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Abstract 
 
It is desirable for a dental restorative material to have bioactive and bonding properties. 

This study focuses on the synthesis of a covalently-linked polyurethane/nano-

hydroxyapatite (PU/nHA) composite and evaluates its chemical, physical, thermal and 

biochemical characteristics. 
 

 nHA powder was produced from the sol-gel and novel composite material was 

chemically prepared by utilising solvent polymerisation. The resulting composites were 

analysed by chemical, thermal, and mechanical characterisations and electrospun to 

form fibre mats. The composites were hydrolytically degraded in deionised water and 

phosphate buffer solution (PBS) and were analysed. Bioactive behaviour was 

determined in modified-simulated body fluid. The bioadhesion with dentine was 

analysed in distilled water and artificial saliva. Cell growth and proliferation was 

measured and number of adhering bacteria was determined and serial dilution followed 

by plating for colony forming units per disc.  
 

Spectral analyses showed the grafted isocyanate and ether peaks on nHA indicating that 

urethane linkage was established. Covalent-linkage between nHA and PU were found in 

this novel composite with no silane agent. The physical and thermal properties were 

enhanced by nHA. These composites had high resistance toward hydrolysis and little 

degradation was observed.  Bioadhesion and bioactivity analysis showed the composite 

adhered firmly on the tooth surface (dentine) and bond strength was similar to existing 

obturating material. Higher nHA content composite showed a thicker layer of adhesion. 

Cells were proliferated although at a lower rate of growth compared to PU, whereas, 

there was reduction in bacteria adhering to the grafted composite compared to PU. With 

its low bacterial adhesion and biocompatibility it may provide a promising solution to 

reduce infections. The electrospun nano-fibres were successfully developed and 

revealed no loose nHA particles. Hence, this novel composite has the potential to be 

used as a bioactive dental restorative material. 
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Chapter 1 Introduction 
 

1.1- Research Motive 
 

It is desirable for a restorative dental material to have bioactive and bonding 

properties at the interface between the material and tissue to prevent micro-leakage 

and ingress of bacteria. Current dental restorative composites, which consist mainly 

of polymer matrix, filler particles, and coupling agent, do not exhibit these 

properties. The presence of discrete zones at the interface between these three 

components could cause water absorption and the osmotic effect would result in 

swelling and residual pressure on tooth structure. Silane coupling agent contact with 

the fillers could also cause a decrease in the polymerisation of resin-based 

composite. Urethane derivatives in restorative composites have been studied with 

2,2-bis-[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane) (Bis-GMA), these 

derivatives have much lower viscosities and water uptake than Bis-GMA and exhibit 

higher conversion of vinyl group without increasing (and perhaps decreasing) 

polymerisation shrinkage. Urethane based polymers, along with other materials such 

as acrylic resins or silicone, are often used in dentistry for the tissue bearing surface 

of an extra-oral prosthesis. Nano-hydroxyapatite have tendency to show 

osteoconductivity, high surface area to volume ratio, superior chemical homogeneity 

and micro structural uniformity.  Hence, it would be advantageous to combine these 

two materials to form a new dental material that would possess the above desirable 

properties. The requirement of a specific material differs according to the nature of 

application and there are different techniques in modifying and fabricating different 

compositions to achieve exact requirements for clinical use (Rehman, 1996). 

Polymeric based biomaterials have been used in medical and surgical applications 

for a number of years and it has been clear that there are different ways in which 

materials and tissue can interact (Williams, 2008).  

 

1.2- Structure of Tooth 
 

Tooth is the hardest and chemically most stable tissue in the body. In humans, the 

function of teeth is the comminution of food by a process referred to as mastication. 
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Structure of tooth consists of enamel, dentine, pulp, cementum and periodontal 

ligament, where the main bulk of tooth comprises of dentine. Dentine can be 

regarded as a natural composite consisting of apatite crystallites and an organic 

matrix (Katz, 1971). The inorganic component consists mainly of hydroxyapatite. 

About 56% of the mineral phase is within the collagen, which makes dentine slightly 

harder than bone and softer than enamel (Ten Cate, 1998). The apatite filler phase 

contributes most of the strength, while the collagen matrix provides elasticity and 

stress distribution (Mammone and Hudson, 1993). Like bone and enamel, dentine 

contains Calcium (Ca)-deficient hydroxyapatite with more than trace amounts of 

carbonate (Linde, 1984). Mechanical properties of tooth vary relating to test location 

and local chemistry i.e. degree of mineralisation. In addition to having variations in 

the degree of mineral content, hydroxyapatite is known to be an elastically 

anisotropic material and mechanical testing has indicated that differences in values 

may be due to the variations in prism orientation  

(Cuy et al., 2002). The mechanical properties of restorative materials should match 

as closely as possible to those of tooth structure (Angker et al., 2003). 

 

1.3- Restorative Materials  
 

Damage and infection in the teeth have been restored or replaced with a variety of 

materials including endodontic obturations, glass ionomer cements, and resin-based 

composites. The main advancement in direct type restorative materials occurred in 

the 1960s and 1970s with the synthesis of new polymeric systems and the 

introduction of inorganic fillers. The hybrid restoratives contain components of 

conventional chemically cured glass ionomers and light cured resins i.e. Bis-GMA 

and triethylene glycol dimethacrylate (TEGDMA) (Croll and Killian, 1992;  

Gladys et al., 1997). The advantages of composite include minimal intervention, 

mechano-chemical bonding with tooth and their application in anterior as well as 

posterior restoration (Bonilla et al., 2001: Kahler et al., 2005). However, existing 

polymer based restorative materials have certain limitations such as secondary 

caries, restoration fracture, marginal defects, water absorption, polymerisation 

shrinkage, and high viscosity (Watanabe et al., 2008; Sakaguchi et al., 2005). To 

overcome these issues urethane derivative resins have been used successfully in 
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dentistry and are available for light activated composite formulated specifically for 

fabrication (Wakasa et al., 1997; Whitworth et al., 1999). The most common is 

urethane dimethacrylate (UDMA), which can be synthesised by using 

trimethlhexamethylenediisocyanate (TMDI) (Moszner et al., 2008). Hence, 

polyurethane structure blocks, i.e. polyols, isocyanates, chain extenders and other 

modifying ingredients have enabled designing of materials for different applications 

(Atai et al., 2007). 

 

1.4- Polyurethane 
 

Polyurethanes are a versatile class of polymers and are one of the most interesting 

classes of synthetic elastomers, having unique properties. They are used in a broad 

range of applications, due to their better physical properties and biocompatibility 

(Bouchemal et al., 2004).  Polyurethane is a family of heterogeneous polymers that 

contain the urethane linkage, similar to carbonate group in organic chemistry, within 

the polymer chains. They consist of three main components i.e. soft segments 

(polyols), hard segments (isocyanate) and chain extenders, which can affect 

properties of the final material. A great deal of attention has been given to the 

synthesis, morphology, chemical, and mechanical properties of this family of 

materials (Kuan et al., 2005). Synthesis of polyurethane can be achieved by various 

methods such as solvent based polymerisation (Hong et al., 2002), melt 

polymerisation (Kultys, 2001) and supercritical fluid techniques  

(Fu et al., 1997). Depending on the field of application, ester and ether types of 

polyols have generally been incorporated as soft segment, whereas aliphatic or 

cycloaliphatic diisocyanate has been incorporated as hard segments extended by diol 

or diamine (Kim et al., 2005). Polyether type polyols possess good physical strength, 

abrasion resistance, water resistance, fatigue life, and biocompatible character (Liu et 

al., 1997). Research on polyurethane and its potential application in dentistry has 

been studied as facial prosthesis and is based on its inherent environmental stability, 

high tear resistance, and low modulus without the use of plasticisers, and good 

ultimate strength and elongation. This material can accept intrinsic colouring and is 

amenable to maxillofacial processing techniques (Tang et al., 1975; Goldberg et al., 

1978; Labella et al., 1994). Polyether based impression materials have been used in 
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restorative dentistry to record intra-oral structures for fabrication of definitive 

restorations (Ritter et al., 2000). From the material’s science dimension, a single 

material type is not able to provide the necessary mechanical and chemical properties 

required for biomedical applications. From a biological viewpoint, combination of 

polymer and ceramic material to fabricate a bioactive composite scaffold is a natural 

strategy (Chen and Boccanccini, 2006). 

 

1.5- Hydroxyapatite 
 

Nano-hydroxyapatite (nHA) has been proved to be an osteoconductive material 

(Hench et al., 1998) that also binds chemically to enamel and dentine. A significant 

characteristic of these bioactive materials is their ability to bond with living tissue 

through the formation of a hydroxyapatite interfacial layer (Wu and Chang, 2006). 

The use of hydroxyapatite (HA) in restorative dentistry offers several advantages, 

including, intrinsic radio-opaque response, enhanced polishability and improved 

wear performance and the biocompatibility due to its bioactive nature (Domingo et 

al., 2001). The reduction in hydroxyapatite particle size maximise surface area to 

volume ratio allowing a high percentage of atoms to be present at the surface. 

Therefore, the properties of nano-modified hydroxyapatite are regulated by their 

intrinsic properties i.e. surface energy and morphology rather than their bulk 

properties. 

 

1.6- Polymer Composites 
 

Hence, in recent years, considerable attention has been focused towards the 

development of polymer composites to fulfil properties required for biomedical 

applications. The significance of using a composite material is due to the fact that the 

amount and type of reinforcing material and, the mechanical and biological 

properties can be tailored for each specific application. It has been reported that 

various polymers such as poly-lactic acid, poly-glycolic acid, poly-ε-caprolactone, 

polyethylene, polyetheretherketone, and polyurethane were used with hydroxyapatite 

(HA) as composite materials (Liu et al., 1998; Choi et al., 2004). The interface 

adhesion of HA particles and polymer matrix plays a very important role among the 
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major factors affecting properties of composites (Liu et al., 1996; Hong et al., 2005). 

Surface modification: surface adsorption and grafting of HA by polymers will 

provide an effective way to manipulate the surface properties of HA. When  

nano-particles and polymers form a composite, provided that homogenous dispersion 

of nano-particles is achieved at microscopic level, the mechanical properties are 

expected to improve and/or new unexpected features might appear (Liu et al., 1996). 

Dental restorative composites consist of continuous polymeric matrix reinforced 

with a dispersed phase or filler. Commonly used filler particles are barium or zinc 

glasses, quartz, zirconia, silica or alumina. These are silanated inorganic fillers in 

restorative composites, whereas, an acceptable substitute with similar chemical and 

physico-mechanical characteristics should be considered. The mineral phase of 

human bone and teeth is mainly hydroxyapatite; therefore, dental resins reinforced 

with dispersed hydroxyapatite crystals seem to be a favourable restorative material 

for human tooth tissue.  
 

1.7- Project Overview 
 
Nano-hydroxyapatite (nHA) was synthesised by a sol-gel technique and were 

characterised with Fourier Transform Infrared (FTIR) spectroscopy, Raman 

spectroscopy, X-ray diffraction (XRD) and the nano-size and high surface area were 

confirmed with Transmission electron microscopy (TEM), Scanning electron 

microscopy (SEM) and Brunauer Emmett Teller (BET) respectively. Polyurethane 

and polyurethane/nano-hydroxyapatite (PU/nHA) composites were synthesised by 

in-situ solvent polymerisation. Primarily supercritical fluid technique was used 

during the early stage of this study, but it did not provide the required results. 

Various methods (physical and chemical) and different ratios of the components 

were used and finally the best possible combination of ratios was applied, which will 

be explained in Chapter 3. Initially polyether was tried with different molecular 

weights, finally polyether soft segment (Poly (tetramethylene glycol 1400 g mol-1), 

4, 4’- Methylene Diphenyl Diisocyanate (MDI) hard segment and 1.4-Butanediol 

(BD) chain extender was used with nano-hydroxyapatite. The resulting material was 

characterised by using structural [FTIR, Raman spectroscopy, 13C Nuclear Magnetic 

Resonance (13C NMR)], physical (XRD), and thermal (Thermo Gravimetric 

Analysis; TGA, Differential Scanning Calorimetric; DSC) techniques. 
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Chemical analysis showed that there were structural changes and covalent linkage 

established between nHA and polymer. The physical and thermal analysis further 

confirmed that with the chemically linked PU/nHA, the properties of composite 

improved. 
 

Polyethers are hydrolytically stable but due to the presence of hygroscopic materials, 

hydrolytic stability of the composite was analysed. The biostable polymers must 

have certain performance criteria including long-term stability and biocompatibility. 

The specific properties of bioactive polymers result from distribution of the bioactive 

components with specific chemical groups on the polymeric surfaces. Depending on 

the chemical nature of the functional groups and their relative proportions in the final 

product, these bioactive polymers are able to bind with living tissues, which will 

range from non-specific to highly specific. The biostability of the experimental 

composite was analysed and characterised by using chemical and physical analysis. 

In-vitro bioactivity was analysed with modified simulated body fluid and adhesion 

was evaluated with human extracted molar teeth mainly with dentine. These studies 

were conducted with pre-determined time interval. 
 

The biocompatibility is the ability of the material that is intentionally placed within 

the body for transient diagnostic or therapeutic purpose to be able to perform its 

intended function. The main purpose is that the material should not induce 

uncontrolled activation of cellular and protein cascades. The factors which can affect 

the degree of biocompatibility are: the type of material, genetic inheritance of the 

patient, site of application, and the contact duration (Pavithra and Doble, 2008). The 

biocompatibility test was performed by cell-culturing and bacterial adhesion 

analysis. Electrospinning was used to synthesise fibres from both physically and 

chemically mixed composites and were analytically compared with surface 

characteristics of the fibres. 

 

1.8- Outline of Thesis 
 

This thesis provides comprehensive review of the literature, which includes the 

structure of tooth, development of restorative materials, polyurethane, and nano-

hydroxyapatite (Chapter 2). It also outlines the investigated materials, experimental 
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techniques and brief description of these methods (Chapter 3). Obtained results 

(Chapter 4) and the relevant discussion (Chapter 5) are explained. At the end 

(Chapter 6) it concludes the findings of the project and finally presents the future 

work followed by a list of references and appendices. 
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Chapter 2  Literature Review 
 

2.1- Structure of Tooth 
 
Teeth are the hardest and chemically most stable tissue in the body. The anatomical 

crown of the tooth is covered with enamel. Enamel is thickest over the region of the 

crown, used for biting, and tapers towards the neck (cervical region) of the tooth. Where 

enamel finishes, it is usually continuous with a layer of cementum, which covers the 

root area. The cementum is hard tissue, which attaches tooth to the surrounding alveolar 

bone by means of collagen fibres. The dentine is situated between the pulp and enamel 

and is interlinked with dentino-enamel junction. The pulp is a highly vascular 

connective tissue, which provides nutrition as well as sensory nerves to the cell forming 

the dentine (Antonio, 2003; Yu and Abbott, 2007). Figure 2.1 shows the structure of 

tooth. 

 

2.1.1- Enamel 
 
Human teeth are composed mainly of dentine capped on the working surface by a thin 

hard layer of enamel. Enamel contains 97% by weight (92% by vol.) of inorganic 

material, 1% organic material and 2% water. The inorganic material is a calcium 

deficient apatite containing 2-5% by weight carbonate and inclusion of numerous other 

trace elements. The mineral crystals are of the order of 25 nm thick, 40-120 nm wide 

Figure 2.1 Structure of Tooth (Ten Cate, 1998) 
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and 160-1000 nm long. The hydroxyapatite crystals in enamel form well-defined rod or 

prism like structures about 4 µm in diameter (Suchanek et al., 1998). 

 

2.1.2- Dentine 
 
In restorative dentistry, dentine microstructure and properties are the principal 

determinants of nearly all procedures (Zaslansky et al., 2006). Dentine can be regarded 

as a natural composite, much like bone, consisting of a microscopic filler phase made up 

of apatite crystallites and an organic matrix made up primarily of collagen  

(Sano et al., 1994). Table 2.1 shows the composition of dentine by weight and by 

volume. The organic phase is type I collagen with inclusion of glycoproteins, 

proteoglycans and phosphoproteins (lipids and noncollagenous matrix protein) and a 

small amount of type III and V collagens (Ten Cate, 1998). 
 

 Table 2.1 Composition of dentine by weight and volume (Ten Cate, 1998)  

Composition 
By weight 

(%) 

By volume 

(%) 

Inorganic material 70  45 

Organic material 20 33 

Water 10 22 
 

The inorganic component consists mainly of hydroxyapatite. About 56% of the mineral 

phase is within the collagen, which makes dentine slightly harder than bone and softer 

than enamel (Ten Cate, 1998). The size of the apatite crystals is much smaller 

(approximately 5 x 30 x 100 nm) than the apatite found in enamel, and contains 4-5% 

carbonate as compared with hydroxyapatite. The major components are distributed into 

distinctive morphological features to form a complex and vital hydrated composite in 

which the morphology varies with location and undergoes alterations with stimuli (age 

and diseases) (Marshall et al., 1997). 
 

The other components of tooth structure are pulp, which is a soft tissue containing thin 

collagenous fibres, nerve cells, blood vessels etc. The cementum surrounds the root. The 
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thickness of layer varies from 20-50 µm at the cervix to 150-200 µm at the apex. 

Approximately half of cementum is composed of organic and half is inorganic and 

water. The periodontal membrane is made of collagenous fibres and glycoproteins 

(protein-polysaccharide complex) (Suchanek et al,, 1998; Ten Cate, 1998). 

 

2.1.3- Dental Caries and Restoration 
 
Dental caries is a multi-factorial disease involving interaction among the diet, saliva, the 

plaque micro-flora and a susceptible tooth surface (Marsh, 1995).  Caries results initially 

from an imbalance between demineralisation and remineralisation of the tooth structure 

(Thylstrup et al., 1994). Cavities in the teeth have been restored or replaced since 

ancient time to the eight century with a variety of materials including stone chips, ivory, 

human teeth, turpentine resin, cork, gums, and metal foils. More recently amalgams, 

unfilled synthetic resins, cement, metal modified cements, resin-based composites, and 

ceramics have been used for tooth restorations (Anusavice, 2003). Aesthetic dental 

composites were introduced in the mid-1960s for the restoration of anterior teeth and 

inert fillers were incorporated with resin matrix. Since then resin composites have been 

the material of choice for anterior restorations. In the 1980s, the first application of resin 

composites on load bearing posterior teeth, were introduced, where better mechanical 

properties are required (Bowen and Marjenhoff, 1992). This section will describe the 

literature review of development of dental restorative materials, mainly the endodontic 

obturating materials, and aesthetic dental materials such as glass ionomer cements and 

resin based composites. 

 

2.2- Development of Restorative Materials  
 

2.2.1- Introduction 
 
Dental materials science for restorative dentistry is derived from material science. 

Material science is classified into four categories i.e., metals, ceramics, polymers and 

composites. Each of these materials has characteristic microstructures and resulting 
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properties (Roberson et al., 2002). A large number of materials have been used in 

dentistry for a wide spectrum of applications (Moszner and Klapdohr, 2004). 

Restorative dental materials include synthetic components, acid base cements, amalgam, 

resin-based composites, noble and base metals, ceramics and denture polymers  

(Craig and Power, 2002; Anusavice, 2003).  

The ideal restorative material should be biocompatible, bond permanently to tooth 

structure or bone, match the natural appearance of tooth structure and other visible 

tissues, and be capable of initiating tissue repair or regeneration of missing or damaged 

tissues (Anusavice, 2003). 

 

2.2.2- Obturating Materials 
 
Endodontics (root canal treatment) is defined as the combination of mechanical 

instrumentation of root canal system, its chemical debridement and filling with an inert 

material and design to maintain the health of all, or part of the pulp (Ng et al., 2007). 

The two major steps in root canal system are: the preparation of root canal and the 

obturation of canals.  
 

2.2.2.1- Ideal Requirements of Obturating Material 
 
The requirements of the ideal root canal filling materials (Ingle, 2002; Stock, 2004; 

Gutmann, 2006): 
 

1. should be easily introduced into a root canal, where the shape of canal varies  

2. should seal the canal laterally as well as apically 

3. should not shrink after being inserted 

4. should be impervious to moisture 

5. should be bacteriostatic or at least not encourage bacterial growth 

6. should be radiopaque 

7. should not stain tooth structure 

8. should not irritate periradicular tissue or should be biocompatible 
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9. should be sterile and quickly sterilised immediately before insertion 

10. should be removed easily from the root canal if necessary 

11. should have long shelf life 

12. should be cost effective (cheap) 
 

2.2.2.2- Materials Used for Obturation 
 
There are certain materials which have been using for obturation and can be grouped as; 

plastics (gutta percha) (Kulild et al., 2007), solids (silver cones) (Schilder, 2006), resins 

(Gesi et al., 2005), pastes and cements (mineral trioxide aggregate) (Roberts et al., 

2008). 
 
Gutta Percha (GP) is by far the most universally used solid-core root canal filling 

material and may be classified as a plastic. It is a trans-1,4-polyisoprene and has an 

approximately 60% crystalline form. Chemically pure gutta percha exist in two 

distinctly different crystalline forms (alpha and beta) that can be converted to each other. 

The forms differ only in molecular repeat distance and single carbon-bond configuration 

(Maniglia-Ferreira et al., 2005). The third form of GP is amorphous (molten). The 

composition of GP is: Gutta Percha 19-22 %, Zinc Oxide (stiffness) 59-75 %, Metal 

sulphate (radiopacity) 1.1-17 %, Waxes/resins (hardening properties) 1-4 %, Colouring 

agent (visual) < 1 (Friedman et al., 1977; Gurgel-Filho et al., 2003). However it varies 

according to manufacturers. 

  
The advantages of GP are compressibility or compatibility, radiopacity, becomes plastic 

when warmed, has known solvent: chloroform and xylene. However, the disadvantages 

are; dependent on sealer for bonding with tooth structure i.e. no dentinal adhesion, lack 

of sufficient rigidity, and shrinks during cooling or solvent evaporation, exhibit degree 

of  tissue irritation due to high content of zinc oxide, which is known to be an irritant 

(Qualtrough, 2005; Manogue, 2005; Hsieh et al., 2008). 
 

A new polymer-based obturating material, Resilon has been developed, by combining 

methacrylate-based resin sealers with polyester; it has been claimed that a monoblock-

bonding concept could be achieved. This material showed less microbial leakage, 
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reduced periapical inflammation, and higher bond strength compared to gutta percha. 

However, some undesirable properties include low push-out bond strength and low 

cohesive strength and could not achieve a complete hermetic apical seal (Sly et al., 

2007; Hsieb et al., 2008).  
 

The complete obturation of the root canal system has been proposed as goals for 

successful endodontic treatment. The standard method of obturation of the root canal 

treatment uses a core material in combination with a root canal sealer. It has been 

documented that the complete sealing of the root canal system with currently available 

materials and obturation technique is not a predictable procedure  

(Saleh et al., 2002).  Microleakage from an apical or coronal direction is a clinical 

problem and a possible source of failure. It has been stated that approximately 60% of 

endodontic failures are due to inadequate obturations of the root canal systems. These 

failures have been linked with the penetration of substances from the apical tissue into 

the canal (Saleh et al., 2002; Brosco et al., 2003). Studies have been conducted on 

different techniques of obturation, warm vertical compaction (Schilder, 1967), the 

continuous wave of condensation technique (Buchanan, 1996), the multiphase gutta 

percha obturation technique (McSpadden, 1993). Apart from using different techniques 

of obturation when the obturated root canal system is exposed to the oral environment, 

ingress of micro-organisms occurs (Davalou et al., 1999). 
 

  

2.2.3- Development of Aesthetic Restorative Materials 
 
In 1963 the idea of polyelectrolyte cement was developed which involved the reaction 

of a metal oxide with reactive water-soluble polymers. Based on this concept the first 

zinc polyacrylate cement was produced by using zinc oxide and poly acrylic acid, which 

was capable of chemically bonding to the tooth structure, due to the use of polyacrylic 

acid. The latter has the ability to complex calcium ions and form hydrogen bonds with 

collagen (Beech, 1972).  
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2.2.3.1- Glass Ionomer Cements (GIC) 
 
Wilson and Kent made a major development by taking polyacrylic acid and mixing it 

with an ion leachable glass (Wilson and Kent, 1972). The resultant product was given 

the name aluminosilicate polyacrylate (ASPA) or glass-ionomer, which was a hybrid of 

the dental silicate cement and the carboxylate cement. Ever since its introduction, Glass 

Ionomer Cements (GIC) has received a mixed response from the world of clinical 

dentistry. On one hand it is acknowledged for its ion exchange adhesion and continuing 

fluoride release (Wilson, 1989; Smith, 1998), but on the other it is subjected to criticism 

due to its lack of physical strength and translucency (Crisp et al. 1976; Mount and 

Makinson 1982; Mount and Hume, 1998; Mount, 1998). The matrix of glass ionomer 

cements not only release fluoride but also have the ability to absorb fluoride from a high 

concentration aqueous medium (Forsten, 1998).  
 

Various modifications have come up which have better characteristics. These 

modifications are, use of acrylic/maleic acid as the poly acid component  

(Nicholson, 1998), use of dried polymer powders blended with the glass and activated 

by the addition of water (Prosser et al., 1984), development of cermet containing 

cements in which the filler consists of calcium fluoroaluminosilicate glass fused to silver  

(McLean and Gasser, 1985), metal reinforced cements (Williams et al., 1992), and 

resin-modified cements (Wilson, 1990).  

 

2.2.3.2- Development of Resin-Based Composites (RBC) 
 
Polymer resin-based composites have become one of the most significant advanced 

materials used in the area of engineering, biomedical and broad-spectrum dental 

applications (Babu et al., 2005). After the rejection of silicate-based composites, acrylic 

resins were used because of their tooth-like appearance, insolubility in the oral fluid, 

ease of manipulation and low cost. The current trend towards “minimally invasive 

dentistry” and in response to the growing patient demand for aesthetics, resin 

composites is the material of choice for restoration of anterior teeth (Yoshida et al., 

2002).  Traditionally, the dental composites used for direct aesthetic restorations consist 
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of mainly polymer matrix and dispersed reinforcing inorganic filler particles  

(FDA, 1998).  
 

Adhesive dentistry has evolved remarkably, greatly due to development, in the late 

1950s, of methacrylate monomer, Bis-GMA and an organic silane-coupling agent 

(Braga et al., 2005). This resin enables the formation of bonds between filler particles 

and resin matrix (Braga and Feracane, 2004). Composite materials are well suited for 

repair of damaged tooth and decayed structures because in addition to an aesthetic 

appearance, they can easily be accepted for a wide variety of direct placement 

application and be bonded chemically to the tooth (Stansbury et al., 2005). The other 

advantage of using composites is that the need to remove only the infected irreversibly 

deteriorated tissue, not the additional tissue (Park and Robertson, 1998). 
 

However, dimethacrylate are commonly used in dental composite but due to their brittle 

nature, they are susceptible to fracture and wear during mastication in the oral 

environment (Kerby et al., 2003). Microscopic and nano-filler particles are easily mixed 

with dental resins to a high proportion due to their high surface area and are widely used 

in dentistry (Arcis et al., 2002; Moszner and Klapdohr, 2004). 
 

2.2.3.2.1- Composition 
 
Dental composites mainly consist of an organic matrix loaded with a finely dispersed 

glass or silica filler that is bonded to the matrix polymer through a silane coupling agent 

(Yashida et al., 2002). The matrix/filler interaction can be induced by the impregnation 

of filler particles on surface of resin with a bifunctional coupling agent (Palin et al., 

2003; Arcis et al., 2002). 

 

Resin Matrix 
 
Resins contain a modified methacrylate or acrylate and are a blend of aromatic and 

aliphatic dimethacrylate monomer, the oligomers; Bis-GMA and UDMA, together with 

triethylene glycol dimethacrylate (TEGMA), added to control the viscosity. Bis-GMA is 
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a major monomer in the resin, it is a viscous, bulky bifunctional monomer and has a 

high reactivity, high molecular weight, and undergoes low polymerisation shrinkage. To 

overcome its high viscosity some low molecular weight diluents monomer such as 

TEGMA must be added. It has been reported that an increase of TEGMA/ Bis-GMA 

ratio in a resin composite will lead to a more favourable viscous flow property (Feilzer 

and Dauvillier, 2003).  

 

Filler Particles 
 
The material properties of filler particles in a resin matrix depend on type of filler 

particles, concentration, size of particles and their distribution. Commonly used fillers 

are quartz, fused silica, and glasses like alumino-silicate, boro-silicate and barium oxide. 

Some composites contain large (macro-fillers, 20-30 µm) spherical, irregularly shaped, 

micro-fine (0.04-0.3 µm) and fine (0.4-3 µm) particles and the blend of fine and 

mirofine (hybrid) particles (McCabe and Walls, 1998; Anusavice, 2003).  

 

The filler geometry and shapes are likely to present distinct surface area, which affects 

the amount of resin matrix in the interfacial region between particles (Turssi et al., 

2005). It is established that nano-particles can improve general properties such as 

adhesion, aesthetics, and elastic moduli of the resin based composites (Silikas et al., 

2007). 

 

Coupling Agents 
 
The significance of a coupling agent is to form bonds between organic flexible 

oligomers and inorganic fillers and allow the transfer of stress from their matrix to 

higher modulus filler particles (Halvorson et al., 2003). Titanates and Zirconates can be 

used as coupling agents but the most common coupling agents are organosilanes such as 

γ-methacryloxypropyl trimethoxysilane (Anusavice, 2003). It improves the distribution 

and stress transmission from flexible resin matrix to the stiffer and stronger inorganic 

filler particles (Calais and Soderholm, 1998). 
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Activator-Initiator System 
 

Generally in dental materials, polymerisation is initiated by free radicals and these free 

radicals can be generated either by chemical activation or by external energy activation 

(heat, light, or microwave). Chemical activation can be initiated by an organic amine 

(catalyst) reacting with an organic peroxide to produce free radicals, which attack the 

carbon double bond causing polymerisation. Light activation is accomplished with 

visible blue light system with a peak wavelength of 460-470 nm. It produces an excited 

state of the photosensitiser (camphorquinone) which reacts with amine to form free 

radicals that initiate polymerisation. Amines, such as ethyl p-dimethylaminobenzoate 

(DMBA) or N, N- dimethylaminoethyl methacrylate (DMAEMA) are used as 

accelerators and form initiating radicals via proton and electron transferring  

(Moszner and Klapdohr, 2004). 

 

2.2.3.2.2- Properties 

Mechanical Strength 
 
The mechanical properties depend upon the filler content, the type of filler, the size of 

filler particles, the efficiency of filler-resin coupling process and the degree of porosity 

in polymerized materials. It also depends on the reinforcement effect of polymer by 

fillers (Alberola et al., 1999; Adabo et al., 2003).  

 

Physical Properties 

Polymerisation Shrinkage 
 
Dental composite polymerisation shrinkage ranges between 2 to 6 % by volume (Labella 

et al., 1999). Factors which contribute to their shrinkage reduction are: larger monomer 

and comonomer molecules and additional filler. Bis-GMA has lower polymerisation 

shrinkage than methyl methacrylate and TEGMA. The more the Bis-GMA is replaced 

by TEGMA, the higher the composite shrinkage (Feilzer and Dauvillier, 2003). 

Shrinkage also causes stress on the tooth substance. These strains can severely affect the 
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interfacial bond between composite and the tooth (McCabe and Walls, 1998;  

Craig and Power, 2002). One of the problems associated with composite material is its 

marginal leakage due to shrinkage during curing. This leads to formation of a gap and 

the consequent problems of marginal staining and secondary caries. This problem can be 

improved by the application of a dentine bonding system which increases adhesion 

between the material and tooth structure (Kohler et al., 2000). 

 

Water Sorption 
 
The major disadvantage of current resin based composites is the sequence of 

dimensional changes during and following placement and constantly interacting with 

surrounding environment. The principal interaction occurs with water which diffuses 

into the matrix (Martin and Jedynakiewicz, 1998). The absorption of water by composite 

resin is dependent on the matrix resin, filler and the properties of interface between the 

matrix and the filler. Mechanical properties such as strength are affected by water 

sorption into the resin (Asaoka and Hiranno, 2003).  
 

2.2.3.2.3- Limitations of Bis-GMA  
 
The main disadvantages of Bis-GMA resin are its significant water absorption, high 

viscosity and incomplete polymerisation, which means some monomer still exists in the 

material after polymerisation. It is suggested that the glycidyl methacrylate reacts with 

bisphenol A and a tertiary amine used to catalyse the addition of phenolic hydroxyl 

group to the epoxide groups. After poorly purified reaction some unreacted monomer 

i.e. both glycidyl methacrylate and bisphenol A remains there and causes allergic effects 

(Soderholm and Mariotti, 1999). Bis-GMA based resins shows final double bond 

conversion of only 55-75%. The incomplete conversion of dimethacrylate system is due 

to complex diffusion controlled reaction mechanism. With the progression of reaction, 

both the termination and propagation reactions become diffusion limited.  During the 

polymerisation of methacrylate-based monomer, unreacted monomer molecules are 

incorporated into the polymer chains as units containing pendant C=C double bond. 
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With the increase in reactivity of pendant C=C bonds, cyclisation (intramolecular 

crosslinking) and formation of high density region or mirogels occurs. Further reaction 

occurs by chemical bonding of the microgels leading to agglomeration and increase in 

heterogeneity of the polymer system. These factors lead to decrease in cross-link density 

and promote the water absorption and possible hydrolytic degradative reactions  

(Elliott et al., 2001; Sideridou et al., 2003). There are certain disadvantages associated 

with incomplete polymerisation. The release of unreacted monomer may stimulate 

bacterial growth around the restoration and promote allergic reaction. The unreacted 

monomers act as plasticiser, reducing the mechanical properties and increasing swelling 

(Hansel et al., 1998). 
 

2.2.3.2.4- Urethane Derivative Resins 
 
Over the period of time, some new components have been introduced in dental 

composite materials. Urethane derivatives (UDMA) have been studied with Bis-GMA 

(Labella et al., 1994) and they form weak hydrogen bonding but have a high cohesive 

energy density. This resin is comparable in size with Bis-GMA but differs in its 

chemical structural features which affect critical properties such as viscosity, diffusity, 

polymerisation shrinkage, water uptake, physiochemical and mechanical properties. 

These derivatives have much lower viscosities and water uptake than  

Bis-GMA and exhibit higher conversion of vinyl group without increasing (and perhaps 

decreasing) polymerisation shrinkage of dental resin systems. Due to urethane group 

UDMA is known to form weaker hydrogen bonds with water molecules than the 

hydroxyl groups of BisGMA and TEGDMA molecules reducing the hydrophilic nature 

of the constituent monomer units (Palin et al., 2005).  
 

It has been investigated that UDMA has shown better tensile properties, faster and more 

complete conversion, and its lower viscosity allows its use without low viscosity 

diluents (Gohring et al., 2005). Palin et al., (2003) reported that on curing, decreased 

volumetric shrinkage of resin composites can be achieved if the composite system does 

not contain dimethacrylate monomers. Research on polyurethane and its potential 

application in dentistry has been studied as facial prosthesis and is based on its inherent 
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environmental stability, high tear resistance, and low modulus without the use of 

plasticiser, and good ultimate strength and elongation. This material can accept intrinsic 

colouring and are amenable to maxillofacial processing techniques (Tang et al., 1975; 

Goldberg et al., 1978; Labella et al., 1994). Polyether based impression material have 

been used in restorative dentistry to record intra-oral structure for fabrication of 

definitive restorations (Donovan and Chee, 2004). 

 

2.3- Polyurethane 
 

Polymeric materials have been used in medical and surgical applications, often in 

situations, where they are in direct contact with living tissues (Rehman, 1996). 

Polyurethane forms a versatile class of polymers and is one of the most interesting 

classes of synthetic elastomers that have unique properties, which are used in a broad 

range of applications due to their better physical properties and biocompatibility 

(Bouchemal et al., 2004). It is established that polyurethane has functions to improve 

cell growth and proliferation, and controllable degradation kinetics. This material has 

been used as a biomaterial for hard and soft tissues due to its tailor made mechanical 

properties (Bonzani et al., 2007).  It comprises a class of materials which can vary from 

rubbery to glassy thermoplastics and from being a linear polymer to being a thermoset 

(Ho et al., 1999; Hsieh et al., 1999).  Traditionally, polyurethane elastomers have been 

regarded as materials with relatively high cost and needing special technical expertise to 

successfully manufacture products (Hepburn, 1992).   
 

2.3.1- History of Polyurethane 
 
Polyurethane is a group of polymeric material first produced and investigated by  

Dr. Otto Bayer in 1937 (Frisch, 1981). It is a polymer in which the repeating unit 

contains a urethane moiety. In the mid-1950s, rigid foamed polyurethanes were 

implanted for bone replacement and as bone adhesives; soft foams for heart valves, 

suturing rings, vascular grafts and catheter cuffs (Brenda, 1992). The medical 

community and polymer research groups have produced polyurethanes with a wide 
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range of properties and have shown that there are different techniques to modifying and 

fabricating different compositions to achieve exact requirements (Rehman, 1996). A 

great deal of attention has been given to the synthesis, morphology, chemical, and 

mechanical properties of this family of materials (Kuan et al., 2005). 

 

2.3.2- Structure of Polyurethane 
 
The properties of polymeric materials depend on the molecular characteristics and 

morphology at both the micro- and macroscales. Molecular parameters such as the 

molecular weight (averages and distributions), molecular architecture (linear, branched, 

crosslinked, blocks or grafts and tacticity), copolymer composition and distribution 

(blocks and branches), and residual concentrations of low-molecular-weight materials 

are significantly influenced and can be controlled in the polymerisation process 

( ebenik et al., 2003). The group of polyurethane comprises all polymers that contain 

urethane, urea or other isocyanate-derived group, even if they are only a minor part of 

the total structure (Howard, 2002). 
 

Currently the polyurethane industry is based on the use of intermediates which 

themselves are polymeric in nature such as polyester and polyether with terminal groups 

(usually –OH or –NCO), which are capable of further reaction and to increase molecular 

size by chain extension. These polyurethane elastomers are essentially copolymers such 

as polyester urethanes or polyether urethanes (Zia et al., 2008). 
 
Polyurethane elastomer can vary in properties over a very wide range of strength and 

stiffness by modification of the three basic building blocks: the polyol (B-B), 

diisocyanate (A) and chain extender (C) as shown in Figure 2.2. They can be explained 

as block copolymers in which one block of the polymer chain consists of a relatively 

long flexible ‘soft segment’ (B-B), derived from a hydroxyl-terminated aliphatic 

polyester, polyether or polyalkene, with a molecular weight between 500-5000. The 

second, stiff, highly polar block of the copolymer, commonly known as ‘hard-segment’ 

is formed by the reaction of diisocyanates (A), with low molecular weight diol of 

diamine chain extender (C). 
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Figure 2.2 Process for polyurethane elastomer preparation 

 

2.3.3- Synthesis of Polyurethane 
 

The complex chemistry of polyurethane has provided various techniques for its 

synthesis. Generally polymers are synthesis by two main methods. 

a) Addition polymerisation 

b) Condensation polymerisation 

In addition polymerisation, the double bond of the monomer molecule is broken down to 

initiate the reaction with formation of free radicals. Polyurethane polymerisation 

contains features of both addition and condensation polymerisation (Rehman, 1996; 

Lamba et al, 1998). 

 

2.3.3.1- One Step Process 

One-step process is the simplest and quickest process. A di- functional or multi-

functional isocyanate and diol are mixed together and allowed to react. An elastomeric 

Polyol Diisocyanate Chain Extender + +

Final Polyurethane Elastomer 

Catalyst: stannous octoate 
with triethylene diamine 

BB A C 
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material is formed with a slightly cross-linked structure and basically a random 

distribution of monomer units along the chain (Lamba, 1998). 

 

2.3.3.2- Two-Step Process  
 
A two-step process provides better control over the chemistry of the reaction, the 

structure, physical properties, reactivity and processability, therefore it is the preferred 

method. In the first step a pre-polymer is formed from di-isocynate and di-hydroxy 

compound. Usually the prepolymer has low molecular weight and can be stabilised with  

0.01 to 0.1% acid chlorides. In the second step the prepolymer reacts with a diol or 

diamine chain extender to produce a multi-block co-polymer. Thus, if the reagents are 

di- or polyfunctional, polymer formation can take place. It should be noted that in most 

reactions the particular advantage is the lack of by-products requiring removal  

(Rehman, 1996; Lamba, 1998).  

 

If the reactants are bi-functional then the result would be linear products but higher 

functionality results in the formation of branched chain or crosslinked materials. 

Additional reaction of the isocyanate with the urea, urethane and amide groups produced 

by the initial polymerisation is also possible (Hepburn, 1992). To achieve a soft, flexible 

and pliable film, it is important to have a linear polymer. Some other reactions can occur 

during the synthesis of polyurethane. The major side reactions are trimerisation, 

dimerisation, carbodiimide, biuret and allophanate formation (Hepburn, 1992). These 

side reactions change the initial stoichiometry of the extension and thereby limit the 

final molecular weight and yield branched or even crosslinked polymers (Dusek, 1987). 

Li et al. (1998) has reported the synthesis of polyurethane with different ratios of 

polyols, isocyanates and chain extender and found variation in the values of mechanical 

properties by using the change in the ratio of chain extender. Figure 2.3 shows the 

schematic structure of polyurethane formation with urethane and urea linkage. 
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Figure 2.3 Schematic diagram of polyurethane formation with urethane and urea linkage 

 

2.3.4- Types of Polyurethane 
 

The main type of polyurethane is segmented polyurethane (phase separated, 

thermoplastic). 

 

2.3.4.1- Segmented Polyurethane 
 
The segmented polyurethane elastomers can vary their properties over a wide range of 

strength and stiffness by modification of their three basic building blocks. This concept 

of molecular tailoring introduces units giving the required mechanical and physical 
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properties. It has been widely used due to their good biocompatibility and 

biomechanical and desirable physical properties (Mathur et al., 1997; Christenson et al., 

2005). The combination of high biocompatibility and the wide variety of physical and 

chemical properties that can be achieved make this polymer very interesting for the 

biomedical field (Heijkants et al., 2005). The properties of segmented polyurethane 

depend on the structure of hard and soft segment, length and concentration, as well as 

the interaction of both phases. Hard segment consists of glassy or crystalline domain and 

soft segment domain consists of continuous amorphous structure. Due to the 

incompatibility of these two domains, these materials are generally of a two-phase 

morphology. The domain between hard and soft segment is due to hydrogen bonding 

between the oxygen of the soft segment and N—H group of urethane (Wang, 2005). 
 

The hard segment domains provide rigidity and mechanical strength, whereas, soft 

segment domains impart elastomeric properties i.e. extensibility and resilience. Hard 

and soft segment structure, molecular weight, crosslinking and poly-dispersity in either 

phase influence micro-phase separation in these copolymers. Phase separation is 

primarily responsible for their good mechanical properties. Even many physical 

properties of these elastomers are due to this micro-phase separation  

(Rutnakornpituk and Ngamdee, 2006). Therefore, it has been studied that quantitative 

and qualitative evaluation of degree of phase separation and certain factors such as 

molecular weight, chemical structure and functionality of components and hydrogen 

bond between segments affect the phase-separation of the polymer (Jung et al., 2000; 

Adhikari et al., 1999; Rosthauser et al., 1997). It has been experimented that the length 

of soft segment heavily influences their crystallinity and the phase separation in the soft 

domain. The phase separation was enhanced with an increase in soft segment length 

(Wang, 2005). 
 

2.3.4.1.1- Hard Segments: Isocyanates 
 
The rigid segments are usually formed by the reaction of diisocyanate with a glycol or 

diamine. They are low molecular weight polyurethanes and their properties determine 

the inter-chain interactions in the elastomers to a large extent. The effects of increasing 
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hard segment at constant soft segment molecular weight are; higher crystallinity, higher 

crystalline melting point due to the thick lamella possible with harder soft segment, 

increase in glass transition temperature, and increase in hardness and tensile strength 

(Hepburn, 1992; Adhikari et al., 1999; Jung et al., 2000).  

 

Commonly used diisocyanates are: 

1-Aromatic Diisocyanate 

• Diphenylmethane-4-4’-diisocyanate (MDI)    Most Common 

• Toluenediisocyanate (TDI)  

• p-Phenylene diisocyanate (PPDI) 

• 1,5-naphthalene diisocyanate (NDI) 

• 4,4’,4’-triphenyl methane triisocyanate (TMDI)   → triisocyanate           

 

2-Aliphatic Diisocyanates    

• 1,6-hexamethylene diisocyanate (HDI) 

• 1,6—hexamethylene diisocyanate, isophorone diisocyanate (IPDI)  

• 4,4’- dicyclohexyl methane diisocyanate (H12MDI) 

• 1,4-cyclohexane diisocyanate 

 

Aromatic Diisocyanates 
 
MDI and TDI have bulky or hindered structures; to some extent their stereo 

configurations thus limit linearity in the polymer chain, which is an essential feature of 

strength, and elasticity in all rubber like materials. Polyether based elastomers show 

higher values of hardness, modulus, tensile strength and tear strength with an increase in 

the ratio of MDI, but the elongation at break decreases (Hepburn, 1992). MDI based 

polyurethane is typically chain extended with 1,4-butandiol to form polyurethane 

elastomers containing almost exclusively urethane linkages. TDI based polyurethanes 

are usually chain extended with aromatic diamines to form polyurethanes that contain 

both urethane and urea linkages. MDI prepolymers are not normally extended with 

diamines due to their higher reactivity compared to TDI-based ones  
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(Adhikari et al., 1999). Aliphatic diisocyanates are less reactive than aromatic 

diisocyanates. The relative reactivity of the various diisocyanates is given below: 

(Rehman, 1996). 

MDI: NDI: CHD: IPID: HDI: H12MDI  

1.00: 0.37: 0.28: 0.15: 0.14: 0.13 

Currently polyurethane elastomers based on MDI and TDI have property limitations, 

such as: (Hepburn, 1992). 

• Rapid reduction in time dependent properties of set and creep, at elevated 

temperature, e.g. above 120˚C 

• Relatively poor hydrolysis resistance at high temperature 

 

Aliphatic Diisocyanates  
 
To overcome these limitations, some new developments in the diisocyanate field have 

been introduced, such as aliphatic diisocyanate and also some more rigid, rod like 

structure such as that of paraphenylene diisocyanate (PPDI). Cyclic diisocyanate e.g. 

H12MDI generally produce polyurethanes of higher strength and thermal stability to 

those of the straight chain aliphatic diisocyanate (HDI, IPDI, TMDI). Aliphatic 

isocyanates have also been seen to show increased phase separation behaviour over 

aromatic isocyanates. Glass transition of aliphatic isocyanates such as HDI, H12MDI and 

IPDI are lower than that of aromatic isocyanates systems. This attributes to strong 

hydrogen bonding being obtained in the hard segment domain (Hepburn, 1992). 

H12MDI, used as a building block for polyurethane elastomer requires light stability and 

resistance to hydrolysis. This group of diisocyanates is supplied as a mixture of three 

geometrical isomers (Adhikari et al., 1999): trans, trans isomers, cis-trans isomers, cis, 

cis isomers. Usually IPDI is a mixture of 28% trans and 72% cis isomers, while H12MDI 

commonly contains 65% cis-trans, 30% trans-trans and 5% cis-cis isomers. The 

limitation of cycloaliphatic diisocyanate is higher cost than those of their aromatic 

analogues by factor of 3-4 (Hepburn, 1992; Adhikari et al., 1999).  It is expected that the 

diacylisocyanate might be a good substitute for regularly used diisocyanates. Heijkants 

et al. (2005) suggested that these compounds have activated isocyanate groups due to 
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the neighbouring carbonyl group, which makes these compounds much more reactive 

towards hydroxyl groups and thus very suitable for chain extension without a catalyst. It 

is concerned that the resulting polymers hydrolyse relatively fast and are expected to 

release terephtalamide and/or terepthalic acid upon degradation, which is considered to 

be non-toxic.  

 

2.3.4.1.2- Soft Segments: Polyols 
 
Polyols used for the synthesis of polyurethanes are hydroxyl terminated and their 

characteristics such as molecular weight, molecular structure, and functionality control 

the properties of resulting polyurethanes (Rehman, 1996). The usage of macromolecules 

such as polymeric analogues of simple diols, leads to extremely tough, elastomeric 

materials with many applications. Polyesters and polyethers are the most common 

materials as these flexible segments, latterly; polycaprolactones have also been used 

with them (Brenda, 1992). For the synthesis of elastomers, polyols are available in the 

range of 600-2000 molecular weight. They are typically based on polytetramethylene 

glycol for polyether series or polyethylene glycol adipate for the polyester series. 

However, it was observed that when single linear polyols are used in elastomer 

production the resulting elastoplastic or rubber often hardens in storage due to in-situ 

crystallisation (the cold hardening phenomenon). To avoid this, it is common to add a 

small proportion, ca 5-10% of a branched polyols into linear polyols  

(e.g. polypropylene glycol adipate for the polyester series or polyoxypropylene glycol 

for the polyether series) to suppress the cold hardening (Hepburn, 1992): 

 

Commonly used polyols are; 

• Polyether such as poly (tetramethyleneoxide) 

• Polysiloxane such as poly (dimethylsiloxane) 

• Polyester such as poly (ε-caprolactone) 

• Hydrocarbon based polyols such as polybutadiene 
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Polyether  
 
Polyethers have been used as flexible blocks in the synthesis of polyurethane 

elastomers. Polyether diols are synthesised by the addition of alkylene oxides (ethylene 

oxide, propylene oxide) to diols, polyols or di- or polyamines, and by ring opening of 

tetradydrofuran. The polyether polyurethanes with relatively good physical properties 

are polytetramethylene oxide (PTMO) and hydrogenated polybutadiene and 

polyisobutylene based polyurethane (Rehman, 1996). They have weaker inter-chain 

interactive forces than polyesters, and subsequently give elastomers of decreased 

physical properties at low temperature. Linear polyethers produce higher strength but 

are expensive elastomers. However, It is reported that polyether type polyols possesses 

relatively better physical strength, abrasion resistance, water resistance, fatigue life, and 

biocompatible character (Liu et al., 1997). Branched polyethers are cheaper but they 

produce weaker materials. These branched polyethers are generally polyoxypropylene 

glycols, the ether linkage is poly (ether-urethane) is resistant to hydrolysis and so these 

are used where hydrolytic stability is essentially required. 

 

HO – [(CH2)4 – O] n – H (poly (tetramethylene-ether)glycol) → higher strength    

 

HO– [CH– CH2 – O] n – H (poly (oxypropylene)glycol) → lower strength  
           | 
          CH3 
 

Polyether urethanes are hydrolytically stable yet are subject to oxidative degradation in 

various biomedical applications in the presence of metal ions (Tanzi et al., 1997; 

Jayabalan et al., 2000). The α-carbon of the polyether soft segment of the polyether 

polyurethane is highly susceptible to oxidation by oxygen radicals to form esters. In 

order to reduce the oxidation of the soft segment, antioxidant additives have been used. 

Another method to protect the polyether soft segment from oxidative cleavage is 

endcapping with PDMS; it creates a dimethlysiloxane-rich surface due to the high 

mobility of these endgroups, which imparts hydrophobic character to the polymer. 

Hydrophobic PDMS end groups protect the polyether soft segment from oxidative 

cleavage and provides in-vivo biostability by retarding hydrolysis (Mathur et al., 1997).  
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Poly (dimethylsiloxane) 
 
To enhance the biostability of the soft segment, modifications and substitutions have 

been made. The chemistry of soft segments has been substituting by using the polyether 

segment with a polybutadiene, polydimethylsiloxane (PDMS), polycarbonate and 

aliphatic hydrocarbon (Mathur et al., 1997). 
 
Polydimethylsiloxanes emerge as molecules with the potential to affect the surface 

properties of polymers to which they have been blended or copolymerised. This 

characteristic of low surface energy allows the siloxane segment to migrate to the top 

surface of the polymer interface and provide a very hydrophobic surface  

(Rehman, 1996). Siloxane polymers have unique properties of oxidative and hydrolytic 

stability, a wide service temperature range due to a low glass transition temperature  

(-123°C), low moisture permeability, and low surface energy. The interest in 

incorporating polyurethane with siloxane segment is to impart such properties to 

polyurethane, and to improve some inherent poor properties of siloxane polymers such 

as tear, abrasion and tensile strength. It has been identified that the problem associated 

with synthesising silxoane polyurethane is the incompatibility of the non polar siloxane 

segment with polar urethane hard segments, which resulted in polyurethane with poor 

mechanical properties; this was attributed to weak interfacial adhesion (Adhikhari et al., 

2000). Various studies (Adhikhari et al., 2000; Vaidya and Chaudhury, 2002; Simmons 

et al., 2004) demonstrated that when a small amount of second macrodiol (comacrodiol) 

such as poly (hexamethylene oxide) (PHMO) was incorporated as a part of soft segment 

along with PDMS, the compatibility of the siloxane soft and urethane hard segments 

could be significantly improved, which helps to strengthen the interfacial region. This 

enabled the synthesis of a new family of siloxane polyurethane elastomers with good 

mechanical properties, flexibility and biostability with relatively low hardness, tensile 

and flexural moduli.  

 

Polyesters 
 
Polyesters are prepared by polyesterification of dicarboxylic acids with diols. If a linear 

polymer segment is required then usually adipic acid, phtalic anhydride, sebacic acid, 
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oxalic acid, maleic acid or deimerised linelic acid are reacted with diols such as ethylene 

glycol, 1,2-propylene glycol, butylenes diol and hexylene diol. Polyesters derived from 

ε-caprolactone and hydroxyl-terminated aliphatic and cycloaliphatic polycarbonates 

have also been widely used in synthesis of polyurethane (Brenda, 1992).  
 

It is mentioned that 90% of commercial polyurethanes are polyester based because they 

possess very high tensile strength, tear strength and abrasion resistance; they are low 

cost and can be easily fabricated (Oprea and Oprea, 2002).The main disadvantage of 

using polyester soft segment for the production of polyurethane is related to its 

hydrolytic stability. Experimental findings show that these polyurethanes should not be 

used for medical applications, due to their hydrolytic degradation when implanted in the 

body even for the short period of time (Tanzi et al., 1997; Jayabalan et al., 2000). 

However, this hydrolytic instability may be used to an advantage in the production of 

biodegradable materials. Generally, ester type polyols of high molecular weight 

crystallise at ambient condition. Polyester polyurethane loses the ability to crystallise for 

short segment length, due to steric hindrances. Branched polyols do not crystallise and 

their pendant bulky groups provide the thermal stability and steric hindrance for 

hydrolysis reaction of the ester group (Kim et al., 2005).  
 

Polycarbonate  
 
Polycarbonate urethanes do not present ether linkages in their soft segment and currently 

appear to represent a new generation of more biostable elastomers. It is suggested that 

polyether urethanes and polycarbonate urethanes both shows better in-vivo and in-vitro 

chemical stability compared to polyester urethanes However, the mechanical properties 

of polycarbonate will be less affected as the macromolecular modifications were less 

pronounced in this polymer than in polyether (Tanzi et al., 1997). 

 

Thermal Behaviour of Polyols 
 
The thermal behaviour of polyurethane elastomers is primarily described by the glass 

transition temperature (Tg) of the soft segment. This is not only influenced by the nature 
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of the soft blocks (usually polyethers have lower Tg than polyesters) but also by the 

degree of phase separation between hard and soft blocks. It was observed that the Tg of 

soft segments shifted to higher temperature as the molecular weight decreased. This is 

indicative of restriction of mobility upon the soft segment as phases become compatible 

at lower molecular weights (Tien and Wei, 2002). 

 

Physical/Mechanical Properties of Polyols 
 
The physical properties of polyurethanes are also considerably influenced by the 

molecular weight of the soft segment. With the increase in molecular weight (550-2000) 

hardness, tear strength and modulus decrease, while elongation at break increases. With 

an increase in molecular weight of soft segments at a fixed hard segment there is 

decrease in the tensile strength of the material. Ultimate tensile strength exhibits an 

optimum between a molecular weight of 830-1250 (Hepburn, 1992).  
 

2.3.4.1.3- Chain Extenders 
 
These monomeric additives in the synthesis of polyurethane may be difunctional 

substances such as diols or diamines, or polyfunctional, usually triols, quadrols, or 

polyamines. The formers are generally called chain extenders or curing agents, the latter 

are often called crosslinking or branching agents. The chain extension process has a 

significant influence on molecular weight growth of the polyurethane  

(Jhon et al., 2001).  The most important in this group are aliphatic and aromatic diols 

and diamines. Common chain extenders are; 

1. Aliphatic diols; 1,2-ethane, 1,3-propane, 1,4-butane, 1,6-hexanediol 

2. Aliphatic diamines; 1,2-ethane, 1,3-propane, 1,4-butane, 1,6-hexanediamines 

3. Cyclic and Aromatic diamines 
 

The selection of chain extender has an influence on the final properties of the resulting 

polymers. Aromatic extenders produce stiffer polyurethane compounds compared to 

aliphatic extenders. But if an aromatic diisocyanate is used with urethane and carbamate 

linkage then thermo-hydrolytic degradation of this linkage leads to cleavage forming 
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highly toxic aromatic dianilines (Jayabalan et al., 2000). It is evidenced that the number 

of carbon atoms in the extender has a major influence on the structure of the hard 

segment and effect on properties like the degree of phase separation, melting point and 

strength of the final polymer. If the chain extender contains an even number of 

backbone carbon atoms, the hard segment can crystallise easier than when the number is 

odd (Rehman, 1996).  
 

2.3.4.1.4- Others 
 
Crosslinkers are low molecular weight compounds, containing active hydrogen and tend 

to increase the modulus and hardness of polyurethane. Certain additives such as 

catalysts, surfactants, fillers and plasticisers can be formulated into the polyurethane. 

 

2.3.5- Properties of Polyurethane 
 
Polyurethanes have a wide range of material properties attributed to the large variety of 

possible morphologies that may exist in the polymer (Chiou and Schoen, 2002). 

Polyurethanes based on polyether or polyester soft segments and a diisocyanate-based 

hard segment are known as tough materials and are usually used as an additive to 

enhance toughness of brittle materials as well as the thermal properties (Njuguna and 

Pielichowski, 2004). 
 

2.3.5.1- Hydrogen Bond 
 
Hydrogen bonding (H-bonding) plays an important role in determining the morphology 

and overall properties of polymers such as polyamides, polyurethanes, polyurethane-

urea and other polymers, which have pendant functional groups capable of forming 

hydrogen bonding, such as polyvinyl alcohol, ploy (acrylic acid), polyhydroxyethers and 

their copolymers (Yilgor et al., 2000). It has been accepted that properties of 

polyurethane are primarily due to the two-phase structure i.e. hard and soft segment, 

which is closely related to the relating H-bond. Polyurethane undergoes micro-phase 

separation resulting in hard segment domains, soft segment matrix and urethane bonded 



Chapter 2                                                                                            Literature Review                         
 

        
 69

inter-phase. Different polyurethane systems have different H-bond pattern due to 

incompatibility between hard segment and soft segment. The primary driving force for 

phase separation is the strong intermolecular interaction of the urethane units, which 

ultimately form intermolecular hydrogen bonding. The interconnected or isolated hard 

segments are distributed in the soft segment matrix, though the hard segment dissolve in 

the soft segment, which is evident from the hydrogen bonding of the urethane NH 

groups with the oxygen of the ether or ester linkages (Njuguna and Pielichowski, 2004; 

Ren et al., 2003).  The inter chain hydrogen bonding exerts strong influence on the 

rheological behaviour of polyurethanes (Pattanayak and Jana, 2005). The hard segment 

is derived from aggregation of urethane units through strong hydrogen bonding and is 

either glassy or semi-crystalline (Tien and Wei, 2002). It is speculated that for polyether 

based polyurethanes extended by diols have four types of H-bonding interaction 

patterns, since the urethane group (-NH—CO (O)-) provides one H-bond donor and 

three possible acceptors, and another acceptor of the ether oxygen from soft segment. 

The four types of H-bonding patterns are considered to be formed between the NH 

group and C=O group (type 1), urethane alkoxy oxygen (type 2), NH group to form 

(NH…. NH) (type3) and ether C—O—C group (type 4). The first three types deal with 

the urethane-urethane linkage, while the last one concerns the interaction with urethane-

soft segment (Ren et al., 2003). 

 

2.3.5.2- Physical Properties 
 
The polyurethanes exhibit a broad range of physical properties, due to a variety in 

selecting the chemistries and molecular weight of the various components, and the ratios 

in which they are synthesised. The range of properties varies from very brittle and hard 

materials to soft, tacky and viscous materials (Lamba et al., 1998). In polyurethanes, the 

unique elastomeric properties are observed due to microdomain formation: hard domain 

and soft domain. The hard domain provides both physical crosslink sites and filler like 

reinforcement to the soft-segment matrix. The physical properties of polyurethane 

depend on several factors such as the morphology, composition ratio of urethane and 
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polyols segments, the molecular weight of the individual segments, and segmental 

compatibility (Rosthauser et al., 1997; Kim et al., 1999).  
 

2.3.5.3- Mechanical Properties 
 
The mechanical properties are related to crosslinking density, the concentration of polar 

groups, the crystallinity, and other factors. It is indicated that mechanical properties 

exhibit profound changes in the region of glass transition temperature and is considered 

as the most important material characteristic of a polymer (Liaw, 1997). Variability in 

molecular masses of the hard and soft segment yields the possibility to tailor mechanical 

properties. The hard segment content significantly affects the physical as well as 

mechanical properties such as the hardness, Young’s modulus, and tear strength. 

Polymers with low contents of hard segment have a high Young’s modulus; however, 

the increase of hard segment concentration will enable hard segment to phase separate, 

which leads to increase in modulus (Heijkants et al., 2005; Kim et al., 1999).  In 

addition, the performance of polyurethane elastomers at elevated temperature is 

dependent upon the structure of the rigid segments and their ability to remain coherent at 

high temperature. The tensile strength of polyurethane is dependent on temperature; 

therefore, the material shows diverse characteristics at different temperatures. Below the 

glass transition temperature of the soft segment, polyurethanes behave as a plastic; 

above the glass transition or melting temperature, they behave as an amorphous 

substance. Speckhard and Cooper (1986) reported the tensile properties of polyurethane 

elastomers and their results suggested that the lack of soft segment crystallinity under 

strain and a high degree of phase separation, limit the tensile properties with non-polar 

soft segment, which generally shows low tensile strength.  It is also speculated that the 

storage moduli increased with the increasing hard segment contents. As the hard 

segment content increased, the glass transition temperature of soft segment increased 

which is due to decrease of phase separation with increasing hard segment content. The 

physical crosslinking is responsible for the elastic behaviour of polyurethane; it is due to 

the existence of hard domain through hydrogen bonding (Kim et al., 1999). The 

mechanical properties of different types of polyurethanes are shown in Table 2.2 and 

Table 2.3.  
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Table 2.2 Properties of different polyurethanes (Kim et al., 1999) 

 

 
Table 2.3 Mechanical properties of different types of polyurethanes 

 (Adhikari et al., 2000) 

Polyurethane 

Diisocyanates/ 

polyols/chain 
Extender 

Hardness 
(A) 

Tensile 
Strength  
(MPa) 

Elongation 
at Break 

Density 
(g cm-3) 

Glass 
Transiti
on (°C) 

Water 
Absorption

(%) 

HMDI/PTMG/ 

Bisphenol-AF 
78 26 13.1 1.44 -65 1.60 

MDI/PTMG/ 

Bisphenol-AF 
56 35 15.8 1.41 -57 0.56 

HMDI/PTMG/ 

Brominated 

Bisphenol-AF 

26 16 3.1 1.65 -56 3.06 

Polyurethane(PU) 
Elongation at 

break (%) 

UTS 

(MPa) 

Young’s 

Modulus 

(MPa) 

Flexural 

Modulus 

(MPa) 

Hardness 

(A) 

PU-PDMS 310 10.9 49 55 87 

PU-PEO 471 10.4 23.6 25.9 74 

PU-PTMO 342 22.7 27 36.5 83 

PU-PHMO 370 22.1 22.5 38.9 85 



Chapter 2                                                                                            Literature Review                         
 

        
 72

Table 2.2 shows polyurethane with different types of soft segments (PDMS and 

Polyether series: PEO, PTMO, PHMO), the hard segment was MDI and 1,4-butanediol 

was used as chain extender with stannous octoate as a catalyst. The mechanical 

properties shown in Table 2.3 reveals that PDMS has comparatively low elongation at 

break and ultimate tensile strength and is a stiffer material due to a high Young’s 

modulus and flexural modulus. The incorporation of PEO made the polyurethane more 

elastic and soft (low modulus and hardness), the tensile strength is poorer and almost 

identical to PDMS. Polyurethanes based on PTMO and PHMO show better tensile 

strength and flexural modulus. 

 

2.3.5.4- Thermal Properties 

The thermal properties of polyurethane depend largely on its overall composition, 

molecular weight, hydrogen bonding and processing history (Tien and Wei, 2002). The 

thermal stability of polyurethanes can be enhanced with the addition of low molar mass 

diols used as chain extenders (Liaw, 1997). 

 

2.3.6- Degradation of Polyurethane 
 
It is difficult to explain the definition of degradation; however, according to the 

American Society for Testing and Materials (ASTM), a plastic designed to undergo a 

significant change in chemical structure under specific environmental conditions 

resulting in a loss of some properties and its application in a period of time  

(ASTM, D20-96). It has been noticed that polyurethane can be efficiently degraded into 

non-toxic water soluble oligomers by a great number of micro-organisms such as 

bacteria, fungi and so on, and then water soluble oligomers can be reutilised finally into 

energy and products of carbon dioxide and water through several metabolic procedures 

of micro organisms (Cao et al., 2002). Variations in the degradation pattern of 

polyurethanes were attributed to many properties such as topology, molecular 

orientation, crystallinity, crosslinking and chemical composition. Crystalline regions can 

be formed by regularity of polymers which allows the polymer chains to pack easily. It 
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was observed that polyurethane degradation proceeded in a selective manner, with the 

amorphous structure being degraded prior to the crystalline structures. Also, the 

polyurethanes with long repeating units and hydrolytic groups would be less likely to 

pack into the high crystalline structure as normal polyurethanes, and these polymers 

were more readily biodegraded (Howard, 2002). 
 

The degradation of polyurethane involves two stages; the first stage is dominated by the 

degradation of the hard segment, and the second stage correlates with the dissociation of 

the soft segment (Tien and Wei, 2002). Degradability promoted researchers to modify 

and produce chemical or biodegradable polyurethanes. Aliphatic polyesters have been 

considered as the environmental friendly biodegradable polymers. Polycondensation of 

a dicarboxylic acid and diol as well as hydroxycarboxylic acid can produce high 

molecular weight aliphatic polyesters such as poly (ethylene succinate) (PES), poly 

(butylenes succinate) (PBS), poly (butylenes adipate) (PBA), poly (glycolic acid) 

(PGA), poly (lactic acid) (PLA) (Cao et al., 2002). Polyester polyurethanes from 

polycaprolactone diols were derived in an effort to produce biodegradable polyurethanes 

for use in medical field. Different polyurethanes were made containing polyester 

subunits of various lengths, it was speculated that there was an increase in the 

biodegradability of the polyester polyurethanes with an increase in the chain length of 

the polyesters (Howard, 2002). 

 

2.3.6.1- Hydrolytic Degradation of Polyurethane 
 
Hydrolysis is considered as a chemical decomposition of a substance by water and is an 

important degradation mechanism in the biological environment. Hetero-chain 

polymers, particularly those containing nitrogen and/or oxygen atoms in the main chain, 

are susceptible to hydrolysis (Ratner et al., 2004). Depending on structure, this might be 

favoured by either alkaline or acidic conditions and is faster at elevated temperatures. 
 

Rehman (1996) has reported a detailed literature on hydrolytic degradation of 

polyurethane and suggested that polymers hydrolysed more in alkaline conditions; the 

physiological temperature of body is 37°C, which is sufficient to degrade a number of 
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polymers by hydrolysis. Initially there is a breakage of covalent bonds and the formation 

of active radicals due to absorption of energy from the external source. Upon increasing 

the temperature, thermal degradation occurs, the vibrational, rotational, or transitional 

energy exceeds the activation energy required to break a carbon/carbon bond, 

eventually, a mixture of chain fragments of varying sizes results. Hydrolytic degradation 

varies over a wide range and is dependent on chemical structure of the polyurethane. 

Hydrolytic degradation can be ranked in the following way: 

Polyester > Polycaprolactone > Polyether 

There are two possible ways of hydrolytic degradation: 

• The attack of water on a carboxylic link in a polyesterurethane chain to produce 

two shorter chains. One of these has a hydroxyl end-group (-OH) and other a 

carboxyl group (-COOH), which is acidic. 

• Hydrolysis of the urethane linkage producing two shorter chains: one ending in 

an amino group (-NH2), the other in a hydroxyl group (-OH). 
 

Hydrolysis leads to chain cleavage and consequently a reduction in average molecular 

weight. It was found that there was development of cracks (usually deep random crack) 

on the surface of   elastomers due to reduction of molecular weight (Rehman, 1996). 

 

2.3.6.2- Stability of Polyurethane 
 
With the elucidation of additives to the chemical structure of polyurethanes, 

biodegradation can decrease. The degradation depends on the amount of hard segment 

within the polymer. With the increase in size of hard segment, a greater number of 

carbonyl groups are integrated into secondary hard segment structures through hydrogen 

bonding. It is also suggested that an increase in hard segment size does lead to 

restrictions in mobility of the polymer chain (Howard, 2002). 

 

2.3.6.3- Thermal Decomposition of Polyurethane 
 
Polyurethanes are chemically complex structures and contain a variety of thermal labile 

groups. Among the groups, biuret and allophanate are thermally weakest links. 
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Dissociation of both groups generally takes place above about 110°C and is completed 

by about 170°C. In the process of pyrolysis, both types of materials regenerate their 

precursors, isocyanate and urea, in case of allophanate, urethane, and isocyanate from 

biuret. Thermal stability can be classified in the following way: 

Urethane < Urea < Isocyanurate < Polyether 

The ether group is stated to be more stable than any of these, with possible exception of 

the isocyanurate group, which is claimed to be stable up to 270°C  

(Ravey and Pearce, 1997). 

 

Dissociation of urethane group is one of the first reactions to happen when 

polyurethanes are heated above 200°C. It is observed that urethane of commercially 

available isocyanates, primary and secondary alcohol start to decompose at 150-200°C, 

and proceed at a measurable rate between 200-250°C. Random bond scission occurs at 

the urethane linkage up to 200°C, while unzipping of polyether chain occurs in the range 

of 250-320°C (Ravey and Pearce, 1997). The thermal degradation of polyurethane 

usually initiates from the urethane bonds of hard segment, followed by  oxidation of the 

soft segment phase. If polyurethane is based on MDI (hard segment), 1,4-BD (chain 

extender) and PTMEG (soft segment), the decomposition starts from MDI-BD 

following oxidation at  β-carbon next to the ether bond of  PTMEG, which then breaks  

C—O bond and substantially unzips the molecular chain through several stages  

(Tien and Wei, 2002). 

 

2.3.7- Biomedical/Dental Application of Polyurethane 
 
The application of medical devices depend not only on the properties of the biomaterial 

or biomaterials used to fabricate the device, but also on numerous other factors such as 

manufacturing and processing history of the material and their specific applications. 

Polyurethane has been successfully used as a biomaterial due to its good mechanical 

properties and blood compatibility, specifically as a cardiovascular implant due to high 

flexural endurance (Trigwell, 2005). Table 2.4 shows the multiple applications of 

polyurethanes in the biomedical field. 
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Table 2.4 Biomedical applications of polyurethane (Trigwell, 2005) 

• Blood bags, closures, fittings 

• Blood oxygenating tubing 

• Cardiac Assist pumps, bladder, tubing, coatings 

• Catheters, Endotracheal tubes 

• Heart Pacemaker and Valves 

• Orthopaedic splints, bone adhesives 

• Synthetic bile ducts 

• Vascular grafts, suture materials. 

• Others 

 

 

2.3.7.1- Dental Application 
 
Research on polyurethane and its potential application in dentistry has been studied. Its 

application as maxillofacial prosthesis is based on its inherent environmental stability, 

high tear resistance, and low modulus without the use of a plasticiser, good ultimate 

strength and elongation. This material can accept intrinsic colouring and is amenable to 

maxillofacial processing techniques (Goldberg et al., 1978). It has been successfully 

used in the fabrication of facial prosthesis (Tang et al., 1975). 

 

Polyether based impression material have been used in prosthodontics to record intraoral 

structures for fabrication of definitive restorations. The hydrophilic nature of these 

materials facilitates the contact of unset material with intraoral tissue (Ritter and Swift, 

2000). Urethane monomer was introduced in 1974 as a matrix resin and exhibits less 

viscosity as compared to Bis-GMA. These monomers/diluent monomers have been used 

in composite for direct filling material or as a veneering material with filler particles. 

Urethane based resins (UDMA) are available as light activated materials formulated 

specifically for fabrication (Wakasa et al., 1997; Whitworth et al., 1999). 

 

 



Chapter 2                                                                                            Literature Review                         
 

        
 77

2.3.8- Polyurethane Composites 
 
Hybrid polymer–inorganic composites are promising for a variety of applications. These 

composites have been widely used as fillers to improve mechanical and thermal 

properties of polymers and polymer composites, to decrease shrinkage and internal 

stresses. Better understanding of inorganic particles and corresponding hybrid polymer–

inorganic composite material applications occurred when researchers realised that 

reduction in dimensions of   particles results in the appearance of a new phenomenon 

that does not exist in materials with larger grain sizes (Rozenberg and Tenne, 2008). 

Various inert inorganic particles/fibres such as carbon nanotubes (Meng et al., 2005), 

silver particles (Guggenbichler et al., 1999), and bioglass derived glass ceramics 

(Bretcanu et al., 2008) have been used with polyurethane to improve its biocompatibility 

and mechanical properties. It has been reported that various polymers such as poly-lactic 

acid (Bleach et al., 2002), poly-glycolic acid (Calandrelli et al., 2000),  

poly-ε-caprolactone (Choi et al., 2004), polyethylene (Wang and Bonefield, 2001), 

polyetheretherketone (Abu Bakar et al., 2003), and polyurethane (Liu et al., 1998; 

Chetty et al., 2008) were used with HA as composite materials.  
 

2.3.8.1- Chemical Linkages in Composites 
 

Organic–inorganic hybrids have recently emerged as a new class of material. If the 

inorganic phase is nano-sized then homogeneous dispersion in the organic matrix can be 

achieved. Organic–inorganic hybrids were used to design and synthesise nano order 

organic–inorganic composite materials. The mechanical bond between the filler and 

polymer matrix is relatively weak, subsequently interfacial debonding will occur which 

will lead to cavitation around the reinforcing filler particles (Friedrich and Karsch, 

1981). Chemical linkage has been used to improve the stability of interface. Silane 

coupling agents have been used in dentistry for chemical linkage; however silanes are 

not ideal for coupling with materials like hydroxyapatite (Deb et al., 1996). The 

interface adhesion of HA particles and polymer matrix plays a very important role 

among the major factors affecting properties of composites (Liu et al., 1996;  

Hong et al., 2005). When nano-particles (nHA) and polymers form a composite, 
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provided that homogenous dispersion of nano-particles is achieved at microscopic level, 

the mechanical properties are expected to improve and/or new unexpected features 

might appear (Liu et al., 1997). The bioactive HA should be incorporated with organic 

polymers for potential applications because of its biocompatibility and bioactivity which 

can initiate the osteogenesis and its similar chemical composition, structure and 

mechanical properties to human bone/tooth (Ajayan and Tour, 2007; Zhao and Zhang, 

2008).  
 

Isocyanates are very reactive chemicals and are known for their role in producing 

polyurethanes. If isocyanates could be used as a coupling agent then it could lead to 

chemically linked polyurethane composite. Liu et al. (1996) and Dong et al. (2001) 

studied the reactivity of isocyanate (hexamethylene diisocyanate) with hydroxyapatite 

and calcium hydrogenphosphate (CaHPO4, CHP) respectively. They observed that there 

was a covalent linkage between isocyanate and apatites and the urethane linkage 

between hexamethylene diisocyanate (HMDI) and CHP, showing that the hydroxyl  

(-OH) groups at the surface of nHA have reactivity towards organic functional groups 

(Liu et al., 1998). The modification could be advantageous for chemical linkage of 

polymer composites. The homogeneous composites in which nano-hydroxyapatite align 

along the polyurethane are of interest due to their inherent properties. 
 

 

2.4- Hydroxyapatite 
 

2.4.1- Introduction 

The restoration of tooth structure with durable, bondable and aesthetically acceptable 

material is the ultimate research goal (Xu, 2003). The chemical analysis of bone, enamel 

and dentine exhibit calcium and phosphate as principal components and that the 

inorganic phase of bone and teeth are basically calcium hydroxyapatite  

(LeGeros et al., 1995). Various calcium phosphate containing compounds have been 

considered as possible starting reagents for calcium phosphate cements. These cements 

based on tetracalcium phosphate (Ca4(PO4)2O), monocalcium phosphate monohydrate 
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(Ca(H2PO4)2.H2O), β-tricalcium phosphate (β-Ca3 (PO4)2) and α-tricalcium phosphate 

(α-Ca3(PO4)2) and octacalcium phosphate (Ca8H2(PO4)6.5H2O. Octacalcium phosphate 

has been considered as a precursor of biological apatite crystals. Its structure stacks 

apatitic layers alternatively with hydrated layers and that the transition of octacalcium to 

hydroxyapatite is thermodynamically favoured. There is evidence of presence of 

ocatacalcium phosphate in the central part of a dentine crystal and apatite in the outer 

most layers of the same crystal. The resulting biological apatitic crystal constitute of 

poorly crystalline hydroxyapatite with a low Ca/P ratio, i.e. Ca-deficient hydroxyapatite 

containing ions such as carbonate and fluoride (Suzuki et al., 2006). Formation of 

chemical bond with hard tissue offers HA a greater advantage in clinical applications 

(Yan et al., 2006; Liu et al., 2001). Due to this property, these biomaterials have been 

used as implants in clinical bone repair and regeneration materials, coating materials in 

tissue engineering, drug delivery devices, and tumour treatment  

(Yan et al., 2006). It may be suitable as filler for resin-based dental composites  

(Santos et al., 2002) and has been used for furcation sealing, root surface 

desensitisation, and root apex sealing or root canal filling (Yoshimin and Maeda, 1995; 

Bilginer et al, 1997). 

 

2.4.2- Biological Apatite 
 
Apatite or apatite calcium phosphates are the principal inorganic constituents of bone 

and teeth. Human enamel apatite has larger a-axis dimensions than pure HA (0.944 nm 

compared to 0.942 nm). The composition, crystal size, morphology and stoichiometry of 

biological apatite are different from the pure HA. The Ca/P molar ratio is 1.67 for pure 

HA and for enamel and dentine it is 1.62 and 1.64 respectively. Generally, biological 

apatites are calcium deficient or non-stoichiometric. The other minors e.g. magnesium 

(Mg), carbonate (CO3), sodium (Na), chloride (Cl), acid phosphate (HPO4) etc and 

traces such as strontium (Sr), lead (Pb) elements are associated with these apatites. The 

biological apatites can be classified as: 

• Carbonate apatite (CO3)-AP 

• Fluor-carbonate apatite (F, CO3)-AP 
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They can be represented by the following chemical formula: 

A10(BO4)6X2 

where,  

• A10 is Ca, Na, Sr, Pb, Cd, Mg, and K 

• BO4 is (PO4, CO3, VO4, SiO4, AsO4, HPO4)6 

• X is (OH, Cl, CO3F)2 

 

where A represents traces of cations with concentrations less than 0.1wt%.  
 

The minor elements, carbonates, magnesium and fluoride are responsible for stability or 

instability of biological apatites. Water has also been found in the apatite structure in 

several forms.  
 

2.4.3- Hydroxyapatite 
 

The term “apatite” applies to a broad category of structures comprised of different 

constituents. Hydroxyapatite is one such constituent, another being carbonate (hydroxyl) 

apatite, where carbonate ions substitute for some of the hydroxyl ions  

(A-type) or  carbonate ions may be present on the phosphate sites (B-type) 

(Jillavenkatesa and Condrate Sr., 1998). Synthetic hydroxyapatite is a representative 

material for a bone substance because of its chemical similarities with the inorganic 

phase of bone and is capable of undergoing bonding osteogenesis and is chemically 

stable for long period of time in-vivo (Ruys et al., 1995; Rhee, 2001). Calcium 

hydroxyapatite is a compound of a definite composition and definite crystallographic 

structure and shows the exact atomic position in the crystal (Liu et al., 2001).  
 

The structure of non-stoichiometric hydroxyapatite as shown in Figure 2.4 belongs to 

P63/m with a = 9.421 and c = 6.884 Å, but the stoichiometric form is monoclinic with 

space group P21/b. This is characterised by ordering within OH- ion columns to form a 

sequence OH- OH- OH- OH- indicating that it has a six fold axis of symmetry parallel to 

c-axis, as well as a screw axis along the c-axis. The symbol /m indicate that there is a 

mirror plane perpendicular to the screw- and c-axis (Elliott, 1994; Morgan et al., 2000). 
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The unit cell of hydroxyapatite is based around two types of calcium ion sites. Firstly 

there is “columnar calcium” or CaI. The second type of calcium site is the “hexagonal 

calcium” or CaII, which is arranged as equilateral triangles around the OH- ions located 

on the c-axis. Three CaII
2+ ions surround each OH- ions, with each successive traingle 

along the c-axis (around each successive OH-ion) being offset by a rotation of 60°. 

When the structure is viewed along the c-axis (along the line of the OH- ions), the CaII 

ions appear in the shape of hexagons centered on the OH- ions. The CaII ions are located 

on planes parallel to the base planes, at c=1/4 or c=3/4. The phosphate tetrahedral is 

located on the same planes as the triangularly arranged CaII ions. 

 

Figure 2.4 (a) overview of an apatite unit cell, lower level is indicated by dot lines, (b) a 

prospective view of an apatite unit cell (Sarig, 2004) 

 

There are six phosphate ions per unit cell, two located fully within the cell, the 

remaining four being the eight ions located on the faces of the unit cell parallel to the  

c-axis, each of these ions being shared between two unit cells (Best, 1990). The network 

of phosphate groups provides the structural framework which gives the apatite its 

stability. The oxygen of phosphate groups is described as one OI, one OII, and two OIII. 

The fluoride and chloride substitute the OH- groups in the apatite structure; the atomic 

arrangement for F- apatite and Cl- apatite is Ca10(PO4)6F2 and Ca10(PO4)6Cl2 

respectively. The F and Cl atoms substituted for OH differ in the respective position of 

the OH for which they substitute. The apatite structure allows the substitutions of many 
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other ions resulting in a change in properties, such as lattice parameters, morphology, 

solubility, without changing the hexagonal symmetry (Vallet-Regi and Gonzalez-Calbet, 

2004). However, Cl substitution causes the loss of hexagonal symmetry and exhibits 

monoclinic symmetry because of the alternating positions of the Cl atoms and an 

enlargement of the cell. The substitutions of F for OH cause a contraction and are 

usually associated with an increase in the crystallinity, reflecting increase in crystal size 

(and/or decrease in crystal strain) and gives greater stability to the structure  

(Hench and Wilson, 1999). The composition and crystallographic properties of HA are 

shown in Table 2.5. The chemical structure, chemical composition, and textural 

properties (pore structure, pore size, pore volume) of biomaterials may have complex 

influence on the development of the hydroxyapatite layer (Yan et al., 2006). 

 

Table 2.5 Composition and Crystallographic properties of general hydroxyapatite 

(Elliott, 1994)  

 

Constituents 
Hydroxyapatite 

(wt%) 

Calcium, Ca2+ 39.6 

Phosphorous, P 18.5 

Ca/P ratio 1.67 

Sodium, Na tr 

Potassium, K+ tr 

Magnesium, Mg2+ tr 

Inorganic 100 
 

Among the wide range of calcium phosphate, or with potential formulation as shown in 

Table 2.6, it is important to note the close relation between the Ca/P ratios. The lower 

Ca/P ratio increases the solubility and acidity of mixture. If Ca/P <1 both solubility and 

acidity are significantly high, and both parameters decrease substantially for Ca/P ratios 

close to 1.67, which is the value of stoichiometric HA (Vallet-Regi and  

Gonzalez-Calbet, 2004). The apatite structure can be preserved with Ca/P ratios as low 

as 1.5. Therefore, HA with a lower than normal ratio (1.67) is characterised as calcium 
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deficient or non-stoichiometric. When molar ratio is lower than 1.67, HA partially 

decomposes to β-tricalcium phosphate at temperature higher than 1200°C (Fanovich et 

al., 2001). The anisotropic behaviours of HA have been restricted to protein absorption, 

dissolution and crystal growth. It has been expected that anisotropic behaviours may 

have some involvements in a possible bonding mechanism between bone and HA 

implant initiating from dissolution and reprecipitation of HA through protein absorption 

and cell adhesion and differentiation, to either epitaxial or non-epitaxial boding of bone 

apatite to HA (Ito et al., 1996). 

Table 2.6 Chemical formula and ratio of different calcium phosphate groups  

(Vallet-Regi and Gonzalez-Calbet, 2004) 

Name Formula Ca/P 

Tetracalcium phosphate Ca4O(PO4)2 2.0 

Hydroxyapatite Ca10(PO4)6(OH)2 1.67 

Tricalcium phosphate Ca3(PO4)2 1.50 

Octacalcium phosphate Ca8H2(PO4)6.5H2O 1.33 

Dicalcium phosphate dihydrate CaHPO4.2H2O 1.0 

Dicalcium phosphate Ca2P2O7 1.0 

Monocalcium phosphate 
monohydrate Ca(H2PO4)2.H2O 0.5 

Calcium metaphosphate Ca(PO3)2 0.5 
 

2.4.3.1- Methods of Preparation 
 
HA with different morphology, stoichiometry and level of crystallinity can be obtained 

by multiple preparation techniques (Shuk et al., 2001) and it essentially affects the 

bioactivity, mechanical properties and dissolution behavior in biological environment. 

The interest is not only controlling the stoichiometry of synthetic HA but also 

controlling the crystal size and shape of agglomeration characteristics of the powder 

(Mostafa, 2005). Therefore, it is always important to develop HA synthesis methods 

with precise control of particle size, morphology, crystallinity degree and chemical 

composition (Guo and Xiao, 2005). It is possible to prepare dense and/or porous HA 
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with controlled microstructure and chemical composition (Suchanek and Yoshimura, 

1998).  Synthetic HA with desired properties can be prepared by: 

 

• Wet-Chemical Method 

1. Sol-Gel 

2. Precipitation 

3. Hydrothermal 

4. Hydrolysis  

• Dry Method 

1. Solid-State Reaction 

• Mechano-Chemical Hydrothermal Method 

• Emulsion Processing 

• Spray Pyrolysis 

• Microwave Irradiation 

• Mechano-Chemical Method 

 

2.4.3.1.1- Wet-Chemical Method 
 
Wet-chemical methods allow the synthesis of materials with good crystallinity, 

physiological stability and with the morphological characteristics of the hard tissue but 

the physical, chemical and mechanical properties of the product mainly depend on the 

specific method used in synthesis (Tadic et al., 2002). Donadel et al. (2005) reported the 

two wet-chemical methods using a precipitation process over other wet and dry methods 

which can result in calcium phosphate materials produced with a low cost technique 

using low temperature under pressure.  
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2.4.3.1.2- Sol-Gel Method 

The sol-gel process, which has been a method for the synthesis of ceramic materials for 

more than one and a half centuries is gaining importance. “Sol” is a dispersion of 

colloidal particles and a “Gel” is an interconnected polymeric network formed by the 

assembly of the sol (Aurobind et al., 2006). The earlier procedures to synthesise HA led 

to the formation of fragile materials with considerable shrinkage during drying. 

However, it has been suggested that the use of additives might help to overcome these 

problems. The drying process plays an important role in the fabrication of sol-gel 

materials because a substantial shrinkage happens when the liquid phase is removed 

(Balamurugan et al., 2003). 

The sol-gel method is a wet chemical process that needs no high pH value and no high 

sintering temperature. The high reactivity of the sol-gel powders allows a reduction of 

the processing temperature and of any degradation phenomenon during sintering  

(Feng et al., 2005). The advantages of this method include high product purity, 

homogenous composition, and low synthesis temperature, the ability to generate  

nano-crystalline powders and particles, fusion of the apatite crystals, bulk amorphous 

monolithic solids and thin films and the microstructure of solids can be modified by 

changing chemistry and/or processing conditions (Lopatin et al., 2001; Liu et al., 2002; 

Bigi et al., 2004; Kim and Kumta, 2004). This process has been used to produce a wide 

range of compositions (mostly oxides) including powders, fibres, organic/inorganic 

hybrids, coating, thin films, monoliths and porous membranes and has ability to produce 

porous oxides, which are potential bone-like HA-forming material (Viitala et al., 2002). 

The mixing level of the solution usually produces a fine-grain microstructure containing 

a mixture of nano-to-submicron crystals (Liu et al., 2002; Vijayalakshmi and Rajeswari, 

2006). This method offers a molecular-level mixing of the precursors, which is capable 

of improving chemical homogeneity of the resulting powders to a significant level  

(Bose and Saha, 2003). The limitations in its application have been due to the 

shortcomings associated with hydrolysis of phosphates, and the higher cost of raw 

materials (Jillavenkatesa and Condrate Sr., 1998; Kim and Kumta, 2004). 
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Feng et al. (2005) reported a simple sol-gel method that does not require controlling pH 

values and long time for hydrolysis of phosphate. The first stage after making the sol is 

gelation, in which sufficient polymerisation has occurred to form crosslinking of 

molecules making up the skeletal structure. The next stage is ageing during which the 

resulting crosslinking structure of the molecules increases and then drying during which 

excess solvent is removed and the final stage is sintering, in which the porous structure 

is eliminated, the residual organics are removed, and the minerals are crystallised. 

It has been reported that ethanol-based gels exhibit a weight loss, indicating the 

evaporation of ethanol and water, which is promoted by the destructuration effect of 

ethanol. The presence of ethanol in the reaction slightly effects the degree of 

crystallinity of HA, whereas, variation in the value of Ca/P ratio of sol can be used to 

control the crystallinity domain, and the thermal stability of gels (Bigi et al., 2004). 

Kuriakose et al. (2004) reported the synthesis of pure, stoichiometric, nano crystalline 

HA with this technique and sintered at 1200°C and found stable HA.  

Bose and Saha (2003) investigated the synthesis of HA using an aqueous solution of 

calcium nitrate, ammonium hydrogen phosphate, and sucrose. The advantage of addition 

of sucrose to the metal-ion solution made the solution viscous with no precipitation or 

segregation of ions from the homogenous solution. Han et al. (2004) adapted the citric 

acid sol-gel combustion method to synthesise nano-crystalline HA powder. Citric acid is 

a strong complex agent which can form stable complex compound with many metal 

ions.  

 

2.4.3.1.3- Precipitation Method 
 
It has been investigated that the conventional precipitation methods deal with the 

difficulty of synthesising well-defined and reproducible orthophosphates. The effect of 

various conditions on the stoichiometry and morphology of the powder enable to give 

good control on the final powder characteristics, which is promising to design calcium 

phosphate powders for different specific applications and/or requirements. It has been 

suggested that a surface area 10 m2g-1 would probably be appropriate for the sintering 
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avoiding undesirable agglomerates that can be produced if powders with higher surface 

area were selected (Rodriguez-Lorenzo et al., 2001). 
 

Brown and Fulmer (1991) synthesised the low temperature formation of HA that 

involved aqueous phase acid-base reaction involving the consumption of particulate 

solid calcium phosphate. Fulmer et al. (1992) identified the problem that dissolution of 

CaHPO4 had been rate limiting to the reaction, therefore, made modification of using 

CaHPO4.2H2O instead of CaHPO4. Normally apatite structure are characterised by the 

presence of channels along their hexagonal axes, and ions in these channels are less 

rigorously bound in comparison with those in the bulk, resulting in many specific 

structural, thermal, and chemical properties associated with precipitated HA that makes 

the material suitable for the bone implantation, ion exchangers, drug delivery systems 

and for chromatographic separation as catalysts (Sinha et al., 2003). 
 

Homogenous precipitation with a slow reaction rate is a relatively easy procedure for 

synthesising uniform hydroxyapatite particles (Zhang et al., 2003). Sarig and Kahana 

(2002) obtained the nano-crystals of apatite by precipitation with microwave irradiation. 

The advantage is that the apatite aggregates in small sphrulites with open and loose 

structure and they remain dry, aggregated in loose clusters and forming a free flowing 

powder.  
 

2.4.3.1.4- Hydrothermal Method 
 
Hydrothermal method is known to synthesise apatite compounds with controlled 

morphology, which have prominent advantages over the other method for preparation of 

one dimensional nanostructure (Cao et al., 2003). It can be controlled by experimental 

conditions that regulate nucleation, growth and aging processes (Liu et al., 2003;  

Guo and Xiao, 2005). Several studies have reported the conversion of coral, calcite 

crystals and aragonite to HA with this method (Xu et al., 2001; Jinawath et al, 2002; 

Yoshimura et al., 2004). A study conducted by Kothapalli et al. (2005) investigated the 

synthesis of HA with hydrothermal method and the effect of reaction temperature and 

aging time on particle size. It was suggested that the morphology of HA crystals was 
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dependent on the reaction temperature and at a constant aging time, as the reaction 

temperature increased, the particle size and aspect ratio also increased. In a study (Teng 

et al., 2006), gelatin was used in a high concentration as a medium to prevent the 

aggregation of HA crystals during solution synthesis. It was observed that a large 

number of nano-sized needles like crystals distributed randomly in gelatin matrix and 

with the increase in amount of HA these short crystal grow large sized HA with an 

average size of about 0.8 μm in length and 0.2 μm in width. 

 
Continuous hydrothermal preparations have recently gained interest as a controllable 

and fast method for producing inorganic nano-materials (particles <500 nm)  

(Sue et al., 2004: Hakuta et al., 2005). Chaudhry et al. (2006) described the rapid, single 

step synthesis of crystalline nano-particle HA rods in a continuous hydrothermal flow 

system. The advantage of this process is that it does not use any organic templating 

agents and effectively reduces the time required for maturation of reagents from over  

18 hours to a few seconds. Yan et al. (2001) used surfactants and the resultant product 

showed nano-sized rods. In an aqueous system, surfactants would ionise completely and 

result in tetrahedral cation structure.  

 

2.4.3.1.5- Hydrolysis Method 
 
The low temperature process such as hydrolysis of salts is important in the synthesis of 

HA. Shih et al. (2004) investigated the growth and morphology of nano-sized HA 

powder with various Ca/P ratios by a hydrolysis method. 
 

2.4.3.1.6- Dry Method 

Dry method such as mechanosynthesis, reactions can occur at low temperatures in a ball 

mill without any need for external heating. The ball mill may act as a chemical reactor 

in which a wide range of chemical reactions can be mechanically initiated (McCormick 

and Froes, 1998). This method has an advantage of the perturbation of surface-bonded 

species by pressure to enhance thermodynamic and kinetic reactions between solids. 

However, the energy transmitted to crystalline powders during milling results in a 
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dislocation cell structure that develops into random nanostructured grains with 

increasing milling time (Coreno et al., 2005).  

 

2.4.3.1.7- Mechano-Chemical-Hydrothermal Method 
 
Shuk et al. (2001) investigated the mechanochemical-hydrothermal synthesis (also 

known as “wet” mechanochemical) of hydroxyapatite. This technique is located at the 

intersection of hydrothermal and mechanochemical processing. If the nonaqueous 

solution is used then the process would be defined as mechanochemical-solvothermal. 

The aqueous solution actively participates in synthesis reaction by dissolving one of the 

reactants.  

 

2.4.3.1.8- Emulsion Processing 
 
In recent years, modifications in the synthesis of nano-sized HA powder have been 

established with an emulsion method. It describes limited stability with milky 

appearance before the suspended droplets will agglomerate and the dispersed phase will 

separate. The stability of the dispersed system can be accentuated by additives such as 

surfactants (Norton et al, 2006). Microemulsion has been used for synthesis of  

nano-materials. Compositional changes, such as surfactant concentration and the molar 

ratio of water to surfactant, exert an influence (Wei et al., 2005). Phillips et al. (2003) 

synthesised the small sized micro or nano-sized ceramic powder by “water in oil” 

emulsion method, which effectively reduces particle flocculation and to some extent 

limits particle growth. Wei et al. (2005) investigated the synthesis of HA and used Ca2+ 

ions incorporated into the micro-emulsions due to phase separation in presence of 

solution with high ions strength.  

 

2.4.3.2- Properties of Hydroxyapatite 
 
The properties of HA can be controlled by various parameters such as particle size and 

shape, particle distribution and agglomeration. Nano-crystalline HA powders show 
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greater surface area and provide improved sinterability and densification to reduce 

sintering temperature, which improves the fracture toughness. Nano-sized HA is 

expected to have better bioactivity than coarser crystals and it represents a unique and 

promising class of orthopedic/dental implant formulation with improved 

osseointegration (Han et al., 2004). 

 

2.4.3.2.1- Mechanical Properties 
 
Dense HA shows superior mechanical properties, if the starting HA powder is 

stoichiometric i.e., the molar ratio of Ca/P is 1.67. If the ratio is more than 1.67, CaO 

forms during sintering, which decreases the strength and may cause de-cohesion of the 

material due to stresses arriving from formation of Ca(OH)2, subsequently transforms 

into CaCO3 that may also alter the rate of extent of biodegradation. It also forms slow 

crack growth and biodegradability of HA due to the formation of tricalcium phosphate 

(Suckhanek and Yoshimura, 1998).  
 

It has been reported that the fracture toughness of pure, dense HA is in range of  

0.8-1.2 MPa.m-1, whereas, with the increase in porosity, it decreases linearly. From  

10-30% porosity, the value decreases to almost 0.75-0.45 MPa.m-1 (Orlovskii et al., 

2002). Bending strength, compressive strength and tensile strength of dense HA are in 

the ranges of 38-250 MPa, 120-150 MPa, and 38-300 MPa respectively (Aoki, 1991; 

Williams, 1994; Hench, 1995; Suchanek and Yoshimura, 1998) in comparison, the 

porous HA shows 2-11 MPa, 2-100 MPa and 3 MPa respectively (Hing et al., 1999; 

Slosarczyk, 1999). It is expected that range of data is due to the statistical nature of 

strength distribution, influence of remaining micro-porosities, grain size and impurities. 
 
HA behaves as a brittle material as Weibull modulus of dense material is in the range of 

n = 5-18, where as, Young’s modulus of this material is in the range of 35-120 GPa, but 

it depends on measurement techniques. Young’s modulus measured in bending is in 

between 44-88 GPa (Katz, 1980).  The documented tensile modulus, compressive 

modulus and shear modulus of this material is 12.3 ± 0.8 GPa, 3.5 ± 0.8 GPa and  

4.8 ± 0.3 GPa respectively (Charriere et al., 2001). 
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Due to its low mechanical properties, this material has limitations to be used clinically. 

The main reason of its low mechanical properties is its porosity, which makes it easier 

for micro and macro cracks. Apparently the size of pores is 8-12 µm in diameter. 

Porosity can be controlled and it has been reported that if the porosity is zero, then the 

diameteral tensile strength could be 103 MPa (Ambard and Mueninghoff, 2006). The 

mechanical properties of HA can be improved by reinforcement methods. Studies have 

been conducted on these different reinforcement techniques including particles, 

whiskers, long fibres and nano-particles (deWith and Corbijn, 1989; Li et al., 1990;  

Tian et al., 1995; Suchanek et al, 1996). It has been reported that with the introduction 

of whiskers the density and hardness of composite decreases [6 MPa  

(non-reinforced hydroxyapatite) to 4 MPa], however, there was a significant increase in 

fracture toughness values and the range was 1.35-1.41 MPa.m-1 (Suchanek et al, 1996). 

 

2.4.3.2.2- Physical Properties 
 
Hench (1998) reported the Vicker hardness (600HV) and density (3.16 g.cm-3) of 

sintered HA. The particles have a tendency at rest to interlace opposing any movement. 

One of the reported viscosity value of HA suspension was 5210 Pa with a shear rate of 

1000/s (Bouyer et al., 2000). 
 
The morphology of HA particles depend upon heat treatment. The temperature of 

synthesis effect on the nano-particle shape, at low temperature the crystals are in needle 

shape. Increasing the reaction temperature changes the crystal from needle shape to 

more regular shape close to circular (Bouyer et al., 2000). 

 

2.4.3.2.3- Biocompatibility and Bioactivity of Hydroxyapatite 
 
Biocompatibility is defined as the ability of a material to perform with an appropriate 

host response in a specific application (William, 1999). The biocompatibility has 

profound ethical, social, technical and legal effects (Wataha, 2001; Watson, 2001). The 

concept of biomaterial’s biocompatibility does not refer to total inertness, but rather the 

ability of a material to perform with an appropriate response in a specific application 
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(Anusavice, 2003).  The interaction depends on the material, the host, the forces and 

conditions placed on the material. Biocompatibility is a dynamic process not a static 

one, any change may alter the condition that initially promoted an appropriate and 

desired biological response. It depends on interaction of material with its environment. It 

can be organised into four areas; safety of the patient, safety of dental staff, regular 

compliance issue, and legal liability (Watson, 2001). 
 

During the last four decades, bioactive materials such as bioactive glasses, sintered HA, 

glass-ceramics, and composites have been synthesised and developed for medical 

applications. A significant characteristic of bioactive materials is their ability to bond 

with living tissue through the formation of a HA interfacial layer (Wu and Chang, 

2006). It can be used in bulk form or as a coating and can be classified according to their 

porosity, form, and processing methods. These forms have good biocompatibility and 

are able to promote osteoconductivity and osseointegeration. HA coated implants have 

higher integration rate, faster bone attachment, and higher interfacial attachment 

strength to the bone (Ambard and Mueninghoff, 2006). 

 
The disadvantage of HA includes its slow resorbability. The complications include the 

detachment of coating from implants and may cause the formation of fibrous tissue 

around the implant and peri-implant infection. HA is known not only as bioactive but 

also as an adsorbent material and can adsorb bacteria, causing an unfavourable tissue 

response, mainly if exposed to the oral environment. 

 
Bioactivity can be classified into two types, which depend upon rate of tissue response 

to the implants. Rate of bonding depends mainly on the composition and microstructure 

of the bioactive materials. Class A bioactivity is the most rapid bone bonding and it also 

bonds to soft connective tissues. Table 2.7 compared the characteristics of Class A and 

Class B bioactive materials. Class A bioactive materials produce bone throughout the 

particle array, and it is known as osteoproduction. These materials also exhibit 

osteoconduction, which is defined as “The process of bond migration along a 

biocompatible surface”. Class B bioactive material such as synthetic hydroxyapatite 

shows only osteoconduction. Therefore, they lead to a very slow bond to bone, slow and 
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incomplete proliferation of bone throughout a particular array (Hench et al., 1998). The 

bioactive ceramics not only have been useful in bone repairs and replacements, but also 

are inspiring new bioactive materials. The sintered HA has been also documented to 

integrate with bond tissue by forming bone-like apatite on its surface (Kim et al., 2005). 

 

   Table 2.7 Comparison of bioactive materials (Hench et al., 1998) 

Class A Class B 

Osteoconductivity and osteoproductive Only osteoconductive 

Rapid bone bonding Slow bone bonding 

Enhanced bone proliferation No enhancement of bone proliferation 

Bonding to soft connective tissue No bonding to soft connective tissue 

 

The ability of bone integration of HA decreases as its sintered temperature increases. 

This suggests that the HA might reveal different kinetics of the bonelike apatite 

formation, and thereby different apatite forming abilities, by the sintered temperature. 

Specifically, the HA with different profiles of sintered temperature provide interesting 

model concerning the mechanism of bonelike apatite formation in both terms of process 

and kinetics (Niwa, 1983). The process of kinetics of apatite formation on HA could be 

affected by bulk factors such as density and surface area as well as surface factors such 

as composition and structure. On immersion in simulated body fluid (SBF), the HA 

could reveal negative surface charge by exposing hydroxyl and phosphate units in its 

crystal structure. The HA surfaces use this negative charge to interact specifically with 

the positive calcium ions in the fluid, consequently forming a Ca-rich ACP amorphous 

calcium phosphate (ACP). This formation of Ca-rich is assumed to take place in 

consecutive accumulation of the calcium ions, which makes Ca-rich ACP acquire and 

increase positive charge. The Ca-rich ACP on the HA therefore interacts specifically 

with the negative phosphate ions in the fluid to form a Ca-poor ACP. This type of Ca-

poor ACP has been observed as a precursor, which eventually crystallises into bonelike 

apatite on various bioactive ceramics. The solubility of apatite is lower than any other 

calcium phosphate in water, and therefore thermodynamically the Ca-poor ACP could 

be stabilised by transforming into a crystal phase of apatite in SBF. Once formed in SBF 
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which is supersaturated with respect to apatite, the apatite grows spontaneously 

consuming the calcium and phosphate ions, incorporating minor ions such as sodium, 

magnesium and carbonate, and thereby developing bone mineral-like compositional and 

structural features (Kim et al., 2005). Yamashita et al. (1996) showed that negative 

charged degree of HA surface could promote the apatite formation on its surface as well 

as cell adhesion and bone integration. 
 

2.4.3.2.4- Particle Size and Shape 
 
It is reported that the particle size is a key factor, which modifies significantly the 

properties and specifically affects the kinetics of chemical reaction and mechanical 

consolidation of the material. It is a useful parameter in order to adjust behaviour of the 

material to specific clinical applications. It can be expected that smaller the particle size 

higher the strength, because in small crystals there are more contact points, and the 

porosity is lower (Ginebra et al., 2004). Reconstruction of bone and dental defects can 

be restored with the packing of porous and dense HA granules to achieve growth and 

repair of the defected area. For such conditions, the size and shape of particles is 

important. Particles with smaller diameter are fully resorbed and cannot act as a 

substrate for uptake of mesenchymal cells. Particles with irregular shape adjust poorly 

and create large voids. The sharp edges of the particles fracture easily. 
 
The particle size and surface characteristics (micro and nanostructure) has recently been 

highlighted and the capability to process material with tailored structure at the micro and 

nano-scale level may provide the possibility to obtain responses from cells  

(Borum-Nicholas and Wilson, 2003). The nano-particles and nano-structured surfaces 

have a larger surface area for adhesion that increases the interaction between particles 

and the surrounding environment (Ginebra et al., 2004). The interaction relates to 

surface structure and properties of the HA like surface charges, surface functional 

groups, acidity/basicity, porosity and hydrophobicity (Norton et al, 2006). It has been 

documented that biological molecules interact with the crystalline surface of HA by 

exposing their structure against the material surface to arrange their confirmation most 
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suitable for the adsorption; generally acid molecules are adsorbed onto the c-site and 

basic molecules adsorbed onto the P-site (Ducheyne and Qui, 1999; Yin et al., 2002). 
 
There are three types of P-OH groups on the surface in HA which are hydrophilic in 

nature and behave as adsorption sites for molecules such as H2O, CH3OH, CH3I and 

CO2.The pattern and structure of functional groups such as these participate in 

determining the mode of adsorption that takes place to the substrate surface. The number 

of the P-OH groups determines the surface properties, regulation of number of these 

surface groups will lead to surface modifications. These can change the material 

characteristics and properties such as the acidic and basic behaviour, affinity and 

reactivity to molecules and catalytic activity (El Shafei and Moussa, 2001). The 

advantage of micro or nano-sized material is the likeliness of producing novel 

composition. The biological activity and control of cellular behaviour, i.e., adhesion, 

proliferation, differentiation, migration depends on the dimensions of   different 

domains (Norton et al., 2006).  
 

Nano-materials, both in scientific knowledge and in commercial application, are the 

most advanced at present (Murray et al., 2003). The synthesis of nano sized HA crystals 

similar to the particle size found in human tissues will provide an enhancement in 

properties of the material, such as thermal and mechanical properties, in addition the 

formation and maintenance of healthy new bone. It has been established that nano-HA 

coated implant enhanced new bone formation as compared to micro-scale HA (Liu and 

Webster, 2007). From this background, it is important to understand the concept of 

nanotechnology. 

 

2.5- Nanotechnology 
 
Nanotechnology has revolutionised the field of science and technology. It is the 

production of functional materials and structures in the range of 0.1-100 nm -the 

nanoscale- by various physical and chemical methods and is also known as molecular 

nanotechnology or molecular engineering (Schulz, 2000). The interest in using  
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nano-materials stems from the idea that they can be used to manipulate the structure and 

properties of the materials (Mitra et al., 2003). 

 
Nanotechnology is of great interest in biomaterials engineering and the development of 

dental materials (Moszner and Klapdohr, 2004). Nano-particles have been found to be of 

much use for the controlled release of drugs and other bioactive compounds  

(Hrkach et al., 1997). They should act as drug-delivery and drug-targeting systems, 

being small in size and are not recognised by the human body, migrate through cell 

membranes and are able to pass through blood-brain barriers (Logothetidis, 2006). The 

intrusion of a nano-material in the body triggers substrate effects at the nanoscale level 

at which structural components of biological systems are built, thus encouraging a 

strong affinity between molecules (Polizu et al., 2006). Biomaterial scaffolds can be 

manipulated by nanotechnology and constructed into specific geometrical and 

topological structures and bring improved properties such as mechanical (stronger), 

physical (lighter and more porous), chemical reactivity (more active and corrosive), 

enhanced biocompatibility, contact guidance, reduce friction and therefore wear for joint 

applications and promoting tissue growth around the implant (Kricka and Fortina, 2002; 

Storm et al., 2005). The development of three dimensional nano-fibrous scaffolds using 

a phase-separation technique from biodegradable synthetic polymers avoids the concern 

of pathogen transmission and immuno-rejection (Zhang and Ma, 2000). The nano-size 

electrospun fibres provide improved applications such as wound healing, cell attachment 

and proliferation of cells and fibroblasts (Kenaway et al., 2003).  

 
Nano-scope particles have more similarities to natural tooth as far as crystal size is 

concerned. Additionally, the high surface area of the nano-scopic particles would offer a 

good mechanical interlocking with the polymer matrix (Arcis et al., 2002). This is true 

for purpose-designed nano-structures, which can be used to produce low shrinkage, high 

wear resistance and biocompatibility of the dental composite.  The fundamental 

application is resistance of nano-particles filled materials to the loss of substance during 

propagation of micro-fracture through cyclic fatigue loading (Trussi et al., 2005). It is 

also interesting with regard to developing biocompatible or bioactive materials for 

dental implants and bioceramics (Hench, 1997).  
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Inorganic nano-particles are hard and dense and these characteristics make them 

interesting for improving a material’s mechanical properties. The nano-particles are also 

characterised by a large surface area that increases the bond strength between resin and 

fillers. Due to large surface area, the particles show thixotropic thickening effect, low 

viscosity and improved handling properties. These nano-fillers can contribute to 

increase the modulus of elasticity and are useful as starting compounds for the synthesis 

of new dental ceramics composites. Furthermore, nano-fillers also show smooth surface 

effects and volume effects as well as high optical properties. In dental bonding agents, 

the nano-fillers increased adhesion to enamel and dentine and improved marginal 

integrity, increased abrasion resistance and surface hardness (Moszner and Klapdohr, 

2004).  

 

The high content loading of nano-particles into the organic matrix results in aggregation 

of the filler particles and porosity, which affects the mechanical properties of resulting 

material. During the preparation of composite material of polymer matrix filled nano-

HA, the major problem is dispersion and strong interfacial combination between the 

nano-fillers and the matrix. It is known that covalent linkage of polymer chains to nano-

fillers is one of the effective approaches to improve dispersability and combination of 

polymer matrix and nano-particles (Hong et al., 2005). The large surface area of nano-

HA results in high surface energy and more hydroxyl group on the surface. It is possible 

for nano-HA to crosslink with polymer more strongly by a reaction between the 

hydroxyl group and the functional groups (Zhao and Zhang, 2008). 

 

To design a polyurethane/hydroxyapatite based scaffold various techniques have been 

used, to mimic natural extracellular matrices, many research groups have tried to 

fabricate nano-fibrous scaffolds by phase separation, self-assembly, solvent casting and 

electrospinning. The electrospinning method has been explored recently despite the 

simplicity of the process; it offers ultrafine polymer fibres, with high surface area  

(Ito et al., 2005; Guan et al., 2005).  
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2.6- Electrospinning 
 

2.6.1- Introduction 
 
Electrospinning is a novel process to develop nano-fibres that allows continuous 

production of fibres ranging from sub-micrometers to nano-meters (3 nm) for potential 

use as biomaterials. It is reported that this technique is not only applicable for 

healthcare, but also to a wide range of functions, from energy production to applications 

related to defence and security. Teo and Ramakrishna (2006) have used this method to 

collect fibres to fabricate porous tubes and thin films or fibre mats. The morphology of 

these fibres varies due to change in the processing parameters or polymeric solution. 

  

2.6.2- Processing Technique 
 
This technique has been developed by Formhals in 1934 (Formhals, 1934; Lee et al., 

2003). In this process, continuous filaments are drawn from a liquid polymer or melt 

through a spinneret by high electrostatic forces and later deposited on a conductive 

collector. The three main components for this technique are a high voltage power 

supply, a container for a polymer solution or melt with small opening to be used as a 

nozzle, and a conductive collecting device. An emitting electrode of power supply 

charges the polymer solution or melt by connecting the electrode to a conductive nozzle. 

Upon increasing the electrostatic field strength up to a critical value (up to 30 KV), a 

droplet acquires a cone like shape (Taylor cone). If electric field is above critical value, 

a charged polymer jet is ejected from apex of the cone and carried to the collector screen 

(distance of about 20 cm) by electrostatic force. It has been shown that capillary 

instability, resulting from surface tension, is typically prevented by the strong stabilising 

influence of viscoelastic stresses in electrospinning of the polymer solution. The 

Coulombic repulsion force is responsible for thinning of the charged jet during its flight 

to the collector. The charged jet elongates and, at the same time, dries out or solidifies to 

leave ultrafine fibre on the collector (Theron et al., 2002; Theron et al., 2004; 

Wutticharoenmonkol et al., 2006). The enablement of an electrospinning system 
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depends on the physical properties and the phenomena at the nozzle outlet.  The other 

factors which have an effect on the quality and morphology of fibres are controllable i.e. 

collecting distance on substrate, applied voltage and flow rate (Deitzel et al., 2001). 
 
Electro spraying is the technique to deposit particles on the surface. The basic principle 

of electrospraying is the generation of a spray of charged, micron-sized droplets. This is 

done by means of electrostatic atomisation. The sprayed droplets are directed towards a 

heated substrate as a result of applied potential difference (Leeuwenburgh et al., 2004). 

The experimental section of this study will mainly focus on electrospinning of the 

polyurethane.  

 

2.6.3- Effect of Factors 
 
The electrospun polymers are either spun directly from the solution in which they were 

synthesised or dissolved in solvent before processing. The solvent plays an important 

role in the behaviour of polymer and the resultant fibres. Viscosity of solution affects 

the diameter of fibres (Wang et al., 2006). Xin et al. (2006) reported that the applied 

voltage in addition with solvent have pivotal role in morphology of the fibres.  

Fridrikh et al. (2006) have mentioned how surface tension of the polymeric solution 

affects the processing and fibre formation. The effect of jetting mode was studied by 

Jaworek and Krupa (1999). The dynamics of the meniscus and the form of emitted fluid 

were assessed for different jet modes. Kidoaki et al. (2005) have described that using a 

mixture of solvents in the spinning process has an effect on the properties and structures 

of the spun fibres. The study was based on a solvent system comprised of 

tetrahydrofuran (THF) and N,N’-Dimethylformamide (DMF) and it is suggested that 

with the increase in ratio of DMF, bonding between the spun fibres increased. The 

speeds at which the fibres are spun also affect the mechanical properties of the material 

due to orientation of the fibres (Pedicini et al., 2003).  
 
The morphology of electrospun fibres depends on the following parameters including 

viscosity, conductivity and surface tension, controlled variables including hydrostatic 

pressure in the capillary, electric potential at the tip, and the distance between tip and the 
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collector, ambient parameters including temperature, humidity, and air velocity in the 

electrospinning chamber (Doshi and Reneker, 1995; Reneker and Chen, 1996;  

Lee et al., 2003). 

 

2.6.4- Application of the Electrospun Fibres 
 

2.6.4.1- Biomedical Application 
 
Due to high surface area to volume ratio of the electrospun fibres and high porosity on 

the sub-micrometer length scale of obtained non-woven mat, proposed applications for 

these materials are in areas such as nano-fibre-reinforced composites, nano-fibre as 

supports for enzymes and catalysts, and nano-fibrous membranes to be used in 

biomedical applications, including drug delivery, wound healing, and scaffolding for 

tissue engineering, cardiac grafts and guided bone regeneration. Electrospun fibre mats 

are suitable for use as scaffold because of their 3D structure with high porosity  

(Doshi and Reneker, 1995; Buchko et al., 1999; Coombes et al., 2004; Li et al., 2005; 

Fujihara et al., 2005; Wutticharoenmonkol et al., 2006).  
 
Many polymers such as poly (meta-phenylene isophthalamide), polyetherimide,  

poly ethylene oxide, polyethylene terephthalate, polyaniline, poly caprolactone,  

poly (L-lactic acid) have been successfully electrospun into nano-fibres (Reneker and 

Chun, 1996; Liu et al., 2002; Theorn et al., 2004; Shin et al., 2004; Tan et al., 2005). A 

few studies have been reported on a culture of chondrocytes and osteoblasts on poly 

caprolactone (Li et al., 2005: Fujihara et al., 2005); in addition, the incorporation of 

calcium carbonate or HA have also been reported (Coombes et al., 2004; Fujihara et al., 

2005; Maeno et al.,2005; Wutticharoenmongkol et al., 2006).  

 

2.6.4.2- Dental Application 
 
Dental polymers, Bis-GMA and TEGMA have been investigated with the reinforcing 

effect of electrospun Nylon 6 nano-fibres. It was found that the fibres have crystalline 

structure and are mechanically strong. The small diameter of nano-fibres also provide a 
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high ratio of surface area to volume, which could enhance the intermolecular hydrogen 

bonding between the filler of Nylon 6 nano-fibres and the matrix of resin polymers 

(Fong, 2004). 
 

2.6.5- Electrohydrodynamic Methodologies 
 
Electrospinning, electrospraying, co-axial jetting and electrohydrodynamic printing all 

stem form the same principles: the enablement of a cone with a jet, by means of passing 

an applied voltage to a flowing medium. Electrospraying and electrospinning result in 

the formation of relics and fibres respectively (Ahmad, 2007). Co-axial jetting has been 

used to prepare encapsulated materials as well as encapsulated fibres (Huang et al., 

2006). By using this technique there is a possibility of printing pattern polymeric 

materials and potential advantages over conventional techniques. 

 

2.7- Characterisation of Polyurethane Based 
Composites 
 
Interaction between the tissue and biomaterials depends on the physical and chemical 

characteristics of material and specifically on chemical composition and surface 

properties (Guo et al., 2007). It is important to analyse materials in-vivo and in-vitro if 

they are to be used for any biomaterial purpose. Fabrication of crystalline  

nano-hydroxyapatite and to obtain nano-particles with agglomerated-free structure and 

uniform particle size is difficult.  In case of polyurethane; toxic material such as 

isocyanates is one of the main components, so it is necessary to identify the 

concentration. 
  
It is possible to follow a reaction and analyse the structural (chemical), thermal physical 

and biological properties of the material, by using the techniques such as  

Fourier Transform Infra red (FTIR), Raman spectroscopy, Nuclear Magnetic Resonance 

(NMR) for chemical, Thermo Gravimetric Analysis (TGA), Differential Scanning 

Calorimetry (DSC) for thermal, X-ray Diffraction (XRD) and Scanning Electron 
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Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) for physical and 

morphological and cell culturing and bacterial adhesion analysis for biological purposes.  

Infrared spectroscopy is used to identify certain bonds within a material. During the 

synthesis of polyurethane, some bonds will be broken (-N=C=O) and some new bonds 

will be formed (N—H, C=O).  FTIR is the primary technique to detect the presence of 

these new bonds. Several studies have been conducted to analyse the polyurethane with 

FTIR and determine presence of bonds (Ren et al., 2004; Mondal et al., 2006), identify 

the surface modifications (Liu et al., 2006; Stachelek et al., 2006) and the degradation 

analysis (Zhi et al., 2006; Pielichowski et al., 2004). The presence of bonds can be 

detected by correlating vibrations of products with reactants. The quantitative nature of 

the bonds can be indicated by intensities of the peaks. The reaction kinetics of material 

can also be identified by using this technique (Burel et al., 2005). 
 
Segmented polyurethane has the characteristic of two phase structure. Raman is the 

technique to analyse how the two phases exist (Xia and Song, 2006). This method 

provides to assess distribution of the segments within structure.  

Thermal characteristics of the material can be detected with TGA and DSC. The thermal 

decomposition and glass transition behaviour of polyurethane/composite can be 

analysed. Hence, it is important to utilise these techniques prior to use as biomaterial. 

This gives an indication of the purity of material which is being used.  

Degradation of polyurethane and polyurethane based composites can be analysed by 

using FTIR and Raman spectroscopy. During the degradation process, some changes are 

expected in the chemical bonds. Umare and Chandure (2008) used FTIR, TGA and 

XRD techniques to analyse the degradative behaviour of polyurethane. The changes in 

the bonds can be detected by FTIR and Raman spectroscopy by correlating the shifting 

of peaks and the intensities of peaks can also give indications.  

The design of composite materials offers the opportunity to combine polymers and 

bioactive inorganic phases, thus creating scaffolds with tailored bioactivity and 

improved physical and mechanical properties (Kazarian et al., 2004). Spectroscopic 

imaging is the method of choice for monitoring and analysis of the in vitro bioactivity of 
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composites due to chemical specificity of this imaging approach. XRD can be employed 

to identify crystalline phases formed on the surface of bioactive composite. The 

formations of apatite phases on surfaces of the material can also be monitored by using a 

SEM coupled with EDS. SEM can evaluate the morphological aspect of bioactive 

composite applied on dentine and can also perform to take some information about 

interaction between the tooth structure and composite. 

Bacterial adhesion and colonisation onto biomaterial surfaces are frequent reason for the 

failure of biomaterials. Bacterial adhesion is the critical event in pathogenesis of foreign 

body infection. However, adhesion to the surface depends on surface chemistry of 

bacterial cells and materials (Park et al., 1998). The data shows that the polyurethane 

surface suppresses the bacterial adhesion and exhibits good resistance to encrustation 

(Park et al., 2002). 
 

Literature studies (Grad et al., 2003; Wang et al., 2008) show that biocompatibility of 

polyurethane based composites can be evaluated by using cell culturing. 

Biocompatibility is a surface phenomenon, represented by cell—cell, cell—polymer and 

polymer—protein interactions. The factors which affect the biocompatibility of 

polymers is; shape, size, surface chemistry and roughness, morphology and porosity, 

composition, sterility issues and rate of degradation (Pavithra and Doble, 2008).  

Lee et al. (1996) suggested that there are two crucial factors which should be considered 

when determining cell attachment and proliferation properties at the surface of 

polyurethane. The first factor is the surface morphology which may be regulated by 

dispersion of hard segment phase in the polymer and second, the hydrophilic property 

which is induced by high chain mobility. 
 

2.8- Summary 
 
It has been reported in literature that due to better intrinsic properties polyurethane 

based composites have the potential of being used as restorative composite and provide 

improved interfacial adhesion with surrounding tissues. Among several groups of 

polyurethanes, polyether based polyurethanes (Section 2.3.4.1.2) appear to be an 
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appropriate material considering their hydrolytic resistance (Section 2.3.6.1) and 

stability in body and good physical and mechanical properties. Synthetic hydroxyapatite 

(Section 2.4.3) is almost chemically similar to mineral components of human bone/teeth 

and is classed as bioactive component. They have the ability to integrate in bone 

structure and support bone growth.  To improve the properties of polyether based 

polyurethane, they were subjected to series of modifications (Section 2.3.8). 

Polyurethane’s versatile chemistry allows chemical modification on both pendant 

groups and backbone of the polymer chain, alternatively coupling with nano-apatites in 

polyurethanes matrix can improve their properties for biomedical and dental 

applications. For this purpose nano-hydroxyapatite containing polyurethane will be 

synthesised and subjected to several characterisation techniques to evaluate its 

properties for dental restorative materials.  

 

2.9- Aim and Objectives 
 
Polymer composites are not novel; the challenge is to have chemical linkage between 

the inorganic nano-particles to the organic polymer matrix to produce  

nano-composite. It is postulated that the inclusion of nano-hydroxyapatite in 

polyurethane will improve the physical, thermal and biological properties of the 

composite.  
 

Hence, the main aim of this study was to develop a covalently linked novel bioactive 

restorative composite. The objectives of this project were; 

(i) to develop a method to synthesise a nano-composite that has chemical linkage 

between polyurethane and nano-hydroxyapatite 

(ii) to characterise and compare this novel composite with different concentrations 

of nano-hydroxyapatite in terms of their; 

a. chemical properties by FTIR, Raman and 13C NMR Spectroscopies 

b. physical properties by SEM, TEM and XRD techniques 

c. thermal properties by TGA and DSC methods 

d. biological properties by cell culturing and bacterial adhesion techniques 

(iii) to synthesise nano-composite fibres using electrospinning technique 
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Chapter 3 Materials and Methods 
 

Section 1 
 

3.1- Introduction 
 

This chapter is divided into two main sections. Section 1 describes the materials and 

methods used in this study related to synthesis of nano-hydroxyapatite (nHA), 

polyurethane (PU) and polyurethane/nano-hydroxyapatite (PU/nHA) composites. 

Section 2 deals with the characterisations of synthesised polymer and composites.  

 

Nano-hydroxyapatite particles were synthesised by sol-gel technique described in 

Section 2.4.3.1.2, Chapter 2. This method was combined with oven drying for ageing 

and heat-treated in furnace to achieve crystalline hydroxyapatite. The reactants used 

for the synthesis of nHA were calcium and phosphate precursors and the obtained 

ratio was 1.66. Ethanol and deionised water were used as in all reactions.  
 

3.2- Materials for Nano-Hydroxyapatite  
 

Following materials were used during the synthesis reactions of  

nano-hydroxyapatite. The description of these reactants is described in Table 3.1.  
 

3.2.1- Calcium Precursor and Solvent 
 

AnalaR grade calcium nitrate tetrahydrate [Ca(NO3)2.4H2O] was used as supplied by 

VWR International (UK). Anhydrous grade ethanol (CH3CH2OH) from  

Sigma-Aldrich (UK) was used as solvent with calcium nitrate tetrahydrate. 

 

3.2.2- Phosphate Precursor and Solvent 
 

AnalaR grade ammonium hydrogen phosphate [(NH4)2HPO4] was purchased from 

VWR International (UK) and was used as the phosphate precursor in the reactions 
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and deionised water (10 mega-ohms) from USF Elga Option 3 Water Purifier was 

used as solvent. 
 

3.2.3- Ammonium Hydroxide 
 

AnalaR grade ammonium hydroxide (NH4OH) solution (specific gravity ≈ 0.88) was 

used for pH adjustment as supplied by VWR International (UK).  

 

Table 3.1 Reactant details for nano-hydroxyapatite synthesis *Molecular Weight 

Reactants Grade Mw* Min.Assay, % Supplier 

Ca(NO3)2.4H2O AnalaR 236.15 99 VWR 

(NH4)2HPO4 AnalaR 132.06 99 VWR 

CH3CH2OH Anhydrous 46.07 99.5 Sigma-Aldrich 

NH4OH AnalaR 17.03 35 VWR 

 
 

3.3- Materials for Polyurethane 
 

The chemical reactants and solvents used for synthesis of polyurethane and 

composites were all analytical grade (AnalaR). The details of materials used for 

polyurethane synthesis are listed in Table 3.2. 
 

3.3.1- Purification of Chemicals 
 

High level of purity of reactant chemicals and solvents is essential if high molecular 

weight polymer is to be obtained. Impurities act as a chain stopper, therefore 

resulting in low molecular weight polymers.  
 

3.3.2- 4,4-Methylenebis(phenyl) Diisocyanate (MDI) 
 

AnalaR grade Diphenyl Methane Diisocyanate (MDI) was purchased from Sigma-

Aldrich (UK) and was used as it was received. Before using, it was stored at 4°C and 
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prevented from moisture contamination. The chemical structure of MDI is given in 

Figure 3.1. 

 
Figure 3.1 Chemical structure of MDI 

 

3.3.3- 1,4-Butane diol (BD) 
 

AnalaR grade Butane diol (BD) was purchased from Sigma-Aldrich (UK) and was 

stored at 4°C to avoid moisture contamination. Before the experimental reaction it 

was dried in vacuum oven for 24 hours 

 at 80°C. Chemical structure of 1,4-butane diol is given in Figure 3.2. 

 

 
 

Figure 3.2 Chemical structure of 1,4-Butane diol 

 

3.3.4- Hydroxyl Terminated Polyethers 
 

AnalaR grade hydroxyl terminated polyethers; polytetramethylene glycol (PTMG) 

from Sigma-Aldrich (UK) was used.  PTMG was freeze dried (Virtis Advantage 

freeze dryer) at 1.3×10-4 bar by freezing to -40 °C on cold shelf and drying to 35°C 

in a 22 hour drying cycle, followed by storage in a vacuum desiccator at room 

temperature. The chemical structure is given in Figure 3.3. 

 
Figure 3.3 Chemical structure of PTMG 

 

3.3.5- N,N- Dimethyl Formamide (DMF) 
 

AnalaR grade N,N-Dimethyl formamide from Sigma-Aldrich (UK) was used as 

solvent. DMF was slightly decomposed at its normal boiling point to give small 
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amount of dimethylamine and carbon monoxide. It is likely that these impurities are 

present in commercial materials. Use of CaSO4, MgSO4, and silica gel or Linde type 

4 Å-molecular sieves are preferred for their removal (Rehman, 1992). In this study, 

DMF was kept over Linde type 4 Å-molecular sieves for 72 hours prior to every 

reaction. The chemical structure is given in Figure 3.4. 

 
Figure 3.4 Chemical structure of DMF 

 

3.3.6- Tetrahydrofuran 
 

AnalaR grade tetrahydrofuran (THF) from Sigma-Aldrich (UK) was used to cast the 

resulting films. THF was kept over Linde type 4 Å-molecular sieves for 72 hours 

prior to every reaction. The chemical structure is given in Figue 3.5. 

 
 Figure 3.5 Chemical structure of THF 

 

Table 3.2 Chemical reactant details for polyurethane synthesis *Molecular Weight 

Reactants Grade Mw* Supplier 

Polytetramethylene Oxide AnalaR 1400 Sigma-Aldrich 

4,4-Methylenebis(phenyl) 

Diisocyanate 
AnalaR 250.02 Sigma-Aldrich 

1,4-Butane diol AnalaR 90.12 Sigma-Aldrich 

N,N-Dimethylformamide AnalaR 73.09 Sigma-Aldrich 

 

3.3.7- Calcium Chloride 
 

GPR grade calcium chloride (CaCl2) was purchased from BDH (UK) and was used 

as drying agent during reaction to absorb moisture. 
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3.3.8- Experimental Equipment 
 

Glasswares used in all experiments were washed with neutral detergents, warm water 

and rinsed with deionised water followed by drying in oven at 130°C. In all 

reactions, stirring and heating were carried out using IKA Werke magnetic 

stirrer/heater. Polyethylene covered magnetic stirrer bars were used to allow the 

continuous stirring. The pH meter (Hanna Instruments HI 9024 pH probe) was 

calibrated with buffer solution at pH 4, 7, 10 and used to control the pH value during 

the nano-hydroxyapatite synthesis.   
 

3.4- Sol-gel Method 
 

Nano-hydroxyapatite were synthesised using sol-gel method (Section 2.4.3.1.2, 

Chapter 2) and this method was combined with oven drying (ageing) and heat 

treatment to produce nano-particles with high surface having enhanced crystallinity 

and potentially increased surface reactive hydroxyl (–OH) groups. The schematic 

flow chart of sol-gel technique is shown in Figure 3.6. 

 

3.4.1- Synthesis of Nano-Hydroxyapatite  
 

0.083 mol. (19.7 g) of calcium nitrate tetrahydrate [Ca(NO3)2.4H2O] and 0.05 mol 

(6.6 g)  of ammonium hydrogen phosphate [(NH4)2HPO4] were measured before 

mixing and ratio of calcium and phosphate precursors was maintained at 1.66.  

 

Ca(NO3)2.4H2O solution was prepared in 50 ml ethanol and solution stirred at 85°C 

for 15 min. While maintaining the Ca(NO3)2.4H2O solution at 85°C, (NH4)2HPO4 

was dissolved in 50 ml deionised water and the solution was added drop wise by 

using a glass-dropping funnel. NH4OH was added into combined suspension to 

maintain the pH value using pH probe throughout the experiment. The pH of the 

mixture was maintained at 10.5. The stirring of combined suspension was continued 

for 4 hour as the gel formation occurred.  

10Ca(NO3)2.4H2O  +     6(NH4)2HPO4  + 8NH4OH 

→      (eq. 3.1) 
                         Ca10(PO4)6(OH)2   +   20NH4NO3   +   6H2O 
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.  

3.4.1.1- Ageing and Heat Treatment 
 
After synthesis, the nano-hydroxyapatite gel was filtered using a Buchner filter.  The 

gel was not allowed to dry fully on the filter paper, but was taken off while still wet 

and placed in Petri Dish.  The gel was spread by rolling the Petri dish, around the 

walls to increase the surface area being dried.  The Petri dish was placed in oven for 

ageing at 40°C for 24 hours. After ageing  the small particle size in its ‘as prepared’ 

state was heat treated in a furnace (Carbolite (Sheffield, UK) STF 16/75 1600°C tube 

furnace) in air at 700°C for 60 minutes at the rate of 10°C min-1 and then cooled 

down to 20°C at the rate of 10°Cmin-1. The resulting heat treated nano-particles were 

ball milled for 12 hours to disintegrate the particles and produce fine powder. 

Phosphate precursor    
+ solvent

Calcium precursor 
+ solvent 

Mixing 

Gelation 

Ageing  
&  

Drying 

Heat Treatment 

Ball Milling 

Nano-Hydroxyapatite 

Ammonium 
Hydroxide 

85°C for 4 hours 

40°C for 24 
h

700°C for 
60 min 

Figure 3.6 Schematic flow chart of Sol-Gel technique 
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3.5- Synthesis of Polyurethane  
 

3.5.1- Introduction 
 

Polyurethanes are step growth (condensation) polymers formed by the reaction of  

di or polyisocyanates with polyols. The chemistry involved in the synthesis of 

polyurethane centres around the reaction of the isocyanate group. Several reactions 

can occur involving the isocyanate groups such as adduct formation, oligomerisation, 

cyclo-addition and insertion reaction. Only oligomerisation and insertion reactions 

are important in the formation of polyurethanes (Rehman, 1992). 
 

The principal primary reaction in the polymerisation of isocyanates is the insertion 

reaction. The reaction mechanism proceeds by a nucleophillic attack at the carbon 

atom in the isocyanate group. The product of this reaction comes in form of urethane 

linkage and the polymers containing urethane linkage are known as polyurethanes. 

Polyurethane elastomers typically exhibit a two-phase microstructure. This phase 

segregation results in the superior physical and mechanical properties. Factors 

affecting the degree of phase separation in polyurethanes include hydrogen bond 

formation between the urethane linkages and the carbonyl, segment length, segment 

polarity and crystallisability and composition (Rehman, 1992). 
 

Polyurethanes were synthesised by polymerisation technique using PTMG, MDI, 

and BD employing DMF as a solvent. 
 

3.5.2- Experimental Method 
 

In the preliminary experiments PTMG with different molecular weights (Mw: 1000, 

1400, 1500, 2000, and 2900) were used for synthesis. However, PTMG (Mw 1400) 

was selected after determination of results from initial characterisations. Various 

reactions were conducted with different mole ratio of PTMG, MDI and BD. In the 

preliminary experiments the ratio of PTMG: MDI: BD was 1:2:1, 1:3:0.5, 1:1:0.5, 

and 2:2:1 respectively. In this study, the stoichiometric amounts of the dried PTMG, 

MDI and BD were used. The mole ratio of PTMG: MDI: BD was 1:2.26:1.26 

respectively and arrived at after a series of preliminary experiments.  
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All glass-wares were dried at 130°C prior to every experiment. The reaction was 

blanketed by a stream of dry oxygen-free nitrogen throughout the experimental 

reactions. The freeze dried PTMG (14.2 gm) was placed in three neck flask equipped 

with stirrer, condenser (guarded with calcium chloride drying tube), thermometer, 

and dropping funnel. DMF (10 ml) was added through the dropping funnel. Stirring 

and heating was carried out at 60°C until all the PTMG dissolved in DMF. The 

stirrer was rotated at 200 rpm through out the experiment.  

 

Once the PTMG was completely dissolved in DMF then MDI (Mw, 250.2) solution 

[5.78 gm MDI (5% excess) and 25 ml DMF] was added drop wise in the flask with 

clean and dry dropping funnel. The flow of drops was maintained as 1 drop/sec. The 

temperature was continuously maintained at 60°C. After 35 minutes the addition of 

solution was completed and stirring was continued for further 40 minutes to give 

time for the monomers to react. 

 

BD (Mw, 90.12) solution (0.95 gm BDO and 5 ml DMF) was added drop wise in the 

mixing solution with continuous stirring. Once the mixing of monomers were 

completed the stirring was maintained at 60°C for one hour.  

 

After one hour the temperature was increased to 80°C. The material became slightly 

viscous at this stage, 25 ml DMF was added in the solution to allow it to stir for a 

further 30 minutes and then increased the temperature to 110°C for four hours to 

allow complete polymerisation. After four hours the solution became viscous and 

cloudy in appearance. The obtained solution was isolated in ice water. It was purified 

by further precipitation in ice-water/methanol. Once the sample was completely 

washed, the resulting sample was placed in vacuum pump for 48 hours and allowed 

it to dry completely over silica gel.  
 

3.5.3- Film Casting 
 

The resulting polymer sample was dissolved in THF to cast a film. The ratio of 

polyurethane sample and solvent was 1:10. The sample was dissolved for 45 minutes 

and the film was cast on dry Petri dishes. 
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3.6- Synthesis of Polyurethane/Nano-Hydroxyapatite 
Composite 
 

3.6.1- Introduction 
 

Several reactions were conducted to synthesise the composite based on PU and nHA.  
 
 

3.6.2- Physical Synthesis 
 

PU/nHA composite was physically synthesised by mixing the nano-hydroxyapatite 

and polyurethane. The method of nano-hydroxyapatite and polyurethane synthesis 

are described in section 3.4.1 and 3.5.2 respectively. 
 

Prior to every reaction nano-hydroxyapatite was oven dried at 100°C for four hours 

to remove the surface moisture absorbed. Hydroxyapatite particles have tendency to 

absorb environmental moisture. Polyurethane was used as it was prepared and THF 

was used as solvent.  
 

5 g of polyurethane was dissolved in 10% wt/wt of THF with continuous stirring at 

room temperature. Once the polyurethane was completely mixed in THF, nano-

hydroxyapatite was added into the solution. The weight percentage of nHA was  

5, 10, 15, and 20% wt/wt of polyurethane. The suspension was allowed to mix for 

overnight at room temperature. After mixing the films were cast on Petri dish from 

suspension and dried in inert atmosphere and then dried in vacuum pump for 48 

hours. 
 

3.6.3- Chemical Synthesis 
 

Polymer composite was synthesised by chemical reaction using in-situ 

polymerisation technique. Various sequences of addition of monomers/particles were 

analysed and these chemical reactions were characterised. Finally, the sequence 

followed in this study is shown in schematic flow chart (Figure 3.7).  

Nano-hydroxyapatite and polyurethane were prepared in the laboratory as described 

in Sections 3.4.1 and 3.5.2 respectively. Prior to every reaction nano-hydroxyapatite 
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was oven dried at 100°C for four hours to remove the surface moisture. PTMG was 

freeze dried at 1.3×10-4 bar by freezing to -40 °C on cold shelf and drying to 35°C in 

a 22 hour drying cycle, followed by storage in a vacuum desiccator at room 

temperature. MDI was stored at 4ºC and sealed to prevent from moisture 

contamination. BD was vacuum dried at 80ºC for 24 hours. DMF was kept over 4 Å 

molecular sieves for 72 hour before every reaction.  

 

  
Figure 3.7 Schematic flow chart of chemical synthesis of PU/nHA composite 
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3.6.3.1- Experimental Method 
 
Stoichiometric amounts of the dried PTMG, nHA, MDI and BD were used. The 

mole ratio of PTMG: MDI: BDO was 1:2.26:1.26 respectively. The concentration of 

nano-hydroxyapatite was 5, 10, 15, and 20% wt/wt relative to PTMG and denoted 

with PU/nHA5, PU/nHA10, PU/nHA15, and PU/nHA20 respectively. 
 

Prior to every experiment all glass-wares were washed and dried at 130ºC. The 

reaction was blanketed by a stream of dry oxygen-free nitrogen throughout the 

reactions. The freeze dried PTMG (14.2 gm) was placed in three-neck flask equipped 

with stirrer, condenser (guarded with calcium chloride drying tube), thermometer, 

and dropping funnel. DMF (10 ml) was added through the dropping funnel. Stirring 

and heating was carried out at 60°C until all the PTMG dissolved in DMF. The 

stirrer was rotated at 200 rpm throughout the experiment.  
 

Once the PTMG was completely dissolved in solvent nHA was added with specific 

concentrations (5, 10, 15, and 20 % wt/wt relative to PTMG) with 10 ml of DMF and 

stirred continuously at 60ºC for 45 minutes.  
 

MDI solution [5.78 gm MDI (5% excess) and 25 ml DMF] was added drop wise in 

the flask with clean and dry dropping funnel. The flow of drops was maintained at  

1 drop/sec. The temperature was maintained at 60°C. After 35 minutes the addition 

of solution was finished and stirring was continued for a further 60 minutes to give 

time for the monomers to react. 
 

BD solution (0.95 gm BD and 5 ml DMF) was added drop wise in the mixing 

solution with continuous stirring. Once mixing was completed the stirring was 

maintained at 60°C for one hour.  
 

After one hour the temperature was increased gradually to 80°C. The material 

became slightly viscous at this stage, 25 ml DMF was added in the solution to allow 

it to stir for further 30 minutes and then increased the temperature gradually to 

110°C for four hours to allow complete polymerisation. The reaction was completed 

after the solution became viscous in appearance. The solution was filtered and 

washed three times with ice water and methanol to remove low molecular weight 

molecules, impurities and unreacted monomers. Once the sample was completely 
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washed, the resulting sample was placed in vacuum pump for 48 hours and allowed 

to dry completely over silica gel.  

 

3.6.3.2- Film Casting 
 

Thin films (0.05-0.1 mm thick) were prepared by casting from a 5% solution of the 

polymer. Films were cast on Petri dishes (90 mm in diameter) which had previously 

been cleaned and deactivated by washing in the detergent, rinsing in distilled water, 

then wiping with THF solvent to remove any contamination. The polymer solution 

was applied to the Petri dishes using glass micropipette. Each slide was flooded with 

65 ml solution, so that the resulting films would have similar thickness of almost  

0.5 mm. The Petri dishes were covered to avoid the environmental contamination 

and allowing the controlled evaporation of THF for 36 hours. The polymer films 

were removed from the slides by peeling or by floatation over distilled water. Films 

were dried under vacuum at room temperature over silica gel. 

 

3.7- Synthesis of Electrospun Nano-fibres 
 

Nano-fibres of PU and PU/nHA composites were synthesised using electrospinning 

method (Section 2.6, chapter 2). PU and PU/nHA10 composite were synthesised as 

described in Section 3.5.2 and 3.6.3 respectively. 
 

3.7.1- Electrospinning Technique 
 

The experimental setup for the electrospinning process is given in Figure 3.8. The 

conducting stainless steel nozzle had an internal diameter of 330 µm and was 

connected to the positive terminal of the high voltage supply (Glassman Europe Ltd), 

held together by epoxy resin. The polyurethane and composite materials were 

delivered to the nozzle by silicone tubing which was also attached to the perfusor 

(Harvard syringe pump, Harvard apparatus Ltd). A flow rate of 15 µl/min was 

deployed and the applied voltage was in the range of 7-9 kV. The fibers were 

collected 120 mm below the nozzle exit. 
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Figure 3.8 Schematic diagram of electrospinning technique (Adopted from  

Wu et al., 2004) 

Section 2 

3.8- Characterisations 
 

3.8.1- Introduction 

Characterisation and analysis of a material constitute an important part within 

material science. The definition of the material characterisation is: “characterisation 

describes those features of composition and structure (including defects) of a 

material that are significant for a particular preparation, study of properties, or use, 

and suffice for reproduction of a material” (ASM International, 1996). This 

definition limits the characterisation methods and provides information about 

composition, structure, and defects and excludes those methods that give information 

mainly related to materials properties, such as thermal and mechanical properties In 

this study, different methods and techniques have been used to characterise the 

materials including: 

1. Chemical 

• Fourier Transform Infrared Spectroscopy (FTIR) 

• Raman Spectroscopy 

• 13C Nuclear Magnetic Resonance (13C NMR) 
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2. Physical 

• X-ray Diffraction (XRD) 

• Scanning Electron Microscopy (SEM) 

• Transmission Electron Microscopy (TEM) 

3. Thermal 

• Thermogravimetric Analysis (TGA) 

• Differential Scanning Calorimetric (DSC) 

4. Biological 

• Biostability 

• Bioactivity 

• Bioadhesion 

• Biocompatibility  

i. Cell culturing 

ii. Bacterial Adhesion 

3.8.2- Samples Preparation 
 

3.8.2.1- Polyurethane and Polyurethane/Nano-Hydroxyapatite 
Composites 

The samples of PU and PU/nHA were prepared by hot pressing technique using the 

Rondol technology machine (Rondol Technology Ltd, USA). Metal moulds were 

used with the dimensions of 90x15x2 mm3 in length, width and thickness 

respectively. The schematic diagram of the metal mould is shown in Figure 3.9. 

 

                          Figure 3.9 Schematic diagram of metal mould for hot pressing 

The samples were cut into small pieces by sharp scalpel blade and placed in mould. 

The metal mould was sprayed with Teflon and covered with a Teflon sheet from 

z

y 

x

15mm 

90 mm
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both sides. This was performed in order to avoid attachment of composite material 

with metal. The use of Teflon sheet results in good detachment of the sample as it 

acts as a separating media.  

 

3.8.2.1.1- Hot Pressing Technique 
 
The samples in moulds were placed in the hot pressing machine (Rondol 

technology). Hot pressing was conducted in step wise procedure. (i) Prior to placing 

the sample, the temperature was raised to 225oC. Once the required temperature was 

achieved, samples were placed on hot plate and pressure was applied, (ii) One kilo 

Newton (KN) pressure was applied and held it for one minute, (iii) the pressure was 

raised to 35 KN and wait for one minute, (iv) the temperature was decreased to room 

temperature (average 23oC) and the water supply was opened to cool it down. The 

sample was taken out from the machine to analyse it. The prepared samples were 

placed in a vacuum pump (Townson and Mercer Ltd, Altrincham England) at 50oC 

and 25-30 Hg bar for drying. After 24 hours all the samples were taken out. Samples 

were cut with sharp scalpel blade into rectangular specimens.  

 

3.8.3- Chemical Characterisations 
 

Qualitative spectroscopy is one of the most powerful and versatile analytical 

technique (Coates, 2000). Spectroscopic methods play a fundamental role in the 

solution of many problems in organic and inorganic chemistry. Four spectroscopic 

techniques have been widely used: 

1. Ultraviolet (UV) spectroscopy 

2. Infrared (IR) spectroscopy 

3. Nuclear magnetic resonance (NMR)  

4. Mass spectrometry (MS) 

 

Of the four spectroscopic techniques, three of them (UV, IR, and NMR) are 

considered as absorption spectroscopy, in which there is absorption of 

electromagnetic radiation by the sample under study over a range of wavelengths, 

whereas, MS is different to these in that it does not involve the absorption of 
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radiation. The infrared spectrum is produced as a result of the absorption of 

electromagnetic radiation at frequencies that correlates to the vibration of specific 

sets of chemical bonds within the molecule (Coates, 2000). 

 

Standard text books (Banwell, 1994) and literature (Tsuda and Arends, 1997; 

Schmitt and Flemming, 1998; Gonon et al., 2001; Chan and Kazarian, 2006) have 

explained in detail about the spectroscopy, types, and their mechanism of action.  

 

3.8.3.1-Fourier Transform Infrared Spectroscopy (FTIR) 
 

In this study, FTIR spectra of nHA powder, PU and PU/nHA composite samples, 

were obtained using a Nicolet 8700 FTIR spectrometer in conjunction with 

Photoacoustic Spectrum (PAS) cell (Figure 3.10). Spectra were obtained in the mid 

infrared region (4000-400 cm-1) at 8 cm-1 resolution, averaging 256 cm-1 scans. The 

sample chamber of the PAS cell was purged with dry helium gas (pre-dried over a 

column of magnesium perchlorate). A background scan was obtained prior to each 

set of tests using carbon black specimens.  

 

 
 

Figure 3.10 Photoacoustic Sampling for FTIR Spectroscopy 

 

3.8.3.2- Raman Spectroscopy 
 

In the broadest sense the Raman spectroscopy involves the scattering of light as a 

result of its interaction with matter. When monochromatic light from a laser strikes a 
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sample, almost all of the light is scattered elastically. This is known as Rayleigh 

scattering and certainly is the strongest component of the scattered radiation. A small 

fraction of the light is scattered inelastically: that is, there is an energy transfer 

between the incident light and the scattering molecules. This change in energy or 

frequency between the incident and scattered light corresponds to an excitation of the 

molecular system, most often in a vibrational mode (Katz et al., 2003). 

 

The Raman spectra were recorded by using Nicolet Almega XR dispersive Raman 

spectrometer (Figure 3.11). A background scan was obtained prior to each set of 

tests. The spectra were obtained in the range 4000-400 cm-1 over an average of  

256 cm-1 scan times and 4 cm-1 resolution.  

 

 
 

Figure 3.11 Raman Spectroscopy 

 

3.8.3.3- 13C Nuclear Magnetic Resonance (13C NMR) 
 

Nuclear Magnetic Resonance (NMR) was utilised to analyse the structural 

interaction. There are various ways to utilise NMR such as solid state NMR,  
1H NMR, 13C NMR. NMR resonant frequencies for a particular substance are 

directly proportional to the applied magnetic field. All nuclei that contain odd 

number of protons or neutrons have an intrinsic magnetic moment and angular 

momentum. In this study 13C NMR was utilised as the samples were dissolved in a 

solvent.  
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The samples used in this study were the PU and PU/nHA20. All the 13C NMR 

spectra were recorded on Bruker 600 MHz NMR spectrometer using magnetic field 

frequency 100 MHz for 13C nuclei. The solvent was THF for both samples (courtesy 

of Dr. Greg Coumbarides, School of Biological and Chemical Sciences, Queen Mary 

University of London). 

 

3.8.4- Physical Characterisations 
 

Physical properties of nano-hydroxyapatite and polyurethane are closely related to 

their morphology and phase separation. Surface properties have found to be one of 

the key parameters which affect biocompatibility. Surface properties regulate surface 

texture, surface energy, and composition which need to be analysed at micro- and 

nano-scale levels (Ratner et al. 1997). Combination of physical methods for 

investigating surface properties of nano-hydroxyapatite, polyurethane, and 

composites seems essential. 
 

3.8.4.1- X-ray Diffraction Analysis (XRD) 
 

X-ray diffraction is the interaction of physics of X-ray and the geometry of crystals. 

The two basics are a wave motion capable of interference (X-rays) and a set of 

periodically arranged scattered centres i.e., the atoms of a crystal (Cullity and Stock, 

2001). It is one of the most frequent and important method in qualifying materials. 

Materials have been characterised not only by their chemical composition, but also 

by their crystal state and the quantity of crystalline components. The quantitative 

phase analysis is applied for the analysis of individual crystalline constituents in 

multicomponent mixtures. In these mixtures, the individual constituents show 

characteristic diffraction intensity independent of the presence of other components. 

The intensity is proportional with the amount of the components. Diffraction is due 

basically to the existence of certain phase relation between two or more waves. It is 

therefore, a scattering phenomenon and not one involving any type of interaction 

between X-rays and atoms. Atoms disperse incident X-rays in all directions and in 

some of these directions the scattered beams will be completely in phase and so 

reinforce each other to form diffracted beam and known as constructive interference. 
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In all other directions the scattered beams are out of phase and cancel each other and 

referred as destructive interference. However, the diffracted beam is strong 

compared to the sum of all the rays scattered in the same direction due to the 

reinforcement which occurs, but is weak compared to the incident beam as the atoms 

of a crystal scatter only a small fraction of the energy incident on them (Griger, 

1987; Cullity and Stock, 2001). 

 

The X-ray diffraction data were collected for the nHA powder and PU and PU/nHA 

composite samples using a Simens D 5000 diffractometer using Cu-Kα radiation 

(kα1 = 0.15406 nm). An attachment was used across the 2θ range. The samples were 

set at 1° and fixed, and the detector was scanned between 10 and 70°. A step size of 

0.02° was used, with a step time of 2.5 seconds (courtesy of Dr. Rory Wilson, School 

of Engineering and Material Sciences, Queen Mary University of London). For nHA 

the identification of phases was achieved by comparing the diffraction pattern 

obtained to powder diffraction cards on the International Commission for Diffraction 

Data-Joint Committee on Powder Diffraction Standards (ICDD-JCPDS) database. 

Peak positions were obtained using the XRD evaluation software EVA™ (Bruker-

AXS, Germany). 
 

3.8.4.2- Transmission Electron Microscope (TEM) 
 

The nHA particles were studied by using JEOL JEM 2010 High Resolution 

Transmission Electron Microscope (TEM) operating at 200 KeV. Samples were 

prepared by ultrasonically dispersing the powders in methanol prior to collection on 

carbon coated copper grids (Holey Carbon Film, 300 mesh Cu, Agar Scientific). 

Morphology and average particle size were estimated from the bright field images. 

 

3.8.4.3- Scanning Electron Microscopy (SEM) 
 
The scanning electron microscopy (SEM) has become an important tool for both 

applied and basic research applications. Its research extends from the science of 

physicists and the engineers to the biologists. It is a versatile instrument for the 

analysis of the micro-structural characteristics of the biological objects (Wischnitzer, 
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1980). These contributions of SEM resulted in high magnification with great depth 

of field and also produce images over a wide range of magnifications.  
 

3.8.4.3.1- Sample Preparation 
 

The morphology and size of nHA particles, PU, PU/nHA composites were 

characterised by SEM [JEOL 6300 JSM and FEI Inspect (Figure 3.12)] using EDS 

and field emission method. All samples were carbon coated with sputter coater, 

which used argon gas and electric field. Samples were analysed at 10 KV at various 

magnifications. 

 
 

Figure 3.12 Scanning Electron Microscopy 

 

3.8.4.4- Brunauer-Emmett-Teller (BET) Surface Area Analysis 
 

The specific surface area of the powders was determined by the Brunauer-Emmett-

Teller (BET) method using a Micromeritics Gemini II 2370 surface area analyser. 

The 5-point multipoint adsorption method was used. All powdered samples  

(0.2-0.5 g) were degassed with nitrogen using a Flow Prep 060 controller at 200°C 

for at least 3 hrs prior to analyses. 

 

3.8.5- Thermal Analysis 
 

The incompatibility between polar hard segment and less polar soft segment in 

polyurethane causes the heat of mixing to be positive and drives the two segments to 
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phase separate (Adhikari et al. 1999; Adhikari et al. 2000). Thermal analysis is 

important to investigate the heat decomposition and glass transition of polyurethane 

and composites. 
 

3.8.5.1-Thermogravimetric Analysis (TGA) 
 

Thermogravimetry is defined as a technique whereby the weight of a substance, in an 

environment heated or cooled at a controlled rate, is recorded as a function of time or 

temperature. Thermogravimetric Analysis (TGA) is an analytical technique used to 

determine the thermal stability and the fraction of volatile components by analysing 

the weight changes. This analysis relies on a high degree of precision in three 

measurements: weight, temperature and temperature change (Keattch and Dollimore, 

1975; Wunderlich, 1990)  

This technique is commonly employed to determine the characteristics of polymer 

materials, to analyse degradation temperatures, absorbed moisture content of the 

materials, the level of inorganic and organic components in materials, decomposition 

points and solvent residues. The measurement is normally carried out in air or in 

inert atmosphere such as Helium or Nitrogen. It is also measured in a lean oxygen 

atmosphere (1-5% O2 in N2 or He) to slow down oxidation. 
 

TGA Q500 (TA Instruments 530) (Figure 3.13) with auto sampler was used to study 

the thermal decomposition of nHA, PU and PU/n–HA composite samples under non-

isothermal conditions at a constant rate of 20°C.min-1 in inert nitrogen atmosphere 

from 20 to 800°C. For TGA analysis, films were cut into small pieces and 

approximately 20 mg of sample was taken for the measurements. 

 
Figure 3.13 Thermogravimetric Analysis 
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3.8.5.2- Differential Scanning Calorimetry (DSC) 
 

Differential Scanning Calorimetry (DSC) is a technique to measure the energy 

required to establish a nearly zero temperature difference between a substance and an 

inert reference material. DSC can be used to assess the thermal and structural 

properties of any material; it measures the heat flow (mW) as a function of 

temperature. This technique gives results about glass transition temperature (Tg), 

melting temperature (Tm) and polymerisation/ gelation temperature (Lourenco and 

Santos, 2005).  

DSC (Perkin Elmer, USA) (Figure 3.14) was used in three sections of temperature 

range; 

(i) -60 to 150°C, (ii) then quenched it back to -60°C with a cooling rate of  

20°C.min-1, (iii) again heat it up to 250°C with the heating rate of 5°C.min-1. 

Nitrogen purge gas and aluminium crucibles of 40 μg were employed for all 

experiments. 

 

 
Figure 3.14 Differential Scanning Calorimetry  

 

 

The specimen was put in an aluminium crucible and closed by pressing aluminium 

cap, which was pierced by a needle on the top for degassing. The sample was heated 

once over the mentioned temperature range. The specimens were in film form and 

cut into small rectangular pieces. The average weight of each sample was 

approximately 3.6 ± 0.2 mg.  
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3.8.6- Biological Analysis 
 

3.8.6.1- Biostability Analysis 
 

The biostability of polymer is one of the essential parameter for their use as 

biomaterials. To ensure viability of these composite materials, their behaviour in wet 

environment has to be investigated, due to presence of intrinsic hygroscopic and 

hydrophilic nature of some of these materials such as nano-HA  

(Kumar and Kumar, 2006). The presence of ester and ether linkages in the backbone 

of polyurethanes inevitably results in some degree of hydrolysis; however, the rate of 

degradation is of prime importance and is dependent on the chemical structure of the 

polyurethane. There are certain factors which show impact on the biostability of 

polyurethane such as the hard segment/soft segment composition ratio. Materials that 

are in interaction with body fluid may involve dissolution or degradation of surface 

layers and may involve in leaching out of unbound or loosely bound components or 

an uptake of fluids into the structure of the material. The presence of discrete zones 

at the interface between the components could cause water absorption and the 

osmotic effect would result in swelling and residual pressure on the tissue and can 

damage the material and cause some undesirable effects such as softening of the 

resin matrix, resin degradation, and leakage of filler elements (Parker and Braden, 

1989; Martin et al., 2003; McCabe and Rusby, 2004). 
 

3.8.6.1.1- Sample Preparation  
 
Six samples from PU and PU/nHA (PU/nHA5, PU/nHA10, PU/nHA15, and 

PU/nHA20) composites were prepared by hot pressing technique (Section 3.8.2.1.1). 

Each of six samples was immersed in separate flat surface plastic bottles filled with 

25 ml deionised water and phosphate buffer solution (pH 7.4) and placed in a 37°C 

incubator for 1, 7, 14, 21,  40, 90 days. After every 14 days the solutions were 

decanted off and replaced with fresh media. The samples were removed from the 

media after each period of immersion and then washed with distilled water and 

vacuum dried at 60°C for 24 hours to analyse. Before and after immersion the 

samples were characterised with contact angle measurement, weight loss 
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measurement, FTIR (3.8.3.1), Raman spectroscopy (3.8.3.2), XRD (3.8.4.1), and 

SEM (3.8.4.3) techniques.  
 

3.8.6.1.2- Contact Angle Measurements 
 
 To evaluate the wetting properties of samples, advancing contact angle 

measurements of water were performed by a droplet expanding technique, using a 

CAM 200 Optical Contact Angle Meter (KSV Instruments Ltd. Finland) equipped 

with a video recorder that collected one image per second. Small holes were pressed 

through the film and water droplets (volume 5 µl) were enlarged at constant velocity 

from under the materials through the holes by using a syringe. Image analysis was 

performed with CAM 200 Software and contact angle calculation using curve fitting 

was based on the Young-Laplace equation, yielding contact angles on either side of 

the droplet and their mean value. Before contact angle measurements the films were 

cleaned and allowed to dry. Six samples of each film were prepared as described in 

Section 3.5.3. 
 

3.8.6.1.3- Weight Loss Measurement 
 
The weight of the samples was measured before and after solution ageing by using 

digital balance. The weight loss was measured in percentage over predetermined 

time intervals by using the formula: 

 

 

Weight loss (%) = 100 x (M1-M2)      (eq. 3.2) 
                                                   M1        

 
 
where, M1 and M2 are the weight before and after immersion respectively. 

 

3.8.6.2- Bioactivity Analysis 
 
Bioactive materials can stimulate a specific response in the surrounding tissues by 

means of complex mechanism involving three main phases: ion leaching, partial 

dissolution of the ceramic surface and the precipitation of bonelike apatite layer on 
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the ceramic surface (Chatzistavrou et al., 2006). For this the in-vitro apatite 

formation can be reproduced in simulated body fluid (SBF) with ion concentrations 

nearly equal to human blood plasma. The factors such as surface chemistry and 

topography of the substrate, and ionic concentrations and components of the SBF 

solution can influence on the growth rate of the apatite layer (Qu et al., 2007). The 

in-vitro analysis was carried out in modified-simulated body fluid (m-SBF) at 

controlled temperature of 37°C. 

 

3.8.6.2.1- Preparation of Modified Simulated Body Fluid 
 

Modified simulated body fluid (m-SBF) was prepared, as described by Oyane et al. 

(2003), by dissolving reagent in deionised water as shown in Table 3.3, which is 

almost equal to those of human blood plasma, except HCO3. All reagents were 

analytically graded and supplied by Sigma-Aldrich, UK. In m-SBF, the buffer agent, 

2-(4-(2-hydroxyethyl)-1-piperazinyl) ethanesulfonic acid (HEPES) and the counter 

agent, aqueous 1.0 M NaOH were used.  

 

In this experiment, all the apparatuses were washed with 1.0 M of HCl, neutral 

detergent, and ultra pure water. Initially, approximately 700 ml of deionised water 

were poured into a 1000 ml glass beaker, and this was stirred using a magnetic bar 

37±0.5°C. After each preceding reagent had completely dissolved, the reagents were 

dissolved in the water in the sequence listed in Table 3.3.  

 

The HEPES was previously dissolved in 100 ml of aqueous 0.2 M NaOH. The 

solution was adjusted to a pH of 7.4 by titring aqueous 1.0 M of NaOH into the 

dissolving solution. The solution was then cooled to room temperature (23°C), and 

the total volume adjusted to 1000 ml by adding deionised water. The resulting m-

SBF was stored at cool place (4°C) for three days and 40 ml of the m-SBF was 

sealed in a 50 ml capacity polystyrene bottle fitted with a screw cap and kept at 37°C 

to examine the precipitates. All the m-SBF was clear and without showing any 

visible precipitation. 
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3.8.6.2.2- Sample Preparation  
 

The films were prepared as described in Section 3.5.3. The resulting films were cut 

uniformly into 12 mm diameter by using diamond end cutter. Six samples of each 

material were used for this study. The samples were sterilised by soaking into 70% 

ethanol for predetermined time interval and dried before immersion. The sterilised 

samples were immersed in 15 ml m-SBF containing polystyrene tubes  

(Fischer Scientific, UK) covered with lids for 1, 7, 14, 21, and 40 days, which were 

maintained at 37°C.  

 

The m-SBF was changed after 14 days to maintain a constant liquid composition. 

After different periods of immersion, the samples were removed from the solution, 

rinsed with distilled water, wiped and dried at 50°C overnight. The samples were 

characterised by using FTIR (3.8.3.1), Raman Spectroscopy (3.8.3.2), XRD (3.8.4.1) 

and SEM with EDS (3.8.4.3). 

 

Table 3.3 Reagents used for preparation of modified simulated body fluid  

(Oyane et al., 2003) 

Compounds Reagents Amount 

Sodium Chloride NaCl 5.403g 

Sodium Bicarbonate NaHCO3 0.504g 

Sodium Carbonate Na2CO3 0.426g 

Potassium Chloride KCl 0.225g 

Potassium Hydrogen Phosphate 

trihydrate 
K2HPO4.3H2O 0.230g 

Magnesium Chloride hexahydrate MgCl2.6H2O 0.311g 

Sodium Hydroxide 0.2 M—NaOH 100 mL 

 HEPES 17.892g 

Calcium Chloride CaCl2 0.293g 

Sodium Sulfate Na2SO4 0.072g 

Sodium Hydroxide 1.0 M—NaOH 15 mL 
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3.8.6.3- Bioadhesion Analysis 
 

The interfacial linkage between PU and nHA is one of the major factors that 

determine the ultimate properties of the composite. The formation of apatite at the 

interface or bonding to already present apatite could create a much closer to natural 

state of restoration than the present composite systems (Mjor et al., 2000; Engqvist 

et al., 2004. 
 

Different methods such as tensile strength, micro-tensile strength, and shear bond 

strength have been employed to analyse the bond strength of the materials with the 

tooth substrate (Drummond et al., 1996; Mortazavi et al., 2004). Push-out testing has 

been widely used to assess the mechanical strength developed at the material and the 

bone/tooth interface in both in-vitro and in-vivo tests. This method measures the 

interfacial shear strength that has been developed between a biomaterial and tissue 

(Thomson and Gregson, 1999). 

 

Bioadhesion analysis was conducted on non-carious, extracted, human molar teeth 

(QMREC2006/26). The teeth were selected randomly and the criteria of selection 

were anonymous. The extracted teeth were stored in 70/30 water/ethanol to sterilise 

and keep the structure intact.  

 

3.8.6.3.1- Sample Preparation 
 

Extracted teeth were moulded in self-cured polymethylmeth acrylate (PMMA). 

Uniform occlusal cylindrical through dentine cavities of 4 mm diameter were 

prepared using diamond edged core drill (UKAM Industrial, CA USA) under the 

continuous flow of water to avoid the thermal damage of tooth structure. The cavities 

were filled with experiment materials i.e. glass ionomer cement (GC Fuji IX), the 

resin based composites, RBC (Filtek Supreme), PU and PU/nHA (10, 15, and 20% 

wt/wt) composites.  
 

GC Fuji IX GP (GC International, Tokyo, Japan) radiopaque posterior glass ionomer 

capsules were used. The capsules were placed in a high speed amalgamator for 10 

seconds and then packed in to the cavity with dough-like consistency material. The 
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cements were self-cured in 2.5-4.5 minutes. Excess cement from margin of the 

cavity was removed with sharp blade. After initial setting the samples were placed at 

37°C and 100% relative humidity for 24 hours to achieve maturation. For  

Filtek Supreme (3M ESPE, UK), the cavities were etched with 36% orthophosphoric 

acid (Vococid, Voco Germany) for 20 seconds and then washed with water 

thoroughly to remove all the acid. After washing the cavities were dried and 

Scotchbond Multipurpose Adhesive (3M ESPE, UK) was applied on the inner 

surface of the cavities. The applied bond was cured by using blue visible light 

(DeTrey Dentsply, Germany; wavelength ≈ 472 nm) for 60 seconds. In the last step 

the cavities were filled in 2 mm increments of resin based composite and were light 

cured for 60 seconds. The distance of the light was maintained for each sample. The 

surface of the restorative composites was polished by using Soflex (3M ESPE, UK). 

The experiment materials, PU, PU/nHA (10, 15, and 20% wt/wt) were heated at 

160°C and condensed in the cavity as shown in Figure 3.15, by using Teflon coated 

condenser. The filled teeth were immersed in deionised water and artificial saliva at 

37±1°C and were analysed with pre-determined time interval of 7, 21, 40 and 90 

days. After the materials were set inside the cavities the teeth were sectioned axially 

into2 mm thick disks using diamond blade under water flow. Five sections were 

obtained from each tooth  
 

 
Figure 3.15 SEM image of experiment sample condense in tooth cavity 

 

3.8.6.3.2- Artificial Saliva Preparation  
 

Artificial saliva was prepared as it was described by Levallois et al. (1998). The 

reagents were analytically graded. All glass-wares were thoroughly cleaned with 

neutral detergent and washed with deionised water and dried completely at 130°C. 

Experimental Samples 

Tooth Structure (Dentine) 
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Initially, approximately 700 ml of deionised water were poured into a 1000 ml glass 

beaker, and this was stirred using a magnetic bar at 37±1°C. After each preceding 

reagent had completely dissolved, the reagents were dissolved in the water in the 

sequence listed in Table 3.4. The pH of the artificial saliva was 6.8. After mixing the 

artificial saliva was stored overnight at 37±1°C. The artificial saliva was clear and 

did not show any visible precipitation. 

 

3.8.6.3.3- Push-out Test 
 

The discs were dried prior to Push-out test for the shear bond strength. Push-out test 

was performed on Instron 6025 with the cross head speed of 1 mm min-1 and a load 

cell of 1 KN. It was maintained that Instron machine was calibrated before each test. 

The test was performed at 25±2°C and humidity was 55 ± 3%. A long stainless steel 

rod of 12 mm was used to push the samples from tooth. The metal rod was divided 

into two sections. The upper part of 9 mm length and 6 mm diameter was hollow to 

reduce the weight of the rod. The lower part was 3 mm in length and 4 mm in 

diameter. The schematic structure of push-out test method shows in Figure 3.16.  

Table 3.4 Composition of artificial saliva (Levallois et al., 1998) 

Compound                                                 Source Concentration 
(mg/l) 

Sodium chloride NaCl Sigma-Aldrich 125.64 

Potassium chloride KCl Sigma-Aldrich 963.90 
Potassium 

thiocyanate KSCN Aldrich 189.20 

Potassium dihydrogen 
orthophosphate KH2PO4 GPR 654.50 

Urea CO(NH2)2 Sigma 200.00 
Calcium chloride 

dehydrate CaCl2.2H2O Aldrich 227.80 

Sodium sulphate Na2SO4.10H2O Aldrich 763.20 
Sodium Hydrogen 

Carbonate NaHCO3 Sigma-Aldrich 630.80 

Ammonium chloride NH4Cl Sigma-Aldrich) 178.00 
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3.8.6.3.4- Scanning Electron Microscopy (SEM) 
 

After push-out test result, the resulting tooth discs were analysed. The morphology 

and surface analysis were characterised by Scanning Electron Microscopy, SEM 

(JEOL 6300 JSM and FEI Inspect) and EDS at an activation voltage of 10 kV. The 

samples were mounted and were sputter coated under vacuum with carbon. 

 

3.8.6.4- Biocompatibility Analysis 
 

3.8.6.4.1- Cell Culturing 
 

3.8.6.4.1.1- Sample Preparation 
 
PU and PU/nHA20 samples were used for cell culturing experiment. Six samples of 

each film were used for this experiment. Films were cast as it was mentioned in 

section 3.5.3. 

 

Stainless Steel Rod   
(9 mm Length) 

Stainless Steel Rod   
(3 mm Length) 

PMMA 
Base 

Tooth Sample 

Figure 3.16 Schematic diagram of Push-out Test 
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3.8.6.4.1.2- Cells 
 
Primary rat calvarial osteoblasts isolated by collagenase digestion isolated by 

explants culture were used in the experiments. The cells were cultured and 

maintained in Minimal Essential Medium (MEM) Alpha medium (Invitrogen, UK) 

which was supplemented with 10% of fetal calf serum (FCS) (Sigma Aldrich, UK), 

0.3 µg/ml fungizone (Invitrogen) and 50 µg/ml penicillin- 50 µg/ml streptomycin 

(Invitrogen). The cells were grown in a humidified incubator at 37◦C with 5% CO2. 

The medium was replaced twice a week. 
 

3.8.6.4.1.3- CellTiter 96® AQueous Non-Radioactive Cell Proliferation 
Assay (MTS)  
 

Cell proliferation on the films was assessed by an MTS assay. A solution of MTS 

(Promega UK Ltd) and phenazine methosulfate (PMS) (Sigma, UK) was used to 

determine the number of viable cells on the films.   
 

3.8.6.4.1.4- Cell culture 
 

To evaluate osteoblast proliferation on different films, cells were seeded on PU and 

PU/nHA20 composite films. Osteoblasts of 7-9th passage were used for the tests. 

90% confluent cells were trypsinised and cell density was adjusted to 3×104 cells/ml. 

Sterile films were transferred into 24 well plates.  The films were seeded with  

3×104 cells × ml / well for 3, 5 and 7 days in triplicates.  Wells with no films were 

used as controls. The films containing cells were placed in a humidified incubator at 

37◦C with 5% CO2. Cell proliferation was analysed at day three. 
 

3.8.6.4.1.5- MTS Assay Protocol 
 

MTS changes colour on reacting with cells. The amount of colour change is directly 

proportional to the number of living cells. In order to measure cell proliferation, 

films were taken out from the medium at day 3, 5 and 7 and were placed in new  

24 well plates. PMS and MTS solution were mixed at the concentration of 50 μl/ml 

and added to 200 μl/ ml medium. Then 500 μl of MTS/PMS solution containing 

medium was added to wells containing films. 
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The plates were incubated for three hours. After three hours, three samples of 100 μl 

each were taken out from each of the wells and transferred to 96 well plates. The 

colorimetric measurement was then performed using a spectrophotometer at 490 nm 

(FLUOstar Optima, BMG Labtech).  
 

3.8.6.4.2- Bacterial Adhesion 
 

Sample discs were incubated with standardised suspensions of Streptococcus 

sanguinis strain NCTC 7863 for 2hrs and washed in PBS. Six samples of 12 mm in 

diameter were prepared as described in Section 3.5.3. 
 

Blood agar plate was prepared by using 40 g of blood agar (Oxoid Ltd, UK), 

dissolving in 1000 ml. 100 ml of Defibrinated Horse Blood (TCS Bioscience Ltd, 

UK) were dissolved in blood agar solution. Once dissolved, the solution was 

distributed in Petri dishes and dried at 37°C. The Petri dishes were sealed and placed 

at 4°C for overnight. Yeast (provided by Institute of Cell and Molecular Science, 

Queen Mary University of London) were spread on the prepared blood agar plates 

and placed in an anaerobic environment at 37°C and 10% CO2 and allowed to make 

colonies.  

 

The coated Streptococcus sanguinis (NCTC 7863  provided by ICMS, Queen Mary 

University of London) were spread on blood agar plates and placed in anaerobic 

environment at 37°C and 10% CO2. The Streptococcus sanguinis were inoculated in 

broth solution and washed with 15 ml PBS and centrifuged for 10 min. 

 

Sample films were sterilised with 70% alcohol and washed twice with PBS. Then  

25 μl bacterial solutions were adhered on the surface of the experimental samples 

and placed in anaerobic environment at 37°C for 2 hours. After 2 hours, the number 

of adhering bacteria was determined by vortexing with glass beads (BDH, UK) and 

serial dilution followed by plating for colony forming units per disc. 
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Chapter 4 Results  
 

4.1- Synthesis of Nano-Hydroxyapatite 
 
Nano-hydroxyapatite was synthesised using sol-gel method (Section 3.4.1, Chapter 3). 

The resulting nano-particles were chalky white in appearance and after ball milling 

appeared as fine powder. After heat treatment the total yield was approximately 75%.  

 

4.1.1- Fourier Transform Infrared Spectroscopy (FTIR) 
 

FTIR spectra were obtained according to the procedure described in Section 3.8.3.1, 

Chapter 3. The FTIR spectrum for the nano-hydroxyapatite have peak positions that 

correlate well with studies reported previously by Chapman and Thirlwell (1964),  

Elliot et al. (1985), Rehman and Bonfield (1997), Gibson and Bonfield (2002), 

Koutsopoulos (2002),  Krajewski et al. (2005).  A representative of the spectra of  

as-prepared and heat treated nano-hydroxyapatite powder is shown in Figure 4.1 (a & b 

respectively) and the peak assignments of heat treated powder are tabulated in Table 4.1.  

 

The FTIR spectra for the as-prepared nano-hydroxyapatite showed the hydroxyl (OH) 

stretch at 3571 cm-1 and the phosphate ν3, phosphate ν1, phosphate ν4 and phosphate ν2 

vibrations at 1040, 946, 603-569 and 490-470 cm-1, respectively.  The carbonate ν2 

stretching vibration bands were presented at 873 cm-1 and the carbonate ν3 stretching 

vibrations were observed between 1650-1410 cm-1 for heat treated ones whereas, for  

as-prepared, carbonate ν3 (m) stretches were presented between 1730-1420 cm-1, in 

addition the carbonate ν3 (w) stretch was seen at 1250 cm-1.  

 

In addition to the expected peaks for nano-hydroxyapatite, weak bands were observed in 

the range 2140 & 2000 cm-1. These peaks were believed to be due to cyanate (NCO-) 

and cyanamide (NCN2-) absorption bands (Dowker and Elliot, 1983). 
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Figure 4.1 FTIR spectra of (a) as-prepared and (b) heat treated nano-hydroxyapatite 

showing OH (3571 cm-1), CO3 (1650-1473 cm-1), stretching PO4 (1040 cm-1) and 

bending PO4 (603 and 569 cm-1) groups respectively 
 

4.1.2- Raman Spectroscopy 
 

Raman spectra were obtained according to the procedure described in Section 3.8.3.2, 

Chapter 3. A comparative representative of Raman spectra of as-prepared and heat 

treated nano-hydroxyapatite is given in Figure 4.2 (a & b respectively) and the 

characteristics peaks tabulated in Table 4.2. Raman spectroscopy provides the 

characteristics peaks of the nano-hydroxyapatite that corresponds to the previous studies 

reported by (Koutsopoulos, 2002; Pezzotti, 2005; Rapacz-Kmita et al., 2005; Antonakos 

et al., 2007). 

a 

b 
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Table 4.1 FTIR peaks assigned to heat treated nano-hydroxyapatite  

Peaks 

(cm-1) 
Assignments References 

3571 

 

 

1650 

 

 

1550 

 

1473 

 

 

1040 

 

946 

 

 

873 

 

631 

 

603 

569 

stretching mode (vs) hydroxyl (OH) 

 

 

v3 CO3 

 

 

CO3 at A-site 

 

v3, stretching mode of CO3 

 

 

triply degenerated vibration v3 of P—O 

 

non-degenerated symmetric stretching 

mode v1 of P—O 

 

v2 CO3 at B-site 

 

liberation mode (vL) OH 

 

triply degenerated bending mode v4, of 

the O-P-O bond 

Rehman and Bonfield (1997), 

Gibson et al., 2000 

 

Elliot et al., 1985, Rehman and 

Bonfield, 1997 

 

Krajewski et al., 2005 

 

Elliot et al., 1985, Rehman and 

Bonfield, 1997 

 

Chapman and Thirlwell, 1964 

 

Arends et al., 1987, Gibson and 

Bonfield, 2002 

 

Krajewski et al., 2005 

 

Koutsopoulos, 2002 

 

Rehman and Bonfiled, 1997 

Koutsopoulos, 2002 
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Figure 4.2 Raman spectroscopy of (a) as-prepared and (b) heat treated nano-

hydroxyapatite showing v3 PO4 (1077, 1044 cm-1), v1 PO4 (961 cm-1), and v4 PO4  

(603 cm-1) 

 

Table 4.2 Raman spectroscopy peak of heat treated nano-hydroxyapatite 
Peak (cm-1) Assignments References 

 

1077 

1047 

961 

       603, 586 

432 

Phosphate 

v3  

v3 

v1 stretching peak  

v4 

v2 

 

Koutsopoulos, 2002 

Antonakos et al., 2007  

Koutsopoulos, 2002 

Pezzotti, 2005  

Rapacz-Kmita et al., 2005 

v3 PO4 
1077, 1044 cm-1 

a

b 
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4.1.3- X-ray Diffraction (XRD) 
 

XRD patterns were obtained according to the procedure described in Section 3.8.4.1, 

Chapter 3. During the confirmation process nano-hydroxyapatite was aged at 40°C for 

24 hours and then heat treated at various temperatures i.e. 400, 700, and 900°C. The 

representatives of comparative patterns are given in Figure 4.3; whereas the general 

trend pattern of heat treated (700°C) nano-powder is given in Figure 4.4. The obtained 

patterns had a good match with the pattern for phase pure hydroxyapatite [JCPDS 

pattern 09-0432] and peak assignments were confirmed with Miller index of the 

corresponding reflections tabulated in Table 4.3. XRD pattern of 40°C aged as-prepared 

particles showed additional peaks at 2θ≈ 17.9° and 2θ≈ 22.4° attributed to NH4NO3. At 

900°C, β-TCP appeared (2θ≈ 31.13°) as impurity in nano-hydroxyapatite. 
 

Table 4.3 XRD peaks of heat treated nano-hydroxyapatite in relation to Miller Index of 

the corresponding reflection  

2 ≈ θ (°) 
Miller Index of the 

corresponding reflections 

22.9 

25.9 

29.1 

31.8 

32.2 

32.9 

34.2 

39.8 

(111) 

(002) 

(210) 

(211) 

(112) 

(300) 

(202) 

(310) 

4.1.4- Morphology  
 

Electron microscopy images i.e. TEM and SEM are obtained according to the procedure 

described in section 3.8.4.2 and 3.8.4.3, Chapter 3 respectively. TEM and SEM images 

of powder showed (Figure 4.5 a & b) a length of approximately 20-150 nm and width of 

approximately 15 nm. The morphological pattern of the nano-powder appeared spherical 

in shape; however few of them were needle-like in shape.  
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Figure 4.3 Comparative XRD pattern of hydroxyapatite aged at (a) 40°C and heat 

treated at (b) 400, (c) 700, and (d) 900°C 

 

 
Figure 4.4 XRD pattern of nano-hydroxyapatite heat treated at 700°C 

β-TCP

a b

c d 
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4.1.5- BET Analysis 
 
BET analysis was performed according to the procedure described in Section 3.8.4.4, 

Chapter 3. Surface area was measured and the representative results before and after 

heat treatment at 700°C was 110 and 37 m2/g respectively.   

 

 

(a) 

             

 

 

 

 

 

 

 

 

 

 

 

(b) x 40,000 

Figure 4.5 (a) TEM and (b) SEM image of nano-hydroxyapatite 
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4.2- Synthesis of Polyurethane 

The second step of this study was to synthesise polyurethane using in-situ 

polymerisation process. Polyurethanes were synthesised by addition polymerisation 

according to the procedure described in Section 3.5.2, Chapter 3. The resulting polymers 

were fully characterised prior to any further processing. Chemical structural properties 

were obtained by employing: FTIR (Section 3.8.3.1), Raman Spectroscopy  

(Section 3.8.3.2) and 13C NMR spectroscopy (Section 3.8.3.3) techniques, physical 

properties were obtained by using XRD (Section 3.8.4.1), and thermal properties by 

TGA (Section 3.8.5.1) and DSC (Section 3.8.5.2) techniques.  

 

4.2.1- Chemical Characterisations 

4.2.1.1- Fourier Transform Infrared Spectroscopy (FTIR) 
 
FTIR spectrum (Figure 4.6) presented the characteristic peaks of polyurethane and their 

attributions tabulated in Table 4.4. These all acquired FTIR spectrum peaks were in 

accordance with the previous studies by Lee and Hsu (1989), Lee et al. (1988),  

Hatchett et al. (2005), and Zhang et al. (2007).  

 

Figure 4.6 FTIR spectrum of polyurethane showing mainly N—H (3320 cm-1), C—H 

(2941 & 2920 cm-1), C=O (1730-1705 cm-1) and C—O—C (1111 cm-1) 
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Table 4.4 FTIR spectroscopy peaks of polyurethane  

Peaks (cm-1) Assignments References 

3320 v(N—H) Zhang et al., 2007 

3030 v(C—H) in benzene ring Lee and Hsu, 1989 

2941 Asymmetric stretching peak of CH2 Lee et al., 1988 

2920 Symmetric stretching peak of CH2 Lee and Hsu, 1989 

1730 Free C=O stretching Hatchett et al., 2005 

1705 Bonded C=O stretching Zhang et al., 2007 

1599 v(C=C) Lee and Hsu, 1989 

1535 Amide II δ (N-H) + v(C==N) Lee et al., 1988 

1481 CH2 Zhang et al., 2007 

1413 v(C-C) in benzene ring Hatchett et al., 2005 

1311 Amide III δ(N-H) + v(C==N) Lee et al., 1988 

1222 δ(N-H) + v(C==N) Lee et al., 1988 

1111 v(C—O—C) Lee and Hsu, 1989 

1017 β(C-H) Lee and Hsu, 1989 
 

4.2.1.2- Raman Spectroscopy  

 
Raman spectrum of polyurethane is given in Figure 4.7 and the assigned peaks tabulated 

in Table 4.5. These all acquired Raman spectrum peaks were in accordance with the 

previous studies (Stephenson et al., 1961; Ferry et al., 1996; Parnell et al., 2003; Cai 

and Singh, 2004). 

 

4.2.1.3- 13C Nuclear Magnetic Resonance (13C NMR) 
 

The 13C NMR spectrum of polyurethane is given in Figure 4.8 and peak assignments can 

be seen in Table 4.6.  
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Figure 4.7 Raman Spectroscopy of polyurethane showing mainly C=O  

(1712-1700 cm-1), (N—H) + (C—N) (1305 cm-1) and C—O—C (1118 cm-1) 

 

Table 4.5 Raman spectroscopy peaks of polyurethane  

Peaks (cm-1) Assignments References 

2920 Asymmetric stretching CH2 
Stephenson et al., 1961 

2869 Symmetric stretching CH2 
Ferry et al., 1996 

1712 Free C=O stretching Parnell et al., 2003 

1700 Bonded C=O stretching Cai and Singh, 2004 

1619 Symmetric stretched vibration (C==C) Cai and Singh, 2004 

1528 v(aromatic, C==C),  urethane amide II: 
v(C—N) + δ(N—H) 

Stephenson et al., 1961 

1443 δ(CH2) Parnell et al., 2003 

1305 δ(CH), urethane III band Parnell et al., 2003 

1118 (C—O—C) stretch Cai and Singh, 2004 

1080 C(O)—O—C Parnell et al., 2003 
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Figure 4.8 13C NMR spectrum of polyurethane at 100 MHz 

 

Table 4.6 13C NMR peaks of polyurethane  
Peaks (ppm) Assignments References 

154.39 Quaternary carbon of urethane Kaji et al., 1992 

153.12 Quaternary carbon of urethane Kaji et al., 1992 

139.23 Quaternary carbon of C=O Kaji et al., 1992 

138.62 Quaternary carbon of MDI Kaji et al., 1992 

136 MDI ring carbon Kaji et al., 1992 

129 Protonated aromatic MDI carbon and/or CH 
Levy et al., 1980 

Kaji et al., 1992 

119.16 Protonated aromatic MDI carbon and/or –CH2 
Levy et al., 1980 

Kaji et al., 1992 

71.77 Methyleneoxy carbon of PTMG Wang et al., 2003 

67.02 Methyleneoxy C of –CONH Prasath et al., 2004 

41.23 Methylene Carbon Wang et al., 2003 

28.09-25.27 Methylene group Wang et al., 2003 
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4.2.2- Physical Characterisations 
 

4.2.2.1- X-ray Diffraction (XRD) 
 

The XRD pattern of polyurethane is given in Figure 4.9 and tabulated in Table 4.7.  The 

pattern showed the typical diffraction peak at 2θ ≈ 20° and the characteristic broad 

diffraction band in the range 15-29.6° was due to the presence of amorphous structure 

and the band was well correlated with the previous studies on polyurethane by 

Billmeyer Jr. (2000), Mondal and Hu, (2006a, b), and Chun et al. (2006).  

 

Table 4.7 XRD pattern assignment of polyurethane 

2θ (°) Assignment References 

15-29.6  soft segment 
Mondal and Hu, 2006a, b 

Chun et al., 2006 

 

Polyurethane

0

2000
4000

6000
8000

10000

12000
14000
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u

 
Figure 4.9 XRD pattern of polyurethane showing characteristic peak in between  

2θ ~15-29.6° 
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4.2.3-Thermal Characterisations 

4.2.3.1-Thermogravimetric Analysis (TGA) 
 

The thermal stability of the polyurethane was investigated by TGA. The TGA profile in 

inert nitrogen under dynamic heating is given in Figure 4.13. The primary and 

secondary decomposition values of polyurethane tabulated in Table 4.8. 

 

Table 4.8 The primary and secondary thermal decomposition of polyurethane  
Thermal 

Decomposition 
Temperature °C References 

First Stage: 

Initial Temperature (°C) 

Final Temperature  (°C) 

 

295 

400 

 

Desai et al., 2000 

Herrera et al., 2002 

Second Stage: 

Initial Temperature (°C) 

Final Temperature  (°C) 

 

430 

680 

 

Kumar et al., 2006 

James et al, 2006 

 
Figure 4.10 TGA profile of polyurethane showing initial and secondary thermal 

decompositions 
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4.2.3.2- Differential Scanning Calorimetry (DSC) 
 

Differential Scanning Calorimetry (DSC) was carried out to measure the glass transition 

temperature (Tg) of polyurethane. The DSC thermogram pattern is given in Figure 4.11 

and the Tg values are shown in Table 4.9.  

 

Table 4.9 DSC glass transition values of polyurethane (van Bogart et al., 1981;  

Song et al., 1996) 

Temperature (°C) Assignments 

- 45 

78 

190 

Tg soft segment 

Endotherm Tg short range hard segment 

Endotherm Tg long range hard segment 
 

 

 

 

 

Figure 4.11 DSC thermogram of polyurethane showing endotherm Tg ~ 78 and 190°C 
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4.3- Synthesis of Polyurethane/Nano-Hydroxyapatite 
Composites 
 

In recent years, the development of the restorative composites has focused on the use of 

organic–inorganic hybrid nano-composite materials. The organic–inorganic hybrid 

materials offer the advantage of bridging the property between polymers and ceramics. 

In particular, chemistry involves the use of different monomers and nHA as an inorganic 

component. This section will describe the result of the grafting of nano-apatite with 

MDI and then evaluation of difference between physical mixing and chemical mixing of 

nHA and PU. During the synthesis procedure the monomers were added by step-wise 

method to achieve the linear chain and complete polymerisation. The resulting 

composites were analysed initially using chemical [(FTIR, Raman Spectroscopy, and 
13C NMR) Section 3.8.3.1, 3.8.3.2, 3.8.3.3 respectively, Chapter 3], physical (XRD; 

Section 3.8.4.1, Chapter 3), and thermal [(TGA and DSC) Section 3.8.5.1, 3.8.5.2 

respectively, Chapter 3] analysis. Later these properties were assessed using different 

concentrations of nHA. It was found that the step-wise chemical mixing of PU/nHA 

provided better results than physical mixing and with the increase in concentration of 

nHA, stronger covalent linkages and hydrogen bonding were observed which ultimately 

improved the chemical, physical and thermal properties of a novel composite. This 

section of the results will be explained on the basis of chemical, physical, and thermal 

characterisations.  

 

4.3.1- Chemical Characterisations 
 

4.3.1.1- Fourier Transform Infrared Spectroscopy (FTIR) 
 

FTIR was conducted to evaluate the structural composition of experimental materials: 

(i) grafted MDI/nano-hydroxyapatite (MDI/nHA); (ii) physically mixed 

polyurethane/nano-hydroxyapatite composite; and (iii) chemically mixed 

polyurethane/nano-hydroxyapatite. 
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4.3.1.1.1- Grafted MDI/Nano-Hydroxyapatite 
 
Once the nano-hydroxyapatite and polyurethane synthesis and processing were 

optimised, grafting to the surface was investigated. The materials studied include  

nano-hydroxyapatite and MDI. The comparative FTIR spectra of (a) nano-

hydroxyapatite, (b) MDI and (c) MDI/nano-hydroxyapatite are presented in Figure 4.12 

and the peaks tabulated in Table 4.10. The peaks of FTIR spectrum (Figure 4.12a) of 

nHA showed the characteristic peaks at 3571 cm-1 assigned to hydroxyl group and a 

peak at 1017 cm-1 was attributed to the phosphate group (Rehman and Bonfield, 1997). 

The FTIR spectrum (Figure 4.12b) of MDI presented a broad band of isocyanate group 

(NCO) in between 2400-2100 cm-1 (Hatchett et al., 2005). The peak appearing at 1690 

cm-1 was attributed to benzene (C=C) ring.  The reacted MDI/nHA composite spectrum 

is given in Figure 4.12c. The characteristic peak of asymmetric N—H stretching was 

observed at 3330 cm-1 that showed the formation of urethane linkage. The phosphate 

(P—O) peak from nano-hydroxyapatite was observed at 1040 cm-1. The other urethane 

peaks were observed at 1710, 1447, and 1236 cm-1. It was observed that during the 

reaction the isocyanate band (2400-2100 cm-1) completely disappeared. 

 
Figure 4.12 Comparative FTIR spectra of (a) nano-hydroxyapatite, (b) MDI and  

(c) grafted MDI/nano-hydroxyapatite showing Urethane linkage (N—H) formation 

(3330 cm-1)  
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Table 4.10 Comparative FTIR peaks of nHA, MDI and grafted MDI/nHA 

Sample* and Peaks (cm-1) Assignment References 

(a) nHA* 

3571 

1017 

 

OH group 

v3 phosphate group 

 

Rehman and Bonfield, 1997 

(b) MDI* 

2400-2100 

 

Isocyanate group 

 

Hatchett et al., 2005 

(c) Grafted nHA/MDI* 

3330 

 

N—H stretching (urethane 
linkage) 

 

 

4.3.1.1.2- Physically Mixed Polyurethane/Nano-hydroxyapatite Composites 
 

The comparative spectra of nHA and physically mixed PU/nHA are shown in  

Figure 4.13 (a & b) respectively. The spectrum of physically mixed PU/nHA composite  

(Figure 4.13b) showed that the characteristic hydroxyl stretch that was still present at 

3571 cm-1 after mixing suggested that grafting has not occurred via the physical mixing. 

The asymmetric and symmetric stretching peaks appeared at 2941 and 2855 cm-1 

respectively. The carbonyl peaks were presented in the region 1729-1701 cm-1. 

However, a broad intense band appeared in the range of 1100-900 cm-1 that showed the 

presence of nHA on the surface. The peaks assigned to nHA were seen at 1040 cm-1 for 

phosphate ν3, 946 cm-1 for phosphate ν1 and 603 & 569 cm-1 for phosphate ν4 peaks in 

the physically mixed sample.  These peaks were in quite similar pattern as in nHA as 

shown in Figure 4.13a. 
 

4.3.1.1.3- Chemically Mixed Polyurethane/Nano-hydroxyapatite 
Composites 
 

The general trend of FTIR spectrum of nHA treated polyurethane (PU) composite 

(PU/nHA20) is given in Figure 4.14. The shifting and emergence of new peaks were 
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observed in the spectrum after the in-situ polymerisation and comparative peaks of PU 

and PU/nHA20 tabulated in Table 4.11. 

 
Figure 4.13 Comparative FTIR spectra of (a) nano-hydroxyapatite and  

(b) polyurethane/nano-hydroxyapatite (physically mixed) composite showing 

characteristic OH (3571 cm-1) and PO4 (1040 cm-1) peaks in both spectra 

 
Figure 4.14 FTIR spectrum of PU/nHA20 composite showing N—H (3324 cm-1), 

hydrogen bonded C=O (1716-1701 cm-1) and P—C—O (1109 cm-1) 
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Table 4.11 Comparative FTIR peaks assignments of polyurethane (PU) and  

PU/nHA20 composite 

Polyurethane 
(PU) 
(cm-1) 

PU/nHA20 
Composite 

(cm-1) 
Assignments References 

3320 3324 v(N—H) Zhang et al., 2007 

2941 2935 
asymmetric stretching peak of 

CH2 

Lee and Hsu, 1989 

2920 2859 
symmetric stretching peak of 

CH2 

Lee et al., 1988 

1730 1731 free C=O stretching Lee and Hsu, 1989 

1705 
1716 

1701 
bonded C=O stretching Hatchett et al., 2005 

1599 1598 v (C=C) Zhang et al., 2007 

1535 1539 amide II δ (N-H) + v(C==N) Lee and Hsu, 1989 

1111 -- C—O—C Lee et al., 1988 

-- 1100-950 P—O—C  

 

4.3.1.1.4- Comparison of Physically and Chemically Mixed Composites 
 

The comparative spectra of (a) polyurethane (b) chemically mixed composites and  

(c) physically mixed composite are given in Figure 4.15. These spectra clearly showed 

the difference between the chemically mixed and physically mixed composites and the 

peaks tabulated in Table 4.12.  
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Table 4.12 Comparative FTIR peaks of PU, physically mixed PU/nHA, and chemically 

mixed PU/nHA assigned with groups and peak numbers (cm-1)  

 

 

Assignments PU (cm-1) Physically mixed 
PU/nHA (cm-1) 

Chemically mixed 
PU/nHA (cm-1) 

OH (from nHA) -- 3571  -- 

N—H 3320 
Not observed in spectrum 

due to low intensity 
3324 

C—H 2920 2922 2859 

C=O 1730 1730 1731 

Bonded C=O 1705 1706 
1716 

1701 

C—O—C 1111 -- -- 

C—O—C (PU) + 

PO4 (nHA) 
-- 1080 -- 

P—O—C -- -- 1100-950 
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Figure 4.15 Comparative FTIR spectra of (a) polyurethane, (b) polyurethane/nano-

hydroxyapatite (chemically mixed), and (c) polyurethane/nano-hydroxyapatite 

(physically mixed) 

 

4.3.1.1.5- Comparative Spectra of Composites with Different 
Concentrations of Nano-hydroxyapatite 
 

The comparative spectra of polyurethane/nano-hydroxyapatite composites with different 

concentration of nano-hydroxyapatite i.e. 5, 10, 15, and 20 % wt/wt are given in Figure 

4.16.  
 

The FTIR spectra showed the shifting of peaks with the increase in concentration of 

nHA. The urethane linkage appeared with the formation of N—H linkage in the region 

at 3400-3280 cm-1. The peak values and the relevant intensities of the carbonyl (C=O) 
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region are tabulated in Table 4.13. The PU/nHA5 showed the free C=O at 1728 cm-1 and 

bonded C=O at 1706 cm-1, whereas PU/nHA10 showed increase in the intensity of 

bonded C=O and peak shifted to 1713 cm-1. However, PU/nHA15 showed higher 

intensity value of bonded C=O at 1701 cm-1 and a shoulder peak appeared at 1713 cm-1. 

In PU/nHA20 spectrum the free C=O appeared at 1731 cm-1 and the bonded C=O peak 

appeared at 1701 and a new hydrogen bonded C=O peak presented at 1716 cm-1. The 

absorption bands at 1520 and 1439 cm-1 were due to carbonyl (C=O) coupled with  

N—H and N—C—N stretching vibration respectively. The combination of N—H 

deformation and C—N stretching vibration was appeared at 1598 cm-1 and 1233 cm-1 

was the absorption band of combined C—N and C—O stretching vibration. The peak of 

ether/phosphate (P—O—C) was observed at the position around 1100-950 cm-1 and it 

was noted that with the increase in concentration of nHA the shoulder peaks emergence 

in this region. 

 
 

Table 4.13 Free and Bonded Carbonyl peaks and intensities of PU/nHA composites 

Composite 

Free 

Carbonyl 

(cm-1) 

Intensity 

Bonded 

Carbonyl 

(cm-1) 

Intensity 

PU/nHA5 1728 5.76 1706 5.86 

PU/nHA10 1730 6.1 1713 6.5 

PU/nHA15 1731 6.1 
1701 

1713 (shoulder) 
6.9 

PU/nHA20 1731 8.1 
1716 

1701 

8.0 

8.5 

 



Chapter 4                                                                                                               Results                         
 

    
 

159

 
Figure 4.16 Comparative FTIR spectra of (a) PU/nHA5, (b) PU/nHA10, (c) PU/nHA15, 

and (d) PU/nHA20 

 

4.3.1.2- Raman Spectroscopy  
 

4.3.1.2.1- Physically Mixed Polyurethane/Nano-hydroxyapatite Composites 
 

Raman spectrum of physically mixed PU/nHA composites is given in Figure 4.17. The 

characteristic peaks of asymmetric and symmetric stretch C—H appeared at 2924 and 

2878 cm-1 respectively. The free and hydrogen bonded carbonyl region appeared in 

between 1730-1713 cm-1. The intense peak at 1626 cm-1 was attributed to benzene 

(C=C). The ether region (C—O—C) appeared at 1130 cm-1; however, the sharp intense 

peak of v1 phosphate appeared with slight shift at 974 cm-1 suggesting that there was no 

linkage between nano-hydroxyapatite and polyurethane.  
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Figure 4.17 Raman spectrum of physically mixed PU/nHA composite showing intense 

PO4 peak at 974 cm-1 
 

4.3.1.2.2- Chemically Mixed Polyurethane/Nano-hydroxyapatite 
Composites 
 

Raman spectrum peaks of chemically mixed polyurethane/nano-hydroxyapatite 

composite (PU/nHA20) is given in Figure 4.18. The peak values in comparison with 

polyurethane tabulated in Table 4.14. 

 

4.3.1.2.3- Comparison of Physically and Chemically Mixed Composites 
 

The comparative spectra of polyurethane, chemically mixed and physically mixed 

composites are given in Figure 4.19 (a, b & c) respectively. The most obvious 

differences between the physically and chemically mixed spectra were the presence of 

phosphate stretch (974 cm-1) peak in physically mixed spectrum. The chemically mixed 

spectrum showed the presence of shoulders and shifting of peaks in 1100-900 cm-1 

region. This suggested an interaction between the phosphate group of  

nano-hydroxyapatite and polyurethane. 
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Figure 4.18 General trend of chemically mixed Raman Spectroscopy of PU/nHA 

composite showing bonded C=O (1716 cm-1) and P—C—O (1123 cm-1) 
 
 

Table 4.14 Comparative Raman spectroscopy peaks assignment of PU and PU/nHA 
composite 

PU (cm-1) 
PU/nHA 

(cm-1) 
Assignments References 

2920 2922 asymmetric stretching CH2 
Stephenson et al., 1961 

1712 1730 free C=O Ferry et al., 1996 

1700 1716 bonded C=O Parnell et al., 2003 

1619 1621 
symmetric stretched 

vibration (C==C) 
Cai and Singh, 2004 

1528 1541 

v(aromatic, C==C),  

urethane amide II: v(C—N) 

+ δ(N—H) 

Cai and Singh, 2004 

1443 1448 δ(CH2) Stephenson et al., 1961 

1305 1309 δ(CH), urethane III band Parnell et al., 2003 

1118 -- (C—O—C) stretch Parnell et al., 2003 

-- 1123 P—O—C  
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Figure 4.19 Comparative Raman spectra of (a) polyurethane, (b) chemically mixed, and 

(c) physically mixed PU/nHA composites 

 
 

4.3.1.2.4- Comparative Spectra of Composites with Different 
Concentrations of Nano-hydroxyapatite 
 
The comparative spectra of PU/nHA with different concentrations of nano-particles i.e. 

5, 10, 15 and 20 % wt/wt are given in Figure 4.20. It was observed that with the increase 

in concentration of nHA the shifting of peaks occurred. The bonded C=O peak  

(1713 cm-1) showed emergence of peak with the increase in concentration of nHA. The 

shoulders and shifting of peaks (1200-1000 cm-1) were observed in ether/phosphate 

group range. 
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Figure 4.20 Comparative Raman Spectroscopy of polyurethane/nano-hydroxyapatite 

composites i.e. PU/nHA5 (red), PU/nHA10 (blue), PU/nHA15 (violet), and PU/nHA20 

(green) 

 

4.3.1.3- 13C Nuclear Magnetic Resonance (13C NMR) 
 

The comparative 13C NMR pattern of polyurethane (PU) and polyurethane/nano-

hydroxyapatite (PU/nHA20) are given in Figure 4.21 and peaks tabulated in Table 4.15. 

The shifting and emergence of peaks observed at 65.15-62.3 ppm and 41.50 ppm which 

were expected due to reaction of carbon and isocyanate to form hydrogen bonded C=O 

and urethane linkage respectively. The peak at 30.38 ppm associated with soft-segment 

carbons adjacent to a urethane linkage. 
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Figure 4.21 13C NMR spectrum of polyurethane/nano-hydroxyapatite composite 
 
 

Table 4.15 13C NMR peaks of PU/nHA composite 
Peaks (ppm) Assignments References 

154.39 Quaternary carbon of urethane Kaji et al., 1992 

153.12 Quaternary carbon of urethane Kaji et al., 1992 

139.23 Quaternary carbon of C=O Kaji et al., 1992 

138.62 Quaternary carbon of MDI Kaji et al., 1992 

136 MDI ring carbon Kaji et al., 1992 

129 Protonated aromatic MDI carbon and/or CH 
Levy et al., 1980 

Kaji et al., 1992 

119.16 Protonated aromatic MDI carbon and/or –CH2 
Levy et al., 1980 

Kaji et al., 1992 

71.77 Methyleneoxy carbon of PTMG Wang et al., 2003 

67.02 Methyleneoxy C of –CONH Prasath et al., 2004 

65.15-62.3 bonded C=O Prasath et al., 2004 

41.50 Urethane Prasath et al., 2004 

41.23 Methylene Carbon Wang et al., 2003 

28.09-25.27 Methylene group Wang et al., 2003 
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4.3.2- Physical Characterisations 
 

4.3.2.1- X-ray Diffraction of Polyurethane/Nano-hydroxyapatite 
Composites 
 

The XRD patterns of PU/nHA composites are given in Figure 4.22 to 4.25 (PU/nHA5, 

PU/nHA10, PU/nHA15, and PU/nHA20) respectively. The assigned peak at 22.97° 

(111) of nHA was expected to overlap by the high intense broad band of PU. However, 

the other nHA peaks i.e. 25.87° (002), 31.78° (211), 32.18° (112), 33.92° (300),  

39.24° (310), and 46.7° (222) were observed with slight shift in the XRD pattern of 

PU/nHA composites. The comparative shifted peaks of current study with the original 

peaks of nano-hydroxyapatite are tabulated in Table 4.16 with reference to Miller Index 

of the corresponding reflection. The comparative XRD patterns of nHA, chemically 

mixed and physically mixed polyurethane/nano-hydroxyapatite are presented in Figure 

4.26. The comparative XRD pattern of nHA and physically mixed composite confirmed 

the presence of nHA particles on the surface of polyurethane and were clearly visible. In 

comparison, the XRD pattern of chemically mixed samples confirmed the presence of 

nHA but not on the surface and the broad band of polyurethane (15-26°) emerged as the 

main peak of the pattern. 

 

Table 4.16 Shifting of nHA peaks after interaction with PU 
2θ (°) nHA 

(used in 

current study)

Miller Index of the 

Corresponding 

Reflection 

2θ (°) 

PU/nHA Composite 

25.87 (002) 26.10 

31.78 (211) 32.05 

32.18 (112) 32.49 

33.92 (300) 33.22 

39.24 (212) 39.60 

39.84 (310) 40.1 

46.7 (222) 47.02 
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Figure 4.22 XRD pattern of chemically mixed PU/nHA5 showing characteristic peak of 

polyurethane (15-29°) and hydroxyapatite (32.05° and 32.49°) 

 

 

 
Figure 4.23 XRD pattern of chemically mixed PU/nHA10 showing characteristic peak 

of polyurethane (15-29°) and hydroxyapatite (32.05°, 32.49° and 33.22°)  
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Figure 4.24 XRD pattern of chemically mixed PU/nHA15 showing characteristic peak 

of polyurethane (15-29°) and hydroxyapatite (26.10°, 32.05°, 32.49° and 33.22°)  

 

 

 
Figure 4.25 XRD pattern of chemically mixed PU/nHA20 showing characteristic peak 

of polyurethane (15-29°) and hydroxyapatite (26.10°, 32.05°, 32.49° and 33.22°)  
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Figure 4.26 Comparative XRD pattern of nano-hydroxyapatite, polyurethane/nano-

hydroxyapatite chemically mixed (PU/nHA CM), and polyurethane/nano-

hydroxyapatite physically mixed (PU/nHA PM) 

 
 
 

PU/nHA PM 

PU/nHA CM 

nHA 
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4.3.3- Thermal Characterisations 
 

4.3.3.1- Thermogravimetric Analysis (TGA) 
 

The results of thermal characteristics of PU/nHA composites were measured by using 

TGA and compared with PU and the resulting pattern is given in Figure 4.27. 
 

The initial and second thermal decomposition values of PU/nHA tabulated in Table 

4.17. In this study, it was observed that PU/nHA5 and PU/nHA10 composites showed 

the initial thermal decomposition at 298°C and 299°C and the final temperature at 

394°C and 396°C respectively. There was no significant difference on the thermal 

behaviour of these composite but higher concentrated i.e. PU/nHA15 and PU/nHA20 

composites showed significant difference, where the initial temperature is 341°C and 

345°C and final temperature was 400°C and 428°C respectively. The secondary 

decomposition for PU/nHA5 and PU/nHA10 was observed at 503°C and 502°C 

respectively and for higher concentrated nano-hydroxyapatite composites i.e. 

PU/nHA15 and PU/nHA20 the decomposition started at 526°C and 525°C respectively. 

 
Figure 4.27 Comparative TGA patterns of PU and PU/nHA composites showing initial 

and secondary thermal decompositions 
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Table 4.17 Initial and second thermal decomposition of PU/nHA composites 

Thermal Decomposition PU/nHA5 PU/nHA10 PU/nHA15 PU/nHA20 

First Stage: 

Initial Temperature (°C) 

Final Temperature  (°C) 

 

298 

394 

 

299 

396 

 

341 

400 

 

345 

428 

Second Stage: 

Initial Temperature (°C) 

Final Temperature  (°C) 

 

503 

660 

 

502 

625 

 

526 

661 

 

525 

680 
 

4.3.3.2- Differential Scanning Calorimetry (DSC) 
 

The comparative DSC thermogram is presented in Figure 4.28 and it was observed that 

PU (control) and PU/nHA5 has almost the same pattern. The endothermic peak of PU 

(hard segment) was observed at 185°C, whereas for PU/nHA5, the peak appeared with 

slight increase at 195°C. In comparison, the higher concentrated  

nano-hydroxyapatite based polyurethane composites i.e. PU/nHA10, PU/nHA15, and 

PU/nHA20 had higher glass transition (endothermic peak) temperature and peaks 

observed in between 220-225°C. In addition, an exothermic peak appeared at 18°C in 

PU/nHA10 composite, which was not present in other samples.  

 
Figure 4.28 Comparative DSC thermogram of PU and PU/nHA composites showing 

endotherm Tg peaks 
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4.3.4- Biological Analysis 
 

4.3.4.1- Biostability Analysis 
 
 
Several studies suggested that chemical and morphological nature of biomaterial surface 

determined to a large extent how the biomaterial interacts with the host tissue and the 

physiological fluids after implantation (Hench and Ethridgo, 1982; Davies, 1988; Aoki, 

1991). It is significant to evaluate the surface properties, such as wettability, so that 

future relationship with in-vivo behaviour might be established. In order to overcome the 

disadvantages of physical mixing method, such as fast degradation of nano-composites, 

the chemically crosslinked composites enhance the mechanical and physical properties 

(Chang et al., 2003: Xu et al., 2007). It is established that the side groups will play an 

important role in the hydrolytic degradation of PU. The location of these side groups 

will result in different rates of hydrolysis. When a hydrocarbon side chain is attached to 

the soft segment component of the PU it increases the hydrophobicity (Stirna et al., 

2002). Hence the structure and functionality of side groups will affect the degradative 

hydrolysis rate (Furukawa, 1997). The surface grafted PU will play an important role, 

not only in improving the biocompatibility, but also in biostability in relation to 

degradative hydrolysis. 
 

In this study, the hydrophobicity and biostability of control (PU) and experimental 

(PU/nHA) composites were analysed by using the contact angle measurement (Section 

3.8.6.1.2, Chapter 3), weight loss measurement (Section 3.8.6.1.3, Chapter 3) and were 

also characterised using FTIR (Section 3.8.3.1, Chapter 3), Raman Spectroscopy 

(Section 3.8.3.2, Chapter 3), XRD (Section 3.8.4.1, Chapter 3) and SEM (Section 

3.8.4.3, Chapter 3) techniques. The FTIR and Raman spectral results for 1 and 7 days 

and SEM images of day 7 are given in Appendix (Appendix 3). 
 

4.3.4.1.1-Contact Angle Measurements 
 

The contact angle measurement for the control and experimental materials are given in 

Figure 4.29. The surface contact angle values and standard deviations are tabulated in  
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Table 4.18. It was observed that the surface contact angle increased with the increase in 

concentration of nHA. The significant difference (p ≤ 0.05) was observed for 

PU/nHA15 and PU/nHA20 composites as compared to other samples. 

 

Table 4.18 Contact Angle Measurement values of PU and PU/nHA composite with 

standard deviation 
 

Samples Contact Angle (°) ± SD 

PU 73.96 ± 0.32 

PU/nHA5 75.82 ±0.08 

PU/nHA10 79.18 ± 0.19 

PU/nHA15 89.00 ± 0.15 

PU/nHA20 93.10 ±  0.11 
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Figure 4.29 Contact angle measurements with standard deviations of PU and  

PU/nHA composites prior to immersion in media 

 
(°) 
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4.3.4.1.2- Weight Loss Measurement 
 
 
The change in weight loss for samples immersed in deionised water and PBS is given in 

Table 4.19 and 4.20 respectively. The graphical pattern of the weight loss for deionised 

water and PBS is presented in Figure 4.30 (a & b) respectively. It was observed that the 

samples immersed in deionised water showed more weight loss than PBS samples.  
 

Table 4.19 Weight loss measurement in % ± SD for samples immersed in deionised 

water  

Samples  Day 1 Day 7 Day 14 Day 21 Day 40 Day 90 

PU 0 ± 0.0002 
-0.22 ± 

0.0003 

-0.74 ± 

0.0001 
0.7 ± 0.006 0.95 ± 0.004 1.95 ± 0.004 

PU/nHA5 
-0.03 ±  

0.0004 
0 ± 0.0002 0.49 ± 0.003 0.97 ± 0.006 1.08 ± 0.045 2.13 ± 0.063 

PU/nHA10 0 ± 0.0002 0.25 ± 0.008 0.38 ± 0.004 0.66 ± 0.004 0.93 ± 0.008 2.06 ± 0.087 

PU/nHA15 0 ± 0.0005 0.34 ± 0.004 0.39 ± 0.008 0.54 ± 0.009 0.61 ± 0.005 2.19 ± 0.067 

PU/nHA20 0 ± 0.0004 0.22 ± 0.008 0.26 ± 0.004 0.34 ± 0.008 0.82 ± 0.005 1.83 ± 0.089 

 

Table 4.20 Weight loss measurement in % ± SD for samples immersed in PBS  

Samples Day 1 Day 7 Day 14 Day 21 Day 40 Day 90 

PU -0.7 ± 0.006 -0.7 ± 0.006 0 ± 0.0004 0.96 ± 0.007 1.26 ± 0.054 1.84 ± 0.065 

PU/nHA5 
-0.05 ± 

0.001 

0.43 ± 

0.0037 

0.44 ± 

0.003 
0.89 ± 0.002 1.06 ± 0.008 1.63 ± 0.005 

PU/nHA10 
0.01 ± 

0.002 

0.37 ± 

0.057 

0.39 ± 

0.068 
0.69 ± 0.043 0.98 ± 0.072 1.15 ± 0.032 

PU/nHA15 
0.01 ± 

0.0006 

0.32 ± 

0.064 

0.32 ± 

0.071 
0.57 ± 0.035 0.98 ± 0.064 1.05 ± 0.066 

PU/nHA20 0 ± 0.0004 
0.22 ± 

0.005 

0.29 ± 

0.003 
0.37 ± 0.003 0.94 ± 0.008 1.33 ± 0.079 
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Figure 4.30 Weight loss measurement in deionised water (DW) and PBS 
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4.3.4.1.3- Fourier Transform Infrared Spectroscopy (FTIR) 
 

The comparative FTIR spectra of PU samples before and after treated with deionised 

water and PBS are given in Figure 4.31 and 4.32 respectively. The spectral results were 

based on control group in comparison to 14, 40 and 90 days. After hydrolysis the spectra 

showed no significant change at N—H (3320 cm-1), C—H (2939-2796 cm-1),  

C=O (1730-1700 cm-1) and C—O—C (1110-950 cm-1) group. However, the spectra 

showed the change of peak position at carbonyl region (1675 cm-1). The spectral pattern 

of PU/nHA5 before and after treatment with deionised water and PBS are given in 

Figure 4.33 and 4.34 respectively. The intensity of N—H peak was increased with the 

immersion time. Higher intensity was observed in the samples treated with deionised 

water than PBS. The slight spectral changes were observed in the carbonyl region, 

where the intensity of 1650 cm-1 peak was increased with immersion time. The peak at  

1150 cm-1 was observed before immersion in deionised water, which was not visible in 

treated sample. The amide group (1500-1200 cm-1) showed no change in that region. 

Figure 4.35 and 4.36 showed the spectral changes for PU/nHA10 composite immersed 

in deionised water and PBS respectively. With the immersion time, the broadness of 

N—H peak was observed in both media. FTIR spectrum of the sample immersed for  

40 days in deionised water showed slightly different pattern than others. The changes 

appeared at carbonyl (1650 cm-1) and ether region (1120 cm-1). This peak emerged in 

both regions, which was expected either due to hydrolysis of chain bond or due to hot 

pressing technique which was used during the preparation of samples. It is envisaged 

that this scission was due to oxidation degradation rather hydrolysis.  However, the 40 

days sample in PBS showed only emergence of peak at ether region and not at carbonyl 

region. It was interesting to find that the peak observed in FTIR spectrum of 40 days 

sample, whereas, no such peaks were presented in FTIR spectrum of 90 days sample. 

FTIR spectrum of PU/nHA15 sample showed no significant shifting and emergence of 

peaks in deionised water and PBS is given in Figure 4.37 and 4.38 respectively. Same 

pattern was observed for PU/nHA20 samples. Figure 4.39 showed the samples 

immersed in deionised water and Figure 4.40 presented the FTIR spectrum for PBS 

treatment. 
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Figure 4.31 Comparative FTIR spectra of PU immersed in deionised water analysed 

control PU (red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.32 Comparative FTIR spectra of PU immersed in PBS analysed control PU 

(red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.33 Comparative FTIR spectra of PU/nHA5 treated with deionised water 

analysed control PU/nHA5 (red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.34 Comparative FTIR spectra of PU/nHA5 treated with PBS analysed control 

PU/nHA5 (red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.35 Comparative FTIR spectra of PU/nHA10 treated with deionised water 

analysed control PU/nHA10 (red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.36 Comparative FTIR spectra of PU/nHA10 treated with PBS analysed control 

PU/nHA10 (red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.37 Comparative FTIR spectra of PU/nHA15 treated with deionised water 

analysed control PU/nHA15 (red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.38 Comparative FTIR spectra of PU/nHA15 treated with PBS analysed control 

PU/nHA15 (red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.39 Comparative FTIR spectra of PU/nHA20 treated with deionised water 

analysed control PU/nHA20 (red) with day 14 (green), day 40 (violet), and day 90 (blue) 
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Figure 4.40 Comparative FTIR spectra of PU/nHA20 treated with PBS analysed control 

PU/nHA20 (red) with day 14 (green), day 40 (violet), and day 90 (blue) 

 

4.3.4.1.4- Raman Spectroscopy  
 

Raman spectra of PU sample are given in Figure 4.41 [(a) deionised water and (b) PBS]. 

It was observed that there was no shifting of peaks that indicated that there was no chain 
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scission in polyurethane sample due to well-interlinked hard and soft segments. Raman 

spectra of PU/nHA5 samples treated with deionised water and PBS are given in Figure 

4.42 (a & b). The spectrum showed no changes in the sample treated with deionised 

water; however, the spectrum of 90 day PBS sample showed emergence of shoulder 

peaks in carbonyl (1716 cm-1) and amide region (1286 cm-1). Figure 4.43 (a & b) 

showed no spectral changes for PU/nHA10, however, PU/nHA15 and PU/nHA20 

showed significant changes at 90 days as shown in Figure 4.44 (a & b) and Figure 4.45 

(a & b) respectively. Raman spectrum of 90 day samples showed peaks emergence in 

amide (1250 cm-1) and ether region (1105 cm-1), whereas, no changes were observed up 

to 40 days. 

 
Figure 4.41 Comparative Raman spectra of PU treated with (a) deionised water and  

(b) PBS analysed control PU (red) with day 14 (green), day 40 (violet), and  

day 90 (blue) 
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Figure 4.42 Comparative Raman spectra of PU/nHA5 treated with (a) deionised water 

and (b) PBS analysed control PU/nHA5 (red) with day 14 (green), day 40 (violet), and 

day 90 (blue) 

 

 



Chapter 4                                                                                                               Results                         
 

    
 

188

 
 
 

 
Figure 4.43 Comparative Raman spectra of PU/nHA10 treated with (a) deionised water 

and (b) PBS analysed control PU/nHA10 (red) with day 14 (green), day 40 (violet), and 

day 90 (blue) 
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Figure 4.44 Comparative Raman spectra of PU/nHA15 treated with (a) deionised water 

and (b) PBS analysed control PU/nHA15 (red) with day 14 (green), day 40 (violet), and 

day 90 (blue) 
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Figure 4.45 Comparative Raman spectra of PU/nHA20 treated with (a) deionised water 

and (b) PBS analysed control PU/nHA20 (red) with day 14 (green), day 40 (violet), and 

day 90 (blue) 
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4.3.4.1.5- X-ray Diffraction (XRD) 
 
 
The XRD pattern of PU samples is given in Figure 4.46 and showed almost same pattern 

after treated with deionised water and PBS. The specimens immersed in PBS had low 

crystallinity as compared to deionised water. XRD patterns of PU/nHA5 (Figure 4.47) 

and PU/nHA10 (Figure 4.48) showed sudden decrease in crystallinity after  

1 day immersion; however, from day 1 to 90, the crystallinity remained same in both 

solutions. XRD pattern of PU/nHA15 (Figure 4.49) in deionised water presented gradual 

decrease in crystallinity, whereas, samples in PBS showed no change in the pattern. The 

crystallinity of PU/nHA20 (Figure 4.50) remained same up to 40 days; however, XRD 

pattern of 90 day sample showed decrease in crystallinity.  

 

 

 
Figure 4.46 Comparative XRD pattern of PU samples treated with (a) deionised water 

(b) PBS 
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Figure 4.47 Comparative XRD pattern of PU/nHA5 samples treated with (a) deionised 

water (b) PBS 
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Figure 4.48 Comparative XRD pattern of PU/nHA10 samples treated with (a) deionised 

water (b) PBS 
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Figure 4.49 Comparative XRD pattern of PU/nHA15 samples treated with (a) deionised 

water (b) PBS 
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Figure 4.50 Comparative XRD pattern of PU/nHA20 samples treated with (a) deionised 

water (b) PBS 
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4.3.4.1.6- Scanning Electron Microscopy (SEM) 
 
The comparative SEM images of PU samples in deionised water (DW) and PBS at 1, 14 

and 90 days are given in Figure 4.51. These images showed that PU film surfaces were 

relatively smooth and free of significant surface defects. SEM image of 90 day sample 

showed few pits with the nominal size of 2-3 µm on the surface. Figure 4.52 and 4.53 

presented the comparison of PU/nHA5, PU/nHA10 and PU/nHA15, PU/nHA20 

respectively. The surface of samples did not present any pits; however, cracks appeared 

on the surface.  

 

 

 
 

Figure 4.51 SEM images of PU samples treated with deionised water (DW) and PBS at 

predetermined time intervals 
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Figure 4.52 SEM images of PU/nHA5 and PU/nHA10 samples treated with deionised 

water (DW) and PBS at predetermined time intervals 
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Figure 4.53 SEM images of PU/nHA15 and PU/nHA20 samples treated with deionised 

water (DW) and PBS at predetermined time intervals 
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4.3.4.1.7- Conclusion 
 

The hydrophobicity of the samples increased with the increase in the concentration of 

nHA. FTIR and Raman spectroscopies confirmed the hydrolytic stability of PU/nHA 

composites. In addition, SEM images provided the result with little degradation on the 

surface. Hence, the incorporation of nHA in polyurethane increased the resistance to 

hydrolytic degradation.  

 

4.3.4.2- Bioactivity Analysis 
 

It is well established that HA forms bonelike apatite layer on its surface when treated 

with SBF (Kim et al., 2005; Chetty et al., 2008). Several methods to improve the 

bioactivity of the materials have been investigated including incorporation of bioceramic 

fillers or coating into PU (Ignatius et al., 1997; Causa et al., 2006; Qu et al., 2007). In 

this study, the in-vitro bioactivity results are based on morphological, structural and 

physical analysis; however, the FTIR (Section 3.8.3.1, Chapter 3) and Raman spectra 

(Section 3.8.3.2, Chapter 3) of apatite formation for all days and samples are not shown 

here; remaining figures are in appendix (Appendix 4). 
 

4.3.4.2.1-Scanning Electron Microscopy (SEM) 
 

The SEM images of PU and PU/nHA composite samples after immersion in m-SBF at 

1, 7, 14, 21, and 40 days are given in Figure 4.54 - 4.58. It was observed that in PU 

samples (Figure 4.54) there was no visible apatite formation on the surface of immersed 

samples up to 14 days. The EDS analysis also confirmed that only C and O peaks were 

presented, which were expected to be from PU or from carbon coating. However, the  

21 and 40 day samples showed apatite formation on the surface. SEM image of 21 days 

showed an apatite layer which did not cover the entire surface of the specimens. This 

aggregated apatite consisted of small irregular shaped particles with a size of about  

0.5-1 µm. The elemental analysis showed Ca-rich apatite with a molar Ca/P ratio of 2.1. 

SEM image of 40 day sample showed thicker apatite layer. The apatite layer was dense, 

continuous and covered almost the whole surface of the specimen. Morphological 
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studies of the PU/nHA composite surfaces immersed for 40 days in m-SBF presented an 

apatite (calcium phosphate) layer on the surface of the composites. PU/nHA5 (Figure 

4.55), PU/nHA10 (Figure 4.56), PU/nHA15 (Figure 4.57), and PU/nHA20 (Figure 4.58) 

composite samples showed that the apatite layer was not prominent at 1 day; however, it 

was observed that with the increase in immersion time the apatite globules packed 

tightly with each other.  Initially the apatite particles were scattered on the surface, but 

at 14 days’ incubation, the sample surface developed a dune-like apatite layer and this 

structure changed the original morphology of the samples completely. SEM images of 

21 days immersion showed the dune-like layer evolved into more smooth hillocks, with 

a subtle net-like texture consisting of short micro-rods. The layer growing on the surface 

coating was quite dense and homogeneous. These newly developed calcium phosphate 

layer showed the same morphology as the amorphous coatings, in addition EDS analysis 

showed the presence of Na, Mg with Ca and P ions.  

 

 
Figure 4.54 SEM images of PU with magnification values at (a) 1 x800, (b) 7 x800,  

(c) 14 x800, (d) 21 x1500, and (e) 40 days x2000 
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Figure 4.55 SEM images of PU/nHA5 with magnification values at (a) 1 x800,  

(b) 7 x800, (c) 14 x800, (d) 21 x2000, and (e) 40 days x3000 

 
Figure 4.56 SEM images of PU/nHA10 with magnification values at (a) 1 x800,  

(b) 7 x800, (c) 14 x800, (d) 21 x1500, and (e) 40 days x3000 
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Figure 4.57 SEM images of PU/nHA15 with magnification values at (a) 1 x800,  

(b) 7 x800, (c) 14 x800, (d) 21 x1500, and (e) 40 days x2000 

 
Figure 4.58 SEM images of PU/nHA20 with magnification values at (a) 1 x800,  

(b) 7 x800, (c) 14 x800, (d) 21 x1500, and (e) 40 days x2000 
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4.3.4.2.2- Fourier Transform Infrared Spectroscopy (FTIR) 
   
The comparative FTIR spectra of PU at 1, 7, 21, and 40 days immersion are given in 

Figure 4.59 (a-d). In PU spectra the significant shifting and emerging of new peaks were 

not observed up to 21 days; however, at 40 days broadness and emergence of peaks 

were observed at 3320 cm-1 (N—H) and 1010 cm-1 (C—O—C) respectively. PU/nHA5 

composite (Figure 4.60) showed the same pattern that with the increase in immersion 

time, there was an emergence and shifting of peaks. The shifting of peaks were also 

observed at 603 and 562 cm-1 due to presence of bending peaks of phosphate. However, 

PU/nHA10 (Figure 4.61) showed that with the increase in concentration of nHA in PU 

the emergence of peaks became more significant. The shoulder peaks appeared at 1030 

and 532 cm-1. These peaks showed the presence of apatite on the surface and attributed 

to stretch and bending peaks of phosphate (Rehman and Bonfield, 1997). PU/nHA15 

and PU/nHA20 composites (Figure 4.62-4.63) spectra showed different pattern and 

changes appeared at 7 days spectrum. The presence of apatite layer changed the 

characteristic pattern of peaks at 1400-1200 cm-1, 1100-900 cm-1 and 600-500 cm-1 

suggested the apatite layer presented on the surface of samples and changed the 

structural properties of the material. 

  
Figure 4.59 FTIR spectrum of PU after immersion in m-SBF at (a) 1, (b) 7, (c) 21,  

(d) 40 days 
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Figure 4.60 FTIR spectrum of PU/nHA5 after immersion in m-SBF at (a) 1, (b) 7, 

 (c) 21, (d) 40 days 

 

 

 
 

Figure 4.61 FTIR spectrum of PU/nHA10 after immersion in m-SBF at (a) 1, (b) 7,  

(c) 21, (d) 40 days 
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Figure 4.62 FTIR spectrum of PU/nHA15 after immersion in m-SBF at (a) 1, (b) 7,  

(c) 21, (d) 40 days 

 

 
Figure 4.63 FTIR spectrum of PU/nHA20 after immersion in m-SBF at (a) 1, (b) 7,  

(c) 21, (d) 40 days 
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4.3.4.2.3- Raman Spectroscopy 
 

The comparative Raman spectra of PU (Figure 4.64) and PU/nHA composites (Figure 

4.65-4.68) presented the precise picture and the characteristic peaks after immersion. In 

PU samples the samples at 1 and 7 days showed almost the same pattern, whereas, at  

21 days slight emergence of shoulders were observed at 960 cm-1 which was attributed 

the presence of v1 phosphate on the surface of sample. Whereas, Raman spectrum of  

40 days showed that the peak at 960 cm-1 became prominent and a new peak emerged at 

1000 cm-1 attributed to v3 of phosphate (Koutsopoulos, 2002). The peak at 1500 cm-1 

attributed to carbonate was also appeared at 21 days and became more significant at  

40 days. Raman spectra of PU/nHA composites presented the changes in the 

characteristic peaks with time. The intensity of peak at 960 cm-1 increased with the 

increase in time and it was attributed to phosphate. The spectrum of 40 days showed the 

significant changes not only in phosphate region (960 cm-1) but also in amide region 

(1500-1200 cm-1). The presence of carbonate in the apatite layer changed the structure 

of the spectrum and shifting of peaks and emergence of shoulders confirmed that the 

apatite layer formed on the surface of samples. The spectrum of PU/nHA15 and 

PU/nHA20 showed significant change and the peak at 960 cm-1 appeared with high 

intensity. The 40 day spectrum of PU/nHA20 presented the high intense peak of 

phosphate and the shifting of adjacent amide and ether peaks. 

 
Figure 4.64 Raman spectrum of PU after immersion in m-SBF at (a) 1, (b) 7,  

(c) 21, (d) 40 days 
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Figure 4.65 Raman spectrum of PU/nHA5 after immersion in m-SBF at (a) 1, (b) 7,  

(c) 21, (d) 40 days 

 

 
Figure 4.66 Raman spectrum of PU/nHA10 after immersion in m-SBF at (a) 1, (b) 7,  

(c) 21, (d) 40 days 
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Figure 4.67 Raman spectrum of PU/nHA15 after immersion in m-SBF at (a) 1, (b) 7,  

(c) 21, (d) 40 days 

 

 
Figure 4.68 Raman spectrum of PU/nHA20 after immersion in m-SBF at (a) 1, (b) 7,  

(c) 21, (d) 40 days 
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4.3.4.2.4- X-ray Diffraction (XRD) 
 

The XRD pattern of the PU is given in Figure 4.69. The comparative XRD pattern of  

1 and 40 days showed a broad band at 10-25º and a sharp peak at 29º. It was observed 

that XRD pattern of PU did not show presence of any band assigned to apatite. The 

comparative XRD patterns of the PU/nHA5 – PU/nHA20 are given in Figure 4.70 - 

4.73. In all cases, a broadening and intensity decreased with the immersion time; 

however, the higher concentration of nHA showed variation in the sharpness of the 

peaks at 40 days. The XRD patterns showed the diffraction peaks (210, 112, and 300) 

that confirmed the presence of apatite on the surface of samples. It was observed that 

samples with higher concentration of nHA showed more apatite peaks at 39.89º (310) 

and 47º (222).  However, it was difficult to estimate the exact presence of apatite or 

phase composition of the calcium phosphates from this technique.   

 

 
 

Figure 4.69 Comparative XRD pattern of PU at 1 and 40 days 



Chapter 4                                                                                                               Results                         
 

    
 

210

 
 
 
 
 
 
 
 

 
 

Figure 4.70 Comparative XRD pattern of PU/nHA5 at 1 and 40 days 
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Figure 4.71 Comparative XRD pattern of PU/nHA10 at 1 and 40 days 
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Figure 4.72 Comparative XRD pattern of PU/nHA15 at 1 and 40 days 
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Figure 4.73 Comparative XRD pattern of PU/nHA20 at 1 and 40 days 
 
 
 

 

 
 



Chapter 4                                                                                                               Results                         
 

    
 

214

4.3.4.3- Bioadhesion Analysis 
 

The adequate adhesion at interface is crucial to the success of restorative materials to 

reinforce tooth structure and provide a marginal seal that prevents leakage  

(Guzman-Ruiz et al., 2001). Poor marginal adaptation and subsequent loss of retention 

of restoration are frequent clinical findings throughout the dentine bonded interface that 

occurs rapidly (Breschi et al., 2008).  
 

The current in-vitro bioadhesion study provides the results obtained using push-out test 

(Section 3.8.6.3.3, Chapter 3) and the surface analysis was done using SEM with EDS 

(Section 3.8.6.3.4, Chapter 3). 

 

4.3.4.3.1- Push-Out Test 
  
The mean push-out bond strength values for both groups i.e. deionised water and 

artificial saliva are given in Figure 4.74. The each value with standard deviations of the 

samples immersed in deionised water and artificial saliva are tabulated in Table 4.21 and 

4.22 respectively. The following features were observed: 
 

1. The bond strength for GC Fuji IX and Filtek Supreme was remained constant and 

the difference was not significant (p = 0.52) with immersion time 

2. The bond strength for PU/nHA composites showed little increase from 7 to 21 days 

but there was an observable increase in 40 and 90 days. Comparing the values 

between 7 and 90 days, all samples showed significant increase (p≤ 0.05) for all 

concentrations of nHA in both media 

3. There was a trend for higher concentration of nano-hydroxyapatite to have higher 

bond strength e.g. in deionised water the bond strength for PU/nHA10  

(0.72 ± 0.15 MPa) was lower than that for PU/nHA20 (0.8 ± 0.25 MPa), however 

the difference was not significant (p = 0.46), whereas, in artificial saliva PU/nHA10 

(0.80 ± 0.15 MPa)  was slightly lower than PU/nHA20 (0.89 ± 0.22 MPa) with no 

significant difference (p = 0.49) 
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Table 4.21 Push-out bond strength values (MPa) and standard deviations for deionised 

water where n = 5 

Samples Day 7 Day 21 Day 40 Day 90 

GC Fuji IX 7.0 ± 2.1 7.1±1.6 6.8 ± 2.0 6.6 ±1.7 

Filtek Supreme  28.0 ± 1.9 28.0 ± 2.4  28.3 ± 1.7 28.7 ±2.2 

PU/nHA10 0.45 ± 0.09 0.49 ± 0.09 0.56 ± 0.11 0.72 ± 0.15 

PU/nHA15 0.47 ± 0.11 0.49 ± 0.16 0.56 ± 0.18 0.76 ± 0.14 

PU/nHA20 0.48 ± 0.15 0.51 ± 0.18 0.59 ± 0.2 0.8 ± 0.25 

 

 

Table 4.22 Push-out bond strength values (MPa) and standard deviations for artificial 

saliva where n = 5 

Samples  Day 7 Day 21 Day 40 Day 90 

GC Fuji IX 7.2 ± 1.6 7.4 ± 1.4 6.9 ± 1.3  6.8±1.8 

Filtek Supreme  28.1 ± 2.4 28.2 ± 2.8  29.4 ± 2.2 29.6 ± 3.2` 

PU/nHA10 0.46 ± 0.085 0.51 ± 0.095 0.66 ± 0.1 0.8 ± 0.15 

PU/nHA15 0.48 ± 0.11 0.52 ± 0. 16 0.69 ± 0.18 0.86 ± 0.14 

PU/nHA20 0.49 ± 0.12 0.54 ± 0.15 0.77 ± 0.18 0.89 ± 0.22 
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Figure 4.74 Push-out test of the samples immersed in deionised water (DW) and 

artificial saliva (AS) 
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4.3.4.3.2- Scanning Electron Microscopy (SEM) / EDS 
 

SEM images of GC Fuji IX after 40 and 90 days’ immersion in deionised water and 

artificial saliva are shown in Figure 4.75 (a & b) respectively. It was observed that with 

the increase in immersion time the adhesion of the material to tooth structure increased. 

The EDS analysis showed the presence of Ca and P peaks at 90 day sample in artificial 

saliva.  

 

The adhesion pattern for Filtek Supreme is presented in Figure 4.76 and it was observed 

that there was a very minimal attachment of the composite to tooth structure in both 

media at 90 days. However, the tooth structure was slightly ruptured from the surface 

suggesting the micro-mechanical attachment of the composite to the tooth. The 

morphological image of PU and dentine at 40 days immersion in deionised water and 

artificial saliva is given in Figure 4.77. The PU samples immersed in deionised water 

did not show adherence to the tooth structure, whereas, a little adherence was observed 

with the samples immersed in artificial saliva. SEM image of 90 days’ immersion 

showed more adherence as compare to 40 day samples.  

 

SEM images of PU/nHA composite adhesion to tooth structure are given in  

Figure 4.78 – 4.80. It was observed that with the increase in concentration of nHA in PU 

there was more adherences. In addition to SEM, EDS analysis confirmed the presence of 

Ca and P on the surface layer of composite materials indicating the formation of apatite 

layer on the surface of composite. The cross section of PU/nHA20 and its attachment 

with dentine is given in Figure 4.85. 
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Figure 4.75 SEM image with EDS analysis of GC Fuji IX adhesion with dentine with 

magnification values at 40 and 90 days in deionised water and artificial saliva 

 

 

 

 



Chapter 4                                                                                                               Results                         
 

    
 

219

 

 

   

   

       
Figure 4.76 SEM image with EDS analysis of Filtek Supreme adhesion with dentine 

with magnification values at 40 and 90 days in deionised water (DW) and artificial 

saliva (AS) 
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Figure 4.77 SEM images of PU adhesion with dentine with magnification values at 40 

and 90 days in media: deionised water (DW) and artificial saliva (AS) 
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Figure 4.78 SEM images of PU/nHA10 adhesion with dentine with magnification values 

at 40 and 90 days in media: deionised water (DW) and artificial saliva (AS) 
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Figure 4.79 SEM images of PU/nHA15 adhesion with dentine with magnification values 

at 40 and 90 days in media: deionised water (DW) and artificial saliva (AS) 
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Figure 4.80 SEM images of PU/nHA20 adhesion with dentine with magnification values 

at 40 and 90 days in media: deionised water (DW) and artificial saliva (AS) 
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4.3.4.4- Biocompatibility 
 

4.3.4.4.1- Cell Culturing 
 

In-vitro studies showed that both materials i.e. PU and PU/nHA20 were non-cytotoxic to 

osteoblast-like cells in culture. Figure 4.81 presents cell attachment and proliferation 

and values are tabulated in Table 4.23. The experimental materials showed continuous 

proliferation of the cells and the viable cells presented in the culture medium increased 

with time of incubation and higher for the PU than PU/nHA20, whereas, control group 

(plastic plate) showed continuous growth up to 5 days and then the values decreased. 

 

 
Figure 4.81 Cell culturing values of PU, PU/nHA20 and control group 

 
 

Table 4.23 Cell culturing values for experimental materials and control group 

Days PU PU/nHA20 Control 

Day 3 0.33 ±0.01 0.32 ±0.01 0.31 ±0.00 

Day 5 0.36 ±0.01 0.3 ±0.01 0.45 ±0.03 

Day 7 0.43 ±0.01 0.40 ±0.01 0.38 ±0.02 
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4.3.4.4.2- Bacterial Adhesion 
 

In this preliminary study the adhesion of the Streptococcus sanguinis (S. sanguinis) is 

given in Figure 4.82. It was observed that more bacteria were adherent to PU than 

PU/nHA20 composite. The values for PU and PU/nHA20 composite were 33.90 ±16.15 

and 0.99 ±0.83 cfu/disc respectively.  
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Figure 4.82 Bacterial adhesion values for PU and PU/nHA20 

 
 
 

4.4- Synthesis of Electrospun Nano-fibres 
 
 
SEM images of electrospun mats of PU, physically mixed PU/nHA and chemically 

mixed PU/nHA is given in Figure 4.83 – 4.86. Unlike conventional fibres the 

morphological appearance of fibres showed quite uniform size. The deviation in size 

was from nano to sub-micron. SEM images of PU fibres showed the beaded structure, 

whereas chemically mixed PU/nHA composite were smooth and no beaded nano-fibres. 

However, the images of physically mixed PU/nHA showed some loose nHA particles on 

the surface of fibres.  
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Figure 4.83 SEM images of electrospun polyurethane nano-fibres 
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Figure 4.84 SEM images of electrospun PU/nHA PM composite nano-fibres 
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Figure 4.85 SEM images of electrospun PU/nHA CM composite nano-fibres 
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Figure 4.86 SEM images and EDS spectrum and map of electrospun PU/nHA CM 

composite nano-fibres 
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Chapter 5 Discussion 
 

Introduction 
 
This chapter explains the detailed description of results described in Chapter 4. All the 

synthesised materials processed in this study, including nano-hydroxyapatite, 

polyurethane, and polyurethane/nano-hydroxyapatite composites, were fully 

characterised by using Fourier Transform Infrared (FTIR) and Raman Spectroscopies. 

However, one of the problems associated with Infrared and Raman methods is the 

identification of bands, especially in complex and synthetic apatites. The vibrational 

activity is different in Raman and Infrared, some modes are active for both, but others 

are active either for Raman or Infrared. The band positions for these characterisations 

are influenced by both composition and structure (Penel et al., 1998). Therefore, it is 

advantageous to analyse materials, both with the Raman and FTIR spectroscopic 

techniques, to achieve a complete finger printing of the chemical structural properties. 

NMR spectra provide useful information for the identification of their chemical 

composition and help in the conformational analysis of the chemical structure.  
 

Physical characterisation provides surface and morphological properties of the sample. 

In this study, surface properties were analysed by using XRD with low analytical limits; 

however it analysed the purity (single or multiphasic) and crystallinity of required 

samples (Hench and Wilson, 1999). Nano-hydroxyapatite phase, ratios of other phases, 

and the lattice parameters were analysed with this technique. In order to clarify the 

morphology and structure, the present study emphasised the electron microscopic 

analyses i.e. transmission electron microscope (TEM) and scanning electron microscopy 

(SEM). In particular, bright field images and selected area electron diffraction patterns 

revealed the nano-structure of hydroxyapatite, surface roughness, changes and adhesion 

with adjacent structures. 
 

The thermal analysis (TGA and DSC) techniques provide information about the 

structural transformation in polyurethane and polyurethane/nano-hydroxyapatite 
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composites. This transformation included glass transitions, melting, and crystallisation 

processes.  
 

5.1- Synthesis of Nano-Hydroxyapatite 
 

The sol-gel technique provides a homogenous system at a molecular level and helps in 

obtaining a good initial stage for synthesis of different materials. The method of 

synthesis used in this study has produced nano-apatite particles. The resulting amount of 

gel was attributed to the fact that the high alkalinity of the systems favoured the 

formation of calcium phosphates through reactions between the Ca and P precursors. 

The experimental powders contained non-stoichiometric apatite phase although the ratio 

(1.66) was close to stoichiometric ratio (1.67) (Elliott, 1994).  
 

During the synthesis of nHA, control over the nano-structure was a big challenge. The 

biological process gave some clues to achieve controlled nucleation and crystal growth 

process mediated by macromolecule control and cell organisation. In this study, the pH 

value was maintained at 10.5 because the pH has influence on the dissociation of H3PO4 

reagents and subsequent properties. At low pH values, the phosphate ions i.e. H2PO4 and 

HPO4 are present in large number and are incorporated into lattice that results in HA 

crystals with calcium vacancies and which are unstable during the heat treatment. High 

pH is preferable for the stoichiometric structure and produce thermally stable HA. The 

heat treatment (sintered) process is an essential step in the apatite production; results in 

obtaining material with different phase composition and properties. The calcium 

deficient and non-sintered HA materials are less thermally stable than sintered HA and 

start to decompose at 650°C (Slosarczyk et al., 1996).  
 

The chemical composition and physical characteristics of the apatite powder with 

particle size and surface area were analysed. The synthesis of Ca-deficient nHA by 

using sol-gel was a challenging experiment. In all preparations nHA was identified as 

the only crystalline phase in the precipitated powders by the analytical techniques. The 

resulting nano-apatites were characterised using FTIR, Raman spectroscopy, XRD, 

electron microscopy (SEM, TEM) and BET. 
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5.1.1- Fourier Transform Infrared Spectroscopy (FTIR) 
 

FTIR spectral data obtained in this study, as described in Section 4.1.1, Chapter 4, are in 

agreement with the findings of the previous researchers (Rehman and Bonfield, 1997; 

Koutsopoulos, 2002). It has been reported that hydroxyl (OH) stretch and bending peaks 

were present at 3569 and 624 cm-1, whereas Koutsopoulos (2002) reported at 3572 and 

631 cm-1 respectively. The weak hydroxyl (OH) stretches were observed in the FTIR 

spectra for as-prepared powder at 3571 cm-1.  In contrast, the hydroxyl peaks in the 

FTIR of heat treated powders were considerably stronger and sharper.  The reduced 

intensity of the hydroxyl peaks for the fresh powders could be due to water in the 

hydroxyapatite particles (Isobe et al., 2002).   In this study, hydroxyl (OH) stretch was 

stronger and sharper and observed at 3571 cm-1 (Figure 5.1). Generally, the peak 

possesses low intensity and a broad band of water in freshly prepared powder is well 

developed but after heat treatment, the peak becomes relatively more defined and water 

band diminishes. 

 
Figure 5.1 Comparative FTIR spectra of as-prepared (red) and heat treated (green) 

 nano-hydroxyapatite in the range 3600 – 3000 cm-1 showing hydroxyl peak 

 

Isobe et al. (2002) stated that “the band that disappeared after heating is assigned to the 

stretching mode of the hydrogen bonded OH and/or water, and the remaining band, after 

3571 cm-1 
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heating, is assigned to that of the structural OH of hydroxyapatite”. It has been 

suggested that upon heating, the crystals became more closely packed and aligned 

resulting in a more even distribution of hydroxyl groups on the surface of HA (Phillips, 

2004).  
 

FTIR spectrum of carbonate peaks (Figure 5.2) showed the carbonate ions occupying 

two different sites in apatites. However, the heat treated powders had weak carbonate 

bands. The peaks at 1650-1300 cm-1 were due to v3 vibrational mode and the peak at  

873 cm-1 was due to v2 vibrational mode carbonate ion. Peaks at 1650-1300 cm-1 were 

assigned the surface carbonate ions rather than the ions in the lattice of phosphate. The 

maturation and formation of apatite crystals caused the split of peaks at 1650 and  

1470 cm-1 (Elliot et al., 1985; Rehman and Bonfield, 1997). 

 

 
Figure 5.2 Comparative FTIR spectra of as-prepared (red) and heat treated (green)  

nano-hydroxyapatite in the range 1800 – 1300 cm-1 showing carbonate peaks 
 

It has been established that hydroxyapatite structure could substitute carbonate ions at 

two different sites: A, where they substituted for OH- ions and B, where they replaced 

PO4
3- ions. The bands at 1470-1420 cm-1 (v3 CO3) and at 873 cm-1 (v2 CO3) were the 

1420 - 1470 cm-1 

1650 cm-1

1550 cm-1
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characteristic bands of carbonate ion in B-site. In addition, the peak at 1550 cm-1 

attributed to the carbonate ion in A-site (Krajewski et al., 2005). In FTIR for the  

as-prepared powders, a weak band due to phosphate stretching vibration (ν3) was in the 

range 1100-1030 and 946 cm-1. The phosphate peaks (Figure 5.3) in heat treated  

nano-hydroxyapatite were observed at 1040, 946, 603 and 569 cm-1. The peak at  

1040 cm-1 was triply degenerated vibration v3, and 946 cm-1 was the non-degenerated 

symmetric stretching mode v1, of P—O bond of the phosphate group and the peak at 603 

and 569 cm-1 assigned to a triply degenerated bending mode v4, of the O—P—O bond.  

Arends et al. (1987) reported phosphate v4 bending peak at 633 cm-1; however, Rahman 

and Bonfield (1997) described this peak as liberation mode of hydroxyl group. The 

phosphate v2 band was observed in 470-490 cm-1 range. These were very weak bands in  

as-prepared, which were more intense in the heat treated powders. An increase in the 

number and intensity of observed phosphate peaks suggested an alignment of the  

nano-hydroxyapatite structure due to an increased crystallinity.   

 

 
Figure 5.3 Comparative FTIR spectra of as-prepared (red) and heat treated (green) 

 nano-hydroxyapatite in the range 1200 – 450 cm-1 showing phosphate peaks 
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It has been reported that band in the region 2280-1900 cm-1 and at 2380-1800 cm-1 were 

assigned to tribasic orthophosphate (PO4
3-) and dibasic orthophosphate (PO4

-2) 

respectively (Chapman and Thirlwell, 1964; Arends et al., 1987; Gibson and Bonfield, 

2002). However, the peaks (Figure 5.4) at 2000 and 2070 cm-1 were considered to be the 

v3 cyananmide and cyanate (Dowker and Elliot, 1983). These peaks attributed to the 

addition of the ammonia during the synthesis process. Ammonia was used to increase 

the pH of the reaction mixture to raise the mixture to the desired pH 10.5.    

 

 
Figure 5.4 Comparative FTIR spectra of as-prepared (red) and heat treated (green) 

 nano-hydroxyapatite in the range 2400 – 190 cm-1 showing cyanate/cyanamide peaks 
 

5.1.2- Raman Spectroscopy 
 

The results of Raman spectroscopy of nano-hydroxyapatite are described in Section 

4.1.2, Chapter 4. The Raman peaks observed in this study were almost similar to the 

results reported by different researchers previously (Koutsopoulos, 2002;  

Antonakos et al., 2007). The v3 and v1 stretching phosphate peaks (Figure 5.5) appeared 

at 1077, 1047 cm-1 and 961 cm-1 respectively. The v4 and v2 phosphate bending peaks 

were observed at 586 and 432 cm-1. All bands have been assigned to internal vibrational 

modes of the phosphate groups (Koutsopoulos, 2002; Rapacz-Kmita et al., 2005).  After 

2070 cm-1     2000 cm-1 
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heat treatment the peaks became intense. This splitting of the v4 vibrational band 

indicated the low site symmetry of molecules, as two and three observed bands 

confirmed the presence of more than one distinction site for the phosphate group 

(Rehman and Bonfield, 1997). 

 

 
Figure 5.5 Comparative Raman spectra of as-prepared (red) and heat treated (green) 

 nano-hydroxyapatite in the range 1200 – 400 cm-1 showing phosphate peaks 

 

In comparison to the synthetic HA, the dentine or enamel was also characterised by 

Raman spectroscopy. Raman spectra of the enamel showed same characteristic peaks as 

observed in this study for synthetic nHA. The sharp and intense band, v1, related to the 
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symmetrical stretching of tetrahedron of oxygen atoms surrounding the phosphorous 

atom (Pezzotti, 2005). 

 

5.1.3- X-ray Diffraction (XRD) 
 

The comparative XRD patterns are given in Section 4.1.3, Chapter 4 that showed 

significant difference in the crystallinity of powder before and after heat treatment. 

Before heat treatment the powder showed amorphous structure, whereas the heated 

sample showed characteristic crystalline HA peak. The peaks became intense and 

narrower, although the increase in intensity was not linear.  The diffraction patterns 

showed sharp clear reflections corresponded to HA, which confirmed the phase purity 

and high crystallinity degree of the materials produced.   
 

XRD pattern of nHA heat treated at 700°C (various experiments were conducted in this 

study and little variations were expected due to characterisation techniques of XRD 

machines) indicated an increase in crystalline size of the heat treated HA. The heat 

treatment played an important role in formation of pure crystalline HA. In this study, the 

powder sample was heat treated at 700°C and nHA lines became distinct and the width 

of lines became narrower, which suggested an increase in the crystalline degree. XRD 

patterns clearly showed the amorphous to crystalline HA without the formation of major 

secondary phases. XRD peak broadening with the heat treatment could measure crystal 

size in a direction perpendicular to the crystallographic plane. With the increase in 

temperature main difference was observed with the presence of tricalcium phosphate  

(β-TCP) and calcium oxide (CaO).  
 

In the preliminary study resulting powders were heat treated from 40 – 900°C and clear 

phase changes of apatite powder observed from amorphous to crystalline structure. The 

XRD pattern of samples aged at 40°C showed NH4NO3 phases, which were expected 

due to use of NH4OH to control pH throughout the experiment, however; it was found 

that with the increase in temperature during heat treatment, NH4NO3 peaks disappeared 

and were not observed in XRD pattern of samples heat treated at 400°C, 700°C and 

900°C. The heat treatment was conducted at high temperature, which led to 
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decomposition and eventually formed β-TCP and CaO. At 900°C, the peaks at 31.13° 

and 37.92° attributed to β-TCP and CaO respectively. These peaks were in relation with 

previous study by Feng et al. (2005).  

 

5.1.4- Morphology 
 

SEM and TEM images are described in section 4.1.4, Chapter 4. The typical 

microscopic view of nHA structures showed fine distributed nHA crystalline material. 

The variation in size of the particles was due to high temperature during synthesis, low 

temperature during ageing time and then increase in temperature during heat treatment. 

The parameters that influence the morphology, stoichiometry, and level of crystallinity 

are temperatures, concentrations of the reagents, addition rate, stirring, maturation, and 

the presence of environmental impurities (Siddharthan et al., 2006). The effect of these 

parameters forms needle-like crystallite hydroxyapatite (Kumar et al., 2001); however, 

these variations in shape have been reported in conventional synthesis with an increase 

in temperature during heat treatment (Liu et al, 2001; Siddharthan et al., 2006). The 

size, morphology and ordering of nHA powders have been affected by temperature and 

maturation conditions. These factors subsequently increase the particle size and 

crystallinity (Meyer and Fowler, 1982; Lazic et al., 2001). Macromolecules such as 

stearic acid, monosaccharide and related molecules can also exert significant control on 

the morphology (Yan et al., 2001). However, these macromolecules are all liner 

structure molecules, but the disadvantage is that liner molecules are not suitable for 

constructing ordered structures of the nano-particles, which is due to the distribution of 

molecular weight (number of repeating units) (Zhang et al., 2005).  

 

5.1.5- BET Analysis 
 

BET surface area results are described in Section 4.1.5, Chapter 4 that supported the 

SEM and TEM data, suggesting that the as-prepared nano-hydroxyapatite sol-gel 

method produced a fine powder with a surface area 110 m2/g.  Heat treatment at 700oC 

has the effect of reducing surface area of particles to 37 m2/g. Patel et al. (2001) reports 
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that heat treatment has the effect of reducing surface area of HA particles as the 

temperature increases, where a surface area of 70-80 m2/g at 400°C reduce to  

5-7 m2/g at 1000°C.  Surface area can be used to calculate the average grain size of a 

powder as described by Kong et al. (2002). An empirical equation using the surface area 

and density, and assuming spherical particles, is shown below: 

 

(eq. 5.1) 

Where  t is the average grain size in micro metres (µm), ρ is the density (g/m3) and SA is 

the surface area (m2/g). 
 

Using the surface area results obtained for nano-hydroxyapatite as described in  

Section 4.1.5, Chapter 4, and assuming the theoretical density of hydroxyapatite  

(3.16 g/cm3 ICDD 9-432), values could be calculated for the average grain size of the 

powders produced in this study and are given in Table 5.1. The calculated particle sizes 

of as-prepared (fresh) and heat treated nano-hydroxyapatite were in line with the 

experimental data. The obtained average size of particles was 20-150 nm in length and 

15 nm in width. From this calculation it is suggested that the maximum number of heat 

treated particles was of approximately 51 nm in size and proved that heat treatment had 

the effect of increasing the particle size of particles by nearly three times. 
 

Table 5.1 Table showing calculated particle sizes for nano-hydroxyapatite 
 

Surface Area, m2/g                          Particle Size, nm 

As-prepared Heat Treated As-prepared Heat Treated 
110 37 17.2 51 

 

5.1.6- Significance 
 

The structural characteristics of nHA were affected by the synthetic precursors, pH 

values, reaction temperature, and post-treatment processes including ageing and heat 

treatment (Lacefield, 1998). The ageing and maturation phase affects the crystal size and 

the crystals becomes thicker and aggregation more distinct (Lazic et al., 2001). The 

SAt .
6
ρ=
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molar ratio of Ca/P (1.66) reflected the presence of phosphate group and a presence of 

carbonate were observed at a low level. The higher surface area of nano-particles has 

significant number of OH groups on the surface of hydroxyapatite particles (Yesinovski 

and Eckert, 1987; Liu et al., 1998). The presence of OH group on the surface has a 

distinct feature that it shows reactivity towards the other group such as isocyanate to 

create the urethane linkage. 

 

 In this study, carbonate group was present in the resulting hydroxyapatite powder. 

Bone, enamel and dentine contain carbonated hydroxyapatite of different compositions 

with a few percentages of carbonate ions i.e. 2 to 8%. The synthetic hydroxyapatite has 

the ability of bond to bone, whereas, with the low content of carbonate the rate of 

osseointegration is relatively slow. It has been reported that the carbonate content can 

create an effect on phosphate bands. With increase in carbonate content, the v3 PO4 

mode becomes progressively less resolved and at the same time the v1 PO4 mode 

broadens (Leeuwenburgh et al., 2004). However, the FTIR spectrum in this study, 

showed intense PO4 peak, which attributed the presence of low number of carbonate 

present in the nano-hydroxyapatite.  

 

The nHA would be more interesting from a biological viewpoint because of its 

similarity to tooth structure. It offers possibility to enhance the rate of bonding 

formation and to have better mechanical properties due to its high surface area to 

volume ratio, superior chemical homogeneity and micro-structural uniformity  

(Zhu et al., 2006). It is suggested that the synthesis of nano-scale hydroxyapatite 

improved the clinical application (Cao et al., 2004). 

 

5.1.7- Conclusion 
 
The recent trend focused on overcoming the limitations of calcium phosphate group 

precisely hydroxyapatite, and improving their mechanical and biological properties by 

using nanotechnology. Nano-hydroxyapatite has significant properties due to its grain 

size, large surface area to volume ratio and fine structure almost similar to biological 
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apatite. These properties have large impact on interaction of nano-hydroxyapatite with 

polymer matrix and their monomers. In addition, it is able to bond with the living tissue 

by stimulating a specific biological response. This study showed that with sol-gel 

technique pure apatite could be produced. The presence of component groups were 

identified by using FTIR and Raman Spectroscopy and XRD proved the crystallinity of 

the powder. FTIR and Raman showed quail-quantitative results about the type of 

compounds, their structure and crystallinity. The identifications of groups such as OH, 

PO4 and CO3 are possible with these techniques. XRD gave information on the types of 

compounds and the possible presence of impurities at high temperature. By using SEM, 

TEM and BET, it was observed that the resulting powder was nano-size with high 

surface area. Hence, it is expected that the nano-hydroxyapatite powder were proved to 

be a potential osteoconductive material and show its tendency toward the monomer 

matrix. Recently much attention has been focused on composites based on nano-

hydroxyapatite and polymers.  

 

5.2- Synthesis of Polyurethane 
 
Several classes of reactions involving isocyanate groups are possible due to multiple 

structures. Reaction can occur across C=N bond in a variety of ways, including adduct 

formation, cyclo-addition, oligomerisation and insertion reaction. A primary reaction in 

the polymerisation of isocyanates is insertion reaction. In isocyanate group the reaction 

mechanism proceeds with a nucleophilic attack at carbon atom. The end product of this 

reaction is a urethane linkage (Rehman, 1996).  

 

The reaction of isocyanates with compounds containing –OH groups are capable of 

much wider application in polymer formation. The –NCO group can react generally 

with compounds containing active hydrogen atom. When isocyanate group reacts with 

alcohol, a urethane is formed, 

 
R—NCO    +    R’—OH      R—N—C—O—R’     (eq. 5.2) 
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The position and intensity of these vibrations are extremely sensitive to the strength and 

specificity of the hydrogen bonds formed.  

 

5.2.1- Fourier Transform Infrared Spectroscopy (FTIR) 
 

FTIR spectrum of polyether based polyurethane is given in (Figure 4.6), and described 

in Section 4.2.1.1, Chapter 4. FTIR spectroscopy was used to analyse the degree of hard 

and soft segment interaction in polyurethane samples. These two incompatible structures 

helped in the formation of phase-separated systems. This phase separation system of  

well-defined polyurethane consisted of the reaction product of hard and soft segments. 

In urethane hard domains, hydrogen bonding results from hydrogen atoms of N—H 

groups (proton donor) and C==O groups (proton acceptors). When hard and soft 

segments were mixed at the molecular level, the oxygen in soft segment backbone also 

acted as a proton acceptor in forming hydrogen bonds with N—H groups of hard 

segment urethane groups (Miller et al., 1985). The phase separation in polyurethanes 

can be analysed by measuring the intensity and position of hydrogen bonded N—H 

stretching vibration. The N—H absorption region (between 3500 and 3200 cm-1) 

indicated hydrogen bonding. The quantitative analysis of hydrogen bonds formed by 

using N—H stretching band was complex due to the significant band overlap which 

might have resulted from large differences in the inherent extinction coefficient as a 

function of hydrogen bond strength (Lee et al., 1988). In this study, free N—H 

stretching band near 3420 cm-1 was not observed. The bands at 3320 and 3295 cm-1 

(Figure 5.6) were assigned to N—H groups, hydrogen bonded to C==O groups and the 

ether oxygen (C—O—C) respectively. With the increase in number of N—H….C==O 

bonds the number of N—H….C—O—C (ether) hydrogen bonds should diminish. The 

increase of 3320 cm-1 peak was obvious, as phase separation proceeded; it grew from a 

weak shoulder into dominant peak that clearly indicated the formation of hydrogen bond 

(Lee and Hsu, 1989). The exact position of the N—H depends on the strength of 

hydrogen bond; however, the bond strength depends on local geometry, such as linearity 

of the involved bonds and the distance between groups (Lee et al., 1987). 
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Figure 5.6 FTIR spectrum of polyurethane showing N—H and C—H groups 

 

The C—H bands appeared at various positions due to presence of different CH2 groups 

in the polymer chain which were expected to come from chain extender (butane diol) 

and polyols. Peaks at 2941 and 2920 cm-1 were CH2 peaks of polyols and assigned as 

asymmetric and symmetric stretching respectively. The peak at 817 cm-1 was attributed 

to γ(C-H) from butane diol (West and Cooper, 1977; Grobe et al., 1987). 
 

The carbonyl absorption region was observed at 1780-1660 cm-1. Peaks due to bonded 

C==O stretching appeared at 1705 cm-1 and the free C==O stretching observed at 1730 

cm-1. Hydrogen bonding in the carbonyl stretching region was less complex than that in 

N—H stretching region due to the fact that carbonyl groups remained in a hard segment 

chain and bond to N—H group in the hard block (Rehman, 1992). In the carbonyl 

region, the peak due to hydrogen bonded C=O stretching appeared at 1705 cm-1 was 

more prominent than the free C=O stretching. The dominance of the bonded C=O peak 

indicated that a large fraction of the hard domains were hydrogen bonded. The bonded 

C=O peaks are generally broader for the low hard segment content polyurethane and this 

broadening was observed in all spectra and in representing spectrum (Figure 5.7).  
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Figure 5.7 FTIR spectrum of polyurethane showing mainly carbonyl, amide and ether 

groups 

The peak at 1599 cm-1 was assigned to v(C=C) in benzene ring and 1535 cm-1 was 

amide II δ(N-H) + v(C==N). A weak CH2 peak appeared at 1481 cm-1 and 1413 cm-1 

was attributed to strong v(C-C) in benzene ring. Peak at 1311 cm-1 was assigned to 

amide III δ(N-H) + v(C==N), β(C-H) peak and δ(N-H) + v(C==N) appeared at  

1222 cm-1. The region at 1111 cm-1 was v(CH2—O—CH2) of ether peak and 1017 cm-1 

was weak β(C—H) in benzene ring. 

 

5.2.2- Raman Spectroscopy 
 

Raman spectrum of polyether based polyurethane is given in (Figure 4.7), and described 

in Section 4.2.1.2, Chapter 4. The spectrum showed C—H group at 2920 and 2869 cm-1 

assigned to asymmetric and symmetric stretching peaks respectively.  Peaks at 1443 and 

1305 cm-1 were assigned δ(CH2) bending vibration and δ(CH) respectively. The 

spectroscopic region at 1800-1570 cm-1 (Figure 5.8) was assigned to carbonyl 

symmetric stretch vibration which consisted of three characteristic bands. Peak at 1700 

cm-1 was attributed as ordered hydrogen bond in hard phase and a shoulder peak was 

observed in this region. Peak at 1712 cm-1 corresponded to disordered hydrogen-bond 

and 1730 cm-1 attributed to free carbonyl group. The aromatic breathing mode and 
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symmetric stretched vibration (C==C) was observed at 1619 cm-1. Peak at 1528 cm-1 

assigned to v(aromatic, C==C),  urethane amide II: v(C—N) + δ(N—H) and similar to 

isocyanate asymmetric and symmetric stretching vibrations. In literature this band has 

been attributed to para (4.4’-isomer) di-substituted phenylene ring vibration in MDI. 

However, the other isocyanate peak at 2200 cm-1 was not visible suggesting the peak 

belonged to urethane amide II and unreacted isocyanate monomer was not present in the 

polymer. The unreacted monomers may cause unintended side effects such as toxic, 

irritation, or allergic reactions.  The in-phase combination of N—H in-plane bending 

and C—N stretching vibrations were predominantly observed at 1305 cm-1 and were 

assigned to urethane III band. The band corresponding to ether (C—O—C) stretch was 

observed at 1118 cm-1 and a weak peak at 1080 cm-1 was attributed to C(O)—O—C 

stretch of the hard segment (Stephenson et al., 1961; Ferry et al., 1996; Parnell et al., 

2003; Cai and Singh, 2004).   

 
Figure 5.8 Raman spectrum of polyurethane showing mainly bonded carbonyl, benzene, 

amide and ether groups 

5.2.3- 13C Nuclear Magnetic Resonance (13C NMR) 
 
13C Nuclear Magnetic Resonance (NMR) spectrum of polyether based polyurethane is 

given in (Figure 4.8), and described in Section 4.2.1.3, Chapter 4. High resolution  
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13C NMR spectra of polyurethane were obtained which provided useful information for 

the identification of their compositions. The monomeric and polymeric compounds used 

in this study produced highly characteristic patterns. 13C NMR study was conducted 

using THF and it has been reported that N—H proton signals were sensitive to the 

environment such as solvent, water, and temperature. Kricheldorf and Hull (1981) 

described the chemical shift of polyurethane and related materials in various solvents 

using 13C NMR. The C==O resonance signals of polyurethane were assigned at  

153.12 ppm. The other small peak at 154.39 ppm was assigned to urethane. The signals 

at 135.92-139.23 ppm were due to ipso carbons (C-1). There were five different primary 

peaks that could be assigned to aromatic carbons ranging from 118.94 to 139.23 ppm. 

The intensities of signals at 120-121 ppm were halves of signals at 118-119 ppm. 

It is expected that the signals at 120-121 ppm might be para carbons (C4) and the signals 

at 118-119 ppm were due to ortho carbon (C2) (Kaji et al., 1992).  However, peak 

appeared at 119 ppm might be assigned -CH2 as compared to data published by 

Bretimaier and Voelter (1987) and Levy et al. (1980).  It should be noted that the peak 

observed for the –CH2 was seen as a doublet because the carbon was spin-coupled to 

another group causing multiplicity (Chamberlain, 1974). The peak at 129 ppm was 

attributed to C—H (Levy et al., 1980). The aromatic carbons served as characteristic 

signals of anomalous linkages. The C2 signals were the easiest ones to detect and were 

isolated from main urethane signals. Their intensities were stronger because of attaching 

a proton and were duplicated by the symmetry. The methyleneoxy carbon attached to  

–CONH showed peaks around 65.01 ppm (Prasath et al., 2004), while the peak at  

64.76 ppm was assigned to soft-segment carbons adjacent to oxygen. The smaller peak 

at 41.23 ppm was attributed to the methylene carbon in the MDI hard segment and the 

methylene group peaks also appeared at 25.27- 28.09 ppm (Wang et al., 2003).  
 

5.2.4- X-ray Diffraction (XRD) 
 

XRD results of polyether based polyurethane is given in (Figure 4.9), and described in 

Section 4.2.2.1, Chapter 4. The pattern showed a broad band, which was expected due to 

the amorphous structure or presence of small crystalline structure or diffraction form 
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large crystal (Takahashi et al, 1996; Stanciu et al., 1999; Billmeyer Jr., 2000;  

Mondal and Hu, 2006a, b; Chun et al., 2006). The crystallinity of peak depends on the 

preparation of sample. Samples showed sharp peaks if they slowly cooled from the 

isotropic state. However, when samples were quenched from the mesophase, the 

exhibiting peaks appeared broad and weak (Jeong et al., 2000). The results in this study 

suggested appearance of broad band at 20°. The soft segments formed crystalline 

structure in segmented polyurethane due to their long order structure (Hu and Mondal, 

2005). Rahman and Kim (2007) studied XRD pattern of different soft segments (PTMG, 

PPG, PCL) and it was observed that all polyols have crystalline structure, but none of 

them showed sharp crystalline peak. All samples showed broad haloes, which could be 

due to amorphous structure or presence of small amount of crystalline structure. In this 

study, the presence of high ratio of hard segment showed crystallinity of polyurethane. It 

has been reported that the molecular distance, bond length and bond angles attributed to 

lattice space (Ning et al., 1996). The hydrogen bond interaction contributed to higher 

ordering of polymer segment in hard micro-domains and their aggregation increased the 

degree of crystallinity (Cooper et al., 1976; Culin et al., 2002). The diffraction peak 

from partially ordered structure formed at hard segment domain, whereas inter-chain 

attractions such as dipole-dipole interaction and hydrogen bonding brought the hard 

segment together. The polymeric chain was dynamic and flexible, but the presence of 

peak supported hard segment in polyurethane. 
 

5.2.5- Thermogravimetric Analysis (TGA) 
 

Thermogravimetric Analysis (TGA) results of polyether based polyurethane is given in 

(Figure 4.10), and described in Section 4.2.3.1, Chapter 4. Thermal decomposition 

process provided specific information regarding internal structures of polymers. In this 

study, TGA of polyurethane provided a plot of weight change against temperature in a 

controlled dynamic temperature environment. The obtained data of thermal degradation 

was almost in agreement with other studies based on pure polyurethane  

(Desai et al., 2000; Herrera et al., 2002; Yang et al., 2005; Kumar et al., 2006;  

James et al, 2006), whereas, variation was observed by using different methods of 



Chapter 5                                                                                                                     Discussion                            

 

    
 

248

preparation and ratios of hard and soft segments.  
 

The typical weight loss vs. temperature curve showed several regions of distinctly 

different slopes. The first slope of initial decomposition occurred at 295°C (weight loss: 

4%) and extended up to 400°C (weight loss: 30%). The second and third decomposition 

slope was due to soft segment initiated at 410°C and 430°C respectively, with a plateau 

of almost 75°C length before the complete degradation which finished at almost 680°C. 

Initial degradation was due to hard segment and secondary degradation was due to 

decomposition of soft segment. The particular feature might have several interpretations, 

which depend on the mechanisms of thermal depolymerisation. The different slopes 

would represent regions in temperature where chain scission occurred.  

Wang et al. (2000) reports that initial degradation corresponds to hard segment, as 

diisocyanates have a limited thermal stability and their decomposition starts at around 

285°C. It has been established that urethanes have lower thermal resistance  

(Perez-Liminana et al., 2005). Therefore, by increasing the temperature, additional 

decomposition process occurred. Thermal stability of polyurethane was dependent on 

the crystallinity of hard segment and strength of a bond. Higher degree of crystallinity of 

hard segment leads to higher degradation temperature of soft segment (Song et al., 

1996; Gnanarajan et al., 2002). The appearance of hydrogen bonding interaction in 

polyurethane is due to N—H groups. This bonding and its strength leads to a need for 

extra energy for the network to degrade. Several studies (Petrovic et al., 1994;  

Gradwell et al., 1998) reported that amount of weight loss of first region was related to 

the hard segment concentration, suggesting that the degradation started in hard segment, 

while the second part related to the degradation of soft segment. However, in contrast, 

few studies (Herrera et al., 2002; Kumar et al., 2006) have reported that the weight loss 

in first step was due to soft segment of polyurethane and the main pyrolysis product was 

carbon dioxide. The second stage degradation and thermal decomposition was of hard 

segment due to liberation of HCN, nitrites of aromatic carbons and ethers. The 

degradation and weight loss corresponds mainly to dopant loss and beginning of main 

chain degradation (Jeevananda et al., 2001: 2003).  
 

In this study, it was maintained that TGA characterisation was conducted under inert 
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nitrogen because polymer with carbon backbone thermally decomposed with oxidation 

in air, where carbon could react with oxygen readily. In an inert atmosphere, 

decomposition of polymers occurred in a way that tend to conserve the structure of 

matrix, thus bond breaking inside polymer matrix required a large amount of energy 

(Achilias et al., 2008). The heating rate in this study was maintained at 20°C, although 

variation in heating rate was not studied. It has been reported that with the increase in 

heating rate TGA curves and peak temperature shifted to higher values  

(Achilias et al., 2008).  
 

The degradation process can be characterised by activation energy, using three kinetic 

analyses using the Ozawa, Flynn, and Salin models (Lage et al., 2001; Lin et al., 2001; 

Tien and Wei, 2002). The mechanism changes during the degradation of polyurethane; 

activation energy is not only a function of chemical structure of polymers but also varies 

with the conversion. It provides parameter for the assessment of the thermal stability of 

polyurethane. 
 

The first method of calculating the activation energy was proposed by Flynn  

(Lage et al., 2001). This method was applied to low conversion, between 1 and 5% of 

non-isothermal differential weight loss method with a constant heating rate β. The 

conversion, α is defined by:  
 

α = 1 – w (t) / wo     (eq. 5.3) 
 

where, wo and w(t) represent initial weight and weight at any time, t, during degradation, 

respectively.  
 

The second method of calculating activation energy was proposed by Ozawa and Flynn 

(Lage et al., 2001), which required several TGA curves at different heating rate (β). It 

consisted of plotting the logarithm of heating rate (log β) versus 1/T for each degree of 

conversion (α). From these iso-conversion curves, activation energy was calculated from 

the slope of lines using the expression 
 

Ea = -(slope)R/0.457       (eq. 5.4) 
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where, R is the gas constant.  

Third method needs only one non-isothermal TGA measurement; the decomposition rate 

could be expressed by an equation 
 

   dα / dt = k(1 – α)n         (eq. 5.5) 

where, α is defined in eq. 5.1, da/dt is the decomposition rate, n is the empirical order of 

decomposition, and k is the decomposition rate constant.  

 

In this study, the current data was analysed by Ozawa model and plotted by the 

logarithm of heating rate against the reciprocal absolute temperature (1/T) for each 

conversion degree (α), defined as the weight loss at a given temperature.  

 

The above theoretical interpretations are based on the assumption that a higher 

activation energy value results in better thermal stability. TGA technique as applied on 

polyurethane is an effective technique for deriving basic information about the polymer 

systems such as depolymerisation mode. The clinical significance such as mixing 

variables and later the incorporation of filler percentage can also be observed by using 

this technique. However, the important clinical significance of bio/dental material is the 

glass transition temperature which was assessed by DSC.  

 

5.2.6-Differential Scanning Calorimetry (DSC) 
 

Differential Scanning Calorimetry (DSC) result of polyurethane is given in  

(Figure 4.11), and described in Section 4.2.3.2, Chapter 4. The peak at higher 

temperature was associated with micro-phase separation transition to disordered state 

i.e. dissolution of micro-phase structure. The melting point (Tm) of endotherm fell into 

two categories: low-temperature endotherms which were related closely to the 

crystallisation temperature (Tc) and high temperature endotherm which showed the 

behaviour of conventional crystallisable homopolymers with folded chain lamellar 

morphologies, i.e. where Tm increased linearly with Tc. Multiple endotherms in melt-

crystallised polyurethanes were the result of melting of distinct crystal population. 
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During each endothermic process, hard segment crystals not only melt, but also mix 

with the soft microphase (Koberstein and Galambos, 1992). In accordance with current 

study, it is established that the glass transition of polyurethane is around -20 to -40°C 

attributed to soft segment, while endotherm between 150-200°C corresponds to melting 

temperature of hard segment (Song et al., 1996).  

 

If sample melts and quenches to form a structure at low temperature, and then brought 

directly up to a higher temperature, it crystallises easily to give structures with 

significantly higher melting point (George and George, 2001). Same behaviour was 

observed in this study because the pattern of DSC thermogram was divided into three 

sections; first, to heat from -60 to 150°C, secondly, to quench back to -60°C and then 

heated up to high temperature (250°C). The possible explanation of high temperature 

curve was due to crystal nuclei, which remained after initial partial melting, and seed 

crystallisation at higher temperature.  

 

It has been identified that three endothermic transitions were associated with ordering of 

hard segments (MDI/BD). The lowest temperature endotherm (60-80°C) was attributed 

to disturbance of short-range order of the hard segment micro-domains. Two high 

temperature endotherms were attributed to disruption of long-range (120-190°C) and 

microcrystalline order (above 200°C) of hard micro-domains (van Bogart et al., 1981). 

Blackwell and Lee (1984) reported multiple melting in MDI polyurethane and found 

that MDI/BD hard segment crystallised initially in contracted conformations. The 

extended crystalline polymorph has lower melting point that developed upon elongation 

and annealing. Melting temperature was not observed in this study; it could be due to 

linear polyurethane elastomers with alternating block copolymers that showed  

rubber-like elasticity over a wide temperature range but melted at high temperature. It is 

assumed that micro-phase separation properties occurred due to segmental 

incompatibility between two blocks. One phase was glassy or crystalline (hard) and 

other was rubbery (soft). Kornfield et al. (1991) reports the progressive increase in 

mobility with temperature first near the interface and then interior of hard micro-phase. 

This information can be used to gain knowledge about the other properties such as 
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higher glass transition temperature, corresponding to range over which a rigid polymer 

becomes flexible.  
 

5.2.7- Conclusion 
 
FTIR and Raman spectroscopy confirmed the presence of characteristic peaks of 

polyurethane. The resulting peaks showed linkage between isocyanate (hard segment) 

and hydroxyl group (soft segment) and formed N—H group. The bonded and free C=O 

peak appeared in resulting spectra; however, the intensity of bonded C=O was higher 

than latter. These both N—H and bonded C=O showed hydrogen bonding in 

polyurethane. It was further confirmed by using 13C NMR and details of individual 

carbon presence and linkages among the groups were described. XRD analysis provided 

information about crystallinity of polyurethane and surface characteristics. The thermal 

analysis was performed by using TGA and DSC. These techniques confirmed the 

presence of hydrogen bonding between hard and soft segment and phase mixing. The 

presence of two degradation steps was attributed to network structure of polymer. The 

high glass transition was further confirmed from DSC and showed endothermic 

transition of soft segment and hard segment. Hence, it is confirmed that chemical 

(structural), physical and thermal characterisations prove the synthesis of polyether 

based polyurethane with existing hydrogen bonds forming the N—H and N—

H…..C=O groups. 

 

It is desirable for a dental restorative material to show biostability and have bioactive, 

biocompatible and bonding properties, which are not found in the current RBC. The 

bioactive adhesion exhibits a specific biological response at the interface of the material, 

which results in the formation of bond between the tissue and the material. This study 

confirmed the synthesis of nano-hydroxyapatite (inorganic fillers: osteoconductive) and 

polyurethane (organic matrix) successfully. The interfacial linkage between 

polyurethane and nano-hydroxyapatite is one of the major factors that determine the 

ultimate physical and mechanical properties of the composite. This study is mainly 
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focused on the synthesis of a covalently linked polyurethane/nano-hydroxyapatite 

restorative composite. 

 

5.3- Synthesis of Polyurethane/Nano-hydroxyapatite 
Composites 
 

5.3.1- Grafted MDI/Nano-hydroxyapatite 
 

The coupling of nHA and MDI is carried out in solvent and their reaction pathway is 

confirmed by spectroscopic evaluation as described in Section 4.3.1.1.1, Chapter 4. The 

results confirmed the grafting of nHA and MDI. Its structural analysis indicated that 

certain functional groups (-OH) on the surface of nano-apatite had reactivity towards 

isocyanate. This preliminary study provided a baseline and confirmation of linkage 

between nHA and PU. 

 

 It is important to consider the availability of hydroxyl groups on the surface of nHA. 

The hydroxyapatite (hydroxyl group) has tendency to absorb moisture from environment 

and it is necessary to remove surface absorbed water. In this study, all the  

nano-hydroxyapatite samples were completely dried before reactions. The isocyanate 

group of MDI reacted mainly with hydroxyl (OH) group of  

nano-hydroxyapatite. The resulting N—H peak appeared at 3330 cm-1 and showed 

urethane linkage formation. Isocyanates are very reactive chemicals and are well known 

for their role in producing polyurethanes. Dong et al. (2001) reported the reaction of 

isocyanate (HMDI) with calcium hydrogenphosphate (CaHPO4), rather than 

hydroxyapatite. They suggested that the linkage between the HMDI and calcium 

hydrogenphosphate powder is a urethane linkage. However, in present study, isocyanate 

showed its reactivity towards nano-hydroxyapatite. It was found (Figure 5.9) that after 

reaction the isocyanate group was completely reacted and the peak at 2200 cm-1 (NCO) 

disappeared.  The expected reaction of nano-hydroxyapatite and isocyanate are as 

follow: 
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(eq. 5.6) 

where, Ca—P—OH (hydroxyapatite)                                                           

This grafting could be advantageous for the coupling of osteoconductive fillers in 

polymer composite with polyurethane. 

 

 
Figure 5.9 Comparative FTIR of MDI and MDI/nHA showing formation of urethane 

linkage at 3320 cm-1 and after reaction isocyanate (NCO) peak (2200 cm -1) completely 

disappear 

5.3.2- Physically Mixed Polyurethane/Nano-hydroxyapatite 
Composites 
 

FTIR spectrum of physically mixed polyurethane/nano-hydroxyapatite is given in 

(Figure 4.13) and described in section 4.3.1.1.2, Chapter 4. The hydroxyl stretch at  

3571 cm-1 were observed and the peaks assigned to asymmetric and symmetric CH2 

stretches were also observed, indicating that the polyurethane was also sharing the 

surface coating with hydroxyapatite.  The spectrum clearly showed presence of intense 

MDI  
nHA/MDI 

N—H 
3330 cm-1 

NCO 
2200 cm-1 
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PO4 band at 1017 cm-1, although it was of reduced intensity compared to the nano-

hydroxyapatite reference. Combined with the presence of hydroxyl and phosphate peak 

after mixing with polyurethane, this suggests that a bond between polyurethane and 

nano-hydroxyapatite has not been formed but merely a physical mixture. Hence, 

physical mixing only provided the nano-hydroxyapatite as filler particles but did not 

show any linkage and coating of the polymer on the surface. The physically mixed 

apatite in composite without linkage could lead to weight loss and abrasion on applying 

load. The presence of hydroxyapatite on surface could weaken the material due to 

release of particles and insoluble particles released from polymer and moved into 

adjacent area. It has been reported that dissolution of high surface area particulate could 

effectively minimise the fall in pH associated with healing process as hydroxide ions 

were released from the hydroxyapatite (Gross and Babovic, 2002). 
 

5.3.3- Chemically Mixed Polyurethane/Nano-hydroxyapatite 
Composites 
 
The representing FTIR spectrum of chemically mixed polyurethane/nano-

hydroxyapatite composite is given in (Figure 4.14) and described in Section 4.3.1.1.3, 

Chapter 4. The in-situ polymerisation reaction was found to be more successful than 

physically mixed reaction. The possible reason could be due to the reactivity of hard 

segment with OH group of nano-hydroxyapatite at early stage. The reactivity led to 

grafting and developing of chemically linked composite, whereas, during physical 

mixing the hard segment has already reacted with soft segment and NCO  

(hard segment) groups were not available for OH group (nano-hydroxyapatite). 

Therefore, in physically mixed composites the nano-hydroxyapatite was present as loose 

particles in polyurethane. In chemically mixed spectrum the hydroxyl stretch was not 

seen in the spectrum after reaction, which suggested that linkage has occurred via the 

surface hydroxyl groups of soft segment and/or nHA. It is expected that approximately 

all OH groups from nHA have reacted with NCO group. The unreacted isocyanate 

(NCO) peak at 2200 cm-1 was not visible after the reaction. The (C—H) CH2 stretch 

peaks were assigned at 2935 and 2859 cm-1 and attributed to asymmetric and symmetric 

stretching peaks of CH2 respectively. The comparative spectra of PU and PU/nHA 
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composite are given in Figure 5.10.  The difference was observed with PU spectrum, the 

intensity of bonded carbonyl peak was shifted to 1701 cm-1. Peak at 1731 cm-1 was 

assigned to free C=O and peaks at 1716 and 1701 cm-1 were attributed to hydrogen 

bonded carbonyl linkage. Amide absorption bands appeared at 1598 and 1539 cm-1. 

Peak at 1109 cm-1 corresponded to linkage between phosphate group (1040 cm-1) of 

nHA and ether (1111 cm-1) group of PU and assigned as P—C—O. The existence of 

amide bands and the disappearance of isocyanate band indicated that surface reactive 

groups of nHA indeed reacted with isocyanate groups and resulted in the formation of 

urethane linkage. The polyurethane on the surface of nHA was identified by the 

urethane linkage, CH2 vibration, bonded C=O and C-O-C (P—C—O) vibration. The 

quantities of the C=O groups participating in hydrogen bonding is an assessment of the 

phase separation in the material (Ning et al., 1996). Due to the relatively complex 

structure of nHA, it was difficult to propose that polyurethane could bond with apatite 

structure.  It was expected that there was sharing of bond between –C, –O, and apatite 

structure. The –O and –C have charges before reaction and appeared as N=C=O, but 

after bonding HN—C—O showed the dipole moment. This study had already proved 

that nano-hydroxyapatite had large surface area (Section 4.1.5, Chapter 4), and possibly 

there were relatively large amounts of atoms on the surface and a large fraction of 

surface OH groups. 

 
Figure 5.10 Comparative FTIR spectra of PU and PU/nHA composite showing carbonyl 

(1750-1650 cm-1), amide (1550-1225 cm-1) and ether/phosphate region (1100-900 cm-1) 
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The -OH group presented on the surface of nHA seems to be a reactive group, which 

could be used to make a covalent linkage with polymer. It was expected that linkage 

between polyurethane and nano-hydroxyapatite surface was a covalent linkage (urethane 

linkage: N—H). Covalent bonding of nHA with PU has the potential to improve the 

interface of composite matrix, therefore leading to significant improvement of the 

bioactive, bonding and mechanical properties.  

 

5.3.4- Comparative Spectra of Composites with Different 
Concentrations of Nano-hydroxyapatite 
 
 
The comparative FTIR spectra of different concentrations of nano-hydroxyapatite in 

polyurethane are given in (Figure 4.15) and described in Section 4.3.1.1.4, Chapter 4. 

These spectra exhibited the reactivity of functional groups of nano-particles towards 

polyurethane, mainly hydroxyl group (-OH) and isocyanate (-NCO) and helped in 

formation of urethane (N—H) linkage. With the increase in concentration of  

nano-hydroxyapatite the shifting of peak (Figure 5.11) was expected due to availability 

of more hydroxyl group and showed affinity toward isocyanate. Therefore, it is 

suggested that the –OH groups of nHA formed a linkage with the -NCO of isocyanate in 

addition with the –OH from polyether copolymer.  

 
Figure 5.11 Comparative spectra of N—H band region of PU/nHA5 (red), PU/nHA10 

(blue), PU/nHA15 (violet), and PU/nHA20 (green) 

Shifting of N—H Peak 
3305 ---------- 3324 cm-1 
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The FTIR spectra of carbonyl region (Figure 5.12) showed the hydrogen bonded 

urethane-carbonyl (N—H….C=O) and it was observed that urethane—carbonyl 

hydrogen bonded peak shifted with the increase in concentration of nano-hydroxyapatite 

and shoulder peaks emerged in this region. The carbonyl peaks were not only limited at 

1731-1701 cm-1, but with the increase in concentration of nano-hydroxyapatite 

(PU/nHA15 and PU/nHA20), new peaks appeared at 1716 and 1650 cm-1, attributing to 

bonded carbonyl group. The carbonyl absorption peaks at 1695-1615 cm-1 were assigned 

secondary amide absorption bands. The bonded carbonyl peak created urethane-

carbonyl (N—H…..C=O) hydrogen bond. The higher concentration of  

nano-hydroxyapatite helped in the formation of strong covalent and hydrogen linkages. 

It is expected that strong bonding between organic and inorganic components of 

restorative materials could improve the properties and applicable for clinical application 

with better results.  
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Figure 5.12 Comparative spectra of C=O band region of PU/nHA5 (red), PU/nHA10 

(blue), PU/nHA15 (violet), and PU/nHA20 (green) 
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A limited number of studies (Li et al., 1998; Dong et al., 2001; El Hammari et al., 2007) 

are reported in the literature investigating the effect of polyurethane on hydroxyapatite.  

In those studies HMDI and phenylphosponic acids were used to modify the surface of 

hydroxyapatite particles.  It has been found that the surface P-OH groups of the 

hydroxyapatite could be regulated by modification with alkyl phosphates resulting in a 

more hydrophobic surface that has a higher affinity to other biomaterials.   
 

Li et al. (1998) studied the grafting of isocyanate with nano-apatites; they compared the 

IR spectra of nano-apatite before and after grafting reaction, and claimed that there was 

no change of peak intensity at 875 cm-1, and no new peak from P—O—C. Therefore, 

their data did not support the reaction mechanism between HPO4
-2 and isocyanate.  

El Hammari et al. (2006) studied the grafting of phenylphosphonic and phenylphosphite 

acids with porous calcium hydroxyapatite and they reported that there was a new peak 

which they suggested as P—C or C==C. In comparison to previous studies, current data 

showed shifting and emergence of peaks in this region and it was expected that 

phosphate group showed its reactivity towards ether group. The comparative spectra 

(Figure 5.12) showed change in peak intensity and emergence of new shoulder peaks at 

1108-850 cm-1, which was attributed to OP—C—O- [linkage of PO4
3- and vibrational 

(C—O—C)].  
 

It has been reported that if P—O—CO—NH existed, the carbonyl absorption band 

should be shifted to higher wave number at 1716 cm-1 (Dong et al., 2001). Current data 

provided the evidence peak at 1716 cm-1, indicating the formation of  

P—O—CO—NH bond. There are three possible reactive groups, which can react with 

isocyanate groups. These groups are surface absorbed water, HPO4
-3, and OH- (Arends 

et al., 1987; Zhu et al., 2006). It was maintained that before experimental procedure 

nano-particles were completely dried. Therefore, it was expected that no surface 

absorbed water involved in reaction with isocyanate (polyurethane). The HPO4
-3 on the 

surface of nano-apatite is due to non-stoichiometric structure or the hydrolysis of PO4
-3 

ions on the surface (Li et al., 1994; 1994a; Christoffersen and Christoffersen, 1982). 

Therefore, it is assumed that phosphate group has potential to react with polyurethane 

and help in linkage formation.  
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Raman spectroscopy (Figure 4.18) and 13C NMR spectrum (Figure 4.21) compliment 

the FTIR data, confirming the presence of linkage between polyurethane and  

nano-hydroxyapatite. Raman spectroscopic studies have been limited to tissues, which 

contain only a few percentage of organic materials. Hence, the peaks of hydroxyapatite 

did not make significant effect on the intensity of the polyurethane peaks, but the 

additional peaks supported the claim that the linkage between the polyurethane and  

nano-hydroxyapatite existed. The 13C NMR showed urethane and carbonyl peaks and 

change in peak position was observed after reaction. The successful bonding of  

nano-hydroxyapatite to polymer provided to make a chemically linked composite which 

was expected to show better properties. In this study, the data was based on 13C NMR 

only, it is recommended to perform 1H NMR and 31P NMR to evaluate the linkage of 

phosphate with polyurethane. 
 

5.3.5- X-ray Diffraction (XRD) 
 

XRD patterns are given in (Figure 4.22-4.25) and described in Section 4.3.2.1, Chapter 

4. These patterns showed that linkage of nano-hydroxyapatite was mainly with hard 

segment of the polyurethane and it was expected that there was no or very minimal 

linkage with the soft segment. Therefore, when the X-ray beams came on the hard 

segment section, the peaks of nano-hydroxyapatite also appeared on the pattern. The low 

intensity of peak as compared to polyurethane was due to presence of polyurethane on 

outer surface and the arrangement of nano-particles. If the dispersed atoms were not 

arranged periodically or regularly, but in are independent manner, the rays scattered in a 

random phase and appeared weak. However, if the atoms arranged periodically, then the 

scattering pattern should be strong because scattered rays cancel each other (Cullity and 

Stock, 2001).  
 

5.3.6- Thermogravimetric Analysis (TGA) 
 

Comparative TGA pattern is given in (Figure 4.27) and described in Section 4.3.3.1, 

Chapter 4. TGA was used to determine the temperature at which the complete burnout 

of polyurethane based composite occurred and showed the weight change of samples 
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with temperature. It was noticed that the nano-hydroxyapatite could enhance the heat 

resistance of polyurethane. The polyurethane/nano-hydroxyapatite (PU/nHA5) showed 

almost the same pattern as pure polyurethane with slight increase in the thermal 

stability. However, PU/nHA10, PU/nHA15, and PU/nHA20 composites showed 

enhancement in thermal stability. It was observed that with increase in concentration of 

nHA there was an increase in high temperature endotherm of samples.  

 

The onset of decomposition temperature was increased slightly and full decomposition 

was increased to a higher temperature. It has been reported that incorporation of  

nano-particles could improve the thermal stability of the polymer composites  

(Gilman et al., 2002; Yang et al., 2005). Higher concentrated inorganic fillers greatly 

reduced the chemical bond movements of organic component, which led to higher 

decomposition temperature of the composites. The results in this study also indicated 

that the interfacial interactions of higher concentrated (nHA) composites such as 

PU/nHA20 were greater as compared to other samples. The significance of using 

thermally stable dental material is related to its clinical application in oral cavity, where 

variation in temperature (5-70°C) can be anticipated. If restorative materials show 

thermal stability then minimal changes in the matrix can be expected, which helps to 

keep the rigid structure of the material; however, the glass transition temperature is the 

key point to consider.  

 

5.3.7- Differential Scanning Calorimetry (DSC) 
 

The glass transition temperature (Tg) is determined with DSC (Figure 4.28) and 

described in Section 4.3.3.2, Chapter 4. Nano-hydroxyapatite and linkage with hard 

segment increased the ability of chains to undergo segmental motion which increased 

the Tg values. Unexpected behaviour was observed with PU/nHA10 composite, where 

the Tg became lower in this sample. It was assumed that it was due to disordered 

arrangement of crystals and mixing of hard and soft segment was not complete at higher 

temperature, therefore the peak at lower temperature was associated with disruption of 

some new poorly organise structure. The other reason could be due to relaxation of 
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mixed amorphous intermediate phase (soft and hard segment) and relaxation of enthalpy 

in crystalline part of these segments. The reason for higher Tg of PU/nHA15 and 

PU/nHA20 composite was due to high content of intermediate phase that could form 

additional hydrogen bonding with carbonyl groups. The enhancement of Tg indicated the 

presence of nano-apatite in hard segment and possible hydrogen bonding between them. 

It was assumed from this study that with the increase in concentration of  

nano-hydroxyapatite, the phase transition temperature was increased. Higher 

concentrations of nano-hydroxyapatite increased the crystallinity of composite which 

increased phase transition temperature of composite. It has been reported that 

amorphous material showed low phase transition temperature (Cao and Liu, 2006). 

Therefore, this study also revealed an increase of the internal order within the hard 

segment domains coupled with nano-hydroxyapatite. The phase separation observation 

with the increase in Tg, indicated that incorporation of nano-hydroxyapatite led to bond 

strength near inter-phase boundary. The presence of high endothermic peak was due to 

disordering of hard and soft micro-phase to form a homogeneous structure i.e. upon 

heating at high temperature, hard segment mixed with soft segments. However, in other 

study, Krol and Pilch-Pitera (2007) reported that Tg usually decreased with increase in 

length of a urethane segment, but there was increase in melting points with long linear 

urethane segment. 

 

The other possible reason of higher Tg was increase in NCO/OH ratio, which restricted 

the mobility of molecular chain. It has been observed that with increase in content of 

hard segment the Tg of polyurethane increased. The addition of hard segment such as 

MDI enhanced the crosslinking of structure rather than phase separated structure  

(Yoon and Ratner, 1988). The crosslinking restricted the mobility of polymer chains; 

therefore the Tg increased. The Tg of soft segments shifted to some extent with change in 

concentration; this was an indication of phase mixing. In case of phase separation, the 

glass transition of soft segment should be relatively insensitive to variation in the ration 

of soft and hard segment (Desai et al., 2000). This decreased chain mobility in structure 

proved another evidence of coupling in composite.  
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5.3.8- Conclusion 
 
These results showed that a covalently linked PU/nHA composite was successfully 

developed. The chemical linkage of nano-hydroxyapatite with polyurethane was 

confirmed and comparison of physical and chemical mixing of  

polyurethane/nano-hydroxyapatite has shown that no linkage was present in physical 

mixed samples, whereas, chemical mixing showed covalent and hydrogen bonds. The 

FTIR, Raman and 13C NMR spectroscopies confirmed the bonding of polyurethane with 

nano-hydroxyapatite. The presence of urethane linkage and bonded carbonyl group were 

analytically discussed. Different concentrations of nano-hydroxyapatite were used and it 

was noticed that 20% filler content showed significantly improved linkage compared to 

others. These improvements were attributed to presence of a great number of hydroxyl 

groups on surface and are available for bonding with isocyanate group. XRD patterns 

confirmed the presence of nano-hydroxyapatite in polymer and obvious differences were 

observed with physically mixed composite. Thermal properties also improved with 

increase in concentration of nano-hydroxyapatite.  
 

5.4- Biostability Analysis 
 

5.4.1- Introduction 
 
The nHA affects the general properties of polyurethane based composite; however, 

further characterisations should be evaluated. It is necessary for newly developed 

bio/dental material for its suitability to be assessed. These newly developed composite 

networks are considered to be largely insoluble structures with chemically linked and 

thermally stable organic-inorganic components. These composites may absorb water and 

chemicals from the environment and may release components and this process may 

serve as precursor to a variety of physical and chemical reactions that cause a biological 

concern and deteriorating effects on the structure and function of the composites. These 

effects may include volumetric changes, physical changes such as plasticisation and 

softening, and chemical changes such as oxidation and hydrolysis. The presence of 

polyether in this composite is expected to be hydrolytically stable; however, it is 



Chapter 5                                                                                                                     Discussion                            

 

    
 

264

generally accepted that all polymers degrade to some extent.  It is important to consider 

the hydrolytic stability of dental composite as they are prone to exposed to the 

environment such as saliva containing water. In this study, these criteria were achieved 

by taking biostability analysis in deionised water and phosphate buffer solution (PBS). 

 

5.4.2- Contact Angle Measurements 
 

Contact angle measurements are presented in (Figure 4.29) and described in Section 

4.3.4.1.1, Chapter 4. The degree of contact angle allowed characterising the surface 

wettability of a material, and could act as an indicator of hydrophilicity/hydrophobicity 

of composite. An increasing contact angle means a decrease of surface wettability. In 

this study, it was expected that nHA incorporated effectively with PU micro-spheres and 

content of nHA incorporation increased with increase in concentration of nano-particles 

and resulted in more uniform particle distribution. The encapsulation of nHA particles 

and modification by grafting with polymer caused better dispersion in organic phase and 

less aggregate formation. This low aggregation was due to stabilising effect of polymer 

chain grafting onto nano-particles surface. This grafting process led to modification of 

inorganic particle surface and the surface became more hydrophobic and compatible 

with polymer (Qiu et al., 2007). The hydrophobic behaviour of composite suggested a 

different molecular arrangement within surface. It has been well established that the 

nHA has high surface-volume area and high surface area has more functional binding 

sites for polymer. The interaction between PU and nHA indicates that small particles act 

as nucleating agents more effectively (Chen and Sun, 2005). This strong interaction 

between polymer and nano-apatite allow more resistance toward media. Liu et al. (1997) 

also suggests that water uptake for composite decreases with incorporation of nano-

apatite into polymer. 
 

5.4.3- Weight Loss Measurement 
 

Weight loss measurements in deionised water and phosphate buffer saline are described 

in Section 4.3.4.1.2, Chapter 4 and the values tabulated in Table 4.18 and 4.19 
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respectively. The composites with higher concentration of nHA showed lower weight 

loss as compare to PU and composites with lower concentration. The weight loss 

continued to increase substantially, where weight loss occurred by dissolution of both 

inorganic particles and organic components in media. At 90 days, variations in results 

were observed, PU and PU/nHA composites (PU/nHA5, PU/nHA15 and PU/nHA20) 

showed almost same result whereas, PU/nHA10 showed higher values.  It was assumed 

that there might be some agglomerated free dispersed nHA particles, which did not 

interact with PU.  Nano-hydroxyapatite were expected to be encapsulated by 

polyurethane; however, there must be some leaching from the interface. The leaching of 

nano-particles could start later, since water diffused through matrix to reach the particle-

matrix interfaces. 
 

5.4.4- Fourier Transform Infrared Spectroscopy (FTIR) 
 

The FTIR spectroscopy of PU and PU/nHA composites is described in Section 4.3.4.1.3, 

Chapter 4.  Biostability was analysed in deionised water and PBS and the structural 

characterisations showed that there was no significant shifting and emergence of peaks. 

The interpretation was that there was no or very minimal adsorption of solution content 

during immersion. It has been reported previously that the polyether based polyurethane 

films incubated in PBS retained the characteristic infrared peaks (Christenson et al., 

2006).  

 

It was evident from this study that during degradation process of PU there was 

broadness of peak at 3320 cm-1 that confirmed the adsorption of water on surface and 

formation of hydroxyl group. No evidence of hard segment leaching was observed from 

PU and PU/nHA composites. It is established that the isocyanate peak usually appeared 

at 2220 cm-1, which was not observed in this study suggesting that there was no 

unreacted and leaching of unreacted isocyanate. Same behaviour was observed in 

carbonyl (C==O) and ether (C—O—C) region, where there was no significant shifting 

and broadness of peak. Therefore, it is claimed that there was no obvious chain scission, 

which proved that polyether based composite shows resistance toward water and PBS.  
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5.4.5- Raman Spectroscopy 
 
Raman spectroscopy has been described in Section 4.3.4.1.4, Chapter 4. This spectral 

data obtained in this study supported the previously conducted studies on polyether 

based polymers (Loh et al., 2007; Neugebauer, 2007). The intense bands showed 

absorption of water and it was expected that –OH formed a bond with aromatic and  

C—H peaks. CH structure behaved as donor whereas, water molecule behaved as 

acceptor. Hydrogen bonds possess cohesive interactions C—H—O where H and O 

carrying positive charge and negative charge respectively. Whereas, C is more negative 

even than on H (CH donors contain partial positive or zero charge on C); however, this 

shows that reaction is electrostatic predominantly, so it is also believed that these forces 

can be van der Waal forces, which weaken as the distance between the bonds increase 

(Steiner and Saenger,1993). 

 

5.4.6- X-ray Diffraction (XRD) 
 

XRD patterns are given in (Figure 4.46-4.50) and described in Section 4.3.4.1.5, 

Chapter 4. The patterns showed that broadness of peaks were almost same in all 

samples, which showed that there was no possible alteration in the structure of 

specimens. The possible explanation for decrease in intensity was due to basic 

characteristic of PU. Because of mobility of soft segments, the surface composition of 

segmented PU varied in order to find composition that could reduce the interfacial free 

energy. It was evident that when environment was polar i.e. water, PU has high 

proportion of polar hard segment at interface, whereas, more non-polar soft segment 

appeared at surface when environment was non-polar i.e. air (Wen et al., 1997; Santerre 

et al., 2005). 
 

5.4.7- Scanning Electron Microscopy (SEM) 
 

SEM results are presented in (Figures 4.51-4.53 and are described in Section 4.3.4.1.6, 

Chapter 4. The pitting of the surface was attributed to extraction of low-molecular 



Chapter 5                                                                                                                     Discussion                            

 

    
 

267

weight degradation product that resulted from chain scission. It was assumed that the 

extent of degradation was insufficient to cause noticeable surface damage. The cracks 

usually appeared in areas of devices where stress levels on polymer were high. 

However, fissures also appeared when even no additional stress had been placed on 

polymer. This micro-fissure phenomenon, known as environmental stress cracking, is 

believed to be a result of residual polymer surface stress (Santerre et al., 2005). It was 

observed that cracks were present even before media ageing. It was expected that these 

cracks were generally produced due to hot pressing during sample formation. One of the 

disadvantages of hot pressing technique was the oxidative and thermal degradation of 

polyether urethane. It has been suggested that polyether urethane displayed the requisite 

level of hydrolytic stability, but is susceptible to oxidation, which was confirmed by  

in-vivo and in-vitro studies (Smith, 1987; Stokes et al., 1987; Ratner et al., 1988; 

Gogolewshi et al., 1989). Therefore, it is recommended that for degradation analysis 

samples should be prepared by solvent casting technique. With solvent technique the 

resulting cracks can be avoided which appeared after hot pressing technique.  
 

It has been reported that polyurethane composite based on less number of methylene 

(CH2) groups exhibited more hydrolysis (Rehman, 1996); such as poly ether glycol 

(PEG) appeared to be less hydrolytically stable than PTMG. In this study, PU and 

PU/nHA composites were based on PTMG and observed result also supported the 

Schollnberger and Stewart’s (1971) suggestion that polyurethane based on a higher 

methylene group concentration has better hydrolytic stability. The structures of PTMG 

are regular, so easy to form crystal structures and cohesion force of the soft segments is 

high; therefore water molecules find it hard to penetrate into film membranes. It is 

established that higher molecular weight polymers show better water resistance. Soft 

segments of higher molecular weight are easy to crystalline thus water molecules find it 

hard to penetrate into the membranes; therefore, water resistance increases (Bai et al, 

2007). The contents of hard segment are other factors that control the amount of water 

absorption. With the increase in contents of hard segment, hydrophilicity increases due 

to presence of more urethane groups thus increasing water uptake (Lligadas et al., 

2007). In this data, the hydrolytic stability was due to formation of stable hydrogen bond 
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between hard segment and soft segment and stable hydrogen and covalent bond between 

nHA and PU components. It has been suggested that stable H-bonded hard segment 

micro-domains and other H-bond along chains contributed to the formation of protective 

structure and it is well correlated with in-vivo findings from several investigations 

(Pande, 1983; Pinchuk et al., 1988: Santerre et al., 2005). The process such as applied 

stress could affect the structure of hard segment and perturbation of this structure should 

also affect the biostability of PU (Hergenrother et al., 1993). The stress-strain character 

of PU is highly dependent on nature of hard segment and their association with micro-

domains (Smith et al., 1987; Lelah and Cooper, 1987) and PU surfaces are highly 

correlated with H-bonded state of the PU (Tang et al., 2001a:b). 
 

5.4.8- Conclusion 
 

The low weight loss in higher nHA concentrated composites could be due to strong 

interaction between nano-particles and polymers and formation of less water soluble 

compounds. Agrawal and Athanasiou (1997) and Verheyen et al. (1992) reported that 

blending of hydroxyapatite and polymer slowed the rate of degradation. Ara et al. (2002) 

also studied the calcium phosphate (CP) based polymer and found that with the 

inclusion of CP there was delay in rate of degradation. In this study, the control polymer 

and experimental polymer composites were based on hydrophobic polyols. It is 

suggested that the segmented polyurethane based on hydrophobic soft segment exhibited 

distinct micro-phase separation between hard and soft segment (Takahara et al., 1991). 

Due to large difference in surface free energy between two segments, the polyol soft 

segment may be enriched at air-solid interface (Jayabalan et al., 2000). The difference in 

weight loss can be explained by considering the concentration of nano-particles. Based 

on these results, it was assumed that main degradation was from polymer components.  

The incorporation of nHA in composites increased the resistance toward hydrolytica 

degradation. Hence, PU/nHA composites have acceptable biostability with no 

significant degradative effect and their long term properties were more superior to PU.  
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5.5- Bioactivity Analysis 
 

5.5.1- Introduction 
 
In the field of biomaterials, bioactivity is a well-known concept; however in dentistry it 

has received little attention. Attempts have been made to develop materials that possess 

bioactivity and promote remineralisation of tooth by releasing Ca2+ and PO4
2- ions, but 

so far no truly bioactive dental material has been available commercially. In this study, 

the in-vitro bioactivity of experimental composites was investigated with SEM as 

described in Section 4.3.4.2.1, Chapter 4. 

  

5.5.2- Scanning Electron Microscopy (SEM) 
 
The apatite layer can reproduce on surfaces of bioactive material in acellular protein-

free SBF with ion concentrations nearly equal to those of human blood plasma. It is 

envisaged from the SEM results that formation of an apatite layer on surface of synthetic 

material could provide favourable condition for synthetic material to bond to living 

tissue. The morphological appearance (Figure 4.55-4.58) showed that the surface layer 

consist of nano-sized apatites similar to bone mineral in its structure and composition. 

The apatite nucleation ability of each functional group largely varied depending upon 

the structure of substrate. This confirmed that samples with higher concentration of nHA 

had more tendencies to develop apatite layer as compared to composites with low 

concentration. It is reported that not only solid state functional group, but water soluble 

functional groups are also effective for apatite nucleation. Any organic polymer can 

exhibit bioactivity, if the surface is modified with a functional group effective for the 

apatite nucleation (Kokubo, 2005).  
 

5.5.3- Fourier Transform Infrared (FTIR) and Raman Spectroscopy 
 
It was interesting to note that the apatite layer formed on the PU samples after 21 days 

of immersion in m-SBF, although these samples did not contain any bioactive 

component. FTIR and Raman spectra of samples are described in Section 4.3.4.2.2, 
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4.3.4.2.3, Chapter 4 respectively. The PU spectra showed that the level of deposition of 

apatite layer was small and did not show the peak indicative of phosphate (calcification) 

deposit. This particular peak might not develop until there was substantial surface 

calcification. In comparison, PU/nHA composites showed initiation of apatite layer at 

day 1 and formation was observed at 7 days. However, compared to crystalline 

hydroxyapatite, the newly developed apatite layer composed of clusters with imperfect 

structural unit of apatite, which might be an embryonic form of ideal calcium apatite 

lattice. This was due to incorporation of carbonate and magnesium in the clusters layer, 

which might be the cause of the poorly crystalline structural arrangement. The coating 

released both Ca2+ and PO4 ions by dissolution of amorphous phase after contact with  

m-SBF, resulting in an increase of super-saturation. The FTIR spectra showed that with 

increase in immersion time the broadness of N—H peak (3320 cm-1) was due to water 

absorbance. The absorbed water appeared to bond on the structure of layer, i.e. layer 

was highly hydrated. The significant changes observed in ether/phosphate region were 

due to presence of phosphate group on the surface of apatite layer. It was expected that 

this newly developed apatite layer was mainly carbonated; therefore, changes were 

observed in the amide region of polymer. The presence of carbonate in apatite layer 

changed the structure and shifting of peaks and emergence of shoulders confirmed that 

apatite layer formed on the surface of samples. 
 

5.5.4- X-ray Diffraction (XRD) 
 
XRD patterns described in Section 4.3.4.2.4, Chapter 4 and showed that composites 

before and after immersion indicated the growth of apatite crystals relative to period of 

immersion. The presence of new peak was attributed to apatite reflections that indicated 

the differences in composition among the sample. However, the mechanism of apatite 

formation should be clear for those samples which do not contain any bioactive 

components. 
 

The theory of apatite formation is based on complex processes that involve growth and 

control of nucleation from aqueous solution. The growth of apatite nuclei is due to 

uptake of calcium and phosphate ions from the solution. Generally nucleation in SBF 
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solution divides into two types: homogeneous nucleation occurs spontaneously in a 

solution, and heterogeneous nucleation occurs on a foreign substrate. It shows that SBF 

may induce heterogeneous nucleation and growth of apatite when in contact with 

foreign surfaces. It is interesting to find that either Ca2+ or phosphate can initiate the first 

step for nucleation. It has been anticipated from ionic nature that electrostatic interaction 

triggers the initial step of nucleation. Therefore, if Ca2+ ion adsorption triggers 

nucleation, such a surface may be negatively charged, whereas if phosphate ion 

adsorption initiates then the surface may be positively charged (Dalas et al., 1991). Most 

of the macromolecules known to promote surface nucleation contain functional groups 

that are negatively charged at the crystallisation pH. Therefore, more negative charges 

on the surface may promote apatite formation (Li et al., 2002). 

 

The biological activity of polymer composite is low; the coating of their surface with 

hydroxyapatite layer can enhance this. It is expected that the layer coating on polymer-

based material improves the tissue compatibility. Their surface property may transform 

to biological type of apatite (carbonate apatite) through a series of surface reactions 

including dissolution-precipitation and ion exchange. It has been suggested that 

formation of carbonate apatite on the surface of bioactive materials is thought to be 

participating to form a strong chemical bond (Stoch et al., 1999). The binding of Ca2+ 

ion is an initial step for calcification in living tissues. The polyurethane contained 

negatively charged, non-ionic group (CONH and OH) and positively charged group 

[(NH)-terminated] which are very weak apatite-inducing surfaces. The apatite formation 

is totally inhibited with the CH group. The apatite formation capability observed for 

negatively charged group-bearing surfaces apparently proceed by complexation of Ca2+ 

with surface negatively charged group and its subsequent complexation with phosphate 

ion. The adsorptions of a phosphate group on amino group terminated surface induce 

little apatite formation. This may be due to lack of complexation of Ca2+ ion with the 

phosphate ion-surface amino group complex. The calcium ion complexation with  

non-ionic groups such as CONH and OH proceeds via ionic-dipolar interaction. Low 

apatite formation induction in the case of CH-terminated might indicate that ion-induced 

dipole interaction between the hydrocarbon and Ca2+ ion, which is the weakest of 
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interaction forces among those of the interactions. The negatively charged surfaces act 

as a potent substrate for apatite nucleation (Tanahashi et al., 1997).  

 

It has been reported that a tight chemical bond that forms between bone apatite and the 

surface apatite, tends to reduce the interface energy between them. Alkali ions releasing 

from materials can be effective for accelerating the apatite nucleation, since increasing 

the ionic activity product of the apatite in SBF by increasing pH, i.e. concentration of 

OH ions which is a component of apatite (Kokubo, 1998). The apatite nuclei 

spontaneously have grown by consuming the calcium and phosphate ions from the 

surrounding fluid on the surface of the substrate in situ, to form a dense and uniform 

apatite layer. The growth of the apatite was controlled by adsorption of the ion at the 

surface or transport of ions between the apatite and solution (Kokubo, 1996).  
 

5.5.5- Conclusion 
 
The incorporation of nHA in these composites increased the bioactivity. The SEM 

images, XRD, FTIR and Raman Spectroscopy confirmed the presence of apatite layer 

on the surface of these samples. With the increase in concentration of nHA the thickness 

of apatite layer was observed. Hence, these PU/nHA composites have acceptable 

bioactivity and their long term biostablity was more superior to PU as described in 

Section 5.4. It is suggested that with these bioactive properties PU/nHA composites may 

interact with dentine and minimise the problems of interfacial linkage in existing 

composites.  
 

5.6- Bioadhesion Analysis 
 

5.6.1- Introduction 
 
PU/nHA composite results are described in Chapter 4, Section 4.3.4.2, shows bioactive 

response in m-SBF. This study was conducted to investigate the potential use of  

nano-composites for dental applications and provided the evidence of enhanced 

bioactivity; however, it would be interesting to find the adhesion with hard living tissue 
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i.e. dentine. The adhesion is the prerequisite to subsequent cell functions e.g. 

proliferation, formation of mineral deposits. Bioadhesion analysis results described in 

Section 4.3.4.3, Chapter 4, provide the evidence that nano-apatite based polymers could 

promote adhesion and bond strength which is critical for the clinical success of the 

dental restorative materials. 
 

The results obtained in this study were mainly based on the analysis of adhesion of the 

control materials i.e. Fuji IX and Filtek Supreme and experimental samples i.e. PU and 

PU/n-HA composites, with dentine structure. The bond strength of samples was 

characterised using Push-out test and the resulting samples were microscopically 

analysed using SEM (field emission and EDS). These methods are most widely used 

methods to quantitatively analyse the bonding of different materials with tooth structure 

while intact and after mechanical testing to observe the failure of adhesion at the 

interfacial level. 
 

The development of resin bonding to tooth structure progresses through number of 

distinct stages, commonly known as generations. Due to difference in composition of 

enamel and dentine, the techniques for preparing the interface for increasingly 

hydrophobic monomers develop. The success of restorative dentistry concept has 

resulted in the usage of polymer-based sealers for endodontic treatments (Sly et al., 

2007). To evaluate bond strength, the push-out test is an efficient and reliable method 

because it allows assessment of regional difference in bond strength with acceptable 

variability of the data distribution. It is an appropriate method to analyse the bond 

strength at the adhesion interface (Nagas et al., 2007).  
 

5.6.2- Push-out Test 
 

It has been reported that the superficial dentine layer of old extracted teeth showed most 

tubules apertures occluded, whereas, in freshly extracted teeth all tubule apertures were 

occluded. Therefore, the adhesive strength was always slightly greater with old extracted 

teeth than freshly extracted teeth. The lower density and much less intertubular dentine 

surface per unit area caused the decreasing adhesive strength in deep layer. Generally 
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dentine was believed to be more mature in the superficial layer  

(Nakamichi et al., 1983). In this study, the non-linear bond strength with deionised water 

and artificial saliva with high standard deviation values were expected due to extracted 

human molar teeth which have been randomly selected, and the selection of teeth was 

anonymous. The cylindrical cavity was prepared and strength was analysed with deeper 

surface of dentine; therefore, it was assumed that the non-linear bond strength with 

higher standard deviation was due to interaction of composite with deeper surface of 

dentine. It is expected that load conditioning factors such as strain rate, machine’s 

rigidity, load cell and speed control could affect the mechanical properties of the samples 

(Davis, 2004). It is recommended that a load cell that is exceedingly stiff (with very low 

compliance) or an instrument in which compliance is withdrawn by a feedback 

mechanism should be used (Lee et al., 2007). The load cell used for Fuji IX and Filtek 

Supreme are in accordance with the literature (Atai et al., 2004; Boyd and Towler, 2005). 

Until now, there is a lack of adequate knowledge and use of this variable for 

polyurethane based composites during push-out test, therefore; test results cannot be 

directly compared. However, it was claimed from manufacturers that Instron load cells 

have been tested for accuracy and repeatability on calibration apparatus traceable to 

international standards, with an uncertainty of measurement not exceeding one third of 

the permissible error of the load cell. The accuracy has been found to be equal to or 

better than 0.025 % of the cell rated output or 0.25 % of the indicated load, whichever is 

the greater.  

The bond strength values of current study were low as compared to GC Fuji IX and 

Filtek Supreme. Previous studies showed that the bond strength of GIC and resin-based 

composite to tooth structure was 5-6 MPa (Wilson and McLean, 1988; Arora and 

Deshpande, 1998) and 26 MPa (Cunha et al., 2007) respectively. Lucas et al.  (2003) 

reported that HA-modified Fuji IX exhibited bond strength values of 5.2 MPa. In this 

study, the high variation in values was due to compositional difference of these 

restorative materials and the method of application in tooth cavity. Fuji IX derives from 

the formulation of alumino-silicate glass and carboxylic acids. The matrix of the set 

cement is a highly cross-linked structure and has tendency to adhere to dentine. In resin-
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based composites, the mechanism involves the formation of a hybrid layer and the acidic 

conditioners dissolve the smear layer and demineralise the HA crystals of dentine 

surface, followed by infiltration of monomers into exposed collagen fibres (Lee et al., 

2008).  In contrast to direct filling materials, Fisher et al. (2007) has reported the micro-

push-out bond strength value of different obturating materials: zinc oxide-eugenol—

based sealer and gutta percha (0.79MPa), epoxy amine resin—based sealer and gutta 

percha (2.00MPa), Epiphany sealer and Resilon (1.10MPa), Active GP obturation 

system (1.10MPa), and EndoREZ obturation system (0.09MPa). The current data were 

in accordance to obturating material and hypothesised the future application for 

endodontic treatment while providing direct adhesion and avoiding micro-leakages. 

Hence, these results helped to make the speculation that this novel bioactive material has 

potential for use as dental restorative material. 
 

5.6.3- Scanning Electron Microscopy (SEM) / EDS 
 
The morphological appearance with EDS analysis of PU/nHA composites showed that 

adherence could be due to ion-transport mechanism; ion transport is achieved through a 

coupling between the ions and polymer segmental motion, where the ionic transport 

takes place in the amorphous phase of a polymer matrix. This indicates that both soft 

and hard segments have an influence on ion transport (Zhu et al., 2001). Dentine 

contains mainly Ca2+, PO4
3- and some minor ions such as Na+, Mg+, and F, whereas, the 

ether (C—O—C) and carbonyl groups (C=O) participate in transport of cations and 

contribute to ionic conductivity of the material. However, the bond strength of the PU 

samples was not sufficient enough to withstand the pressure applied during the push-out 

test.  
 

It was speculated that the presence of Ca2+ and P in PU/nHA composites enhanced the 

pattern of apatite layer and more apatite layer was formed with the samples immersed in 

artificial saliva compared to deionised water due to the presence of ions in artificial 

saliva. The dentine proteins might have affinity toward Ca2+ ions and these proteins 

acted as calcium accumulators and reservoirs for apatite crystallisation. Therefore, these 

proteins played integral role in the laying down and maintenance of the calcified matrix 
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in dentine (Hoshi et al., 2001). However, the SEM images showed that the attachments 

of the experimental composites were not sufficient enough as compared to existing 

resin-based dental composite. The procedure of adhesion of existing resin-based 

composite with tooth includes usage of adhesives; however, the gaps and porosity at 

interface is common due to polymerisation shrinkage that may have pulled out the resin 

tags from dentinal tubules (Griffiths et al., 1999). The adequate adhesion at interface is 

crucial to the success of these resin-based restorations to reinforce tooth structure and 

provide a marginal seal that prevents leakage (Guzman-Ruiz et al., 2001). It is expected 

that experimental time period also influenced the adhesion of composites with dentine as 

it has been reported that resorption of synthetic HA in 3 months is only 5.4% and it 

requires many years for complete resorption; however it acts as carriers for 

osteoinduction growth factors and osteogenic cell populations, which helps in their 

utility as bioactive delivery vehicles (Helm et al., 2001).  The nano-size and even 

distribution of the nHA is important for mechanical strength and possibly for tissue-

bonding ability of the composites (Li et al., 1995). The nHA can enhance the 

mineralised tissue, bone formation and bone adaption on its surface that provides an 

environment favourable to osteoblastic differentiation (Itoh et al., 2004). There are 

certain factors which can affect the osteointegration between bone and an implanted 

material. These factors include a number of host biological and surrounding tissue 

responses, properties such as topography and chemistry control the type and magnitude 

of cellular and molecular events at the tissue implant interfaces, the design of 

biomaterial with surface properties of hard tissue and characterised by surface grain 

sizes in the nanometer scale that would lead to the formation of a new surface at the 

tissue/biomaterial interface and therefore improve the efficacy of biomaterial  

(Webster et al., 1999). 
 

In current study, the adhesion of the experimental composite with hard tissue was 

directly related to the tissue response at the material interface. The interfacial bonding 

mechanism showed that an acid condition might produce at composite and this acid 

condition was due to cellular activity and enzyme production. The acidic condition 

initiated partial dissolution of nHA, causing release of Ca2+, HPO4
2-, and PO4

3-, and 
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enhanced the super-saturation of micro-environment with respect to the calcium-

phosphate phase. The surface characteristics of nHA could be changed with this 

dissolution and a layer of carbonated-apatite could precipitate on the surface through 

seeded growth on nHA crystals (Cao and Hench, 1996; Seo and Lee, 2008). 

Furthermore, it is interesting to find out the influence of other matrix phases e.g. 

polymer on the HA tissue-bonding capacity, where urethane functional group can form a 

stronger bond to the collagen matrix of dentine. However, the guiding effect and the 

osteoconductivity of nHA is still a dominating effect in HA-containing composites 

(Hunter et al., 1996). The crystalline dense nHA was used in this study, which was 

chemically linked with PU and the crystalline nHA-coated-PU have been used to 

provide an enhanced quality of bone apposition and rate of fixation for long term 

prosthesis. In comparison to dense HA, porous hydroxyapatite accommodates cells in 

the structure whereas, dense hydroxyapatite has rough surface which enables the growth 

and proliferation of cells on its surface (Cerroni et al., 2002; Kumar et al., 2005).  The 

physically mixed polymer/HA shows instability and particulate debris reactions at the 

interface, whereas, the HA grafted polymer can induce the deposition of Ca2+ and PO4 

ions in the form of an hyroxyl-carbonate apatite layer and open the way for developing 

bioactive tissue-bonding (Cao and Hench, 1996). 
 

5.6.4- Conclusion 
 

This study showed adhesion of PU/nHA composite with dentine, however, the bond 

strength values were not high as compared to other restorative material. The difference 

in values was due to difference in the composition of the restorative material. It was 

interesting to find that apatite layer formed on the surface of material/tissue interface. 

This apatite layer showed tendency to make bond with tooth structure. Push-out test 

showed the bond strength values and SEM images with EDS analysis confirmed the 

adhesion of composite with hard tissue. It was found that with the increase in 

concentrations of nano-hydroxyapatite, the bond strength and adhesion increased  

(p≤ 0.05). Higher values and adhesion were achieved with the samples immersed in 
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artificial saliva as compared to deionised water, however the difference was not 

significant.  
 

5.7- Biocompatibility 
 

5.7.1- Introduction 
 
A successful attempt has been conducted to design and produce bioadhesion, which 

simulates the surface topography of normal living hard tissue. However, these materials 

should be harmless to oral tissues. Furthermore, it should contain no toxic, leachable, or 

diffusible substance that can be absorbed into the circulatory system, causing systemic 

toxic responses, including teratogenic or carcinogenic effects. It is expected that cells 

placed in contact with a biomaterial surface may show a range of responses. The 

biocompatibility of a polymer depends on the specific adsorption of proteins onto the 

polymer surface and the subsequent cellular interaction (Beloti et al., 2003). 
 

5.7.2- Cell Culturing 
 

The results of cell culturing and proliferation were described in Section 4.3.4.4.1, 

Chapter 4. In this study, polyether based polyurethane was used, which was 

hydrolytically resistant and showed prolonged stability. The in-vitro cytotoxicity study 

was performed to evaluate the biocompatibility of material, indicating cellular behaviour 

consisting of cell adhesion and growth pattern, which resulted from complex processes 

with biological and non-biological mechanisms. The extract dilution assays and direct 

contact assay on cell culture were used. In addition, MTS assay was used to determine 

cell viability in examining cell attachment and proliferation.  

 

The cell seeded on the surface of polymers, while few cells might migrate to polystyrene 

surface in the plate, since the cells that migrated to the plate from polymer remained 

healthy. In addition, the direct contact could also provide information for the effects on 

cell-material interface as well as those samples were not releasing any toxic substances. 

These results suggested that both samples encouraged the cells to grow with favourable 



Chapter 5                                                                                                                     Discussion                            

 

    
 

279

cellular attachment; however, higher values were observed with PU samples as 

compared to PU/nHA composite. The possible reason was due to hydrophilic nature of 

PU and hydrophobic behaviour of PU/nHA. The general concept of cell interaction 

demonstrates that cells usually attach much more readily to hydrophilic materials than 

hydrophobic surface. The contact angle results (Figure 4.29) showed that PU/nHA20 

were more hydrophobic than PU and the result of this study also exhibited that PU 

(comparatively less hydrophobic) showed more cell proliferation and differentiation 

than PU/nHA20 (more hydrophobic). However, it is not that only hydrophilic materials 

shows cell interaction, but the hydrophobicity also leads to improvement of cell 

adhesion and spreading (Schiraldi et al., 2004). Cellular adhesion properties are critical 

for normal cell function as they determine subsequent cellular proliferation, 

morphology, and structural properties. The engagement of adhesion receptors may 

trigger second messenger responses within cells (Sank et al., 1993).  
 

Osteogenesis, induced by osteoblastic cells, was characterised by sequence of events, 

involving cell attachment and cell proliferation and followed by expression of osteoblast 

phenotype (Deligianni et al., 2001). Clinical success of biomaterial is largely dependent 

on interaction with surrounding biological medium and success may be achieved when it 

is able to promote bone growth at its surface and osteoconductivity occurs without 

leading to an adverse reaction of host tissue (Redey et al., 2000). 
 

Among polymers good cell attachment and spreading are observed with high energy 

substrate and poor cell attachment and spreading on low-energy substrate, which is due 

to the minimal energetic state of a system in equilibrium. The affinity of cells towards 

surface is related to its high surface energy resulting from presence of polar chemical 

groups on the surface (Redey et al., 2000). The microstructure of the PU and PU/nHA20 

led to high elasticity for samples so they could tolerate the force imposed by cells for 

being stretched. The polyurethane surface supported a significant degree of cell 

spreading due to presence of hard segments, which were distributed throughout the soft 

domains (Sheikh, 2003). It is reported that hard segments are a necessary element for 

cell growth; however, cells can grow perfectly on the disperse phase of hard segments, 

but not on the continuous hard segment surface, where the other requirement for cell 
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growth is ratio of hard/soft segment. Lee et al. (1996) also reported that surface tension 

is not the only factor which affects the cell interaction but, microphase factor also 

influences cell growth on the surface of a sample. In view of this, some factors are 

important in determining cell growth on polyurethane and polyurethane based 

composites. The first factor is surface morphology and the existence of a dispersed 

phase (hard/soft). The second factor is hydrophilic (less hydrophobic) property and 

surface energy of materials. 
 

It is possible to assess that cells are viable in the presence of HA and the viability levels 

are similar among different HA concentrations (Oliveira et al., 2006). In this study only 

20% wt/wt of nHA were used with PU. These results showed that samples with nHA 

also exhibited attachment and proliferation of the cells, suggesting marked 

biocompatibility of the samples. It is expected that the nanostructures provided the 

dense surface, which in turn increased the surface energy, while the high surface energy 

promoted initial attachment and spreading of the cells and improved their attachment  

(Li et al., 2007). However, the effect of hydroxyapatite properties on tissue response has 

not yet been fully understood. The cellular responses depend upon physical and 

chemical characteristics of substrate and particularly relate to the chemical composition, 

crystallinity, particle size, and surface structure. The chemical and crystallographic 

characteristics are reported to influence osteoblastic activity. Variation in surface texture 

or micro-topography may affect the cellular growth and that induces the specific 

adsorption of proteins, which influence the cell reaction and it is noticed that there is 

significantly larger level of cell attachment on the rough surfaces (Deligianni et al., 

2001).  
 

Cell proliferations are inversely related to the HA particle size. It is suggested that nHA 

particles could stimulate osteoblastic proliferation more compared with micro-HA. This 

is due to enhanced interfacial adhesion of nHA to cells and high surface area per HA 

volume for cell growth, which might result in increased cellular adherence and 

proliferations (Shi et al., 2009). The morphology of HA was another parameter for 

estimating the biological effect. The cell experiments showed that nHA with spherical 

structure showed more favourable properties than rod-like HA for osteoblasts. This 
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might be due to well organised surface which seems beneficial (Zhao et al., 2007; Shi et 

al., 2009). This study also supported these concepts because spherical nano sized 

hydroxyapatite was used with polyurethane that exhibited hydrophobic surface with 

high surface energy.  
 

5.7.2.1-Conclusion 
 

In conclusion, it was observed that the PU and PU/nHA20 composites were not 

cytotoxic, biocompatible and cells adhered and proliferated well when compared to 

control plastic plate. In addition, MTS assays revealed that cells were able to grow and 

proliferate. During cell culture, extra care should be provided due to sensitivity of cells 

to some components. Hence, the biocompatibility test showed that the PU/nHA20 

showed low rate of cell growth compared to PU; however, the cells were still growing 

and facilitated both adhesion and proliferation. It is suggested that cell behaviour and 

interaction with a bioactive material surface were dependent on physical and chemical 

properties such as topography, hydrophilicity/hydrophobicity, surface charge and 

composition i.e. micro-phase structure. 

 

5.7.3- Bacterial Adhesion 
 

The in-vitro bacterial adhesion analysed in this study were carried out in static and 

submerged conditions and in non-nutrient media. The results are described in Section 

4.3.4.4.2, Chapter 4. The number of attached bacteria (colony forming) per cm2 of the 

polymeric surface were determined and observed during first 2 hours. The initial rate of 

cell adhesion to the surface was described as first order dependency on cell 

concentrations. The correlation was not found between substrate surface free energy and 

adhesion of all bacterial strains. In this period of time the adhesion of the bacteria were 

not related to the surface hydrophobicity/hydrophilicity and it is suggested that the 

number of bacteria adhering after 1 hour was much more strain dependent than 

substratum dependent (Gottenbos et al., 2000; Karakecili and Gumusderelioglu, 2002).  
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S. sanguinis is a member of the viridans group of streptococci. It is the first bacteria to 

colonise tooth surfaces, where it functions as a ‘pioneer’ by forming dental plaque, 

which leads to dental caries, periodontal diseases, and alteration of dental restorations.  

S. sanguinis has been reported to be closely related to infective endocarditis, which is 

frequently caused by oral bacteria (Yamaguchi et al., 2006).  They possess only a single 

sortase (Srt) gene in its genome. It has been reported that Srt gene might be involved in 

bacterial adhesion and colonisation because Srt A anchors one or more surface proteins 

associated with adhesion. Hence, it is assumed that Srt A is one of factor for infection 

and colonisation (Yamaguchi et al., 2006). 
 

Due to clinical application, the incidence of infections related to biomaterials is 

increasing (Kiem et al., 2004). To avoid biomaterial related infections, it is important to 

understand the pathogenesis of infections. Bacterial adhesion to biomaterial surfaces is 

believed to be an essential step in the pathogenesis of these infections. The mechanism 

of bacterial adhesion are not defined; however, a variety of factors influence initial 

bacterial adhesion i.e. presence of adhesive molecules and dissolved proteins and 

surface properties of both bacteria and biomaterials (Karakecili and Gumusderelioglu, 

2002). Therefore, there are two main approaches to prevent bacterial adhesion with the 

biomaterial surface; i) development of polymers with antiadhesive properties, (ii) 

development of polymers with antimicrobial properties (Pavithra and Doble, 2008). 
 

The physical and chemical surface properties of biomaterials represent important 

determinants of adsorption of bacterial adhesion and colonisation. A new biomaterial 

can be developed by substitution of different chemical groups on polymer chains or by 

polymerisation of appropriate monomers. These copolymers could induce specific 

interactions with the components of living systems (Berlot-Moirez et al., 2002). Surface 

modification of the polymer can achieve (i) reducing adhesion of proteins on the 

surface, (ii) promoting attachment and adhesion of certain types of cells, (iii) reducing 

bacterial adhesion, (iv) improving chemical inertness, (v) eliminating segregation of 

constituents on the surface and (vi) improving the degradation resistance (Pavithra and 

Doble, 2008). 
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This study showed less number of bacterial adhesions on PU/nHA20 as compared to 

PU. Three primary factors that influence bacterial adhesion on a polymeric surface are 

the (i) nature of the environment i.e. temperature, time of exposure, bacterial 

concentration, the presence of antibiotics and fluid flow condition near the surface,  (ii) 

type of microorganism i.e. surface properties of the organisms, presence of fimbriae and 

flagella, and the production of an extracellular polysaccharide coat and (iii) the 

properties of the materials; surface chemistry and charge, microarchitecture, degree of 

hydrophobicity/hydrophilicity and hydrodynamic forces acting on the material  

(Pavithra and Doble, 2008). In comparison with other restorative materials it was 

reported that unpolished glass ionomer showed more bacterial adhesion as compared to 

unpolished resin-based composite, whereas, after polishing resin-based composite 

showed more surface roughness and bacterial adhesion increased. The binding of 

bacteria on glass ionomer was due to more inorganic particles i.e. roughness on the 

surface (Carlen et al., 2001). In infected root canals, surface attachment capacity may be 

of significance in the pathogenesis since bacteria are found to invade dentinal tubules 

and morphological observations have indicated that organisms attach to the inner 

dentinal walls of infected root canals (de Paz et al., 2005).  

 

The surface free energy of solid surfaces gives a direct measure of intermolecular or 

interfacial attractive forces. The microbial adhesion to surfaces with different surface 

energies was analysed. It is suggested that microbial adhesion is less to low-energy 

surfaces (Hamza et al., 1997); however, there are some contrary findings that high-

energy surfaces have less adhesion than low surface energy (Brink et al., 1993).  

Baier and Meyer (1992) recommended 20-30 mJ/m2 as the optimum range of the surface 

energy of a surface to inhibit adhesion and suggest that the efforts to reduce surface 

energy below this range are counterproductive (Zhao et al., 2007). However, in this 

current study, the surface energy was not measured but it was expected that PU/nHA20 

has higher surface energy than PU, so this study was in support of Brink et al. (1993) 

suggestions or it could be assumed that surface energy was in the range of mentioned 

value.  
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Surface properties such as hydrophobicity, hydrophilicity, steric hindrance, surface 

roughness and surface topography all affect attachment of bacteria.  

Pasmore et al. (2002) observed that bacterial cells were readily removed from the 

smooth surface, with removal becoming more difficult after long attachment time 

(Webster et al., 2005). The quality and crystallinity of the HA is also another factor to 

affect the results. The dense HA used in this study was purely crystalline and with 

expected smooth surface; however, it was reported that after implantation the surface 

became rougher due to absorption and the roughness of HA surface was prone to 

microbial attachment (Ichikawa et al., 1998). The origin of adhesion in HA-base was 

mainly ascribed to wettability of the substrates. However, different methods applied to 

modify surface energy and wettability properties mainly allow on/off switching of the 

wettability (Aronov et al., 2007). 

 

5.7.3.1- Conclusion 
 

It is summarised that the surface of materials need to be modified to prevent the 

bacterial adhesion. The promising trend in the development of biomaterial is based on 

development of advanced materials with biomimetic features on surface. The 

modification of surface properties enhances the surface affinity to selective adhesion 

and proliferation of biological cells and tissue compatibility. 

 

5.8- Synthesis of Electrospun Nano-fibres  
 

The above results based on biostability, bioactivity, bioadhesion and biocompatibility 

confirmed the successful development of a novel composite. The difference of physical 

and chemical synthesis of composite was further assessed by fabricating the nano-fibres. 

These fibres resulted in polymeric sheets or fibre mats. In this study, the resulting 

electrospun fibres (Section 4.4, Chapter 4) were of three different types: linked 

meshwork, meshwork with loose nano-particles and beaded fibres. It is expected that 

these fibres will provide useful information about the confirmation of chemically linked 
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polymer composite and it was hypothesised that these fibres will be later used to 

reinforce the nano-composites to increase the mechanical and physical properties.  
 
 
The electrospinning process depend on the condition applied (voltage and flow rate) and 

the solution, and these are varied to form fibres or drops. The selected polymer 

composites were dissolved in DMF to prepare 10% wt solution. The resulting fibres and 

drops were characterised with SEM. The parameters which influenced the results were 

applied voltage, solvent type, polymer solution flow rate, and polymer concentration 

(Cai and Singh, 2004). The thick coating of the nano-fibres was not achieved in this 

study due to short period of time. This study mainly focused on the electrospinning 

process for the production of nano-fibres and assessed the morphological behaviour. The 

reduction in diameter from a millimetre scale to nano-scale was due to instability, where 

the jet was stretched by whipping and bending. Electrospinning was driven by 

electrostatic forces and required only small amount of polymer solution  

(Berkland et al., 2004). It was reported that the electrospun beaded nano-fibres of the 

polymers were related to the instability of the jet of polymer solution (Lee et al., 2003; 

Berkland et al., 2004). The smoothness and splaying of nano-fibres was attributed to the 

increasing DMF volume fraction, surface tension and viscosity decreased, while 

conductivity and dielectric constant increased. The solvent composition and various 

solution properties conducted an important role in determining the fibre formation  

(Lee et al., 2003). The size of nano-fibres depends on the incorporation of nHA that 

could cause the increased viscosity of the solution. The increase in viscosity of the 

solution was due to the increased molecular entanglement or linkage between 

polyurethane and nano particles. In order to confirm the presence of nHA in fibres, EDS 

was performed with SEM. The elements of calcium and phosphate were not present in 

polyurethane fibres, however presence of these elements was observed from nHA in 

PU/nHA composite. Hence it was confirmed that particles existed in fibres. In PM fibres 

the nano-particles were present mainly on the surface and were not completely 

incorporated within the fibres. In comparison, there were no visible nano-particles on 

CM fibres. The bonding between the polyurethane and nHA has been proven in this 

study and no nHA particles were observed in SEM images, it showed that the interface 
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between polyurethane and nHA has been linked. It is established that the presence of 

Ca2+ stimulates osteoblastic proliferation and depress osteoclast-mediated bone 

resorption through negative feedback loops (Yoshimoto et al., 2003) and high 

concentration of P induces osteoblasts apoptosis (Zaidi et al., 1991). Higher 

concentration of Ca2+ promotes osteoblastic differentiation, leading to bone 

mineralization. This response contributes to maintenance of bone homeostasis, and the 

differential reactivity (Maeno et al., 2005). Through the electrospinning process, nano-

fibres results in high specific area that is advantageous for its biomedical and dental 

application. The nano-fibres were randomly distributed with no clear alignment. 

Electrospun nano-fibre orientation can be explained using a fibre orientation angle. 

Fibre orientation angle in nonwoven mats can be described as the angle formed between 

the fibre axis and a line parallel to the web centerline (Meleti et al., 2000). Charged 

forces on the fibres, with the help of accelerating and deflecting electric fields, leads the 

fibres to form three dimensional structures (Doshi and Reneker, 1995). The random 

distribution of nano-fibres in all directions could be due to the spiral shape of electrified 

jet with increasing radial dimension. HA is known to enhance cell adhesion through an 

inherently high capacity of adsorbing proteins.  With in the scope of this SEM images, it 

was observed that there were no holes and pores in nano-fibres, this would enhance the 

reinforcement of composite and the mechanical properties.   
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Chapter 6 Conclusions and Future Works 
 

6.1- Conclusions 
 
• A novel bioactive composite based on nano-hydroxyapatite with chemically linked 

polyurethane has been synthesised using chemical mixing with in-situ 

polymerisation process. 

• FTIR, Raman and 13C NMR spectra confirmed the urethane linkage. FTIR spectra 

indicated the presence of a new peak at 3324 cm-1. The appearance of bonded C=O 

peaks in between 1716-1700 cm-1 also confirmed the urethane….carbonyl hydrogen 

bond and it was observed that with the increase in concentration of nano-particles, 

the urethane-hydrogen bond peak became more intense. Coupling is believed to 

occur between the phosphate and ether group and formed P—C—O.  

• The thermal properties of polyurethane and polyurethane/nano-hydroxyapatite 

composites were analysed using TGA and DSC. The TGA curve showed that 

thermal decomposition of composites was increased with higher concentrations of 

nano-apatites indicated strong molecular interaction of organic-inorganic 

components. DSC thermograms showed endothermic peaks at higher temperature 

attributed to increase crystallinity and molecular arrangement. 

• The novel composites were assessed for hydrolytic stability and were characterised 

with FTIR, Raman, XRD, and SEM. Contact angle measurement was analysed and it 

was found that composites with higher concentration of nano-hydroxyapatite were 

more hydrophobic and showed long-term stability.  

• The in-vitro bioactivity analysis showed that the presence of nano-hydroxyapatite 

accelerated the precipitation of apatite layer on the surface and it showed that with 

the increase in concentration of nano-hydroxyapatite the thickness of calcium 

phosphate (apatite) layer increased. The formation of layer on polyurethane was 

observed at 21 days due to nucleation process, however, polyurethane/nano-

hydroxyapatite composites showed the pattern of apatite layer at 7 days and with the 
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increase in immersion time the globules of apatite layer were tightly packed with 

each other.  

• The bioadhesion with dentine showed the adherences were achieved at the interface 

between the composite and tooth. The samples immersed in artificial saliva showed 

more adherence and bond strength values than deionised water, however the 

difference was not significant. The presence of calcium-phosphate component in 

composite enhanced the adhesion compared to polyurethane. The bond strength 

values of the novel composite was not higher compared to existing direct restorative 

materials, however, the values were in accordance with existing obturating materials 

e.g. gutta percha and Resilon.  

• The biocompatibility was achieved performing cell culturing and bacterial adhesion. 

It was interesting to find that both samples i.e. polyurethane and polyurethane/nano-

hydroxyapatite showed cell proliferation on the surface; however more growth were 

observed with polyurethane due to hydrophilic nature of polyurethane samples. In 

comparison there was 97.09% reduction in bacteria adhering to the grafted 

composite compared to polyurethane. 

• The nano-fibres of composite were successfully collected by electrospinning 

process. The morphological appearance of the chemically mixed nano-fibres was 

smooth and uniformed size with no visible nano-hydroxyapatite particles on the 

surface. These high surface area nano-fibres would have potential to reinforce the 

composites in biomedical and dental applications because of their bioactivities and 

capability to have tailor-made mechanical properties. 

• It is proposed that this bioactive composite could be use as dental materials, 

especially for endodontic obturations. The direct bonding was achieved and it is 

expected that this bonding will provide a mean of improving the interfacial linkages 

not only between the two phases but also with the living tissues. Excessive 

characterisations confirmed its suitability to use dental restorative materials, 

however further characterisations specifically in-vivo studies should be performed. 
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6.2- Future Works 
 

The data showed the covalent linkage between the polymer and nano-particles and the 

physical and thermal and biostability results proved that this material could be used for 

dental and biomedical applications. By achieving the resulting data presented in this 

study, there is a scope for further work and potential for advance studies based on these 

findings. 
 

It would be interesting if the further studies would be conducted on mechanical and 

biological bases.  
 

1- Mechanical Testing 
 

The viscoelastic properties should be assessed using Dynamic Mechanical Analysis. It is 

important to find out the strength and the elongation behaviour along with elastic 

modulus of the samples.  

 

2- Bioadhesion 
 

As it is hypothesised that this novel composite is to be used in root canal obturations, its 

bioadhesion properties should be investigated with root dentine using push out test and 

SEM. The adhesion should be compared in deionised water and artificial saliva with 

existing obturating materials i.e. Gutta Percha and Resilon. 
 

3- Biocompatibility 
 

a- Cell Culturing 
 

Osteoblasts like cells are to used in prolonged studies (at least 14-21 days) with alkaline 

phosphatase (ALP) enzyme activity to assess cell differentiation.  
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b- Bacterial Adhesion 
 

The bacterial adhesion of the novel composite with other bacteria such as Streptococcus 

mutans, E. coli, and anaerobes are to be assessed with extended time period e.g.  

24-48 hours and varying time intervals. The experimental samples should be divided 

into two segments; (i) dry samples, (ii) pre-soaked with artificial saliva. 
 

4- Clinical Assessment 
 

The clinical practicality of obturating the root canals with the novel composite is to be 

explored in-vivo.   
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Appendices 
 

Appendix I  
  

1.1- Tooth Structure (Dentine) 
 

 
Figure A1.1 FTIR spectrum of dentine showing characteristic peaks of  

OH (3600-2700 cm-1), amide/CO3 (1800-1400 cm-1) and PO4 (1100-950 cm-1) 

 
 

 
Figure A1.2 Raman spectrum of dentine showing characteristic peaks of  

amide (1800-1400 cm-1) and PO4 (960 cm-1) 
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Appendix 2  

2.1- Synthesis of Polyurethane 
 
 

 
 
Figure A2.1 FTIR spectrum of polyurethane synthesised by using PEG (soft segment), 

MDI (hard segment) and BD (chain extender). The spectrum showing characteristic 

peaks at 3320 cm-1 (N—H), 2915 cm-1(asymmetric stretching CH2), 1690-1685 cm-1 

(C=O), and 1120-960 cm-1 (C—O—C) 
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2.2- Supercritical Fluid Method 
 

2.2.1- Synthesis of Polyurethane 
 
 
 
 
 

 
 

Figure A2.2 FTIR spectrum of polyurethane synthesised using Supercritical Fluid 

Method. The spectrum showing characteristic peaks at 3320 cm-1 (N—H),  

2915 cm-1(asymmetric stretching CH2), 2350 cm-1 (CO2), 1720-1700 cm-1 (C=O), and 

1150-920 cm-1 (C—O—C) 
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2.2.2- Synthesis of Polyurethane/nano-Hydroxyapatite 
 
 
 
 

 
 
Figure A2.3 FTIR spectrum of polyurethane/nano-hydroxyapatite composite synthesised 

using Supercritical Fluid Method. The spectrum showing characteristic peaks at 3320 

cm-1 (N—H), 2915 cm-1(asymmetric stretching CH2), 1730-1700 cm-1 (C=O), and 

1150-920 cm-1 (C—O—C) 
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Appendix 3  
 

3.1- Biostability 

 
Figure A3.1 Comparative FTIR spectra of PU treated with deionised water at 1 (red), 

and 7 (green) days 

 

 
 
Figure A3.2 Comparative FTIR spectra of PU treated with PBS at 1 (red), and 7 (green) 

days 
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Figure A3.3 Comparative FTIR spectra of PU/nHA5 treated with deionised water at  

1 (red), and 7 (green) days 

 
 

 
 

Figure A3.4 Comparative FTIR spectra of PU/nHA5 treated with PBS at 1 (red), and  

7 (green) days 
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Figure A3.5 Comparative FTIR spectra of PU/nHA10 treated with deionised water at  

1 (red), and 7 (green) days 

 

 
 

Figure A3.6 Comparative FTIR spectra of PU/nHA10 treated with PBS at 1 (red), and  

7 (green) days 
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Figure A3.7 Comparative FTIR spectra of PU/nHA15 treated with deionised water at  

1 (red), and 7 (green) days 

 

 
 

Figure A3.8 Comparative FTIR spectra of PU/nHA15 treated with PBS at 1 (red), and  

7 (green) days 
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Figure A3.9 Comparative FTIR spectra of PU/nHA20 treated with deionised water at  

1 (red), and 7 (green) days 

 

 
 
Figure A3.10 Comparative FTIR spectra of PU/nHA20 treated with PBS at 1 (red), and  

7 (green) days 
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Figure A3.11 Comparative Raman spectra of  

PU (red), PU/nHA5 (blue), PU/nHA10 (violet), PU/nHA15 (green) and PU/nHA20 

(black) treated with deionised water at 7 days  
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Figure A3.12 Comparative Raman spectra of  

PU (red), PU/nHA5 (green), PU/nHA10 (blue), PU/nHA15 (blue) and PU/nHA20 

(violet) treated with PBS at 7 days  

 

 
 
 



                                                                                                                                        Appendices                             
 

    
 

354

 
 
 
 

  
                       
                            PU DW Day7                                    PU PBS Day7 
 
 

  
 
                            PU/nHA5 DW Day7                       PU/nHA5 PBS Day7 
 
 

  
 
                            PU/nHA10 DW Day7                     PU/nHA10 PBS Day7 
 
 

Figure A3.13 SEM images of PU, PU/nHA5 and PU/nHA10 samples treated with 

deionised water (DW) and PBS at 7 days 
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                           PU/nHA15 DW Day7                 PU/nHA15 PBS Day7 
 
 

  
 

                           PU/nHa20 DW Day 7                    PU/nHA20 PBS Day7 
 
 

Figure A3.14 SEM images of PU/nHA15 and PU/nHA20 samples treated with 

deionised water (DW) and PBS at 7 days 

 
 
 
 
 
 
 
 
 



                                                                                                                                        Appendices                             
 

    
 

356

Appendix 4  
 

4.1- Bioactivity 
 
 

 
 

Figure A4.1 Comparative FTIR spectra of  

PU (red), PU/nHA5 (blue), PU/nHA10 (violet), PU/nHA15 (green) and PU/nHA20 

(black) treated with m-SBF at 14 days  
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Figure A4.2 Comparative Raman spectra of  

PU (red), PU/nHA5 (blue), PU/nHA10 (violet), PU/nHA15 (green) and PU/nHA20 

(black) treated with m-SBF at 14 days  
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Appendix 5  
 

5.1- Bio-adhesion 

  
 

  
 

Figure A5.1 SEM images of PU adhesion with dentine at 7 and 21 days in media: 

deionised water (DW) and artificial saliva (AS) 

  
 

  
 

Figure A5.2 SEM images of PU/nHA10 adhesion with dentine at 7 and 21 days in 

media: deionised water (DW) and artificial saliva (AS) 
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Figure A5.3 SEM images of PU/nHA15 adhesion with dentine at 7 and 21 days in 

media: deionised water (DW) and artificial saliva (AS) 

 
 

  
 

  
 

Figure A5.4 SEM images of PU/nHA20 adhesion with dentine at 7 and 21 days in 

media: deionised water (DW) and artificial saliva (AS) 
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Appendix 6  
 

6.1- Surface Roughness 
 

6.1.1- Characterisation 
 
Mitutoyo Surftest. 401 Japan was used to analyse the surface roughness. The cut off 

length was 0.8 mm. 
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Figure A6.1 Surface roughness analysis of PU and PU/nHA composites 
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Appendix 7  
 

7.1- Fluoroapatite 
 

7.1.1- Synthesis of Fluoroapatite 

 
 

 
Figure A7.1 FTIR spectrum of Fluoroapatite showing characteristic peaks in between 

1200-962 cm-1 (stretching PO4), 1650-1470 cm-1 (CO3), and 579 cm-1 (bending PO4) 
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Figure A7.2 Raman spectrum of Fluoroapatite showing characteristic peaks in between 

961 cm-1 (stretching PO4), and 579 cm-1 (bending PO4) 
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7.1.2- Synthesis of Polyurethane/nano-Fluoroapatite composite 
 
 
 

 
 

Figure A7.3 Comparative FTIR spectra of PU/nFA10 (red), PU/nFA (blue), and 

PU/nFA20 (green) 
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7.1.3- Fluoride Release Analysis 
 

 
Figure A7.4 Fluoride release analysis of nano-fluoroapatite (nFA) for periodical time 

interval in deionised water and artificial saliva 

 

 
Figure A7.5 Fluoride release analysis of PU/nFA composite treated in artificial saliva. 

PU/nFA composites immersed in deionised water showed negligible release of fluoride 
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Figure A7.6 General trend of fluoride release analysis PU/nFA composite treated in 

deionised water and artificial saliva 
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Fluoride Release Analysis from Novel Bioactive Dental Restorative 

Composite 
A.S. Khan, S. Aamir, F.S.L. Wong, I.U. Rehman 

“Objective” Fluoride is a well-documented anti caries agent, however the anti-

cariogenic effect of the fluoride-releasing material varies and depends upon the amount 

of fluoride the material releases (Xu et al. 2006, Dental Materials 22:1014). The 

objective of this study is to evaluate the affect of artificial saliva on the release of 

fluoride from novel bioactive dental restorative composite. 

“Methods” Nano-apatite powder was obtained from the gel form by heat treating. A 

novel polyurethane composite material was prepared by chemically binding the nano-

apatite to the diisocyanate component in the polyurethane backbone by utilising solvent 

polymerisation. The concentration of nano-apatite was 10, 15 and 20% wt/wt in 

polyurethane. The procedure involved stepwise addition of monomeric units of the 

polyurethane, and optimising the reagent concentrations. The samples were based on 

polyurethane/nano-fluoroapatite (PU/n-FA) and polyurethane/nano-

hydroxyapatite/sodium fluoride (PU/n-HA/NaF). Six sample of each material were 

analysed where polyurethane (PU) was used as control material. The samples were 

stored in 15ml of deionised water (pH 7.4) and artificial saliva (pH 6.8) at 37ºC and 

were evaluated after 1, 3, 7, 14, 21, 28, 40, 90 and 180 days by using ion selective 

electrode. The media solution was replaced after each measurement. 

“Result” The fluoride release was linear to square root of time (R2 > 0.80). The fluoride 

release in artificial saliva was significantly higher (p≤ 0.05) than in deionised water. The 

release of fluoride from PU was significantly lower (0.01 m mole) than experimental 

samples Composite based on PU/n-HA/NaF showed higher fluoride release values as 

compare to PU/n-FAp. 

“Conclusion” The combined use of polyurethane and fluoride releasing fillers provides 

sustained release of fluoride over a long period of time. The novel fluoride releasing 

polyurethane-apatite based composites can provide the anti-cariogenic properties. 
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Synthesis and in-vitro analysis of a novel-bioactive dental restorative 

composite 
A.S. Khan, I.J. McKay, F.S.L. Wong, I.U. Rehman 

 

“Objectives:” It is desirable for a dental restorative material to have bioactive and 

bonding properties. Hydroxyapatite (HA) has been shown to be osteo-conductive but 

can only bonds to resin through silane coating. A novel-bioactive composite has 

been synthesised based on polyurethane (PU) and nano-HA by creating a covalent 

linkage between them. In this study, its physical and biochemical characteristics 

were analysed. 

“Methods:” Nano-HA powder was produced from the sol-gel. A novel PU-nano-

apatite composite material was chemically prepared by utilising solvent 

polymerisation. The resulting composites were analysed by chemical, thermal, and 

mechanical characterisations. The resultant composite material was electrospun to 

form fibre mats. The bio-adhesion with dentine were analysed in distilled water and 

artificial saliva. Bioactive behaviour was determined in SBF. The composites were 

hydrolytically degraded in distilled water and PBS and were analysed. Cell growth 

and proliferation was measured by MTS assay. 

“Results:” Spectral analyses showed the grafted isocyanate and ether peaks on HA, 

indicating that urethane linkage was established. The thermal and mechanical 

properties were enhanced by nano-HA. The SEM images of electro-spun nano-fibres 

revealed no loose HA particles. Bio-adhesion and bioactivity analysis showed the 

composite adhered firmly on the tooth surface (dentine). Higher nano-HA content 

composite showed thicker layer of adhesion. These composites had high resistance 

toward hydrolysis and little degradation.  Biocompatibility test of the composite 

showed that the cells were growing although at a lower rate of growth compared to 

PU. 

“Conclusion:” Covalent bond between HA and polymer were found in this novel 

composite with no silane agent. Bio-adhesion was found between this composite and 

tooth structure. Hence, it has the potential to be a desirable restorative material.  
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An in-vitro bio-adhesion and biocompatibility analysis of novel 
bioactive composites 

 

A.S. Khan, R. Whiley, F.S.L. Wong, I.U. Rehman 

 

“Objectives:” A novel polyurethane/nano-hydroxyapatite (PU/nHA).composite with 

interfacial linkage has been manufactured recently. This study investigated its in-vitro 

bio-adhesion and biocompatibility to human dentine. 

“Methods:” A novel PU/nHA composite material was prepared by chemically binding 

the nHA in PU backbone utilising solvent polymerisation. The concentration of nHA in 

PU was 10, 15, or 20% wt/wt. Cavities prepared in dentine were filled with GC Fuji IX 

(GC Corporation, Japan), Filtek Supreme (3M ESPE, UK), and the PU/nHA 

composites. The samples were stored in deionised water and artificial saliva for a 

maximum of 90 days and tests were carried out at sequential time intervals. Push-out 

test was performed using an Instron machine at a cross-head speed of 1mm.min-1. 

Afterwards, interfacial adhesion of the composites to dentine was assessed using 

Scanning Electron Microscopy (SEM). Composite disc samples were incubated with 

standardised suspensions of Streptococcus sanguinis strain NCTC 7863 for 2hrs and 

washed in PBS. The number of adhering bacteria was determined by vortexing with 

glass beads and serial dilution followed by plating for colony forming units per disc. 

“Results:” For PU/nHA, the mean push-out bond strength in both media increased with 

increasing immersion time. Samples with higher concentrations of nHA had higher bond 

strength. Higher bond strength was found in samples immersed in artificial saliva than 

those in deionised water (Table 1). There was 97.09% reduction in bacteria adhering to 

the grafted composite compared to PU.  

“Conclusion:” Bond strength of PU/nHA composites was similar to existing obturating 

material. With its low bacterial adhesion it may provide a promising solution to reduce 

infections. Hence, this novel composite has the potential to be used as a bioactive 

obturating material. 
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Table 1 Mean Push-out bond strength values and standard deviations of samples immersed in 

artificial saliva (AS) and deionised water (DW) 

Samples  Day 7 Day 21 Day 40 Day 90 
PU/nHA10 

AS 
DW 

 
0.46 ±0.08 
0.45 ±0.09 

 
0.51 ±0.09 
0.49 ±0.09 

 
0.66 ±0.10 
0.56 ±0.11 

 
0.80 ±0.15 
0.72 ±0.15 

PU/nHA15 
AS 
DW 

 
0.48 ±0.11 
0.47 ±0.15 

 
0.52 ±0.18 
0.49 ±0.16 

 
0.69 ±0.18 
0.56 ±0.19 

 
0.86 ±0.14 
 0.76 ±0.17 

PU/nHA20 
AS 
DW 

 
0.49 ±0.12 
0.48 ±0.15 

 
0.54 ±0.15 
0.51 ±0.18 

 
0.77 ±0.18 
0.59 ±0.20 

 
0.89 ±0.22 
0.80 ±0.25 

GC Fuji IX 
AS 
DW 

 
7.2 ±1.6 
7.0 ±2.1 

 
7.4 ±1.4 
7.1±1.6 

 
6.9 ± 1.3 
 6.8 ± 2.0 

 
6.8±1.8 

 6.6 ±1.7 
Filtek Supreme  

AS 
DW 

 
28.1 ±2.4 
28.0 ±1.9 

 
28.2 ±2.8  
28.0 ±2.4  

 
29.4 ±2.2 
28.3 ±1.7 

 
29.6 ±3.2 
 28.7 ±2.2 
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Synthesis, in-vitro bio-adhesion and biocompatibility analysis of a novel bioactive 
composite 

A.S. Khan1,   F.S.L. Wong2, I.U. Rehman1 
 

Introduction: It is desirable for a restorative material to 
have bioactive and bonding properties that exhibit a 
specific biological response at the interface of the 
material, which results in the formation of bond 
between the tissue and the material. Polyurethane (PU) 
and nano-hydroxyapatite (nHA) have been used in a 
variety of biomedical and dental applications. The 
interfacial linkage between PU and nHA is one of the 
major factors that determine the ultimate properties of 
the composite. This study focused on the synthesis of a 
covalently-linked PU/nHA restorative composite and 
the in-vitro bio-adhesion and biocompatibility analysis. 
“Methods:” nHA powder was obtained from the gel 
form by heat treating. A novel PU composite material 
was prepared by chemically binding the nHA to the 
diisocyanate component in the PU backbone by utilising 
solvent polymerisation. The concentration of nHA was 
10, 15 and 20% wt/wt in PU. The resulting composites 
were analysed structurally by using Fourier Transform 
Infrared (FTIR, Photoacoustic sampling). The in-vitro 
bio-adhesion and bond strength (Push-out test) were 
analysed with dentine tooth structure. The samples were 
stored in deionised water and artificial saliva (pH 6.8) 
for up to 90 days and were analysed with sequential 
time intervals (7, 21, 40, and 90 days). Push-out test 
was performed on Instron 6025 with the cross head 
speed of 1 mm.min-1 and a load cell of I KN. The 
adhesion of the composites with tooth structure was 
analysed by using Scanning Electron Microscopy 
(SEM; JEOL 6300 JSM and FEI)) and Energy 
Dispersive Spectroscopy (EDS). The samples were 
mounted and were sputter coated under vacuum with 
carbon. The biocompatibility tests were performed by 
using cell-culturing and bacterial adhesion. The 
osteoblast-like cells were supplemented with 10% of 
fetal calf serum, 0.3µg/ml fungizone (Invitrogen) and 
50µg/ml penicillin, 50µg/ml streptomycin (Invitrogen). 
Cell growth and proliferation was measured by MTS 
assay. The experimental composite surfaces were 
investigated for bacterial adhesion using Streptococcus 
Sanguis in blood plasma. 
Results and Discussion: This study successfully 
achieved the grafted isocyanate and ether peaks on the 
surface of nano-apatites showing the urethane linkage. 
The FTIR spectra (Fig. 1) of composites showed that 
the urethane linkage at 3310 cm-1 which was likely to be 
the grafted peak of HN—CO, showing that covalent 
bond was formed between nHA and MDI. In Fig. 2 the 
comparative FTIR spectra showed that the peak at 1702 
cm-1 attributed to hydrogen bonded (inter urethane 
bonding) carbonyl band. There was also grafting at OP-
HC-O-(linkage of PO4 and CH2-O-CH2) in the range of 
1110-900cm-1.  The mean push-out bond strength in 
both media showed that with the increase in immersion 
time the bond strength of the samples increased, where 
the samples with higher concentrations of nHA has 
shown greater values, however, the samples immersed 
in artificial saliva showed more bond strength than the 

samples in deionised water. At day 90 PU/nHA20 (0.8 
±0.25 MPa) showed much higher values as compare to 
PU/nHA10 (0.72±0.15MPa).  
 

 
Fig.1 FTIR spectra of grafted MDI and nHA 
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Fig 2 FTIR spectra of PU and PU/n-H composites 
 
SEM analysis showed that at 90 days immersion, 
samples showed (Figure 3, a, b) more adherence as 
compare to 40 days immersion. 
 

   
 

Fig. 3 SEM images of PU/nHA20 at 90 days 
 

The results of biocompatibility test showed that the 
nano-apatite based composite showed low rate of cell 
growth compared to PU, however, the cells were still 
growing and facilitated both adhesion and proliferation. 
The resulting grafted composite surfaces reduced 
bacterial adhesion significantly and the adhesion level 
differs depending on surface composition and structure. 
Conclusion: These composites indicated the formation 
of covalent bond between nHA and PU and showed 
higher value of bond strength and adherence with the 
increase in concentration of nHA. The resulting 
composites have shown better biocompatibility. It is 
suggested that these polyurethane composites may be 
useful for a wide range of biomedical application. 
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Synthesis and Characterisation of  Novel-Bioactive Dental 
Restorative Composite

The new composite  synthesised with CM1 method indicate the formation of covalent bond 
between nano-particles and polymer through HN-CO and OP-HC-O grafting without 
intermediate coupling agent. Hence this composite has the potential to be a novel-bioactive 
dental restorative material that may have the desirable properties of chemical adhesion to 
enamel and dentine. 

Conclusion

IntroductionIntroduction

It is desirable for a restorative dental material to have bioactive and bonding properties that 
exhibit a specific biological response at the interface between the tissue and the material. 
Current resin-base composites, which consist of mainly polymer matrix, filler particles, and 
coupling agent, do not exhibit these properties. The presence of discrete zones at the 
interface between these three components could cause water absorption and the osmotic 
effect would result in swelling and residual pressure on tooth structure1. Silane coupling 
agent contact on the fillers could also cause a decrease in the polymerisation of the resin-
based composite2. Urethane derivatives have been studied with Bis-GMA, these derivatives 
have much lower viscosities and water uptake than Bis-GMA and exhibit higher conversion 
of vinyl group without increasing (and perhaps decreasing) polymerization shrinkage3. 
Urethane based polymers, along with other materials such as acrylic resins or silicone, often 
used in dentistry for the tissue bearing surface of an extra-oral prosthesis4. Nano-particles 
have tendency to show high surface area to volume, superior chemical homogeneity and 
micro structural uniformity5.  Hence, it would be advantageous to combine these two 
materials to form a new dental material that would possess the above desirable properties..

AimsAimsAims

• To synthesise a novel bioactive restorative composite by creating a covalent linkage 
between urethane based polymer and nano-particles.

• To use different (physical and chemical) methods to synthesis this new composite and 
evaluate the linkage in between them

MethodsMethods

Nano-particles were synthesised by the “sol-gel” technique. These nano-particles were 
incorporated with polymer by using physical (PM) and chemical methods (CM1 & CM2). 
All chemicals were purchased from Sigma Aldrich, USA.

PM: polymer was synthesised by using polyether,  4,4′methylenebis(phenyl isocyanate) 
(MDI), 1,4-butanediol (BDO). After synthesis polymer was dissolved in solvent  and nano-
particles were added and stirred it.

CM1: nano-particles were added to the polyether before the other sgements were added. After 
mixing it was allowed to polymerise at high temperature to make a composite.

CM2: nano-particles were added to the unpolymerised polymer and allowed them to 
polymerise at high temperature .

Characterisation:
SEM (JOEL SEM 6300F, Japan) was used to investigate the morphological 

pattern of n-HAp and the composite; and UV-spectroscopy (Perkin-Elmer, USA) to show 
the presence of n-HAp in composite. Spectroscopic analysis were characterised by using 
Photoacoustic FTIR (Nicolet, UK) with a scan time of 256 and a resolution of 8 cm-1. 

Fig 2 SEM image of the nano-particle/polymer composite (5000x)

FTIR spectrum (Fig 4) of polymer/nano-particle composite synthesised by PM, CM1 and CM2  shows  
the broad peak  ~3310-3330cm-1, which is due to HN-CO (linkage of OH  and NCO). This peak 
indicates that covalent bond was formed between particles and polymer. CM1 shows the peak at 
1715cm-1, which is the P-O-CO-NH bond formed between MDI and PO4. The shift of peaks in the 
range of 1110-900cm-1 in CM1 attributes to the linkage OP-HC-O- and shifting of characteristic peak 
of HPO4 (875cm-1) to ~900cm-1. Covalent bonding of particles with polymer has the potential to 
improve the interface of composite matrix, therefore, leading to significant improvement of the 
bioactive, bonding and mechanical properties. OH groups present on the surface of nano-particles 
seem to be a reactive group, due to nano size and large surface area, there are relatively large amounts 
of atoms on the surface and large fraction of surface OH groups. FTIR spectrum indicates that OH 
and PO4 have the reactivity towards isocyanate groups and also forms the urethane linkage. These 
spectra suggested that more covalent bonds were formed using CM1 method compared to the other 
two methods. 

1. McCabe JF, Rusby S. Biomaterials, 2004, p-4001
2. Halvorson RH, Erickson RL, Davidson CL. Dent Mater, 2003, p-327
3. Khatri CA, Stansbury JW, Schultheisz CR, Antonucci JM, Dent Mater, 2003, p-584
4. Labella R, Braden M, Deb S, Biomaterials, 1994, p-1197
5. Zhu X, Eibl O, Berthold C, Scheideler L, Gerstorfer GJ, Nanotechnology, 2006, p-2711
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The significant shift of peak was clearly observed and it clearly shows the linkage of particles with 
polymer molecules.

Fig 3 UV spectroscopy of polymer and composite

SEM images of the nano-particles and the composite made using CM methods (Figs 1 & 2 
respectively). The measured size of nano-particles were in the range of 100-200nm. These 
particles are not visible in the polymer apart from a few agglomerated particles on the surface, 
indicating that nano-particles were dissolved in the polymer matrix. The inclusion of nano-
particles offer the possibility to have enhanced bonding properties and improved 
physical/mechanical properties due to its high surface area to volume5. UV-spectroscopy (Fig 
3) shows the polymer peak of 300nm and the covalently linked composite 
characteristic peak of 350nm at 10%T. 

Result and Discussion Result and Discussion 
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Fig 4 FTIR spectra  of composite synthesised by three methods
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The biostability of the polymers and their composites is one of the most 
critical parameter for their use in biomedical applications1,2. A number 
of bioactive composites have been used in biomedical applications, but 
their stability has been of concern especially when implanted in-vivo. 

A novel Polyurethane – Hydroxyapatite composite in which HA 
nano-particles are covalently bonded to the polymer backbone has 
been created and the hydrolytic degradation of a series of newly
synthesised polyurethane (PU) and polyurethane/nano-hydroxyapatite 
(PU/n-H) composites have been evaluated in detail 

Nano-apatite powder was obtained via sol-gel route followed by heat 
treating. A novel polyurethane composite material was prepared by 
chemically binding the nano-apatite to the diisocyanate component in 
the polyurethane backbone by utilising solvent polymerisation. The 
concentration of nano-apatite was 5, 10, 15 and 20% wt/wt in 
polyurethane. The PU and PU/n-H composites were hydrolytically 
degraded in deionised water (pH 7) and in phosphate buffer solution 
(pH 7.4) at 37°C for a period of up to 6 months and were analysed 
with sequential time intervals (1, 7, 14, 21, 40, 90, and 180 days). Six 
samples of each material with the nominal dimensions of 20x10x1 
mm3 were immersed in each media. The specimen films were removed 
from the solution and vacuum dried at 60°C for 24 hour prior to analysis. 

The PU and PU/n-H composites were physically and chemically 
characterised, by evaluating their surface properties by contact angle 
measurements, weight loss profile, Fourier Transform Infra Red 
Spectroscopy couples with Photoacoustic Sampling Cell (FTIR-PAS), 
Raman Spectroscopy, X-ray Diffraction (XRD), Thermo-gravimetric 
analysis (TGA) and Scanning electron microscopy (SEM). In addition, 
the resulting media (solutions) were also analysed by UV spectroscopy 
to find out any degradative constituents from the samples.
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Several studies suggest that chemical and morphological nature of 
biomaterial surface determine to a large extent how the biomaterial 
interacts with the host tissue and the physiological fluids after 
implantation3,. It is significant to evaluate the surface properties, such 
as wettability, so that future relationship with in-vivo behaviour might 
be established. An increasing contact angle means a decrease of 
surface wettability, i.e., more hydrophobic. It is observed that the 
surface contact angle increased with the increase in n-HA content 
(Fig. 1). The increase of contact angle of PU/n-HA20 was ~20% than 
that of PU (90° ±0.35 and 73.96° ±0.32 respectively). 

Synthesis and in-vitro analysis of degradative resistance 
of a novel bioactive composite

Weight loss of the PU and PU/n-HA composite specimens in DW and 
PBS increased substantially with time [Fig.2 (a & b)]. The rate of 
weight loss was significantly low in first 40 days but higher values were 
observed after 90 days. The composite with higher concentration of n-
HA (e.g. PU/n-HA20) had lower weight loss comparing to the PU and 
the composites with lower concentration of n-HA (PU/n-HA5) -
However, PU-n-HA10 shows significantly higher weight loss. The 
weight loss in the composite specimens occurred by dissolution of both 
inorganic particles and organic components into the buffer solution. The 
rate of low weight loss in higher n-HA concentrated composites could 
be due to the strong interaction between the nano-particles and polymers 
and formation of less water soluble compounds. 

Figure 3 (a & b) shows the comparative spectra of PU and PU/n-HA20 composite after immersion. The films incubated in DW 
and PBS retained all the characteristic peaks of the PU and PU/n-HA composites. The spectra of composites showed that the 
urethane linkage at 3310 cm-1 which was likely to be the grafted peak of HN—CO, showing that covalent bond was formed 
between nano-apatite and PU. The peak at 1702 cm-1 attributes to hydrogen bonded (inter-urethane bonding) carbonyl band. There 
was also grafting at OP-HC-O-(linkage of PO4 and CH2-O-CH2) in the range of 1110-900cm-1. There is no shift of peak and 
significant emergence of peaks which attribute that there is no adsorption of solution content during immersion, which proves that 
the polyether based composite shows resistance toward DW and PBS and does not allow interacting with urethane linkage. In this 
study PU and PU/n-HA composites are based on PTMG and result obtained in this study supported that the that polyurethane 
based on higher methylene group concentration has better hydrolytic stability. The structures of PTMG are regular, so easy to 
form the crystal structures and the cohesion force of the soft segments are high, therefore the water molecules are hard to penetrate 
into the membranes.  This hydrolytic stability is also due to formation of stable hydrogen bond between hard and soft segment 
among PU samples and stable hydrogen and covalent bond between n-HA and PU components. The stable H-bonded hard 
segment micro-domains and other H-bonded along the chains contributed the formation of protective structure.

As observed in FTIR, no significant changes were observed with the Raman spectra (Fig. 4 a & b) of PU and composite 
specimens immersed in (i) DW and (ii) PBS. It was observed that there was no shifting of peak that indicates that there was no 
chain scission in the PU due to well interlinked hard and soft segments. After 90 days, slight increase in intensity of peaks was 
observed in PU and PU/n-HA composites. The intense bands shows the absorption of water and it is expected that –OH forms a 
bond with aromatic and C—H peaks. CH structure behaves as a donor whereas, water molecule as an acceptor. In these spectra it 
is suggested that there is an interaction between C—H  and –OH and resulting hydrogen bond establish. 

The XRD pattern (Fig. 5) of PU samples are similar after treated with deionised water and PBS. Specimen immersed in PBS 
show low crystallinity as compare to deionised water. After 90 days of immersion in PBS and deionised water, crystallinity 
decreased by almost 50 and 35% respectively. Similar pattern was observed with PU/n-HA composites. For PU/n-HA20 
composites, the sudden decrease in crystallinity was only observed at 90 days in DW and PBS.  The broadness of peaks was 
almost the same for all samples, which shows that there is no possible alteration in the structure of the composites irrespective 
to n -HA content and the duration of immersion. Fig. 6 shows the TGA pattern of PU and PU/n-HA20 composites and it shows 
that after immersion there was slight decrease in thermal decomposition but it was not significant.

SEM images (Fig.7) of PU (a & b) and PU/n-HA20 (c & d) were obtained with predetermined time intervals after incubation 
in DW and PBS. After 90 days, few pits were observed with the nominal size of 2-3 µm. The pitting of the surface was 
attributed to extraction of low-molecular weight degradation product that resulted from chain scission. It was interesting to find 
from UV spectroscopy that there was no released or disintegrated components in the media from the samples (PU and PU/n-H 
composites), which shows the long term stability of the polymer and polymer composite. 

Novel composites materials, which are covalently bonded were formed between n-HA and PU through HN-CO and P-C-O 
grafting without intermediate coupling agent. The incorporation of n-HA in these composites increases the resistance toward 
hydrolytic degradation. Hence, these PU/n-HA composites have acceptable biostability with no significant degradative effect 
and their long term properties are more superior to PU. It is suggested that these PU/n-HA composites may be useful for a 
wide range of biomedical application, i.e., dental and orthopaedic applications. 

Experimental Methods

Introduction

Results and Discussion

Conclusion

Figure 1 Contact angle measurement with standard deviations of PU and 
PU/n-HA composites prior to immersion in media

Figure 2 Comparison of weight loss measurement of PU and PU/n-HA composites 
treated with deionised water (DW) and phosphate buffer solution (PBS) 
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Figure 3 (a & b) FTIR spectra of PU and PU/n-HA composite (i) DW (ii) PBS  respectively
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Figure 4 (a & b) FTIR spectra of PU and PU/n-HA composite (i) DW (ii) PBS  respectively

Figure 5 XRD pattern of PU and PU/n-HA after immersion Figure 6 TGA of PU and PU/n-HA after immersion

Figure 7 SEM images of PU (a & b) and PU/n-HA20 (c & d) immersed in DW and PBS respectively
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Effect of surface properties on protein adsorption 
of polyurethane membranes

The initial rapid adsorption of proteins onto the biomaterial surface is of 
paramount importance for the success of guided tissue regeneration (GTR) 
therapy. Protein adsorption is the first event, which occurs in a milieu of a 
second as a biomaterial comes in contact with blood in vivo. It is in response 
to the chemo attractant nature of these adsorbed proteins that any biological 
response is elicited. In contrast surface energy will affect adhesion between 
biomaterial and surrounded tissue which is a challenge in GTR treatment

Zeeshan Sheikh1, Nima Roohpour2, Abdul Khan2 and Ihtesham Rehman2

1.IRC in Biomedical Materials, COMSATS Institute of Information Technology, Lahore and 
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Polyether polyurethane and PDMS containing modified polyurethanes were 
synthesized via two step, solution polymerization. Synthesized polymers 
were cast as membranes and characterized using FTIR and Raman 
spectroscopy. Surface energy and wettability of polymeric membranes were 
determined by contact angle measurement. Membranes were soaked in 
Bovine Serum Albumin (BSA) solutions, (0.3mg/ml) in non-ionized water 
at 370C. Protein absorption of membranes was investigated using Raman 
and ATR-FTIR spectroscopy. 

Polymer synthesis & BSA treatment

Characterization with ATR-FTIR and Raman Spectroscopy
Surface characterizations of the membranes were carried out by using Nicolet 
8700 FTIR spectroscope with ATR accessory using Germanium crystal. The 
resolution range was 8 and spectra obtained over 64 exposures per sample. 
Raman spectroscopic analyses were carried out by using Nicolet Almega XR 
Dispersive Raman with 100μm pinhole. A 785 nm laser was used with objective 
10X. The exposure time for samples was 1 sec over 128 exposures each.

Figure 2. ATR-FTIR Spectra of Polyetherurethane membranes with and without BSA treatment

Contact angle measurement & surface energy values of membrane samples are 
shown in  table 1

An increasing contact angle means a decrease of surface wettability, i.e., more 
hydrophobic.PDMS containing polyurethane showed lower surface energy 
(28.047mN/m) in comparison with unmodified polyether urethane 
(35.608mN/m) (Table 1)
IR and Raman spectra are significantly informative, as changes observed in 
Amide I and II bands (Figures 4 & 5) of proteins indicated that more proteins 
adsorb onto surface of the unmodified polyetherurethane membranes in 
comparison to PDMS containing polyurethane (Figure  6)

Table 1. Contact angle measurements & Surface energies of membrane samples.

Figure 1. Polyurethane synthesis. 

Contact angles and surface energy of Polyether-urethane and PDMS 
modified polyether-urethane membranes were measured according to the 
procedure reported by Kwok and Neumann, 1999. The measurements 
were conducted at room temperature using liquid drops (deionized water 
and α-bromonaphthalene) of 5 µl in size using a micro-litre syringe. The 
contact angles of both side of drop were measured. Separate frames were 
collected every 2 seconds for 20 seconds and mean contact angle was 
calculated. 

[OCN-R-NCO + n HO-R’-OH ------ [O-CONH-R-NHCO-O-R’] ]n

Figure 3. Raman Spectra of Polyetherurethane membranes with and without BSA treatment

Selected ATR-FTIR and Raman spectra shown in Figures 3 & 4

Figure 4. Focus on Amide I & II regions   Figure 5. Overlap of Raman spectra of 
in FTIR spectra of BSA untreated and       BSA untreated and treated Polyether 
treated Polyurethane membranes.               urethane membranes.  

Figure 6. Overlapped ATR-FTIR spectra of Polyetherurethane (PDMS-modified), 
with & without BSA treatment.

• Unmodified Polyether-urethane shows protein adsorptive ability and thus can be 
investigated further for GTR therapy.
• PDMS containing polyurethane showed lower surface energy in comparison with 
unmodified polyether urethane so it could be considered as a hydrophobic surface.
• Incorporation of PDMS in polyurethane will reduce protein absorption as well as 
reducing adhesion to surrounding tissue. 
References:
• Kwok, D. Y. and A. W. Neumann (1999). "Contact angle measurement and contact angle interpretation." Advances in 

Colloid and Interface Science 81(3): 167-249

Introduction

Experimental Methods

Results
The aims & objectives of  this study were to study the effects of the  surface 
properties of  polyurethane membranes on protein absorption. Investigation 
using contact angle measurement, ATR-FTIR (Attenuated Total Reflectance-
Fourier Transform Infra Red) and Raman spectroscopy.

Aims & Objectives

Discussion

Conclusions
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1.Polyetherurethane    
unmodified

θ with water (0)                Surface energy (mNm-1)Polymer  Sample
Sγ

Contact angle & Surface energy analyses



It is desirable for a restorative material to have bioactive and bonding 
properties that exhibit a specific biological response at the interface of the 
material, which results in the formation of a bond between the tissue and 
the material. The bioactivity of the biomaterial is one of the critical 
parameter to use them for clinical application. Bioactive materials can 
stimulate a specific response in the surrounding tissues by means of 
complex mechanism involving three main phases: ion leaching, partial 
dissolution of the ceramic surface and the precipitation of bonelike 
apatite layer on the ceramic surface1. A novel Polyurethane –
Hydroxyapatite composite in which HA nano-particles are covalently 
bonded to the polymer backbone has been created2 and the the in-vitro
analysis was carried out in modified-simulated body fluid (m-SBF) at 
controlled temperature of 37°C.

Nano-apatite powder was obtained via sol-gel route followed by heat 
treating. A novel polyurethane composite material was prepared by 
chemically binding the nano-apatite to the diisocyanate component in 
the polyurethane backbone by utilising solvent polymerisation. The 
concentration of nano-apatite was 5, 10, 15 and 20% wt/wt in 
polyurethane. m-SBF was prepared, as described by Oyane et al.3 by 
dissolving reagent in deionised water. The films were prepared by solvent 
casting. The resulting films were cut uniformly into 12 mm diameter. Six 
samples of each material were used for this study. The samples were 
sterilised by soaking into 70% ethanol for predetermined time interval and 
dried before immersion. The sterilised samples were immersed in 15 ml 
m-SBF containing polystyrene tubes (Fischer Scientific, UK) covered with 
lids for 1, 7, 14, 21, and 40 days, which were maintained at 37°C. The 
m-SBF was changed after 14 days to maintain a constant liquid 
composition. The resulting samples were characterised to evaluate the 
bioactivity by using Scanning Electron Microscopy (SEM), Energy 
Dispersive Spectroscopy (EDS), Fourier Transform Infrared (FTIR;
Photoacoustic Sampling), Raman Spectroscopy, and X-ray Diffraction 
(XRD).

Several studies suggest that chemical and morphological nature of 
biomaterial surface determine to a large extent how the biomaterial interacts 
with the host tissue and the physiological fluids after implantation4,. This 
study successfully achieved the grafted isocyanate and ether peaks on the 
surface of nano-apatites showing the urethane linkage. The comparative 
FTIR spectra (Fig. 1) of composites showed that the urethane linkage at 
3310 cm-1 which was likely to be the grafted peak of HN—CO, showing 
that covalent bond was formed between nHA and MDI. It was observed 
from FTIR spectra that the peak at 1702 cm-1 was attributed to hydrogen 
bonded (inter urethane bonding) carbonyl band. The grafting was also 
expected at OP-HC-O- (linkage of PO4 and CH2-O-CH2) in the region of 
1110-900 cm-1. 

Synthesis and in-vitro analysis of a novel 
bioactive nano-composite

It was found that the in-vitro bioactivity of these PU/nHA composites was 
dependent on the chemical composition. The introduction of calcium-
phosphate into the network facilitated the formation of hydroxylcarbonate-
apatite layer on the surfaces of composites. It was observed that with the 
increase in concentration of nHA, significant amount of calcium-phosphate 
precipitates were formed on the surface. The thickness of the apatite layers 
increased with the increase of the immersion time in SBF. It was observed 
that in PU samples (Fig. 2i) there was no visible apatite formation on the 
surface of immersed samples up to 14 days. However, 40 day samples 
showed apatite formation on the surface. Morphological studies of the 
PU/nHA composite surfaces immersed for 40 days in m-SBF presented an 
apatite (calcium phosphate) layer on the surface of the composites. 
PU/nHA5, PU/nHA10 (Fig. 2ii), PU/nHA15, and PU/nHA20 (Fig. 2iii)
composite samples showed that the apatite layer was not prominent at 1 day; 
however, it was observed that with the increase in immersion time the apatite 
globules packed tightly with each other. 

Initially the apatite particles were scattered on the surface, but at 14 days’ incubation, the sample surface developed a dune-
like apatite layer and this structure changed the original morphology of the samples completely. SEM images of 21 days 
immersion showed the dune-like layer evolved into more smooth hillocks, with a subtle net-like texture consisting of short 
micro-rods. The layer growing on the surface coating was quite dense and homogeneous. These newly developed calcium 
phosphate layer showed the same morphology as the amorphous coatings, in addition EDS analysis showed the presence of 
Na, Mg with Ca and P ions. 

FTIR (Fig. 3i) and Raman (Fig. 3ii) spectra of PU/nHA20 composites showed different pattern and changes appeared at 
7 days spectrum. The presence of apatite layer changed the characteristic pattern of peaks at 1400-1200 cm-1, 1100-900 cm-1

and 600-500 cm-1 suggested the apatite layer presented on the surface of samples and changed the structural properties of the 
material. The spectrum of 40 day sample showed broadness and emergence of peaks at 3320 cm-1 (N—H) and 1010 cm-1

(P—O—C) respectively. The shifting of peaks were also observed at 603 and 562 cm-1 due to presence of bending peaks of 
phosphate. The resulting spectra showed that with the increase in concentration of nHA in PU the emergence of peaks became 
more significant. 

The comparative XRD pattern of 1 and 40 days showed a broad band at 10-25º and a sharp peak at 29º. It was observed that 
XRD pattern of PU (Fig. 4a) did not show presence of any band assigned to apatite. In PU/nHA composites, a broadening and 
intensity decreased with the immersion time; however, the higher concentration of nHA showed variation in the sharpness of 
the peaks at 40 days. The XRD patterns showed the diffraction peaks (210, 112, and 300) that confirmed the presence of 
apatite on the surface of samples. It was observed that PU/nHA20 (Fig. 4b) with higher concentration of nHA showed more 
apatite peaks at 39.89º (310) and 47º (222).  However, it was difficult to estimate the exact presence of apatite or phase 
composition from this technique. 

These composites indicated the formation of covalent bond between nHA and PU and showed higher tendency of bioactivity 
with the increase in concentration of nHA. Hence, this newly synthesised bioactive composite has potential to be used as 
biomaterial.
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Figure 1 FTIR spectra of grafted nHA/MDI
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Figure 2 SEM images of (i) PU, (ii) PU/nHA10, and (iii) PU/nHA20 at (a) 1, (b) 14, and (c) 40 days
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Figure 4 XRD patterns of (i) PU and (ii) PU/nHA20 at 1 and 40 days immersion in m-SBF

Figure 3 (i) FTIR and (ii) Raman spectra of PU/nHA20 after immersion in m-SBF at (a) 1, (b) 7, (c) 21, (d) 40 days
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