unambiguous (see section 2.3.1). However, defining (and 

also measuring) criticality under uncertainty is not as simple as it is in the CPM. 

For example, in the PERT approach the stochastic structure of the model implies 

that almost any path may be critical with nonzero probability. A path is critical if 

its duration is longer than that of any other path. Path criticality index (PCI) is the 

probability that the path is of longest duration (Martin 1965).  

 

A

that may cause delay to the project. Activity criticality index (ACI) (Elmaghraby 

2000) is a possible measure of the criticality of an activity. It is the probability 

that the activity will fall on a critical path. Theoretically, the determination of the 

ACI can be achieved through a three step procedure summarized as follows:  

 

(2) identify the paths that contain the activity of i
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(3) compute the activity criticality by summing up the criticality indices of all 

owever, the complete enumeration of all paths and the computation of their 

 

paths that contain it. 

 

H

criticality is very difficult, if possible at all. Furthermore, as (Williams 1992b) 

argued, the ACI does not give an intuitively helpful metric to management. ACI 

sometimes remains invariant even when time parameters of activity widely 

change. For example, consider the simple AOA network shown in Figure 5-6. The 

network contains two independent activities, X and Y. The possible durations of 

activities and the associated probabilities are given for two scenarios. Activity Y 

is identical in both scenarios but activity X is obviously more important in 

scenario B. It is expected that the criticality of activity of X changes in scenario B. 

However, according to ACI, in both scenarios activity X is equally critical (ACIX 

= 99%).  

 

 

 

 

  
  X

  Y

 Scenario A:  

 Probab on ACI 

X 99% 

Y 1% 
1

Expecte ject D : 11.48 

 ility Durati  

 50% 1  

 50% 2  

 99% 0  

 1% 000  

 d Pro uration  

 Scenario B:  

  Probab on ACI 

X 99% 

Y 1% 
1

Expecte ject Duration: 158.5 

ility Durati  

 50% 100  

 50% 200  

 99% 0  

 1% 000  

 d Pro  

Figure 5-6 : ACI examp  (le Williams 1992b) 
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To address the above problem, (Williams 1992b) suggested Significance index 

(SI) as an alternative to ACI. SI can be deduced from the total float, the expected 

duration of activity and the duration of the project: 

 

   [ ]
  [   

activity length total project durationSI E
activity length total float E total project duration

= +
+ ]

 

 

But SI is extremely difficult to compute and it may also yield counter-intuitive 

results. For example, consider a network with two serial activities X and Y. 

Activity X has a duration equal to 100, while activity Y has a duration equal to 10 

with probability of 0.5, and a duration equal to 20 with probability of 0.5. It is 

clear that activity X is more significant (in the sense that the same proportional 

increase/decrease in the duration has more effect on the project completion). But 

according to SI both activities are equally significant (SIX=SIY=1) because both 

activities lie on a single path. 

 

(Williams 1992b) also suggested the so called Cruciality index (CRI) as a measure 

of the relative importance of an activity with respect to the project completion 

time. CRI is defined as the absolute value of the correlation between the activity 

duration and the total project duration. Although CRI overcomes some of the 

disadvantages of ACI, it is not only very difficult to compute but can also produce 

counter-intuitive results. For example, if the duration of an activity is 

deterministic (or stochastic with very small variance) its cruciality is zero (or 

close to zero) even if it is always on the critical path.  

 

The BCPM model provides a new interpretation of activity criticality under 

uncertainty. It can measure the relative importance of an activity without having 

to measure the criticality of path(s). Similar to standard CPM, the criticality of an 

activity can be measured by its total float (i.e. the difference between the Latest 

Finish and the Earliest Finish). If TF is zero (or even worse, negative) the activity 

is critical as it must be completed (otherwise it causes delay on the project) by a 

date that is earlier than the current plan shows is possible (i.e. EF). If TF is small 

the activity is slightly critical, as it would take a small slippage to make the 
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activity critical. Even activities that have a large amount of float can be critical if 

their worst-case estimates exceed the calculated float.  

 

In other words, the criticality of each activity can be estimated by comparing the 

probability distribution of the LF with the probability distribution of the EF of the 

activity. This is modeled by introducing the ‘Criticality’ node in the BCPM model 

for each activity as shown in Figure 5-7. ‘Criticality’ is a Boolean node that is 

‘true’ when LF EF≤ . 

 

 
Figure 5-7 : Criticality node compares the LF with EF of each activity 

 

This offers a simple (it is the natural expansion of the original concept of 

criticality in the classic CPM) yet more meaningful interpretation of activity 

criticality than other metrics because:  

 

• Unlike ‘ACI’, it inquires into activity criticality rather than into whole path 

criticality. The activity criticality is a more relevant concept than path 

criticality as it defines the ‘troublesome’ activities that we wish to 

manipulate.  

• Unlike ‘SI’, it considers the distribution function of activity duration (LF 

and EF are determined by D, see Table 5-1). Therefore in similar 

conditions the larger the activity duration the higher the criticality of the 

activity. 

• Unlike ‘CRI’, it can measure criticality even for deterministic activities or 

activities with small variances. 

• More importantly (unlike all other metrics), it takes into account the role 

of project deadline (i.e. LF of terminal activity). If the project deadline 

changes, the LS and LF of all activities will change (see section 5.2) and 
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consequently the criticality of activities will change. This is more realistic 

because when there is a tight deadline on the project, a higher number of 

activities are expected to be critical (or more critical) but when there is a 

loose deadline, most activities have extra float time therefore become less 

critical.  

 

In terms of computation, the criticality of activities in the BCPM model can be 

easily measured as the distributions of LF and EF for all activities that are already 

computed. Figure 5-8 shows the BCPM with criticality nodes for the example of 

section 5.3 when the project deadline is 20 weeks.  

 

 
Figure 5-8 : Example 5.3 with criticality  

78 



Table 5-2 summarizes the ACI, CRI and the BCPM criticality for each activity. It 

also compares the result of the activities’ criticality in three different scenarios 

(i.e. loose deadline, normal deadline and tight deadline). For example, the 

criticality of activity E (i.e. the most critical activity) changes from 62.19% to 

74.8% and 42.8% when the project deadline changes from 20 to 17 and 23 weeks 

respectively. 

 
 

 ACI CRI BCPM Critically 
LF=20 LF=17 LF=23 

A 100 58.21 61.4 71.3 51 
B 4.28 0.05 4.85 8.5 1.05 
C 98.69 55.57 61.8 74.1 42 
D 4.28 0.04 7.99 12.9 1.69 
E 100 58.27 62.19 74.8 42.8 

Table 5-2 : Summary of criticality indices for example 5.3 

5.5 The Object Oriented framework 

As was seen in example 5.3, even for a small CPM network the corresponding BN 

is reasonably large and complex (compare Figure 5-3 and Figure 5-4). In real 

projects with several activities, constructing the BN requires significant effort, 

which is not effective especially for users with little experience in BNs (see 

Section 4.5). However, the structure of the model is highly repetitive and perfectly 

suits the Object Oriented framework. As defined in section 4.5.3, a Bayesian 

object is a fragment of BN that encapsulates the internal nodes and is linked to 

other objects through interfaces.  

 

 
Figure 5-9 : Activity object 
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Figure 5-9 shows an instance of the ‘activity’ object. It contains the five time 

parameters of an activity. ‘ES’ and ‘LF’ are input nodes (shown by dashed ellipse) 

that take their value from other objects. ‘EF’ and ‘LS’ are output nodes (shown by 

shaded ellipse) that send their value to other objects. In this example, ‘Duration’ is 

a private (encapsulated) node. Once this object is constructed, it can be saved as a 

class and used as a library as required. This makes the model construction much 

easier.  

 

For instance in example 5.3, instead of constructing the whole network node by 

node, for each activity an instance of the activity class is added to the network. 

Then the inference links are used to connect related nodes as explained in section 

5.2. Figure 5-10 shows the resulting network, which is very similar to an ordinary 

AON representation of CPM network (Figure 5-3). 

 

 
Figure 5-10 : Bayesian network for example 5.3 using object oriented framework 

5.6 Elaborating the duration node 

The essential component of the BCPM model is the ‘Duration’ node associated to 

each activity on the network. So far the ‘duration’ was assumed to be a prior node. 

But in reality the duration of an activity is affected by several known and 

unknown factors. The real power of the BCPM model is its capability to model 
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these factors and their influence on the duration of activities (and consequently the 

duration of project). 

 

This elaboration can be done in a separate BN model (a separate class in object 

oriented framework), which is attached to the ‘Duration’ node of ‘Activity’ in the 

‘BCPM’ model as shown in Figure 5-11.  

 

 
Figure 5-11 : Duration object is linked to Activity object  

 

 

The next chapter describes a BN model for ‘Duration’ of a prototype activity. 

Coupled with the BCPM model described in this chapter, it provides a 

sophisticated method for incorporating uncertainty in project scheduling.  
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6 Duration Model 

Chapter 3 discussed the issues that need to be considered in project risk analysis. 

This chapter introduces a BN model for addressing these issues. A BN model for 

duration of a prototype activity is proposed. This is a general model to 

demonstrate how different types of uncertainty can be modelled in a project 

activity. At the same time it is so flexible that it can be easily modified to model 

any specific situation to whatever level of detail is required. In conjunction with 

the BCPM model of Chapter 5 it provides an effective and flexible approach for 

modelling uncertainty in project scheduling.  

6.1 Prototype Activity 

The BCPM model introduced in chapter 5 is a general model applicable to any 

type of project. To keep the generality of the model, this chapter introduces a BN 

model for a prototype activity. 

 

(Klein et al. 1994) introduced the idea of prototype activity. In many cases large 

projects can be regarded as a set of activities which are sufficiently similar to each 

other. A prototype activity might be considered as the representative of a group of 

activities under consideration. It encompasses properties of the range of activities.  

In practice, use of prototype activities can reduce the perceived costs of risk 

analysis in terms of time, effort and money (Klein et al. 1994). The actual project 

activities then can be regarded as variations of the prototype activity.  

 

It is also possible to select a range of prototype activities with different structures 

to model a diverse range of circumstances in a complex project. Furthermore, they 

may have a life beyond the project in which they were invoked.  A library of such 

prototype models, once created and structured, can form the basis for analysis of 

activities in other similar projects.  
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The ‘Duration’ model in this chapter is intentionally designed to be very general 

to model a universal activity. The key idea here is to show the modelling process 

and also the underlying logic of the model. In practice the network can be 

modified to capture the appropriate level of detail. If an activity is regarded as less 

important, its ‘Duration’ network may be reduced to a single node (as in the 

example of section 5.3). If the activity is more risky and more sophisticated 

analysis is required, its ‘Duration’ network can be expanded to model more detail. 

It is also possible to use alternative logic to construct a model with alternative 

structure. 

 

Figure 6-1 shows the overall network proposed here for modelling different 

sources of uncertainty in duration of a prototype activity. The logic and structure 

of each of the model components is explained in the following sections. 

 

 
Figure 6-1 : BN for duration of prototype activity 

6.2 Sources of uncertainty in activity duration 

Distinction between different sources of uncertainty in duration of project 

activities will help to construct a framework for the BN model of activity 

duration. The foundations and different aspects of uncertainty is widely studied in 
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the risk management literature (Helton and Burmaster 1996). A number of authors 

argue that there are different types of uncertainty (i.e. variability and ignorance) 

that are philosophically very different, hence should be kept separate in risk 

analysis modeling (Vose 2000) and (Ferson and Ginzburg 1996). Another 

argument suggests that there is only one kind of uncertainty stemming from our 

lack of knowledge (Zio and Apostolakis 1996), (Winkler 1996) and (O'Hagan and 

Oakley 2004). In other words the distinction between uncertainties are merely for 

our convenience in investigating complex phenomena and is not meant to imply 

that these are fundamentally different kinds of uncertainty. The latter view is 

adopted here to help constructing the BN model for activity duration. The 

distinction between different sources of uncertainty in this chapter is not used for 

basic philosophical reasons. It should be thought of in terms of a separation that 

can deal with the uncertainties more easily and effectively.  

 

As (Winkler 1996) explains, the distinction between different sources of 

uncertainty helps in the following practical aspects of modeling and obtaining 

information: 

 

1. How to structure an overall model. 

2. How to identify, assess, and combine available information (e.g. hard data, 

expert judgment, and any other sources of information), and how to come 

up with probabilities to represent uncertainties. 

3. Whether to gather more information, and if so, what type of information. 

4. How to use sensitivity analysis effectively in the modeling process. 

 

The above issues are considered in designing the duration network. The following 

sections of this chapter explain how different sources of uncertainty are modelled 

separately in the BN.    

6.3 Variability and trade-off 

Concern about potential variability in relation to duration, cost or quality is an 

obvious aspect of uncertainty in a particular planned activity. An activity, no 

matter how well defined, generally involves some uncertainty associated with the 
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various performance criteria. This uncertainty may be termed the variability of the 

activity. The variability of activity is transferable between its parameters. All three 

dimensions of a project are variable and interact with each other. How long an 

activity may take depends directly on how much money is spent and/or what level 

of quality is achieved. 

 

 In other words, there is a trade-off between the uncertainty associated with the 

duration and the uncertainty associated with the cost. For example, if asked to 

estimate the probability of delay in a particular activity of a project, a manager 

may respond by contending that such probability can be reduced to virtually zero 

if there is no limitation on spending money on the activity. The activity duration 

can be viewed as a function of resource availability. Moreover, different resource 

combinations have their own costs. For example, using more productive 

equipment or hiring more workers may save time, but the project’s direct cost 

could increase. 

 

In order to model the uncertainty associated with the activity duration we need to 

consider the uncertainty associated with other aspects of activity such as cost and 

the quality of execution. However, quantifying this trade-off (variability) is 

problematic. In specific cases it might be possible to define a precise 

mathematical relationship between activity characteristics. However, such a 

relationship could be complex, intractable or even unidentifiable. Thus, in 

practice, approximate relationships are likely to be the most suitable for practical 

analysis. 

 

Nevertheless, the capability of BNs in quantifying conditional dependency 

between variables provides a simple yet reasonable way for modelling the 

variability of activity parameters. For example, Figure 6-2 shows an effective 

representation of the trade-off between the duration of an activity and the level of 

required/available resources. The properties of the nodes are summarised in Table 

6-1. 
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Figure 6-2 : Trade off sub-network 

 

The idea here is that the most likely value of the activity’s duration can be 

estimated by minimal information (i.e. subjective or based on historic data). This 

is not the mean (or average) value of the activity distribution, but it is the time that 

the estimator believes that the activity takes assuming the ‘normal’ conditions are 

applied. Its estimation should be well within the capabilities of any experienced 

planner. This is modelled by the ‘Initial Estimate’ node in Figure 6-2. 

 

The ‘Duration’ is modelled by a Triangular distribution. This is, as (Aven and 

Kvaloy 2002) suggest, a reasonable distribution because it focuses on a so-called 

‘observable quantity’ (i.e. expressing states of the ‘world’). It is also suitable from 

a practical point of view as it is much easier to estimate minimum, maximum and 

most likely values for duration rather than estimating mean, variance or other 

statistical parameters (Williams 1992a). However, estimating the upper bound of 

the duration is not easy and is usually underestimated. (Flybjerg 2006) explains 

this by psychological and political reasons. Psychological explanations account in 

terms of optimism bias; that is, most people judge future events in a more positive 

light than is warranted by actual experience. Political explanations, on the other 

hand, explain inaccuracy in terms of strategic misrepresentation. In order to 

increase the chance of winning the bid, forecasters and managers deliberately and 

strategically overestimate benefits and underestimate time (or costs). In the BN 

model (Figure 6-2) the lower and upper bond of duration is conditionally 

dependent to the ‘real’ conditions of activity. This ‘real’ condition is characterized 

by the trade-off relation between activity’s parameters.  
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Node Type States NPT 

Initial 
Estimate 

Continuous 
Interval Simulation (0, ∞) Single point estimation 

Resources Ranked Very Low, …, Very 
High 

Discrete probability 
distribution 

Duration Continuous 
Interval Simulation (0, ∞) Partition Expression   

(see Table 6-2) 
 

Table 6-1 : Nodes’ properties for trade-off sub-network  

 

The ‘Resources’ node (in Figure 6-2) represents the level of available/required 

resources that directly influence the activity duration. For simplicity I use a 

‘Ranked’ node (see section 4.5.1) with five states: {very low, low, medium, high, 

very high}. The lower the quality of resources (for example less money) the 

longer the task takes and vice versa (assuming the output quality is fixed).  

 

The ‘Duration’ node (in Figure 6-2) models the variability (trade-off) by 

combining ‘Initial Estimate’ and ‘Resources’. ‘Duration’ is a continuous interval 

node with a triangular distribution. Its NPT is a ‘partitioned expression’ which 

means the probability distribution function varies depending on the state of the 

‘Resource’ node as shown in Table 6-2. The upper, lower and medium values of 

the distribution can be defined appropriately.  

 

Resources Expression 

Very Low (1.4 ,  1.8 ,  2.5 ) Triangular IE IE IE× × ×  

Low (1 ,  1.3 ,  1.5 ) IE IE IETriangular × × ×  

Medium (0.9 ,  1 ,  1.2 ) Triangular IE IE IE× × ×  

High (0.8 ,  0.9 ,  1 ) Triangular IE IE IE× × ×  

Very High (0.7 ,  0.75 ,  0.9 ) Triangular IE IE IE× × ×  

Table 6-2 : summary of NPT for ‘Duration’ 

 

For example, in one extreme scenario (i.e. the most economical performance) 

when level of ‘Resources’ is ‘very low' the associated distribution for ‘Duration’ 

is defined as: (1.4 ,  1.8 ,  2.5 ) Triangular IE IE IE× × × (‘IE’ abbreviates the ‘Initial 

Estimate’). The interpretation of this scenario is that if the level of available 
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resources is ‘very low’ the duration of activity dramatically increases compared to 

what was initially estimated (‘Initial Estimate’ assumes normal condition). For 

instance, if the activity was initially estimated to take 10 weeks and the level of 

resources is ‘very low’ the distribution of the duration of activity is 

Triangular(14,18,25). 

 

In another extreme scenario (i.e. fastest performance) when level of ‘Resources’ is 

‘very high’ the associated distribution for the ‘Duration’ is defined as: 

. This can be interpreted as accelerating 

the activity by 25%.  

(0.7 ,  0.75 ,  0.9 ) Triangular IE IE IE× × ×

 

In normal conditions (i.e. when level of resources is ‘medium’), the distribution of 

‘Duration’ is defined as (0.9 ,  1 ,  1.2 ) Triangular IE IE IE× × ×  in which the most 

likely value is the same as the ‘Initial Estimate’. The lower and upper value of the 

distribution (i.e. representing the variability of the duration) are set as -10% and 

+20% of the ‘Initial Estimate’ respectively. 

 

Despite the simple structure of the network, it approximates the trade-off relation 

between duration and resources in an effective and practical manner. Its underling 

logic is that the duration of an activity is usually estimated based on framing 

assumptions regarding available/required resources. On the other hand, these 

framing assumptions are themselves subject to uncertainty resulting from lack of 

clarity, data and structure. Because project parameters are interrelated, duration 

variability arises from variability in other parameters. In other words the duration 

estimation would be much easier and more accurate if all the affecting parameters 

(i.e. resources) could be clearly evaluated.  

 

‘Initial Estimate’ is estimated with minimal information assuming that the level of 

resources is normal compared to similar projects and environments. But in reality, 

by its nature, the level of resources involves uncertainty and may vary from 

activity to activity or even during the course of an activity.  In the BN model the 

prior distribution (section 4.2.1) of ‘Resources’ represents the variability of 

resources.  
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As an example, for the BN shown in Figure 6-2 the prior distribution of 

‘Resources’ is set as 0.05, 0.1, 0.55, 0.2, 0.1 for Very low, low, medium, high, 

very high respectively. It is interpreted as follows: although it is more likely (i.e. 

55%) that the level of ‘Resources’ would be ‘medium’, there is a slight chance 

(i.e. 5%) that ‘Resources’ happens to be ‘very low’. This consequently will reflect 

on the ‘Duration’ distribution through conditional dependency defined in the 

‘Duration’ NPT (it is assumed that the quality of execution is fixed). 

 

Figure 6-3 shows how the variability in level of resources affects the variability in 

distribution of ‘Duration’. It shows two scenarios both with ‘Initial Estimate’ of 

10 weeks. In the first scenario where the ‘Resources’ is known to be medium, the 

distribution of ‘Duration’ has mean value of 10.5 and the 90% confidence interval 

is spread between 9.5 and 11.2. In the second scenario there is no hard evidence 

about the level of resources (we don’t know exactly what is the level of resource 

so we use the prior distribution of ‘Resources’), the mean of ‘Duration’ is still 

10.5 but the 90% confidence interval is now spread between 8.3 and 12.7.  

 

 
Figure 6-3 : Variation in duration 
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The network can model the trade-off analysis in both directions: 

 

1) Estimating the ‘Duration’ based on available ‘Resources’: 

 

If the level of available resources are restricted (for example limited budget or 

lack of experienced people) what is the effect on the activity duration? In other 

words what is the effect of ‘Resources’ on the distribution of ‘Duration’? 

  

Figure 6-4 shows this type of trade-off in different scenarios. While the ‘Initial 

Estimate’ in all scenarios is 10, changing the level of available ‘Resources’ will 

change the central value as well as dispersion of distribution of ‘Duration’. The 

estimation of ‘Duration’ is directly affected by the available level of ‘resources’. 

For example, when ‘Resources’ is known to be ‘low’, ‘Duration’ has the mean 

value of 12.6 (e.g. 26% more than the ‘Initial Estimate’) in the range of 11.2 and 

14. In contrast, when ‘Resources’ is known to be ‘high’, ‘Duration’ has the mean 

value of 7.8 (e.g. 22% less than the ‘Initial Estimate’) in the range of 7.3 and 8.4. 

 

 
Figure 6-4 : Duration changes when the level of resources changes 
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2) Estimating the level of required ‘Resources’ based on constraint on ‘Duration’ 

 

If there is a deadline on the activity what is the level of required resources? In 

other words, if we want to finish the activity by a given time how much resource 

should be allocated to the activity?  

 

This type of trade-off can be easily analysed by backward propagation in the BN 

as shown in Figure 6-5. The ‘Initial Estimate’ was 10 weeks but it is required to 

finish the activity in 8 weeks. The backward propagation updates the distribution 

of ‘Resources’. It is clearly skewed toward ‘very high’ compared with the prior 

distribution as shown in Figure 6-5. 

 

 
Figure 6-5 : Prior vs. required resources 

6.4 Known Risk  

Another important source of uncertainty is ‘known risk’. This type of 

uncertainty/risk underlies established PRM and has been thoroughly 

acknowledged by almost all authors albeit perhaps with different terminology. 

‘Known Risk’ is also referred to as: foreseen uncertainty, foreseen risk, external 
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risk and risk event. The concept of ‘known risk’ is based on a fundamental 

assumption that a list of events (conditions) that may take place is known, their 

impact on activity duration (i.e. delay) is also known and even the nature of the 

‘solution space’ is roughly known.  

 

(Kendrick 2003) defines all the significant listed project risks (i.e. the risk 

register) as known risks which are either under control or not. For known risks, at 

least in theory, it is possible to plan a control or response, but for unknown risks 

specific planning is not of much use.  Two basic options are available in 

managing known risk: dealing with causes and dealing with effects (Figure 6-6). 

 

Known controllable risks, such as use of a new technology, are at least partially 

under control and the project team may be able to modify the project plans to 

avoid or minimise the probability of occurrence of risk.  For known 

uncontrollable risks, such as bad weather or loss of key project staff, there is no 

control on the source of the risk. For these problems, the project team has to deal 

with the effects after the risk occurs. 

 
Figure 6-6 : Controllable and Uncontrollable known risks 

 

The above concept is applied to design the BN sub-network shown in Figure 6-7. 

It presents a clear causal structure that ‘tells the whole story’.  The properties of 

nodes is summarised in Table 6-3. 
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Figure 6-7 : Known risk sub-network 

 

‘Risk Event’ is a ‘Boolean’ node with two possible states of Happen/Not Happen. 

The probability of each state is conditionally dependent to the state of the 

‘Control’ node. ‘Control’ models the ‘proactive’ actions that are predicted to 

prevent or reduce the probability of the occurrence of risk. ‘Control’ is a labelled 

node with the number of states equal to the number of possible options that may 

control the risk. An obvious option is ‘no control’ or ‘ignorance’ which models 

the reactive strategy for dealing with risk. 

 

Node Type States NPT 

Control Labelled Option1, Option 2,  Manual 

Risk Event Labelled Happen/Not 
Happen Manual 

Impact Ranked Very Low, …, Very 
High Manual 

Pre-Mitigation 
Delay 

Continuous 
Interval Simulation (0,1) TNormal( Impact, 

0.01, 0, 1) 
Response Labelled Option1, Option 2,  Manual 

Delay Continuous 
Interval Simulation (0,1) (see Table 6-5) 

Table 6-3 : Nodes’ properties for known risk sub-network 

 

For example, suppose a risk event is defined as ‘Key staff leave the project team’. 

Suppose the prior probability that the risk happens (i.e. a key staff actually leaves 

the project) is estimated as 10%. The possible options for controlling this risk 

might be ‘offering better salary package’ or ‘improving staff motivation’. This 
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might reduce the probability of occurrence of the risk to 0.05. The conditional 

probability table for this known risk is shown in (Table 6-4).  

 

Risk Event Control 
no control better salary

key staff leave 0.1 0.05 

all key staff stay 0.9 0.95 
Table 6-4 : Risk occurrence is dependent on ‘Control’ 

 

(Figure 6-8) shows how the effect of ‘Control’ on ‘Risk Event’ is modelled in the 

BN. For example, if there is ‘no control’ the probability of occurrence of risk is 

estimated to be 60% (see ‘Happen’ bar in the probability graph of ‘Risk Event’ in 

Figure 6-8), while an appropriate control (e.g. paying more salary) may reduce the 

probability of occurrence of risk to 20%.  

 

 
Figure 6-8 : Control affects 'Risk Event' and 'Delay' 
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The ‘Impact’ is a ranked node (see section 4.5.1) that models the significance of 

the outcome delay. One of the benefits of this model is that the impact has a 

probability distribution. This is more realistic than the conventional ‘Probability 

Impact’ approach (as argued in section 3.1).  

 

The ‘Pre-Mitigation Delay’ node combines the probability of ‘Risk Event’ with its 

‘Impact’ to calculate the outcome delay. For reason of modelling simplicity, the 

delay is defined as a percentage of the duration of activity. It is also assumed that 

the maximum delay is not more than 100% of the activity duration. Hence, both 

the ‘Pre-Mitigation Delay’ and ‘Delay’ are continuous interval in the range of (0 

1).  Using ‘Ranked’ type (as explained in section 4.5.1) simplifies the task of 

generating the NPT. Furthermore, a simple averaging scheme (such as weighted 

mean, min, max, weighted min and weighted max) can be used to express the 

‘central tendency’ of the child node based on the value of casual parent nodes. 

This feature is used in defining the NPT for ‘Pre-Mitigation Delay’ node. It has a 

TNormal (i.e. truncated normal) distribution in the range of (0,1), the mean value 

is a function of ‘Impact’ (e.g. Impact-0.1) and variance of 0.01.  

 

 
Figure 6-9 : Impact affects Pre-Mitigation Delay 
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Figure 6-9 shows how the level of impact changes the probability distribution of 

‘Pre-Mitigation delay’. 

 

The ‘Response’ node models the management reaction to the occurred risk. It is a 

labelled node with the number of states equal to the number of possible options 

that may be taken as a response to the risk. It has the same structure and logic as 

‘Control’ node. The difference is in the concept that control deals with cause of 

risk whereas ‘Response’ deals with consequence of risk. 

 

In other words control usually takes place before a risk event happens while 

response is the reaction of a project team to the risk after it has happened. For 

instance, suppose a risk event is defined as ‘Key staff leaves the project team’. 

The possible options for responding to this risk might be ‘hiring new staff’ or 

‘reallocating the job to existing staff’ or ‘doing nothing’. Each of these options 

may change (hopefully reduce) the final delay.  

 

Similar to ‘Pre-mitigation delay’, the ‘Delay’ is defined as a percentage of the 

activity duration with the maximum of 100%. Hence, the ‘Delay’ node is a 

continuous interval in the range of (0 1). Its NPT is partitioned expression which 

is defined based on the state of the ‘Response’ node. For each state an appropriate 

factor is multiplied to the value of the ‘Pre-Mitigation Delay’. (Figure 6-10) 

shows how different responses change the probability of ‘Delay’. 

 

Table 6-5 summarises the NPT for the ‘Delay’ node in the ‘Key staff leaves the 

project team’ example, assuming that ‘hiring new staff’ and ‘reallocating the job 

to existing staff’ will reduce the delay by 60% and 30% respectively. 

 

 

State of ‘Response’ NPT expression for ‘Delay’ 

Doing nothing 1*(Pre-Mitigation) 

Hiring new staff 0.4*(Pre-Mitigation) 

Reallocating the job 0.7*(Pre-Mitigation) 
Table 6-5 : NPT for ‘delay’ 
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Figure 6-10 : Response affects Delay 

 

6.5 Unknown Factors 

Another major type of uncertainty is ‘Unknown Factors’.  This is also referred to 

as ‘unknown unknown’ (Chapman and Ward 2003), ‘unk-unk’ (Wideman 1992) 

and ‘unforeseen risk’ (Loch et al. 2006). Unknown factors often appear to be even 

more significant than ‘variation’ and ‘known risk’. 

 

“It is often said that the real risks in any projects are the ones that you fail 

to identify” (Ward 1999).  

 

(Kendrick 2003) declares that unlike known risks for which it is possible to plan a 

control or response for them (at least in theory), for unknown risks specific 

planning is not of much use.  
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“Unknown unknowns make people uncomfortable because existing 

decision tools do not address them” (De Meyer et al. 2002).   

 

A key example of unknown factors are organizational factors such as rules, 

policies, processes, standards, structure, culture, management etc. (Ward 2005) 

explains how organisation structure, co-ordination and control systems, 

communications and information systems, knowledge management, and support 

for organisation learning affect the quality and scope of project management 

undertaken. Such factors define the basic resources that project management must 

work with, and they set the tone for how project management will be able (or 

allowed) to operate. Sometimes shortcomings in organisational capabilities are not 

evident until systematic attempts to identify and manage uncertainty are made 

(Atkinson et al. 2006).  

 

(Mosleh et al. 1997) suggest using an adjusting factor for modelling the influence 

of organizational factors in probabilistic safety analysis. (Chapman and Ward 

2003) and (Chapman et al. 2006) introduced F3 factor (cube factor) which is an 

adjusting factor combined by three scaling factors: Fk for known unknowns,  Fu 

for  unknown unknowns and Fb for bias. 

 

The concept of an adjustment factor is employed for modelling unknown factors 

in the BN model as shown in Figure 6-11. 

 

 
Figure 6-11 : Unknown sub-network 
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Node Type States NPT 

Adjustment 
Factor 

Continuous 
Interval 

Simulation 
(0,10) Truncated Normal 

Adjusted 
Duration 

Continuous 
Interval Simulation (0,∞) Duration * Adj. 

Factor 
Table 6-6 : Summary of nodes’ properties in Figure 6-11 

 

Any aspect of uncertainty which is left out in the variability/trade-off part (section 

6.3) and the known risk part (section 6.4) is addressed in the ‘Adjustment Factor’ 

node.  Table 6-6 summarises the properties of the nodes.   

 

In order to quantify the influence of unknown factors on activity duration, it is 

necessary to estimate the value of the ‘adjustment factor’.  However, it will itself 

be uncertain in size. The ‘Adjustment Factor’ node is a continuous interval in the 

range of (0,10) (assuming that the maximum effect of it is tenfold). It is in the 

region of one if a negligible adjustment is involved. A factor less than one will 

signify a downward adjustment to the duration (to adjust overestimation), while a 

factor more than one signifies an upward adjustment (to adjust underestimation). 

The prior distribution for ‘Adjustment factors’ reflects the analyser’s assessment 

of unknown factors.   

 

A rational subjective probability distribution with suitable expected value and 

non-zero spread, as (Chapman et al. 2006) suggest, can quantify the adjustment 

factor. For illustration, Figure 6-12 shows the probability graph for ‘Adjustment 

Factor’, where the prior distribution is set as TNormal(0.7, 0.3, 0.5, 10). The 

mean, 10% and 90% percentile value of the distribution are 1.01, 0.59 and 1.53 

respectively. The interpretation is that the average adjustment is around one (i.e. 

the mean of distribution), however it is possible that, say in the worst-case 

scenario, a 53% increase (the upper interval of the distribution is 1.53) or, say in 

the best-case scenario, a 41% decrease (the lower bond of distribution is 0.59) is 

implemented on the duration of activity.  
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Figure 6-12 : Prior distribution for Adjustment Factor  

 

‘Adjusted Duration’ is then calculated by multiplying ’Adjustment Factors’ by 

‘Duration’. It is a continuous interval node in the range of (0, ∞). Figure 6-13 

shows the distribution of ‘Adjusted Duration’ after applying the ‘Adjustment 

Factor’ on the ‘Duration’. It is assumed that the ‘Initial Estimate’ is 10 weeks, the 

‘Resources’ is medium and the distribution of ‘Adjustment Factor’ is similar to 

Figure 6-12. 

 

 
Figure 6-13 : Adjusted duration 
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The distribution of ‘Duration’ (i.e. before adjustment) has mean, 10% and 90% 

percentiles equal to 10.33, 9.53 and 11.23 respectively. Whereas the distribution 

of ‘Adjusted Duration’ has mean, 10% and 90% percentile equal to 10.55, 6.08 

and 15.88 respectively. Note that the distribution of ‘Adjusted Duration’ is much 

wider than distribution of  ‘Duration’. This is because the prior distribution of  

‘Adjustment Factor’ is wide (Figure 6-12).  

 

Choosing an appropriate ‘Adjustment Factor’ is important in the process of 

estimating the duration of activity even though its estimation is highly subjective. 

At the same time, unknown unknowns are not always caused by spectacular out-

of-the-blue events. They usually arise from the unanticipated interaction of many 

events, each of which might, in principle, be foreseeable. Dealing with unknown 

uncertainty requires a greater emphasis on learning. The challenge in managing 

unknown uncertainty is to find the balance between planning and learning. 

Learning permits adapting to unknown uncertainty (De Meyer et al. 2002). For 

example, organizational factors act as common causes of delay in many activities.  

All project activities take place in a wider organisation context and how the 

organisation operates will have a major impact on what can be achieved. 

 

One of the great advantages of Bayesian Networks as discussed in section 4.2 is 

their capability of parameter learning. This can be achieved by updating the 

posterior probability distribution in the light of new evidence (observed values). 

The prior distribution of ‘Adjustment Factor’ might seem worryingly subjective. 

However, this can be updated when for example the first phase or predecessor 

activity of a project is completed and its actual duration is identified. This new 

information is propagated through the network and updates the distribution of 

‘Adjustment Factor’. This updated distribution is believed to be a better 

estimation of ‘Adjustment Factor’ and can be used in later phases or successor 

activities. 

 

To illustrate this crucial concept, Figure 6-14 shows the posterior distribution for 

the ‘Adjustment Factor’ after entering new evidence in ‘Adjusted Duration’. 

Suppose the ‘Initial Estimate’ was 10 weeks and the ‘Resources’ was known to be 

medium. The prior distribution of ‘Adjustment Factor’ was similar to Figure 6-12. 
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Now suppose that this activity is finished and the actual duration is known. Figure 

6-14 shows the result of two scenarios. In the scenario called ‘ahead’ the activity 

was actually finished in 8 weeks (sooner than the initial estimation of 10 weeks). 

The expected value of the updated distribution of  ‘Adjustment Factors’ is 0.77 

(the probability graph is skewed to the left). In the scenario called ‘late’ the 

activity was actually finished in 12 weeks (later than the initial estimation of 10 

weeks). The expected value of the updated distribution of  ‘Adjustment Factors’ is 

1.16 (the probability graph is skewed to the right). Also the spread of the updated 

distributions is much less than the spread of the prior distribution (the posterior 

distributions have sharp graphs whereas the prior distribution has a flat graph in 

Figure 6-14). 

 

 
Figure 6-14 : Distribution of 'Adjustment Factor' is learnt 

 

This updated distribution is a better estimation of ‘Adjustment Factor’ because it 

is learnt from hard evidence (observed information). Assuming that unknown 

risks are common between activities, this learnt distribution can be used in 

estimation of duration of successor activities.   
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For example, suppose the activity shown in Figure 6-14 is the predecessor of a 

similar activity (i.e. common unknown factors) which was initially estimated to 

take 20 weeks with medium level of resources. Knowing that the predecessor 

activity was actually late, Figure 6-15 shows how the learnt distribution of 

‘Adjusted Factor’ (i.e. the ‘late’ scenario in Figure 6-14), is used (dashed ellipses 

in Figure 6-15) to update the distribution of ‘Adjustment factor’ and consequently 

the estimation of ‘Adjusted Duration’ for the successor activity. Note that in the  

prior scenario the ‘Adjustment Duration’ has a wide distribution with mean, 10% 

and 90% percentiles equal to 21.1, 12.5 and 31.9 respectively. However, the 

updated distribution has a much narrower distribution with mean, 10% and 90% 

percentiles equal to 23.99, 21.27 and 26.85 respectively. 

 

 
Figure 6-15 : Learnt distribution is used to estimate the duration of a successor activity 
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6.6 Total Duration 

By connecting the three above sub-networks together, the ‘Duration’ model now 

is capable of capturing different aspects of uncertainty in duration of a general 

project activity as was explained in section 6.1. Figure 6-16 shows the cumulative 

distribution for the total duration of a task in three scenarios.  

 

In the baseline scenario, the only available information (evidence) is that the 

‘Initial Estimate’ is 10 weeks. There is no evidence regarding level of available 

resources, unknown factors and possible known risks. Using the prior 

distributions the model generates the distribution for ‘Total Duration’ which has a 

mean of 12 weeks, and the 80% upper percentile is 15.5 weeks. 

 

The second scenario (‘low’ in Figure 6-16) estimates the worse case scenario 

(although the model can estimate even worse conditions). The ‘Initial Estimate’ is 

still 10 weeks but available ‘Resources’ is thought to be in the ‘low’ level, 

unknown factor has negative impact on duration and there is a high chance that 

some external event happens. In this scenario the mean value for the generated 

distribution for ‘Total Duration’ is 19.5 weeks and the 80% upper percentile is 

23.7 weeks. 

 
Figure 6-16 : Total Duration in different Scenarios 
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The third scenario (‘high’ in Figure 6-16) estimates the best-case scenario 

(although the model can estimate even better conditions). ‘Initial Estimate’ is still 

10 weeks but available ‘Resources’ is thought to be in the ‘high’ level, unknown 

factor has positive impact on duration and there is a no chance that some external 

event happens. In this scenario the mean value for the generated distribution for 

‘Total Duration’ is 7 weeks and the 80% upper percentile is 10 weeks.  

 

This simple yet powerful network informs us about the source of the uncertainty a 

project may face and the conditional nature of the estimation of activity duration. 

It enables us to manage and plan responses to specific or general sources of 

uncertainty. It explicitly deals with all the objectives that were addressed in 

Chapter 3 including: handling sources of uncertainty, handling trade-off analysis, 

adjusting subjective estimates, quantifying common causal risks, sensitivity 

analysis and dynamic learning. It also follows (Chapman and Ward 2000) 

suggestion that:  

 

“Estimation should be so easy to use that the usual resistance to 

appropriate quantification based on lack of data and lack of comfort with 

subjective probabilities is overcome”. 

6.7 Practical Implementation  

The BN models introduced in Chapter 5 and 6 apply the best tool for modelling 

uncertainty (BNs) to the most common approach of project planning (CPM). They 

offer a rigorous method for incorporating uncertainty in project scheduling. The 

presented approach can be applied to any project at any required level of detail. 

 

The method has two main components: 

 

• BCPM network 

• Duration network 

 

The first step is to build the BCPM model (i.e. the scheduling engine of the 

method, which calculates the probabilistic start and finish time for all the project 
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activities). It starts with specifying individual activities, their sequence and the 

precedence dependency between them. Similar to classic CPM, a work breakdown 

structure (WBS) can be used to develop the list of activities. Using the procedure 

describe in section 5.2, the project network is transformed to a BN. 

 

The next step is to elaborate the BCPM model using the ‘Duration’ network as 

explained in this chapter. This will capture different sources of uncertainty, their 

causal relationship and their influence on the duration of activities. The ‘Duration’ 

networks will be attached to the BCPM network to construct an integrated BN 

model. 

 

The integrated BN model provides a rigorous quantitative technique that enables 

us to do advanced assessments in the risk analysis (see 2.2) stage of the Risk 

Management Process (RMP). Nevertheless, applying such advanced analyses 

requires adopting a formal RMP (see section 2.1). Depending on what RMP is 

adopted in the project organisation, there are other stages prior to the risk analysis 

stage, for example, define, focus and identification stages in the PRAM guide 

(PRAM 2004). There are also other stages that follow the risk analysis stage, for 

example, planning and management stages in the PRAM guide (PRAM 2004). 

Decisions about which RMP is appropriate and what are the other required stages 

is not discussed in this thesis. The BCPM model is general and flexible enough to 

be employed in any RMP. 

 

The BCPM model not only incorporates uncertainty in the CPM approach but also 

takes full advantage of BN capabilities in addressing the shortcoming of current 

practice of project scheduling under uncertainty (i.e. MCS based approach). By 

using the forward propagation capability of BNs, it can quantify possible sources 

of uncertainty and estimate their impact on the project duration (i.e. predictive). 

By using the backward propagation capability of BNs, it provides the analysis of 

various time-cost combinations and also updates our knowledge about unknown 

risks by dynamic learning of adjustment factors (i.e. diagnostic). 

 

Several considerations (i.e. trade-off between richness and efficiency of the 

model) may underlie the decision about what level of detail is appropriate. On the 
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one hand developing the project network at too high level of detail will obscure 

important issues that should be addressed. On the other hand developing the 

project network in great detail may be too complex, requiring too much 

information (and effort) that is not cost-effective.  

 

Nevertheless, what makes the BCPM model unique and powerful is its capability 

to model the project at any required level of detail (available information). If an 

activity is regarded as less important (i.e. no detailed analysis is required) its 

duration can be modelled (with minimum level of information and effort) by a 

single node with an appropriate probability distribution (e.g. as in the example of 

section 5.3). For those activities that require detailed analysis, the ‘Duration’ node 

can be elaborated (e.g. the ‘Duration’ network in section 6.6) to provide better 

insights about sources of uncertainty and possible decision alternatives.  
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7 Evaluation and Case Studies 

The aim of this chapter is to evaluate the proposed models. Section 7.1 discusses 

the general difficulty of empirical evaluation in project risk management and 

defines criteria for evaluating the models. Section 7.2 and 7.3 describe the 

application of the proposed BN models on two projects. The first project is taken 

from the literature and the second project is a real case study. 

7.1 The challenge of evaluating project risk analysis 

methods 

The traditional criteria for validity and reliability (i.e. rooted from the positivist 

perspective) is based on empirical data such as evidence, objectivity, truth, 

deduction, reason, fact and mathematical data (Golafshani 2003). Usually in 

quantitative research study samples are needed to gather the relevant information 

and statistics may be used to evaluate the results.  

 

However, in the field of project risk management there is no such empirical data 

available and it is very hard to conduct any empirical studies in which the 

effectiveness of the model in producing acceptable results is evaluated. In a study 

to find which methods of project risk analysis were most useful in practice, 

(Galway 2004) revealed a striking deficiency in the literature cited on the use of 

the risk analysis techniques. There are few or no sets of case studies that 

empirically evaluate project risk analysis and illustrate when the methods worked 

or failed. The reasons behind this lack of empirical data in project management 

include (Galway 2004): 

 

• Details of business projects and management methodologies and data are 

often considered proprietary. The experience of what works and what does 

not in project management is often considered to be a key competitive 

advantage. 
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• Many high-technology areas and public sector projects may impose levels 

of classification that effectively prohibits access to their details. 

• Managers are often reluctant to submit to any quantitative risk analysis as 

it may reveal poor performance or analysis or both. 

• An effective review of a project requires extra resources, which in many 

cases are not available.  

 

The lack of available data and case studies make it almost impossible to do any 

experiments for validation purpose. Therefore, many researchers have developed 

their own concepts of validity (Golafshani 2003). In order to evaluate the 

proposed BN models and validate their results two criteria are considered, namely 

accuracy and informativeness.  

  

‘Accuracy’ concerns the closeness between the result of the model and the reality. 

It is clearly an important determinant of the model trustworthiness. To assess the 

accuracy of the CPM calculation in the BCPM model, a case study taken from 

literature is used to compare the result of the model against the result of the MCS 

approach. Section 7.2 explains this case study.  

 

On the other hand, accuracy cannot be emphasized too strongly because the model 

is used to predict the future or currently unknown events or states of the project. 

Accuracy alone is not sufficient for a model to be trustworthy. The model is not 

‘truth’, and it is never possible to say for sure that the model is perfect (Kaplan 

and Burmaster 2006). Moreover, the evolution of projects as they face challenges 

and are modified means that a risk analysis cannot be evaluated just by accuracy.  

For example, an early project schedule may be perfectly competent, but a change 

in requirements or a mid-course modification in technology would make the 

original schedule “inaccurate”.   

 

Therefore ‘informativeness’ is defined as the second criterion for evaluating the 

model, which means the model is informative and constructive in a sense that it 

can help us structure our knowledge about the project. In other words, the second 

criterion is the analytical capabilities of the model and demonstrating how it can: 
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• Help the analyst to structure thinking. 

• Provide richer insights about decision alternatives. 

• Provide a better picture of different parameters affecting the project. 

• Provide a better understanding of the project and improve communication 

between different parties. 

• Makes estimation easier and more systematic. 

• Clarify what estimates measure and what they do not measure 

 

Section 7.3 uses a case study taken from a real construction project to demonstrate 

the informativeness of the BCPM and the ‘Duration’ network. 

7.2 Aircraft Development Example 

This example aims to test the accuracy of the BCPM model. The key hypothesis is 

that the predicted distribution for the project duration in the BCPM model is 

consistent with the established state-of-the-art scheduling methods (i.e. MCS). 

This will show the correctness of the critical path calculation (section 5.2) of the 

BCPM model. 

 

This example has been used in a number of studies (Bowers 1994) and (Williams 

2004). The basis of the project network is actual data from the UK Ministry of 

Defence (MoD). However the data are illustrative. 

 

Figure 7-1 shows a simplified CPM graph describing the development of a 

military aircraft. It shows parallel streams of activities for developing the 

airframe, engine and avionics, as well as their assemblage. Note that D/b is an 

abbreviation for ‘Development bath’, or test aircraft, a key element in the 

development programme. 

110 



General 
design

D/b airframe 
design

Engine 
development

Engine 
design

Engine 
production

D/b airframe 
manufacture

Assemble D/b 
aircraft

Engine/frame 
flight trials

Ready to 
assemble

Airframe 
production

D/b engine 
manufacture

Interim 
avionics

Avionics 
design

Avionics 
test

Avionics 
flight trials

Avionics 
production

 
Figure 7-1 : CPM network for aircraft development example 

 

 

Table 5-1 summarises the probability distribution for the duration of activities.  

 

Activity Distribution Triangular Distribution Data 
Min Mode Max 

General design Triangular 4 10 21 Bowers 
Engine design Triangular 21 32 55 Bowers 
Avionics design Triangular 1 7 19 Bowers 
D/b airframe design Triangular 6 15 32 Bowers 
D/b engine manufacture Triangular 7 9 11 Bowers 
Interim avionics Triangular 7 14 27 Bowers 
D/b airframe manufacture Triangular 8 11 17 Bowers 
Assemble D/b aircraft Triangular 3 5 10 Bowers 
Engine development Triangular 20 23 40 Williams
Engine production Triangular 12 13 14 Williams

Avionics test Gamma mean 10 mode 5 Williams

Avionics flight trials Discrete Relative probability 
1:2:1:1 of 4, 5, 6, 24 Williams

Engine/frame flight trials Discrete Relative probability 
1:2:2:1:0.5 of 5, 6, 7, 8, 13 Williams

Airframe production Triangular 12 14 18 Williams
Avionics production Triangular 14 16 24 Williams

Table 7-1 : Data for aircraft development example 
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As declared in the table, information for some activities are taken from (Bowers 

1994). Other activities which are not explained in (Bowers 1994) are illustrative 

and taken from (Williams 2004). The time-unit throughout is months. 

7.2.1 Simulation result  

The probability distribution of the duration of the project using PertMaster 

software (Primavera 2008) is shown in Figure 7-2.  

 

The mean duration for the project is found to be 90.5 months, and the 90% upper 

percentile (i.e. the time by which you would be 90% sure that the project will 

finish) is 103 months.  

 

 
Figure 7-2 : Simulation result for the distribution of project duration. 

 

7.2.2 BCPM model  

Figure 7-3 shows the BCPM model for the aircraft development example. The 

result of the probability distribution of project duration is shown in Figure 7-4. 

The mean duration for the project is estimated as 91.4 months, and the 90% upper 

percentile is 101.4 months. 
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Figure 7-4 : probability distribution graph by Bayesian Network 

 

 

As is summarised in (Table 7-2) the probability distribution of project duration 

calculated by the BCPM model is very similar to the one calculated by the MCS 

model. This shows that the primary target prediction of the BCPM model is 

consistent with the established MCS results. In other words, the BCPM model 

accurately performs the critical path calculations. 

 

 

Method Mean SD Median
Percentile 

10% 30% 50% 70% 90% 

Simulation 90.5 9.2 91 79 85 90 96 103 

Bayesian Network 91.4 12.2 90.9 81 87 91 95 101.4
Table 7-2 : Comparisons between BN and simulation 
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7.3 Health & Fitness project 

This project was a major construction/refurbishment project including design and 

construction of a new Health and Fitness club and bar facilities in Queen Mary 

University of London (it is abbreviated to H&F project). The site of the project is 

the old student union building. The following parties were involved in the project: 

 

• Owner: Queen Mary University of London (QMUL). 

• Client: Student Union in QMUL. 

• Designer: A private company responsible for engineering and architectural 

design.  

• Consultant: A private company responsible for auditing, budgeting and 

surveyor. 

• Contractor: A private company responsible for project execution. 

• Project manager: A private company responsible for managing the 

project. 

• Project office: Administrative office in QMUL responsible for governing 

the project (and all other projects owned by QMUL) and coordinating 

between different involving parties. 

 

The information used in this case study was provided by the Project Office (PO) 

in QMUL. My formal request for accessing the information of the H&F project, 

was approved and supported by the head of PO. No formal Risk Management 

Process (RMP) was implemented in the project. As a result, there was little formal 

documentation and the data acquisition was difficult.  

 

In a period of two months (from January to March 2008) several data gathering 

sessions were held in the PO. The data acquisition process included: 

 

• Unstructured interviews: I was introduced to two of the senior project 

managers in the PO that were involved in the H&F project. In five 

interview sessions, qualitative information about schedule risk (e.g. 

different sources of risks and their impact on project) was gathered. I also 

115 



• Reviewing the project documents: Detailed and quantitative information 

(e.g. project network, milestones) was extracted from the project plan, 

proposed and approved schedules, progress reports, risk register and 

minutes of meetings.  

 

Background and summary of the project: 

 

The project was proposed and approved in 2005. The initiating and planning 

phases of the project started in 2006. The construction budget was £2.7m and the 

whole project cost was estimated at around £4m. The execution phase of the 

project was divided into the following two phases:  

 

I) Enabling work   

i. Demolishing the existing facilities  

ii. Relocating the prayer room 

II) Main Scheme. 

 

Through a tendering process the contractor was appointed (apparently based on 

the lowest price proposal) and the contractual completion date was set as 27th 

August 2007. The project schedule was produced based on this completion date. 

Figure 7-5 shows the high level plan for the project. 

 

Phase (I) started on 22nd Jan 2007 and was planned to take 8 weeks. The same 

contractor was appointed for phase (II). The main scheme started on 26th March 

and was originally planned for 22 weeks. 
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As part of the owner’s requirement a risk register was developed (see Figure 7-6). 

In total 24 risks were identified including: 7 duration related, 5 cost related, 4 

health and safety and 8 general/requirement risks. The risk register was based on 

an industry’s template and had no actual effect in the project scheduling process. 

 

It is notable that even the very definition of risk items was confusing. It is not 

clear what is the source and what is the consequence of risk. Some risk items are 

very specific and some are very general. For instance, ‘Indicative scheme cost 

Exceeds budget’ and ‘Delay in receipt of contractor’s construction phase plan’ are 

both items on the risk register. The latter is a specific source of time risk while the 

former is a general consequence of cost risk. Other examples of unclear risk items 

are ‘completion of prayer room’ and ‘anticipating the completion date’ which 

seem to be goals or deadlines rather than risks. 

 

The scoring scheme, based on the ‘Probability Impact’ concept, was as inaccurate 

as the risk definition. For each identified risk, a score (1, 2, 3, 4) was assigned to 

the probability, mitigation probability and cost impact (see Figure 7-6). The total 

score of each risk was calculated by adding these scores. The scoring system was 

not sensible because: 

 

• The basis of assessing the scores was purely subjective (guess). 

• The definition of scores was ambiguous. For example ‘Mitigation 

Probability’ had 4 states: possible, maybe possible, unlikely and highly 

unlikely taking the score of 1, 2, 3 and 4 respectively. This was very 

confusing or at least unclear. 

• The method of calculating the final score (simply adding the scores for 

probability, mitigation and impact) was questionable.  

• It was just useful for prioritising the risks but it failed to quantify the 

possible impact of the risks on the project in a meaningful way. 

118 



 

Fi
gu

re
 7

-6
 : 

R
is

k 
re

gi
st

er
 fo

r 
th

e 
H

&
F 

pr
oj

ec
t 

 

119 



What actually happened in the project was very far from what was planned and 

the project’s risk analysis approach proved to be useless. In the ‘Enabling Work’ 

phase, relocating the prayer room was much more demanding than anticipated. As 

a result it finished 4 weeks later than the planned date (58% delay) and 

consequently the main scheme was delayed. However, the target completion date 

remained fixed as the end of August. 

 

In June 2007 it was reported that the project was 4 weeks behind the agreed 

schedule. The progress was very slow and the schedule risk was getting worse. 

The contractor reported a number of reasons for the delay such as ‘asbestos works 

in the existing ceiling’ and ‘underground drainage layout’ (unanticipated work). 

The consultant did not agree with the reasons (i.e. start of dispute between 

contractor and consultant).  

 

It was obvious that the completion date was not going to be met. The delay 

expanded in July and August to 6 and 9 weeks respectively. In August (the 

original completion date) the new completion date was set as the end of October. 

At this time the dispute between the contractor and the consultant increased. Each 

party blamed the other for the delay and the project faced ever-increasing 

problems. The contractor requested a time extension to cover the overrun, which 

was rejected by the consultant.  

 

To make the situation worse, further problems happened and consequently the 

project faced further delays. In October the contractor changed its site 

management team completely. Also sub-contractors failed to deliver on time. A 

new completion date was proposed as the end of November. In November the new 

completion date was estimated as the middle of December. In December the 

project was 14 weeks behind. Surprisingly enough as time was passing instead of 

getting closer to the completion date, it was actually getting later. The project was 

terribly behind its schedule and mitigation was on the basis of the damages (e.g. 

cost overrun, continuing noise and disturbance on the site) limitation.  

 

120 



In December 2007 (i.e. five months after the original contractual finish date), still 

there was not any clear idea how long the remaining activities were going to take 

and when the project would be finished. 

 

In the next few months the dispute between the contractor and the consultant got 

worse. The contractor claimed a number of new (proposed) dates for the project 

completion but none of them was achieved. The project eventually completed at 

the end of May 2008 with some 40 weeks delay.  

 

Although there was a complete project plan along with a risk register, the project 

was far behind its planned time and budget. How useful were the project plan and 

the risk register? What went terribly wrong that caused this 160% schedule 

slippage (and probably the same extent over budget)? The next section describes 

how the BN approach of Chapter 6 could address these questions. 

7.3.1 BN model for the H&F project 

Before discussing the developed BN model for the H&F project, it is necessary to 

clarify the scope of the model. There were several aspects of the project (e.g. 

project finance, project organization, bidding and contracts, judgement over 

claims, and risk ownership) that were not addressed here. The reason was because 

in the process of data gathering, I realized that the required information about 

some of the sensitive aspects of the project (such as finance and governing the 

project) was either unavailable or inaccessible (see section 7.1 for reasons for 

reluctance to reveal the data). Nevertheless, the accessible data was sufficient for 

the purpose of this case study (i.e. demonstrating the applicability and usefulness 

of the BCPM model). As was mentioned in section 6.1, if more detailed analysis 

is required (assuming the information is available), the BCPM model is capable of 

capturing any required level of detail. The BN introduced in this section is a 

simplified high-level model of the project from the owner’s (Queen Mary 

University of London) point of view. It aims to show how the BCPM model could 

incorporate the uncertainty and risk affecting the project duration in a sensible, 

robust and yet simple manner.  
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Identifying sources of uncertainty: 

Through several interviews with the key members of the project team (senior 

project managers in the project office in QMUL and also the external project 

manager), examining the project’s documents as well as reviewing relevant 

literature in the construction industry, for example (Mbachu and Vinasithamby 

2005), (Winch and Kelsey 2005) and (Chapman 2001), the following problems 

were highlighted as the main causes of delays in the H & F project: 

 

Unrealistic project deadline:  

The idea was to launch the facilities at the start of the academic year (September 

2007). In order to mitigate possible delays, a 6 weeks contingency was included. 

The planned deadline of 24th August 2007 was very tight and unrealistic. In fact 

all other contractors who responded to the tendering invitation had estimated the 

duration much longer than 22 weeks (the average of all the proposed periods for 

the contract period was 26 weeks). The project had a fixed-price contract and the 

‘Liquidated and Ascertained Damages’ (LAD) was agreed as £5000 per week (i.e. 

penalty for every week delay from the contractual completion date due to 

contractor’s fault). However ‘Extension of time’ (EOT) claims (i.e. contractors 

often challenge the enforceability of LAD) are very difficult (Williams 2003c) and 

also they are a reactive mechanism to transfer the liability of the delay risk to the 

contractor not to prevent or manage it. The sensible approach would be to either 

correct the time constraint to be more realistic and achievable or properly manage 

the affecting resources (see section 6.3) in a way to meet the tight time constraint. 

The H & F project had a fixed-price contract and the main resources were 

supplied by contractor and consultant. 

 

Contractor:   

‘Bid to win’ is a common strategy in bidding a construction project (Williams 

2003c). The contractors’ survival depends on winning new contracts. In the highly 

competitive market an increasingly important element in winning a bid is to 

accept tight time-constraint contracts. However, the ability to deliver the project 

on time (i.e. contractual time) is a matter of experience, productivity and 

efficiency. The contractor’s quality in areas such as management, planning, 

control, pricing and finance, resources (funding, personnel and equipment), and 

122 



handling subcontracts has a direct effect on the project duration. Apparently the 

appointment of the contractor was based on lowest-price proposal. Nevertheless 

the inefficiency and poor quality of the contractor was a major cause of delay in 

the H & F project (for example, lack of experience in estimating the required 

effort and generating a realistic detailed plan, inability in handling sub-contracts, 

changing the site management team). 

 

Consultant:  

A private company won separate contracts for design, quantitative survey and 

project auditing. Its responsibilities included a wide range of areas such as 

providing prompt and complete design (i.e. plan, architecture, mechanical and 

electrical), supplying required and accurate information, resolving technical issues 

promptly, auditing and monitoring the project progress, communicating with the 

contractor and reporting to the project office. Although the main delay occurred in 

the construction phase, the quality of design played an important rule and had a 

direct effect on the construction period. On a few occasions during the main 

scheme lack of detailed and finalised design caused significant delay on the 

project. For example, the lighting and electrical design was not available at the 

required time causing significant delay on installing the lighting and electrical 

system. Another example was a complete change in the design of the air 

conditioning system that introduced several technical problems and significant 

delay. A crucial source of delay in the H & F project was related to the quality of 

the consultant. 

 

Known risk:  

There were a number of time-related risk items which were identified in the risk 

register. These were foreseeable external event/conditions that could impact on 

project duration. For these risks, it is often possible to predict appropriate control 

mechanisms (to prevent the risk) or response mechanisms (to reduce the outcome 

delay). For example, ‘noise and access problem’ was predictable because the 

project’s site was located in the middle of an academic department. To reduce the 

noise disturbance, delay in some activities (e.g. demolition) was predictable. A 

possible response would have been to introduce overtime shifts (i.e. before/after 

normal office hours or weekends) to perform these noisy activities.  
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Unknown risk: 

 These are all other unidentified/unrecognised sources of delay. For example, 

organizational factors turned out to be very important in the H & F project 

because several parties (e.g. client, designer, contractor, consultant and project 

office) were involved. These include aspects such as coordination, 

communication, supervision, clear roles and responsibility and decision-making, 

which are common throughout all activities. They are especially important when 

the project starts to go off track (early signals of delay). How the different project 

parties respond and cooperate with each other to put the project back on track is 

very crucial. It appeared that the H&F project suffered from a number of 

organizational problems such as unclear definition of roles and responsibilities 

and also ineffective communication between different parties. Rather than 

coordinating with each other to find solutions for the project problems, the parties 

involved (i.e. contractor and consultant) blamed each other and refused to take 

responsibility.  

 

Constructing the BN: 

After gathering the information and identifying the above sources of delay, the 

next step was to construct the BN model of the project. As explained in section 

6.7, the model has two main components: Duration and BCPM. 

 

The Duration model captures sources of uncertainty on activities duration. A 

customized version of the BN model introduced in section 6.6 was built to model 

the above sources of delay in the H & F project. As shown in Figure 7-7, a minor 

modification was made in ‘Resources’ section. Two new ranked nodes (as defined 

in section 4.5.1) were introduced to model the quality of ‘Contractor’ and 

‘Consultant’ as main drivers of the resource quality. The level of Resources then 

was defined as the minimum of the quality of ‘contractor’ and ‘consultant’. This 

reflects the conservative assumption that the level of resource is high if only both 

of contractor and consultant have high quality. 

 

The rest of the network has the same logic and structure as the BN for duration of 

prototype activity explained in section 6.6. 
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Figure 7-7 : Customised version of activity network for H&F project 

 

The BCPM part of H&F project model was built based on the high level project 

plan (Figure 7-5) as shown in Figure 7-8. It models the three main phases of the 

project (i.e. demolition, prayer room and main scheme). Each phase has a set of 4 

nodes (i.e. ES, EF, LS, LF) to calculate the CPM time parameters as discussed in 

section 5.2.  

 

The ‘Demolition’ phase was less complex so it has a more simplified duration 

model. It only contains ‘known risk’ to model possible identified risks such as 

‘finding asbestos’ (see Figure 7-8).  

 

The prior probabilities for the BN nodes were assessed. This assessment was 

based on relevant information (when data was available) or explicit 

assumptions/subjective belief (when data was not available/accessible). 

 

The ‘Initial estimate’ for ‘demolition’ and ‘prayer room’ was set 6 and 7 weeks 

respectively, equal to their duration in the original project plan (Figure 7-5). But 

the duration of ‘main scheme’ in the original plan (22 weeks) appeared to be too 

optimistic. Therefore, the ‘Initial Estimate’ for the ‘main scheme’ was set to 26 

weeks, equal to the average of durations proposed by four different contractors 

(i.e. 22, 26, 31, 25 weeks) who had participated in the tendering.  
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The prior probabilities for quality of ‘Contractor’ (and ‘Consultant’) were set as 

0.05, 0.25, 0.55, 0.1 and 0.05 for very low, low, medium, high and very high 

respectively. In the absence of previous data or formal evaluation, this simply 

reflects the assumption that the quality of the contractor (consultant) is more 

likely to be at medium level. 

 

The prior distribution for the ‘Adjusted Factor’ was set as TNormal(0.7, 0.3, 0.5, 

10). This appears a rational estimation because with mean, 10% and 90% 

percentile values equal to 1.01, 0.7 and 1.53 respectively, it reflects the 

assumption that although the average adjustment is negligible, it is possible that 

the initial estimation is 30% (i.e. 0.7 IE× ) overestimated or 53% (i.e.1.53 IE× ) 

underestimated.  

 

As explained in section 6.4, the ‘Adjustment Factor’ can be learnt as more 

information becomes available. The learning is made by the dashed link from the 

‘Adjustment Factor’ in the ‘Prayer Room’ phase to the ‘Adjustment Factor’ in 

the ‘Main Scheme’ phase. 

7.3.2 Results and analysis 

The model is capable of different types of analysis depending on how much data 

is available. The first analysis is the baseline estimation for the project duration. 

This is the initial prediction of the project completion with minimal information 

using prior probabilities (as explained before) without considering the occurrence 

of ‘known risk’ (i.e. no information is available about known risks).  

 

Figure 7-9 shows the result of the cumulative distribution for the main scheme 

phase and the probability distribution for the overall project duration. For the 

main scheme phase the mean is 32.3 weeks, the 80% percentile is 42 weeks and 

there is only 40% chance that the phase finishes in 22 weeks (the contractual 

deadline). For the overall project duration, the mean and 80% percentile are 41.6 

and 53.5 weeks respectively. This initial prediction of the model is very 

powerful. Because even at the early stages of the project with the minimum 

available data, it reveals that the original project schedule was unrealistic and the 
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chance that the project would be finished on the contractual deadline was only 

40%.   

 

The main power of the model emerges in handling various ‘What if?’ type 

analysis. It enables us to study different scenarios and quantify them based on 

available information or underlying assumptions. To illustrate this type of 

analysis, Figure 7-10 shows the probability distribution graph for the duration of 

main scheme phase and the cumulative distribution for the project duration in 

three different scenarios: 

 

In the first scenario (called ‘Known Risk’ in Figure 7-10), I was interested in 

modelling the effect of occurrence of (identified) risks on the project completion. 

For instance, one of the identified risks in the risk register (Figure 7-6) was 

‘finding asbestos within existing building’. If this occurs, it requires extra health 

and safety considerations that probably would interrupt the project. For 

simplicity, I assumed that the impact of this risk is medium. The new 

information/assumption was fed to the model (i.e. entering evidence in the 

relevant nodes) and propagated through the network. Table 7-3 summarises the 

parameters of the outcome distribution for the project duration and also the main 

scheme phase. The mean and 80% percentile for the project duration distribution 

has changed to 53.5 (was 42 in the base-line scenario) and 68 (was 53.5 in the 

base-line scenario) weeks respectively. Although the influence of possible 

control or responses on this risk are not modelled here, it could be easily 

modelled if the detailed analysis is required. For example, carrying out surveys to 

spot the existence of asbestos before commencing the work and then out-

sourcing the asbestos removal to specialist sub-contractors to save the time are 

possible control and responses relevant to this risk. 

 

In the second scenario (called ‘Adjustment’ in Figure 7-10), I assumed, based on 

apparent organisational issues in the project (such as unclear definition of roles 

and responsibilities and ineffective communication), that the adjustment factor is 

greater than one. For example, by entering 1.2 as evidence in the ‘Adjustment 

Factor’ node and propagating through the network, the new estimation for the 

probability distribution of the project duration is achieved as summarised in 
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Table 7-3. The mean and 80% percentile has changed to 48.2 and 52.6 weeks 

respectively. 

 

The third scenario (called ‘Worst case’ in Figure 7-10) is a combination of the 

previous two scenarios. Here, I assumed that not only external risks might 

happen (e.g. finding asbestos) but also the value of adjustment factor is known to 

be greater than one (e.g. 1.2).  After entering evidence in the relevant nodes and 

propagating through the network, the new estimation for the probability 

distribution of the project duration is achieved (Table 7-3). The mean and 80% 

percentile value for the project duration has changed to 67 and 85 weeks 

respectively. This scenario reflects the real circumstances of the H&F project. 

What actually happened during the construction of project was a combination of 

external risks (such as finding asbestos) and internally generated risk (i.e. 

unknown risks such as organisational issues).  

 

It is notable that the probability of achieving the contractual deadline (i.e. 30 

weeks) in the worst case scenario (i.e. similar to real condition of the project) 

was less than 5%. In others words without significant changes (i.e. managing 

sources of uncertainty as explained before) it was extremely unlikely to deliver 

the project on time.  

 

 

 

Scenario 

Main Scheme Duration Project Duration 

Mean SD 80% Mean SD 80% 

Base-line 32.37 14.8 42 41.6 18 53.5 

Known Risk 37.4 18.2 54.2 48.1 24.6 68 

Adjustment 37.9 9 42 48.2 9.7 52.6 

Worst Case 53.2 14.4 68.3 67 18.2 85 
Table 7-3 : Summary of probability distribution of Figure 7-10 
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The trade-off relationship between duration and resources can be analysed using 

diagnostic capability of the BNs (i.e. backward propagation). This is another type 

of ‘what if?’ analysis that answers questions about the cause node based on 

evidence entered in the child node. In the next scenario (called ‘Deadline’ in 

Figure 7-11), I was interested to know what level of contractor’s quality is 

required in order to meet the contractual deadline. Figure 7-11 shows the 

probability graph for ‘Contractor’ node when 22 is entered as evidence in the 

‘Duration’ node and assuming all other nodes are the same as the base-line 

scenario (Figure 7-9). Note that the probability for the ‘Contractor’ is clearly 

skewed towards ‘Very high’ and ‘High’. In other words a contractor with 

medium level of quality would not be able to deliver the phase on time (i.e. what 

actually happened in the project).  

 

 

 
Figure 7-11 : Required level of contractor’s quality changes when there is deadline  
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Another distinctive feature of the model is its ability to learn and update its 

parameters as more information becomes available. As explained in section 6.5 

measuring unknown risks is highly subjective, and therefore requires more 

emphasis on learning. Having more information about delay in an earlier phase 

of the project can update our belief about unknown uncertainty (i.e. adjustment 

factor) and consequently duration of the following phases.  

 

It the base line scenario in Figure 7-9 a truncated Normal distribution in the 

range of (0.7,10) with an expected value around one seemed reasonable to 

estimate ‘Adjustment Factor’ (i.e. prior distribution in section 4.1.3). This prior 

estimation in-turn was used to estimate the duration of each of the three phases in 

the project. When the ‘Prayer Room’ phase finished, its actual duration was 

entered as evidence (i.e. observed information) to update the distribution of 

‘Adjustment Factor’ (i.e. posterior distribution in section 4.1.3). This is shown in 

Figure 7-12 where the actual duration of prayer room was 13 weeks (its initial 

estimate was 7 weeks). The 6 weeks delay in this phase was caused by a 

combination of known risks (e.g. technical problems in installing the drainage 

system) and unknown risks (e.g. organizational factors). The drainage system 

problem caused a 2 weeks delay. Thus the remaining 4 weeks delay was caused 

by unknown risks. By entering this observed information in the relevant nodes 

and propagating through the network, the posterior (learnt) distribution of 

‘Adjustment Factor’ (i.e. distribution of ‘Adjustment Factor’ given that the initial 

estimation and the actual duration were 7 and 13 weeks respectively) was 

achieved (Figure 7-12). The mean and 80% percentile of the updated distribution 

is 1.19 (was 1.02 in prior distribution) and 1.66 (was 1.24 in prior distribution) 

respectively (Table 7-4).  

 

 

 
Scenario 

Adjustment Factor Main Scheme Duration 
Mean SD 80% Mean SD 80% 

Base Line 1.02 0.37 1.24 32.3 14.8 42 
Learning 1.19 0.26 1.66 38.1 12.7 54.2 

Table 7-4 : Summary of probability distribution in Figure 7-12 
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Now, assuming unknown risks are common causes of delay throughout the 

project, this updated distribution of ‘Adjustment Factor’ from the ‘Prayer Room’ 

phase was fed (dashed link in Figure 7-12) to the ‘Adjustment Factor’ of the 

‘Main Scheme’ phase. Consequently the distribution of ‘Duration’ in the ‘Main 

Scheme’ phase and also the distribution of project duration were updated. Note 

that the learnt distributions in Figure 7-12 are much sharper (having less spread) 

than the prior distributions and their expected values are shifted toward right. 

Table 7-4 summarises the distribution of ‘Adjustment Factor’ and ‘Duration’ in 

the ‘Main Scheme’ with and without learning. For example, the expected value 

of ‘Duration’ in the baseline scenario was 32.3 weeks, which was updated to 38.1 

weeks after observing new information about actual duration of the ‘Prayer 

Room’ phase. 

 

The above scenarios are examples of the analytical capability of the BN model. It 

was shown that: 

 

• The model provides a rigorous framework for quantifying the project 

uncertainty using subjective information, framing assumptions and 

available data. 

• Even with the minimal available data (i.e. prior knowledge), the model 

can reasonably estimate the probability distribution of the project 

duration and also duration of individual phases. 

• The model is capable of powerful sensitivity analysis and ‘what if?’ type 

analysis for modelling the trade-off between resources and duration. 

• The model can update our prior knowledge in the light of new 

information as the project progresses (i.e. learning capability). 

 

Furthermore, the model is capable of more detailed analysis if required, albeit 

only if detailed data is available (hence they are not covered in this case study). 

For example, the ‘contractor’ and/or ‘consultant’ nodes can be expanded in order 

to capture more details. Another example is capturing possible responses to 

‘known risks’ in order to update the schedule accordingly.  
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As argued in chapter 3, this model aims to analyse uncertainty in project 

schedule in order to help make informed and appropriate decisions. We do not 

expect that such an analysis solves or reduces the uncertainty or guarantees that 

unforeseen uncertainty will not happen and the project will meet its deadline. 

However, we can expect the analysis to give a deeper insight to the problem, 

capture causal relationships between variables and quantify them in a rigorous 

manner. The BN model proposed in this thesis is capable of these objectives as 

illustrated in the H&F project. 
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8 Conclusion 

This thesis has focused on the quantification of uncertainty in project duration. 

More specifically, it has proposed a new approach based on BNs to incorporate 

uncertainty in project scheduling. A summary of the thesis is presented in section 

8.1. The limitation of the model is discussed in section 8.2. The way forward and 

possible directions for the future research are outlined in section 8.3. 

8.1 Summary 

Risk quantification is an important part of project risk management (PRM) 

alongside risk identification and risk response. It aims to measure the risks and 

their consequences on the three project parameters: time, cost and performance. 

A reasonable measurement of risk supports the risk response and can improve the 

decision making significantly. This thesis focused on quantification of risk 

associated with project duration.  

 

It was argued that the current practice in modelling risk in project time 

management has serious limitations that need to be addressed.  

 

Firstly, the current practice of project scheduling is firmly rooted in a 

‘Probability Impact’ paradigm. This implies an inadequate interpretation of risk 

(i.e. external event) which limits the ability to model the project risk effectively. 

Instead of modelling risks as (external) events that might affect a project, we 

should focus on sources of uncertainty and quantify their effect on the project 

outcome (e.g. duration). In order to measure (and then manage) uncertainty 

effectively, we should be able to capture causal relationship between different 

sources of uncertainty. 

 

Secondly, most of the uncertainty involved in projects is subjective (i.e. 

ignorance) rather than frequentist (i.e. randomness). Project parameters are 
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uncertain because of lack of complete knowledge (information) about the project 

not because of random variation. The estimation of subjective uncertainty is a 

great challenge. The classical frequentist methods (e.g. Monte Carlo Simulation 

methods) generally require assuming randomness in uncertainty which might not 

be true. Usually subjective estimation is conditionally dependent on some 

assumptions and conditions. More sophisticated methods are needed to explicitly 

model (quantify) these conditional dependencies (i.e. sources of uncertainty) and 

also support coherent use of subjective probabilities.  

 

It was discussed that BNs are a powerful technique for decision support and offer 

a general and flexible approach for modelling risk and uncertainty. The key 

capabilities of BNs that make them particularly suitable for modelling 

uncertainty project is that they can: 

 

• Model causality  and explicitly quantify uncertainty 

• Provide rigorous method to make formal and coherent use of subjective 

information 

• Make prediction with incomplete data 

• Update the probability of unknown variables using observed information 

in other variables (i.e. parameter learning) 

• Support probabilistic inference from cause to effect as well as from effect 

to cause (i.e. sensitivity analysis) 

 

However, BNs are rarely applied in project risk management. This thesis aimed 

to provide a general approach for modelling uncertainty in project scheduling 

using BNs. The analytical hypothesis was that it is possible to improve project 

risk assessment and quantify uncertainty in project scheduling more effectively 

by using BNs.  

 

Applications of BN in project management was first suggested by (McCabe 

1998) and (Nasir et al. 2003). They developed a BN to model the relationship 

between major risk variables and major types of activities in a building 

construction project. The model used the most likely value of activity duration as 
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a reference point (i.e. input to the model) and suggested percent 

increase/decrease from it to define the optimistic/pessimistic duration of the 

activity. The result of the BN model was then exported to a MCS model to 

generate the probabilistic project schedule. Although the model provided good 

predictive results for upper and lower limits of activities duration, the estimation 

of most likely values was not addressed. Other limitations of the model included: 

most powerful feature of BNs namely diagnostic analysis (e.g. reasoning from 

effect to cause) was not used, it was specific to construction projects and not 

applicable to other industries and different type of projects, another MCS model 

was needed to translate the result of the model to actual project schedule. 

 

This thesis applied BNs to provide a general (i.e. applicable to any type of 

project) and complete (i.e. MCS is not required for probabilistic scheduling) 

method for incorporating uncertainty in project scheduling. The method consists 

of two components: 

 

• The BCPM network that performs the well-known Critical Path Method 

to calculate the probabilistic schedule of the project. 

• The Duration network that captures different sources of uncertainty 

affecting duration of activities.  

 

The proposed method subsumes the benefits of CPM while taking full advantage  

of BN capabilities. This enables the model to address important aspects of 

project risk analysis, including: 

 

• It provides a causal framework for modelling different source of 

uncertainty in estimation of activity/project duration. 

• It provides an effective approach for modelling trade-off relation between 

project parameters by capturing conditional dependency between them. 

• It provide a coherent use of subjective probabilities for modelling 

unknown risks (i.e. adjustment factor). 

• It can learn (update) the probability of unknown risks using new 

information (observed data) about the actual project progress. 
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Two case studies were used to evaluate the models. The first case study, taken 

from the literature, showed the accuracy of the scheduling part of the model (i.e. 

BCPM) by comparing its results against the results of simulation models. The 

second case study was a real construction project that suffered from serious 

delay. It demonstrated the applicability of the ‘Duration’ model in capturing 

different aspects of schedule related risks in a real project. 

 

The models proposed in this thesis can help us move to a new generation of 

project risk assessment tools that are better informed by available knowledge and 

data and hence, more valid and useful. 

8.2 Model Limitations 

The advanced capabilities of the BCPM model make it far superior than the 

state-of-the-art scheduling technique (MCS based techniques). However, the 

BCPM is not a panacea. It is far more complex than MCS, requiring more time 

and effort, special software and trained individuals. 

 

The degree of model complexity employed in analysis is a key aspect of Risk 

Management Process (RMP) (Chapman and Ward 2003). Efficient application of 

the BCPM model requires a well-established RMP especially in identifying 

different sources of uncertainty and also in the data acquisition process. In this 

thesis it was assumed that an appropriate RMP is in place and the organisation is 

mature enough to understand the costs and benefits of applying such a 

sophisticated quantitative approach. 

 

The computational complexity of performing inference for a realistic size BN is 

another issue of concern. For large size BNs, especially when nodes with 

continuous type are involved, exact inference is infeasible. As briefly presented 

in section 4.2.4 and 4.5, there have been a number of developments that allow 

reasonably complex BNs with continuous nodes to be computed accurately and 

efficiently. However, when the model involves hundreds, as opposed to dozens 

of, nodes (as would be the case for a large project with hundreds of activities), 
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the inference algorithm do not scale well (either in speed or memory 

requirement). This becomes the main drawback of the BCPM model for large 

size projects. So, whereas in terms of analytical power and capability of handling 

uncertainty in scheduling, the BCPM model is superior to MCS-based methods, 

in terms of computational efficiency, the MCS approach is faster. For example, 

running the BCPM model for the ‘Aircraft development example’ (section 7.2) 

takes 58 seconds on an average computer, while the simulation based model 

takes less than 10 seconds on the same computer. 

 

The BCPM model proposed in this thesis is a prototype model of a novel 

approach in project scheduling. It was shown to be effective and scalable to a 

real project. However, more research and development is required in order to 

make the approach applicable and available for genuinely large-scale projects. 

There is considerable research into developing faster and more efficient 

approaches to propagation (Neil et al. 2007). Coupled with the availability of 

improved hardware it should only be a matter of time before it is possible to 

handle the computational complexity of the resulting very large BNs. It is worth 

remembering that in the 1980’s when MCS was first introduced for project 

scheduling, it suffered the same efficiency limitation.  

8.3 The way forward 

The conceptual framework for applications of BNs in project scheduling needs 

further developments in order to make it fully applicable to very large size 

projects. There are several potential extensions to the ideas presented in this 

thesis. Future research could proceed along several different fronts: 

 

• Regarding the computational complexity, more research is required to 

develop faster and more efficient inference algorithms. Speeding up 

inference in BNs has been and still remains an active research area. 

• Developing software tools that support genuine application of OOBN 

concepts can address many of the practicality issues of the model. Such 

an OOBN toolkit should support the inheritance hierarchy, which means 

a sub-class can inherit much of its structure from the super-class. This 
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will simplify the construction of the BCPM model. The OOBN toolkit 

might also improve the efficiency of the BCPM by localizing the 

probabilistic inference within the objects. More research is required to 

develop algorithms (and implement them in software toolkits) that 

support complete Bayesian inference (i.e. forward and backward 

propagation) between all related objects. 

• Regarding the structure of the networks:  

- The argument presented for developing the ‘Duration’ network 

could be extended to further components, or different ones. For 

example, the effect of ‘quality of execution’ might be added to 

expand the trade-off analysis in estimating activity duration. It 

would also be feasible to use a different argument (i.e. based on 

different assumptions and logic) to develop a different structure 

for the ‘Duration’ network. 

- The BCPM model can be refined to model projects with special 

structure networks such as conditional branching or special 

precedence dependency between activities (i.e. start to finish, start 

to start, finish to start and finish to finish). For example, additional 

nodes might be introduced to define the relation between time 

parameters of related activities (e.g. EF and ES).  
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Introduction

[^BSTRACf]
project scheduling inevitably involves
uncertainty. The basic inputs (i.e., time,
cost, and resources for each activity) are
not deterministic and are affected by var-
ious sources of uncertainty. Moreover,
there is a causal relationship between
these uncertainty sources and project
parameters; this causality is not modeled
in current state-of-the-art project plan-
ning techniques {such as simulation tech-
niques). This paper introduces an
approach, using Bayesian network mod-
eling, that addresses both uncertainty
and causality in project scheduling.
Bayesian networks have been widely used
in a range of decision-support applica-
tions, but the application to project man-
agement is novel. The model presented
empowers the traditional critical path
method (CPM) to handle uncertainty and
also provides explanatory analysis to elic-
it, represent, and manage different
sources of uncertainty in project planning.

Keywords: project scheduling;
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Project scheduling is difficult because it inevitably involves uncertainty.
Uncertainty in real-world projects arises from the following characteristics;

• Uniqueness (no similar experience)
• Variability (trade-off between performance measures like time, cost, and quality)
• Ambiguity (lack of clarity, lack of data, lack of structure, and bias in estimates).

Matiy different techniques and tools have been developed to support better
project scheduling, and these tools are used seriously by a large majority of proj-
ect managers (Fox & Spence, 1998; Pollack-lohnson, 1998). Yet, quantifying
uncertainty is rarely prominent in these approaches.

This paper focuses especially on the problem of handling uncertainty in proj-
ect scheduling. The next section elaborates on the nature of uncertainty in project
scheduling and summarizes the current state of the art. The proposed approach is
to adapt one of the best-used scheduling techniques, critical path method (CPM)
(Kelly, 1961), and incorporate it into an explicit uncertainty model {using
Bayesian networks). The paper summarizes the basic CPM methodology and nota-
tion, presents a brief introduction to Bayesian networks, and describes how the
CPM approach can be incorporated (using a simple illustrative example). Also dis-
cussed is a mechanism to implement the model in real-world projects, and sug-
gestions on how to move forward and possible future modifications are presented.

The Nature of Uncertainty in Project Scheduling
A Guide to the Project Management Body of Knowledge (PMBOK'^ Cuide)—'['hkd edi-
tion (PMI, 2004) identifies risk management as a key area of project management:

"Project risk management includes the processes concerned with conducting
risk management planning, identification, analysis, response, and monitoring
and control on a project."

Central to risk management is the issue of handling uncertainty. Ward and
Chapman (2003) argued that current project risk management processes induce a
restricted focus on managing project uncertainty. They believe it is because the
term "risk" has become associated witb "events" rather than more general sources
of significant uncertainty.
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In different project management
processes there are different aspects of
uncertainty. The focus of this paper is on
uncertainty in projert scheduling. The
most obvious area of uncertainty here is
in estimating duration for a partiailar
activity. Difficulty in this estimation can
arise from a lack of knowledge of what is
involved as well as from the uncertain
consequences of potential threats or
opportunities. This uncertainty arises
from one or more of the following:

• Level of available and required
resources

• Trade-off between resources and time
• Possible occurrence of uncertain

events (i.e., risks)
• Causal factors and interdependencies

including common casual factors
that affect more than one activity
(such as organizational issues)

• Lack of previous experience and use of
subjective rather than objective data

• Incomplete or imprecise data or lack
of data at all

• Uncertainty about the basis of subjec-
tive estimation (i.e., bias in estimation).

The best-known technique to sup-
port project scheduling is CPM. This
technique, which is adapted by the
most widely used project management
software tools, is purely deterministic.
It makes no attempt to handle or quan-
tify uncertainty. However, a number of
techniques, such as program evaluation
and review technique (PERT), critical
chain scheduling (CCS) and Monte
Carlo simulation (MCS), do try to han-
dle uncertainty, as follows:

• PERT (Malcom, Roseboom, Clark, &
I-azer, 1959; Miller, 1962; Moder,
1988) incorporates uncertainty in a
restricted sense by using a probabil-
ity distribution for each task.
Instead of having a single determin-
istic value, three different estimates
(pessimistic, optimistic, and most
likely) are approximated. Then the
"critical path" and the start and fin-
ish date are calculated by the use of
distributions' means and applying
probability rules. Results in PERT
are more realistic than CPM, but
PERT does not address explicitly any
of the sources of uncertainty previ-
ously listed.

Critical chain (CC) scheduling is
based on Coldratt's theory of con-
straints (Coldratt, 1997). Hor mini-
mizing the impact of Parkinson's
Law (jobs expand to fill the allocat-
ed time), CC uses a 50% confidence
interval for each task in project
scheduling. The safety time (remain-
ing 50%) associated with each task
is shifted to the end of the critical
chain (longest chain) to form the
project buffer. Although it is claimed
that the CC approach is the most
important breakthrough in project
management history, its oversim-
plicity is a concern for many compa-
nies that do not understand both the
strength and weakness of CC and
apply it regardless of their particular
and unique circumstances (Pinto,
1999). The assumption that all task
durations are overestimated by a cer-
tain factor is questionable. The main
issue is: How does the project man-
ager determine the safety time? (Raz,
Barnes, & Dvir, 2003). CC relies on
a fixed, right-skewed probability for
activities, which may be inappropri-
ate (Herroelen & Leus, 2001), and a
sound estimation of project and
activity duration (and consequently
the buffer size) is still essential
(Trietsch, 2005).

Monte Carlo simulation (MCS) was
first proposed for project scheduling
in the early 1960s (Van Slyke, 1963)
and implemented in the 1980s
(Fishman, 1986). In the 1990s,
because of improvements in comput-
er technoiogy, MCS rapidly became
the dominant technique for han-
dling uncertainty in project schedul-
ing (Cook, 2001). A survey by the
Project Management Institute (PMI,
1999) showed that nearly 20% of
project management software pack-
ages support MCS. For example,
PertMaster (PertMaster, 2006)
accepts scheduling data from tools
like MS-Project and Primavera and
incorporates MCS to provide project
risk analysis in time and cost.
However, the Monte Carlo approach
has attracted some criticism. Van
Dorp and Duffey (1999) explained
the weakness of Monte Carlo simula-
tion In assuming statistical inde-

pendence of activity duration in a
project network. Moreover, being
event-oriented (assutning project
risks as "independent events"),
MCS and the tools that implement
It do not identify the sources of
uncertainty.

As argued by Ward and Chapman
(2003), managing uncertainty in proj-
ects is not just about managing per-
ceived threats, opportunities, and their
implication. A proper uncertainty
management provides for identifying
various sources of uncertainty, under-
standing the origins of them, and then
managing them to deal with desirable
or undesirable implications.

Capturing uncertainty in proj-
ects "needs to go beyond variability
and available data. It needs to
address ambiguity and incorporate
structure and knowledge" (Chapman
& Ward, 2000). In order to measure
and analyze uncertainty properly, we
need to model relations between
trigger (source), and risk and impacts
(consequences). Because projects are
usually one-off experiences, their
uncertainty is epistemic (i.e., related
to a lack of complete knowledge)
rather than aleatoric (i.e., related to
randomness). The duration of a task
is uncertain because there is no sim-
ilar experience before, so data is
incomplete and suffers from impreci-
sion and inaccuracy. The estimation
of this sort of uncertainty is mostly
subjective and based on estimator
judgment. Any estimation is condi-
tionally dependent on some assump-
tions and conditions—even if
they are not mentioned explicitly.
These assumptions and conditions
are major sources of uncertainty
and need to be addressed and han-
dled explicitly.

The most well-established
approach to handling uncertainty in
these circumstances is the Bayesian
approach (Efron, 2004; Goldstein,
2006). Where complex causal rela-
tionships are involved, the Bayesian
approach is extended by using
Bayesian networks. The challenge is
to incorporate the CPM approach
into Bayesian networks.
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CPM Methodology and Notation

CPM (Moder, 1988) is a deterministic
technique that, by use of a network of
dependencies between tasks and given
deterministic values for task durations,
calfulatt's the longest path in the net-
work called the "critical path." The
length of the "critical path" is the earli-
est time for project cotiipletion. The
critical path can be identified by deter-
mining the following parameters for
each activity:

D—duration
ES—earliest start time
EF—earliest finish time
LS—latest start time
LF—latest finish time.

The earliest start and finish times
of each activity are determined by
working forward through the network
and determining the earliest time at
which an activity can start and finish,
considering its predecessor activities.
For each activity j\

I'S, = MaxjESi + Di ;
over predecessor activities i\

EFj = ESj-̂  Dj

The latest start and finish times are
the latest times that an activity can
start and finish without delaying the
project and are found by working
backward through the network. For
each activity i:

LFj = Min |LFj- D,;
over successor activities ;'|

The activity's "total float" (TF)
(i.e., the amount that the activity's
duration can be increased without
increasing the overall project comple-
tion time) is the difference in the latest
and earliest finish times of each activi-
ty. A critical activity is one with no TF
and should receive special attention
(delay in a critical activity will delay
the entire project). The critical path
then is the path(s) throiLgh the net-
work whose activities have minimal TK

The CPM approach is very simple
and provides very useful and funda-
mental information about a project
and its aaivities' schedule. However,
because of its single-point estimate
assumption, it is loo simplistic to be
used in complex projects. The chal-
lenge is to incorporate the inevitable
uncertainty.

Proposed BN Solution
Bayesian Networks (BNs) are recog-
nized as a mature formalism for han-
dling causality and uncertainty
(Heckerman, Mamdani, & Wellman,
1995). This section provides a brief
overview of RNs and describes a new
approach for scheduling project activi-
ties in which CPM parameters (i.e., BS,
EF, LS, and LF) are determined in a BN.

Bayesian Networks: An Overview
Bayesian networks (also known as
belief networks, causal probabilistic
networks, causal nets, graphical proba-
bility networks, probabilistic cause-

effect tnodels, and probabilistic infiu-
ence diagrams) provide decision sup-
port for a wide range of problems
involving uncertainty and probabilistic
reasoning. Examples of real-world
applications can be found in
Heckerman et al. (1995), Fenton,
Krause, and Neil (2002), and Neil,
I enton, Forey, and I larris (2001). A BN
is a directed graph, together with an
associated set of probability tables.
The graph consists of nodes and arcs.
Figure 1 shows a simple BN that mod-
els the cause of delay in a particular
task in a project. The nodes represent
uncertain variables, which may or may
not be observable. Each node has a set
of states (e.g. "on time" atid "late" for
"Subcontract" node). The arcs repre-
sent causal or infiuential reiationships
between variables, (e.g., "subcontract"
and "staff experience" may cause a
"delay in task"). There is a probability
table for each node, providing the
probabilities of each state of the vari-
able. For variables without parents
(called "prior" nodes), the table just
contains the marginal probabilities
(e.g., for the subcontract" node P(on-
time)=0.95 and P(iate)=0,03). Ihis is
also caiied "prior distribution" that
represents the prior belief (state of
knowledge) about the variable. For
each variable with parents, the proba-
bility table has conditional probabili-
ties for each combination of the
parents' states (see, for example, the
probability table for a "delay in task"

On Time

Late

0.95

0.05
Subcontract

Delay in Task

Staff Experience
High

Low

0.7

0.3

Subcontract

Staff Experience

Delay
Yes

No

On Time

High

0.95

0.05

Low

0.7

0,3

Late

High

0.7

0.3

Low

0.01

0.99

Figure 1: A Bayesian network contains nodes, arcs and probability table
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in Figure 1). This is also called the
"likelihood function" that represents
the likelihood of a state of a variable
given a particular state of its parent.

The main use of BNs is in situa-
tions that require statistical inference.
In addition to statements about the
probabilities of events, users have
some evidence (i.e., some variable
states or events that have actually been
observed), and can infer the probabili-
ties of other variables, which have not
as yet been observed. These observed
values represent a posterior probabili-
ty, and by applying Bayesean rules in
each affected node, users can infiuence
other BN nodes via propagation, mod-
ifying the probability distributions. For
example, the probability that the task
finishes on time, with no observation,
is 0.855 (see Figure 2a). However if we
know that the subcontractor failed to
deliver on time, this probability
updates to 0.49 (see Figure 2b),

The key benefits of BNs that make
them highly suitable for the project
planning domain are that they:
• Explicitly quantify uncertainty and model

the causal relation between variables
• Enable reasoning from effert to cause as

well as from cause to effect (propaga-
tion is both "forward" and "backward")

• Make It possible to overturn previ-
ous beliefs in the light of new data

• Make predictions with incomplete data
• Combine subjective and objertive data
• Enable users to arrive at decisions

that are based on visible auditable
reasoning.

BNs, as a tool for decision support,
have been deployed in domains rang-
ing from medicine to politics. BNs
potentially address many of the "uncer-
tainty" issues previously discussed. In
particular, incorporating CPM-style
scheduling into a BN framework makes
it possible to properly handle uncer-
tainty in project scheduling.

There are numerous commercial
tools that enable users to build BN
models and run the propagation calcu-
lations. With such tools it is possible to
perform fast propagation in large BNs
(with hundreds of nodes). In this
paper, AgenaRisk (2006) was used,
since It can model continuous vari-
ables (as opposed to just discrete).

BN for Activity Duration
Figure 3 shows a prototype BN that the
authors have built to model uncertain-
ty sources and their afferts on duration
of a particular activity. The model con-
tains variables that capture the uncer-
tain nature of activity duration. "Initial
duration estimation" is the first esti-
mation of the artivity's duration; it is
estimated based on historical data,
previous experience, or simply expert
judgment. "Resources" incorporate any
affeaing factor that can increase or
decrease the activity duration. It is a
ranked node, which for simplicity here
is restricted to three levels: low, aver-
age, and high. The level of resources
can be inferred from so-called "indica-
tor" nodes. Hence, the causal link is
from the "resources" directly to observ-

able indicator values like the "cost,"
the experience of available "people"
and the level of available "technology."
There are many alternative indicators.
An important and novel aspect of this
approach is to allow the model to be
adapted to use whichever indicators
are available.

The power of this model is better
understood by showing the results of
running it under various scenarios. It is
possible to enter observations any-
where in the model to perform not just
predictions but also many types of
trade-off and explanatory analysis. So,
for example, observations for the ini-
tial duration estimation and resources
can be entered and the model will
show the distributions for duration.
Figure 4 shows how the distribution of
the activity duration in which the ini-
tial estimation is five days changes
when the level of its available
resources goes from low to high. (All
the subsequent figures are outputs
from the AgenaRisk software.)

Another possible analysis in this
model is the trade-off analysis between
duration and resources when there is a
time constraint for activity duration
and it is interesting to know about the
level of required resource. For example,
consider an activity in which the initial
duration is estimated as five days but
must be finished in three days. Figure 5
shows the probability distribution of
required resources to meet this dura-
tion constraint. Note how it is skewed
toward high.

Subcontract Staff Experience

Delay in Task

0.64

0.32

0.0
Yes No

(a) P(Task =on fime)=0.855

Staff Experience

Delay in Task

0.32

0.16

0.0
Yes No

P(Task =on time}=0,49

Figure 2: New evidence updates the probability
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Figure 3: Bayesian network for activity duration

Figure 4: Probability distribution for "duration" (days) cfianges when the level of "resources" changes

Low Medium High

Figure 5: Level of required "Resources" when there is a constraint on "Duration"

Mapping CPM to BN
The main components of CPM net-
works are activities. Activities are linked
together to represent dependencies, ln
order to map a CPM network to a BN,
it is necessary to first map a single
activity. Each of the activity parameters
are represented as a variable (node) in
the BN.

Figure 6 shows a schematic model
of the BN fragment associated with an
activity. It clearly shows tbe relation
between the activity parameters and
also the relation with predecessor and
successor activities.

The next step is to define the con-
necting link between depetident activi-
ties. The forward pass in CPM is
mapped as a link between the EF of
each activity to the ES of the successor
activities. The backward-pass in CPM is
mapped as a link between the LS of
each activity to the LF of the predeces-
sor activities.

Extwiple
The following illustrates this mapping
process. The example is deliberately
very simple to avoid extra complexity
in the BN. How the approach can be
used in real-size projects is discussed
later in the paper.

Consider a small project with five
activities—A, B, C, D, and E. The activ-
ity on arc (AOA) network of the projea
is shown in Figure 7,

The results of the CPM calculation
are summarized in Table 1. Activities
A, C, and E with 1 F=0 are critical and
the overall project takes 20 days (i.e.,
earliest finish of activity E).

Figure 8 shows the full BN repre-
sentation of the previous example.
Each activity has five associated nodes.
Forward pass calculation of CPM is
done through the connection between
the ES and EF. Activity A, the first activ-
ity of the project, has no predecessor,
so its ES is set to zero. Activity A is
predecessor for activities B and C so
the EF of activity A is linked to the ES
of activities B and C. The EF of activity
B is linked to the ES of its successor,
activity D. And finally, the EF of activi-
ties C and D are connected to the ES of
activity E. In fact, the ES of activity E is
the maximum of the EF of activities C
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Predecessor
Predecessor

Activities

Successor
Activities

Successor

Figure 6: Schematic of BN for an activity

Figure 7: CPM network

and D. The EF of activity E is the earli-
est time for project completion time.

The same approach is used for
backward CPM calculations connecting
the LF and LS, Activity E is the last activ-
ity of the project and has no successor,
so its EF is set to EF. Activity E is succes-
sor of activities C and D so the ES of
activity E is linked to the LF of activities
C and D. The LS of activity D is linked
to the LF of its predecessor activity B.
And finally, the LS of activities B and C
are linked to the LFofactivityA. TheLF
of activity A is the minimum of the LS
of activities B and C.

For simplicity in this example, it is
assumed that activities A and E are
more risky and need more detailed
analysis. For all other activities the
uncertainty about duration is expressed
simply by a normal distribution.

Results
This section explores different scenar-
ios of the BN model in Figure 8. The
main objective is to predict the proj-

ect completion time (i.e., the earliest
finish of E) in such a way that it fully
characterizes uncertainty.

Suppose the initial estimation
of activities' duration is the same as
in Table 1. Suppose the resource
level for activities A and E is medi-
um. If the earliest start of activity A
is set to zero, the distribution for
project completion is shown in
Figure 9a. The distribution's mean is
20 days as was expected from the
CPM analysis. However, unlike
CPM, the prediction is not a single
point and Its variance is 4. Figure 9b
iliustrates the cumulative distribu-
tion of finishing time, which shows
the probability of completing the
project before a given time. For
example, with a probability of 90%
the project will finish in 22 days.

In addition to this baseline sce-
nario, by entering various evidence
(observations) to the model, it is pos-
sible to analyze the project schedule
from different aspects. For example.

one scenario is to see how changing
the resource level affects the project
completion time.

Figure 10 compares the distribu-
tions for project completion time as
the level of people's experience
changes. When people's experience
changes from low to high, the mean
of finishing time changes from 22.7
days to 19.5 days and the 90% confi-
dence interval changes from 26.3
days to 22.9 days.

Another usefui analysis is when
there is a constraint on tbe project
completion time and we want to
know how many resources are need-
ed. Figure II illustrates this trade-off
between project time and required
resources. If the project needs to be
completed in 18 days (instead of the
baseline 20 days) then the resource
required for activity A most likely
must be high; if the project comple-
tion is set to 22, the resource level for
activity A moves significantly in the
direction of low.

The next scenario investigates the
impact of risk in activity A on the
project completion time as it is
shown in Figure 12. When there is a
risk in activity A, the mean of distri-
bution for the project completion
time changes from 19.9 days to 22.6
days and the 90% confidence interval
changes from 22.5 days to 25.3 days.

One important advantage of
BNs is their potential for parameter
learning, which is shown in the
next scenario. Imagine activity A
actually finishes in seven days,
even though it was originally esti-
mated as five days. Because activity
A has taken more time than was
expected, the level of resources has
probably not been sufficient.

By entering this observation the
model gives the resource probability
for activity A as illustrated in Figure
13. This can update the analyst's
belief about the actual level of avail-
able resources.

Assuming both activities A and E
use the same resources (e.g., people),
the updated knowledge about the
level of available resources from
activity A (which is finished) can be
entered as evidence In the resources
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Figure 8: Overview of BN for example (1)

for activity E (which is not started
yet) and consequently updates the
project completion time. Figure 14
shows the distributions of comple-
tion time when the level of available
resource of activity E is learned from
the actual duration of activity A.

Another application of parameter
learning in these models is the ability
to incorporate and learn about bias in
estimation. So, if there are several
observations in which actual task
completion times are underestimated,
the model learns that this may be due

to bias rather than unforeseen risks,
and this information will inform sub-
sequent predictions. Work on this type
of application (caiied dynamic learn-
itig), is still in progress and can be a
possible way of extending the BN ver-
sion of CPM.
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Activity

A

B

C

D

LJJ

D

5

4

10

2

5

ES

0

5

5

9

15

EF

C
JI

9

15

11

20

LS

0

9

5

13

15

LF

5

13

15

15

20

TF

0

4

0

4

0

Table 1: Activities' time (days) and summary of CPM calculations

Object-Oriented Bayesian
Network (OOBN)
II is clear from Figure 8 that even simple
CPM networks lead to fairly large BNs.
In real-sized projects with several aaivi-
ties, constmaing the network needs a
huge effort, which is not effective espe-

daliy for users without much experience
in BNs. However, this complexity can be
handled using the so-called object-ori-
ented Bayesian network (OOBN)
approach (Roller & Pfeffer, 1997). This
approach, analogous to the object-ori-
ented programming languages, supports

a natural framework for abstraction and
refinement, which allows complex
domains to be described in terms of
interrelated objects.

The basic element in OOBN is an
object; an entity with an identity, state,
and behavior. An object has a set of
attributes each of which is an obiect.
Each object is assigned to a class.
Classes provide the ability to describe a
general, reusable network that can be
used in different instances. A class in
OOBN is a BN fragment.

The proposed mode! has a highly
repetitive structure and fits the object-
oriented framework perfectly. The
internal parts of the activity subnet
(see Figure 6) are encapsulated within
tbe activity class as shown in Figure 15.

D Baseline Scenario
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0.1
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0.04
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0.0
10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0

(a) Probability Distribution

D Baseiine Scenario
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0.2
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(b) Cumulative Distribution

24.0

Figure 9: Distribution of project completion (days) for main scenario in example (1)
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{b} Cumulative

Figure 10: Change in project time distribution (days) when level of people's experience changes
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^ Complete in 18 days
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0.48

0.4

0.32

0,24

0.16

0.08

0.0
Low Medium High

Figure 11 : Probability of required resource changes when the time constraint changes

Classes can be used as libraries
and combined into a model as needed.
By connecting interrelated objects,
complex networks with several dozen
nodes can be constructed easily. I'igure
16 shows the OOBN model for the
example previously presented.

The OOBN approach can also sig-
nificantly improve the performance of
inference in the model. Although a full
discussion of the OOBN approach to
this particular problem is beyond the
scope of this paper, the key point to
note is that there is an existing mecha-
nism (and implementation of it) that
enables the proposed solution to be
genuinely "scaled-up" to real-world
projects. Moreover, research is emerg-
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Figure 12: The impact of occurring risk in activity A on the project completion time
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ing to develop the new generation of
BNs tools and algorithms that support
OOBN concept both in constructing
large-scale models and also in propa-
gation aspeas.

Conclusions and How to Move Forward
Handling risk and uncertainty is
increasingly seen as a crucial compo-
nent of project management and plan-
ning. One classic problem is how to
incorporate uncertainty in project
scheduling. Despite the availability of
different approaches and tools, the
dilemma is still challenging. Most cur-
rent techniques for handling risk and
uncertainty in projea scheduling (sim-
ulation-based techniques) are often

Figure 13: Learnt probability distribution "resource" when the actual duration is seven days
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Figure 14: completion time (days) based on learned parameters compare with baseline scenario

Figure 15: Activity class encapsulates internal parts of network
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Figure 15 :00 model for the presented example

event-oriented and try to model the
impact of possible "threats" on project
performance. They ignore the source
of uncertainty and the causa! relations
between project parameters. More
advanced techniques are required to
capture different aspects of uncertainty
in projects.

This paper has proposed a new
approach that makes it possible to

incorporate risk, uncertainty, and
causality in project scheduling.
Specifically, the authors have shown
how a Bayesian network model can
be generated from a project's CPM
network. Part of this process is auto-
matic and part involves identifying
specific risks {which may be common
to many activities) and resource indi-
cators. The approach brings the full

weight and power of BN analysis to
bear on the problem of project sched-
uling. This makes ii possible to:
• Capture different sources of uncer-

tainty and use them to inform proj-
ect scheduling

• Express uncertainty about comple-
tion time for each activity and the
whole project with full probability
distributions

• Model the trade-off between time
and resources in project activities

• Use "what-if?" analysis
• Ixarn from data so that predictions

become more relevant and accurate.

The application of the approach
was explained by use of a simple
example. In order to upscale this to
real projects with many activities the
approach must be extended to use
the so-called object-oriented BNs.
There is ongoing work to accommo-
date such object-oriented modeling
so that building a BN version of a
CPM is just as simple as building a
basic CPM model.

Other extensions to the work
described here include:
• Incorporating additional uncertainty

sources in the duration network
• Handling dynamic parameter learn-

ing as more information becomes
available when the project progresses

• Handling common causal risks that
affea more than one aaivity

• Handling management action when
the project is behind its plan.
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