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Abstract

Inflationary cosmology is the leading explanation of the very early universe. Many
different models of inflation have been constructed which fit current observational
data. In this work theoretical and numerical methods for constraining the parameter
space of a wide class of such models are described.

First, string-theoretic models with large non-Gaussian signatures are investigated.
An upper bound is placed on the amplitude of primordial gravitational waves pro-
duced by ultra-violet Dirac-Born-Infeld inflation. In all but the most finely tuned
cases, this bound is incompatible with a lower bound derived for inflationary models
which exhibit a red spectrum and detectable non-Gaussianity.

By analysing general non-canonical actions, a class of models is found which can
evade the upper bound when the phase speed of perturbations is small. The multi-
coincident brane scenario with a finite number of branes is one such model. For
models with a potentially observable gravitational wave spectrum the number of
coincident branes is shown to take only small values.

The second method of constraining inflationary models is the numerical calcula-
tion of second order perturbations for a general class of single field models. The
Klein-Gordon equation at second order, written in terms of scalar field variations
only, is numerically solved. The slow roll version of the second order source term is
used and the method is shown to be extendable to the full equation. This procedure
allows the evolution of second order perturbations in general and the calculation of
the non-Gaussianity parameter in cases where there is no analytical solution avail-
able.
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1. Introduction

In the past cosmology was a speculative science. The scarcity of observational

data meant that many conflicting theories for the evolution of the universe were

entertained, with nothing but personal opinion to differentiate between them. The

explosion in the quantity and quality of observational data in recent years has led

to a much more competitive marketplace of ideas about the physical beginning of

the universe.

The Big Bang scenario has emerged as a cohesive framework for the evolution

of the universe from very early times. The observation of the Cosmic Microwave

Background (CMB) provided much supporting evidence for this scenario [103]. This

relic radiation, emitted 300,000 years after the Big Bang, continues to be our primary

source of information about the early universe.

The inflationary scenario is an attempt to solve problems with the standard Big

Bang picture and provide an origin for the fluctuations in energy that seeded the

growth of structure in the universe [5, 78, 119, 190, 191]. These fluctuations link the

classical scales of relativistic gravity with the quantum scales of Planck level physics.

There are many possible realisations of inflation and there has been an explosion in

the number of theoretical models which agree with current observational limits (for

reviews see, for example, Refs. [4, 18, 114]).

Ground and space-based observations have significantly challenged theoretical cos-

mological models with a wealth of new data. The Wilkinson Microwave Anisotropy

Probe (WMAP) mission [104], in conjunction with supernova surveys and other ev-

idence, have shown that the fluctuations in the temperature of the CMB are 105

times smaller than the background value and that the magnitude of the fluctuations

is roughly independent of the angular scales at which they are measured. This is in

agreement with the predictions of inflationary models and has led to other scenarios

being ruled out. An upper bound has been placed on the amplitude of gravita-

tional wave perturbations and bounds have also been placed on the deviation of the

fluctuations from a purely random Gaussian distribution.

Constraining the parameter space of inflationary models is an important step to-

wards limiting the number of observationally viable models, and ultimately towards

11



1: Introduction 12

identifying one such model as the best candidate to describe the physics of the early

universe.

The goal of this thesis is to constrain inflationary models in two very different

ways: by deriving analytic limits on their parameter spaces, and by demonstrating

a numerical calculation which will allow the investigation of higher order perturba-

tions. Both these methods have the potential to limit the parameter space of the

models investigated and possibly to rule them out.

In Chapter 2 the foundations are laid for these investigations. The geometry and

physics of the Friedmann-Robertson-Walker universe are presented and inflationary

cosmology is introduced to alleviate problems with the standard Big Bang scenario.

Slow roll conditions are then defined to ensure an adequate duration of inflation.

Despite its elegance, this homogeneous cosmology does not provide an adequate

description of our universe. To understand the inhomogeneities that are present

in reality, first order cosmological perturbation theory is employed. Models with

non-canonical actions can also be considered. The relationships between observable

quantities and the model parameters are altered in this case, meaning these models

could be distinguished from those with canonical actions. The departure of primor-

dial perturbations from a Gaussian random distribution could also reveal significant

information about the underlying physics at work.

In Part I of this thesis, analytical bounds are placed on a class of non-canonical

inflationary models. These models illustrate the dynamics of extended objects called

branes in superstring theory and are considered to be some of the most promising

candidates for achieving inflation using string theory.

Chapter 3 outlines the Dirac-Born-Infeld (DBI) scenario in terms of the string

theoretic background and how it applies in four dimensions as a realisation of infla-

tion. The six extra dimensions required by string theory play an integral role in this

scenario. These are compactified into a complex manifold whose geometry allows

extended regions called throats to exist. DBI inflation consists of a brane moving

in one of the throats. The inflaton field is the radial distance of the brane from the

tip of the throat. Translating the higher-dimensional motion into four dimensions

introduces a non-canonical term into the effective action. The real nature of the

action then enforces an upper bound on the kinetic energy of the inflaton, allowing

a sufficiently long period of inflation. The total inflaton field variation is directly

linked to the amplitude of tensor modes which can be produced.

In Chapter 4 the repercussions of this relationship between the change in the field

value and the tensor mode amplitude are explored further. In the DBI scenario,

Baumann & McAllister [19] placed a conservative upper bound on the total produc-
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tion of tensor modes during inflation, by assuming the brane does not propagate

further than the length of the throat. By considering only the period of observable

inflation, which takes place over a much smaller region of the throat, we have derived

a new bound which is considerably stronger. In the generic case, the ratio of the

amplitudes of the tensor and scalar perturbations must be less than 10−7. This is

below even the most optimistic forecasts for the sensitivity of future observational

experiments.

If attention is limited to brane motion down the throat, another complementary

bound on the tensor modes can be derived, which depends on the non-Gaussianity

of the scalar modes produced during inflation. The DBI scenario is inherently non-

Gaussian in nature, but, even assuming the largest levels allowed by observations,

the tensor-scalar ratio must exceed 0.005. These two bounds are clearly incompatible

in the generic case and only a very fine-tuned selection of model parameters allows

the standard DBI scenario to survive. By taking a more phenomenological approach

and allowing the other parameters to vary, conditions are found under which the

bounds can be relaxed.

A more general class of models which evade the upper bound are identified in

Chapter 5. The DBI scenario is characterised by a simple algebraic relation, in

which the sound speed of fluctuations is inversely proportional to the contribution

to the non-Gaussianity. By allowing the proportionality constant to vary, a new

family of actions is derived for which the bound on the tensor-scalar ratio can be

relaxed.

Instead of considering a single brane moving in the throat, a more natural scenario

might involve multiple branes. These could be created from the energy released by

a brane/anti-brane annihilation and could move up the throat away from the tip.

In Ref. [194], Thomas & Ward described the case when these branes are coincident.

When a large number of branes coincide, the resultant action is similar to the single

brane action and is restricted by the bounds on the tensor-scalar ratio. For a small,

finite number of branes, however, the action is non-Abelian in nature and is one of

the family of “bound-relaxing” actions described above. Nevertheless, this model is

still constrained by observations and, if a detectable tensor signal is required, only

two or three coincident branes are allowed. This limit on the number of branes is

strongly dependent on the non-Gaussianity and a tightening of the observational

bounds could rule out the possibility of an observable tensor signal from this model.

In Part II, the focus of the thesis moves from analytical to numerical techniques.

Second order cosmological perturbations are numerically calculated for single field

canonical inflationary models.
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In Chapter 6, the system of equations for the numerical calculation is developed.

In order to understand non-linear perturbative effects, it is necessary to examine

models using perturbation theory beyond first order. The gauge transformation for

second order perturbations is outlined and the effect on scalar quantities is consid-

ered in the uniform curvature gauge. In Ref. [133] the Klein-Gordon equation for

second order perturbations was written in terms of the field perturbations alone.

This forms the basis of the numerical calculation once it is transformed into Fourier

space. As the original equation involves terms quadratic in the first order perturba-

tions, the Fourier transformed equation contains convolutions of these perturbations.

As a first step towards demonstrating the calculation for the full equation, the slow

roll version of the source term is considered in the second order equation. The second

order perturbations can be linked to observable quantities including the curvature

perturbation and the non-Gaussianity parameter.

The Klein-Gordon equations are the central governing equations of the calculation

described in Chapter 7. They must first be rewritten in a form more suitable for

numerical work. This involves changing the time coordinate to the number of elapsed

e-foldings and writing the convolution terms in spherical polar coordinates. Four

different potentials will be investigated, each of which has a single field which is

slowly rolling. The parameters for these models are set by comparing the calculated

power spectrum of first order scalar perturbations with the latest WMAP data. The

initial conditions for the background field and perturbations must also be specified.

The second order perturbations are initially set to zero, to highlight the creation

of second order effects. As this is a novel procedure, a thorough description of

the implementation of the calculation is given. Where an analytic solution for the

convolution terms is possible, this is compared with the calculated value. Numerical

parameters are set by minimising the relative error in the calculation of one of the

terms.

The results of the numerical calculation are presented in Chapter 8. Three differ-

ent ranges of the discretised momenta are considered and general results presented

for the quadratic potential. As expected for a single field, slow roll model, the sec-

ond order perturbations are highly suppressed compared to the first order ones. The

source term of the second order perturbation equation is similar in form to the power

spectrum of the first order perturbations. It decreases rapidly until horizon crossing

after which a more steady amplitude is maintained. The results for all four poten-

tials are also compared. Differences are apparent in the behaviour of the models

after horizon crossing. This calculation represents only the first step towards a full

numerical integration of the second order Klein-Gordon equation. The next stages
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towards this goal are outlined. The second order equation for single field models

without the slow roll assumption is written in the correct form for numerical use

and the second order equations for the two field case are presented in vector form.

In Chapter 9 the results of the thesis are discussed and some final conclusions are

presented.

Conventions

Throughout this thesis units are chosen such thatMPL ≡ (8πG)−1/2 = 2.4×1018 GeV

defines the reduced Planck mass and c = ~ = 1.

An overdot (˙) is used for differentiation with respect to proper time t and a prime

(′) for differentiation with respect to conformal time η. From Chapter 7 onwards, the

dagger symbol (†) denotes differentiation with respect to the number of e-foldings

N . A subscripted comma denotes partial differentiation by the symbol it precedes,

e.g. f,ϕ =
∂f

∂ϕ
.

The (+++) convention in the notation of Misner et al. [195] is used throughout.



2. Inflationary Cosmology

In this chapter the foundations of inflationary cosmology are described. In Sec-

tion 2.1 the physics of an isotropic and homogeneous universe is reviewed. The

inflationary scenario is introduced in Section 2.2. First order cosmological perturba-

tion theory is presented in Section 2.3 and inflationary models with non-canonical

actions are described in Section 2.5. The current observational limits on inflation-

ary models are outlined in Section 2.4 and departures from Gaussian statistics are

parametrised in Section 2.6.

2.1. The Friedmann-Robertson-Walker Universe

The cosmological principle is central to the Friedmann-Robertson-Walker (FRW1)

Universe. According to this postulate, there is no privileged place in the universe

and no privileged direction in which to make observations. These assertions are

formalised by assuming that the universe is homogeneous and isotropic at every

point. This clearly conflicts with the highly inhomogeneous nature of matter on

planetary and solar system scales, but is assumed to hold as larger and larger scales

are considered. Surveys of the observable universe indicate that this assumption

is valid up to the largest scales observed [51, 207]. Historically, homogeneity and

isotropy were assumed primarily for simplicity. Many alternative approaches can

be taken. Violating these assumptions can be done, for example, by specifying a

preferred direction or supposing that the universe is formed by a series of voids

connected by filaments. Although many of these approaches have been disregarded

due to lack of evidence, some are still allowed by observations [6, 8, 68, 82].

This section outlines the dynamics of the standard Big Bang scenario. By assum-

ing homogeneity and isotropy, the equations of motion of a fluid-filled universe can

be derived. What follows here is a standard exposition of well-known physics and

has been the subject of numerous reviews including Refs. [103, 114, 195].

By imposing both homogeneity and isotropy on a general 4-dimensional metric,

1Lemâıtre is sometimes also included in this group to give FLRW.

16



2.1: The Friedmann-Robertson-Walker Universe 17

the line element ds2 of the FRW universe with coordinates (t, r, θ, ω) is obtained:

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2

(
dθ2 + sin2(θ)dω2

))
, (2.1)

where K = +1, 0 or −1 depending on whether the universe is closed, flat or open

respectively. The time-like coordinate in the metric is t, known as proper time.

The spatial part of the FRW metric is multiplied by the scale factor a(t). This

characterises the size of space-like hypersurfaces at different times. In an expand-

ing universe, a grows with increasing t and ȧ > 0. The definition of the Hubble

parameter, H, captures this expansion:

H =
ȧ

a
. (2.2)

The Einstein equations can be derived by the variational principle from the action

S, where S ≡ SEH + SM. This is the sum of the Einstein-Hilbert (SEH) and matter

(SM) actions which are defined as

SEH =
1

16πG

∫
d4x
√
|g| (R + 2Λc) , (2.3)

SM =

∫
d4x
√
|g|LM . (2.4)

Here g is the determinant of the metric gµν , R is the Ricci scalar, G is Newton’s

gravitational constant, Λc is a cosmological constant term and LM is the sum of

the Lagrangian densities for all the matter fields. Changing either the matter or

gravity actions will affect the resultant physics. In this work we focus our attention

only on the matter Lagrangian and will use the standard Einstein-Hilbert action

throughout. We can now write down the Einstein equations for a general matter

Lagrangian:

Rµν −
1

2
Rgµν = 8πGTµν + Λcgµν , (2.5)

where Tµν is the stress energy tensor obtained by the variation of the matter La-

grangian. In the definitions above we have included a cosmological constant term,

Λc, for completeness. In the early universe this term is sub-dominant and will be

negligible until much later [114]. From now on we will disregard the contribution of

such a term in the early universe.

We concentrate now on the case of a universe filled with a perfect fluid. Suppose

uµ is the 4-velocity of this fluid with uµuµ = −1. The stress-energy tensor of the
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fluid is

T µν = (E + P )uµuν + Pδµν , (2.6)

where E is the matter energy density and P is the isotropic pressure. The trace of

T is given by

T µµ = −E + 3P . (2.7)

The Einstein equations and the stress-energy tensor of the perfect fluid can now be

used to derive the equations of motion of the fluid. From the metric in Eq. (2.1),

the 00 and ij components of the Ricci tensor can be found:

R00 = −3
ä

a
, (2.8)

Rij = γij
[
2ȧ2 + aä+ 2K

]
, (2.9)

where γij is the time independent spatial part of the metric in Eq. (2.1). The

Friedmann equations are then determined from the Einstein equations (2.5). The

00 equation gives

H2 =

(
ȧ

a

)2

=
8πG

3
E − K

a2
, (2.10)

while the trace of the Einstein equations gives the Raychaudhuri or acceleration

equation
ä

a
= −4πG

3
(E + 3P ) . (2.11)

By combining these two equations we can determine a continuity equation for the

energy density:

Ė + 3H(E + P ) = 0 . (2.12)

The last three equations, (2.10), (2.11) and (2.12), will determine the evolution

of the perfect fluid. Two important solutions of these equations are the radiation

and matter dominated universes. In the standard Big Bang scenario the universe

is dominated by radiation to a good approximation until matter becomes dominant

at later times [103]. These different components change the rate of expansion of

the universe. For relativistic radiation Prad = Erad/3 and integrating the continuity

equation (2.12) gives Erad ∝ a−4. Matter conversely is taken to be dust-like with

zero pressure and so Ematter ∝ a−3. The dependence of a on t can then be found

from Eq. (2.10), giving a ∝ t1/2 and a ∝ t2/3 for the radiation and matter eras

respectively.

Instead of using proper time as above we could bring the scale factor outside the
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whole metric and use conformal time η defined by

η =

∫
dt

a
. (2.13)

The metric written in conformal time is then

ds2 = a2(η)

(
−dη2 +

dr2

1−Kr2
+ r2

(
dθ2 + sin2(θ)dω2

))
, (2.14)

As all the coordinates in the line element are now scaled by a(η), we have defined

a coordinate grid which does not change as the universe expands. These “comoving”

coordinates allow distances to be compared at different eras with ease. A comoving

distance x can be translated into a physical distance d by

d = ax . (2.15)

The physical distance changes as the universe expands but the comoving distance

will remain fixed.

One particularly important distance is the maximum distance light could have

propagated from some initial time ti to a later time t. From Eq. (2.16), this is simply

the conformal time integrated from the initial time and is called the comoving or

particle horizon. If the initial time is restricted to being at some finite time in the

past, as in the Big Bang scenario, then the particle horizon will be finite. Two

points which are further apart than this finite distance could never have been in

causal contact. This is the origin of one of the major problems with the standard

Big Bang scenario and will be discussed in the next section. Rewriting the comoving

horizon as

η =

∫ a

ai

da′

a′
1

a′H(a′)
, (2.16)

shows that it is also the logarithmic integral of the comoving Hubble radius 1/aH.

This distance is how far particles can travel in one “e-folding”, the time for a to

expand by one exponential factor. The number of e-foldings between two measure-

ments of the scale factor, ai and af , is given by

N = ln
af
ai
. (2.17)

Particles that are separated by more than the Hubble radius cannot be in causal

contact now. Particles separated by more than the comoving horizon, however,

could never have been in causal contact. In addition to the Hubble parameter H,
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it will be useful to define the parameter H = aH = a′/a. The comoving Hubble

radius is then 1/H.

2.2. Inflation

In this section we introduce the inflationary scenario. First we briefly describe

how it solves two major problems with the standard Big Bang picture: the flatness

problem and the horizon problem [114]. We go on to describe canonical slow roll

inflation, the generation of perturbations from quantum fluctuations and inflation

from non-canonical actions.

2.2.1. Problems with the Big Bang Scenario

Although remarkably successful in describing the evolution of the universe from very

early in its history, the standard Big Bang scenario suffers from a number of serious

problems. Two of the main problems are described in this section.

Flatness Problem

The Friedmann equation (2.10) can be re-written as

Ω(t)− 1 =
K

(aH)2
=
K

ȧ2
, (2.18)

where Ω(t) = E(t)/Ecrit and the critical density Ecrit = 3H2/8πG. If ä > 0 then Ω

approaches the critical value Ω = 1 over time, whereas if ä < 0 it diverges from this

value. The flat universe, K = 0, is an unstable fixed point in the parameter space.

Current observations confirm that Ω = 1 within about 2%, at a 95% confidence level

[104]. During the radiation and matter dominated eras aH is decreasing with time,

so that Ω diverges away from 1. If the measured value is now very close to 1 then

in the past it must have been even closer. The fine-tuning in the initial conditions

required for this proximity to Ω = 1 is known as the flatness problem.

Horizon Problem

The particle horizon, also known as the comoving horizon, defines the maximum

separation between two points that have been in causal contact sometime in the past.

During the radiation and matter eras, this comoving horizon increases monotonically

and so length scales which are now entering the horizon would have been far outside
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it in the past. The CMB as observed by the WMAP satellite is extremely smooth

on scales that would have been far outside the horizon at the time of last scattering

[104]. These regions of space have very similar energies and yet according to the Big

Bang scenario they could never have been in causal contact.

2.2.2. Inflation and Canonical Slow Roll

Inflation is a period of accelerated expansion in the size of the universe which took

place just after the Big Bang [5, 78, 119, 190, 191]. During this expansion phase the

comoving Hubble radius (aH)−1 decreases and the isotropic pressure of the universe

is negative [18, 114]:

d

dt

(
1

aH

)
< 0 ⇒ ä > 0 ⇒ E + 3P < 0 . (2.19)

We can define a new parameter

εH = − Ḣ

H2
, (2.20)

and then rewrite the Raychaudhuri equation (2.11) as

ä

a
= H2(1− εH) . (2.21)

This parametrisation illustrates that inflation only occurs when εH < 1. In this

subsection we describe briefly how inflation solves the problems outlined above and

outline the inflationary dynamics of single scalar field models.

Both the horizon and flatness problems described above are statements about our

reluctance to impose fine-tuned initial conditions. Inflation removes the need to

fix these conditions at the start of the Big Bang. A period of decreasing Hubble

radius before the radiation period could explain the homogeneity of temperatures in

the CMB at large scales. Comoving scales that entered the horizon recently, such as

those we observe in the CMB, would have been within the horizon previously. During

this period, the energy density could reach an equilibrium value. Figure 2.1 shows

how, by extending the era of inflation far enough into the past, any comoving length

could previously have been inside the horizon. Observations require that inflation

lasted at least long enough that all the scales we measure today were previously

inside the horizon.
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Figure 2.1.: Comoving scales that have recently entered the horizon would previously
have been inside the horizon, if the inflationary period extended far
enough into the past.
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Now consider the time derivative of |Ω− 1| as defined in Eq. (2.18):

d

dt
(|Ω− 1|) = 3

d

dt

(
1

aH

)
. (2.22)

If the universe is not flat to begin with, a period of inflation of sufficient duration

will push it towards Ω = 1, solving the flatness problem. Instead of an unstable

point in the parameter space, Ω = 1 is an attractor during the inflationary phase.

To solve the horizon and flatness problems the duration of the inflationary era

must be sufficiently long. Approximately 50–70 e-foldings is considered standard

[114]. Inflation can last longer than this but only the last 50–70 e-foldings will be

important for the length scales of our observable universe.

During inflation the universe is filled by material exhibiting negative isotropic

pressure. Therefore, whatever drives inflation cannot be matter or radiation in their

usual forms. The simplest proposal is to fill the universe with a single scalar field

ϕ. The canonical action for this field is

LM ≡ P (ϕ,X) = X − V (ϕ) , (2.23)

where X = −1
2
gµν∂

µϕ∂νϕ denotes the kinetic energy of ϕ, V (ϕ) is the potential and

P (ϕ,X) is called the kinetic function. In Section 2.5 we will consider other choices

for P .

The equation of motion for ϕ, for the canonical action P = X − V , is

ϕ̈+ 3Hϕ̇−∇2ϕ+
δV

δϕ
= 0 . (2.24)

If we now restrict ourselves to considering the homogeneous part of the field, ϕ =

ϕ(t), the∇2ϕ term disappears and the functional derivative of V becomes a standard

derivative V,ϕ. With these choices we have the following relations for the matter

energy-density and isotropic pressure:

E =
1

2
ϕ̇2 + V (ϕ) , (2.25)

P =
1

2
ϕ̇2 − V (ϕ) . (2.26)

Under these conditions the kinetic function P (ϕ,X) can be identified as the isotropic

pressure. The dynamics of the field are governed by the potential V (ϕ). Inflation

requires P < −E/3, so from Eqs. (2.25) and (2.26) inflation can also be thought of

as a period when the potential energy dominates over the kinetic energy.
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Inflation needs to last long enough to solve the problems described above. A

generic potential is not likely to satisfy these requirements without fine-tuning. One

approach is to enforce conditions on the potential under which the inflationary period

is necessarily long. We have seen that for inflation to occur the potential needs to

dominate over the kinetic energy. From Eq. (2.25), this occurs in the limit P → −E
or equivalently εH � 1. However, for this to remain the case for a sufficiently long

period the second derivative of ϕ must be small. If we define another parameter

ηH ≡ −
d ln ϕ̇

d ln a
= − ϕ̈

Hϕ̇
= εH −

˙εH
2HεH

, (2.27)

then taking |ηH | � 1 ensures that ϕ̇ and εH change slowly. This allows an inflation-

ary phase of sufficient duration to occur.

The approximations εH � 1 and |η| � 1 are known as the slow roll conditions

because they force the inflaton field ϕ to roll down the potential V slowly. The pa-

rameters εH and ηH are the slow roll parameters. Setting ϕ̈ to be small is equivalent

to making the friction Hϕ̇ in Eq. (2.24) dominant. With these approximations the

equations of motion for a slowly rolling field become

ϕ̇ ' −V,ϕ
3H

, (2.28)

H2 ' 8πG

3
V (ϕ) . (2.29)

2.3. Perturbations

We considered a homogeneous scalar field in the analysis of Section 2.2. Such a

field, however, will lead only to a homogeneous universe later. How does the myriad

structure that we see around us form? From stars to galaxies to clusters, the gravi-

tational force has concentrated energy density over the history of the universe, but

some initial fluctuation must have been present to begin this process. One of the

main achievements of inflation is to provide a physical origin for such initial fluc-

tuations. In Chapter 6 we will formally develop cosmological perturbation theory

up to second order. In this section we review first order perturbation theory and

introduce the observable quantities important for inflation.

Suppose that a full inhomogeneous scalar field ϕ is split into a homogeneous back-

ground field ϕ0, as described above, and an inhomogeneous perturbation δϕ(η, xi)

for i = 1, 2, 3. For the following analysis to be applicable the perturbation must be

much smaller than the background field value. From the amplitude of perturbations
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in the CMB this approximation can be seen to be valid [104]. For single field models

no mixing of adiabatic and non-adiabatic modes occurs [203]. Therefore, throughout

this thesis we will only consider adiabatic perturbations and ignore any isocurvature

mode present.

If we suppose that ε is a small quantity then the split in ϕ can be written as [136]

ϕ(η, xi) = ϕ0(η) + εδϕ(η, xi) . (2.30)

The perturbation δϕ(η, xi) can be further expanded in powers of ε. We will follow the

custom of not explicitly writing ε, instead relying on the order of the perturbation,

denoted by a subscript, to keep track. If we expand in a Taylor series then up to

second order (i.e. including terms up to ε2) we have:

ϕ(η, xi) = ϕ0(η) + δϕ1(η, xi) +
1

2
δϕ2(η, xi) . (2.31)

There is some freedom in how the split of the perturbations into different orders is

made. We will suppose that the first order perturbation δϕ1 contains only linear

contributions and the higher order terms contain non-linear terms.

Instead of working in coordinate space, we can also consider the perturbation in

Fourier space using the definition

δϕ(η, xi) =
1

(2π)3

∫
d3kδϕ(ki) exp(ikix

i) , (2.32)

where ki are the components of the comoving wavenumber vector k. The amplitude

of this vector k = |k| identifies whether a particular mode is inside or outside

the comoving horizon. Wavemodes inside the comoving horizon are identified by

k > aH, while k < aH for those outside the horizon.

We must also consider perturbations in the metric tensor gµν . If the background

metric is the FRW one described in Section 2.1 then the metric can be written with

perturbations, up to first order, as follows:

g00 = −a2(1 + 2φ1) ,

g0i = a2B1i ,

gij = a2 (δij + 2C1ij) . (2.33)

The 0-i and i-j perturbations can be decomposed into scalar, vector and tensor parts
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[136]:

B1i = B1,i − S1i ,

C1ij = −ψ1δij + E1,ij + F1(i,j) +
1

2
h1ij , (2.34)

where F1(i,j) = 1
2
(F1i,j + F1j,i). The vectors S1i and F1i are divergence free and the

tensor part h1ij is divergence free and traceless:

Sk1 ,k = 0 , F k
1 ,k = 0 ; hik1 ,k = 0 , hk1 k = 0 . (2.35)

In the previous equations φ is the lapse function, ψ is the curvature perturbation,

B1 and E1 are the scalar part of the shear, S1i, and F1i are the vector parts of the

shear, and h1ij is the tensor perturbation describing gravitational waves.

Splitting an inhomogeneous spacetime into background and perturbation is not a

covariant operation. This leads to an ambiguity in the choice of coordinates which

must be rectified by choosing a gauge. Gauge transformations relate physical results

in one gauge to those in another. To choose a gauge one must specify how spacetime

is foliated, i.e., a slicing, and how coordinates in one spatial hypersurface are related

to those in another, i.e., a threading [136]. We will employ the uniform curvature

gauge in which spatial hypersurfaces are flat. This is also known as the flat gauge.

The gauge transformation vector at first order, ξµ1 , can be split into scalar and

vector parts

ξµ1 = (α1, β
i

1, + γi1) , (2.36)

where the vector part obeys γ k
1 ,k = 0. A scalar quantity such as the inflaton

perturbation will transform as [134, 136]

δ̃ϕ1 = δϕ1 + ϕ′0α1 , (2.37)

where a tilde (̃ ) denotes a transformed quantity. For the metric perturbations the

transformations for the scalars are

φ̃1 = φ1 +Hα1 + α′1 , (2.38)

ψ̃1 = ψ1 −Hα1 , (2.39)

B̃1 = B1 − α1 + β′1 , (2.40)

Ẽ1 = E1 + β1 , (2.41)
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and for the vectors

S̃ i
1 = S i

1 − γi1
′
, (2.42)

F̃ i
1 = F i

1 + γi1 . (2.43)

The tensor perturbation h1ij does not change under transformation at first order,

but does at subsequent orders. The flat gauge, which we will use, is the one in

which spatial hypersurfaces are not perturbed by scalar or vector perturbations, so

ψ̃1 = Ẽ1 = 0 and F̃1i = 0. This is equivalent to the transformation

α1 =
ψ1

H , β1 = −E1 , γi1 = −F i
1 . (2.44)

A gauge invariant inflaton perturbation variable is the Sasaki-Mukhanov variable

[145, 147, 170]:

δ̃ϕ1 ≡ δϕ1 + ϕ′0
ψ1

H , (2.45)

In the flat gauge this is just δϕ1. We will work in flat gauge from now on and so

will drop the tildes on quantities in that gauge.

Another very important gauge invariant quantity is the comoving curvature per-

turbation R. At first order in the flat gauge R is related to the inflaton perturbation

by [136]

R =
H
ϕ′0
δϕ1 . (2.46)

We are interested in the power spectrum of the curvature perturbation as this is

directly related to the temperature fluctuations that we can observe in the CMB.

The action (2.23), including perturbations of ϕ and gµν up to first order, is varied

to get the equation of motion of δϕ1. In the flat gauge the equation can be rewritten

in terms of the inflaton field values only by eliminating the metric perturbations

using Eq. (2.45). In Fourier space and in terms of the conformal time η, the closed

form of the first order perturbation equation of motion is [136]

δϕ′′1(ki) + 2Hδϕ′1(ki) + k2δϕ1(ki)

+ a2

[
V,ϕϕ +

8πG

H

(
2ϕ′0V,ϕ + (ϕ′0)2 8πG

H V0

)]
δϕ1(ki) = 0 , (2.47)

where V0 is the background value of the potential V (ϕ). Substituting u = aδϕ1
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gives the Mukhanov equation [147]

u′′(ki) +

[
k2 − z′′

z

]
u(ki) = 0 , (2.48)

where z = aϕ′0/H.

2.3.1. Quantum Perturbations

So far we have considered classical perturbations. However, the generation of fluc-

tuations is a quantum effect and we need to consider the perturbations as quantum

operators in some vacuum.

In Minkowski space the quantisation of u(ki) is straightforward. The perturbation

modes can be written in terms of quantum operators as

u(ki)→ û(ki) = w(ki)â(ki) + w?(−ki)â†(−ki) . (2.49)

The mode function w(ki) obeys the same equation of motion as u(ki):

w′′(ki) +

[
k2 − z′′

z

]
w(ki) = 0 . (2.50)

The operators â† and â are the usual creation and annihilation operators. They act

on quantum states by adding or removing particles. The zero particle vacuum state,

|0〉, is such that

â†|0〉 = |1〉 , â|0〉 = 0 . (2.51)

In Minkowski space these operators have the usual commutation relations

[â(k), â†(k′)] = (2π)3δ(k− k′) (2.52)

and

[â†(k), â†(k′)] = [â(k), â(k′)] = 0 . (2.53)

The w modes are normalised by the condition [144]

w?(ki)w′(ki)− w?′(ki)w(ki) = i . (2.54)

In the expanding FRW background the choice of vacuum is not straightforward.

Suppose one observer selects a zero particle state as the vacuum. Another observer

accelerating with respect to the first will see particles being created in this “vacuum”
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state due to the Unruh effect [96, 198]. In selecting the vacuum we must choose one

of the many equivalent options. To do this we consider the far past where η → −∞.

The wavelengths of all the modes are then much smaller than the Hubble radius

and curvature scale. The modes are therefore assumed to evolve in flat space. This

suggests the Minkowski vacuum as the most natural vacuum state to select and this

choice of vacuum at early times is known as the Bunch-Davies vacuum. In the limit

η → −∞ (or equivalently k/aH →∞), the mode equation (2.50) becomes

w′′(ki) + k2w(ki) = 0 , (2.55)

which has the plane wave solution

w(ki) =
1√
2k
e−ikη . (2.56)

This is the initial condition for modes which are well inside the horizon.

Now consider the de Sitter limit in which εH → 0 and H is constant. We have

z′′/z = a′′/a = 2/η2 so the mode equation is [18]

w′′(ki) +

[
k2 − 2

η2

]
w(ki) = 0 . (2.57)

A full general solution for w is

w(ki) = A
e−ikη√

2k

(
1− i

kη

)
+B

e+ikη

√
2k

(
1 +

i

kη

)
. (2.58)

Taking the condition (2.54) along with the solution for subhorizon modes in Eq. (2.56)

we find that A = 1 and B = 0. Thus the full solution in de Sitter space is [114]

w(ki) =
e−ikη√

2k

(
1− i

kη

)
. (2.59)

Inflation in spacetimes that are close to de Sitter will contain perturbations with a

spectrum defined by Eq. (2.59). The slow roll approximation is enough to ensure

that inflation occurs in a quasi-de Sitter spacetime. However, the initial conditions

for Fourier modes in Eq. (2.56) apply to non slow roll models so long as they are

applied well before horizon crossing.
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2.3.2. Power Spectra and Spectral Indices

The power spectrum of the inflaton perturbation δϕ1 = u/a can now be defined as

〈δϕ1(k1)δϕ1(k2)〉 ≡ (2π)3δ(k1 + k2)P 2
δϕ(k1) = (2π)3δ(k1 + k2)

|w(k1)|2
a2

, (2.60)

where 〈. . .〉 denotes the ensemble average. If taken over a large enough volume,

the ensemble average and spatial average are equivalent [125]. The power spectrum

P 2
δϕ depends only on the magnitude of the wavenumber vector, k = |k|, but has

dimensions of k−3. A dimensionless power spectrum can be defined as

P2
δϕ = ∆2

δϕ ≡
k3

2π2
P 2
δϕ(k) . (2.61)

In a similar way we can define the power spectrum of the comoving curvature

perturbation R = Hδϕ1/ϕ̇0:

〈R(k1)R(k2)〉 = (2π)3δ(k1 + k2)P 2
R(k1) , (2.62)

and the dimensionless power spectrum

P2
R = ∆2

δϕ ≡
k3

2π2
P 2
R(k) . (2.63)

A slow roll inflation model in a quasi-de Sitter spacetime will have the Fourier

mode solution given in Eq. (2.59). After horizon crossing, when k � aH, this gives

|w|2 = 1/(2k3η2) so

P2
δϕ(k) =

(
H

2π

)2

, (2.64)

for the scalar perturbation spectrum and

P2
R(k) =

(
H

ϕ̇0

)2(
H

2π

)2

, (2.65)

for the comoving curvature perturbation spectrum. Models that are not slowly

rolling usually require their more complicated mode equations to be numerically

solved.

We have discussed in depth the scalar perturbations but tensor perturbations can

also be produced. The tensor perturbation hij has two polarisations, hs for s = +,×.

The amplitude of each can be thought of as a separate scalar field. The analysis

for each field is similar to that above with the substitution hs = 2δϕ1/MPL. After
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horizon crossing in a quasi-de Sitter space the spectrum for each polarisation is

P2
h(k) =

4

M2
PL

(
H

2π

)2

, (2.66)

and the overall tensor perturbation spectrum is

P2
T (k) =

2

M2
PL

H2

π2
. (2.67)

The ratio of the tensor to curvature perturbations (tensor-scalar ratio) r is defined

as

r =
P2
T

P2
R
, (2.68)

where r is usually quoted at a particular k but could in principle depend on k. The

tensor-scalar ratio can also be written in terms of εH :

r = 16εH . (2.69)

As εH � 1 for slow roll models of inflation the amplitude of tensor perturbations that

these models produce is much smaller than the amplitude of curvature perturbations.

If the curvature perturbation power spectrum, P2
R(k), is independent of wavenum-

ber k, it is said to be scale invariant. The spectral index ns is a measure of the

deviation from scale invariance:

ns − 1 =
d ln(P2

R(k))

d ln k
, (2.70)

where ns = 1 denotes a scale invariant spectrum. The spectral index of the tensor

power spectrum can be similarly defined:

nT =
d ln(P2

T (k))

d ln k
, (2.71)

although this definition means that the spectrum is scale invariant if nT = 0. The

spectral indices and indeed the spectra themselves are usually calculated at an ar-

bitrary pivot scale. The WMAP results for P2
R and P2

T outlined in Section 2.4 are

quoted at the scale k = 0.002Mpc−1.

If there is a non-trivial dependence of P2
R or P2

T on k then higher order derivatives

can be taken to give the running of the quantities. The runnings of the spectral

indices are

αs =
d lnns
d ln k

, αT =
d lnnT
d ln k

. (2.72)
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In the slow roll approximation ns and nT can be written in terms of the slow roll

parameters εH and ηH , evaluated at k = aH using d ln(aH) ' Hdt:

ns − 1 = −4εH + 2ηH , (2.73)

nT = −2εH . (2.74)

Combining Eq. (2.74) and Eq. (2.69) gives a powerful consistency condition for slow

roll inflation:

r = −8nT . (2.75)

For the slow roll approximation to be valid for single field canonical inflation models,

Eq. (2.75) must hold. Current observations are not accurate enough to test this

condition but it is hoped that this will be possible in the future.

2.4. Current Observations

There have been rapid improvements in the quantity and quality of cosmological

data sources in the last twenty years. From the launch of the COBE satellite in

1989 [25, 26], through the currently ongoing WMAP mission [104, 189], to the

recent launch of the Planck satellite [158], space based observations have been at the

forefront of the effort to collect data. Complementing these have been ground and

balloon based missions including CBI [138, 182, 183], VSA [54], ACBAR [107, 108]

and BOOMERANG [143, 157, 166].

Major recent data releases have provided significant confirmation of the FRW

model of the universe. The Hubble parameter today has been measured as H0 =

72± 8 km/s/Mpc by the Hubble Key Project [66]. The WMAP 5-Year data release

(WMAP5) [104] quotes their results combined with data from Baryon Acoustic

Oscillations in galaxy distributions (BAO) [156] and supernova surveys (SN) by

the Hubble Space Telescope and others [11, 162, 163, 205]. This combined data

constrains the universe to within two percent of the flat Ω = 1, K = 0 case outlined

in Section 2.1.

The amplitude of the scalar curvature perturbations P2
R was first measured ac-

curately by the COBE satellite [25, 26]. The WMAP5 normalisation is taken at a

different scale to the COBE result, measuring

P2
R(kWMAP) = 2.457× 10−9 , (2.76)
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where the pivot scale kWMAP = 0.002Mpc−1 ' 5.25× 10−60MPL. The spectral index

of scalar perturbations for models with tensor-scalar ratio r 6= 0 is given by the

combined WMAP5+BAO+SN measurement as

ns = 0.968± 0.015 . (2.77)

The detection of B-mode polarisation would provide definitive proof of the ex-

istence of primordial gravitational modes and much observational effort is being

expended in the attempt to achieve such a detection [21, 46, 157, 176, 183, 199].

The observational bound on r from WMAP5 using only the B-mode power spectrum

is weak with r < 4.7 at the 95% confidence level, when ns is fixed at the best fit

value. Including other polarisation data from the E-mode and TE power spectra

reduces this bound to r < 1.6, again with ns fixed. A stronger bound has been ob-

tained with the B-mode power spectrum by the BICEP experiment, giving r < 0.73

[46]. The strongest bound to date on the tensor to scalar ratio is given when the

temperature power spectrum data is also included in the WMAP analysis. For the

pure WMAP5 data without any restriction on ns but with no spectral running the

bound is r < 0.43. When BAO and SN data is combined with the WMAP5 data

the bound on the tensor to scalar ratio becomes

r < 0.20 , (2.78)

at the 95% confidence level.

2.5. Non-Canonical Inflation

In the previous section we considered the dynamics of a scalar field with a canonical

action P (ϕ,X) = X − V (ϕ), where X ≡ −1
2
gµν∂µϕ∂νϕ is the kinetic energy. In

this section we will generalise that analysis to include non-canonical actions. Non-

canonical scalar field actions appear frequently in string theory derived inflationary

models. In Chapters 3, 4 and 5 there are explicit examples of non-canonical scenar-

ios.

We will consider an action of the same form as before

S =

∫
d4x
√
|g|
[
M2

PL

2
R + P (ϕ,X)

]
, (2.79)

with minimal coupling to the gravitational sector. Varying this action gives the
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stress-energy tensor in Eq. (2.6) where uµ = ∂µϕ/
√

2X. The energy density E is

defined as

E = 2XP,X − P , (2.80)

and for a homogeneous scalar field the kinetic term P (ϕ,X) is the isotropic pressure.

It proves convenient to define two parameters in terms of the kinetic function P and

its derivatives [116, 174]:

c2
s ≡

P,X
E,X

=
P,X

P,X + 2XP,XX
, (2.81)

Λ ≡ X2P,XX + 2
3
X3P,XXX

XP,X + 2X2P,XX
. (2.82)

The first parameter, cs, is called the sound speed of the fluctuations in the inflaton

field. This can be significantly less than unity for non-canonical actions, in contrast

to slow roll inflation driven by a canonical field such that cs = P,X = 1. Christopher-

son & Malik showed in Ref. [47] that cs is in fact the phase speed of the fluctuations

and not the sound speed which is defined as Ṗ /Ė. However, in common with the

rest of the literature, we will continue to use cs as defined in Eq. (2.81).

The generation of quantum perturbations in the non-canonical case is similar to

the canonical one, but now includes contributions from cs. Letting u = aδϕ1, the

Mukhanov equation for the Fourier modes, Eq. (2.48), becomes [69, 144]:

u′′(ki) +

[
c2

sk
2 − z′′

z

]
u(ki) = 0 , (2.83)

where z has been redefined as

z =
a
√
E + P

csH
=
a
√

2XP,X

csH
. (2.84)

We quantise the u modes using the Bunch-Davies vacuum as above and work with

the amplitude w(ki). Instead of considering whether modes are inside the comoving

horizon, it is now important to distinguish between modes inside and outside the

sound horizon, defined by kcs = aH. Far inside the sound horizon, where kcs � aH,

the mode solution takes a similar asymptotic form to Eq. (2.56):

w(ki) =
1√
2kcs

e−ikcsη . (2.85)

Following the same analysis as above, the amplitude of the curvature perturbations
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generated during inflation can be found and is given by [69]

P2
R =

H4

8π2X

1

csP,X
. (2.86)

This expression is only valid after exit from the sound horizon. In contrast the tensor

perturbations are not affected by the change in the action. The expression for the

power spectrum P2
T in Eq. (2.67) is still valid. This should be evaluated after the

modes have exited the normal horizon, i.e., when k < aH. The consistency relation

(2.75) is now defined as [69]

r = 16csεH = −8csnT . (2.87)

Hence, a sound speed different to unity leads to a violation of the standard infla-

tionary consistency equation, which might be detectable in the foreseeable future

[116, 117].

2.6. Non-Gaussianity

The initial fluctuations described above have Gaussian statistics, with no correla-

tions between modes on different scales. All the information about the perturba-

tions can be obtained from the two-point function or power spectrum as defined in

Eq. (2.62). For a Gaussian random field all higher point functions are either zero or

combinations of the two-point function. In particular the three-point function of R,

〈R(x1)R(x2)R(x3)〉, will be zero for purely Gaussian R. We can write the Fourier

transform of the three point function in terms of the bispectrum B [17]:

〈R(k1)R(k2)R(k2)〉 = (2π)3δ3(k1 + k2 + k3)B(k1, k2, k3) , (2.88)

where translation invariance imposes the conservation of the k vectors and the bis-

pectrum depends only on the magnitude of each wavenumber. Any deviation from

Gaussianity will result in a non-zero bispectrum value. Because of the delta-function,

the wavevectors form triangles in Fourier space and B is a function of only two vari-

ables. The bispectrum generated by inflationary models takes two main triangular

shapes, squeezed and equilateral [13].

The first parametrisation of non-Gaussianity was defined in real space in terms of

the Gaussian part of the perturbation. As the non-linearity is localised in real space
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the parameter is known as the local non-Gaussianity f loc
NL:

R = RG +
3

5
f loc

NL(R2
G − 〈R2

G〉) . (2.89)

Here the quadratic component represents a convolution and RG denotes the Gaus-

sian contribution [130]. We use the WMAP sign convention for fNL throughout.

This is the opposite of the Maldacena convention: fWMAP
NL = −fMaldacena

NL . One con-

sequence of this choice of sign is that positive fNL implies a decrease in temperature

in the CMB compared to the Gaussian case. This can be seen by noting that at

linear order the temperature anisotropy in the CMB can be related to the curvature

perturbation by RG ' −5∆T/T .

The local non-Gaussian parameter f loc
NL can be related to the bispectrum by:

B(k1, k2, k3) =
6

5
f loc

NL

[
P 2
R(k1)P 2

R(k2) + P 2
R(k2)P 2

R(k3) + P 2
R(k3)P 2

R(k1)
]
. (2.90)

If P 2
R(k) is approximately scale invariant, P 2

R(k) = ck−3, then the bispectrum be-

comes [18]

B(k1, k2, k3) =
6

5
f loc

NLc
2

[
1

k3
1k

3
2

+
1

k3
2k

3
3

+
1

k3
3k

3
1

]
. (2.91)

This expression is maximised if one of the ki is much smaller than the other two.

Momentum conservation then requires that they are approximately equal. This

configuration is a squeezed triangle in momentum space where, for example, k3 �
k1, k2. In single field inflation f loc

NL is proportional to the slow roll parameters and

therefore expected to be small. Non-linear contributions from the coupling of the

gravitational potential to the curvature perturbation are expected to produce f loc
NL

of order one which would be much larger than the O(εH) contributions from single

field, slow roll inflation [17, 104]. Any detection of f loc
NL at greater than O(1) would

present a challenge to such single field slow roll models. The current bounds on the

non-Gaussianity parameter are not strong but have been steadily tightening. The

WMAP5 bound on the local form of fNL is

− 9 < f loc
NL < 111 . (2.92)

This observational limit still includes f loc
NL = 0 at the 95% confidence level.

The other important case is where the three momenta have equal magnitude,

which corresponds to the equilateral triangle limit. Non-Gaussianity of this shape

is chiefly produced by models with non-canonical kinetic terms as defined in Sec-

tion 2.5. The equilateral non-Gaussianity parameter f eq
NL can be evaluated in terms
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of the sound speed cs and the Λ parameter defined in Eq. (2.82). The leading-order

contribution to the non-linearity parameter is given by [43, 174]

f eq
NL = − 35

108

(
1

c2
s

− 1

)
+

5

81

(
1

c2
s

− 1− 2Λ

)
. (2.93)

Data from WMAP3 imposed the bound |f eq
NL| < 300 on this parameter [189]. The

more recent WMAP5 data set improves on this bound somewhat [104], and also

indicates that it is distinctly asymmetric. At the 95% confidence level, the current

bound on the equilateral triangle is

− 151 < f eq
NL < 253 . (2.94)

The main difference between the local and equilateral types of non-Gaussianity are

the eras and methods of production. Local non-Gaussianity parametrises non-linear

correlations which are local in real space. Non-linear processes taking place outside

the horizon are the cause of these correlations. This is Production of this type of

non-Gaussianity occurs irrespective of whether the perturbations are Gaussian when

they cross the horizon. For single field models the magnitude of f loc
NL is proportional

to the deviation of the scalar curvature power spectrum from scale invariance and is

therefore expected to be small. On the other hand, models with multiple fields can

produce a large amount of local non-gaussianity by the evolution of a non-inflaton

field outside the horizon and the subsequent transfer of fluctuations in this field into

curvature perturbations. A detection of non-negligible f loc
NL would therefore be a very

strong indication that multiple degrees of freedom are present in the early universe.

In contrast, equilateral type non-Gaussianity is peaked when the momenta of the

three modes are very similar and is generated by higher order derivative terms.

Both the time and space derivatives become negligible once the modes have left the

horizon and therefore any contribution to the bispectrum peaked in the equilateral

shape takes place when the modes are inside the horizon. The extra derivative

terms required are found generally in non-canonical models which were discussed in

Section 2.5. In this case the amplitude of f eq
NL is proportional to the inverse of the

sound speed squared and can be large.

In the case of single field DBI inflation, discussed in Part I of this thesis, the non-

canonical action in Eq. (3.12) contains a non-linear function of ∂µϕ in the square-root

term. These higher derivative terms are related to the magnitude of the equilateral

type through Eq. (2.93). In the relativistic limit in which the sound speed is small,

f eq
NL can become arbitrarily large. Indeed the current observational limit on f eq

NL



2.7: Discussion 38

restricts the degree to which the relativistic limit can be reached and tighter bounds

on f eq
NL could make such a limit inconsistent.

In summary there are two main types of non-Gaussianity, which are produced

in very different fashions2. Local non-Gaussianity is produced outside the horizon

and is comprised of correlations which are local in real space. Equilateral non-

Gaussianity is produced by higher derivative terms when similar modes are inside

the horizon. It is generated by models which have non-canonical actions.

2.7. Discussion

In this chapter the physics of the FRW universe has been described. Inflation has

been introduced to solve problems with the standard Big Bang scenario. To solve

these problems the inflationary period must be of sufficient duration. This can be

ensured by using models which comply with certain slow roll conditions.

To explain inhomogeneities in the early universe, cosmological perturbation theory

was presented up to first order. The power spectrum of scalar perturbations, P2
R,

the spectral index of this spectrum, ns, and the ratio of tensor-scalar perturbations,

r, are the main observable quantities against which models can be tested. Slow

roll models must also satisfy a consistency relation between the tilt of the tensor

spectrum and r. Current observations favour an almost scale invariant red spectrum

(ns < 1) with a low level of tensor signal. The accuracy of the current data is not

yet good enough to meaningfully evaluate the slow roll consistency relation.

As well as the standard models, one can also construct inflationary models in

which the action takes a non-canonical form. In these models the sound speed of

scalar fluctuations, cs, plays a pivotal role. The predictions for scalar perturbations

are altered by a factor of cs, as is the slow roll consistency relation. Non-canonical

models also often exhibit strong non-linear effects which can be parametrised using

the non-Gaussianity parameter fNL. Canonical single field slow roll models do not

predict large amounts of non-Gaussianity.

In this thesis, inflation is taken to be the mechanism by which inhomogeneities in

matter are seeded and the horizon and flatness problems of the Big Bang are solved.

However, the inflationary paradigm is not without its own challenges.

Chief amongst these is the lack of a unique underlying theory. Many high energy

theories have been shown to produce an inflationary phase. Often, however, these

require a great deal of fine-tuning in order to produce a sufficient number of e-foldings

2Not all non-linear processes fit into these two categories and other types have been proposed
including one “orthogonal” to the equilateral type [177].
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of inflation. Lack of knowledge about the governing physics at high energy scales

hampers our understanding of the cause of inflation and undermines any analysis of

the generic nature of the initial conditions required.

The overall duration of inflation is also unknown. Observations only require that

currently observable scales were previously inside the horizon. Thus the onset of

inflation is not constrained and could occur far in the past. However, allowing such

a long inflationary period typically increases the fine-tuning necessary and can lead

to other issues.

There are further problems with the inflationary paradigm, including the lack

of an explanation for how energy in the inflaton field is transferred to the other

constituent parts of the universe, and indeed the fact that no scalar field has yet

been directly observed. We will continue to employ the inflationary paradigm in

this thesis but it is important to acknowledge that some challenges remain to be

overcome.

This chapter laid the foundations for the two main parts of this work in which first

analytic and then numerical techniques are used to constrain inflationary models.

In the next chapter the DBI brane inflation scenario is presented.



Part I.

DBI inflation

40



3. Introduction to

Dirac-Born-Infeld Inflation

3.1. Introduction

The inflationary scenario provides the theoretical framework for the early history of

the universe. It has now been successfully tested by observations, including the five

year data from WMAP [104]. Despite this success, however, the high energy physics

that resulted in a phase of accelerated expansion is still not well understood. String

and M-theory attempt to unify the fundamental interactions including gravity. The

early universe provides a unique window into high energy physics at scales currently

unreachable by particle accelerators. It is therefore important to develop inflationary

models within string theory and to confront them with cosmological observations.

One class of string theory models that has received considerable attention is D-

brane inflation [7, 30, 33, 34, 38–40, 44, 45, 50, 57, 58, 65, 67, 85, 88, 89, 91, 93,

148, 179–181, 185, 200]. (For some recent reviews, see [22, 23, 49, 80, 122, 139]).

The Dirac-Born-Infeld (DBI) scenario of the compactified type IIB theory is a well-

motivated model [7, 185], in which inflation is driven by one or more D-branes prop-

agating in a warped “throat” background. In the simplest version of the scenario,

the inflaton parametrises the radial position in the throat of a single D3-brane. The

brane dynamics are determined by the DBI action in such a way that the inflaton’s

kinetic energy is bounded from above by the warped brane tension. The regime

where this bound is nearly saturated is known as the “relativistic” limit.

In Part I of this thesis we will explore the observational consequences of DBI

inflation. In general, primordial gravitational wave fluctuations and non-Gaussian

statistics in the curvature perturbation provide two powerful discriminants of infla-

tionary scenarios. The nature of the DBI action is such that the sound speed of

fluctuations in the inflaton can be much less than the speed of light. This induces

a large and potentially detectable non-Gaussian signal in the density perturbations

[7, 43, 174, 185].

41
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In this chapter we introduce string theory, warped compactifications and DBI

inflation. In Chapter 4 we will derive upper and lower limits on the amplitude

of the tensor perturbations. We will explore how these bounds may be relaxed in

Chapter 5 and discuss multi-brane scenarios which permit observable tensor signals.

3.2. String Theory and Extra Dimensions

The desire to unify seemingly disparate theories has been a driving force in theoret-

ical physics for more than a hundred years. This effort has produced the Standard

Model (SM) of particle physics which unifies three of the four fundamental forces

in a robust theoretical framework. Since the realisation of the SM, a clear goal of

theoretical physics has been the unification of the fourth force—gravity—into this

framework. String theory is one of the leading contenders for achieving this unifica-

tion. In this section we will introduce some of the string theory concepts that will

be required later to understand DBI inflation. Many review articles and text books

have been written about string theory and its application to cosmology and a short

list of recent works includes Refs. [20, 49, 86, 91, 121, 139].

In string theory there are two main types of strings, referred to as closed and open.

These are distinguished by the fact that closed strings form a continuous loop while

open strings have two unconnected ends. There are several different string theories

which are linked in pairs by a process called duality. Physical descriptions in one

theory can be translated into a dual description in the other. The dual version often

exhibits properties that are useful for solving problems in the original setting. We

will work in the framework of the Type IIB theory since this has proven to be the

most fruitful for generating models of cosmological inflation [49, 121].

3.2.1. Extra Dimensions

String theory predicts that the one time-like and three spatial dimensions that con-

stitute the observable universe do not represent the complete spacetime manifold.

Instead, our universe is a 10 or 11 dimensional spacetime and physical theories in

3+1 dimensions must therefore be able to explain why the other 6 or 7 dimensions

are unobservable. One of the challenges of string theory is how to “hide” these extra

dimensions in such a way as to recover the standard four-dimensional cosmology at

low energies.

The early work of Kaluza and Klein (KK) in formulating higher dimensional

theories laid the groundwork for the current treatment of extra dimensions in string
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theory [92, 99]. By compactifying an extra dimension onto a circle of finite radius an

infinite tower of extra fields are introduced into the lower dimensional theory. The

mass of these fields is inversely proportional to the size of the extra dimension. The

appearance of these unobserved massive fields is avoided by taking the radius to be

extremely small. This leaves a massless degree of freedom which must be accounted

for in the four-dimensional effective action.

A similar procedure is undertaken when compactifying string theory from a 10 or

11 dimensional description down to four dimensions (for reviews see Refs. [56, 73]).

In ten dimensional type IIB theory the six extra dimensions are compactified into

a Ricci flat Calabi-Yau (CY) manifold which can be described by three complex

coordinates [206]. Because any Ricci flat metric can be rescaled onto another Ricci

flat metric, there is no unique solution for the metric on the CY manifold. Instead

a family of solutions exists with many free parameters. These parameters remain

after the compactification, in analogy to the size of the extra dimension in KK

compactification, and can depend on position in the four-dimensional spacetime.

They appear as fields in the four-dimensional theory and are known as moduli.

These fields are not subject to any symmetry and so their individual values at

different spacetime points can affect the physics at those points.

3.2.2. T-duality

In string theory an extra space time symmetry is present which relates physical

properties in theories with large compactification radius with those in theories with

small radius. Suppose we have a string theory compactified on a circle of radius L.

The “T-duality” transformation which relates two physical theories with this one

compactified dimension is

L→ L̃ =
α′

L
. (3.1)

Now consider what effect this transformation will have on the momentum of a closed

string. Instead of being a continuum, the momentum takes discrete values j/L for

j ∈ Z. This is a KK tower of massive states. As we complete a circuit around the

compact dimension, the value of the coordinate function embedding the string in the

background will increase by 2πwL for w ∈ Z. This w, called the winding number

of the string, can only be non-zero for closed strings, which can be wrapped around

the periodic dimension.

The total mass of the string contains terms with both the KK tower of states and
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the new tower of winding states:

M2 =
j2

L2
+
w2L2

α′2
+ · · · , (3.2)

where the string parameter α′ is related to the string mass scale by α′ = 1/m2
s . If L

is taken to infinity, the w 6= 0 states become infinitely massive and only the w = 0

state is left with a continuum of momentum values. Thus, the uncompactified result

is recovered. However, if L → 0, the j 6= 0 states are now infinitely massive as in

the standard KK picture. Unlike the standard case, there is now a continuum of

winding states with w 6= 0, again giving an uncompactified dimension. This major

departure from the standard compactification result is a purely stringy effect.

The formula for the mass spectrum, Eq. (3.2), is invariant when j and w are

exchanged given the transformation in Eq. (3.1). Writing the equations of motion in

terms of L̃, having interchanged j and w, gives a new theory which is compactified on

a circle of radius L̃. This is known as the T-dual theory [94, 167]. The two theories

are physically identical since T-duality is an exact symmetry of string theory for

closed strings. The T-duality applies to all physics in the theory and in particular

also affects open string modes. These behave in a different way under T-duality to

closed strings as will be described below.

3.2.3. D-Branes

The dynamics of extended objects known as branes are particularly important

for building inflationary models. As mentioned in Section 3.2.2, string theories

are linked by T-duality. Fundamental parameters such as the size of the extra-

dimensions, the string coupling and the coordinate solutions of the strings are related

by such a symmetry.

We introduced T-duality by explaining its effects on closed strings. But what

happens to the open strings in a T-dualised theory? Open strings, as their name

suggests, have two open ends and consequently cannot have a conserved winding

number such as w. Suppose once more that one of the D dimensions is compactified.

As L→ 0, the non-zero momentum states become infinitely massive, but in contrast

to the closed case there is now no continuum of winding states. Thus, the open string

now lives in D− 1 dimensions similar to the result of standard KK compactification

[86]. The endpoints of the open strings then observe Dirichlet boundary conditions,

taking fixed values in the compactified direction. There are still closed strings in this

theory, however, and these continue to move in the full D dimensions after being
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T-dualised.

The result is similar if more than one coordinate is made periodic. If D − p − 1

spatial dimensions are compactified, for some p, then the ends of the open strings can

still move freely in the other p spatial dimensions on a p+1 dimensional hypersurface.

This hypersurface is called a Dirichlet brane or Dp-brane. The closed string modes

move in the full D dimensions. In Type IIB theory with supersymmetric strings, an

extra condition implies that only Dp-branes with p = 1, 3, 5, 7, 9 are stable1.

Dp-branes can be considered as dynamical objects in their own right with a tension

given by [86]2

Tp =
mp+1

s

(2π)pgs

, (3.3)

where gs is the string coupling and ms is the string mass scale. Their dynamics is

governed by the action

SDBI = −Tp
∫

dp+1ξ
√
−ĝ , (3.4)

where ĝab is the induced metric on the brane with internal coordinates ξa, for a =

0, . . . , p, given by [86]

gµν = ĝab
∂ξa

∂xµ
∂ξb

∂xν
. (3.5)

Eq. (3.4) is the general form of the DBI action which will be used later.

In the simplest versions of slow roll inflation, only a single scalar field with a

sufficiently flat potential is required to satisfy the slow roll conditions outlined in

Section 2.2.2. Since D-branes are charged (with Ramond-Ramond charge), a D-

brane and an anti-D-brane (D) separated by some distance will be attracted to each

other. The separation distance can be identified as a scalar degree of freedom and

under appropriate conditions could play the role of the inflaton field [30, 33, 34, 57,

58, 179].

As described above, compactifying dimensions introduces scalar fields known as

moduli. These fields must be accounted for in the dynamics unless some way can

be found to stabilise them by fixing their masses to be large. Initial efforts to

induce inflation using D-branes ignored the issue of moduli stabilisation. Instead,

it was assumed that whatever stabilisation mechanism was used would have no

discernible effect on the inflationary physics. Kachru et al. [89] recognised that in

fact stabilisation will be important and must be taken into account.

1There is also a p = −1 D-instanton in which the time direction along with all spatial directions
is subject to Dirichlet boundary conditions [74–76].

2Tp here is τp in Ref. [86].
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3.2.4. Warped Throats

The moduli must be stabilised so that they do not appear in the effective action

as massless fields. This can be achieved by switching on background fluxes in the

compactified space. These fluxes are analogous to magnetic fields in the higher

dimensional space. By Gauss’ theorem the compact space will now have a quan-

tised non-zero total charge. In the presence of fluxes, a general form for the ten

dimensional metric is [20]:

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gmndymdyn , (3.6)

where the function A(y) varies across the compact dimensions ym. Compactifications

in which A varies significantly with y are called warped compactifications and eA(y)

is referred to as the warp factor. These warped compactifications are qualitatively

similar to the Randall-Sundrum scenario [31, 160].

Flux compactification of type IIB string theory to four dimensions results in such

a warped geometry, where the six-dimensional CY manifold contains one or more

throats [56, 71, 73]. The metric inside a throat takes the same form as in Eq. (3.6):

ds2
10 = h2(ρ)ds2

4 + h−2(ρ)
(
dρ2 + ρ2ds2

X5

)
, (3.7)

where the warp factor h(ρ) is a function of the radial coordinate ρ along the throat

and X5 is a Sasaki-Einstein five-manifold.

In many cases, the ten-dimensional metric (3.7) can be approximated locally by

the geometry AdS5×X5, where the warp factor is given by h = ρ/L and the radius

of curvature of the AdS5 space is defined by

L4 ≡ 4π4gsN

Vol(X5)m4
s

, (3.8)

such that Vol(X5) is the dimensionless volume of X5 with unit radius and N is the

D3 charge of the throat.

In the Klebanov-Strassler (KS) background [97], the throat is a warped deformed

conifold and corresponds to a cone over the manifoldX5 = T 1,1 = SU(2)⊗SU(2)/U(1)

in the UV limit (ρ → ∞). This has a volume Vol(T 1,1) = 16π3/27 and topology

S2 × S3, where the S2 is fibred over the S3.

There are two 3-cycles in the warped throat. The first is the S3 subspace and

is known as the A-cycle. The second, called the B-cycle, is the S2 times a circle

extended in the direction of the throat radius. The three-form fluxes F3 and H3,
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Figure 3.1.: A conifold can be deformed to remove the singularity at the tip.

aligned with these cycles, are turned on to make the warped throat a solution of the

Einstein equations [49]. The cycles are threaded with quantised units of flux M and

K given by:

1

2πα′

∫
A

F3 = M , (3.9)

1

2πα′

∫
B

H3 = −K , (3.10)

where M,K ∈ Z. The D3 charge of the throat, N , is related to the quantised fluxes

by N = MK. The wrapping of the fluxes along the cycles of the conifold smooths

out the conical singularity at the tip of the throat with an S3 cap [97, 98], as shown

in Figure 3.1, and the warp factor asymptotes to a constant value in this region.

In this section we have summarised the concepts that will be required to discuss

DBI inflation. The compactified warped throat described here will provide the set-

ting for this string theoretic realisation of inflation. In the next section we connect

the geometry and physics of the string compactification with inflationary cosmol-

ogy and establish the observational parameters that will directly enable concrete

constraints to be formulated.

3.3. DBI Inflation

The DBI scenario is based on the compactification of type IIB string theory on

a Calabi-Yau (CY) three-fold, where the form-field fluxes generate locally warped

regions known as throats, as described above. The propagation of a D3-brane in
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such a region can drive inflation, where the inflaton field is identified with the radial

position of the brane along the throat. Inflation can occur whether the brane moves

towards or away from the tip of the throat. Since the radial distance is an open

string mode, the field equation for the inflaton is determined by a DBI action.

Figure 3.2.: A representation of the Calabi-Yau manifold in the 6 compactified di-
mensions. Throats are connected to the main bulk. D3-branes appear
as dots.

In general, the low-energy world-volume dynamics of a probe D3-brane in a warped

throat is determined by an effective, four-dimensional DBI action, as described in

Section 3.2.4. The inflaton field is related to the radial position of the brane by

ϕ ≡ √T3ρ, where T3 is the brane tension defined in Eq. (3.3). The action is then



3.3: DBI Inflation 49

given by [185]

S =

∫
d4x
√
|g|
[
M2

PL

2
R + P (ϕ,X)

]
, (3.11)

P (ϕ,X) = −T (ϕ)
√

1− 2T−1(ϕ)X + T (ϕ)− V (ϕ) , (3.12)

where R is the Ricci curvature scalar and T (ϕ) = T3h
4(ϕ) defines the warped brane

tension. As in Section 2.5 we refer to P (ϕ,X) as the kinetic function for the inflaton,

X ≡ −1
2
gµν∇µϕ∇νϕ is the kinetic energy of the inflaton and V (ϕ) denotes the field’s

interaction potential. Typically in warped compactifications of IIB supergravity, this

potential is determined by the relevant fluxes and brane interaction terms. We will

ignore the precise origin and form of this potential, but simply note that it is highly

sensitive to the string theoretic construction. For the purpose of this thesis we will

simply treat it as an arbitrary function of the inflaton field. (See, for example, Ref.

[88] for a discussion on the precise form that the inflaton potential may take.)

We consider a spatially flat and isotropic cosmology sourced by a homogeneous

scalar field. In this case, the Friedmann equations for a monotonically varying

inflaton can be expressed in the form [185]

3M2
PLH

2(ϕ) = V (ϕ)− T (ϕ)
[
1−

√
1 + 4M4

PLT
−1H2

,ϕ

]
, (3.13)

ϕ̇ = − 2M2
PLH,ϕ√

1 + 4M4
PLT

−1H2
,ϕ

. (3.14)

In Section 2.5 we introduced the speed of sound of inflaton fluctuations. For the

kinetic function in Eq. (3.12), we find from Eq. (2.81) that

cs =
1

P,X
=
√

1− 2T−1X . (3.15)

The condition that the sound speed be real imposes an upper bound on the kinetic

energy of the inflaton, ϕ̇2 < T (ϕ), which is independent of the steepness of the

potential. The motion of the brane is said to be relativistic when this bound is close

to saturation. We will assume throughout Part I of this thesis that motion takes

place in the relativistic limit in which cs � 1.

We now define the epoch that is directly accessible to cosmological observations as

“observable inflation”. We will assume that this phase occurred when the brane was

located within a throat region and moving towards the tip of the throat. We denote

the parameter values evaluated during observable inflation by a subscript star ( ∗).
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Observable inflation corresponds to about 4 e-foldings of inflationary expansion,

∆N∗ ' 4, and occurred somewhere between 30 to 60 e-foldings before the end of

inflation.

The definitions of the slow roll parameters defined in Section 2.2.2 change when cs

is not equal to unity and we will include a third parameter, s, which quantifies the

rate of change of cs. The inflationary dynamics during this phase can be quantified

in terms of these three parameters:

εH ≡ −
Ḣ

H2
=

XP,X
M2

PLH
2

=
2M2

PL

γ

(
H,ϕ

H

)2

, (3.16)

ηH ≡
2M2

PL

γ

H,ϕϕ

H
, (3.17)

s ≡ ċs

csH
=

2M2
PL

γ

H,ϕ

H

γ,ϕ
γ
, (3.18)

where γ ≡ 1/cs. We will assume that the quasi-de Sitter conditions {εH , |ηH |, |s|} �
1 apply during observable inflation. In this regime, the amplitudes and spectral

indices of the two-point functions for the scalar and tensor perturbations are given

by [69]

P2
R =

H4

4π2ϕ̇2
=

1

8π2M2
PL

H2

csεH
, (3.19)

P2
T =

2

π2

H2

M2
PL

, (3.20)

1− ns = 4εH − 2ηH + 2s , (3.21)

nt = −2εH , (3.22)

respectively. P2
T and nt are evaluated when k = aH but P2

R and ns are evaluated

when the scale with wavenumber k crosses the sound horizon kcs = aH.

A further important consequence of a small sound speed is that departures from

purely Gaussian statistics may be large [7, 43, 174, 185]. DBI inflation produces non-

Gaussianity maximised in the equilateral configuration and the leading contribution

is in the form of Eq. (2.93). When csP,X = 1 the second term in Eq. (2.93) is

identically zero and f eq
NL becomes [43, 117]

f eq
NL ' −

1

3

(
1

c2
s

− 1

)
. (3.23)

When cs � 1 a significant level of non-Gaussianity is produced. For a homogeneous
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field 2X = ϕ̇2, so from Eq. (3.15) we find that

ϕ̇2 = T (ϕ)(1− c2
s ) . (3.24)

Eqs. (3.19), (3.23) and (3.24) may then be combined to provide a relation for the

warped brane tension:

T (ϕ)

M4
PL

=
π2

16
r2P2

R

(
1− 1

3f eq
NL

)
. (3.25)

3.4. The Lyth Bound

In the next two chapters we will use a powerful result due to Lyth [123]. This

links the change in value of the inflaton field during inflation to the production of

tensor modes. This relation was originally derived for canonical actions but can

be straightforwardly extended to the case of non-canonical actions such as the DBI

action.

Eqs. (2.86) and (2.67) imply that the variation of the inflaton field during inflation

is related to the tensor-scalar ratio by [19, 123]

1

M2
PL

(
dϕ

dN

)2

=
r

8csP,X
, (3.26)

where N denotes the number of e-foldings as defined in Eq. (2.17). The total

variation in the inflaton field between the epoch of observable inflation and the end

of inflation is then given by

∆ϕinf

MPL

=

(
r

8csP,X

)1/2

∗
Neff , (3.27)

where

Neff ≡
(
csP,X
r

)1/2

∗

∫ Nend

0

(
r

csP,X

)1/2

dN . (3.28)

If r/(csP,X) varies sufficiently slowly during observable inflation, the corresponding

change in the value of the inflaton field is given approximately by [19, 123](
∆ϕ

MPL

)2

∗
' (∆N∗)2

8

(
r

csP,X

)
∗
. (3.29)

This equality links the total variation of the inflaton during observable inflation with
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the tensor-scalar ratio, i.e., the amplitude of gravitational waves produced during

that period. In Chapter 4 we will show how the dynamics of the DBI scenario allow

an upper limit to be imposed on r using this relation.

In deriving Eq. (3.29) we have assumed that r/csP,X varies slowly during observ-

able inflation. For the DBI case, csP,X = 1 and the change in r can be related to

the change in εH and cs through Eq. (2.87). As we have taken εH , |ηH |, |s| � 1

the tensor-scalar ratio will indeed vary slowly over the observable epoch. For more

general models where csP,X 6= 1 we have that

d

dN

[
r

csP,X

]
= 16

εH
P,X

(2εH − 2ηH) . (3.30)

Therefore r/csP,X varies slowly as long as P,X is not too small, i.e., close to O(ε2H).

This will not be the case in the models studied in Chapters 4 and 5.

3.5. Discussion

In this chapter we have introduced the Dirac-Born-Infeld inflationary scenario.

Many attempts have been made to provide an inflationary expansion phase in the

early universe using string theory. In compactifying from ten dimensions down to

four, complicated geometries and additional fluxes must be used to stabilise the

remaining moduli fields.

The DBI scenario is a particular example of the non-canonical inflationary para-

digm described in Section 2.5. The radial position of a D3-brane in a warped throat

is identified as the inflaton field. While the brane propagates up or down the throat,

the kinetic energy of the inflaton is bounded above by requiring the sound speed of

fluctuations to be real. This bound holds no matter how steep the potential of the

field. The relativistic limit takes the bound to be close to saturation and the sound

speed to be small. In the case of DBI inflation the speed of sound parameter takes

the simple form cs = 1/P,X . The previously derived results for P2
R and ns, as well

as the redefined slow roll parameters (3.16)–(3.18) can then be expressed in terms

of this parameter.

Significant non-Gaussianity in the density perturbations spectrum can be gener-

ated due to the small sound speed of the inflaton fluctuations. This non-Gaussianity

can be related to the brane tension and tensor-scalar ratio through Eq. (3.25). The

tensor-scalar ratio can also by related to the variation in the inflaton field by the

Lyth bound (3.26). This relation can be refined by focusing only on the period of
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observable inflation. In the next chapter we will derive two competing bounds on r

which will strongly constrain the parameter space for DBI models.



4. Observational Bounds on DBI

Inflation

4.1. Introduction

In this chapter two bounds on the amplitude of primordial gravitational waves will

be derived, which severely challenge the standard DBI inflationary scenario. By

considering the field range of observable inflation inside a warped throat, the tensor-

scalar ratio r will be constrained to be less than 10−7. In contrast a lower bound

of r & 0.005 will be derived when the power spectrum of scalar perturbations has

a red spectral index. These clearly incompatible bounds can be relaxed by using a

more general form of the DBI action.

The gravitational wave background generated in DBI inflation was initially in-

vestigated by Baumann & McAllister (BM) [19]. By exploiting a relationship due

originally to Lyth [123], these authors derived a field-theoretic upper limit to the

tensor amplitude and concluded that rather stringent conditions would need to be

satisfied for these perturbations to be detectable. Moreover, the special case of DBI

inflation driven by a quadratic potential is incompatible with the WMAP3 data

when this constraint is imposed [23].

Our aim in this chapter is to derive observational constraints on DBI inflation

that are insensitive to the details of the throat geometry and the inflaton potential.

In general, there are two realisations of the scenario, which are referred to as the

ultra-violet (UV) and infra-red (IR) versions. These are characterised respectively

by whether the brane is moving towards or away from the tip of the throat. We focus

initially on the UV scenario and derive an upper bound on the gravitational wave

amplitude in terms of observable parameters. This limit arises by considering the

variation of the inflaton field during the era when observable scales cross the Hubble

radius, and we find in general that the tensor-scalar ratio must satisfy r . 10−7. This

is below the projected sensitivity of future CMB polarisation experiments [21, 199].

On the other hand, the WMAP5 data favours a red perturbation spectrum, with

54
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ns < 1, when the scalar spectral index is effectively constant [104]. For models

which generate such a spectrum, we identify a corresponding lower limit on the

tensor modes such that r & 0.1(1−ns). This is incompatible with the upper bound

on r when 1− ns ' 0.03, as inferred by the observations.

Therefore a reconciliation between theory and observation requires either a relax-

ation of the upper limit on r or a blue spectral index (ns > 1). The DBI scenario

would need to be generalised in a suitable way for the upper bound on r to be weak-

ened. Necessary conditions are identified that a generalised action must satisfy for

the BM constraint and our newly derived bound to be relaxed. Such conditions are

shown in Chapter 5 to be realised in a recently proposed IR version of DBI inflation

driven by multiple coincident branes [194].

4.2. An Upper Bound on the Primordial

Gravitational Waves

In Ref. [19] Baumann & McAllister derived a field-theoretic upper bound on the

tensor-scalar ratio. They achieved this by noting that the four-dimensional Planck

mass is related to the volume of the compactified CY manifold, V6, such that M2
PL =

V6κ
−2
10 , where κ2

10 ≡ 1
2
(2π)7g2

sm
−8
s = π/T 2

3 for a D3-brane1. In general, the compact-

ified volume is comprised of bulk and throat contributions, V6 = V6 bulk + V6 throat.

The latter is given by

V6 throat = Vol(X5)

∫ ρUV

0

dρ
ρ5

h4(ρ)
, (4.1)

where ρUV denotes the radial coordinate at the edge of the throat (defined as the

region where h(ρUV ) is of order unity). The geometry of the throat is shown in

Figure 4.1.

If one assumes that the bulk volume is non-negligible relative to that of the throat

(V6 throat < V6), it follows that M2
PL > V6 throatκ

−2
10 . For a warped AdS5×X5 geometry,

this leads to an upper limit on the total variation of the inflaton field in the throat

region in terms of the D3 charge:

ϕUV
MPL

<
2√
N
. (4.2)

1We parametrise the Planck scale in terms of the D3-brane tension out of convenience, and note
that there is no physical relationship between the two.
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Figure 4.1.: Geometry of the warped throat. The radial coordinate ρ is measured
from the tip of the throat to ρUV at the join with the bulk manifold.

Condition (4.2) may be converted into a corresponding limit on the tensor-scalar

ratio by noting from the definition (3.16) that ϕ̇2/M2
PL = 2εHH

2/P,X . This implies

that the variation of the inflaton field is given by the Lyth bound (3.26) [19, 123]:

1

M2
PL

(
dϕ

dN

)2

=
r

8
, (4.3)

where N is the number of e-foldings as defined in Eq. (2.17). Since ϕ∗, the field

value during observable inflation, is less than ϕUV , this results in an upper bound

on the observable tensor-scalar ratio [19]:

r∗ <
32

N(Neff)2
. (4.4)

The effective number of e-foldings, Neff , defined in Eq. (3.28), is a model-dependent

parameter that quantifies how r varies during the final stages of inflation. Since

csP,X = 1 in the standard DBI model, it follows that Neff = Nend if r is constant

during inflation, where Nend is the total number of e-foldings from the epoch of

observable inflation until inflation ends.
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Typically, one expects 30 . Neff . 60, although smaller values may be possible if

the slow roll conditions are violated after observable scales have crossed the horizon.

Furthermore, N � 1 is necessary for backreaction effects to be negligible [19].

Hence, the constraint (4.4) imposes a strong restriction on DBI inflationary models.

On the other hand, the numerical value of Neff is uncertain. Our aim here is to focus

on the range of values covered by the inflaton field during the observable stages of

inflation. This will result in a constraint on the tensor modes that can be expressed

in terms of observable parameters.

To proceed, we denote the change in the value of the inflaton field over observable

scales by ∆ϕ∗ =
√
T3∆ρ∗. Since the brane moves towards the tip of the throat in

UV DBI inflation, it follows that ρ∗ > ρend > 0, which implies that

ρ∗ > |∆ρ∗| . (4.5)

This change in the inflaton value will correspond to a fraction of the throat volume,

|∆V6 ∗| < V6 throat . V6, where equality in the second limit arises if the bulk volume

is negligible. Hence, |∆ϕ∗| is bounded such that(
∆ϕ

MPL

)2

∗
<
T3κ

2
10(∆ρ∗)2

|∆V6 ∗|
. (4.6)

The observations of the CMB that directly constrain the primordial tensor pertur-

bations only cover multipole values in the range 2 ≤ l . 100. This is equivalent to

∆N∗ ' 4 e-foldings of inflationary expansion and, in general, corresponds to a nar-

row range of inflaton values. To a first approximation, therefore, the fraction of the

throat volume (4.1) that is accessible to cosmological observation can be estimated

to be

|∆V6 ∗| ' Vol(X5)
|∆ρ∗|ρ5

∗
h4
∗

. (4.7)

Combining the inequality (4.5) with Eq. (4.7) then implies that

|∆V6 ∗| > Vol(X5)
(∆ρ∗)6

h4
∗

. (4.8)

Substituting the condition (4.8) into the bound (4.6) gives(
∆ϕ

MPL

)6

∗
<

πT3

Vol(X5)

(
h∗
MPL

)4

, (4.9)
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and using T (ϕ) = T3h
4 and Eq. (3.25) yields the upper limit(
∆ϕ

MPL

)6

∗
<

π3

16Vol(X5)
r2P2

R

(
1− 1

3f eq
NL

)
. (4.10)

Hence, employing the Lyth bound (4.3) in the form (∆ϕ∗/MPL)2 ' r(∆N∗)2/8

results in a very general upper limit on the tensor-scalar ratio:

r∗ <
32π3

(∆N∗)6Vol(X5)
P2
R

(
1− 1

3f eq
NL

)
. (4.11)

Condition (4.11) is only weakly dependent on the level of non-Gaussianity when

−f eq
NL > 5 and we may therefore neglect the factor involving this parameter. Sub-

stituting the WMAP5 normalisation P2
R ' 2.5× 10−9 then implies that

r∗ <
2.5× 10−6

(∆N∗)6Vol(X5)
. (4.12)

Furthermore, the most optimistic estimate for the minimum number of e-foldings

that could be probed by observation is ∆N∗ ' 1, whereas a generic compactification

arises when the volume of the Einstein five-manifold is Vol(X5) ' O(π3) [97]. This

yields a model-independent upper bound on the tensor-scalar ratio for standard UV

DBI inflation:

r∗ < 10−7 . (4.13)

The bound (4.13) is the main result of this section. This value of r is significantly

below the sensitivity of future CMB polarisation experiments, which will measure

r & 10−4 [21, 199]. If CMB observations are able to span the full range of e-foldings

such that ∆N∗ ' 4, this constraint is strengthened to r∗ . 2× 10−11.

Before concluding this section, we should explicitly outline all the assumptions

that have lead to Eq. (4.13). First, we are considering the relativistic limit where

cs � 1. We are also restricting ourselves to considering the UV scenario where a

brane moves towards the tip of the throat. This ensures that Eq. (4.5) is satisfied.

For the Lyth bound to take the form in Eq. (3.29), we have assumed that r varies

slowly during the observable period of inflation. This is justified as the change in r

can be written in terms of the quasi deSitter parameters εH , ηH and s and we have

assumed their magnitudes are much less than unity.

The estimate (4.7) was derived under the assumption that the integrand in Eq. (4.1)

is constant. This inevitably introduces errors into the bound (4.11). However, the

two limiting cases of interest in KS-type geometries arise when the warp factor scales
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either as h ∝ ρ or as h ' constant [97, 98]. In both cases the integral (4.1) can be

performed analytically. Indeed, if we specify h ∝ ρα for some constant α, evaluate

the integral from ρ∗ to ρ∗ + ∆ρ∗, and expand to second-order in a Taylor series, we

find that

∆V6 ∗ ' Vol(X5)
ρ5
∗

h4(ρ∗)
(∆ρ∗)

[
1 +

(5− 4α)

2

(∆ρ∗)

ρ∗

]
. (4.14)

This implies that the error in Eq. (4.7) is no greater than about 3(∆ρ∗/ρ∗) if 0 ≤
α ≤ 1. More generally, it follows that a similar error will arise for any warp factor

h ∝ ρα(ρ), where the function α(ρ) satisfies 0 ≤ α(ρ) ≤ 1 over observable scales.

We conclude, therefore, that Eq. (4.7) provides a sufficiently good estimate of the

volume element for a generic warp factor2.

In order to neglect the f eq
NL term in Eq. (4.10) we have assumed that −f eq

NL > 5.

As cs has been taken to be small this is expected to be the case. The volume of

the Sasaki-Einstein manifold X5 is taken to be O(π3) in keeping with the values

for known solutions. The WMAP5 normalisation of the scalar perturbation power

spectrum has also been used. Finally, in going from Eq. (4.12) to the final numerical

figure in Eq. (4.13) the most “optimistic” value, ∆N∗ ' 1, has been chosen as this

leads to the least restrictive bound on r. As described above a more realistic value

of 4 would severely constrain r due to the strong dependence of Eq. (4.12) on ∆N∗.

4.3. A Lower Bound on the Primordial

Gravitational Waves

The analysis of the previous section indicates that standard versions of UV DBI

inflation generate a tensor spectrum that is unobservably small. Therefore, r = 0

can be assumed as a prior when discussing the WMAP5 data. However, in this

case the data disfavours a scale-invariant density spectrum at close to the 3σ level

(2.78σ) when the running in the spectral index, αs ≡ dns/d ln k, is negligible [104].

Furthermore, a blue spectral index is only marginally consistent with the data when

r 6= 0 and αs = 0. (The inferred upper limit is ns < 1.018.) Although the results

from WMAP5 do allow for a blue spectrum if there is significant negative running

in the spectral index, we will focus in this section on models that generate a red

spectral index ns < 1, since these are preferred by the current data.

In general, the spectral index may be related to the tensor-scalar ratio. After

2As we shall see in the following section, even an order of magnitude error will make little difference
to our final conclusions.
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differentiating Eq. (3.15) with respect to coordinate time, and employing Eqs. (3.14)

and (3.21), we find that3

1− ns = 4εH +
2s

1− γ2
∓ 2M2

PL

γ

T,ϕ|H,ϕ|
TH

, (4.15)

where the minus (plus) sign corresponds to a brane moving down (up) the warped

throat. The second term in Eq. (4.15) can be converted into observable parameters

by defining the ‘tilt’ of the non-linearity parameter [40]:

neq
NL ≡

d ln |f eq
NL|

d ln k
. (4.16)

This implies that s = 3f eq
NLn

eq
NL/[2(1− 3f eq

NL)] and substitution of Eqs. (3.21)–(3.23)

into Eq. (4.15) then yields

1− ns =
r

4

√
1− 3f eq

NL +
neq

NL

1− 3f eq
NL

∓
√
r

8

(
T,ϕ
T
MPL

)
∗
. (4.17)

In Ref. [117], brane inflation near the tip of a KS-type throat was considered,

where the warped brane tension asymptotes to a constant value. In this regime,

Eq. (4.17) reduces to the condition r ' 2.3(1−ns)/
√
−f eq

NL when |f eq
NL| is sufficiently

large to be detectable by Planck, i.e., |f eq
NL| > 5. It then follows from the WMAP5

best-fit value ns ' 0.968 and lower limit f eq
NL > −151 [104] that the gravitational

wave amplitude is bounded both from above and below such that 0.001 . r . 0.01.

These bounds follow from current WMAP5 limits on the spectral index and the non-

linearity parameter, but do not take into account the field-theoretic upper bound

that must be imposed on the variation of the inflaton field during inflation.

More generally, in UV DBI inflation where the brane moves towards the tip of the

throat, it is reasonable to assume that the warp factor decreases monotonically with

the radial coordinate over the observable range of inflaton values, i.e., dh/dρ ≥ 0.

This condition is satisfied for AdS5 ×X5 compactifications and KS-type solutions.

Consequently, the third term in Eq. (4.17) will be semi-negative definite, which

implies that
r

4

√
1− 3f eq

NL +
neq

NL

1− 3f eq
NL

> 1− ns . (4.18)

Condition (4.18) is a consistency relation on UV DBI inflation in terms of observ-

3The relationship between ϕ̇ and H,ϕ is defined in Eq. (3.14). When ϕ̇ < 0 and the brane moves
down the throat (UV case) H,ϕ > 0. Alternatively in the IR case when ϕ̇ > 0 we have H,ϕ < 0.
In order to remove the ambiguity we rewrite Eq. (3.14) using −H,ϕ = ∓|H,ϕ| where the minus
(plus) sign corresponds to the UV (IR) case.
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able parameters and it may be combined with the upper bound (4.11) to confront

the scenario with observations. Firstly, let us assume that the tensor-scalar ratio is

negligible. The WMAP5 data implies that 1 − ns > 0.026 at 1σ, and this is only

compatible with condition (4.18) if

neq
NL ' −2s > −3(1− ns)f eq

NL > −0.078f eq
NL . (4.19)

However, when −f eq
NL � 1, this would violate the slow roll conditions that must be

satisfied for a consistent derivation of the perturbation spectra (3.19). For example,

the conservative bound |s| < 0.1 with 1− ns ' 0.05 is violated if −f eq
NL > O(5).

In view of this, let us consider the case where the tensor perturbations are non-

negligible. The magnitude of the second term in condition (4.18) is suppressed by

a factor of (−f eq
NL)3/2 � 1 relative to the first. This is expected to be a significant

effect in DBI inflation. Consequently, by saturating the WMAP5 limit f eq
NL > −151,

we arrive at a lower bound on the tensor-scalar ratio which applies to any model for

which the ratio |neq
NL/f

eq
NL| is negligible:

r∗ >
4(1− ns)√
−3f eq

NL

>
1− ns

6
. (4.20)

This second bound requires r > 0.005 for the WMAP5 best-fit value 1−ns ' 0.032,

which is incompatible with the upper limit (4.13).

In general, therefore, it is difficult to simultaneously satisfy the bounds on r with

the WMAP5 data in standard UV DBI inflation. There is a small observational

window where a blue spectrum is consistent with the data, in which case the lower

limit (4.20) does not apply. However, if the tensor modes are negligible, as implied by

the inequality (4.13), the data strongly favours a red spectral index with ns < 0.974,

and this violates the condition (4.20). A significant detection of a red spectral index

requires either a violation of the slow roll conditions or a sufficiently small value for

the volume of X5. In particular, combining the limits (4.12) and (4.20) results in

the condition

Vol(X5) <
2× 10−5

(1− ns)(∆N∗)6
, (4.21)

and we find that Vol(X5) . 10−7 is required for typical values 1 − ns ' 0.05 and

∆N∗ ' 4. This is comparable to the limit on the volume derived for the special case

of a quadratic inflaton potential [19].

As noted in Refs. [19] and [23], condition (4.21) may be achieved if X5 corresponds

to a Y p,q space. Previously only two five-dimensional Sasaki-Einstein metrics were
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explicitly known, S5 and T 1,1 on S2×S3. The Y p,q metrics described in Ref. [70] are

a countably infinite number of Sasaki-Einstein metrics on S2 × S3. The metrics are

parametrised by the two topological numbers p and q, which are coprime when the

Y p,q is topologically S2 × S3. The volume of one of these manifolds is proportional

to 1/p. Hence by setting q = 1 and letting p become large, this volume can be made

arbitrarily small [70]. On the other hand, the largest volume occurs for p = 2, q = 1

giving Vol(Y 2,1) ' 0.29π3. Small volumes could also be realised by orbifolding the

S2 symmetry of a KS-type throat.

On the other hand, the upper limit (4.12) on the gravitational waves follows as a

consequence of assuming the constraint (4.5). This could be violated in IR versions

of the scenario, where observable scales crossed the Hubble radius when the brane

was near the tip of the throat and ϕ � MPL [39, 40]. Nonetheless, we emphasise

that the upper bound (4.12) on the tensor modes will also apply to any IR DBI

model for which |∆ϕ∗| < ϕ∗. In view of the above discussion, we will proceed in the

following section to discuss a framework for generalising the DBI scenario so that

the constraints on the tensor modes can be satisfied.

4.4. Relaxing the Upper Bounds

In this section, we take a phenomenological approach and consider the following

kinetic function which has a more general form than the DBI one but still contains

a square root term:

P = −fA(ϕ)
√

1− fB(ϕ)X − fC(ϕ) , (4.22)

where fi(ϕ) are unspecified functions of the inflaton field. We will assume implic-

itly that these functions have a suitable form for generating a successful phase of

inflation. A direct comparison with Eq. (3.12) indicates that the standard DBI

action can be recovered by setting fAfB = 2. This implies that csP,X = 1 and

greatly simplifies the form of Eq. (4.3). Another important property in the DBI

case is that the warp factor uniquely determines the kinetic structure of the ac-

tion, i.e., h4 ∝ fA ∝ f−1
B . In view of this, it is interesting to consider whether the

gravitational wave constraints could be weakened by relaxing one or both of these

conditions.
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We can differentiate P (X,ϕ) in Eq. (4.22) to find:

P,X =
fAfB

2
√

1− fBX
, (4.23)

P,XX =
fAfB

2

fB

2(1− fBX)
3
2

. (4.24)

The sound speed of fluctuations in the inflaton, defined in Eq. (2.81), is then given

by

cs =
√

1− fBX =
fAfB

2

1

P,X
, (4.25)

and the scalar power spectrum (2.86) by

P2
R =

1

2π2

H4

fAfBϕ̇2
. (4.26)

However, the consistency equation (2.87) and non-Gaussianity constraint (3.23) re-

main unaltered for this more general class of models [117]. It follows, therefore, that

the CMB normalisation condition (3.25):

T (ϕ)

M4
PL

=
π2

16
r2P2

R

(
1− 1

3f eq
NL

)
, (4.27)

generalises to a constraint on the value of fA(ϕ∗):(
fA
M4

PL

)
∗
' π2

16
r2P2

R

(
1− 1

3f eq
NL

)
. (4.28)

Finally, the expression for the scalar spectral index follows by generalising the deriva-

tion of Eq. (4.17) given by

1− ns =
r

4

√
1− 3f eq

NL +
neq

NL

1− 3f eq
NL

∓
√
r

8

(
T,ϕ
T
MPL

)
∗
. (4.29)

It is straightforward to show that for the more general kinetic function this expres-

sion becomes

1− ns =
r

4

√
1− 3f eq

NL +
neq

NL

1− 3f eq
NL

∓
√

r

4fAfB

(
fA,ϕ
fA

MPL

)
∗
. (4.30)
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4.4.1. A More General BM Bound

The BM bound (4.4) restricts the maximal variation of the scalar field ϕ in the

full throat region for DBI inflation. This is determined by expression (4.2) for

generic warped geometries that are asymptotically AdS5 ×X5 away from the tip of

the throat. However, in Section 3.4 the Lyth bound was also defined for general

non-canonical actions. For the more general kinetic function (4.22), the BM bound

becomes

r <
32

N(Neff)2
csP,X =

16

N(Neff)2
fAfB . (4.31)

To use this bound we must be able to calculate Neff over the full range of e-foldings

of inflation. This requires knowledge of the behaviour of fA and fB over that range.

A more cautious approach would be to restrict our attention to the observable

stage of inflation. Assuming that the variation of fAfB = 2csP,X is negligible during

that epoch, we can use Eq. (3.29) which states that(
∆ϕ

MPL

)2

∗
' (∆N∗)2

8

(
r

csP,X

)
∗

=
(∆N∗)2

4

(
r

fAfB

)
∗
. (4.32)

In addition, if observable scales leave the horizon while the brane is inside the throat,

the change in the field value must satisfy |∆ϕ∗| < ϕUV . It follows from Eqs. (4.31)

and (4.32), therefore, that

r∗ <
32

N(∆N∗)2
(csP,X)∗ =

16

N(∆N∗)2
(fAfB)∗ . (4.33)

Condition (4.33) will be referred to as the generalised BM bound. We have been

conservative by restricting our discussion to the observable phase of inflation. A

stronger condition is obtained by using Eq. (4.31), which is equivalent to substituting

∆N∗ → Neff . If fAfB remains nearly constant over the last N e-foldings of inflation,

then Neff may be as large as 60 and the right hand side of Eq. (4.33) will be reduced

by a factor of 225. Thus, the generalised bound (4.33) should be regarded as a

necessary (but not sufficient) condition to be satisfied by the tensor modes.

Given expressions (4.28) and (4.33) we can either constrain r using a specified

value for fB, or find a necessary condition on the value of fB(ϕ∗) for the generalised

BM bound to be satisfied using r and P2
R:

fB(ϕ∗)M4
PL

N
>

(∆N∗)2

π2

1

rP2
R
. (4.34)
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In UV models, identical arguments that led to the lower limit (4.20) on the tensor-

scalar ratio will also apply in this more general context if, as expected, fA(ϕ) is a

monotonically increasing function.

A necessary condition for the lower and upper limits (4.20) and (4.33) to be

compatible, therefore, is that

fAfB >
N(∆N∗)2(1− ns)

4
√
−3f eq

NL

. (4.35)

In IR scenarios, however, the positive sign will apply in the last term of the

right-hand side of Eq. (4.30). Hence, assuming fA,ϕ > 0 and neglecting the term

proportional to neq
NL/f

eq
NL yields another upper limit on the tensor-scalar ratio:

r∗ <
4(1− ns)√
−3f eq

NL

. (4.36)

Combining conditions (4.34) and (4.36) therefore leads to a constraint on fB(ϕ∗) for

the generalised BM bound to be satisfied in IR inflation:

fBM
4
PL

N
>

(∆N∗)2

4π2

√
−3f eq

NL

(1− ns)P2
R
. (4.37)

To summarise, for the more general kinetic function in Eq. (4.22), the parameters

fA and fB must satisfy Eqs. (4.28) and (4.34), where we have restricted our interest

to the era of observable inflation. For UV models the lower and upper bounds on

the tensor-scalar ratio will be compatible if Eq. (4.35) is satisfied. For IR models

two upper bounds on r have been found, which when combined constrain fB as in

Eq. (4.37). This constraint will prove useful in Section 5.4.1.

4.4.2. The New Upper Bound for General Models

The newly derived upper bound on r for DBI models, Eq. (4.11), arises because

the warp factor in standard DBI models completely specifies the kinetic energy of

the inflaton field. Deriving a corresponding bound for the generalised model (4.22)

would be more involved, since the CMB normalisation (4.28) only directly constrains

the function fA(ϕ) and this may not necessarily depend on the warp factor. Instead,

the constraint (4.9), given by(
∆ϕ

MPL

)6

∗
<

πT3

Vol(X5)

(
h∗
MPL

)4

, (4.38)
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can be combined with Eq. (4.32) to derive a limit on the tensor-scalar ratio in terms

of the warp factor and P (X,ϕ). We find that

r∗ <
8

(∆N )2
∗

(
πT3

Vol(X5)

)1/3(
h∗
MPL

)4/3

(csP,X)∗ . (4.39)

This bound is valid for any P (X,ϕ) in the warped throat including the generalised

DBI function given in Eq. (4.22). For a specific model where the warp factor and the

functions fi(ϕ) are determined by particle physics considerations, condition (4.39)

may be interpreted as a bound that relates the tensor modes directly to the value of

the inflaton field during observable inflation. This constraint provides a consistency

check that any given model must satisfy irrespective of the form of the inflaton

potential.

It is worthwhile to compare Eq. (4.39) with the BM bound for the full evolution

given in Eq. (4.31). To evaluate the BM bound requires knowledge of fA and fB over

the whole of the inflationary era. In contrast, using Eq. (4.39) only requires values

during observable inflation. However csP,X = fAfB/2 must be assumed to be slowly

varying for Eq. (4.39) to be valid. As discussed in Section 3.4 this is a reasonable

assumption for models in which P,X is larger than O(ε2H) during observable inflation.

As the two bounds provide upper limits on r their relative strength can be com-

pared. The bound (4.39) is stronger than the full throat BM bound if

h4/3
∗ N < 20 (Vol(X5)gs)

1/3

(
ms

MPL

)−4/3
(∆N )2

∗
N 2

eff

. (4.40)

For typical field-theoretic values Vol(X5) ' O(π3), ms ' 0.1MPL and gs ' 10−2,

this implies that

h4/3
∗ N < 300

(∆N )2
∗

N 2
eff

. (4.41)

If the more conservative approach outlined above is taken, the BM bound for ob-

servable inflation, Eq. (4.33), is weaker than Eq. (4.39) when

h4/3
∗ N < 300 . (4.42)

To summarise this section, new bounds have been derived which generalise those

described in Section 4.2 to the case of the kinetic function in Eq. (4.22). The

expressions (4.31), (4.33) and (4.39) imply that the bounds on r could be relaxed

if 2csP,X = fAfB � 1 on observable scales. It is therefore important to develop

string-inspired models where this condition arises naturally. We will explore this
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possibility in the next chapter.

4.5. Review of Other DBI Based Models

Figure 4.2.: A schematic of recent DBI inspired models

We have found that the standard DBI model appears to be in conflict with ob-

servations. Many attempts have since been made to modify the original scenario

in order to evade the bounds derived above. These new models can be classified

according to whether they involve single or multiple fields and single or multiple

branes. Figure 4.2 lists some of the models in each category.

The most straightforward extensions of the DBI model are single field, single brane

models. These have a single degree of freedom, as in the D3-brane model, but they

rely on other physical mechanisms to ease the bounds on r. A natural extension to

the single D3-brane model is to consider a Dp-brane wrapped around a (p−3)-cycle

of the internal space. This leads to a change in the relationship between ρ and ϕ

from that defined in Section 3.3 [24, 102, 202]. For example, Becker et al. [24] have

proposed a model in which inflation is driven by a wrapped D5-brane. In this case,

the range of allowed values for the inflaton becomes independent of the throat charge,

N , which weakens the upper bound on the tensor-scalar ratio to r . 0.04. (Strictly

speaking there is a weak dependence on the charge since ∆ϕ ∼ N−1/4.) However,

in arriving at this bound, it was assumed that backreaction effects of any fluxes

in the throat were negligible. Kobayashi et al. [102] considered both D5 and D7

wrapped brane models, but concluded that the former case required an excessively
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large background charge in order to relax the bounds on r. This requirement is

highly constraining, but is still not as restrictive as the value of the charge required

by the single brane scenario, which effectively rules this model out. Thus, a wrapped

brane configuration is preferable to the single D3-brane model, but the parameter

space of the former is still severely limited by the WMAP5 observations [4].

Another interesting proposal is warped Wilson line DBI. In this scenario, moduli

fields associated with Wilson lines play the role of the inflaton [12]. This scenario is

T-dual to the standard DBI model with non-parallel branes. In general, the model

describes the physics of a single brane with multiple position fields and multiple

Wilson line fields. In Ref. [12], observational predictions were derived for the case

when the brane position is fixed and only one Wilson line degree of freedom is used.

This implementation is therefore a single brane, single field model. By following

the method outlined in Section 4.2 for this single field model, a lower bound on

r was derived, instead of the upper bound (4.12) [12]. The lower bound (4.20)

remains valid for this scenario. There are, therefore, two lower bounds on r and the

inconsistency of the standard DBI model is not replicated.

Changing the physical setting can also allow larger field ranges, which in turn can

relax the bounds on r. One such example is the case of a D4-brane in compactified

manifolds containing monodromies. The large field variations in this single brane,

single field model lead to possibly observable tensor modes [186]. Although formu-

lated in Type IIA string theory, the monodromy scenario has a simple inflationary

interpretation as a large field, slow roll model with a potential V (ϕ) ∝ ϕ2/3.

The tensor-scalar ratio and other observable quantities are significantly altered

if the throat geometry is not of the AdS5 type, even in the case of the standard

D3-brane model [72]. In Ref. [35], a one parameter family of solutions was found,

which interpolates between the Klebanov-Strassler (KS) [97] and Maldacena-Nuñez

[131] throats. As the throat geometry moves away from KS, more non-Gaussianity is

produced whereas the tensor-scalar ratio is reduced. The choice of throat geometry,

therefore, could affect the bounds on r and must be considered when models are

compared.

The next class of models that can be investigated are the single brane, multi-field

configurations. The warped throat is six-dimensional, so it is natural to consider

cases where the D3-brane is not restricted to a radial trajectory. This was investi-

gated in Refs. [59] and [81]. Increasing the degrees of freedom in this way introduces

the possibility of entropy mode production. There are also changes in the predic-

tions for the amount and type of non-Gaussianity produced and the constraints on

r can be eased [10, 109–111, 141, 142, 161]. The bounds on r could also be affected
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if a non-negligible part of the curvature perturbation was produced by a curvaton

field [129]. Curvaton fields arise generically in scenarios containing warped throats,

particularly for propagation near the tip [101, 113].

Investigations have also been made into models with multiple branes, each of

which has a single dynamical field. In Refs. [37] and [36], no interactions between

branes were considered, and the branes could conceivably propagate in different

throats. The action for n decoupled branes in the relativistic limit is the sum of n

copies of the DBI action (3.11). The power spectrum of curvature perturbations is

enhanced by a factor of n3/2 with respect to the single brane case. Consequently,

the value of the tensor-scalar ratio will be reduced.

We have not yet addressed models with multiple branes but only one effective

degree of freedom. Multiple M5-branes in M-theory act with an effective single

degree of freedom, but the Lyth bound is now significantly weakened. Large field

ranges and an observable tensor signal are therefore possible [106]. Another proposal

is that of n D3-branes which are coincident and propagating in a warped throat

[28, 83, 194, 202]. The non-Abelian nature of the interactions between the branes

differentiates this model from other multi-brane models and the model is also known

as “Matrix Inflation”. In Chapter 5 we investigate this model in the relativistic limit

for both large and small n, and show how the constraints derived in this chapter

can be applied.

4.6. Discussion

In this chapter, we have derived an upper limit on the amplitude of the primordial

gravitational wave spectrum generated during UV DBI inflation. We considered the

maximal inflaton field variation that can occur during the observable stages of infla-

tion and assumed only that the brane was propagating inside the throat during that

epoch. The bound (4.12) is valid for an arbitrary inflaton potential and warp factor

(modulo some weak caveats) and can be expressed entirely in terms of observable

parameters, once the volume of the five-dimensional sub-manifold of the throat has

been specified. The inferred upper limit on r is surprisingly strong. We find that the

standard UV scenario predicts tensor perturbations that are undetectably small, at

a level r∗ . 10−7.

The current WMAP5 data favours models that generate a red spectral index,

ns < 1, when both the gravitational waves and running in the scalar spectral index

are negligible. For UV versions of the scenario, we have identified a corresponding
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lower limit on r which applies in this region of parameter space, r∗ & 0.1(1−ns). It

is clear that the standard scenario cannot satisfy both the upper and lower bounds

on the tensor modes for the observationally favoured value 1− ns ' 0.03.

The generality of our analysis implies that modifying either the inflaton potential

or the form of the warp factor is unlikely to resolve this discrepancy. On the other

hand, there are a number of possible ways of reconciling theory with observation.

In general, either the upper or lower limit on r needs to be relaxed. Weakening the

latter would require a violation of the slow roll conditions or a blue spectral index.

A value of ns > 1 is compatible with WMAP5 if the running of the spectral index is

sufficiently negative, but is only marginally consistent if just the tensor modes are

non-negligible. The upper limit on r can be weakened by reducing the volume of

X5 or by generalising the DBI action. Furthermore, it need not necessarily apply

in IR versions of the scenario, although the BM bound will still hold in such cases.

We considered a generalised version of the DBI action and identified a necessary

condition on the form of such an action for the BM bound to be relaxed.

In conclusion therefore, we have shown that primordial gravitational wave con-

straints combined with cosmological observations of the density perturbation spec-

trum act as a powerful discriminant of DBI inflationary models. They also serve

as an important observational guide for identifying viable generalisations of the

scenario. In Chapter 5 we will explore one particular generalisation, the multi-

coincident brane scenario introduced in Ref. [194].



5. Multi-Coincident Brane

Inflation

5.1. Introduction

We have seen in Chapter 4 that the standard DBI inflationary model is severely

constrained by current observational data. The amplitude of tensor perturbations is

bounded from above by r ≤ 107. When the brane is moving towards the tip of the

throat, a complementary lower bound on r can be derived such that the two bounds

are incompatible using current observational data. In this chapter we will explore

how to evade, reconcile and weaken these bounds by considering a more general

class of models that exhibit properties similar to the standard DBI scenario.

In Section 5.2 we consider the special algebraic properties of the DBI action. We

identify a general class of non-canonical inflationary models where the leading-order

contribution to the non-Gaussianity of the curvature perturbation is determined

entirely by the speed of sound of the inflaton fluctuations. In these models, the

bounds on r can be relaxed if significant non-Gaussianities are generated.

As reviewed in Section 4.5, many alternative ways to relax these bounds have

been proposed, including models based upon multiple fields, the addition of angular

momentum as another degree of freedom and using different throat geometries.

However, in most cases the extra degrees of freedom introduced in these models

do not solve the problem [4]. The bounds are relaxed only by a small fraction, and

therefore these models should still be regarded as unsatisfactory since they require

an extreme amount of fine tuning in order to satisfy the observational constraints.

One alternative possibility is to consider multiple brane configurations1. One

scenario in which multiple branes are expected is after brane flux annihilation, in

which branes travelling down the throat annihilate with the trapped flux, creating

new branes [53, 90, 194]. These are then attracted by other branes and fluxes in

other throats and propagate toward the bulk. In Ref. [194] Thomas & Ward argue

1In certain limits this approach is actually dual to considering wrapped branes [202].

71
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that it is unlikely that only a single brane is left after the flux annihilation process,

due to the large amount of fine tuning necessary to achieve this. Instead it is more

likely that a number of branes remain.

In the case where n branes are localised initially at equal distances, l > ls, and

subsequently follow the same trajectory, the effective theory is equivalent to that of n

copies of the action for a single brane. A more general initial condition, particularly

for branes created in the IR region of the throat [38, 53, 90], is that the branes

should be separated over a range of scales, with a subset being coincident and the

remainder being widely separated.

In Section 5.3 we introduce the multi-brane model with n coincident branes de-

scribed in Ref. [194]. We will consider two limiting cases of this model. The large

n case is similar in form to the original DBI model, and we will show in Section 5.4

that it can be constrained using the formalism derived in Chapter 4. In contrast,

the effective action in the relativistic limit for a finite number of branes is shown to

be in the class of actions for which the bounds on r can be relaxed. In Section 5.5

we find that such models can in principle lead to a detectable gravitational wave

background if the number of coincident branes is sufficiently small.

5.2. Relaxing the Upper Bounds on the

Tensor-Scalar Ratio

In Chapter 3 we described the standard DBI scenario, in which the kinetic function

P (ϕ,X) takes the form given in Eq. (3.12):

P (ϕ,X) = −T (ϕ)
√

1− 2T−1(ϕ)X + T (ϕ)− V (ϕ) , (5.1)

where T (ϕ) = T3h
4(ϕ) is the warped brane tension and V (ϕ) is the inflaton poten-

tial. The standard DBI scenario is algebraically special, in the sense that the kinetic

function satisfies the constraints

csP,X = 1, Λ =
1

2

(
1

c2
s

− 1

)
. (5.2)

We saw in Section 4.4 that the bounds (4.33) and (4.39) on the tensor-scalar ratio

could in principle be significantly relaxed in models where (csP,X)∗ � 1. In view of

the second relation in Eq. (5.2), it is of interest to begin by taking a phenomenological
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approach and to consider the more general class of models that satisfy the relation

1

c2
s

− 1 = αΛ , (5.3)

for some positive constant α.

5.2.1. Approximate Solution

A large non-Gaussian signature in the curvature perturbation is typically generated

in models where the sound speed of fluctuations is small. By substituting Eq. (5.3)

into the definition of f eq
NL in Eq. (2.93), we can see that for this case

f eq
NL ∝

1

c2
s

∝ Λ . (5.4)

Recall that the definitions of c2
s and Λ in Eqs. (2.81) and (2.82) are in terms of P

and its derivatives with respect to X. We can require that the magnitude of f eq
NL

is large by considering scenarios in the limit where c2
s is small and Λ is large, or

equivalently:

X2P,XXX � XP,XX � P,X . (5.5)

Having taken this limit, the constraint (5.3) reduces to the third-order, non-linear,

partial differential equation

P 2
,XX =

α

6
P,XP,XXX . (5.6)

Changing the dependent variable to Υ ≡ P,XX/P,X reduces Eq. (5.6) to

αΥ,X = (6− α)Υ2 , (5.7)

and it is straightforward to integrate Eq. (5.7) exactly. The remaining integrations

can also be performed analytically and the general solution to Eq. (5.6) for α 6= 6

is given by2

P (ϕ,X) = −f1(ϕ) [1− f2(ϕ)X]l − f3(ϕ) , (5.8)

2The special case α = 6 results in an exponential dependence of the kinetic function on X.
However, we do not consider this model further, since it does not lead to a weakening of the
gravitational wave constraints.
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where fi(ϕ) are arbitrary functions of the scalar field and

l ≡ 2(α− 3)

α− 6
. (5.9)

The inequalities (5.5) are satisfied in the relativistic limit, whereX ' 1/f2, justifying

their use. We consider the inflationary dynamics in the relativistic limit in what

follows but for completeness we show in Appendix A.1 that Eq. (5.3) can be solved

analytically without this approximation.

5.2.2. Consequences

The standard DBI scenario is recovered from Eq. (5.8) for l = 1/2, α = 2 (or s = −1

in the exact case following a redefinition of fi). More generally, however, Eq. (5.8)

implies that

csP,X '
lf1f2√
2(1− l)

(1− f2X)(2l−1)/2 , (5.10)

c2
s '

1− f2X

2(1− l) , (5.11)

when X ' 1/f2. Self-consistency therefore requires l < 1. Moreover we find from

Eq. (2.93) that

f eq
NL '

−β
1− f2X

, β ≡ 5(59− 55l)

486
, (5.12)

f eq
NL ' −

σ

c2
s

, σ ≡ 5

972

(
59− 55l

1− l

)
. (5.13)

Hence substituting Eqs. (5.10) and (5.12) into the BM bound (4.33) and the bound

(4.39) implies that

r∗ <
32

NN 2
eff

lf1f2√
2(1− l)

(
−f

eq
NL

β

)(1−2l)/2

(5.14)

and

r∗ <
10

(∆N )2
∗

(
T3

Vol(X5)

)1/3(
h∗
MPL

)4/3
lf1f2√
2(1− l)

(
−f

eq
NL

β

)(1−2l)/2

(5.15)

respectively.

We conclude, therefore, that the upper limit on the tensor-scalar ratio could be
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significantly relaxed if l < 1/2, since the non-linearity parameter is at present only

weakly constrained at f eq
NL > −151. Although it is possible to phenomenologically

construct a model which has a value of l in this range, it is clearly preferable to

identify UV complete models that satisfy this requirement within a string theory

context. Unfortunately this is quite difficult to achieve since the inflaton will either

be associated with an open or closed string mode. The open strings are governed by

relativistic actions of the DBI form, whilst closed strings arise from compactification

of Einstein gravity and are typically put into a canonical form. However, there do

exist classes of open string models which satisfy the above requirement, namely

those associated with multiple coincident branes.

More specifically, if the branes are spatially separated, the effective action is alge-

braically equivalent to that of a single brane. It will therefore not satisfy the bound

on l3. In the remainder of this chapter we will examine the case of n coincident

branes as described in Ref. [194]. The large n limit of this configuration will also fall

into the class of models with l = 1/2, which is equivalent to the single brane case.

On the other hand, if it is assumed that n is finite, the special properties associated

with the matrix degrees of freedom become important and this results in a kinetic

function satisfying l ≤ 1/2.

5.3. The Multi-Coincident Brane Model

We have seen how the form of the kinetic function P can significantly change the

strength of the bound (4.39) on the tensor-scalar ratio, depending on its explicit

form. One model in which a suitable form for P is realised is the multiple coincident

brane model as outlined by Thomas & Ward in Ref. [194]. In this model, the flux

annihilation process generates n coincident branes that are initially located at the

bottom of a throat region. The dynamics of this configuration is determined by

the non-Abelian world-volume theory [150, 151]. This theory exhibits extra stringy

degrees of freedom which arise due to the fuzzy nature of the geometry.

In general the open string degrees of freedom for n coincident branes combine

to fill out representations of U(n), as opposed to U(1)n in the case of separated

branes. This introduces a non-Abelian structure into the theory. In the single brane

case, the fluctuations of the brane are characterised by induced scalar fields on the

world-volume. However, for multiple branes these scalars must be promoted to

matrix representations of some gauge group. Typically the transverse space of any

3In this discussion, we are ignoring the non-trivial backreaction of these branes on the background,
and therefore one should be careful about the range of validity of the effective action.
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given compactification will always admit an SO(3) isometry. Scalars can therefore

be chosen to transform under representations of the algebra of SO(3) ∼ SU(2) by

making the identifications

ϕi = Rmα
i i = 1, 2, 3 , (5.16)

where Rm is some scale with canonical mass dimension, and the αi are specified to

be the irreducible generators satisfying the commutator

[αi, αj] = 2iεijkα
k , (5.17)

and the conditions
1

n
Tr(αiαj) = Ĉδij = (n2 − 1)δij , (5.18)

where Ĉ is the quadratic Casimir of the gauge group. The irreducibility condition

corresponds to the configuration being in the lowest energy state. It is therefore an

additional fine-tuning of the initial conditions.

The Myers prescription requires a symmetrised trace (denoted STr) to be made

over the gauge group. This implies that the symmetric averaging must be taken

over all the group dependence before taking the trace:

STr(A1 . . . As) =
1

s!
Tr(A1 . . . As + all permutations) . (5.19)

For a large number of branes, n� 1, the symmetric trace can be approximated with

a trace, which results in the usual DBI action multiplied by a potential term (as

described in Refs. [90, 194]). However for finite n, the symmetrisation becomes more

important and it is essential to have some means of performing this operation. A

prescription for treating the symmetric trace at finite n was proposed in Refs. [159]

and [140], using highest weight methods and chord diagrams. The result is that the

STr acts on different spin representations of SU(2) in the following manner:

STr(αiαi)q = 2(2q + 1)

n/2∑
i=1

(2i− 1)2q, n even , (5.20)

STr(αiαi)q = 2(2q + 1)

(n−1)/2∑
i=1

(2i)2q, n odd . (5.21)

In order for the solution to converge in this prescription, it is also necessary to

modify the definition of the radius of the SU(2) sphere. In the large n limit, this is
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given by

ρ2 = λ2R2
m

1

n
Tr(αiαi) = λ2R2

mĈ , (5.22)

where λ ≡ 2πl2s = 2πm−2
s , whereas for finite n, it becomes

ρ2 = λ2R2
mLimq→∞

(
STr(αiαi)q+1

STr(αiαi)q

)
= λ2R2

m(n− 1)2 . (5.23)

This converges to the large n result in the appropriate limit. This point is important,

since the warp factor of the four-dimensional theory is typically of the form h = h(ρ).

The next two sections will examine this coincident brane model in both the large

and finite n limits.

5.4. Coincident Brane Inflation with a Large

Number of Branes

Taking the limit of a large number of coincident branes significantly simplifies the

non-Abelian action. The symmetrised trace can now be replaced with a normal trace

operator and the expression for ρ takes the form in Eq. (5.22). For the case where

a fuzzy two-sphere is embedded in a three-cycle in the X5 manifold, the kinetic

structure of the action is given in the large n limit by [194]

P = −nT3

[
h4(ϕ)W (ϕ)

√
1− 2T−1

3 h−4(ϕ)X − h4(ϕ) + V (ϕ)

]
, (5.24)

where

W (ϕ) ≡
√

1 + C−1h−4(ϕ)ϕ4 (5.25)

defines the so-called ‘fuzzy’ potential, C = π2ĈT 2
3 /m

4
s is a model-dependent constant

and Ĉ ' n2 in the large n limit.

The kinetic term (5.24) is clearly of the same form as the single-brane DBI term,

with l = 1/2 in the scheme outlined in Section 5.2. We can therefore apply the

analysis of Section 4.4 to investigate whether the bounds described in Chapter 4

can be relaxed. Comparison with Eq. (4.22),

P = −fA(ϕ)
√

1− fB(ϕ)X − fC(ϕ) , (5.26)

implies that fAfB = 2nW and fB = 2/(T3h
4). Hence, the new features of this model

relative to the standard single-brane scenario are parametrised in terms of the fuzzy
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potential W (ϕ). This configuration is conjectured to be dual to a D5-brane which

is wrapped around a two-cycle of the throat [14, 64, 193].

5.4.1. Bound on n during IR Propagation

The regime W � 1 is of interest for relaxing the gravitational wave constraints4.

The generalised BM bound for IR models, with branes propagating towards the

bulk, is given by Eq. (4.37):

fBM
4
PL

N
>

(∆N∗)2

4π2

√
−3f eq

NL

(1− ns)P2
R
. (5.27)

As we know fB, this may be expressed as a limit on the value of the warp factor

h(ϕ∗) on CMB scales:

NT3

(
h∗
MPL

)4

<
8π2(1− ns)P2

R√
−3f eq

NL(∆N∗)2
. (5.28)

We now consider whether this limit can be satisfied for reasonable choices of

parameters when the warped compactification corresponds to an AdS5 or KS throat,

respectively. Recall that the warp factor for the AdS5 throat is given by h =

ϕ/(
√
T3L). Condition (5.28) therefore reduces to a constraint on the value of the

inflaton during observable inflation:

ϕ4
∗

M4
PL

<
8π2(1− ns)P2

R√
−3f eq

NL(∆N∗)2

T3L
4

N
. (5.29)

However, non-perturbative string effects are expected to become important below

a cutoff scale, ϕcut = hcut

√
T3L, where hcut is the value of the warp factor at that

scale. For consistency, therefore, one requires ϕ∗ > ϕcut, so that

NT3

(
hcut

MPL

)4

<
8π2(1− ns)P2

R√
−3f eq

NL(∆N∗)2
, (5.30)

which implies an upper limit on the D3-brane charge:

N <
64π5gs(1− ns)P2

R√
−3f eq

NL(∆N∗)2

(
MPL

hcutms

)4

. (5.31)

4Note that the case n� 1 and W ∼ 1 will not significantly relax the BM bound, since we require
n� N for backreaction effects to be negligible.
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Assuming the typical values ms ∼ 10−2MPL, ∆N∗ ' 4 and hcut ∼ 10−2 implies

N < 1.76× 108(1− ns)(−f eq
NL)−1/2 , (5.32)

and for 1− ns < 0.05 and −f eq
NL > 5 the inequality becomes

N < 4× 106 . (5.33)

For an AdS5 throat, the fuzzy potential W is a constant, and the condition that

W � 1 becomes

Ĉ � 4π2gsN

Vol(X5)
. (5.34)

Hence, combining inequalities (5.31) and (5.34) implies that

Ĉ � 2(2π)7(1− ns)P2
R√

−3f eq
NL(∆N∗)2

g2
s

Vol(X5)

(
MPL

hcutms

)4

, (5.35)

and specifying gs ∼ 10−2 and Vol(X5) ' π3 then yields the limit

Ĉ � 2.25× 106(1− ns)(−f eq
NL)−1/2 < 5× 104, (5.36)

or equivalently,

n� 225. (5.37)

In deriving the action (5.24) the number of coincident branes was assumed to be

large. However we have now found that for the case of branes propagating towards

the bulk, the number of such branes is bounded from above. Furthermore, since

fAfB ' constant for the AdS5 throat, the stronger form of the inequality (4.33)

may be used. The right hand side of inequality (5.35) would be reduced by a

factor of (Neff/∆N∗)2 by substituting ∆N∗ → Neff . This ratio could be as high as

(60/4)2 ' 200, leading to n being less than 15. In this case the assumption of large

n would clearly be inconsistent and the model would be ruled out.

5.4.2. Bound on D3 Charge at the Tip of the Throat

Since the branes are initially located at the tip of the throat, another case of interest

is the IR limit of the KS geometry, where the warp factor asymptotes to a constant

value [71]:

htip = exp

(
− 2πK

3Mgs

)
. (5.38)
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In this case, the generalised BM bound (5.28) becomes

8πK

3Mgs

− lnN > 4 ln

(
ms

g
1/4
s MPL

)
− ln

(
64π5(1− ns)P2

R√
−3f eq

NL(∆N∗)2

)
. (5.39)

The radius of the three-sphere at the tip of the KS throat is of the order (gsM)1/2

in string units and this must be large (and at the very least should exceed unity)

for the supergravity approximation to be reliable. Substituting this requirement

into expression (5.39) results in a necessary (but not sufficient) condition on the

D3-brane charge for the generalised BM bound to be satisfied:

1

N
exp

(
8πgsN

3

)
>

√
−3f eq

NL(∆N∗)2

64π5(1− ns)P2
R

1

gs

(
ms

MPL

)4

. (5.40)

Recall that a necessary condition for the backreaction of the branes to be negli-

gible is N � n and this implies that the exponential term in (5.40) will dominate

unless the string coupling constant is extremely small. Hence, for the parameter

estimations quoted above, we deduce the lower limit

N − 12 lnN > −6.8 + 12 ln

(√
−f eq

NL

1− ns

)
, (5.41)

which becomes N & 102 for 1− ns ' 0.05 and −f eq
NL > 5.

In general, however, the K and M units of flux are not independent. F-theory

compactification on Calabi-Yau four-folds provides a geometric way of parametris-

ing type IIB string compactifications [52, 71, 77, 100, 178, 204]. Global tadpole

cancellation constrains the topology of the four-fold and this restricts the brane and

flux configurations. When the KS system is embedded into F-theory, the constraint

is given by [71]
χ

24
= n+MK , (5.42)

where χ is the Euler characteristic of the four-fold. Hence, N = MK < χ/24 and

together with condition (5.41), this implies that

χ > 2400 , (5.43)

for N > 102. It is known that the Euler number for four-folds corresponding to hy-

persurfaces in weighted projective spaces can be as high as χ ≤ 1, 820, 448 [100], so

there are many compactifications that could in principle satisfy the generalised BM
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bound. On the other hand, the above limit on the Euler characteristic does allow

us to gain some insight into the topology of the extra dimensions, since compactifi-

cations which result in a small Euler characteristic would be incompatible with the

generalised BM bound.

5.5. Coincident Brane Inflation with a Finite

Number of Branes

5.5.1. The Finite n Model

The coincident brane model outlined in Section 5.3 takes a significantly different

form if, instead of assuming a large number of coincident branes, there are now

only a small finite number. The prescription for the symmetrised trace given in

Eqs. (5.20) and (5.21) must be used, where ρ is determined from Eq. (5.23). The

resulting kinetic function for n coincident branes in the finite n limit is therefore

given by

P = −T3STr

(
h4(ρ)

∞∑
k,p=0

(−ZṘ2
m)kY p(αiαi)k+p

(
1/2

k

)(
1/2

p

)
+ V (ρ)− h4(ρ)

)
,

(5.44)

where

Z ≡ λ2h−4(ρ), Y ≡ 4λ2R4
mh
−4(ρ),

(
1/2

q

)
≡ Γ(3/2)

Γ(3/2− q)Γ(1 + q)
. (5.45)

Note that the second and third terms in Eq. (5.44) are singlets under the STr and

therefore contribute terms proportional to n. The physics of these branes away from

the large n limit is particularly interesting as discussed further in Refs. [194] and

[202].

It was shown in Ref. [83] that the functional forms of the kinetic function, P , and

corresponding energy density, E, for all the solutions with n > 2 can be derived

recursively from the n = 2 solution. We will use the notation Pn and En to denote

the non-singlet sector of the kinetic function and energy density for the n-brane

solutions. The full pressure and energy densities are then given by P = Pn −
nT3(V − h4) and E = En + nT3(V − h4), respectively. Using Eq. (5.20) and the
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expressions

∞∑
k=0

Ak
(

1/2

k

)
=
√

1 + A , (5.46)

∞∑
k=0

Ak
(

1/2

k

)
4k =

2A√
1 + A

, (5.47)

then implies that the terms P2 and E2 can be derived:

P2 [Z, Y ] = −2T3h
4

(1 + 2Y − (2 + 3Y )ZṘ2
m)

√
1 + Y

√
1− ZṘ2

m

 ,

E2 [Z, Y ] = 2T3h
4

(
(1 + 2Y − Y ZṘ2

m)√
1 + Y (1− ZṘ2

m)3/2

)
. (5.48)

The recursion relation described in Ref. [83] can then be written for odd n as

P (O)
n =

(n−1)/2∑
k=1

P2

[
(2k)2Z, (2k)2Y

]− nT3(V − h4) ,

E(O)
n =

(n−1)/2∑
k=1

E2

[
(2k)2Z, (2k)2Y

]+ nT3(V − h4) , (5.49)

and for even n as

P (E)
n =

 n/2∑
k=1

P2

[
(2k − 1)2Z, (2k − 1)2Y

]− nT3(V − h4) ,

E(E)
n =

 n/2∑
k=1

E2

[
(2k − 1)2Z, (2k − 1)2Y

]+ nT3(V − h4) . (5.50)

If we let δn = 1 when n is even and δn = 0 when n is odd, we can combine these

two expressions [28]:

Pn =

(n−1+δn)/2∑
k=1

P2

[
(2k − δn)2Z, (2k − δn)2Y

]− nT3(V − h4) ,

En =

(n−1+δn)/2∑
k=1

E2

[
(2k − δn)2Z, (2k − δn)2Y

]+ nT3(V − h4) . (5.51)
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In Ref. [28] it was shown that this recursive definition for Pn reproduces Eq. (5.24)

in the large n limit.

The backreaction of the multiple branes introduces corrections of the form n/N

[83]. Ensuring that this ratio is small allows the continued use of the supergravity

analysis. As we will see in the next section it will not be difficult to constrain this

model when N � n.

5.5.2. Bounds on the Tensor-Scalar Ratio for Finite n

In the last section we introduced the multi-coincident brane model in the limit of a

finite number of branes. In this section we will consider this model in the context

of the class of actions derived in Section 5.2, and show that current observational

data can strongly constrain the ability of this model to produce an observable tensor

signal.

The last term appearing in the summation of Pn in Eq. (5.51) is

P last
n = P2

[
(n− 1)2Z, (n− 1)2Y

]
. (5.52)

This means that for all n, this term can be expressed in the form

P last
n = −2T3

h
4
[
1 + 2(n− 1)2Y − [2 + 3(n− 1)2Y ](n− 1)2ZṘ2

m

]
√

1 + (n− 1)2Y
√

1− (n− 1)2ZṘ2
m

 . (5.53)

Inspection of Eqs. (5.48)–(5.51) implies that the relativistic limit is realised for

any finite number of branes when (n − 1)2ZṘ2
m → 1. In this case, the dominant

contribution to the summations appearing in Eq. (5.51) will arise from the last term,

Eq. (5.53). In the relativistic limit, therefore, the kinetic function appearing in the

effective action simplifies to

P = 2T3

{
h4
√

1 + (n− 1)2Y

(
1− 2X

T3h4

)−1/2
}
− nT3

(
V − h4

)
, (5.54)

where

Y ≡ 4

(n− 1)4λ2T 2
3

(ϕ
h

)4

, (5.55)

ZṘ2
m ≡

2

(n− 1)2h4T3

X , (5.56)
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and we have effectively imposed the relativistic condition

X ' 1

2
T3h

4 , (5.57)

in the numerator of Eq. (5.53). For the n = 2 and n = 3 cases, we have verified by

direct calculation that when one calculates the speed of sound (2.81) and the non-

linearity parameter (2.93) from the general expressions (5.48) and (5.49) and then

imposes the relativistic limit (5.57), one arrives at the identical result by starting

explicitly with Eq. (5.54).

At this point we should consider the validity of the function in Eq. (5.54). The re-

cursive relation for P in (5.51) converges to the expression in Eq. (5.24) in the limit

of large n [28]. There must exist some value of n, beyond which P appears to resem-

ble Eq. (5.24), rather than the approximate form proposed in Eq. (5.54). For a range

of background solutions, numerical calculations suggest that the approximation is

valid when n is less than O(10) [83].

As there are a large number of parameters in the theory, it is possible to find

solutions where n� 10. However, a larger background flux would then be necessary,

which would result in a situation where the conformal Calabi-Yau condition is no

longer valid. In view of this, we focus on the sector of the theory where n ≤ 10,

which implies that the backreaction is under control and that the kinetic function

is still of the required form.

Eq. (5.54) is precisely of the form given by the general solution (5.8), where

l = −1/2 and5

f1(ϕ) = −2T3h
4
√

1 + (n− 1)2Y , f2(ϕ) =
2

T3h4
. (5.59)

We may, therefore, immediately conclude from Eq. (5.13) that f eq
NL ' −0.3/c2

s .

Moreover, since β ' 0.9 in this scenario, Eqs. (5.10) and (5.12) reduce to

csP,X ' −1.3
√

1 + (n− 1)2Y f eq
NL . (5.60)

5This is the case α = 18/5 or s = −1/3 in the analytic solution (A.6) which after redefinition of
the fi(ϕ) becomes:

P =
−f1

[
8− 4f2X

1/3 −
(
f2X

1/3
)2]√

1− f2X1/3
− f3 . (5.58)

This expression appears in a slightly different form to that in (5.53). However in deriving (5.53)
we assumed the relativistic limit, which in turn imposes a non-trivial relation between X and
ϕ. Using this, and with a suitable redefinition of the functions, we can transform the above
expression into the required form.
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We first consider the bound in Eq. (4.39). This applies at least for all UV scenarios.

It follows after substitution of the relativistic limit (5.57) into the scalar perturbation

amplitude, Eq. (2.86), that

P2
R ' −

1

50

H4

T3h4
√

1 + (n− 1)2Y

1

f eq
NL

. (5.61)

Substituting the tensor-scalar ratio into Eq. (5.61) then results in a constraint on

the magnitude of the warp factor during observable inflation:

h4
∗

M4
PL

' −1

2T3

√
1 + (n− 1)2Y

r2P2
R

f eq
NL

. (5.62)

Eqs. (5.60) and (5.62) may now be substituted into the bound (4.39) to yield

r∗ <
1100

(∆N )6
∗

[1 + (n− 1)2Y ]

Vol(X5)
P2
R(f eq

NL)2 . (5.63)

It is clear that the parameter Y must be sufficiently large if the tensor perturba-

tions are to be non-negligible. For the AdS5 ×X5 throat, this parameter takes the

constant value

YAdS ≡
4π2gsN

(n− 1)4Vol(X5)
. (5.64)

As before, we choose natural field-theoretic values for the volume, Vol(X5) ' π3,

and the string coupling, gs ' 10−2, and further assume that (n − 1)2Y � 1. We

again assume that the tensor-scalar ratio does not change significantly over the entire

range of scales that are accessible to cosmological observation, which corresponds

to ∆N∗ ' 4. After substitution of the above values, therefore, the bound (5.63)

simplifies to

r∗ < 2.8× 10−13 N

(n− 1)2
(f eq

NL)2 . (5.65)

As in Section 5.4, global tadpole cancellation constrains the magnitude of the

background charge N such that N < χ/24. The maximal known value of the Euler

number implies the upper limit of

N < 75852 (5.66)

for known solutions, although in principle higher values are possible. Imposing the

WMAP5 bound f eq
NL > −151 in Eq. (5.65) and noting that n ≥ 2 for consistency
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then implies an absolute upper limit on the tensor-scalar ratio:

r∗ < 5× 10−4 . (5.67)

This limit is below the sensitivity of the Planck satellite (r & 0.02) [158]. On

the other hand, the projected sensitivity of future CMB polarisation experiments

indicates that a background of primordial gravitational waves with r∗ & 10−4 should

be observable [21, 188, 199]. In view of this, it is interesting to consider whether

a detectable gravitational wave background could in principle be generated in this

class of multi-brane inflationary models. We find from Eq. (5.65) that this would

require

n < 1− 5.3× 10−5
√
Nf eq

NL < 1− 0.014f eq
NL , (5.68)

where the theoretic limit Eq. (5.66) for known compactifications has been imposed

in the second inequality. We may deduce, therefore, that since we require n ≥ 2 for

consistency, a detectable tensor signal will require −f eq
NL > 70. This implies that an

observation of the tensors should also be accompanied by a sufficiently large — and

detectable — non-Gaussianity. In other words, this class of models could be ruled

out if tensors are observed in the absence of any non-Gaussianity. On the other

hand, the current limit of f eq
NL > −151 implies that n ≤ 3 is required for the tensors

to be observable. Consequently, if tensor perturbations are detected, this would

rule out all models with n ≥ 4 or, alternatively, would require presently unknown

configurations with N exceeding the bound (5.66).

In the above analysis we assumed that the string coupling took the value gs '
10−2. For the AdS5×X5 throat, the bound (5.63) depends proportionally on gs and

can therefore be weakened by allowing for larger values of the string coupling. For

example, increasing this parameter by a factor of 4 to gs ' 0.04 (so that it is still in

the perturbative regime) relaxes the limit on the number of branes for the tensors

to be detectable to n ≤ 5. Similarly, considering a smaller value for the volume of

the Einstein manifold X5 will also weaken the upper limit.

Let us re-iterate that this limit on n is well within the regime of validity for

the theory, which we have argued is self-consistent for n < 10. Moreover, since

the constraint (5.68) arises using the absolute maximal bound on the known Euler

characteristics, it suggests that in realistic scenarios n will always be much smaller

than this. Indeed, one could argue that only the n = 2 and n = 3 theories are likely

to be valid over a large distribution of the flux landscape.

We must also ensure that our approximation (n−1)2Y � 1 is valid for consistency.
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For the parameter values we have chosen this requires that gsN � (n− 1)2 and this

is satisfied if the condition (5.68) holds. Note also that we require N � n for the

supergravity approximation to be under control and for backreaction effects to be

negligible. This is also satisfied when Eq. (5.68) holds.

Finally, it should be emphasised that the derivation of the bound in Eq. (4.39)

underestimates the Planck mass by assuming that the volume of the throat is much

smaller than the volume of the compactified Calabi-Yau three-fold. It is likely,

therefore, that the actual constraint on r would be much stronger. Consequently,

although the bound (5.68) does marginally allow for detectable tensors if n is suf-

ficiently small, in practice this constraint would be further tightened by a more

complete calculation. Nonetheless, our analysis does not necessarily rule out these

models as viable candidates for inflation. Rather, it suggests that it will be difficult

to construct a working model that results in a detectable tensor signal.

5.6. Discussion

The relativistic DBI brane scenario represents an attractive, string-inspired realisa-

tion of the inflationary scenario. In Chapter 4 we showed that cosmological data

has placed very strong constraints on the simplest UV models based on a single D3-

brane. The strength of these constraints follows from field-theoretic upper limits

on the tensor-scalar ratio, r, which in turn arise because the effective DBI action

satisfies special algebraic properties. This provides motivation for considering gen-

eralisations of the scenario, in particular to multi-brane configurations.

In this chapter we have identified a phenomenological class of effective actions for

which the constraints on r are relaxed, if significant (and detectable) non-Gaussian

curvature perturbations are generated during inflation. We have provided approxi-

mate and exact derivations of this class of models which coincide in the relativistic

limit. It would be interesting to investigate whether the effective action (5.8) with

values of l 6= −1/2 arises in string-inspired settings or elsewhere.

In Section 5.3 we introduced the coincident n-brane model of Thomas & Ward

[194]. We examined the predictions of this model in two limits, arbitrarily large n

and small finite n. The large n model is similar to the single brane case. Using

the results of Section 4.4, we showed that it is strongly constrained by current

observations.

The finite n model is of more theoretical interest as it exhibits the non-Abelian

nature of the scenario. In Ref. [83] a recursive approach was derived to calculate
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the pressure and energy densities for n > 2 models using the n = 2 results. In the

relativistic limit, these finite n models are included in the class of actions derived in

Section 5.2 which relax the bounds on r. The backreaction of these models can also

be kept well under control.

We proceeded to consider the question of whether the upper limits on r could

be relaxed to such an extent that a background of primordial gravitational waves

might be detectable in future CMB experiments. The vast majority of string-inspired

inflationary models that have been proposed to date generate an unobservable tensor

background. We found that a detectable signal is possible, in principle, for typical

string-theoretic parameter values if the number of coincident branes is either 2 or 3.

This is consistent with known F-theory configurations and current WMAP5 limits

on the non-Gaussianity. Furthermore, we found that the level of non-Gaussianity

must satisfy −f eq
NL & 70 if such configurations are to generate a detectable tensor

signal. This is well within the projected sensitivity of the Planck satellite [158].

Our analysis invoked an AdS5 ×X5 warped throat geometry. However, we made

no assumptions regarding the form of the inflaton potential, other than imposing

the implicit requirement that the universe underwent a phase of quasi-exponential

expansion. In this sense, therefore, we have yet to explicitly establish that these in-

flationary models will be able to generate a measurable tensor signal. Nonetheless,

since such a detection would provide a unique observational window into high energy

physics, our results provide strong motivation for considering the cosmological con-

sequences of these multi-brane configurations when specific choices for the inflaton

potential are made. In particular, it would be interesting to employ the techniques

developed in to identify the regions of parameter space that are consistent with

current cosmological observations.

In Part I of this thesis we have concentrated on using analytic techniques to

constrain string-inspired inflationary models. In Part II, numerical techniques will

be developed with the goal of constraining inflationary models using second-order

perturbation theory.
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6. Cosmological Perturbations

6.1. Introduction

Cosmological perturbation theory is an essential tool for the analysis of cosmological

models. It will become more so as the quantity and quality of observational data

continues to improve. With the recent launch of the Planck satellite, the WMAP

mission reaching its eighth year, and a host of other new experiments, we will have

access to more information about the early universe than ever before [104, 158].

To distinguish between theoretical models, it is necessary to go beyond the stan-

dard statistical analyses that have been so successful in recent years. As a result,

much interest has been focused on non-Gaussianity as a new tool to classify and test

models of the early universe. Perturbation theory beyond first order will be required

to make the best possible use of the data. In Chapter 2 cosmological perturbations

at first order were introduced. In Part II of this thesis, we outline an important step

in the understanding of perturbation theory beyond first order, demonstrating that

second order perturbations are readily amenable to numerical calculation, even on

small and intermediate scales inside the horizon.

Inflationary model building has for the past few years focused on meeting the

requirements of first order perturbation theory, namely that the power spectra of

scalar and tensor perturbations, as defined in Eqs. (2.62) and (2.67), should match

those observed in the CMB. Inflationary models are classified and tested accord-

ing to their predictions for the scalar power spectrum, scalar spectral index and

tensor-scalar ratio. An important observable that arises at second order is the non-

Gaussianity parameter fNL. As described in Section 2.6, this parameter is not yet

well constrained by observational data in comparison with the other quantities. In

Part I, however, it was shown that fNL can already be used to rule out models with

particularly strong non-Gaussian signatures.

There are two main approaches to studying non-Gaussianity and higher order

effects. The first uses non-linear theory and a gradient expansion in various forms,

either explicitly, e.g. Refs. [164, 168], or through the ∆N formalism, e.g. Refs. [112,

90
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126, 128, 171, 172, 191, 192].

However, a gradient expansion approach is restricted and can only be applied on

scales much larger than the particle horizon. The second approach uses cosmological

perturbation theory developed by Bardeen [15] and extends it to second order, e.g.

Refs. [2, 16, 17, 27, 32, 60, 62, 127, 130, 135, 146, 152, 153, 173, 196]1. This

approach works on all scales, but can be more complex in comparison to the ∆N
formalism. The two methods lead to identical results on large scales [132]. We will

follow the Bardeen approach here.

In Section 2.6 the first order perturbations of the inflaton field were taken to

be purely Gaussian. It is therefore necessary to go to second order if we are to

understand and estimate the non-Gaussian contribution of any inflationary model

(for a recent review see Ref. [136]). Deriving the equations of motion is not trivial

at second order and only recently was the Klein-Gordon equation for scalar fields

derived in closed form, taking into account the metric backreaction [133]. This allows

for the first time a direct and complete computation of the second order perturbation,

in contrast with previous attempts which have focused only on certain terms in the

expression, for example Ref. [63].

In this chapter the equations of motion for first and second order field perturba-

tions are described. These form the basis of the numerical calculation undertaken in

Chapters 7 and 8. Chapter 7 describes the numerical implementation of the calcula-

tion, including the initial conditions used and the computational requirements. We

outline the numerical steps taken in the system and examine the current constraints

on the calculation. The calculation is based on the slow roll version of the second

order equation, but solves the full non-slow roll equations for the background and

first order systems. We present the results of the calculation in Chapter 8, including

a comparison of the second order scalar field perturbation calculated for specific

inflationary potentials.

The models tested in this calculation are single field models with a canonical

action. Significant second order corrections are expected only in models with a

non-canonical action or multiple fields, or when slow roll is violated. Numerical

simulations will be particularly useful in analysing models with these characteristics.

Section 8.3 discusses planned future work to extend the current numerical system

to deal with models beyond the standard single field, slow roll inflation.

In Section 6.2 of this chapter the Klein-Gordon equations for first and second order

perturbations are introduced. These will be the central governing equations of the

1For an extensive list of references and a recent review on these issues see Ref. [136].
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numerical calculation. They are initially written in terms of the metric perturbations

and then described in closed form, i.e., in terms of the field perturbations alone. In

Section 6.2.3, the second order equation is written in a slow roll approximation.

Section 6.3 describes the observable quantities that can be calculated from second

order field perturbations. In Section 6.4 we discuss the results of this chapter.

6.2. Perturbation Equations

In this section we will briefly review the derivation of the first and second order

perturbation equations in the uniform curvature gauge and describe the slow roll

approximation that will be used. There are many reviews on the subject of cosmo-

logical perturbation theory, and here we will follow Ref. [136]. The full closed Klein-

Gordon equation for second order perturbations was recently derived in Ref. [133]

and the results of that paper will be outlined below.

6.2.1. Second Order Perturbations

In Section 2.3 cosmological perturbations of a single scalar field were introduced at

first order. The methods adopted in that section can be extended at second order

to find gauge invariant quantities. Recall that scalar quantities such as the inflaton

field, ϕ, can be split into an homogeneous background, ϕ0, and inhomogeneous

perturbations. Up to second order ϕ becomes

ϕ(η, xµ) = ϕ0(η) + δϕ1(η, xi) +
1

2
δϕ2(η, xi) . (6.1)

The metric tensor gµν must also be perturbed up to second order. In Eq. (2.33)

the vector and tensor perturbations were included at first order. Here we consider

only the scalar metric perturbations [136]:

g00 = −a2 (1 + 2φ1 + φ2) ,

g0i = a2

(
B1 +

1

2
B2

)
,i

,

gij = a2 [(1− 2ψ1 − ψ2) δij + 2E1,ij + E2,ij] , (6.2)

where δij is the flat background metric, φ1 and φ2 are the lapse functions at first

and second order, ψ1 and ψ2 are the curvature perturbations, and B1, B2, E1 and

E2 are the scalar perturbations describing the shear. In addition to the first order
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transformation vector (2.36), there is now a second order transformation vector

ξµ2 = (α2, β
i

2, ) , (6.3)

where the spatial vector part of the transformation has been ignored.

As before, we can write down how a second order scalar quantity (such as δϕ2)

will be transformed [132]:

δ̃ϕ2 = δϕ2 + ϕ′0α2 + α1 (ϕ′′0α1 + ϕ′0α
′
1 + 2δϕ′1) + (2δϕ1 + ϕ′0α1),i β

i
1, , (6.4)

where a tilde (̃ ) denotes a transformed quantity. The metric curvature perturbation

transformation at first order is straightforward, ψ̃1 = ψ1−Hα1, but at second order

it becomes more complicated [136]:

ψ̃2 = ψ2 −Hα2 −
1

4
X k

k +
1

4
∇−2X ij

ij , (6.5)

where Xij is given by

Xij ≡2
[(
H2 +

a′′

a

)
α2

1 +H
(
α1α

′
1 + α1,kξ

k
1

) ]
δij

+ 4
[
α1

(
C ′1ij + 2HC1ij

)
+ C1ij,kξ

k
1 + C1ikξ

k
1 ,j + C1kjξ

k
1 ,i

]
+ 2 (B1iα1,j +B1jα1,i) + 4Hα1 (ξ1i,j + ξ1j,i)− 2α1,iα1,j + 2ξ1k,iξ

k
1 ,j

+ α1

(
ξ′1i,j + ξ′1j,i

)
+ (ξ1i,jk + ξ1j,ik) ξ

k
1 + ξ1i,kξ

k
1 ,j + ξ1j,kξ

k
1 ,i

+ ξ′1iα1,j + ξ′1jα1,i , (6.6)

and B1i and C1ij were defined in Eq. (2.34).

We will work in the uniform curvature gauge where spatial 3-hypersurfaces are

flat. This implies that

ψ̃1 = ψ̃2 = Ẽ1 = Ẽ2 = 0 . (6.7)

These relations can be used at first and then at second order to define gauge invariant

variables. It follows from Section 2.3 that the first order transformation variables

in the flat gauge satisfy α1 = ψ1/H and β1 = −E1. At second order, for the

transformation of scalar quantities, as in Eq. (6.4), we require only α2. This is

found by using Eq. (6.5) to have the form

α2 =
ψ2

H +
1

4H
[
∇−2X ij

,ij −X k
k

]
, (6.8)
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where the first order gauge variables have been substituted into Xij.
The Sasaki-Mukhanov variable, i.e., the field perturbation on uniform curvature

hypersurfaces [145, 170], was given at first order in Eq. (2.45) as

δ̃ϕ1 = δϕ1 +
ϕ′0
H ψ1 . (6.9)

At second order the Sasaki-Mukhanov variable becomes more complicated [132, 135]:

δ̃ϕ2 =δϕ2 +
ϕ′0
H ψ2 +

ϕ′0
4H

(
∇−2X ij

,ij −X k
k

)
+
ψ1

H2

[
ϕ′′0ψ1 + ϕ′0

(
ψ′1 −

H′
H ψ1

)
+ 2Hδϕ′1

]
+

(
2δϕ1 +

ϕ′0
H ψ1

)
,k

ξk1flat , (6.10)

where ξ1flat = −(E1,i + F1i). From now on we will drop the tildes and only refer to

variables calculated in the flat gauge.

The potential of the scalar field can also be separated into homogeneous and

perturbed sectors:

V (ϕ) = V0 + δV1 +
1

2
δV2 , (6.11)

δV1 = V,ϕδϕ1 , (6.12)

δV2 = V,ϕϕδϕ
2
1 + V,ϕδϕ2 . (6.13)

Finally, the Klein-Gordon equations describe the evolution of the scalar field and

are found by requiring the perturbed energy-momentum tensor Tµν to obey the

energy conservation equation ∇µT
µν = 0 (see for example Ref. [132]). For the

background field, ϕ0, the Klein-Gordon equation is

ϕ′′0 + 2Hϕ′0 + a2V,ϕ = 0 . (6.14)

The first order equation is

δϕ′′1 + 2Hδϕ′1 + 2a2V,ϕφ1 −∇2δϕ1 − ϕ′0∇2B1 − ϕ′0φ′1 + a2V,ϕϕδϕ1 = 0 , (6.15)
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and the second order version is given by

δϕ′′2 + 2Hδϕ′2 −∇2δϕ2 + a2V,ϕϕδϕ2 + a2V,ϕϕϕ(δϕ1)2 + 2a2V,ϕφ2 − ϕ′0
(
∇2B2 + φ′2

)
+ 4ϕ′0B1,kφ

k
1, + 2

(
2Hϕ′0 + a2V,ϕ

)
B1,kB

k
1, + 4φ1

(
a2V,ϕϕδϕ1 −∇2δϕ1

)
+ 4ϕ′0φ1φ

′
1 − 2δϕ′1

(
∇2B1 + φ′1

)
− 4δϕ′1,kB

k
1,

= 0 , (6.16)

where all the variables are now in the flat gauge.

In order to write the Klein-Gordon equations in closed form, the Einstein field

equations (2.5) are also required at first and second order. These are not reproduced

here, but are presented for example in Section II B of Ref. [133].

6.2.2. Fourier Transform

In general, the dynamics of the scalar field becomes clearer in Fourier space. How-

ever, terms at second order of the form (δϕ1(xi))
2

require the use of the convolution

theorem (see for example Ref. [201]). Following Refs. [114] and [133] we will write

δϕ(ki) for the Fourier component of δϕ(xi) such that

δϕ(η, xi) =
1

(2π)3

∫
d3kδϕ(ki) exp(ikix

i) , (6.17)

where ki is the comoving wavenumber. In Fourier space, the closed form of the first

order Klein-Gordon equation then transforms into

δϕ1(ki)′′ + 2Hδϕ1(ki)′ + k2δϕ1(ki)

+ a2

[
V,ϕϕ +

8πG

H

(
2ϕ′0V,ϕ + (ϕ′0)2 8πG

H V0

)]
δϕ1(ki) = 0 . (6.18)

The second order equation requires a careful consideration of terms that are

quadratic in the first order perturbation. In particular, we require convolutions

of the form

f(xi)g(xi) −→ 1

(2π)3

∫
d3qd3p δ3(ki − pi − qi)f(pi)g(qi) . (6.19)

For convenience we will group together those terms with gradients of δϕ1(xi) and

denote them by F . The full closed form, second order Klein-Gordon equation in
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Fourier space is then given by [133]

δϕ′′2(ki) + 2Hδϕ′2(ki) + k2δϕ2(ki)

+ a2

[
V,ϕϕ +

8πG

H

(
2ϕ′0V,ϕ + (ϕ′0)2 8πG

H V0

)]
δϕ2(ki)

+
1

(2π)3

∫
d3qd3p δ3(ki − pi − qi)

{
16πG

H
[
Qδϕ′1(pi)δϕ1(qi) + ϕ′0a

2V,ϕϕδϕ1(pi)δϕ1(qi)
]

+

(
8πG

H

)2

ϕ′0
[
2a2V,ϕϕ

′
0δϕ1(pi)δϕ1(qi) + ϕ′0Qδϕ1(pi)δϕ1(qi)

]
− 2

(
4πG

H

)2
ϕ′0Q

H
[
Qδϕ1(pi)δϕ1(qi) + ϕ′0δϕ1(pi)δϕ′1(qi)

]
+

4πG

H ϕ′0δϕ
′
1(pi)δϕ′1(qi) + a2

[
V,ϕϕϕ +

8πG

H ϕ′0V,ϕϕ

]
δϕ1(pi)δϕ1(qi)

}
+ F (δϕ1(ki), δϕ′1(ki)) = 0 , (6.20)

where we have defined the parameter Q = a2(8πGV0ϕ
′
0/H + V,ϕ) for convenience.

The F term contains gradients of δϕ1 in real space and therefore the convolution

integrals include additional factors of k and q. The form of F is given by [133]

F
(
δϕ1(ki), δϕ′1(ki)

)
=

1

(2π)3

∫
d3p d3q δ3(ki − pi − qi)

{

2

(
8πG

H

)
pkq

k

q2
δϕ′1(pi)

(
Qδϕ1(qi) + ϕ′0δϕ

′
1(qi)

)
+ p2 16πG

H δϕ1(pi)ϕ′0δϕ1(qi)

+

(
4πG

H

)2
ϕ′0
H

[(
plq

l − piqjk
jki

k2

)
ϕ′0δϕ1(pi)ϕ′0δϕ1(qi)

]

+ 2
Q

H

(
4πG

H

)2
plq

lpmq
m + p2q2

k2q2

[
ϕ′0δϕ1(pi)

(
Qδϕ1(qi) + ϕ′0δϕ

′
1(qi)

) ]

+
4πG

H

[
4Q

q2 + plq
l

k2

(
δϕ′1(pi)δϕ1(qi)

)
− ϕ′0plqlδϕ1(pi)δϕ1(qi)

]

+

(
4πG

H

)2
ϕ′0
H

[
plq

lpmq
m

p2q2

(
Qδϕ1(pi) + ϕ′0δϕ

′
1(pi)

) (
Qδϕ1(qi) + ϕ′0δϕ

′
1(qi)

) ]
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+
ϕ′0
H

[
8πG

(
plq

l + p2

k2
q2δϕ1(pi)δϕ1(qi)− q2 + plq

l

k2
δϕ′1(pi)δϕ′1(qi)

)

+

(
4πG

H

)2
kjki
k2

(
2
pipj
p2

(
Qδϕ1(pi) + ϕ′0δϕ

′
1(pi)

)
Qδϕ1(qi)

)]}
. (6.21)

6.2.3. Slow Roll Approximation

In order to establish the viability of a numerical calculation of the evolution of

second order perturbations from the Klein-Gordon equation, Chapters 7 and 8 will

be limited to the framework of the slow roll approximation. This involves taking

ϕ′′0 +Hϕ′0 ' 0 , (6.22)

(ϕ′0)2

2a2
� V0 , (6.23)

such that Q ' 0 and H2 ' (8πG/3)a2V0. In Chapter 2 the slow roll parameter εH

was defined in Eq. (2.20). In this chapter and the rest of Part II, a different slow roll

parameter will be used, denoted by ε̄H and defined in Refs. [133] and [173]. This

new parameter is the square-root of εH and is given by

ε̄H =
√

4πG
ϕ′0
H =

√
εH . (6.24)

The second slow roll parameter is still ηH = εH−ε′H/2HεH . Following Ref. [133] we

will implement the slow roll approximation by keeping terms up to and including

O(ε̄2
H) and terms which are O(ε̄HηH). Within this approximation the second order

equation (6.20) simplifies dramatically, and with the F term included it reduces to

δϕ′′2(ki) + 2Hδϕ′2(ki) + k2δϕ2(ki) +
(
a2V,ϕϕ − 24πG(ϕ′0)2

)
δϕ2(ki)

+
1

(2π)3

∫
d3p d3q δ3(ki − pi − qi)

{
a2

(
V,ϕϕϕ +

8πG

H ϕ′0V,ϕϕ

)
δϕ1(pi)δϕ1(qi)

+
16πG

H a2ϕ′0V,ϕϕδϕ1(pi)δϕ1(qi)

}



6.3: Observable Quantities 98

+
1

(2π)3

8πG

H

∫
d3p d3q δ3(ki − pi − qi)

{
8πG

H
plq

l

q2
ϕ′0δϕ

′
1(pi)δϕ′1(qi)

+ 2p2ϕ′0δϕ1(pi)δϕ1(qi) + ϕ′0

((
plq

l + p2

k2
q2 − plq

l

2

)
δϕ1(pi)δϕ1(qi)

+

(
1

2
− q2 + plq

l

k2

)
δϕ′1(pi)δϕ′1(qi)

)}
= 0 . (6.25)

The numerical simulation described in Chapter 7 will solve the slow roll version of

the second order equation given above, Eq. (6.25), together with the complete first

order equation (6.18) and background equation (6.14).

6.3. Observable Quantities

Cosmological perturbations at second order are becoming increasingly important

now that statistical quantities beyond the power spectrum and spectral index are

being investigated. Observations, however, do not tell us anything about the inflaton

field directly. In this section the second order perturbations described above will be

related to observable quantities in order to demonstrate how a numerical calculation

could be employed in the near future to gain further insight into the nature of the

field that drives inflation.

The temperature fluctuations observed in the CMB can be directly related to the

curvature perturbation R. In Section 2.3, R was defined at first order in terms of

δϕ1. When the second order contribution is included the total comoving curvature

perturbation is defined as

R = R1 +
1

2
R2 . (6.26)

The first order term is related to the inflaton perturbation in the flat gauge by

R1 = Hδϕ1/ϕ
′
0. The second order part includes terms quadratic in δϕ1 and so

in Fourier space requires convolutions. We are interested in the value of R after

horizon crossing for the calculation of P2
R and a determination of the non-Gaussianity

produced during inflation. This allows us to neglect gradient terms in real space or

terms proportional to k in Fourier space. In this limit the real space expression for

R2 is [132]

R2(η, xi) =
H
ϕ′0
δϕ2 − 2

H
(ϕ′0)2 δϕ

′
1δϕ1 +

δϕ2
1

(ϕ′0)2

(
Hϕ

′′
0

ϕ0

−H′ − 2H2

)
. (6.27)
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Using the background evolution equation (6.14) and transforming to Fourier space

implies that Eq. (6.27) can be written as

R2(η, ki) =
H
ϕ′0
δϕ2(η, ki) +

1

(2π)3

∫
d3q d3p δ(ki − qi − pi)

{
− 2

H
(ϕ′0)2 δϕ1(η, pi)δϕ′1(η, qi)

− 1

(ϕ′0)2

(
2H2ϕ

′
0

ϕ0

+
a2H
ϕ0

V,ϕ + (8πG)a2V0

)
δϕ1(η, pi)δϕ1(η, qi)

}
.

(6.28)

Once the numerical calculation has been carried out at first and second order as

described in Chapter 7 this quantity can be evaluated after horizon crossing.

In Chapter 2 the non-Gaussianity parameter f loc
NL was defined in terms of R in

Eq. (2.89). Writing Eq. (2.89) in Fourier space using Eq. (6.26) implies that

R(ki) = R1(ki) +
3

5
f loc

NL

(
1

(2π)3

∫
dq3R1(qi)R1(ki − qi)

−
〈

1

(2π)3

∫
dq3R1(qi)R1(ki − qi)

〉)
, (6.29)

where 〈〉 denotes the expectation value. A good approximation of the local non-

Gaussianity produced is then given by

f loc
NL =

5

6
R2(ki)

[
1

(2π)3

∫
dq3R1(qi)R1(ki − qi)

−
〈

1

(2π)3

∫
dq3R1(qi)R1(ki − qi)

〉]−1

. (6.30)

Calculating δϕ2 and R2 therefore provides direct insight into the behaviour and

production of the non-Gaussianity parameter f loc
NL.

To go beyond the local shape of the non-Gaussianity it is necessary to calculate

the full bispectrum of the perturbations. In practice the bispectrum of the curvature

perturbation on uniform density hypersurfaces, ζ, is used in setting observational

limits. At first order this is simply related to the comoving curvature perturbation

by ζ1 = −R1. At second order the relationship is more complicated. For large scales

outside the horizon, ζ2 can be related to the field perturbations in real space using
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[132]

ζ2(xi) = −H
ϕ′0
δϕ2(xi)−

[
4− 3

(ϕ′0)2 − a2V0

(ϕ′0)2/2 + a2V0

](H
ϕ′0

)2

δϕ1(xi)2 . (6.31)

In Fourier space this again introduces a convolution integral of the first order per-

turbations.

The bispectrum of ζ is given by

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3) , (6.32)

where translation invariance introduces the delta function. The k dependence of the

bispectrum is usually separated from an overall amplitude factor and considered as

a shape function F (k1, k2, k3). The bispectrum is then of the form [13, 118]

〈ζ(k1)ζ(k2)ζ(k3)〉 = A(2π)3δ(k1 + k2 + k3)F (k1, k2, k3) , (6.33)

and for a particular shape function F the best estimator for A when the non-

Gaussianity is small is given by [13]

Â =

∑
ki
ζ(k1)ζ(k2)ζ(k3)F (k1, k2, k3)/(σ2

k1
σ2
k2
σ2
k3

)∑
ki
F (k1, k2, k3)2/(σ2

k1
σ2
k2
σ2
k3

)
, (6.34)

where σki is the variance of the mode and the sums run over all the triangles in k

space subject. If k3 is chosen to be the longest side of the triangle then the triangle

inequality enforces

k3 ≤ k1 + k2 . (6.35)

Eq. (6.34) provides a blueprint for how to evaluate the bispectrum in terms of a

particular given shape. To compare a primordial bispectrum with the observed

temperature bispectrum from the CMB it is necessary to construct the spherical

harmonics of the bispectrum and use transfer functions to relate the primordial val-

ues with the observed values. We have not carried out this procedure in this thesis.

However, one of the goals of our future work is to undertake such a comparison of

the numerically generated bispectrum with the observed quantity.

As mentioned above, the shape most often used in comparisons with observations

is the local shape given by the ansatz in Eq. (2.89). The expression for Flocal is

[13, 105]

Flocal(k1, k2, k3) = 2Nf loc
NL

(
1

k3
1k

3
2

+
1

k3
2k

3
3

+
1

k3
1k

3
3

)
, (6.36)
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where the spectrum has been taken to be scale invariant and N is a normalisation

factor.

This is not the only shape that has been considered and, as we have seen, non-

canonical inflationary actions generate a bispectrum which is peaked when the mag-

nitudes of the k modes are approximately equal. The form of F for the equilateral

case is [105]

Feq(k1, k2, k3) = 6Nf eq
NL

{
− 1

k3
1k

3
2

− 1

k3
2k

3
3

− 1

k3
3k

3
1

− 2

(k1k2k3)2
+

[
1

k1k2
2k

3
3

+ 5 perms

]}
. (6.37)

A third form has been proposed which is nearly orthogonal to the other two shapes

[177]. These shapes all have the property that they are separable functions of each ki

or can be constructed from these separable functions. This property eases analytic

calculations but clearly does not hold for generic shapes. There has been a proposal

to define the shape of the bispectrum in terms of a set of basis vector shapes [61, 118].

This would remove the need for only separable shapes to be considered and would

allow for a straightforward analysis of the bispectrum from its primordial value up

to the observed bispectrum in the CMB.

We have seen that the second order scalar perturbation is not the direct observ-

able quantity of interest. The bispectrum of the curvature perturbations, which

contains a contribution from the second order non-linear part, can be compared

with observations either by use of various shape functions or through a full analysis

with transfer of the primordial values. A future goal of our work is to compare the

bispectrum obtained numerically with that from observations.

6.4. Discussion

In this chapter, the equations of motion for a single scalar field up to second order

in cosmological perturbations have been introduced. The second order gauge trans-

formation has been discussed and the transformation components determined for

the uniform curvature gauge. In Chapter 2 first order classical perturbations were

quantised in the Minkowski spacetime limit and normalised using the Wronskian

condition in Eq. (2.54). This constraint also fixes the quantisation for other orders

of the perturbation, including δϕ2 [175].

The perturbation equations are better understood in Fourier space, although the
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cost of adopting this approach is the need to employ convolution integrals of the

first order perturbations. When written in Fourier space, the second order Klein-

Gordon equation can be described entirely in terms of the field perturbations and

background quantities.

Eq. (6.20), first derived in Ref. [133], is valid on all scales inside and outside the

horizon. When a particular slow roll approximation is made this equation simplifies

to that found in Eq. (6.25). This slow roll version of the equation will be the central

governing equation of the numerical calculation described in the next chapter.

Finding numerical solutions of Eq. (6.25) is the first step towards solving the full

equation (6.20) for a single field and ultimately the multi-field equation given in

Ref. [133]. Understanding cosmological perturbations beyond linear order is critical

if higher order statistical effects are to be accurately calculated. Section 6.3 out-

lined the connection between δϕ2 and observable quantities such as the comoving

curvature perturbation and the non-Gaussianity of the perturbations. Going beyond

single field, slow roll models, non-linear effects become more important. In Chap-

ters 7 and 8 the first step is taken towards calculating higher order perturbations

for these models.



7. Numerical System and

Implementation

7.1. Introduction

Our goal in Part II of this thesis is to show that, just as at first order, a direct

numerical calculation of the second order perturbations of a scalar field system is

achievable. In this chapter the implementation of this system is outlined. The

structure of the numerical system follows the work done at first order by Martin &

Ringeval [137, 165] and previously by Salopek et al. [169].

The most important difference between an analytic and numerical treatment of

the equations presented in Chapter 6 is the requirement to specify a finite numerical

range of a finite number of k modes to be calculated. The upper cutoff in k, which

marks the smallest scale considered, is well motivated by the difficulty in observing

primordial perturbations at very small scales. On the other hand, we also need to

specify the largest scale (or smallest k) that we will consider. Analytically, this is

often taken to be the size of the universe, with k = 0 being the equivalent mode.

One immediate problem with this specification, however, is that the Bunch-Davies

vacuum initial conditions diverge. The standard approach to this problem is to

implement a cutoff at large scales beyond which the amplitude of perturbations

vanishes. This is a pragmatic approach, but recently there has been some evidence

that a sharp cutoff similar to this could be responsible for the lack of power at large

scales in the WMAP data [95, 124, 187, 189].

The main concern is that the k range covers most, if not all, of the modes observed

to date in the CMB. The WMAP team rely for their main results in Ref. [104]

on ` multipoles in the range ` ∈ [3, 1000], which corresponds approximately1to

k ∈ [0.92× 10−60, 3.1× 10−58]MPL = [3.5× 10−4, 0.12] Mpc−1. We will consider

three different ranges of k modes when producing the results in Chapter 8, all of

1The approximate conversion for ` is ` ' 2k
H0

and a Megaparsec is given in Planck units as

1Mpc−1 ' 2.6247× 10−57MPL.
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which contain the WMAP pivot scale kWMAP = 0.002Mpc−1. The choice of k range

is flexible with the only numerical constraint being that the number of modes at

second order should be equal to 2l + 1, where l is a positive integer. This enables

faster integration using the Romberg method, as explained below.

In Chapter 6 the Klein-Gordon equations of motion were described for the back-

ground field, and the first and second order field perturbations. These form the

basis of the numerical calculation in this chapter. In Section 7.2, these equations

are rewritten in a form more amenable to numerical work. The time variable is

changed from conformal time, η, to the number of e-foldings, N . The convolution

terms which are present in the Fourier space equations are then written in terms of

spherical polar coordinates and split into smaller units.

Four inflationary potentials were chosen in order to test the numerical calculation.

These are defined in Section 7.2.1 and the steps taken to establish the values of the

required parameters are outlined. The initial conditions used for the first order

perturbations are the Bunch-Davies vacuum conditions, as specified in Section 2.3.

At second order the perturbations are set to be identically zero at the beginning of

the simulation, as explained in Section 7.2.2. This section also describes the method

and timing of the initialisation of the variables.

In Section 7.3 the numerical method is discussed. The calculation can be split into

four stages, each of which is described in depth, along with the logistical constraints

and software environment. The numerical code is tested in Section 7.4 by comparing

the computed value with an analytic result where this is possible. The choice of

parameters in the calculation is determined by the results of this comparison. In

Section 7.5, the results of this chapter are summarised and discussed.

7.2. Numerical Equations

The Klein-Gordon equations in Chapter 6 are not appropriate for a numerical calcu-

lation and in this section we rearrange them into a more suitable form. This involves

a change of time coordinate and grouping of terms into smaller units for calculation.

The second order slow roll equation (6.25) can be further simplified by performing

the p integral and changing to spherical polar coordinates q, θ and ω, where q = |q|.
The d3q integral then becomes∫

d3q −→
∫ ∞

0

q2dq

∫ π

0

sin θdθ

∫ 2π

0

dω . (7.1)
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For each k mode equation we take the θ = 0, ω = 0 axis in the direction of ki, so that

the angle between ki and qi is θ, and the scalar product is qik
i = qk cos θ. The argu-

ment of each δϕ1 or δϕ′1 term depends on θ through |ki− qi| =
√
k2 + q2 − 2kq cos θ

and so must remain inside the θ integral. There is no ω dependence in δϕ1 with this

choice of axes, so the last integral is straightforward to evaluate.

In the slow roll case there are only four different θ dependent terms, here labelled

A–D:

A(ki, qi) =

∫ π

0

sin(θ)δϕ1(ki − qi)dθ ,

B(ki, qi) =

∫ π

0

cos(θ) sin(θ)δϕ1(ki − qi)dθ ,

C(ki, qi) =

∫ π

0

sin(θ)δϕ′1(ki − qi)dθ ,

D(ki, qi) =

∫ π

0

cos(θ) sin(θ)δϕ′1(ki − qi)dθ . (7.2)

When written in terms of the variables defined in Eqs. (7.2), the slow roll equation

(6.25) becomes:

δϕ′′2(ki)+2Hδϕ′2(ki)+k2δϕ2(ki)+
(
a2V,ϕϕ − 24πG(ϕ′0)2

)
δϕ2(ki)+S(ki) = 0 , (7.3)

where S(ki) is the source term which will be determined before the second order

system is run:

S(ki) =
1

(2π)2

∫
dq

{
a2V,ϕϕϕq

2δϕ1(qi)A(ki, qi)

+
8πG

H ϕ′0

[(
3a2V,ϕϕq

2 +
7

2
q4 + 2k2q2

)
A(ki, qi)−

(
9

2
+
q2

k2

)
kq3B(ki, qi)

]
δϕ1(qi)

+
8πG

H ϕ′0

[
− 3

2
q2C(ki, qi) +

(
2− q2

k2

)
kqD(ki, qi)

]
δϕ′1(qi)

}
. (7.4)

The full set of equations which must be evolved are then Eq. (6.14) for the back-

ground, Eq. (6.18) for the first order perturbations and Eqs. (7.3) and (7.4) for the

second order and source terms.

A more appropriate time variable for the numerical simulation is the number of

e-foldings (2.17). We employ

N = log(a/ainit) (7.5)

as our time variable instead of conformal time. This is measured from ainit, the
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value of a at the beginning of the simulation. We will use a dagger2 (†) to denote

differentiation with respect to N . Derivatives with respect to conformal time, η,

and coordinate time, t, are then given by

∂

∂η
=

dN
dη

∂

∂N = H ∂

∂N , (7.6)

∂

∂t
=

dη

dt

dN
dη

∂

∂N = H
∂

∂N , (7.7)

respectively, where H = d ln a/dt and H = aH.

If a is set to be unity at the present epoch, we can calculate ainit once the back-

ground run is complete and the number of e-foldings of inflation has been determined.

The value of a at the end of inflation, aend, is calculated by connecting it with a0 (see

for example Eq. (3.19) in Ref. [114] or Eq. (7) in Ref. [155]). The relation between

them is given by
aend

a0

=
aend

areh

areh

aeq

aeq

a0

, (7.8)

where areh and aeq are the values of a at the end of reheating and matter-radiation

equality. Using the relationship between energy densities and the scale factor rel-

evant to the matter and radiation dominated eras, together with the Friedmann

equation (2.10), we can write

log

(
aend

a0

)
= −2

3
log

(
Hend

MPL

)
+

1

6
log

(
Hreh

MPL

)
+

1

2
log

(
Heq

MPL

)
+log

(
aeq

a0

)
, (7.9)

where Hend, Hreh and Heq are the values of H at the end of inflation, at the end of

reheating and at matter-radiation equality respectively. The value of aeq is taken to

be 4.15×10−5(Ωmh
2)−1 and Heq = 4.63×10−54Ω2

mh
4MPL [55, 155]. The mean value

for Ωmh
2 determined by WMAP5 + BAO + SN measurements is Ωmh

2 = 0.1369

[104]. With these values and taking a0 = 1, the scale factor at the end of inflation

is given by

aend ' e−72

(
Hend

MPL

)− 2
3
(
Hreh

MPL

) 1
6

. (7.10)

In Chapter 8, it is assumed that reheating occurs instantaneously at the end of

inflation such that Hreh = Hend. This gives aend ' 10−29 and approximately 65

e-foldings from the end of inflation to the present. It also fixes the horizon crossing

time of the WMAP pivot scale, kWMAP = 0.002Mpc−1, to be about 60 e-foldings

2This should not be confused with the use of † as Hermitian conjugate, which is confined to
Section 2.3.
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before the end of inflation. Because the Hubble parameter is not kept fixed during

the numerical calculation the number of e-foldings between horizon crossing and

the end of inflation will depend on the form of the inflationary potential and the

evolution of H.

The background and first order equations, written in terms of the new time vari-

able N , are

ϕ††0 +

(
3 +

H†

H

)
ϕ†0 +

V,ϕ
H2

= 0 , (7.11)

and

δϕ††1 (ki) +

(
3 +

H†

H

)
δϕ†1(ki) +

[(
k

aH

)2

+
V,ϕϕ
H2

+
8πG

H2
2ϕ†0V,ϕ

+

(
8πG

H

)2 (
ϕ†0

)2

V0

]
δϕ1(ki) = 0 , (7.12)

respectively. The corresponding second order perturbation equation takes the form

δϕ††2 (ki) +

(
3 +

H†

H

)
δϕ†2(ki) +

(
k

aH

)2

δϕ2(ki)

+

(
V,ϕϕ
H2
− 24πG(ϕ†0)2

)
δϕ2(ki) + S(ki) = 0 , (7.13)

with the source term given by

S(ki) =
1

(2π)2

∫
dq

{
V,ϕϕϕ
H2

q2δϕ1(qi)A(ki, qi)

+
8πG

(aH)2
ϕ†0

[(
3a2V,ϕϕq

2 +
7

2
q4 + 2k2q2

)
A(ki, qi)

−
(

9

2
+
q2

k2

)
kq3B(ki, qi)

]
δϕ1(qi)

+ 8πGϕ†0

[
− 3

2
q2C̃(ki, qi) +

(
2− q2

k2

)
kqD̃(ki, qi)

]
δϕ†1(qi)

}
,

(7.14)
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where

C̃(ki, qi) =
1

aH
C(ki − qi) =

∫ π

0

sin(θ)δϕ†1(ki − qi)dθ ,

D̃(ki, qi) =
1

aH
D(ki − qi) =

∫ π

0

cos(θ) sin(θ)δϕ†1(ki − qi)dθ . (7.15)

The arguments of δϕ1 and δϕ†1 in the A–D̃ terms require special consideration.

To compute the integrals, θ is sampled at

Nθ = 2l + 1 (7.16)

points in the range [0, π] (for some l ∈ Z+ to allow Romberg integration) and the

magnitude of ki − qi is found using

|ki − qi| =
√
k2 + q2 − 2kq cos(θ) . (7.17)

While δϕ1(ki) = δϕ1(k), the value of |ki − qi| is at most 2kmax, where k, q ∈
[kmin, kmax]. This means that to calculate the source term for the k range described

we require that δϕ1 and δϕ†1 be known in the range [0, 2kmax]. In Section 7.3, we

will show that this first order upper bound does not significantly affect performance.

On the other hand, |ki − qi| can also drop below the lower cutoff of calculated k

modes. As discussed above a sharp cutoff will be implemented and δϕ1(k) = 0 used

for the values below kmin. When the spacing of the discrete k values, ∆k, is approx-

imately kmin the cutoff affects only the k = q modes and is only significant close to

kmin. Section 7.4 describes how the accuracy is affected by changing ∆k and other

parameters. Without extrapolating outside our computed k range it appears to be

very difficult to avoid taking δϕ1 = 0 for a small number of k values below kmin.

The value of |ki − qi| will not in general coincide with the computed k values of

δϕ1. We use linear interpolation between the neighbouring k values to estimate δϕ1

at these points. We leave to future work the implementation of a more accurate and

numerically more intensive interpolation scheme.

Throughout the discussion above we have not specified any particular inflationary

potential, V . Indeed the numerical code can use any reasonable single field potential

provided that it drives a period of inflationary expansion in the e-folding range

being simulated. In the next section the four potentials which have been tested are

outlined.
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7.2.1. Potentials and Parameters

Potential Parameter Value

1
2
m2ϕ2 m 6.32× 10−6MPL
1
4
λϕ4 λ 1.55× 10−13

σϕ
2
3 σ 3.82× 10−10M

10
3

PL

U0 + 1
2
m2

0ϕ
2 m0 1.74× 10−6MPL

Table 7.1.: The parameter values for the four potentials, chosen so that P2
R1

(kWMAP)
is in agreement with the WMAP5 value.

To demonstrate the numerical calculation four different single field, slow roll po-

tentials were chosen. These are not intended to represent an exhaustive selection,

but they do exhibit an interesting variety of behaviours. The potentials used are:

1. V (ϕ) = 1
2
m2ϕ2. This is the original chaotic inflation model which is still in

good agreement with the observational data [4].

2. V (ϕ) = 1
4
λϕ4. Although increasingly in tension with observations this is a

standard large field model.

3. V (ϕ) = σϕ
2
3 . This potential with an unusual fractional index is the effective

potential resulting from the monodromy inflation model of D4 branes, where

observable tensor modes are possible [4, 186].

4. V (ϕ) = U0 + 1
2
m2

0ϕ
2. This is a contrived toy model which requires inflation to

be terminated by hand. We will set inflation to end when ϕ ' 8. By taking

a value of U0 = 5× 10−10M4
PL a blue spectrum (ns > 1) can then be obtained

[104, 120].

In Figures 7.1 and 7.2 the potentials are plotted over the course of their evolution.

Throughout the rest of this chapter we will use the quadratic model to demonstrate

the calculation unless otherwise stated. In Chapter 8 the results for each potential

will be compared.

For each of the chosen potentials there is one free parameter that needs to be

determined. We choose the parameters m, λ, σ and m0 so that P2
R1

calculated for

each model is in agreement with the WMAP5 value at the pivot scale kWMAP =

0.002Mpc−1 ' 5.25 × 10−60MPL. The dependence of P2
R1

(kWMAP) on each of the

parameters can be seen in Figure 7.3. Requiring P2
R1

(kWMAP) = 2.457× 10−9 gives
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Figure 7.1.: Plots of the four different potentials investigated.
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(a) The potentials in terms of ϕ over the course of the background evolution.
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(b) The potentials in terms of N for the last 70 e-foldings of inflation.

Figure 7.2.: Two comparisons of the four potentials.
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the values shown in Table 7.1. Here we have chosen the lower of the two possible

values of m0 shown in Figure 7.3d.
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Figure 7.3.: Parameter values for the different potentials are chosen by requiring
consistency with the WMAP5 normalisation of the first order power
spectrum.

7.2.2. Initial Conditions

The background system requires initial conditions for ϕ0 and ϕ†0. These initial

conditions and the range of e-foldings to be simulated must be selected with the

choice of potential in mind. Not only must the e-folding range include an inflationary

period, but the k modes to be calculated at first and second order must begin inside

the horizon. For example, the initial value ϕ0 = 18MPL for the 1
2
m2ϕ2 model gives

the background evolution described below and shown in Figure 7.4. As the evolution

quickly reaches the attractor solution, the choice for ϕ†0 is not particularly important;

changing the initial value adds or subtracts a small number of e-foldings of evolution

before the modes are initialised [137, 165].
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The initial conditions are set for each k mode a few e-foldings before horizon

crossing. This follows Salopek et al. [169] and is justified on the basis that the mode

is sufficiently far inside the horizon for the Minkowski limit to be taken. This initial

time, Ninit(k), is calculated to be when

k

(aH)|init

= 50 . (7.18)

The range of e-foldings being used must include the starting point for all k modes,

but the parameter on the right hand side, here chosen to be 50, can be changed if

needed. We use the small wavelength solution of the first order equations described

in Section 2.3 as the initial conditions [169], with

δϕ1|init =

√
8πG

a

e−ikη√
2k

, (7.19)

δϕ†1|init = −
√

8πG

a

e−ikη√
2k

(
1 + i

k

aH

)
, (7.20)

where conformal time η can be calculated from

η =

∫
dN /aH ' −(aH(1− ε̄2

H))−1 , (7.21)

when ε̄H changes slowly. For example kWMAP is initialised about 65 e-foldings before

the end of inflation and crosses the horizon about 5 e-foldings later. We also use

these formulae in the calculation of the source term in Eq. (7.14) to determine the

value of δϕ1 for a k mode before its numerical evolution has begun.

We are interested in the production of second order effects by the evolution of the

the Gaussian first order modes and we make no assumptions about the existence of

second order perturbations before the simulation begins. Therefore, we set the initial

condition for each second order perturbation mode to be δϕ2 = 0, δϕ†2 = 0 at the

time when the corresponding first order perturbation is initialised. One argument in

favour of this choice of initial conditions is that far in the past the perturbations are

assumed to be Gaussian and therefore the second (and higher) order perturbations

would be identically zero.

A numerical solution for the second order perturbation equation will contain a

homogeneous solution and a particular solution. The homogeneous part of the

solution of the slow roll equation, Eq. (7.13), can be calculated analytically as done

in Appendix A.3. On their own the initial conditions we have chosen above do not

remove this homogeneous solution from the result for δϕ2 in general. In order to
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do this, and keep only the particular solution to the equation, it is necessary to

ensure that the homogeneous solution is the trivial (0, 0) solution throughout the

evolution. We have not attempted to do this in this thesis but it is an important

issue for further study in the future. Approaches to removing the homogeneous part

of the solution include calculating a semi-analytic value for the second order initial

conditions which equals the particular solution or numerically trying to select the

trivial homogeneous solution by introducing a ramping function to the source term

in Eq. (7.14). In summary, the results quoted in Chapter 8 for the second order

perturbations include both a homogeneous and particular solution. Extraction of

either of these parts from the full result remains an issue for future study.

7.3. Implementation

The current implementation of the code is mainly in the Python3 programming

language (with compiled Cython components) and uses the Numerical and Scientific

Python modules for their strong compiled array support [87]. The core of the model

computation is a Runge-Kutta fourth order method (see, for example, Eq. (25.5.10)

in [1]). Following Refs. [137] and [165], the numerical calculation proceeds in four

stages. The background equation (7.11), rewritten as two first order equations, is

evolved from the specified initial state until some end time required to be after

the end of the inflationary regime. The end of inflation occurs when d2a/dt2 is no

longer positive and the parameter ε̄2
H = εH = −H†/H becomes greater than or

equal to unity (see Figure 7.4). This specifies a new end time for the first order

run, although the simulation can run beyond the strict end of inflation if required.

For the V (ϕ) = U0 + 1
2
m2

0ϕ
2 model, the end of inflation is set by hand to remove

the need for a second, inflation-terminating field. The initial conditions for the first

order system are then set as above.

The system of ordinary differential equations for the first order perturbations in

Eq. (7.12) is integrated using a standard fourth order Runge-Kutta method. A

fixed time step method is used in order to simplify the construction of the second

order source term. This is also necessary since it is not known a priori which time

steps would be required at second order if an adaptive time step system were used.

The first order equations are separable in terms of k and so it is straightforward

to run the system in parallel and collate the results at the end. However, as will

be discussed below, the first order calculation is not computationally expensive in

3Python website: http://www.python.org
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Figure 7.4.: The end of inflation is determined by calculating when ε̄2
H = εH =

−H†/H = 1 (red dashed line). On the horizontal axis, N is the number
of e-foldings from the start of the simulation.

comparison with the other stages and only takes of the order of a few minutes for

around 8000 time steps with ∆N = 0.01 and 1025 k modes.

Once the first order system has been solved, the source term for the second order

system must be calculated. As the real space equation for the source involves terms

quadratic in the first order perturbation, it is necessary to perform a convolution in

Fourier space, as shown in Eq. (7.3). We do not transform back into real space due

to the presence of both gradient operators and their inverses. Instead, the slow roll

version of the source term integrand was used, although it is worth remarking that

the method can also be applied to the full equation. This stage is computationally

the most intensive, and can be run in parallel since the calculation at each time

step is independent of the others. The nature of the convolution integral and the

dependence of the first order perturbation on the absolute value of its arguments

requires that twice as many k modes are calculated at first order than are desired

at second order. As the first order calculation is computationally cheaper than

the source term integration, this does not significantly lower the possible resolution

in k-space, which is still limited by the source term computation time. Once the

integrand is determined, it is fed into a Romberg integration scheme. As for θ, which

was discretised by Nθ points in Eq. (7.2), this requires that the number of k modes
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is

Nk = 2l + 1 , (7.22)

for some4 l ∈ Z+. This requirement can be relaxed by opting for a less accurate

and somewhat slower standard quadrature routine.

The second order system is finally run with the source term and other necessary

data being read as required from the memory or disk. The Runge-Kutta method

calculates half time steps for each required point. For example, if y(xn) is known

and y(xn+1) = y(xn + h) is required (for step size h), the method will calculate the

derivatives of y at y(xn), y(xn + h/2) and y(xn + h). As we need to specify the

source term at every calculated time step, the requested time step for the second

order method must be twice that used at first order. This decreases the accuracy of

the method, but does not require the use of splines and interpolation techniques to

determine background and first order variables between time steps.

The second order system is similar in run time to the first order system. How-

ever, the source integration is more complex and involves the integration of N2
k ×Nθ

values at each time step. When Nk = 1025 and Nθ = 513, the first order evolu-

tion lasts around 200 seconds. The source calculation, on the other hand, takes

approximately 200 seconds for each time step. Each of the four terms A − D̃ is

approximately 16 gigabytes in size at each time step for these values of Nk and Nθ.

However, only the integrated result is stored for use in the second order run. This

is approximately 16 kilobytes in size for each time step. Results for each stage are

stored in the open HDF5 standard [9, 79], which can deal efficiently with large files,

is very portable and allows for data analysis independent of the Python/Numpy

programming environment.

The full calculation contains around 8000 time steps, making the source term

calculation approximately 470 hours long. Each time step is independent of the

others, however, so parallelisation of the system is straightforward. The results in

Chapter 8 were obtained on the Virgo Cluster in the Astronomy Unit at Queen

Mary, University of London. The code was run on ten nodes, each containing four

Opteron cores with a clock speed of 1994Mhz. With this configuration the run time

of the source term calculation is reduced to under twelve hours.

4The number of discretised k modes Nk does not need to be equal to Nθ.
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7.4. Code Tests

The numerical code has been tested in a variety of controlled circumstances in order

to quantify the effects of different parameter options. In particular, it is important to

establish whether the values specified for the number of discretised θ’s, Nθ, the size

of the spacing of the discretised k modes, ∆k, and the range of k values significantly

impact on the results. The sections of the code that solve ODEs are straightforward

and follow standard algorithms.

As mentioned above, the WMAP results [104] use observations in the range k ∈
[0.92 × 10−60, 3.1 × 10−58]MPL = [3.5 × 10−4, 0.12]Mpc−1. We will consider three

different k ranges both in our results and the tests of the code5:

K1 =
[
1.9× 10−5, 0.039

]
Mpc−1 , ∆k = 3.8× 10−5Mpc−1 ,

K2 =
[
5.71× 10−5, 0.12

]
Mpc−1 , ∆k = 1.2× 10−4Mpc−1 ,

K3 =
[
9.52× 10−5, 0.39

]
Mpc−1 , ∆k = 3.8× 10−4Mpc−1 . (7.23)

The first, K1, has a very fine resolution but covers only a small portion of the

WMAP range. The next, K2, is closest to the WMAP range and still has quite a fine

resolution. The final range, K3, has a larger k mode step size, ∆k = 1×10−60MPL =

3.8 × 10−4Mpc−1, and covers a greater range than the others. It extends to much

smaller scales than WMAP can observe.

The central calculation in the code is of the convolution of the perturbations for

the source term, Eq. (7.14). The first of the θ dependent terms in Eq. (7.2), A,

can be convolved analytically for certain smooth choices of δϕ1(k). Taking δϕ1(k)

to be similar in form to the initial conditions (7.19) gives δϕ1(k) ∝ 1/
√
k with

proportionality constant α. If IA denotes the following integral of the A term:

IA(k) =

∫
dq3δϕ1(qi)δϕ1(ki − qi) = 2π

∫ kmax

kmin

dq q2δϕ1(qi)A(ki, qi) , (7.24)

5The k ranges in MPL are:

K1 =
[
0.5× 10−61, 1.0245× 10−58

]
MPL , ∆k = 1× 10−61MPL ,

K2 =
[
1.5× 10−61, 3.0735× 10−58

]
MPL , ∆k = 3× 10−61MPL ,

K3 =
[
0.25× 10−60, 1.02425× 10−57

]
MPL , ∆k = 1× 10−60MPL .
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Figure 7.5.: The analytic solution of IA given in Eq. (7.26) for k ∈ K1. The value
of α is set as 2.7× 1057.

10−61 10−60 10−59 10−58 10−57

k/MPL

10−10

10−9

10−8

10−7

10−6

10−5

10−4

ε r
el

Nθ = 129

Nθ = 257

Nθ = 513

(a) The relative error for different Nθ, the
number of discretised θs, keeping the
other parameters fixed and using the K3

range. The upper blue line (Nθ = 129)
and middle green line (Nθ = 257) have
relative errors at least an order of mag-
nitude larger than the lower red line
(Nθ = 513).

10−61 10−60 10−59 10−58 10−57

k/MPL

10−10

10−9

10−8

10−7

10−6

ε r
el

k ∈ K1

k ∈ K2

k ∈ K3

(b) The relative error for the three differ-
ent k ranges K1, K2, K3 (starting from
the left). The parameter ∆k is set
equal to 1×10−61MPL, 3×10−61MPL, 1×
10−60MPL respectively.

Figure 7.6.: Comparison of relative errors in IA for different Nθ and k ranges.
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then substituting δϕ1(k) = α/
√
k implies that

IA(k) = 2πα2

∫ kmax

kmin

dq q
3
2

∫ π

0

dθ (k2 + q2 − 2kq cos θ)−1/4 sin θ . (7.25)

This has the analytic solution

IA(k) = −πα
2

18k

{
3k3

[
log

(√
kmax − k +

√
kmax√

k

)
+ log

(√
k + kmax +

√
kmax√

kmin + k +
√
kmin

)

+
π

2
− arctan

( √
kmin√

k − kmin

)]

−
√
kmax

[ (
3k2 + 8k2

max

) (√
k + kmax −

√
kmax − k

)
+ 14kkmax

(√
k + kmax +

√
kmax − k

)]

+
√
kmin

[ (
3k2 + 8k2

min

) (√
k + kmin +

√
k − kmin

)
+ 14kkmin

(√
k + kmin −

√
k − kmin

)]}
. (7.26)

The k dependence of IA can be seen in Figure 7.5. We have tested our code against

this analytic solution for various combinations of k ranges and Nθ. The relative

error

εrel =
|analytic− calculated|

|analytic| (7.27)

is small for all the tested cases, but certain combinations of parameters turn out to

be more accurate than others. The relative errors of all the following results are not

affected by the choice of α so we will keep its numerical value fixed throughout as

2.7× 1057.

We first tested the effect of changing Nθ, the number of samples of the θ range

[0, π]. Figure 7.6a plots these results for the k range K3 with ∆k = 1× 10−60MPL.

Only three values of Nθ are shown for clarity. It can be seen that increasing Nθ

decreases the relative error when the other parameters are kept constant, as one

might expect.

As mentioned above the choice of k range is especially important as the con-

volution of the terms depends strongly on the minimum and maximum values of

this range. Indeed, this is clear from the analytic solution in Eq. (7.26). Fig-
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Figure 7.7.: The relative error in the integral IA for different values of ∆k. The other
parameters are fixed: kmin = 1 × 10−60MPL, Nk = 1025 and Nθ = 513.
The value of ∆k is less than kmin for the upper blue line (∆k = 1 ×
10−61MPL) and the middle green line (∆k = 3×10−61MPL). These have
relative errors at least an order of magnitude larger than the lower red
line for which ∆k = kmin = 1× 10−60MPL.
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ure 7.6b shows the difference in relative error for the three different k ranges de-

scribed above with ∆k = 3.8 × 10−5, 1.2 × 10−4 and 3.8 × 10−4Mpc−1 (∆k =

1 × 10−61, 3 × 10−61, 1 × 10−60MPL), respectively. The accuracy is similar in all

three cases.

Another important check is whether the resolution of the k range is fine enough.

Varying ∆k can not be done in isolation if the constraint (7.22) for Nk is to be

satisfied. For this test the end of the k range was changed with ∆k but the other

parameters were kept fixed at kmin = 1× 10−60MPL = 3.8× 10−4Mpc−1, Nk = 1025

and Nθ = 513. Figure 7.7 plots these results again for three indicative values. For

∆k < kmin, there is a marked degradation in the accuracy of the method for the

upper two lines. This is understandable as many interpolations of multiples of ∆k

below kmin will be set to zero. Once ∆k is greater than kmin, the relative error is

insensitive to further increases in the value of ∆k. (This is not shown in the figure.)
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Figure 7.8.: The relative error in the integral IA for three different values of ∆k. In
contrast to Figure 7.7, kmin = 1× 10−61MPL = 3.8× 10−5Mpc−1 ≤ ∆k
for each case.

The analytic solutions for the B, C̃ and D̃ terms are given in Appendix A.4. The

relative errors between the analytic and calculated values for IB, IC̃ and ID̃ are shown

in Figure 7.9 for the three final k ranges, with β = 10−62. The errors for the IC̃ and

ID̃ terms are very small, being of the order of 10−8 and 10−6, respectively. The

relative error for the IB term is larger, especially for small k values. However, the
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error is still below 0.08% for each of the K1, K2 and K3 ranges.

It should be noted that these tests only show the relative errors in the computation

of integrals of the four terms in Eq. (7.2). They do not represent errors for the full

calculation. However, they do show that the accuracy is good compared with the

analytic result.

7.5. Discussion

This chapter has described the implementation of the numerical calculation of second

order cosmological perturbations. The Klein-Gordon equations in Chapter 6 are the

central focus of this computation. In Section 7.2 these equations were rewritten using

N as the time variable, a choice more suitable for numerical work. The convolution

integrals in Eq. (6.25) can be expressed in spherical polar coordinates and split into

four sub-terms A–D̃ in Eqs. (7.2) and (7.15). Computing the source term Eq. (7.14),

which is written using A–D̃, is the most complex and time consuming part of the

calculation.

To demonstrate the numerical code, four different potentials have been chosen

and these were described in Section 7.2.1. One parameter for each potential was

determined by comparing the calculated P2
R1

with the WMAP5 value.

In Section 7.2.2 the initial conditions for the computed quantities were explained.

Each k mode is initialised well inside the horizon using the Bunch-Davies vacuum

conditions from Section 2.3. The second order perturbations are initially set to zero.

This choice concentrates focus on the generation of second order effects during the

observable period of inflation.

The technical implementation of the code was discussed in Section 7.3. There

are four stages in the procedure. First, the background fields are evolved over a

specified time period. The end time of inflation is then determined by the condition

εH = 1 and the scale factor calculated for this time. With this information the

initialisation of the first order modes can be performed. In the second stage, the

first order perturbation equations are solved. These results are used in the third

stage to calculate the source term (7.14) at each time step and for each k value.

Finally, the second order perturbation equations are solved using the source term

results.

To test the source term calculation the numerical results were compared to ana-

lytic solutions in Section 7.4. Numerical parameters such as Nθ and Nk were set by

minimising the relative error between the two approaches.
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Figure 7.9.: The relative errors in IB, IC̃ and ID̃ for each of the k ranges with β =
10−62.
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In Chapter 6 the evolution equations for second order perturbations were intro-

duced. In this chapter the practical implementation of a numerical calculation of

these perturbations was discussed. In Chapter 8 the results of this numerical calcu-

lation will be examined and the next steps towards an improved procedure will be

described.



8. Results and Future Work

8.1. Introduction

The main result of Part II of this thesis is the numerical integration of the Klein-

Gordon equation of motion for second order scalar field perturbations, Eq. (6.25).

The slow roll approximation of the source term for second order perturbations was

employed, but the complete versions of the evolution equations were used for the

background and first order perturbations. In this chapter the results of the nu-

merical calculation will be presented. This represents the first step towards a full

calculation of the Klein-Gordon equation at second order. In addition to the new

results obtained, plans will be described for future work aimed at improving the

numerical system and increasing its range of applicability.

As a proof of concept, the numerical system was tested with four different poten-

tials, V (ϕ) = 1
2
m2ϕ2, 1

4
λϕ4, σϕ

2
3 and U0 + 1

2
m2

0ϕ
2, and results computed across three

different k ranges. As expected, the second order perturbation for a single, slowly

rolling inflaton field that we have calculated is extremely small in comparison with

the first order term. However, there are differences apparent between the potentials,

which will be outlined in Section 8.2.3.

We have listed the potential parameters m, λ, σ and m0 in Table 7.1. These were

found using the WMAP5 normalisation at kWMAP = 0.002Mpc−1 = 5.25×10−60MPL

[104]. We have also outlined in Eq. (7.23) the three k ranges that have been used:

K1 =
[
1.9× 10−5, 0.039

]
Mpc−1 , ∆k = 3.8× 10−5Mpc−1 ,

K2 =
[
5.71× 10−5, 0.12

]
Mpc−1 , ∆k = 1.2× 10−4Mpc−1 ,

K3 =
[
9.52× 10−5, 0.39

]
Mpc−1 , ∆k = 3.8× 10−4Mpc−1 . (8.1)

Many of the results will be quoted for kWMAP which lies in all three of these ranges.

Given that the first order perturbations for the chosen potentials produce an

almost scale invariant power spectrum with no running, it is no surprise that the

results from the three different k ranges are very similar. The second order source

125
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term is somewhat dependent on the lower bound of k (upper bound on size). This is

also to be expected and in the scale invariant case a logarithmic divergence can be

shown to exist [124]. We have implemented an arbitrary sharp cutoff at kmin, below

which δϕ1 is taken to be zero. As mentioned in Chapter 7, there is some evidence

to suggest that a similar cutoff might be supported by the WMAP data [95, 187].

In Section 8.2, the numerical results for the computation described in Chapter 7

are presented. Comparisons of the results from the four different test potentials

will be made in Section 8.2.3. Since this represents the first stage towards a full

calculation of the source term, the next steps that will be required are outlined

in Section 8.3. Finally, in Section 8.4 we discuss some of the consequences of our

results.

8.2. Results

8.2.1. Results for V (ϕ) = 1
2m

2ϕ2

At first order the solutions obtained for the quadratic potential agree with previous

work in Refs. [137, 165, 169]. Oscillations are damped until horizon crossing (when

k = aH) after which the curvature perturbation becomes conserved. Figure 8.1

shows the evolution of the real and imaginary parts of the first order perturbation

from when the initial conditions are set, at k/aH = 50, to just after horizon crossing.

The horizontal axis for most of the following figures parametrises the number of e-

foldings remaining until the end of inflation (Nend−N ), instead of the time variable

N employed in the calculations.

Figure 8.2 shows the evolution of the second order perturbations for the scale

kWMAP. As mentioned above, the overall amplitude of the second order perturba-

tion is many orders of magnitude smaller than the corresponding first order one.

The results given for δϕ2 in this chapter are for the full solution which includes a

homogeneous and particular solution as described in Section 7.2.2. In Figures 8.1

and 8.2 the field values have been rescaled by k3/2/(
√

2π) to allow for a better

appreciation of the magnitude of the resulting power spectra.

The source term S(ki) is calculated using Eq. (7.4) at each time step using the

results of the first order and background simulations. This term drives the produc-

tion of second order perturbations as shown in Eqs. (6.25) and (7.13). Figure 8.3a

shows the absolute magnitude of the source term for a single k mode, kWMAP, for all

time steps calculated. The source term is large at early times, and closely follows

the form of the spectrum of the first order perturbations, as can be seen from Fig-
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Figure 8.1.: The first order perturbation δϕ1 rescaled by k3/2/(
√

2π) from the be-
ginning of the simulation until around horizon crossing (red dot-dashed
line). The real (blue) and imaginary (green dashed) parts of the per-
turbation are shown for the scale kWMAP.
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Figure 8.2.: The real (blue line) and imaginary (green dashed) components of the
second order perturbation δϕ2(kWMAP) from the beginning of the simu-
lation until around the time of horizon exit (red dot-dashed line).
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ure 8.3b. Figure 8.4 shows how the source term depends on the choice of k range.

After horizon crossing, the source term is independent of the specific choice of Ki

(i = 1, 2, 3). Before horizon crossing, however, there is a strict hierarchy with the

smaller k ranges, K1 and K2, leading to smaller source contributions. As discussed

in Section 7.4, ∆k should be at least as large as kmin in order for the error to be

reduced to a minimum. In Figure 8.5 the source term is plotted at three differ-

ent values of k for the range K1. As k increases, or equivalently the length scale

decreases, the magnitude of the source term after horizon crossing decreases.

It is informative to compare the magnitude of the source term with the other

terms in the second order evolution equation (7.13). We denote these other terms

by T :

T (ki) =

(
3 +

H†

H

)
δϕ†2(ki) +

(
k

aH

)2

δϕ2(ki) +

(
V,ϕϕ
H2
− 24πG(ϕ†0)2

)
δϕ2(ki) .

(8.2)

Figure 8.6 then shows the absolute magnitude of both S and T . It is clear that

for the scale kWMAP the contributions to the source term are only of comparable

magnitude during the early stages of the simulation. Figure 8.7 shows a comparison

of |S|/|T | for three different k values. The magnitude of S is closer to that of the

rest of the terms for the larger k mode. A priori, the range of k modes where S will

be large for a particular chosen potential is not known. However, once the relevant

values of k have been determined, it may be possible to significantly reduce the

time required for the simulation by restricting the calculation of S to those regions

where it is important. Figure 8.7 shows that it is not possible to arbitrarily ignore

the contribution of S either inside or outside the horizon. The full calculation on

sub- and super-horizon scales is important for the evolution of the second order

perturbation at different scales.

In Figure 8.8 the value of |S| at the initialisation time for each k mode is shown.

The initial magnitude of the source term is much smaller for larger values of k

(smaller scales). Because the smaller k modes begin their evolution earlier, the

relative difference in |S| is not as pronounced when measured at a single time step

(see for example Figure 8.5). It should also be remembered that the magnitude of

the other terms in the second order ODE is small for larger k modes as shown by

the ratio |S|/|T | in Figure 8.7.

The source term can also be compared at different time steps over all the k values.

In Figure 8.9 the green line shows |S| when all δϕ1 modes have started to evolve.

The lower red line illustrates |S| after all modes have exited the horizon, around 52
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Figure 8.3.: Source term and first order power spectrum for the WMAP pivot scale
kWMAP.
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Figure 8.4.: A comparison of the source term (7.14), for the scale kWMAP = 5.25 ×
10−60MPL, over the three different ranges K1, K2 and K3, which were
specified in Eq. (8.1). Before horizon crossing there is a significant
difference in the amplitude of the source term for kWMAP. After horizon
crossing, however, the magnitude of S is independent of the choice of
Ki.
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Figure 8.5.: The source term (7.14) for three different k values in the K1 range, in-
cluding the WMAP pivot scale, kWMAP = 5.25×10−60MPL (middle green
line). As the value of k increases or equivalently the scale decreases, the
magnitude of the source term decreases. The calculation of the source
term for each k value starts from the time step at which the correspond-
ing first order perturbation is initialised, i.e., when k/aH = 50.
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Figure 8.6.: The source term (lower blue line), as defined in Eq. (7.14), is compared
with the T term (upper green line), as defined in Eq. (8.2), for kWMAP.
The source term is of comparable magnitude at the beginning of the
simulation.

e-foldings before the end of inflation.

8.2.2. Comparison of V (ϕ) = 1
2m

2ϕ2 Results with Analytic

Solution

In this section results for the quadratic model will be compared with an analytic

solution for this model. However, an analytical result is difficult to obtain for the

case of the full first order solution in terms of Hankel functions with the phase

information included. The analytical solution we will use, therefore, is the non-

interacting de Sitter space solution with the phase information ignored. The first

order perturbations are then given by

δϕ1(η, ki) =
1

a
√

2k

(
1− i

kη

)
, (8.3)

and the derivative in terms of N is

δϕ†1(η, ki) = − 1

a
√

2k

(
1− i

kη

)(
1 +

1

aHη

)
− i

a2H
√

2

√
k . (8.4)
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Figure 8.7.: The quotient of the S term, Eq. (7.14), and the T term, Eq. (8.2), for
three different k values in the range K1, including the WMAP pivot
scale, kWMAP = 5.25× 10−60MPL. For small values of k the source term
is not comparable to the magnitude of T after horizon crossing. How-
ever, for larger k values (smaller scales) the two terms have comparable
magnitude. It is, therefore, important to calculate the source term over
the full range of e-foldings.
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Figure 8.8.: The absolute magnitude of the source term at the initial start time for
each k value when k/aH = 50 deep inside the horizon. The results are
for the range K1.
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Figure 8.9.: The absolute magnitude of the source term for all k values in the range
K1 at two different time steps. The green line shows |S| when all modes
have been initialised. The lower red dashed line shows |S| approximately
52 e-foldings before the end of inflation, when all modes have exited the
horizon.
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Figure 8.10.: A comparison of the analytical and calculated solutions for the source
term at one time step, approximately 60 e-foldings before the end of
inflation.

The source term is found using Eq. (7.14) and the values of the background

quantities. The analytical solution of Eq. (7.14) for this choice of first order solution

is given in Appendix A.5 in Eqs. (A.35-A.42).

In Figure 8.10 the analytical and calculated solutions are plotted for one timestep

about 60 e-foldings before the end of inflation. At a single time step the correlation

between the two solutions for S is very good. There is a deviation at small values of

k due to the analytical solution getting rapidly smaller as k approaches zero. This

is not replicated in the calculated version. However, this only strongly affects the

result for the smallest values of k and for kWMAP for example the relative error of the

calculated solution compared to the analytical solution is about 10−4. The relative

error of the calculated solution is shown in Figure 8.11 for a single time step.

The analytical and calculated values for the source term can also be compared for

a single k value across a range of time steps. In Figure 8.12 the absolute magnitude

of the source term for kWMAP is plotted for a range of a few e-foldings before hori-

zon crossing. The analytical and calculated results are extremely similar and not

distinguishable in the plot. The relative error of the calculated solution is around

10−4. Because the first order perturbations do not include any phase information the

result is much smoother than the result generated using the full first order phase
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Figure 8.11.: The relative error of the calculated solution compared to the analytical
solution for the source term. The error is shown for all k values at one
time step, approximately 60 e-foldings before the end of inflation.

information. However, as the phase angle is a function of |ki − qi| it cannot be

trivially ignored in the computation of the full convolution integral.

8.2.3. Comparison of Models

All the results quoted so far have been for the quadratic potential. In this section the

results for all four potentials will be compared using the K2 range. Figure 8.13 shows

the power spectrum of first order curvature perturbations, P2
R1

, for each potential.

The 1
2
m2ϕ2, 1

4
λϕ4 and σϕ

2
3 models all clearly have a red spectrum with ns < 1. On

the other hand, the U0 + 1
2
m2

0ϕ
2 model has a blue spectrum (ns > 1) when U0 to

chosen to be 5× 10−10M4
PL, as specified in Section 7.2.1. The values of ns obtained

for the four potentials are given in Table 8.1.

The source term for each model is shown separately in Figure 8.14 for kWMAP using

the K2 range1. Although these terms are qualitatively similar, differences between

them are apparent. Figure 8.15 brings together the source terms at kWMAP to enable

a direct comparison to be made. The kWMAP mode begins at different times for the

different models. Each result is therefore plotted in terms of the initialisation time

1These plots use a different k range to the ones comparing V (ϕ) = 1
2m

2ϕ2 and 1
4λϕ

4 in Ref. [84].
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Figure 8.12.: A comparison of the analytical and calculated results for the source
term of the kWMAP mode before horizon crossing.
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Figure 8.13.: Comparison of the power spectrum P2
R1

for the four different mod-

els. The three models with potentials 1
2
m2ϕ2, 1

4
λϕ4 and σϕ

2
3 have red

spectra (ns < 1) while the U0 + 1
2
m2

0ϕ
2 model has a blue spectrum

(ns > 1).



8.2: Results 138

Potential ns ns − 1

1
2
m2ϕ2 0.965 -0.035
1
4
λϕ4 0.949 -0.051

σϕ
2
3 0.977 -0.023

U0 + 1
2
m2

0ϕ
2 1.002 0.002

Table 8.1.: The spectral index for scalar perturbations for each of the four potentials
used. These values are calculated for the kWMAP scale, five e-foldings after
it crosses the horizon. The potential parameters are listed in Table 7.1.
The value U0 = 5 × 10−10M4

PL was chosen to ensure a blue spectrum
(ns > 1).
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Figure 8.14.: Plots of the source term for the four different potentials studied.



8.2: Results 139

for that mode. This change in duration is a consequence of allowing H to evolve

during the calculation.
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Figure 8.15.: Comparison of the source term evolution for the four different models.
After horizon crossing the magnitude of the source term is larger for
the quadratic and quartic models than for the other two. Towards the
end of the numerical calculation there is a marked increase in |S| for
three of the models as ε̄H increases towards unity. The end time of
inflation is specified by hand for the contrived toy model, so this effect
is not seen.

The source term results for the quadratic and quartic potentials are very similar.

Indeed, from horizon crossing to near the end of inflation the results appear to

coincide. The 1
4
λϕ4 mode has a slightly longer duration and at late times is reduced

in comparison with the 1
2
m2ϕ2 one. Figure 8.16 shows that at early times the

relationship is more complicated with the 1
4
λϕ4 mode being larger for a significant

period.

In the early stages the amplitude of the V (ϕ) = σϕ
2
3 model is very similar to

the other two results described above. After horizon crossing, however, there is

a significant drop in the amplitude of S in comparison with the 1
2
m2ϕ2 and 1

4
λϕ4

models. This continues until late in the evolution when |S| increases swiftly to reach

levels above the others. The duration of the mode in this model is shorter than in

the other two models described so far.

The fourth model, with potential V (ϕ) = U0 + 1
2
m2

0ϕ
2, is a contrived toy model.
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Figure 8.16.: Comparison of the source term evolution for the four different models
at early times. This figure highlights the early evolution of the four
models shown in Figure 8.15. Before horizon crossing the magnitude of
the source term is comparable for each model. After horizon crossing
differences between the models become apparent.
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As described in Section 7.2.1, in order to perform the single field calculation, the

end time of inflation must be specified by hand. In this simulation ϕ ' 8 is taken as

the end time. The potential is extremely flat in this region and the effect of this can

be seen in the source term of the model. Before horizon crossing it is of comparable

magnitude to the other terms. However, a steep decrease in |S| ensures that it is

a few orders of magnitude smaller than the other terms after horizon crossing. In

contrast to the behaviour of the other models, the source term does not increase

close to the end of inflation. This is due to the enforced end time cut-off which

means that ε̄H does not become large.

In this section we have described the results for four different single field potentials.

As expected for single field slow roll models they exhibit similar properties. In the

next section plans to extend the calculation to deal with more interesting models

will be outlined.

8.3. Future Directions

There are many possible ways to improve the program outlined in Chapter 7. Chief

amongst these is the implementation of the full second order source term given in

Eqs. (6.20) and (6.21). As we have seen the slow roll approximation is very helpful in

reducing the equations of motion to a manageable size. However, many interesting

models break the assumptions of a slowly rolling field and to investigate these models

it is necessary to use the full field equations.

Models in which the field potential is not smooth due to the presence of a feature

are particularly interesting examples of single field inflation for which slow roll is

broken. As the derivatives of the potential can be large around the feature, these

models must necessarily be handled without assumptions about the size of the slow

roll parameters. In Ref. [3] a model with a step potential was proposed which takes

the form

V (ϕ) =
1

2
m2ϕ2

(
1 + c tanh

(
ϕ− ϕs
d

))
, (8.5)

where ϕs, c and d parametrise the location, height and width of the step feature. A

bump model has also been proposed [42], with potential

V (ϕ) =
1

2
m2ϕ2

(
1 + c sech

(
ϕ− ϕb
d

))
, (8.6)

where again ϕb, c and d parametrise the feature. At first order these models intro-

duce noticeable differences in the scalar power spectrum. They are also known to
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be able to produce significant amounts of non-Gaussianity in shapes which are not

similar to either the local or equilateral types described in Section 2.6 [41, 42].

It will also be important to go beyond slow roll in the multiple field case. To

obtain analytic results, the study of multi-field models has often been restricted to

those with either sum or product separable potentials. Even very simple models with

two fields such as the double inflation model with the potential given by [184, 197]

V (ϕ, χ) =
1

2
m2
ϕϕ

2 +
1

2
m2
χχ

2 , (8.7)

can violate slow roll when the fields ϕ and χ are close to equality. To go some

way towards considering the full range of possible multi-field models with arbitrary

inflationary potentials then requires that the full non-slow roll evolution equations

are used.

As far as the implementation of the code is concerned, the extension to the non-

slow roll single field case is the next step. Although clearly more complicated than

the slow roll case of Eq. (7.13), only three more θ dependent terms need to be added

to the A–D terms listed in Eq. (7.2). The four potentials considered above all result

in slow roll inflation. Therefore, it is not expected that using the full source equation

will result in an appreciably different outcome in these models until near the end

of the inflationary phase. Once the field has stopped rolling slowly, new observable

features are expected to arise, as is indeed the case at first order.

Eqs. (6.20) and (6.21) must be written in terms of N , with the θ dependent terms

grouped together, in order to set up the numerical system completely at second

order. The main equation becomes

δϕ††2 (ki) +

(
3 +

H†

H

)
δϕ†2(ki) +

(
k

aH

)2

δϕ2(ki)

+
1

H2

[
V,ϕϕ + 8πG

(
2ϕ†0V,ϕ + 8πG

(
ϕ†0

)2

V0

)]
δϕ2(ki) + Sfull(k

i) = 0 , (8.8)



8.3: Future Directions 143

where the full source equation is given by

Sfull(k
i) =

1

(2π)2

∫
dqq2

{
1

(H)2

[
V,ϕϕϕ + 3(8πG)ϕ†0V,ϕϕ

]
δϕ1(qi)A(ki, qi)

+
(8πG)2ϕ†0

(aH)2

[
2a2ϕ†0V,ϕ + ϕ†0Q−

Q2

2(aH)2

]
δϕ1(qi)A(ki, qi)

− (8πG)2

(aH)2

(ϕ†0)2Q

2
δϕ†1(qi)A(ki, qi)

+
2(8πG)Q

(aH)2
δϕ1(qi)C̃(ki, qi) +

8πGϕ†0
2

δϕ†1(qi)C̃(ki, qi)
}

+ Ffull(δϕ1(ki), δϕ†1(ki)) . (8.9)

The Ffull term in Eq. (8.9) requires the use of three further θ integrals in addition

to those presented in Eq. (7.2). These take the form

E(ki, qi) =

∫ π

0

cos2(θ) sin(θ)δϕ1(ki − qi)dθ ,

F(ki, qi) =

∫ π

0

sin3(θ)

|ki − qi|2 δϕ1(ki − qi)dθ ,

G̃(ki, qi) =

∫ π

0

sin3(θ)

|ki − qi|2 δϕ
†
1(ki − qi)dθ . (8.10)

It is worth noting that the term sin3(θ)/|ki − qi|2 tends to zero in the limit where

k = q and θ → 0. The Ffull term can now be written in terms of E , F and G̃:

Ffull =
8πG

(2π)2

1

(aH)2

∫
dq q2

{

ϕ†0

[(
2k2 +

(
7

2
− 8πG

4
(ϕ†0)2

)
q2 +

3

4

8πG

(aH)2
X2

)
δϕ1(qi)

+ (8πG)Qϕ†0

(
3

4
+
q2

k2

)
δϕ†1(qi)

]
A(ki, qi)

+

[(
2Q

q

k

(
1− 8πG

(aH)2
Qϕ†0

)
− 9

2
ϕ†0kq − ϕ†0

q3

k

)
δϕ1(qi)

− 2Q(8πG)(ϕ†0)2 q

k
δϕ†1(qi)

]
B(ki, qi)



8.3: Future Directions 144

+

[(
−2 + (8πG)(ϕ†0)2

(
1

4
+

1

2aH

))
Qδϕ1(qi)

+

(
8πG

4
(ϕ†0)2 − 2

)
ϕ†0(aH)2δϕ†1(qi)

]
C̃(ki, qi)

+

[
2Q

k

q
δϕ1(qi) +

(
2
k

q
− q

k

)
ϕ†0(aH)2δϕ†1(qi)

]
D̃(ki, qi)

+ (8πG)ϕ†0

[(
1

4
(ϕ†0)2q2 +

Q2

2(aH)2

)
δϕ1(qi) +

Q

2
ϕ†0δϕ

†
1(qi)

]
E(ki, qi)

+ (8πG)2ϕ†0Q

[
− Q

2(aH)2

(
k2

2
+ q2

)
δϕ1(qi)− 1

4
ϕ†0k

2δϕ†1(qi)

]
F(ki, qi)

+ (8πG)2(ϕ†0)2

[
− Q

2

(
k2

2
+

q2

aH

)
δϕ1(qi)− (aH)2

4
ϕ†0k

2δϕ†1(qi)

]
G̃(ki, qi)

}
.

(8.11)

Eqs. (8.9) and (8.11) are clearly more complicated than the slow roll versions used

in Chapter 7. The numerical complexity is not significantly greater, however, once

the three terms in Eq. (8.10) have been calculated. The running time of the full

calculation will clearly be a significant constraint.

With this in mind, the performance of the numerical simulation could be improved

by analysing the most time consuming processes and investigating what optimisa-

tions might be implemented. The current, perhaps inelegant, procedure will allow

any performance improvements to be benchmarked for accuracy as well as for speed.

As discussed above, Nk was set to 1025 for the test runs. This provides good cover-

age of the WMAP k range, but it is not clear whether it sufficiently approximates

the integral to infinity for the source term. Logistical factors, including the running

time and memory usage of the code, restrict the choice of Nk. By optimising the

routines for reduced memory and increased speed it is hoped that the range of scales

can be extended and the resolution enhanced.

Beyond these considerations, the next significant step is to implement a multi-field

version of the system. This would allow the investigation of models that inherently

produce large second order perturbations. In Ref. [133] the second order Klein-

Gordon equation for multiple fields was presented and upgrading the simulation to

use these equations should be a straight-forward (if lengthy) process. Extending the

current data-structures and routines to a fixed number of extra fields will increase

the numerical complexity and the run-time of the code.

For example, let us suppose that the second order perturbations of two scalar
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fields, ϕ and χ, are to be calculated. Let V denote the potential and V0 its back-

ground value. As the coding environment we have used can easily handle arrays of

variables, it is useful to write the equations in vector form. The following definitions

will be used:

ϕ0 =

(
ϕ0

χ0

)
, δϕ1 =

(
δϕ1

δχ1

)
, δϕ2 =

(
δϕ2

δχ2

)
, (8.12)

V1 =

(
V,ϕ

V,χ

)
, V2 =

(
V,ϕϕ V,ϕχ

V,χϕ V,χχ

)
, V3 =

V,ϕϕϕ V,ϕϕχ

V,ϕϕχ V,ϕχχ

V,ϕχχ V,χχχ

 . (8.13)

In conformal time the Friedmann equation becomes

H2 =
8πG

3

(
1

2
(ϕ′0)

2
+

1

2
(χ′0)

2
+ a2V0

)
=

8πG

3

(
1

2
(ϕ0

′)
T
ϕ0
′ + a2V0

)
, (8.14)

where ϕT denotes the transpose of ϕ. The background vector equation of motion is

given by

ϕ0
′′ + 2Hϕ0

′ + a2V1 = 0 , (8.15)

where 0 is the zero vector. The first order vector equation takes the form

δϕ1
′′(ki) + 2Hδϕ1

′(ki)

+

(
k21 + V2 +

8πG

H

{
ϕ0
′V1

T + V1 (ϕ0
′)
T

+
8πG

H V0ϕ0
′ (ϕ0

′)
T

})
δϕ1(ki) = 0 ,

(8.16)

where 1 is the identity matrix.

We will outline the second order vector equation using the slow roll approximation.

In the multi-field case there are many more slow roll parameters than in the single

field scenario. Extending the definition of ε̄H in Eq. (6.24) to two fields gives

ε̄ϕ =
√

4πG

(
ϕ′0
H

)
, (8.17)

ε̄χ =
√

4πG

(
χ′0
H

)
. (8.18)

There are now four ηH-type parameters corresponding to the different combinations
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of second derivatives of V . These can be written together in matrix form as

(ηIJ) = ηH =
a2

3H2
V2 , (8.19)

where I, J = ϕ, χ. The magnitude of ηIJ is only small in the adiabatic direction, so

terms including ηIJ are included when making the slow roll approximation [133].

The second order, slow roll, vector equation for the perturbations is given by

δϕ2
′′(ki) + 2Hδϕ2

′(ki) +
(
k21 + a2V2 − 24πGϕ0

′ (ϕ0
′)
T
)
δϕ2(ki)

+ S(ki) = 0 , (8.20)

where the slow roll source term equation is

S(ki) =
1

(2π)3

∫
d3p d3q δ3(ki − pi − qi)

{
(8.21)

a2

[(
δϕ1(pi) δχ1(pi) 0

0 δϕ1(pi) δχ1(pi)

)
V3δϕ1(qi)

+
8πG

H
(
δϕ1

T (pi)V2δϕ1(qi)
)
ϕ0
′
]

+
16πGa2

H
(

(ϕ0
′)
T
δϕ1(pi)

)
V2δϕ1(qi)

+
8πG

H

[
2
plq

l

q2

(
(ϕ0

′)
T
δϕ1

′(qi)
)
δϕ1

′(pi) + 2p2
(

(ϕ0
′)
T
δϕ1(qi)

)
δϕ1(pi)

+

(
plq

l + p2

k2
q2 − plq

l

2

)(
δϕ1

T (pi)δϕ1(qi)
)
ϕ0
′

+

(
1

2
− plq

l + q2

k2

)(
(δϕ1

′)
T

(pi)δϕ1
′(qi)

)
ϕ0
′
]}

. (8.22)

Following the method of Section 7.2, the d3p integral is evaluated and the d3q

integral is written in spherical polar coordinates. The θ dependent terms, which are

equivalent to Eq. (7.2) in the single field case, are given by

Aϕ(ki, qi) =

∫ π

0

sin(θ)δϕ1(ki − qi)dθ ,

Aχ(ki, qi) =

∫ π

0

sin(θ)δχ1(ki − qi)dθ ,

A(ki, qi) =

∫ π

0

sin(θ)δϕ1(ki − qi)dθ ,
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B(ki, qi) =

∫ π

0

cos(θ) sin(θ)δϕ1(ki − qi)dθ ,

C(ki, qi) =

∫ π

0

sin(θ)δϕ1
′(ki − qi)dθ ,

D(ki, qi) =

∫ π

0

cos(θ) sin(θ)δϕ1
′(ki − qi)dθ . (8.23)

The first two equations are not vector equations but are needed for the explicit

matrix term in Eq. (8.21). We rewrite that equation with these definitions to obtain:

S(ki) =
1

(2π)2

∫
dq

{

a2q2

[(
Aϕ(ki, qi) Aχ(ki, qi) 0

0 Aϕ(ki, qi) Aχ(ki, qi)

)
V3δϕ1(qi)

+
8πG

H
(
AT (ki, qi)V2δϕ1(qi)

)
ϕ0
′
]

+
16πG

H a2q2
(

(ϕ0
′)
T A(ki, qi)

)
V2δϕ1(qi)

+
8πG

H

[
2
(

(ϕ0
′)
T
δϕ1

′(qi)
) (
kqD(ki, qi)− q2C(ki, qi)

)
+ 2q2

(
(ϕ0

′)
T
δϕ1(qi)

) (
(k2 + q2)A(ki, qi)− 2kqB(ki, qi)

)
+

([
3

2
q4AT (ki, qi)−

(
1

2
kq3 +

q5

k

)
BT (ki, qi)

]
δϕ1(qi)

)
ϕ0
′

+

([
1

2
q2CT (ki, qi)− q3

k
DT (ki, qi)

]
δϕ1

′(qi)

)
ϕ0
′
]}

. (8.24)

This expression for S reduces to Eq. (7.4) when only one field is considered. At

least in the slow roll case, the multi-field source term equation is not considerably

more complex than the single field one. The extra numerical complexity arises from

the calculation of the new θ dependent terms in Eq. (8.23).

8.4. Discussion

Part II of this thesis has described the numerical solution of the evolution equations

for second order scalar perturbations. The closed form of the Klein-Gordon equation

(6.25) has been employed for the first time. We have shown that direct calculation

of the field perturbations beyond first order using perturbation theory is readily

achievable, although it is non-trivial.



8.4: Discussion 148

This first demonstration has been limited to considering the slow roll approxima-

tion of the source term in Eq. (6.25) which is quadratic in first order perturbations.

Slow roll has not been imposed on the background or first order equations. Four

different potentials were used to demonstrate the capabilities of the system. The sin-

gularity at k = 0, which arises as larger and larger scales are considered, is avoided

by implementing a cutoff at small wavenumbers below kmin. This is a pragmatic

choice necessary for the calculation. It is also necessary to specify a maximum value

of k. This choice is dictated by computational resources and with reference to ob-

servationally relevant scales. In this demonstration, k ranges have been used which

are comparable with the scales observed by the WMAP satellite. By comparing the

analytical results of the convolution integral with the numerical calculation, values

of the parameters Nθ, Nk and ∆k were chosen in such a way that the numerical

error was minimised. The convolution scheme that has been implemented works

best when ∆k > kmin.

We have seen explicitly that the second order calculations for the chosen poten-

tials can be completed once the cut-off for kmin is imposed. As expected for these

potentials the magnitude of second order perturbations is extremely suppressed in

the slowly rolling regime, in comparison with the first order amplitude. We have

also shown that the evolution of the source term during the inflationary regime can

be readily calculated.

By computing the perturbations to second order, we have direct access to the

non-Gaussianity of δϕ. When used to investigate models that predict a large non-

linearity parameter, fNL, this technique could yield greater insight into the formation

and development of the non-Gaussian contributions by studying the effects of the

different terms in the source equation (7.14). It was shown recently that fNL can be

calculated directly from the field equations [149, 175], instead of using the standard

method based on a Lagrangian formalism [130]. The method presented here will

therefore eventually allow a full numerical calculation of fNL to be made.

Our numerical code evolves the second order perturbation itself and gives an

insight into how this field behaves through the full course of the inflationary era.

This is in contrast to other approaches which only consider the result for the three

point function of the field, or alternatively of the curvature perturbation. The

computational system handles perturbations with scales both inside and outside the

horizon. Any effects of horizon crossing are visible and no assumptions need to be

made about the form of the solution inside the horizon.

The numerical code, when developed with the full equation, will not require any

simplifying assumptions about the form of the potential used. This allows models
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which are not amenable to analytic analysis to be examined. Examples of models

which require consideration beyond the slow roll approximation include single field

models with a step or other feature in the potential, and multi-field double inflation

models where the field values are roughly equal.

The code we have developed is also applicable in other physical circumstances.

Beyond scalar perturbations the form of the source term is similar in other interest-

ing cosmological physics. The generation and evolution of non-Gaussian curvature

perturbations is, of course, directly related to the behaviour of the second order

scalars as has been described in Section 2.6 and Section 6.3. Investigating and clas-

sifying non-Gaussian signatures for inflationary models is the main goal of our future

work.

The generation of vorticity in a cosmological setting has physical parallels with

the equations we have studied. This second order effect arises through the vector

perturbations which we have not considered in this thesis. Vorticity in the early

universe could also lead to the generation of primordial magnetic fields, an area which

is of increasing interest [29, 48]. The wave equations for tensor mode perturbations

also exhibit the same form as the scalar equations with a source term at second

order. The code we have developed could be modified to examine the behaviour of

gravitational waves in the early universe at second order.

In summary, we have demonstrated that numerically solving the closed Klein-

Gordon equation for second order perturbations is possible. The slow roll version

of the source term was used in the calculation, but as described in Section 8.3, the

extension of the system to include the full source term is achievable. The analytic

and numerical solutions for the convolution terms were compared directly and found

to be in good agreement. The models used have been shown to have negligible second

order perturbations in line with known analytic results.
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9. Conclusion and Discussion

As the number of viable cosmological models increases, the need to constrain them

becomes more important. At the same time, the quantity and quality of observa-

tional data continue to improve. There now exists the opportunity to go beyond

linear statistical analyses and confront the predictions of models with observational

data from the non-linear regime. In this thesis both analytic and numerical methods

have been developed to constrain inflationary models.

The framework used in this thesis is the Friedmann-Robertson-Walker universe,

reviewed in Chapter 2. During the accelerated expansion of the inflationary period,

quantum fluctuations seeded energy density variations, which in turn gave rise to

the diverse structure of the present universe. First order cosmological perturbation

theory is necessary to describe the evolution of these fluctuations. The main ob-

servable quantities can be calculated at horizon crossing by using the Bunch-Davies

vacuum initial conditions. The departure of the perturbations from a purely Gaus-

sian random field is parametrised by fNL, which is described in two limits, local

and equilateral. In addition to canonical actions, we also introduced non-canonical

models, for which the speed of sound of the perturbations plays a crucial role. When

the sound speed is small, the amplitude of f eq
NL for these models is large.

In Part I, analytic methods were developed to constrain string theory inspired

non-canonical inflationary models. The Dirac-Born-Infeld scenario was outlined

in Chapter 3. In this model, a D3-brane propagates in a six-dimensional warped

throat. The radial position of the brane from the tip of the throat assumes the role

of the inflaton field. The non-canonical nature of the DBI action restricts the kinetic

energy of this field no matter how steep the potential. This allows an inflationary

period of sufficient duration to occur. This model has been widely regarded as a

very promising realisation of an inflationary model in a string-theory context.

In Ref. [19], Baumann & McAllister used the Lyth bound [123] to limit the tensor-

scalar ratio. Their analysis was based on the conservative assumption that the

brane could not propagate further than the full length of the throat. In Chapter 4,

we showed that this bound can be tightened by applying it over the portion of

the throat through which the brane passes during the directly observable stage of

151



9: Conclusion and Discussion 152

inflation. Restricting the field variation to be over these approximately four e-

foldings constrains r to be less than 10−7 for standard parameter values.

The most optimistic estimates of advances in experimental techniques and data

analysis, including foreground reduction, indicate that observations of r > 10−4

might be achievable in the future [21, 199]. Therefore, the new bound in Eq. (4.12)

immediately rules out the observation of a tensor mode signal from this model.

In addition to this, we also derived a lower bound on r in Eq. (4.20). This depends

on observable quantities, namely the scalar spectral index and the equilateral non-

Gaussianity. Saturating the WMAP5 observational limit on f eq
NL and taking the

best fit value for ns, we found that the most conservative lower limit is r > 0.005.

This is clearly incompatible with the previously derived upper bound. Therefore,

for standard parameter values, the D3-brane DBI scenario is not viable. Numerical

simulations by Peiris et al. in Ref. [154] have demonstrated the lower bound, in the

relativistic limit, using the Hamiltonian flow approach.

In Section 4.4, a phenomenological approach was taken to easing the upper bound

on the tensor-scalar ratio. By considering a DBI-type action with unspecified field

functions, fi, we showed that the generalised lower and upper bounds can be con-

sistent if the product of fA and fB is sufficiently large on observable scales. This

provides a guide to the types of models which could evade the inconsistency of the

bounds on r. For more general models with a non-canonical action, a bound on

r which relates the geometry of the throat, the number of e-foldings of observable

inflation, and the derivatives of the action has been derived in Eq. (4.39). This

bound, although it does not in general relate to observational quantities can be used

when the details of a particular physical model are known.

The discovery of the incompatible bounds on r for DBI inflation has had a notice-

able impact on the research community, spurring interest in finding models which

evade these bounds. Many such models have been proposed with varying degrees of

success. In Section 4.5 these were categorised according to whether they featured

single or multiple fields, and single or multiple branes. Some of these models are

still constrained by the bounds on r but not to the same extent as the standard

DBI scenario. For example the parameter space of the models with wrapped brane

configurations is still extremely limited by the observational values from WMAP5

[4]. For other models an analysis in terms of the bounds derived in this thesis has

yet to be undertaken. As the observational limits on f eq
NL and r continue to improve,

an important step in ensuring the validity of DBI based models is to check whether

equivalent bounds to those derived here exist, and whether they can be met for any

significant proportion of the parameter space.
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General actions which relax the bounds on r, were derived in Chapter 5. We

found a class of actions similar in form to that of the DBI model. However, instead

of a square-root in the kinetic term, the index of the main term of these actions

depends on the constant of proportionality between Λ and the sound speed of inflaton

fluctuations. The upper bound on r can be derived for these general actions and

when the index is below the critical value of 1/2 (corresponding to the standard

DBI scenario), this bound is significantly relaxed. When new models are proposed

in the future, our phenomenological derivation of this family of actions will allow

those models for which the bound on r is less stringent to be easily identified.

One such model is the single field, multi-coincident brane scenario of Thomas &

Ward [194]. When n D3-branes propagate in a throat, the non-Abelian interactions

between the branes result in major departures from the single brane case. This is

in contrast to the non-interacting branes model, in which the total action is simply

the sum of copies of the single brane action.

In the limit of a large number of branes being coincident, the effective action is

similar to n times the single brane model, with the addition of a fuzzy potential term.

Indeed this model is of the type considered phenomenologically in Section 4.4 and the

bounds derived in that section can be applied. These bounds on r can be somewhat

relaxed when this potential is large, but the model is still strongly constrained by

current observations. For an AdS5 throat, standard parameter choices limit the

number of allowed branes to be less than 150, at which point the assumption of

arbitrarily large n becomes questionable.

More promising is the finite n limit of the coincident brane model. The non-

Abelian nature of the interactions leads, in this case, to a recursive relation for

the n-brane action in terms of the n = 2 one. In Section 5.5, we showed that the

action for finite n is one of the class of bound-evading actions described above. This

identification is possible because the last term of the recursive sum dominates in

the relativistic limit. This approximation is valid at least when n < 10 and the

backreaction of the multiple branes is kept well under control for this range of n.

Although the bounds on r are eased for this model, we showed that observations

strongly constrain the possibility of an observable tensor signal being generated. If

an observable tensor-scalar ratio is considered to be r > 10−4, then only the two or

three brane cases are capable of producing such a signal. This bound on n depends

on the WMAP5 limit on f eq
NL. If, as expected, the observational limits on f eq

NL tighten

considerably in the future, the possibility of an observable tensor signal from the

multi-coincident brane model could be ruled out.

On the other hand, the choice of r > 10−4 as the threshold of an observable signal
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is very optimistic. If foreground removal techniques and the signal-to-noise ratios

of future experiments cannot reach this threshold, and instead reach r > 10−3, no

number of branes will be able to produce an observable tensor signal when combined

with the current limits on the non-Gaussianity. There will then be little possibility

of a distinguishing observational signature for these coincident brane models.

In Part II of this thesis, numerical methods were used to test inflationary models

up to second order in cosmological perturbation theory. The Klein-Gordon equation

at second order was derived in Ref. [133] for the multi-field case. In Chapter 6,

second order gauge transformations were outlined and the Klein-Gordon equation

reproduced for a single scalar field model. In contrast to the ∆N approach, this

equation is valid on all scales, both inside and outside the horizon.

In Fourier space, the second order Klein-Gordon equation (6.20) contains a convo-

lution term of the first order scalar field perturbation. For this first demonstration

of the numerical system, a slow roll approximation of the full equation was used.

Calculating the second order scalar field perturbations provides the possibility

of a unique insight into the generation and evolution of non-linear contributions

to the scalar curvature perturbation. One advantage of using the inflaton field

equations is that we can directly investigate how the perturbations are generated. If,

instead, we integrated the evolution equation for a derived observable quantity, there

would be a degree of separation from the physical origins of this process. Indeed,

there is, as yet, no known evolution equation for the main observable quantity, the

comoving curvature perturbation, at second order. Using cosmological perturbation

theory also provides control over the calculation. The domain of applicability of the

perturbative expansion is well defined and the resultant equations are certain to be

valid in this domain.

The main observable quantity is not however the second order scalar perturba-

tion, but rather the departure from Gaussianity in the CMB temperature map,

parametrised by the amplitude of the bispectrum of the perturbations. In Sec-

tion 6.3 we outlined how fNL could be calculated from the numerically found δϕ2

both for the local type and more generally using the bispectrum of the uniform den-

sity curvature perturbation. As the observational limits on fNL are tightened over

the course of the remaining WMAP releases and future Planck data, the importance

of comparing the predictions for fNL of inflationary models with the observed values

will only increase. In this thesis we have not computed fNL for the models we have

considered, but this is an important future step that will be undertaken.

The long term aim of this continuing project is to analyse multi-field, non-slow roll

models, in which non-Gaussian effects are expected to play an important role. As a
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step towards this goal, we described the implementation of a numerical calculation

of the single field, slow roll, second order equation in Chapter 7. The construction

and evaluation of the convolved source term in Eq. (7.4) proved to be the most

numerically complex step required.

To allow a numerical calculation, an energy scale cutoff must be implemented. We

used a sharp cutoff at small wavenumbers below which the perturbations were taken

to be identically zero. Another cutoff at small scales (or equivalently large wavenum-

bers) was dictated by practical considerations of calculation size and computation

time.

We defined, in Eq. (7.2), four θ dependent integrals into which the convolution

term can be decomposed. By comparison with an analytic solution for a particular

smooth choice of the first order perturbation, an estimate was made of the relative

error present in the integration of each term. The number of discrete wavenumber

values, their spacing, and the number of discrete θ values were chosen to minimise

the error in one of the integrals. From these parameter values, three different finite

ranges of discrete values of the wavenumber were defined. These all contain the

WMAP pivot scale at kWMAP = 0.002Mpc−1 and cover the WMAP observed scales

to varying degrees. Despite the k ranges having being chosen to minimise the relative

error in the integral of only one of the θ dependent terms, the integrals of the three

other terms also display small relative errors for these ranges. The analytic solutions

which have been found will form an important part of the verification of any future

modifications to the numerical code.

The execution of the code is in four stages, building on previous calculations of first

order perturbations in Refs. [137, 165, 169]. To begin, the background equations are

solved and the end time of inflation is fixed. The initial conditions for the first order

perturbation can then be set and solutions found for the evolution equations. Despite

the large volume of calculations required at each time step, the easily parallelisable

nature of the source term calculations allows the run time of the third stage to be

reduced significantly. The final stage of the calculation uses the source term results

to solve the second order perturbation equations.

The initial conditions for the second order perturbations are taken to be δϕ2 = 0

and δϕ†2 = 0 as described in Section 7.2.2. For this choice of initial conditions the

homogeneous part of the solution of the second order equation is zero at all times.

As the perturbations are supposed to become more Gaussian the further back in

time they are considered, in the limit of the far past the second order perturbations

should be zero. It remains to be investigated whether the choice of initialisation time

is sufficiently far in the past for this assumption to be accurate. At first order it is
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known that the perturbations are well approximated by the Bunch-Davies vacuum

initial conditions even just a few e-foldings before horizon crossing. However, this

choice of initialisation time may not be the most appropriate for the second order

perturbations. In future work it would be worth considering whether the analytic

Green’s function solution for δϕ2 at very early times could be integrated until the

numerical initialisation time and used as the initial condition for the perturbation.

To test the code, four different, large field, monomial potentials were used. These

were the standard quadratic and quartic potentials, a fractional index potential de-

rived from the monodromy string inflation model and a toy model in which inflation

is stopped by hand and a blue spectrum is produced. Each potential depends on

a single parameter, which was fixed by comparing the resultant scalar curvature

power spectrum with the WMAP5 normalisation. The slow roll approximation can

be applied to all four potentials. These potentials are not meant to represent an

exhaustive survey of single field slow roll models but are sufficiently different to

exhibit different power spectra and second order source terms.

We presented the results for each potential in Chapter 8. The first order results

match those in Refs. [137, 165, 169]. The results of the source term calculation show

that before horizon crossing, the source term amplitude decays rapidly for all four

potentials. The amplitude changes less after horizon crossing, until later times when

it increases as the slow roll approximation breaks down.

The four different potentials have similar amplitudes before horizon crossing but

reach different values after horizon crossing. The differences in the slow roll param-

eters for each potential are compared with the source term values in Appendix A.6.

The slow roll parameters do not appear to be directly related to the amplitudes of

the source terms, at least in a linear fashion.

The choice of wavenumber range affects the amplitude of the source term, as ex-

pected, due to the implementation of a sharp cutoff at large scales. This dependence

is only apparent, however, before horizon crossing. For a particular range, the mag-

nitude of the source term decreases as wavenumber increases. However, the ratio

of the source term to the other terms in the Klein-Gordon equation increases with

wavenumber.

As expected, the amplitude of the second order scalar perturbations is much

smaller than that of the first order ones. After the generation of the second order

perturbations at early times, their evolution is that of a damped harmonic oscillator

similar to the first order evolution.

We have shown that the magnitude of the source term can be important through-

out the full evolution and that it is not sufficient to calculate this term only for modes
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either entirely inside or outside the horizon, i.e., taking a short or long wavelength

approximation respectively. We have been able to access both of these regimes, by

solving the evolution equations of the inflaton field perturbation. This is in con-

trast to other approaches which could have been taken, for example using the ∆N
formalism, which is only applicable in the large scale limit.

The construction of any numerical code involves a considerable commitment of

time and resources so it is important to understand why such an endeavour has been

undertaken. The numerical calculation of first order cosmological perturbations is

an invaluable part of the cosmologist’s toolkit. It allows analytic predictions of

inflationary models to be confirmed where these exist, but also generates predictions

where no analytic solution is possible. Another important use is to test predictions

based on the slow roll approximation against the full evolution equations. We have

taken the first step towards upgrading this standard numerical calculation to include

second order scalar perturbations. The ability to check the predictions of inflationary

models at second order will be a powerful tool to constrain these models and check

the consistency of any analytic assumptions that have been made. Solving the

inflaton field equations provides the most direct access to the non-linear effects that

the increase in available statistics have made observationally important.

We have presented the first numerical calculation of the Klein-Gordon equation for

second order scalar perturbations which was derived in Ref. [133]. Although we have

restricted ourselves in this thesis to the single field, slow roll version of the second

order equation, the expertise gained and the lessons learned in the development of

the numerical system will be of significant assistance when the next steps towards

a full multi-field calculation are taken.

In the past, a numerical calculation on the scale we have achieved would have been

the preserve of dedicated super-computing facilities. We have demonstrated that a

calculation of this scope is now possible using relatively modest local resources. If

the computational power available increases, the practical limits on the resolution

and extent of the k ranges will ease. Further improvements in the efficiency of the

code will also loosen these constraints.

Another consideration in the development of a numerical system is the possibility

of code re-use. One of our future goals is to develop our code into a numerical toolkit

which can be applied to a variety of physical situations. The equations of motion

of the inflaton scalar field are similar in form to the governing equations of other

important cosmological phenomena. Therefore, it should be possible to adapt the

numerical system we have constructed and apply it to other areas of interest. The

form of the second order equation and source term are similar to those applicable
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in the evolution of tensor perturbations and the generation of vorticity in the early

universe. The flexibility of the numerical system we have developed will be a positive

factor in any attempt to apply our code to these physical systems.

The numerical calculation described is the first step towards a system capable of

handling the multi-field, non-slow roll models for which non-linear contributions are

important. In Section 8.3, the next steps towards this goal were outlined. Continuing

our work by calculating the second order perturbations for both the non-slow roll,

single field case and the slow roll, multi-field case will pave the way for the eventual

calculation of the non-slow roll, multi-field equations.

The full single field, non-slow roll, second order equation can be treated using the

method already described. Three more θ dependent terms are necessary to compute

the full convolution integral in this case. It will be important to find analytic

solutions for these three extra terms, as already done for the terms in the slow roll

case, in order to gauge the effectiveness of the extended code. When the extension

to non slow-roll models is complete, it will be possible to investigate models with a

step or other feature in their potential. These models can exhibit large amounts of

non-Gaussianity produced around the feature with a shape dependence that is more

general than that of the local and equilateral forms.

The Klein-Gordon equation for the multi-field case introduces further complexity.

We plan to expand the numerical system to encompass two or three scalar fields.

The differences between single and multi-field models are already apparent for these

cases. We have presented the slow roll source term equation for multiple fields in

vector notation. The definitions of the four θ dependent terms used in the single

field, slow roll model were also extended to the multi-field case. Beyond the slow roll

approximation, the full multi-field equation should be treatable in a similar manner

to the single field case, by introducing further θ dependent terms.

To conclude, it is worth reiterating our opening remarks. Cosmology has moved

from being a theorists’ playground to a genuine scientific discipline. Inflationary

models can now be strongly tested by observations and the next generation of ex-

periments will place even tighter limits on the viable parameter space of such models.

In this thesis, analytic arguments have constrained string theory inspired inflation-

ary models and numerical methods have paved the way to calculating higher order

cosmological perturbations.



A. Appendix

The following materials supplement the calculations and discussions in the main

thesis.

A.1. Analytic Solution of Generalised Sound

Speed Relation

Eq. (5.3) can be analytically solved in full generality without imposing the limits

(5.5) on the derivatives of the kinetic function. This allows us to determine the most

general class of models where the non-linearity parameter satisfies the condition

f eq
NL ∝ 1/c2

s at leading order.

In general Eq. (5.3) takes the form

(2− α)P,XP,XX + 4XP 2
,XX =

2α

3
XP,XP,XXX (A.1)

and this reduces to

αΥ,X = (6− α)Υ2 +
3(2− α)

2

Υ

X
, (A.2)

where Υ ≡ P,XX/P,X . Eq. (A.2) can be transformed into the linear equation

U,X +
3(2− α)

2α

U

X
=
α− 6

α
(A.3)

after the change of variables U ≡ 1/Υ and the general solution to Eq. (A.3) is given

by
P,XX
P,X

=
1

X [f2(ϕ)X(α−6)/2α − 2]
. (A.4)

Integrating a second time implies that

P,X = −f1(ϕ)
(
1− f2(ϕ)X−s

)1/(2s)
, (A.5)

where s ≡ (α − 6)/(2α) and we have redefined the arbitrary integration functions

fi(ϕ). Finally Eq. (A.5) can be formally integrated in terms of a hypergeometric

159



A.2: Generalised BM bound for Finite n Models 160

function

P = −f1X 2F1

(
−1

s
,− 1

2s
; 1− 1

s
, f2X

−s
)
, (A.6)

which represents the most general solution for this class of models. Note that we

have set the remaining constant of integration to zero to ensure that the kinetic

function vanishes in the limit of zero velocity. In fact this expression admits many

different classes of solution, arising as limits of the expansion of the hypergeometric

function.

A.2. Generalised BM bound for Finite n Models

For completeness we should also consider the BM bound (4.33) for the finite n

multi-coincident brane models. This is given by

r∗ < −
42

NN 2
eff

√
1 + (n− 1)2Y f eq

NL , (A.7)

and in the case of an AdS5 ×X5 throat simplifies to

r∗ < −
5

N 2
eff

f eq
NL

(n− 1)
√
N
. (A.8)

Comparing the limits in Eqs. (5.65) and (A.8) implies that the bound (4.39) is

stronger than the corresponding BM bound (4.33) if

n > 1− 5.5× 10−14N3/2N 2
efff

eq
NL , (A.9)

and this condition is always satisfied if

− 5.5× 10−14N3/2N 2
efff

eq
NL < 1 . (A.10)

Moreover, the bound (A.10) will itself be satisfied for all values of f eq
NL and N if

it is satisfied when the limits f eq
NL = −151 and N = 75852 are imposed. Hence,

we conclude that the bound (4.39) is stronger for Neff < 75. In general, it is

difficult to quantify the magnitude of Neff without imposing further restrictions on

the parameters of the models and, in particular, on the functional form of the inflaton

potential. However, if the ratio εH/P,X remains approximately constant during

the final stages of inflation, one would anticipate that Neff . 60. Nevertheless, if

N � 75852, the bound (A.9) will only be violated for n ≤ 3 if Neff � 60.
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A.3. Discussion of Homogeneous Solution for

Second Order Equation

The homogeneous equation for the second order perturbations is

δϕ′′2(η, ki) + 2Hδϕ′2(η, ki) +
[
k2 + a2V,ϕϕ − 24πG(ϕ′0)2

]
δϕ2(η, ki) = 0 . (A.11)

During slow roll, with the slow roll variables εH and ηH defined in Chapter 2, this

becomes

δϕ′′2 + 2Hδϕ′2 +
[
k2 + 3H2(ηH + εH)

]
δϕ2 = 0 . (A.12)

If we let u = aδϕ2, this equation can be rewritten as

u′′ +
[
k2 +H2(3ηH − 2εH − 2)

]
u = 0 . (A.13)

When εH is small, the conformal time η is given by

η ' − 1

H(1− εH)
, (A.14)

so we can rewrite Eq. (A.13) as

u′′ +

[
k2 +

1

(−η)2

3ηH − 2εH − 2

(1− εH)2

]
u = 0 . (A.15)

If the derivatives are taken in terms of (−η) instead of η this is in the form of a

Bessel equation with solutions in terms of Hankel functions given by

u1,2 =
√−ηH(1,2)

ν (−kη) , (A.16)

where H
(1,2)
ν are the Hankel functions (Bessel functions of the third kind), and ν is

given by

ν2 =
6εH − 12ηH + 7

4(1− 2εH)
. (A.17)

The full solution for u is then

ufull = C1

√−ηH(1)
ν (−kη) + C2

√−ηH(2)
ν (−kη) , (A.18)

where C1, C2 ∈ C. When the (real) argument of the Hankel functions goes to +∞
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they have the following asymptotic form [1]:

H(1)
ν (z)→

√
2

πz
ei(z−

π
2
ν−π

4
) , (A.19)

H(2)
ν (z)→

√
2

πz
e−i(z−

π
2
ν−π

4
) . (A.20)

So at early times when η → −∞ and −kη → +∞ we have the following expres-

sions for u:

ui =

√
2

πk

(
C1e

−i(kη+π
2
ν+π

4
) + C2e

+i(kη+π
2
ν+π

4
)
)
, (A.21)

u′i = ik

√
2

πk

(
−C1e

−i(kη+π
2
ν+π

4
) + C2e

+i(kη+π
2
ν+π

4
)
)
, (A.22)

(A.23)

where we have assumed that ν is slowly varying far in the past, i.e., the derivatives

of the slow roll parameters are very small.

As explained in Section 7.2.2, the results given for δϕ2 are for the full solution

including the homogeneous part. To remove the homogeneous part of the solution

the initial conditions for the full δϕ2 should be chosen such that C1 = C2 = 0 at all

times.

A.4. Analytic Tests for B, C̃ and D̃ Terms

Analytic solutions can also be found for the B, C̃ and D̃ terms. The B term integral,

IB, is given by

IB = 2π

∫ kmax

kmin

dq q2δϕ1(qi)B(ki, qi)

= 2πα2

∫ kmax

kmin

dq q
3
2

∫ π

0

dθ (k2 + q2 − 2kq cos θ)−1/4 cos θ sin θ , (A.24)
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and has the following analytic solution when δϕ1(q) = α/
√
q:

IB = − πα2

168k2

{
− 63k4

[
log

( √
k√

k + kmin +
√
kmin

)
+ log

(√
k + kmax +

√
kmax√

kmax − k +
√
kmax

)

− π

2
+ arctan

( √
kmin√

k − kmin

)]

+
√
kmax

[ (
−65k3 + 8kk2

max

) (√
k + kmax +

√
kmax − k

)
+
(
22k2kmax − 16k3

max

) (√
k + kmax −

√
kmax − k

)]

+
√
kmin

[ (
65k3 − 8kk2

min

) (√
k + kmin −

√
k − kmin

)
+
(
−22k2kmin + 16k3

min

) (√
k + kmin +

√
k − kmin

)]}
.

(A.25)

If, in addition to δϕ1(q) = α/
√
q, we also take

δϕ†1(q) = − α√
q
− iα

√
q

β
(A.26)

then the C̃ and D̃ terms can be integrated analytically. The integral of the C̃ term

is

IC̃ =

∫
d3q δϕ1(qi)δϕ†1(ki − qi) = 2π

∫
dq q2δϕ1(qi)C̃(ki, qi)

= −2πα2

∫ kmax

kmin

dq q
3
2

∫ π

0

((
k2 + q2 − 2kq cos θ

)− 1
4

+
i

β

(
k2 + q2 − 2kq cos θ

) 1
4

)
sin θdθ , (A.27)
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and the analytic solution is given by

IC̃ = −IA − i
πα2

240βk

{
15k4

[
log

(√
k + kmin +

√
kmin√

k

)
+ log

(√
kmax − k +

√
kmax√

k + kmax +
√
kmax

)

− π

2
+ arctan

( √
kmin√

k − kmin

)]

+
√
kmax

[ (
15k3 + 136kk2

max

) (√
k + kmax +

√
kmax − k

)
+
(
118k2kmax − 48k3

max

) (√
k + kmax −

√
kmax − k

)]

−
√
kmin

[ (
15k3 + 136kk2

min

) (√
k + kmin +

√
k − kmin

)
+
(
118k2kmin + 48k3

min

) (√
k + kmin −

√
k − kmin

)]}
.

(A.28)

The integral of the D̃ term is

ID̃ = 2π

∫
dq q2δϕ1(qi)D̃(ki, qi) (A.29)

= −2πα2

∫ kmax

kmin

dq q
3
2

∫ π

0

((
k2 + q2 − 2kq cos θ

)− 1
4

+
i

β

(
k2 + q2 − 2kq cos θ

) 1
4

)
cos θ sin θdθ , (A.30)
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and the analytic solution is

ID̃ = −IB − i
πα2

900βk2

{

135k5

[
log

(√
kmax − k +

√
kmax√

k

)
+ log

(√
k + kmax +

√
kmax√

k + kmin +
√
kmin

)

− π

2
+ arctan

( √
kmin√

k − kmin

)]

−
√
kmax

[ (
−185k4 + 168k2k2

max − 32k4
max

) (√
k + kmax −

√
kmax − k

)
+
(
70k3kmax + 16kk3

max

) (√
k + kmax +

√
kmax − k

)]

+
√
kmin

[ (
−185k4 + 168k2k2

min − 32k4
max

) (√
k + kmin −

√
k − kmin

)
+
(
70k3kmin + 16kk3

min

) (√
k + kmin +

√
k − kmin

)]}
. (A.31)

A.5. Analytic Solution for Source Term

Suppose the first order perturbations are given by the non-interacting de Sitter space

solution such that

δϕ1(η, ki) =
1

a
√

2k

(
1− i

kη

)
, (A.32)

and the derivative in terms of N is

δϕ†1(η, ki) = − 1

a
√

2k

(
1− i

kη

)(
1 +

1

aHη

)
− i

a2H
√

2

√
k . (A.33)

The analytic solution of Eq. (7.14) for this choice of first order solution can be

written in terms of four integrals of the A-D̃ terms:

S(ki) =
1

(2π)2

{
JA + JB + JC̃ + JD̃

}
, (A.34)
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where

JA(ki) =

∫ kmax

kmin

dq

(
V,ϕϕϕ
H2

q2 +
8πG

(aH)2
ϕ†0

[
3a2V,ϕϕq

2 +
7

2
q4 + 2k2q2

])
δϕ1(qi)A(ki, qi) ,

(A.35)

JB(ki) =

∫ kmax

kmin

dq
8πG

(aH)2
ϕ†0

(
−9

2
− q2

k2

)
kq3δϕ1(qi)B(ki, qi) , (A.36)

JC̃(k
i) =

∫ kmax

kmin

dq

(
−8πGϕ†0

3

2
q2

)
δϕ†1(qi)C̃(ki, qi) , (A.37)

JD̃(ki) =

∫ kmax

kmin

dq

(
8πGϕ†0

[
2− q2

k2

]
kq

)
δϕ†1(qi)D̃(ki, qi) . (A.38)

The analytic solution for JA is given by

JA =

(
V,ϕϕϕ
H2

+
8πG

(aH)2
ϕ†0
[
3a2V,ϕϕ + 2k2

]) α2

2880η2k

{

240k arctan

(√
kmin

k − kmin

)(
η2k2 − 12iηk − 24

)
− 120kπ

(
η2k2 − 12iηk − 24

)
− 80

√
kmax

([
3
(√

kmax − k −
√
k + kmax

)
k2

− 14kmax

(√
kmax − k +

√
k + kmax

)
k + 8k2

max

(√
kmax − k −

√
k + kmax

)]
η2

+ 48i
(
kmax

(√
k + kmax −

√
kmax − k

)
+ k

(√
kmax − k +

√
k + kmax

))
η

+ 72
(√

k + kmax −
√
kmax − k

))

− 80
√
kmin

([
3
(√

k − kmin +
√
k + kmin

)
k2 − 14kmin

(√
k − kmin −

√
k + kmin

)
k

+ 8k2
min

(√
k − kmin +

√
k + kmin

)]
η2 + 12i

[
k
(√

k − kmin − 4
√
k + kmin

)
+ 2kmin

(√
k − kmin − 2

√
k + kmin

)]
η + 72

(√
k − kmin −

√
k + kmin

))
+ 240k

(
η2k2 + 24

)
log
(

2
√
k
)
− 240k

(
η2k2 + 24

)
log
(

2
(√

kmax +
√
kmax − k

))
− 240k

(
η2k2 + 24

)
log
(

2
(√

kmax +
√
k + kmax

))
+ 240k

(
η2k2 + 24

)
log
(

2
(√

kmin +
√
k + kmin

))}
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+
8πG

(aH)2
ϕ†0

7

2

α2

2880η2k

{
3
√

2
(
−317η2k2 + 1000iηk + 560

)
k3

+ 3
√

2
(
317η2k2 − 1000iηk − 560

)
k3

+45
(
η2k2 − 12iηk − 16

)
arctan

(√
kmin

k − kmin

)
k3+45

(
η2k2 + 8iηk + 16

)
log
(

2
√
k
)
k3

− 45
(
η2k2 + 8iηk + 16

)
log
(

2
(√

kmax +
√
kmax − k

))
k3

− 45
(
η2k2 − 8iηk + 16

)
log
(

2
(√

kmax +
√
k + kmax

))
k3

+45
(
η2k2 − 8iηk + 16

)
log
(

2
(√

kmin +
√
k + kmin

))
k3−45

2

(
η2k2 − 12iηk − 16

)
πk3

− 3
√
kmax

(
15η2

(√
kmax − k −

√
k + kmax

)
k4

+ 10η(ηkmax + 12i)
(√

kmax − k +
√
k + kmax

)
k3

+ 8
(
η2k2

max + 10iηkmax + 30
) (√

kmax − k −
√
k + kmax

)
k2

− 16kmax

(
11η2k2

max − 20iηkmax − 10
) (√

kmax − k +
√
k + kmax

)
k

+ 128k2
max

(
η2k2

max − 5iηkmax − 5
) (√

kmax − k −
√
k + kmax

))

− 3
√
kmin

(
15η2

(√
k − kmin +

√
k + kmin

)
k4

+ 10η
(
ηkmin

(√
k − kmin −

√
k + kmin

)
− 6i

(
3
√
k − kmin + 2

√
k + kmin

))
k3

+ 8

(
η2
(√

k − kmin +
√
k + kmin

)
k2

min − 5iη
(

3
√
k − kmin − 2

√
k + kmin

)
kmin

+ 30
(√

k + kmin −
√
k − kmin

))
k2

−16kmin

(
11η2

(√
k − kmin −

√
k + kmin

)
k2

min−10iη
(√

k − kmin − 2
√
k + kmin

)
kmin

+ 10
(√

k − kmin +
√
k + kmin

))
k

+64k2
min

(
2η2
(√

k − kmin +
√
k + kmin

)
k2

min +5iη
(√

k − kmin − 2
√
k + kmin

)
kmin

+ 10
(√

k − kmin −
√
k + kmin

)))}
. (A.39)



A.5: Analytic Solution for Source Term 168

The analytic solution for JB is

JB = − 8πG

(aH)2
ϕ†0

9

2

α2

2822400η2k

{
29400

(
4η2k2 + 15iηk + 120

)
arctan

(√
kmin

k − kmin

)
k3

+ 29400
(
4η2k2 − 51iηk − 120

)
log
(

2
√
k
)
k3

− 29400
(
4η2k2 − 51iηk − 120

)
log
(

2
(√

kmax +
√
kmax − k

))
k3

− 29400
(
4η2k2 + 51iηk − 120

)
log
(

2
(√

kmax +
√
k + kmax

))
k3

+ 29400
(
4η2k2 + 51iηk − 120

)
log
(

2
(√

kmin +
√
k + kmin

))
k3

− 14700
(
4η2k2 + 15iηk + 120

)
πk3 + 280

√
kmax(k + kmax)

(
420η2k4

+ 5η(200ηkmax + 303i)k3 +
(
−416η2k2

max + 6414iηkmax + 11592
)
k2

− 24kmax

(
8η2k2

max − 87iηkmax − 126
)
k + 48k2

max

(
8η2k2

max + 53iηkmax + 84
))

− 280
√
kmax(kmax − k)

(
420η2k4 − 5η(200ηkmax + 303i)k3

+
(
−416η2k2

max + 6414iηkmax + 11592
)
k2 + 24kmax

(
8η2k2

max − 87iηkmax − 126
)
k

+ 48k2
max

(
8η2k2

max + 53iηkmax + 84
))

− 280
√
kmin

√
k + kmin

(
420η2k4 + 5η(200ηkmin + 303i)k3

+
(
−416η2k2

min + 6414iηkmin + 11592
)
k2 − 24kmin

(
8η2k2

min − 87iηkmin − 126
)
k

+ 48k2
min

(
8η2k2

min + 53iηkmin + 84
))

− 280
√

(k − kmin)kmin

(
420η2k4 + 5η(1083i− 200ηkmin)k3

− 2
(
208η2k2

min + 2547iηkmin + 5796
)
k2 + 24kmin

(
8η2k2

min + 67iηkmin + 126
)
k

+ 48k2
min

(
8η2k2

min − 73iηkmin − 84
))}
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− 8πG

(aH)2
ϕ†0

α2

2822400η2k3

{
105

(
270η2k2 + 2765iηk + 4956

)
arctan

(√
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k − kmin

)
k5

+ 105
(
270η2k2 − 3745iηk − 4956
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√
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)
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270η2k2 − 3745iηk − 4956
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2
(√

kmax +
√
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270η2k2 + 3745iηk − 4956
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2
(√
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√
k + kmax
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270η2k2 + 3745iηk − 4956
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2
(√
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√
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270η2k2 + 2765iηk + 4956
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−
√
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1360η2k2
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)
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(
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√
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max

(
300η2k2
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−
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k4+40kmin

(
3516η2k2

min − 133iηkmin + 8673
)
k3

−48k2
min

(
1360η2k2

min − 18655iηkmin − 22442
)
k2−64k3

min

(
600η2k2

min − 5110iηkmin − 5733
)
k

+ 256k4
min

(
300η2k2

min + 1855iηkmin + 2646
))
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−
√

(k − kmin)kmin

(
28350η2k6 + 525η(36ηkmin + 553i)k5

+70
(
216η2k2

min + 2765iηkmin + 7434
)
k4−40kmin

(
3516η2k2

min − 9247iηkmin − 8673
)
k3

−48k2
min

(
1360η2k2

min + 15155iηkmin + 22442
)
k2+64k3

min

(
600η2k2

min + 3710iηkmin + 5733
)
k

+ 256k4
min

(
300η2k2

min − 2555iηkmin − 2646
))}

. (A.40)

The analytic solution for JC̃ is

JC̃ = −8πGϕ†0
3

2

α2

14400β2η4k

{
−15k arctan

(√
kmin

k − kmin

)(
9η4k4−60iη3k3−560η2k2

+960iηk−80β2η2
(
η2k2 − 12iηk − 24

)
+20βη

(
−3iη3k3 − 32η2k2 + 96iηk + 192

)
+1920

)

+
15

2
kπ

(
9η4k4 − 60iη3k3 − 560η2k2 + 960iηk − 80β2η2

(
η2k2 − 12iηk − 24

)
+ 20βη

(
−3iη3k3 − 32η2k2 + 96iηk + 192

)
+ 1920

)

−
√
kmax(kmax − k)

(
9
(
15k4 + 10kmaxk

3 − 248k2
maxk

2 + 336k3
maxk − 128k4

max

)
η4

+ 3840i(k − kmax)2kmaxη
3 + 80

(
69k2 − 178kmaxk + 184k2

max

)
η2

+ 400β2
((

3k2 − 14kmaxk + 8k2
max

)
η2 + 48i(k − kmax)η − 72

)
η2 + 19200i(k−kmax)η

+ 320β

[
12i(k − kmax)2kmaxη

3 +
(
21k2 − 62kmaxk + 56k2

max

)
η2

+ 120i(k − kmax)η − 180

]
η − 28800

)

+
√
kmax(k + kmax)

(
9
(
15k4 − 10kmaxk

3 − 248k2
maxk

2 − 336k3
maxk − 128k4

max

)
η4

+ 3840ikmax(k + kmax)2η3 + 80
(
69k2 + 178kmaxk + 184k2

max

)
η2

+ 400β2
((

3k2 + 14kmaxk + 8k2
max

)
η2 − 48i(k + kmax)η − 72

)
η2

− 19200i(k + kmax)η + 320β

[
12ikmax(k + kmax)2η3 +

(
21k2 + 62kmaxk + 56k2

max

)
η2

− 120i(k + kmax)η − 180

]
η − 28800

)
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+
√
kmin

√
k + kmin

(
9
(
−15k4 + 10kmink

3 + 248k2
mink

2 + 336k3
mink + 128k4

min

)
η4

− 3840ikmin(k + kmin)2η3 − 80
(
69k2 + 178kmink + 184k2

min

)
η2

− 400β2
((

3k2 + 14kmink + 8k2
min

)
η2 − 48i(k + kmin)η − 72

)
η2

+ 19200i(k+ kmin)η+ 320β

[
− 12ikmin(k+ kmin)2η3−

(
21k2 + 62kmink + 56k2

min

)
η2

+ 120i(k + kmin)η + 180

]
η + 28800

)

−
√

(k − kmin)kmin

(
− 9

(
15k4 + 10kmink

3 − 248k2
mink

2 + 336k3
mink − 128k4

min

)
η4

+ 60i
(
15k3 − 54kmink

2 + 8k2
mink + 16k3

min

)
η3 − 80

(
39k2 − 38kmink + 104k2

min

)
η2

+ 400β2
((

3k2 − 14kmink + 8k2
min

)
η2 + 12i(k + 2kmin)η + 72

)
η2

+ 4800i(k + 2kmin)η + 20iβ

[
3
(
15k3 − 54kmink

2 + 8k2
mink + 16k3

min

)
η3

+ 32i
(
3k2 + 4kmink + 8k2

min

)
η2 + 480(k + 2kmin)η − 2880i

]
η + 28800

)
+15k

(
9η4k4 − 400η2k2 − 320βη

(
η2k2 − 12

)
+ 80β2η2

(
η2k2 + 24

)
+ 1920

)
log
(

2
√
k
)

− 15k

(
9η4k4 − 400η2k2 − 320βη

(
η2k2 − 12

)
+ 80β2η2

(
η2k2 + 24

)
+ 1920

)
log
(

2
(√

kmax +
√
kmax − k

))
− 15k

(
9η4k4 − 400η2k2 − 320βη

(
η2k2 − 12

)
+ 80β2η2

(
η2k2 + 24

)
+ 1920

)
log
(

2
(√

kmax +
√
k + kmax

))
+ 15k

(
9η4k4 − 400η2k2 − 320βη

(
η2k2 − 12

)
+ 80β2η2

(
η2k2 + 24

)
+ 1920

)
log
(

2
(√

kmin +
√
k + kmin

))}
. (A.41)
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The analytic solution for JD̃ is

JD̃ = 8πGϕ†0
α2

302400β2η4k

{
−5040k arctan

(√
kmin

k − kmin

)(
9η4k4+230η2k2+260iηk

+ 20β2η2
(
2η2k2 + 13iηk − 12

)
+ 10βη

(
27η2k2 + 52iηk − 48

)
− 240

)

+ 2520kπ

(
9η4k4 + 230η2k2 + 260iηk + 20β2η2

(
2η2k2 + 13iηk − 12

)
+ 10βη

(
27η2k2 + 52iηk − 48

)
− 240

)
+

16
√
k + kmax

k
3/2
max

(
− 35η2

(
111η2k2

max

+192iηkmax+64βη(3iηkmax+1)+64

)
k4−5η

(
−294η3k3

max−717iη2k2
max+2656ηkmax

+ 960β2η2(3ηkmax − i) + βη
(
−717iη2k2

max + 5536ηkmax − 1920i
)
− 960i

)
k3

− 6

(
− 588η4k4

max + 1305iη3k3
max + 9965η2k2

max + 15520iηkmax

+20β2η2
(
45η2k2

max + 776iηkmax + 252
)
+5βη

(
261iη3k3

max+2173η2k2
max+6208iηkmax+2016

)

+5040

)
k2+4kmax

(
84η4k4

max−330iη3k3
max−3275η2k2

max+7065iηkmax−15β2η2

(
20η2k2

max

−471iηkmax+1008

)
−5βη

(
66iη3k3

max + 715η2k2
max − 2826iηkmax + 6048

)
−15120

)
k

+ 8k2
max

(
− 84η4k4

max + 330iη3k3
max − 1450η2k2

max + 2385iηkmax + 15β2η2

(
20η2k2

max

+ 159iηkmax + 378

)
+ 10βη

(
33iη3k3

max − 115η2k2
max + 477iηkmax + 1134

)
+ 5670

))
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+ 16k−3/2
max

√
kmax − k

(
35η2

(
111η2k2

max + 192iηkmax + 64βη(3iηkmax + 1) + 64
)
k4

+ 5η

(
294η3k3

max + 717iη2k2
max − 2656ηkmax − 960β2η2(3ηkmax − i)

+ iβη
(
717η2k2

max + 5536iηkmax + 1920
)

+ 960i

)
k3 + 6

(
− 588η4k4

max + 1305iη3k3
max

+ 9965η2k2
max + 15520iηkmax + 20β2η2

(
45η2k2

max + 776iηkmax + 252
)

+5βη
(
261iη3k3

max + 2173η2k2
max + 6208iηkmax + 2016

)
+5040

)
k2+4kmax

(
84η4k4

max

− 330iη3k3
max − 3275η2k2

max + 7065iηkmax − 15β2η2
(
20η2k2

max − 471iηkmax + 1008
)

− 5βη
(
66iη3k3

max + 715η2k2
max − 2826iηkmax + 6048

)
− 15120

)
k

− 8k2
max

(
− 84η4k4

max + 330iη3k3
max − 1450η2k2

max + 2385iηkmax + 15β2η2

(
20η2k2

max

+ 159iηkmax + 378

)
+ 10βη

(
33iη3k3

max − 115η2k2
max + 477iηkmax + 1134

)
+ 5670

))

+ 16k
−3/2
min

√
k + kmin

(
35η2

(
111η2k2

min + 192iηkmin + 64βη(3iηkmin + 1) + 64
)
k4

− 5η

(
294η3k3

min + 717iη2k2
min − 2656ηkmin − 960β2η2(3ηkmin − i)

+ iβη
(
717η2k2

min + 5536iηkmin + 1920
)

+ 960i

)
k3 + 6

(
− 588η4k4

min

+ 1305iη3k3
min + 9965η2k2

min + 15520iηkmin + 20β2η2
(
45η2k2

min + 776iηkmin + 252
)

+ 5βη
(
261iη3k3

min + 2173η2k2
min + 6208iηkmin + 2016

)
+ 5040

)
k2

− 4kmin

(
84η4k4

min − 330iη3k3
min − 3275η2k2

min + 7065iηkmin − 15β2η2

(
20η2k2

min

−471iηkmin +1008

)
−5βη

(
66iη3k3

min + 715η2k2
min − 2826iηkmin + 6048

)
−15120

)
k

− 8k2
min

(
− 84η4k4

min + 330iη3k3
min − 1450η2k2

min + 2385iηkmin + 15β2η2

(
20η2k2

min

+ 159iηkmin + 378

)
+ 10βη

(
33iη3k3

min − 115η2k2
min + 477iηkmin + 1134

)
+ 5670

))
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− 16k
−3/2
min

√
k − kmin

(
35η2

(
111η2k2

min + 192iηkmin + 64βη(3iηkmin + 1) + 64
)
k4

+ 10η

(
147η3k3

min − 1104iη2k2
min + 1552ηkmin + 480β2η2(3ηkmin − i)

+ 16βη
(
−69iη2k2

min + 187ηkmin − 60i
)
− 480i

)
k3 + 6

(
− 588η4k4

min + 480iη3k3
min

+ 8165η2k2
min + 14720iηkmin − 20β2η2

(
45η2k2

min − 736iηkmin − 252
)

+ 5βη
(
96iη3k3

min + 1453η2k2
min + 5888iηkmin + 2016

)
+ 5040

)
k2

+ 4kmin

(
84η4k4

min + 120iη3k3
min − 2675η2k2

min + 6165iηkmin + 15β2η2

(
20η2k2

min

+411iηkmin−1008

)
+5iβη

(
24η3k3

min + 475iη2k2
min + 2466ηkmin + 6048i

)
−15120

)
k

+ 8k2
min

(
84η4k4

min + 120iη3k3
min + 2050η2k2

min − 3285iηkmin + 15β2η2

(
20η2k2

min

− 219iηkmin − 378

)
+ 10βη

(
12iη3k3

min + 235η2k2
min − 657iηkmin − 1134

)
− 5670

))

− 5040k

(
− 9η4k4 − 45iη3k3 − 150η2k2 − 340iηk + 20β2η2

(
2η2k2 − 17iηk + 12

)
+ 5βη

(
−9iη3k3 − 22η2k2 − 136iηk + 96

)
+ 240

)
log
(

2
√
k
)

+ 5040k

(
− 9η4k4 − 45iη3k3 − 150η2k2 − 340iηk + 20β2η2

(
2η2k2 − 17iηk + 12

)
+ 5βη

(
−9iη3k3 − 22η2k2 − 136iηk + 96

)
+ 240

)
log
(

2
(√

kmax +
√
kmax − k

))
+ 5040k

(
− 9η4k4 + 45iη3k3 − 150η2k2 + 340iηk + 20β2η2

(
2η2k2 + 17iηk + 12

)
+ 5βη

(
9iη3k3 − 22η2k2 + 136iηk + 96

)
+ 240

)
log
(

2
(√

kmax +
√
k + kmax

))
− 5040k

(
− 9η4k4 + 45iη3k3 − 150η2k2 + 340iηk + 20β2η2

(
2η2k2 + 17iηk + 12

)
+ 5βη

(
9iη3k3 − 22η2k2 + 136iηk + 96

)
+ 240

)
log
(

2
(√

kmin +
√
k + kmin

))}
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+ 8πGϕ†0
α2

604800β2η4k3

{
315

(
− 9η4k4 + 60iη3k3 − 130η2k2 + 300iηk

+ 20β2η2
(
4η2k2 + 15iηk + 120

)
+ 10βη

(
6iη3k3 − 5η2k2 + 60iηk + 480

)
+ 2400

)
arctan

(√
kmin

k − kmin

)
k3 + 315

(
9η4k4 + 10iη3k3 + 290η2k2 − 1020iηk

+ 20β2η2
(
4η2k2 − 51iηk − 120

)
+ 10βη

(
iη3k3 + 37η2k2 − 204iηk − 480

)
− 2400

)
log
(

2
√
k
)
k3 − 315

(
9η4k4 + 10iη3k3 + 290η2k2 − 1020iηk

+ 20β2η2
(
4η2k2 − 51iηk − 120

)
+ 10βη

(
iη3k3 + 37η2k2 − 204iηk − 480

)
− 2400

)
log
(

2
(√

kmax +
√
kmax − k

))
k3 − 315

(
9η4k4 − 10iη3k3

+ 290η2k2 + 1020iηk + 20β2η2
(
4η2k2 + 51iηk − 120

)
+ 10βη

(
− iη3k3 + 37η2k2

+ 204iηk− 480

)
− 2400

)
log
(

2
(√

kmax +
√
k + kmax

))
k3 + 315

(
9η4k4− 10iη3k3

+ 290η2k2 + 1020iηk + 20β2η2
(
4η2k2 + 51iηk − 120

)
+10βη

(
−iη3k3 + 37η2k2 + 204iηk − 480

)
−2400

)
log
(

2
(√

kmin +
√
k + kmin

))
k3

− 315

2

(
− 9η4k4 + 60iη3k3 − 130η2k2 + 300iηk + 20β2η2

(
4η2k2 + 15iηk + 120

)
+ 10βη

(
6iη3k3 − 5η2k2 + 60iηk + 480

)
+ 2400

)
πk3

+
√
kmax

√
k + kmax

{
2835η4k6 − 630iη3(5βη − 3ikmaxη + 5)k5 + 14η2

(
1800β2η2

− 1428k2
maxη

2 + 2710ikmaxη + 5β(542iηkmax + 3201)η + 14205

)
k4

+ 4η

(
2364η3k3

max + 6620iη2k2
max − 9465ηkmax + 75β2η2(200ηkmax + 303i)
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+ 5βη
(
1324iη2k2

max + 1107ηkmax + 9090i
)

+ 22725i

)
k3

−24

(
−1392η4k4

max +2500iη3k3
max +13010η2k2

max−16035iηkmax +5β2η2

(
208η2k2

max

−3207iηkmax−5796

)
+10βη

(
250iη3k3

max + 1405η2k2
max − 3207iηkmax − 5796

)
−28980

)
k2

+ 160kmax

(
24η4k4

max − 88iη3k3
max − 597η2k2

max + 783iηkmax − 9β2η2

(
8η2k2

max

− 87iηkmax − 126

)
+ βη

(
−88iη3k3

max − 669η2k2
max + 1566iηkmax + 2268

)
+ 1134

)
k

+ 320k2
max

(
− 24η4k4

max + 88iη3k3
max − 348η2k2

max + 477iηkmax

+ 9β2η2
(
8η2k2

max + 53iηkmax + 84
)

+ 2βη

(
44iη3k3

max − 138η2k2
max

+ 477iηkmax + 756

)
+ 756

)}

+
√
kmax

√
kmax − k

{
− 2835η4k6 − 630η3(5iβη + 3kmaxη + 5i)k5 − 14η2

(
1800β2η2

− 1428k2
maxη

2 + 2710ikmaxη + 5β(542iηkmax + 3201)η + 14205

)
k4

+ 4η

(
2364η3k3

max + 6620iη2k2
max − 9465ηkmax + 75β2η2(200ηkmax + 303i)

+5βη
(
1324iη2k2

max + 1107ηkmax + 9090i
)
+22725i

)
k3+24

(
−1392η4k4

max+2500iη3k3
max

+ 13010η2k2
max − 16035iηkmax + 5β2η2

(
208η2k2

max − 3207iηkmax − 5796
)

+ 10βη
(
250iη3k3

max + 1405η2k2
max − 3207iηkmax − 5796

)
− 28980

)
k2

+160kmax

(
24η4k4

max−88iη3k3
max−597η2k2

max+783iηkmax−9β2η2

(
8η2k2

max−87iηkmax

− 126

)
+ βη

(
−88iη3k3

max − 669η2k2
max + 1566iηkmax + 2268

)
+ 1134

)
k
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− 320k2
max

(
− 24η4k4

max + 88iη3k3
max − 348η2k2

max + 477iηkmax

+9β2η2
(
8η2k2

max + 53iηkmax + 84
)
+2βη

(
44iη3k3

max−138η2k2
max+477iηkmax+756

)
+756

)}

−
√
k − kmin

√
kmin

{
− 2835η4k6 + 1890iη3(10βη+ ikminη+ 10)k5 + 14η2

(
1800β2η2

+1428k2
minη

2−1660ikminη+5β(−332iηkmin−1761)η−10605

)
k4−4η

(
−2364η3k3

min

+13480iη2k2
min+39465ηkmin+75β2η2(200ηkmin−1083i)+5βη

(
2696iη2k2

min+10893ηkmin

−32490i

)
−81225i

)
k3−24

(
1392η4k4

min−1000iη3k3
min−10930η2k2

min +12735iηkmin

+ 5β2η2
(
208η2k2

min + 2547iηkmin + 5796
)

+ 10βη

(
− 100iη3k3

min

− 989η2k2
min + 2547iηkmin + 5796

)
+ 28980

)
k2 + 160kmin

(
24η4k4

min + 32iη3k3
min

−453η2k2
min+603iηkmin+9β2η2

(
8η2k2

min + 67iηkmin + 126
)
+βη

(
32iη3k3

min−381η2k2
min

+1206iηkmin+2268

)
+1134

)
k+320k2

min

(
24η4k4

min+32iη3k3
min+492η2k2

min−657iηkmin

+ 9β2η2
(
8η2k2

min − 73iηkmin − 84
)

+ 2βη

(
16iη3k3

min

+ 282η2k2
min − 657iηkmin − 756

)
− 756

)}

+
√
kmin

√
k + kmin

(
− 2835η4k6 + 630η3(5iβη + 3kminη + 5i)k5 − 14η2

(
1800β2η2

− 1428k2
minη

2 + 2710ikminη + 5β(542iηkmin + 3201)η + 14205

)
k4 − 4η

(
2364η3k3

min

+6620iη2k2
min−9465ηkmin +75β2η2(200ηkmin +303i)+5βη

(
1324iη2k2

min +1107ηkmin

+9090i

)
+22725i

)
k3 +24

(
−1392η4k4

min +2500iη3k3
min +13010η2k2

min−16035iηkmin

+ 5β2η2
(
208η2k2

min − 3207iηkmin − 5796
)

+ 10βη

(
250iη3k3

min + 1405η2k2
min
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−3207iηkmin−5796

)
−28980

)
k2−160kmin

(
24η4k4

min−88iη3k3
min−597η2k2

min+783iηkmin

− 9β2η2
(
8η2k2

min − 87iηkmin − 126
)

+ βη

(
− 88iη3k3

min − 669η2k2
min

+1566iηkmin+2268

)
+1134

)
k−320k2

min

(
−24η4k4

min+88iη3k3
min−348η2k2

min+477iηkmin

+ 9β2η2
(
8η2k2

min + 53iηkmin + 84
)

+ 2βη
(
44iη3k3

min − 138η2k2
min + 477iηkmin + 756

)
+ 756

))}
. (A.42)

A.6. Discussion of properties of source term for

different potentials

The evolution of the source term for the four potentials has been discussed in Sec-

tion 8.2.3, with particular emphasis on the evolution after horizon crossing as shown

in Figure 8.15. Here the differences apparent at early times, shown in Figure 8.16

are commented on.

At early times the first order perturbations are still very close to the Bunch-Davies

initial conditions as outlined in Section 7.2.2. In particular the perturbations are

highly oscillatory with phase exp(−kη), where η is the conformal time. When εH is

small this is given by

η = − 1

aH(1− εH)
. (A.43)

It is therefore instructive to plot the slow roll parameter εH for the four potentials

at these early times, as has been done in Figures A.1 and A.2. For completeness the

other slow roll parameter ηH defined in Eq. (2.27) has been plotted in Figures A.3

and A.4.

Figures A.1 and A.3 show εH and ηH for the four different models. Figures A.2

and A.4 show the early stages of the evolution as in Fig 8.16.

As is clear from these figures the change in the slow roll parameters is not easily

related to the differences in the profiles of the four potentials in Figure 8.16. In

particular, although εH and ηH are quite different for the quadratic and quartic

models, the magnitude of S after horizon crossing for these models is very similar.

At the earliest stages of the calculation of S, one or two e-foldings after the

initialisation of the first order perturbation, there appear to be small oscillations

which affect the models in different ways. The highly oscillatory initial conditions,
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Figure A.1.: The value of εH for the four potentials.
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Figure A.2.: The value of εH for the four potentials at early times.
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Figure A.3.: The value of ηH for the four potentials.
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Figure A.4.: The value of ηH for the four potentials at early times.
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Figure A.5.: The real part of the phase in the Bunch Davies initial conditions for
the four different potentials at early times.

combined with the small but appreciable differences in εH and ηH contribute to this

effect. In Figure A.5 the real part of the phase of the initial condition for δϕ1 is

plotted just after initialisation for the four potentials. The small differences in phase

for each model combined with the sharp cutoff at large and small k values could

explain the variations in |S| at early times as seen in Figure 8.16.
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