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Abstract

The thesis begins with a study of the origin of non-lineanco®gical fluctuations. In partic-
ular, a class of models of multiple field inflation are consédk with specific reference to those
cases in which the non-Gaussian correlation functionsaaige! The analysis shows that pertur-
bations from an almost massless auxiliary field generigaltgluce large values of the non-linear

parameterfnt,.

Next, the effects of including non-Gaussian correlatiomctions in the statistics of cosmo-
logical structure are explored. For this purpose, a nons&ian probability distribution function
(PDF) for the curvature perturbatiddis required. Such a PDF is derived from first principles in
the context of quantum field theory, with n-point correlatfanctions as the only input. Under
reasonable power-spectrum conditions, an explicit espzagor the PDF is presented, with cor-

rections to the Gaussian distribution from the three-poantelation functiof RRR).

The method developed for the derivation of the non-GaudBIaF is then used to explore
two important problems in the physics of primordial blackdsa(PBHS). First, the non-Gaussian
probability is used to compute corrections to the numbeBHi®generated from the primordial
curvature fluctuations. Particular characteristics ohstmrrections are explored for a variety of
inflationary models. The non-Gaussian corrections exglooasist exclusively of non-vanishing

three-point correlation functions.

The second application concerns new cosmological obskesalbhe formation of PBHSs is
known to depend on two main physical characteristics: thength of the gravitational field
produced by the initial curvature inhomogeneity and thesguee gradient at the edge of the
curvature configuration. The latter has so far been ignarate estimation of the probability
of PBH formation. We account for this by using two parameterdescribe the profile: The
amplitude of the inhomogeneity and its second radial dévigaboth evaluated at the centre of
the configuration. The method developed to derive the nams&an PDF is modified to find the
joint probability of these two parameters. We discuss thglizations of the derived probability

for the fraction of mass in the universe in the form of PBHSs.
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Chapter 1

Introduction

Cosmology is at the forefront of modern physics. Over thetlas decades, it has moved
from a predominantly theoretical discipline to a sound obms®onal science. Today’s ex-
periments are capable of observing tiny fluctuations of @t feignal coming from the Big
Bang, emitted about thirteen billion years ago. The obgema of primordial inhomo-
geneities are a unique probe of the physical conditionsdredrly universe. The inflationary
paradigm indicates that the inhomogeneities are the reswjtantum fluctuations of the
matter dominating the universe in its first moments. In thidely accepted picture the ob-
served inhomogeneities fix the normalisation of an inflatrgrpotential setting the energy
scales for inflation to aboun'°GeV, the GUT scale. This i0° times more than the energy
of particles released by supernovae. A similar ratio arfisethe energy scales to be tested
by the large hadron collider (LHC). These numbers show haggometry of the universe
and its inhomogeneities constitute a unique probe of higiggnphysics.

Several observational parameters have been defined in tmgyrio order to determine
the physical conditions of the early universe. The density aature of matter observed
today, the distribution and mean amplitude of initial infageneities, and most recently
the non-Gaussianity of primordial fluctuations are amoregéhparameters. The latter has
received considerable attention from cosmologists buattaysis of the latest observations
has not yet provided conclusive evidence for departures aussian statistics. A great deal
of effort is under way to reduce the detection thresholdshefrion-Gaussian parameters.

Even if non-Gaussianity remains undetected by future eéxyars, we can still constrain

12



1.1: Cosmological observations and the Big Bang 13

theoretical models that are known to develop large non-Slaniy.

The main objective of the present work is to study how nongSeun statistics, inherited
from inflation, can modify the probability of primordial ki hole formation. The class of
models of inflation that motivate this study and the develeptof statistical tools to address
this question are complementary projects, and both araded in the present thesis. In the
rest of this chapter we provide a brief description of theéestd the art in cosmology, with

special attention to the open questions that motivate lieisis.

1.1 Cosmological observations and the Big Bang

It has been more than four decades since Penzias & Wilsorb[I8énaged to identify,
for the first time, the cosmic microwave background (CMB)iaéidn. This was detected,
almost by accident, while calibrating a large reflector atBell Laboratories. The uniform
and isotropic radiation observed corresponds to the mafqielack-body radiation ever
measured, peaking at= 1.9 mm, with a red-shifted temperature df\p = 2.725 Kelvin
[Jaffe et al., 2001].

The detection of the CMB gave decisive support to the Big Baegry. The standard Big
Bang model considers a universe dominated by uniform aritbigic matter. Its dynamics
is governed by gravity, with equations prescribed by thethef general relativity. (Grav-
ity is the only long-range force to be considered since theense is electrically neutral.)
The conditions of isotropy and homogeneity, in this contemply that the spacetime admit-
ting these properties is necessarily a Friedmann-Robeki¢aker universe (FRW) (see e.g.

Wald [1984]).

1.1.1 Basic dynamics of the universe

We write the FRW metric in the form of the line-element in spted coordinates.

ds? = —dt* + alt) (dr* 4 r* [d6® + sin® 0d¢*]) (1.1)

1 — kr?

wheret and x are the coordinate time and the uniform curvature of theiapséctions

respectively. The usual spherical coordinates in the aphtipersurfaces are 6 and ¢.
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Finally, a(t) is the scale factor, with present valug = 1. The Einstein equations of gen-
eral relativity provide the dynamical relation between thatter and spacetime variables.
Assuming homogeneous and isotropic matter, with denseynd isotropic pressurg the
Einstein equations show that the evolution of the scalefastgiven by

H? = (9) _ L (1.2)

a 3 a?’

where an over-dot is the coordinate time derivative And the Hubble parameter, a measure
of the expansion rate. Its present valuéfis= 100h kms~*Mpc~!, with h = 0.71 £ 0.08
[Freedman et al., 2001]. This last equation is known as tedRrann equation. We use
throughout units where= h = 877G = 1.

The matter contents of our universe has several componadtshe fraction of each
component relative to the critical density is called thesigrparametef?; = p* /3H?2. If
we denote the sum of all matter component$asthe Friedmann equation can be written

simply as
Q. (t) + Qr(t) =1, (1.3)

whereQ,. = x/(aH)? is the curvature density parameter. When the matter deissitgual

to the critical density3 /72, thenQ)r = 1 and the universe is flat at all times. Observations
tell us that we live in a nearly flat universg.| < 1072), so we assumg,, = 0 hereafter.
The energy density is dominated by two main components, g dalk matter component
(Qcpm >~ 0.23) and another component referred as dark eneigy~+ 0.72). The nature of
both these componentsis a crucial question in cosmologhasdhotivated a lot of research.

We will return to this point and to an analysis of the Einsteguations later in this work.

1.1.2 The Big Bang model

The hot Big Bang model is now accepted as the standard moseiibieg the evolution of
the universe. This model characterises, with impressigaracy, the evolution after the first
second. At this time, the universe was a primordial firebaihvigh enough temperature

and pressure to dissociate any nuclei. The formation ofemughs only possible once the
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cosmic expansion reduced the average kinetic energy suffigi The formation of the first

elements took place at temperatures of ardlind 0.1 MeV, when the universe was around
1s old. This process involves conditions that cannot be raf#id elsewhere (cf. stellar nu-
cleosynthesis). Within the current observational limaias, the Big Bang prediction for the
present abundance of light elements is confirmed remarkabilge present measurements.

Big Bang nucleosynthesis halted once matter had cooled @moagh, due to the cos-
mic expansion. The electrical neutrality of the matter wesched at a more recent event:
the so called ‘recombination’ process refers to the timenvbach electron was captured
by a nucleus forming the first neutral atoms. Subsequerntly @mperature of around
T ~ 0.1 eV (=~ 10° Kelvin), CMB photons decoupled from ordinary matter and have since
travelled freely. These same photons reach us in the formiofomave radiation. The
surface of emission of these primordial photons is calledl&st-scattering surface. CMB
observations constitute irrefutable proof that the urseevas homogeneous at early epochs
and dominated by radiation whéh> 103 Kelvin.

The current temperature of the CMB radiatidiu(;z = 2.725 Kelvin) is measured with
such precision because its fluctuations are tiny. The firsttational evidence for the CMB
anisotropies came from the COBE satellite [Smoot, 1992nBéret al., 1996]. The results
of this experiment showed that the temperature fluctuatiene a mean amplitudd’/T" ~
10~°. The amplitude of such deviations was predicted by PeebMs$[&970] and Zeldovich
[1972] in terms of the matter density perturbatignp ~ 1075. These inhomogeneities are
related through the Sachs-Wolfe formula [Sachs & Wolfe, 7196 his prescribes that for

inhomogeneities of comoving si2e

or 1
T =~ —5 (CLLSHLS)\>2 5p (14)

where we have defined), = dp/p, and where a subscripfS indicates an evaluation at the
last-scattering surface.

More recent experiments, such as BOOMERANG [Netterfield.e2802], MAXIMA
[Hanany et al., 2000] and WMAP [Hinshaw et al., 2007; Komatsal., 2008], managed
to measure the acoustic oscillations in the radiation péadoe to the small-scale density

variations in the early universe. Measurements of acoostdlations in the CMB demon-
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strated the flatness of the universel 6 precision (i.e.|€2,.| < 1072). They were also used
to rule out cosmic strings as a significant contributor tactire formation and suggested

‘cosmological inflation’ as the theory of structure fornaettiiJaffe et al., 2001].

1.2 Cosmological inflation

1.2.1 Motivation and achievements

The observations mentioned above provided strong arguwnierfavor of the Big Bang
model but also showed the necessity of a larger theoretiaadéwork due to the follow-

ing problems:

1. Horizon problem. In the Big Bang model, the distance light could have travele to
the time of last-scatterindys is of order180 Mpc. This is called the particle horizon
and determines the radius of causally connected regiohgatime. The particle hori-
zon today is much larger, with radidg ~ 6000 Mpc. Therefore, the measurements
of CMB radiation at angular scales larger than one degrdedeaegions that were
causally disconnected at the time of the photon decoupllige temperature at such
scales is observed to be uniform up to one pattin This means that causally disjoint
patches of the universe in the past had the same thermahhistahe context of the

hot Big Bang model there is no plausible explanation for ffgs.

2. Flatness problem The density of matter components in the universe is dilutid
time due to the cosmic expansion. Conversely, if there wasitial curvature com-
ponentk, then this would rapidly dominate the matter contents. Theasily derived

from Eq. (1.3), which can be written in the form

QT —1= = Vlg. (15)

The productu H decreases with time in a radiation or matter dominated usévelf
the universe is initially flat, then it remains flat for subsenqt times, but observations
show that|(2,.| < 102 today, and the Friedmann evolution demands an even smaller

curvature in the past. For example, at nucleosynthesispwieuniverse was around
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1 s old, we require|Q2,| < 107'° to be consistent with the present value. Such a
small value requires an extreme fine-tuning of initial coiloais 2+, for which a causal

explanation would be desirable.

A solution to these problems is provided by the inflationaaygoligm, which we will
study in detail in Chapter 2. The main feature of this theerthat it changes the behaviour
of the comoving cosmological horizon by considering an Ereged expansion of the uni-
verse at early times, i.e., at times prior to nucleosynghdsi terms of the scale factor, this
condition demands

a>0 = %LLLH} < 0. (1.6)
The shrinking of the cosmological horizon represents aerg®’ evolution of spacetime
which avoids the fine-tuning of initial conditions demarglilmomogeneity and flatness. If
we consider an inhomogeneous patch of the universe whetionflstarts, at an initial time
t;, the cosmic accelerated expansion brings all initial inbgemeities out of the comoving
cosmological horizon. If inflation lasts long enough, th&erathe inflationary period we are
left with a much larger region composed of small patcheszaf sf the cosmological horizon
which are out of causal contact but with common physical attaristics. The number of

e-folds of expansion required for the listed problems toddeesl is

N=In (ac(it“;)) > 60. (1.7)

This number is required to guarantee that the comoving sdadlee current size of the uni-
verse exited the horizon at the beginning of inflation [L&l@ Lyth, 2000]. This indicates
that inflation must last longer than 60 e-folds. Arguablwais Guth [1981] who first brought
these ideas together.

The theory of inflation has received important contribusimom particle physics. In par-
ticular, the theory of particle creation from vacuum fludtoas [Hawking, 1982; Starobin-
sky, 1982] gave inflation its strongest argument: the vactluotuations generated during
inflation are redshifted to superhorizon scales by the aaiahe inflationary mechanism.

At the end of inflation, the thermalisation of the inflatonsflvacuum reheats the universe
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and the standard hot Big Bang phase begins. In this transttie vacuum fluctuations of the
inflaton field are transformed into matter density pertudvet with a prescribed amplitude.
From this transition onwards, the modes re-enter the expgr@bmoving horizon. Thus,
initial conditions of cosmological perturbations in thet &g Bang are set by inflation.
The observed mean amplitude of the temperature inhomagesgEmoot, 1992; Netterfield
etal., 2002; Spergel et al., 2007] sets the energy scaleiahwite initial vacuum fluctuations
were generated by tracing back the evolution of fluctuatotescribed above. This simple
explanation of the origin of the temperature fluctuationsstibutes a decisive argument in
favour of the inflationary scenario. It represents the gtaidvantage of inflation over many
other alternative extensions of the standard Big Bang stena

In summary, the requirements for a period of inflation aré:a(inechanism to generate
an accelerated expansion maintained for at least 60 e-ffldzpansion; (2) a way of ac-
counting for the transition to the subsequent FRW stagegadfigon, thereby providing the
suitable initial conditions for the Big Bang scenario; (3)agtum fluctuations of the infla-
tionary field, generated at observable scales such thatdtemndensity fluctuations of size
A meet the relatiofia 4 \)d, ~ 10~° and this product is almost invariant over the observed
scales.

In practice, measurements of CMB anisotropies, combindd mveasurements of back-
ground parameters inferred from supernovae surveys [Petti@., 2006; Riess et al., 2007],

indicate that the root-mean-squakRa\(S) amplitude of temperature fluctuations is

or ~2x 1077, (1.8)
T
RMS

at the pivot scale with comoving si2ez = 150 Mpc customarily used in CMB studies.
Observations also indicate that this value does not vamjifgsgntly over the range of ob-
served scales. In other words the mean amplitude is almalgt-Bwariant for angular scales
larger than one degree. In Chapter 2 we show how this relatég tcurvature perturbatian
and discuss its basic properties. In particular, we willvsliwat, in the cases which concern

us,( is constant for scales larger than the particle horizon.



1.3: Non-Gaussianity 19

1.2.2 An embarrassment of richness

The required amount of inflation and the corresponding aom#i of the curvature pertur-
bations determine the kind of matter and energy scale nagess satisfy the conditions
for accelerated expansion. These prerequisites have beeloyrseveral models of inflation
which may or may not be motivated by more fundamental theasfephysics. One of the
main problems faced by the inflationary paradigm is thatdimess. There are many mod-
els that meet the dynamical requirements. Most of them ievake or more scalar fields
{#;} with dynamics governed by a potentid(¢;). There are a plethora of models, each of
which corresponds to particular realisation of this pagntvhich satisfy the observational
constraints up to the level of the observed inhomogeneiti@ésnsequently, many of the
models cannot be distinguished at the level of linear pleatiwon theory. This demands the
formulation and experimental determination of new paransethat provide complementary
information about the early universe. An important constran the inflationary models can
be obtained by considering the statistical deviations feof@aussian field of fluctuations.
This idea has opened a new window in the study of the earlyeus@y namely the nonlinear

extension of perturbation theory and its non-Gaussiarsstat.

1.3 Non-Gaussianity

By non-Gaussianity in cosmology we refer to the small dewnet of observed fluctuations
from the random field of linear, Gaussian, curvature pedtiobs(; (¢,x). ((¢,x) is the
curvature perturbation in the comoving gauge, that is, aasomed by an observer which
sees no net-momentum flux. The mathematical expressiaj{fat) in terms of the matter
density perturbation is provided in Chapter 2.

Among the parameters of nonlinearity, the nonlinear coupliy;, is the most useful
observable for describing non-Gaussianity. Its definisomes from the second order ex-

pansion of curvature perturbations in real space, whichbeanritten as

C(x) =G+ %@, (1.9)

where(; refers to the Gaussian perturbation with variabiér) = (gys(r) and(; is the
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second order perturbation parametrised by the nonlinganpeterfy, in the following way

Ca(x) = —ngL(Cl(X)2 — Crus(2)?). (1.10)

Note that the perturbative expansion(amplies also the rough definition

5 G((x)
6 C7(x)’

IaL = (1.11)

which gives an intuitive notion of this parameter. Histalig, non-Gaussianity as a test of
the accuracy of perturbation theory was first suggested lgnAst al. [1987]. The definition
of fx1, used here was first introduced by Salopek & Bond [1990] in seofrthe Newtonian
or Bardeen potentiabp (defined in Chapter 2). Their initial definition has been presd
by convention [Gangui et al., 1994; Verde et al., 2000; Kau& Spergel, 2001], which is
why the transformation to the curvature perturbatemvolves the numerical factor5/6.
In the context of perturbation theory, the study of dynarrecguations at second order yields
important information independent of the parameters admperturbations. Thus, in the
nonlinear regime, we can discriminate different modelsy@iation which are degenerate at
linear order. This fact has motivated the search for nons&anuity in the CMB and large-
scale structure.

Statistically, the lowest order effect of including a noatSsian contribution is a non-
vanishing correlator of three copies of the curvature figldThe three-point function in

Fourier space is given by the bispectrdmdefined by
(C(k1)C(ko)C (Ks)) = (27)° B (K, ko, k)6 (ki + ks + Ks), (1.12)

wheres® is the three-dimensional Dirac delta function.

The bispectrum is directly related to the paramétgrand for each mode = |k|. More-
over, being a function of three momenta, theependence of the bispectrum also provides
valuable information which could help us to understand tigsfcs of the early universe.

The nonlinear parameters have been investigated throwghrtalysis of higher order

correlations in the CMB anisotropies observed mostly by®WiMAP satellite [Spergel et al.,
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2007]. After five years of collecting data, WMAP observasagive the limits—151 <

il 953 [Komatsu et al., 2008] for an equilateral triangulation b& tmomenta and
—4 < figeal < 80 [Smith et al., 2009] for a local triangulation. The triangtibn of the bis-
pectrum is a characteristic which arises due to the follgwirhe momentum conservation in
the three point correlation is guaranteed by the delta fanah Eq. (1.12), which demands
that the sum of the three vectors is zero. In consequencdtbe momenta represent the
sides of a triangle irk-space. Two main triangulations can be distinguished: thela-
eral triangulation and the isosceles or local triangufgtwhich are characteristic shapes of
different models of inflation (see e.g. Babich et al. [200n experimental detection of
fxr, would greatly narrow the range of cosmological models wimetet the observational
bounds. In the near future, space telescopes, and in darttbe PLANCK satellite, are ex-
pected to tighten these bounds considerably. Specifiaaily,signal with| fx1.| = 5 should
be observed by PLANCK [Komatsu & Spergel, 2001; Liguori ef 2006]. This raises the
exciting possibility of looking for particular signatureginflationary models.

Another attractive observational prospect for non-Gaumssi is to look at the implica-
tions of considering primordial non-Gaussian fluctuationshe study of the statistics of
galaxies and other large-scale structures (LSS) [Verdé,e2@00; Matarrese et al., 2000;
LoVerde et al., 2008]. Such observations probe inhomogjeseit scales smaller than those
observed in the CMB.

The effects of non-Gaussianity in the LSS can be classifierltimo categories, which
provide distinct observational methods for detecting @Gaussianity. The first is the bis-
pectrum of galaxies, potentially determined by computimg three-point correlation func-
tion from redshift catalogues [Verde et al., 2001; Scoccimat al., 2004]. The second is
the non-Gaussian correlations in the probability distidoufunction (PDF) which leads to
modifications in the number of galaxies and other structwiés respect to the Gaussian
case [Verde et al., 2000; Matarrese et al., 2000].

Both methods involve delicate issues, crucial for the atriaterpretation of observa-
tions. Most important is the fact that the inhomogeneitlest tollapse to form galaxies
evolve in a nonlinear fashion at late times. This is becahsetimordial fluctuations en-

ter the horizon much before they form virialised structur€onsequently, the nonlinear
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evolution of fluctuations may blur the primordial non-Gaasgy of the initial statistics.

Another important problem is that there is no single way ofstoucting a non-Gaussian
PDF from theoretical models, i.e., several non-GaussiaRsP&an be constructed with a
common variance and skewness. This well known problem has égpressed pithily by
Heavens [2006]: “We know what a dog is, but, what is a no-dog®Alog can be anything”.
The effects on, say, the integrated number of galaxies maggshsubstantially with every
realisation of the PDF. This complicates the interpretatibnon-Gaussian signatures.

In Chapter 3, a formalism is presented to attack this probl&#e construct the PDF
of the curvature perturbations with a direct input from itgher-order correlations. The
formalism is then applied to compute the modification whictoa-Gaussian distribution of

fluctuations brings to the abundance of primordial blaclebkol

1.4 Primordial black holes

1.4.1 Standard picture

The idea that large amplitude matter overdensities in theeuse could have collapsed
through self-gravity to form primordial black holes (PBH&s first put forward by Zel’'Dovich
& Novikov [1966] and then independently by Hawking [197 1HaDarr & Hawking [1974]
more than three decades ago. They suggested that at eaglylange-amplitude overdensi-
ties would overcome internal pressure forces and collapg®m black holes. The standard
picture of PBH formation from initial inhomogeneities pcabes that an overdense region
with sizer; will overcome pressure and collapse to form a black holsi$iize is bigger than

the associated Jeans length
ry = 47Tﬂd]_[, (113)
w

where the particle horizody; is of order of the Hubble radiug; = 1/H. Here we assume
an equation of state= wp, wherew is constant. For the case of radiation-domination, for

examplew = 1/3.
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The size of the initial inhomogeneity must also be smallanttihe separate universe scale

ry = %f(w), (1.14)

where the functiory(w) has been derived by Harada & Carr [2005], and is of order unity
Thus,r; < r; < ry, both limits being of order the Hubble radius. Consequethigymass of
a PBH is close to the Hubble horizon mass. This gives a singphadla for the mass of a

PBH forming at time during radiation domination [Carr, 1975]:

4
MPBH ~ MH = gﬂ'?“?{p = ]_015 ( ) g. (115)

1023 s

The PBH mass spectrum depends mainly on two characterstie early universe: the
equation of statev, which determines how large the amplitude of initial inhaeneities
should be to halt the background expansion and recollapgseha nature of the initial den-
sity fluctuations, which determines how likely such ampulés are. Carr [1975] determined
the threshold amplitudé,;, = (J,): required for the density perturbation to collapse to a
PBH to bed;;, ~ w. In this case, one needs perturbations to the FRW metric nvéhn
amplitude of order unity to form a significant number of PBHs.

The special characteristic of PBHSs is that they can form at garly epochs and have
very small masses. The smallest PBHs would have formed agritieof the inflationary
expansion [Carr & Lidsey, 1993], even from field fluctuatidhat never exited the horizon
[Lyth et al., 2006; Zaballa et al., 2007]. The mass of the zmriat the end of inflation is
[Zaballa et al., 2007]

(1.16)

107GeV) >
My ~10"g < ) ,

Tru

where the reheating temperatufgy depends sensitively on the model of inflation con-
sidered. In the canonical slow-roll inflationary model ttesnperature can be well above
10'° GeV [Kolb & Turner, 1990]. Taking on account the productidrdark matter candi-
date patrticles in supersymetric models, this temperatu&lde dropped by several orders

of magnitude, however, leptogenesis does not alow the tielgescale to be smaller than
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10° GeV [Buchmuller et al., 2005]. This in turn means that PBHslddave been produced
with masses much smaller than!! ¢. On the other hand, PBHs that formedlat have
masses of ordel)° M, which is already in the range of masses of black holes at thigece
of galaxies.

The small masses of PBHs prompted the investigation of theantum properties. The
well known result of Hawking [1974] shows that black holegisge with a temperature

M -1
T ~10"7 (—) Kelvin (1.17)
Me

and evaporate entirely on a time scale

M 3
tovan =~ 1094 [ — , 1.18
: (M(D) Y ( )

whereM., is the solar mass. With the age of the universe estimatédas- 0.015 x 10'%y
[Spergel et al., 2007], we can predict that PBHs with méss, = 5 x 10** g are evaporating
now. PBHSs are also the only type of black holes for which tiectbf Hawking evaporation
could be observed. Indeed, the black holes evaporating nmwdabe producing photons
with energyl00 MeV [Page & Hawking, 1976]. The observeeday background radiation at
this energy implies that the density parameter of such PBtist satisfy [Page & Hawking,
1976]

Qppu(M ~ 10 g) < 1078, (1.19)

This bound remains the tightest constraint to the abundaie8Hs. Additional cosmolog-
ical bounds to the mass fraction of PBHs are reviewed in Gnapt

The mass fraction of the universe turning into PBHs of massat the time of their
formation is denoted bypp (M ). This is equivalent to the probability of formation of PBHs
of massM. In a rough calculationgppy (M) is given by the Press-Schechter formalism

[Press & Schechter, 1974; Carr, 1975] as the integral of (B Bver all amplitudes,
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above the threshold,,:

Bonm(M) = 2 /5 VB, ds,, (1.20)

where the factor two has been added to account for the halim@lof the universe that is
necessarily underdense. With this factor the Press-Stdrefcinmula gives a good fit to the
results of N-body simulations for the case of galactic halg®ebles, 1980]. For the case
of PBHs, an upper limit of integration is formally requiredhis is the amplitude of an
inhomogeneity for which the total mass would form a sepatiised universe. However,
the contribution of higher values to the probability is abhioegligible and we do not include
an upper limit here. For the case of a Gaussian PDF with wegigp()/) this integral is

approximated by [Carr, 1975]

2
Brpu(M) & g exp <—222t(}}w)) . (1.212)

This equation demonstrates the sensitive dependence gpfdbeability of PBH formation
with §,. The above integral is expected to be small due to the expahdependence on
the threshold valué,;,,. Sppn IS also known to be small because it is related to the current

density parameterpgy of PBHs formed at timeé and with mass\/ by

—1/2 -1/2
Qg 6 t 18 M
Q = Or [ — ) ~ 10 — ~ 10 —
PBH BPBH R (a(t)) BPBH (1 S) BPBH (1015g) ’

(1.22)

whereQr = 8 x 10~°. The factor ! arises because PBHs form mostly during the radiation-
dominated era but PBH density scalesaas, while radiation scales as *. From this
relation we see that any limit dipgy places a direct constraint gipgy. For example, from
the bound in Eq. (1.19), we infer thatgy (M = 10'°g) can only have a small value of order

10726,

1.4.2 Shortcomings

The simple picture of PBH formation described above hasraéshortcomings
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1. In the radiation era the inhomogeneities forming PBHstrhase a large amplitude
when they enter the horizon and they must be bigger than thedmofor a consid-
erable period of their evolution. As we will show in Chaptertlze inhomogeneities
at superhorizon scales are best described in terms of cuevperturbations because
they are constant in this regime. The curvature perturbdies already been used
in the more recent numerical simulations of PBH formatiohilp&ta & Sasaki, 1999;
Niemeyer & Jedamzik, 1999; Polnarev & Musco, 2007]. Herdnaeveral other re-
cent works on the subject [Yokoyama, 1999; Green et al., 20@Balla et al., 2007;
Josan et al., 2009], we compute the probability of formatbRBHs from the statis-
tics of the curvature perturbations. This has the advarggelating the formation of
PBHs directly to the initial perturbation spectrum. Additally, it avoids the gauge

anomaly associated to the matter density fluctuation.

2. In the calculation of the probability of PBH formation,eoould argue that the Press-
Schechter formula in Eqg. (1.20) is only an empirical appmadion. Alternative ap-
proaches have therefore considered the theory of peakstj@teal., 2004]. However,
this does not render significant corrections to the Prebg@tter result. Moreover, the
Press-Schechter formula can be used to calculate the pliibalof large-scale struc-
ture formation from non-Gaussian PDFs [Matarrese et aDQROIndeed, the latest
numerical simulations confirm that it is a good approximagwgen in this case [Grossi
et al., 2009]. This justifies our choice of the Press-Schedbtmalism to explore new

aspects of the probability of PBH formation.

3. A severe oversimplification of the usual calculation @ girobability of PBH forma-
tion is the assumption of Gaussianity. The exponential yletéhe Gaussian PDF is
preserved after its integration in the Press-Schechtendta (1.21). The fact that the
mass fraction involves an integration over the tail of thenmal distribution, where the
probability density is small, leads us to consider that ghslvariation on the profile
of the PDF might modify this picture significantly. IndeedmGaussian probability
distributions have been considered in studies of the pibtyabf PBH formation by
Bullock & Primack [1997] and Ivanov [1998]. The discrepamayheir results and the

large departures from the Gaussian case make this probleti rggisiting. One main
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objective of this thesis is to derive the modifications that+Gaussian PDFs bring to
the probability of PBH formation in the most general case® @iplore for the first
time the modifications that a non-Gaussian PDF may bring®bbunds on the ampli-
tude of fluctuations and the higher order statistics paranygt, on the cosmological

scales relevant to PBH formation.

4. The last important problem in the calculation@gy is the determination of the pre-
cise value of the threshold amplitudg or ¢, for the density or the curvature inho-
mogeneity. This approximation gkgy prompted several studies of PBH formation to
determine the precise value of the threshold amplitudelyEamerical simulations
of gravitational collapse, however, already showed thiat\talue depends sensitively
on the shape and profile of the initial configuratiix) [Nadezhin et al., 1978]. This
dependence indicates that the lower limit of the integra2@Lis not uniquely pre-
scribed for all configurations collapsing to form PBHs. Thelpem then is how to
differentiate profiles of initial inhomogeneities in thd@adation of the probability of
PBH formation. This is another problem we address in thisitheWe calculate the
probability of PBH formation by taking into account the raldprofiles of initial cur-
vature inhomogeneities. This represents a first attempictorporate profiles into the
calculation ofgpgy and allow for a more precise estimation of the probabilityP&H

formation.

1.4.3 Alternative mechanisms of PBH formation

The formation of PBHs is not limited to the collapse of oversides. PBHs may also form
at the phase transitions expected in the early universeudletre briefly review other known

mechanisms of PBH formation.

e PBHs may form at early phase transitions where the equatistate is soft for a small
period of time. In such transitions, the effective pressutae universe is reduced due
to the the formation of non-relativistic particles. Hydyo@mical simulations show
that at such a phase transition the valu&gfis reduced below the value pertaining

to the radiation era. This mechanism enhances the protyatilPBH formation at a
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mass scale of the order of the horizon mass at that time [KiM&Polnarev, 1980;

Jedamzik, 1997].

e Loops of cosmic strings can collapse to form PBHs. Cosmingdrare topological
defects formed at the phase transitions in the very earlyeuse. Closed loops can
be formed from string self-intersection. The scale of a el be larger than the
Schwarzschild radius by a factf)~!, wherey is the string mass per unit length, a
free parameter in the theory. In the cosmic string scentrése loops are responsible
for the formation of cosmological structureg ) is of order10~°. In this scenario,
there is always a small probability that particular confagions, in which all the loop
dimensions lie within its Schwarzschild radius, can cakafo form black holes. This
mechanism has been discussed by many authors (see e.g.ndgd®¥89]; Polnarev &
Zembowicz [1991]; Garriga & Sakellariadou [1993]). Howew&WMAP and observa-
tions of galaxy distributions show that cosmic strings camast contribute td0% of
the temperature anisotropy in the CMB [Wyman et al., 2008k fass per unit length
Is less constrained by the observational limits on primadrdiack holes [Caldwell &
Casper, 1996]. Because thgparameter is scale-invariant and its most stringent limit
comes from CMB observations, we can say that the formatidPBifs from cosmic
string loops is subdominant with respect to the standatd@of collapse of overden-

sities.

e One can also consider closed domain walls which form bladkshoDomain walls
are hypothetical topological defects of higher order. Inhage transition of second
order, such as might be associated with inflation, suffiydatge domain walls may
be produced [Crawford & Schramm, 1982]. This leads to then&dion of PBHSs in the

lower end of the range of masses [Rubin et al., 2001].

e Recently, a mechanism to form PBHSs as the result of warpisgheonecklaces has
been suggested. These topological defects arise in thegga@t symmetry breaking

in the framework of quantum strings [Matsuda, 2006].

In all these mechanisms the PBHs have mass of order the hanass at phase transitions

in the early universe. They are also expected to produce Ridthsa Gaussian distribu-
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tion. Here we are interested mostly in PBHs with a non-Gaunsdistribution in order to
produce constraints on models of inflation, so we do not sthdge alternative formation

mechanisms.

1.5 Thesis outline

Chapter 2 presents a study of non-Gaussianity from inflatypacalar perturbations. It first
introduces the relevant definitions and the main tools uséuk study of inflationary pertur-
bations. It then focuses on the derivation of non-Gaussamlation functions. Specifically,
the three-point correlation is studied in models where adgiliaty scalar field during infla-
tion is responsible for the generation of non-adiabatictflattons. The cases in which the
non-adiabatic fluctuations may generate large valuggofs considered in detail.

The method used to derive the non-Gaussian correlatorsresgihne solution of the
Klein-Gordon equation beyond linear order. This equat®sdlved considering a pertur-
bative expansion of the nonlinear terms without taking aroaat the metric back-reaction.
For the cases in which analytic solutions are possible, gnation of the three-point cor-
relation is presented. Finally, the observational limitsfq;, are used to constrain models of
inflation which include a curvaton field, a special case ofsacurvature field.

Chapter 3 discusses the decomposition of the curvaturarpation’R into harmonics.
This is a technical step, which is necessary in order to veiiten a path integral for the
PDFP(R). We present the calculation for the Gaussian case firstgdierdo clearly explain
our method with a minimum of technical details. This is felkd by the equivalent calcula-
tion including non-Gaussian corrections which follow framon-zero three-point function.
Finally we calculate the probabilit§f[R ()], which will be used to derive a non-Gaussian
probability of PBH formation.

In Chapter 4 we compute the mass fractieyyy resulting from a non-Gaussian PDF
of primordial curvature fluctuationB. We restrict ourselves to the case in which the non-
Gaussian PDF corresponds to a constant valugof It is first shown how to reconcile
the discrepancy between two previous studies of non-Gaw§dH formation [Bullock &
Primack, 1997; Ivanov, 1998]. We then calculate the modibos to the observational

bounds ta3pgy When a large value ofyy, is included.
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Chapter 5 explores the probability of finding non-triviabspl profiles for the perturba-
tions that form PBHs. The numerical simulations show thatusual assumption of homo-
geneous spherically symmetric perturbations collapsar®BHs is not appropriate. Chapter
5 provides a probabilistic analysis of the radial profilesplherical cosmological inhomo-
geneities that collapse to form PBHs. Based on the methaatbtosconstruct non-Gaussian
PDFs, we derive the probability distribution for the cehtmanplitude of R and for the sec-
ond radial derivative dR /dr? at the centre of the spherically symmetric inhomogeneiggus
to describe the radial profiles explored in studies of gediihal collapse. We then consider
the joint probability of both parameters to compute the@oion toSpgy. The results show
how much the probability of PBH formation can be reduced ifdeenot include all possible
configurations forming PBHSs.

Chapter 6 is the summary and conclusion of this thesis. Vedascribe future research
which may follow. The key achievement of this thesis is to bam for the first time the
study of two crucial probes of the early universe. The effaxtnonlinear non-Gaussian

inhomogeneities and primordial black hole formation.



Chapter 2
Non-Gaussian curvature perturbations

2.1 Outline

Observations of cosmological structure and CMB parameterest interpreted in the con-
text of cosmological perturbation theory. This is a usedall to connect observations with
models of inflation derived or motivated by high energy pbgsheories for which there is
no other available test. Surprisingly enough, the simpidkitionary model, consisting of
a single scalar field slowly rolling down a quadratic potehtmotivated mainly by its sim-
plicity, has passed all observational tests. The futuresfmlogy relies on the extension of
experimental tests and predictions for new cosmologicedmpaters, mostly beyond linear
order. This is crucial if we want to achieve a better undeditag of the physics dominating
the early universe.

This is enough motivation to study the nonlinear regime sfeological inhomogeneities.
Among the observable effects, the non-Gaussianity of geations has been widely studied
in inflationary models. Non-Gaussianity is an importantestational test as it might elimi-
nate models of inflation even for a null detection. Our godhis chapter is to compute the
nonlinear correlations of a general isocurvature field Wwhscvalid for all models.

We first introduce the theory of perturbations and then famushe situation in which
the curvature perturbation is generated by the quantunuéitions of an isocurvature scalar
field. The isocurvature or entropy perturbations are ti@mnséd into curvature inhomo-
geneities at the end of a period of inflation or shortly aftenle will show that only the

presence of entropy fluctuations can affect the evolutiocuo¥ature fluctuations on super-

31
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horizon scales.

At linear order, we will show under which conditions the obveel power spectrum of
curvature fluctuations can be attributed to the action ofgbeurvature field. Subsequently
we present a method of deriving such correlations from thatisas to the Klein-Gordon
equation of the isocurvature field. For specific cases weldesta derive an explicit expres-
sion for the nonlinear parametg¢;,. The prospects of observationally testing the predictions
for the models of structure formation presented here acelalefly discussed.

The introductory sections of this chapter present a revieth® elements of the stan-
dard inflationary scenario, including the linear pertuidratheory. We present the relevant
definitions and conventions to be used, with particulamaitbe to those results of linear
perturbation theory which will be used in this and subsetobapters. From Section 2.5
onwards, we focus on the description of the non-Gaussiaeletors of an auxiliary isocur-
vature fieldy. The expressions for the curvature perturbation threatpairrelators and the

fnr, values are presented in the last section of this chapter.

2.2 Linear perturbations

In cosmological perturbation theory, the universe is dbsdrto a lowest order by a homo-
geneous, isotropic background spacetime. The large-sdadenogeneities and anisotropies
observed in the real universe result from the growth of dgrikictuations, the amplitudes
of which are small in the early stages of the universe. (SeblBs [1980] for a textbook
description of the development of perturbation theory.)

In the framework of perturbation theory, the homogeneou&d@und spacetime is ac-
counted for by an ansatz metric. The most useful ansatz sncdse is the Friedmann-

Robertson-Walker (FRW) metric:

G = a*(n) : (2.1)
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where the conformal timg is given in differential form by
dn=— (2.2)

a is the scale factor ang; is the metric of the three-dimensional space. In our nataiiceek

indices have value®, 1, 2, 3, while Latin ones have valuds 2, 3. We assume throughout a
flat space, relying on the observational lif¥.| < 10~2 [Komatsu et al., 2008]. The FRW
metric describes the isotropic space-time expanding atfaramrate. The expansion rate is

conventionally characterised by the Hubble parameter

dlna ldlnae 1
H = = - = - 2.3
dt a dn aH’ (2:3)

whereH is defined with respect to coordinate tihandH with respect to conformal time

n.

2.2.1 Metric perturbations

In perturbation theory, observed anisotropies and inh@nejies are considered as depar-

tures from the metric (2.1). For a perturbed metric, the imé&tnsor can be split as

G = gl(j,?/) + 5g,uua (24)

whereg,(f) is the homogeneous FRW background apgl, encodes the perturbed quantities.
First order scalar perturbations of the metric are expressterms of the functiong, B, ¢

and E, which are defined by

Sgg = — 2a°p(n, x),
395 =a® B(n,x).;,

59518‘) =2a*(¥(n, %) vij + E45(n,%)),

where the indexs) denotes scalar modes. The vector constructed from thersBaia

necessarily curl-free, i.€3;;; = 0. The pure vector contributions to the metric perturbations
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are
59(()? = — GIQSZ', 5gl(]v) = 2&2F(i7j),

where we demandj; ; # 0. The symmetric derivative of the functiofj is the vector
contribution tog,;. To distinguish scalar and vector contributions, the veptot is forced

to be divergence-free, i.ey’S; ; = 0. (The decomposition of a vector field into curl- and
divergence-free parts is formally known as Helmholtz'sotleen.) The tensor contribution

to the perturbation quantities Jng;) = a*h;;. This is constructed as a transverse, traceless
tensor, which guarantees that it cannot be constructed$oatar or vector perturbations.

The perturbation functiong, B, » andE, represent four degrees of freedom. The diver-
genceless vectorS; and F; each have two degrees of freedom and the transverse trsiceles
tensorh,; has two more. We therefore have degrees of freedom in total. The contravari-
ant metric tensor of the perturbed metric is constructedirso order, from the condition,

9uag"? = 0. Finally, the line element of the metric is

ds* = a*(n){ — (1 + 2¢)dn’ + 2(B; — S;)dn dz’

+[(1 + 2¢)yij + 2B + 2F; ; + hyj] do* da’ }. (2.5)

In the present work we will study the nonlinear perturbagias the quantum fluctuations
of scalar matter fields. We will establish the corresponddretween scalar matter fluctua-
tions and scalar perturbations in the metric at first andrsgtooder in perturbation hierarchy.
We will then derive statistical parameters of nonlinearity

In contrast to the scalar metric fluctuations, the vector @mgor perturbations in the
metric are not sourced by scalar matter perturbations atofider. In the standard picture,
they are only related at second or higher order in pertusbatieory (see e.g. Lu et al.
[2008]), therefore their contribution to the statisticargmeters of nonlinearity are sub-

dominant and henceforth we neglect their contributiontiéogerturbations in the metric.
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2.2.2 Gauge freedom

In general relativity, the mathematical relations betwpbwpsical quantities are manifestly
independent of the coordinate choice. However, there iomar@ant way of splitting back-
ground and perturbed variables. There is always an unpddysdordinate or gauge depen-
dence associated with perturbed spacetimes. This issweigegambiguity was disregarded
in the initial works of perturbation theory [Lifshitz, 1946&ifshitz & Khalatnikov, 1963].
This could lead to erroneous results which were eventuaiglved in a systematic way by
Bardeen [1980]. The importance of determining the gaugegsmthat equations and per-
turbations undergo leads us to look at this problem in detailthe following we adopt a
‘passive’ approach to gauge transformations (For a reemew of these results, see Malik

& Wands [2008]). Let us consider the general coordinatesfamation,
n=n+&,  F=a++E (2.6)

where¢? = £%(n, ') is a scalar that determines the choice of consfamgpersurfaces. The
scalar¢ and the divergence-free vectgrare also functions of the original coordinates within
these hypersurfaces.

The principle of relativity states that any physically megful measurement must be
invariant for all observers, in particular, for observergwdifferent coordinate systems. One
of these invariants is the line elemeht’, where coordinates enter via differentials. Such
differentials and the scale factors in both coordinateesystare related in the following

way:

dn = dij — £ di) — £ dz",

a(n) =a(n) — "' (7).

Where & is the derivative with respect to conformal time. To firsterth the metric per-

turbations and coordinate transformations, the pertulibecelement, Eq. (2.5) is written in
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the ‘shifted’ coordinate system as

ds* = a*(N){ — (1 +2(p = HE® = &€”)) dif* + 2[(B + & = &) — S + &] diy d’

F[ (L4200 = HE)) vy + 2(E — &) ;; + 2Fi; — 26 + hy|di?dF'},  (2.8)

where, as beforé{ = a’/a is the Hubble parameter in terms of conformal time. This roetr

can also be written using the initial definitions in termsha# tshifted’ coordinates:

ds® = a*(7){ — (1 + 2¢)di* + 2(B,; — S;)dij d’ (2.9)

+[(1 + 290)Fy; + 2B + 25, + hyy) di' di ). (2.10)

This shows that the coordinate transformation Eq. (2. 7)@es a transformation of the met-

ric perturbations. Comparing Egs. (2.5) and (2.10), thexgkas given to first order by

b= —HE, (2.11)
¢ =p—HE -, (2.12)
B=B+¢ —¢, (2.13)
F-F—¢ (2.14)

It must be stressed that the gauge transformations arefeict,ed change of the correspon-
dence between the perturbed spacetime and the unpertuabkgrbund spacetime.

A first exercise concerning gauge transformations is to fira$é quantities which re-
main invariant after a gauge transformation. To first ordguerturbation variables, gauge-
invariant quantities are linear combinations of the gadgpendent quantities presented
above. For scalar perturbations Bardeen [1980] shows thigttero independent gauge-

invariant quantities can be configured purely from the rogierturbations:

Oy =p+MH(B - E)+(B-EY, (2.15)

Up=—1—H(B-E). (2.16)

Any other gauge invariants in the metric are linear combamst of these two quantities

because the gauge freedom allows only two arbitrary soatetionss® and¢ [Malik, 2001].
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The Bardeen invariants will be useful in relating curvatpeeturbations in different gauges,

as we will show below.

2.2.3 Perturbations of the matter sector

Before displaying conservation equations for the cuneaparturbations, we will discuss the
perturbations of the matter sector. For a perfect fluid, #at fluid with no heat conduction

or viscosity, the stress-energy tensor is

Th, = (p + p)uuy, + poy (2.17)

where the 4-velocity is defined with respect to proper tinas

da*
w = S (2.18)
dr
and is subject to the normalisatiafiu,, = —1. Anisotropic stresses would be encoded in a

stress tensail,,,,, but are absent for perfect fluids and for scalar fields mitlint@upled to
gravity. These are precisely the kinds of matter consideegd, so we ignore the tenddy,,
in the subsequent analyses.

Using the normalisation”w, = —1, the perturbed velocity has components

1 . 1 . )
0 = 2(1 = L (gt g 219
w=taog) w=lete, 219)
u=—a(l+¢), u;=-—alv;+v;+ B;—3S;), (2.20)

where the spatial parts are written in terms of the gradiéatsralarv; and a (solenoidal)

vectorv;. The perturbed energy-momentum tensor is:

T3 = —(po +p) (2.21)
TP = (po + po) (B, + vitvi—S;), To= —(po+po)(v'+ v'), (2.22)
T, = (po + 0)";, (2.23)

wherep, and py represent the uniform pressure and matter density. In gepar scalar
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stress-energy components can be writtefi@sz’) = fo(n) + § f(n, %), with the subscript
0 denoting the background homogeneous part. As in the casetatrperturbations, coordi-
nate transformations will affect the matter perturbatioftss means that the matter density,
velocity and pressure perturbations are gauge dependederlthe transformation Eq. (2.6),

perturbed scalar functions of the form are thus transforased
of =8f — 1€ (2.24)

The vector perturbations are derived either from a potemtilaich will transform with the
shift ¢/, or from a pure divergence-free vector, whose transfoonatiepends o?. In

particular, the velocity potential transforms as:

v=v+E&, (2.25)
and the vector function’ is transformed as

7=t 4 . (2.26)

2.2.4 Physical quantities and scales

Before addressing the characteristics and governing eqsabf the perturbed spacetime,
let us define the physical scales and the quantities thatrdiete of the size and age of the
universe.

The time-like 4-vector field

N, = —a(l+ ¢)d), (2.27)

defines the direction perpendicular to the hypersurfaceopos$tant time. In consequence,
this vector field defines a coordinate system. This vectonigwy (VYN, = —1) and the
contravariant vectoN” = ¢"*N,, has components

1 1, _
N°:5(1—<p), NZ:E(SZ—Bf). (2.28)
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The expansion rate of the spatial hypersurfaces with réspelce proper time of observers

with 4-velocity N* is¢ = N* . Considering only scalar perturbations, this is given by

/

1,1
6=32(1—)+3-/ —~V>(B—E), (2.29)
a a a

where the operatdv denotes the usual three-dimensional gradient.
By looking at the relation between proper and coordinateetidr = (1 + ¢) dt, we

extract the expansion with respect to coordinate time fioeraioove expression by writing
Oy = (14 ¢)0 = 3H + 3¢ + Vo), (2.30)

where the Hubble parametet, = a/a is the background uniform expansion rate with re-
spect to the coordinate time. The shear scalar in coordiimateiso ) = (E — BJa).

For the sake of completeness, we include here the definifi@ome useful scales. A
comoving observer is one moving with the expansion of thearse, i.e., one who measures
zero net momentum density. The distance of a comoving pmnt bur location (taken to
be at the origin of coordinates), is given bi¢) = a(¢)z, wherex is the comoving distance.

The Hubble radius; = H~! provides a good estimate for the distance light has travelle

since the Big Bang. Formally, the integral

tods
— - 2.3
77 /0 a(s)’ (23D)

defines the comoving distance travelled by a free photoresire 0 and until timet. This

is important because no information could have travelleth@r thann. This define the
‘comoving particle horizon'. In the above integratan be taken also as the conformal time.
In a matter dominated universex «'/2, while in radiation domination o a. In a de Sitter
inflationary universe

ds da H-!
= / a(s) ~ ) Ha2 a(t) (2.32)

This shows that in an inflationary phagse— —oo as the universe approaches the initial

singularitya = 0, and increases monotonically towarfdsT his leads us to consider the mag-
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nitude|n| when we use the conformal time in our calculations for inflatiThe maximum
distance light travels from time= 0 to us is simply the comoving horizon times the scale

factor,

At = 0(tnon) /0 % (2.33)

This is called the particle horizon, i.e., the radius of tegion which is in causal contact
with us. This equation can be applied to find the horizon mdiutimes different from,, .
Considering the current dark energy domination and a cotld detter component (with
density paramete,,), the horizon size does not coincide exactly with the Hulsaale.

However, an approximate solution to the integral Eq. (2s3®ws that,

1+0.0841n9,,
it (o) = 2High, — =020 o 51 (2.34)
Nom

where the last expression assurfies= 0.25 [Hu et al., 1998].

2.2.5 Particular gauges

Let us now focus on the expressions for the curvature pextionio on three useful choices
of time slicing and threading. These are the uniform cumeagauge, the uniform density
gauge and the comoving gauge.

For the first case the spatial hypersurfaces present anturipedl 3-metric, which means
¢ = E = 0, in other words, curvature perturbations of the three-imetre set to zero.
We distinguish the quantities written in this gauge with Bssuiptx indicating a constant

curvature. So for a general coordinate system we requirttlogving transformations:

0 _ Y

k=const ﬁ )

¢ =F. (2.35)

In this case, the scalar perturbation becomes

)Y

of, = 5f—f0ﬁ. (2.36)

In particular, for scalar fields, this is the gauge-invari@asaki-Mukhanov variable [Sasaki,
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1986; Mukhanov, 1988], explicitly,
5 = 56 — B (2.37)
H
In the uniform density gauge, the requiremépt: 0 for constant-time hypersurfaces
implies

g&::éﬁ. (2.38)

/

The gauge-invariant curvature perturbation on these Isypfices is denoted hiyand de-

fined as
- 5p
<zw@=w—H;. (2.39)

In this case, there is another degree of freedom and one clriftier 3, E or & to be zero.
The gauge invariance is made explicit when the curvatureigzEtion is written in terms of
the Bardeen variables. We will return to this point once weehdefined the curvature in the
comoving gauge.

The comoving gauge is subject to the condition that the apatiordinates comove with
the fluid, that is, for a constant-time slice the 3-velocityhe fluid vanishesy * = 0. The
threading is chosen so that the constahipersurfaces are orthogonal to the 4-veloatity
which demands+ B = 0. Animmediate consequence of this choice of gauge is thabtak
3-momentum vanishes on constant-time hypersurfaces.hiorgason several authors call
this gauge the zero-momentum gauge. Using Eqgs. (2.25) ah8)(2he chosen conditions

imply that

€ = —(v+B), bn= —/ vy + &), (2.40)

with é(:ci) the residual coordinate gauge freedom. This quantity ispetified at this stage
because it is not required for the determination of the scplantities like curvature, expan-

sion and shear. For arbitrary coordinates, the scalarqations in the comoving orthogonal
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gauge are given by
1 , - . .
¢m=¢+5W+BmL Um =10+ H(v+ B), Ef=E+/vm—§ (2.41)

The scalarg,, andt),, defined in this way are gauge-invariant. The density peatizh in

the comoving gauge is also given in gauge-invariant form by
8pm = 0p+p (v+ B). (2.42)

Some authors use the gauge-invariant density perturbiattbe comoving gauge by defining
the combinatiom\ = (5~pm ZA/po [Bardeen, 1980; Kodama & Sasaki, 1984].
The curvature perturbatianin the comoving gauge was first used by Lukash [1980] and

first denoted a® by Liddle & Lyth [1993]. It is mathematically defined as

R =m =1 +H+B). (2.43)

In the next section we will find that, through the Einstein &ipns and gauge-invariant
guantitiesV z and ®p, defined in Eqgs. (2.16) and (2.15), one can establish an &lguice

at large scales between the curvature perturbation torlioeter in the uniform density
gauge and the same perturbation defined in the comoving g&agieg this equivalence for
granted, in the meantime, allows us to rel&enddp directly. Indeed, if we consider the

gauge transformation (2.39) from an initial flat hypersoefathen

R:g:—H%?, (2.44)

at scales beyond the cosmological horizon (as will be magkogdelow).

This last transformation shows the way of avoiding the gagamaly. One can always
change the gauge (or frame of reference) and establish tineaéence between the perturba-
tions of any two gauges as long as a particular gauge is claigbe start and all quantities

are initially defined in this gauge.
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2.3 Evolution of perturbations and conserved quantities

Just as the perturbed scalars in the metric are gauge degesdeare the evolution equa-
tions for these quantities and they must be treated cayafutirder to avoid spurious gauge
modes.

The equations governing the dynamics of space-time aredfbyrvarying the actiol

with respect to the metric and matter components. The adidefined as

I:/ L+/—gd'z, (2.45)

where/ is the Lagrangian density of the matter and the gravitatifield. The gravitational

Lagrangian of general relativity is,
L=-R/2, (2.46)

where R is the Ricci scalar. The Lagrangian density for a classicatt@n field minimally

coupled to gravity is
L=K-V —R/2, (2.47)

with K the kinetic energy ant the potential energy. For the matter sector of the Lagrangia

we can define the energy-momentum tensor as

Ok

24 agw,

+ guvﬁ- (2.48)

In particular, the energy-momentum tensor for a perfect flmith densityp and isotropic
pressure and 4-velocityu* is given by Eq. (2.17).

Let us now look at the Lagrangian density of a single scal&t fie minimally coupled
to gravity. Its kinetic energy i& = —1/2¢*0,,¢0, ¢, so from Eq. (2.47) we find a canonic

action

Las = 3 [0 0:60,0 + 2V (6)]. (2.49)
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Using the definition Eq. (2.48), it is easy to show that thdasckeld energy-momentum

tensor is

1
T/ = g buda =0 <V(¢>> + ég“%,aeb,g) . (2.50)

The comparison between the last expression with Eq. (271,7)for a perfect fluid, shows

that we can define the density, isotropic pressure and glasi[Tabensky & Taub, 1973]

O

U, = ; =—9"¢,0,+V, p=—-9"0,0,—V. (2.51)
P g !

This identification provides an easy way to quantify the gpetensity of a scalar field and

its perturbations. The Lagrangian density for two real etd

1 1
Lar = =5(6"6,02) = 56" XuiX) = U011 252

which features the joint potentiél(¢, x) of the participating fields, each minimally coupled
to gravity. This case is what concerns us in the rest of thetelhand we shall focus on its

dynamical equations.

2.3.1 Background equations

The Einstein equations are found by varying the action (2with respect to the metric.
Under regular conditions, with no variations of the fieldh&boundaries, the equations are

found by applying the operator

) )
] @

to the Lagrangian. The Einstein equations dictate the dyesaralating the local spacetime

curvature to the local energy-momentum. In the adoptedalanits,

G =T, (2.54)
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where the left-hand side is the Einstein tensor, defined as

1
G =R, — §gWR. (2.55)

The Einstein equations can be split into components thaparallel or orthogonal to the
time-like field N*# at any order in perturbation expansion. The two indepeneguations

obtained at the background level are the Friedmann andeaaetieh equations:

1
H2 :g(lon, (256)
1
H =— EGQ (3po + po) - (2.57)

Additionally, the Bianchi identitiess*,, , = 0 imply the local conservation of energy and

momentum,
T, =0, (2.58)

where; denotes a covariant derivative with respect to the mefyic
For the background quantities, the energy-momentum ceaisen equations provide an
expression for the expansion in terms of the matter fieldstieocase of a single fluid in the

background FRW universe, the equatibfy, = 0 gives

po = —3H(po + po)- (2.59)

Note that the isotropy assumption means there is no net baakd momentum and thus no
other conservation equation at zeroth order. Moreover(ZE§9) can also be obtained as a
combination of the Einstein equations (2.56) and (2.57).

The homogeneous Einstein equations can be solved for thablesa(t), p(t), p(t) when
an equation of state for the matter components is providéus i§ dictated by the micro-

physics of the matter. In particular, the equation of state

p=wp, (2.60)
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describes most of the relevant cases of the post-inflayaw@mology. For the case of pure
radiationw = 1/3, while for pressureless dust = 0. For fluids with such an equation of

state, the solutions to the Einstein equations are

—3(w+1) 2/(3w+5)
p_ <2> | a_ <E) | (2.61)
Pi a; a; Ui

with initial conditionsp = p; anda = a; atn = ;.
When more than one fluid is present, we account for the cautioih of each component
oY) to the total matter density by defining a dimensionless dgpsirameter
a?p)

where the factoBH?/a? is the critical density. In the flat universe that concernsthe

curvature contributiof,. is zero and the sum of all matter contributions is unity, i.e.

> Q5= =1 (2.63)
j
(note that the dark energy that dominates the expansioreipréssent stage of our universe

should also be included in this sum. This component is custilyrdenoted by2,.) With

these definitions Eg. (2.56) can be written in the form

2 —3(14+w())
G {7}

For the case in which the matter is dominated by a single séeld ¢, energy density

conservation leads to the Klein-Gordon equation,

dv
G = Ao’ (2.65)

which can also be derived from the variation of the actiorhwéspect tay. The potential
V' is assumed to be an explicit function of the field alone. Indage where there is more
than one field, a Klein-Gordon equation is obtained for egesjar field, with an interaction

potentialU. Note that the Klein-Gordon equation is valid at all ordershie perturbation
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expansion. We will rely on this important fact to derive tloatribution of nonlinear pertur-
bations to the non-Gaussianity of the primordial fluctuagiothe ultimate objective of this
chapter.

The Klein-Gordon equation for a homogeneous scalar figltor a FRW background

metric is

o + 3Ho + % = 0. (2.66)

The solutions of this equation will be explored in the cohtExnflation in Section 2.4. The
inflationary behaviour is guaranteed when the dominatiradasdield meets the so called
slow-roll conditions. The dynamics of inflation will be disgsed in more depth in the fol-
lowing sections. In the meantime we note that, as mentiam&ection 1.2, the perturbations
produced during a period of inflation exit the cosmologiaaiizon due to the shrinking of
the latter scale. In a super-horizon regime, under suitadmelitions, the curvature inhomo-

geneities are time-invariant.
2.3.2 Dynamics of perturbations
At linear order, the scalar metric perturbations are relatematter perturbations via the
Einstein equations. The density and momentum constraiats a
1
SH(He — ') + V* ) — Ho| = — 5(125/), (2.67)
1
[0 —Hep] =5a* (po + po) [v + BJ, (2.68)

2

and two evolution equations for the scalar metric pertuobat

1
W'+ 2HY — HY — (2H +H?) o = — 5a25p, (2.69)

o'+ 2Ho + 1 — ¢ =0. (2.70)

The energy-momentum conservation equations for the fEtuspacetime are related to

the ones above via the Bianchi identities. Specifically,aha@ution for the energy density
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perturbation is

6p' + 3H(0p+ dp) = —(po + po) [3¢' + V(v + E)], (2.71)
and the momentum conservation equation is

[(po + po) (v + B)] +dp = —(po + po)l + 4H (v + B)]. (2.72)

Instead of solving the equations at first order, let us showthe dynamical linear equations
encode two important implications for cosmological pdsairons. A convenient way to find
conserved quantities is to work in Fourier space (the Fotna@sformation is here denoted
by F.) In this case, a generic coordinate-dependent pertorb#ti, x) is decomposed into

harmonic functions of time:

ft,x) = /000 exp (—ik - x) fx(t), i.e., FI[f(t,x)] = fe(t). (2.73)

1
(2m)?
Each functionf,(t) is referred as a perturbation mode and labelled by its congovavenum-
ber k and has an associated scale= a(t)/k. The only characteristic scale of the unper-

turbed universe is the Hubble scale or cosmological hor&odefined in Eq. (2.33). When

perturbation modes lie well outside the cosmological fmrjzhe ratio
e=dy/ . = k/a(t)H(t) (2.74)

is much smaller than one. Since the spatial derivafivese transformed t&/a, this shows
that we can neglect gradients terms in the equations comhparke time derivative which

scales adi, i.e., for a given functiory (¢, x) with Fourier transformy;(¢),
k
F Al = [0 < @.75)

This simplifies the equations considerably and shows untié&haconditions the curvature
perturbations are conserved in the superhorizon regime.

Let us use this approximation to look at the equivalence efdhrvature perturbation



2.3: Evolution of perturbations and conserved quantities 49

on large scales in different gauges. From the Einstein empsatve can rewrite the gauge
invariant curvature perturbatioR in terms of the curvature perturbation variables. Making
use of the momentum constraint Eq. (2.68), we note that

Ho — 4/
We can insert this in the definition @@ in Eq. (2.43) and write the latter in terms of the

Bardeen gauge-invariant quantities. That is,

H(HDp + V)

R:_\I]B+ H/—H2 9

(2.77)

which represents an alternative form of Eq. (2.68).
We can follow a similar procedure for Eq. (2.67) and write tindform density curvature
perturbation( in terms of Bardeen invariants:

H/ _ HQ , H/ _ H2 1
¢ (T) =VUyp +HPp — <T) Up — ﬁvz‘I’B- (2.78)

Note that, because the curvature perturbations in theviasetjuations are written in terms
of gauge-invariant quantitie® and¢ are manifestly gauge-invariant themselves. Moreover,
the combination of these equations leads to the gaugeiami@yeneralisation of the Poisson

equation,

0,2

ViU =3(H =H’) (R=C) = 0pm. (2.79)
As before, if gradients are discarded, b&tand( coincide. This result is important in view
of the consequent correspondence (2.44), which is usedsxédy throughout this thesis.
A second important feature is the evolution©bn superhorizon scales. The energy

conservation Eqg. (2.71) can be written in coordinate time as

5p +3H (3p+ 0p) = — (po + po) [31/} + Vz(g + E)] . (2.80)
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This leads to an evolution equation for the perturbed engegygity when we include Eq. (2.59):
. ; v . 9
oo+ 0p) +3 (H+9) [po+ 0p+ po + 6] = =¥ (5 +E) +0(6?), (2.81)
which in view of the definition of the expansid@p,, Eq. (2.30), gives to first order
. v
p+0ulp+p] =V? [5 + E] + V% (o)) [po + po) + O(6%). (2.82)

We emphasise that, in our notation, the density and presg@thi@o subscript represent the
sum of the background function and its perturbation, pe= po + dp. The O(5%) term
indicates that the above equation is valid to first order miysbation expansion.

Since we are discarding spatial gradients in the equatibmsotion on super-horizon

scales, Eq. (2.81) provides an evolution equation for tmeature perturbation:

dlpotpol =5~ H(ptp). (2.83)
or

1 dp po< 5p+5,o)

= —= + 2 ). 2.84

v 3po+po 3 \(po+po)? (2.84)

If we work in a gauge where the time slices are uniform-dgnisytpersurfaces, i.e., the

uniform-density gauge, we may set

§p— 0, 0p— dpsp, ¥ — U5, = C.

All perturbations, including the pressure perturbationthis gauge are independent of the
density perturbation. From thermodynamics we know thatid$l where entropy is constant
the pressure is a function of the density. In this categadiyttia barotropic fluids, defined
as those fluids in which the pressure is only a function of #esdy » and vice-versa. In
general the pressure of a thermodynamic system (in our baseniverse) is a function of

both the density and the entropy,

§p = 20p|s + 0p),, (2.85)



2.3: Evolution of perturbations and conserved quantities 51

wherec? = dp/dp|, is the adiabatic sound speed in the system (see e.g. Clivésggm
& Malik [2009] for a careful treatment of thermodynamics afifls in cosmology). If one

defines the entropy perturbatiéon from the identitydp|, = pds, then one has

0s = 5—? — 5—/) (2.86)
p P
In view of this, Eq. (2.84) for the curvature perturbatioduees to
- pO 5p6p ) HpO
== |—)=- 0s. 2.87
‘ 3 ((po + po)? Po + po ( )

This result is important in the description of the evolutaimperturbations after inflation. It
indicates that for inhomogeneities with characteristelas much larger than the size of the
cosmological horizon, the curvature can only be modifieldefrnatter content of the universe
has a non-adiabatic or entropy component [Wands et al.,]20@9also remarkable that this
argument requires the conservation of the energy-mometgngor, and not necessarily the
Einstein equations. This means that the described projgevalid for any theory of gravity
in which energy is conserved.

This result has been extended beyond linear order in therpatton expansion. On

superhorizon scales, the expression at second order igk[&l&Vands, 2004],

m5p1|p —2(po + po) C1| 1, (2.88)

where numerical indices indicate the order of each quamntitihe perturbation expansion.
This result shows that, as in the case of the lingahe evolution at second order depends
only on the entropy perturbation and its derivatives. Tlas &lso been proved to all orders
by Lyth et al. [2005]. This result generalises the speciaésaf a constant equation of state,
i.e.,p/p = const. and the single field inflationary case, for which the congéweof ( had
been previously been verified [Shibata & Sasaki, 1999; Sk&Bond, 1990].

Egs. (2.87) and (2.88) have motivated several studies lsegréor significant growth
of ¢ on superhorizon scales during and after inflation. In paldic theories of multi-field

inflation have been proposed to generate the the curvatuteripation and, at the same
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time, an observable signature of non-Gaussianity [Motleyd 990; Lyth & Wands, 2002;
Enqvist & Nurmi, 2005]. We will now study the effects of codsring an auxiliary field,
with special attention to those models where a large nors§an contribution arises. We

start with a short description of inflation in the next sewtio

2.4 Inflation

One can define cosmological inflation as the epoch when the f=or of the universe is

accelerating
a> 0. (2.89)

This condition can be written in terms of a more physical dixanThe period of inflation

can be considered as an epoch in which the comoving Hubbiedmadecreases with time:
— (K1) <o. (2.90)

Within general relativity, the above conditions on the tidegpendence of the scale factor give
conditions on the matter content through the Einstein egusit In particular, Eq. (2.57) can

be used to write the condition (2.90) as
3po + po < 0. (2.91)

Demanding a positive energy densit} = p, is a sensible physical condition. The condi-
tion 7% > 0 is known as the weak energy condition. In view of this, thevabequation
demands that the dominant matter must have negative peedsting a period of inflation.
The simplest matter field with this property is a scalar figlthjch is composed of spin-0
particles. The concept of a scalar field is prevalent in plarfphysics where scalars such as
the Higgs scalar are essential in the construction of thedstal model. Although no scalar

particle has so far been observed, they play a fundamemahroosmology, as they possess

This does not include the late time acceleration at the ntigpoch which is attributed to dark energy. Whereas
inflation-like scalar fields may be responsible for such biha (see, e.g., Martin [2008]), in this thesis we are nat-co
cerned with the dynamics of the late universe
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the unusual feature of their potential energy dominatingy their kinetic energy.
As indicated by Eq. (2.51), the Lagrangian definition of timergy-momentum tensor

requires that the energy density and pressure for a homogsisealar field be

1.

=3B +V@), b= 50— V(o) 292)

This shows that in order to meet condition (2.91) we requieegotential/(¢) to dominate

over the ‘kinetic’ term. This can be dynamically achievedhna sufficiently flat potential
provided the field is displaced away from its minimum. Suckgptal conditions are con-
trolled by two parameters:

M2 V! 2 Vi
SR = —- <—) : NSR = MPV- (2.93)

These are called the slow-roll parameters and, during iofiathey are subject to the slow-

roll and friction-dominated conditions

€SR < 1, TSR < 1. (294)

The first condition, the ‘slow-roll’ condition, ensures thlew rolling of the field down its
potential. The second, a ‘friction-domination’ conditioanstrains the potential to be very
flat one for the period of inflation. This condition is impodedallow for an extended pe-
riod of inflation (which should last for over 60 e-folds of exysion), required to recover
a sufficiently flat and homogeneous universe in the observalés When both slow-roll
parameters are much smaller than one, the dynamics of thke diald ¢ guarantees an ac-
celerated expansion with a shrinking comoving Hubble fworiz

The scalar field satisfying these properties is called tlaton. The equations dictating

the background dynamics of a universe dominated by the anflate

H? = @ (2.95)
3H) = —V'(¢). (2.96)

The homogeneous Klein-Gordon equation (2.66), reducesqto(Z96) in the slow-roll
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regime. The exact solution to these equations requirespibefecation of the potential as
a function of the homogeneous scalar field). However, the first equation already shows

that, if we assume a constant

a(t) o< exp(y/V/3t). (2.97)

This illustrates explicitly the exponential growth of theake factor in the inflationary regime.
Additionally, the field depends only linearly on time to last@rder, as expected for a slow
rolling field. An expansion in powers of the slow-roll paraers shows that any deviation
from this behaviour should be orders of magnitude smallan tthe form expressed here
[Stewart & Lyth, 1993]. In the following we focus on the studfythe tiny inhomogeneities
produced by quantum fluctuations of the inflationary fieldisTdspect is crucial in under-

standing the origin of the observed structure in the unezers

2.4.1 Inflationary field power spectrum

The mean amplitude of matter or curvature perturbationsfesried from their power spec-
trum. This is constructed through the quantization of reatyrbation fields, as prescribed
by quantum field theory [Birrell & Davies, 1984]. Followingperturbative expansion, we

split the scalar field as

o(t,x) = ¢o(t) + do(t, x). (2.98)

Such an expansion separates the general Klein-Gordonieq(2i65) into its homogeneous

part (2.66) and the perturbation equation

8¢+ 3HSp — Viig

a?

+ mg,00 =0, (2.99)
where the effective mass of the field fluctuation is defined as
mg, = m3 + Vi, (2.100)

andVy, = V—migb?/Q represents the nonlinear part of the potential. Note that\ve have
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neglected the perturbations of the metric which enter tle@KGordon equation through the
operator,,”. In this case, Eq. (2.99) is a valid approximation becauseavsidery to be
subject to the slow-roll conditions.

In order to compute the power spectrum of the field pertuobatiwe need to consider
the free fieldd¢;, or the field in the so-callethteraction pictureof quantum field theory
[Peskin & Schroeder, 1995]. This field is the solution to tHeik-Gordon equation (2.99)
in the absence of the nonlinear term, i.e.

V256,

a?

o, + 3HSp, — +m2dg; = 0. (2.101)

In the quantum framework we Fourier decompose this field as

k3 |
S61(x,1) = / T (elk'xakagbfk(t)+e—lk'xa;5¢§k(t)), (2.102)

wherex denotes complex conjugation andhe hermitian adjoint operator,;, and aL are

operators satisfying the usual canonical commutatiorniogig,

[ar, al] = 6% (k — p), ay, a,) = [a},al] =0, (2.103)

p

and 6® (k) is the three-dimensional Dirac delta function. Thus thedfifictuations in

Fourier space are solutions of the linear equation

2

8¢ + 3HObp + (? + mg) S = 0. (2.104)

For simplicity, we only consider de Sitter inflation, whéies constant, and the scale factor
isa = —1/(Hn). As mentioned above, this is a good approximation in slolviméiation.
In terms of conformal time, the previous equation can betamias

2
0 + 30~ ¢ + [kz +7 (%) ] Sne = 0. (2.105)

The solution to this equation involves the set of Bessel derfunctions. After proper

normalisation, i.e., taking the Bunch-Davies vacuum fe de Sitter spacetime [Bunch &
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Davies, 1988], one finds

06nc(n) = Q—fJ—_nH,S”UknD, (2.106)

whereH,(}) is the Hankel function of the first kind and of order

Ry (2.107)

The star indicates that we are evaluatiigust after Hubble horizon eXiti.e., whenk =
ke =|1/n. < aH.
The two-point function of the field fluctuations reads

2
mH;

2
= (k) [HD (Joim))|” - (2.108)
4K3

(0611, (M)6P 1, () = (27)°6 (k1 + k)

where the angled brackets indicate the expectation vaiudjs case, of two modes of the
perturbation field, evaluated at timeln terms of the two-point function, the power spectrum

P, is defined as

(0611, (M)6D 11, (n)) = (27)*6®) (ky + ko) Py(n, kv), (2.109)

and the dimensionless power spectrum in this case is

K H? 3 1)
Py(n, k) = ﬁqu(??a k) = . (Ikn])” [HY (Jkn))

"

(2.110)

By expanding the Hankel function in Eqg. (2.108) on large sgail.e. forlkn| < 1, one

obtains

Punb =2 TS g = o (1) e, @)

2T

2In the perturbed KG equation the mass term is negligible meaf the slow-roll conditio’”’ /V <« V , which
is equivalent tom, < H. Well before horizon exit the harmonic flat spacetime eaqumtis recovered in the solution
Eg. (2.106). On the other hand, there is no need to computeotinelation at times well after horizon exit. The relation
(2.44) and the fact thaR is conserved well outside the horizon indicate that theiredufield power spectrum can be
evaluated a few Hubble times after horizon crossing.
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where

2
My

T 3H2

w g —v (2.112)

This is negligible in the massless case which correspondsd® Sitter inflationary phase.
Note that, in this case, the approximation of a linearisaédal is guaranteed by the slow-
roll approximation. Higher order terms in the Klein-Gordequation are suppressed by
powers of the slow-roll parameters. In this way, interacti®etween Fourier modes are
absent, i.e., the vacuum fluctuations of different Fouriedes are decoupled and the field

fluctuations are Gaussian.

2.4.2 Observables

In the standard picture of inflation, the perturbations & ithflaton field are stretched out
of the horizon and subsequently transferred into curvaiaraurbations which survive after
the universe has reheated. Observationally, the temperatbtomogeneities in the CMB are
related to the mean amplitude of the curvature perturbatiorough the Sachs-Wolfe effect
[Sachs & Wolfe, 1967]. Thus, the power spectrum of curvaparurbations is observed to
be [Komatsu et al., 2008]

Pr = (2451302 x 1070 (95% CL). (2.113)

at a pivot scalek, = 7.5a0H, ~ 0.001 hy Mpc~!. The power spectrum is also probed at
other scales in the CMB with various filter functions and alsth the power spectrum of
galaxies and clusters. The rate of change of the observad w&P with £ is parametrised

by the spectral index,. This is defined by

1= dlog Pr

2.114
dlogk ’ ( )

Ng —

wherel is subtracted by convention due to the fact that the mattesitiepower spectrum
has the formP, o< £"=. Observationally, the output from WMAP [Komatsu et al., 8)@he

distance measurements from type la supernovae [Riess 20@T.,; Astier et al., 2006] and



2.4: Inflation 58

the baryon acoustic oscillations [Percival et al., 200Fstmin the spectral index to be
—0.256 < 1 —n, < 0.025 (95% CL.). (2.115)

for 0.001 Mpc™! < k < 0.1 Mpc™.
In single-field inflation, the power spectrum of curvaturetpdations can be calculated

from P, and Eq. (2.44), which for a single scalar field can be written a
H
R = —gégb. (2.116)

This relation, used at linear order in Egs. (2.109) and @).1dhows that

H ? Hf ? 2w
Pa= () Pox 10w (325) el (2117)

In terms of the slow-roll parameters, using Eqgs. (2.95) &#@K) and evaluating the previous
expression at horizon crossing, we have
B 28 ‘/*3 B 8V*

P’R— 3‘/;/2 —3g

(2.118)

Note that the evaluation of the power spectrum at horizonejastified by the fact thak is
constant on super-horizon scales. In this regime we canedéfenroot-mean-squarg §1S)
value ofR (or () as

H2

H
RMS — CRMS = p ORMS 2 ( )

This quantity will play an important role throughout thig#is.

We can also write the spectral index as [Stewart & Lyth, 1993]
ns =1+ 2nsr — b€sr, (2.120)

to lowest order in slow-roll expansion. When = 1, the power spectrum is called scale-

invariant or Harrison-Zeldovich [Harrison, 1970; Zeldclvj 1972]. Whem, # 1, the spec-
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trum is described as tilted and, fey > 1, itis called ‘blue’ because the power is enhanced at
small wavelengths [Mollerach et al., 1994]. With the pramseached by the latest probes
of cosmological structure, it has been possible to constha field parameters and discard
some models of inflation alternative to the simplest pichresented above [Alabidi & Lyth,
2006a; Alabidi & Lidsey, 2008]. Current observations of tb®IB and large-scale struc-
ture, however, are compatible with the predictions of matmeomodels of inflation. It is
therefore crucial to study additional observables whiaviate further insight into the char-
acteristics of the early universe. At the level of scalartymbations, the most convenient
observables for discriminating between these models &¢etiisorial perturbations mean
amplitude and spectral index, the running of the spectdgxrand the non-Gaussianity of

perturbations. In this thesis we focus on the effects of ditten.

2.4.3 ThedN formalism

We now present a formalism to account for the contributidnawltiple fields to the curva-
ture perturbation at all orders. An important feature ofgieeturbed curvature on superhori-
zon scales is that we can calculate its magnitude by comsgitre change in the number of
e-folds of expansion of the relevant patch of universe wepect to a uniform background
expansion. This in turn allows us to compute the amplitudéhefcurvature fluctuations
from the matter fluctuations. The idea behind this technigue considek as a perturba-
tion in the local expansion [Starobinsky, 1985; Salopek &&01990; Sasaki & Stewart,
1996; Sasaki & Tanaka, 1998; Lyth et al., 2005], i.e.

¢ =N, (2.121)

whered N is the perturbed expansion of the uniform-density hypéases with respect to
spatially flat hypersurfaces.
We now describe the elements of the above formalism. The suwnfle-folds of expan-

sion between two moments in proper timeandr is given in the homogeneous background
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by

T2 1 to 1 to
N:/ —eodT:/ O dt:/ Hdt, (2.122)
T 3 t1 3 t1

1

where ¢, refers to the homogeneous expansion, that ispnsidered to lowest order in
Eq. (2.29). In the perturbed metric, the number of e-foldiadpng an integral curve of

the 4-velocity, i.e., along a comoving worldline betwegrandr,, is

N:/TQ 190”2/2%%(Hw)(l—<p)dt:/Q(HHZJ)dt. (2.123)

1 3 t1 t1

The last equality holds on superhorizon scales. It is clear the differenceV — N will
provide the change in the curvature perturbation from ateliypersurface at timg and

afinal one at time,, i.e.,
ON =N —N = Av. (2.124)

In particular, we can choose to integrate the expansiotirggairom an initial uniform-
curvature hypersurface at tintg, that is,(¢;) = 0. Then we can find the amplitude of
the curvature perturbation at the later timeby choosing a trajectory with an endpoint
fixed on a comoving or uniform-density hypersurface. Dergthe difference between the

background and the perturbed expansiondasve can write

to
ON = / (59@) dT] = 1/12. (2125)
t

1

In particular, when we consider the endpoint embedded infaram-density hypersurface,
then Eq. (2.121) is recovered.

On large scales, where spatial gradients can be negletiedhdal physical quantities
like density and expansion rate obey the same evolutiontieqsaas in a homogeneous
FRW universe [Wands et al., 2000; Sasaki & Stewart, 1996]ufipg homogeneous FRW
universes to describe the evolution of local patches, wesgaluate the perturbed expansion
in different parts of our universe with particular initisiaes for the fields during inflation.

This is known as the ‘separate universe’ approach and méamnswhen we neglect the
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decaying mode for the field perturbations on superhorizates¢we can consider the local
integrated expansion as a function of the local field valueshe initial hypersurface. In

particular, one can expand Eqg. (2.121) as

( = 0N(¢i(t1)) Z (?gb 6@ (t1) (2.126)

where the initial time; again corresponds to some initial spatially-flat hypeestef We can

use this formula to construct the curvature power spectrumdlti-field inflation:

”:ZG%?)%“ (2.127)

This formalism can be extended to establish the equivalbateeen nonlinear matter and
metric perturbations. This is done by first assuming Eq.2R)Jas the definition of the
curvature perturbation and then using Eq. (2.44) to integraThis gives [Lyth et al., 2005]

B S
g_g(w+1)1 (po). (2.128)

This nonlinear curvature perturbation can be written asatfan of the initial field fluctua-
tions, evaluated again at an initial flat hypersurface leddby the timet;. We use a Taylor

expansion

2

1 O°N
c’Z%m + 595,08,0% ()08i(t) +. (2.129)

where the leading order term coincides with the expansioh2@). This last expansion
greatly simplifies the derivation of the higher-order cuuwve correlations from the scalar

field bispectrum.

2.5 Non-Gaussianity from isocurvature fields

The perturbed energy conservation equations show thettmmslunder which the curvature

perturbation{ may vary over time in a regime in which the perturbation mdaewell out-
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side the horizon. Specifically, Eq. (2.87) shows that thdwgian of ( is directly related to
the presence of an entropy perturbatian This quantity can be the intrinsic non-adiabatic
pressure of a single field, or the difference in the densityupeations of any two fields
which contribute to the curvature perturbation. This dffactivates the study of models of
inflation in which the observed inhomogeneities are thelt@$unon-adiabatic field fluctu-
ations [Mollerach, 1990; Linde & Mukhanov, 1997; Enqvist &, 2002; Lyth & Wands,
2002; Moroi & Takahashi, 2001]. Here we are interested $padly in models in which a
highly nonlinear{ can be generated from the aforementioned entropy pertorbadut of
the multiple stages in which this field may have influen¢ede focus on the case of an aux-
iliary scalar field during inflation generally referred as tkocurvature field, [Zaldarriaga,
2004; Engvist & Nurmi, 2005; Enqgvist et al., 2005b].

A first approximation to nonlineaf involves the first and second order perturbations in

real space:
C(t,x) = G(t,x) + %Cg(t, X). (2.130)

The second order perturbation is conventionally writtetenmns of the first order perturba-

tion and the parametdi;, [Komatsu & Spergel, 2001]. This gives

C6:x) = Glt:%) = 2 (G0 — (G2)). 2131)

which in Fourier space is written as a convolution

C00) = 609 — 2 (16 % Gl — (GFR)) - (2132)

Note that Eq. (2.132) shows explicitly the superpositiommaides that characterise non-
Gaussian statistics.

Statistically, non-Gaussianity refers to the non-vamghaigher order moments of the
guantity in question. In quantum mechanics this correspémthe n-point correlation func-

tions withn > 3. To lowest order, the bispectruB(k;, ko, k3) is defined by the expectation
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value of the product of three copies of the curvature field:
(C(k1)C (ka)C (ks)) = (2m)° Bk, bz, hi3)0™ (i ko, Ks). (2.133)

The amplitude offy, is given in terms of the bispectrum by substituting Eq. (2)18 this:

6 Lk By
Oy = i . 2.134
5/ S k3 4mi P, ( )

In this section we present a method to compute the nonligdsr determining nonlinear
solutions to the Klein-Gordon equation of the field fluctaati Then with the aid of thé v
formalism we will construct the three-point correlator(ofSpecial attention will be paid to

the cases in which a larg&;, can be obtained.

2.5.1 Two-field inflation

Here we consider a spacetime inflating by the action of a palemhich depends on two
minimally coupled fields. In this case, in addition to the @aical inflationary field, we
consider a second fielgd described by the action

1 1
S = / dz*y/—g {—59’” pXOuX = Zmx” = W) |, (2.135)

wherelV (x) plays the role of a nonlinear potential. The joint Lagrangiensity of the two
scalar fields in this model is given by Eq. (2.52). The modejuestion demands that there
is no contribution ofy to the background matter content. This is guaranteed byotleaing
condition on the potential of the two-field Lagrangian ddfimeEq. (2.52):

U0 =V(E) = W)+ 5mii’ < V(o) (2.136)

To analyse the dynamics of this auxiliary field, let us coasi@ background homogeneous

part and a coordinate-dependent field fluctuation,

X(t,x) = xo(t) + ox(t,x). (2.137)
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The Klein-Gordon equation derived by varying the actior85) with respect tg yields
for the background field

Xo + 3HxXo + m2xo + W' (x0) =0, (2.138)

and for the field fluctuation

W ()
(n—1

. N veh
Ox +3Héx — a2X+m§X5><+Z
n=3

),5x”*1 = 0. (2.139)

Here a superscrifit:) denotes the:-th derivative andn3, is the effective mass for the field

fluctuation defined as
mg, =m; +W". (2.140)

Following the same steps as with the inflaton power spectwerrecover a solution similar

to Eq. (2.106). Specifically,

(2 oz)2

H’ — .
Pro(1, k) = o (1kenl)* [ ([Rnl)| = 22"(2733 ([knl)** (2.141)

with o andyu defined through the equation

9 mj
V=g >0 (2.142)

Because of this, the spectrumypfs blue. The power spectruf, vanishes on large scales

«

for large values of, i.e. whenms, 2 H,, so we only consider the case

Moy S Hi. (2.143)

Indeed, we assumer, < H,. As shown below, the interesting values1df’ are those
which are large enough to generate a large nonlinear cayiut sufficiently small to satisfy

condition (2.143), which also implies

WS H?. (2.144)
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For example, for

M A
W = gx?’ + EXA‘, (2.145)

this condition turns into conditions al¥ and\:

M < ==, A2 < e (2.146)
X0 X0

Typically we have a nonzero expectation valye Working in a perturbative expansion
then requires that the quantum fluctuatioisdo not exceed this expectation value, i.e., we
requirex, = H,.. This imposes additional constraints on the parametérand \ in the

specific model of Eq. (2.145), as described below.

2.5.2 Non-Gaussianity and nonlinear evolution

The expectation value of the product of three fields was fostuted by Maldacena [2003]
for the case of single-field inflation, including slow-rotledar field and gravitational interac-
tions. In our case, since the field gives a negligible couatriim to the energy density of the
Universe, we will neglect its coupling to gravity.

The three-point correlation function of the field perturbas éy can be computed using

the expression given by Maldacena:

t

<6X(tv X1)5X(tv X2)5X(t7 X3)> =1 / dt/<[HI(t/)> 5X1(t7 X1)5X1(t7 X2)5X1(t7 X3)]>7

—00

(2.147)

where H; is the interaction Hamiltonian written in terms of the fieldrfurbation in the

interaction picture, i.e. in our case
1740,
Hi(t") = — / dr®\/—gL; = Z / da’a(t')’ ——0x7. (2.148)
n.
n=3

Note that on the left-hand side of Eq. (2.147) the expedtatadue is taken with respect to

the vacuum of the interacting theory, while on the rightdhare it is taken with respect to
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the vacuum of the free theory. A generalisation of this exgian to higher order correlators,
including loop corrections, has been provided by Weinb28§5].

Recently, Musso [2006] showed that the general expressiahé correlators of. field
fluctuations can also be derived by solving perturbativedy/ field equation of motion and
using the expression for the two-point function of the freddfifluctuation. Here we make
use of this formalism to show that Eq. (2.147) can be deriwesidiving Eq. (2.139) pertur-
batively.

As mentioned before, the evolution equation #gf; is given in identical form to the
inflaton case, providing — y in EqQ. (2.105). On the other hand, the evolution equation for
the full nonlineaw x can be given perturbatively providin@x — dx;)/dx| < 1. Rewriting

Eq. (2.139) and re-expressing the nonlinear term in ternag gfwe obtain

. . \VER) W) B
Sx + 3HOY — a2X tmioy =Y TR L (2.149)

n=3

This equation can be then solved by Green’s method and iii@olis

[e.9]

1 / / / n n— /
x(t,x) :5xf(t,><)—2m/d3y/dt a(t')*Gr(t,x; ', y)W™Woxi ' (¢, y),
n=3 ’

(2.150)
whereGg(t,x;t',y’) is the retarded Green’s function
Gr(t,x;t,)y) =10t — t') [0x1(t, %), dx1 (', y)] . (2.151)
where
O(x) = /_x d(z)dz (2.152)

is the Heaviside step function. By using the fact that the-freld perturbation is Gaussian,

i.e.

<5X](X1,t)(SX](XQ,t)(SX[(Xg,t)> = 0, (2153)
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one can rewrite the three-point correlation functiod gfmaking use of Eq. (2.150):

(Ox(t, %) 8%t %2)0x (1, %)) = — 3 e ! 5 / a0 / 0 al P x

n=

[0 (8, x1), Oxr (¢, 3)] (Ox7 (', y)dxr(t, x2)0x1 (£, x3)) + {Perms.}  (2.154)

Using this equation and the result [Musso, 2006],

n[0x(t,x1), ox (', y)](0x] (¢, y)dxr(t, x2)0x1(t,x3)) + {perms} =

—([oxT(t,y), oxa(t, x1)dx1(t, x2)dx1 (L, %3)]), (2.155)

one can derive Maldacena’s formula (2.147) for fhelamiltonian (2.148) after some ma-
nipulation. This shows that one can obtain Maldacena’s taneither from considering
perturbations in the action or from the perturbative expganef the equations of motion. In
the case of slow-roll inflation, this equivalence was showiSbery et al. [2008]. Equation

(2.147) can be generalised to higher correlation functions

(Ox(t,x1)0x(t,x2)...0x(t, X)) = (2.156)
i / dt’< [H (1), 0t x1)0x1(t,%X2) - 6x1 (£, %0m)] >

2.5.3 Field bispectrum

Here we are interested in the three-point function of théasdeeld, also called the field

bispectrumF'(ky, ks, k3), defined as
(X161 (M1 (1)1 (1)) = (27)°6D (O ki) F (1 ey, o, i) (2.157)

For simplicity, we assume that the nonlinear potential efgbalar field is dominated by the
cubic interactiori?”” and that this is approximately constant. This reduces thargsion in

EqQ. (2.148) to the first term only. Substituting this in Eq1&%7) and using Egs. (2.150) and
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(2.155), the field bispectrum becomes

F(n; by, ko, ks) = (2.158)

W 9/2 { ?)HH(1 (k) / dnf \/|777HH(2 |kﬂ’7|}

During de Sitter inflation, the ratib/a H can be written as the produlét;| and we will use
this to parametrise the various stages of evolution of tepdmtrum.

It is instructive to first evaluate the bispectrum (2.158)imly inflation () < 7,.,) for the
case of a massless field fluctuation (ires, = a = 0, © = 3/2). In this case, the integral
in EQ. (2.158) can be evaluated analytically [Bernardeauz&an) 2003; Zaldarriaga, 2004]

using the expressions for the Hankel functions,

1 .2 N 2 . ]2 e
Hé/)2( ) —1 _<1 - LZ) 53/27 Hé/)Q(Z) - 1\/;(1 + 12)@. (2159)

One find$

W///H2 4 3 1 3
F(n; ko, k) = T — ki +h Y kik +3 5+ 7+ In(lkun) Zk

1<j

(2.160)

wherek, = > . k;. The integral in Eq. (2.158) has been evaluated for thrderdifit stages:
when the modes are well inside the Hubble radius, around thigbld radius and outside
the Hubble radius. The first stage does not give any conioibtid the integral because the
Hankel functions oscillate rapidly fdk;n| > 1 and the fields can be taken as free in the
asymptotic past. At late time, the integral is dominated iy modes that are around the
Hubble scale or largetkn| < 1. In particular, we will show below that the time-dependent
term in Eq. (2.160), with the typical local momentum depertde essentially comes from
the nonlinear and classical super-Hubble evolution of tkle foerturbation. The finite part,
with the non-trivial momentum dependence, comes from natégy over times correspond-

ing to Hubble-crossing.

30ur result coincides with the one found in Zaldarriaga [J0@dodulo the overall sign and the factby3 inside the
parentheses.
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Let us now consider the case withs, # 0, and1/2 < p < 3/2. The integral inside
Eqg. (2.158) cannot be integrated analytically in this c&3ee can only evaluate it over the
period when all modes are well outside the Hubble radius usgafor small arguments,
Hankel functions can be written in terms of Bessel functipmisich for real arguments are
real). Decomposing Eq. (2.158) in this fashion, using thesBefunction expansion for small

arguments and retaining the dominant real part, then yields

W///HE 23—404F(lu)4 y

F(n, ki, ko, ks) =F (1., k1, ko, k3) + B %0 (2.161)
20 |, _al/m) | e (k)
{3(M — %) [1 21 ] (n/n+) } Lk

The first term on the right-hand side is the non-Gaussianityudbble exit and it can only
be computed numerically. The second term represents th&aossianity generated at late
times during inflation, when the large-scale local term dwates over the finite Hubble-
crossing term.

Now we will show that the large-scale local contributionhe non-Gaussianity of Egs.
(2.160) and (2.161) can be derived by solving the equationaiion of the field perturbation
on large scales. The nonlinear evolution of the field fluetunais derived by taking the large-
scale limit|kn| — 0 in Eq. (2.105) for the free-fieldx; and Eq. (2.149) for the nonlinear

dx. This leads to the equations

OXne + 3HOX i + mj Oxmx =0, (2.162)

OX + 3HO Xy + mj, 6xx = Sk, (2.163)

where the source on the left-hand side is given in terms diitlear solution,

"

Sk = — 5 (Ox1*0X1)k, (2.164)

and wherex denotes the convolution operation. The growing solutiothefhomogeneous

Eqg. (2.162) is

X () = 5X1k(77*)(|k77|)g_u- (2.165)
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Only in the massless limit is this constant. One can find thatiem of the inhomogeneous

equation by using the method of variation of parameterschiviields

xic(n) = Oxa () (k)2 + {(le)‘%” / " dnfa(el) (enl) 4 Si)

2uH,

(2 [ dn'a(n')(Iknl)‘§+“5k(n')] | (2.166)

Using the source (2.164) with Eq. (2.165) and integratingr@onformal time, one ob-

tains

"

() = 0xac(ne) (1kn )™ + s F (/0 01 () % Oxr(0)]ic (2.167)
where
L1 —2a3 n f =
fy =1 (1 —2%) + In(x) or u=3/2, (2.168)
st (1= ga® %) = Jhame for 1/2.< u<3/2,

We can now use Eg. (2.167) to compute the bispectrum fronefisitdon (2.157). In terms

of the power spectrum of the field perturbation, this is

nmn

3H?2

F(n; ki, ko, ks) = F(na; b, b, ks) + == f(n/n.) Y Py, ki) P(n, k), (2.169)

1<J

which correctly reproduces the large-scale contributithé non-Gaussianity in Eqgs. (2.160)
and (2.161). Note that, in the limit — 3/2 anda — 0, the large-scale expression for a
massive field converges to the massless case, as can bedlyctaking this limit in the

lower expression on the right-hand side of Eq. (2.168) amtus

73(55 goo ol S+ 0(a?), (2.170)
v =exp|[—aln(r)] — 1-—aln(z)+ O(a?). (2.171)

In summary, at late times the non-Gaussianity of the fieldomidated by the nonlinear
evolution on large scales and thus the bispectrum of the fietturbation is of the local

form, i.e. proportional to the product of two power specBad Sec. 1.3 for the definition
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of triangulation of the bispectrum). In the massless caseyhich n = 3/2, the power
spectrum of the field fluctuation is constant while the bispso grows adn(a). In the
massive case, however, the power spectrum decaysZ4sand the bispectrum decays as
a3, thus ‘growing’ asa® with respect to the product of two power spectra. This redati
growth is important for the non-Gaussianity in the curvatggthanism, as can be seen from
EqQ. (2.134). The curvaton case will be discussed below irerdetail.

Before making contact with curvature perturbations, leextend the solution (2.167)
and consider the evolution of the non-adiabatic pertuoibatin a radiation-dominated era.
This applies once inflation has ceased and the inflaton fieddbban thermalised, but before
the isocurvature perturbation is converted into an adialoaie.

During the radiation dominated er&, = (2¢)~! and the field perturbation evolves on

large scales according to
. 3 . )
OXnc + §5X1k +m5, oxmk = 0, (2.172)
. 3 .
OXic + 570X+ M5 X = Sic (2.173)

The growing mode of the homogeneous equation is a Bessefidanof the first kind.J

[Langlois & Vernizzi, 2004],

m J1/4(m5xt)
BTG (mad)

OX1k(t) = O X1k (tren) (2.174)

For ms,t < 1, well before decay, the growing mode is constant. Indeedsdlying

Eq. (2.173) at lowest order ims, ¢, we find*

7 Jyalmet) WO 2
- (217
25T (3/4) (mayt)'/* 10m§x(m5xt) a0 O (2479

Xk (t) = 0Xic(tren)

This result shows that the isocurvature fluctuation comnits nonlinear evolution through-
out the radiation era. We will use this result in the contéx ourvaton field to account for
the consequences of considering a nonlinear source in spedirum of the field and then

compute the corresponding non-Gaussian paranfgter

“This result is in agreement with Enqist & Nurmi [2005] whéine computation considered a general nonlinear poten-
tial up to orderO ((msyt/2)%).
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2.5.4 The curvaton

The curvaton is an alternative inflationary mechanism teegate the matter density fluctu-
ations [Mollerach, 1990; Linde & Mukhanov, 1997; Enqvist &, 2002; Lyth & Wands,
2002; Moroi & Takahashi, 2001]. This is achieved without @@ipg to the perturbations
in the original inflaton field. Instead, an auxiliary 'curgat field, subdominant during in-
flation, generates isocurvaure fluctuations which tramsfioto adiabatic ones after the in-
flationary phase, during the decaying oscillations of theaton field. During inflation, the
isocurvature field presents a negligible contribution ®é¢hergy density. After inflation the
field still plays no significant role in the background evalatas long as its mass, is neg-
ligible compared to the Hubble parameter. However, cm@ez H?, the curvaton field starts
oscillating at the bottom of its potential. At this stage pogential can be approximated as
guadratic. The energy density of the field decays during skeélations like a non-relativistic
componentf, « 1/a®). The curvaton then contributes significantly to the eneleysity of
the universe and the curvaton fluctuations are transformecdhidiabatic matter fluctuations
(for the simplest version of this mechanism see Bartolo 8&dlad2002]).

We can write the number of e-folds of expansion in terms of/tilae of the fieldy:

1 .
N(tdeca tin) =_-In (pxi) s (2176)
3 deec
where
1 2. 2 1 2. 2
Pxin = émxxin7 Pxdec — §mXXdec7 (2177)

are the energy densities of the curvaton at the onset of ttikadi®ns (on a flat slicing) and
at the moment of decay (on a uniform density slicing), respely.

The non-Gaussianities generated by the curvaton mechdrasenbeen studied in sev-
eral papers. In the following we consider and combine allibgsible effects, including the
intrinsic non-Gaussianity of the curvaton field fluctuataord the nonlinear relation between
the curvature perturbatiahand the curvaton fluctuation. The intrinsic non-Gaussyawiit
the curvaton can be generated inside and outside the Hudodtilesrdue to its nonlinear po-

tential. In particular, as discussed later in this sectiva,take into account the nonlinear
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evolution during both inflation [Bernardeau & Uzan, 2003|déariaga, 2004] and the radi-
ation epoch [Enqvist & Nurmi, 2005; Lyth, 2004].

In order to computé€ and its n-point functions, one can follow two equivalentqadures:

1. Expand the perturbed number of e-fold§ on an initial flat slice at the onset of the
oscillations { = t;,), in terms of the field fluctuation® (¢, ), and then use Egs. (2.169)

and (2.175) to introduce the three-point correlators ofigld fluctuations.

2. Expand the perturbed number of e-fold§ on an initial flat slice at Hubble cross-
ing (¢t = t.) in terms of the field fluctuationy(¢;,) and then take into account the
nonlinear relation between the field fluctuationt at ¢;, and the one at = ¢, using

Egs. (2.167) and (2.175).
We will follow the latter procedure, which has been used mrist of the literature on the
curvaton. We write, as in Eq. (2.129)

1
¢ = Na0x(t) + 5Ny, OX° (1), (2.178)

whereN is given by Eq. (2.176).
In general, as we have seen in the previous sectigns a nonlinear function of the field

value at Hubble exit, and we parameterise this dependentgelfynctiong(x(¢.)) and its

derivatives:
9 =Xo(tin), (2.179)
(n)
g n
OX(tn) =) | “0X" (L), (2.180)
n=1

Usinga%* = g’a% and Eq. (2.177), one can differentiatein Eq. (2.176) to obtain

2q
N, ==-2C 2.181
)Xk 3 g ? ( )
where the prime denotes here a derivative with respegt tmnd
dlnp 3p
C=1— L2 e o, IPx (2.182)

alnﬁXin - 4ﬁ_ﬁX dec’
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wherep is the unperturbed total energy density. Here we have takeifarm p4.. assuming
that the radiation is unperturbed. Also, to arrive at thedasiality we usedp, .. /p,,. )" =
[(pdec - deec)/(pin - ﬁXin)]1/4'

To compute the power spectrum we neglect the evolution duhie radiation dominated

era, and from Eq. (2.167) we obtajfy g = (|kn|)*, which yields
4 2
Pe(t, k) = GC Pyt k). (2.183)

The spectral index is given by Lyth & Wands [2002] as

H
n,—1= Qﬁ = 2a, (2.184)

where Eq. (2.142) implies

2

o~ ox g, (2.185)
3H?

If o is not too small, the spectrum can be extremely blue andghiged out by observations

[Komatsu et al., 2008]. Differentiatingy in Eq. (2.176) once more yields

3 gg//
_ 2
Noyox. = N3, [% (1 + ) 2-C|. (2.186)

If we neglect the non-Gaussianity of the field fluctuationsdabble crossing, which are
subdominant with respect to the ones accumulated duringuper-Hubble evolution, and

the definition (2.134) gives

5 99" 5 5C
f =16 (1 + ) — 2= (2.187)

We have arrived to a well known result obtained without asagra dominant contribution
of W in the perturbation equations [Bartolo et al., 2004; Lyth &dRguez, 2005b; Sasaki
et al., 2006].

By comparing the above equation with the nonlinear evotugiven by Egs. (2.167) and
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(2.175), and stopping the nonlinear evolution of pertudretwhen the field starts oscillating

att ~ 1/ms,, the non-Gaussianity in the curvature perturbation besome

5 Xo inW & mgx 1 5 5C
-2 1 /) — = )| =2 - 2= 2.188

where the functiory has been defined in Eq. (2.168). At late timggan be approximated

by

—AN for cAN <1,
S (een /1) = (2.189)

—éeaAN for aAN > 1,
where we have used Eq. (2.185) ahd = N,.,, — N, =~ 60 is the number of e-folds between
Hubble crossing and the end of inflation.
Note that our result, Eq. (2.188), can also be obtained bypaimg the field bispectrum
from the isocurvature field evolution during radiation daation Eq. (2.175). In this context,

the field bispectrum is given by

Ww®)
F(ti ki, ko, k) = Fteens kuo ko ks) — —5 Y P(n. ki) P(n, k), (2.190)
5m5x i<j
which clearly evolves with time before the decay of the ctoma This non-Gaussianity is
transferred to the curvature correlation by expanding #reupbed number of e-foldgV on
an initial flat slice taken at the onset of the oscillations- ¢;,,). Then we can writ€ = 0N
in terms of the field fluctuationsy (¢,) as in Eq. (2.129). With the aid of Egs. (2.169) and
(2.190), we then replace the three-point correlators ofigié fluctuations in the curvature

perturbation bispectrum. Our result in Eq. (2.188) is tlecovered.

2.6 Model discrimination through observations

In its simplest version, the curvaton model proposes arursature field whose quantum
fluctuations reproduce the spectrum of curvature fluctnatwe observe in the CMB. Fixing
the required perturbation amplitude and spectral indeosep important restrictions on the

possible values of. Additionally, the non-Gaussianity of the curvaton coudshstrain the
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parameter space further.

As an example, let us consider a curvaton with bare mgss H, and nonlinear poten-
tial W = $7x?, such thainj, ~ W" = x, .M andW” = M. Note that the negligible mass
in this case allows for a scale-invariant power spectrunménfield fluctuations and conse-
guently the curvature perturbations. For simplicity westgl ... ~ o «, Which is consistent
with neglecting the nonlinear potential in Eq. (2.138)hc& this would only contribute a

term of orderO(a?). When the nonlinear coupling is very small, Eq. (2.188) meduto

1 5 5 5C
== (1--aAN) - - = < ANT! 2.191
fNL C ( 40( ) 3 6 ) ax ) ( )
and the intrinsic non-Gaussianity of the curvaton field gi@enegligible contribution to the

total non-Gaussianity in the curvature perturbation. Hevewhen the nonlinear coupling

is important, the nonlinear parameter is

AN~ < a. (2.192)

Y

5C
6 )

wW | Ot

It = é <1 — Zexp (aAN)) —

In this case the intrinsic non-Gaussianity of the curvatan be the main source of non-
Gaussianity in the curvature perturbation. For exampléh \%@H—y ~ (0.07 andC = 1, one
finds fxr, >~ —100, which is within reach of current and future experiments.weeer, in
this case, if the curvaton is the only field responsible fa tlrvature perturbations, the
spectral index of scalar fluctuations will be largely bluisTis in disagreement with current
observations and is therefore excluded.

Let us finally consider the special case in which the curvaarot responsible for the
linear fluctuations observed by CMB and large-scale streghuobes. Using the same po-
tential as in the example above, this case constrains tbdna in Eq. (2.182) to be small,
as the contribution to the curvature power spectrum is ollatt by this parameter (see
Eg. (2.183)). On the other hand,can take large values without violating constraints on
the power spectrum, which is dominated by the inflaton pbations. As for second order
perturbationsyy, is still given by the formula (2.192) and can be large due &fteedom
in the mass and the small value@f This happens at all scales and the non-Gaussianity is

induced through the evolution of fluctuations on superfwrizcales.
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It is important to note that, in this case, the blue spectréith® curvaton perturbations
may dominatéP, at small scales. If this happens, and if the perturbations Baough power
on small scales, a significant amount of PBHs would be pratlutethis special case, as
in many other versions of inflation, an important constraintthe model comes from the

probability of PBH formation as we will study in the follongrchapters.



Chapter 3

Statistics of non-Gaussian fluctuations

3.1 Introduction

In the inflationary paradigm, the prediction that the speutof fluctuations should exhibit
Gaussian statistics has recently been challenged. Thilicion follows from the fact that
the curvature perturbation, which commonly refers to the@aing curvature perturbation
defined in Eq. (2.43), is treated as a free field during inflgtio

3
R(t,x) :/% R(t, k)e™™, (3.1)

where there is no coupling between tRé¢, k) for differentk. With this understanding,
Eq. (3.1) means thak does not interact with either itself or any other particle@ps in
the universe. The real-space figRlt, x) is obtained by summing an infinite number of
independent, identically distributed, uncorrelated ketcirs. Under these circumstances the
Gaussianity ofR (¢, x) follows from the central limit theorem [Bardeen et al., 1P&6ven
reasonable assumptions about the individual distribstairtheR (¢, k). The exact form of
the distributions of th&k (¢, k) is mostly irrelevant for the inflationary density pertutibas.

In conventional quantum field theory, all details®fand its interactions are encoded in
then-point correlation functions oR, written as(out|R(¢1,x1) - - - R(tn, X,,)|in). Working
in the Heisenberg picture, where the operators carry tirpemnidence but the states
{|in), |out)} do not, these functions express the amplitude for the egmlg-vacuum|in)

to evolve into the late-time vacuumout) in the presence of the fieldR(¢;,x;). Given

78
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the n-point functions for alln at arbitraryx and¢, one can determin® (¢, x) [Streater &
Wightman, 2000], at least in scattering theory. In the cantéd the inflationary density
perturbations, these vacuum evolution amplitudes are mettty relevant. Instead, one
is interested in the equal time expectation val{iesk (¢, x;) - - - R(t, x,,)|in), which can be
used to measure gravitational particle creation out ofithe-independent early vacuum)
during inflation. These expectation values are calculagdguthe so-called ‘closed-time-
path formalism’, which was introduced by Schwinger [19&Hge also Calzetta & Hu [1987];
Jordan [1986]; DeWitt [2003] and Hajicek [1979]. In thisfmalism there is a doubling of
degrees of freedom, which is also manifest in finite tempeeatalculations [Le Bellac,
2000; Rivers, 1988]. This method has recently been usednéey, 2005, 2006; Sloth,
2006; Seery, 2008] to extend the computation of the coregldtinctions ofR to beyond
tree-level.

Knowledge of the expectation values&fin the statdin) is sufficient to predict a large
number of cosmological observables, including the powectspm of the density perturba-
tions generated during inflation [Guth & Pi, 1982; Hawkin§82], and the two- and three-
point functions of the CMB temperature anisotropies [Hu &fyama, 1995; Hu, 2001;
Komatsu & Spergel, 2001; Kogo & Komatsu, 2006; Okamoto & H0Q2, Babich et al.,
2004; Babich & Zaldarriaga, 2004; Babich, 2005; Liguori ket 2006; Cabella et al., 2006;
Creminelli et al., 2006]. Because they are defined as exp@ctealues in the quantum vac-
uum, these observables all have the interpretation of enlgeamerages, as will be discussed
in more detail below.

On the other hand, one sometimes needs to know the progabditfluctuations of some
given magnitude occur in the curvature perturbatfofPress & Schechter, 1974; Bardeen
et al., 1986; Peacock & Heavens, 1990]. This is not a queationt ensemble averages, but
about the probability measure on the ensemble itself. Asaltresuch information cannot
easily be obtained from inspection or simple manipulatibtine n-point functions.

For example, if we know by some a priori means tRais free, then the argument given

above, based on the central limit theorem, implies that gtpositionx, the probability
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density of fluctuations ifR of amplitudep must be

P(0) ~ — -z (3.2)
o= 2ro P\ 202 .
where the variance iR is

o = (R(t,%)2) = / dln k Pr (k). (3.3)

The quantityPr (k) is the dimensionless power spectrum, which is defined ingexfithe

two-point function ofR, calculated from the quantum field theory in-vacuum:

(in[R(t, ki) R(t, ko)[in) = (27)°5 (k1 + k2)2ki37372(/f1)- (3.4)

1

This is the only relevant observable, because it is a stdnpiaperty of free fields that

all other non-vanishing correlation functions can be espee in terms of the two-point
function (3.4), and hence the power spectrum. Those expressan be achieved through
a generalisation of Wick’s theorem using an equal-time raondering [Luo & Schramm,

1993]. In practice, in order to give a precise meaning to)(3t2would be necessary to
specify what it means foR to develop fluctuations of amplitude and whether it is the

fluctuations in the microphysical fiel® or some smoothed fiel® which are measured.
These details affect the exact expression (3.3) for thewmee ofo.

The average in Eq. (3.4), denoted fiy| - - - |in), is the expectation value in the quantum
in-vacuum. To relate this abstract expectation value teweald measurement probabilities,
one introduces a notional ensemble of possible univer§edjioh the present universe and
the density fluctuations that we observe are only one peassallisation (e.g.,Lyth [2006]).
However, for ergodic processes, we may freely trade enseavierages for volume averages.
The ergodicity of a system refers to that property of proeg$fy which the average value of
a process characteristic measured over time is the same asdhage value measured over
the ensemble.

If we make the common supposition that the inflationary dgnserturbation is indeed

ergodic, then we expect the volume average of the densitjuition to behave like the
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ensemble average: the universe may contain regions wheruttiuation is atypical, but
with high probability most regions contain fluctuations lwibot-mean-square amplitude
close too. Therefore the probability distribution on the ensembléjol is encoded in
Eqg. (3.4), translates to a probability distribution on stheal regions of a determined size
within our own universe.

In order to apply the above analysis, it is necessary to kmoadvance thar is a free
field. This knowledge allows us to use the central limit tle@orto connect the correlation
functions ofR with the probability distribution (3.2). The situation ing real universe is not
so simple. In particular, the assumption that during inrdla&k behaves as a free field, and
therefore that the oscillatofR (k) are uncorrelated and independently distributed, is only
approximately correct. In factR is subject to self-interactions and interactions with the
other constituents of the universe, which rkbmodes. Consequently, the oscillat@®sk)
acquire some phase correlation and are no longer indeptydeéstributed. In this situa-
tion the central limit theorem gives only approximate imf@tion concerning the probability
distribution of R(x), and it is necessary to use a different method to connectotttelation
functions of R with its probability distribution function (PDF).

In this chapter we give a new derivation of the PDF of the atagé of fluctuations in
R which directly connect®(p) and the correlation function§R (k) - - - R(k,)), without
intermediate steps which invoke the central limit theoremtber statistical results. When
the inflaton is treated as a free field, our method reprodusegamiliar prediction (3.2)
of Gaussian statistics. When the inflaton is ‘not’ treatech dsee field, the very signifi-
cant advantage of our technique is that it is possible tactyrealculate the corrections to
P(o). Specifically, the interactions @ can be measured by the departure of the correlation
functions from the form they would take ® were free. Therefore, the first corrections to
the free-field approximation are contained in the threevpioinction, which is exactly zero
when there are no interactions.

The three-point function for single-field, slow-roll inflah has been calculated by Mal-

dacena [2003], whose result can be expressed in the formy{&dddsey, 2005a]

(R(k1)R(ky)R(ks)) = 4m*(27)°6 ( Z k;) WA(/% ko, ks3), (3.5)
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where A is Maldacena’sA4-function divided by two [Maldacena, 20083] 75R2 measures
the amplitude of the spectrum when thkecrossed the horizon. (For earlier work on the
derivation of the three-point-function, see Falk et al.93pP Gangui et al. [1994]; Pyne
& Carroll [1996]; Acquaviva et al. [2003].) This result hasiee been extended to cover
the non-Gaussianity produced during slow-roll inflatiorthnan arbitrary number of fields
[Maldacena, 2003; Seery & Lidsey, 2005a; Creminelli, 2008h & Rodriguez, 2005a,b;
Lyth & Zaballa, 2005; Zaballa et al., 2006; Vernizzi & Wan@§06], preheating [Engvist
et al., 2005b,a; Jokinen & Mazumdar, 2006], models wheraltminant non-Gaussianity
is produced by a light scalar which is a spectator duringtiofigBoubekeur & Lyth, 2006;
Alabidi & Lyth, 2006b; Lyth, 2006], and alternative modetsolving a small speed of sound
for the inflaton perturbation [Seery & Lidsey, 2005b; Alisiitza et al., 2004; Calcagni, 2005;
Arkani-Hamed et al., 2004; Creminelli, 2003].

For single-field, slow-roll inflation, the self-interactie of R are suppressed by powers
of the slow-roll parameters. This means that the corre¢ctdbaussian statistics is not large.
In terms of thed-parametrised three-point function (3.5), this is most swnly expressed

by writing, in an equivalent form tqQ in Eq. (2.131)

R(tx) = Ralt,x) = &, (R %) — (RE(52)) 36)
with
au = _%Z%lk?’ = O(esr; 7sR) (3.7)

giving the relative contribution of the non-Gaussian piec® andR; being a Gaussian ran-
dom field [Komatsu & Spergel, 2001; Verde et al., 2000]. (Nt there are differing sign
conventions forfyy, [Malik & Lyth, 2006], here we stick to that used by the WMAP ted In
models with more degrees of freedom, much larger non-Ganisigis are expected, perhaps
with fxi, ~ 10 [Rigopoulos & Shellard, 2005; Rigopoulos et al., 2006bQ0 7, Boubekeur
& Lyth, 2006; Lyth & Rodriguez, 2005b; Vernizzi & Wands, 2006f the inflationary per-

5In Maldacena’s normalisation, the numerical prefactor in €.5) is not consistent with the square of the two-point
function, Eq. (3.4). We choosd so that the prefactor becomds?(27)®. This normalisation of Eq. (3.5) was also
employed by Seery & Lidsey [2005b,a], although the distorcfrom Maldacena’sd was not pointed out explicitly.
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turbation has a speed of sound different from unity, thegdaron-Gaussianities may also
appear (e.g. Seery & Lidsey [2005b]; LoVerde et al. [2008Fhough in this case it is diffi-
cult to simultaneously achieve scale invariance. The atiwbservational constraint, as we
mentioned in Chapter 2, is of ordgfvr,| < 100. In the absence of a detection, the forthcom-
ing PLANCK mission may tighten this constraint tf;,| < 3 [Komatsu & Spergel, 2001;
Liguori et al., 2006].

Non-Gaussian PDFs have been studied previously by sevehaira. The closest analy-
sis to the method developed in this chapter comes from Megaret al. [2000], who worked
with a path integral expression for the density fluctuatiorosthed on a scal& (which
they denoted byd’). Also, the analysis of Bernardeau & Uzan [2002, 2003] hases fea-
tures in common with our own, being based on the cumulantrgéng function. Moreover,
the expression for the probability density in those papemxpressed as a Laplace trans-
form. Our final expression, Eq. (3.70), can be interpreted Bsurier integral, viz (3.15),
which (loosely speaking) can be related to a Laplace integaa Wick transformation. De-
spite these similarities, the correspondence betweemtharalyses is complicated because
Bernardeau & Uzan [2002, 2003] work in a multiple-field pretand calculate a probability
density only for the isocurvature fields’, which acquires its non-Gaussianity via a mixing
of isocurvature and adiabatic modes long after horizon exivhich particular cases were
presented in the Chapter 2. This contrasts with the sitmatithe present chapter, where we
restrict ourselves to a single-field scenario and compwe>F for the adiabatic mode.
This would be orthogonal tés in field space and its non-Gaussianity is generated exactly a
horizon exit.

In the older literature it is more common to deal with the digrfiuctuations, measured
on comoving slices, rather than the curvature perturbaoror slowly varying fields, on
scales larger than the horizoR, andJ, can be related in the comoving gauge via Eq. (25)

of [Lyth, 1985]:

aH\’ 3 1\
§ = — (24— 3.8
<k) ’ <2+1+w) R, (3:8)
to first order in cosmological perturbation theory for a heopic fluid. (One may use the

ON formalism to go beyond leading order as in Chapter 2, but tainkresults valid on
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sub-horizon scales one must use the full Einstein equats®es e.g., Langlois & Vernizzi
[2005b,a].) For fluctuations on the Hubble scg@le~ aH ), this meansR| ~ J,, SOR pro-
vides a useful measure of the density fluctuation on suclescBl virtue of this relationship
with the density fluctuation, the probability distributi¥o) is an important theoretical tool,
especially in studies of structure formation. For examifilés the principal object in the
Press—Schechter formalism [Press & Schechter, 1974]. Asultythere are important rea-
sons why knowledge of the detailed form of the PDFop&nd not merely the approximate
answer provided by the central limit theorem, is important.

Firstly, large amplitude collapsed objects, such as prihabiblack holes (PBHs) natu-
rally form in the highy tail of the distribution [Carr, 1975; Carr & Hawking, 1974%uch
large fluctuations are extremely rare. This means that al simahge in the probability den-
sity for || > 0 can make a large difference in the mass fraction of the uséverhich
collapses into PBHs [Bullock & Primack, 1997; lvanov, 199Bhus one may hope to probe
the form of the PDF for using well-known and extremely stringent constraints orHPB
formation in the early universe [Carr, 2003; Carr & Lidse993B; Green & Liddle, 1997; Za-
balla et al., 2007; Josan et al., 2009]. The correctionsutatied in this chapter are therefore
not merely of theoretical interest, but relate directly tiservations, and have the potential
to sharply discriminate between models of inflation.

Secondly, as described above, although the non-Gausssapibduced by single-field,
slow-roll inflation are small, this is not mandatory. In m&lehere non-Gaussianities are
large, it will be very important to account for the effect admGaussian fluctuations on
structure formation [Verde et al., 2000; Matarrese et &IQ@ Verde et al., 2001; Verde &
Heavens, 2001]. The formalism presented in this chaptetiges a systematic way to obtain
such predictions, extending the analysis given by Matare¢sl. [2000].

The outline of this chapter is as follows. In Section 3.2 waobthe probability measure
on the ensemble of possible fluctuations. This step depamtiseocorrelation functions of
R. In Section 3.3, we discuss the decompositiorRointo harmonics. This is a technical
step, which is necessary in order to write down a path intdgraP(p). First, we Fourier
decompos&®. Then we write the path integral measure, and finally we gipeeaise speci-

fication of o, which measures the size of fluctuations. We distinguishihteresting cases:



3.2: The probability measure on the ensembl&of 85

a ‘total fluctuation’o, which corresponds t& (or approximately),) smoothed over regions
the size of the Hubble volume; and the ‘spectrdpy( k), which describes the contributions
to o from regions of the primordial power spectrum around théesdgascribed by wavenum-
berk. In Section 3.4 we evaluai® o). We give the calculation for the Gaussian case first, in
order to clearly explain our method with a minimum of teclahidetail. This is followed by
the same calculation but including non-Gaussian correstwhich follow from a non-zero
three-point function. In Section 3.5 we calcul&,(k)|. Finally, we summarise our results

in Section 3.6.

3.2 The probability measure on the ensemble oR

Our method is to compute the probability measBiri] on the ensemble of realisations of
the curvature perturbatioR(x), which we define to be the value &(¢, x) at some fixed
timet. This probability measure is a natural object in the Scim@er approach to quantum
field theory, where the elementary quantity is the wavefonet ¥, [R], which is related to
P;[R] by the usual rule of quantum mechanics, thgR] « |¥,[R]|>. Once the measure
P,[R] is known, we can directly calculate (for examplg) o) by integrating over alR that
produce fluctuations of amplitude Although the concept of a probability measureRn
may seem rather formal, the Schrodinger representatiguahtum field theory is entirely
equivalent to the more familiar formulation in terms of a kepace. This representation is
briefly discussed, for example, by Polchinski [1998] ands®ig1996]. A brief introduction
to infinite-dimensional probability measures is given byoélerio et al. [1997]. Indeed,
a similar procedure has been discussed by Ivanov [1998], ecalculated the probability
measure on a stochastic metric variafl¢x) which can be related to ot (x). Although
the approaches are conceptually similar, our method istantislly different in detail. In
particular, the present calculation is exact in the senaewle make no reference to the
stochastic approach to inflation, and therefore are nogetlto introduce a coarse-graining
approximation. Moreover, Ivanov’s analysis appeared teefioe complete non-Gaussianity
arising fromR-field interactions around the time of horizon crossing hadrbcalculated

[Maldacena, 2003], and therefore did not include this ¢ffec
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3.2.1 The generating functional of correlation functions

The expectation value§R(x,) - - - R(x2)) in the vacuum/in) at some fixed time can be

expressed in terms of a Schwinger—Keldysh path intégral,

(R(t,x1) - - R(t, %)) =

[in)

/ [AR_dR,FH RN R 4 ) R (2, %) exp (i TR, —1T™ [R_]> .

(3.9)

Here [dR.] is the integrand of the path integral ovRr In cosmology we are generally
interested iNR evaluated at different spatial positions on the sarskce, so we have set all
thet equal in (3.9). The path integral is taken over all fieRlgvhich begin in a configuration
corresponding to the vacuujim) at past infinity. The correlator is equal to the expectation
value of three copies @R at timet so we require two path integrals: the first integrét . |
evolves the vacuum statim) from past infinity to the stat® , (¢, x) at timet¢ where then
copies of the fieldR are averaged, and a second path intelgfi@l_| which will project back
the average to the vacuum state through a second functictegral . Z(™ [R] is the action
for the fluctuationR, which is computed perturbatively to orderin R when we want to
compute correlations of the same order. For exanfiﬁi‘é[,R] is given to third order irk by
Maldacena [2003] in the context of slow-roll inflation and $gery & Lidsey [2005a,b] in
the inflationary models where the kinetic energy is not mgiglé. The actiory (™) [R] is time
ordered for the argumefR _ and anti-time ordered foR .. (For details of the Schwinger—
Keldysh or ‘closed time path’ formalism, see Calzetta & H8§Z]; Jordan [1986]; Weinberg
[2005]; Le Bellac [2000]; Hajicek [1979]; Rivers [1988].)

An expression equivalent to Eq. (3.9) can be given in ternteefequal time’ generating

functional

Zla) = [1R) [aR R[50 (3.10)

exp (i ITMWR] —1IM[R_] +i/

p

Fa R ).

®Henceforth, we use the notatign - ) to mean expectation values in the in-vacuum, and no longé {i) explicitly
where this is unambiguous.
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where g is some arbitrary source field, also known in the theory ofcgpdunctions as
the formal argument of the generating functioh,; is a spatial slice at coordinate time
t. The equal-time correlation functiod® (¢, x;) - - - R(t,x,)) are recovered fron¥;[q] by

functional differentiation,

(R(t,x1) - R(t,x,)) = il"cSq((le) e 5(]((;”) In Z;[q] N (3.11)

Up to normalisation, this is merely the rule for functionalTor coefficients, so it is straight-

forward to invert Eq. (3.11) fo#;[q|. We obtain

Zilq) = exp { i ;—n' / . -/d%l o dPay, q(x1) - q(x0) (R(E, %) - - -R(t,xn))}.
- (3.12)

Eq. (3.10) for the generating functional can be rewrittea suggestive way. We define

the wavefunctional at timeas

|in)

,[R] = / ARIEY =) exp (1 209[R)) (3.13)

This definition is simply the functional generalisation bétfamiliar guantum-mechanical
wavefunction. It expresses the amplitude for the figld, x) to have the spatial configura-
tion R(x) at timet, given the boundary condition th& started in the vacuum state in the

far past. In terms o¥,[R], the generating functional can be rewritten as

P

Z0d = [10R wIRI W Rl exp (i [ R<x>q<x>) _ | WRE« PR, (3.14)

where a tilde denotes a (functional) Fourier transform, jadenotes Hermitian conjugation.
Eqg. (3.14) implies that,[q] is the complementary function for the probability disttion
P;[R] [Albeverio et al., 1997], which can formally be obtained hyeérsion ofZ;[q]. Hence,

up to an overall normalisation,

PRI o [lag) exp (i [ @ RO0)) 2] (3.15)
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The normalisation is not determined by this procedure. Wefiwithe R-independent pref-
actor, which correctly normalises the PDF, by requiriidoP(¢) = 1 at the end of the
calculation. For this reason, we systematically drop altlfiadependent prefactors in the

calculation that follows.

3.2.2 The probability density on the ensemble

So far, all our considerations have been exact, and applarigrquantum fieldR (¢, x).
For any such field, Eq. (3.15) gives the probability densityd spatial configuratioR at
time ¢, and implies that to obtaif;|R] we need to know all such functions for altpoint
correlations and at all spatial positiorsIn practice, some simplifications occur whgnis
identified as the inflationary curvature perturbation.

The most important simplification is the possibility of a fpebative evaluation. The
dominant mode of the CMB fluctuation is constrained to be Giango high accuracy, so the
non-Gaussian corrections to the leading order cannot ge.lavioreover, the amplitude of
its spectrum is constrained by CMB observations. Spedyica mentioned in Section 1.2,
in the range of wavenumbers probed by the CMB, the spectrm;rmtn\apalitudeP;Q/2 ~ 1077,
Each higher-order correlation function is suppressed bynereasing number of copies of
the spectrumPx (k), as we have shown in Chapter 2.

Provided the amplitude dPx is small, it might seem reasonable to truncate the expo-
nential in Eq. (3.15) for a given and to work with a perturbation series’h However, this
simple approach is too naive, because the integralsgoesntually make any given term in
the series large, and this invalidates simple perturbatigaments based on power-counting
in Pr. The perturbation series can only be justifeegosteriori a point to which we will
return in Section 3.4.2.

We work to first-order in the three-point correlation, trgtwe consider non-vanishing

two and three-point correlators in Eqg. (3.12),

zlg) = ep{ -5 [ [ @ria atxi)ae) (Ritx)R(Ex2) (3.16)

_%///d3x1d3$2d3$3 Q(Xl)Q(X2)Q(X3)<R(t7Xl)R(t’Xz)R(t’XB»}
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This generating functional is introduced in the expresdienved for the probability, Eq. (3.15),
for which we expand the exponential third order term(ir) in power series to lowest order.

We finally arrive to the product

B[R] / (dg] Telglenla; R, (3.17)

whereY[¢] andw[q; R] are defined by

i [ A3k d3ky d3ks
tdal = (1- ¢ [ EEEEE gt R 0R( k)R ) ).

(3.18)

and

iRl = (- [ S R k)R k) - [ G5 a9

(3.19)

The expression fow, gives rise to the Gaussian part of the POHs of the form1 plus a
correction which is small when the perturbative analysigigd. Higher-order perturbative
corrections inPz can be accommodated if desired by retaining higher-ordergen the
power series expansion of the exponential in (3.15). Tleeebur method is not restricted
to corrections arising from non-Gaussianities describethlee-point correlations, but can
account for non-Gaussianities which enter at any orderarcthrelations ok, limited only
by the computational complexity. However, in this chapteg, work only with the three-
point non-Gaussianity.

We now complete the square fof[q; R] in (3.19) and make the finite field redefinition

R(k

000 = (k) = alK) + (2P

(3.20)

where the prime ifR (¢, k)R (¢, —k))" indicates that the momentum-conservatiefanction
is omitted. The measureq] is formally invariant under this shift, giving|[dg] = [[dg],

whereasv,[¢; R] can be split into aR-dependent piece, which we c&ll[R], and a piece that
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depends only on but notR,

iRl TR e (=3 [ SO dile) ROREK) ) @21
wherel;[R] is a Gaussian iR,
I,[R] = exp (—% / d®ky BPky (R(t, k1 )R(t, k2))H_ <Rz(al;1i))lj—éz:)_ki)>/) . (38.22)

Eq. (3.17) for the probability density becomes

PRI < TR] [0 Yalenn (-3 [ S dtk)ila) R OR( 1) ).

2
(3.23)

One can easily verify that this is the correct expressiamesif we ignore the three-point

contribution (thus settind’; = 1), one recovers (after applying a correct normalisation)
[ 4RI ROOR()TR] = (R kR Ke) (3.24)

The remaining task is to carry out thentegrations inY’;. The only terms which contribute
are those containing an even powerdfsince any odd function integrated againsf’
vanishes identically. In the expansion[df ¢(k;) in terms ofg, there are two such terms:
one which is quadratic ig, and one which is independent @f These are accompanied by
linear and cubic terms which do not contributetdR]. For any symmetric kerné{ and

vectorsp, q € R™, one has the general results [Rivers, 1988]

Jan e (=5 [ameay seos k) = ek 2 (@25)

/[df] f(p)f(aq)exp (—%/dmxdmy f(x) f(y)K(x, y)) =K' (p,q) (det K) /2
(3.26)

These rules allow us to evaluate thantegrals in Eq. (3.23), giving

P,[R] « I [R] (1 +TOR] + TE”[R]) , (3.27)
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where
TEO)[R] — _% /d3/{31 d3k2 d3k3 <R(t, kl)R(t, kQ)R(t, k3)> H?]gz;)i()ké)(?(l_{i)y )
(3.28)
TOR] = % / Ay Ay s (R(t, ko )R(E, k)R (1, k3)) (3:29)
R(k1)d(k: + ks) + {perms}.

Tl (R(t, k)Rt —ky)

In the last expression we include the possible permutatibtige labels{1, 2, 3} since these
give rise to distinct integrands.

In fact, Tf) is negligible. This happens because the three-point fonatbntains a
momentum-conservatioftfunction, 6(k; + ky + ks), which requires that the vectols
sum to zero in momentum space. [For this reason, it is oftenvknas the “triangle con-
dition”, and we will usually abbreviate it schematically &\).] In combination with the
d-function, §(ks + k3), the effect is to constrain two of the momenta (in this exankl
andk;) to be equal and opposite, and the other momentum (in thimpebeak,) to be zero.
This corresponds to the extreme local or ‘squeezed’ limidlddcena, 2003; Creminelli &
Zaldarriaga, 2004; Allen et al., 2006], in which the bispent reduces to the power spec-
trum evaluated on a perturbed background, which is sourgéldebzero-momentum mode.

Written explicitly, Tf) behaves like

ng) [R] ~

1/M R(ky)d(ky) + {perms}, (3.30)

6) (@np

where we have WritteﬂligoA — ak3, for some known constaant. In particular, Eq. (3.30)
vanishes, provide®(k) approaches zero @s — 0. This condition is typically satisfied,
since by constructioiR(k) should not contain a zero mode. Indeed, any zero mode, if
present, would constitute part of the zero-momentum backgt, and not a part of the
perturbatiorR. Accordingly, Egs. (3.27)—(3.28) wimf) = 0 give P, [R] explicitly in terms

of the two- and three-point correlation functions.
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3.2.3 The smoothed curvature perturbation

The probability density?;[R] o« (1 + TEO)[R])Ft[R] expressed in Eg. (3.23) relates to the
microphysical fieldR (¢, x) which appeared in the quantum field theory Lagrangian. Argive
k-mode of this field begins in the vacuum state at —oc. At early times, the mode is far
inside the horizonK > aH). In this (‘subhorizon’) regime, thk-mode cannot explore the
curvature of spacetime and is immune to the fact that it isdivn a de Sitter universe. It
behaves like a Minkowski space oscillator. At late times,tiode is far outside the horizon
(k < aH). In this (‘superhorizon’) regime, thk-mode asymptotes to a constant ampli-
tude, provided that only one field is dynamically relevantioiyiinflation [Lyth et al., 2005;
Wands et al., 2000]. If we restrict attention to tree-level diagrams, then und&sonable
conditions the integrals which define the expectation \v&abi& are typically dominated by
the intermediate (‘horizon crossing’) regime, wh&e¢k) is exiting the horizonk ~ aH)
[Weinberg, 2005, 2006]. As a result, the correlation fumasi generally depend only on the
Hubble and slow-roll parameters around the time of horizoh e

The simple superhorizon behaviour®Bfmeans that we can treat the power spectrum as
constant outside the horizon. As has been described, ite wipends only on the Hubble
parameter and the slow-roll parameters around the timethieatnode corresponding to
exited the horizon. For this reason, the timat which we evaluate the wavefunctional
U, [R], the generating functiond,|¢] and the PDRP;[R] is irrelevant, provided it is taken to
be late enough that the curvature perturbation on intexgstismological scales has already
been generated and settled down to its final value. Indeedawesimplicitly been assuming
thatt is the time evaluated in comoving slices, so that observersdioes of constant see
no net momentum flux. Becauge is gauge-invariant and constant outside the horizon,
our formalism is independent of how we choose to label théiapslices. The evolution
of R outside the horizon is the principal obstacle involved iteading our analysis to the
multiple-field scenario.

When calculating the statistics of density fluctuationsame given length scaler /&,

one should smooth the perturbation field over wavenumbegeidahank;. To take ac-

"Where multiple fields are present, there will typically beismcurvature perturbation between them: hypersurfaces of
constant pressure and density will not coincide. Underetlvsumstance® will evolve [Wands et al., 2000]. We do not
consider the evolving case in this chapter, but ratherictstur attention to the single-field case where the supébor
behaviour ofR is simple.
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count of this, we introduce a smoothed figtdwhich is related tR via the ruleR(k) =
W(k, kx)R(k), whereW is some window function. The probabilities we wish to caddel
and compare to the real universe relat&Rtoather tharkR. The exact choice of filteyV is
mostly arbitrary. For the purpose of analytical calculasipit is simplest to pick a sharp

cutoff in k-space, which removes all modes withk< k. Such window function is given by
W(k, ki) = O(k — kp), (3.31)

where,O(x) is the Heaviside step function defined in Eq. (2.152). Thisiah of window
function has the disadvantage that it is non-local and lasorly in real space, which makes
physical interpretations difficult. The most common al&ive choices, which do not suffer
from such drawbacks, are (i) a Gaussian or (ii) the so-cattgulhat’, which has a sharp
cutoff in real space. We allow for a completely general ce@€C® function )V, subject
to the restriction thatV # 0 except atk = oo and possibly at an isolated set of points
elsewhere (we will work with more specific forms of the windwction in the following
Chapters 4 and 5). This restriction is made so that theremgamone relationship between
R andR. If this were not the case, it would be necessary to coara@gwver classes of
microphysical fieldR which would give rise to the same smoothed figld

In addition to this smoothing procedure, the path integrastie regulated before car-
rying out the calculation in the next Section. This is acheby artificially compactifying
momentum space, so that the range of available wavenunsbesstricted td: < A, where
A is an auxiliary hard cutoff or ‘regulator’. At the end of thalculation we take\ — oo.
Some care is necessary in carrying out this compactificatiém setR = 0 for £ > A. In
order to maintain continuity d = A, we introduce a 1-parameter family of functions,.
These functions are supposed to satisfy the matching ctong\ig]go Wh(k) = W(k), and
are subject to the restriction/,(A) = 0. (These conditions could perhaps be relaxed.) The

relationship betweeR andR becomes

R(k) = ©(A — kYW (k: ki)R(K) (3.32)

To minimise unnecessary clutter in equations, we frequenuppress thé andk depen-
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dences inV, writing only W(k) with the smoothing scaley and hard cutoff\ left implicit.
Both the Gaussian and the ‘top-hat’ window functions apgnozero asc — oo, and are
compatible with (3.32) in thé — oo limit. In this limit, the final result is independent of
the exact choice ofVy (k, ky).

We are interested in the probability of observing a giveerfit fieldR. One can express

this via the rule [Matarrese et al., 2000; Taylor & Watts, @D0

PR = / [dR] B,RIOR = O(A — k)R], (3.33)

3.3 Harmonic decomposition of the curvature perturbation

In the previous Section, we obtained the probability dgnfsit a given smoothed spatial
configuration of the curvature perturbations. Given thyaibility density, the probability
IP that the configuration exhibits some characteristi®osuch as fluctuations of amplitude
o or a ‘fluctuation spectrum’ of the fori®,(k), is formally obtained by integrating over all
configurations oR which exhibit the criteria which define[Matarrese et al., 2000]. In this
section, we give a precise specification of these critergdo® doing so, however, we exploit
the compactification of momentum space introduced in (3t82)efine a complete set of
partial waves. The smoothed fidRdcan be written as a superposition of these partial waves
with arbitrary coefficients. Moreover, the path integralasgre can formally be written as a
product of conventional integrals over these coefficieHe\king, 1977].

In the following we assemble the necessary formulae for #nggl-wave decomposition.
In particular, we will obtain expressions for the decomposiof R, for the characteristics

andP,(k), and a precise specification of the path integral measure.

3.3.1 Harmonic expansion oR

We expandR(k) in harmonics on the unit sphere and along the radial |k| coordinate:

00 4 00

RI) =D 3 D RE Y (0, 6)0u (k). (3.34)

(=0 m=—{ n=1
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The Y;, (0, ¢) are the standard spherical harmonics on the unit 2-sphénige the v, (k)
are any complete, orthogonal set of functions on the finiterital [0, A]. These harmonics

should satisfy the following conditiofs

1. ¥, (k) — 0 smoothly ast — 0, so that power is cut off on very large scales, and the
universe remains asymptotically FRW with the zero-ma@g, which was used when

computing the expectation valuég - - - R);
2. ¢, (k) — 0 smoothly asi — A, so that the resulting is compatible with Eq. (3.32);
3. (k) should have dimensigni—?], in order that Eq. (3.34) is dimensionally correct;
4. they, (k) should be orthogonal in the measggédk PR (k)W 2(k).

In addition, there is a constraint on the coefﬁcieﬁgﬁl, becauseR (k) should be real in
configuration space and therefore must obey the FourigtyeainditionR(k)* = R(—k),
where an asterisk denotes complex conjugation. If{;}rlneare generically complex, so it is
useful to separate the real and imaginary parts by wriﬁmg: ay, + ib’glln. The condition

thatR is real in configuration space implies

agn = (=1)"*"ay, (3.35)

by = (1) (3.36)

These conditions halve the number of independent coeftgismce the: andb coefficients
with strictly negativen are related to those with strictly positive, whereas for then = 0
modes, thé coefficients vanish if is even and the coefficients vanish if is odd.
Condition 1 is made because, in the absence of this cornistRicould develop un-
bounded fluctuations on extremely large scales, which weendrmalise:(t). Therefore,
condition 1 can be interpreted as a consistency requireragee the inflationary two- and

three-point functions are calculated using perturbatieoty on a FRW background with

8When expanding functions dR® in terms of polar coordinates, a more familiar expansiomlives spherical waves
Zimie < Jo(kr)Yem (0, ¢), whereJ, is a spherical Bessel function. These waves are eigenfunsctif the Laplacian in
polar coordinates, viZVQZm‘k, = —k:Qng‘k,. An arbitrary function oriR® can be written in terms of spherical waves,
which is equivalent to a Fourier expansion. We do not chogéerical waves as an appropriate complete, orthogonal
set of basis functions here because we do not wish to expalitrzay’ functions, but rather functions obeying parteu
boundary conditions g = 0. The spherical waves for loébehave improperly at smali for this purpose. Moreover, it
is not possible to easily impose the boundary condiRoh) — 0 ask — A.
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some giveru(t), which must be recovered asymptotically|as — oo. It will later be nec-
essary to sharpen this condition to include constrainthiemehaviour o (k) neark = 0
beyond the weak requirement thet = [ Px (k) dInk is finite. Condition 4 is a technical
requirement made for future convenience. Any other chofagoomalisation would work
just as well, but this choice is natural, given thelependence in the Gaussian kerGéR].
Indeed, with this condition, the Gaussian prefactdP(n) will reduce to the exponential of
the sum of the squares of thg andtj; . Condition 3 ensures that the inner product of
two v, (k) in the measurqoA dk k*Pr' (k)W~2(k) is dimensionless. Condition 2 has less
fundamental significance. It follows from the conditib¥, (A) = 0 and the artificial com-
pactification of momentum space. However, as in the usuahiuiouville theory [Morse

& Feshbach, 1953], the precise choice of boundary condisammaterial whem\ — oo,

so this does not affect the final answer.

To demonstrate the existence of a suitable set,¢k), we can adopt the definition

wnU{;) =

whereJ,(z) is the Bessel function of the first kind and of orderwhich is regular at the
origin, anda is itsn-th zero. The ordewr is arbitrary, except that in order to obey condition 1
above, we must have’—?Px (k) — 0 ask — 0. This assumes that/(k) — 1 ask — 0,

as is usual for a volume-normalised window function. Thék) obey the orthonormality
condition

A k5
/0 Uk sy o (k) = G, (3.38)

whered,,,,, is the Kronecker delta. The completeness relation can kdeewri

(k= ko)lkey = 7 W2 ) Z% ) (ko). (3.39)

where the range df is restricted to the compact interjal A].
Although we have given an explicit form for thg, in order to demonstrate existence,

the argument does not depend in detail on Eq. (3.37). The iompprtant properties are
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Egs. (3.38)—(3.39), which follow from condition 4.

3.3.2 The path integral measure

Since any real’° functionR obeying the boundary conditiofk) — 0 ask — 0 and
R(k) — 0 ask — A can be expanded in the form (3.34), one can formally integvser
all suchR by integrating over the coeﬁicien@fﬂ. This prescription has been widely used
for obtaining explicit results from path integral calcudeis. (For a textbook treatment, see
Kleinert [2004].) In the present case, one should includéh@integral only thos®(x)
which are real and so correspond to a physical curvaturenbation in the universe. Since
theY,,, are complex, this means that instead of integrating uncéstity over the‘?gﬁn, the
reality conditions (3.35) must be respected. A simple wagdwieve this is to integrate only
over thoseyy, or by, with m > 0. Them = 0 modes must be treated separately sinceithe
andb coefficients vanish for odd and evéjrespectively.
The integral over reak can now be written as
JIGE [H s dazrn/wdbzrn] [ 111/ da%s/oodbms] ,
(3.40)

where the subscrifi on the integral indicates schematically that only R(@t) are included.
The constantg andj: account for the Jacobian determinant which arises in vgrifilR] in
terms of the harmonic coefficiedﬁf’fn. Their precise form is of no importance in the present
calculation as they will be absorbed by the final normalsatactor.

As noted above, the detailed form of the measure (3.40) isibsodlutely necessary for
our argument. The important point is that eacbr b integral can be carried out indepen-
dently form > 0. For this purpose, it is sufficient that the spectrum of pamiaves be
discrete, which follows from the (artificial) compactnessrmmentum space. However, al-
though it is necessary to adopt some ‘regulatoim order to write the path integral measure
in a concrete form such as (3.40), we expect the answer talepémdent of the specific reg-
ulator which is chosen. In the present context, this meaatsair final expressions should

not depend om\, so that the passage to the— oo limit becomes trivial.
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3.3.3 The total fluctuation ¢ and the spectrum?P, (k)

There are at least two useful ways in which one might attemptg¢asure the amplitude of
fluctuations inR. The first is the ‘total smoothed fluctuation’ at a given point x,. By a
suitable choice of coordinates, we can always arrangexthistthe origin, so the parameter
becomes = R(0). WhenR is smoothed on scales of order the horizon size this gives a
measure of the fluctuation in each Hubble volume, sincemtissof less than a horizon size
no longer have any meaning. For example, Shibata & SasaRb|l¢ave proposed that
defined in this way represents a useful criterion for the ram of PBHs, with formation
occurring wheneves exceeds a threshold valug, of order unity [Green et al., 2004]. This
measure of the fluctuation is non-local in momentum spacekimdause of the relation
[dQ(0, ¢) Yim (0, ¢) = V4764000 for the homogeneous mode of the spherical harmonics,

one can characterise the amplitude as

R0) = [ 5RO =

S
Il

(\Q/j_; / dk kY gy, (k). (3.41)

On the other hand, one might be interested in contributiotisd total smoothed fluctua-
tion in each Hubble volume which arise from features in thecium near some characteris-
tic scale of wavenumbdr. For this reason, we consider a second measure of the flisctuat

which we call the ‘fluctuation spectrum’, defined by

P,(k) = . (3.42)

(Thus the total smoothed fluctuation can be obtained by iatey its spectrum according
to the usual rule, vizg = [ P,(k) dInk.) This condition is local irk-space. Differentiating

(3.41), one can characteri$g(k) by the functional constraint

VAT &

Py(k) = W

agy, k> (K). (3.43)

We will calculate the statistics of both the total fluctuatioand the spectru®, (k). In each

case, the calculation is easily adapted to other observaliiech are non-local or local in
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momentum spaceIndeed, both the non-localand the locaP, (k) are members of a large
class of observables, which we can collectively denote}bgnd which all share nearly-

Gaussian statistics. Specifically, Egs. (3.41) and (3.48)be written in a unified manner in

the form
o T 3
> af,Sak) = %ﬁ O(k), (3.44)
where
S R (= o) .45
k24, (k) (0 = Py(K))-

Note that, in the first case, th&, are independent df. Any characteristic which can be put
in this form, coupling only to the real zero-mod@n of R, will necessarily develop nearly-

Gaussian (i.e., weakly non-Gaussian) statistics. Moreiggrchoices of characteristic are
possible, which cannot be cast in the form (3.44). For examgmhe can consider charac-
teristics which depend non-linearly on th&n. Such characteristics will generally lead to
strongly non-Gaussian probabilities. The Gaussianityheffinal PDF depends on the ge-
ometry of the constraint surface in an analogous way to thew#ing of the Fadeev-Popov
ghost fields in gauge field theory [Weinberg, 2005]. These-Ganssian choices of char-
acteristic can also be handled by generalising our teclenilgut we do not consider them

here.

3.4 The probability density function for o

We first calculate the probability density for the non-locahstrainto, given by Eq. (3.41).

The expression is

P(o) /R[dR] P[R]§ [ a8|n2n - %Q] . (3.46)

9The local and non-local variables defined here should notobéused with the local and equilateral triangulations
which are specifically defined for the bispectrum in Chapter 2
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To obtain this density, one treatsas a collective coordinate parameterising parRofThe
remaining degrees of freedom, which are orthogonal tare denoted bR*. Therefore the
functional measur@lR] can be broken intédR+] anddo. After integrating the functional
densityP[R] [dR] overR*, the quantity which is left is the probability densiyo) do. In this
case, the integration over the orthogonal degrees of fraRlois accomplished via thé-
function, which filters out only those members of the ensemaldlich satisfy Eq. (3.41). We
emphasise that this is a conventiofidlinction, not a-functional. There is no need to take
account of a Fadeev—Popov type factor because the Jacasaciaed with the constraint

(3.44) is field-independent, in virtue of the linearity of.£8.41) ina8|n'

3.4.1 The Gaussian case

We first give the calculation in the approximation that omhlg two-point function is retained.
In this approximation, the PDF @fwill turn out to be purely Gaussian, which allows us to
develop our method without the extra technical difficultiesoduced by including non-
Gaussian effects.

If all correlation functions of order three and higher aré teezero, then we are in a

Gaussian regime and henegR| o« G[R]. Using (3.4), one can write

_ 1 y K 1
GIR) = exp ( — 5 / do / B b s o W (3.47)

O3S R R Yo, (0,0)Y 0, (0, 6, ()60, ().

£1,m1,n1 2,m2,n2

The harmonic¥/,, andy,, integrate out of this expression entirely, using the ortrorality

relation (3.38) and the spherical harmonic completendator

/dQ }/glmliffzmg = 551525m1m2- (348)

Moreover, after rewriting the andb coefficients withm < 0 in terms of then > 0 coeffi-
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cients, we obtain

© ¢ o
GIR] = exp ( - 27?2 T o 2 O el + ul'] = (3.49)
/=0

=1 n=1
[ SIENe'S)

1
4r2(2n) Z Z Iag|n|2 + |b§?+1|n|2] )

(=0 n=1
¢ even

The s-function in (3.46) constrains one of tlzn%m (e.q. agm) in terms ofp and the other
coefficients. It would then be possible to evaluite) by integrating out thé-function
immediately. However, this does not turn out to be a convempeocedure. Instead, we

introduce the Fourier representation of thiunction and rewrite (3.46) as

P(o) /R[dﬁ] /_OO dz G[R] exp <iz [Z ag‘nZn - %Q]) ) (3.50)

where the functional measure is understood to be Eq. (3@ final answer is obtained by
integrating out: together with all of the: andb coefficients. In order to achieve this, it is
necessary to separat& , z andp from each other by successively completing the square in

%|o andz. Working with %|o first, we find

2,
exp( I 2 Z|a0|n\ 1zZa0|n ) (3.51)
—exp < 2 (20 Z ag, — 27 (27)%125,)% — (27r)37r2z222> :

where we have introduced a functidi¥ = > 2. In the final PDF,X? will turn out

to be the variance af. From Eq. (3.51), it is clear that making the transformatigg —

ag 4 2m*(27)°1zY,, suffices to separa rom z. The measure, Eq. (3.40), is formally
8|n 272 (27)31233,, suffi n |t Th Eq. (3.40), is f Il

invariant under this transformation. Exactly the same @doce can now be applied tcand

0, giving

27)3. io 2 02
ex 27 3 222 (—1 Z) — eXx —(2m 371'222 (Z + 7) - ——
P ( (2m)° N b\~ (m) 2 Virs?) 2P

(3.52)

As before, the finite shift — =~ — ip/27%/47X? leaves the measure intact and decouples
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andp. Thea, b andz integrals can be done independently, but since they do molva o,
they contribute only an irrelevant normalisationft). Thus, we obtain Gaussian statistics
for o:

P(0) ox exp <—%) ) (3.53)

It remains to evaluate the varianté. In the present case, we halg = fOA dk k*, (k).

From the completeness relation Eqg. (3.39), it follows that

57 Ko )k (1) = PR ), (359

¥:2 is now obtained by integrating term-by-term under the sutionaThe result coincides

with the ‘smoothed’ conventional variance (cf. Eqg. (3.3)),
A
Y3 (ky) = / dlnk W?(k; ki) Pr (k). (3.55)
0

Thus, as expected, Eq. (3.53) reproduces the Gaussiaibulign (3.2) which was derived
on the basis of the central limit theorem, with the provisattharameters (such as)
describing the distribution of are associated with the smoothed fiBldather than the mi-
crophysical fielcdR. X2 is therefore implicitly a function of scale, with the scalependence
entering through the window function. Note that it was ondége@ssary to use the complete-

ness relation to obtain this result, which follows from citioth 4 in Section 3.3.1.

3.4.2 The non-Gaussian case

The non-Gaussian case is a reasonably straightforwardsateof the calculation described
in the preceding section, with the teP” in Eq. (3.27) now being included. However, some
parts of the calculation become algebraically long, andetlage subtleties connected with
the appearance of the bispectrum.

The inclusion of Y corrects the pure Gaussian statistics by a quantity priopaitto
the three-point functionfRRR), which is given in Eq. (3.5). This correction is written in

terms of the representative spectrﬂan, which prescribes when the slow-roll prefactor,
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given by the amplitude of the spectrum, should be evaluaiiaddacena, 2003]. For modes
which cross the horizon almost simultaneously, with éize- k, ~ ks, this prefactor should
be75R2 = Pr(k)?, wherek is the common magnitude of the In the alternative case, where

onek-mode crosses appreciably before the other t@@z should be roughly given by
Pr’ = Pr(max k;)Px (min k;). (3.56)

Since the difference between this expression and the esiprewhen all thet are of the
same magnitude is very small, it is reasonable to adopt E56)&s our definition 015R2.
We stress that this prescription relies on the conservatioR outside the horizon [Allen
et al., 2006], and it would therefore become more complatdtextended to a multiple-field
scenario.

With this parametrization, the probability measure on theeenble is obtained by com-

bining (3.4), (3.27), (3.28) and (3.5):

_ _ 1 [ &3k, dPksy d3ks 24 R(k)R(ks)R(ks)
PIR] oc GIRY (1‘6/ eree PR Wik >w<k2>w<k3>>'

(3.57)

This expression should be integrated with the constraidtl{3and measure (3.40) to obtain
the probabilityP(p). At first this appears to lead to an undesirable consequeitges the
integral of any odd function d® multiplied by G[R] must be zero. It may therefore seem that
the non-Gaussian corrections we are trying to obtain wilbehout. This would certainly be
correct if the integral were unconstrained. However, tlesence of thé-function constraint
means that the shifts mﬁ‘n andz which are necessary to decouple the integration variables
give rise to a non-vanishing correction.

The finite shift necessary to decoup%n andz is not changed by the presence of non-
Gaussian corrections, since it only depends on the arguafig¢he exponential term. This
is the same in the Gaussian and non-Gaussian cases. Aftargribls shift, which again

leaves the measure invariant, the integration becomes

P(o) o /R [dR] /_ Z dz GIR] exp (—(2%)37r222z2 _ (\Q/gizg) (1-Jo— ). (3.58)
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where
Jo = /d?’k: d3k, d3k3 3( (2;;/)2 5(A)HZD;ZJ3%> (3.59)
and
T = [ / d‘;l{(:;:;)@ ks 5 n H PR ;Z;M;n (3.60)
S R R Yo O 2 O )

+[1=2]+[1=3].

The symbol[1 = 2] represents the expression in square brackets with theslaltzeld 2
exchanged, and similarly f§i. = 3]. The range of theu, andm; summations is from-/,
to /, and —/3 to /3, respectively. In addition, the shift @gln generates other terms linear
and cubic in theR’gf , but these terms do not contribute®¢p) and we have omitted them
from (3.58).

After shifting z to decouple: and o, the integrals/, and.J,; develop terms proportional
to 20, 2, 22 andz3. Of these, only the® andz? survive the finak integration. Consequently,
we suppress terms linear and cubiczifrom the following expressions. The integré}
becomes

5 2
To = / Ay dPks Ak 7;2(5127;)23 ( : 617T5§—z - 3%) 5(A)ILP;77;(41@) (3.61)

Uy (K1) g (K2)thns (Ks)
<2 IS Wik

ni,n2,n3

while 7, simplifies to

dgkl dgkzd ]{Z3 Y
Jo = [/W Z Z Z (3.62)

n1 f2,ma,n2 €3,mz,n3

() s o s
X Enl llb/\/((k 1)> R22|2n2 Rés?n3n2m2 (027 ¢2)}/€3m3 (03’ ¢3) wWEkziﬁv(lisz;)

+[1=2]+[1= 3],
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them summations being over the same range as before. Jhesntains corrections pro-
portional top ande?, whereas7, only contains corrections proportional o

Thea, b andz integrations can now be performed, with the integrand amigntirely in
terms of theuy,, andbj,, with m > 0. There are na or b integrations injy. There are na
integrations in7; but thea andb integrations involved in the produﬁgfn2 R;’;Tns fix by = {3,
mo = ms andn, = nz. One then uses the spherical harmonic completeness rglatio

[%S) l

SN You(br, 1) Y5 (62, ¢2) = 6(1 — ¢2)5(cos by — cos by) (3.63)

{=0 m=—/

and the equivalent relationship for tiieharmonics, Eq. (3.39), to obtain

(3.64)

| Bk BRadBRs o PriA Prlka)W2(ks)
0‘72_[ / i 2 N PalkWe) K

> Sntbn(k1)é(ke + ks) | +[1 = 2]+ [1 = 3].

The terms with 1 exchanged with 2 and 3 generate the sameahssgthe first term and can
be absorbed into an overall factor of 3.
Jo involves onlyz integrations. It can be written as
By Bha dPks (03 0 Pr’A
= | ————— | = - 3= | d(A 3.65
Jo / 9672 (26 24) ( )HZ- Pr(k)W(k:) (3.65)
X Z Em Enzznswm (kl)wHQ (k2>wn3<k3)

ni,n2,mn3

To simplify these expressions further, itis necessary taialthe value of the sutn_ >~ | ¥,,4,,(k).

Reasoning as before from the completeness relation E@)(3t 3ollows that

- _ Pr(k)WV?*(k)
; Entn(k) = =5 (3.66)

From this, it is straightforward to show that

dsk’l dskfg d3k33 9 93 0
Jo = / 9672 [, k3W-1(k;) S(A)PR™A (ﬁ — 3§) , (3.67)
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whereX:? is the smoothed variance, Eq. (3.55). On the other harmkbcomes

&y dPhy &3 0 PR’ 5(ky + ks)
After integrating ouks; and the angular part &; andk.,, this gives
I Pr (k1)
2

where we have used the fact thatis constrained to zero by thiefunction to evaluate the
bispectrumA in the ‘squeezed’ limit where one of the momenta goes to Zdiadacena,
2003; Allen et al., 2006; Creminelli & Zaldarriaga, 2004 this limit, min(k;) = k; and
max(k;) = ko = ks, SO it is possible to exparlz’ unambiguously. Moreovelrj,ig A=
aks, s0J, = 0if Pr(k)/k* — 0 ask — 0. This more stringent condition on h(l)w strongly
large-scale power is suppressed was anticipated in Se&8oh It requires thaPr (k) falls

at smallk faster thank®. If this does not occur, then the integral diverges. (Thera i
marginal case wheRz (k)/k® tends to a finite limit ag approaches zero. We assume that
this is not physically relevant.)

The J, integral contains a@-function §(ks + k3). It can therefore be interpreted as
counting contributions to the bispectrum which come fronoaealation between the modes
k, andks, in a background created Ik, which exited the horizon in the asymptotic past.
As we have already argued, modes of this sort are includdweiFRW background around
which we perturb to obtain the correlation functions7®f so we can anticipate that its
contribution should be zero, as the above analysis showggdypIn this interpretation, the
conditionPr(k)/k* — 0 ask — 0 ensures that the perturbation does not destroy the FRW
background. Indeed, fluctuations on very large scales aceffescribe transitions from one
FRW world to another via a shift in the zero-momentum modethefbackground metric.
In this case, there is only one such mode, which is the scetleri@t). These transitions are
rather like changing the vacuum state in a quantum field thé® a result, fluctuations of a

large volume of the universe between one FRW state and aranthstrongly suppressed.
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For fluctuations on the Hubble scale, therefore, the PDFIdHmmu

3 2
P(o) = \/21_7TZ [1 — (% — 3%) \7} exp <—%) , (3.70)

where we have used the fact that the corrections are odaiva therefore do not contribute

to the overall normalisation (o). The (dimensionless) coefficieritis

3 3 3

96m2 [ [, KW—1(k;)
This explicit expression is remarkably simple. Althouglsippreferable for calculation, it

can be recast directly as the integrated bispectrum withetgo)V:

1 3 3 3
I = Banieap / A’y dky ks (R(k1)R (ko) R (ks )W (k1 )WV (ko)W (k3).

(3.72)

As a consistency check, we note that the expectatien défined a$i(o) = [ oP(p) do,
is zero. This is certainly necessary, since the universd gargain as many underdense
regions as overdense ones, but it is a non-trivial restriggince both the ando? corrections
toP(o) do not separately average to zero. The particular combimaficoefficients in (3.70)
is the unique correction [up t®(0?), containing only odd powers qof] which maintains
E(o) =0.

Finally, we note that Egs. (3.70)—(3.71) do not explicittyalve the cut-offA, except as
a limit of integration in quantities such a¥ andW, which possess a well-defined, finite
limit at largeA. As a result, there is no obstruction to taking the- oo limit to remove the

regulator entirely.

3.4.3 When is perturbation theory valid?

It is known from explicit calculation that the bispectrumagorder P multiplied by the
quantity, fn., which is predicted to be small when slow-roll is valid. Ittieerefore rea-
sonable to suppose that whenever the window functiéhare peaked around some probe

wavenumbet:,, one has the order of magnitude relatidtts~ P, andJ ~ P2, whereP,
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represents the spectrum evaluatekl at k,. Since they® correction dominates far > /3%,
this means that fag not too largep < P, 32 the perturbative correction we have calculated
will be small. Asp increases, so that > P32, perturbation theory breaks down and the
power series irp needs resummation. In any case, at such large valugstioé calculation
described above ought to be supplemented by new physicéwarcbe expected to become
important at high energy densities. The details of theseecbons presumably do not mat-
ter too much, because at any finite order, the fast-decayipgrential piece suppresses any
contributions from large values of

At some value op, corrections coming from the trispectrum can be expecté@dtome
comparable to those coming from the bispectrum that we hawguated. We do not know
preciselly which are the dominant contributions of the ection from the trispectrum. Such

corrections to the non-Gaussian PDF are to be explored ifuthee.

3.5 The probability density function for P,(k)

The probability density function faP,(k) can be obtained by a reasonably straightforward
modification of the above argument, taking account of thetfeat the constraint, Eq. (3.43)
is now a functional constraint. This means that, when smijtthe functional measur@R]

into a product of[dP,(k)] and the orthogonal degrees of freed@iR], the result after
integrating out theR* coordinates gives a functional probability density[@P,(k)]. In

particular, with the definition (3.45), thiefunction in Eq. (3.50) is now represented as

/ [dz] exp [i /O " dk (k) <Z agy, b (k) — %m@)] . (3.73)

In order to carry out this calculation, we writ¢k) formally as

2(k) =) mzn%(m. (3.74)

n=1

The integration measurgldz] becomeg],, ji ffooo dz,, where, as before; is a field-independent

Jacobian representing the change of variables ft¢m — z,. Its value is not relevant to
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the present calculation. In addition, we introduce a set)effirientsﬁgn to describeP, (&),

Po(k) ==

2(3 ) _ 27’@”%(/{7) (3.75)
n=1

TheP,, can be calculated using the rdig = fOA dk k2Pt (k)W 2(k)P, (k). (k). Note

that, in order to do so, we have made the implicit assumphiati?, (k) /k* — 0 ask — 0, to

ensure that (3.75) is compatible with the boundary conaiitior thei,, (k). In other words,

we make the ansatz of a suppression of power in modes witlk low

With these choices, thiefunction constraint becomes

T - 2m) <
Hu/ dz, exp llz (agnzn — %zﬂ?@n)

m=1

(3.76)

In contrast to the nonlocal case @f where a single extra integration overcoupled top,
we now have a situation where a countably infinite tower cégnations over,, couple to
the the coefficient®, . In all other respects, however, the calculation is muctstinee as
the nonlocal one, and can be carried out in the same way. Thefbariables necessary to

decoupleug‘n andz, is
ag‘n — ag‘n +1272(27)3 2,5 (3.77)

and the shift necessary to decouple meandﬁgn is

iP,
T 2m2\/4r ( )
When only the two-point function is included, we obtain a €&aan in thé59n,
1 ~ 2
P[P, (k)] o exp (—5 > P9n> . (3.79)

The sum over thégn can be carried out using Eq. (3.75) and the completenessrtmmhe
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onality relations for the),, (k):

9 P2(k)
= [dnk —2%~+—. 3.80
2P J e (580
Using this expression, and integrating over BJl(k) which give rise to a fluctuation of
amplitudep, one recovers the Gaussian probability profile Eq. (3.58) wariance given by
Eq. (3.55). This serves as a consistency check for Eqs.)(8B(3.53).
When the non-Gaussian correctigii”) is included, one again generates a probability

density of the form

P[Py(k)] o< (1 — Ko — K3) exp (—% Zﬂi) : (3.81)

whereKs has the same form &%,, and therefore vanishes for the same reasons, and

B d3ky d3ky d3ks _2
Ko = / 9672 1. PR(ki)W(ki)é(A)PR (3.82)
P, (k1) Pr(ka) W2 (ky P, (ks
NEXILICITEMNS | L)

The first term contains &function which squeezés into the asymptotic past. It formally
vanishes by virtue of our assumption about the behaviod?0k) neark = 0, which is
implicit in Eq. (3.75). As a result, the total probabilityrtty for the fluctuation spectrum

can be written as

PP, (k)] o (1 — K) exp <_% /dlnk %) , (3.83)

where

(3.84)

A3k ko A3k - o1 Po(ki)

K=— oA A

[ it et P 175

As before, one can show that this expression is consistémégs. (3.70)—(3.71) by integrat-
ing over allP,(k) which reproduce a total fluctuation of amplitudeafter dropping another

term which is squeezed into the asymptotic past owing to tesgmce of a-function. This
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is a non-trivial consistency check of Egs. (3.83)—(3.84).
As in the local case, Egs. (3.83)—(3.84) are entirely inddpat of A (except as a limit

of integration), so the regulator can be freely removed biyngpA = oo.

3.6 Summary of results

In this chapter we have obtained the connection between-tha@nt correlation functions of
the primordial curvature perturbation, evaluated at samet, (R(k;)---R(k,)), and the
PDF of fluctuations in the spatial configuration®f We have obtained an explicit expres-
sion for the PDF of a fluctuation of amplitugevhenR is smoothed over regions of order
the horizon size. This is a probability density in the corii@ral sense. In addition, we
have obtained an expression for the probability thiaas a spectrum®, (k). This is given by
[dInkP,(k) = o, although mappin@®, (k) — ¢ is many-to-one. This is a functional prob-
ability density, and can potentially be used to identifytéeas in the fluctuation spectrum
near some specific wavenumber~ k,. Our result is independent of statistical reasoning
based on the central limit theorem and provides a direcertutncorporate non-Gaussian
information from the correlators of the effective quantueiditheory of the inflaton into
theories of structure formation.

Both these probabilities are Gaussian in the limit whBrenly possesses a two-point
connected correlation function. If there are higher-orciemnected correlation functions,
then R exhibits deviations from Gaussian statistics, which weehexplicitly calculated
using determinations of the inflationary three-point fumctduring an epoch of slow-roll
inflation. Our method can be extended to incorporate caomstfrom higher connectea
point functions to any finite order im. We have not computed these higher corrections, since
we anticipate that their contribution is subdominant to tthree-point correction (which is
already small).

Our argument is based on a formal decomposition of the d$pairgiguration of the
curvature perturbation ik-space into spherical harmonics, together with harmormsga
the radialk direction. However, we have emphasised that our resultotidepend on the
details of this construction, but require only a minimal esétassumptions or conditions.

The first assumption is that the power spectfBatk) goes to zero sufficiently fast on large
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scales, specificallfPr(k)/k* — 0 ask — 0. (In addition, in the case of the fluctuation
spectrum, we requir®,(k)/k* — 0 ask — 0.) Such a condition is certainly consistent
with our understanding of large-scale structure in the ensig and, within the perturbative
approach we are using, we have argued that in fact it descailself-consistency condition
which prevents perturbative fluctuations from destroyimg background FRW spacetime.
Our second assumption is that the spatial configur&ioan be smoothed ® via a window
function)V to obtain a configuration for whicR — 0 ask — oo. In this case, it is fair to
compareR to the primordial power spectrum.

In addition to these fundamental assumptions, which rétetiee behaviour of real phys-
ical quantities, a large part of the calculation has relirdan auxiliary technical construc-
tion. This construction is based on an artificial compagtfan of momentum space, im-
plemented by a hard cutoff. There is an associated boundary conditionRoat & = A
which discretises the harmonics (partial waveskinHowever, in both the non-local (to-
tal fluctuationp) and local (fluctuation spectrum, (k)) cases, the final probability density is
independent of both the details of the partial wave constm@ndA (except as a limit of in-
tegration). Itis also independent of the choice of the fgmilwindow functionsW, (k; k),
and depends only on the Iimj}in;o Wi (k; k) = W(k; k). Therefore the regulator can be
removed by taking the limit — oo. Moreover, the boundary condition/at= A becomes ir-
relevant in this limit, which is a familiar result from thegbry of Sturm—Liouville operators.
As a consistency check, one can integi&g, (k)] with the condition| dInk P, (k) = ¢ in
order to obtairP(p).

In Chapters 4 and 5 we present applications of this methadl tfae PDF obtained, to

improve the estimation of the probability of PBH formation.



Chapter 4

Probabllity of primordial black hole

formation

4.1 Introduction

Primordial Black Holes (PBHs) are a unique tool to probe mbgeneities in the early
universe. The probability of PBH formation is extensivelyded because it is useful in
constraining the amplitude of primordial inhomogeneitieserated by inflation (e.g., Carr
et al. [1994]; Liddle & Green [1998]; Sendouda et al. [200&palla et al. [2007]; Bugaev
& Klimai [2006]). What makes PBHs a unique tool in cosmologythe range of scales
that can be probed by their formation. The anisotropiesguidiy the CMB data cover the
range of wavenumbefsx 10~* < k/Mpc™' < 0.021. Equivalently these modes enter the
horizon when the cosmological horizon or Hubble mass is eetw0'? < M/M, < 10%
while the overdensities forming galactic haloes have aaset masse$0® < M/M, <
10*2. The inhomogeneities forming PBHs are much smaller and ¢heyspan the range of
wavenumberg0® < k/Mpc~! < 10'6 which correspond ta0~2* < M /M, < 105, a set of
values that can change with the model of inflation and it®egimg scale. In any case, this
is the largest range of scales probed by any single obserimtite universe.

Another advantage of studying PBH statistics is that, irdéatéon background, the grav-
itational collapse of fluctuations takes place shortlyraffierizon crossing. Consequently,

PBH statistics do not suffer the bias problem or the lateetiranlinear evolution that signif-
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icantly modifies the mass and statistics of other bound tdjec
The absence of direct detections of PBHs has prompted stafiprocesses that could be
influenced by the gravitational effects of PBHs or their eragions. Some of the processes

and observations that limit the abundance of PBHs are thanfiig:

1. If the number of PBHSs is large enough, they could congtitusignificant fraction of
the dark matter. The current density of PBHs therefore caaerceed the observed

density of dark matter, i.eQppa(M > 101%g) < Qpy = 0.28 [Komatsu et al., 2008].

2. The Hawking radiation from PBHs [Hawking, 1974] can be soeirce of the back-
ground radiation at various wavelengths in our universerfd®76; Page & Hawking,
1976; Bugaev & Konishchev, 2001] and cosmic rays [Bugaev &iklochev, 2001].
As mentioned in Chapter 1, PBHs of makk,,, = 5 x 10'*g should be evaporating
today and observations of the gamma-ray background igphy; ( Mey.p) < 5 x 1078
[Page & Hawking, 1976; Carr, 1976; MacGibbon & Carr, 1991mket al., 1999].
This is the tightest constraint on the density of PBHs algtofuture observations of

the 21 cm radiation might impose a tighter limit [Mack & Wesley, 2008]

3. Black holes with mas3/ < M..., have already evaporated and the decay products
should not spoil the well understood chemical history ofuheverse. Indeed, limits
on Bpgu (M) can be obtained in the mass rangé < M /g < 10'? by looking at the
effects of hadrons and neutrinos emitted by PBHs on the BiggBaucleosynthesis of

helium and deuterium [Miyama & Sato, 1978; Novikov et al.72p

A complete list of numerical bounds can be found in Table t@spiled by Green & Liddle
[1997]. All these bounds have been used to probe early seviguictuations [Carr et al.,
1994; Liddle & Green, 1998; Sendouda et al., 2006; Zabaléd.e2007; Bugaev & Klimai,
2006]. They can be translated into limits on the root-megumage amplitude of density or
curvature perturbatioriBrys on scales inaccessible to the CMB.

Here we explore how the boundsig s can be modified in view of the consideration of
a non-Gaussian probability distribution. We use the PDlvddrin Chapter 3 and calculate
the mass fraction of PBHs with the aid of the Press-Schedbteralism. The effects of

non-Gaussian perturbations on PBHs have already beemdtiadispecific models [Bullock
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& Primack, 1997; Ilvanov, 1998; Pina Avelino, 2005] but a pseauantification of the non-

Gaussian effects is still required. Indeed, it is only nowhwa much better understanding of
the effects of higher order perturbations, that we are abtescribe the general effects on
PBHSs. This discussion is crucial in the light of recent clgitinat only exotic extensions of
the canonical slow-roll inflationary potentials can proel@n appreciable number of PBHs
[Chongchitnan & Efstathiou, 2007; Bugaev & Klimai, 2008¢éshowever [Peiris & Easther,
2008] where it's argued that a large number of PBHs can beddraven within the slow-

roll regime). Here we explore whether the consideration@if-Gaussian perturbations in

inflationary models could increase the mass fraction of P&bisificantly.

Table | Constraints on the mass fractigss (M) of the universe going into PBHs

CONSTRAINT MASSRANGE (g) | NATURE
-1
1.25 x 1078 (%) < 10% entropy of the universe
4 a m \? 9 11 : : :
.1 x 10 (1—9g> 10° — 10 pair-production at nucleosynthesis
3/2
4.9 %1077 <1é\f{)g> 1019 — 10 Deuterium destruction
s\ 11 13 : :
6.5 x 10 <1011g> 10~ —10 Helium-4 spallation
-1
10718 (10]%{%) 10t — 1013 CMB distortion
3.1 x107% 3.6 x 10" —10% ~-rays from evaporating PBHs
v 2
10719 (1015g) > 1015 QPBH(tO) < 0.47

4.2 The non-Gaussian PDF

Let us introduce the elements of the non-Gaussian distoibatf probabilities for the cur-
vature perturbation fiel&k. We first describe how the Gaussian PDF is constructed in the
context of the linear theory. The amplitude of the curvapeeurbationsR is derived by

solving the perturbed Einstein equations to linear ordetiSically, the mean amplitude is
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written in terms of the two-point correlation function as
(Ra(ki)Ra(ks)) = (2m)°0 (ki + ko) [Rrmis (k)] (4.1)

where, as beforéi (k) are Gaussian perturbations in Fourier space.
The two-point correlator defines the dimensionless powectspmP (k) through the

relation

212
(Ra(ki)Ra(ke)) = (2m)°6 (kg + kQ)?P(kl)~ (4.2)
1
As discussed in Chapter 3, the perturbations are smoothexchayiven mass scalg;. Here
we choose a truncated Gaussian window function
k32
W (k) = O(knax — k)exp | =55 | (4.3)
2k,
wereO represents the Heaviside function and the fiducial skalg is introduced to avoid

ultraviolet divergences. The smoothing scialeis defined by

wherel is the Hubble mass at the time the scaleenters the horizon.

The variance of the smoothed field is related to the powertspady

200) = [ EWhmP). (45)

The power spectrum encodes important information abouirtderlying cosmological model.
For example, in the case of perturbations deriving from tengum fluctuations of a single
inflationary field¢ with a potentiallV dominating the cosmological dynamics, the explicit
expression is [Stewart & Lyth, 1993]
H4 V3

Pk) = Cryimn ~ [AVdg)End

(4.6)

Here an asterisk denotes values at the time when the relpeattrbation mode exits the
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cosmological horizory = a.H, = a(t.)H (t.).
The tilt of the power spectrum is parametrised with a secdmkrvable, the spectral

index, which is defined as

d
dlnk

ng —1=

In P (k). (4.7)

If ny < 1, the root-mean-square amplitulles increases on larger scales, corresponding to
ared spectrum. Conversely, > 1 indicates larger power on smaller scales and corresponds
to a blue spectrum.

The power spectrum and the tilt are derived directly froredinperturbations as reviewed
in Section 2.4 of Chapter 2. In observations of the CMB, itdsgble to determine with great
accuracy the numerical values of the power spectrum andtitsntscales larger than the
horizon at the time of last scattering, thatis< ki, = 1.7 x 10~3Mpc~'). On such scales,
the five-year results of WMAP, combined with the galaxy ceugtveP (ki) = 2.4 x 107
andn, = 0.95 + 0.1 [Komatsu et al., 2008].

In linear perturbation theory one makes use of the centrat theorem to construct the
PDF. To first order, the perturbation modes are independeeach other. If we assume
the field of linear perturbation® has zero spatial average, then the central limit theorem

indicates that the PDF & is a normal distribution which depends only on the variarige

. 1 R’

A successful linear theory of structure formation will pietdhis probability distribution and
match the numerical values at the relevant observatioaééscHigher order correlations of
the perturbation fieldR offer an exciting way to distinguish between cosmologicabels
with common properties at linear order. As discussed in @rdipand Chapter 2, the devi-
ations from Gaussianity are described to lowest order bytminear parametefy;,. This

parameter appears in the expansion (e.g. Lyth & Rodrigue25a])

R(K) = Ra(k) - 2 . (Ra * Ra(k) — (RE)), @9)
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where a star denotes the convolution of two copies of the.fi€lk interaction of Fourier
modes does not admit the use of the central limit theoremladdan-Gaussian probability
distribution must be constructed by other means.

In Chapter 3 we have provided a method to calculate the dwreto the Gaussian PDF,
and to derive a new PDF which includes the linear order doution from the 3-point func-
tion. Such a correlator can be derived through a second exgbamnsion of the perturbations
in the Einstein equations [Bartolo et al., 2004; RigopowoShellard, 2005; Seery et al.,
2008]. Alternatively, an explicit expression for the thuga&nt correlator can be obtained
from the third-order quantum perturbations to the Einstdilbbert action. Pioneering works
using this method come from Maldacena [2003] and Seery &dyid2005b,a]. Here we use
the expression derived by Lyth & Rodriguez [2005a] for therelator in Fourier space. At

tree-level this reduces to

(R(k1)R(k2)R(ks)) = — (2m)36 <Z kl-) 47?42 fNL {% + {perms}| .

(4.10)

Current observations provide numerical boundsfigr through the three-point correlation
of the temperature fluctuation modes. The WMAP satellitegithe constraints- 151 <

il — 953 [Komatsu et al., 2008] for an equilateral triangulation lo¢ bispectrum and
—4 < fleal < 80 [Smith et al., 2009] for a local triangulation (the local aequilateral
triangulations have been defined in Sec. 1.3). Both of thakees are determined at th&’
confidence level and consider an invariant value at all sqaiebed by the CMB.

In the following, the basic components of the non-Gaussiak Berived in Chapter 3

are presented. The amplitude of the perturbation is cheriaet by its value at the centre of

the configuration

9o = R(x = 0). (4.11)

This specification is necessary to construct an explicitesgon of the PDF. The parameter
g is particularly useful to discriminate the relevant inhayaneities forming PBHs [Shibata

& Sasaki, 1999; Green et al., 2004]. The non-Gaussian piilyabstribution function for
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a perturbation with central amplitudg, derived in Eq. (3.70), is

1 93 39\ J 192
Pre (0 1 U S 4.12
va(%o) = fzJ*(zs’z zn)zﬁje}q’< 22%)’ #-12)

where the factoy/ encodes the non-Gaussian contribution to the PDF:

J = % / %WM(M)WM(@)WM(@)<R(k1)72(k2)72(k3)>7 (4.13)
- 1 dkl dkg dk3 kl)P(kz)
=75 / (4m)2 ], Wil (k) (Zk ) I [T + {perms}|. (4.14)

This last equation is valid at tree level in the expansiod®RR). It is justified as long
as the loop contributions to the three-point function, gatezl by the convolution oR-
modes, are sub-dominant. This requirement is met when tteadeorder contribution t&

in Eg. (4.9) does not exceed the linear contribution. Thisgairement is met if we demand

that

fan < 1/3/P (4.15)

The complete derivation of the PDF in Eq. (4.12) was alreadyided in Chapter 3.
Here it is sufficient to say that the time-dependence of thabability is eliminated when
the averaging scale s, < a(t)H (t) providing the growing mode of the perturbati®&his
constant on superhorizon scales. This is true in parti¢atgoerturbationsk considered in
the radiation era, when the PBHs considered here are forseedGhapter 1).

In order to adapt the PDF in Eq. (4.14) to the computation ofiR&mation proba-
bilities, this expression is integrated between the lirhjts, and k.., defined to cover the
relevant perturbation modes for PBH formation. PBHs arentd long before today, so
in the large-box (small wavenumber) limit of integral (4.1the present Hubble horizon
kwin = Hy is a reasonable lower limit for PBH formation [Lyth, 1992]t #he other end of
the spectrum, the smallest PBHs have the size of the Hubbizomoat the end of inflation.
A suitable upper limit in this case is the wavenumber assediaith the comoving horizon
at the end of inflationk,,,.x = a(tena)Hena- It iS important to mention that, even though the

integral in Eg. (4.14) should include atmodes, finite limits are imposed to avoid loga-
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rithmic divergences. Due to the window function factdts,(k), the dominant part of the
integral is independent of the choice of integration linagdong as they remain finite.

The integral (4.14) is considered only at the limit of equatal configurations of the
three-point correlator, that is, considering correlasiéor whichk; = ks = k3. This is not
merely a computational simplification. In the integral, le@erturbation mode has a filter
factor Wy (k) which, upon integration, picks dominant contributionsnfrthe smoothing
scalek),; common to all perturbation modes. In this cgée&an be written in the suggestive
way:

7--/ I P (). (4.16)
k

min

With the complete non-Gaussian PDF at hand, it is possibthévacterise its effects
on the probability of PBH formation. In the next sectiQfi,is computed numerically for
inflationary perturbations generated in a single-field stolvinflationary epoch. The results
in this case are shown to be consistent with previous workeorGaussian computations of
the probability of PBH formation. In Section 4.4, the nontGsian PDF is generated for the
case of constanfy;,. This will be used to test the magnitude of the effects of @aussianity

on the probability of PBH formation.

4.3 Non-Gaussian modifications to the probability of PBH fomation

The simplest models of structure formation within the inflaary paradigm are those where
a single scalar field drives the accelerated expansion cffgheetime and its quantum fluc-
tuations evolve into the observed structure in subsequagés of the universe. Although
small in magnitude, the non-Gaussianity of the fluctuatigeiserated in this simple model
provide a qualitative hint to the consequences that nors&anity has for the probability of
PBH formation.

In fact, for single-field inflationary models, the effectsmin-Gaussianity on PBHs have
been explored in the past but with inconclusive results.|d8ul & Primack [1997] studied
the probability of formation of PBHs numerically for non-@ssian perturbations with a blue

spectrum{, > 0). The motivation for this was that any inflationary modellwé constant
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tilt and a normalisation consistent with the perturbatiahgshe CMB scale must have a
blue spectrum to produce a significant number of PBHs [Caat.e1994; Green & Liddle,

1997]. Their analysis is based on the stochastic generatiparturbations on superhorizon
scales, together with a Langevin equation for computingR®bB€&. For all the cases tested,
the non-Gaussian PDF is skewed towards small fluctuatiorsrisequence, the probability
of PBH formation, which integrates the high amplitude taisuppressed with respect to the

Gaussian case. An example of the kind of potential studieBlutippck & Primack [1997] is

1+arctan<¢>, ¢ >0,

mp

(4.17)
1+ (4x10%%) (m%)m . <.

Vi(o) = Vo
whereV; is the amplitude of the potential @& = 0. This potential features a plateau for
¢ < 0. This produces an increase in the power of matter fluctusttonresponding to the
production of PBHs of mass)*?gr.

Another way of generating large perturbations in the irdlairy scenario is to consider
localised features in the potential dominating the dynamagardless of the tilt of the spec-
trum. As one can see from Eq. (4.6), an abrupt change in thenpat would generate a
spike in the spectrum of perturbations. This is valid as laagve avoid a ‘flat’ or ’static’
potential in whichdV'/d¢ = 0. In such case = 0 and Eq. (4.6) is invalid (for a treatment
of this particular case, also known as 'ultra-slow roll’ &aifbn, see Kinney [2005]).

The description of a model of inflation with large amplitudethe power spectrum is
incomplete if we do not take on account the effects of noalirileictuations. The effects of
non-Gaussianity for an inflationary model producing feesun an otherwise red spectrum

(ns < 0) were explored by Ivanov [1998], using the toy model

)\%4 for ¢ < ¢,
Va(9) = § Alga— ¢) + A2 for ¢y > ¢ > ¢, (4.18)
e for ¢ > .

where) and) are coupling constants. Through a stochastic computafitred®DF, lvanov
found that the non-Gaussian PDF is skewed towards largarpations. This result goes in

the opposite direction to that of Bullock & Primack [1997].
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To understand this difference and generalise the effea®w{Gaussianity, it is conve-
nient to look at the fractional difference of the Gaussiath aon-Gaussian PDFs:

Png — Pg U o\ J
N6 TEG (Yo gt ) I 4.19
Pq KZ% 3273 Y (4.19)

Both Bullock & Primack [1997] and Ivanov [1998] use pertuibas generated in a piece-
wise slow-roll inflationary potential for which inflation eontrolled by keeping the slow-roll
parameters, defined in Eq. (2.93), smaller than one. Hergakeroll approximation is used
to explore the qualitative effects of Eq. (4.19).

To linear order, there is a straightforward expression lier §pectral index in terms of

these parameters [Stewart & Lyth, 1993],
ns — 1 = 2(nsr — 3€sr). (4.20)

Onthe other hand, by using a first order expansion in sloWpasbmeters, Maldacena [2003]
provides an expression for the nonlinear fagter in terms of these parameters [Maldacena,
2003]:

fNL :15—2 (ns + f(k‘)nt) = g (nSR — 3€SR + QF(k)ESR) s (421)

wheren, = 2¢gg is the scalar-tensor perturbation tilt afdk) is a number depending on the
triangulation used. For the case of equilateral configonatiwhenF = 5/6,

5 4
e :6 <7ISR - gESR) . (4-22)
eq

This last expression is used to evaluate the integral (40t§)J. The non-Gaussian effect on
the PDF is illustrated in Fig. 4.1 for the potentials giverms. (4.17) and (4.18) in terms of
the fractional difference (4.19). This difference reprasehe skewness of the non-Gaussian
PDF. The non-Gaussian contribution encoded in the fat@s the integral offy;, over all
scales relevant for PBH formation. Consequently the sigrivefis what determines the
enhancement or suppression of the probability for largeligundes, in the non-Gaussian

PDF. For the two cases illustrated, the scalarmtildominates over the tensor tilf, so that
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the sign offyxy, coincides with that of:,. This result is illustrated in Fig. 4.1.
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Figure 4.1:The fractional departure from the Gaussian PDF is plottetifo types of non-Gaussian distribu-
tionsPng, as defined in Eq. (4.12). For the potential in Eq. (4.¥%), > 0 and the departure is plotted with
a solid line. For the potential in Eq. (4.18)\1, < 0 and the departure is shown by a dashed line.

4.4 Constraints on non-Gaussian perturbations of PBH range

A standard practise in calculating the PBH mass fraction isse the Press-Schechter for-
malism [Press & Schechter, 1974]. As described in Chapttrid jnvolves integrating the
probability of PBH formation over the relevant matter pesation amplitudesy, measured

at horizon epoch [Carr, 1975] and gives

Bppu( 2 M) =2 /500 P(5,(M)) ds,(M). (4.23)

For the large ratioy, /3, this can be approximated as

2p(M)
Oth

2
Pesu( 2 M) ~ exp {—&} : (4.24)

252 (M)

whereX}(M) is the variance corresponding to the mass sa#lenddy, is the threshold

amplitude of the perturbation necessary to form a PBH. Whenr¢levant amplitudes of
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a smoothed perturbation are integratgdgy represents the mass fraction of PBHs with
M > w3? My ~ w?ky/(27) [Carr, 1975], wherew is the equation of state at the time of
formation. Note that the approximation (4.24) is valid ofdya Gaussian PDF.

The integralPpgy establishes a direct relation between the mass fractioBlsRand the
variance of perturbations. The set of observational camgs on the abundance of PBHs is
listed in Table | and has been used to place a bound to the meglitwede) in a variety of
cosmological models (e.g. Carr et al. [1994]; Green & Liddi@97]; Clancy et al. [2003];
Sendouda et al. [2006]). The Press-Schechter formula lsasb&len tested against other
estimations of the probability of PBH formation, such asksaheory [Green et al., 2004].

The threshold valué, used in Eq. (4.23) has been modified with the improvement of
gravitational collapse studies [Carr, 1975; Niemeyer &aredk, 1998; Shibata & Sasaki,
1999; Hawke & Stewart, 2002]. A more appropriate approastle&n noted recently, where
simulations have addressed the problem using curvaturtuditiens [Shibata & Sasaki,
1999; Musco et al., 2005; Polnarev & Musco, 2007]. The cpwoasing threshold value
of the curvature perturbation can be deduced from the oglgtiiddle & Lyth, 2000]

C2(1+w) [k
o(t) = 53w (a—H) R, (4.25)

which at horizon-crossing during the radiation-dominagea gives,R;, = 1.01 for dy, =
0.3. This value has been also confirmed in the numerical sinanatof Shibata & Sasaki
[1999], Green et al. [2004] and Musco et al. [2005]. We willkease of it throughout.

The threshold valu®, indicates the minimum amplitude of an inhomogeneity resplir
to form a PBH. Consequently, the probability of PBH formatis best described by a non-
linear treatment and this is the major motivation for ourlgsia. In the following we adapt
the Press-Schechter formalism to derive the non-Gausbiamdance of PBHs. The use of
the Press-Schechter integral for distributions of the atume perturbation is not new. Za-
balla et al. [2007] use it to estimate the PBH formation frdma turvature perturbations
which never exit the cosmological horizon. We apply thegraé formula in Eq. (4.23)

to the non-Gaussian probability distribution (4.12). Theuit of the integral is the sum of
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incomplete Gamma functiorig,. and an exponential:

00 1 192
M) = Paa(Y0)ddy = ——=Tine ( 1 2,%*1)
n /ﬂ Nl = 7 ( 20 (4.26)
1 J ) L '
_—37 2Finc 2727 —36Xp _27 .
V2 X (M) 255 (M) 25 (M)
The Taylor series expansion of these functions around thieli% /J, = 0 gives
Yr(M) [ I }
M) ~ ——
D=5 var P TS
(4.27)

2 —2
For the mass fraction shown in Eq. (4.27), the observatitméls of Table | could in
principle constrain the values of the variancg and of fx,. However, when the mean
amplitude of perturbations,., is normalised to the value at CMB scales, the obtained
limits for fxp, are of orderl0*. This is inconsistent with the analysis presented hereuseca

in such régime higher order contributions are expecteatoidate non-Gaussianity. In fact,

the expansion in Eq. (4.9) shows that when

5 1 5
<2 - 4.28

the quadratic term of Eq. (4.9) dominates over the lineantand in the computation of the
three-point function Eq. (4.10), the loop contributionghe correlators become dominant.
For the values ofRr\is required to form a significant number of PBHSs, the limit [gia|

is of order10. The computation of non-Gaussianities in this case goesrikthe scope of
the present work.( For discussions on the loop correctioribe correlation functions, see
Weinberg [2005], Zaballa et al. [2006], Byrnes et al. [208@{l Seery [2008].)

It is interesting to look at the values allowed f6¢;, from WMAP and test the modifi-
cations that large non-Gaussianities bring to the amg@infdR at the PBH scale. Fig. 4.2
presents the set of bounds on the initial mass fraction of $lted in Table I. The corre-
sponding limits to the variance of the curvatatg are shown in Fig. 4.3 for the Gaussian

and non-Gaussian cases. Independently of the model of ¢ogital perturbations adopted,
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one can use the observational limits &, to modify the bounds fokr on small wave-
lengths. For the non-Gaussian case we choose to plot thekealue of the present limits
to f{"" — 51 [Komatsu et al., 2008] and the limit valug;, = 5/(3%z) ~ —66 men-
tioned in Eq. (4.28). The tightest constraintsXr come from perturbations of initial mass
M =~ 10"g. With the non-Gaussian modification the limifiig; (¥z) < —1.2, compared to
the Gaussian cadeg (Xz) < —1.15. As shown in Fig. 4.3, the modification % cannot

be much larger if instead the limit value of Eq. (4.28) is used

0
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=
20
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Figure 4.2:The constraints ofippy in Table | are plotted together with the smallest value abersid for each
mass.

4.5 Closing remarks

The present chapter shows, to lowest order in the contabuti the bispectrum, the ef-
fects of non-Gaussian perturbations on PBHs formatiomndJsurvature perturbations with
a non-vanishing three-point correlation, an explicit foofnthe non-Gaussian PDF is pre-
sented, which features a direct contribution from the n@us3ian parametégk,. Further-
more, it is shown how the sign of this parameter determinegtthancement or suppression
of probability for large-amplitude perturbations. Usitngtsimple slow-roll expression for

fx1 In the context of single field inflation, a previous discrepaim the literature regarding
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log (3r)

Figure 4.3:A subset of the constraints aiy from overproduction of PBHs is plotted for a Gaussian and non
Gaussian correspondence betwgeandX.z , Eqgs. (4.24) and (4.27) respectively. The dashed line ass@am
constantfx, = 51 and the dotted line a valug, = —1/%% ~ —66. The solid line represents the constraints
for in the Gaussian case

effects of non-Gaussianity on the abundance of PBHs hasdwbesd.

As a second application of the non-Gaussian PDF presentedidi¢o use the Press-
Schechter formalism of structure formation to determireeribn-Gaussian effects on PBH
abundance. In section 4.4 it is shown how the PBH constrainthe amplitude of per-
turbations can be modified when a non-Gaussian distribusi@onsidered. As an exam-
ple, it is shown that the limiEz (M = 10%g) < 6.3 x 1072 is reached for the marginal
value fx;, = —66.35 modifying the known bounds foR at the end of inflation [Carr et al.,
1994]. This limit is, however, much larger than the obseraatplitude at CMB scales,
whereXr ~ 4.8 x 107°. The order of magnitude gap between the mean amplitude\aaser
in cosmological scales and that required for significant P@&hation remains almost intact
and, as a consequence, non-Gaussian perturbations do didy significantly the standard

picture of formation of PBHs.



Chapter 5

Curvature profiles of large overdensities

5.1 Introduction

As mentioned in Chapter 1, previous studies of PBH formatde the amplitude of the mat-
ter density or curvature inhomogeneities as the only pamnuetermining the probability
density of PBH formation. Also the mass fraction in the forhiP&HSs is usually calculated
with the aid of the Press-Schechter formula. Here we argaethiis rough estimation is
incomplete and that a different approach should be takenainate the threshold value,,
or the equivalent curvature inhomogenéeRy, in the investigations of PBH formation.

From the first numerical simulations of PBH formation, it weasdent that the process
of PBH formation depends on the pressure gradients in thepsahg configuration as well
as their amplitude. Nadezhin et al. [1978] found that su@sgure gradients can modify
the value obyy, significantly. This has been confirmed in more recent worksclwdescribe
the configuration in terms of the curvature inhomogen@&lty) (note that in this chapter
we work with spherical coordinatgg} and not any set of coordinatés}). As we will
show below, the Einstein equations relate the curvaturélg@sadirectly with the internal
pressure gradients. This is the main motivation for considethe probability of curvature
configurations.

We extend here the Press-Schechter formalism to consider-adrameter probability.
We include here for the first time a parameter related to thygesbf curvature profile at the
edge of the configuration. We start by calculating the prdivalof finding a spherically

symmetric curvature configuration with a given radial peofiWe can justify the sphericity

128
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assumption using the argument of Zabotin et al. [1987]: PBkhhtion takes place only
from nearly spherical configurations. In our analysis, wecdbe the radial profiles by
introducing two parameters: the central amplitude of theature inhomogeneitR (r = 0)
and the central second radial derivati®é(r = 0). The introduction of these parameters
is a first step towards the full parametrisation of profileseirms of all even derivatives at
the centre of configurations. (The odd derivatives are ab dele to the assumed spherical
symmetry.)

The method presented to derive a multiple-parameter piilyadnables us to compute
the probability of any number of parameters describing threature profile. However, only
families of curvature profiles described by two parametexsarrently available, so we limit
ourselves to a two-parametric description. More accunatigré codes will simulate PBHs
formation with a larger number of parameters. The numberac@peters required for the
complete description of these profiles and their probatdlistribution will be the samé&.

The central amplitud® (0) has been used in previous calculations of gravitational col
lapse and the probability of PBH formation, as illustratedhe previous chapter. Here we
compute the probability to find a given configuration as a fiomcof the two parameters
[R(0),R"(0)]. We subsequently illustrate how this two-parametric pbaliist is used to
correct the probability of PBH formation. For this purpose use the results of the latest
numerical simulation of PBH formation Polnarev & Musco [ZQ0Such an exercise shows
how the corrections t@pgy are potentially significant and they will be considered inreno

detail in future studies of PBH formation.

5.2 Probability of profile parameters of cosmological pertubations

Formally, the high amplitude inhomogeneous profiles dbswjiconfigurations which col-

lapse into PBHs are not perturbations. However, such regiomincluded in the statistics of
random primordial curvature perturbations in the sengdfiesstatistics of random fields can
be used to estimate the probability of finding high-ampktuthomogeneities. To describe

such inhomogeneities, we consider the nonlinear curvdieietR (¢, ), as first described

0%n the context of dark matter haloes, the profile of the ihiihomogeneity is effectively irrelevant because galaxie
are formed from pressureless configurations. The dengitfjlgs and shapes of virialised haloes result from the eigniut
of the initial high peaks and are not linked to the profile dfiéh configurations that we investigate here



5.2: Probability of profile parameters of cosmological pasations 130

by Salopek & Bond [1990]. The nonlinear curvatugét, r), defined in terms of the met-
ric in the following equation, represents the relative exgpan of a given local patch of the

universe with respect to its neighboring patches. It is dieed by the metric
ds® = —N2(t,r) dt* + a®(t)e*RED 7, (dr' + Ni(t,v) dt)(dr? + N (t,r)dt),  (5.1)

wherea(t) andy are the usual scale factor and the intrinsic metric of theiaipgaypersur-
faces. The gauge-dependent functiovisand N are the lapse function and shift vector,
respectively. These variables are determined by algebaaistraint equations in terms of
the matter density, pressure and metric variable®, « and?;;.

Here we consider the nonlinear configurations which cooedpo largeR inside some
restricted volume and zef® outside, where the expansion of the universe follows th&-bac
ground FRW solution. There are several advantages of wgrkith metric (5.1). First, as
shown in Chapter 2R is defined as a gauge-invariant combination of the metricraatier
variables [Wands et al., 2000]. Second, with the aid of tlaelignt expansion of the metric
quantities,R(r, t) appears in the Einstein equations in a non-perturbative[@yobinsky,
1986; Salopek & Bond, 1990; Deruelle & Langlois, 1995; Rigolos & Shellard, 2005].
Third, R does not depend on time for scales larger than the cosmaldgdzon, as proved
by Lyth et al. [2005] and Langlois & Vernizzi [2005a]. In theggent chapter we work in the
superhorizon régime, where the fiéRir) can be assumed to be time-independent.

The primordial field of random perturbations we considespras a Gaussian probability
distribution. The expressions for the PDF of the paranigtg)) in Chapter 3 are recovered
here. For convenience we use a different notation, regaeim Section 3.3.1 with the
amplituded, = R(0) and the variance withi;) = Xz. The PDF for the central amplitude
9 is identical to that in Eq.(3.53):

1 92
Py = —— -0 1 5.2
[ 0] \/%2(2) €xXp 22(22)] ( )

We now derive the density of the probability for the centt@nd derivative to have
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amplitude

82

’192 = R”(O) = [w

R(r)] | (5.3)

r=0

In order to compute the probability of a specific propertyifr), we integrate the original
PDF, which encodes all the information about the field, wedlwith the Dirae-functions
of relevant arguments. Hereafter we assuR(®) andR”(0) as statistically independent
parameters. The validity of this assumption is not expldreck but is left for future inves-
tigations. Following this assumption, the probability @vingR”(0) = v, is given by the

integral
P() = [ lARIP(R) S (R (0) s, (5.4)

where[dR] indicates integration over all possible configurati@&) in Fourier space. In
order to compute this integral, we expand the smoothed tunev@erturbation profil&® (r)

in terms of spherical harmonic functions:

R(r) :/(gjrk):?’R(k) exp (ik - r), (5.5)
with
(3] 14 0
RO =D > > R You 6, 6)u (k). (5.6)

{=0 m=—{ n=1

HereY,,, are the usual spherical harmonics on the unit 2-sphere/afid) are a complete
and orthogonal set of functions in an arbitrary finite ineditv < k£ < A. (The explicit
expression fot) (k) and the value oA are given by Eq. (3.37) of Chapter 3.) The coefficients
in the expansion are generically complex, so we separatecttieand imaginary parts by
introducing Ry, = ay, + ibj,,. The reality condition for the curvature fiel®" (k) =

R(-k), is met when

ag = (=1)*"ag,, (5.7)

by = (1) (5.8)
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In particular, then = 0 modes requirey,, andb,, to be zero for odd and evefh respec-

tively. To integrate (5.4) we use the Fourier expansion)(5csthat

R"(0) = / (Z:;?’R(k)(ik)Q exp (ik - 1), 0. (5.9)

Furthermore, we use (5.6) and the orthogonality of the sgdldnarmonics
/ Y (6, ¢) sin 0 dfdgp = /41 5™ 6y, (5.10)

to obtain

" 4 0 dk 4
R"( z:: <a0|n \/ga2n> / an(k)k = 0, (5.11)

To compute the probability (5.4) we proceed by integratingraall configurations in
Fourier space. With the aid of the expansion (5.6) we canesghe measure of the integral
in terms of the expansion coefficients satisfying the realdnditions (5.7) and (5.8), as

shown in Eq. (3.34) this is

/ [HHHM/ dayn/j; V[R]d yn]x

(=0 m=1n=1
dagp\q /_ \I[[R] db2p+1q] )

ML [ v

p=0g=1 -

(5.12)

for any given functionall of R(k). The constantgs and: are weight factors to be included
in the final normalisation of the joint probability.
The Gaussian PDF we are restricted to is written in terms efsiherical harmonic

coefficients as (cf. Eq. (3.49))

P[R] = exp < 27?2 mE Z Z Z [|ag‘1n|2 + |bg|1n|2}

=0 m=0 n=1

471'2(27r 3 ZZ ‘a2p\q‘2 + |b2p+1|q| } )

p=0 ¢=1

(5.13)

In order to obtain the probability in Eq. (5.4), we use thed&ad representation of the Dirac
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o-function

o(z) = /OO dz expliz x]. (5.14)

(e o]

This allows us to write the-function in Eq. (5.4) in terms of the spherical harmonicftiee

cients as

S [R"(0) — 9] = / dz exp [iz (Z (aom \/§a3n> /%@/}n(k‘)k‘l +192>

(5.15)

We now have all the elements required to integrate prollbiénsity of findingR”(0) with
amplituded,. Substituting expressions (5.13) and (5.15) into Eq. (5# perform the

functional integral with the aid of the decomposition (5.1Ror this case we have

IwﬁQC(/dey/chpwqemjkz< (2m)0, }:z: (Vflhm*"%”>>]’

(5.16)

where we have simplified the expression by defining the factor

z@:/%#%w. (5.17)

In the process of integration, we discard all the Gaussitgmls because they contribute to
the probability only with a multiplicative constant whichllWbe included in the final normal-
isation. On the other hand, the Dir&dunction contributes to the integral with exponential
functions ofa8|n and ag|n. The integrals of these parameters are computed by comgleti
squares of the exponential arguments. First, we collediettmes of the integral with factors

of ag,, that s,

LR U = P
exp —W;an\—l—lz;mmn@n : (5.18)
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Completing the squares, this last expression becomes

exp [ yETERE Z |a0‘n i(27)%2m? 22(4)) — (27)%7%2 Z( (5.19)
In the same way we can complete the squares for the exparamtmsfamn'
1 < 0 A 0 (4)
exXp [—W ; |a2|n| + 126 ; |a2‘n|2n = (520)

1 - 0 . 347T2 (4) ’ 5 24 oco
exp [_W; (|a0n| —i(27) $22n — (27)°m 7 iy | -

Finally we can complete the squares for the terms contaitiiegvariablez, these being

independent ofi,, andaj, :

exp {—(2@%2 <§> 28 + '3(2—\/4”_:)1922] = (5.21)

2
9 R T V% 5 U
exp | —(2m)37? <—> Wilz—i——e— | — ===,
p|~(2m) 5) W 12¢/75 X3, 25

where for simplification we have written

i »¢ 4> (5.22)

n=1

So by making the change of variables

ag‘n — ag‘n +i2r?(2n)*2W 2,

A7 2
(2n)*2W 2

V5
5 vy
12v/m5 X3

a’2\n = a’2\n +i—=
Zz— z+1
we can perform all the integrals and eliminate the Gaussias which contribute only up to

an overall numerical factor subsequently absorbed by niegsatimn. The remaining factor

expresses the probability of finding a perturbatfowith a central second derivative of value
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192:

232

P[R"(r = 0) = 9] o exp < 59, ) | (5.23)
(4)

The quantity2%4) represents the ‘variance’ of the PDF f&f'(0). To evaluate this variance
we integrate Eq. (5.22) and use the property (3.38) in Cha&pte integrate the complete

sum and obtain
A
Sty = /0 dInkW?(k, k)P (k) k*. (5.24)

The final probability density for the pair of paramet&§)) andR”(0) is the product of
Egs. (5.2) and (5.23)

2 2
Yo _ 59y ) (5.25)

2 2
22(2) 22(4)

P(R(0) = o, R"(0) = ) = A exp ( —
HereX ;) andX 4 are the dispersion of the amplitude and the second dervaspectively,
andA is a normalisation factor obtained from the condition thatintegral of the joint PDF
over all possible values of the two independent parametgrals unity. The final normalised

joint probability density is

A4vV12 Vs 592
2 4

It is worth mentioning that the standard PDF containing @amplitudesy,, Eq. (5.2), is
recovered from Eq. (5.25) when we set all gradients in theldfubcale equal to zero, i.e.
VR|,—, = 0. The Fourier transform of this expression demajigdg — oo. Using this in
Eq. (5.24) means thal,) — oo and the argument, goes to zero in the probability density
of Egs. (5.25) and (5.26).

According to the Press-Schechter formalism [Press & SabectB74], the PDF is integrated
over all perturbations which collapse to form the astropdalobjects under consideration.
In this way we calculate the mass fraction of the universéenform of such objects. To
apply this formalism and calculate the probability of PBHnf@tion and integrate the PDF
(5.26), we require the range of valuB{0) andR”(0) which correspond to PBH forma-
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tion. In the next section we will obtain this range with thégef the results of numerical

computations presented by Polnarev & Musco [2007].

5.3 The link between perturbation parameters and the curvatire pro-

files used in numerical calculations

5.3.1 Initial conditions

As demonstrated by the first numerical simulations of PBHnfation [Nadezhin et al.,
1978], whether or not an initial configuration with given eature profile leads to PBH
formation predominantly depends on two factors:

e The ratio of the size of the initial configuratioef to the size of the extrapolated closed
universer, = a(t) fol dr/+/1 —r2, which is a measure of the strength of gravitational field
within the configuration.

e The smoothness of the transition from the region of high @awme to the spatially flat
FRW universe, which is characterised by the width of theditgon region at the edge of
the initial configuration and is inversely proportional bkeetpressure gradients there, strong
pressure gradients inhibiting PBH formation (This is aruangnt beyond the Jeans’ stability
criterion and applies to configurations beyond the linegimne).

The numerical computations presented in Polnarev & Mus@0672(hereafter PM) give
the time evolution of the configurations with initial curue¢ profiles accounting for the
above-mentioned factors. In that paper the initial condgiare obtained with the help of a
guasi-homogeneous asymptotic solution valid in the limit 0. This solution to the Ein-
stein equations was first introduced by Lifshitz & Khalatmi{1963]; see also Zeldovich
& Novikov [1983] and Landau & Lifshitz [1975]. Following N&zhin et al. [1978], PM
used this asymptotic solution to set self-consistentah@onditions for curvature inhomo-
geneities, the initial curvature inhomogeneity being désd by the spherically symmetric
curvature profil& (). This sets the initial conditions for the process of blaclefiormation.

Asymptotically, the metric can be presented in termK@f) as

ds? = —dif? + s*(7) = dr? + 72 <d6’2 4 sin? €d¢2>] : (5.27)

1— K(7)
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wheren is the conformal timeg(n) is the scale factor for this metric. As we will show in the
paragraph after Eq. (5.42), this is identical to the usuallesfactora(n) of a flat Friedmann
universe, only here we use a different notation to distisiglietween metrics. Also, we
write 7 for the radial coordinate to distinguish it from the coomtimof the metric (5.1).

An advantage of working with this metric is that it contaihe tcurvature profild(7)
explicitly. We choose a set of coordinates with the origithatcentre of spherical symmetry
and fixK(0) = 1. The condition thal(7) is a local inhomogeneity requires thét*) = 0 for
radii 7 larger than the scal§ where the metric matches the homogeneous FRW background.

In PM the profile(7) are presented in two forms, one of which is characterisedvby t

independent parametersandA as

722 7,@2
K(r) = [1 + a@] exp <—@) : (5.28)

The parameteA describes the width of the Gaussian profile, whil@arametrises linear
deviations from this profile. The results of the numericahgiations in PM indicate that

PBHs are formed in the region of the parameter spacA|] shown in Fig. 5.1a.

5.3.2 Physical criteria for the identification of parameteis

We proceed to find the correspondence between the two setgahpters|R(0), R”(0)]
and|a, A], both of which describe the initial curvature profiles. Flet us note that the sets
of coordinateq ¢, r} and{7, 7} are those of the metrics (5.1) and (5.27), respectivelysThu
we require a relationship between these set of coordinatesissuming that the size of the
configurationy, is much larger than the Hubble radiug, = H !, we can use the gradient
expansion of the functions in metrics (5.1) and (5.27). la tlase, the time derivative of any
function f (¢, r) is of orderf /t ~ H f and significantly exceeds the spatial gradient which is

of order f /ro. Hence the small parameter in the gradient expansion is
£ = —=— (5.29)

wherek is the wave-number corresponding to the scale of the coratligur.

For the metric (5.1), using the coordinate freedom ta\6et= 0 and ignoring any tensor
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Figure 5.1:(a) The top plot shows the parameter values for initial camfitjons which collapse to form black
holes according to Polnarev & Musco [2007]. (b) In {i&(0), R”(0)] plane three regions of integration are
considered to compute the probability of PBH formation. &és the region enclosed by the solid curves
and corresponds to the area denoted by BH in Fig. la. Areathieisegion to the right of the grey dotted
line, representing the area of integration considered @vipus studies where only the amplitude is taken
into account. Area lll is the region above the solid line aetieen the dashed lines. This contains those
configurations which have a smooth profile in the centre aedgnt the amplitudeR(0) that are found to
form PBHs in [Polnarev & Musco, 2007]. The complete des@ipbf the physical characteristics of profiles
with values in this region is given in Section 5.3.

contributions (i.e5y;; = d;;), the expansion of the Einstein equati@)y = 87G7,° to order

£2 can be written a$t

L <6_a2 LOR Ay 1)) +O(*) = 87G (po + 6p) + O(Y), (5.30)

2\ a? a?

where® R is the spatial curvature, or the Ricci scalar for the spatietricg,;. To zero order

For the complete second order expansion of the metric diemjtsee Lyth et al. [2005] and Langlois & Vernizzi
[2005b].
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in e, we have

32

? = 811G L0, (531)

which corresponds to the homogeneous part of Eq. (5.30)tififeeslicing can be taken to

be the uniform expansion gauge in which

1+ 3w

N—1l=————
14+ w

5, + O(e"), (5.32)

wherew is the equation of state [Shibata & Asada, 1995; Shibata &I8a%999; Tanaka &
Sasaki, 2007]. Using (5.30),(5.31) and (5.32), we find th@wdence between the spatial
curvature and the matter overdensity:

7 7+ 3w
GIR = . 5.33
5 0F <3+3w) (5-33)

In consequence, the gradients if this quantity relatesé@tbssure gradient:

G 7+ 3w GG 7+ 3w
BR="2_°~ 77 = 5.34
v 3 3(w+1)v(5”) 3 <3w(w+1))Vp’ (5.34)

whereV = (g,,)~"/2d/dr. Hence, subject to the two physical conditions at the eddheof
configuration listed at the beginning of Section 5.3, weteetae profilesk (r) andK(7) by
equating the spatial curvature and its gradient for theinse(b.1) and (5.27). That s,

R = — [QR"(T) + (R’(r))Q] exp(—2R(r)) = 3K(7) + 7K'(7), (5.35)
and
1 d
R
 wa271/2
—[R'R" + R"] exp(—3R(r)) = {1 fQKT } (QfK’(f’) = %f’QK”(f)) . (5.36)

By definition, the 3-curvature must vanish at the edge of tha&iguration, so Eq. (5.35)
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IR (ro) + (R (r9))” = 0 (5.37)
and

3K (7o) + 7oK'(79) = 0. (5.38)

Thus the gradient relation (5.36) can be written as

1 - K2

1/2
[R'(r0)* = 2R" (ro)] exp(—3R(ro)) = { } [—12K(7g) + 73K (70)]. (5.39)

This establishes a relation betweRir) andK(r) at the edge pointg, andr,. The config-
urationK(r) is parametrised bjn, A, as shown in Eq. (5.28). As follows from condition

(5.38), the radius, can be written in terms of those parameters as

5o — 2+ /(b — 22 — 24
f@;(“ *V(&‘j ) O‘) A2 (5.40)

Then we use two more equations obtained from the conformastormation of coordinates

at zero order inx:

d7?
2 2R (r 2 2
a*(r)e™™ ) dr? = 5*(n) s KPP (5.41)
and
a?(1) R 2 40? = $%(n) #2 dQ2. (5.42)

Asymptotically, in the limitfr, 7] — oo, the homogeneous Einstein equations are identical in
both metrics, therefore, the homogeneous scale faeteysands(n) can be identified. Thus

we find a relation between the radial coordinates,

R0y = ) (5.43)
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and an integral relation between the configurations,

(5.44)

/7" R(z) /f dx
(§] x dl‘ = _—
0 0o 1 —K(x)z?

One can verify that Egs. (5.35), (5.36) and (5.44) are no¢petident. For example, Eq.
(5.36) follows from (5.35) and (5.44).

In the previous section we have developed a method to actmuthe probability of any
set of parameters describing the curvature profile. For Igiihpwe have chosen the pair
[R(0),R"(0)]. We now illustrate how to relatgR(0), R”(0)] and[«, A] by considering the

parabolic profile
R(r) = R(0) + %R”(O) r?. (5.45)

This parametrisation meets the minimal requirement of dogehe |, A] parameter space
in Fig. 5.1 (a).
Egs. (5.37), (5.44) and (5.43) are now reduced to the foligveiystem of algebraic equa-

tions:
> 2
o = R(0)’ (5.46)
. 2 A 1—1/2 7o dx
R(0) = 2log <erf(1) [ exp(1)7o] /o - K(x)x2)1/2> , (5.47)

7
wherer is given in terms ofa, A] by Eq. (5.40).

5.3.3 Parameter values leading to PBH formation

The numerical computations of PM, which used the paranagimis (5.28), show that PBHs
are formed in thed, A] region shown in Fig. 5.1(a). Egs. (5.47) and (5.48) mapriggon

to Area | in the [R(0), R”(0)] plane shown in Fig. 5.1b. The Jacobian of the transformatio
corresponding to this mapping is non-vanishing, which gntges a one-to-one correspon-

dence of the ‘BH’ region in Fig. 5.1a with Area | in Fig. 5.1ba¢h point here corresponds
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to a parabolic profile which leads to PBH formation.

For each one of these parabolic profiles, there is a familyoofparabolic profiles with
the same central amplitude(0), the same configuration sizg, and the same behaviour
near the edge, as shown in Fig. 5.2. In this figure, the prdijieg below the parabola
correspond to larger absolute magnitude®60) and do not form PBHs because they have
lower average gravitational field strength and higher ayemaressure gradient. The non-
parabolic profiles which lie above the parabolic one (witlaer absolute magnitude” (0))
should also collapse to form PBHs because they corresponigher average gravitational

field strength and lower pressure gradient.

Figure 5.2:The curvature profile for three different families of configtions with common central amplitude
R(0) = 1. The configurations shown by the dashed lines have valugs’' () larger in absolute magnitude
than the parabolic one shown in black. The configurationsvahay the dotted lines have values Bf’(0)
smaller than the parabolic one. All profiles satisfy comiti (5.37) and (5.39).

In the parameter spa¢® (0), R”(0)], this last set of profiles corresponds to Area Il in
Fig. 5.1b. This region will be included in the calculatiortloé probability of PBH formation

in the next section.
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5.4 Two-parametric probability of PBH formation

To calculate the probability of PBH formation, which is eealent to the mass fraction of the
universe going into PBHSs of given mass, it is customary totheestandard Press-Schechter
formalism [Press & Schechter, 1974]. This has been widegdus previous calculations
of the one parametric probability of PBH formation [Carr/B9Carr et al., 1994; Liddle &
Green, 1998; Carr, 2005; Chongchitnan & Efstathiou, 20@hialla et al., 2007]. When the
probability depends on a single amplitude parameter, tethod reduces to the integration
of the corresponding PDF over the relevant perturbationliéudes. The final integral is

equivalent to the mass fraction of PBHs of mass [Carr, 1975]
M ~ w32 My ~ w3k /(27) (5.49)

with the equation of state measured at their formation time. Here we extend the standar
Press-Schechter formalism to include for the first time aditemhal parameter accounting
for the radial pressure in the initial configuration. Whea [tR’(0), R”(0)] area is a square

[R1 < R(0) < Ra, RY < R"(0) < RY], the integrated two-parametric probability is

Ra RY
Preu(M) =2 / vy / dVs P(0o,05) =
R1

1 erf __Re — erf R X (5.50)
2 V252 (M) V25 ) (M) '

erf 7/2, —erf Ri,{ )
V254 (M) V254 (M)

We use this result to integrate numerically over a mesh oflsgaares covering each of the
areas of the plangz(0), R”(0)] shown in Fig. 5.1b. The results of this integration for two
different power-law spectr®z (k) o< k"' are shown in Fig. 5.3.

From that figure we note that the probability functiopsy (M) has a maximum at a
value of M ., that changes with the of the spectral index. This can beyedsilived by
computing the solution o Sppn/dM = 0. We find that this equation provides a formula

for the value),,., which indeed depends sensitively on the spectral indexAssuming
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ns > 1 we have:

3y P, 2
Moy = Meg——2- — , 5.51
28 o2y -

where M., and P, are the Hubble mass and the power spectrum at the time of matte
radiation equivalences(, = 8.9 x 10~2Mpc ™), and is a factor of order unity that changes

slightly with the value of,.

50 5 10 15 20
log,o (M/1g)

o
wh

-5 0 5 10 15 720
logq (M/1g)

[Re]
n

Figure 5.3:The logarithmic probability of PBHs for two tilts in the powspectrum ¢, = 1.23 on the top
figure,ns = 1.47 on the bottom figure), integrated for the three differenfiarg sketched in Fig. 5.1. The
integrals over Areas | and Il correspond to the dashed and lsoés, respectively. The probability integrated
over Area lll is represented by the dotted lines in both figure

We contrast the case of parabolic profiles described by E45)5vith the non-parabolic

set presented in Fig. 5.2 by plotting the probabilitysy for different values ofPr. This is
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presented in Fig. 5.4. The figure shows that the probabifi§BH formation can be larger
than the one-parameter probability computed in previaudies from the integration of Area
Il [Green et al., 2004]. This important result requires conétion from more detailed nu-
merical simulations of PBH formation in this parameter ar€lae uncertainty is explained
by the fact that the two-parametric calculation of the piwlitg of PBH formation is still

incomplete. This should be complemented in the future byirttreduction of all relevant

higher-order derivative parameters and the higher-ordeelations in the PDF.
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Figure 5.4:The grey dashed line shows the ratio of the total probab#ity;; which results from integrating
over Area |l ontheR(0), R”(0)] parameter space of Fig. 1b to the probability which resutisifthe integrating
over Area Il. The black line is the ratio of the probabilityégrated over Area Il to the probability integrated
over Area ll.

5.5 Discussion

We have developed a method for calculating the two-paracn@tobability of PBH forma-

tion, taking into account the radial profiles of nonlinearvaiure cosmological inhomo-
geneities. This is the first step towards calculatingXhparametric probability, which takes
into account the radial profiles more precisely than studsisg the amplitude as the only

relevant parameter. We have incorporated the derivedibatitn to the total probability of
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PBH formation by considering the range of valuesf0) that will form PBHSs, using the
results of the numerical computations presented by Polr@afdusco [2007]. Finally, we
have provided an example of the consequences of this piapdbi the statistics of PBHs.

The results obtained show that, if we restrict ourselvesB Formation from parabolic
profiles (as described in Section 5.3), then the total PBHbadodity is orders of magni-
tude below previous estimates! On the other hand, if noakadic configurations are also
included (see Fig. 5.2), the total probability of PBH formatis higher than the single-
parametric probability estimated in previous works. Iisttase, we can impose new bounds
on the power spectrum in the scales relevant for PBH forma#imalysing the uncertainty of
our results, we have demonstrated how much we still havederstand about the formation
and statistics of PBHs. The physical arguments supportimngesults should be verified by
numerical hydrodynamical simulations of PBH formation,iethwould provide a valuable
feedback to the initial motivation of this work.

The main argument of this chapter is that the amplitude dfaininhomogeneities is
not the only parameter which determines the probability BHRormation. The ultimate
solution of the problem requires a greater set of parameatets larger range of their values
to determine all high curvature configurations that form BBMhis is a huge task for future
research. In the meantime, we have a method to operate vatist#tistics of all these

parameters.



Chapter 6

Conclusions and future work

In this thesis we have presented a study of large inhomotes&i the early universe. Such
large concentrations of matter may collapse to form prinabrolack holes (PBHs). The
number of PBHs in our universe is calculated by integratiegarobability distribution func-
tion (PDF) of primordial inhomogeneities, this encodiniglaé¢ statistical information of pri-
mordial inhomogeneities. The main objective of this thést® quantify the probability of
PBH formation in the context of nonlinear perturbation ttyed his represents a significant
improvement in the study of large-amplitude inhomogeasisince, by definition, these are

nonlinear.

The statistics of inhomogeneities are the point of contativben theory and observa-
tions. In theoretical studies the statistics of primordiattuations are studied in the frame-
work of cosmological perturbation theory. Until recenpgrturbation theory was restricted
to consider only linear departures from the homogeneousgoaond. Linear perturbations
are Gaussian due to the independence the perturbation nibltisss an excellent approxi-
mation to describe the structures observed in the univémdeed, observationally, only the
variance, or second statistical moment, has been meaddoseever, the detailed observa-
tions of large-scale structure (LSS) and the cosmic micvevbackground (CMB) now allow
us to test for corrections to the linear approximation. Thaivates the study of extensions
of linear perturbation theory. In particular, the non-Gaasity of curvature fluctuations has

been a subject of intense investigation.
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6.1 Summary of results

In Chapter 2 we presented a brief introduction to cosmobkdgerturbation theory within
general relativity. We reviewed the basic results of theotty for the cosmological inflation
paradigm. From the evolution equations, we identified thed@mns under which curvature
fluctuations can grow significantly at superhorizon scadssshown in Egs. (2.87) and (2.88),
these conditions are mainly the presence of a non-adiabatiqponent in the matter field
fluctuations. This has motivated several previous studi@®or-Gaussianity resulting from
the second-order perturbations of an isocurvature (naabatic) fieldy. The conditions for
inflation show that a non-adiabatic field is only a subdomilcamponent of the total matter
during inflation. The cosmological model in whighis responsible for the curvature pertur-

bations is called the curvaton model.

In Section 2.5 we calculated non-Gaussian correlatorsaioresspecial cases of the cur-
vaton model. The lowest order non-Gaussian signature isavanishing skewness or third
moment of the PDF. In perturbation theory this is equivaletie correlation of three copies
of the curvature perturbation field. This correlator itsselbnly present when we consider
nonlinear perturbations. In order to derive the three-pmnrelator we have considered non-
linear field fluctuation®y. We have calculated the second order perturbations of desing
isocurvature field during inflation and radiation dominatid?Ve have done this by solving
the Klein-Gordon equation of the perturbatibpto second order. For simplicity we consider
only the matter fluctuations, assuming a large contribufiiom the third derivative of the
potentiald®W (y)/dx3. We find that an effectively massless field does not generktma
nonlinear contribution to the perturbatiér. Conversely, a slightly massive field allows an
exponential growth of the nonlinear perturbation. With @ of a new method to compute
non-Gaussian correlators, we derived the field bispectfiik)) given by Eq. (2.169). We
then derived the curvature perturbation bispectrifk;), considering a dominant contri-
bution from the field bispectruni’(k;). Equation (2.188) expresses the the non-Gaussian
parameterfy, in terms of the elements of the potenti&l(x). Chapter 2 closed with a brief

discussion of the observational limits to the curvaton.
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One of the main objectives of this thesis is to present theifieddorobability of struc-
ture formation from the non-Gaussian PDF. From the cenirat theorem, we know that
the non-Gaussian PDF produces non-trivial moments of drigéer than two. To determine
the shape of the distribution uniquely, one requiresalpeiori knowledge of all moments.
From studies of non-Gaussianity in perturbation theoryyéwer, we only know the skew-
ness (third moment) and kurtosis (fourth moment) of someeatsodf structure formation.
Finding a PDF which encodes the contribution of only thesehigher order moments is not
trivial. In Chapter 3 we have constructed, in the contextudrgum field theory, the general
non-Gaussian PDF for curvature perturbatigsFormally, this is a probability functional
for the ensemble of realisations Bf(x) at some specified time We refer to this probabil-
ity asl?,[R]. We first derived a mathematical expression of the aboversett by writing
P,[R] in terms of then-point correlation functions (see Egs. (3.12) and (3.15)e then

constructed an explicit expression for the PDF using ordyfittst three statistical moments.

We found that, in order to calculate the PDF, it is necessaryonsider a regularised
functionR(k). We must therefore consider a field sufficiently smooth onlisseales, with
a smoothing scale customarily set as the horizon scale atttird/e also require an upper
limit for the £-numbers in order to avoid divergences in the integratiegsired to construct
the PDF. This is achieved by artificially compactifying themrentum space over a scale
A > k. This regularisation is a common requirement of calcutetio the theory of pertur-
bations and in the statistics of LSS. The results of this tdragre important because the final
expression is an explicit functional probabili®y[R (k)]. This means that the probability of
any parameter appearing in the functiitk), or equivalentlyR(x), can be retrieved from
this PDF. We rely on this property to study two important nficdtions of the probability of
PBH formation in the subsequent Chapter 4 and Chapter 5.

In the last two chapters of this thesis we revisit the calomteof the probability of PBH
formation, taking into account two important effects whente characteristic of nonlinear
inhomogeneities. In Chapter 4 we calculate the proballitBHs using a non-Gaussian

PDF we considered the non-Gaussian PDF of curvature pattansk. The featured PDF
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includes a linear contribution from the three-point catien function as derived in Chap-
ter 3. In Section 4.2, this PDF was adapted to curvature aorafigpnsR (r) that give rise
to PBHs. As previous works show, the amplitude at the cerftileeocurvature configuration
R(r = 0) is a good parameter to determine the formation of PBHs. E8j2j4jives the non-
Gaussian PDF for the mentioned parameter. With the aid sfRBIF we have reproduced
gualitatively the effects of the non-Gaussian contributonsidered in two previous works.
We first identified the source of inconsistencies in previsosks studying non-Gaussian
effects in the probability of PBH formation. We showed thea fundamental difference in
the inflationary models considered by Bullock & Primack [IP@nd by Ivanov [1998] is
the spectral index. In the first work, perturbations invavelue power spectrum (for which
the spectral index accomplishes— 1 > 0), while the power spectrumis red(—1 < 0) in
the second. Noting that, in single-field inflation, the noauSsian parameték, is directly
related to the spectral index — 1, we have shown the source of the discrepancy. The main
effect on the non-Gaussian PDF is the respective suppreastenhancement of the prob-

ability for large values ofR.

Chapter 4 also presented the non-Gaussian modificatiohe torbbability of PBH for-
mation (or the mass fraction of PBHs). In Section 4.4 we h&ave how the new PDF
can modify the bounds to the variance of curvature fluctnatior. This comes from the
observational limits to the abundance of PBH for each maale sSuch modifications are
illustrated in Fig. 5.4. Note that in this figure we have udsel maximum value of the pa-
rameterfy, allowed by perturbation theory. In the future, greater galoould be considered

by constructing PDFs with the techniques described here.

In Chapter 5 we have studied the probability of configuratiftix) from another per-
spective: We compute the probability of a parameter desgyitihe curvature profile in ad-
dition to the probability ofR(0). Specifically, we compute the probability of the second
radial derivative at the centre of the configurati®{,0) = d*R/dr?|,—o. As studied in that
chapter, the consideration of additional parameters desgrcurvature profiles is a signifi-

cant improvement in the study of gravitational collapseotimer words, the choice of initial
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configurations collapsing to form PBHSs relies on two setsavbmeters. Parameters of the
profile R(r) are required in addition to the amplitude parameters custityrused. We used
the results of the latest simulations of PBH formation t@gnate all the allowed configu-
rations parametrised with the paiR(0), R”(0)]. The result shows, heuristically, how the
probability of PBH formation can be drastically changed bysidering curvature profiles

in the PDF.

6.2 Future research

The non-Gaussian signatures of cosmological inhomogeseitfer good prospects for model
discrimination. An example of this is given at the end of Glkaj2, where we were able to
limit special cases of the curvaton model with the obsergetraints on the parametgy;,.

A number of extensions to this work are possible. First, th@aton model can be adapted,
with pertinent modifications, to describe models of modedatheating [Zaldarriaga, 2004].
In such models, the auxiliary field modifies the expansionfieiEnt patches of the universe
during the reheating process. The present work can be eedetodcover such models by
modifying the scales of the mass and expectation valuesedukiliary fieldy. In this way
one can search for feasible models of modulated reheatinchveatisfy the observational

limits of non-Gaussianity.

Another application of our study is to compute higher-omtarelations from the derived
solutions to the nonlinear Klein-Gordon equation. Futuraops of non-Gaussianity could
detect the ‘trispectrum’ of curvature perturbations, i a higher order discriminator be-
tween models of inflation. Computing the corresponding-foaint function is thus crucial

for a characterisation of the hypothetical detection of-Gaussianity at this level.

An important complement of the work presented in ChaptertBescomputation of the
solutions to the Klein-Gordon equation allowing for mepgrturbations. This has been ig-
nored here because we assumed that the field fluctuationsdt@maver all other sources,
as applies in the slow roll limit of the Klein-Gordon equaticAs mentioned in Section 2.5,

however, the curvature perturbation contribution (oftaliexl backreaction) may entail im-
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portant corrections fofy [see e.g. Malik [2007]]. It is important to compute such e¢bnt
butions because, on the one hand, they could be the dongraimponent in the growth of
the fluctuations and, on the other hand, the curvature bamétion could cancel larggq.

values. This could prompt reconsideration of models preslipexcluded by observations.

Which case applies is an open question that should be aédrasthe near future.

There is another set of problems where the methods of Ch3agied an important ap-
plication. This is the determination stochastic sourcebénevolution equations of classical
fields. A functional probability is written in terms of prochs of then-point correlation
functions withn copies of the field configuration in Fourier space (see Etp{Jor the case
of curvature perturbations). This can be used, in partictdaderive and extend the stochas-
tic equations of inflation by Starobinsky & Yokoyama [1994his seminal work presents
a Fokker-Planck equation for the probability of the confagion ¢(x) on small scales and
for a single-field inflationary field. A first connection betvethe stochastic framework and
the work presented here has been given by Seery [2009]. trpé#peer, a wave-functional
similar to Eq. (3.13) is considered and the governing Hamién operator for the scalar field
¢ is recovered from its action. The Fokker-Planck equatiaggssted by Starobinsky can
be deduced easily from the Schrodinger equation for thaevianctional. Such a method
can be extended to calculate PDFs of multi-scalar or noorgaal models of inflation. The
construction of the probability distribution for configtitms ¢(x) and other possible fields
allows for the consideration of full non-Gaussian disttibns. This is clearly the way to go

beyond approximations like the one considered in Chapter 3.

Regarding the probability of PBH formation, the results dla@ter 5 cannot be conclu-
sive because we do not have at hand the complete set of aotlapenfigurations. Deter-
mining the set of all configurations collapsing to form PBlsihuge task to be explored
elsewhere. We can assert, however, that if PBHs are to beassadool for cosmology, the
curvature profile parameters have to be taken into accouhneiderivation of the PDF. A less
ambitious task is to have an estimate of how severe the matidits to the single-parameter

approximation are. This would require the determinationmaire appropriate parameters
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describing curvature profiles, a topic currently under stigation.

From the results of Chapter 4 we are able to set constrainigftationary models.
Specifically one can look at models with an enhancement opthveer spectrum at small
scales. In such cases, the constraints from PBHs can be miessatringent, depending on
the values and the sign of the non-Gaussian paranfigteiHere we have provided a tool for
testing those models. Such tool can also be improved as mosgraints are derived from

observational tests to the abundance of PBHSs.
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