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Abstract

The thesis begins with a study of the origin of non-linear cosmological fluctuations. In partic-

ular, a class of models of multiple field inflation are considered, with specific reference to those

cases in which the non-Gaussian correlation functions are large. The analysis shows that pertur-

bations from an almost massless auxiliary field genericallyproduce large values of the non-linear

parameterfNL.

Next, the effects of including non-Gaussian correlation functions in the statistics of cosmo-

logical structure are explored. For this purpose, a non-Gaussian probability distribution function

(PDF) for the curvature perturbationR is required. Such a PDF is derived from first principles in

the context of quantum field theory, with n-point correlation functions as the only input. Under

reasonable power-spectrum conditions, an explicit expression for the PDF is presented, with cor-

rections to the Gaussian distribution from the three-pointcorrelation function〈RRR〉.

The method developed for the derivation of the non-GaussianPDF is then used to explore

two important problems in the physics of primordial black holes (PBHs). First, the non-Gaussian

probability is used to compute corrections to the number of PBHs generated from the primordial

curvature fluctuations. Particular characteristics of such corrections are explored for a variety of

inflationary models. The non-Gaussian corrections explored consist exclusively of non-vanishing

three-point correlation functions.

The second application concerns new cosmological observables. The formation of PBHs is

known to depend on two main physical characteristics: the strength of the gravitational field

produced by the initial curvature inhomogeneity and the pressure gradient at the edge of the

curvature configuration. The latter has so far been ignored in the estimation of the probability

of PBH formation. We account for this by using two parametersto describe the profile: The

amplitude of the inhomogeneity and its second radial derivative, both evaluated at the centre of

the configuration. The method developed to derive the non-Gaussian PDF is modified to find the

joint probability of these two parameters. We discuss the implications of the derived probability

for the fraction of mass in the universe in the form of PBHs.
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Chapter 1

Introduction

Cosmology is at the forefront of modern physics. Over the last two decades, it has moved

from a predominantly theoretical discipline to a sound observational science. Today’s ex-

periments are capable of observing tiny fluctuations of a faint signal coming from the Big

Bang, emitted about thirteen billion years ago. The observations of primordial inhomo-

geneities are a unique probe of the physical conditions in the early universe. The inflationary

paradigm indicates that the inhomogeneities are the resultof quantum fluctuations of the

matter dominating the universe in its first moments. In this widely accepted picture the ob-

served inhomogeneities fix the normalisation of an inflationary potential setting the energy

scales for inflation to about1016GeV, the GUT scale. This is106 times more than the energy

of particles released by supernovae. A similar ratio arisesfor the energy scales to be tested

by the large hadron collider (LHC). These numbers show how the geometry of the universe

and its inhomogeneities constitute a unique probe of high energy physics.

Several observational parameters have been defined in cosmology in order to determine

the physical conditions of the early universe. The density and nature of matter observed

today, the distribution and mean amplitude of initial inhomogeneities, and most recently

the non-Gaussianity of primordial fluctuations are among these parameters. The latter has

received considerable attention from cosmologists but theanalysis of the latest observations

has not yet provided conclusive evidence for departures from Gaussian statistics. A great deal

of effort is under way to reduce the detection thresholds of the non-Gaussian parameters.

Even if non-Gaussianity remains undetected by future experiments, we can still constrain

12



1.1: Cosmological observations and the Big Bang 13

theoretical models that are known to develop large non-Gaussianity.

The main objective of the present work is to study how non-Gaussian statistics, inherited

from inflation, can modify the probability of primordial black hole formation. The class of

models of inflation that motivate this study and the development of statistical tools to address

this question are complementary projects, and both are included in the present thesis. In the

rest of this chapter we provide a brief description of the state of the art in cosmology, with

special attention to the open questions that motivate this thesis.

1.1 Cosmological observations and the Big Bang

It has been more than four decades since Penzias & Wilson [1965] managed to identify,

for the first time, the cosmic microwave background (CMB) radiation. This was detected,

almost by accident, while calibrating a large reflector at the Bell Laboratories. The uniform

and isotropic radiation observed corresponds to the most perfect black-body radiation ever

measured, peaking atλ = 1.9 mm, with a red-shifted temperature ofTCMB = 2.725 Kelvin

[Jaffe et al., 2001].

The detection of the CMB gave decisive support to the Big Bangtheory. The standard Big

Bang model considers a universe dominated by uniform and isotropic matter. Its dynamics

is governed by gravity, with equations prescribed by the theory of general relativity. (Grav-

ity is the only long-range force to be considered since the universe is electrically neutral.)

The conditions of isotropy and homogeneity, in this context, imply that the spacetime admit-

ting these properties is necessarily a Friedmann-Robertson-Walker universe (FRW) (see e.g.

Wald [1984]).

1.1.1 Basic dynamics of the universe

We write the FRW metric in the form of the line-element in spherical coordinates.

ds2 = −dt2 +
a(t)

1 − κr2

(
dr2 + r2

[
dθ2 + sin2 θdφ2

])
, (1.1)

where t and κ are the coordinate time and the uniform curvature of the spatial sections

respectively. The usual spherical coordinates in the spatial hypersurfaces arer, θ andφ.
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Finally, a(t) is the scale factor, with present valuea0 = 1. The Einstein equations of gen-

eral relativity provide the dynamical relation between thematter and spacetime variables.

Assuming homogeneous and isotropic matter, with densityρ and isotropic pressurep, the

Einstein equations show that the evolution of the scale factor is given by

H2 ≡
(
ȧ

a

)2

=
1

3
ρ− κ

a2
, (1.2)

where an over-dot is the coordinate time derivative andH is the Hubble parameter, a measure

of the expansion rate. Its present value isH0 = 100h kms−1Mpc−1, with h = 0.71 ± 0.08

[Freedman et al., 2001]. This last equation is known as the Friedmann equation. We use

throughout units wherec = ~ = 8πG = 1.

The matter contents of our universe has several components and the fraction of each

component relative to the critical density is called the density parameterΩi = ρ(i)/3H2. If

we denote the sum of all matter components asΩT, the Friedmann equation can be written

simply as

Ωκ(t) + ΩT(t) = 1, (1.3)

whereΩκ = κ/(aH)2 is the curvature density parameter. When the matter densityis equal

to the critical density3H2, thenΩT = 1 and the universe is flat at all times. Observations

tell us that we live in a nearly flat universe (|Ωκ| < 10−2), so we assumeΩκ = 0 hereafter.

The energy density is dominated by two main components, a cold dark matter component

(ΩCDM ≃ 0.23) and another component referred as dark energy (ΩΛ ≃ 0.72). The nature of

both these components is a crucial question in cosmology andhas motivated a lot of research.

We will return to this point and to an analysis of the Einsteinequations later in this work.

1.1.2 The Big Bang model

The hot Big Bang model is now accepted as the standard model describing the evolution of

the universe. This model characterises, with impressive accuracy, the evolution after the first

second. At this time, the universe was a primordial fireball with high enough temperature

and pressure to dissociate any nuclei. The formation of nuclei was only possible once the
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cosmic expansion reduced the average kinetic energy sufficiently. The formation of the first

elements took place at temperatures of aroundT ≃ 0.1 MeV, when the universe was around

1 s old. This process involves conditions that cannot be replicated elsewhere (cf. stellar nu-

cleosynthesis). Within the current observational limitations, the Big Bang prediction for the

present abundance of light elements is confirmed remarkablyby the present measurements.

Big Bang nucleosynthesis halted once matter had cooled downenough, due to the cos-

mic expansion. The electrical neutrality of the matter was reached at a more recent event:

the so called ‘recombination’ process refers to the time when each electron was captured

by a nucleus forming the first neutral atoms. Subsequently, at a temperature of around

T ≈ 0.1 eV (≈ 103 Kelvin), CMB photons decoupled from ordinary matter and have since

travelled freely. These same photons reach us in the form of microwave radiation. The

surface of emission of these primordial photons is called the last-scattering surface. CMB

observations constitute irrefutable proof that the universe was homogeneous at early epochs

and dominated by radiation whenT > 103 Kelvin.

The current temperature of the CMB radiation (TCMB = 2.725 Kelvin) is measured with

such precision because its fluctuations are tiny. The first observational evidence for the CMB

anisotropies came from the COBE satellite [Smoot, 1992; Bennett et al., 1996]. The results

of this experiment showed that the temperature fluctuationshave a mean amplitudeδT/T ∼
10−5. The amplitude of such deviations was predicted by Peebles &Yu [1970] and Zeldovich

[1972] in terms of the matter density perturbationδρ/ρ ∼ 10−5. These inhomogeneities are

related through the Sachs-Wolfe formula [Sachs & Wolfe, 1967]. This prescribes that for

inhomogeneities of comoving sizeλ,

δT

T
≈ −1

2
(aLSHLSλ)2 δρ (1.4)

where we have definedδρ ≡ δρ/ρ, and where a subscriptLS indicates an evaluation at the

last-scattering surface.

More recent experiments, such as BOOMERANG [Netterfield et al., 2002], MAXIMA

[Hanany et al., 2000] and WMAP [Hinshaw et al., 2007; Komatsuet al., 2008], managed

to measure the acoustic oscillations in the radiation plasma due to the small-scale density

variations in the early universe. Measurements of acousticoscillations in the CMB demon-
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strated the flatness of the universe to1% precision (i.e.|Ωκ| < 10−2). They were also used

to rule out cosmic strings as a significant contributor to structure formation and suggested

‘cosmological inflation’ as the theory of structure formation [Jaffe et al., 2001].

1.2 Cosmological inflation

1.2.1 Motivation and achievements

The observations mentioned above provided strong arguments in favor of the Big Bang

model but also showed the necessity of a larger theoretical framework due to the follow-

ing problems:

1. Horizon problem. In the Big Bang model, the distance light could have traveled up to

the time of last-scatteringdLS is of order180 Mpc. This is called the particle horizon

and determines the radius of causally connected regions at that time. The particle hori-

zon today is much larger, with radiusd0 ∼ 6000 Mpc. Therefore, the measurements

of CMB radiation at angular scales larger than one degree include regions that were

causally disconnected at the time of the photon decoupling.The temperature at such

scales is observed to be uniform up to one part in105. This means that causally disjoint

patches of the universe in the past had the same thermal history. In the context of the

hot Big Bang model there is no plausible explanation for thisfact.

2. Flatness problem. The density of matter components in the universe is dilutedwith

time due to the cosmic expansion. Conversely, if there was aninitial curvature com-

ponentκ, then this would rapidly dominate the matter contents. Thisis easily derived

from Eq. (1.3), which can be written in the form

ΩT − 1 =
κ

a2H2
≡ Ωκ. (1.5)

The productaH decreases with time in a radiation or matter dominated universe. If

the universe is initially flat, then it remains flat for subsequent times, but observations

show that|Ωκ| . 10−2 today, and the Friedmann evolution demands an even smaller

curvature in the past. For example, at nucleosynthesis, when the universe was around
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1 s old, we require|Ωκ| . 10−16 to be consistent with the present value. Such a

small value requires an extreme fine-tuning of initial conditionsΩT, for which a causal

explanation would be desirable.

A solution to these problems is provided by the inflationary paradigm, which we will

study in detail in Chapter 2. The main feature of this theory is that it changes the behaviour

of the comoving cosmological horizon by considering an accelerated expansion of the uni-

verse at early times, i.e., at times prior to nucleosynthesis. In terms of the scale factor, this

condition demands

ä > 0 ⇒ d

dt

[
1

aH

]
< 0. (1.6)

The shrinking of the cosmological horizon represents a ‘reverse’ evolution of spacetime

which avoids the fine-tuning of initial conditions demanding homogeneity and flatness. If

we consider an inhomogeneous patch of the universe when inflation starts, at an initial time

ti, the cosmic accelerated expansion brings all initial inhomogeneities out of the comoving

cosmological horizon. If inflation lasts long enough, then after the inflationary period we are

left with a much larger region composed of small patches of size of the cosmological horizon

which are out of causal contact but with common physical characteristics. The number of

e-folds of expansion required for the listed problems to be solved is

N = ln

(
a(tend)

a(ti)

)
& 60. (1.7)

This number is required to guarantee that the comoving scaleof the current size of the uni-

verse exited the horizon at the beginning of inflation [Liddle & Lyth, 2000]. This indicates

that inflation must last longer than 60 e-folds. Arguably, itwas Guth [1981] who first brought

these ideas together.

The theory of inflation has received important contributions from particle physics. In par-

ticular, the theory of particle creation from vacuum fluctuations [Hawking, 1982; Starobin-

sky, 1982] gave inflation its strongest argument: the vacuumfluctuations generated during

inflation are redshifted to superhorizon scales by the action of the inflationary mechanism.

At the end of inflation, the thermalisation of the inflaton false vacuum reheats the universe



1.2: Cosmological inflation 18

and the standard hot Big Bang phase begins. In this transition, the vacuum fluctuations of the

inflaton field are transformed into matter density perturbations with a prescribed amplitude.

From this transition onwards, the modes re-enter the expanding comoving horizon. Thus,

initial conditions of cosmological perturbations in the hot Big Bang are set by inflation.

The observed mean amplitude of the temperature inhomogeneities [Smoot, 1992; Netterfield

et al., 2002; Spergel et al., 2007] sets the energy scale at which the initial vacuum fluctuations

were generated by tracing back the evolution of fluctuationsdescribed above. This simple

explanation of the origin of the temperature fluctuations constitutes a decisive argument in

favour of the inflationary scenario. It represents the greatest advantage of inflation over many

other alternative extensions of the standard Big Bang scenario.

In summary, the requirements for a period of inflation are: (1) a mechanism to generate

an accelerated expansion maintained for at least 60 e-foldsof expansion; (2) a way of ac-

counting for the transition to the subsequent FRW stages of evolution, thereby providing the

suitable initial conditions for the Big Bang scenario; (3) quantum fluctuations of the infla-

tionary field, generated at observable scales such that the matter density fluctuations of size

λ meet the relation(aHλ)δρ ≃ 10−5 and this product is almost invariant over the observed

scales.

In practice, measurements of CMB anisotropies, combined with measurements of back-

ground parameters inferred from supernovae surveys [Astier et al., 2006; Riess et al., 2007],

indicate that the root-mean-square (RMS) amplitude of temperature fluctuations is

(
δT

T

)

RMS

≈ 2 × 10−5, (1.8)

at the pivot scale with comoving sizeλCMB = 150 Mpc customarily used in CMB studies.

Observations also indicate that this value does not vary significantly over the range of ob-

served scales. In other words the mean amplitude is almost scale-invariant for angular scales

larger than one degree. In Chapter 2 we show how this relates to the curvature perturbationζ

and discuss its basic properties. In particular, we will show that, in the cases which concern

us,ζ is constant for scales larger than the particle horizon.
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1.2.2 An embarrassment of richness

The required amount of inflation and the corresponding amplitude of the curvature pertur-

bations determine the kind of matter and energy scale necessary to satisfy the conditions

for accelerated expansion. These prerequisites have been met by several models of inflation

which may or may not be motivated by more fundamental theories of physics. One of the

main problems faced by the inflationary paradigm is that of richness. There are many mod-

els that meet the dynamical requirements. Most of them invoke one or more scalar fields

{φi} with dynamics governed by a potentialV (φi). There are a plethora of models, each of

which corresponds to particular realisation of this potential, which satisfy the observational

constraints up to the level of the observed inhomogeneities. Consequently, many of the

models cannot be distinguished at the level of linear perturbation theory. This demands the

formulation and experimental determination of new parameters that provide complementary

information about the early universe. An important constraint on the inflationary models can

be obtained by considering the statistical deviations froma Gaussian field of fluctuations.

This idea has opened a new window in the study of the early universe, namely the nonlinear

extension of perturbation theory and its non-Gaussian statistics.

1.3 Non-Gaussianity

By non-Gaussianity in cosmology we refer to the small deviations of observed fluctuations

from the random field of linear, Gaussian, curvature perturbationsζ1(t,x). ζ(t,x) is the

curvature perturbation in the comoving gauge, that is, as measured by an observer which

sees no net-momentum flux. The mathematical expression forζ(t,x) in terms of the matter

density perturbation is provided in Chapter 2.

Among the parameters of nonlinearity, the nonlinear coupling fNL is the most useful

observable for describing non-Gaussianity. Its definitioncomes from the second order ex-

pansion of curvature perturbations in real space, which canbe written as

ζ(x) = ζ1 +
1

2
ζ2, (1.9)

whereζ1 refers to the Gaussian perturbation with varianceΣ2
ζ(x) = ζ2

RMS(x) andζ2 is the
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second order perturbation parametrised by the nonlinear parameterfNL in the following way

ζ2(x) = −6

5
fNL(ζ1(x)2 − ζRMS(x)

2). (1.10)

Note that the perturbative expansion ofζ implies also the rough definition

fNL = −5

6

ζ2(x)

ζ2
1(x)

, (1.11)

which gives an intuitive notion of this parameter. Historically, non-Gaussianity as a test of

the accuracy of perturbation theory was first suggested by Allen et al. [1987]. The definition

of fNL used here was first introduced by Salopek & Bond [1990] in terms of the Newtonian

or Bardeen potentialΦB (defined in Chapter 2). Their initial definition has been preserved

by convention [Gangui et al., 1994; Verde et al., 2000; Komatsu & Spergel, 2001], which is

why the transformation to the curvature perturbationζ2 involves the numerical factor−5/6.

In the context of perturbation theory, the study of dynamical equations at second order yields

important information independent of the parameters of linear perturbations. Thus, in the

nonlinear regime, we can discriminate different models of inflation which are degenerate at

linear order. This fact has motivated the search for non-Gaussianity in the CMB and large-

scale structure.

Statistically, the lowest order effect of including a non-Gaussian contribution is a non-

vanishing correlator of three copies of the curvature fieldζ . The three-point function in

Fourier space is given by the bispectrumB, defined by

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3Bζ(k1, k2, k3)δ
(3)(k1 + k2 + k3), (1.12)

whereδ(3) is the three-dimensional Dirac delta function.

The bispectrum is directly related to the parameterfNL and for each modek = |k|. More-

over, being a function of three momenta, thek-dependence of the bispectrum also provides

valuable information which could help us to understand the physics of the early universe.

The nonlinear parameters have been investigated through the analysis of higher order

correlations in the CMB anisotropies observed mostly by theWMAP satellite [Spergel et al.,



1.3: Non-Gaussianity 21

2007]. After five years of collecting data, WMAP observations give the limits−151 <

f equil
NL < 253 [Komatsu et al., 2008] for an equilateral triangulation of the momenta and

−4 < f local
NL < 80 [Smith et al., 2009] for a local triangulation. The triangulation of the bis-

pectrum is a characteristic which arises due to the following: The momentum conservation in

the three point correlation is guaranteed by the delta function in Eq. (1.12), which demands

that the sum of the three vectors is zero. In consequence the three momenta represent the

sides of a triangle ink-space. Two main triangulations can be distinguished: the equilat-

eral triangulation and the isosceles or local triangulation, which are characteristic shapes of

different models of inflation (see e.g. Babich et al. [2004]). An experimental detection of

fNL would greatly narrow the range of cosmological models whichmeet the observational

bounds. In the near future, space telescopes, and in particular the PLANCK satellite, are ex-

pected to tighten these bounds considerably. Specifically,any signal with|fNL| >∼ 5 should

be observed by PLANCK [Komatsu & Spergel, 2001; Liguori et al., 2006]. This raises the

exciting possibility of looking for particular signaturesof inflationary models.

Another attractive observational prospect for non-Gaussianity is to look at the implica-

tions of considering primordial non-Gaussian fluctuationsin the study of the statistics of

galaxies and other large-scale structures (LSS) [Verde et al., 2000; Matarrese et al., 2000;

LoVerde et al., 2008]. Such observations probe inhomogeneities at scales smaller than those

observed in the CMB.

The effects of non-Gaussianity in the LSS can be classified into two categories, which

provide distinct observational methods for detecting non-Gaussianity. The first is the bis-

pectrum of galaxies, potentially determined by computing the three-point correlation func-

tion from redshift catalogues [Verde et al., 2001; Scoccimarro et al., 2004]. The second is

the non-Gaussian correlations in the probability distribution function (PDF) which leads to

modifications in the number of galaxies and other structureswith respect to the Gaussian

case [Verde et al., 2000; Matarrese et al., 2000].

Both methods involve delicate issues, crucial for the correct interpretation of observa-

tions. Most important is the fact that the inhomogeneities that collapse to form galaxies

evolve in a nonlinear fashion at late times. This is because the primordial fluctuations en-

ter the horizon much before they form virialised structures. Consequently, the nonlinear
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evolution of fluctuations may blur the primordial non-Gaussianity of the initial statistics.

Another important problem is that there is no single way of constructing a non-Gaussian

PDF from theoretical models, i.e., several non-Gaussian PDFs can be constructed with a

common variance and skewness. This well known problem has been expressed pithily by

Heavens [2006]: “We know what a dog is, but, what is a no-dog? Ano-dog can be anything”.

The effects on, say, the integrated number of galaxies may change substantially with every

realisation of the PDF. This complicates the interpretation of non-Gaussian signatures.

In Chapter 3, a formalism is presented to attack this problem. We construct the PDF

of the curvature perturbations with a direct input from its higher-order correlations. The

formalism is then applied to compute the modification which anon-Gaussian distribution of

fluctuations brings to the abundance of primordial black holes.

1.4 Primordial black holes

1.4.1 Standard picture

The idea that large amplitude matter overdensities in the universe could have collapsed

through self-gravity to form primordial black holes (PBHs)was first put forward by Zel’Dovich

& Novikov [1966] and then independently by Hawking [1971] and Carr & Hawking [1974]

more than three decades ago. They suggested that at early times large-amplitude overdensi-

ties would overcome internal pressure forces and collapse to form black holes. The standard

picture of PBH formation from initial inhomogeneities prescribes that an overdense region

with sizeri will overcome pressure and collapse to form a black hole if its size is bigger than

the associated Jeans length

rJ = 4π

√
w

5 + 9w
dH , (1.13)

where the particle horizondH is of order of the Hubble radiusrH = 1/H. Here we assume

an equation of statep = wρ, wherew is constant. For the case of radiation-domination, for

example,w = 1/3.
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The size of the initial inhomogeneity must also be smaller than the separate universe scale

rU =
1

H
f(w), (1.14)

where the functionf(w) has been derived by Harada & Carr [2005], and is of order unity.

Thus,rJ < ri < rU, both limits being of order the Hubble radius. Consequentlythe mass of

a PBH is close to the Hubble horizon mass. This gives a simple formula for the mass of a

PBH forming at timet during radiation domination [Carr, 1975]:

MPBH ≃ MH =
4

3
πr3

Hρ = 1015

(
t

10−23 s

)
g. (1.15)

The PBH mass spectrum depends mainly on two characteristicsof the early universe: the

equation of statew, which determines how large the amplitude of initial inhomogeneities

should be to halt the background expansion and recollapse, and the nature of the initial den-

sity fluctuations, which determines how likely such amplitudes are. Carr [1975] determined

the threshold amplitudeδth ≡ (δρ)th required for the density perturbation to collapse to a

PBH to beδth ∼ w. In this case, one needs perturbations to the FRW metric withmean

amplitude of order unity to form a significant number of PBHs.

The special characteristic of PBHs is that they can form at very early epochs and have

very small masses. The smallest PBHs would have formed at theend of the inflationary

expansion [Carr & Lidsey, 1993], even from field fluctuationsthat never exited the horizon

[Lyth et al., 2006; Zaballa et al., 2007]. The mass of the horizon at the end of inflation is

[Zaballa et al., 2007]

MH ≃ 1017g

(
107GeV
TRH

)2

, (1.16)

where the reheating temperatureTRH depends sensitively on the model of inflation con-

sidered. In the canonical slow-roll inflationary model thistemperature can be well above

1010 GeV [Kolb & Turner, 1990]. Taking on account the production of dark matter candi-

date particles in supersymetric models, this temperature could be dropped by several orders

of magnitude, however, leptogenesis does not alow the reheating scale to be smaller than
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109 GeV [Buchmuller et al., 2005]. This in turn means that PBHs could have been produced

with masses much smaller than1011 g. On the other hand, PBHs that formed at1 s have

masses of order105M⊙ which is already in the range of masses of black holes at the centre

of galaxies.

The small masses of PBHs prompted the investigation of theirquantum properties. The

well known result of Hawking [1974] shows that black holes radiate with a temperature

T ≃ 10−7

(
M

M⊙

)−1

Kelvin (1.17)

and evaporate entirely on a time scale

tevap ≃ 1064

(
M

M⊙

)3

y, (1.18)

whereM⊙ is the solar mass. With the age of the universe estimated as1.37± 0.015× 1010 y

[Spergel et al., 2007], we can predict that PBHs with massMcrit = 5×1014 g are evaporating

now. PBHs are also the only type of black holes for which the effect of Hawking evaporation

could be observed. Indeed, the black holes evaporating now would be producing photons

with energy100 MeV [Page & Hawking, 1976]. The observedγ-ray background radiation at

this energy implies that the density parameter of such PBHs must satisfy [Page & Hawking,

1976]

ΩPBH(M ∼ 1015 g) . 10−8. (1.19)

This bound remains the tightest constraint to the abundanceof PBHs. Additional cosmolog-

ical bounds to the mass fraction of PBHs are reviewed in Chapter 4.

The mass fraction of the universe turning into PBHs of massM at the time of their

formation is denoted byβPBH(M). This is equivalent to the probability of formation of PBHs

of massM . In a rough calculation,βPBH(M) is given by the Press-Schechter formalism

[Press & Schechter, 1974; Carr, 1975] as the integral of the PDF over all amplitudesδρ
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above the thresholdδth:

βPBH(M) = 2

∫ ∞

δth

P(δρ) dδρ, (1.20)

where the factor two has been added to account for the half volume of the universe that is

necessarily underdense. With this factor the Press-Schechter formula gives a good fit to the

results of N-body simulations for the case of galactic haloes [Peebles, 1980]. For the case

of PBHs, an upper limit of integration is formally required.This is the amplitude of an

inhomogeneity for which the total mass would form a separateclosed universe. However,

the contribution of higher values to the probability is almost negligible and we do not include

an upper limit here. For the case of a Gaussian PDF with varianceΣρ(M) this integral is

approximated by [Carr, 1975]

βPBH(M) ≈ δth exp

(
− δ2

th

2Σ2
ρ(M)

)
. (1.21)

This equation demonstrates the sensitive dependence of theprobability of PBH formation

with δth. The above integral is expected to be small due to the exponential dependence on

the threshold valueδth. βPBH is also known to be small because it is related to the current

density parameterΩPBH of PBHs formed at timet and with massM by

ΩPBH = βPBH ΩR

(
a0

a(t)

)
≃ 106 βPBH

(
t

1 s

)−1/2

≃ 1018 βPBH

(
M

1015g

)−1/2

,

(1.22)

whereΩR = 8×10−5. The factora−1 arises because PBHs form mostly during the radiation-

dominated era but PBH density scales asa−3, while radiation scales asa−4. From this

relation we see that any limit onΩPBH places a direct constraint onβPBH. For example, from

the bound in Eq. (1.19), we infer thatβPBH(M = 1015g) can only have a small value of order

10−26.

1.4.2 Shortcomings

The simple picture of PBH formation described above has several shortcomings
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1. In the radiation era the inhomogeneities forming PBHs must have a large amplitude

when they enter the horizon and they must be bigger than the horizon for a consid-

erable period of their evolution. As we will show in Chapter 2, the inhomogeneities

at superhorizon scales are best described in terms of curvature perturbations because

they are constant in this regime. The curvature perturbation has already been used

in the more recent numerical simulations of PBH formation [Shibata & Sasaki, 1999;

Niemeyer & Jedamzik, 1999; Polnarev & Musco, 2007]. Here, asin several other re-

cent works on the subject [Yokoyama, 1999; Green et al., 2004; Zaballa et al., 2007;

Josan et al., 2009], we compute the probability of formationof PBHs from the statis-

tics of the curvature perturbations. This has the advantageof relating the formation of

PBHs directly to the initial perturbation spectrum. Additionally, it avoids the gauge

anomaly associated to the matter density fluctuation.

2. In the calculation of the probability of PBH formation, one could argue that the Press-

Schechter formula in Eq. (1.20) is only an empirical approximation. Alternative ap-

proaches have therefore considered the theory of peaks [Green et al., 2004]. However,

this does not render significant corrections to the Press-Schechter result. Moreover, the

Press-Schechter formula can be used to calculate the probabilities of large-scale struc-

ture formation from non-Gaussian PDFs [Matarrese et al., 2000]. Indeed, the latest

numerical simulations confirm that it is a good approximation even in this case [Grossi

et al., 2009]. This justifies our choice of the Press-Schechter formalism to explore new

aspects of the probability of PBH formation.

3. A severe oversimplification of the usual calculation of the probability of PBH forma-

tion is the assumption of Gaussianity. The exponential decay of the Gaussian PDF is

preserved after its integration in the Press-Schechter formula (1.21). The fact that the

mass fraction involves an integration over the tail of the normal distribution, where the

probability density is small, leads us to consider that a slight variation on the profile

of the PDF might modify this picture significantly. Indeed, non-Gaussian probability

distributions have been considered in studies of the probability of PBH formation by

Bullock & Primack [1997] and Ivanov [1998]. The discrepancyin their results and the

large departures from the Gaussian case make this problem worth revisiting. One main
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objective of this thesis is to derive the modifications that non-Gaussian PDFs bring to

the probability of PBH formation in the most general cases. We explore for the first

time the modifications that a non-Gaussian PDF may bring for the bounds on the ampli-

tude of fluctuations and the higher order statistics parameter fNL on the cosmological

scales relevant to PBH formation.

4. The last important problem in the calculation ofβPBH is the determination of the pre-

cise value of the threshold amplitudeδth or ζth for the density or the curvature inho-

mogeneity. This approximation ofβPBH prompted several studies of PBH formation to

determine the precise value of the threshold amplitude. Early numerical simulations

of gravitational collapse, however, already showed that this value depends sensitively

on the shape and profile of the initial configurationδρ(x) [Nadezhin et al., 1978]. This

dependence indicates that the lower limit of the integral (1.20) is not uniquely pre-

scribed for all configurations collapsing to form PBHs. The problem then is how to

differentiate profiles of initial inhomogeneities in the calculation of the probability of

PBH formation. This is another problem we address in this thesis. We calculate the

probability of PBH formation by taking into account the radial profiles of initial cur-

vature inhomogeneities. This represents a first attempt to incorporate profiles into the

calculation ofβPBH and allow for a more precise estimation of the probability ofPBH

formation.

1.4.3 Alternative mechanisms of PBH formation

The formation of PBHs is not limited to the collapse of overdensities. PBHs may also form

at the phase transitions expected in the early universe. Letus here briefly review other known

mechanisms of PBH formation.

• PBHs may form at early phase transitions where the equation of state is soft for a small

period of time. In such transitions, the effective pressurein the universe is reduced due

to the the formation of non-relativistic particles. Hydrodynamical simulations show

that at such a phase transition the value ofδth is reduced below the value pertaining

to the radiation era. This mechanism enhances the probability of PBH formation at a



1.4: Primordial black holes 28

mass scale of the order of the horizon mass at that time [Khlopov & Polnarev, 1980;

Jedamzik, 1997].

• Loops of cosmic strings can collapse to form PBHs. Cosmic strings are topological

defects formed at the phase transitions in the very early universe. Closed loops can

be formed from string self-intersection. The scale of a loopwill be larger than the

Schwarzschild radius by a factor(Gµ)−1, whereµ is the string mass per unit length, a

free parameter in the theory. In the cosmic string scenario,these loops are responsible

for the formation of cosmological structures if(Gµ) is of order10−6. In this scenario,

there is always a small probability that particular configurations, in which all the loop

dimensions lie within its Schwarzschild radius, can collapse to form black holes. This

mechanism has been discussed by many authors (see e.g. Hawking [1989]; Polnarev &

Zembowicz [1991]; Garriga & Sakellariadou [1993]). However, WMAP and observa-

tions of galaxy distributions show that cosmic strings can at most contribute to10% of

the temperature anisotropy in the CMB [Wyman et al., 2005]. The mass per unit length

is less constrained by the observational limits on primordial black holes [Caldwell &

Casper, 1996]. Because theµ parameter is scale-invariant and its most stringent limit

comes from CMB observations, we can say that the formation ofPBHs from cosmic

string loops is subdominant with respect to the standard picture of collapse of overden-

sities.

• One can also consider closed domain walls which form black holes. Domain walls

are hypothetical topological defects of higher order. In a phase transition of second

order, such as might be associated with inflation, sufficiently large domain walls may

be produced [Crawford & Schramm, 1982]. This leads to the formation of PBHs in the

lower end of the range of masses [Rubin et al., 2001].

• Recently, a mechanism to form PBHs as the result of warping cosmic necklaces has

been suggested. These topological defects arise in the process of symmetry breaking

in the framework of quantum strings [Matsuda, 2006].

In all these mechanisms the PBHs have mass of order the horizon mass at phase transitions

in the early universe. They are also expected to produce PBHswith a Gaussian distribu-
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tion. Here we are interested mostly in PBHs with a non-Gaussian distribution in order to

produce constraints on models of inflation, so we do not studythese alternative formation

mechanisms.

1.5 Thesis outline

Chapter 2 presents a study of non-Gaussianity from inflationary scalar perturbations. It first

introduces the relevant definitions and the main tools used in the study of inflationary pertur-

bations. It then focuses on the derivation of non-Gaussian correlation functions. Specifically,

the three-point correlation is studied in models where an auxiliary scalar field during infla-

tion is responsible for the generation of non-adiabatic fluctuations. The cases in which the

non-adiabatic fluctuations may generate large values offNL is considered in detail.

The method used to derive the non-Gaussian correlators requires the solution of the

Klein-Gordon equation beyond linear order. This equation is solved considering a pertur-

bative expansion of the nonlinear terms without taking on account the metric back-reaction.

For the cases in which analytic solutions are possible, the derivation of the three-point cor-

relation is presented. Finally, the observational limits on fNL are used to constrain models of

inflation which include a curvaton field, a special case of an isocurvature field.

Chapter 3 discusses the decomposition of the curvature perturbationR into harmonics.

This is a technical step, which is necessary in order to writedown a path integral for the

PDFP(R). We present the calculation for the Gaussian case first, in order to clearly explain

our method with a minimum of technical details. This is followed by the equivalent calcula-

tion including non-Gaussian corrections which follow froma non-zero three-point function.

Finally we calculate the probabilityP[R(k)], which will be used to derive a non-Gaussian

probability of PBH formation.

In Chapter 4 we compute the mass fractionβPBH resulting from a non-Gaussian PDF

of primordial curvature fluctuationsR. We restrict ourselves to the case in which the non-

Gaussian PDF corresponds to a constant value offNL. It is first shown how to reconcile

the discrepancy between two previous studies of non-Gaussian PBH formation [Bullock &

Primack, 1997; Ivanov, 1998]. We then calculate the modifications to the observational

bounds toβPBH when a large value offNL is included.
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Chapter 5 explores the probability of finding non-trivial spatial profiles for the perturba-

tions that form PBHs. The numerical simulations show that the usual assumption of homo-

geneous spherically symmetric perturbations collapsing to PBHs is not appropriate. Chapter

5 provides a probabilistic analysis of the radial profiles ofspherical cosmological inhomo-

geneities that collapse to form PBHs. Based on the methods used to construct non-Gaussian

PDFs, we derive the probability distribution for the central amplitude ofR and for the sec-

ond radial derivative d2R/dr2 at the centre of the spherically symmetric inhomogeneity used

to describe the radial profiles explored in studies of gravitational collapse. We then consider

the joint probability of both parameters to compute the correction toβPBH. The results show

how much the probability of PBH formation can be reduced if wedo not include all possible

configurations forming PBHs.

Chapter 6 is the summary and conclusion of this thesis. We also describe future research

which may follow. The key achievement of this thesis is to combine for the first time the

study of two crucial probes of the early universe. The effects of nonlinear non-Gaussian

inhomogeneities and primordial black hole formation.



Chapter 2

Non-Gaussian curvature perturbations

2.1 Outline

Observations of cosmological structure and CMB parametersare best interpreted in the con-

text of cosmological perturbation theory. This is a useful tool to connect observations with

models of inflation derived or motivated by high energy physics theories for which there is

no other available test. Surprisingly enough, the simplestinflationary model, consisting of

a single scalar field slowly rolling down a quadratic potential, motivated mainly by its sim-

plicity, has passed all observational tests. The future of cosmology relies on the extension of

experimental tests and predictions for new cosmological parameters, mostly beyond linear

order. This is crucial if we want to achieve a better understanding of the physics dominating

the early universe.

This is enough motivation to study the nonlinear regime of cosmological inhomogeneities.

Among the observable effects, the non-Gaussianity of perturbations has been widely studied

in inflationary models. Non-Gaussianity is an important observational test as it might elimi-

nate models of inflation even for a null detection. Our goal inthis chapter is to compute the

nonlinear correlations of a general isocurvature field which is valid for all models.

We first introduce the theory of perturbations and then focuson the situation in which

the curvature perturbation is generated by the quantum fluctuations of an isocurvature scalar

field. The isocurvature or entropy perturbations are transformed into curvature inhomo-

geneities at the end of a period of inflation or shortly after it. We will show that only the

presence of entropy fluctuations can affect the evolution ofcurvature fluctuations on super-

31
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horizon scales.

At linear order, we will show under which conditions the observed power spectrum of

curvature fluctuations can be attributed to the action of theisocurvature field. Subsequently

we present a method of deriving such correlations from the solutions to the Klein-Gordon

equation of the isocurvature field. For specific cases we are able to derive an explicit expres-

sion for the nonlinear parameterfNL. The prospects of observationally testing the predictions

for the models of structure formation presented here are also briefly discussed.

The introductory sections of this chapter present a review of the elements of the stan-

dard inflationary scenario, including the linear perturbation theory. We present the relevant

definitions and conventions to be used, with particular attention to those results of linear

perturbation theory which will be used in this and subsequent chapters. From Section 2.5

onwards, we focus on the description of the non-Gaussian correlators of an auxiliary isocur-

vature fieldχ. The expressions for the curvature perturbation three-point correlators and the

fNL values are presented in the last section of this chapter.

2.2 Linear perturbations

In cosmological perturbation theory, the universe is described to a lowest order by a homo-

geneous, isotropic background spacetime. The large-scaleinhomogeneities and anisotropies

observed in the real universe result from the growth of density fluctuations, the amplitudes

of which are small in the early stages of the universe. (See Peebles [1980] for a textbook

description of the development of perturbation theory.)

In the framework of perturbation theory, the homogeneous background spacetime is ac-

counted for by an ansatz metric. The most useful ansatz in this case is the Friedmann-

Robertson-Walker (FRW) metric:

gµν = a2(η)


 −1 0

0 γij


 , (2.1)
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where the conformal timeη is given in differential form by

dη =
dt

a(t)
, (2.2)

a is the scale factor andγij is the metric of the three-dimensional space. In our notation Greek

indices have values0, 1, 2, 3, while Latin ones have values1, 2, 3. We assume throughout a

flat space, relying on the observational limit|Ωκ| < 10−2 [Komatsu et al., 2008]. The FRW

metric describes the isotropic space-time expanding at a uniform rate. The expansion rate is

conventionally characterised by the Hubble parameter

H =
dln a

dt
=

1

a

dln a

dη
=

1

a
H, (2.3)

whereH is defined with respect to coordinate timet andH with respect to conformal time

η.

2.2.1 Metric perturbations

In perturbation theory, observed anisotropies and inhomogeneities are considered as depar-

tures from the metric (2.1). For a perturbed metric, the metric tensor can be split as

gµν = g(0)
µν + δgµν , (2.4)

whereg(0)
µν is the homogeneous FRW background andδgµν encodes the perturbed quantities.

First order scalar perturbations of the metric are expressed in terms of the functionsϕ, B, ψ

andE, which are defined by

δg
(s)
00 = − 2a2ϕ(η,x),

δg
(s)
0i =a2B(η,x),i,

δg
(s)
ij =2a2

(
ψ(η,x) γij + E,ij(η,x)

)
,

where the index(s) denotes scalar modes. The vector constructed from the scalar B is

necessarily curl-free, i.e.B,[ij] = 0. The pure vector contributions to the metric perturbations
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are

δg
(v)
0i = − a2Si, δg

(v)
ij = 2a2F(i,j),

where we demandS[i,j] 6= 0. The symmetric derivative of the functionFi is the vector

contribution togij. To distinguish scalar and vector contributions, the vector part is forced

to be divergence-free, i.e.,γijSi,j = 0. (The decomposition of a vector field into curl- and

divergence-free parts is formally known as Helmholtz’s theorem.) The tensor contribution

to the perturbation quantities isδ g(t)
ij = a2hij. This is constructed as a transverse, traceless

tensor, which guarantees that it cannot be constructed fromscalar or vector perturbations.

The perturbation functionsϕ,B, ψ andE, represent four degrees of freedom. The diver-

genceless vectorsSi andFj each have two degrees of freedom and the transverse traceless

tensorhij has two more. We therefore have10 degrees of freedom in total. The contravari-

ant metric tensor of the perturbed metric is constructed, tofirst order, from the condition,

gµαg
µβ = δβ

α. Finally, the line element of the metric is

ds2 = a2(η)
{
− (1 + 2ϕ)dη2 + 2(B,i − Si)dη dx

i

+[(1 + 2ψ)γij + 2Eij + 2Fi,j + hij] dx
i dxj

}
. (2.5)

In the present work we will study the nonlinear perturbations as the quantum fluctuations

of scalar matter fields. We will establish the correspondence between scalar matter fluctua-

tions and scalar perturbations in the metric at first and second order in perturbation hierarchy.

We will then derive statistical parameters of nonlinearity.

In contrast to the scalar metric fluctuations, the vector andtensor perturbations in the

metric are not sourced by scalar matter perturbations at first order. In the standard picture,

they are only related at second or higher order in perturbation theory (see e.g. Lu et al.

[2008]), therefore their contribution to the statistical parameters of nonlinearity are sub-

dominant and henceforth we neglect their contributions to the perturbations in the metric.
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2.2.2 Gauge freedom

In general relativity, the mathematical relations betweenphysical quantities are manifestly

independent of the coordinate choice. However, there is no covariant way of splitting back-

ground and perturbed variables. There is always an unphysical coordinate or gauge depen-

dence associated with perturbed spacetimes. This issue of gauge ambiguity was disregarded

in the initial works of perturbation theory [Lifshitz, 1946; Lifshitz & Khalatnikov, 1963].

This could lead to erroneous results which were eventually resolved in a systematic way by

Bardeen [1980]. The importance of determining the gauge changes that equations and per-

turbations undergo leads us to look at this problem in detail. In the following we adopt a

‘passive’ approach to gauge transformations (For a recent review of these results, see Malik

& Wands [2008]). Let us consider the general coordinate transformation,

η̃ = η + ξ0, x̃i = xi + ξ i
, + ξ̄i, (2.6)

whereξ0 = ξ0(η, xi) is a scalar that determines the choice of constant-η̃ hypersurfaces. The

scalarξ and the divergence-free vectorξ̄i are also functions of the original coordinates within

these hypersurfaces.

The principle of relativity states that any physically meaningful measurement must be

invariant for all observers, in particular, for observers with different coordinate systems. One

of these invariants is the line elementds2, where coordinates enter via differentials. Such

differentials and the scale factors in both coordinate systems are related in the following

way:

dη = dη̃ − ξ0′ dη̃ − ξ0
,i dx̃

i,

dxi = dx̃i −
(
ξ′ i

, + ξ̄′i
)
dη̃ −

(
ξ i
, j + ξ̄i

,j

)
, (2.7)

a(η) = a(η̃) − ξ0a′(η̃).

Where a′ is the derivative with respect to conformal time. To first order in the metric per-

turbations and coordinate transformations, the perturbedline element, Eq. (2.5) is written in
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the ‘shifted’ coordinate system as

ds2 = a2(η̃)
{
−
(
1 + 2(ϕ−Hξ0 − ξ0′)

)
dη̃2 + 2

[
(B + ξ0 − ξ′),i − Si + ξ̄′i

]
dη̃ dx̃i

+
[ (

1 + 2(ψ −Hξ0)
)
γij + 2 (E − ξ),ij + 2Fi,j − 2ξ̄i,j + hij

]
dx̃jdx̃i

}
, (2.8)

where, as before,H ≡ a′/a is the Hubble parameter in terms of conformal time. This metric

can also be written using the initial definitions in terms of the ‘shifted’ coordinates:

ds2 = a2(η̃)
{
− (1 + 2ϕ̃)dη̃2 + 2(B̃,i − S̃i)dη̃ dx̃

i (2.9)

+[(1 + 2ψ̃)γ̃ij + 2Ẽij + 2F̃i,j + h̃ij ] dx̃
i dx̃j

}
. (2.10)

This shows that the coordinate transformation Eq. (2.7) induces a transformation of the met-

ric perturbations. Comparing Eqs. (2.5) and (2.10), the change is given to first order by

ψ̃ =ψ −Hξ0, (2.11)

ϕ̃ =ϕ−Hξ0 − ξ0′, (2.12)

B̃ =B + ξ0 − ξ′, (2.13)

Ẽ =E − ξ. (2.14)

It must be stressed that the gauge transformations are, in effect, a change of the correspon-

dence between the perturbed spacetime and the unperturbed background spacetime.

A first exercise concerning gauge transformations is to find those quantities which re-

main invariant after a gauge transformation. To first order in perturbation variables, gauge-

invariant quantities are linear combinations of the gauge-dependent quantities presented

above. For scalar perturbations Bardeen [1980] shows that only two independent gauge-

invariant quantities can be configured purely from the metric perturbations:

ΦB =ϕ + H(B −E ′) + (B − E ′)′, (2.15)

ΨB = − ψ −H(B − E ′). (2.16)

Any other gauge invariants in the metric are linear combinations of these two quantities

because the gauge freedom allows only two arbitrary scalar functionsξ0 andξ [Malik, 2001].
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The Bardeen invariants will be useful in relating curvatureperturbations in different gauges,

as we will show below.

2.2.3 Perturbations of the matter sector

Before displaying conservation equations for the curvature perturbations, we will discuss the

perturbations of the matter sector. For a perfect fluid, thatis, a fluid with no heat conduction

or viscosity, the stress-energy tensor is

T µ
ν = (p+ ρ)uµuν + pδµ

ν , (2.17)

where the 4-velocity is defined with respect to proper timeτ as

uµ =
dxµ

dτ
(2.18)

and is subject to the normalisationuµuµ = −1. Anisotropic stresses would be encoded in a

stress tensorΠµν , but are absent for perfect fluids and for scalar fields minimally coupled to

gravity. These are precisely the kinds of matter consideredhere, so we ignore the tensorΠµν

in the subsequent analyses.

Using the normalisationuµuµ = −1, the perturbed velocity has components

u0 =
1

a
(1 − ϕ), ui =

1

a
(v,i + vi), (2.19)

u0 = −a(1 + ϕ), ui = −a(vi + v,i +B,i − Si), (2.20)

where the spatial parts are written in terms of the gradient of a scalarv,i and a (solenoidal)

vectorvi. The perturbed energy-momentum tensor is:

T 0
0 = − (ρ0 + δρ) , (2.21)

T 0
i =(ρ0 + p0)(B,i + v,i + vi − Si), T i

0 = −(ρ0 + p0)(v
,i + vi), (2.22)

T i
j =(p0 + δ)δi

j, (2.23)

wherep0 andρ0 represent the uniform pressure and matter density. In general our scalar
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stress-energy components can be written asf(η, xi) = f0(η) + δf(η, xi), with the subscript

0 denoting the background homogeneous part. As in the case of metric perturbations, coordi-

nate transformations will affect the matter perturbations. This means that the matter density,

velocity and pressure perturbations are gauge dependent. Under the transformation Eq. (2.6),

perturbed scalar functions of the form are thus transformedas

δ̃f = δf − f ′
0ξ

0. (2.24)

The vector perturbations are derived either from a potential, which will transform with the

shift ξ′, or from a pure divergence-free vector, whose transformation depends onξi. In

particular, the velocity potentialv transforms as:

ṽ = v + ξ′, (2.25)

and the vector functionvi is transformed as

ṽi = vi + ξ̄i′. (2.26)

2.2.4 Physical quantities and scales

Before addressing the characteristics and governing equations of the perturbed spacetime,

let us define the physical scales and the quantities that determine of the size and age of the

universe.

The time-like 4-vector field

Nµ = −a(1 + ϕ)δ0
µ, (2.27)

defines the direction perpendicular to the hypersurfaces ofconstant time. In consequence,

this vector field defines a coordinate system. This vector is unitary (NνNν = −1) and the

contravariant vectorNν = gνµNµ has components

N0 =
1

a
(1 − ϕ) , N i =

1

a

(
Si −B i

,

)
. (2.28)
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The expansion rate of the spatial hypersurfaces with respect to the proper time of observers

with 4-velocityNµ is θ = Nµ
;µ. Considering only scalar perturbations, this is given by

θ = 3
a′

a2
(1 − ϕ) + 3

1

a
ψ′ − 1

a
∇2 (B − E ′) , (2.29)

where the operator∇ denotes the usual three-dimensional gradient.

By looking at the relation between proper and coordinate time, dτ = (1 + ϕ) dt, we

extract the expansion with respect to coordinate time from the above expression by writing

θ(t) = (1 + ϕ)θ = 3H + 3ψ̇ + ∇2σ(t), (2.30)

where the Hubble parameter,H = ȧ/a is the background uniform expansion rate with re-

spect to the coordinate time. The shear scalar in coordinatetime isσ(t) = (Ė −B/a).

For the sake of completeness, we include here the definition of some useful scales. A

comoving observer is one moving with the expansion of the universe, i.e., one who measures

zero net momentum density. The distance of a comoving point from our location (taken to

be at the origin of coordinates), is given byr(t) = a(t)x, wherex is the comoving distance.

The Hubble radiusrH = H−1 provides a good estimate for the distance light has travelled

since the Big Bang. Formally, the integral

η =

∫ t

0

ds

a(s)
, (2.31)

defines the comoving distance travelled by a free photon since t = 0 and until timet. This

is important because no information could have travelled further thanη. This define the

‘comoving particle horizon’. In the above integralη can be taken also as the conformal time.

In a matter dominated universeη ∝ a1/2, while in radiation dominationη ∝ a. In a de Sitter

inflationary universe

η =

∫
ds

a(s)
=

∫
da

Ha2
= −H

−1

a(t)
. (2.32)

This shows that in an inflationary phaseη → −∞ as the universe approaches the initial

singularitya = 0, and increases monotonically towards0. This leads us to consider the mag-
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nitude|η| when we use the conformal time in our calculations for inflation. The maximum

distance light travels from timet = 0 to us is simply the comoving horizon times the scale

factor,

dH = a(tnow)

∫ tnow

0

ds

a(s)
. (2.33)

This is called the particle horizon, i.e., the radius of the region which is in causal contact

with us. This equation can be applied to find the horizon radius at times different fromtnow.

Considering the current dark energy domination and a cold dark matter component (with

density parameterΩm), the horizon size does not coincide exactly with the Hubblescale.

However, an approximate solution to the integral Eq. (2.33)shows that,

dH(tnow) ≈ 2H−1
now

1 + 0.084 lnΩm√
Ωm

≃ 3.5H−1
now, (2.34)

where the last expression assumesΩm = 0.25 [Hu et al., 1998].

2.2.5 Particular gauges

Let us now focus on the expressions for the curvature perturbation on three useful choices

of time slicing and threading. These are the uniform curvature gauge, the uniform density

gauge and the comoving gauge.

For the first case the spatial hypersurfaces present an unperturbed 3-metric, which means

ψ̃ = Ẽ = 0, in other words, curvature perturbations of the three-metric are set to zero.

We distinguish the quantities written in this gauge with a subscriptκ indicating a constant

curvature. So for a general coordinate system we require thefollowing transformations:

ξ0
κ=const =

ψ

H , ξκ = E. (2.35)

In this case, the scalar perturbation becomes

δfκ = δf − f ′
0

ψ

H . (2.36)

In particular, for scalar fields, this is the gauge-invariant Sasaki-Mukhanov variable [Sasaki,
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1986; Mukhanov, 1988], explicitly,

δφκ = δφ− φ′
0

ψ

H . (2.37)

In the uniform density gauge, the requirementδ̃ρ = 0 for constant-time hypersurfaces

implies

ξ0
δρ =

δρ

ρ′
. (2.38)

The gauge-invariant curvature perturbation on these hypersurfaces is denoted byζ and de-

fined as

ζ ≡ ψ̃δρ = ψ −Hδρ

ρ
. (2.39)

In this case, there is another degree of freedom and one can pick eitherB̃, Ẽ or ṽ to be zero.

The gauge invariance is made explicit when the curvature perturbation is written in terms of

the Bardeen variables. We will return to this point once we have defined the curvature in the

comoving gauge.

The comoving gauge is subject to the condition that the spatial coordinates comove with

the fluid, that is, for a constant-time slice the 3-velocity of the fluid vanishes,v i
, = 0. The

threading is chosen so that the constant-η hypersurfaces are orthogonal to the 4-velocityuµ,

which demands̃v+B̃ = 0. An immediate consequence of this choice of gauge is that thetotal

3-momentum vanishes on constant-time hypersurfaces. For this reason several authors call

this gauge the zero-momentum gauge. Using Eqs. (2.25) and (2.13), the chosen conditions

imply that

ξ0
m = −(v +B), ξm = −

∫
v dη + ξ̃(xi), (2.40)

with ξ̃(xi) the residual coordinate gauge freedom. This quantity is notspecified at this stage

because it is not required for the determination of the scalar quantities like curvature, expan-

sion and shear. For arbitrary coordinates, the scalar perturbations in the comoving orthogonal
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gauge are given by

ϕ̃m = ϕ +
1

a
[(v +B)a]′ , ψ̃m = ψ + H(v +B), Ẽm = E +

∫
v dη − ξ̃. (2.41)

The scalars̃ϕm andψ̃m defined in this way are gauge-invariant. The density perturbation in

the comoving gauge is also given in gauge-invariant form by

δρ̃m = δρ+ ρ′(v +B). (2.42)

Some authors use the gauge-invariant density perturbationin the comoving gauge by defining

the combination∆ ≡ δ̃ρ
i

m,i /ρ0 [Bardeen, 1980; Kodama & Sasaki, 1984].

The curvature perturbationψ in the comoving gauge was first used by Lukash [1980] and

first denoted asR by Liddle & Lyth [1993]. It is mathematically defined as

R ≡ ψ̃m = ψ + H(v +B). (2.43)

In the next section we will find that, through the Einstein equations and gauge-invariant

quantitiesΨB andΦB, defined in Eqs. (2.16) and (2.15), one can establish an equivalence

at large scales between the curvature perturbation to linear order in the uniform density

gauge and the same perturbation defined in the comoving gauge. Taking this equivalence for

granted, in the meantime, allows us to relateR andδρ directly. Indeed, if we consider the

gauge transformation (2.39) from an initial flat hypersurface, then

R = ζ = −Hδρκ

ρ
, (2.44)

at scales beyond the cosmological horizon (as will be made explicit below).

This last transformation shows the way of avoiding the gaugeanomaly. One can always

change the gauge (or frame of reference) and establish the equivalence between the perturba-

tions of any two gauges as long as a particular gauge is chosenat the start and all quantities

are initially defined in this gauge.
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2.3 Evolution of perturbations and conserved quantities

Just as the perturbed scalars in the metric are gauge dependent, so are the evolution equa-

tions for these quantities and they must be treated carefully in order to avoid spurious gauge

modes.

The equations governing the dynamics of space-time are found by varying the actionI
with respect to the metric and matter components. The actionis defined as

I =

∫ ∞

−∞

L√−g d4x, (2.45)

whereL is the Lagrangian density of the matter and the gravitational field. The gravitational

Lagrangian of general relativity is,

L = −R/2, (2.46)

whereR is the Ricci scalar. The Lagrangian density for a classical matter field minimally

coupled to gravity is

L = K − V − R/2, (2.47)

withK the kinetic energy andV the potential energy. For the matter sector of the Lagrangian

we can define the energy-momentum tensor as

Tµν = −2
∂L
∂gµν

+ gµνL. (2.48)

In particular, the energy-momentum tensor for a perfect fluid with densityρ and isotropic

pressurep and 4-velocityuµ is given by Eq. (2.17).

Let us now look at the Lagrangian density of a single scalar field φ, minimally coupled

to gravity. Its kinetic energy isK = −1/2gµν∂µφ∂νφ, so from Eq. (2.47) we find a canonic

action

LM = −1

2
[gµν∂µφ∂νφ+ 2V (φ)] . (2.49)
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Using the definition Eq. (2.48), it is easy to show that the scalar field energy-momentum

tensor is

T ν
µ = gανφ,µφ,α − δ ν

µ

(
V (φ) +

1

2
gαβφ,αφ,β

)
. (2.50)

The comparison between the last expression with Eq. (2.17),Tµν for a perfect fluid, shows

that we can define the density, isotropic pressure and velocity as [Tabensky & Taub, 1973]

uµ =
φ,µ

|gµνφ,µφ,ν |
, ρ = −gµνφ,µφ,ν + V, p = −gµνφ,µφ,ν − V. (2.51)

This identification provides an easy way to quantify the energy density of a scalar field and

its perturbations. The Lagrangian density for two real fields is

LM = −1

2
(gµνφ,µφ,ν) −

1

2
(gµνχ,µχ,ν) − U(φ, χ), (2.52)

which features the joint potentialU(φ, χ) of the participating fields, each minimally coupled

to gravity. This case is what concerns us in the rest of the chapter and we shall focus on its

dynamical equations.

2.3.1 Background equations

The Einstein equations are found by varying the action (2.47) with respect to the metric.

Under regular conditions, with no variations of the fields atthe boundaries, the equations are

found by applying the operator

[
δ

δg
− ∂µ

δ

δ(∂µg)

]
(2.53)

to the Lagrangian. The Einstein equations dictate the dynamics relating the local spacetime

curvature to the local energy-momentum. In the adopted natural units,

Gµν = Tµν , (2.54)
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where the left-hand side is the Einstein tensor, defined as

Gµν = Rµν −
1

2
gµνR. (2.55)

The Einstein equations can be split into components that areparallel or orthogonal to the

time-like fieldNµ at any order in perturbation expansion. The two independentequations

obtained at the background level are the Friedmann and acceleration equations:

H2 =
1

3
a2ρ0, (2.56)

H′ = − 1

6
a2 (3p0 + ρ0) . (2.57)

Additionally, the Bianchi identitiesGµ
ν;µ = 0 imply the local conservation of energy and

momentum,

T µ
ν;µ = 0, (2.58)

where; denotes a covariant derivative with respect to the metricgµν .

For the background quantities, the energy-momentum conservation equations provide an

expression for the expansion in terms of the matter fields. For the case of a single fluid in the

background FRW universe, the equationT ν
0;ν = 0 gives

ρ′0 = −3H(p0 + ρ0). (2.59)

Note that the isotropy assumption means there is no net background momentum and thus no

other conservation equation at zeroth order. Moreover, Eq.(2.59) can also be obtained as a

combination of the Einstein equations (2.56) and (2.57).

The homogeneous Einstein equations can be solved for the variablesa(t), ρ(t), p(t) when

an equation of state for the matter components is provided. This is dictated by the micro-

physics of the matter. In particular, the equation of state

p = wρ, (2.60)
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describes most of the relevant cases of the post-inflationary cosmology. For the case of pure

radiationw = 1/3, while for pressureless dustw = 0. For fluids with such an equation of

state, the solutions to the Einstein equations are

ρ

ρi
=

(
a

ai

)−3(w+1)

,
a

ai
=

(
η

ηi

)2/(3w+5)

, (2.61)

with initial conditionsρ = ρi anda = ai atη = ηi.

When more than one fluid is present, we account for the contribution of each component

ρ(j) to the total matter density by defining a dimensionless density parameter

Ω(j) =
a2ρ(j)

3H2
, (2.62)

where the factor3H2/a2 is the critical density. In the flat universe that concerns us, the

curvature contributionΩκ is zero and the sum of all matter contributions is unity, i.e.,

∑

j

Ω(j) = Ω0 = 1. (2.63)

(note that the dark energy that dominates the expansion in the present stage of our universe

should also be included in this sum. This component is customarily denoted byΩΛ.) With

these definitions Eq. (2.56) can be written in the form

(H
Hi

)2

= a2

{
∑

j

Ω(j)

(
a

ai

)−3(1+w(j))
}
. (2.64)

For the case in which the matter is dominated by a single scalar field φ, energy density

conservation leads to the Klein-Gordon equation,

φ µ
;µ =

dV

dφ
, (2.65)

which can also be derived from the variation of the action with respect toφ. The potential

V is assumed to be an explicit function of the field alone. In thecase where there is more

than one field, a Klein-Gordon equation is obtained for everyscalar field, with an interaction

potentialU . Note that the Klein-Gordon equation is valid at all orders in the perturbation
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expansion. We will rely on this important fact to derive the contribution of nonlinear pertur-

bations to the non-Gaussianity of the primordial fluctuations, the ultimate objective of this

chapter.

The Klein-Gordon equation for a homogeneous scalar fieldφ0 for a FRW background

metric is

φ̈0 + 3Hφ̇0 +
dV

dφ
= 0. (2.66)

The solutions of this equation will be explored in the context of inflation in Section 2.4. The

inflationary behaviour is guaranteed when the dominating scalar field meets the so called

slow-roll conditions. The dynamics of inflation will be discussed in more depth in the fol-

lowing sections. In the meantime we note that, as mentioned in Section 1.2, the perturbations

produced during a period of inflation exit the cosmological horizon due to the shrinking of

the latter scale. In a super-horizon regime, under suitableconditions, the curvature inhomo-

geneities are time-invariant.

2.3.2 Dynamics of perturbations

At linear order, the scalar metric perturbations are related to matter perturbations via the

Einstein equations. The density and momentum constraints are

3H(Hϕ− ψ′) + ∇2 [ψ −Hσ] = − 1

2
a2δρ, (2.67)

[ψ′ −Hϕ] =
1

2
a2 (ρ0 + p0) [v +B] , (2.68)

and two evolution equations for the scalar metric perturbations

ψ′′ + 2Hψ′ −Hφ′ −
(
2H′ + H2

)
ϕ = − 1

2
a2δp, (2.69)

σ′ + 2Hσ + ψ − φ =0. (2.70)

The energy-momentum conservation equations for the perturbed spacetime are related to

the ones above via the Bianchi identities. Specifically, theevolution for the energy density
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perturbation is

δρ′ + 3H(δp+ δρ) = −(p0 + ρ0)
[
3ψ′ + ∇2(v + E ′)

]
, (2.71)

and the momentum conservation equation is

[(p0 + ρ0)(v +B)]′ + δp = −(p0 + ρ0)[ϕ+ 4H(v +B)]. (2.72)

Instead of solving the equations at first order, let us show how the dynamical linear equations

encode two important implications for cosmological perturbations. A convenient way to find

conserved quantities is to work in Fourier space (the Fourier transformation is here denoted

by F .) In this case, a generic coordinate-dependent perturbationf(t,x) is decomposed into

harmonic functions of time:

f(t,x) =
1

(2π)3

∫ ∞

0

exp (−ik · x) fk(t), i.e., F [f(t,x)] = fk(t). (2.73)

Each functionfk(t) is referred as a perturbation mode and labelled by its comoving wavenum-

berk and has an associated scaleλk = a(t)/k. The only characteristic scale of the unper-

turbed universe is the Hubble scale or cosmological horizonas defined in Eq. (2.33). When

perturbation modes lie well outside the cosmological horizon, the ratio

ε ≡ dH/λk = k/a(t)H(t) (2.74)

is much smaller than one. Since the spatial derivatives∇ are transformed tok/a, this shows

that we can neglect gradients terms in the equations compared to the time derivative which

scales asH, i.e., for a given functionf(t, x) with Fourier transformfk(t),

|F [∇f(t, x)]| =

∣∣∣∣
k

a
fk(t)

∣∣∣∣ ≪ H. (2.75)

This simplifies the equations considerably and shows under which conditions the curvature

perturbations are conserved in the superhorizon regime.

Let us use this approximation to look at the equivalence of the curvature perturbation
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on large scales in different gauges. From the Einstein equations we can rewrite the gauge

invariant curvature perturbationR in terms of the curvature perturbation variables. Making

use of the momentum constraint Eq. (2.68), we note that

v +B =
Hϕ− ψ′

H′ −H2
. (2.76)

We can insert this in the definition ofR in Eq. (2.43) and write the latter in terms of the

Bardeen gauge-invariant quantities. That is,

R = −ΨB +
H(HΦB + Ψ′

B)

H′ −H2
, (2.77)

which represents an alternative form of Eq. (2.68).

We can follow a similar procedure for Eq. (2.67) and write theuniform density curvature

perturbationζ in terms of Bardeen invariants:

ζ

(H′ −H2

H

)
= Ψ′

B + HΦB −
(H′ −H2

H

)
ΨB − 1

3H∇2ΨB. (2.78)

Note that, because the curvature perturbations in the last two equations are written in terms

of gauge-invariant quantities,R andζ are manifestly gauge-invariant themselves. Moreover,

the combination of these equations leads to the gauge-invariant generalisation of the Poisson

equation,

∇2ΨB = 3
(
H′ −H2

)
(R− ζ) =

a2

2
δρm. (2.79)

As before, if gradients are discarded, bothR andζ coincide. This result is important in view

of the consequent correspondence (2.44), which is used extensively throughout this thesis.

A second important feature is the evolution ofζ on superhorizon scales. The energy

conservation Eq. (2.71) can be written in coordinate time as

δ̇ρ+ 3H (δρ+ δp) = − (p0 + ρ0)
[
3ψ̇ + ∇2(

v

a
+ Ė)

]
. (2.80)
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This leads to an evolution equation for the perturbed energydensity when we include Eq. (2.59):

[ρ0 + δρ]· + 3
(
H + ψ̇

)
[p0 + δp+ ρ0 + δρ] = −∇

(v
a

+ Ė
)

+ O(δ2), (2.81)

which in view of the definition of the expansionθ(t), Eq. (2.30), gives to first order

ρ̇+ θ(t) [p+ ρ] = ∇2
[v
a

+ Ė
]

+ ∇2
(
σ(t)

)
[p0 + ρ0] + O(δ2). (2.82)

We emphasise that, in our notation, the density and pressurewith no subscript represent the

sum of the background function and its perturbation, i.e.,ρ = ρ0 + δρ. TheO(δ2) term

indicates that the above equation is valid to first order in perturbation expansion.

Since we are discarding spatial gradients in the equations of motion on super-horizon

scales, Eq. (2.81) provides an evolution equation for the curvature perturbation:

ψ̇ [p0 + ρ0] = − ρ̇
3
−H (p+ ρ) , (2.83)

or

ψ̇ = −1

3

δ̇ρ

p0 + ρ0
+
ρ̇0

3

(
δp+ δρ

(p0 + ρ0)2

)
. (2.84)

If we work in a gauge where the time slices are uniform-density hypersurfaces, i.e., the

uniform-density gauge, we may set

δρ→ 0, δp→ δpδρ, ψ → ψδρ ≡ ζ.

All perturbations, including the pressure perturbation inthis gauge are independent of the

density perturbation. From thermodynamics we know that in fluids where entropy is constant

the pressure is a function of the density. In this category fall the barotropic fluids, defined

as those fluids in which the pressure is only a function of the densityρ and vice-versa. In

general the pressure of a thermodynamic system (in our case the universe) is a function of

both the density and the entropy,

δp = c2sδρ|s + δp|ρ, (2.85)
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wherec2s = ∂p/∂ρ|s is the adiabatic sound speed in the system (see e.g. Christopherson

& Malik [2009] for a careful treatment of thermodynamics of fluids in cosmology). If one

defines the entropy perturbationδs from the identityδp|ρ = ṗδs, then one has

δs =
δp

ṗ
− δρ

ρ̇
. (2.86)

In view of this, Eq. (2.84) for the curvature perturbation reduces to

ζ̇ =
ρ̇0

3

(
δpδρ

(p0 + ρ0)2

)
= − Hṗ0

p0 + ρ0
δs. (2.87)

This result is important in the description of the evolutionof perturbations after inflation. It

indicates that for inhomogeneities with characteristic scales much larger than the size of the

cosmological horizon, the curvature can only be modified if the matter content of the universe

has a non-adiabatic or entropy component [Wands et al., 2000]. It is also remarkable that this

argument requires the conservation of the energy-momentumtensor, and not necessarily the

Einstein equations. This means that the described propertyis valid for any theory of gravity

in which energy is conserved.

This result has been extended beyond linear order in the perturbation expansion. On

superhorizon scales, the expression at second order is [Malik & Wands, 2004],

ζ̇2 =
ρ̇0

3(p0 + ρ0)2
δp2|ρ −

[
2

(p0 + ρ0)
δp1|ρ − 2 (p0 + ρ0) ζ1

]
ζ̇1, (2.88)

where numerical indices indicate the order of each quantityin the perturbation expansion.

This result shows that, as in the case of the linearζ , the evolution at second order depends

only on the entropy perturbation and its derivatives. This has also been proved to all orders

by Lyth et al. [2005]. This result generalises the special cases of a constant equation of state,

i.e.,p/ρ = const. and the single field inflationary case, for which the conservation of ζ had

been previously been verified [Shibata & Sasaki, 1999; Salopek & Bond, 1990].

Eqs. (2.87) and (2.88) have motivated several studies searching for significant growth

of ζ on superhorizon scales during and after inflation. In particular, theories of multi-field

inflation have been proposed to generate the the curvature perturbation and, at the same
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time, an observable signature of non-Gaussianity [Mollerach, 1990; Lyth & Wands, 2002;

Enqvist & Nurmi, 2005]. We will now study the effects of considering an auxiliary field,

with special attention to those models where a large non-Gaussian contribution arises. We

start with a short description of inflation in the next section.

2.4 Inflation

One can define cosmological inflation as the epoch when the scale factor of the universe is

accelerating1:

ä > 0. (2.89)

This condition can be written in terms of a more physical quantity. The period of inflation

can be considered as an epoch in which the comoving Hubble horizon decreases with time:

d

dt

(
H−1

)
< 0. (2.90)

Within general relativity, the above conditions on the timedependence of the scale factor give

conditions on the matter content through the Einstein equations. In particular, Eq. (2.57) can

be used to write the condition (2.90) as

3p0 + ρ0 < 0. (2.91)

Demanding a positive energy densityT 0
0 = ρ0 is a sensible physical condition. The condi-

tion T 00 > 0 is known as the weak energy condition. In view of this, the above equation

demands that the dominant matter must have negative pressure during a period of inflation.

The simplest matter field with this property is a scalar field,which is composed of spin-0

particles. The concept of a scalar field is prevalent in particle physics where scalars such as

the Higgs scalar are essential in the construction of the standard model. Although no scalar

particle has so far been observed, they play a fundamental role in cosmology, as they possess
1This does not include the late time acceleration at the current epoch which is attributed to dark energy. Whereas

inflation-like scalar fields may be responsible for such behaviour (see, e.g., Martin [2008]), in this thesis we are not con-
cerned with the dynamics of the late universe
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the unusual feature of their potential energy dominating over their kinetic energy.

As indicated by Eq. (2.51), the Lagrangian definition of the energy-momentum tensor

requires that the energy density and pressure for a homogeneous scalar field be

ρ0 =
1

2
φ̇2 + V (φ), p0 =

1

2
φ̇2 − V (φ). (2.92)

This shows that in order to meet condition (2.91) we require the potentialV (φ) to dominate

over the ‘kinetic’ term. This can be dynamically achieved with a sufficiently flat potential

provided the field is displaced away from its minimum. Such physical conditions are con-

trolled by two parameters:

ǫSR ≡ M2
P

2

(
V ′

V

)2

, ηSR ≡ MP
V ′′

V
. (2.93)

These are called the slow-roll parameters and, during inflation, they are subject to the slow-

roll and friction-dominated conditions

ǫSR ≪ 1, ηSR ≪ 1. (2.94)

The first condition, the ‘slow-roll’ condition, ensures theslow rolling of the field down its

potential. The second, a ‘friction-domination’ conditionconstrains the potential to be very

flat one for the period of inflation. This condition is imposedto allow for an extended pe-

riod of inflation (which should last for over 60 e-folds of expansion), required to recover

a sufficiently flat and homogeneous universe in the observed scales. When both slow-roll

parameters are much smaller than one, the dynamics of the single fieldφ guarantees an ac-

celerated expansion with a shrinking comoving Hubble horizon.

The scalar field satisfying these properties is called the inflaton. The equations dictating

the background dynamics of a universe dominated by the inflaton are

H2 =
V (φ)

3
, (2.95)

3Hφ̇ = − V ′(φ). (2.96)

The homogeneous Klein-Gordon equation (2.66), reduces to Eq. (2.96) in the slow-roll
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regime. The exact solution to these equations requires the specification of the potential as

a function of the homogeneous scalar fieldφ(t). However, the first equation already shows

that, if we assume a constantV ,

a(t) ∝ exp(
√
V/3t). (2.97)

This illustrates explicitly the exponential growth of the scale factor in the inflationary regime.

Additionally, the field depends only linearly on time to lowest order, as expected for a slow

rolling field. An expansion in powers of the slow-roll parameters shows that any deviation

from this behaviour should be orders of magnitude smaller than the form expressed here

[Stewart & Lyth, 1993]. In the following we focus on the studyof the tiny inhomogeneities

produced by quantum fluctuations of the inflationary field. This aspect is crucial in under-

standing the origin of the observed structure in the universe.

2.4.1 Inflationary field power spectrum

The mean amplitude of matter or curvature perturbations is inferred from their power spec-

trum. This is constructed through the quantization of real perturbation fields, as prescribed

by quantum field theory [Birrell & Davies, 1984]. Following aperturbative expansion, we

split the scalar field as

φ(t,x) = φ0(t) + δφ(t,x). (2.98)

Such an expansion separates the general Klein-Gordon equation (2.65) into its homogeneous

part (2.66) and the perturbation equation

δ̈φ+ 3H ˙δφ− ∇2δφ

a2
+m2

δφδφ = 0, (2.99)

where the effective mass of the field fluctuation is defined as

m2
δφ = m2

φ + V ′′
NL, (2.100)

andVNL = V −m2
φφ

2/2 represents the nonlinear part of the potential. Note that here we have
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neglected the perturbations of the metric which enter the Klein-Gordon equation through the

operator ν
;ν . In this case, Eq. (2.99) is a valid approximation because weconsiderφ to be

subject to the slow-roll conditions.

In order to compute the power spectrum of the field perturbations, we need to consider

the free fieldδφI , or the field in the so-calledinteraction pictureof quantum field theory

[Peskin & Schroeder, 1995]. This field is the solution to the Klein-Gordon equation (2.99)

in the absence of the nonlinear term, i.e.

δ̈φI + 3H ˙δφI −
∇2δφI

a2
+m2

φδφI = 0. (2.101)

In the quantum framework we Fourier decompose this field as

δφI(x, t) =

∫
dk3

(2π)3

(
eik·xakδφIk(t) + e−ik·xa†kδφ

∗
Ik(t)

)
, (2.102)

where∗ denotes complex conjugation and† the hermitian adjoint operator.ak anda†k are

operators satisfying the usual canonical commutation relations,

[ak, a
†
p] = δ(3)(k − p), [ak, ap] = [a†k, a

†
p] = 0, (2.103)

and δ(3)(k) is the three-dimensional Dirac delta function. Thus the field fluctuations in

Fourier space are solutions of the linear equation

δ̈φIk + 3H ˙δφIk +

(
k2

a2
+m2

φ

)
δφIk = 0. (2.104)

For simplicity, we only consider de Sitter inflation, whereH is constant, and the scale factor

is a = −1/(Hη). As mentioned above, this is a good approximation in slow-roll inflation.

In terms of conformal time, the previous equation can be written as

δφ′′
Ik + 3η−1δφ′

Ik +

[
k2 + η−2

(mφ

H

)2
]
δφIk = 0. (2.105)

The solution to this equation involves the set of Bessel complex functions. After proper

normalisation, i.e., taking the Bunch-Davies vacuum for the de Sitter spacetime [Bunch &
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Davies, 1988], one finds

δφIk(η) =

√
π

2a

√−ηH(1)
ν (|kη|), (2.106)

whereH
(1)
ν is the Hankel function of the first kind and of order

ν =

√
9

4
−
m2

φ

H2
∗

. (2.107)

The star indicates that we are evaluatingH just after Hubble horizon exit2, i.e., whenk =

k∗ = |1/η∗| <∼ aH.

The two-point function of the field fluctuations reads

〈δφIk1(η)δφIk2(η)〉 = (2π)3δ(3) (k1 + k2)
πH2

∗

4k3
1

(|k1η|)3
∣∣H(1)

ν (|k1η|)
∣∣2 . (2.108)

where the angled brackets indicate the expectation value, in this case, of two modes of the

perturbation field, evaluated at timeη. In terms of the two-point function, the power spectrum

Pφ is defined as

〈δφIk1(η)δφIk2(η)〉 = (2π)3δ(3) (k1 + k2)Pφ(η, k1), (2.109)

and the dimensionless power spectrum in this case is

Pφ(η, k) =
k3

2π2
Pφ(η, k) =

H2

8π
(|kη|)3

∣∣H(1)
ν (|kη|)

∣∣2 . (2.110)

By expanding the Hankel function in Eq. (2.108) on large scales, i.e. for|kη| ≪ 1, one

obtains

Pφ(η, k) = 2−2ω Γ
(

3
2
− ω

)2

π3
H2

∗ (|kη|)2ω ≃ (1 + O(ω))

(
H∗

2π

)2

(|kη|)2ω , (2.111)

2In the perturbed KG equation the mass term is negligible because of the slow-roll conditionV ′′/V ≪ V , which
is equivalent tomφ ≪ H . Well before horizon exit the harmonic flat spacetime equation is recovered in the solution
Eq. (2.106). On the other hand, there is no need to compute thecorrelation at times well after horizon exit. The relation
(2.44) and the fact thatR is conserved well outside the horizon indicate that the required field power spectrum can be
evaluated a few Hubble times after horizon crossing.
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where

ω ≡ 3

2
− ν ∼

m2
φ

3H2
∗

. (2.112)

This is negligible in the massless case which corresponds toa de Sitter inflationary phase.

Note that, in this case, the approximation of a linearised potential is guaranteed by the slow-

roll approximation. Higher order terms in the Klein-Gordonequation are suppressed by

powers of the slow-roll parameters. In this way, interaction between Fourier modes are

absent, i.e., the vacuum fluctuations of different Fourier modes are decoupled and the field

fluctuations are Gaussian.

2.4.2 Observables

In the standard picture of inflation, the perturbations of the inflaton field are stretched out

of the horizon and subsequently transferred into curvatureperturbations which survive after

the universe has reheated. Observationally, the temperature inhomogeneities in the CMB are

related to the mean amplitude of the curvature perturbations through the Sachs-Wolfe effect

[Sachs & Wolfe, 1967]. Thus, the power spectrum of curvatureperturbations is observed to

be [Komatsu et al., 2008]

PR = (2.45+0.092
−0.093) × 10−9 ( 95% CL). (2.113)

at a pivot scalek0 = 7.5a0H0 ≈ 0.001 h0 Mpc−1. The power spectrum is also probed at

other scales in the CMB with various filter functions and alsowith the power spectrum of

galaxies and clusters. The rate of change of the observed value ofP with k is parametrised

by the spectral indexns. This is defined by

ns − 1 ≡ dlogPR

dlog k
, (2.114)

where1 is subtracted by convention due to the fact that the matter density power spectrum

has the formPρ ∝ kns . Observationally, the output from WMAP [Komatsu et al., 2008], the

distance measurements from type 1a supernovae [Riess et al., 2007; Astier et al., 2006] and



2.4: Inflation 58

the baryon acoustic oscillations [Percival et al., 2007] constrain the spectral index to be

−0.256 < 1 − ns < 0.025 (95% CL.). (2.115)

for 0.001 Mpc−1 < k < 0.1 Mpc−1.

In single-field inflation, the power spectrum of curvature perturbations can be calculated

from Pφ and Eq. (2.44), which for a single scalar field can be written as

R = −H
φ̇
δφ. (2.116)

This relation, used at linear order in Eqs. (2.109) and (2.110), shows that

PR =

(
H

φ̇

)2

Pφ ≃ (1 + O(ω))

(
H2

∗

2πφ̇

)2

|kη|2ω . (2.117)

In terms of the slow-roll parameters, using Eqs. (2.95) and (2.96) and evaluating the previous

expression at horizon crossing, we have

PR =
28

3

V 3
∗

V ′2
∗

=
8

3

V∗
ǫ∗
. (2.118)

Note that the evaluation of the power spectrum at horizon exit is justified by the fact thatR is

constant on super-horizon scales. In this regime we can define the root-mean-square (RMS)

value ofR (or ζ) as

RRMS = ζRMS =
H

φ̇
δφRMS ≈ H2

2πφ̇
. (2.119)

This quantity will play an important role throughout this thesis.

We can also write the spectral index as [Stewart & Lyth, 1993]

ns = 1 + 2ηSR − 6ǫSR, (2.120)

to lowest order in slow-roll expansion. Whenns = 1, the power spectrum is called scale-

invariant or Harrison-Zeldovich [Harrison, 1970; Zeldovich, 1972]. Whenns 6= 1, the spec-
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trum is described as tilted and, forns > 1, it is called ‘blue’ because the power is enhanced at

small wavelengths [Mollerach et al., 1994]. With the precision reached by the latest probes

of cosmological structure, it has been possible to constrain the field parameters and discard

some models of inflation alternative to the simplest picturepresented above [Alabidi & Lyth,

2006a; Alabidi & Lidsey, 2008]. Current observations of theCMB and large-scale struc-

ture, however, are compatible with the predictions of many other models of inflation. It is

therefore crucial to study additional observables which provide further insight into the char-

acteristics of the early universe. At the level of scalar perturbations, the most convenient

observables for discriminating between these models are the tensorial perturbations mean

amplitude and spectral index, the running of the spectral index and the non-Gaussianity of

perturbations. In this thesis we focus on the effects of the latter.

2.4.3 TheδN formalism

We now present a formalism to account for the contributions of multiple fields to the curva-

ture perturbation at all orders. An important feature of theperturbed curvature on superhori-

zon scales is that we can calculate its magnitude by considering the change in the number of

e-folds of expansion of the relevant patch of universe with respect to a uniform background

expansion. This in turn allows us to compute the amplitude ofthe curvature fluctuations

from the matter fluctuations. The idea behind this techniqueis to considerζ as a perturba-

tion in the local expansion [Starobinsky, 1985; Salopek & Bond, 1990; Sasaki & Stewart,

1996; Sasaki & Tanaka, 1998; Lyth et al., 2005], i.e.

ζ = δN, (2.121)

whereδN is the perturbed expansion of the uniform-density hypersurfaces with respect to

spatially flat hypersurfaces.

We now describe the elements of the above formalism. The number of e-folds of expan-

sion between two moments in proper timeτ1 andτ2 is given in the homogeneous background
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by

N =

∫ τ2

τ1

1

3
θ0 dτ =

∫ t2

t1

1

3
θ(t) dt =

∫ t2

t1

H dt, (2.122)

where θ0 refers to the homogeneous expansion, that is,θ considered to lowest order in

Eq. (2.29). In the perturbed metric, the number of e-foldings along an integral curve of

the 4-velocity, i.e., along a comoving worldline betweenτ1 andτ2, is

N =

∫ τ2

τ1

1

3
θ dτ =

∫ t2

t1

1

3
θ(t)(1 + ϕ)(1 − ϕ) dt =

∫ t2

t1

(H + ψ̇) dt. (2.123)

The last equality holds on superhorizon scales. It is clear that the differenceN − N will

provide the change in the curvature perturbation from an initial hypersurface at timet1 and

a final one at timet2, i.e.,

δN = N −N = ∆ψ. (2.124)

In particular, we can choose to integrate the expansion starting from an initial uniform-

curvature hypersurface at timet1, that is,ψ(t1) = 0. Then we can find the amplitude of

the curvature perturbation at the later timet2 by choosing a trajectory with an endpointt2

fixed on a comoving or uniform-density hypersurface. Denoting the difference between the

background and the perturbed expansion asδθ, we can write

δN =

∫ t2

t1

δθ(t) dη = ψ2. (2.125)

In particular, when we consider the endpoint embedded in a uniform-density hypersurface,

then Eq. (2.121) is recovered.

On large scales, where spatial gradients can be neglected, the local physical quantities

like density and expansion rate obey the same evolution equations as in a homogeneous

FRW universe [Wands et al., 2000; Sasaki & Stewart, 1996]. Byusing homogeneous FRW

universes to describe the evolution of local patches, we canevaluate the perturbed expansion

in different parts of our universe with particular initial values for the fields during inflation.

This is known as the ‘separate universe’ approach and means that, when we neglect the
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decaying mode for the field perturbations on superhorizon scales, we can consider the local

integrated expansion as a function of the local field values on the initial hypersurface. In

particular, one can expand Eq. (2.121) as

ζ = δN(φi(t1)) =
∑

i

∂N(t2)

∂φi
δφi(t1) (2.126)

where the initial timet1 again corresponds to some initial spatially-flat hypersurface. We can

use this formula to construct the curvature power spectrum in multi-field inflation:

Pζ =
∑

i

(
∂N(t2)

∂φi

)2

Pδφ . (2.127)

This formalism can be extended to establish the equivalencebetween nonlinear matter and

metric perturbations. This is done by first assuming Eq. (2.121) as the definition of the

curvature perturbation and then using Eq. (2.44) to integrateζ . This gives [Lyth et al., 2005]

ζ =
1

3(w + 1)
ln

(
ρκ

ρ0

)
. (2.128)

This nonlinear curvature perturbation can be written as a function of the initial field fluctua-

tions, evaluated again at an initial flat hypersurface labelled by the timet1. We use a Taylor

expansion

ζ =
∑

i

∂N

∂φi
δφi(t1) +

1

2

∂2N

∂φj∂φi
δφj(t1)δφi(t1) + . . . (2.129)

where the leading order term coincides with the expansion (2.126). This last expansion

greatly simplifies the derivation of the higher-order curvature correlations from the scalar

field bispectrum.

2.5 Non-Gaussianity from isocurvature fields

The perturbed energy conservation equations show the conditions under which the curvature

perturbationζ may vary over time in a regime in which the perturbation modeslie well out-



2.5: Non-Gaussianity from isocurvature fields 62

side the horizon. Specifically, Eq. (2.87) shows that the evolution of ζ is directly related to

the presence of an entropy perturbationδs. This quantity can be the intrinsic non-adiabatic

pressure of a single field, or the difference in the density perturbations of any two fields

which contribute to the curvature perturbation. This effect motivates the study of models of

inflation in which the observed inhomogeneities are the result of non-adiabatic field fluctu-

ations [Mollerach, 1990; Linde & Mukhanov, 1997; Enqvist & Sloth, 2002; Lyth & Wands,

2002; Moroi & Takahashi, 2001]. Here we are interested specifically in models in which a

highly nonlinearζ can be generated from the aforementioned entropy perturbation. Out of

the multiple stages in which this field may have influencedζ , we focus on the case of an aux-

iliary scalar field during inflation generally referred as the isocurvature fieldχ [Zaldarriaga,

2004; Enqvist & Nurmi, 2005; Enqvist et al., 2005b].

A first approximation to nonlinearζ involves the first and second order perturbations in

real space:

ζ(t,x) = ζ1(t,x) +
1

2
ζ2(t,x). (2.130)

The second order perturbation is conventionally written interms of the first order perturba-

tion and the parameterfNL [Komatsu & Spergel, 2001]. This gives

ζ(t,x) = ζ1(t,x) − 3

5
fNL

(
ζ2
1(t,x) − 〈ζ2

1(t, x)〉
)
, (2.131)

which in Fourier space is written as a convolution

ζ(k) = ζ1(k) − 3

5
fNL

(
[ζ1 ⋆ ζ1](k) − 〈ζ2

1(k)〉
)
. (2.132)

Note that Eq. (2.132) shows explicitly the superposition ofmodes that characterise non-

Gaussian statistics.

Statistically, non-Gaussianity refers to the non-vanishing higher order moments of the

quantity in question. In quantum mechanics this corresponds to the n-point correlation func-

tions withn ≥ 3. To lowest order, the bispectrumBζ(k1, k2, k3) is defined by the expectation
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value of the product of three copies of the curvature field:

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3Bζ(k1, k2, k3)δ
(3)(k1,k2,k3). (2.133)

The amplitude offNL is given in terms of the bispectrum by substituting Eq. (2.132) in this:

6

5
fNL =

Πik
3
i∑

i k
3
i

Bζ

4π4Pζ

. (2.134)

In this section we present a method to compute the nonlinearζ by determining nonlinear

solutions to the Klein-Gordon equation of the field fluctuation. Then with the aid of theδN

formalism we will construct the three-point correlator ofζ . Special attention will be paid to

the cases in which a largefNL can be obtained.

2.5.1 Two-field inflation

Here we consider a spacetime inflating by the action of a potential which depends on two

minimally coupled fields. In this case, in addition to the canonical inflationary field, we

consider a second fieldχ described by the action

Sχ =

∫
dx4√−g

[
−1

2
gµν∂µχ∂νχ− 1

2
m2

χχ
2 −W (χ)

]
, (2.135)

whereW (χ) plays the role of a nonlinear potential. The joint Lagrangian density of the two

scalar fields in this model is given by Eq. (2.52). The model inquestion demands that there

is no contribution ofχ to the background matter content. This is guaranteed by the following

condition on the potential of the two-field Lagrangian defined in Eq. (2.52):

U(φ, χ) ≈ V (φ) ⇒ W (χ) +
1

2
m2

χχ̇
2 ≪ V (φ). (2.136)

To analyse the dynamics of this auxiliary field, let us consider a background homogeneous

part and a coordinate-dependent field fluctuation,

χ(t,x) = χ0(t) + δχ(t,x). (2.137)
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The Klein-Gordon equation derived by varying the action (2.135) with respect toχ yields

for the background field

χ̈0 + 3Hχ̇0 +m2
χχ0 +W ′(χ0) = 0, (2.138)

and for the field fluctuation

δ̈χ + 3H ˙δχ− ∇2δχ

a2
+m2

δχδχ +
∑

n=3

W (n)

(n− 1)!
δχn−1 = 0. (2.139)

Here a superscript(n) denotes then-th derivative andm2
δχ is the effective mass for the field

fluctuation defined as

m2
δχ = m2

χ +W ′′. (2.140)

Following the same steps as with the inflaton power spectrum,we recover a solution similar

to Eq. (2.106). Specifically,

Pχ(η, k) =
H2

8π
(|kη|)3

∣∣H(1)
µ (|kη|)

∣∣ = 2−2α Γ
(

3
2
− α

)2

π3
H2

∗ (|kη|)2α , (2.141)

with α andµ defined through the equation

α ≡
√
µ2 − 9

4
≈
m2

δχ

3H2
> 0. (2.142)

Because of this, the spectrum ofχ is blue. The power spectrumPχ vanishes on large scales

for large values ofα, i.e. whenmδχ >∼ H∗, so we only consider the case

mδχ <∼ H∗. (2.143)

Indeed, we assumemχ ≪ H∗. As shown below, the interesting values ofW ′′ are those

which are large enough to generate a large nonlinear coupling, but sufficiently small to satisfy

condition (2.143), which also implies

W ′′ <∼ H2
∗ . (2.144)
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For example, for

W =
M

3!
χ3 +

λ

4!
χ4, (2.145)

this condition turns into conditions onM andλ:

M <∼
H2

∗

χ0

, λ1/2 <∼
H∗

χ0

. (2.146)

Typically we have a nonzero expectation valueχ0. Working in a perturbative expansion

then requires that the quantum fluctuationsδχ do not exceed this expectation value, i.e., we

requireχ0 >∼ H∗. This imposes additional constraints on the parametersM andλ in the

specific model of Eq. (2.145), as described below.

2.5.2 Non-Gaussianity and nonlinear evolution

The expectation value of the product of three fields was first computed by Maldacena [2003]

for the case of single-field inflation, including slow-roll scalar field and gravitational interac-

tions. In our case, since the field gives a negligible contribution to the energy density of the

Universe, we will neglect its coupling to gravity.

The three-point correlation function of the field perturbationsδχ can be computed using

the expression given by Maldacena:

〈δχ(t,x1)δχ(t,x2)δχ(t,x3)〉 = i

∫ t

−∞

dt′〈[HI(t
′), δχI(t,x1)δχI(t,x2)δχI(t,x3)]〉,

(2.147)

whereHI is the interaction Hamiltonian written in terms of the field perturbation in the

interaction picture, i.e. in our case

HI(t
′) = −

∫
dx3√−gLI =

∑

n=3

∫
dx3a(t′)3W

(n)

n!
δχn

I . (2.148)

Note that on the left-hand side of Eq. (2.147) the expectation value is taken with respect to

the vacuum of the interacting theory, while on the right-hand side it is taken with respect to
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the vacuum of the free theory. A generalisation of this expression to higher order correlators,

including loop corrections, has been provided by Weinberg [2005].

Recently, Musso [2006] showed that the general expression for the correlators ofm field

fluctuations can also be derived by solving perturbatively the field equation of motion and

using the expression for the two-point function of the free field fluctuation. Here we make

use of this formalism to show that Eq. (2.147) can be derived by solving Eq. (2.139) pertur-

batively.

As mentioned before, the evolution equation forδχI is given in identical form to the

inflaton case, providingφ→ χ in Eq. (2.105). On the other hand, the evolution equation for

the full nonlinearδχ can be given perturbatively providing|(δχ− δχI)/δχ| ≪ 1. Rewriting

Eq. (2.139) and re-expressing the nonlinear term in terms ofδχI , we obtain

δ̈χ + 3H ˙δχ − ∇2δχ

a2
+m2

δχδχ = −
∑

n=3

W (n)

(n− 1)!
δχn−1

I . (2.149)

This equation can be then solved by Green’s method and its solution is

δχ(t,x) = δχI(t,x)−
∞∑

n=3

1

(n− 1)!

∫
d3y

∫
dt′a(t′)3GR(t,x; t′,y)W (n)δχn−1

I (t′,y),

(2.150)

whereGR(t,x; t′,y′) is the retarded Green’s function

GR(t,x; t,′ y) = iΘ(t− t′) [δχI(t,x), δχI(t
′,y)] . (2.151)

where

Θ(x) =

∫ x

−∞

δ(z) dz (2.152)

is the Heaviside step function. By using the fact that the free-field perturbation is Gaussian,

i.e.

〈δχI(x1, t)δχI(x2, t)δχI(x3, t)〉 = 0, (2.153)



2.5: Non-Gaussianity from isocurvature fields 67

one can rewrite the three-point correlation function ofδχ making use of Eq. (2.150):

〈δχ(t,x1)δχ(t,x2)δχ(t,x3)〉 = −
∞∑

n=3

i

(n− 1)!

∫
dy3

∫
dt′a(t′)3W (n) ×

[δχI(t,x1), δχI(t
′,y)] 〈δχn−1

I (t′,y)δχI(t,x2)δχI(t,x3)〉 + {Perms.} (2.154)

Using this equation and the result [Musso, 2006],

n [δχI(t,x1), δχI(t
′,y)]〈δχn−1

I (t′,y)δχI(t,x2)δχI(t,x3)〉 + {perms} =

−〈 [δχn
I (t′,y), δχI(t,x1)δχI(t,x2)δχI(t,x3)]〉, (2.155)

one can derive Maldacena’s formula (2.147) for theχ-Hamiltonian (2.148) after some ma-

nipulation. This shows that one can obtain Maldacena’s formula either from considering

perturbations in the action or from the perturbative expansion of the equations of motion. In

the case of slow-roll inflation, this equivalence was shown by Seery et al. [2008]. Equation

(2.147) can be generalised to higher correlation functions:

〈δχ(t,x1)δχ(t,x2) . . . δχ(t,xm)〉 = (2.156)

i

∫ t

−∞

dt′
〈[
HI(t

′), δχI(t,x1)δχI(t,x2) . . . δχI(t,xm)
]〉
.

2.5.3 Field bispectrum

Here we are interested in the three-point function of the scalar field, also called the field

bispectrumF (k1, k2, k3), defined as

〈δχk1(η)δχk2(η)δχk3(η)〉 = (2π)3δ(3)(
∑

i

ki)F (η; k1, k2, k3). (2.157)

For simplicity, we assume that the nonlinear potential of the scalar field is dominated by the

cubic interactionW ′′′ and that this is approximately constant. This reduces the expansion in

Eq. (2.148) to the first term only. Substituting this in Eq. (2.147) and using Eqs. (2.150) and
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(2.155), the field bispectrum becomes

F (η; k1, k2, k3) = (2.158)

W ′′′η9/2H
2
∗

4
Re

{
−i
π3

23

∏

i

H(1)
µ (|kiη|)

∫ η

−∞

dη′
√

|η′|
∏

j

H(2)
µ (|kjη

′|)
}
.

During de Sitter inflation, the ratiok/aH can be written as the product|kη| and we will use

this to parametrise the various stages of evolution of the bispectrum.

It is instructive to first evaluate the bispectrum (2.158) during inflation (η ≤ ηreh) for the

case of a massless field fluctuation (i.e.,mδχ = α = 0, µ = 3/2). In this case, the integral

in Eq. (2.158) can be evaluated analytically [Bernardeau & Uzan, 2003; Zaldarriaga, 2004]

using the expressions for the Hankel functions,

H
(1)
3/2(z) = −i

√
2

π
(1 − iz)

eiz

z3/2
, H

(2)
3/2(z) = i

√
2

π
(1 + iz)

e−iz

z3/2
. (2.159)

One finds3

F (η; k1, k2, k3) =
W ′′′H2

∗

4
∏

i k
3
i

[
−4

9
k3

t + kt

∑

i<j

kikj +
1

3

(
1

3
+ γ + ln(|ktη|)

)∑

i

k3
i

]
,

(2.160)

wherekt =
∑

i ki. The integral in Eq. (2.158) has been evaluated for three different stages:

when the modes are well inside the Hubble radius, around the Hubble radius and outside

the Hubble radius. The first stage does not give any contribution to the integral because the

Hankel functions oscillate rapidly for|kiη| ≫ 1 and the fields can be taken as free in the

asymptotic past. At late time, the integral is dominated by the modes that are around the

Hubble scale or larger,|kη| <∼ 1. In particular, we will show below that the time-dependent

term in Eq. (2.160), with the typical local momentum dependence, essentially comes from

the nonlinear and classical super-Hubble evolution of the field perturbation. The finite part,

with the non-trivial momentum dependence, comes from integrating over times correspond-

ing to Hubble-crossing.

3Our result coincides with the one found in Zaldarriaga [2004], modulo the overall sign and the factor1/3 inside the
parentheses.
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Let us now consider the case withmδχ 6= 0, and1/2 < µ < 3/2. The integral inside

Eq. (2.158) cannot be integrated analytically in this case.One can only evaluate it over the

period when all modes are well outside the Hubble radius because, for small arguments,

Hankel functions can be written in terms of Bessel functions(which for real arguments are

real). Decomposing Eq. (2.158) in this fashion, using the Bessel function expansion for small

arguments and retaining the dominant real part, then yields

F (η, k1, k2, k3) =F (η∗, k1, k2, k3) +
W ′′′H2

∗

12

23−4αΓ(µ)4

µπ2α
× (2.161)

{
2µ

3(µ− 1
2
)

[
1 − α (η/η∗)

3−3α

2µ

]
− (η/η∗)

−α

}
(−η)4α

∑
i(ki)

2µ

∏
i(ki)2µ

.

The first term on the right-hand side is the non-Gaussianity at Hubble exit and it can only

be computed numerically. The second term represents the non-Gaussianity generated at late

times during inflation, when the large-scale local term dominates over the finite Hubble-

crossing term.

Now we will show that the large-scale local contribution to the non-Gaussianity of Eqs.

(2.160) and (2.161) can be derived by solving the equation ofmotion of the field perturbation

on large scales. The nonlinear evolution of the field fluctuation is derived by taking the large-

scale limit|kη| → 0 in Eq. (2.105) for the free-fieldδχI and Eq. (2.149) for the nonlinear

δχ. This leads to the equations

δ̈χIk + 3H ˙δχIk +m2
δχδχIk = 0, (2.162)

δ̈χ
k

+ 3H ˙δχ
k

+m2
δχδχk = Sk, (2.163)

where the source on the left-hand side is given in terms of thelinear solution,

Sk = −W
′′′

2
(δχI ⋆ δχI)k, (2.164)

and where⋆ denotes the convolution operation. The growing solution ofthe homogeneous

Eq. (2.162) is

δχIk(η) = δχIk(η∗)(|kη|)
3
2
−µ. (2.165)
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Only in the massless limit is this constant. One can find the solution of the inhomogeneous

equation by using the method of variation of parameters, which yields

δχk(η) = δχk(η∗)(|kη|)
3
2
−µ +

1

2µH∗

[
(|kη|)− 3

2
+µ

∫ η

η∗

dη′a(η′)(|kη|)− 3
2
−µSk(η

′)

−(|kη|)− 3
2
−µ

∫ η

η∗

dη′a(η′)(|kη|)− 3
2
+µSk(η

′)

]
. (2.166)

Using the source (2.164) with Eq. (2.165) and integrating over conformal time, one ob-

tains

δχk(η) = δχk(η∗)(|kη|)α +
W ′′′

6H2
∗

f(η/η∗)[δχI(η) ⋆ δχI(η)]k , (2.167)

where

f(x) =





1
3
(1 − x3) + ln(x) for µ = 3/2,

1
α(µ−1/2)

(
1 − α

2µ
x3−3α

)
− 3

2µα
x−α for 1/2 < µ < 3/2.

(2.168)

We can now use Eq. (2.167) to compute the bispectrum from its definition (2.157). In terms

of the power spectrum of the field perturbation, this is

F (η; k1, k2, k3) = F (η∗; k1, k2, k3) +
W ′′′

3H2
∗

f(η/η∗)
∑

i<j

P (η, ki)P (η, kj), (2.169)

which correctly reproduces the large-scale contribution to the non-Gaussianity in Eqs. (2.160)

and (2.161). Note that, in the limitµ → 3/2 andα → 0, the large-scale expression for a

massive field converges to the massless case, as can be checked by taking this limit in the

lower expression on the right-hand side of Eq. (2.168) and using

2µ

3(µ− 1
2
)

→ 1 +
α

3
+ O(α2), (2.170)

x−α = exp [−α ln(x)] → 1 − α ln(x) + O(α2). (2.171)

In summary, at late times the non-Gaussianity of the field is dominated by the nonlinear

evolution on large scales and thus the bispectrum of the fieldperturbation is of the local

form, i.e. proportional to the product of two power spectra (See Sec. 1.3 for the definition
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of triangulation of the bispectrum). In the massless case, in which µ = 3/2, the power

spectrum of the field fluctuation is constant while the bispectrum grows asln(a). In the

massive case, however, the power spectrum decays asa−2α and the bispectrum decays as

a−3α, thus ‘growing’ asaα with respect to the product of two power spectra. This relative

growth is important for the non-Gaussianity in the curvatonmechanism, as can be seen from

Eq. (2.134). The curvaton case will be discussed below in more detail.

Before making contact with curvature perturbations, let usextend the solution (2.167)

and consider the evolution of the non-adiabatic perturbations in a radiation-dominated era.

This applies once inflation has ceased and the inflaton field has been thermalised, but before

the isocurvature perturbation is converted into an adiabatic one.

During the radiation dominated era,H = (2t)−1 and the field perturbation evolves on

large scales according to

δ̈χIk +
3

2t
˙δχIk +m2

δχδχIk = 0, (2.172)

δ̈χk +
3

2t
˙δχk +m2

δχδχk = Sk. (2.173)

The growing mode of the homogeneous equation is a Bessel function of the first kindJ

[Langlois & Vernizzi, 2004],

δχIk(t) = δχIk(treh)
π

25/4Γ(3/4)

J1/4(mδχt)

(mδχt)1/4
. (2.174)

For mδχt ≪ 1, well before decay, the growing mode is constant. Indeed, bysolving

Eq. (2.173) at lowest order inmδχt, we find4

δχk(t) = δχk(treh)
π

25/4Γ(3/4)

J1/4(mδχt)

(mδχt)1/4
− W (3)

10m2
δχ

(mδχt)
2[δχI(t)⋆δχI(t)]k. (2.175)

This result shows that the isocurvature fluctuation continues its nonlinear evolution through-

out the radiation era. We will use this result in the context of a curvaton field to account for

the consequences of considering a nonlinear source in the bispectrum of the field and then

compute the corresponding non-Gaussian parameterfNL.

4This result is in agreement with Enqvist & Nurmi [2005] wherethe computation considered a general nonlinear poten-
tial up to orderO

`

(mδχt/2)8
´

.
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2.5.4 The curvaton

The curvaton is an alternative inflationary mechanism to generate the matter density fluctu-

ations [Mollerach, 1990; Linde & Mukhanov, 1997; Enqvist & Sloth, 2002; Lyth & Wands,

2002; Moroi & Takahashi, 2001]. This is achieved without appealing to the perturbations

in the original inflaton field. Instead, an auxiliary ’curvaton’ field, subdominant during in-

flation, generates isocurvaure fluctuations which transform into adiabatic ones after the in-

flationary phase, during the decaying oscillations of the curvaton field. During inflation, the

isocurvature field presents a negligible contribution to the energy density. After inflation the

field still plays no significant role in the background evolution as long as its massmχ is neg-

ligible compared to the Hubble parameter. However, oncem2
χ ≈ H2, the curvaton field starts

oscillating at the bottom of its potential. At this stage thepotential can be approximated as

quadratic. The energy density of the field decays during the oscillations like a non-relativistic

component (ρχ ∝ 1/a3). The curvaton then contributes significantly to the energydensity of

the universe and the curvaton fluctuations are transformed into adiabatic matter fluctuations

(for the simplest version of this mechanism see Bartolo & Liddle [2002]).

We can write the number of e-folds of expansion in terms of thevalue of the fieldχ:

N(tdec, tin) =
1

3
ln

(
ρχin

ρχdec

)
, (2.176)

where

ρχin
=

1

2
m2

χχ
2
in, ρχdec

=
1

2
m2

χχ
2
dec, (2.177)

are the energy densities of the curvaton at the onset of the oscillations (on a flat slicing) and

at the moment of decay (on a uniform density slicing), respectively.

The non-Gaussianities generated by the curvaton mechanismhave been studied in sev-

eral papers. In the following we consider and combine all thepossible effects, including the

intrinsic non-Gaussianity of the curvaton field fluctuationand the nonlinear relation between

the curvature perturbationζ and the curvaton fluctuation. The intrinsic non-Gaussianity of

the curvaton can be generated inside and outside the Hubble radius due to its nonlinear po-

tential. In particular, as discussed later in this section,we take into account the nonlinear
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evolution during both inflation [Bernardeau & Uzan, 2003; Zaldarriaga, 2004] and the radi-

ation epoch [Enqvist & Nurmi, 2005; Lyth, 2004].

In order to computeζ and its n-point functions, one can follow two equivalent procedures:

1. Expand the perturbed number of e-foldsδN on an initial flat slice at the onset of the

oscillations (t = tin), in terms of the field fluctuationsδχ(tin), and then use Eqs. (2.169)

and (2.175) to introduce the three-point correlators of thefield fluctuations.

2. Expand the perturbed number of e-foldsδN on an initial flat slice at Hubble cross-

ing (t = t∗) in terms of the field fluctuationsδχ(tin) and then take into account the

nonlinear relation between the field fluctuation att = tin and the one att = t∗ using

Eqs. (2.167) and (2.175).

We will follow the latter procedure, which has been used in the rest of the literature on the

curvaton. We write, as in Eq. (2.129)

ζ = N,χ∗δχ(t∗) +
1

2
N,χ∗χ∗δχ

2(t∗), (2.178)

whereN is given by Eq. (2.176).

In general, as we have seen in the previous section,χin is a nonlinear function of the field

value at Hubble exit, and we parameterise this dependence bythe functiong(χ(t∗)) and its

derivatives:

g =χ0(tin), (2.179)

δχ(tin) =
∑

n=1

g(n)

n!
δχn(t∗). (2.180)

Using ∂
∂χ∗

= g′ ∂
∂g

and Eq. (2.177), one can differentiateN in Eq. (2.176) to obtain

N,χ∗ =
2

3

g′

g
C, (2.181)

where the prime denotes here a derivative with respect toχ∗ and

C = 1 − ∂ ln ρ̄χdec

∂ ln ρ̄χin

≈ 3ρ̄χ

4ρ̄− ρ̄χ

∣∣∣∣
dec

, (2.182)
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whereρ̄ is the unperturbed total energy density. Here we have taken auniform ρ̄dec assuming

that the radiation is unperturbed. Also, to arrive at the last equality we used(ρ̄χdec
/ρ̄χin

)1/3 =

[(ρ̄dec − ρ̄χdec
)/(ρ̄in − ρ̄χin

)]1/4.

To compute the power spectrum we neglect the evolution during the radiation dominated

era, and from Eq. (2.167) we obtaing′/g = (|kη|)α, which yields

Pζ(t, k) =
4

9
C2Pχ(t, k). (2.183)

The spectral index is given by Lyth & Wands [2002] as

ns − 1 = 2
Ḣ

H2
= 2α, (2.184)

where Eq. (2.142) implies

α ∼ m2
δχ

3H2
∗

≪ 1. (2.185)

If α is not too small, the spectrum can be extremely blue and this is ruled out by observations

[Komatsu et al., 2008]. DifferentiatingN in Eq. (2.176) once more yields

N,χ∗χ∗ = N2
,χ∗

[
3

2C

(
1 +

gg′′

g′2

)
− 2 − C

]
. (2.186)

If we neglect the non-Gaussianity of the field fluctuations atHubble crossing, which are

subdominant with respect to the ones accumulated during thesuper-Hubble evolution, and

the definition (2.134) gives

fNL =
5

4C

(
1 +

gg′′

g′2

)
− 5

3
− 5C

6
. (2.187)

We have arrived to a well known result obtained without assuming a dominant contribution

of W ′′′ in the perturbation equations [Bartolo et al., 2004; Lyth & Rodriguez, 2005b; Sasaki

et al., 2006].

By comparing the above equation with the nonlinear evolution given by Eqs. (2.167) and
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(2.175), and stopping the nonlinear evolution of perturbations when the field starts oscillating

at t ≃ 1/mδχ, the non-Gaussianity in the curvature perturbation becomes

fNL =
5

4C

[
1 +

χ0 inW
(3)

m2
δχ

(
m2

δχ

3H2
∗

f(ηreh/η∗) −
1

5

)]
− 5

3
− 5C

6
, (2.188)

where the functionf has been defined in Eq. (2.168). At late times,f can be approximated

by

f(ηreh/η∗) ≃





−∆N for α∆N <∼ 1,

− 1
α
eα∆N for α∆N >∼ 1,

(2.189)

where we have used Eq. (2.185) and∆N = Nreh−N∗ ≃ 60 is the number of e-folds between

Hubble crossing and the end of inflation.

Note that our result, Eq. (2.188), can also be obtained by computing the field bispectrum

from the isocurvature field evolution during radiation domination Eq. (2.175). In this context,

the field bispectrum is given by

F (t; k1, k2, k3) = F (treh; k1, k2, k3) −
W (3)

5m2
δχ

∑

i<j

P (η, ki)P (η, kj), (2.190)

which clearly evolves with time before the decay of the curvaton. This non-Gaussianity is

transferred to the curvature correlation by expanding the perturbed number of e-foldsδN on

an initial flat slice taken at the onset of the oscillations(t = tin). Then we can writeζ = δN

in terms of the field fluctuationsδχ(tin) as in Eq. (2.129). With the aid of Eqs. (2.169) and

(2.190), we then replace the three-point correlators of thefield fluctuations in the curvature

perturbation bispectrum. Our result in Eq. (2.188) is thus recovered.

2.6 Model discrimination through observations

In its simplest version, the curvaton model proposes an isocurvature field whose quantum

fluctuations reproduce the spectrum of curvature fluctuations we observe in the CMB. Fixing

the required perturbation amplitude and spectral index imposes important restrictions on the

possible values ofχ. Additionally, the non-Gaussianity of the curvaton could constrain the
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parameter space further.

As an example, let us consider a curvaton with bare massmχ ≪ H∗ and nonlinear poten-

tial W = M
3!
χ3, such thatm2

δχ ≃W ′′ = χ0 ∗M andW ′′′ = M . Note that the negligible mass

in this case allows for a scale-invariant power spectrum in the field fluctuations and conse-

quently the curvature perturbations. For simplicity we takeχ0 osc ≃ χ0 ∗, which is consistent

with neglecting the nonlinear potential in Eq. (2.138)), since this would only contribute a

term of orderO(α2). When the nonlinear coupling is very small, Eq. (2.188) reduces to

fNL =
1

C

(
1 − 5

4
α∆N

)
− 5

3
− 5C

6
, α <∼ ∆N−1, (2.191)

and the intrinsic non-Gaussianity of the curvaton field gives a negligible contribution to the

total non-Gaussianity in the curvature perturbation. However, when the nonlinear coupling

is important, the nonlinear parameter is

fNL =
1

C

(
1 − 5

4
exp (α∆N)

)
− 5

3
− 5C

6
, ∆N−1 <∼ α. (2.192)

In this case the intrinsic non-Gaussianity of the curvaton can be the main source of non-

Gaussianity in the curvature perturbation. For example, with χ0 ∗M
3H2 ≃ 0.07 andC = 1, one

finds fNL ≃ −100, which is within reach of current and future experiments. However, in

this case, if the curvaton is the only field responsible for the curvature perturbations, the

spectral index of scalar fluctuations will be largely blue. This is in disagreement with current

observations and is therefore excluded.

Let us finally consider the special case in which the curvatonis not responsible for the

linear fluctuations observed by CMB and large-scale structure probes. Using the same po-

tential as in the example above, this case constrains the fractionr in Eq. (2.182) to be small,

as the contribution to the curvature power spectrum is controlled by this parameter (see

Eq. (2.183)). On the other hand,α can take large values without violating constraints on

the power spectrum, which is dominated by the inflaton perturbations. As for second order

perturbations,fNL is still given by the formula (2.192) and can be large due to the freedom

in the mass and the small value ofC. This happens at all scales and the non-Gaussianity is

induced through the evolution of fluctuations on superhorizon scales.
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It is important to note that, in this case, the blue spectrum of the curvaton perturbations

may dominatePζ at small scales. If this happens, and if the perturbations have enough power

on small scales, a significant amount of PBHs would be produced. In this special case, as

in many other versions of inflation, an important constrainton the model comes from the

probability of PBH formation as we will study in the following chapters.



Chapter 3

Statistics of non-Gaussian fluctuations

3.1 Introduction

In the inflationary paradigm, the prediction that the spectrum of fluctuations should exhibit

Gaussian statistics has recently been challenged. This prediction follows from the fact that

the curvature perturbation, which commonly refers to the comoving curvature perturbation

defined in Eq. (2.43), is treated as a free field during inflation,

R(t,x) =

∫
d3k

(2π)3
R(t,k)eik·x, (3.1)

where there is no coupling between theR(t,k) for different k. With this understanding,

Eq. (3.1) means thatR does not interact with either itself or any other particle species in

the universe. The real-space fieldR(t,x) is obtained by summing an infinite number of

independent, identically distributed, uncorrelated oscillators. Under these circumstances the

Gaussianity ofR(t,x) follows from the central limit theorem [Bardeen et al., 1986], given

reasonable assumptions about the individual distributions of theR(t,k). The exact form of

the distributions of theR(t,k) is mostly irrelevant for the inflationary density perturbations.

In conventional quantum field theory, all details ofR and its interactions are encoded in

then-point correlation functions ofR, written as〈out|R(t1,x1) · · ·R(tn,xn)|in〉. Working

in the Heisenberg picture, where the operators carry time dependence but the states

{|in〉, |out〉} do not, these functions express the amplitude for the early-time vacuum|in〉
to evolve into the late-time vacuum|out〉 in the presence of the fieldsR(ti,xi). Given

78
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then-point functions for alln at arbitraryx andt, one can determineR(t,x) [Streater &

Wightman, 2000], at least in scattering theory. In the context of the inflationary density

perturbations, these vacuum evolution amplitudes are not directly relevant. Instead, one

is interested in the equal time expectation values〈in|R(t,x1) · · ·R(t,xn)|in〉, which can be

used to measure gravitational particle creation out of the time-independent early vacuum|in〉
during inflation. These expectation values are calculated using the so-called ‘closed-time-

path formalism’, which was introduced by Schwinger [1961];see also Calzetta & Hu [1987];

Jordan [1986]; DeWitt [2003] and Hajicek [1979]. In this formalism there is a doubling of

degrees of freedom, which is also manifest in finite temperature calculations [Le Bellac,

2000; Rivers, 1988]. This method has recently been used [Weinberg, 2005, 2006; Sloth,

2006; Seery, 2008] to extend the computation of the correlation functions ofR to beyond

tree-level.

Knowledge of the expectation values ofR in the state|in〉 is sufficient to predict a large

number of cosmological observables, including the power spectrum of the density perturba-

tions generated during inflation [Guth & Pi, 1982; Hawking, 1982], and the two- and three-

point functions of the CMB temperature anisotropies [Hu & Sugiyama, 1995; Hu, 2001;

Komatsu & Spergel, 2001; Kogo & Komatsu, 2006; Okamoto & Hu, 2002; Babich et al.,

2004; Babich & Zaldarriaga, 2004; Babich, 2005; Liguori et al., 2006; Cabella et al., 2006;

Creminelli et al., 2006]. Because they are defined as expectation values in the quantum vac-

uum, these observables all have the interpretation of ensemble averages, as will be discussed

in more detail below.

On the other hand, one sometimes needs to know the probability that fluctuations of some

given magnitude occur in the curvature perturbationR [Press & Schechter, 1974; Bardeen

et al., 1986; Peacock & Heavens, 1990]. This is not a questionabout ensemble averages, but

about the probability measure on the ensemble itself. As a result, such information cannot

easily be obtained from inspection or simple manipulation of then-point functions.

For example, if we know by some a priori means thatR is free, then the argument given

above, based on the central limit theorem, implies that at any positionx, the probability
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density of fluctuations inR of amplitude̺ must be

P(̺) ≃ 1√
2πσ

exp

(
− ̺2

2σ2

)
, (3.2)

where the variance inR is

σ2 = 〈R(t,x)2〉 =

∫
d ln k PR(k). (3.3)

The quantityPR(k) is the dimensionless power spectrum, which is defined in terms of the

two-point function ofR, calculated from the quantum field theory in-vacuum:

〈in|R(t,k1)R(t,k2)|in〉 = (2π)3δ(k1 + k2)
2π2

k3
1

PR(k1). (3.4)

This is the only relevant observable, because it is a standard property of free fields that

all other non-vanishing correlation functions can be expressed in terms of the two-point

function (3.4), and hence the power spectrum. Those expressions can be achieved through

a generalisation of Wick’s theorem using an equal-time normal-ordering [Luo & Schramm,

1993]. In practice, in order to give a precise meaning to (3.2), it would be necessary to

specify what it means forR to develop fluctuations of amplitude̺, and whether it is the

fluctuations in the microphysical fieldR or some smoothed field̄R which are measured.

These details affect the exact expression (3.3) for the variance of̺ .

The average in Eq. (3.4), denoted by〈in| · · · |in〉, is the expectation value in the quantum

in-vacuum. To relate this abstract expectation value to real-world measurement probabilities,

one introduces a notional ensemble of possible universes, of which the present universe and

the density fluctuations that we observe are only one possible realisation (e.g.,Lyth [2006]).

However, for ergodic processes, we may freely trade ensemble averages for volume averages.

The ergodicity of a system refers to that property of processes by which the average value of

a process characteristic measured over time is the same as the average value measured over

the ensemble.

If we make the common supposition that the inflationary density perturbation is indeed

ergodic, then we expect the volume average of the density fluctuation to behave like the
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ensemble average: the universe may contain regions where the fluctuation is atypical, but

with high probability most regions contain fluctuations with root-mean-square amplitude

close toσ. Therefore the probability distribution on the ensemble, which is encoded in

Eq. (3.4), translates to a probability distribution on smoothed regions of a determined size

within our own universe.

In order to apply the above analysis, it is necessary to know in advance thatR is a free

field. This knowledge allows us to use the central limit theorem to connect the correlation

functions ofR with the probability distribution (3.2). The situation in the real universe is not

so simple. In particular, the assumption that during inflationR behaves as a free field, and

therefore that the oscillatorsR(k) are uncorrelated and independently distributed, is only

approximately correct. In fact,R is subject to self-interactions and interactions with the

other constituents of the universe, which mixk-modes. Consequently, the oscillatorsR(k)

acquire some phase correlation and are no longer independently distributed. In this situa-

tion the central limit theorem gives only approximate information concerning the probability

distribution ofR(x), and it is necessary to use a different method to connect the correlation

functions ofR with its probability distribution function (PDF).

In this chapter we give a new derivation of the PDF of the amplitude of fluctuations in

R which directly connectsP(̺) and the correlation functions〈R(k1) · · ·R(kn)〉, without

intermediate steps which invoke the central limit theorem or other statistical results. When

the inflaton is treated as a free field, our method reproduces the familiar prediction (3.2)

of Gaussian statistics. When the inflaton is ‘not’ treated asa free field, the very signifi-

cant advantage of our technique is that it is possible to directly calculate the corrections to

P(̺). Specifically, the interactions ofR can be measured by the departure of the correlation

functions from the form they would take ifR were free. Therefore, the first corrections to

the free-field approximation are contained in the three-point function, which is exactly zero

when there are no interactions.

The three-point function for single-field, slow-roll inflation has been calculated by Mal-

dacena [2003], whose result can be expressed in the form [Seery & Lidsey, 2005a]

〈R(k1)R(k2)R(k3)〉 = 4π4(2π)3δ
(∑

i

ki

) P̄R
2

∏
j k

3
j

A(k1, k2, k3), (3.5)
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whereA is Maldacena’sA-function divided by two [Maldacena, 2003]5. P̄R
2

measures

the amplitude of the spectrum when theki crossed the horizon. (For earlier work on the

derivation of the three-point-function, see Falk et al. [1993]; Gangui et al. [1994]; Pyne

& Carroll [1996]; Acquaviva et al. [2003].) This result has since been extended to cover

the non-Gaussianity produced during slow-roll inflation with an arbitrary number of fields

[Maldacena, 2003; Seery & Lidsey, 2005a; Creminelli, 2003;Lyth & Rodriguez, 2005a,b;

Lyth & Zaballa, 2005; Zaballa et al., 2006; Vernizzi & Wands,2006], preheating [Enqvist

et al., 2005b,a; Jokinen & Mazumdar, 2006], models where thedominant non-Gaussianity

is produced by a light scalar which is a spectator during inflation [Boubekeur & Lyth, 2006;

Alabidi & Lyth, 2006b; Lyth, 2006], and alternative models involving a small speed of sound

for the inflaton perturbation [Seery & Lidsey, 2005b; Alishahiha et al., 2004; Calcagni, 2005;

Arkani-Hamed et al., 2004; Creminelli, 2003].

For single-field, slow-roll inflation, the self-interactions ofR are suppressed by powers

of the slow-roll parameters. This means that the correctionto Gaussian statistics is not large.

In terms of theA-parametrised three-point function (3.5), this is most commonly expressed

by writing, in an equivalent form toζ in Eq. (2.131)

R(t,x) = R1(t,x) − 3

5
fNL

(
R2

1(t,x) − 〈R2
1(t, x)〉

)
, (3.6)

with

fNL = −5

6

A∑
i k

3
i

= O(ǫSR, ηSR) (3.7)

giving the relative contribution of the non-Gaussian piecein R andR1 being a Gaussian ran-

dom field [Komatsu & Spergel, 2001; Verde et al., 2000]. (Notethat there are differing sign

conventions forfNL [Malik & Lyth, 2006], here we stick to that used by the WMAP team.) In

models with more degrees of freedom, much larger non-Gaussianities are expected, perhaps

with fNL ∼ 10 [Rigopoulos & Shellard, 2005; Rigopoulos et al., 2006b,a, 2007; Boubekeur

& Lyth, 2006; Lyth & Rodriguez, 2005b; Vernizzi & Wands, 2006]. If the inflationary per-

5In Maldacena’s normalisation, the numerical prefactor in Eq. (3.5) is not consistent with the square of the two-point
function, Eq. (3.4). We chooseA so that the prefactor becomes4π2(2π)3. This normalisation of Eq. (3.5) was also
employed by Seery & Lidsey [2005b,a], although the distinction from Maldacena’sA was not pointed out explicitly.
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turbation has a speed of sound different from unity, then large non-Gaussianities may also

appear (e.g. Seery & Lidsey [2005b]; LoVerde et al. [2008]),although in this case it is diffi-

cult to simultaneously achieve scale invariance. The current observational constraint, as we

mentioned in Chapter 2, is of order|fNL| . 100. In the absence of a detection, the forthcom-

ing PLANCK mission may tighten this constraint to|fNL| . 3 [Komatsu & Spergel, 2001;

Liguori et al., 2006].

Non-Gaussian PDFs have been studied previously by several authors. The closest analy-

sis to the method developed in this chapter comes from Matarrese et al. [2000], who worked

with a path integral expression for the density fluctuation smoothed on a scaleR (which

they denoted by ‘δR’). Also, the analysis of Bernardeau & Uzan [2002, 2003] has some fea-

tures in common with our own, being based on the cumulant generating function. Moreover,

the expression for the probability density in those papers is expressed as a Laplace trans-

form. Our final expression, Eq. (3.70), can be interpreted asa Fourier integral, viz (3.15),

which (loosely speaking) can be related to a Laplace integral via a Wick transformation. De-

spite these similarities, the correspondence between the two analyses is complicated because

Bernardeau & Uzan [2002, 2003] work in a multiple-field picture and calculate a probability

density only for the isocurvature field ‘δs’, which acquires its non-Gaussianity via a mixing

of isocurvature and adiabatic modes long after horizon exit, of which particular cases were

presented in the Chapter 2. This contrasts with the situation in the present chapter, where we

restrict ourselves to a single-field scenario and compute the PDF for the adiabatic modeR.

This would be orthogonal toδs in field space and its non-Gaussianity is generated exactly at

horizon exit.

In the older literature it is more common to deal with the density fluctuationδρ measured

on comoving slices, rather than the curvature perturbationR. For slowly varying fields, on

scales larger than the horizon,R andδρ can be related in the comoving gauge via Eq. (25)

of [Lyth, 1985]:

(
aH

k

)2

δρ = −
(

3

2
+

1

1 + w

)−1

R, (3.8)

to first order in cosmological perturbation theory for a barotropic fluid. (One may use the

δN formalism to go beyond leading order as in Chapter 2, but to obtain results valid on
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sub-horizon scales one must use the full Einstein equations; see, e.g., Langlois & Vernizzi

[2005b,a].) For fluctuations on the Hubble scale(k ≃ aH), this means|R| ≃ δρ, soR pro-

vides a useful measure of the density fluctuation on such scales. By virtue of this relationship

with the density fluctuation, the probability distributionP(̺) is an important theoretical tool,

especially in studies of structure formation. For example,it is the principal object in the

Press–Schechter formalism [Press & Schechter, 1974]. As a result, there are important rea-

sons why knowledge of the detailed form of the PDF of̺, and not merely the approximate

answer provided by the central limit theorem, is important.

Firstly, large amplitude collapsed objects, such as primordial black holes (PBHs) natu-

rally form in the high-̺ tail of the distribution [Carr, 1975; Carr & Hawking, 1974].Such

large fluctuations are extremely rare. This means that a small change in the probability den-

sity for |̺| ≫ 0 can make a large difference in the mass fraction of the universe which

collapses into PBHs [Bullock & Primack, 1997; Ivanov, 1998]. Thus one may hope to probe

the form of the PDF for̺ using well-known and extremely stringent constraints on PBH

formation in the early universe [Carr, 2003; Carr & Lidsey, 1993; Green & Liddle, 1997; Za-

balla et al., 2007; Josan et al., 2009]. The corrections calculated in this chapter are therefore

not merely of theoretical interest, but relate directly to observations, and have the potential

to sharply discriminate between models of inflation.

Secondly, as described above, although the non-Gaussianities produced by single-field,

slow-roll inflation are small, this is not mandatory. In models where non-Gaussianities are

large, it will be very important to account for the effect of non-Gaussian fluctuations on

structure formation [Verde et al., 2000; Matarrese et al., 2000; Verde et al., 2001; Verde &

Heavens, 2001]. The formalism presented in this chapter provides a systematic way to obtain

such predictions, extending the analysis given by Matarrese et al. [2000].

The outline of this chapter is as follows. In Section 3.2 we obtain the probability measure

on the ensemble of possible fluctuations. This step depends on the correlation functions of

R. In Section 3.3, we discuss the decomposition ofR into harmonics. This is a technical

step, which is necessary in order to write down a path integral for P(̺). First, we Fourier

decomposeR. Then we write the path integral measure, and finally we give aprecise speci-

fication of̺, which measures the size of fluctuations. We distinguish twointeresting cases:
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a ‘total fluctuation’̺ , which corresponds toR (or approximatelyδρ) smoothed over regions

the size of the Hubble volume; and the ‘spectrum’P̺(k), which describes the contributions

to ̺ from regions of the primordial power spectrum around the scale described by wavenum-

berk. In Section 3.4 we evaluateP(̺). We give the calculation for the Gaussian case first, in

order to clearly explain our method with a minimum of technical detail. This is followed by

the same calculation but including non-Gaussian corrections which follow from a non-zero

three-point function. In Section 3.5 we calculateP[P̺(k)]. Finally, we summarise our results

in Section 3.6.

3.2 The probability measure on the ensemble ofR

Our method is to compute the probability measurePt[R] on the ensemble of realisations of

the curvature perturbationR(x), which we define to be the value ofR(t,x) at some fixed

time t. This probability measure is a natural object in the Schrödinger approach to quantum

field theory, where the elementary quantity is the wavefunctional Ψt[R], which is related to

Pt[R] by the usual rule of quantum mechanics, thatPt[R] ∝ |Ψt[R]|2. Once the measure

Pt[R] is known, we can directly calculate (for example)Pt(̺) by integrating over allR that

produce fluctuations of amplitude̺. Although the concept of a probability measure onR

may seem rather formal, the Schrödinger representation ofquantum field theory is entirely

equivalent to the more familiar formulation in terms of a Fock space. This representation is

briefly discussed, for example, by Polchinski [1998] and Visser [1996]. A brief introduction

to infinite-dimensional probability measures is given by Albeverio et al. [1997]. Indeed,

a similar procedure has been discussed by Ivanov [1998], whocalculated the probability

measure on a stochastic metric variableals(x) which can be related to ourR(x). Although

the approaches are conceptually similar, our method is substantially different in detail. In

particular, the present calculation is exact in the sense that we make no reference to the

stochastic approach to inflation, and therefore are not obliged to introduce a coarse-graining

approximation. Moreover, Ivanov’s analysis appeared before the complete non-Gaussianity

arising fromR-field interactions around the time of horizon crossing had been calculated

[Maldacena, 2003], and therefore did not include this effect.
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3.2.1 The generating functional of correlation functions

The expectation values〈R(x1) · · ·R(x2)〉 in the vacuum|in〉 at some fixed timet can be

expressed in terms of a Schwinger–Keldysh path integral,6

〈R(t,x1) · · ·R(t,xn)〉 =
∫

[dR−dR+]
R+(t,x)=R−(t,x)
|in〉 R(t,x1) · · ·R(t,xn) exp

(
i Î(n)[R+] − i Î(n)[R−]

)
.

(3.9)

Here [dR+] is the integrand of the path integral overR. In cosmology we are generally

interested inR evaluated at different spatial positions on the samet-slice, so we have set all

thet equal in (3.9). The path integral is taken over all fieldsR which begin in a configuration

corresponding to the vacuum|in〉 at past infinity. The correlator is equal to the expectation

value of three copies ofR at timet so we require two path integrals: the first integral[dR+]

evolves the vacuum state|in〉 from past infinity to the stateR+(t,x) at timet where then

copies of the fieldR are averaged, and a second path integral[dR−] which will project back

the average to the vacuum state through a second functional integral . Î(n)[R] is the action

for the fluctuationR, which is computed perturbatively to ordern in R when we want to

compute correlations of the same order. For example,Î(3)[R] is given to third order inR by

Maldacena [2003] in the context of slow-roll inflation and bySeery & Lidsey [2005a,b] in

the inflationary models where the kinetic energy is not negligible. The action̂I(n)[R] is time

ordered for the argumentR− and anti-time ordered forR+. (For details of the Schwinger–

Keldysh or ‘closed time path’ formalism, see Calzetta & Hu [1987]; Jordan [1986]; Weinberg

[2005]; Le Bellac [2000]; Hajicek [1979]; Rivers [1988].)

An expression equivalent to Eq. (3.9) can be given in terms ofthe ‘equal time’ generating

functional

Zt[q] =

∫
[dR]

∫
[dR−dR+]

R±(t,x)=R(x)
|in〉 (3.10)

exp

(
i Î(n)[R+] − i Î(n)[R−] + i

∫

Σt

d3x R(x)q(x)

)
,

6Henceforth, we use the notation〈· · · 〉 to mean expectation values in the in-vacuum, and no longer write |in〉 explicitly
where this is unambiguous.
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whereq is some arbitrary source field, also known in the theory of special functions as

the formal argument of the generating function.Σt is a spatial slice at coordinate time

t. The equal-time correlation functions〈R(t,x1) · · ·R(t,xn)〉 are recovered fromZt[q] by

functional differentiation,

〈R(t,x1) · · ·R(t,xn)〉 =
1

in
δ

δq(x1)
· · · δ

δq(xn)
lnZt[q]

∣∣∣∣
q=0

. (3.11)

Up to normalisation, this is merely the rule for functional Taylor coefficients, so it is straight-

forward to invert Eq. (3.11) forZt[q]. We obtain

Zt[q] = exp
{ ∞∑

n=0

in

n!

∫
· · ·
∫

d3x1 · · ·d3xn q(x1) · · · q(xn)〈R(t,x1) · · ·R(t,xn)〉
}
.

(3.12)

Eq. (3.10) for the generating functional can be rewritten ina suggestive way. We define

the wavefunctional at timet as

Ψt[R] =

∫
[dR]

R(t,x)=R(x)
|in〉 exp

(
i Î(n)[R]

)
. (3.13)

This definition is simply the functional generalisation of the familiar quantum-mechanical

wavefunction. It expresses the amplitude for the fieldR(t,x) to have the spatial configura-

tion R(x) at timet, given the boundary condition thatR started in the vacuum state in the

far past. In terms ofΨt[R], the generating functional can be rewritten as

Zt[q] =

∫
[dR] Ψt[R]†Ψt[R] exp

(
i

∫
d3x R(x)q(x)

)
= ˜|Ψt[R]|2 ∝ P̃[R], (3.14)

where a tilde denotes a (functional) Fourier transform, and† denotes Hermitian conjugation.

Eq. (3.14) implies thatZt[q] is the complementary function for the probability distribution

Pt[R] [Albeverio et al., 1997], which can formally be obtained by inversion ofZt[q]. Hence,

up to an overall normalisation,

Pt[R] ∝
∫

[dq] exp

(
−i

∫
d3x R(x)q(x)

)
Zt[q]. (3.15)
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The normalisation is not determined by this procedure. We will fix the R-independent pref-

actor, which correctly normalises the PDF, by requiring
∫

d̺P(̺) = 1 at the end of the

calculation. For this reason, we systematically drop all field-independent prefactors in the

calculation that follows.

3.2.2 The probability density on the ensemble

So far, all our considerations have been exact, and apply forany quantum fieldR(t,x).

For any such field, Eq. (3.15) gives the probability density for a spatial configurationR at

time t, and implies that to obtainPt[R] we need to know all such functions for alln-point

correlations and at all spatial positionsx. In practice, some simplifications occur whenR is

identified as the inflationary curvature perturbation.

The most important simplification is the possibility of a perturbative evaluation. The

dominant mode of the CMB fluctuation is constrained to be Gaussian to high accuracy, so the

non-Gaussian corrections to the leading order cannot be large. Moreover, the amplitude of

its spectrum is constrained by CMB observations. Specifically, as mentioned in Section 1.2,

in the range of wavenumbers probed by the CMB, the spectrum has amplitudeP1/2
R ∼ 10−5,

Each higher-order correlation function is suppressed by anincreasing number of copies of

the spectrum,PR(k), as we have shown in Chapter 2.

Provided the amplitude ofPR is small, it might seem reasonable to truncate the expo-

nential in Eq. (3.15) for a givenn and to work with a perturbation series inP. However, this

simple approach is too naı̈ve, because the integrals overq eventually make any given term in

the series large, and this invalidates simple perturbativearguments based on power-counting

in PR. The perturbation series can only be justifieda posteriori, a point to which we will

return in Section 3.4.2.

We work to first-order in the three-point correlation, that is, we consider non-vanishing

two and three-point correlators in Eq. (3.12),

Zt[q] = exp
{
− 1

2

∫ ∫
d3x1d

3x2 q(x1)q(x2)〈R(t,x1)R(t,x2) (3.16)

− i

6

∫ ∫ ∫
d3x1d

3x2d
3x3 q(x1)q(x2)q(x3)〈R(t,x1)R(t,x2)R(t,x3)〉

}
.
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This generating functional is introduced in the expressionderived for the probability, Eq. (3.15),

for which we expand the exponential third order term inq(x) in power series to lowest order.

We finally arrive to the product

Pt[R] ∝
∫

[dq] Υt[q]ωt[q; R], (3.17)

whereΥ[q] andω[q; R] are defined by

Υt[q] =

(
1 − i

6

∫
d3k1 d3k2 d3k3

(2π)9
q(k1)q(k2)q(k3)〈R(t,k1)R(t,k2)R(t,k3)〉

)
,

(3.18)

and

ωt[q; R] = exp

(
−
∫

d3k1 d3k2

(2π)6

q(k1)q(k2)

2
〈R(t,k1)R(t,k2)〉 − i

∫
d3k

(2π)3
q(k)R(k)

)
.

(3.19)

The expression forωt gives rise to the Gaussian part of the PDF.Υ is of the form1 plus a

correction which is small when the perturbative analysis isvalid. Higher-order perturbative

corrections inPR can be accommodated if desired by retaining higher-order terms in the

power series expansion of the exponential in (3.15). Therefore our method is not restricted

to corrections arising from non-Gaussianities described by three-point correlations, but can

account for non-Gaussianities which enter at any order in the correlations ofR, limited only

by the computational complexity. However, in this chapter,we work only with the three-

point non-Gaussianity.

We now complete the square forωt[q; R] in (3.19) and make the finite field redefinition

q(k) 7→ q̂(k) = q(k) + (2π)3i
R(k)

〈R(t,k)R(t,−k)〉′ , (3.20)

where the prime in〈R(t,k)R(t,−k)〉′ indicates that the momentum-conservationδ-function

is omitted. The measure[dq] is formally invariant under this shift, giving
∫

[dq] =
∫

[dq̂],

whereasωt[q; R] can be split into anR-dependent piece, which we callΓt[R], and a piece that
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depends only on̂q but notR,

ωt[q; R] 7→ Γt[R] exp

(
−1

2

∫
d3k1 d3k2

(2π)6
q̂(k1)q̂(k2)〈R(t,k1)R(t,k2)〉

)
, (3.21)

whereΓt[R] is a Gaussian inR,

Γt[R] = exp

(
−1

2

∫
d3k1 d3k2 〈R(t,k1)R(t,k2)〉

R(k1)R(k2)∏
i〈R(t,ki)R(t,−ki)〉′

)
. (3.22)

Eq. (3.17) for the probability density becomes

Pt[R] ∝ Γt[R]

∫
[dq̂] Υt[q̂] exp

(
−1

2

∫
d3k1 d3k2

(2π)6
q̂(k1)q̂(k2)〈R(t,k1)R(t,k2)〉

)
,

(3.23)

One can easily verify that this is the correct expression, since if we ignore the three-point

contribution (thus settingΥt = 1), one recovers (after applying a correct normalisation)

∫
[dR] R(k1)R(k2)Γt[R] = 〈R(t,k1)R(t,k2)〉. (3.24)

The remaining task is to carry out theq̂ integrations inΥt. The only terms which contribute

are those containing an even power ofq̂, since any odd function integrated againste−q̂2

vanishes identically. In the expansion of
∏

i q(ki) in terms ofq̂, there are two such terms:

one which is quadratic in̂q, and one which is independent ofq̂. These are accompanied by

linear and cubic terms which do not contribute toPt[R]. For any symmetric kernelK and

vectorsp, q ∈ Rm, one has the general results [Rivers, 1988]

∫
[df ] exp

(
−1

2

∫
dmx dmy f(x)f(y)K(x,y)

)
= (det K)−1/2 , (3.25)

∫
[df ] f(p)f(q) exp

(
−1

2

∫
dmx dmy f(x)f(y)K(x,y)

)
= K

−1(p,q) (det K)−1/2 .

(3.26)

These rules allow us to evaluate theq̂ integrals in Eq. (3.23), giving

Pt[R] ∝ Γt[R]
(
1 + Υ

(0)
t [R] + Υ

(2)
t [R]

)
, (3.27)
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where

Υ
(0)
t [R] = −1

6

∫
d3k1 d3k2 d3k3 〈R(t,k1)R(t,k2)R(t,k3)〉

R(k1)R(k2)R(k3)∏
i〈R(t,ki)R(t,−ki)〉′

,

(3.28)

Υ
(2)
t [R] =

1

6

∫
d3k1 d3k2 d3k3 〈R(t,k1)R(t,k2)R(t,k3)〉× (3.29)

× R(k1)δ(k2 + k3)∏
i6=3〈R(t,ki)R(t,−ki)〉′

+ {perms}.

In the last expression we include the possible permutationsof the labels{1, 2, 3} since these

give rise to distinct integrands.

In fact, Υ
(2)
t is negligible. This happens because the three-point function contains a

momentum-conservationδ-function, δ(k1 + k2 + k3), which requires that the vectorski

sum to zero in momentum space. [For this reason, it is often known as the “triangle con-

dition”, and we will usually abbreviate it schematically asδ(△).] In combination with the

δ-function, δ(k2 + k3), the effect is to constrain two of the momenta (in this example k2

andk3) to be equal and opposite, and the other momentum (in this example,k1) to be zero.

This corresponds to the extreme local or ‘squeezed’ limit [Maldacena, 2003; Creminelli &

Zaldarriaga, 2004; Allen et al., 2006], in which the bispectrum reduces to the power spec-

trum evaluated on a perturbed background, which is sourced by the zero-momentum mode.

Written explicitly,Υ(2)
t behaves like

Υ
(2)
t [R] ≃ 1

6

∫
d3k1 d3k2

(2π)3
αR(k1)δ(k1) + {perms}, (3.30)

where we have writtenlim
k1→0

A = αk3
2, for some known constantα. In particular, Eq. (3.30)

vanishes, providedR(k) approaches zero ask → 0. This condition is typically satisfied,

since by constructionR(k) should not contain a zero mode. Indeed, any zero mode, if

present, would constitute part of the zero-momentum background, and not a part of the

perturbationR. Accordingly, Eqs. (3.27)–(3.28) withΥ(2)
t = 0 givePt[R] explicitly in terms

of the two- and three-point correlation functions.
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3.2.3 The smoothed curvature perturbation

The probability densityPt[R] ∝ (1 + Υ
(0)
t [R])Γt[R] expressed in Eq. (3.23) relates to the

microphysical fieldR(t,x) which appeared in the quantum field theory Lagrangian. A given

k-mode of this field begins in the vacuum state att → −∞. At early times, the mode is far

inside the horizon (k ≫ aH). In this (‘subhorizon’) regime, thek-mode cannot explore the

curvature of spacetime and is immune to the fact that it is living in a de Sitter universe. It

behaves like a Minkowski space oscillator. At late times, the mode is far outside the horizon

(k ≪ aH). In this (‘superhorizon’) regime, thek-mode asymptotes to a constant ampli-

tude, provided that only one field is dynamically relevant during inflation [Lyth et al., 2005;

Wands et al., 2000].7 If we restrict attention to tree-level diagrams, then underreasonable

conditions the integrals which define the expectation values ofR are typically dominated by

the intermediate (‘horizon crossing’) regime, whereR(k) is exiting the horizon (k ∼ aH)

[Weinberg, 2005, 2006]. As a result, the correlation functions generally depend only on the

Hubble and slow-roll parameters around the time of horizon exit.

The simple superhorizon behaviour ofR means that we can treat the power spectrum as

constant outside the horizon. As has been described, its value depends only on the Hubble

parameter and the slow-roll parameters around the time thatthe mode corresponding tok

exited the horizon. For this reason, the timet at which we evaluate the wavefunctional

Ψt[R], the generating functionalZt[q] and the PDFPt[R] is irrelevant, provided it is taken to

be late enough that the curvature perturbation on interesting cosmological scales has already

been generated and settled down to its final value. Indeed, wehave implicitly been assuming

that t is the time evaluated in comoving slices, so that observers on slices of constantt see

no net momentum flux. BecauseR is gauge-invariant and constant outside the horizon,

our formalism is independent of how we choose to label the spatial slices. The evolution

of R outside the horizon is the principal obstacle involved in extending our analysis to the

multiple-field scenario.

When calculating the statistics of density fluctuations on some given length scale2π/kH ,

one should smooth the perturbation field over wavenumbers larger thankH . To take ac-
7Where multiple fields are present, there will typically be anisocurvature perturbation between them: hypersurfaces of

constant pressure and density will not coincide. Under these circumstancesR will evolve [Wands et al., 2000]. We do not
consider the evolving case in this chapter, but rather restrict our attention to the single-field case where the superhorizon
behaviour ofR is simple.
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count of this, we introduce a smoothed fieldR̄ which is related toR via the ruleR̄(k) =

W(k, kH)R(k), whereW is some window function. The probabilities we wish to calculate

and compare to the real universe relate toR̄ rather thanR. The exact choice of filterW is

mostly arbitrary. For the purpose of analytical calculations, it is simplest to pick a sharp

cutoff in k-space, which removes all modes withk < kH. Such window function is given by

W(k, kH) = Θ(k − kH), (3.31)

where,Θ(x) is the Heaviside step function defined in Eq. (2.152). This choice of window

function has the disadvantage that it is non-local and oscillatory in real space, which makes

physical interpretations difficult. The most common alternative choices, which do not suffer

from such drawbacks, are (i) a Gaussian or (ii) the so-called‘top hat’, which has a sharp

cutoff in real space. We allow for a completely general choice of C0 functionW, subject

to the restriction thatW 6= 0 except atk = ∞ and possibly at an isolated set of points

elsewhere (we will work with more specific forms of the windowfunction in the following

Chapters 4 and 5). This restriction is made so that there is a one-to-one relationship between

R̄ andR. If this were not the case, it would be necessary to coarse-grain over classes of

microphysical fieldsR which would give rise to the same smoothed fieldR̄.

In addition to this smoothing procedure, the path integral must be regulated before car-

rying out the calculation in the next Section. This is achieved by artificially compactifying

momentum space, so that the range of available wavenumbers is restricted tok < Λ, where

Λ is an auxiliary hard cutoff or ‘regulator’. At the end of the calculation we takeΛ → ∞.

Some care is necessary in carrying out this compactification. We setR̄ = 0 for k > Λ. In

order to maintain continuity atk = Λ, we introduce a 1-parameter family of functionsWΛ.

These functions are supposed to satisfy the matching condition lim
Λ→∞

WΛ(k) = W(k), and

are subject to the restrictionWΛ(Λ) = 0. (These conditions could perhaps be relaxed.) The

relationship betweenR andR̄ becomes

R̄(k) = Θ(Λ − k)WΛ(k; kH)R(k) (3.32)

To minimise unnecessary clutter in equations, we frequently suppress theΛ andkH depen-
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dences inW, writing onlyW(k) with the smoothing scalekH and hard cutoffΛ left implicit.

Both the Gaussian and the ‘top-hat’ window functions approach zero ask → ∞, and are

compatible with (3.32) in theΛ → ∞ limit. In this limit, the final result is independent of

the exact choice ofWΛ(k, kH).

We are interested in the probability of observing a given filtered fieldR̄. One can express

this via the rule [Matarrese et al., 2000; Taylor & Watts, 2000]

Pt[R̄] =

∫
[dR] Pt[R]δ[R̄ = θ(Λ − k)WR]. (3.33)

3.3 Harmonic decomposition of the curvature perturbation

In the previous Section, we obtained the probability density for a given smoothed spatial

configuration of the curvature perturbations. Given this probability density, the probability

P that the configuration exhibits some characteristic ofR, such as fluctuations of amplitude

̺ or a ‘fluctuation spectrum’ of the formP̺(k), is formally obtained by integrating over all

configurations of̄R which exhibit the criteria which define̺[Matarrese et al., 2000]. In this

section, we give a precise specification of these criteria. Before doing so, however, we exploit

the compactification of momentum space introduced in (3.32)to define a complete set of

partial waves. The smoothed field̄R can be written as a superposition of these partial waves

with arbitrary coefficients. Moreover, the path integral measure can formally be written as a

product of conventional integrals over these coefficients [Hawking, 1977].

In the following we assemble the necessary formulae for the partial-wave decomposition.

In particular, we will obtain expressions for the decomposition of R̄, for the characteristics̺

andP̺(k), and a precise specification of the path integral measure.

3.3.1 Harmonic expansion of̄R

We expand̄R(k) in harmonics on the unit sphere and along the radialk = |k| coordinate:

R̄(k) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

∞∑

n=1

R̄
m
ℓ|nYℓm(θ, φ)ψn(k). (3.34)
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The Yℓm(θ, φ) are the standard spherical harmonics on the unit 2-sphere, while theψn(k)

are any complete, orthogonal set of functions on the finite interval [0,Λ]. These harmonics

should satisfy the following conditions8:

1. ψn(k) → 0 smoothly ask → 0, so that power is cut off on very large scales, and the

universe remains asymptotically FRW with the zero-modea(t), which was used when

computing the expectation values〈R · · ·R〉;

2. ψn(k) → 0 smoothly ask → Λ, so that the resultinḡR is compatible with Eq. (3.32);

3. ψn(k) should have dimension[M−3], in order that Eq. (3.34) is dimensionally correct;

4. theψn(k) should be orthogonal in the measure
∫ Λ

0
dk k5P−1

R (k)W−2(k).

In addition, there is a constraint on the coefficientsR̄
m
ℓ|n, becausēR(k) should be real in

configuration space and therefore must obey the Fourier reality condition R̄(k)∗ = R̄(−k),

where an asterisk denotes complex conjugation. TheR̄
m
ℓ|n are generically complex, so it is

useful to separate the real and imaginary parts by writingR̄
m
ℓ|n = am

ℓ|n + ibmℓ|n. The condition

thatR̄ is real in configuration space implies

a−m
ℓ|n = (−1)ℓ+mam

ℓ|n , (3.35)

b−m
ℓ|n = (−1)ℓ+m+1bmℓ|n. (3.36)

These conditions halve the number of independent coefficients, since thea andb coefficients

with strictly negativem are related to those with strictly positivem, whereas for them = 0

modes, theb coefficients vanish ifℓ is even and thea coefficients vanish ifℓ is odd.

Condition 1 is made because, in the absence of this constraint, R̄ could develop un-

bounded fluctuations on extremely large scales, which wouldrenormalisea(t). Therefore,

condition 1 can be interpreted as a consistency requirement, since the inflationary two- and

three-point functions are calculated using perturbation theory on a FRW background with
8When expanding functions onR3 in terms of polar coordinates, a more familiar expansion involves spherical waves

Zℓm|k ∝ Jℓ(kr)Yℓm(θ, φ), whereJℓ is a spherical Bessel function. These waves are eigenfunctions of the Laplacian in
polar coordinates, viz,∇2Zℓm|k = −k2Zℓm|k. An arbitrary function onR3 can be written in terms of spherical waves,
which is equivalent to a Fourier expansion. We do not choose spherical waves as an appropriate complete, orthogonal
set of basis functions here because we do not wish to expand ’arbitrary’ functions, but rather functions obeying particular
boundary conditions atk = 0. The spherical waves for lowℓ behave improperly at smallk for this purpose. Moreover, it
is not possible to easily impose the boundary conditionR̄(k) → 0 ask → Λ.
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some givena(t), which must be recovered asymptotically as|x| → ∞. It will later be nec-

essary to sharpen this condition to include constraints on the behaviour ofPR(k) neark = 0

beyond the weak requirement thatσ2 =
∫
PR(k) d ln k is finite. Condition 4 is a technical

requirement made for future convenience. Any other choice of normalisation would work

just as well, but this choice is natural, given thek-dependence in the Gaussian kernelG[R̄].

Indeed, with this condition, the Gaussian prefactor inP(̺) will reduce to the exponential of

the sum of the squares of theam
ℓ|n andbmℓ|n. Condition 3 ensures that the inner product of

two ψn(k) in the measure
∫ Λ

0
dk k5P−1

R (k)W−2(k) is dimensionless. Condition 2 has less

fundamental significance. It follows from the conditionWΛ(Λ) = 0 and the artificial com-

pactification of momentum space. However, as in the usual Sturm–Liouville theory [Morse

& Feshbach, 1953], the precise choice of boundary conditionis immaterial whenΛ → ∞,

so this does not affect the final answer.

To demonstrate the existence of a suitable set ofψn(k), we can adopt the definition

ψn(k) =

√
2

Jν+1(αn
ν )

PR(k)W(k)

Λk2
Jν

(
αn

ν

k

Λ

)
, (3.37)

whereJν(z) is the Bessel function of the first kind and of orderν, which is regular at the

origin, andαn
ν is itsn-th zero. The orderν is arbitrary, except that in order to obey condition 1

above, we must havekν−2PR(k) → 0 ask → 0. This assumes thatW(k) → 1 ask → 0,

as is usual for a volume-normalised window function. Theψn(k) obey the orthonormality

condition

∫ Λ

0

dk
k5

PR(k)W2(k)
ψn(k)ψm(k) = δmn, (3.38)

whereδmn is the Kronecker delta. The completeness relation can be written

δ(k − k0)|k∈[0,Λ] =
k5

0

PR(k0)W2(k0)

∑

n

ψn(k)ψn(k0), (3.39)

where the range ofk is restricted to the compact interval[0,Λ].

Although we have given an explicit form for theψn in order to demonstrate existence,

the argument does not depend in detail on Eq. (3.37). The onlyimportant properties are
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Eqs. (3.38)–(3.39), which follow from condition 4.

3.3.2 The path integral measure

Since any realC0 function R̄ obeying the boundary conditions̄R(k) −→ 0 ask → 0 and

R̄(k) −→ 0 ask → Λ can be expanded in the form (3.34), one can formally integrate over

all suchR̄ by integrating over the coefficients̄Rm
ℓ|n. This prescription has been widely used

for obtaining explicit results from path integral calculations. (For a textbook treatment, see

Kleinert [2004].) In the present case, one should include inthe integral only thosēR(x)

which are real and so correspond to a physical curvature perturbation in the universe. Since

theYℓm are complex, this means that instead of integrating unrestrictedly over thēRm
ℓ|n, the

reality conditions (3.35) must be respected. A simple way toachieve this is to integrate only

over thoseam
ℓ|n or bmℓ|n with m ≥ 0. Them = 0 modes must be treated separately since thea

andb coefficients vanish for odd and evenℓ, respectively.

The integral over real̄R can now be written as

∫

R

[dR̄] =

[
∞∏

ℓ=0

∞∏

m=1

ℓ∏

n=1

µ

∫ ∞

−∞

dam
ℓ|n

∫ ∞

−∞

dbmℓ|n

][
∞∏

r=0
r even

∞∏

s=1

µ̃

∫ ∞

−∞

da0
r|s

∫ ∞

−∞

db0r+1|s

]
,

(3.40)

where the subscriptR on the integral indicates schematically that only realR̄(x) are included.

The constantsµ andµ̃ account for the Jacobian determinant which arises in writing
∫

[dR̄] in

terms of the harmonic coefficients̄Rm
ℓ|n. Their precise form is of no importance in the present

calculation as they will be absorbed by the final normalisation factor.

As noted above, the detailed form of the measure (3.40) is notabsolutely necessary for

our argument. The important point is that eacha or b integral can be carried out indepen-

dently form ≥ 0. For this purpose, it is sufficient that the spectrum of partial waves be

discrete, which follows from the (artificial) compactness of momentum space. However, al-

though it is necessary to adopt some ‘regulator’Λ in order to write the path integral measure

in a concrete form such as (3.40), we expect the answer to be independent of the specific reg-

ulator which is chosen. In the present context, this means that our final expressions should

not depend onΛ, so that the passage to theΛ → ∞ limit becomes trivial.
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3.3.3 The total fluctuation̺ and the spectrumP̺(k)

There are at least two useful ways in which one might attempt to measure the amplitude of

fluctuations inR̄. The first is the ‘total smoothed fluctuation’ at a given pointx = x0. By a

suitable choice of coordinates, we can always arrange thatx0 is the origin, so the parameter

becomes̺ ≡ R̄(0). WhenR̄ is smoothed on scales of order the horizon size this gives a

measure of the fluctuation in each Hubble volume, since distances of less than a horizon size

no longer have any meaning. For example, Shibata & Sasaki [1999] have proposed that̺

defined in this way represents a useful criterion for the formation of PBHs, with formation

occurring whenever̺ exceeds a threshold value̺th of order unity [Green et al., 2004]. This

measure of the fluctuation is non-local in momentum space. Making use of the relation
∫

dΩ(θ, φ) Yℓm(θ, φ) =
√

4πδℓ,0δm,0 for the homogeneous mode of the spherical harmonics,

one can characterise the amplitude as

̺ ≡ R̄(0) =

∫
d3k

(2π)3
R̄(k)eik·x|x=0 =

√
4π

(2π)3

∫
dk k2

∞∑

n=1

a0
0|nψn(k). (3.41)

On the other hand, one might be interested in contributions to the total smoothed fluctua-

tion in each Hubble volume which arise from features in the spectrum near some characteris-

tic scale of wavenumberk. For this reason, we consider a second measure of the fluctuation,

which we call the ‘fluctuation spectrum’, defined by

P̺(k) =
dR̄(0)

d ln k
. (3.42)

(Thus the total smoothed fluctuation can be obtained by integrating its spectrum according

to the usual rule, viz,̺ =
∫
P̺(k) d ln k.) This condition is local ink-space. Differentiating

(3.41), one can characteriseP̺(k) by the functional constraint

P̺(k) =

√
4π

(2π)3

∞∑

n=1

a0
0|nk

3ψn(k). (3.43)

We will calculate the statistics of both the total fluctuation ̺ and the spectrumP̺(k). In each

case, the calculation is easily adapted to other observables which are non-local or local in
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momentum space9. Indeed, both the non-local̺ and the localP̺(k) are members of a large

class of observables, which we can collectively denote byϑ, and which all share nearly-

Gaussian statistics. Specifically, Eqs. (3.41) and (3.43) can be written in a unified manner in

the form

∞∑

n=1

a0
0|nΣn(k) =

(2π)3

√
4π

ϑ(k), (3.44)

where

Σn =





∫ Λ

0
dk k2ψn(k) (ϑ = ̺);

k3ψn(k) (ϑ = P̺(k)).
(3.45)

Note that, in the first case, theΣn are independent ofk. Any characteristic which can be put

in this form, coupling only to the real zero-modesa0
0|n of R̄, will necessarily develop nearly-

Gaussian (i.e., weakly non-Gaussian) statistics. More general choices of characteristic are

possible, which cannot be cast in the form (3.44). For example, one can consider charac-

teristics which depend non-linearly on thea0
0|n. Such characteristics will generally lead to

strongly non-Gaussian probabilities. The Gaussianity of the final PDF depends on the ge-

ometry of the constraint surface in an analogous way to the decoupling of the Fadeev-Popov

ghost fields in gauge field theory [Weinberg, 2005]. These non-Gaussian choices of char-

acteristic can also be handled by generalising our technique, but we do not consider them

here.

3.4 The probability density function for ̺

We first calculate the probability density for the non-localconstraint̺ , given by Eq. (3.41).

The expression is

P(̺) ∝
∫

R

[dR̄] P[R̄]δ

[
∞∑

n=1

a0
0|nΣn − (2π)3

√
4π

̺

]
. (3.46)

9The local and non-local variables defined here should not be confused with the local and equilateral triangulations
which are specifically defined for the bispectrum in Chapter 2.
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To obtain this density, one treats̺ as a collective coordinate parameterising part ofR̄. The

remaining degrees of freedom, which are orthogonal to̺, are denoted bȳR⊥. Therefore the

functional measure[dR̄] can be broken into[dR̄
⊥] andd̺. After integrating the functional

densityP[R̄] [dR̄] overR̄⊥, the quantity which is left is the probability densityP(̺) d̺. In this

case, the integration over the orthogonal degrees of freedom R̄
⊥ is accomplished via theδ-

function, which filters out only those members of the ensemble which satisfy Eq. (3.41). We

emphasise that this is a conventionalδ-function, not aδ-functional. There is no need to take

account of a Fadeev–Popov type factor because the Jacobian associated with the constraint

(3.44) is field-independent, in virtue of the linearity of Eq. (3.41) ina0
0|n.

3.4.1 The Gaussian case

We first give the calculation in the approximation that only the two-point function is retained.

In this approximation, the PDF of̺will turn out to be purely Gaussian, which allows us to

develop our method without the extra technical difficultiesintroduced by including non-

Gaussian effects.

If all correlation functions of order three and higher are set to zero, then we are in a

Gaussian regime and henceP[R̄] ∝ G[R̄]. Using (3.4), one can write

G[R̄] = exp
(
− 1

2

∫
dΩ

∫
k2 dk

k3

(2π)32π2

1

PR(k)W2(k)
(3.47)

×
∑

ℓ1,m1,n1

∑

ℓ2,m2,n2

R̄
m1

ℓ1|n1
R̄

m2†
ℓ2|n2

Yℓ1m1(θ, φ)Y †
ℓ2,m2

(θ, φ)ψn1(k)ψn2(k)
)
.

The harmonicsYℓm andψn integrate out of this expression entirely, using the orthonormality

relation (3.38) and the spherical harmonic completeness relation

∫
dΩYℓ1m1Y

†
ℓ2m2

= δℓ1ℓ2δm1m2 . (3.48)

Moreover, after rewriting thea andb coefficients withm < 0 in terms of them > 0 coeffi-
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cients, we obtain

G[R̄] = exp
(
− 1

2π2(2π)3

∞∑

ℓ=0

ℓ∑

m=1

∞∑

n=1

[
|am

ℓ|n|2 + |bmℓ|n|2
]
− (3.49)

1

4π2(2π)3

∞∑

ℓ=0
ℓ even

∞∑

n=1

[
|a0

ℓ|n|2 + |b0ℓ+1|n|2
] )
.

Theδ-function in (3.46) constrains one of thea0
0|n (e.g. a0

0|0) in terms of̺ and the other

coefficients. It would then be possible to evaluateP(̺) by integrating out theδ-function

immediately. However, this does not turn out to be a convenient procedure. Instead, we

introduce the Fourier representation of theδ-function and rewrite (3.46) as

P(̺) ∝
∫

R

[dR̄]

∫ ∞

−∞

dz G[R̄] exp

(
iz

[
∞∑

n=1

a0
0|nΣn − (2π)3

√
4π

̺

])
, (3.50)

where the functional measure is understood to be Eq. (3.40).The final answer is obtained by

integrating outz together with all of thea andb coefficients. In order to achieve this, it is

necessary to separatea0
0|n, z and̺ from each other by successively completing the square in

a0
0|0 andz. Working witha0

0|0 first, we find

exp

(
− 1

4π2

1

(2π)3

∞∑

n=1

|a0
0|n|2 + iz

∞∑

n=1

a0
0|nΣn

)
(3.51)

=exp

(
− 1

4π2

1

(2π)3

∞∑

n=1

(a0
0|n − 2π2(2π)3izΣn)2 − (2π)3π2z2Σ2

)
,

where we have introduced a functionΣ2 ≡ ∑∞
n=1 Σ2

n. In the final PDF,Σ2 will turn out

to be the variance of̺. From Eq. (3.51), it is clear that making the transformationa0
0|n 7→

a0
0|n + 2π2(2π)3izΣn suffices to separatea0

0|n from z. The measure, Eq. (3.40), is formally

invariant under this transformation. Exactly the same procedure can now be applied toz and

̺, giving

exp

(
−(2π)3π2z2Σ2 − (2π)3

√
4π

i̺z

)
= exp

[
−(2π)3π2Σ2

(
z +

i̺

2π2
√

4πΣ2

)2

− ̺2

2Σ2

]
.

(3.52)

As before, the finite shiftz 7→ z − i̺/2π2
√

4πΣ2 leaves the measure intact and decouplesz
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and̺. Thea, b andz integrals can be done independently, but since they do not involve ̺,

they contribute only an irrelevant normalisation toP(̺). Thus, we obtain Gaussian statistics

for ̺:

P(̺) ∝ exp

(
− ̺2

2Σ2

)
. (3.53)

It remains to evaluate the varianceΣ2. In the present case, we haveΣn =
∫ Λ

0
dk k2ψn(k).

From the completeness relation Eq. (3.39), it follows that

∑

n

k2
0ψn(k0)k

2ψn(k) =
k2PR(k0)W2(k0)

k3
0

δ(k − k0). (3.54)

Σ2 is now obtained by integrating term-by-term under the summation. The result coincides

with the ‘smoothed’ conventional variance (cf. Eq. (3.3)),

Σ2
Λ(kH) =

∫ Λ

0

d ln k W2(k; kH)PR(k). (3.55)

Thus, as expected, Eq. (3.53) reproduces the Gaussian distribution (3.2) which was derived

on the basis of the central limit theorem, with the proviso that parameters (such asΣ2)

describing the distribution of̺ are associated with the smoothed fieldR̄ rather than the mi-

crophysical fieldR. Σ2 is therefore implicitly a function of scale, with the scale-dependence

entering through the window function. Note that it was only necessary to use the complete-

ness relation to obtain this result, which follows from condition 4 in Section 3.3.1.

3.4.2 The non-Gaussian case

The non-Gaussian case is a reasonably straightforward extension of the calculation described

in the preceding section, with the termΥ(0) in Eq. (3.27) now being included. However, some

parts of the calculation become algebraically long, and there are subtleties connected with

the appearance of the bispectrum.

The inclusion ofΥ(0) corrects the pure Gaussian statistics by a quantity proportional to

the three-point function,〈RRR〉, which is given in Eq. (3.5). This correction is written in

terms of the representative spectrum̄PR
2, which prescribes when the slow-roll prefactor,
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given by the amplitude of the spectrum, should be evaluated [Maldacena, 2003]. For modes

which cross the horizon almost simultaneously, with sizek1 ∼ k2 ∼ k3, this prefactor should

beP̄R
2

= PR(k)2, wherek is the common magnitude of theki. In the alternative case, where

onek-mode crosses appreciably before the other two,P̄R
2 should be roughly given by

P̄R
2

= PR(max ki)PR(min ki). (3.56)

Since the difference between this expression and the expression when all thek are of the

same magnitude is very small, it is reasonable to adopt Eq. (3.56) as our definition ofP̄R
2.

We stress that this prescription relies on the conservationof R outside the horizon [Allen

et al., 2006], and it would therefore become more complicated if extended to a multiple-field

scenario.

With this parametrization, the probability measure on the ensemble is obtained by com-

bining (3.4), (3.27), (3.28) and (3.5):

P[R̄] ∝ G[R̄]

(
1 − 1

6

∫
d3k1 d3k2 d3k3

(2π)62π2
δ(△)

P̄R
2A∏

i PR(ki)

R̄(k1)R̄(k2)R̄(k3)

W(k1)W(k2)W(k3)

)
.

(3.57)

This expression should be integrated with the constraint (3.41) and measure (3.40) to obtain

the probabilityP(̺). At first this appears to lead to an undesirable consequence,since the

integral of any odd function of̄R multiplied byG[R̄] must be zero. It may therefore seem that

the non-Gaussian corrections we are trying to obtain will cancel out. This would certainly be

correct if the integral were unconstrained. However, the presence of theδ-function constraint

means that the shifts ofa0
0|n andz which are necessary to decouple the integration variables

give rise to a non-vanishing correction.

The finite shift necessary to decouplea0
0|n andz is not changed by the presence of non-

Gaussian corrections, since it only depends on the argumentof the exponential term. This

is the same in the Gaussian and non-Gaussian cases. After making this shift, which again

leaves the measure invariant, the integration becomes

P(̺) ∝
∫

R

[dR̄]

∫ ∞

−∞

dz G[R̄] exp

(
−(2π)3π2Σ2z2 − (2π)3

√
4π

iz̺

)
(1−J0−J2), (3.58)
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where

J0 =

∫
d3k1 d3k2 d3k3

2π4(2π)3

3(4π)3/2
δ(△)

P̄R
2A∏

i PR(ki)
(3.59)

∑

n1,n2,n3

i3z3Σn1Σn2Σn3

ψn1(k1)ψn2(k2)ψn3(k3)

W(k1)W(k2)W(k3)
,

and

J2 =
[ ∫ d3k1 d3k2 d3k3

6(2π)3
√

4π
δ(△)

P̄R
2A∏

i PR(ki)

∑

n1

∑

ℓ2,m2,n2

∑

ℓ3,m3,n2

(3.60)

× izΣn1

ψn1(k1)

W(k1)
R̄

m2

ℓ2|n2
R̄

m3

ℓ3|n3
Yℓ2m2(θ2, φ2)Yℓ3m3(θ3, φ3)

ψn2(k2)ψn3(k3)

W(k2)W(k3)

]

+ [[1 ⇌ 2]] + [[1 ⇌ 3]].

The symbol[[1 ⇌ 2]] represents the expression in square brackets with the labels 1 and2

exchanged, and similarly for[[1 ⇌ 3]]. The range of them2 andm3 summations is from−ℓ2
to ℓ2 and−ℓ3 to ℓ3, respectively. In addition, the shift ofa0

0|n generates other terms linear

and cubic in thēRm
ℓ|n, but these terms do not contribute toP(̺) and we have omitted them

from (3.58).

After shifting z to decouplez and̺, the integralsJ0 andJ2 develop terms proportional

to z0, z, z2 andz3. Of these, only thez0 andz2 survive the finalz integration. Consequently,

we suppress terms linear and cubic inz from the following expressions. The integralJ0

becomes

J0 =

∫
d3k1 d3k2 d3k3

π2(2π)3

3(4π)2

(
1

16π5

̺3

Σ6
− 3

z2̺

Σ2

)
δ(△)

P̄R
2A∏

i PR(ki)
(3.61)

×
∑

n1,n2,n3

Σn1Σn2Σn3

ψn1(k1)ψn2(k2)ψn3(k3)

W(k1)W(k2)W(k3)
,

whileJ2 simplifies to

J2 =
[ ∫ d3k1 d3k2 d3k3

48π3(2π)3

̺

Σ2

∑

n1

∑

ℓ2,m2,n2

∑

ℓ3,m3,n3

(3.62)

× Σn1

ψn1(k1)

W(k1)
R

m2

ℓ2|n2
R

m3

ℓ3|n3
Yℓ2m2(θ2, φ2)Yℓ3m3(θ3, φ3)

ψn2(k2)ψn3(k3)

W(k2)W(k3)

]

+ [[1 ⇌ 2]] + [[1 ⇌ 3]],
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them summations being over the same range as before. ThusJ0 contains corrections pro-

portional to̺ and̺3, whereasJ2 only contains corrections proportional to̺.

Thea, b andz integrations can now be performed, with the integrand written entirely in

terms of theam
ℓ|n andbmℓ|n with m ≥ 0. There are noa or b integrations inJ0. There are noz

integrations inJ2 but thea andb integrations involved in the productR̄
m2

ℓ2|n2
R̄

m3

ℓ3|n3
fix ℓ2 = ℓ3,

m2 = m3 andn2 = n3. One then uses the spherical harmonic completeness relation,

∞∑

ℓ=0

ℓ∑

m=−ℓ

Yℓm(θ1, φ1)Y
†
ℓm(θ2, φ2) = δ(φ1 − φ2)δ(cos θ1 − cos θ2) (3.63)

and the equivalent relationship for theψ-harmonics, Eq. (3.39), to obtain

0J2 =

[∫
d3k1 d3k2d

3k3

24π

̺

Σ2
δ(△)

P̄R
2A∏

i PR(ki)W(ki)

PR(k2)W2(k2)

k3
2

(3.64)

∑

n

Σnψn(k1)δ(k2 + k3)

]
+ [[1 ⇌ 2]] + [[1 ⇌ 3]].

The terms with 1 exchanged with 2 and 3 generate the same integral as the first term and can

be absorbed into an overall factor of 3.

J0 involves onlyz integrations. It can be written as

J0 =

∫
d3k1 d3k2 d3k3

96π2

(
̺3

Σ6
− 3

̺

Σ4

)
δ(△)

P̄R
2A∏

i PR(ki)W(ki)
(3.65)

×
∑

n1,n2,n3

Σn1Σn2Σn3ψn1(k1)ψn2(k2)ψn3(k3).

To simplify these expressions further, it is necessary to obtain the value of the sum
∑∞

n=1 Σnψn(k).

Reasoning as before from the completeness relation Eq. (3.39), it follows that

∞∑

n=1

Σnψn(k) =
PR(k)W2(k)

k3
. (3.66)

From this, it is straightforward to show that

J0 =

∫
d3k1 d3k2 d3k3

96π2
∏

i k
3
i W−1(ki)

δ(△)P̄R
2A
(
̺3

Σ6
− 3

̺

Σ4

)
, (3.67)
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whereΣ2 is the smoothed variance, Eq. (3.55). On the other handJ2 becomes

J2 =

∫
d3k1 d3k2 d3k3

24π/3

̺

Σ2
δ(△)

P̄R
2

PR(k2)
W(k1)A

δ(k2 + k3)

k3
1k

3
2

. (3.68)

After integrating outk3 and the angular part ofk1 andk2, this gives

J2 = 2π

∫
dk2 k

2
2

∫
dk1 δ(k1)

̺

Σ2
W(k1)

1

k3
2PR(k2)

lim
k1→0

APR(k1)

k3
1

, (3.69)

where we have used the fact thatk1 is constrained to zero by theδ-function to evaluate the

bispectrumA in the ‘squeezed’ limit where one of the momenta goes to zero [Maldacena,

2003; Allen et al., 2006; Creminelli & Zaldarriaga, 2004]. In this limit, min(ki) = k1 and

max(ki) = k2 = k3, so it is possible to expand̄PR
2 unambiguously. Moreover,lim

k1→0
A =

αk3
2, soJ2 = 0 if PR(k)/k3 → 0 ask → 0. This more stringent condition on how strongly

large-scale power is suppressed was anticipated in Section3.3.1. It requires thatPR(k) falls

at smallk faster thank3. If this does not occur, then the integral diverges. (There is a

marginal case whenPR(k)/k3 tends to a finite limit ask approaches zero. We assume that

this is not physically relevant.)

The J2 integral contains aδ-function δ(k2 + k3). It can therefore be interpreted as

counting contributions to the bispectrum which come from a correlation between the modes

k2 andk3, in a background created byk1, which exited the horizon in the asymptotic past.

As we have already argued, modes of this sort are included in the FRW background around

which we perturb to obtain the correlation functions ofR, so we can anticipate that its

contribution should be zero, as the above analysis shows explicitly. In this interpretation, the

conditionPR(k)/k3 → 0 ask → 0 ensures that the perturbation does not destroy the FRW

background. Indeed, fluctuations on very large scales in effect describe transitions from one

FRW world to another via a shift in the zero-momentum modes ofthe background metric.

In this case, there is only one such mode, which is the scale factora(t). These transitions are

rather like changing the vacuum state in a quantum field theory. As a result, fluctuations of a

large volume of the universe between one FRW state and another are strongly suppressed.
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For fluctuations on the Hubble scale, therefore, the PDF should be

P(̺) =
1√
2πΣ

[
1 −

(
̺3

Σ6
− 3

̺

Σ4

)
J
]

exp

(
− ̺2

2Σ2

)
, (3.70)

where we have used the fact that the corrections are odd in̺ and therefore do not contribute

to the overall normalisation ofP(̺). The (dimensionless) coefficientJ is

J =

∫
d3k1 d3k2 d3k3

96π2
∏

i k
3
i W−1(ki)

δ(△)P̄R
2A. (3.71)

This explicit expression is remarkably simple. Although itis preferable for calculation, it

can be recast directly as the integrated bispectrum with respect toW:

J =
1

48(2π)3(2π2)3

∫
d3k1 d3k2 d3k3 〈R(k1)R(k2)R(k3)〉W(k1)W(k2)W(k3).

(3.72)

As a consistency check, we note that the expectation of̺, defined asE(̺) =
∫
̺P(̺) d̺,

is zero. This is certainly necessary, since the universe must contain as many underdense

regions as overdense ones, but it is a non-trivial restriction, since both the̺and̺3 corrections

to P(̺) do not separately average to zero. The particular combination of coefficients in (3.70)

is the unique correction [up toO(̺3), containing only odd powers of̺] which maintains

E(̺) = 0.

Finally, we note that Eqs. (3.70)–(3.71) do not explicitly involve the cut-offΛ, except as

a limit of integration in quantities such asΣ2
Λ andWΛ which possess a well-defined, finite

limit at largeΛ. As a result, there is no obstruction to taking theΛ → ∞ limit to remove the

regulator entirely.

3.4.3 When is perturbation theory valid?

It is known from explicit calculation that the bispectrum isof orderP2
R multiplied by the

quantity,fNL, which is predicted to be small when slow-roll is valid. It istherefore rea-

sonable to suppose that whenever the window functionsW are peaked around some probe

wavenumberk⋆, one has the order of magnitude relationsΣ2 ∼ P⋆ andJ ∼ P2
⋆ , whereP⋆
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represents the spectrum evaluated atk = k⋆. Since the̺ 3 correction dominates for̺>
√

3Σ,

this means that for̺ not too large,̺ ≪ P−3/2
⋆ , the perturbative correction we have calculated

will be small. As̺ increases, so that̺≫ P−3/2
⋆ , perturbation theory breaks down and the

power series in̺ needs resummation. In any case, at such large values of̺, the calculation

described above ought to be supplemented by new physics which can be expected to become

important at high energy densities. The details of these corrections presumably do not mat-

ter too much, because at any finite order, the fast-decaying exponential piece suppresses any

contributions from large values of̺.

At some value of̺ , corrections coming from the trispectrum can be expected tobecome

comparable to those coming from the bispectrum that we have computed. We do not know

preciselly which are the dominant contributions of the correction from the trispectrum. Such

corrections to the non-Gaussian PDF are to be explored in thefuture.

3.5 The probability density function for P̺(k)

The probability density function forP̺(k) can be obtained by a reasonably straightforward

modification of the above argument, taking account of the fact that the constraint, Eq. (3.43)

is now a functional constraint. This means that, when splitting the functional measure[dR̄]

into a product of[dP̺(k)] and the orthogonal degrees of freedom[dR̄
⊥], the result after

integrating out thēR⊥ coordinates gives a functional probability density in[dP̺(k)]. In

particular, with the definition (3.45), theδ-function in Eq. (3.50) is now represented as

∫
[dz] exp

[
i

∫ ∞

0

dk z(k)

(
∞∑

n=1

a0
0|nk

3ψn(k) − (2π)3

√
4π

P̺(k)

)]
. (3.73)

In order to carry out this calculation, we writez(k) formally as

z(k) =

∞∑

n=1

k2

PR(k)W2(k)
znψn(k). (3.74)

The integration measure
∫

[dz] becomes
∏

n µ̆
∫∞

−∞
dzn, where, as before,̆µ is a field-independent

Jacobian representing the change of variables fromz(k) 7→ zn. Its value is not relevant to
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the present calculation. In addition, we introduce a set of coefficientsP̺̃n to describeP̺(k),

P̺(k)

k3
=

∞∑

n=1

P̺̃nψn(k). (3.75)

TheP̺̃n can be calculated using the rulẽP̺n =
∫ Λ

0
dk k2P−1

R (k)W−2(k)P̺(k)ψn(k). Note

that, in order to do so, we have made the implicit assumption thatP̺(k)/k
3 → 0 ask → 0, to

ensure that (3.75) is compatible with the boundary conditions for theψn(k). In other words,

we make the ansatz of a suppression of power in modes with lowk.

With these choices, theδ-function constraint becomes

∏

n

µ̆

∫ ∞

−∞

dzn exp

[
i

∞∑

m=1

(
a0

0|nzn − (2π)3

√
4π

znP̺̃n

)]
. (3.76)

In contrast to the nonlocal case of̺, where a single extra integration overz coupled to̺,

we now have a situation where a countably infinite tower of integrations overzn couple to

the the coefficients̃P̺n. In all other respects, however, the calculation is much thesame as

the nonlocal one, and can be carried out in the same way. The shift of variables necessary to

decouplea0
0|n andzn is

a0
0|n 7→ a0

0|n + i2π2(2π)3zn; (3.77)

and the shift necessary to decouple thezn andP̺̃n is

zn 7→ zn − iP̺̃n

2π2
√

4π
. (3.78)

When only the two-point function is included, we obtain a Gaussian in theP̺̃n,

P[P̺(k)] ∝ exp

(
−1

2

∑

n

P̺̃
2

n

)
. (3.79)

The sum over thẽP̺n can be carried out using Eq. (3.75) and the completeness and orthog-
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onality relations for theψn(k):

∑

n

P̺̃
2

n =

∫
d ln k

P2
̺ (k)

PR(k)W2(k)
. (3.80)

Using this expression, and integrating over allP̺(k) which give rise to a fluctuation of

amplitude̺ , one recovers the Gaussian probability profile Eq. (3.53) with variance given by

Eq. (3.55). This serves as a consistency check for Eqs. (3.79) and (3.53).

When the non-Gaussian correctionΥ(0) is included, one again generates a probability

density of the form

P[P̺(k)] ∝ (1 −K0 −K2) exp

(
−1

2

∑

n

P̺̃
2

n

)
, (3.81)

whereK2 has the same form asJ2, and therefore vanishes for the same reasons, and

K0 =

∫
d3k1 d3k2 d3k3

96π2
∏

i PR(ki)W(ki)
δ(△)P̄R

2 (3.82)

×
(

3
P̺(k1)

k3
1

PR(k2)W2(k2)

k5
2

δ(k2 + k3) −
∏

i

P̺(ki)

k3
i

)
.

The first term contains aδ-function which squeezesk1 into the asymptotic past. It formally

vanishes by virtue of our assumption about the behaviour ofP̺(k) neark = 0, which is

implicit in Eq. (3.75). As a result, the total probability density for the fluctuation spectrum

can be written as

P[P̺(k)] ∝ (1 −K) exp

(
−1

2

∫
d ln k

P̺(k)
2

PR(k)W2(k)

)
, (3.83)

where

K = −
∫

d3k1 d3k2 d3k3

96π2
∏

i PR(ki)W(ki)
δ(△)P̄R

2
∏

i

P̺(ki)

k3
i

. (3.84)

As before, one can show that this expression is consistent with Eqs. (3.70)–(3.71) by integrat-

ing over allP̺(k) which reproduce a total fluctuation of amplitude̺, after dropping another

term which is squeezed into the asymptotic past owing to the presence of aδ-function. This
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is a non-trivial consistency check of Eqs. (3.83)–(3.84).

As in the local case, Eqs. (3.83)–(3.84) are entirely independent ofΛ (except as a limit

of integration), so the regulator can be freely removed by setting Λ = ∞.

3.6 Summary of results

In this chapter we have obtained the connection between then-point correlation functions of

the primordial curvature perturbation, evaluated at some time t, 〈R(k1) · · ·R(kn)〉, and the

PDF of fluctuations in the spatial configuration ofR. We have obtained an explicit expres-

sion for the PDF of a fluctuation of amplitude̺whenR is smoothed over regions of order

the horizon size. This is a probability density in the conventional sense. In addition, we

have obtained an expression for the probability that̺ has a spectrumP̺(k). This is given by
∫

d ln kP̺(k) = ̺, although mappingP̺(k) 7→ ̺ is many-to-one. This is a functional prob-

ability density, and can potentially be used to identify features in the fluctuation spectrum

near some specific wavenumberk ≃ k⋆. Our result is independent of statistical reasoning

based on the central limit theorem and provides a direct route to incorporate non-Gaussian

information from the correlators of the effective quantum field theory of the inflaton into

theories of structure formation.

Both these probabilities are Gaussian in the limit whereR only possesses a two-point

connected correlation function. If there are higher-orderconnected correlation functions,

thenR exhibits deviations from Gaussian statistics, which we have explicitly calculated

using determinations of the inflationary three-point function during an epoch of slow-roll

inflation. Our method can be extended to incorporate corrections from higher connectedn-

point functions to any finite order inn. We have not computed these higher corrections, since

we anticipate that their contribution is subdominant to thethree-point correction (which is

already small).

Our argument is based on a formal decomposition of the spatial configuration of the

curvature perturbation ink-space into spherical harmonics, together with harmonics along

the radialk direction. However, we have emphasised that our results do not depend on the

details of this construction, but require only a minimal setof assumptions or conditions.

The first assumption is that the power spectrumPR(k) goes to zero sufficiently fast on large
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scales, specificallyPR(k)/k3 → 0 ask → 0. (In addition, in the case of the fluctuation

spectrum, we requireP̺(k)/k
3 → 0 ask → 0.) Such a condition is certainly consistent

with our understanding of large-scale structure in the universe and, within the perturbative

approach we are using, we have argued that in fact it describes a self-consistency condition

which prevents perturbative fluctuations from destroying the background FRW spacetime.

Our second assumption is that the spatial configurationR can be smoothed tōR via a window

functionW to obtain a configuration for which̄R → 0 ask → ∞. In this case, it is fair to

comparēR to the primordial power spectrum.

In addition to these fundamental assumptions, which relateto the behaviour of real phys-

ical quantities, a large part of the calculation has relied on an auxiliary technical construc-

tion. This construction is based on an artificial compactification of momentum space, im-

plemented by a hard cutoffΛ. There is an associated boundary condition onR̄ at k = Λ

which discretises the harmonics (partial waves) ink. However, in both the non-local (to-

tal fluctuation̺ ) and local (fluctuation spectrumP̺(k)) cases, the final probability density is

independent of both the details of the partial wave construction andΛ (except as a limit of in-

tegration). It is also independent of the choice of the family of window functionsWΛ(k; kH),

and depends only on the limitlim
Λ→∞

WΛ(k; kH) = W(k; kH). Therefore the regulator can be

removed by taking the limitΛ → ∞. Moreover, the boundary condition atk = Λ becomes ir-

relevant in this limit, which is a familiar result from the theory of Sturm–Liouville operators.

As a consistency check, one can integrateP[P̺(k)] with the condition
∫

d ln kP̺(k) = ̺ in

order to obtainP(̺).

In Chapters 4 and 5 we present applications of this method, and the PDF obtained, to

improve the estimation of the probability of PBH formation.



Chapter 4

Probability of primordial black hole

formation

4.1 Introduction

Primordial Black Holes (PBHs) are a unique tool to probe inhomogeneities in the early

universe. The probability of PBH formation is extensively studied because it is useful in

constraining the amplitude of primordial inhomogeneitiesgenerated by inflation (e.g., Carr

et al. [1994]; Liddle & Green [1998]; Sendouda et al. [2006];Zaballa et al. [2007]; Bugaev

& Klimai [2006]). What makes PBHs a unique tool in cosmology is the range of scales

that can be probed by their formation. The anisotropies probed by the CMB data cover the

range of wavenumbers7 × 10−4 ≤ k/Mpc−1 ≤ 0.021. Equivalently these modes enter the

horizon when the cosmological horizon or Hubble mass is between1019 . M/M⊙ . 1023

while the overdensities forming galactic haloes have associated masses108 . M/M⊙ .

1012. The inhomogeneities forming PBHs are much smaller and theycan span the range of

wavenumbers103 . k/Mpc−1 . 1016 which correspond to10−24 . M/M⊙ . 106, a set of

values that can change with the model of inflation and it’s reheating scale. In any case, this

is the largest range of scales probed by any single observable in the universe.

Another advantage of studying PBH statistics is that, in a radiation background, the grav-

itational collapse of fluctuations takes place shortly after horizon crossing. Consequently,

PBH statistics do not suffer the bias problem or the late-time nonlinear evolution that signif-

113
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icantly modifies the mass and statistics of other bound objects.

The absence of direct detections of PBHs has prompted studies of processes that could be

influenced by the gravitational effects of PBHs or their evaporations. Some of the processes

and observations that limit the abundance of PBHs are the following:

1. If the number of PBHs is large enough, they could constitute a significant fraction of

the dark matter. The current density of PBHs therefore cannot exceed the observed

density of dark matter, i.e.,ΩPBH(M ≥ 1015g) ≤ ΩDM = 0.28 [Komatsu et al., 2008].

2. The Hawking radiation from PBHs [Hawking, 1974] can be thesource of the back-

ground radiation at various wavelengths in our universe [Carr, 1976; Page & Hawking,

1976; Bugaev & Konishchev, 2001] and cosmic rays [Bugaev & Konishchev, 2001].

As mentioned in Chapter 1, PBHs of massMevap = 5 × 1014g should be evaporating

today and observations of the gamma-ray background implyΩPBH(Mevap) . 5× 10−8

[Page & Hawking, 1976; Carr, 1976; MacGibbon & Carr, 1991; Kim et al., 1999].

This is the tightest constraint on the density of PBHs although future observations of

the21 cm radiation might impose a tighter limit [Mack & Wesley, 2008].

3. Black holes with massM < Mevap have already evaporated and the decay products

should not spoil the well understood chemical history of theuniverse. Indeed, limits

on βPBH(M) can be obtained in the mass range109 < M/g < 1012 by looking at the

effects of hadrons and neutrinos emitted by PBHs on the Big Bang nucleosynthesis of

helium and deuterium [Miyama & Sato, 1978; Novikov et al., 1979].

A complete list of numerical bounds can be found in Table I, ascompiled by Green & Liddle

[1997]. All these bounds have been used to probe early universe fluctuations [Carr et al.,

1994; Liddle & Green, 1998; Sendouda et al., 2006; Zaballa etal., 2007; Bugaev & Klimai,

2006]. They can be translated into limits on the root-mean-square amplitude of density or

curvature perturbationsRRMS on scales inaccessible to the CMB.

Here we explore how the bounds toRRMS can be modified in view of the consideration of

a non-Gaussian probability distribution. We use the PDF derived in Chapter 3 and calculate

the mass fraction of PBHs with the aid of the Press-Schechterformalism. The effects of

non-Gaussian perturbations on PBHs have already been studied for specific models [Bullock
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& Primack, 1997; Ivanov, 1998; Pina Avelino, 2005] but a precise quantification of the non-

Gaussian effects is still required. Indeed, it is only now, with a much better understanding of

the effects of higher order perturbations, that we are able to describe the general effects on

PBHs. This discussion is crucial in the light of recent claims that only exotic extensions of

the canonical slow-roll inflationary potentials can produce an appreciable number of PBHs

[Chongchitnan & Efstathiou, 2007; Bugaev & Klimai, 2008] (see however [Peiris & Easther,

2008] where it’s argued that a large number of PBHs can be formed even within the slow-

roll regime). Here we explore whether the consideration of non-Gaussian perturbations in

inflationary models could increase the mass fraction of PBHssignificantly.

Table I Constraints on the mass fractionβPBH(M) of the universe going into PBHs

CONSTRAINT MASSRANGE (g) NATURE

1.25 × 10−8
(

M
1011g

)−1

< 1011 entropy of the universe

4.1 × 10−3
(

M
109g

)1/2

109 − 1011 pair-production at nucleosynthesis

4.9 × 10−7
(

M
1010g

)3/2

1010 − 1011 Deuterium destruction

6.5 × 10−5
(

M
1011g

)7/2

1011 − 1013 Helium-4 spallation

10−18
(

M
1011g

)−1

1011 − 1013 CMB distortion

3.1 × 10−27 3.6 × 1014 − 1015 γ-rays from evaporating PBHs

10−19
(

M
1015g

)1/2

> 1015 ΩPBH(t0) ≤ 0.47

4.2 The non-Gaussian PDF

Let us introduce the elements of the non-Gaussian distribution of probabilities for the cur-

vature perturbation fieldR. We first describe how the Gaussian PDF is constructed in the

context of the linear theory. The amplitude of the curvatureperturbationsR is derived by

solving the perturbed Einstein equations to linear order. Statistically, the mean amplitude is
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written in terms of the two-point correlation function as

〈RG(k1)RG(k2)〉 = (2π)3δ(k1 + k2)|RRMS(k)|2, (4.1)

where, as before,RG(k) are Gaussian perturbations in Fourier space.

The two-point correlator defines the dimensionless power spectrumP(k) through the

relation

〈RG(k1)RG(k2)〉 = (2π)3δ(k1 + k2)
2π2

k3
1

P(k1). (4.2)

As discussed in Chapter 3, the perturbations are smoothed over a given mass scalekM. Here

we choose a truncated Gaussian window function

WM(k) = Θ(kmax − k) exp

(
− k2

2k2
M

)
, (4.3)

wereΘ represents the Heaviside function and the fiducial scalekmax is introduced to avoid

ultraviolet divergences. The smoothing scalekM is defined by

kM = 2πHM = M/2, (4.4)

whereM is the Hubble mass at the time the scalekM enters the horizon.

The variance of the smoothed field is related to the power spectrum by

Σ2
R(M) =

∫
dk

k
W2

M(k)P(k). (4.5)

The power spectrum encodes important information about theunderlying cosmological model.

For example, in the case of perturbations deriving from the quantum fluctuations of a single

inflationary fieldφ with a potentialV dominating the cosmological dynamics, the explicit

expression is [Stewart & Lyth, 1993]

P(k) =
H4

∗

(2π)2φ̇2
∗m

2
P

≈ V 3
∗

(dV/dφ)2
∗m

2
P

, (4.6)

Here an asterisk denotes values at the time when the relevantperturbation mode exits the
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cosmological horizon,k = a∗H∗ = a(t∗)H(t∗).

The tilt of the power spectrum is parametrised with a second observable, the spectral

index, which is defined as

ns − 1 =
d

d ln k
lnP(k). (4.7)

If ns < 1, the root-mean-square amplitudeRRMS increases on larger scales, corresponding to

a red spectrum. Conversely,ns > 1 indicates larger power on smaller scales and corresponds

to a blue spectrum.

The power spectrum and the tilt are derived directly from linear perturbations as reviewed

in Section 2.4 of Chapter 2. In observations of the CMB, it is possible to determine with great

accuracy the numerical values of the power spectrum and its tilt on scales larger than the

horizon at the time of last scattering, that is (k ≤ kls = 1.7 × 10−3Mpc−1). On such scales,

the five-year results of WMAP, combined with the galaxy counts, giveP(kls) = 2.4 × 10−9

andns = 0.95 ± 0.1 [Komatsu et al., 2008].

In linear perturbation theory one makes use of the central limit theorem to construct the

PDF. To first order, the perturbation modes are independent of each other. If we assume

the field of linear perturbations̄R has zero spatial average, then the central limit theorem

indicates that the PDF of̄R is a normal distribution which depends only on the varianceΣ2
R,

PG(R̄) =
1√

2πΣR

exp

(
− R̄2

2Σ2
R(M)

)
. (4.8)

A successful linear theory of structure formation will predict this probability distribution and

match the numerical values at the relevant observational scales. Higher order correlations of

the perturbation fieldR offer an exciting way to distinguish between cosmological models

with common properties at linear order. As discussed in Chapter 1 and Chapter 2, the devi-

ations from Gaussianity are described to lowest order by thenonlinear parameterfNL. This

parameter appears in the expansion (e.g. Lyth & Rodriguez [2005a])

R(k) = RG(k) − 3

5
fNL(RG ⋆RG(k) − 〈R2

G〉), (4.9)
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where a star denotes the convolution of two copies of the field. The interaction of Fourier

modes does not admit the use of the central limit theorem and the non-Gaussian probability

distribution must be constructed by other means.

In Chapter 3 we have provided a method to calculate the correction to the Gaussian PDF,

and to derive a new PDF which includes the linear order contribution from the 3-point func-

tion. Such a correlator can be derived through a second orderexpansion of the perturbations

in the Einstein equations [Bartolo et al., 2004; Rigopoulos& Shellard, 2005; Seery et al.,

2008]. Alternatively, an explicit expression for the three-point correlator can be obtained

from the third-order quantum perturbations to the Einstein-Hilbert action. Pioneering works

using this method come from Maldacena [2003] and Seery & Lidsey [2005b,a]. Here we use

the expression derived by Lyth & Rodriguez [2005a] for the correlator in Fourier space. At

tree-level this reduces to

〈R(k1)R(k2)R(k3)〉 = − (2π)3δ

(
∑

i

ki

)
4π46

5
fNL

[P(k1)P(k2)

k3
1k

3
2

+ {perms}
]
.

(4.10)

Current observations provide numerical bounds forfNL through the three-point correlation

of the temperature fluctuation modes. The WMAP satellite gives the constraints−151 <

f equil.
NL < 253 [Komatsu et al., 2008] for an equilateral triangulation of the bispectrum and

−4 < f local
NL < 80 [Smith et al., 2009] for a local triangulation (the local andequilateral

triangulations have been defined in Sec. 1.3). Both of these values are determined at the95%

confidence level and consider an invariant value at all scales probed by the CMB.

In the following, the basic components of the non-Gaussian PDF derived in Chapter 3

are presented. The amplitude of the perturbation is characterised by its value at the centre of

the configuration

ϑ0 ≡ R̄(x = 0). (4.11)

This specification is necessary to construct an explicit expression of the PDF. The parameter

ϑ0 is particularly useful to discriminate the relevant inhomogeneities forming PBHs [Shibata

& Sasaki, 1999; Green et al., 2004]. The non-Gaussian probability distribution function for
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a perturbation with central amplitudeϑ0, derived in Eq. (3.70), is

PNG(ϑ0) =
1√

2πΣR

[
1 +

(
ϑ3

0

Σ3
R

− 3ϑ0

ΣR

) J
Σ3

R

]
exp

(
− ϑ2

0

2Σ2
R

)
, (4.12)

where the factorJ encodes the non-Gaussian contribution to the PDF:

J =
1

6

∫
dk1 dk2 dk3

(2π)9
WM(k1)WM(k2)WM(k3)〈R(k1)R(k2)R(k3)〉, (4.13)

= −1

5

∫
dk1 dk2 dk3

(4π)2
∏

i W−1
M (ki)

δ

(
∑

i

ki

)
fNL

[P(k1)P(k2)

k1k2

+ {perms}
]
. (4.14)

This last equation is valid at tree level in the expansion of〈RRR〉. It is justified as long

as the loop contributions to the three-point function, generated by the convolution ofR-

modes, are sub-dominant. This requirement is met when the second order contribution toR
in Eq. (4.9) does not exceed the linear contribution. This isrequirement is met if we demand

that

fNL 6 1/
√

P(k). (4.15)

The complete derivation of the PDF in Eq. (4.12) was already provided in Chapter 3.

Here it is sufficient to say that the time-dependence of this probability is eliminated when

the averaging scale iskM ≤ a(t)H(t) providing the growing mode of the perturbationR is

constant on superhorizon scales. This is true in particularfor perturbationsR considered in

the radiation era, when the PBHs considered here are formed (see Chapter 1).

In order to adapt the PDF in Eq. (4.14) to the computation of PBH formation proba-

bilities, this expression is integrated between the limitskmin andkmax defined to cover the

relevant perturbation modes for PBH formation. PBHs are formed long before today, so

in the large-box (small wavenumber) limit of integral (4.14), the present Hubble horizon

kmin = H0 is a reasonable lower limit for PBH formation [Lyth, 1992]. At the other end of

the spectrum, the smallest PBHs have the size of the Hubble horizon at the end of inflation.

A suitable upper limit in this case is the wavenumber associated with the comoving horizon

at the end of inflation,kmax = a(tend)Hend. It is important to mention that, even though the

integral in Eq. (4.14) should include allk-modes, finite limits are imposed to avoid loga-
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rithmic divergences. Due to the window function factorsWM(k), the dominant part of the

integral is independent of the choice of integration limitsas long as they remain finite.

The integral (4.14) is considered only at the limit of equilateral configurations of the

three-point correlator, that is, considering correlations for whichk1 = k2 = k3. This is not

merely a computational simplification. In the integral, each perturbation mode has a filter

factorWM(k) which, upon integration, picks dominant contributions from the smoothing

scalekM common to all perturbation modes. In this caseJ can be written in the suggestive

way:

J = −1

8

∫ kmax

kmin

dk

k
[WM(k)P(k)]2

(
6

5
fNL

)
. (4.16)

With the complete non-Gaussian PDF at hand, it is possible tocharacterise its effects

on the probability of PBH formation. In the next section,J is computed numerically for

inflationary perturbations generated in a single-field slow-roll inflationary epoch. The results

in this case are shown to be consistent with previous works onnon-Gaussian computations of

the probability of PBH formation. In Section 4.4, the non-Gaussian PDF is generated for the

case of constantfNL. This will be used to test the magnitude of the effects of non-Gaussianity

on the probability of PBH formation.

4.3 Non-Gaussian modifications to the probability of PBH formation

The simplest models of structure formation within the inflationary paradigm are those where

a single scalar field drives the accelerated expansion of thespacetime and its quantum fluc-

tuations evolve into the observed structure in subsequent stages of the universe. Although

small in magnitude, the non-Gaussianity of the fluctuationsgenerated in this simple model

provide a qualitative hint to the consequences that non-Gaussianity has for the probability of

PBH formation.

In fact, for single-field inflationary models, the effects ofnon-Gaussianity on PBHs have

been explored in the past but with inconclusive results. Bullock & Primack [1997] studied

the probability of formation of PBHs numerically for non-Gaussian perturbations with a blue

spectrum (ns > 0). The motivation for this was that any inflationary model with a constant
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tilt and a normalisation consistent with the perturbationsat the CMB scale must have a

blue spectrum to produce a significant number of PBHs [Carr etal., 1994; Green & Liddle,

1997]. Their analysis is based on the stochastic generationof perturbations on superhorizon

scales, together with a Langevin equation for computing thePDF. For all the cases tested,

the non-Gaussian PDF is skewed towards small fluctuations. In consequence, the probability

of PBH formation, which integrates the high amplitude tail,is suppressed with respect to the

Gaussian case. An example of the kind of potential studied byBullock & Primack [1997] is

V1(φ) = V0





1 + arctan
(

φ
mP

)
, φ > 0,

1 + (4x1033)
(

φ
mP

)21

, φ < 0.
(4.17)

whereV0 is the amplitude of the potential atφ = 0. This potential features a plateau for

φ < 0. This produces an increase in the power of matter fluctuations corresponding to the

production of PBHs of mass1032gr.

Another way of generating large perturbations in the inflationary scenario is to consider

localised features in the potential dominating the dynamics regardless of the tilt of the spec-

trum. As one can see from Eq. (4.6), an abrupt change in the potential would generate a

spike in the spectrum of perturbations. This is valid as longas we avoid a ’flat’ or ’static’

potential in whichdV/dφ = 0. In such casėφ = 0 and Eq. (4.6) is invalid (for a treatment

of this particular case, also known as ’ultra-slow roll’ inflation, see Kinney [2005]).

The description of a model of inflation with large amplitude in the power spectrum is

incomplete if we do not take on account the effects of nonlinear fluctuations. The effects of

non-Gaussianity for an inflationary model producing features in an otherwise red spectrum

(ns < 0) were explored by Ivanov [1998], using the toy model

V2(φ) =





λφ4

4
for φ < φ1,

A(φ2 − φ) + λ
φ4

2

4
for φ2 > φ > φ1,

λ̃φ4

4
for φ > φ2.

(4.18)

whereλ andλ̃ are coupling constants. Through a stochastic computation of the PDF, Ivanov

found that the non-Gaussian PDF is skewed towards large perturbations. This result goes in

the opposite direction to that of Bullock & Primack [1997].
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To understand this difference and generalise the effects ofnon-Gaussianity, it is conve-

nient to look at the fractional difference of the Gaussian and non-Gaussian PDFs:

PNG − PG

PG
=

[(
ϑ3

0

Σ3
R

− 3
ϑ0

ΣR

) J
Σ3

R

]
. (4.19)

Both Bullock & Primack [1997] and Ivanov [1998] use perturbations generated in a piece-

wise slow-roll inflationary potential for which inflation iscontrolled by keeping the slow-roll

parameters, defined in Eq. (2.93), smaller than one. Here theslow-roll approximation is used

to explore the qualitative effects of Eq. (4.19).

To linear order, there is a straightforward expression for the spectral index in terms of

these parameters [Stewart & Lyth, 1993],

ns − 1 = 2(ηSR − 3ǫSR). (4.20)

On the other hand, by using a first order expansion in slow-roll parameters, Maldacena [2003]

provides an expression for the nonlinear factorfNL in terms of these parameters [Maldacena,

2003]:

fNL =
5

12
(ns + F(k)nt) =

5

6
(ηSR − 3ǫSR + 2F(k)ǫSR) , (4.21)

wherent = 2ǫSR is the scalar-tensor perturbation tilt andF(k) is a number depending on the

triangulation used. For the case of equilateral configurations, whenF = 5/6,

fNL =
5

6

(
ηSR − 4

3
ǫSR

)

eq

. (4.22)

This last expression is used to evaluate the integral (4.16)for J . The non-Gaussian effect on

the PDF is illustrated in Fig. 4.1 for the potentials given byEqs. (4.17) and (4.18) in terms of

the fractional difference (4.19). This difference represents the skewness of the non-Gaussian

PDF. The non-Gaussian contribution encoded in the factorJ is the integral offNL over all

scales relevant for PBH formation. Consequently the sign offNL is what determines the

enhancement or suppression of the probability for large amplitudesϑ0 in the non-Gaussian

PDF. For the two cases illustrated, the scalar tiltns dominates over the tensor tiltnt, so that
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the sign offNL coincides with that ofns. This result is illustrated in Fig. 4.1.
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Figure 4.1:The fractional departure from the Gaussian PDF is plotted for two types of non-Gaussian distribu-
tionsPNG, as defined in Eq. (4.12). For the potential in Eq. (4.17),fNL > 0 and the departure is plotted with
a solid line. For the potential in Eq. (4.18),fNL < 0 and the departure is shown by a dashed line.

4.4 Constraints on non-Gaussian perturbations of PBH range

A standard practise in calculating the PBH mass fraction is to use the Press-Schechter for-

malism [Press & Schechter, 1974]. As described in Chapter 1,this involves integrating the

probability of PBH formation over the relevant matter perturbation amplitudes,δ, measured

at horizon epoch [Carr, 1975] and gives

βPBH( >∼M) = 2

∫ ∞

δth

P(δρ(M)) dδρ(M). (4.23)

For the large ratioδth/Σρ this can be approximated as

βPBH( >∼M) ≈ Σρ(M)

δth
exp

[
− δ2

th

2Σ2
ρ(M)

]
, (4.24)

whereΣ2
δ(M) is the variance corresponding to the mass scaleM andδth is the threshold

amplitude of the perturbation necessary to form a PBH. When the relevant amplitudes of
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a smoothed perturbation are integrated,βPBH represents the mass fraction of PBHs with

M ≥ w3/2MH ≈ w3/2kM/(2π) [Carr, 1975], wherew is the equation of state at the time of

formation. Note that the approximation (4.24) is valid onlyfor a Gaussian PDF.

The integralβPBH establishes a direct relation between the mass fraction of PBHs and the

variance of perturbations. The set of observational constraints on the abundance of PBHs is

listed in Table I and has been used to place a bound to the mean amplitudeδ in a variety of

cosmological models (e.g. Carr et al. [1994]; Green & Liddle[1997]; Clancy et al. [2003];

Sendouda et al. [2006]). The Press-Schechter formula has also been tested against other

estimations of the probability of PBH formation, such as peaks theory [Green et al., 2004].

The threshold valueδth used in Eq. (4.23) has been modified with the improvement of

gravitational collapse studies [Carr, 1975; Niemeyer & Jedamzik, 1998; Shibata & Sasaki,

1999; Hawke & Stewart, 2002]. A more appropriate approach has been noted recently, where

simulations have addressed the problem using curvature fluctuations [Shibata & Sasaki,

1999; Musco et al., 2005; Polnarev & Musco, 2007]. The corresponding threshold value

of the curvature perturbation can be deduced from the relation [Liddle & Lyth, 2000]

δk(t) =
2(1 + w)

5 + 3w

(
k

aH

)2

Rk, (4.25)

which at horizon-crossing during the radiation-dominatedera gives,Rth = 1.01 for δth =

0.3. This value has been also confirmed in the numerical simulations of Shibata & Sasaki

[1999], Green et al. [2004] and Musco et al. [2005]. We will make use of it throughout.

The threshold valueRth indicates the minimum amplitude of an inhomogeneity required

to form a PBH. Consequently, the probability of PBH formation is best described by a non-

linear treatment and this is the major motivation for our analysis. In the following we adapt

the Press-Schechter formalism to derive the non-Gaussian abundance of PBHs. The use of

the Press-Schechter integral for distributions of the curvature perturbation is not new. Za-

balla et al. [2007] use it to estimate the PBH formation from the curvature perturbations

which never exit the cosmological horizon. We apply the integral formula in Eq. (4.23)

to the non-Gaussian probability distribution (4.12). The result of the integral is the sum of
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incomplete Gamma functionsΓinc and an exponential:

β(M) =

∫ ∞

ϑth

PNG(ϑ0)dϑ0 =
1√
4π

Γinc

(
1/2,

ϑ2
th

2Σ2
R(M)

)

− 1√
2π

J
Σ3

R(M)

[
2 Γinc

(
2,

ϑ2
th

2Σ2
R(M)

)
− 3 exp

(
− ϑ2

th

2Σ2
R(M)

)]
.

(4.26)

The Taylor series expansion of these functions around the limit ΣR/ϑ0 = 0 gives

β(M) ≈ ΣR(M)

ϑth

√
2π

exp

[
−1

2

ϑ2
th

Σ2
R(M)

]

×
{

1 − 2

(
ΣR

ϑth

)2

+
J
Σ3

R

[(
ΣR

ϑth

)−2

− 1

]}
.

(4.27)

For the mass fraction shown in Eq. (4.27), the observationallimits of Table I could in

principle constrain the values of the varianceΣ2
R and offNL. However, when the mean

amplitude of perturbations,ΣR, is normalised to the value at CMB scales, the obtained

limits for fNL are of order104. This is inconsistent with the analysis presented here because

in such régime higher order contributions are expected to dominate non-Gaussianity. In fact,

the expansion in Eq. (4.9) shows that when

|fNL| ≤
5

3

1

RRMS

=
5

3ΣR

, (4.28)

the quadratic term of Eq. (4.9) dominates over the linear term, and in the computation of the

three-point function Eq. (4.10), the loop contributions tothe correlators become dominant.

For the values ofRRMS required to form a significant number of PBHs, the limit on|fNL|
is of order10. The computation of non-Gaussianities in this case goes beyond the scope of

the present work.( For discussions on the loop corrections to the correlation functions, see

Weinberg [2005], Zaballa et al. [2006], Byrnes et al. [2007]and Seery [2008].)

It is interesting to look at the values allowed forfNL from WMAP and test the modifi-

cations that large non-Gaussianities bring to the amplitude ofR at the PBH scale. Fig. 4.2

presents the set of bounds on the initial mass fraction of PBHs listed in Table I. The corre-

sponding limits to the variance of the curvatureΣR are shown in Fig. 4.3 for the Gaussian

and non-Gaussian cases. Independently of the model of cosmological perturbations adopted,
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one can use the observational limits onfNL to modify the bounds forΣR on small wave-

lengths. For the non-Gaussian case we choose to plot the central value of the present limits

to f equil.
NL = 51 [Komatsu et al., 2008] and the limit valuefNL = 5/(3ΣR) ≈ −66 men-

tioned in Eq. (4.28). The tightest constraints onΣR come from perturbations of initial mass

M ≈ 1015g. With the non-Gaussian modification the limit islog (ΣR) ≤ −1.2, compared to

the Gaussian caselog (ΣR) ≤ −1.15. As shown in Fig. 4.3, the modification toΣR cannot

be much larger if instead the limit value of Eq. (4.28) is used.

0 10 20 30

−20

−10

0

lo
g

(β
P

B
H
)

log
(

M
1g

)

Figure 4.2:The constraints onβPBH in Table I are plotted together with the smallest value considered for each
mass.

4.5 Closing remarks

The present chapter shows, to lowest order in the contribution of the bispectrum, the ef-

fects of non-Gaussian perturbations on PBHs formation. Using curvature perturbations with

a non-vanishing three-point correlation, an explicit formof the non-Gaussian PDF is pre-

sented, which features a direct contribution from the non-Gaussian parameterfNL. Further-

more, it is shown how the sign of this parameter determines the enhancement or suppression

of probability for large-amplitude perturbations. Using the simple slow-roll expression for

fNL in the context of single field inflation, a previous discrepancy in the literature regarding
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Figure 4.3:A subset of the constraints onΣR from overproduction of PBHs is plotted for a Gaussian and non-
Gaussian correspondence betweenβ andΣR, Eqs. (4.24) and (4.27) respectively. The dashed line assumes a
constantfNL = 51 and the dotted line a valuefNL = −1/Σ2

R
≈ −66. The solid line represents the constraints

for in the Gaussian case
.

effects of non-Gaussianity on the abundance of PBHs has beensolved.

As a second application of the non-Gaussian PDF presented here is to use the Press-

Schechter formalism of structure formation to determine the non-Gaussian effects on PBH

abundance. In section 4.4 it is shown how the PBH constraintson the amplitude of per-

turbations can be modified when a non-Gaussian distributionis considered. As an exam-

ple, it is shown that the limitΣR(M = 1015g) < 6.3 × 10−2 is reached for the marginal

valuefNL = −66.35 modifying the known bounds forR at the end of inflation [Carr et al.,

1994]. This limit is, however, much larger than the observedamplitude at CMB scales,

whereΣR ≈ 4.8× 10−5. The order of magnitude gap between the mean amplitude observed

in cosmological scales and that required for significant PBHformation remains almost intact

and, as a consequence, non-Gaussian perturbations do not modify significantly the standard

picture of formation of PBHs.



Chapter 5

Curvature profiles of large overdensities

5.1 Introduction

As mentioned in Chapter 1, previous studies of PBH formationtake the amplitude of the mat-

ter density or curvature inhomogeneities as the only parameter determining the probability

density of PBH formation. Also the mass fraction in the form of PBHs is usually calculated

with the aid of the Press-Schechter formula. Here we argue that this rough estimation is

incomplete and that a different approach should be taken to evaluate the threshold valueδth,

or the equivalent curvature inhomogeneityRth, in the investigations of PBH formation.

From the first numerical simulations of PBH formation, it wasevident that the process

of PBH formation depends on the pressure gradients in the collapsing configuration as well

as their amplitude. Nadezhin et al. [1978] found that such pressure gradients can modify

the value ofδth significantly. This has been confirmed in more recent works, which describe

the configuration in terms of the curvature inhomogeneityR(r) (note that in this chapter

we work with spherical coordinates{r} and not any set of coordinates{x}). As we will

show below, the Einstein equations relate the curvature profiles directly with the internal

pressure gradients. This is the main motivation for considering the probability of curvature

configurations.

We extend here the Press-Schechter formalism to consider a two-parameter probability.

We include here for the first time a parameter related to the slope of curvature profile at the

edge of the configuration. We start by calculating the probability of finding a spherically

symmetric curvature configuration with a given radial profile. We can justify the sphericity

128



5.2: Probability of profile parameters of cosmological perturbations 129

assumption using the argument of Zabotin et al. [1987]: PBH formation takes place only

from nearly spherical configurations. In our analysis, we describe the radial profiles by

introducing two parameters: the central amplitude of the curvature inhomogeneityR(r = 0)

and the central second radial derivativeR′′(r = 0). The introduction of these parameters

is a first step towards the full parametrisation of profiles interms of all even derivatives at

the centre of configurations. (The odd derivatives are all zero due to the assumed spherical

symmetry.)

The method presented to derive a multiple-parameter probability enables us to compute

the probability of any number of parameters describing the curvature profile. However, only

families of curvature profiles described by two parameters are currently available, so we limit

ourselves to a two-parametric description. More accurate future codes will simulate PBHs

formation with a larger number of parameters. The number of parameters required for the

complete description of these profiles and their probability distribution will be the same10.

The central amplitudeR(0) has been used in previous calculations of gravitational col-

lapse and the probability of PBH formation, as illustrated in the previous chapter. Here we

compute the probability to find a given configuration as a function of the two parameters

[R(0),R′′(0)]. We subsequently illustrate how this two-parametric probability is used to

correct the probability of PBH formation. For this purpose we use the results of the latest

numerical simulation of PBH formation Polnarev & Musco [2007]. Such an exercise shows

how the corrections toβPBH are potentially significant and they will be considered in more

detail in future studies of PBH formation.

5.2 Probability of profile parameters of cosmological perturbations

Formally, the high amplitude inhomogeneous profiles describing configurations which col-

lapse into PBHs are not perturbations. However, such regions are included in the statistics of

random primordial curvature perturbations in the sense that the statistics of random fields can

be used to estimate the probability of finding high-amplitude inhomogeneities. To describe

such inhomogeneities, we consider the nonlinear curvaturefield R(t, r), as first described

10In the context of dark matter haloes, the profile of the initial inhomogeneity is effectively irrelevant because galaxies
are formed from pressureless configurations. The density profiles and shapes of virialised haloes result from the evolution
of the initial high peaks and are not linked to the profile of initial configurations that we investigate here
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by Salopek & Bond [1990]. The nonlinear curvatureR(t, r), defined in terms of the met-

ric in the following equation, represents the relative expansion of a given local patch of the

universe with respect to its neighboring patches. It is described by the metric

ds2 = −N2(t, r) dt2 + a2(t)e2R(t,r)γ̃ij(dr
i +N i(t, r) dt)(drj +N j(t, r) dt), (5.1)

wherea(t) and γ̃ are the usual scale factor and the intrinsic metric of the spatial hypersur-

faces. The gauge-dependent functionsN andN i are the lapse function and shift vector,

respectively. These variables are determined by algebraicconstraint equations in terms of

the matter densityρ, pressurep and metric variablesR, a andγ̃ij.

Here we consider the nonlinear configurations which correspond to largeR inside some

restricted volume and zeroR outside, where the expansion of the universe follows the back-

ground FRW solution. There are several advantages of working with metric (5.1). First, as

shown in Chapter 2,R is defined as a gauge-invariant combination of the metric andmatter

variables [Wands et al., 2000]. Second, with the aid of the gradient expansion of the metric

quantities,R(r, t) appears in the Einstein equations in a non-perturbative way[Starobinsky,

1986; Salopek & Bond, 1990; Deruelle & Langlois, 1995; Rigopoulos & Shellard, 2005].

Third,R does not depend on time for scales larger than the cosmological horizon, as proved

by Lyth et al. [2005] and Langlois & Vernizzi [2005a]. In the present chapter we work in the

superhorizon régime, where the fieldR(r) can be assumed to be time-independent.

The primordial field of random perturbations we consider presents a Gaussian probability

distribution. The expressions for the PDF of the parameterR(0) in Chapter 3 are recovered

here. For convenience we use a different notation, replacing ̺ in Section 3.3.1 with the

amplitudeϑ0 ≡ R(0) and the variance withΣ(2) ≡ ΣR. The PDF for the central amplitude

ϑ is identical to that in Eq.(3.53):

P[ϑ0] =
1√

2πΣ(2)

exp

[
− ϑ2

0

2Σ2
(2)

]
. (5.2)

We now derive the density of the probability for the central second derivative to have



5.2: Probability of profile parameters of cosmological perturbations 131

amplitude

ϑ2 ≡ R′′(0) =

[
∂2

∂r2
R(r)

]

r=0

. (5.3)

In order to compute the probability of a specific property ofR(r), we integrate the original

PDF, which encodes all the information about the field, weighted with the Diracδ-functions

of relevant arguments. Hereafter we assumeR(0) andR′′(0) as statistically independent

parameters. The validity of this assumption is not exploredhere but is left for future inves-

tigations. Following this assumption, the probability of havingR′′(0) = ϑ2 is given by the

integral

P(ϑ2) =

∫
[dR]P(R) δ [R′′(0) − ϑ2] , (5.4)

where[dR] indicates integration over all possible configurationsR(k) in Fourier space. In

order to compute this integral, we expand the smoothed curvature perturbation profilēR(r)

in terms of spherical harmonic functions:

R̄(r) =

∫
d3k

(2π)3
R̄(k) exp (ik · r), (5.5)

with

R̄(k) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

∞∑

n=1

Rm
ℓ|n Yℓm(θ, φ)ψn(k). (5.6)

HereYℓm are the usual spherical harmonics on the unit 2-sphere andψn(k) are a complete

and orthogonal set of functions in an arbitrary finite interval 0 < k < Λ. (The explicit

expression forψ(k) and the value ofΛ are given by Eq. (3.37) of Chapter 3.) The coefficients

in the expansion are generically complex, so we separate thereal and imaginary parts by

introducingRm
ℓ|n = am

ℓ|n + ibmℓ|n. The reality condition for the curvature field,R∗(k) =

R(−k), is met when

a−m
ℓ|n = (−1)ℓ+mam

ℓ|n, (5.7)

b−m
ℓ|n = (−1)ℓ+m+1bmℓ|n. (5.8)
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In particular, them = 0 modes requirea0
ℓ|n andb0ℓ|n to be zero for odd and evenℓ, respec-

tively. To integrate (5.4) we use the Fourier expansion (5.5) so that

R′′(0) =

∫
d3k

(2π)3
R(k)(ik)2 exp (ik · r)|r=0. (5.9)

Furthermore, we use (5.6) and the orthogonality of the spherical harmonics

∫
Y m

ℓ (θ, φ) sin θ dθdφ =
√

4π δm0 δℓ0, (5.10)

to obtain

R′′(0) = −
∞∑

n=1

(
a0

0|n +

√
4

5
a0

2|n

)∫
dk√
π(2π)2

ψn(k)k4 ≡ ϑ2. (5.11)

To compute the probability (5.4) we proceed by integrating over all configurations in

Fourier space. With the aid of the expansion (5.6) we can express the measure of the integral

in terms of the expansion coefficients satisfying the reality conditions (5.7) and (5.8), as

shown in Eq. (3.34) this is

∫
Ψ[R] [dR] =

[
∞∏

ℓ=0

ℓ∏

m=1

∞∏

n=1

µ

∫ ∞

−∞

Ψ[R] dam
ℓ|n

∫ ∞

−∞

Ψ[R] dbmℓ|n

]
×

[
∞∏

p=0

∞∏

q=1

µ̃

∫ ∞

−∞

Ψ[R] da0
2p|q

∫ ∞

−∞

Ψ[R] db02p+1|q

]
,

(5.12)

for any given functionalΨ of R(k). The constantsµ andµ̃ are weight factors to be included

in the final normalisation of the joint probability.

The Gaussian PDF we are restricted to is written in terms of the spherical harmonic

coefficients as (cf. Eq. (3.49))

P[R] = exp

(
− 1

2π2(2π)3

∞∑

ℓ=0

ℓ∑

m=0

∞∑

n=1

[
|am

ℓ|n|2 + |bmℓ|n|2
]

− 1

4π2(2π)3

∞∑

p=0

∞∑

q=1

[
|a0

2p|q|2 + |b02p+1|q|2
]
)
.

(5.13)

In order to obtain the probability in Eq. (5.4), we use the standard representation of the Dirac
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δ-function

δ(x) =

∫ ∞

−∞

dz exp[iz x]. (5.14)

This allows us to write theδ-function in Eq. (5.4) in terms of the spherical harmonic coeffi-

cients as

δ [R′′(0) − ϑ2 ] =

∫
dz exp

[
iz

(
∞∑

n=1

(
a0

0|n +

√
4

5
a0

2|n

)∫
dk√
π(2π)2

ψn(k)k4 + ϑ2

)]
.

(5.15)

We now have all the elements required to integrate probability density of findingR′′(0) with

amplitudeϑ2. Substituting expressions (5.13) and (5.15) into Eq. (5.4), we perform the

functional integral with the aid of the decomposition (5.12). For this case we have

P(ϑ2) ∝
∫

[dR]

∫
dz P[R] exp

[
iz

(
3(2π)3ϑ2√

4π
+
∑

n

Σ(4)
n

(√
4

5
a0

2|n + a0
0|n

))]
,

(5.16)

where we have simplified the expression by defining the factor

Σ(4)
n =

∫
dk k4ψn(k). (5.17)

In the process of integration, we discard all the Gaussian integrals because they contribute to

the probability only with a multiplicative constant which will be included in the final normal-

isation. On the other hand, the Diracδ-function contributes to the integral with exponential

functions ofa0
0|n anda0

2|n. The integrals of these parameters are computed by completing

squares of the exponential arguments. First, we collect theterms of the integral with factors

of a0
0|n, that is,

exp

[
− 1

4π2(2π)3

∞∑

n=1

|a0
0|n| + iz

∞∑

n=1

|a0
0|n|Σ(4)

n

]
. (5.18)
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Completing the squares, this last expression becomes

exp

[
− 1

4π2(2π)3

∞∑

n=1

(
|a0

0|n| − i(2π)32π2zΣ(4)
n

)2 − (2π)3π2z2Σ2
(4)

]
. (5.19)

In the same way we can complete the squares for the expansion factorsa0
2|n:

exp

[
− 1

4π2(2π)3

∞∑

n=1

|a0
2|n| + iz

4

5

∞∑

n=1

|a0
2|n|Σ(4)

n

]
= (5.20)

exp

[
− 1

4π2(2π)3

∞∑

n=1

(
|a0

0|n| − i(2π)34π2

√
5
zΣ(4)

n

)2

− (2π)3π24

5
z2Σ2

(4)

]
.

Finally we can complete the squares for the terms containingthe variablez, these being

independent ofa0
0|n anda0

2|n:

exp

[
−(2π)3π2

(
9

5

)
z2Σ2

(4) + i
3(2π)3

√
4π

ϑ2z

]
= (5.21)

exp


−(2π)3π2

(
9

5

)
Σ2

(4)

(
z − i

5

12
√
π5

ϑ2

Σ2
(4)

)2

− 5

2

ϑ2

Σ2
(4)


 ,

where for simplification we have written

Σ2
(4) ≡

∞∑

n=1

(
Σ(4)

n

)2
. (5.22)

So by making the change of variables

a0
0|n 7→ a0

0|n + i2π2(2π)3Σ(4)
n z,

a0
2|n 7→ a0

2|n + i
4π2

√
5

(2π)3Σ(4)
n z

z 7→ z + i
5

12
√
π5

ϑ2

Σ2
(4)

,

we can perform all the integrals and eliminate the Gaussian ones which contribute only up to

an overall numerical factor subsequently absorbed by normalisation. The remaining factor

expresses the probability of finding a perturbationR with a central second derivative of value
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ϑ2:

P [R′′(r = 0) = ϑ2] ∝ exp

(
− 5ϑ2

2

2Σ2
(4)

)
. (5.23)

The quantityΣ2
(4) represents the ‘variance’ of the PDF forR′′(0). To evaluate this variance

we integrate Eq. (5.22) and use the property (3.38) in Chapter 3 to integrate the complete

sum and obtain

Σ2
(4) =

∫ Λ

0

d ln kW2(k, kH)P(k) k4. (5.24)

The final probability density for the pair of parametersR(0) andR′′(0) is the product of

Eqs. (5.2) and (5.23)

P (R(0) = ϑ0, R′′(0) = ϑ2 ) = A exp
(
− ϑ2

0

2Σ2
(2)

− 5ϑ2
2

2Σ2
(4)

)
. (5.25)

HereΣ(2) andΣ(4) are the dispersion of the amplitude and the second derivative respectively,

andA is a normalisation factor obtained from the condition that the integral of the joint PDF

over all possible values of the two independent parameters equals unity. The final normalised

joint probability density is

P(ϑ0, ϑ2) =
4
√

12

2π
Σ−1

(2)Σ
−1
(4) exp

(
− ϑ2

0

2Σ2
(2)

− 5ϑ2
2

2Σ2
(4)

)
. (5.26)

It is worth mentioning that the standard PDF containing onlyamplitudesϑ0, Eq. (5.2), is

recovered from Eq. (5.25) when we set all gradients in the Hubble scale equal to zero, i.e.

∇R|r=rH
= 0. The Fourier transform of this expression demands|kH| → ∞. Using this in

Eq. (5.24) means thatΣ(4) → ∞ and the argumentϑ2 goes to zero in the probability density

of Eqs. (5.25) and (5.26).

According to the Press-Schechter formalism [Press & Schechter, 1974], the PDF is integrated

over all perturbations which collapse to form the astrophysical objects under consideration.

In this way we calculate the mass fraction of the universe in the form of such objects. To

apply this formalism and calculate the probability of PBH formation and integrate the PDF

(5.26), we require the range of valuesR(0) andR′′(0) which correspond to PBH forma-
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tion. In the next section we will obtain this range with the help of the results of numerical

computations presented by Polnarev & Musco [2007].

5.3 The link between perturbation parameters and the curvature pro-

files used in numerical calculations

5.3.1 Initial conditions

As demonstrated by the first numerical simulations of PBH formation [Nadezhin et al.,

1978], whether or not an initial configuration with given curvature profile leads to PBH

formation predominantly depends on two factors:

• The ratio of the size of the initial configurationr0 to the size of the extrapolated closed

universerk = a(t)
∫ 1

0
dr/

√
1 − r2, which is a measure of the strength of gravitational field

within the configuration.

• The smoothness of the transition from the region of high curvature to the spatially flat

FRW universe, which is characterised by the width of the transition region at the edge of

the initial configuration and is inversely proportional to the pressure gradients there, strong

pressure gradients inhibiting PBH formation (This is an argument beyond the Jeans’ stability

criterion and applies to configurations beyond the linear regime).

The numerical computations presented in Polnarev & Musco [2007] (hereafter PM) give

the time evolution of the configurations with initial curvature profiles accounting for the

above-mentioned factors. In that paper the initial conditions are obtained with the help of a

quasi-homogeneous asymptotic solution valid in the limitt → 0. This solution to the Ein-

stein equations was first introduced by Lifshitz & Khalatnikov [1963]; see also Zeldovich

& Novikov [1983] and Landau & Lifshitz [1975]. Following Nadezhin et al. [1978], PM

used this asymptotic solution to set self-consistent initial conditions for curvature inhomo-

geneities, the initial curvature inhomogeneity being described by the spherically symmetric

curvature profileK(r̂). This sets the initial conditions for the process of black hole formation.

Asymptotically, the metric can be presented in terms ofK(r̂) as

ds2 = −dη̂2 + s2(η̂)

[
1

1 − K(r̂)r̂2
dr̂2 + r̂2

(
dθ2 + sin2 θ dφ2

)]
, (5.27)
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whereη is the conformal time,s(η) is the scale factor for this metric. As we will show in the

paragraph after Eq. (5.42), this is identical to the usual scale factora(η) of a flat Friedmann

universe, only here we use a different notation to distinguish between metrics. Also, we

write r̂ for the radial coordinate to distinguish it from the coordinate of the metric (5.1).

An advantage of working with this metric is that it contains the curvature profileK(r̂)

explicitly. We choose a set of coordinates with the origin atthe centre of spherical symmetry

and fixK(0) = 1. The condition thatK(r̂) is a local inhomogeneity requires thatK(r̂) = 0 for

radii r̂ larger than the scalêr0 where the metric matches the homogeneous FRW background.

In PM the profilesK(r̂) are presented in two forms, one of which is characterised by two

independent parametersα and∆ as

K(r̂) =

[
1 + α

r̂2

2∆2

]
exp

(
− r̂2

2∆2

)
. (5.28)

The parameter∆ describes the width of the Gaussian profile, whileα parametrises linear

deviations from this profile. The results of the numerical simulations in PM indicate that

PBHs are formed in the region of the parameter space[α,∆] shown in Fig. 5.1a.

5.3.2 Physical criteria for the identification of parameters

We proceed to find the correspondence between the two sets of parameters,[R(0),R′′(0)]

and[α,∆], both of which describe the initial curvature profiles. First let us note that the sets

of coordinates{t, r} and{η̂, r̂} are those of the metrics (5.1) and (5.27), respectively. Thus

we require a relationship between these set of coordinates too. Assuming that the size of the

configuration,r0, is much larger than the Hubble radius,rH = H−1, we can use the gradient

expansion of the functions in metrics (5.1) and (5.27). In this case, the time derivative of any

functionf(t, r) is of orderf/t ∼ Hf and significantly exceeds the spatial gradient which is

of orderf/r0. Hence the small parameter in the gradient expansion is

ε ≡ rH

r0
=

k

aH
, (5.29)

wherek is the wave-number corresponding to the scale of the configuration.

For the metric (5.1), using the coordinate freedom to setN i = 0 and ignoring any tensor
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Figure 5.1:(a) The top plot shows the parameter values for initial configurations which collapse to form black
holes according to Polnarev & Musco [2007]. (b) In the[R(0),R′′(0)] plane three regions of integration are
considered to compute the probability of PBH formation. Area I is the region enclosed by the solid curves
and corresponds to the area denoted by BH in Fig. 1a. Area II isthe region to the right of the grey dotted
line, representing the area of integration considered in previous studies where only the amplitude is taken
into account. Area III is the region above the solid line and between the dashed lines. This contains those
configurations which have a smooth profile in the centre and present the amplitudesR(0) that are found to
form PBHs in [Polnarev & Musco, 2007]. The complete description of the physical characteristics of profiles
with values in this region is given in Section 5.3.

contributions (i.e.̃γij = δij), the expansion of the Einstein equationG 0
0 = 8πGT 0

0 to order

ε2 can be written as,11

1

2

(
6ȧ2

a2
+(3)

R − 4ȧ2

a2
(N − 1)

)
+ O(ε4) = 8πG (ρ0 + δρ) + O(ε4), (5.30)

where(3)
R is the spatial curvature, or the Ricci scalar for the spatialmetricgij. To zero order

11For the complete second order expansion of the metric quantities, see Lyth et al. [2005] and Langlois & Vernizzi
[2005b].
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in ε, we have

3ȧ2

a2
= 8πGρ0, (5.31)

which corresponds to the homogeneous part of Eq. (5.30). Thetime-slicing can be taken to

be the uniform expansion gauge in which

N − 1 = −1 + 3w

1 + w
δρ + O(ε4), (5.32)

wherew is the equation of state [Shibata & Asada, 1995; Shibata & Sasaki, 1999; Tanaka &

Sasaki, 2007]. Using (5.30),(5.31) and (5.32), we find the equivalence between the spatial

curvature and the matter overdensity:

(3)
R =

8πG

3
δρ

(
7 + 3w

3 + 3w

)
. (5.33)

In consequence, the gradients if this quantity relates to the pressure gradient:

∇(3)
R =

8πG

3

7 + 3w

3(w + 1)
∇ (δρ) =

8πG

3

(
7 + 3w

3w (w + 1)

)
∇p, (5.34)

where∇ = (grr)
−1/2d/dr. Hence, subject to the two physical conditions at the edge ofthe

configuration listed at the beginning of Section 5.3, we relate the profilesR(r) andK(r̂) by

equating the spatial curvature and its gradient for the metrics (5.1) and (5.27). That is,

(3)
R = −

[
2R′′(r) + (R′(r))

2
]
exp(−2R(r)) = 3K(r̂) + r̂K′(r̂), (5.35)

and

1√
grr

d

dr

(
(3)

R
)

=

− [R′R′′ + R′′′] exp(−3R(r)) =

[
1 − Kr̂2

r̂2

]1/2(
2r̂K′(r̂) +

1

2
r̂2

K
′′(r̂)

)
. (5.36)

By definition, the 3-curvature must vanish at the edge of the configuration, so Eq. (5.35)
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implies

2R′′(r0) + (R′(r0))
2

= 0 (5.37)

and

3K(r̂0) + r̂0K
′(r̂0) = 0. (5.38)

Thus the gradient relation (5.36) can be written as

[
R′(r0)

3 − 2R′′′(r0)
]
exp(−3R(r0)) =

[
1 − Kr̂2

0

r̂2
0

]1/2

[−12K(r̂0) + r̂2
0K

′′(r̂0)]. (5.39)

This establishes a relation betweenR(r) andK(r̂) at the edge pointsr0 andr̂0. The config-

urationK(r̂) is parametrised by[α,∆], as shown in Eq. (5.28). As follows from condition

(5.38), the radiusr0 can be written in terms of those parameters as

r̂2
0 =

(
5α− 2 +

√
(5α− 2)2 − 24α

2α

)
∆2. (5.40)

Then we use two more equations obtained from the conformal transformation of coordinates

at zero order inε:

a2(τ)e2R(r) dr2 = s2(η)
dr̂2

1 − K(r̂)r̂2
(5.41)

and

a2(τ) e2R(r) r2 dΩ2 = s2(η) r̂2 dΩ2. (5.42)

Asymptotically, in the limit[r, r̂] → ∞, the homogeneous Einstein equations are identical in

both metrics, therefore, the homogeneous scale factorsa(τ) ands(η) can be identified. Thus

we find a relation between the radial coordinates,

eR(r) r = r̂, (5.43)
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and an integral relation between the configurations,

∫ r

0

eR(x) dx =

∫ r̂

0

dx√
1 − K(x)x2

. (5.44)

One can verify that Eqs. (5.35), (5.36) and (5.44) are not independent. For example, Eq.

(5.36) follows from (5.35) and (5.44).

In the previous section we have developed a method to accountfor the probability of any

set of parameters describing the curvature profile. For simplicity we have chosen the pair

[R(0),R′′(0)]. We now illustrate how to relate[R(0),R′′(0)] and[α,∆] by considering the

parabolic profile

R(r) = R(0) +
1

2
R′′(0) r2. (5.45)

This parametrisation meets the minimal requirement of covering the[α,∆] parameter space

in Fig. 5.1 (a).

Eqs. (5.37), (5.44) and (5.43) are now reduced to the following system of algebraic equa-

tions:

r2
0 = − 2

R′′(0)
, (5.46)

R(0) = 2 log

(
2

erf(1)
[π exp(1)r̂0]

−1/2

∫ r̂0

0

dx

(1 − K(x)x2)1/2

)
, (5.47)

R′′(0) = −2
exp(2R(0) − 2)

r̂2
0

, (5.48)

wherer̂0 is given in terms of[α,∆] by Eq. (5.40).

5.3.3 Parameter values leading to PBH formation

The numerical computations of PM, which used the parametrisation (5.28), show that PBHs

are formed in the [α, ∆] region shown in Fig. 5.1(a). Eqs. (5.47) and (5.48) map thisregion

to Area I in the [R(0), R′′(0)] plane shown in Fig. 5.1b. The Jacobian of the transformation

corresponding to this mapping is non-vanishing, which guarantees a one-to-one correspon-

dence of the ‘BH’ region in Fig. 5.1a with Area I in Fig. 5.1b. Each point here corresponds
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to a parabolic profile which leads to PBH formation.

For each one of these parabolic profiles, there is a family of non-parabolic profiles with

the same central amplitudeR(0), the same configuration sizer0, and the same behaviour

near the edge, as shown in Fig. 5.2. In this figure, the profileslying below the parabola

correspond to larger absolute magnitudes ofR′′(0) and do not form PBHs because they have

lower average gravitational field strength and higher average pressure gradient. The non-

parabolic profiles which lie above the parabolic one (with smaller absolute magnitudeR′′(0))

should also collapse to form PBHs because they correspond tohigher average gravitational

field strength and lower pressure gradient.

Figure 5.2:The curvature profile for three different families of configurations with common central amplitude
R(0) = 1. The configurations shown by the dashed lines have values ofR′′(0) larger in absolute magnitude
than the parabolic one shown in black. The configurations shown by the dotted lines have values ofR′′(0)

smaller than the parabolic one. All profiles satisfy conditions (5.37) and (5.39).

In the parameter space[R(0), R′′(0)], this last set of profiles corresponds to Area III in

Fig. 5.1b. This region will be included in the calculation ofthe probability of PBH formation

in the next section.
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5.4 Two-parametric probability of PBH formation

To calculate the probability of PBH formation, which is equivalent to the mass fraction of the

universe going into PBHs of given mass, it is customary to usethe standard Press-Schechter

formalism [Press & Schechter, 1974]. This has been widely used in previous calculations

of the one parametric probability of PBH formation [Carr, 1975; Carr et al., 1994; Liddle &

Green, 1998; Carr, 2005; Chongchitnan & Efstathiou, 2007; Zaballa et al., 2007]. When the

probability depends on a single amplitude parameter, this method reduces to the integration

of the corresponding PDF over the relevant perturbation amplitudes. The final integral is

equivalent to the mass fraction of PBHs of mass [Carr, 1975]

M ∼ w3/2MH ≈ w3/2kM/(2π) (5.49)

with the equation of statew measured at their formation time. Here we extend the standard

Press-Schechter formalism to include for the first time an additional parameter accounting

for the radial pressure in the initial configuration. When the [R′(0), R′′(0)] area is a square

[R1 < R(0) < R2, R′′
1 < R′′(0) < R′′

2], the integrated two-parametric probability is

βPBH(M) = 2

∫ R2

R1

dϑ0

∫ R′′
2

R′′
1

dϑ2 P(ϑ0, ϑ2) =

1

2

[
erf

(
R2√

2Σ(2)(M)

)
− erf

(
R1√

2Σ(2)(M)

)]
×

[
erf

(
R′′

2√
2Σ(4)(M)

)
− erf

(
R′′

1√
2Σ(4)(M)

)]
.

(5.50)

We use this result to integrate numerically over a mesh of small squares covering each of the

areas of the plane[R(0), R′′(0)] shown in Fig. 5.1b. The results of this integration for two

different power-law spectraPR(k) ∝ kn−1 are shown in Fig. 5.3.

From that figure we note that the probability functionβPBH(M) has a maximum at a

value ofMmax that changes with the of the spectral index. This can be easily derived by

computing the solution ofdβPBH/dM = 0. We find that this equation provides a formula

for the valueMmax which indeed depends sensitively on the spectral indexns. Assuming
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ns > 1 we have:

Mmax = Meq
3γ

2

Peq

R2
th

exp

(
− 2

ns − 1

)
, (5.51)

whereMeq andPeq are the Hubble mass and the power spectrum at the time of matter-

radiation equivalence (keq = 8.9×10−2Mpc−1), andγ is a factor of order unity that changes

slightly with the value ofns.

Figure 5.3:The logarithmic probability of PBHs for two tilts in the power spectrum (ns = 1.23 on the top
figure,ns = 1.47 on the bottom figure), integrated for the three different regions sketched in Fig. 5.1. The
integrals over Areas I and II correspond to the dashed and solid lines, respectively. The probability integrated
over Area III is represented by the dotted lines in both figures.

We contrast the case of parabolic profiles described by Eq. (5.45) with the non-parabolic

set presented in Fig. 5.2 by plotting the probabilityβPBH for different values ofPR. This is
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presented in Fig. 5.4. The figure shows that the probability of PBH formation can be larger

than the one-parameter probability computed in previous studies from the integration of Area

II [Green et al., 2004]. This important result requires confirmation from more detailed nu-

merical simulations of PBH formation in this parameter area. The uncertainty is explained

by the fact that the two-parametric calculation of the probability of PBH formation is still

incomplete. This should be complemented in the future by theintroduction of all relevant

higher-order derivative parameters and the higher-order correlations in the PDF.

Figure 5.4:The grey dashed line shows the ratio of the total probabilityβPBH which results from integrating
over Area I on the[R(0),R′′(0)] parameter space of Fig. 1b to the probability which results from the integrating
over Area II. The black line is the ratio of the probability integrated over Area III to the probability integrated
over Area II.

5.5 Discussion

We have developed a method for calculating the two-parametric probability of PBH forma-

tion, taking into account the radial profiles of nonlinear curvature cosmological inhomo-

geneities. This is the first step towards calculating theN-parametric probability, which takes

into account the radial profiles more precisely than studiesusing the amplitude as the only

relevant parameter. We have incorporated the derived contribution to the total probability of
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PBH formation by considering the range of values ofR′′(0) that will form PBHs, using the

results of the numerical computations presented by Polnarev & Musco [2007]. Finally, we

have provided an example of the consequences of this probability for the statistics of PBHs.

The results obtained show that, if we restrict ourselves to PBH formation from parabolic

profiles (as described in Section 5.3), then the total PBH probability is orders of magni-

tude below previous estimates! On the other hand, if non-parabolic configurations are also

included (see Fig. 5.2), the total probability of PBH formation is higher than the single-

parametric probability estimated in previous works. In this case, we can impose new bounds

on the power spectrum in the scales relevant for PBH formation. Analysing the uncertainty of

our results, we have demonstrated how much we still have to understand about the formation

and statistics of PBHs. The physical arguments supporting our results should be verified by

numerical hydrodynamical simulations of PBH formation, which would provide a valuable

feedback to the initial motivation of this work.

The main argument of this chapter is that the amplitude of initial inhomogeneities is

not the only parameter which determines the probability of PBH formation. The ultimate

solution of the problem requires a greater set of parametersand a larger range of their values

to determine all high curvature configurations that form PBHs. This is a huge task for future

research. In the meantime, we have a method to operate with the statistics of all these

parameters.



Chapter 6

Conclusions and future work

In this thesis we have presented a study of large inhomogeneities in the early universe. Such

large concentrations of matter may collapse to form primordial black holes (PBHs). The

number of PBHs in our universe is calculated by integrating the probability distribution func-

tion (PDF) of primordial inhomogeneities, this encoding all the statistical information of pri-

mordial inhomogeneities. The main objective of this thesisis to quantify the probability of

PBH formation in the context of nonlinear perturbation theory. This represents a significant

improvement in the study of large-amplitude inhomogeneities since, by definition, these are

nonlinear.

The statistics of inhomogeneities are the point of contact between theory and observa-

tions. In theoretical studies the statistics of primordialfluctuations are studied in the frame-

work of cosmological perturbation theory. Until recently,perturbation theory was restricted

to consider only linear departures from the homogeneous background. Linear perturbations

are Gaussian due to the independence the perturbation modes. This is an excellent approxi-

mation to describe the structures observed in the universe.Indeed, observationally, only the

variance, or second statistical moment, has been measured.However, the detailed observa-

tions of large-scale structure (LSS) and the cosmic microwave background (CMB) now allow

us to test for corrections to the linear approximation. Thismotivates the study of extensions

of linear perturbation theory. In particular, the non-Gaussianity of curvature fluctuations has

been a subject of intense investigation.

147
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6.1 Summary of results

In Chapter 2 we presented a brief introduction to cosmological perturbation theory within

general relativity. We reviewed the basic results of this theory for the cosmological inflation

paradigm. From the evolution equations, we identified the conditions under which curvature

fluctuations can grow significantly at superhorizon scales.As shown in Eqs. (2.87) and (2.88),

these conditions are mainly the presence of a non-adiabaticcomponent in the matter field

fluctuations. This has motivated several previous studies of non-Gaussianity resulting from

the second-order perturbations of an isocurvature (non-adiabatic) fieldχ. The conditions for

inflation show that a non-adiabatic field is only a subdominant component of the total matter

during inflation. The cosmological model in whichχ is responsible for the curvature pertur-

bations is called the curvaton model.

In Section 2.5 we calculated non-Gaussian correlators for some special cases of the cur-

vaton model. The lowest order non-Gaussian signature is a non-vanishing skewness or third

moment of the PDF. In perturbation theory this is equivalentto the correlation of three copies

of the curvature perturbation field. This correlator itselfis only present when we consider

nonlinear perturbations. In order to derive the three-point correlator we have considered non-

linear field fluctuationsδχ. We have calculated the second order perturbations of a single

isocurvature field during inflation and radiation domination. We have done this by solving

the Klein-Gordon equation of the perturbationδχ to second order. For simplicity we consider

only the matter fluctuations, assuming a large contributionfrom the third derivative of the

potentiald3W (χ)/dχ3. We find that an effectively massless field does not generate alarge

nonlinear contribution to the perturbationδχ. Conversely, a slightly massive field allows an

exponential growth of the nonlinear perturbation. With theaid of a new method to compute

non-Gaussian correlators, we derived the field bispectrumF (ki) given by Eq. (2.169). We

then derived the curvature perturbation bispectrumB(ki), considering a dominant contri-

bution from the field bispectrumF (ki). Equation (2.188) expresses the the non-Gaussian

parameterfNL in terms of the elements of the potentialW (χ). Chapter 2 closed with a brief

discussion of the observational limits to the curvaton.
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One of the main objectives of this thesis is to present the modified probability of struc-

ture formation from the non-Gaussian PDF. From the central limit theorem, we know that

the non-Gaussian PDF produces non-trivial moments of orderhigher than two. To determine

the shape of the distribution uniquely, one requires thea priori knowledge of all moments.

From studies of non-Gaussianity in perturbation theory, however, we only know the skew-

ness (third moment) and kurtosis (fourth moment) of some models of structure formation.

Finding a PDF which encodes the contribution of only these two higher order moments is not

trivial. In Chapter 3 we have constructed, in the context of quantum field theory, the general

non-Gaussian PDF for curvature perturbationsR. Formally, this is a probability functional

for the ensemble of realisations ofR(x) at some specified timet. We refer to this probabil-

ity asPt[R]. We first derived a mathematical expression of the above statement by writing

Pt[R] in terms of then-point correlation functions (see Eqs. (3.12) and (3.15)).We then

constructed an explicit expression for the PDF using only the first three statistical moments.

We found that, in order to calculate the PDF, it is necessary to consider a regularised

function R̄(k). We must therefore consider a field sufficiently smooth on small scales, with

a smoothing scale customarily set as the horizon scale at time t. We also require an upper

limit for the k-numbers in order to avoid divergences in the integrations required to construct

the PDF. This is achieved by artificially compactifying the momentum space over a scale

Λ > k. This regularisation is a common requirement of calculations in the theory of pertur-

bations and in the statistics of LSS. The results of this chapter are important because the final

expression is an explicit functional probabilityPt[R(k)]. This means that the probability of

any parameter appearing in the functionR(k), or equivalentlyR(x), can be retrieved from

this PDF. We rely on this property to study two important modifications of the probability of

PBH formation in the subsequent Chapter 4 and Chapter 5.

In the last two chapters of this thesis we revisit the calculation of the probability of PBH

formation, taking into account two important effects whichare characteristic of nonlinear

inhomogeneities. In Chapter 4 we calculate the probabilityof PBHs using a non-Gaussian

PDF we considered the non-Gaussian PDF of curvature perturbationsR. The featured PDF
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includes a linear contribution from the three-point correlation function as derived in Chap-

ter 3. In Section 4.2, this PDF was adapted to curvature configurationsR(r) that give rise

to PBHs. As previous works show, the amplitude at the centre of the curvature configuration

R(r = 0) is a good parameter to determine the formation of PBHs. Eq. (4.12) gives the non-

Gaussian PDF for the mentioned parameter. With the aid of this PDF we have reproduced

qualitatively the effects of the non-Gaussian contribution considered in two previous works.

We first identified the source of inconsistencies in previousworks studying non-Gaussian

effects in the probability of PBH formation. We showed that the fundamental difference in

the inflationary models considered by Bullock & Primack [1997] and by Ivanov [1998] is

the spectral index. In the first work, perturbations involvea blue power spectrum (for which

the spectral index accomplishesns−1 > 0), while the power spectrum is red (ns−1 < 0) in

the second. Noting that, in single-field inflation, the non-Gaussian parameterfNL is directly

related to the spectral indexns − 1, we have shown the source of the discrepancy. The main

effect on the non-Gaussian PDF is the respective suppression and enhancement of the prob-

ability for large values ofR.

Chapter 4 also presented the non-Gaussian modifications to the probability of PBH for-

mation (or the mass fraction of PBHs). In Section 4.4 we have shown how the new PDF

can modify the bounds to the variance of curvature fluctuationsΣR. This comes from the

observational limits to the abundance of PBH for each mass scale. Such modifications are

illustrated in Fig. 5.4. Note that in this figure we have used the maximum value of the pa-

rameterfNL allowed by perturbation theory. In the future, greater values could be considered

by constructing PDFs with the techniques described here.

In Chapter 5 we have studied the probability of configurationsR(x) from another per-

spective: We compute the probability of a parameter describing the curvature profile in ad-

dition to the probability ofR(0). Specifically, we compute the probability of the second

radial derivative at the centre of the configuration,R′′(0) = d2R/dr2|r=0. As studied in that

chapter, the consideration of additional parameters describing curvature profiles is a signifi-

cant improvement in the study of gravitational collapse. Inother words, the choice of initial
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configurations collapsing to form PBHs relies on two sets of parameters. Parameters of the

profileR(r) are required in addition to the amplitude parameters customarily used. We used

the results of the latest simulations of PBH formation to integrate all the allowed configu-

rations parametrised with the pair[R(0),R′′(0)]. The result shows, heuristically, how the

probability of PBH formation can be drastically changed by considering curvature profiles

in the PDF.

6.2 Future research

The non-Gaussian signatures of cosmological inhomogeneities offer good prospects for model

discrimination. An example of this is given at the end of Chapter 2, where we were able to

limit special cases of the curvaton model with the observed constraints on the parameterfNL.

A number of extensions to this work are possible. First, the curvaton model can be adapted,

with pertinent modifications, to describe models of modulated reheating [Zaldarriaga, 2004].

In such models, the auxiliary field modifies the expansion in different patches of the universe

during the reheating process. The present work can be extended to cover such models by

modifying the scales of the mass and expectation values of the auxiliary fieldχ. In this way

one can search for feasible models of modulated reheating which satisfy the observational

limits of non-Gaussianity.

Another application of our study is to compute higher-ordercorrelations from the derived

solutions to the nonlinear Klein-Gordon equation. Future probes of non-Gaussianity could

detect the ‘trispectrum’ of curvature perturbations, which is a higher order discriminator be-

tween models of inflation. Computing the corresponding four-point function is thus crucial

for a characterisation of the hypothetical detection of non-Gaussianity at this level.

An important complement of the work presented in Chapter 2 isthe computation of the

solutions to the Klein-Gordon equation allowing for metricperturbations. This has been ig-

nored here because we assumed that the field fluctuations dominate over all other sources,

as applies in the slow roll limit of the Klein-Gordon equation. As mentioned in Section 2.5,

however, the curvature perturbation contribution (often called backreaction) may entail im-
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portant corrections forδχ [see e.g. Malik [2007]]. It is important to compute such contri-

butions because, on the one hand, they could be the dominating component in the growth of

the fluctuations and, on the other hand, the curvature back-reaction could cancel largefNL

values. This could prompt reconsideration of models previously excluded by observations.

Which case applies is an open question that should be addressed in the near future.

There is another set of problems where the methods of Chapter3 find an important ap-

plication. This is the determination stochastic sources inthe evolution equations of classical

fields. A functional probability is written in terms of products of then-point correlation

functions withn copies of the field configuration in Fourier space (see Eq.(3.15) for the case

of curvature perturbations). This can be used, in particular, to derive and extend the stochas-

tic equations of inflation by Starobinsky & Yokoyama [1994].This seminal work presents

a Fokker-Planck equation for the probability of the configurationφ(x) on small scales and

for a single-field inflationary field. A first connection between the stochastic framework and

the work presented here has been given by Seery [2009]. In that paper, a wave-functional

similar to Eq. (3.13) is considered and the governing Hamiltonian operator for the scalar field

φ is recovered from its action. The Fokker-Planck equation suggested by Starobinsky can

be deduced easily from the Schrödinger equation for that wave-functional. Such a method

can be extended to calculate PDFs of multi-scalar or non-canonical models of inflation. The

construction of the probability distribution for configurationsφ(x) and other possible fields

allows for the consideration of full non-Gaussian distributions. This is clearly the way to go

beyond approximations like the one considered in Chapter 3.

Regarding the probability of PBH formation, the results of Chapter 5 cannot be conclu-

sive because we do not have at hand the complete set of collapsing configurations. Deter-

mining the set of all configurations collapsing to form PBHs is a huge task to be explored

elsewhere. We can assert, however, that if PBHs are to be usedas a tool for cosmology, the

curvature profile parameters have to be taken into account inthe derivation of the PDF. A less

ambitious task is to have an estimate of how severe the modifications to the single-parameter

approximation are. This would require the determination ofmore appropriate parameters
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describing curvature profiles, a topic currently under investigation.

From the results of Chapter 4 we are able to set constraints oninflationary models.

Specifically one can look at models with an enhancement of thepower spectrum at small

scales. In such cases, the constraints from PBHs can be more or less stringent, depending on

the values and the sign of the non-Gaussian parameterfNL. Here we have provided a tool for

testing those models. Such tool can also be improved as more constraints are derived from

observational tests to the abundance of PBHs.
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