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Abstract 
 

Since the discovery of carbon nanotubes (CNTs) and nanoclays, there has been a 

great deal of research conducted for uses in applications such as: energy storage, 

molecular electronics, structural composites, biomedical to name but a few. Owing to 

their unique intrinsic properties and size means that they have an ever growing 

potential in the consumer and high technology sectors. In recent years the concept of 

using these as fillers in polymers has shown great potential. One such function is, as 

flame retardant additives. These possess much better environmental credentials than 

halogenated based additives as well as only needing to use a small loading content 

compared to traditional micron sized fillers. The combination of the above make 

these fillers ideal candidates for polymers and their composites. Especially with 

regards to natural fibre composites.  

 

Owing to environmental awareness and economical considerations, natural fibre 

reinforced polymer composites seem to present a viable alternative to synthetic fibre 

reinforced polymer composites such as glass fibres. However, merely substituting 

synthetic with natural fibres only solves part of the problem. Therefore selecting a 

suitable material for the matrix is key. Cellulose is both the most common 

biopolymer and the most common organic compound on Earth. About 33 % of all 

plant matter is cellulose; i.e. the cellulose content of cotton is 90 % and that of wood 

is 50 %. However just like their synthetic counterparts, the poor flame retardancy of 

bio-derived versions restricts its application and development in important fields 

such as construction and transportation.  
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Traditional methods to improve the flame retardancy of polymeric material involve 

the use of the micron sized inorganic fillers like ammonium polyphosphate (APP) or 

aluminium trihydroxide (ATH). Imparting flame retardancy with these inorganic 

fillers is possible but only with relatively high loadings of more than 50 wt. %. This 

causes detrimental effects to the mechanical properties of the composite and 

embrittlement. Applying nanofillers can achieve similar if not better flame retarding 

performances to their micron sized counterparts but at much lower loading levels 

(<10 wt.%), thus preserving better the characteristics of the unfilled polymer such as 

good flow, toughness, surface finish and low density. This is the main focus of this 

study and it will be achieved by using various experimental techniques including the 

cone calorimeter and the newly developed microcalorimeter.  

 

After a comprehensive literature survey (Chapter 2), the experimental part of the 

thesis starts with a feasibility study of a flame retardant natural reinforced fibre sheet 

moulding compound (SMC) (Chapter 3). This work demonstrated that with a 

suitable flame retardant the peak heat release rate can be reduced. Chapter 4 deals 

with further improving the flame retardancy of the previously used unsaturated 

polyester resin. The aim is to study any synergistic behaviour by using aluminium 

trihydroxide in conjunction with ammonium polyphosphate whilst testing in the cone 

calorimeter. In Chapter 5, nanofillers are used to replace traditional micron sized 

fillers. In unsaturated polyester, multi-walled carbon nanotubes and sepiolite 

nanoclay are used together to create a ternary polymer nanocomposite. The 

microcalorimeter was employed for screening of the heat release rate. This work 

showed that the ternary nanocomposite showed synergistic behaviour with regards to 

significantly reducing the peak heat release rate.  
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The same nanofillers were utilised in Chapters 6 and 7 but this time in combination 

with a thermoplastic (polypropylene) and bio-derived polymer (polylactic acid), 

respectively. In both systems an improved flame retardancy behavior was achieved 

whist meeting the recyclability objective. Chapter 8 attempts to show how the 

optimised natural fibre composite would behaviour in a large scale fire test. The 

ConeTools software package was used to simulate the single burning item test (SBI) 

and to classify the end product. This is a necessity with regards to commercialising 

the product for consumer usage. Finally, Chapter 9 is a summary of the work carried 

out in this research as well as possible future work that should be conducted. 
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of testing PP in different atmospheres. There is an onset decomposition 

shift of 100 °C when tested in nitrogen rather than air. 
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Figure 6.4. TGA scans of PP with MWNTs in (a) air and (b) nitrogen, 

showing the effect of CNTs on the decomposition behaviour of PP.  
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Figure 6.5. TGA analysis of PP with sepiolite in (a) air and (b) nitrogen, 

showing the effect of sepiolite clay on the decomposition behaviour of PP. 
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Figure 6.6. TGA analysis of PP ternary system (10 wt.%Sep+2wt.%CNT) 

in (a) air and (b) nitrogen, showing the increase in residual char and 

improved thermal stability in air compared to binary nanocomposite 

systems and neat PP resin. 
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Figure 6.7. Heat release rate vs. time for unfilled PP and ternary PP 

nanocomposite (10 wt.% sepiolite + 2 wt.% MWNT).  
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Figure 7.1. Flow diagram of manufacturing and testing procedure involved 

in developing flame retardant natural fibre composite. 
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Figure 7.2. Thermal gravimetric analysis scans of PLA in air and nitrogen, 

showing the onset decomposition temperature. 
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Figure 7.3. Thermal gravimetric analysis scans of PLA with CNTs in (a) 

air and (b) nitrogen showing the effect of an aerobic and anaerobic 

environment to the decomposition behaviour of the PLA nanocomposites. 
 

-152- 

 
 

Figure 7.4. Thermal gravimetric analysis scans of PLA with sepiolite clay 

in (a) air and (b) nitrogen. 
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Figure 7.5. Thermal gravimetric analysis scans of PLA ternary 

nanocomposite systems in air, showing the increased residual char. 
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Figure 7.6. Heat release rate profile of the specimens tested on the cone 

calorimeter. 
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Figure 7.7. Photographs taken during cone calorimetery testing (a) unfilled 

PLA and (b) PLA ternary nanocomposite system, showing the resistance to 

melting. 
 

-160- 

 
 

Figure. 7.8. HRR profile and photographs of (a) PLA/hemp composite 

during testing (b) PLA ternary nanocomposite post testing (c) PLA ternary 

hemp composite post testing. 
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Figure. 7.9. SEM micrographs of PLA nanocomposite specimens after 

being exposure to 325 °C (a) PLA+CNT (b) PLA+Sep (c) PLA ternary 

system. 
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Figure 8.1. Schematic diagram for typical two-zone model. Image from 

Cadorin and Franssen 2003. 
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Figure 8.2.  (a) Schematic of the single burning item test (b) Photograph of 

SBI in progress. Images from EN 13823:2002 standards and Exova 

Warringtonfire, respectively. 
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Figure 8.3. Graphical representation of lines with a constant FIGRA value 

of 120,250,750. Image from Federation of European Rigid Polyurethane 

Foam Associations report “Figra Report”. 
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Figure 8.4.  Suggestion of three different routes for development of the 

effective heat releasing area in the SBI test. Image from Hansen 2002. 
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Figure 8.5. Screen shot of ConeTools input and data generation screen. 

Image courtesy of Interscience Communications.  
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1 
Introduction 
 

 

 

The combination of natural fibres with other materials to form composites is not an 

original concept. The ancient Egyptians were one of the first documented civilisations to 

use the first natural composites systems for housing; clay and straw were used to build 

walls. During the early part of the 20th Century, the use of natural fibre materials fell due 

to the development of stiffer, tougher and lighter synthetic materials. The success and 

tremendous growth of the petrochemical industry in the 20th Century slowed the growth 

of bio-based products. However, environmental as well as economic factors are now the 

driving force towards greater utilisation of bio-based polymers and materials. The 

challenge to the scientific community is to develop the technology needed to make the 

bio-based materials revolution a reality.  

The production of chemicals and materials from bio-based feedstock is expected 

to increase from today’s 5 % level to ∼12 % in 2010, 18 % in 2020 and 25 % in 2030 

(Wedin, 2004). Expectations are that two-thirds of the $1.4 trillion global chemical 

industry can eventually be based on renewable resources. Petroleum transitioned from a 

single product (kerosene in the early 1900’s) to a multiproduct industry (petrol, jet fuel, 

diesel fuel, asphalt and polymeric materials) between the late 19th and the middle of the 

20th Century. Research conducted from the 1990’s to the present has led to many new 

bio-based products (Drumright et al., 2000; Thomas, 2001; Peijs, 2002; Metha et al., 

2004).  
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Some examples include polylactic acid (PLA) from corn; lubricants from vegetable oil 

and polyurethane products from soy oil to name but a few. The persistence of plastics in 

the environment, the shortage of landfill space, concerns over emissions during 

incineration, and entrapment and ingestion hazards from these materials have spurred 

efforts to develop biodegradable plastics. Several of the world’s largest chemical 

companies, including DuPont, Monsanto and Cargill have announced a major shift in 

their base science and technology from traditional petrochemical processing to life 

sciences (Thayer, 1999). DuPont and Monsanto have invested $12.5 billion to acquire 

expertise in agricultural biotechnology (Thayer, 1999). Biocomposites are now starting 

to migrate into the mainstream and bio-based polymers may soon be competing with 

commodity plastics. Composite materials, especially green composites fit well into this 

new concept shift. Simply stated, bio-based materials include industrial products for 

durable goods applications, made from renewable agricultural and forestry feed stocks, 

including wood, agricultural waste, grasses and natural fibres.  

With numerous advantages that polymeric materials provide to society in 

everyday life, there is one obvious disadvantage related to the high flammability of 

many polymers. Fire hazard is a combination of many factors, including; ignitability, 

ease of extinction, flammability of the volatile products generated, rate of heat released, 

flame spread, smoke obstruction and smoke toxicity (Hirschler, 2001; Purser, 2000; 

Irvine et al., 2000). According to fire statistics, more than 12 million fires break out 

every year in the United States, Europe, Russia and China killing some 300,000 people 

and injuring several hundreds of thousands. Calculating the direct worldwide losses and 

costs is difficult and $500 million is an estimate based on some national data (Manor and 

Georlette, 2005). Therefore, in the pursuit of improved approached to flame retarding 

polymers, a wide variety of concerns must be addressed. The low cost of polymers 

requires that the flame retardant (FR) approach be of low cost. This limits the solutions 

to the problem primarily to additive type approaches.  
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These additives must be easily processed with the polymer, must not excessively 

degrade the other performance properties, and must not create environmental problems 

in terms of recycling or disposal. Conventional systems such as brominated polymers 

prevent flame spread but have the significant disadvantage of producing dense smoke 

and corrosive combustion by-products. Another filler commonly used is hydrated 

alumina or aluminium trihydrate (ATH), which is looked upon as a greener FR. The 

effectiveness of this flame retardant tends to be limited since large amounts of the filler 

is needed for adequate flame retardancy (>50 wt.%), which has a the detrimental effect 

on processability and mechanical properties. The field of nanotechnology has also made 

its presence in the discipline of fire science. Since the early 1990’s, the subject of 

polymer nanocomposites has expanded greatly to its current status as a major field of 

polymer materials research. It is now released that polymer nanocomposites, as a class 

of materials, were in use long before this field of research was officially named in the 

early 1990’s. Indeed, work published as early as 1961, and patents going back to the 

1940’s, have shown that layered silicates (or clays) can be combined with polymers in 

small amounts (typically 2-10 wt.%) to produce new materials with greatly improved 

thermal properties and flame retardancy. More recent work has looked into using carbon 

nanotubes to reduce the flame retardancy of polymers. However these concepts are still 

in its infancy and need to be researched further to be considered advantageous in 

commercial ventures.  
 

1.2 Nano Materials 
 
1.2.1 Carbon Nanotubes (CNTs) 
 
The reader is advised to read further material about CNTs (Thostenson et al., 2001) as 

this is only a brief introduction. The morphology of a carbon nanotube is defined by the 

orientation and magnitude of the chiral vector in a graphene sheet, which is wrapped up 

to form the single-walled carbon nanotube (SWNT) (Thostenson et al., 2005).  
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The density of a SWNT is about 1.33-1.40 g/cm3, which is just one-half of the density of 

aluminum. The elastic modulus of SWNT is comparable to that of diamond (1 TPa). The 

reported tensile strength of SWNT is much higher than that of high-strength carbon fibre 

(~ 80 GPa). The thermal conductivity of SWNT is predicted to be 6000 W/(m·K) at 

room temperature; this is nearly double the thermal conductivity of diamond of 3320 

W/(m·K). SWNTs are stable up to 2800 °C in vacuum and 750 °C in air, whereas metal 

wires in microchips melt at 600-1000 °C. Multi-walled nanotubes (MWNT) consist of 

several layers of graphite rolled in on themselves to form a tube shape which improves 

their chemical and thermal resistance. 

 

 

 

 

 
Figure 1.1. Graphical and computer representation of a SWNT and MWNT respectively. 

Images from http://neurophilosophy.wordpress.com/    

 
1.2.2 Current Applications 
 
The special nature of carbon combined with the molecular perfection of CNTs endow 

them with exceptionally high material properties such as electrical and thermal 

conductivity, strength, stiffness, and toughness. The high-frequency carbon-carbon bond 

vibrations provide an intrinsic thermal conductivity higher than even diamond. In most 

materials, however, notably MWNTs the actual observed material properties - strength, 

electrical conductivity, etc - are degraded very substantially by the occurrence of defects 

in their structure. For example, high strength steel typically fails at about 1% of its 

theoretical breaking strength.  
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The SWNTs, however, achieve values very close to their theoretical limits because of 

their perfection of structure and their molecular perfection. This aspect is part of the 

unique story of CNTs. Much of the history of plastics over the last half century has been 

as a replacement for metal. For structural applications, plastics have made tremendous 

headway, but not where electrical conductivity is required, plastics being famously good 

electrical insulators. This deficiency is overcome by loading plastics up with conductive 

fillers, such as carbon black and graphite fibres (the larger ones used to make golf clubs 

and tennis racquets). The loading required to provide the necessary conductivity is 

typically high (> 10 wt.%) resulting in heavier parts, and more importantly, plastic parts 

whose structural properties (ductility) are highly degraded. It is well established that 

higher aspect ratio fillers require lower loadings to achieve a given level of conductivity. 

Nanotubes are ideal in developing conductive polymer composites (CPC), since they 

have the highest aspect ratio of any carbon based filler. In addition, their natural 

tendency to form ropes provides inherently very long conductive pathways even at ultra-

low loadings. Applications that exploit this behaviour of CNTs include EMI/RFI 

shielding composites and coatings for enclosures, gaskets, and other uses; electrostatic 

dissipation (ESD), and anti-static materials and (even transparent) coatings; and radar-

absorbing materials. 

 

  

 

 

 
 

Figure 1.2. (a) Computed tomography (CT) scanner and (b) a USAF F22 Raptor. 

Images from http://bryanking.net/ and http://www.time.com/ respectively. 

(a) (b) 
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The ultimate properties of CNTs are not limited to electrical and thermal conductivities, 

but also include mechanical properties, such as stiffness, toughness, and strength which 

make them ideal for structural application. Current functions are: combat jackets that 

use CNTs in ultra-strong fibres and to monitor the condition of the wearer (ISN, 2008).  

  

 

  

 
 
 
 
 
 
 
 
 
Figure 1.3. (a) Photograph of Easton EA90 SLX wheels and (b) Babolat Aerostorm 

tennis rackets. Both use CNTs in their structure to improve stiffness without adding 

weight. Images from http://www.eastonbike.com/ and http://www.babolat.com/ 

respectively. 
 
The exploration of CNTs in biomedical applications is just underway and has 

significant potential. However, there has been a numerous amount of research papers 

published about the potential health implications of handling carbon nanotubes. Ma-

Hock et al (2009) carried out experiments which composed of exposing laboratory 

rodents to MWNTs and concluded no systemic toxicity. On the other hand, other 

researchers have concluded that exposure to SWNTs caused pulmonary lesions (Chiu-

wing et al., 2006; Lam et al., 2004; Warheit et al., 2004; Walters et al., 2001; Maynard 

et al., 2004). Journeay et al (2008) carried out a study on effects of CNTs aspect ratio on 

the toxicity effect to lung tissue.  

(a) (b) 
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It was discovered that the aspect ratio has implications for clearance from the lungs and 

for phagocytic cells such as the macrophage. Therefore particularly care must be taken 

when studying the health implications of CNTs. 

 

1.2.3 Nanoclays  
 

As mentioned previously, nanocomposites usually exhibit improved performance 

properties compared to conventional composites owing to their unique phase 

morphology and improved interfacial properties. For these reasons, nanostructured 

organic-inorganic composites have attracted considerable attention from both 

fundamental research and an applications point of view. The structure of a typically 

smectite clay nanolayer is presented in Figure 1.4.  

 
 

 
 
 
Figure 1.4. The oxygen framework of smectite clay nanolayers. Image from Zammarano 

(2007). 
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Silica is the dominant constituent of clays, with alumina being essential, as well. See the 

structure in Figure 1.4. Clays have a layered structure consisting of two types of sheets, 

the silica tetrahedral and alumina octahedral sheets. The silica tetrahedral sheet consists 

of SiO4 groups linked together to form a hexagonal network of the repeating units of 

composition Si4O10. The alumina sheet consists of two planes of closely packed 

oxygen’s or hydroxyl’s between which octahedrally coordinated aluminum atoms are 

imbedded in such a position that they are equidistant from six oxygen’s or hydroxyl’s. 

The two tetrahedral sheets sandwich the octahedral, sharing their apex oxygen’s with the 

latter. 

 
Montmorillonite is a type of clay and is classified as magnesium aluminum silicate 

which has a sheet morphology, and can be used to make a new class of polymer/clay 

nanocomposites. The total surface area of montmorillonite can be as large as 750 m2/g 

and the high aspect ratio (70-150) contributes to its rheological benefits. In order to 

make the clay into organoclay it is reacted them with organ-cationic surfactants. The 

modified clays then change from hydrophilic to organophilic. The organically modified 

clays are able to impart various rheological characteristics to organic polymer. When a 

small amount of the organoclay like 4 wt.% is added into a polymer, there can be a 

significant increase in mechanical properties including tensile strength, Young’s and 

flexural moduli. Therefore, composites can be made lighter and maintain transparency 

because the filler is in the nanometer range. Moreover, the heat resistant property of 

organoclay can increase the heat distortion temperature of the composites by making 

them more dimensionally stable and flame retardant. On the other hand, the high aspect 

ratio of the organoclay provides a tortuous path which makes difficulty for gas and 

vapour passing through. Therefore, barrier properties of polymer can be greatly 

improved. 
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Another type of nanoclay is sepiolite. It is non-swelling, lightweight and absorbent clay 

with a large specific surface area. Sepiolite has a needle-like morphology unlike other 

clays. It is an important material for a wide range of applications due to its extraordinary 

particle shape, porosity, and high surface area and for its outstanding sorption capacity 

and colloidal properties. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Sepiolite has a formula Si12Mg8O30(OH)4(OH2)4.8H2O and is a hydrated magnesium 

silicate. It is not a layered phyllosilicate like other clays. Quincunx can be used to 

describe the structure of sepiolite (five object arranged such as, one occupies the centre 

of a rectangle or square and the other four occupy the corners) that are separated by 

parallel channels as shown in Figure 1.5. Unlike other clays, which produce plate-like 

particles for their structures, sepiolite produces needle-like particles. From the range of 

clay minerals available, sepiolite has the highest surface area (BET, N2), about 300 m2/g 

(Bilotti, 2009).  

(a) 

(b) 

Figure 1.5. (a) Schematic representation of a single sepiolite fibre and (b) SEM 

image of pristine sepiolite. Images from Bilotti PhD thesis 2008. 
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The hydophilicity of sepiolite is marked by the high density of silanol groups (-SiOH). 

The cation exchange capacity is very low as the silicate lattice does not have a 

significant negative charge. The particles of sepiolite have a width of 0.01 μm and an 

average length of 1 μm to 2 μm. They include open channels with dimensions of 3.6 Å × 

10.6 Å, consecutively along the length of the axis of the particle. Sepiolite has a high 

porosity due its extensive capillary network and its light-weight since it has a vast empty 

space. 

 

1.2.4 Current Applications 
 

The outstanding sorptive and colloidal properties of sepiolite provide specific solutions 

for a wide variety of industrial applications. Industrial absorbents: Sepiolite absorbs 

liquid spills and leaks keeping work and transit areas dry and safe. Sepiolite is a non-

flammable material with high liquid absorbing capacity, suitable mechanical strength of 

the granules even in wet conditions, and chemical inertness which avoids reaction with 

absorbed liquids. Polymers and Elastomers: The use of sepiolite fillers improve 

processing, dimensional stability, mechanical strength and thermal resistance. 

Rheological additives for organic systems: Organically modified sepiolite allows 

controlling the rheological behaviour of different solvent-based systems as paints, 

greases, resins and inks enhancing their stability under a wide temperature range and 

making for easier application. 

 

1.3 Scope of the Thesis 
 

The aim of this thesis is to develop and characterise a flame retardant bio-based polymer 

composite utilising both CNTs and sepiolite as flame retardant additives. Encompassed 

within this envelope is; (Chapter 3) which is a feasibility study of using cellulose based 

fibres to reinforce a thermoset polymer in relation to its flammability.  
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(Chapter 4) possible improvements to the flammability of the thermoset polymer using 

conventional flame retardant additives; (Chapter 5) a shift towards nano-sized filler 

solutions for reducing the flammability of a thermoset polymer; (Chapter 6) shifting 

from a thermoset to thermoplastic base resin with nanofillers, (Chapter 7) moving to a 

fully bio-based nanocomposite system and (Chapter 8) finally carrying out some fire 

simulation work to show the predictive performances of the optimised composite if 

taken to full scale application use.  
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2 
Literature Review  
 

2.1 Prologue  
 

This chapter gives a broad overview of the field which then focuses into the 

experimental chapters hereafter. In order to familiarise the reader with this work, 

particular topics have been brought forward and discussed. This is the duty of the 

literature survey which tries to encompass; the relevant background, fundamental 

theories, experimental procedures and current research in this field of research.   

 

2.2 Natural Fibre Reinforced Composites (NFCs) 
2.2.1 Background  
 

Classic fibre reinforced composites often cause considerable problems in terms of reuse, 

recycling and disposal at the end of their lifetimes. This is primarily because the 

compound consists of miscellaneous and usually very stable fibres such as carbon and 

glass fibres. A simple landfill disposal is not an option, since increased environmental 

sensitivity has resulted in tighter laws and regulations (e.g. Regulation for the Prevention 

of Packaging Waste, Recycling and Waste Management Law) (CIWM). Eco-friendly 

alternatives are now being explored and examined, such as the recovery of raw 

materials, CO2 neutral thermal utilization, or biodegradation.   
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An interesting option to meet these demands may be provided by natural fibre reinforced 

polymer composites (NFCs). This technology utilises the high stiffness and strength of 

filamentary materials, of which cellulose is only one example. Cellulose composites 

include everything from straw reinforced clay materials to cellulose fibres in radial tyres. 

In a way, many paper and board materials may be conceived as a type of composite, but 

the usual reference is a reinforced matrix material. As early as the beginning of the 20th 

century (Baekeland), composite materials were applied for the fabrication of large 

quantities of sheets, tubes and pipes for electric purposes, usually fibre reinforced phenol 

or melamine-formaldehyde resins. The industrial use of biocomposites in the 

manufacturing industry was promulgated by Henry Ford in the late 1930’s. There is also 

a long history of reinforced composite materials derived from fibres such as jute, flax, 

sisal and hemp. The interest in using cellulosic materials in composites is derived from a 

combination of favourable economics, the fact that cellulosics are a renewable resource 

and the high modulus of crystalline cellulose (~ 138 GPa). 

 
Table 2.1. Properties of glass and cellulose natural fibres. Source from Food and 

Agriculture Organization of the United Nations. 

Fibre 

 E-glass Hemp Sisal Jute 

Density (g/cm3) 2.55 1.48 1.33 1.46 

Tensile strength* (10E6 N/m) 2400 400-900 220 400-800 

E-modulus (GPa) 73 70 6 10-30 

Elongation at failure (%) 3 1.6 2-3 1.8 

Moisture absorption (%) - 8 10 12 
 

* Tensile strength strongly depends on type of fibre, being a bundle or a single filament 
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Economically and ecological accepted manufacturing technologies are involved as well. 

The use of natural fibre composites will also have an effect on the reduction of usage of 

wood, which causes deforestation and impacts the environment. Due to their lighter 

weight, high stiffness to weight ratio, corrosion resistance and other advantages, natural 

fibre based composites are becoming important composite materials in building and civil 

engineering fields. In the case of synthetic fibre based composites, despite their 

usefulness in service, these materials are difficult to be recycled after their service life. 

However, natural fibre based composites are environment friendly to a large extent. 

Natural fibre composites are recognised as a realistic alternative to conventional glass 

reinforced composites.  

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. (a) Photograph showing a Lotus Elise Eco. The rear wing, front clamshell 

and the roof reinforced by hemp fibre and (b) Shows the interior is also composed of 

natural fibre. Images from Lotus Group PLC ®. 

 
2.2.2 Manufacturing Processes  
 

At the present time, practically all natural fibre composites are manufactured using press 

moulded technology, thermoplastic or thermoset. However the trend is now towards 

thermoplastic matrix systems. The reason for this change lie in the easier processing and 

recycling possibilities of thermoplastics.  

(a) (b) 
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Injection moulding can also be used for the production of NFCs. In general, injection 

moulding is the preferred route to manufacturing the more complicated shaped panels 

that are difficult, if not impossible, to make by single press-moulded, methods; 

composite panel manufacturers expect that injection moulding will become increasingly 

important.  

 

2.2.3 Thermoplastic Manufacturing  
 

In this process one of either two methods of blending NFs with thermoplastic fibres such 

as polypropylene (PP) is used. The fibres are first cut to lengths of between 80 and 120 

mm and then these fibres are blended as uniformly as is practicable before being carded 

and made into felt by a needle punching process, or separate NFs and thermoplastic 

needle felts are made. These are then built up into as many layers as necessary and are 

then placed in the moulding presses under heat to achieve the panels required. In order 

to improve the NFs and thermoplastic fibre bonding a small amount of a compatibilzer 

such as malic anhydride (MA-g-PP) is sometimes used as an interface between the fibre 

and the matrix (Peijs et al., 1998). Another technique is to impregnate the NFs with a 

polymer melt. Compatibilisation must be taken into consideration due to the polar and 

non-polar nature of the polymer and fibre. This mismatch can result in lower composite 

properties e.g. mechanical properties (Garkhail et al., 2000). 

 

2.2.4 Thermoset Manufacturing  
 

The NF felts are sprayed with or soaked in synthetic binders such as epoxy resins or 

polyurethane and then moulded to the desired shape. Concerning the fibres used, it has 

been found helpful to blend the finer fibres (flax, jute) with a proportion of the coarser 

fibres (hemp, sisal, kenaf) as the finer fibres impart stability to the blend but may 

prevent their complete permeation by the binder if used on their own.   
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2.2.5 Current Limitations  
 

Traditional biocomposites, like paper and board materials, are attractive because of the 

low environmental impact of their product life cycle. Yet composites, based on synthetic 

polymers, are often more competitive from an economic point of view. There is also a 

difficulty of these new composites to break into mature artificial composites markets. 

The performance of biocomposites must generally be improved, for instance with 

respect to their moisture sensitivity and low toughness. In general there is a delicate 

balance between product performance and the rate and degradation of biocomposites, 

which must be solved. Finally, there has been a lack of suitable processing methods to 

manufacture new biocomposites. However one of the limitations of using natural fibre 

composites is their poor inherent flammability resistance. A number of researchers 

(Schartel et al., 2003; Le Brasa et al., 2005) have tried to improve the reaction to fire 

performance of these materials. These studies confirm that with adequate modification 

of the resin system, natural fibre composites can have improved reaction to fire 

properties and can really be a viable alternative to synthetic polymer composites.  

 

2.3 Introduction to Fire 
 

Few discoveries have had as much influence on the development of mankind as the skill 

of generating fire. This capability is a basic requirement of all civilizations, since it 

enabled man to reduce his dependences on a hostile environment. Archaeology indicates 

that ancestors of modern humans such as Homo erectus seem to have been using 

controlled fire as early as some 790,000 years ago. The Cradle of Humankind site 

located 50 kilometres northwest of Johannesburg South Africa has evidence for 

controlled fire a million years ago. Today, the applications of fire are numerous. In its 

broadest sense, fire is used by nearly every human being on earth in a controlled setting 

every day. Owners of internal combustion engines use fire in vehicles every time they 

drive. Thermal power stations provide electricity for a large percentage of humanity. 
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The self-sustaining nature of fire makes it extremely dangerous if uncontrolled. Fire has 

been described as a “living entity consuming both oxygen and matter in order to 

survive” (Adams, 2004). Even with its numerous uses, uncontrolled it can be very 

disastrous. Every year about 5,000 people are killed by fires in Europe and more than 

4,000 people in USA. Direct property loss through fire is roughly 0.2 % of the gross 

domestic product and the total cost of fires is around 1 % of the gross domestic product 

(Beyer, 2005). This is the driving force for scientists and safety bodies to develop new 

materials to tackle this problem.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The course of a well-ventilated compartment fire. Image from Friedman, 1975. 

Figure 2.2. Photograph showing flashover in a domestic room (a) before and  

(c) after. Images from www.azobuild.com. 

(a) (b) 
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Once a fire starts in a room containing flammable materials; it will generate heat, which 

can heat up and ignite additional combustible materials. As a consequence the rate at 

which the fire progresses speeds up because more and more heat is released and a 

progressive increase in the room temperature is observed. The radiant heat and 

temperature can rise to such an extent that all materials within the room are ignited very 

easily, resulting in an extremely high rate of fire spread. This point in time is called 

flashover and leads to a fully developed fire. Flashover normally occurs at around 500 

°C and an incident heat flux at floor level of 20 kW/m2. Escape from the room will then 

be virtually impossible and the spread of the fire to other rooms is highly likely. When a 

fire reaches flashover, every polymer will release roughly 20 % of its weight as carbon 

monoxide, resulting in excess toxic smoke. Consequently, most people die in big fires 

and 90 % of fire deaths are the result of fires becoming “too big”, resulting in too much 

toxic smoke. 

 

2.3.1 The Establishment of Fire Test Methods 
 

The 1988 edition of the compilation of fire tests by the American Society for Testing 

and Materials (ASTM) alone lists some 77 tests. ASTM is only one of many US and 

international organisations publishing fire test standards; the actual number of fire tests 

in use is at least in the hundreds. It is customary to divide the actual fire test standards 

into two broad categories: (i) reaction to fire, or flammability, and (ii) fire endurance, or 

fire resistance. Reaction to fire is how a material or product responds to heating or to a 

fire. This includes ignitability, flame spread, heat release rate, and the production of 

various toxic, obstructing, corrosive etc, products of combustion. Reaction to fire largely 

concerns the emission of undesired components, e.g. how much heat is emitted, how 

much smoke, or how fast does the first emission start (ignitability). 
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A reaction to fire test is typically performed on combustibles. Fire endurance, by 

contrast, asks the questions: how well does a product prevent the spread of fire beyond 

the confines of the room? Such a test is performed on barriers to fire and load bearing 

elements, such as walls, floors, ceilings, doors, windows and related items. 

Manufactures of resins, flame retardants, and plastic products are accustomed to 

describing reaction to fire performance according to two tests: the UL 94 vertical 

Bunsen burner test and limiting oxygen index (LOI) test. The LOI test determines how 

low of an oxygen fraction the test specimens can continue burning in a candle-like 

configuration. It has never been correlated to any aspect of full scale fires. The UL 94 

test was developed to determine the resistance to ignition of small plastic parts, such as 

may be found inside electrical switches. For this purpose, it is an accurate simulation of 

a real fire source.  

 

2.3.2 The Necessity for Heat Release Rate Tests  
 

Heat release rate (HRR) is the driving force of a fire. This happens as a means of 

positive feedback in that heat produces more heat. This occurrence does not happen for 

all variables, for instance, with carbon monoxide. Carbon monoxide does not produce 

more carbon monoxide. Most other variables in the fire are correlated to HRR. The 

generation of most other undesirable fire products tend to increase with increasing HRR. 

Smoke, toxic gases, room temperature and other fire hazard variables generally progress 

to increase with HRR, as HRR intensifies. Furthermore a high HRR indicates a high 

threat to life. Some fire hazard variables do not relate to threats to life. An example 

could be, a product shows easy ignitability or flame spread rates, however this does not 

necessarily mean that the fire conditions are expected to be dangerous. Such behaviour 

may merely suggest a predisposition to nuisance fires. However high HRR is 

intrinsically dangerous. This is because high HRR causes high temperatures and high 

heat flux environments, which may prove lethal to occupants.  
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2.3.3 The Vision of the Cone Calorimeter  
 

The cone calorimeter is the most significant dynamic bench scale instrument in the field 

of fire testing. Heat release rate is the key measurement required to assess the fire 

severity and development for materials and products. The cone calorimeter was first 

announced in 1982 by workers at the National Institute of Standards and Technology 

(NIST) formerly NBS, in the USA, with input predominantly from Vytenis Babrauskas 

(1982). However ISO 5660-1 standard was only published in its final form in 1993 and 

the smoke evolution measurement was supplemented later in 2001 ISO 5660 part 2 

(2002). The American Society for Testing and Materials has also recognised the cone 

calorimeter as a certified reaction to fire apparatus in ASTM 1354 (2004). The two cone 

calorimeter standards are identical, except for the fact that the ISO standard does not 

include the smoke measurement. As a result, heat release rate research using the cone 

calorimeter started from that point on. It was decided to produce an improved bench 

scale heat release rate test which would overcome the deficiencies of existing small scale 

heat release rate tests which relied upon the measurement of the outflow enthalpy of 

enclosed systems. Oxygen consumption calorimetery was identified as the best 

measurement method. In 1917, Thornton showed that for a large number of organic 

liquids and gases, a relatively constant net amount of heat is released per unit mass of 

oxygen consumed for complete combustion. Huggett (1980) found that this was also true 

for organic solids and obtained an average value for this constant of 13 MJ/kg of O2. 

This value may be used for practical applications and is accurate with very few 

exceptions to within ± 5 %. Thornton’s rule implies that it is sufficient to measure the 

oxygen consumed in a combustion system in order to determine the net heat release. 

Therefore, for example, in compartment fires, the oxygen consumption technique is 

much more accurate and easier to implement than methods based on measuring all the 

terms in a heat balance of the compartment.  
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The cone calorimeter is designed to investigate “reaction to fire” of materials and 

products intended for industrial or commercial market use. This test allows an estimation 

of parameters such as shown in Table 2.2. 

 
Table 2.2. Parameters measured in the cone calorimeter. Table from Babrauskas and 

Grayson 1992. 

 

 

 

 

 

 

 

 

Reaction to fire tests ascertain whether the material takes part in the fire, their 

contribution to flame spread and their tendency to propagate and expand the fire by 

altering the thermal environment (preheating). The main importance in looking at the 

reaction to fire is to study the behaviour of the material before flashover as seen in 

Figures 2.2; this is the phenomenon in which the furniture and other materials in the 

room ignite virtually simultaneously. The intention is to study the smouldering to 

combustion performance of the material before full scale fire transpires, as this is the 

interim before the fire can be controlled and resultantly extinguished. According to the 

ISO concept, the phenomenon accompanying the fire such as ignitability, flame spread 

and heat release rate can be grouped into the primary effects of fire.  

Parameter Unit 

Heat Release Rate (HRR): kW/m2 

Average Heat Release Rate: kW/m2 

Total Heat Released (THR): MJ/m² 

Effective Heat of Combustion (EHC): MJ/kg 

Specific Extinction Area (SEA): m²/kg 

Exhaust Flow Rate m3/s 

Mass Loss Rate (MLR): g/s 

Final Sample Mass: g 

Time to Sustained Ignition: s 

CO/CO2 Production (optional): g/s 
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The secondary fire effects, smoke and toxic fire gases, occur alongside these 

phenomena, particularly as the rate of flame spread increases. Together with the radiant 

heat release and lack of oxygen they represent the greatest danger to people. The 

principal result of using the cone calorimeter is a heat release rate curve over the 

duration of the test. The HRR due to combustion is determined using oxygen 

consumption methodology. The overwhelming importance of the role of HRR in fires 

must be made apparent. Heat release rate is not just one of many variables used to 

describe a fire. It is, in fact, the single most important variable in describing fire hazards.  

The information gathered from the cone calorimetery tests can be used in computer 

modelling to evaluate what would happen in a large scale fire. 

 

 

 

 

 

 

 

 

 

Figure 2.4. (a) General view of the cone calorimeter during a test, (i) Radiant heater (ii) 

Load cell (iii) Specimen holder (iv) Spark igniter and (b) A full fire scale calorimeter, 

image from www.azobuild.com. 
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2.4 Flame Retardancy of Natural Fibre Composites by 
means of Conventional Fillers 
 

Several works have been published in the field of fire testing of natural fibre composites. 

Schartel et al., (2003) looked into improving the fire retardancy of flax fibre 

polypropylene (PP) composites. The group studied the effects of adding ammonium 

polyphosphate (APP) and expandable graphite (EG) into the polymer composite, as a 

flame retardant (FR) additive. Thermal analysis was achieved using Thermogravimetric-

Fourier Transform Infrared Spectrometry (TGA-FTIR) to assess the mass loss in relation 

to temperature and the composition of the gases evolved. A narrow group of tests were 

selected to evaluate the steady state heat release, which was achieved by cone 

calorimetery. Flammability properties were assessed by using limited oxygen index 

(LOI) (which measures the percentage of oxygen that is needed to sustain combustion, 

normal O2 in the atmosphere is ~20.95 %), UL94 (flame spread), GMI 60261 which 

assesses the surface flammability of interior trim materials used in motor vehicles 

(similar to FMVSS.302), and the glow wire test, which is used by the electrical industry 

to simulate electrical overloads on their end products.  

 

The materials performed in similar fashion when tested in the TGA, they all 

decomposed at the same temperature ~ 220 °C, and this was thought to be due to the 

thermal characteristics of PP and flax. The results from the cone calorimeter test showed 

that the 30 wt.% flax fibre composite showed a peak heat release rate (PHRR) of 167 

kW/m2, which was further improved to a PHRR of 35 kW/m2. This was achieved with a 

composition of 30 wt.% flax fibre and the addition of 25 wt.% of expandable graphite 

(EG) additive. There was also a decrease in the smoke and CO evolved with the 

increasing addition of EG. The addition of 25 wt.% of ammonium polyphosphate (APP) 

did not make any significant improvements.  
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From the other flammability tests, the NFC without FR additive achieved a LOI of 21 %, 

UL94 HB; conversely the NFC with 25 wt.% EG achieved a LOI of 30 % and a V1 

UL94 classification (the higher the LOI percentage the more O2 needed therefore 

providing better resistance to flaming). A later study by Le Brasa et al (2005) also 

looked into the flammability properties of flax/PP composite systems. However the team 

looked into different intumescence systems to help improve the materials fire 

susceptibility by increasing the efficiency of the swelling and charring of the FR system.  

 

Figure 2.5. FIGRA* curve for PP and of the PP/flax composite vs. time (heat flux 

50kw/m2) (source from Le Brasa, 2005). (The fire growth index (FIGRA) is the ratio of 

the rate of heat release rate on time HRR/ti). 

They evaluated a system similar to that of Schartel et al (2003), this time with the 

addition of pentaerythritol and melamine which aids to the intumescence. They carried 

out fire tests which included UL94 and cone calorimeter. The team noticed an 

improvement in the FR system compared to the non-FR PP/flax system. The former 

gained a V0 rating (self-extinguishing), the highest in the UL94 as well as a reduced 

PHRR and mass loss rate. 
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De Chirico et al (2003) studied the flame retardant effects of adding lignin into an 

isotactic polypropylene. Lignin is a constitute found in plants of which it represents 20-

30 wt.%. It has an amorphous polyphenolic structure. It has been noticed that lignin 

degrades at high temperatures and forms a char which acts as a barrier at the surface to 

the oxygen in the atmosphere. The team used lignin alone and in synergism with some 

phosphorus compounds and ATH. In carrying out cone calorimeter tests, a 71 % 

reduction in PHRR was observed in a combination of PP with 15 wt.% lignin compared 

to pure PP. The combination of PP with lignin 14 wt.% and 6 wt.% APP showed a 

further reduction in the PHRR. There has also been some minor work done on fully 

biodegradable flame retardant composites by Matkó et al (2005). Here the team looked 

into PP, polyurethane (PU) and starch matrices with cotton fibre, wood flake (as saw 

dust) and corn shell as reinforcing fibres. The flame retardant additive was APP. In 

terms of flammability properties, they looked at LOI and UL94 tests.  It was seen that 

when the LOI values were measured for polyurethane/wood flake and polyurethane/corn 

shell that the addition of 20 % APP showed an increase from 23 to 31 and 20 to 27 (v/v 

%) respectively. A V0 rating was achieved for the flame retarded systems. The PU 

composition showed a better flame retardancy over PP as a consequence of the char 

forming tendency. The starch based composite showed a 60 (v/v %) value when loaded 

with 30 wt.% APP, which also gained a V0 rating.   

The Institute of Natural Fibres in Poznan Poland, conducts extensive work into natural 

fibres and its polymer composites. Helwig and Paukszta (2000) presented initial studies 

on the flammability of polypropylene and flax based composites. The composites were 

manufactured by compression moulding. Reaction to fire tests on the composites were 

carried out to observe the effects of fibre content. The cone calorimeter was used with a 

heat flux of 35 kW/m2. Samples tested varied in fibre content in the following: pure 

polypropylene, 12.5, 20, 30 and 40 wt.% flax fibre. It was concluded that for samples of 

20 wt.% fibre content the PHRR was 50 % lower than that of pure polypropylene.   
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This advantageous effect became more prevalent when the flax fibre content was 

increased to 30 and 40 wt.%. This resulted in a lowering of total heat released (THR) 

and average heat of combustion (Av HOC). This may have been due to the increasing 

charring effect of the organic fibres, which improves the poor flammability of the pure 

polypropylene. However, there were two shortcomings in raising the fibre content. The 

time to ignition (TTI) became shorter and smoke production increased.  However, there 

are some disadvantages when using traditional flame retardant fillers. The most 

significant is embrittlement of the composite due to the high FR loading levels needed to 

create adequate flame retardancy. 

 

2.5 Nanofillers as Flame Retardant Additives 
 

The applications of traditional FRs such as aluminum trihydroxide and magnesium 

hydroxide require a very high filler loading to be deployed within the polymer matrix; 

filling levels of more than 50 wt.% are necessary to achieve suitable flame retardancy, 

for example in cables and wires. Clear disadvantages of these high filler levels are the 

high density and lack of flexibility of end products, the low mechanical properties and 

the problematic processing, compounding and extrusion steps. Moreover, in Europe 

there are reservations about the general use of brominated compounds as flame 

retardants. A new class of materials, called nanocomposites, can avoid the disadvantages 

of traditional flame retardant systems. Especially promising in terms of flame retardancy 

has been the discovery that polymer nanocomposites, in particular  nanoclays, have 

distinct advantages over traditional fire retardants in production, such as; the relatively 

small amount of additive needed (only 2-5 wt.% compared to 40-70 wt.%) and as a 

result the improved recycling. In addition, concurrent work will enhance the flame 

retardancy and reduce fuel formation by promoting char formation using traditional fire 

retardants together with nanocomposites. There are two possible forms of 

nanodispersion.  
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The intercalated structure is generated if the nanodispersed filler is still ordered; while if 

the filler is homogenously dispersed an exfoliated structure is generated (Figure 2.6). 

The most important fillers that can be used for the generation of these structures at a 

nanometre level are layered silicates. The first step in achieving nanoscale dispersion of 

clays in a polymer is to open the galleries between the layers and to match the polarity of 

the polymer or monomer so that it will intercalate between the layers. This is done by 

exchanging an organic cation for an inorganic cation. The larger organic cations swell 

the layers and increase the hydrophobic properties of the clay, resulting in organically 

modified clay (Usuki et al., 1993). The organically modified clay can then be 

intercalated with polymer by several routes. Solution processing involves dispersion of 

both the organically modified clay and polymer in a common solution.   
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unfortunately, not all organoclays can be nanodispersed in all polymers. There has been 

a significant amount of research material published indicating that a polar polymer 

matrix is very helpful and that also the length and the chemical structure of the 

quaternary organic ammonium compound play an important role in the successful 

production of a nanocomposite.  

Figure 2.6. Morphologies of polymer/clay nanocomposites: (a) conventional miscible 

microcomposites, (b) partially intercalated and exfoliated, (c) fully intercalated and 

dispersed and (d) fully exfoliated and dispersed. Images from Usuki et al., 1993. 

(a) (b) 

(c) (d) 
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The ability to disperse the nanoclay in the polymer is dependent on the type of polymer, 

as well as the process. In general, it is easier to disperse and exfoliate nanoclays in polar 

polymers. Toyota, however, successfully demonstrated that the clays and hydrophobic 

polymers could be compounded, provided the system is compatibilized by the 

replacement of the exchange cations in the galleries of the native clay by alkyl 

ammonium surfactants (Usuki et al., 2003; Okada et al., 1990, 1995; Ray and Okamoto, 

2003; Alexandre and Dubois 2000). There are a number of reviews discussing 

approaches to the fabrication of nanocomposites, including: intercalation of polymers or 

pre-polymers from solution, in situ intercalation polymerization methods, and melt 

interaction methods (Le Baron and Wang, 1999; Cao and Mallouk, 1991). At this stage, 

polymer or pre-polymer from solution and in situ polymerization methods are the 

primary methods (Giannelis et al., 1992; Burnside and Giannelis, 1995). Therefore, 

polymers like ethylene-vinyl acetate (EVA) and polyamide (PA) easily form 

nanocomposites, while it is considerably more difficult for non-polar polymers such as 

polyethylene (PE) and polypropylene (PP). For the non-polar polymer PE it is reported 

that a blend of PE and MA-g-PE can be used to create a nanocomposite (Durmus et al., 

2007). 
  

The first indications that nanoclays could increase the thermal stability of polymers was 

demonstrated in 1965 for montmorillonite/PMMA composites. The decompostion 

temperature (defined as 50 % mass loss) increased about 50 °C for a composite with 

only 10 wt.% filler (Blumstein, 1965). More recently, the decompostion temperature of 

polydimethylsiloxane (PDMS) was found to increase about 140 °C with 10 wt.% 

montmorillonite for a delaminated nanocomposite (Kuchta et al., 1999). A 50 °C 

increase was found for intercalated clay/PE composites (Lee and Jang, 1998). The 

dispersion of clays is critical to increase the decompostion temperature. Exfoliated 

composites have significantly higher decompostion temperatures than intercalated 

nanocomposites or traditional clay composites (Agag et al., 2001).  
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Some speculate that this increase in stability is due to the improved barrier properties of 

the composites. If oxygen cannot penetrate, then it cannot cause oxidation of the resin 

(Kuchta et al., 1999). In addition, the inorganic phase acts as a radical sink to prevent 

polymer chains from decomposing. The improved thermal stability of some composites 

may be limited by the lower thermal stability of alkylammonium ions. For example, in 

intercalated clay/polystyrene composites, the intercalating agent decomposes at about 

250 °C. Bonding the intercalating ions to the polystyrene matrix noticeably improved 

the thermal stability. Polyimide (Agag et al., 2001) and polymethylmethacrylate 

(Salahuddin and Shehata 2001) also become more thermally stable with the addition of 

organomodified montmorillonite (OMMT).   

Gilman (1999) carried out some flammability studies on Nylon 6/clay nanocomposites. 

There was a significant improvement in terms of HRR using only 5 wt.% clay. The HRR 

increases at a lower temperature for the nanocomposite, but levels off quickly. Clay 

nanocomposites showed a 60 % reduction in PHRR relative to unfilled polymer. In 

addition, the mass loss rate is the same for the two materials until a char forms, and then 

the nanocomposite exhibits a significantly lower mass loss rate. Observations of the char 

suggest that the layered structure acts to reinforce the char and reduce the permeability 

of the char, reducing the rate of volatile products released. The flammability resistance 

of clay-filled polymers indicates that their ablation resistance might also be improved. 

As a material is heated during ablation, the surface of the material reacts and forms a 

tough char. If the char is not reinforced, it fails and is removed from the surface, 

exposing more material (Vaia et al., 1999). Traditional composites require a significant 

weight fraction of filler (more than 30 wt.%) to achieve significant ablation resistance. 

On the other hand, 2-5 wt.% nanoclay-filled Nylon 6 exposed to a mock solid rocket 

motor firing rig formed a layer of char on the surface that was tough and significantly 

retarded further erosion (Fong, 2001). In addition, oxygen plasma forms a passivation 

layer on Nylon 6/layered silicate nanocomposites, which significantly retards further 

erosion of the composite surface (Beyer, 2001).  
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This behaviour is not a strong function of the organic molecules used to modify the clay 

or the strength of the clay/polymer interaction (Beyer, 2001), but is a function of the 

degree of exfoliation (Fong, 2001). Of particular importance to the industry is the fact 

that often very similar reductions in heat release rates are observed for both intercalated 

and exfoliated structures. In practice, the flame retardancy of polymers is currently 

achieved using different traditional additives. Halogen-free flame retardants, which are 

most important for Europe is achieved through aluminum trihydroxide (ATH) and to a 

lesser degree by magnesium hydroxide. Nitrogen and phosphorus based flame retardants 

are also used. The proportion of ATH needed can be very high, up to 60 wt.% for 

adequate flame retardancy. The low flexibility of such compounds, moderate mechanical 

properties and difficulties during compounding and extrusion or injection moulding are 

frequently reported. Alternatively, the amount of halogen based flame retardants for 

polymers is lower, but particularly in Europe customers and legislators are demanding 

the development of non-halogen flame retardants. Therefore, the aim of an innovative 

flame retardant solution for Europe would be a significant reduction in the amount of 

traditional halogen-free flame retardants for compounds, while still maintaining a high 

level of flame retardancy, nanocomposites offer a solution. Organoclays alone do not 

exhibit sufficient flame retardancy in a polymer matrix. However, a combination of 

ATH or magnesium hydroxide with organoclay produces sufficient flame retardancy and 

simultaneously allows the reduction of the total filler content. Schartel et al (2006) 

evaluated the combination of ATH, phosphonium modified montmorillonite silicate and 

organic flame retardants containing phosphorus, in an epoxy resin system.   

The silicate worked as inert filler, induced limited additional residue formation of the 

polymer matrix, which resulted in a small effect on the effective heat of combustion of 

the volatile decomposition products, and showed a pronounced barrier effect. The 

comparison between adding phosphonium-modified montmorillonite, ATH and adding 

both additives revealed that the combination of these two additives showed 

superposition or even synergistic behaviour for nearly all flame retardancy properties. 
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Antagonistic behaviour was found only for some characteristics. The investigated 

combination of layered silicate and phosphorus flame retardants is not a promising 

approach. The combination of layered silicate and phosphorus flame retardants results in 

deteriorating interaction at least for the investigated system. The concept of using 

nanoclays in conjunction with traditional micro-sized flame retardants was explored by 

Nazare et al (2002). Different organically modified clays were with customary flame 

retardants in the polyester resin such as; ammonium polyphosphate, aluminum 

trihydrate, and melamine phosphate. The objective was to study the various 

combinations of these hybrid composites in terms of thermal and fire retardancy. The 

TGA data indicated an increase in residual mass with increasing clay loading. This was 

thought to be caused by the clay forming a strong char during the decompostion process. 

The samples with clay and 20 wt.% APP also showed an increased char, however for the 

clay and 30 wt.% loaded samples there was a slight decrease. This was thought to be 

attributed to the high filler content reducing the crosslinking efficiency which results in a 

less char formation. In terms of flame retardance, the PHRR dropped for samples loaded 

with 10 wt.% clay from 1115 to 705 kW/m2.  
 
The higher clay loading resulted in the formation of a thicker insulating layer on the 

surface of the burning polymer, thus providing a potential barrier to both mass and 

energy transport (Gilman et al., 2005). The less processable samples of 10 wt.% clay 

with 20 or 30 wt.% APP showed a significant reduction in PHRR value of 417 kW/m2 

and this was lower than for samples only containing APP. Thus combinations of clay-

APP showed better fire performance even if crosslinking is reduced. The significant 

conclusion was that the presents of nanoclays with conventional flame retardants can 

reduce the values of the polyester as much as 40-70 %.  
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Figure. 2.7. (a) Cross sectional representation of the formation of islands and a 

structured continuous network layer, image from Cipiriano et al (2007) and (b) Electron 

micrograph of protective char, image from Dasari et al., 2009.   

 
2.6 Pyrolysis Combustion Flow Calorimeter (PCFC)/ 
Microcalorimeter 
 

2.6.1 Introduction  
 

To fully assess the fire behaviour of polymers, it was essential to develop some 

standardised tests for assessing the flammability and other combustion related properties 

of polymers. Most countries have standards and codes for the classification of materials 

with respect to their combustion behaviour, but the experiments used in existing 

standard tests vary considerably according to the nature, shape and size of the polymeric 

materials to be tested. The rank order of the fire performance of many pure polymers has 

been assessed by some small scale flammability tests, such as limiting oxygen index 

(LOI) and cone calorimetery.  

 

(a) (b) 

Heating 
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However, all these tests still require replicate samples on the order of 100 grams each, 

and the results are determined not only by the characteristic of the materials involved in 

fire but also by a multitude of conditions and factors including ignition source 

(Scudamore et al., 1991), sample thickness (Babrauskas, 1986), sample orientation 

(Kashiwagi and Cleary 1993), ventilation (Tewarson, 1995) and edge conditions (Pearce 

et al., 1981), all of which combine to make the test data configuration dependent and to 

obscure the effect of material properties and composition on burning behaviour. Thus, it 

would be a great improvement to establish a relatively low cost, convenient and 

quantitative test to set up another evaluation standard. The present method of pyrolysis-

combustion flow calorimetery (PCFC) also known as the microcalorimeter (see Figure 

2.8) seeks to improve upon laboratory pyrolysis-combustion methods by providing 

dynamic capability for solids without the need to measure mass loss rate during the test.  

 

2.6.2 The Experimental Technique 
 
A sample weighing no more that 5 mg is placed into an alumina crucible (6.4 mm ∅). 

The quartz tube containing the crucible and sample is inserted into the heating coil of the 

pyrolysis probe and the probe is inserted into the pyrolysis chamber and sealed. The 

pyrolysis chamber is equilibrated at a temperature which is a few degrees below 

decomposition which is determined by a separate TGA experiment. A constant rate of 

temperature rise (ramp) is used to heat the sample to a hold temperature (soak) which is 

well above the thermal decomposition range of typical combustible solids. The ramp and 

high temperature soak program forces complete thermal decomposition of most 

combustible solids. Selecting a hold temperature which corresponds to a particular fire 

environment (heat flux), but which is within the normal temperature range of the 

polymer thermal decomposition, discriminates between materials with regard to heat 

resistance but not fire resistance, in general, the heat flux is not known.  
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Therefore, in order to obtain an unambiguous measure of the heat capacity of a 

combustible material to release heat in a fire, the standard pyrolysis combustion heat 

release rate test involves heating the sample at a constant rate (260 K/min) to a 

maximum temperature of 930 °C and holding the sample at the maximum temperature 

for 10 to 120 seconds to reach complete pyrolysis. The volatile pyrolysis products are 

generated during the temperature ramp and are swept from the pyrolyser by nitrogen gas 

flowing at 82 cm3/min to which is added 18 cm3/min of pure oxygen at the inlet to the 

combustor (Figure 2.8 and 2.9). Combustion gases are scrubbed to remove carbon 

dioxide, water, acid gases and the gas stream passes through the flow meter and oxygen 

analyser. Deconvolution of oxygen consumption signal is performed during the test, and 

the heat release rate, heat release capacity, and total heat of combustion are calculated 

and displayed. The crucible is weighed after the test to determine the mass of the 

sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Schematic showing the PCFC setup and how it relates to a real life 

scenario. Image from Lyon et al., 2006. 



Chapter 2 Literature Review 
 

-37- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.9. (a) The PCFC unit (b) sampling stage (c) schematic of the PCFC pyrolyser and combustor setup. Schematic 

courtesy of FTT UK.  

 

(b) 
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2.6.3 Employing the PCFC as a Flammability Testing Tool 
 

Lyon (2000) and Walters (2003) developed this technique with co-workers at the 

Federal Aviation Authority (FAA) laboratories and were first to publish information 

about their experimental results. Their work entitled Pyrolysis combustion flow 

calorimetery was published in 2004. Polymer samples were unfilled, natural or pure 

commercial grades obtained from Aldrich Chemical Company. The commonly used 

polymers consisted of; polyethylene, polystyrene, ABS, PMMA, PET, PEEK and PBI.  

The first parameter attained was the heat release rate in terms of W/g (see Figure 2.10). 

Data for generic polymers from different sources were averaged to obtain values. 

Polymers were listed in descending order of heat release capacities (η) which span the 

entire range measured to date for polymeric solids which showed that polyethylene had 

the highest η value of 1600 J g-1 K-1 and polyimide the lowest 23 J g-1 K-1. Heat release 

capacities can vary by ± 20 % which was said to probably reflect differences in thermal 

stability, chemical backbone structure, molecular weight, chain defects, end groups, 

thermal processing history, and additive package between polymers from different 

sources.  

 

Total heat release h0
c,s is the heat of complete combustion of the pyrolysis gases per unit 

initial mass of polymer. Low total heat release relative to the heat of complete 

combustion measured by oxygen bomb calorimetery indicates that a fraction of the 

pyrolysis products were not oxidized in the PCFC test (e.g. acid gases or char). The 

theoretical relationship between heat release capacity and flammability is an active area 

of research that is being driven by empirical data showing that low heat release capacity 

is a good predictor of ignition resistance and low heat release rate in flaming combustion 

(Babrauskas, 1992). Polycarbonate of bisphenol-A (PC), comprises of a single heat 

release rate peak and forms 20-25 % char when pyrolysed under anaerobic conditions.  
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The total oxygen consumed in the experiment is proportional to the net heat of 

combustion of the polymer as determined in an oxygen bomb calorimeter. The net heat 

of complete combustion of PC calculated from oxygen consumption is the time 

integrated heat release rate. The net heats of complete combustion measured by the 

PCFC are within 2 % of the literature based on the cone calorimeter (Babrauskas 1992; 

Walters et al., 2000) values on average for the ten polymers listed in their work.   

 
Wilkie et al (2006) looked at high-throughput (HT) techniques for rapidly assessing 

combinations of nanocomposites with conventional fire retardant additives using the 

PCFC. This becomes valuable if one has only two components, in addition to the 

polymer, and these could be used at amounts of 5, 10, 15 or 20 %, then it would require 

more than 20 experiments to evaluate this set of data. Since any experiment must be 

replicated, the number of experiments is significantly increased. Pyrolysis combustion 

flow calorimetery was performed using a TGA equipped with an auto-sampler and a 

custom designed evolved gas analysis attachment capable of combusting the pyrolysis 

gases from the TGA in excess oxygen. These heat release rate tests are performed 

automatically at the rate of 2-3 samples per hour, using only a few milligrams of sample. 

The heat release capacity (HRC) is calculated as well as the heat of combustion of the 

pyrolysis gases and the heat release temperature Tmax. The repeatability, relative 

efficiency and data quality of the various HT and conventional flammability 

measurements were calculated. It was shown that the HT methods were more efficient at 

gathering data than UL94 and cone calorimetery, the HT data are quantitative and more 

repeatable than UL94 data. The PCFC was shown to be the best at repeatability as well 

as efficiency. Together with all these benefits the PCFC has the additional advantage of 

small (mg) sample size, for these reasons the PCFC is being considered as a new ASTM 

standard testing method ASTM D20 (2006).  
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Lyon et al (2003) attempted formulating and characterising ultra fire resistant elastomers 

for commercial aircraft cabins using thermal gravimetric analysis, cone calorimetery and 

the PCFC. The assumption was based on altering the chemical composition of the 

polymer from which it is made. Hydrocarbon rubbers, such as polyurethane, styrene-

butadiene (SBR), polyisoprene, and rubbers from ethylene-propylene-diene monomers 

(EPDM) are the most flammable because they ignite easily and have high-fuel value and 

heat release. Replacing carbon and hydrogen atoms in the polymer with inorganic atoms, 

such as chlorine, silicon, nitrogen, sulphur, or phosphorus, results in a polymer with 

reduced flammability because of increased heat resistance and lower fuel value. The 

FAA’s Fire Resistant Materials research program is focusing on semi-inorganic rubbers 

for seat cushions.  The objective was to develop cost effective FR elastomers by means 

of rapid screening processes. The TGA indicates the onset time and temperature for 

decompostion however this does not specify the fire hazards of the material. The heat 

release capacity which is calculated from the PCFC is the molecular-level response of a 

polymer to an imposed heat flux (heating rate) and is proportional to the heat release rate 

in steady-flaming combustion. Consequently, low values of ηc are indicative of low 

flammability in the FAA seat cushion test and low full-scale fire hazard. Thus the 

molecular design of polysilphenylene-siloxane and polyphosphazene has yielded 

flexible elastomers having the fire resistance of high-temperature engineering plastics 

like e.g. polyetherimides, polyetherketones, and polyphenylsulfones based on the results 

from PCFC data.  

 
In another piece of research Walters and Lyon (2003) studied the cure chemistry; 

thermal stability and fire behaviour of fire resistant cyanate ester-epoxy blends. A PCFC 

was used as the first test to screen the materials for flammability. An Ohio State 

University (OSU) fire calorimeter was used to evaluate the flammability of the polymer 

blends under standard conditions (FAR 25.53, 2000). Trends in the measured heat 

release rates of the blends were observed. 
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 The heat release capacity measured in the non-flaming test showed a decrease in the 

heat release capacity with an increasing cyanate concentration. However, the char yields 

from the two flammability tests did not correlate well due to the different sample 

environments. Pyrolysis in the microcalorimeter is completely anaerobic. Conditions in 

the OSU are only anaerobic at the sample surface when the sample is burning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. An example PCFC plot of a research polymer. Image from Lyon and 

Walters, 2004.   

 
If the sample does not ignite or ceases to burn, it is subjected to the radiant heat flux and 

an impinging flame for the duration of the test. The high volumetric flow rate of air 

sweeping over the sample surface at elevated temperatures causes oxidative pyrolysis 

and a lower char yield. Zhang et al (2002) also used the PCFC technique to characterise 

new fire retardant polyarylates.  
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Thermal decomposition behaviour and flammability of three polyarylates based on 

bisphenol A (BPA), 1, 1-dichloro-2, 2-bis (4-hydroxyphenyl) ethylene (BPC II) and 4, 

40-dihydroxy-3-ethoxy benzylidenoacetophenone (Chalcon II), their copolymers and 

blends were investigated by pyrolysis GC/MS, simultaneous thermal analysis and 

pyrolysis combustion flow calorimetry. The heat release capacity which is obtained by 

dividing maximum heat release rate by the sample weight and heat rate indicates the fire 

hazard of the material. Direct integration of the heat release rate versus time gives the 

total heat of combustion of the fuel gases per unit sample mass.  

 

As well as the conclusions about the formulations, this study showed that the 

correlations between PCFC and some standard tests, such as oxygen bomb calorimeter, 

cone calorimeter at 50 kW/m2 incident heat flux and Underwriter Laboratories Test for 

Flammability of Plastic Materials (UL-94), are all comparatively good (Walters, 2001). 

Therefore, the PCFC is an efficient screening tool for newly synthesized fire resistant 

materials. One of the most recent pieces of research work undertaken on the PCFC was 

carried out to assess its potential as a flammability screening tool for polymers. The 

findings led to the belief that the heat release capacity (HRC) and heat release rate 

(HRR) values can be used for an initial screening in terms of intrinsic fire hazards of 

materials. Schartel et al (2007) also commented on the fact that performance in fire tests 

can be estimated, but identifying precisely the materials ability to pass or fail a specific 

test from the investigated set of materials with similar performance is clearly limited. 

Several effects determining the fire behaviour of the material such as wicking, dripping, 

intumescence, to name but a few are not covered by the PCFC. The PCFC screening 

performs better for materials that show large differences in char yield or effective heat of 

combustion of the pyrolysis gases are compared. The well defined conditions of the 

combustion in the PCFC differ essentially from the ones of real fires and fire tests in 

which the fire behaviour of the specimen also crucially controls the fire scenario. The 

complete combustion used in the PCFC rules out an assessment of the influence of flame 

inhibition for the polymeric specimens.  
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Therefore, combing the quasi-equilibrium characteristics of TGA and PCFC and cone 

calorimetery make a useful approach for investigating the behaviour on milligram 

samples. However, PCFC does not account for important physical effects thus other fire 

tests must be undertaken for final quality assurance.  

 

2.7 Conclusions  
 

This chapter presented an overview into topics which concern this thesis and the reason 

for future investigations. Typical issues covered were the progression into biodegradable 

polymer composites and their inferior flame retardancy. Also an introduction into nano- 

fillers and how their superior chemical and physical properties may assist in reducing the 

inherent heat release rate of polymers. Finally, an introduction into the testing methods 

used to asses the flammability of polymeric materials was given. The evolution of 

material synthesis and screening turnaround has required scientist and engineers to 

develop the pyrolysis combustion calorimeter (PCFC). Still in its infancy in terms of 

being used solely for flammability testing, it has not yet been granted international 

standardisation by any governing bodies. Nevertheless this apparatus is ideal for testing 

new polymer nanocomposites in terms of academic research.  
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3 
Reaction to Fire Behaviour of 
Natural Fibre Reinforced Polymer 
Composites: 
A Feasibility Study 
 
 
 
3.1 Introduction 
 
The use of natural fibres have been documented since their use by the Egyptians 3,000 

years ago, but since the seventies a number of high tech synthetic fibres such as glass, 

aramid and carbon fibres have entered and dominated the composite market due to their 

exceptional mechanical and thermal properties. With increasing environmental concerns 

natural fibres are once again being considered as reinforcements for polymer 

composites. The development and application of natural fibre polymer composites have 

been extensively reviewed (Garkhail et al., 2000; Mohanty et al., 2000; Joshia et al., 

2004; Schneider et al., 1995; Peijs et al., 2002). Joshia et al (2004) discussed whether 

natural fibres are environmentally superior to glass fibres by comparing their 

characteristics such as mechanical performance in relation to their environmental 

impact. However, the properties which make these composites ideal in terms of 

recyclability, disposability and cost are disadvantageous in terms of their reaction to fire. 
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The contribution of a material to a fire can be assessed using the cone calorimeter which 

determines the heat release rate in terms of heat evolved per meter squared (kW/m2) by 

oxygen consumption theory (Babrauskas, 1982). A small number of studies have looked 

into the fire performance of natural fibre polymer composites. Schartel and Braun (2003) 

prepared and characterised polypropylene (PP) reinforced with flax fibres in terms of 

mechanical, thermal and fire behaviour. The composite was manufactured in small 

quantities by twin screw extrusion; the formulations included the flame retardants; 

ammonium polyphosphate (NH4PO3) and expandable graphite. A marked difference was 

noticed in the ignition times and peak heat release rate values which were attributed to 

the flame retarding mechanisms of the additives. Helwig and Paukszta (2000) also 

looked into PP with flax fibres, but no flame retardants were used, instead the fibre 

volume fraction was varied.  
 

The results establish that when the fibre content was increased the ignition time was 

delayed and the peak heat release rate value was decreased. The explanation was that the 

fibres charred when exposed to the radiant heat source and protected the material by 

forming a carbonous barrier. Sain et al (2004) studied the flammability of PP filled with 

sawdust and rice husk and made a composite using magnesium hydroxide Mg(OH)2 as 

the flame retardant additive. The tests conducted were an ASTM D635 horizontal 

burning test and an ASTM D2863 limiting oxygen index test. These tests were 

inadequate for extensive reaction to fire characterisation, although improvements were 

noticed with the magnesium hydroxide additive. The objective of this study is to 

formulate, develop and characterise a natural fibre sheet moulding compound (NFSMC) 

using a standard SMC manufacturing route.  In order to improve the flame retardancy an 

industrial formulation containing aluminum trihydroxide (ATH) was used in the 

unsaturated polyester paste. A non-fire retardant formulation containing calcium 

carbonate (CaCO3) was also manufactured to eradicate dilution effects. This fire 

retarded hemp fibre based SMC was assessed and compared to a range of alternative 

building materials in terms of its reaction to fire.  
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3.2 Experimental Study 
 

3.2.1 Sample Preparation 
 

The NFSMC was manufactured at Menzolit UK, two batches were produced, a fire 

retardant (FR) and a non-fire retardant (non-FR) NFSMC. The resin formulation used 

for the glass fibre SMC (SMC) and NFSMC were the same. The constitute 

reinforcements were 25 mm long chopped glass or hemp fibres. Unsaturated polyester 

resin (P17 ortho resin) consisted of 20 wt.% of the overall paste formulation, 40 wt.% of 

filler (CaCO3 or Al(OH)3), 25 wt.% hemp fibre (800 g/m2) fibre length 25 mm and the 

rest of the formulation consisted of catalysts, inhibitors and pigments. The building 

materials consisted of: woven glass (0/90°) vinyl ester laminate, plywood and gypsum 

board. The NFSMC and SMC composite panels were produced by hand lay-up method. 

The semi-finished plies were placed in a mild steel mold (400 × 400 mm). The moulding 

pressure was 16 kg/cm2 (200 lbs/in2) for a dwell time of 7 minutes at 140 °C. The glass 

vinyl ester laminate was manufactured by the vacuum infusion route. After the glass 

mats had been wetted out by the vinyl ester resin, the panel was cured at room 

temperature for 15 minutes and then post cured at 80°C for 3 hours. 
 
Table 3.1. List of materials tested in the cone calorimeter. 
 

Identification Mass 
(g) 

Thickness 
(mm) 

FR NFSMC 92 5 
non-FR NFSMC 97 5 

FR SMC 66 5 
non-FR SMC 74 5 

Glass Vinyl ester 51 5 
Plywood 79 17 

Gypsum board 87 12 
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3.2.2 Experimental Detail  
 

Samples were cut on a table saw to the dimensions of 100 × 100 mm. All materials were 

conditioned at 23 ± 3 °C and a relative humidity of 50 ± 5 % for 24 hours prior testing. 

The samples were wrapped with aluminum foil around the back and edges (Figure 3.1) 

before placing the specimen onto the holder and then into the cone calorimeter. This was 

carried out to prevent any molten material dripping from the sample onto the load cell. 

The samples were then backed with a non-combustible insulating refractory material. 

All tests were carried out in accordance with ASTM E1354 unless stated otherwise. All 

the tests were conducted on the cone calorimeter (Figure 3.2) assembled by Fire Testing 

Technology Ltd, (East Grinstead, UK) in accordance to ASTM E1354 specifications 

which is located at the Interscience Communications Laboratories, Watford. The 

specimens were orientated horizontally and exposed to irradiances of 25 and 50 kW/m2 

which approximate to 600 and 772 °C respectively. The specimens were pilot ignited 

and run in triplicate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. General view of the cone 
calorimeter during a test. 

Figure 3.1. Specimen before testing 
with aluminum foil as stated by 

ASTM E1354. 
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3.3 Results and Discussion 
 

The results of cone calorimeter investigations are a comprehensive characterisation of 

the performance of the tested specimens in a relatively well defined fire test scenario. 

Since the cone calorimeter was developed in order to approximate an ideal performance 

based bench scale fire testing method, some of the results even allow for an accurate 

description of the materials properties, such as the heat release rate, peak heat release 

rate value, ignition times and effective heat of combustion, to name but a few.  

 

3.3.1 Heat Release Rate (HRR)  
 

Heat release rate (HRR) sometimes referred to as rate of heat release (RHR) as measured 

by the cone calorimeter is the heat generated per unit time during burning of the sample 

divided by the surface area of the sample. The HRR is a measure of the rate of heat 

release to the surrounding per unit surface area of burning material. The graphs in 

Figures 3.3 to 3.8 show the change of HRR with time for all the specimens tested. A 

sharp peak is seen for glass vinyl ester (Figures 3.7 and 3.8). The FR and non-FR 

NFSMC have a much lower peak HRR value and broader appearance at both heat fluxes 

(Figures 3.3 to 3.6). The plywood specimen follows this trend as well. The gypsum 

board shows the lowest profile out of all the tested materials (Figures 3.7 and 3.8). The 

peak heat release rate values were also recorded and illustrated in Figure 3.10. These 

graphs show the general shape of a typical heat release rate curve for the NFSMC and 

other building materials which included; glass vinyl ester, plywood and gypsum board. 

The plywood profile (Figures 3.7 and 3.8) consisted of a sharp maximum that appears 

soon after ignition as a result of the surface being consumed. After that, a char layer 

gradually builds up as the pyrolysis front moves inwards. The char layer forms an 

increasing thermal insulation between the exposed surface and the pyrolysis front 

resulting in a continuously decreasing rate of heat release after the first maximum.  
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After that a second maximum appears which is said to be attributed to the pyrolysis front 

encountering unburnt material and refueling the fire Karlsson (1992), Hakkarainen and 

Kokkala (2001). The specimens were backed by a low density ceramic fibre insulation 

blanket, as recommended by the cone calorimeter standard.   
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Figure 3.3. HRR curves for FR NFSMC and FR SMC at 25 kW/m2. 
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 Figure 3.4. HRR curves for non-FR NFSMC and non-FR SMC at 25 kW/m2. 
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Figure 3.5. HRR curves for FR NFSMC and FR SMC at 50 kW/m2. 
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Figure 3.6. HRR curves for non-FR NFSMC and non-FR SMC at 50 kW/m2. 
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This char layer causes a barrier for heat transfer into the material and the process of 

pyrolysis is slowed down. The heat is transferred to the material predominantly from one 

side (top surface) therefore it behaves as a pseudo one-dimensional heat transfer model 

and the quasi-steady burning can be observed after the char layer is formed (middle part 

of the curve). The material then burns gradually through the thickness. This results in an 

increase in heat release rate which reaches a plateau after about 200 seconds of 

combustion. The second peak in the heat release rate curve represents the rear edge 

effects. The last part of the curve after the knee of the heat release rate profile which is 

less than 50 kW/m2 represents the glowing combustion of the char residue at solid gas 

interface (when volatiles had been already burnt out). From the point of view of reaction 

to fire, the most important part of the burning process is the burning of volatiles, which 

gives a much higher heat release rate than the combustion of char residue. The heat 

release rate curve for the plywood is slightly dissimilar to the other specimens. The 

progressional region from the initial peak to the second peak has a ‘fluctuating’ 

appearance unlike the others which have a smooth progression. This can be attributed to 

the different layers burning in the plywood, which is made up of sheets of veneer.  

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

 Glass Vinyl ester
 Plywood
 Gypsum Board

H
R

R
 (k

W
/m

2 )

Time (s)

 Figure 3.7. HRR curves glass vinyl ester, plywood and gypsum board at 25 

kW/m2. 
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Figure 3.8. HRR curves glass vinyl ester, plywood and gypsum board at 50 kW/m2. 

 

It was interesting to observe that the FR NFSMC showed a broad double HRR peak 

(Figures 3.3 and 3.5), which was similar to those of the plywood specimen. This broad 

peak is indicative of the slower release of combustibles whereas the sharp peak of the 

glass vinyl ester laminate (Figures 3.7 and 3.8) is attributable to the higher rate of 

gasification of the resin (Brown et al., 1988; Scudamore, 1994). The non-FR NFSMC 

showed a single HRR peak suggesting that the lower layers decomposed and produced 

combustible volatiles at the same time as the upper layer. The time from the start of the 

experiment to the base of the first peak corresponds to the time to ignition (these match 

ignition values). The sudden decrease in the heat release rate with time is due to the 

formation of char, which was also witnessed with the plywood specimen. This char acts 

as a thermal insulator for the bulk of the material and acts as a passive fire retardant 

mechanism which impedes the heat transfer from the surface to the underlying virgin 

material, which reduces the rate of pyrolysis and the supply of combustible gases to the 

flame front (Madorsky, 1965).  
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3.3.2 Time to Ignition 
 

Time to ignition for the specimens at the different irradiance levels was measured with 

the cone calorimeter by using the ‘CONCAL’ software. The results for the NFSMC’s 

and other construction materials tested at 25 and 50 kW/m2 
irradiance are graphically 

represented in Figure 3.9.  

FR NFSMC
FR SMC

non-FR NFSMC
Glass Vinylester

non-FR SMC
Plywood

--
FR NFSMC

FR SMC
non-FR NFSMC

non-FR SMC
Gypsumboard

Glass Vinylester
Plywood

0 50 100 150 200 250 300
50

 k
W

/m
2

25
 k

W
/m

2

TTI (s)

 
 
 

 
Figures 3.3 to 3.6 indicate that there is a noticeable difference in the FR and non-FR 

NFSMC profiles at both heat fluxes. Firstly, it can be clearly seen from the HRR curves 

that the ignition times for the non-FR NFSMC and FR have been delayed from 185 to 

290 seconds at 25 kW/m2 and 54 to 78 seconds at 50 kW/m2 irradiance. Ignition time for 

a material exposed to a given heat flux depends on many material factors. The most 

important of these are thickness, density and particularly for thin materials, thermal 

conductivity and the substrate used in the test.  

 

Figure 3.9. Time to Ignition (TTI) values of materials tested ant both 

irradiances. 
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For composites the thermal inertia, kρc,  where k refers to the bulk thermal conductivity 

of units(W m-1 K-1), ρ is the bulk density (kg m-3) and C is the specific heat capacity (J 

kg-1 K-1) has a major effect on the ignitability of the surface lining. As many of these 

factors were different for the various materials tested in this study, a comparison in 

terms of ignitability characteristics alone must be treated with caution. Therefore merely 

ignitability data cannot be used to assess the fire hazard of material; as much more 

information is usually required. There are instances, however, where ignition 

characteristics can provide a guide to quality deviations in the product.  

 
This type of information can be obtained from the much cheaper ISO 5657 ignitability 

test, which measures piloted ignition delay times as a function of external flux. 

Essentially one of the most significant parameter had been reduced. The peak heat 

release rate fell from 290 to 159 kW/m2 at 25 kW/m2 and 362 kW/m2 fell to 180 kW/m2 

at 50 kW/m2 (Figure 3.10) with the FR paste consisting of ATH in the NFSMC. The 

addition of ATH to the SMC polyester system reduced the peak heat release rate to the 

surroundings between 44 and 50 % depending on the irradiances used. The glass vinyl 

ester laminate performed the worst in terms of peak heat release rate of which it emitted 

the highest at both 25 and 50 kW/m2 which were 373 and 467 kW/m2 respectively. This 

specimen showed a narrow HRR curve, with high sharp peak after ignition. This was 

believed to occur due to the presence of a resin rich top surface layer (Scudamore, 

1994).  

 
3.3.3 Effect of Irradiance 
 
Measurement of the heat release for the materials was done through the cone 

calorimetery method which is based on oxygen consumption principle. Figure 3.9 

illustrates that irradiance has an apparent effect on the time to ignition.  The gypsum 

board did not ignite at 25 kW/m2. The paper covering the gypsum board charred and 

smoldered.  
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However at 50 kW/m2 the paper face of the gypsum did ignite for 15 seconds. The 

plywood ignited the quickest in 59 seconds at 25 kW/m2 which was reduced to 8 

seconds at 50 kW/m2. The glass vinyl ester laminate was the third quickest to ignite at 

25 kW/m2 of which it took 132 seconds which was reduced to 40 seconds at 50 kW/m2. 

The FR NFSMC performed the best with respects to ignition time delay behavior. 

Ignition at 25 kW/m2 was 290 seconds and 78 seconds at 50 kW/m2. Comparing these 

values with the glass reinforced FR SMC which demonstrated 227 seconds at 25 kW/m2 

and 52 seconds at 50 kW/m2 shows very favourable properties for FR NFSMC. The non-

FR NFSMC also showed a similar improvement over the glass fibre SMC with ignition 

times of 130 seconds and 68 seconds at 25 kW/m2 and 50 kW/m2 respectively. The non-

FR NFSMC showed 185 seconds at 25 kW/m2 and 54 seconds at 50 kW/m2 ignition 

delay time.  
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Figure 3.10. Peak heat release rate of materials tested at both irradiances. 
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3.3.4 Effect of Materials 
 

Unlike synthetic polymers, wood is an inhomogeneous material which is also 

anisotropic. It is a complex mixture of natural polymers of high molecular weight, the 

most important of which are cellulose (~ 50%), hemicellulose (~ 25%) and lignin (~ 

25%) (Madorsky, 1965), although these proportions vary from species to species. 

Moreover, it normally contains absorbed moisture, the amount of which will vary 

according to the relative humidity and conditions of exposure. The rate of heat transfer 

in a hygroscopic material is significantly influenced by the evaporation of any physically 

or chemically entrapped moisture (Davies, 1993). During the heating of a hygroscopic 

material, a complex process of dissociation (dehydration), vaporisation and migration of 

moisture takes place. Therefore when analysing the results obtained from the cone 

calorimeter, discrepancies may occur due to different levels of moisture in the cellulose 

based materials.  

 

3.3.5 Effective Heat of Combustion (EHC)  
 

The effective heat of combustion (EHC) is the heat released per gram of mass lost 

(Figures 3.11 to 3.16). It has a constant value at the beginning of combustion but starts 

to fluctuate in the latter part of the testing. As the heat of combustion is determined by 

the heat of emission and mass loss, the rate of mass loss multiplied by the EHC will 

approximately give the heat release rate (because the effective enthalpy of combustion 

varies during the combustion cycle).  
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Figure 3.11. EHC curves for FR NFSMC and FR SMC at 25 kW/m2. 
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Figure 3.12. HRR curves for non-FR NFSMC and non-FR SMC at 25 kW/m2. 
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Figure 3.13. EHC curves for FR NFSMC and FR SMC at 50 kW/m2. 
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Figure 3.14. HRR curves for non-FR NFSMC and non-FR SMC at 50 kW/m2. 
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Figure 3.15. EHC curves glass vinyl ester, plywood and gypsum board at 25 kW/m2. 
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Figure 3.16. EHC curves glass vinyl ester, plywood and gypsum board at 50 kW/m2. 
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The heat of combustion profiles (Figures 3.11 to 3.16) show almost constant values 

throughout the test for all the specimens tested, but they appear to change during the 

final stages of the burn. This indicates that the composition of the substrate is changing 

with time due to charring (Davies et al., 1993). The effective heat of combustion during 

300 seconds for the NFSMC (EHC300) was moderately reduced from 18 to 11 MJ/kg. 

This indicates that the combustion mechanism is being interfered with, which was most 

likely to do with the ATH decomposing in the vapour phase. However when considering 

the total heat of combustion (THC) during the burning process, the THC value for the 

non-FR NFSMC was 5221 MJ/kg and 7496 MJ/kg for the FR system at 25 kW/m2. The 

values are as expected high at 50 kW/m2 due to the higher energy input into the system 

thus breaking the chemical bonds quicker which in turn emits a higher energy. The 

values were 4880 MJ/kg and 8193 MJ/kg for the non-FR NFSMC and FR system, 

respectively. These values suggest that the CaCO3 filled systems behaved in a much 

more endothermic mode than the ATH system at absorbing the heat. However the ATH 

is far better at interfering and suppressing the combustion process than the CaCO3. The 

addition of aluminum trihydroxide is added to polymers to reduce flammability and 

reduce cost.  

 

The flame retardant mechanism of ATH requires a reaction temperature in excess of 220 

°C, at which point it decomposes thus causing the release of water vapour. This has the 

resulting effect of absorbing heat from the system consequently acting as a heat sink and 

prolonging ignition time. These dilute and displace flammable gases from the 

propagation zone. Together with charring products, an aluminum oxide (Al2O3) 

protective layer is formed on the surface of the substrate. Thermodynamic data of 

aluminum trihydroxide shows it absorbing as high as 1.20 MJ/kg of thermal energy by 

the following reaction: kgMJOHOAlOHAl /20.13)(2 2323 ++⎯→⎯Δ  (Roberts, 1971).  
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Therefore the two functions of the ATH of which the release of water of hydration in 

tandem with absorbing heat is far better than the inert heat sink behavior of the CaCO3 

with respect to reaction to fire performance, this is evident from the ignition times, peak 

heat release rate values and the overall HRR profile.  

 

3.4 Conclusions  
 

This work assed the feasibility of using natural fibres in SMC type material for use in 

the construction industry such as floor coverings which are currently not controlled in 

terms of reaction to fire properties. Internal wall linings where adequate performance 

under British standard reaction to fire tests can be applied may allow the material to 

compete with commonly used plasterboard linings. The incorporation of aluminum 

trihydroxide into the unsaturated polyester resin system did have a significant effect on 

the reaction to fire behavior of the composite. The ignition delay times were prolonged 

and the peak heat release rate values were reduced at both radiant heat fluxes. The 

findings indicated that with adequate flame retardant additives being incorporated into 

the SMC system the NFSMC can compete with some alternative building materials in 

terms of reaction to fire performance.  
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4 
Aluminium Trihydroxide in 
Combination with Ammonium 
Polyphosphate as Flame 
Retardants for Unsaturated 
Polyester 
 
 
 
 
 
4.1 Introduction  
 

Unsaturated polyester resins (UP) are extremely versatile in terms of their properties and 

applications and have been a popular thermosetting resin for glass-fibre reinforced 

plastics (GRP) (Heger and Sharff, 2001). This matrix material has been used for many 

years in broad technology fields such as naval, offshore applications, automotive and 

construction industries. The reinforcement of polyesters has been traditionally with glass 

fibres. Recent studies replacing the traditional fibres with various cellulosic fibre 

reinforcements have shown promising results. These systems meet the environmental 

credentials without losing the characteristic properties of composite materials (Aziz et 

al., 2005; Goutianos et al., 2006; Hapuarachchi et al., 2007). 
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However despite the numerous advantages that polymeric materials provide to society in 

everyday life, there is an obvious disadvantage related to the high flammability of many 

polymers. Fire can be broken down into their constituent fire hazards: ignitability, ease 

of extinction, heat release rate, flame spread, smoke obstruction and smoke toxicity 

(Hirschler, 2001; Purser, 2000; Babrauskas, 1988). According to fire statistics, more 

than 12 million fires break out every year in the United States, Europe, Russia and China 

killing some 166,000 people and injuring several hundreds of thousands. Calculating the 

direct losses and costs for these countries is difficult, but $500 million per annum is an 

estimate based on some national data (Manor and Georlette, 2005). Therefore, in the 

pursuit of improved approaches to flame retardants (FR) of polymers, a wide variety of 

concerns must be addressed. Competing with expensive flame retardant polymers as 

well as reducing the overall cost of the final product demands that the FR’s are kept at a 

reasonable cost. This limits the solutions to the problem primarily to additive type 

approaches. These additives must be easily processable with the polymer, must not 

excessively degrade the other performance properties, and must not create 

environmental problems in terms of recycling or disposal.  

 

Traditional systems such as brominated FR’s (e.g. Hexabromocyclododecane (HBCD)) 

which has been used in many polymers including unsaturated polyester to prevent flame 

spread but have significant disadvantages of producing dense smoke and corrosive 

combustion by-products which can have a negative impact on the environment. Another 

commonly used filler is aluminum trihydroxide (ATH), which is looked upon as a 

greener FR. The effectiveness of this flame retardant tends to be limited since relatively 

large amounts of the filler are needed for adequate flame retardancy (>60 wt.%), which 

has a detrimental effect on the processing and as well as possible alterations to the 

mechanical properties of the final product. Some previous studies have shown improved 

flame retardancy of thermoplastic systems based on improving the effect of ATH in 
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combination with other FR fillers such as nitrogen rich melamine (Zilberman et al., 

2000).  

Also, there has been some research carried out using combinations of aluminum 

trihydroxide together with ammonium polyphosphate (APP) in different polymer 

systems (Castrovinci et al., 2005). These studies resulted in some synergistic and 

antagonistic behaviour with respect to reducing the flammability of the polymer. To 

date, these two fillers have not been used together in a UP system. Therefore the purpose 

of this work is to carry out thermal and cone calorimetry studies on unsaturated 

polyester resin with ATH in combination with APP to create a flame retardant ternary 

system. 

 
4.2 Experimental Study 
 
4.2.1 Materials and Specimen Preparation 
 
This study consisted of bench scale fire testing a set of flame retardant unsaturated 

polyester specimens. The unsaturated polyester resin (UP) used was a P17 (ortho resin) 

from Reichhold Organic Chemicals Ltd. A non-flame retardant specimen consisting of 

50 wt.% calcium carbonate (CaCO3) (~ 200 phr) supplied by Omya UK was prepared. 

The flame retardant fillers used were aluminum trihydroxide (OL104) from Albemarle 

Corporation and ExolitTM ammonium polyphosphate from Clariant. An unfilled 

unsaturated polyester specimen was also produced as a control specimen. To prepare the 

specimens, the fillers were dispersed in the UP under excessive shear mixing using a 

High Speed Mechanical Mixing (HSMM) Citenco, FHP Motors LC9 with four blades. 

The formulation was mixed for 5 minutes at 3000 rpm. The specimens were cured in an 

open steel mould with dimensions of 100×100 mm. The formulations (Table 4.1) were 

prepared and cured for 10 minutes at 140 °C in an air circulated oven.  
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Table 4.1. UP formulations studied in this investigation. 
 

Specimens (Weight percentage) 

Unsaturated Polyester Resin (UP) 

+ 50 wt.% Calcium Carbonate (CaCO3) 

+ 30 wt.% ATH 

+ 40 wt.% ATH 

+ 50 wt.% ATH 

+ 50 wt.% ATH + 5 wt.% APP 

+ 50 wt.% ATH + 10 wt.% APP 

+ 50 wt.% ATH + 15 wt.% APP 

 
4.2.2 Experimental Procedures 
 
4.2.2.1 Cone Calorimetry 
 
All the tests for this study were conducted in the horizontal orientation. An irradiance of 

50 kW/m2 was used. Ignition was spark induced; specimens were run without a retainer 

frame and in triplicate and averaged.   

 
4.2.2.2 Thermal Analysis 
 
Thermogravimetric analysis (TGA) was carried out using TA Instruments Q500 TGA at 

a heating rate of 10 °C/min under air and nitrogen rich atmospheres; with a gas flow rate 

of 20 ml/min. In each case, specimens of approximately 5 mg were positioned in a 

platinum pan. Differential scanning calorimetry (DSC) analysis was carried out using 

Mettler Toledo DSC822e and closed aluminum pans with a pierced hole in the cover. 

Thermal scans were run from 30-350 °C at 10 °C/min with specimen masses averaging 5 

mg, in air.   
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4.3 Results and Discussion 
 
4.3.1 Cone Calorimetry 
 
Inorganic hydroxide flame retardant additives decompose when heated, releasing water 

in the vapour phase of combustion (pyrolysis stage). As this elimination of water results 

in an endothermic reaction, heat is removed from the substrate. This removal of heat 

slows down the decomposition of the substrate, which is indicated by the delay in time 

to ignition (TTI) (Table 4.2) and also the reduction in heat release rate (Figure 4.1).  

 
Table 4.2. The delay in the time to ignition (TTI) for the FR UP specimens.  
 
 
 

Specimens  TTI (s) 

UP 7 

+50 wt.% CaCO3 8 

+30 wt.% ATH 20 

+40 wt.% ATH 22 

+50 wt.%ATH 24 

+50 wt.% ATH+5 wt.% APP 26 

+50 wt.% ATH+10 wt.APP 27 

+50 wt.% ATH+15 wt.% APP 30 

 
This phenomenon allows the substrate to remain below its ignition temperature for the 

duration of the hydroxide decomposition process. Literature reports that the largest of 

the commercially used inorganic hydroxides absorbs between 1000 and 1500 J/g of 

energy during decomposition (Lyons, 1987). Although other references may cite 

different values for this parameter, the apparent discrepancies should not be of great 

concern, as they are relative.  
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The values obtained depend on the type of equipment used to measure the endothermic 

response, the heating rate used, the sample size, particle size, crystal morphology, the 

method of sample preparation and the temperature range used in the determination. The 

addition of the fillers within the UP shows a delay in ignition times. Interference of the 

flame is due to the decomposition mechanisms of the individual fillers which are shown 

by the TGA and DSC thermograms, which will be discussed later. Cone calorimeter 

tests have been performed to estimate the reaction to fire of the flame retardant UP 

systems. Many reactions to fire parameters were determined, such as the time to 

ignition, the heat release rate, mass loss behaviour and the smoke production over time. 

In this study, tests were carried out at 50 kW/m2 heat flux, which in the cone calorimeter 

is considered to represent a well developed fire (Schartel et al., 2005).  

 
The time to ignition data for the tested UP formulations is shown in Table 4.2. A marked 

improvement can be seen in the ATH filled formulations compared to unfilled with 

respect to delaying the ignition time. The UP had a TTI of 7 seconds and combusted 

violently with a large flame during testing. As the loading of ATH increases the TTI was 

prolonged. The ATH starts to break down in the temperature range of 180-200 °C, 

conversion to aluminium oxide taking place in an endothermic reaction with release of 

water vapour. As a result of the endothermic breakdown, the UP is cooled, and thus 

fewer pyrolysis products are formed. The water vapour liberated has a diluting effect in 

the gas phase and forms an oxygen displacing protecting layer over the condensed phase 

(Sobolev and Woycheshin, 1987).   
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Figure 4.1. The reduction in heat release rate profile for the FR UP specimens. 
 

 
 

Table 4.3 reports a PHRR of 836 kW/m2 for the unfilled UP. This was reduced to 289 

kW/m2 with the introduction of CaCO3, which is thought to occur for two reason; (i) 

more of the UP volume had been replaced by the filler, thus simply reducing the amount 

of combustible material present and (ii) when CaCO3 decomposes it releases CO2 which 

is thought to form around the flame front and thus diluting the combustion mixture 

(Deodhar et al., 2006).  

 
 

Table 4.3. The peak heat release rate (PHRR) and total heat release (THR) of the FR 
UP specimens. 
 

Specimens  PHRR (kW/m2) THR (MJ/m2) 
UP 836 80 
+50 wt.% CaCO3 289 85 
+30 wt.% ATH 337 116 
+40 wt.% ATH 319 113 
+50 wt.% ATH 244 107 
+50 wt.% ATH+5 wt.% APP 240 105 
+50 wt.% ATH+10 wt.% APP 230 93 
+50 wt.%ATH+15 wt.%APP 221 90 
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As the ATH loading increased from 30 to 50 wt.% the PHRR decreased from 337 to 244 

kW/m2, respectively. Inorganic hydroxides are generally used at levels of 50 wt.% or 

more to attain the flame retardant results required. In this study 50 wt.% was the 

maximum loading that could be achieved due to very high shear forces needed to 

disperse the highly viscous mixture. The results show that the calcium carbonate had a 

positive effect in reducing the PHRR. This was thought to be due to fuel replacement. 

The ATH reduced the PHRR further, the endothermic and water liberating effect 

reduced the combustion of the specimen. This was evident from PHRR for 50 wt.% 

ATH and 50 wt.% CaCO3 loaded UP specimens, which were 224 and 289 kW/m2 

respectively. The addition of APP also reduced the PHRR. A formulation with the 

maximum ATH loading of 50 wt.% was chosen to formulate three specimens with 5, 10 

and 15 wt.% APP, the PHRR were 240, 230 and 221 kW/m2, respectively. Again the 

explanation for this reduction could be due to more inorganic filler being introduced into 

the resin thus less UP being available for combustion.  

 
However research by Levchik et al (1995) and Shen et al (1969)  have shown a reaction 

between ATH and APP. Ammonium polyphosphate, a well known component of 

intumescent flame retardants is considered a shield coating precursor because of the 

formation of a continuous cross linked vitreous phase called ultraphosphate during 

thermal decomposition (Camino and Luda, 1998). Whereas aluminum trihydroxide on 

thermal decomposition undergoes endothermic dehydration releasing water to the gas 

phase with the in situ formation of a thermally stable ceramic material alumina (Al2O3). 

 
The formation of an Al2O3 surface layer acts in a similar way to an intumescent flame 

retardant whereby it shields the heat and mass transfer between the unsaturated polyester 

and the flame. The flame retardant effectiveness of ATH is however detrimental to the 

mechanical properties (not tested here), i.e. high loadings generally ≥ 50 wt.% are 

necessary to reach a suitable flame retardant effect but results in a dense and brittle 

material (Hippi et al., 2003; Liauw et al., 1995).  
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The combined use of ATH and APP was studied aiming at a more thermally stable P-Al-

O surface coating instead of the P-O, bringing together film forming action of 

ultraphosphate with thermal stability of Al2O3 to improve high temperature surface 

protection of the polymer. Table 4.3 shows the total heat release (THR). Unfilled UP had 

a THR of 80 MJ/m2, which increased for the specimen with the addition of ATH and 

APP. The total heat release is calculated by integrating the area underneath the HRR vs 

time curve. Due to the FRs prolonging the burn time for the specimen’s results in the 

slight increase in THR. Zhang et al (2004) proposed a correction factor based on 

theoretical analysis of taking account of the effective heat of combustion of the filler and 

polymer separately then multiple it with the individual mass loss rates. They suggested 

that if this correction factor was taken into consideration in their study, then the THR for 

a PP specimen loaded with 70 wt. % ATH would have a 6.5 % lower.  

 
Nevertheless the most significant predictor of fire hazard is the heat release rate; 

therefore the rate at which heat is released is of more interest than the total amount 

(Babrauskas and Grayson, 1992; Babrauskas and Peacock, 1992). An increasing burn 

time is indicative of the FR additive impeding or hindering the combustion process. Also 

in general the most important factor in evaluating a material is the peak heat release rate 

(PHRR) as this signifies the time at which the material evolves the maximum amount of 

heat into the surrounding, this can give a crude indication of the time available to escape 

the fire before flashover (the near simultaneous ignition of all combustible material in an 

enclosed area). The unfilled UP reaches its PHRR of 836 kW/m2 in 96 seconds and the 

50 wt.% ATH+15 wt.% APP system reached its PHRR in 76 seconds but this was only 

221 kW/m2 which is almost 4 times lower than the unfilled UP.   
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Table 4.4. The delay in time to peak effective heat of combustion (EHC) and the 

reduction in average EHC of the FR UP specimens. 

 
Specimens Time to Peak EHC 

(s) 

Average EHC 

(MJ/kg) 

UP 236 20.79 

+50 wt.% CaCO3 470 20.86 

+30 wt.% ATH 600 19.92 

+40 wt.% ATH 639 19.44 

+50 wt.% ATH 652 19.28 

+50 wt.% ATH+5 wt.% APP 672 19.08 

+50 wt.% ATH+10 wt.% APP 728 18.91 

+50 wt.%ATH+15 wt.%APP 874 18.81 

 
Table 4.4 shows the time to peak effective heat of combustion (EHC) and average EHC 

for the specimens tested. The EHC is calculated from the THR and total mass loss, 

which was reduced from an overall average of 20.79 to 18.81 MJ/kg for the unfilled UP 

and 50 wt.% ATH+15 wt.% APP system, respectively. This is an indication of the 

combustion mechanism being interfered with, most likely in the vapour phase by the FR 

mechanisms of the aluminum trihydroxide and ammonium polyphosphate. Also, the 

time to peak EHC was delayed, which shows that the combustion is being hindered by 

the flame retardant mechanisms. The results of the smoke parameter measurements 

made in the cone calorimeter can be expressed in a number of different forms. Table 4.5 

displays the time to peak specific extinction area (SEA), which is the total obstruction 

area of smoke produced, divided by the total mass loss during the burn.   
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Table 4.5. The delay in the time to peak specific extinction area (SEA) for the FR UP 

specimens. 

 
Specimens Time to Peak SEA (s) 

UP 136 

+50 wt.% CaCO3 420 

+30 wt.% ATH 645 

+40 wt.% ATH 668 

+50 wt.% ATH 680 

+50 wt.% ATH+ 5wt.% APP 712 

+50 wt.% ATH+10 wt.% APP 720 

+50 wt.% ATH+15 wt.% APP 730 
 
 
The shift in the time to peak is most likely to be due to the FR formulations generating a 

protective charred layer which prevents volatiles and smoke evolving from the 

specimen’s surface. Another important smoke measurement is the average smoke 

production release (SPR). The SPR is the area of obscuration produced per second. 

Figure 4.2 illustrates the effect of FR fillers on reducing the average SPR from 0.06 to 

0.04 m²/s for the unfilled UP and 50 wt.% ATH+15 wt.% APP specimens, respectively. 

Table 4.6 lists the total smoke release (TSR) and total smoke production (TSP). The rise 

in these two properties is indicative of incomplete combustion. This smouldering 

(flameless combustion) effect results in a longer burn time which, allows for more 

smoke and soot debris to accumulate which is especially important here due to the high 

degree of aromatic content (especially the styrene) in the unsaturated polyester resin 

(Troitzsch, 1990).  
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Figure 4.2. The effect on the smoke production release (SPR) of the FR UP specimens. 
 

The gas products released by a decomposing polymer substrate depend on the chemical 

nature of the organic constituents, oxygen availability, and temperature of the fire. Table 

4.6 also displays the mean carbon monoxide yield (COY) in kg/kg. The mean COY is 

seen to be inversely proportional to the TSR and TSP. The theory behind this is that 

more carbon monoxide is liberated at a higher decomposition temperature in the UP 

(Cunliffe et al., 2003). Cunliffe’s group carried out this work on the pyrolysis behaviour 

of various polymers including unsaturated polyester. The generation of carbon oxides 

would be expected from the breakdown of ester bonds within the resin. The higher 

pyrolysis temperatures caused by the higher PHRR of the UP would result in more 

carbon monoxide to be evolved due to further cracking of the polyester chains. While 

the types and amounts can vary between materials, all polymers release carbon 

monoxide and carbon dioxide (Hume, 1992; Sastri et al., 1997). Carbon monoxide is a 

major safety concern because it is lethal at a relatively low concentration, with human 

death occurring within one hour at a concentration of about 1500 ppm (Hirschler, 2001).  

 

0 200 400 600 800
0.00

0.05

0.10

0.15

0.20

0.25

0.30
SP

R
 (m

2 /s
)

Time (s)

 UP
 +50wt.% CaCO3

 +50wt.% ATH +15 wt.% APP
 +50wt.% ATH



   Chapter 4 ATH in Combination with APP as Flame Retardants for Unsaturated Polyester 
 

-83- 
 

Table 4.6. The total smoke release (TSR) total smoke production (TSP) and carbon 

monoxide yield (COY) measurements.  

 
Specimens  TSR 

(m2/m2) 

TSP 

(m2) 

Mean COY 

(kg/kg) 

UP 2172 21.7 0.0311 

+50 wt.% CaCO3 3209 32.1 0.0243 

+30 wt.% ATH 3442 34.4 0.0237 

+40 wt.% ATH 3546 35.5 0.0232 

+50 wt.% ATH 3811 38.1 0.0216 

+50 wt.% ATH+5 wt.% APP 3838 38.4 0.0215 

+50 wt.% ATH+10 wt.% APP 3914 39.1 0.0213 

+50 wt.% ATH+15 wt.% APP 3996 39.5 0.0212 
 
 
Table 4.7. The peak mass loss rate (MLR), residual mass (RM) and average specific 

mass loss for the FR UP specimens from the cone calorimeter.  

 
Specimens  Peak MLR 

(g/s) 

RM (%) Average specific 

ML 

 (g/s·m2) 

UP 0.42 6.8 34.4 

+50 wt.% CaCO3 0.22 36.7 11.1 

+30 wt.% ATH 0.21 17.7 14.4 

+40 wt.% ATH 0.17 18.7 13.7 

+50 wt.% ATH 0.165 25.1 10.9 

+50 wt.% ATH+5 wt.% APP 0.164 26.7 9.7 

+50 wt.%ATH+10 wt.% APP 0.162 28.4 9.3 

+50 wt.%ATH+15 wt.% APP 0.161 28.8 9.3 
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4.3.2 Thermal Analysis 
 

To examine the effect of FRs on the thermal stability and the decomposition behaviour, 

TGA data under nitrogen and air atmospheres were determined and analysed. The TGA 

curve of aluminum trihydroxide (ATH) (Figure 4.3) which was heated to 900 °C shows 

one main weight loss step at about 240 °C which is due to endothermic release of its 35 

% water of crystallisation into the gas phase, this leads to the in-situ formation of a 

ceramic layer of γ-Al2O3. Both the endothermic dehydration and the formation of the 

ceramic layer are responsible for the FR mechanism of inorganic hydroxides (Bourbigot 

et al., 1999).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3. The TGA thermogram of fillers used in the UP formulations.  
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Figure 4.4a. The effect of the various fillers and their combination on improving the 

thermal stability and residual mass of UP. 
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Figure 4.4b. The effect of the various fillers and their combination on improving the 

thermal stability and residual mass of UP tested in nitrogen. 
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The TGA analysis carried out on ammonium polyphosphate (APP) shows that the 

elimination of ammonia and water starts at 190 °C (maximum rate of weight loss at 370 

°C) with transformation of linear crystalline APP into a vitreous crosslinked 

ultraphosphate) which undergoes fragmentation to volatile P2O5. Ammonia evolution 

from APP is related to acidic sites formation involved in the intumescence phenomenon. 

Calcium carbonate (CaCO3) thermally decomposes at a much higher temperature than 

the other two fillers. The single decomposition step occurred at 800 °C which indicates a 

higher thermal stability. Calcium carbonate does not combust; it thermally decomposes 

and converts through the following mechanism; CaCO3→ CaO + CO2. When CaCO3 is 

heated to 800 °C it liberates CO2 and will thus become CaO.  Figure 4.4a and 4.4b show 

the results of the UP formulations test in the TGA under air and nitrogen respectively. 

The formulations started to decompose at around 250 °C due to the decomposition of the 

resin system. The unsaturated polyester started to decompose at 250 °C, whereas the 

main weight loss occurred between 300 °C and 400 °C. During thermal decomposition, 

it is thought that the polystyrene cross-links started to decompose first which was 

followed by volatilisation of the styrene. The linear polyester portion undergoes scission. 

Ferreira et al., 2006 have shown that during thermal decomposition, volatiles are lost up 

to 400 °C while above 400 °C; it is solid phase oxidation reactions that predominate.  

The 50 wt.% CaCO3 specimen demonstrated the best performance in terms of thermal 

stability when tested in air. The ATH loaded specimens showed a marked improvement 

in residual weight retention at temperatures above 600 °C as the loading level increase. 

This is thought to be due to the conversion of Al(OH)3 to Al2O3 which is a thermally 

stable engineering ceramic which possesses a melting temperature of 2054 °C. The 

addition of APP to the formulation also increased the residual mass, which was also 

observed for the cone calorimeter specimens (Table 4.7). It has been well documented 

that as APP decomposes it dehydrates and converts into an intumescent char; this could 

be the reason for the extra residual mass. The ATH+APP specimens which were run 

under nitrogen (Figure 4.4b) showed no major differences to those which were tested in 

air. 
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Since the pyrolysis of polymers during fires are characterised by anaerobe 

decomposition, it was important to conduct the TGA tests in nitrogen as well as thermo-

oxidative conditions. With respect to char yields, the pure UP comprised of slight more 

at the end of the run. However the most significant difference was with the CaCO3 

specimen. There was rapid decomposition after 400 °C and had only a 22 % char yield 

whereas when tested in air it held stable up to 800 °C in which it ended with a 55 % char 

yield. The specimen not being able to form a protective skin in the presence of a 

nitrogen rich atmosphere was thought to be attributed to this difference (Krämer et al., 

2007). Figure 4.5 shows the energy absorption profile investigated by differential 

scanning calorimetry (DSC) on the fillers. The aluminum trihydroxide absorbed the 

most significant amount of thermal energy out of all the fillers. The ATH underwent 

endothermic decomposition and absorbed 978 J/g of thermal energy. However, the other 

two fillers did not show any significant endothermic effects. The DSC scan of APP 

showed an endothermic process between 240 and 260 °C which corresponds to 

polymorphic transitions of residual APP crystal structure form APP I to APP form II, 

above which ammonia and water elimination begins at low rates as seen from TGA 

(Figure 4.6).  
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Figure 4.5. DSC thermogram of the unfilled fillers on their own.   



   Chapter 4 ATH in Combination with APP as Flame Retardants for Unsaturated Polyester 
 

-88- 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6. DSC thermogram of the FR UP formulations. 

 
This process decreases the concentration of fuel available for combustion and limits the 

amount of heat being fed back into the surrounding polymer. The result is a decrease in 

the mass burning rate for the polymer. Figure 4.6 shows the heat sink effect caused upon 

by the introduction of ATH into the UP resin. The direct result of this and the evolution 

of water vapour can be witnessed in Table 4.2 which shows TTI data. As the ATH 

loading increases so too does the time to combustion.  

 
4.4 Conclusions 
 

The purpose of this study was to observe any possible flame retardant improvements to 

commercial unsaturated polyester resin using “greener” non-toxic flame retardants. The 

use of ATH in combination with APP was expected to impart an improved flame 

retardant effect in the UP system. A combination of both FRs showed an improved 

ignition delay time as well as decreases in the peak heat release rate and carbon 

monoxide yield. However, synergistic behaviour was not witnessed but instead a mere 

fuel replacement effect on the role of the fillers is more plausible.  
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In general, synergism can be defined as two or more components working together to 

produce a result not obtainable by any of the components independently. The polymer 

used plays an important part in the effectiveness of these two FR fillers and their 

combination does not work with all polymers as shown in the literature. The additional 

reduction in the PHRR with the addition of APP does not justify its use due to the 

resultant difficulties with increased viscosity, which will result in major processing 

difficulties in adopting these materials in potential fibre reinforced composites.  
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5 
 

Multiwall Carbon Nanotubes and 
Nanoclays as Flame Retardants for 
Unsaturated Polyester 
 
 
 
 
 
5.1 Introduction  
 
 
The purpose of this chapter was to continue the work from previous investigations in 

this thesis. Overcoming the issue of flammability in conjunction with reducing the filler 

loading was the prime objective of this investigation. This study used the same resin as 

previous chapters, however this time with the addition of nano-sized fillers such as 

carbon nanotubes and nanoclays. The initial discovery by Kojima et al (1993) within the 

Toyota group showed that a polyamide-6 clay nanocomposite, containing 5 % clay could 

lead to an increase of 40 % in tensile strength, while at the same time increasing the heat 

distortion temperature while maintaining impact strength. Due to the silicates 

fundamental unit thickness of 1 nm and high aspect ratio in combination with their high 

stiffness, these nanofillers when dispersed well will reinforce polymers far better than 

conventional fillers like calcium carbonate or glass fibres.  
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This has beneficial effects on the processability of the polymer due to a decrease in 

viscosity and a lower density of the material and more importantly less embrittlement. 

After the early work of Kojima et al (1993) in which various nylon-6 clay hybrids were 

investigated to determine their mechanical properties, Morgan et al (2005, 2006) 

contributed by carrying out a literature review into polymer layered silicate 

nanocomposites. Schartel et al (2006) studied the thermal and flame retarding effects of 

phosphonium modified silicates in epoxy resins. The mechanism is thought to be due to 

the clay acting as a barrier to the flame trying to penetrate the unconsumed polymer 

underneath the protective char layer. Layered clays have performed well in retarding the 

flame due to their excellent barrier properties. A recent addition to the nanoclay group is 

sepiolite which is a natural hydrous magnesium silicate. As a clay mineral, structurally it 

consists of two sheets of SiO4 tetrahedra bonded via oxygen atoms to a central sheet of 

octahedrally arranged magnesium atoms. It has a needle-like profile which helps the 

flow ability of the polymer when melt produced. Bilotti et al (2008); Marosfoi et al 

(2008) and Franchini et al (2009) have looked at the dispersion of sepiolite within 

thermoplastic polymers as well as studying the effect on mechanical and thermal 

properties of the resulting nanocomposite.  

 
Since the inadvertent discovery of carbon nanotubes (CNTs) by Iijima (1991), there has 

been a great deal of research into possible applications (Erik et al., 2005; Wang et al., 

2007, 2008). Kashiwagi et al (2005) was one of the first to introduce CNTs into 

polypropylene (PP) with the sole purpose of reducing its flammability behaviour. The 

team reported that a possible mechanism for the reduction in peak heat release rate may 

have been due to the formation of a structured network layer. Beyer et al (2002) has also 

looked into using crude and purified MWNTs to decrease the flammability of ethylene 

vinyl acetate (EVA) copolymer. Dubois et al (2004) took the concept further and 

explored the consequences of using both CNTs and nanoclay fillers together in an EVA 

matrix.  
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A synergic improvement was recorded for this ternary system when compared with the 

binary base systems. Ma et al (2007) also investigated a ternary CNT/nanoclay system 

with acrylonitrile butadiene styrene (ABS). Both studies recorded a reduction in the 

PHRR, and suggested that the CNTs acted as a sealing agent to create a network with the 

clay layers which formed a much tighter char than clay alone. The concept of synergism 

is often used in the enhancement of flame retardant polymer. By definition, synergism 

means the enhanced performance of a mixture of two or more components compared to 

that of a single component at the same concentration. In the field of fire science, this 

concept helps to limit the amount of volatile gases escaping from the degrading polymer 

and impedes the oxygen ingress.  

 
Work to improve the flammability of a thermoset unsaturated polyester resin (UP) using 

multiwalled carbon nanotubes (MWNTs) and sepiolite nanoclay (Sep) was the purpose 

of this study. The conventional flame retardant (FR) used in glass reinforced plastics 

(GRP) is hydrated alumina (ATH) (Hapuarachchi et al., 2009). The disadvantage with 

this FR filler is that a substantial loading level (>50 wt.%) is required to obtain a suitable 

flame retardancy which results is a highly viscous, porous and brittle materials 

(Hapuarachchi et al., 2007). The use of nanofillers either on their own or together in a 

ternary system is anticipated to alleviate some this problem.   
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5.2. Experimental Detail 
 
5.2.1 Materials  
 
The MWNTs used were grade Nanocyl 3150 which is a short thin (95% purity) 

nanotube functionalized with amine (NH2) supplied by Nanocyl S.A. (Belgium). The 

nanoclay was an unmodified sepiolite clay (Sep) donated by Tolsa S.A. (Spain). The 

base resin used was unsaturated polyester (UP) resin (P17 ortho resin) from Reichhold 

Organic Chemicals Ltd. To prepare the nanocomposites the fillers were dispersed in the 

UP under excessive shear mixing using a High Speed Mechanical Mixer (HSMM) 

Citenco, FHP Motors LC9 with four blades. The formulation was mixed for 5 minutes at 

3000 rpm. The formulation was poured into an open steel mould and placed into an air 

assisted oven to cure at 140 °C for 15 minutes.    

 
Table 5.1. Specimen formulations studied these include binary and ternary systems. 

 
 

No Filler 
Binary Systems

       MWNT                    Sepiolite 

        (wt. %)                     (wt.%) 
 

Ternary Systems 

      MWNT                  Sepiolite  

        (wt. %)                   (wt.%) 

 

 

Unfilled UP 

0.5 1 2 1 

1 2.5 0.5 10 

2 5 - - 

- 10 - - 
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5.2.2 Experimental Methods 
 

Thermal gravimetric analysis (TGA) was employed to assess the thermal stability of the 

polymer nanocomposites. The derivative mass loss rate (DTG) was also provided; this is 

used to study the rate in change. A TA Instruments Q500 TGA was used, with average 

specimen weight of 3 mg. The temperature range was from 30 °C to 1000 °C at a ramp 

rate of 60 °C/min in air.  

 
Fire Testing Technologies (FTT, UK) microcalorimeter measures parameters such as the 

heat release capacity (HRC) and peak heat release rate (PHRR) by utilising traditional 

oxygen depletion calorimetry. This is a rapid screening tool which is ideal for 

experimental polymer nanocomposite samples. Although it is not as well established as 

the cone calorimeter, it is the perfect tool to be used additionally with the cone 

calorimeter. The specimens for the microcalorimeter were approximately 5 mg and the 

test runs were carried out in triplicate and then the averaged values were used. The gas 

mixture was an [80/20] N2/O2 mix. For each run the pyrolzer was set to a 60 °C/min 

heating rate to reach 750 °C from room temperature. The combustor was pre-set to 900 

°C.  

 
Cone calorimetry was carried out on samples of 100×100×5 mm. All these materials 

were conditioned at 23 ± 3 °C at a relative humidity of 50% ± 5% for 24 hours prior to 

testing. The samples were wrapped with aluminum foil around the back and edges 

before placing the specimen into the holder and then into the cone calorimeter. A 

retainer frame was used to reduce edge burning effects. All these tests were carried out 

in accordance with ISO 5660 unless stated otherwise. All the cone tests were conducted 

using the FTT cone calorimeter at the Interscience Communications Laboratories, 

Watford, UK. The specimens were positioned horizontally and exposed to an irradiance 

of 50 kW/m2. The specimens were pilot ignited and the tests run were carried out in 

triplicate and then the average values were used. 
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5.3 Results and Discussion 
 
5.3.1 Thermogravimetric Analysis 
 
The TGA and DTG plots for the unsaturated polyester shows three distinct stages of 

mass loss (Figure 5.1). The first occurring at around 250 °C, the second over a range of 

250 to 400 °C and the third, smaller mass loss, from 400-600 °C. The first loss is 

thought to be due to the release of styrene and other volatile products. The resin starts to 

decompose above 200 °C; whereas the main step of mass loss occurs between 200 and 

400 °C. Above 400 °C, solid phase oxidation reactions dominate Ferreira et al (2006). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Mass loss vs. temperature, showing the onset of thermal degradation 

increases with addition of MWNTs. 
 

During thermal decomposition, the polystyrene cross-links start to decompose first 

which is followed by volatilisation of the styrene. The linear polyester portion undergoes 

scission. Ferreira et al (2006) have shown that during thermal decomposition, volatiles 

are lost up to 400 °C and, above 400 °C; it is solid phase oxidation reactions that 

predominate.  
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For the UP nanocomposites, a noteworthy shift in degradation temperature can be 

observed (Figures 5.1-5.4). For the highest loaded CNT filled specimen, a 20 °C 

increase in the onset of degradation temperature has been achieved. It is well 

documented that CNTs are highly resistant to thermal oxidation (Iijima, 1991). This is 

due to the proposed structure in which each carbon atom is completely bonded to three 

neighbouring carbon atoms through sp2 hybridization to form a seamless shell. 

Furthermore, only the outer layer of the CNT is accessible to oxygen therefore using 

MWNTs grants extra resistance to its bulk. For sepiolite the onset temperature shifted by 

28 °C, which is attributed to the formation of a protective ceramic layer during the 

reorganization of the silicate layers in the composite structure at high temperatures 

(Ajayan et al., 1993; Zanetti et al., 2002; Costache et al., 2005). 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Mass loss vs. temperature, showing that the residual char as well as the 

onset temperature have been improved with the addition of sepiolite clay. 
 

The significant delay of mass loss in the sepiolite specimens is thought to be due to the 

barrier effect arising from the dispersion of the sepiolite. Indeed, such morphology 

induces a decrease of both the volatile thermo-oxidation products by diffusion and 

oxygen diffusion from the gas phase into the polymer matrix.  
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Figure 5.3. TGA curve illustrating the thermal degradation behavior of the 1Sep:2CNT 

based ternary system. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.  TGA curve, showing improved thermal behaviour and a larger residual 

mass for the 10Sep:0.5CNT based ternary system. 
 

The ternary mixtures showed a 32 °C and 36 °C delay in the onset temperature for the 

ternary systems based on 1wt.% sepiolite and 2wt.% MWNT (1Sep:2CNT) and 10wt.% 

sepiolite and 0.5wt.% MWNT (10Sep:0.5CNT) systems, respectively.  

200 400 600 800
0

20

40

60

80

100
 UP
 2 wt.% CNT
 1 wt.% Sep
 1Sep:2CNT

M
as

s 
Lo

ss
 (%

)

Temperature (oC)

200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
as

s 
Lo

ss
 R

at
e 

(%
/m

in
)

Temperature (°C)

 UP
 2 wt.% CNT
 1 wt.% Sep
 1Sep:2CNT

200 400 600 800
0

20

40

60

80

100
 UP
 0.5 wt.% CNT
 10 wt.% Sepiolite
 10Sep:0.5CNT

M
as

s 
Lo

ss
 (%

)

Temperature (oC)

200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
as

s 
Lo

ss
 R

at
e 

(%
/m

in
)

Temperature (oC)

 UP
 0.5 wt.% CNT
 10 wt.% Sepiolite
 10Sep:0.5CNT



Chapter 5 Multiwall Carbon Nanotubes and Nanoclays as Flame Retardants for Unsaturated Polyester 
 

-101- 
 

An explanation for this improvement in thermal stability may be found by investigating 

the residual char after cone testing. The 10Sep:0.5CNT ternary system was the only 

specimen that left a continuous char at the end of TGA and microcalorimeter testing 

(11% char@800 °C, see Figure 5.4), indicating a synergistic performance between 

Sepiolite and MWNTs.     

 

5.3.3 Microcalorimetry  
 
Tables 5.2 and 5.3 show the peak heat release rate values from the microcalorimeter and 

the cone calorimeter. The peak heat rate for the neat UP in the microcalorimeter was 271 

W/g and with the addition of 10 wt. % sepiolite, this value was reduced to 260 W/g and 

255 W/g for a loading of 2 wt. % MWNT (Table 5.2).  
 

Table 5.2.  PHRR for the nanocomposites obtained from the microcalorimeter. 
 

         Filler               (wt. %) Peak Heat Release Rate  

(W/g) 

 

CNT 

No filler 271 

0.5       264 

1        258 

2      255 

 

Sepiolite 

1      267 

2.5      263 

5     261 

10        260 

Ternary 

Systems 

 1Sep:2CNT 258 

10Sep:0.5CNT 160 

 

UP 
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Zammarano (2007) has been the only one thus far to have investigated the flame 

retarding properties of nano-silicate clay filled thermoset systems, specifically epoxy. 

One of the mechanisms proposed was that the clay accumulates on the surface to create 

a protective barrier that greatly improves char stability in an oxidative environment. 
However there seems to be a discrepancy in PHRR value in this work when tested in the 

cone calorimeter (Table 5.3). This can be down to specimen size and geometrical 

effects; the microcalorimeter samples are only 5 mg when tested and have an arbitrary 

shape. The cone samples are of defined size and shape (100 mm2) and have a much 

larger surface area for the nanoclay mechanism to take maximum effect.  

 

Additionally, Zhu et al (2001) has also shown that the presence of iron in the silicate 

clay can lead to some radical trapping reactions which may help to lower the heat release 

rate. The loading of the clay is also a key factor; at low amounts of clay the 

paramagmatic radical trapping is effective while the barrier mechanism becomes more 

important at higher contents of clay. The PHRR for the CNT filled specimens are shown 

in Table 5.2. The introduction of 2 wt.% MWNT reduced the PHRR from 271 to 255 

W/g. There have been many concepts which have been proposed to explain how the 

introduction of CNTs could reduce the flammability of polymers. These include the 

formation of a rigid char structure during the combustion rather than a foamed one. Also 

the CNTs can act as a heat sink and distribute the heat globally throughout the material 

which reduces localised decomposition.  
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The authors believe that the percolation threshold had not been reached due to the low 

CNT content; hence no network was produced throughout this material. Wu et al (2006) 

witnessed for their UP/CNT system an electrical conductivity with a percolation 

threshold between 2 and 3 wt.%. Testing the 1wt.%Sep:2wt.%CNT ternary system 

demonstrated no significant change in the PHRR, however the 10wt.%Sep:0.5wt.% 

CNT ternary system showed an almost 50 % reduction in PHRR in comparison to the 

unfilled UP specimen. 

 

The rationale behind this was thought to be due to the CNTs acting as a sealing agent 

which connects the clays to form a much tighter char (Xia et al., 2003)  forming a 

jammed network which impedes melt flow during flaming thus preventing flame spread 

(Figures 5.6d). This is thought to increase the barrier resistance to the evolved 

flammable gases which escape into the condensed phase leading to oxygen ingress 

which would fuel the flame and increase the heat release rate. 

 

5.3.4 Cone Calorimetery and Surface Morphology 
 
Cone calorimetery testing was conducted to confirm the results obtained from the 

microcalorimeter screening tests. The UP binary systems of (i) 0.5 wt.% MWNT, (ii) 10 

wt.% sepiolite and (iii) 10wt.%Sep:0.5wt.%CNT ternary system were brought forward 

for cone calorimeter testing. Table 5.3 shows the PHRR and Figure 5.5 shows the heat 

release rate curve from the cone calorimeter in kW/m2. A similar synergistic trend as 

observed in the microcalorimeter tests in which a 40 % reduction in PHRR was 

documented. In Figure 5.5, the second peak for the 10wt.%Sep:0.5wt.%CNT ternary 

system had been reduced when compared to the 10 wt.% binary specimen (label A). 

This indicated that the char had less surface cracks present and an increased stability 

over time (Beyer, 2004), thus lowering the oxygen ingress and diffusion of the 

decomposition products by a “labyrinth effect” (Bharadwaj et al., 2002). 
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Table 5.3. PHRR results for the binary and ternary nanocomposite formulations in the 

cone calorimeter. 
 

Specimen Peak Heat Release  Rate 

(kW/m2) 

UP 640 

0.5  wt.% CNT 610 

10   wt.%  Sep 477 

10wt.%Sep:0.5wt.%CNT 370 
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Figure 5.5. HRR vs. time, depicting the lowering of the HRR of the nanocomposite 
specimens. 
 
The images in Figure 5.6 illustrate the photographs and scanning electron images of the 

specimens post cone calorimetery. As expected, the unfilled UP rapidly decomposed 

which was accompanied by numerous bubbling on the sample surface. At the end of the 

test, a small amount of residual char was left (Figure 5.6a), indicating poor 

carbonization.  
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The sample with CNTs (Figure 5.6b) showed the least amount of residual char, which 

was thought to be due to the CNTs conducting the heat throughout the material and thus 

accelerating the decomposition process. The sepiolite filled specimen showed a strong 

char after testing. However large cracks can be seen permeating its bulk. The final 

photograph shows the char fragments of the 10wt.%Sep:0.5wt.%CNT ternary specimen, 

which seems to be smaller and encompassing fewer cracks. The mechanism of the CNTs 

helping the clay to seal the char can be observed in Figure 5.6d. The introduction of the 

CNTs to the sepiolite increased the thermal stability of the char. It formed a continuous 

network-type protective layer that mainly consisted of small fragments without any 

significant openings or cracks. Bubbling on the sample surface may supply evolved 

combustible decomposition products to the flame, which in turn compromises the flame 

retardant effectiveness. Figure 5.6 also illustrates SEM images which may help explain 

the mechanism of the 10wt.%Sep:0.5wt.%CNT ternary system. The first set of images 

show the loosely cracked surface of the pure UP with a high area of porosities. The CNT 

filled samples show a network structure within the char. The char seems slightly tighter 

with some of the CNTs attempting to bridge the openings. The sepiolite filled specimen 

shows a much tighter char with some pores in between the needle-like clay layers and 

micro-cracks in the layer surface. For the ternary system, the char is much denser and 

has far fewer pores than the individually filled samples.  
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Figure 5.6. Shows photographs of the specimens post cone calorimetery.  

(a) 

(c) 

(b) 

(d) 
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Table 5.4.   Peak mass loss rate (MLR), average MLR and residual mass values for the 
nanocomposites.  
 

Specimen Peak MLR  

(g/s) 

Average MLR  

(g/s) 

Residual Mass  

(%) 

UP 0.29 0.09 8.1 

0.5 wt.% CNT 0.30 0.15 3.4 

10 wt.% Sep 0.22 0.07 16.6 

10Sep:0.5CNT system 0.19 0.06 17.3 

 
 
Table 5.4 shows the residual mass after calorimetery testing. The CNT filled specimen 

showed the lowest residual mass. Again, this is thought to be due to the CNTs increasing 

the thermal conductivity of the specimen, thus not giving adequate protection to the 

material leading to a more rapid decomposition. The addition of CNTs did not reduce 

the overall PHRR or the mass loss rate (MLR) (Figure 5.7) which are related to each 

other. The rate at which the specimen degrades and releases the volatile gases assists the 

flame intensity which resorts in a higher HRR. The unfilled UP and CNT reinforced 

specimens showed a peak at around 100 seconds. The other specimens showed a high 

peak at the start, which is thought to be attributed to the top layer of resin being involved 

in the combustion. There is a decrease in the rate of mass loss until 370 seconds where 

the trend rises again. This is thought to be due to a delayed accumulation of thermal 

energy within the specimen. Another possible reason could be because only now does 

the rear of the specimen becomes finally involved in the combustion process after being 

shielded thus far. When sepiolite was introduced the MLR decreased. This is believed to 

be due to a stable char formation and an increase in the total surface area of the char. A 

similar trend can be witnessed in the HRR chart (Figure 5.5) where after 300 seconds the 

HRR is found to increase again.   
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As established, the most profound effect of using nanofillers was the reduction of the 

PHRR, peak mass loss rate and residual mass (Table 5.3). These rates and values are 

correlated with each other, so attention is on the HRR or PHRR since they are the most 

corresponded parameters.  
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Figure 5.7. Mass Loss Rate (MLR) vs. time profile obtained from the cone calorimeter 

for the nanocomposite specimens. 
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Figure 5.8. Total heat release rate (THR) in the cone calorimeter for the nanocomposite 

specimens.  
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The 10wt.%Sep:0.5wt.%CNT ternary specimen tested in this investigation showed the 

largest reduction in PHRR. However another important parameter measured was the 

total heat release (THR) (Figure 5.8), which did not change. This suggested that a barrier 

was formed during combustion which influenced the reaction to fire behaviour. The 

unchanged initial reaction to fire corresponds to the time period until a barrier was built 

up. The reduction in HRR without any change in the THR indicates that a physical 

barrier prolongs the burning times without decreasing the total amount of combustible 

material. The clay based barrier only slows down the release of fuel; it does not fully 

prevent it. So polymer nanocomposites will burn slowly until almost all the carbon mass 

has been pyrolyzed and combusted, which means that the total heat release is unchanged 

from that of the base polymer, however the peak and average heat release rate is 

lowered.  

 
5.4 Conclusions  
 
The objective of this investigation was to study the thermal behaviour and flammability 

of an unsaturated polyester based binary and ternary nanocomposite system. The 

outcome has shown that the use of CNTs in combination with sepiolite nanoclays can 

lead to advantageous synergetic behaviour in terms of increasing the thermal stability, 

residual char and lowering the PHRR. The most important benefit of the 10 wt.% 

Sep:0.5wt.%CNT ternary system is that it reduces the PHRR, which is the most critical 

fire hazard, by a synergistic reaction involving the formation of a stable residual char. 

This char formation reduces the amount of small volatile polymer pyrolysis fragments, 

or fuel, available for flame. This in turn reduces the amount of heat released and feed 

back into the polymer surface. The char also insulates the underlying polymer, due to its 

low thermal conductivity, and reradiates externally impinging energy away from the 

polymer. The char also functions as a mass transport barrier by physically delaying the 

volatilisation of decomposition products and or trapping decomposition products 

through chemical reaction.   
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6 
Multiwall Carbon Nanotubes and 
Nanoclays as Flame Retardants for 
Polypropylene 

 
 
 
 
 
 
 
6.1 Introduction 
 
 

For more than a decade, potential environmental problems associated with organo-

bromine flame retardant systems have motivated the search for non-halogenated based 

approaches to reduce polymer flammability. Initially, research focused on the 

development of new phosphorus based flame retardants and numerous publications and 

patents have been issued in this area (Wang et al., 2007; Liu et al., 2001). Similarly, 

research also produced non-halogen flame retardant approaches based on other elements 

such as boron (Wei et al., 2002) and silicon (Park et al., 2002). At the same time, 

research focused on the use of additives, or fillers with nanometer scale primary particle 

sizes to produce polymer nanocomposites. These materials exhibit enhancement in a 

variety of physical properties at typically one-tenth the loading required when micron 

sized additives are used.  
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Polypropylene (PP) was the first synthetic stereo-regular polymer to achieve industrial 

importance and it is presently one of the fastest growing polymers for technical end-uses 

when good mechanical properties coupled with low-cost are essential (Pasquini et al., 

2005). Because of its wholly aliphatic hydrocarbon structure, polypropylene by itself 

burns very rapidly with a relatively smoke-free flame and without leaving a char residue. 

It has a high self-ignition temperature (570 °C) and a rapid decomposition rate compared 

with wood and other cellulosic materials and hence has a high flammability (Einsele et 

al., 1984). In recent years, nanocomposites have become the most widely studied subject 

of flame retardant research due to attaining similar if not better flame retarding 

performances to their micron sized counterparts but at much lower loading levels, thus 

preserving better the characteristics of the unfilled polymer such as good flow, 

toughness, surface finish and low density.   

 
Blumstein (1965) first reported improved thermal stability of a polymer/clay 

nanocomposite when poly(methylmethacrylate) was combined with layered 

montmorillonite clay (MMT). Leszczyńska et al (2006, 2007) also reported on the 

thermal behaviour of PP/MMT composites. Intercalated layered cloisite nanoclays also 

improved the flammability of PP nanocomposites (Zhang et al., 2006). According to the 

thermogravimetric analysis, the decomposition temperature increased from 259 °C of PP 

to 309 °C of the PP/cloisite nanocomposite. Flammability characterisation of 

polymer/clay nanocomposites, under fire-like conditions using the cone calorimeter 

revealed improved flammability properties for many different types of polymer/clay 

nanocomposites (Gilman et al., 1997; NIST 1998). A recent addition to the nanoclay 

group is sepiolite which is a natural hydrous magnesium silicate. As a clay mineral, 

structurally it consists of two sheets of SiO4 tetrahedra bonded via oxygen atoms to a 

central sheet of octahedrally arranged magnesium atoms. It has a needle-like profile 

which helps the flowability of the polymer when melt processed.  
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Bilotti et al (2008, 2009) and Ma et al (2007) have studied the dispersion of sepiolite 

within thermoplastic polymers as well as their effect on mechanical and thermal 

properties of the resulting nanocomposites. Due to their typical anisotropic structure and 

high aspect ratio, carbon nanotubes (CNTs) show characteristic properties. CNTs have 

shown to improve mechanical (Ciselli et al., 2007; Wang et al., 2007; Deng et al., 2009) 

and electrical properties of polymers (Zhang et al., 2007,2009; Deng et al., Jul/2009, 

Nov/2009) but CNTs are also an interesting alternative to the use of conventional flame 

retardants. Their incorporation at low loadings (<3 wt.%) have been reported to improve 

the flammability of a large range of polymers, initially ethylene vinyl acetate (EVA) 

(Peeterbroeck et al., 2007), poly(methyl methacrylate) (PMMA) (Kashiwagi et al., 

Jan/2005), polyamide 6 (PA-6) (Schartel et al., 2005), and polypropylene (PP) 

(Kashiwagi et al., May/2005). Kashiwagi (May/2005) studied the effect of nanotube 

dispersion on the flame retardant properties of PP nanocomposites. They showed that the 

incorporation of as little as 1 wt.% well dispersed single-walled nanotubes (MWNT) in 

PP led to a marked decrease in the heat release rate (HRR) measured in the cone 

calorimeter. Dubois et al (2004) took the concept further and explored the potential of 

using both CNTs and nanoclay fillers together in an EVA matrix. A synergic 

improvement was recorded for this ternary system when compared with the binary base 

systems.  

 
Ma et al (2007) also investigated a ternary CNT/nanoclay system with acrylonitrile 

butadiene styrene (ABS). Previous work from our group reported similar synergistic 

improvements in flame retardancy for ternary nanocomposite systems based on 

unsaturated polyester (UP) (Hapuarachchi et al., 2010). All these studies recorded a 

reduction in the peak heat release rate (PHRR) and suggested that the CNTs acted as a 

sealing agent to create a network with the clay layers, forming a much tighter char than 

clay alone. The intention of this research is to develop a thermoplastic polypropylene 

based nanocomposite system with reduced inherent flammability.  
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For this the flammability of a number of polypropylene nanocomposites was assessed 

via a series of thermal and reaction to fire tests. Well established test methods will be 

used such as thermal gravimetric analysis, cone calorimeter as well as the new 

microcalorimeter. This is a newly developed apparatus to measure the heat release rate 

of milligram samples (Lyon and Walters 2004). Previous research has shown that the 

heat release capacity (HRC) measured by the microcalorimeter or pyrolysis combustion 

flow calorimeter (PCFC) was proportional to the HRR measured by conventional cone 

calorimeters and, therefore, be a reasonable estimate of fire hazard, albeit using smaller 

quantities of samples. This is especially advantageous for the development of 

nanocomposites, as materials can be screened quickly as well as economically due to the 

use of small amounts of material. 

 
6.2 Experimental Procedure 
 
6.2.1 Materials  
 
As base polymer an isotactic polypropylene (PP) resin in granular form was used with a 

melt flow index (MFI) of 44 g/10 min, from Dow Chemical Company. The sepiolite 

nanoclay (PANGELTM) was supplied by Tolsa S.A. (Spain). Sepiolite (Sep) is a needle-

like clay with a bulk density of 60 ± 30 g/L, and a BET surface area of 320 m2/g. The 

characteristic average dimensions of the individual sepiolite fibres are 1-2 mm in length 

and 20-30 nm in diameter. A number of different CNTs were used; (i) thin multiwalled 

nanotubes (MWNT) with 95+% purity (Nanocyl® 3100); (ii) MWNTs coated with high 

density polyethylene (HDPE) with 44.8 wt% CNT loading (Nanocyl® 9000); (iii) 

industrial grade MWNTs with 90% purity (Nanocyl® 7000); (iv) thin MWNT-COOH 

(functionalized with carboxylic and hydroxyl acid); and (v) short and thin MWNT-NH2 

with 95+% purity (functionalized with amides). All CNTs were supplied by Nanocyl S.A 

(Belgium). Conventional micron sized flame retardants were also used for comparison.  
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These were aluminium trihydroxide (ATH) grade OL104 supplied by Albemarle 

Corporation (USA) and ammonium polyphosphate (APP) ExolitTM from Clariant UK 

Ltd. 

 
6.2.2 Compounding 
 

The manufacturing of the polymer nanocomposites were carried out on a DSM Xplore 

micro 15 twin-screw extruder. This mini extruder is equipped with conical co-rotating 

screws having a length of 150 mm, an L/D ratio of 18 and a net capacity of 15 g. The 

processing scheme was to compound the polymer composites at 200 °C for 10 minutes 

at a mixing speed of 200 rpm. After carrying out the bench scale thermal analysis tests 

using the microcalorimeter, the best performing resin formulation was up-scaled using a 

Collin ZK25 co-rotating twin-screw extruder with K-Tron gravimetric feeders. Master 

batches of sepiolite and MWNTs (20 wt.% each) were compounded separately and then 

diluted with PP to the required filler content (10wt.%Sep+2wt.%CNT). The final batches 

were pelletized using the Collin CSG/171/1 attachment. A Collin P300E hydraulic hot-

press was used at a pressure of 5 bar for 10 minutes at 190 °C to mould the pellets into 

220×200 mm2 plates with a thickness of 6 mm weighing approximately 240 g.  

 

 

 

 

 

 

 

 

 

Figure 6.1. (a) Mini extruder unit (b) conical twin screws (c) twin screw extruder  
(d) tape extrusion. 
 

(a) (b) (c) (d) 
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6.2.3 Characterisation 
 

Thermal gravimetric analysis (TGA) and derivative thermal analysis (DTA) was carried 

out on a TA Instruments Q500, with specimen size of 5-10 mg. The temperature range 

was from 30 °C to 1000 °C at a ramp rate of 10 °C/min in air and nitrogen atmosphere. 

The specimens for the pyrolysis combustion flow calorimeter (PCFC) or 

microcalorimeter (Figure 6.2) were approximately 5 mg and the tests were carried out in 

triplicate and results averaged. The gas mixture was an 80:20 N2:O2 mix. For each run, 

the pyrolzer was set to a 60 °C/min heating rate to reach 750 °C from room temperature. 

The combustor temperature was pre-set to 900 °C. Cone calorimetry was carried out on 

samples of 100×100×5 mm3. All materials were conditioned at 23 ± 3 °C at a relative 

humidity of 50 ± 5% for 24 hours prior to testing. The samples were wrapped with 

aluminium foil around the back and edges before placing the specimen onto the holder 

and then into the cone calorimeter. A retainer frame was used to reduce edge burning 

effects. All the tests were carried out in accordance with ISO 5660 unless stated 

otherwise. The specimens were positioned horizontally and exposed to an irradiance of 

50 kW/m2. The specimens were pilot ignited and run in triplicate. 
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Figure 6.2. (a) Schematic and microcalorimeter setup and how it relates to a real life 

scenario (b) Photograph of FTT’s microcalorimeter. Schematic modified from (Lyon 

and Walters 2004) and photograph courtesy of Fire Testing Technology Ltd.   

 
6.3 Results and Discussion 
 
6.3.1 Thermal Gravimetric Analysis  
 
6.3.1.1 Polypropylene 
 
Thermogravimetric analysis (TGA) is widely used to characterise the thermal stability of 

polymers. The 100 °C shift observed when tested in N2 is due to the thermal oxidative 

volatilisation of PP (Figure 6.3). 

 

 

 

 

 

(a) (b) 
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Figure 6.3. (a) Thermogravimetric analysis (TGA) and (b) differential thermal analysis 

(DTA) scans of PP in air and nitrogen, showing the effect of testing PP in different 

atmospheres. There is an onset decomposition shift of 100 °C when tested in nitrogen 

rather than air. 

 
Polypropylene volatilizes completely, in two steps beginning at about 250 °C through a 

radical chain process propagated by carbon centered radicals originated by carbon-

carbon bond scission (Marosfoi et al., 2006). Above 200-250 °C oxidative 

dehydrogenation of PP starts to occur, while depolymerisation and random chain 

scission by direct thermal cleavage of carbon-carbon bonds becomes possible in air as 

well as in nitrogen, above 400 °C. In general, the addition of fillers can improve the 

thermal stability of polymer composite systems to some extent. Numerous studies have 

reported that polymer/carbon nanotube (CNT) composites can exhibit a higher thermal 

stability than that of the polymer alone (Gorrasi et al., 2007; Kim et al., 2007). To better 

understand the effect of MWNT and sepiolite nanoclay on the decomposition behaviour 

of PP composites, the thermogravimetric behaviour of PP nanocomposites in air and N2 

was analysed.  
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6.3.1.2 PP/MWNT 
 
Microcalorimeter tests were carried out first for initial screening of the nanocomposite 

systems and will be presented later. These test showed that PP with Nanocyl 3100 gave 

the best performance with respect to PHRR and HRC. Therefore this CNT type was used 

throughout the thermal degradation studies. The influence of the CNTs on thermal 

degradation of PP can be seen more clearly when tested in air and with increasing CNT 

content so does the onset decomposition temperature and residual mass (Figure 6.4). The 

mechanism is thought to contribute to the delay in thermo-oxidation of PP in presence in 

air (Levchik et al., 1999; Lánská et al., 1999). 

 

 

 

 

 

 

 

 
 

Figure 6.4. TGA scans of PP with MWNTs in (a) air and (b) nitrogen, showing the effect 

of CNTs on the decomposition behaviour of PP.  
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Table 6.1. Parameters obtained for PP and its multiwalled nanotubes nanocomposite 

from TGA. 

 
CNT  

(wt.%) 

Atmosphere Onset decomposition 

temperature 

(°C) 

Residual mass 

(%) 

0 Air 279 2 

0 N2 392 2 

0.5 Air 267 2 

0.5 N2 417 1 

1 Air 279 2.3 

1 N2 414 0.5 

2 Air 292 3 

2 N2 416 1 

5 Air 298 5.3 

5 N2 435 4.5 

10 Air 332 9.6 

10 N2 437 7.5 

 
The presence of CNTs may hinder thermo-oxidation of PP in the earlier stages of 

decomposition, and thus increase the thermal stability of the composite. As mentioned 

before, the decomposition of PP experiences free radical chain reaction (Zhang et al., 

2009) and the CNTs may easily trap a number of free radicals thus enhancing the 

thermal properties of the polymer. The higher the CNT content, the higher the 

decomposition temperature, as shown for the PP/MWNT nanocomposites. The unfilled 

polymer and its composites show single step decomposition in N2. However, the 

degradation trace shows less defined decomposition behaviour when tested in air.  
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Analogous behaviour, regarding the improvement of thermal stability of PP 

nanocomposites in an inert atmosphere, has been reported in literature and is attributed 

to the shielding effect of nanoparticles inhibiting the elimination of the formed volatile 

by-products (Levchik et al., 1999; Lánská et al., 1999). Unfilled isotactic polypropylene 

decomposes completely while the residues in the nanocomposite samples with CNTs are 

almost consistent with the amount of nanotube additive introduced into the polymer. 

 
6.3.1.3 PP/Sepiolite 
 
 
Figure 6.5 shows the thermogram of PP with sepiolite in air and the delay in onset 

thermal decomposition temperature with increasing nanoclay loading. Previous research 

established that layered silicate nanostructures create an efficient barrier to oxygen 

towards the native polymer (Dubois and Alexandre 2006). 

 

 

 

 

 

 

 

 
 
Figure 6.5. TGA analysis of PP with sepiolite in (a) air and (b) nitrogen, showing the 

effect of sepiolite clay on the decomposition behaviour of PP. 
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Polymer molecules trapped within the silicate layers are thus brought into close contact 

with oxygen and catalyse silicate layers to produce a thermally and oxidative stable 

carbonized structure. The converse is present when tested in nitrogen. As the sepiolite 

loading increases the onset temperature decreases. This could be possibly due to 

catalytic effects of the acidic sites on the clay surface. There is a significant change in 

thermal behaviour of the nanocomposites when tested in different atmospheres. The 

decomposition process is delayed in nitrogen compared to air. Table 2 confirms that for 

a 10 wt.% loaded sepiolite specimen, the onset decomposition temperature in air is 230 

°C, whereas it is 343 °C in nitrogen. This can be seen throughout the range of materials 

studied with respect to peak derivative decomposition temperature and residual mass. 

The difference between these mass losses suggests that there are two types of 

carbonaceous materials in the carbon part of the clay-char; a carbonaceous material that 

can be gasified by heating in nitrogen and a second fraction of material which requires 

more aggressive conditions; heating in the presence of air which allows for oxidative 

decomposition and complete removal of the carbonaceous material.  
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Table 6.2. Parameters obtained for PP and its sepiolite nanocomposite from TGA. 

 
Sepiolite 

(wt.%) 

Atmosphere Onset decomposition 

temperature 

(°C) 

Residual mass 

(%) 

0 Air 279 2 

0 N2 392 2 

1 Air 240 2 

1 N2 386 3 

2.5 Air 244 2 

2.5 N2 380 4 

5 Air 233 4 

5 N2 379 4 

10 Air 230 7 

10 N2 343 10 

 
6.3.1.4 PP/MWNT/Sepiolite 
 
Figure 6.6 shows the thermogram of the PP, PP/MWNT, PP/sepiolite and a ternary 

nanocomposite system, again both in air and nitrogen atmospheres. As shown separately 

in Figure. 6.4 and 6.5, the addition of MWNTs or sepiolite nanoclay improves the 

thermal stability of PP in air with respect to onset decomposition temperature; again this 

is thought to be due to the shielding effects of the nanofillers, which reduce the ingress 

of oxygen which is thought to accelerate decomposition. However, interestingly the 

formulation of a ternary system based on a combination of MWNTs and sepiolite clay 

reduces the onset delay in air even further. The rationale behind this is thought to be due 

to the CNTs creating a rigid network structure thus altering the rheology.  
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The ternary system closely followed by the sepiolite based system presented also the 

highest residual char. The CNTs are thought to aid in creating a tighter char network 

towards the end of the decomposition process by bridging the clay rich regions together.  

 

 

 

 

 

 

 

 
 
Figure 6.6. TGA analysis of PP ternary system (10 wt.%Sep+2wt.%CNT) in (a) air and 

(b) nitrogen, showing the increase in residual char and improved thermal stability in air 

compared to binary nanocomposite systems and neat PP resin. 

 
6.3.2 Microcalorimetery 
 
Various PP nanocomposite formulations were tested in the microcalorimeter. The 

tablulated microcalorimetry screening test results are presented in Tables 6.3-6.8. All the 

various formulations did not seem to reduce the heat release capacity (HRC). Table 6.3 

shows the effect of various CNT grades on the flame retardancy of PP nanocomposites 

at 1 wt.%  loading. No significant reduction to the HRC was observed. If fact, the HRC 

increased for one type of CNT having a polyethylene coating (Nanocyl 9000), lowering 

the thermal stability of this nanocomposite (Ebbesen et al., 1996).  
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Table 6.4 also shows an increase in HRC in conjunction with filler loading. Carbon 

nanotubes are known to increase the electrical (Berber et al., 2000) as well as thermal 

conductivities of polymers (Le Bras and Bourbigot 1998). The thermal conductive 

network present in these materials may have accelerated the decompostion process. 

 
Table 6.3. The effect of different CNT grades on peak heat release rate (PHRR), total 

heat release (THR) and heat release capacity (HRC) of PP nanocomposite. 

Compounding time 15 min, (1 wt.% MWNTs). 

 

Sample 
PHRR 

(W/g) 

THR 

(kJ/g) 

HRC 

(J/g-k) 

PP 1051 40.3 1034 

+Nanocyl 9000 1070 39.2 1050 

+Nanocyl 7000 1066 37.7 1046 

+Nanocyl 3100 1061 36.2 1040 

+Thin MWNT-COOH 1058 36.9 1035 

+Short thin MWNT-NH2  1061 37.7 1039 

 
Table 6.4. The effect of CNT loading on peak heat release rate (PHRR), total heat 

release (THR) and heat release capacity (HRC) of PP/CNT (Nanocyl 3100).  

 

Sample 
PHRR 

(W/g) 

THR 

(kJ/g) 

HRC 

(J/g-k) 

PP 1051 40.3 1034 

+ 0.5 wt.%  CNT 1055 39.8 1036 

+ 1 wt.%     CNT 1059 38.7 1039 

+ 2 wt.%     CNT 1080 37.9 1060 
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Table 6.5. The effect of sepiolite loading on peak heat release rate (PHRR), total heat 

release (THR) and heat release capacity (HRC) of PP. 

 
Sample 

  

PHRR 

(W/g) 

THR 

(kJ/g) 

HRC 

(J/g-k) 

PP 1051 40.3 1034 

+ 1 wt.%     Sep 1072 38.6 1046 

+ 2.5 wt.%  Sep 1102 37.9 1078 

+ 5 wt.%     Sep 1111 38.8 1090 

+ 10 wt.%   Sep 1121 36.1 1102 

 
Table 6.6. The effect of mixed nanofiller (MWNT plus sepiolite) loading on peak heat 

release rate (PHRR), total heat release (THR) and heat release capacity (HRC) of PP. 

 

Sample 
Peak HRR  

(W/g) 

Total HR  

(kJ/g) 

HR Capacity  

(J/g-k) 

+ 10 wt.%    Sep 

+ 0.5 wt.%  CNT 
 

1064 36.9 1045 

+ 10 wt.%   Sep 

+ 2 wt.%    CNT  
1051 35.9 1032 

 
If heat is conducted through these small samples the mass loss rate will also accelerate 

and emits more volitile gases which increase the HRC. Therefore, two conventional 

flame retardant additives were compounded into the PP and tested for comparison. Both 

these fillers did give a reduction in HRC (Table 6.7). The commonly used ammonium 

polyphosphate (APP) decomposes into polymeric phosphoric acid and ammonia, which 

assists in char formation (Rimez et al., 2008).  
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Aluminium trihydroxide (ATH) is known to release water vapour together with being 

converted into a stable form of aluminia, which protects the underlying polymer 

(Hapuarachchi et al., 2007). However, the filler content in these materials was so high 

that fuel dilution was thought to prevale (Hapuarachchi and Peijs 2009). After these 

inconsistencies in HRC values, the effect of testing technique was studied. As shown in 

the schematic of the microcalorimeter (see Figure 6.2), nitrogen gas is introduced to the 

sample from the bottom inlet during standard operating procedures. The volatile gas 

stream is then carried to the combustor area where is reacts with oxygen. For one of the 

test runs, oxygen was introduced to the sample from the bottom gas inlet. Immediately 

here the HRC was also significantly reduced for the ternary nanocompostie system 

(Table 6.8).  

 
Table 6.7. The effect of convential flame retardant fillers in the microcalorimeter test on 

peak heat release rate (PHRR), total heat release (THR) and heat release capacity 

(HRC) of PP. 

 
 

Sample 

  

PHRR  

(W/g) 

THR  

(kJ/g) 

HRC  

(J/g-k) 

PP 1051 40.3 1034 

+ 15 wt.%  APP 910 35.1 880 

+ 50 wt.%  ATH 705 26.9 702 

 
Introducing nitrogen (upper burn) and oxygen (lower burn) through the bottom inlet 

resulted in a reduction of HRC from 1039 to 798 J/g-k, respectively for the very same 

ternary formuation (10wt.%Sep+2wt.%CNT). The reasoning behind this maybe due to 

the flame retarding mechanism of the ternary system being abled to initiate and form a 

protective char in an oxidative enviroment.  
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It has been well documented that the charring effect of  polymeric materials is 

significantly enhanced when subjected to an aerobic enviroment (Rimez et al., 2008). 

This can also be observed while testing in the TGA (Table 6.2). If one wishes to prevent 

the polymer from charing then nitrogen should be used as the purge gas to protect the 

sample from oxidizing. However, the microcalorimeter uses an anaerobic pyroloysis 

method to simulate surface gasification, and caution must be taken when results are to be 

analysed. Schartel et al (2005) assessed the suitablity of the microcalorimeter as a 

screening tool and commented that this method does not account for important physical 

effects occurring on larger scales, barrier formation, insulation and flame inhibition. 

Hence, neither the pyrolysis combustion flow calorimeter (PCFC) nor any other test 

based on mg-scale samples is suitable to completely replace flame and fire tests. 

 
Table 6.8. The effect of the burn type in the PCFC on peak heat release rate (PHRR), 

total heat release (THR) and heat release capacity (HRC). 

 
Sample 

 

Burn Type PHRR 

(W/g) 

THR 

(kJ/g) 

HRC 

(J/g-k) 

+ 10 wt.%   Sep 

+ 2 wt.%    CNT  
 

Upper 1064 28 1039 

+ 10 wt.%  Sep 

+ 2 wt.%   CNT  

Lower 810 38 798 

 
The performance in fire tests can be estimated from the PCFC, but identifying precisely 

whether a material will pass or fail a specific test from the investigated set of materials 

with similar performance is clearly limited. Several effects that determine fire behaviour 

such as wicking, dripping, intumesence etc are not covered by milligram based methods 

such as the microcalorimetry 
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6.3.3 Cone Calorimetry 
 
Heat release rate measurements were conducted on unfilled PP as well as the optimised 

ternary PP nanocomposite (Table 6.9; Figure 6.7). Due to its wholly aliphatic 

hydrocarbon structure, PP by itself burns very rapidly without leaving a char residue. 

The reaction to fire properties of the composite materials were evaluated using cone 

calorimeter. The most important parameters from cone calorimetry are: the heat release 

rate (Babrauskas and Peacock 1992), and especially its peak heat release (PHRR); the 

mass loss rate (MLR), which usually tracks very well with the PHRR; the total smoke 

release (TSR), which is a measure of the amount of smoke produced; and the total heat 

released (THR). 

 
Table 6.9. Cone calorimeter data of PP and its ternary nanocomposite. 

 
Sample PHRR 

(kW/m2)

 

THR 

(MJ/m2) 

TSR 

(m2/m2) 

Mean 

CO2 

(kg/kg) 

Mean 

CO 

(kg/kg) 

Residual 

Mass 

(%) 

PP 1933 176 1964 2.08 0.04 2 
 

+ 10 wt.% Sep 

+ 2 wt.%  CNT 

 

355 

 

241 

 

2090 

 

1.07 

 

0.03 

 

10 
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Figure 6.7. Heat release rate vs. time for unfilled PP and ternary PP nanocomposite (10 

wt.% sepiolite + 2 wt.% MWNT).  

 
Heat release rates of the two specimens, unfilled PP and the PP ternary nanocomposite 

system, were measured and the results are shown in Figure 6.7 and Table 6.9. The time 

to ignition for the ternary system was slightly shortened. This was believed to be due to 

the increased thermal conductivity of the nanocomposite caused by the introduction of 

the nanotubes. The CNTs act as thermal conductors, which assist the thermal 

decomposition process (also seen in the TGA scans, see Figure 6.4). The behaviour of 

the specimens was visually observed during testing. As expected, the PP sample melted 

and behaved like a liquid accompanied by numerous bubbles and their bursting on the 

surface. Polypropylene has a high self-ignition temperature, a rapid decomposition rate 

and hence high flammability. As a consequence the unfilled PP had a PHRR of 1933 

kW/m2 which was reduced to 355 kW/m2 for the 10 wt.% sepiolite plus 2 wt.% MWNT 

ternary nanocomposites system.  
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The lower flammability is not due to retention of a large fraction of fuel (see Table 6.9) 

in the form of carbonaceous char in the condensed phase. The new nanostructure present 

in the resulting combustion residue appears to enhance the performance of the residue 

through reinforcement of the carbonaceous char layer. This multilayered carbonaceous 

silicate structure can act as an excellent insulator and mass transport barrier, slowing 

down the escape of volatile products generated during decomposition by creating a 

tortuous path for the combustible gas to escape and for the oxygen rich air to enter. The 

clay network increases the melt viscosity and results in restrained mobility of the 

polymer chains during combustion, which leads to significant improvements in flame 

retardancy for the nanocomposite. There is no significant difference in the total smoke 

release (TSR), namely CO and CO2 which suggests that the source of the improved 

flammability properties of this formulation is due to differences in the condensed phase 

decomposition and not a gas phase effect.  

 
The low carbon monoxide measured indicated that complete combustion had taken place 

whereas smouldering is typical of incomplete combustion which would result in a much 

higher CO measurement. The primary parameter that is thought to be responsible for the 

lower HRR of the nanocomposites is the mass loss rate (MLR). During combustion the 

average MLR was 0.2 and 0.03 g/sec for PP and ternary nanocomposites, respectively. It 

is believed, that this effect is caused by the ability to initiate the formation of char barrier 

on the surface of the burning polymeric nanocomposite that drastically limits the heat 

and mass transfer to the burning zone.  
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6.4 Conclusions 
 

The objective of this work was to test and develop a flame retardant polypropylene 

nanocomposite. The use of sepiolite nanoclay in combination with multiwalled carbon 

nanotubes showed that the heat release rate (HRR) was significantly reduced by 82 % 

compared to the neat polymer in the cone calorimeter. Initial screening tests involved 

thermogravimetric analysis (TGA) and microcalorimetry or PCFC but caution must be 

adopted when interpreting results gained from the tests. Specimen sizes of a few 

milligrams can cause issues due to unrealistic behaviour when compared to identical 

materials tested on a larger scale in a cone calorimeter. Testing in the microcalorimeter 

can limit the behaviour of the material due to its small size and arbitrary shape, whereas 

specimen dimensions are standardised when testing in the cone calorimeter. In the cone 

calorimeter a much larger surface area is available for the flame retarding mechanisms to 

take full effect compared to the microcalorimeter. Another possible concern is the 

testing environment in the microcalorimeter as these tests are conducted in an enclosed 

system with controlled gas flows. Anaerobic environments have shown to hinder the 

flame retarding effect of materials, especially the char formation as part of the flame 

retarding mechanism. The cone calorimeter on the other hand is an open apparatus 

which resembles more real life scenarios.  
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7 
Multiwall Carbon Nanotubes and 
Nanoclays as Flame Retardants 
for Polylactic Acid and its Natural 
Fibre Reinforced Composites 
 

 
 
 
 
7.1 Introduction 
 

 

In previous chapters, the materials selection spectrum has been across the scale from 

thermoset resin to thermoplastic to finally a fully bio-based and biodegradable 

polymer system. The main purpose was to move away from a thermoset to a fully 

bio-based and biodegradable system with enhanced flame retardant properties. In 

order to meet the recyclability criteria, a polylactic acid (PLA) nanocomposite 

system was selected. As observed in Chapters 5 and 6, using carbon nanotubes in 

conjunction with nanoclays can dramatically reduce the peak heat release rate 

(PHRR) of the base polymer. Therefore, the objective is to formulate and test an 

optimised nanocomposite system based on a PLA resin. This resin system will be 

used to manufacture a natural fibre reinforced composite as an end product. 
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Oil depletion as well as ecological aspects of both production and disposal of 

standard petroleum-based plastics is of worldwide concern. These factors have 

motivated many researchers to develop products derived from biomass (Peijs et al., 

1998, 2000; Oksman et al., 2003). Cellulose is both the most common biopolymer 

and the most common organic compound on Earth. About 33 % of all plant matter is 

cellulose; i.e. the cellulose content of cotton is 90 % and that of wood is 50 % 

(Nishino et al., 2003). Some biopolymers such as polylactic acid (PLA), poly-3-

hydroxybutyrate (PHB) and thermoplastic starch can be used as plastics, replacing 

petroleum-based commodity plastics such as polypropylene, polystyrene or 

polyethylene. Among these biobased polymers, polylactic acid (PLA) has currently 

the greatest commercial potential because of its relatively high melting point, 

crystallinity and stiffness compared to other biopolymers (Plackett et al., 2003; 

Barkoula et al., 2009). Moreover, PLA is a versatile polymer made from renewable 

agricultural materials such as corn or potatoes that are fermented into lactic acid. 

PLA is a linear aliphatic thermoplastic polyester, produced by polymerization of 

lactide, a cyclic dimer derived from lactic acid, which in turn is obtained by the 

fermentation of corn or sugar beet. By replacing traditional polymer materials which 

are derived from crude oil with biopolymers, issues to do with dwindling fossil fuel 

stocks and disposal problems can be tackled. Biodegradable polymers such as PLA 

are especially of interest for applications where mechanical recycling is problematic, 

since the material is 100 % biodegradable and compostable.  

 
However, to achieve the mechanical performance needed for many engineering 

applications these polymers need to be reinforced to create engineering polymer 

composites. By using natural fibres such as hemp, flax or kenaf, fully “bio-based 

composites” can be manufactured (Barkoula et al., 2009). One of the main 

advantages of natural fibres (NF) is their “lightweight potential”. Natural fibres have 

a 40 % lower density than glass fibres (GF), which allows the construction of lighter 

parts, compared to plastic parts reinforced with GF or minerals fillers (Shen and 

Patel, 2008; Corbiere et al., 2001).  
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This not only makes these materials competitive with traditional composites such 

glass fibre reinforced plastics (GRP) but is also essential to give them additional eco-

advantages through being lightweight which is essential for transport applications as 

a result of improved fuel efficiency and reduced emissions (John and Thomas, 2008). 

Mohanty et al (2000) compiled an extensive overview into biofibres, biodegradable 

polymers and biocomposites to take a closer look into the feasibility of implementing 

these types of materials within the industrial and domestic sectors. However just like 

with other plastics, the poor flame retardancy of PLA restricts its application and 

development in important fields such as construction and transportation. Several 

works have been published in the field of fire testing of natural fibre composites 

(Gilman and Kashiwagi, 1997; Beyer, 2009; Nazare et al., 2006; Bourbigot et al., 

2008). A note worthy study was completed by Schartel et al (2008), who looked into 

improving the fire retardancy of flax fibre reinforced polypropylene (PP) composites. 

This group studied the effects of adding ammonium polyphosphate (APP) and 

expandable graphite (EG) into the polymer composite, as a flame retardant (FR) 

additive. The heat release rate (HRR) was reduced from 167 to 35 kW/m2 for a 

composite based on 30 wt.% flax fibre and the addition of 25 wt.% of expandable 

graphite (EG) additive. 

 
To date only a few studies have been devoted to the flame retardancy of PLA. Réti 

et al (2008) studied the efficiency of different intumescent formulations to develop 

flame retardant PLA, and the quantity of these additives have been optimised to 

decrease the quantity of ammonium polyphosphate in the formulation. In the most 

recent work, Zhan et al (2008) studied the use of spirocyclic pentaerythritol 

bisphosphorate disphosphoryl melamine (SPDPM) as an intumescent flame retardant 

for PLA. The SPDPM generated char which significantly improved the flame 

retardancy and anti-dripping performance of PLA with 25 wt.% additive. Imparting 

flame retardancy into these materials is possible but only with relatively high 

loadings of inorganic filler (Hapuarachchi et al., 2007). This causes detrimental 

effects to the mechanical properties of the composite and embrittlement.  
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The initial discovery by Kojima et al (1993) within the Toyota group demonstrated 

that a polyamide-6/clay nanocomposite, containing only 5 wt.% nanoclay could lead 

to an increase of 40 % in tensile strength, while at the same time increasing the heat 

distortion temperature (HDT) and also maintaining a high impact strength. Due to the 

silicates fundamental unit thickness of 1 nm and high aspect ratio in combination 

with their high intrinsic stiffness, these nanofillers, when well dispersed, will 

reinforce polymers far more efficiently than conventional fillers like calcium 

carbonate or glass fibres. This good level of reinforcement at low loadings has 

beneficial effects on the processability of the polymer due to a lower viscosity and 

density of the final nanocomposite material and more importantly less embrittlement 

than microcomposites with equivalent mechanical properties. Since the early work 

on polyamide-6 and nanoclay various reviews have been reported on the subject of 

polymer layered silicate nanocomposites (Morgan et al., 2005, 2006).  

 
Schartel et al (2006) studied the thermal and flame retarding effects of phosphonium 

modified silicates in epoxy resins. The mechanism is thought to be due to the clay 

acting as a barrier to the flame trying to penetrate the unconsumed polymer 

underneath the protective char layer. Layered clays have performed well in retarding 

the flame due to their excellent barrier properties. A recent addition to the nanoclay 

group is sepiolite which is a natural hydrous magnesium silicate. As a clay mineral, 

structurally it consists of two sheets of SiO4 tetrahedra bonded via oxygen atoms to a 

central sheet of octahedrally arranged magnesium atoms. It has a needle-like profile 

which helps the flowability of the polymer when melt produced. Bilotti and others 

(Bilotti et al., 2008; Franchini et al., 2009; Marosfoi et al., 2008) have looked at the 

dispersion of sepiolite within thermoplastic polymers as well as studying the effect 

on mechanical and thermal properties of the resulting nanocomposite.  

 
Since the inadvertent discovery of carbon nanotubes (CNTs) by Iijima (1991) there 

has been a great deal of research into possible applications (Jia et al., 2000; Xia et 

al., 2003; Zhang et al., 2004; Erik et al., 2005; Wang et al., 2007, 2008). Kashiwagi 

et al (2004) was one of the first to introduce CNTs into polypropylene (PP) with the 

sole purpose of reducing its flammability behaviour.  
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Their team reported that a possible mechanism for the reduction in peak heat release 

rate (PHRR) may have been due to the formation of a structured network layer. 

Beyer et al (2002) has also looked into using crude and purified MWNTs to decrease 

the flammability of ethylene vinyl acetate (EVA) copolymer. Dubois et al (2004) 

took the concept further and explored the idea of using both CNTs and nanoclay 

fillers together in an EVA matrix. A synergic improvement was recorded for this 

ternary system when compared with the binary base systems.  

 
Ma et al (2007) also investigated a ternary CNT/nanoclay system with acrylonitrile 

butadiene styrene (ABS). Both studies recorded a reduction in the PHRR, and 

suggested that the CNTs acted as a sealing agent to create a network with the clay 

layers, forming a much tighter char than clay alone. The concept of synergism is 

often used in the enhancement of flame retardant polymers. By definition, synergism 

means the enhanced performance of a mixture of two or more components compared 

to that of a single component at the same concentration. In the field of fire science, 

this concept helps to limit the amount of volatile gases escaping from the degrading 

polymer and impedes the oxygen ingress.  

 
This research will consist of combining the flame retarding potential of carbon 

nanotubes and nanoclay to develop a ternary PLA nanocomposite with enhanced 

flame retardancy. These formulations will be screened for their contribution to 

possible fire hazards using the microcalorimeter. The pyrolysis combustion flow 

calorimeter (PCFC) also known as the microcalorimeter measures the heat release 

capacity (HRC) of milligram samples which is advantageous when testing different 

nanocomposite batches. PCFC data has been shown to correlate well with other 

established fire test data (Cone Calorimeter), flammability results (LOI, UL-94) and 

combustion tests (Bomb Calorimeter) and as such is seen as a powerful, low cost tool 

to assess and predict flammability properties (Lyon and Walters 2004). Finally an 

optimised polymer nanocomposite formulation will be selected to scale up and 

produce a natural fibre reinforced composite based on a non-woven hemp mat and 

PLA. This polymer composite will be investigated with respects to its reaction to fire 

performance using the cone calorimeter. 
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7.2. Experimental Procedure 
 
7.2.1 Materials  
 
The base polymer was a polylactic acid (Biopearls M110) resin in granular form with 

melt flow index (MFI) of 20 g/10 min, from Jongboom Holding B.V (Netherlands). 

Before being processed, the PLA was first dried in a vacuum oven at 40 °C for 24 

hours to remove water and other volatile components. The sepiolite nanoclay (Sep) 

was supplied by Tolsa S.A. (Spain). The bulk density of the clay is 60 ± 30 g/L, and 

the BET surface area is 320 m2/g. The characteristic average dimensions of the 

individual sepiolite nano fibres are approximately 1-2 mm in length and 20-30 nm in 

diameter. So the aspect ratio is within the range of 100-300, high enough to lead to 

good mechanical reinforcement (Bilotti et al., 2008). The carbon nanotubes were 

Nanocyl 3100 thin multiwalled carbon nanotubes (CNT) with 95+% purity and 

supplied by Nanocyl S.A (Belgium). The reinforcing natural fibre mat was a non-

woven needle punched hemp mat (800 g/m2) from Hemcore Ltd (UK). 
 

7.2.2 Processing  
 

The compounding of the nanocomposite was carried out on a DSM Xplore micro 15 

co-rotating twin-screw extruder. This mini extruder is equipped with conical co-

rotating screws having a length of 150 mm, an L/D ratio of 18 and a net capacity of 

12 g. The processing scheme was to compound the polymer at 200 °C for 20 minutes 

at a mixing speed of 200 rpm. After carrying out the bench scale thermal analysis 

tests (using the microcalorimeter and thermal gravimetric analysis), the chosen 

formulation was up-scaled using a Collin ZK25 co-rotating twin-screw extruder with 

K-Tron gravimetric feeders. Master batches of sepiolite and CNTs (20 wt.% each) 

were compounded separately, then diluted with polymer to the filler content required 

(10wt.%Sep+2wt.%CNT). The final batches were pelletized using the Collin 

CSG/171/1 attachment. Films were produced using a Collin Tech-line CR72T film 

line. Composites were made by a conventional film stacking technique; a layered 

structure was formed by laying alternating layers of hemp mat and PLA film.  
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The final PLA hemp nanocomposites were hot-pressed into 220×200 mm2 plates 

weighing approximately 240 g each and comprising of 30 vol.% of hemp. A Collin 

P300E hydraulic hot press was used at a pressure of 5 bar for 10 minutes at 190 °C 

for consolidation. A manufacturing scheme is presented in Figure 7.1.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1. Flow diagram of manufacturing and testing procedure involved in 

developing flame retardant natural fibre composite. 
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7.2.3 Characterisation  
 

Thermal gravimetric analysis (TGA) and derivative thermal analysis (DTA) was 

carried out on a TA Instruments Q500, with specimen size of 5 mg. The temperature 

range was from 30 °C to 1000 °C at a ramp rate of 10 °C/min in air and nitrogen 

atmosphere. The specimens for the microcalometer were approximately 5 mg and the 

tests were carried out in triplicate and the results averaged. The gas mixture was an 

80:20 N2:O2 mix. For each run, the pyrolzer was set to a 60 °C/min heating rate to 

reach 750 °C from room temperature. The combustor temperature was pre-set to 900 

°C. Cone calorimetry was carried out on samples of 100×100×5 mm2. All of these 

materials were conditioned at 23 ± 3 °C at a relative humidity of 50% ± 5% for 24 

hours prior to testing. The samples were wrapped with aluminium foil around the 

back and edges before placing the specimen onto the holder and then into the cone 

calorimeter. A retainer frame was used to reduce edge burning effects. All the tests 

were carried out in accordance with ISO 5660 unless stated otherwise. All the cone 

tests were conducted on the cone calorimeter assembled by Fire Testing Technology 

Ltd, (East Grinstead, UK) in accordance to ASTM E-1354 specifications which is 

located at the Interscience Communications Laboratories, Watford. The specimens 

were positioned horizontally and exposed to an irradiance of 50 kW/m2. The 

specimens were pilot ignited and run in triplicate. A Carbite HTF18000 oven was 

used to prepare the SEM samples for morphology characterisation. The samples were 

put into an alumina pan (7.5 cm Ø and 3 cm deep). The heating program was from 

room temperature to 325 °C at a rate of 10 °C/min and a ramp down rate of 50 

°C/min back down to room temperature. 
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7.3. Results and Discussion 
 
7.3.1 Screening using TGA 
 
7.3.1.1 PLA/MWNTs 
 
The addition of inorganic fillers can improve the thermal stability of filled polymer 

systems to some extent. Many studies have reported that polymer/CNT composites 

exhibit higher thermal stability than that of the polymer matrix alone (Marosfoi et al., 

2006; Gorrasi et al., 2007; Kim et al., 2007). Figure 7.2 show the TGA traces of PLA 

in air and nitrogen. Figure 7.3 illustrates the thermogravimetric scan obtained from 

the TGA of PLA with CNTs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Thermal gravimetric analysis scans of PLA in air and nitrogen, 

showing the onset decomposition temperature. 
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Figure 7.3. Thermal gravimetric analysis scans of PLA with CNTs in (a) air and (b) 

nitrogen showing the effect of an aerobic and anaerobic environment to the 

decomposition behaviour of the PLA nanocomposites. 

 

The mass loss signal did not change significantly in width or height with CNT 

content, indicating little or no contribution of the CNTs to the thermal resistance of 

the resin. The residues after 400 °C corresponded well with the char yield of PLA 

plus the different amounts of CNTs. The addition of CNTs resulted in a negative 

effect to the onset decomposition temperature for the PLA when tested in air (Figure 

7.3a). The CNTs are believed to behave in a catalyzing way in an oxidising 

atmosphere. Interestingly, when the formulations were tested in a nitrogen rich 

atmosphere the decomposition temperature was reduced when the CNTs content was 

above 2 wt.%. Hence, loading PLA with 10 wt.% CNTs showed the largest 

detrimental effect on thermal stability (Figure 7.3b). A reason for this might be due 

to the percolation threshold which for this system is thought to be 2 wt.% of CNT, 

causing a percolating network of nanotubes which can act as a conducting path way 

causing an early onset temperature.   
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The CNTs showed no effective barrier behaviour at the initial stages of 

decomposition and merely acted as an inert filler with respect to thermal 

decomposition of the PLA matrix. Similar thermal behaviour was also observed for 

PA6/CNT nanocomposites by Schartel et al (2005). In later work they observed a 

decrease in thermal stability for polycarbonate with the addition of CNTs (Schartel et 

al., 2008). Two possible mechanisms were postulated: (i) the presence of CNTs may 

have led to a reduction in cross-linking of the polymer; (ii) additional components or 

impurities, such as compatibilizers or remaining iron oxides from nanotube synthesis 

may have acted as catalyst during the oxidative decomposition of nanocomposite 

(Kashiwagi et al., 2004). It is well known that the thermal decomposition of PLA is 

lead by random chain scission or specific chain scission because its repeated 

aliphatic ester structure is relatively easy to hydrolyze and break down (Li et al., 

2001; Fan et al., 2004). Recently it was also reported that radical or radical 

promoting species located on crushed CNT surfaces influence the decomposition of 

the polymeric matrix (Peeterbroeck et al., 2007). The presence of acidic or basic 

impurities may enhance depolymerisation of aliphatic ester in PLA thus resulting in 

premature decomposition. However, with respect to pyrolysis under fire, the highly 

effective char yield for PLA with the addition CNTs was the main result noticed in 

this area of testing.  
 

7.3.1.2 PLA/Sepiolite  
 
Figure 7.4a and 7.4b shows, TGA traces of PLA with sepiolite nanoclay tested in air 

and nitrogen. The addition of sepiolite brings about a slight early onset 

decomposition temperature in air when compared to unfilled PLA. Similar thermal 

behaviour has already been reported for EVA based nanocomposites (Lim et al., 

2002), for which optimal thermal stabilisation was obtained at a filler content around 

3 wt.%. Such behaviour was explained by the relative extent of exfoliation in which 

the polymer chains have enough clay platelet galleries to enter for protection. Indeed, 

at low filler content, exfoliation dominates but the amount of exfoliated silicate 

layers is not sufficient to promote any significant improvement to the thermal 

stability. 
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Figure 7.4. Thermal gravimetric analysis scans of PLA with sepiolite clay in (a) air 

and (b) nitrogen. 

 
The superimposed image in Figure 7.4a shows that the onset decomposition 

temperature is slightly decreased with sepiolite loading. The interpretation of this 

phenomenon is commonly a catalytic effect of the nanoclay on the pyrolysis of PLA 

(Manos et al., 2001; Tartaglione et al., 2008). The clay acts as a heat barrier, which 

enhances the formation of char after thermal decomposition.  This heat barrier effect 

may result in a reverse thermal stability. Put differently, the stacked needle structure 

could hold accumulated heat that could be used as a heat source to accelerate the 

decomposition process, in conjunction with the heat flow supplied by the outside 

heat source (Ray and Yamad, 2003). When unmodified sodium montmorillonite is 

introduced into a non-polar polymer matrix a microcomposite is obtained with large 

filler particles and no intercalation or exfoliation with polymer is usually observed 

which means that these materials are sometimes referred to as microcomposites or 

immiscible nanocomposites. When clay layers are only partly intercalated/exfoliated 

and non-homogeneously dispersed, the performance of the polymeric material can be 

similar to other composites with higher loadings of particles of microscopic 

dimensions.  
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It is usually well accepted that improved thermal stability of polymer clay 

nanocomposites is mainly the result of the formation of char which hinders the 

diffusion of volatile decomposition products by creating a labyrinth effect or tortuous 

path. The direct result of the decrease in permeability has been observed in exfoliated 

nanocomposites (Zhu et al., 2001; Gilman et al., 1999; Gilman, 1999; Alexandre and 

Dubois et al., 2000; Kotsilkova et al., 2001). Figure 7.5 shows the TGA thermogram 

for the nanocomposite formulation selected on the basis of their performances in 

TGA and microcalorimetry (which is discussed later). The formulations with above 2 

wt.% CNT (Figure 7.3) and 10 wt.% sepiolite (Figure 7.4) show the best 

performance in terms of residual char content towards the later part of the heating 

scan. A material possessing a high char yield is very important with respect to 

creating a protective barrier for volatile gases escaping and oxygen ingress during a 

fire. The combination of sepiolite nanoclay and carbon nanotubes is thought to cause 

a tight char. The CNTs act to bridge the clay and in doing so reduced the pore 

density caused by thermal decomposition. This was verified by morphological 

studies carried out by scanning electron microscopy (SEM) in Figures 7.9a-c. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 7.5. Thermal gravimetric analysis scans of PLA ternary nanocomposite 

systems in air, showing the increased residual char. 
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Table 7.1. Parameters obtained for the PLA nanocomposites from the TGA. 

 
Loading                    Nanofiller Onset 

Decomposition 
Temperature 

(°C) 

Peak 
Decomposition 
Temperature 

(°C) 

Residual 
Mass 

(wt. %) 

PLA           337            364 1 
1 wt.%                              CNT           331            357 3 
1 wt.%                               Sep           326            359 2 
2 wt.%                              CNT           333            360 3 
10 wt.%                             Sep           334            364 7 
10 wt.%                            CNT           322            348 3 
1 wt.%  + 2 wt.%         Sep+CNT           331            366 3 
10 wt.% + 2 wt.%        Sep+CNT           334            364 11 
10 wt.% + 10 wt.%      Sep+CNT           336            362 13 

 

7.3.2 Microcalorimetry 
 

Tables 7.2-7.4 shows the nanocomposite results acquired from the microcalorimeter. 

The heat release capacity (HRC) defined as the maximum heat release rate divided 

by the constant heating rate in the test. This has been proposed as the single best 

measure of the fire hazard of a material (Lyon and Walters, 2004; Lyon et al., 2006). 

The largest reduction in HRC is from 2-5 wt.% CNTs. The authors believe that a 

percolating network is created above 2 wt.% (Deng et al., 2009). This might assist in 

conducting the heat throughout the whole material rather than causing localised 

decomposition. The effect of the 10 wt.% sepiolite clay did not have the same 

reduction in HRC as did the CNTs. This could be due to the morphology of the 

sepiolite clay. Previous studies (Zhang and Horrocks, 2003; Lau et al., 2006; 

Alexandre and Dubois, 2006; Zhang et al., 2009) have shown that the mechanism of 

nanoclays in reducing the flammability of polymers is to create a barrier on the 

surface of the polymer which protects the underlying material from being consumed 

by the gas phase combustion. Such nanoclays as montmorillonite have a plate-like 

morphology which is thought to cover a larger surface area of the polymer due to its 

flat shape. However, sepiolite clay has a needle-like shape (Bilotti et al., 2009) so 

total surface coverage is not as efficient.   
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Table 7.2. The effect of CNT on the heat release capacity of PLA. 

 
Sample Heat Release Capacity 

(J/g-k) 
PLA 525 
+ 0.5 wt.%   CNT 490 
+ 1 wt.%      CNT 466 
+ 2 wt.%      CNT 452 
+ 5 wt.%      CNT 303 
+ 10 wt.%    CNT 260 
 
 
Table 7.3. The effect of sepiolite clay on the heat release capacity of PLA. 

 
Sample 
 

Heat Release Capacity 
(J/g-k) 

+ 1 wt.%       Sep 451 
+ 2.5 wt.%    Sep 433 
+ 5 wt.%       Sep 427 
+ 10 wt.%     Sep 370 

 
 
Table 7.4. The effect of ternary nanocompoiste formulations on the heat release 
capacity of PLA. 
 

Sample 
Heat Release Capacity 

(J/g-k) 
1 wt.%     Sep +  0.5 wt.%    CNT 447 
1 wt.%     Sep +  2 wt.%       CNT 401 
10 wt.%   Sep +  0.5 wt.%    CNT 330 
10 wt.%   Sep +  2 wt.%       CNT 262 
10 wt.%   Sep + 10 wt.%      CNT 211 

 
 
Table 7.4 shows the HRC results from the microcalorimeter after combining sepiolite 

and CNTs into a ternary nanocomposite system. All the ternary formulations show 

synergistic behaviour over their individual component loadings (see Tables 7.2 and 

7.3). The largest drop in HRC occurred with a sepiolite loading of 10 wt.%.   
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A further reduction came about with a 2 wt.% loading of CNT. Again, the reasoning 

behind this is thought to be due to the nanotubes bridging the sepiolite clay and 

forming a tighter char during decomposition. This has been indicated by SEM 

micrographs of specimens comprising of (i) PLA+CNT; (ii) PLA+Sep and (iii) 

PLA+Sep+CNT (see Figures 7.9a, b and c, respectively). Therefore, using the results 

attained from the TGA and microcalorimeter, a 10wt.%Sep+2wt.%CNT formulation 

was selected as an optimal formulation for larger composite production. The 

justification for this composition is that 10 wt.% sepiolite is an adequate amount 

needed to create a protective barrier layer while 2 wt. % CNTs is sufficient to create 

a network within the system. This is a satisfactory trade-off between performance 

and costs of CNTs.  

 
7.3.3 Cone Calorimetery  
 
Cone calorimetery was conducted on the optimised samples. The heat release rate 

(HRR) was measured as this parameter is one of the most important parameters to 

characterise fire hazard (Babrauskas and Peacock, 1992). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7.6. Heat release rate profile of the specimens tested on the cone calorimeter. 
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The heat release rate (HRR) plots from the cone calorimeter are presented in Figure 

7.6. The results show a large difference in behaviour between PLA and PLA ternary 

nanocomposite. Upon heating, the unfilled PLA specimen began to melt and bubble 

(Figure 7.7a). For the nanocomposite, the nanofillers increased the melt viscosity of 

the ternary system which eliminated bubbling and caused the specimen to maintain 

its shape (Figure 7.7b). Another interesting observation is that contrary to general 

belief, is that the introduction of natural fibres into the polymer did reduce the heat 

release rate. The hemp fibres are thought to have charred and protected the 

underlying polymer (Hapuarachchi et al., 2007).  
 

Table 7.5. Parameters obtained from the cone calorimeter for the PLA composites. 
 
Sample 
 

Peak 
HRR 

(kW/m2)
 

Total 
Heat 

Release 
(MJ/m2) 

Total 
Smoke 
Release 
(m2/m2) 

Mean 
CO2 

(kg/kg) 

Mean 
CO 

(kg/kg) 

Residual 
Mass 

(wt. %) 

PLA 485 104 5 150 4.6 1.6 
PLA/hemp  361 116 26 1.58 0.02 3.5 
PLA ternary 
nanocomposite 

265 118 112 0.82 0.03 3.5 

PLA ternary 
nanocomposite 
/hemp 

340 116 57 1.57 0.02 10 

 
The total heat release, the integral of the heat release rate curve over the duration of 

the experiment is practically unchanged throughout the samples (Table 7.3); this 

suggests that the reason for the improved flammability properties of these materials 

is due to differences in the condensed phase decomposition processes and not due to 

a gas-phase effect. A silicate rich barrier being formed at the start of pyrolysis may 

explain the reduction in the peak heat release rate (PHRR). Changing the 

decomposition pathways, resulting in charring and influencing the chemical reactions 

in the gas phase which can result in flame inhibition, are not the only mechanisms to 

improve fire retardancy behaviour. Physical mechanisms such as cooling, barrier 

formation, and changing the heat capacity, thermal conductivity, or viscosity also 

have an influence on fire behaviour. A silicate char surface layer acting as a barrier 

for heat and mass transportation is probably the main flame retardant mechanism.  
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From the cone calorimeter test results, the nanocomposite shows a lower initial peak 

heat release and a plateau-like behaviour. The HRR curve changes into a shape that 

is typical for char or residue forming material. However, the introduction of the 

hemp fibre mats lead to a detrimental effect on the HRR. Figure 7.6 shows that there 

is an initial sharp rise in HRR for the hemp reinforced specimens. This is believed to 

be due to the thinner layer of resin on the surface, which is consumed by the flame at 

a faster rate. The ternary nanocomposite resin system has the lowest PHRR because 

it has a lower surface to volume ratio which creates a protective char coating during 

flaming. The HRR profile plateaus and decays as the char protection decreases the 

amount of polymer material (fuel) available for combustion and also reduces the 

ingress of oxygen. The hemp reinforced specimens displays another issue towards 

the later stages of the test. At around 400 seconds the HRR rises again, even for the 

hemp ternary nanocomposite system. Figure 7.8 shows the HRR profile for the 

specimens excluding the unfilled PLA specimen.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.7. Photographs taken during cone calorimetery testing (a) unfilled PLA and 

(b) PLA ternary nanocomposite system, showing the resistance to melting. 
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Figure. 7.8. HRR profile and photographs of (a) PLA/hemp composite during testing 

(b) PLA ternary nanocomposite post testing (c) PLA ternary hemp composite post 

testing. 

 
The hemp fibre composites show severe lofting and delamination during flaming 

combustion (Figure 7.8a and 7.8b). This causes a rise in HRR as more material is 

exposed and presented as fuel to the flame.  
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The hemp reinforced ternary nanocomposite specimen however shows a much lower 

second PHRR compared to the unfilled PLA/hemp composite. Delamination may be 

cause for concern with respect to mechanical failure during combustion. To get more 

insight into the behaviour of the nanocomposites during combustion and its flame 

retarding mechanisms, a heat treatment experiment was carried out to study the 

surface morphology after exposure. Three specimens comprising of (i) 

PLA+2wt.%CNT; (ii) PLA+10wt.%Sep and (iii) a ternary nanocomposite system 

based on 10 + 2 wt.% (Sep+CNT). These 30 mg specimens were place into an air 

circulating oven which was heated to 325 °C at 10 °C/min; corresponding to the 

onset decomposition temperature observed by TGA. The SEM images show the 

different surface morphologies (Figure 7.9a-c). The CNT filled specimen shows 

some porosity (Figure 7.9a) but the addition of sepiolite clays seemed to have created 

a tighter network during heating (Figure 7.9c). This may assist in explaining the 

improved flame retarding mechanism of the ternary polymer nanocomposites.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) (a) 

(c) 
Figure. 7.9. SEM micrographs of PLA nanocomposite specimens after being exposure 

to 325 °C (a) PLA+CNT (b) PLA+Sep (c) PLA ternary system. 
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7.4. Conclusions 
 

The objective of this research was to develop a fully biobased natural fibre composite 

with improved flame retardancy. Achieving this target was accomplished by using a 

PLA polymer derived from crops together with two different nanofillers to create 

synergy with respects to flame retardancy. A microcalorimeter was utilised to screen 

nanocomposite formulations for their suitability for further development. This 

technique had the advantage of quick test turnaround times as well as only 

consuming small amounts of materials which is ideal with nanocomposites. Carrying 

across the data from the microcalorimeter and TGA to full composite production 

indicated promising results. A feature which was not expected was the reduction of 

PHRR in the cone calorimeter after the introduction of hemp fibre mat into the PLA 

resin, which acted in its self as a flame retardant. The ternary nanocomposite based 

on sepiolite and CNTs showed the best performance with 58 % drop in PHRR. 

However this was reduced by the introduction of the non-woven hemp fibre mats by 

only a 45 % drop. Due to the thick layered structure the composites delaminated 

during the cone calorimeter testing thus exposing the underlying material. Short fibre 

compounds may be a more suitable type of composite as this avoids the layered 

structure of mat-based composites, which may help alleviate lofting and 

delamination during burning.  
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8 
Predicting the Performance of an 
Optimised Bio-based Composite 
in the Single Burning Item Test  

 

 

8.1 Introduction 
 

The purpose of this chapter is to demonstrate the commercial potential of the natural 

fibre composites which have been developed throughout this thesis. The optimised 

PLA composite will be simulated in a large scale test setup. As mentioned before, 

untamed fire can be an unwanted type of combustion. Therefore a prerequisite of 

early commercialising of a product is to carry out full-scale fire testing. However, 

this is a costly and time consuming technique. Especially in the field of 

nanomaterials, manufacturing and testing a several meter panel can be impracticable 

especially for academic institutions. For this reason, computer modelling can be very 

helpful to demonstrate a materials performance when placed in a real life scenario 

where a fire can be a threat. There are many fire models available on the market. All 

of them have their own special features, such as: predicting flame spread, smoke 

progression and calculating egress time. The objective of this chapter is to give a 

brief overview into the field of fire modelling and use a specific software package to 

predict a materials performance during the single burning item test (SBI). 
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8.2 The Construction Product Directive and 

Euroclass Classification 
 

The choice of material for walls and ceilings can significantly affect the spread of 

fire and its rate of growth, even though they are not likely to be the materials first 

ignited. The specification of linings is particularly important in circulation spaces 

where surfaces may offer the main means by which fire spreads and where rapid 

spread is most likely to prevent occupants from escaping. Two properties of lining 

materials that influence fire spread are the ignitability (the energy needed for 

ignition) and the energy production when burning. The European construction 

products directive, CPD, is aiming at removing barriers of trade for construction 

products between member states of the European Union and those countries outside 

of the EU having an agreement with EU to use the CPD, for example Norway (CPD 

89/106/EEC 1988). 

 

The European Classification Systems (Euroclass), devised for the classification of 

reaction to fire, is part of the ongoing harmonisation of European standards. 

Similarly to the adoption of European fire resistance test standards, the schedule for 

use of the Euroclass system as a basis for assessing the suitability of a product for a 

particular end use is dependent on the national building regulations. The background 

of the harmonisation process lies on the Commission Decision 94/611/EC 

implementing Article 20 of Directive 89/106/EEC on construction products in the 

field of fire safety which was amended in 2003. The Euroclass decision includes a 

classification system for building products based on their reaction to fire 

performance. It additionally defines the test methods according to which construction 

products shall be categorised. In the Euroclass system, floor coverings and other 

surface linings are considered separately. Reaction to fire has traditionally been 

assessed using at least 30 different national standards across Europe. This system 

also includes new tests designed to better evaluate the reaction of building products 

to fire.  
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These methods are the cone calorimeter test (ISO 5660-1:1993, ISO/DIS 5660-

2:1999), the Single Burning Item test - or SBI for short (EN 13823:2002), and the 

room corner test (ISO 9705:1993). All methods are based on the same principles for 

measurement of rate of heat release and rate of smoke production. These three 

methods represent three levels of scale. The cone calorimeter method is a small-scale 

fire test where the test sample has an area of 0.01 m2, the SBI test is an intermediate-

scale test with an exposed area of 2.25 m2, while the room corner test is in large 

scale, where 32 m2 of the product is tested. 

 

8.3 Fire Modelling 
 

Nowadays, when one speaks of a fire model, it is usually understood that one is 

referring to a computer fire model. By now, fire modelling has been in use for more 

than two decades. The computer program COMPF was released by Babrauskas in 

1975 and was the first computer program for predicting room fires to be developed in 

the U.S. Since the last three decades, tremendous progress has been made in the 

field. Today, many who have only a limited knowledge of fire science have already 

had a slight exposure to fire modelling.  

 

8.3.1 Mathematical Models 
 

A model fire model can be accomplished through the use of experimental or 

mathematical techniques. Experimental methods include such methods as reduced 

and full-scale replicas of the situation or phenomenon being studied. These models 

come from various countries. Some deal with a single vented compartment (Kerrison 

et al., 1998), the others treat multiple interconnected compartments (Shigunov, 

2005). Two models emphasize post flashover; the others generally present the history 

of the fire both before and after flashover (Cadorin and Franssen, 2003). In all cases, 

the user must be able to input a good deal of information about the heat release rate 

of the fire. 
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8.3.2 Zone Models and Field Models 
 

Mathematical methods are commonly divided into two groups: stochastic and 

deterministic models.  

 

8.3.2.1 Stochastic Model  
 

Stochastic models, also referred to as probabilistic models, treat fire growth as a 

sequence of events or steps. These events have a given probability of occurring, 

hence the term probabilistic model. The events, coupled with their probabilities, are 

used to predict the progress of a fire within a compartment or building. Since these 

models are based on a probabilistic approach to the fire problem, they typically fail 

to make use of known physical and chemical equations that can mathematically 

describe the progress of fire development. One example of a stochastic or 

probabilistic model is the Building Fire Model developed by Fizgerald (1982); 

another is the Building Fire Simulation Model (BFSM) maintained by the National 

Fire Association.  

 

8.3.2.2 Deterministic Models 
 

Deterministic models predict fire development based on the solution of mathematical 

equations that describe the physical and chemical behaviour of fire. The probability 

of an event occurring is not an integral part of the approach. Most of the 

compartment fire models available today are deterministic. There are two types of 

deterministic compartment fire models: field and zone models.  
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8.3.2.3 Field Model 
 
Field models, as applied to compartment fire modelling, are those models that are 

based on an approach that divides an enclosure into a large number of elemental 

volumes. The model then solves the fundamental equations governing the transfer of 

mass, momentum and energy between these small volumes to predict the progress of 

a fire within the enclosure. Field models are also referred to as computational fluid 

dynamics (CFD) models, because they are extensions of computer codes that were 

originally developed to solve complex fluid flow problems. This type of modelling 

can be considered as a micro approach to the fire modelling problem. Field models 

are currently not considered for widespread use. This is primary due to the extensive 

computer requirements that are not generally available. Also, a more detailed 

understanding of the fundamental physical phenomena, such as turbulence, 

combustion kinetics and chemistry, etc are needed. As affordable personnel 

computing processing power continues to increase, it is expected that field modelling 

will gradually become the preferred approach to simulate compartment fires. 

However, this will take some time, and zone models will remain popular in the fire 

science and fire protection engineering community for the time being.  

 
8.3.2.4 Zone Model  
 
Zone models predict fire development within an enclosure by solving the 

conservation of mass, momentum and energy equations for a small number of zones 

(control volumes). Typically, the enclosure is divided into two distinct zones: an 

upper hot gas layer and a lower uncontaminated cold gas layer (Figure 8.1). This 

technique can be considered as a macro approach to the fire-modelling problem. 

Zone models have been widely accepted and applied due to their relatively simplified 

approach to the modelling problem, especially when compared to the overwhelming 

requirements of field models. When properly applied, zone models have proven to be 

a source of good engineering approximations of fire development within enclosures.  
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Emmons (1983) stated, “The zone model provides all the accuracy required for 

engineering decision making”. The Harvard Code, FIRST, CFAST and ASET as 

well as most of the other compartmental fire models available today are zone models.   
 

 

 
Figure 8.1. Schematic diagram for typical two-zone model. Image from Cadorin and 

Franssen, 2003. 

 
8.4 Scale of Reaction to Fire Tests 
 
Experimental techniques used to measure the fire properties of composites range in 

size from bench top scale apparatus for testing small specimens weighing only a few 

grams up to full scale tests for large structures. Regardless of scale, it is important 

that fire reaction tests are performed in conditions that closely replicate the type of 

fire to which the composite will be exposed to.   

 
The most popular methods for measuring reaction to fire properties are bench scale 

tests, because these are quick, inexpensive and usually provide consistent, 

reproducible data. Bench scale tests are often used to screen materials for their 

flammability and toxic smoke production. A further use of such test is to generate 

data that can be used to validate models for predicting the behaviour of materials in 

large scale fires (Babrauskas, 1995). A limitation of many bench scale tests 

(especially for heat release and smoke density) is that they ignore the effects due to 

fire growth.  
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Instead, they are said to relate only to a snapshot of part of the overall fire behaviour 

of the tested material (Babrauskas and Wickstörm, 1989). Another disadvantage is 

that it is difficult, if not impossible, to simulate actual fires using bench scale 

techniques. For example, heat release rate, air movements and the oxygen/fuel ratio 

that exit in actual fires are often different to those in bench scale fire tests and this 

can affect substantially the measured reaction to fire properties (Babrauskas, 1991). 

Another drawback is that the entire sample is often completely consumed whereas in 

real fires, this may not happen due to the reduced oxygen levels encountered within 

enclosed and unventilated spaces (Babrauskas, 2000). There are a small number of 

intermediate scale fire tests that can overcome some of the limitations of bench scale 

tests. Intermediate scale tests often involve a scale model or part section of a full 

sized structure, although generally the surface area of the specimen is less than 1-2 

m2.   

 
Such tests are often used to bridge the gap between bench scale and full scale testing, 

which is expensive. The commonly used intermediate scale tests are single burning 

item (SBI) test, the furnace test, the U.S Navy quarter scale room fire test and the 

intermediate scale cone calorimeter.   

 
8.4.1 The Single Burning Item Test (SBI) 
 
The SBI test simulates a practical hazard: a burning waste receptacle (the burning 

item) in a room corner. It is a relatively new procedure for determining fire reaction 

and arose as a result of the European Construction Product Directive (CPD), which 

sought to harmonise test procedures across the European Union. It is envisaged that 

most construction products, including composite items, will be tested and classed 

according to the SBI protocol specified in EN 13823 (2002). The SBI procedure was 

chosen because several fire reaction and resistive properties can be measured in a 

single test, including the time to ignition, heat release rate, smoke production, flame 

spread rate and fire growth, under realistic fire conditions. In addition, the generation 

of flaming droplets and particles during thermal decomposition of the test structure 

can be evaluated. The SBI apparatus is illustrated in Figure 8.2.  



Chapter 8 Predicting the Performance of an Optimised Biobased Composite in the SBI Test  
 
 

-179- 
 

It is an intermediate scale corner fire test consisting of two wall panels made of the 

test material. One wall is 1.5 m high × 1 m wide while a second narrower wall is 1.5 

m high × 0.5 m wide. A 0.25 m sided triangular propane gas burner located in the 

corner generates a heat flux of ~ 50 kW/m2, and this is intended to simulate a fire in a 

waste paper bin. An auxiliary burner is placed 750 mm above the floor in the corner 

furthest away from the test specimen. The auxiliary burner does not influence the test 

specimen; it is only used to create a baseline for HRR and smoke production 

measurements before the start of the actual test. The SBI test is performed inside a 

fire room that has a fume extraction system in the ceiling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2.  (a) Schematic of the single burning item test (b) Photograph of SBI in 

progress. Images from EN 13823:2002 standards and Exova Warringtonfire, 

respectively. 

 
 

                              (a)                                                                  (b) 
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The time to ignition and flame spread rate are determined by observing the response 

of the wall panels to the fire. The heat, smoke and gases released by the burning wall 

materials are extracted from the room through the exhaust hood in a manner similar 

to the cone calorimeter. The temperature, air-flow rate, smoke density, O2 and CO2 

concentrations are measured continuously using sensors inside the exhaust duct. The 

heat release rate is calculated from the oxygen consumed during burning of the wall 

materials using the oxygen consumption principle. It is also possible to measure 

changes to the structural capacity of the wall panels when exposed to fire.  
 
While the SBI procedure offers a credible European alternative to a wide range of 

nationally based test protocols, a number of drawbacks have been noted; the most 

significance being the scale of the test, which results in significantly higher costs 

than many other fire reaction tests such as the cone calorimeter. The other problem 

arises from the requirement that the specimens be provided in the form of flat sheets.  

This is appropriate for cladding or panels, but the majority of composite products, 

including mouldings, pultruded sections and pipes are not available in this form. 

Interim solutions have involved the making up of flat sections from strips of products 

but it is probable that an alternative procedure may eventually be needed. Some 

success has been achieved in predicting product performance in the SBI test from the 

result of the cone calorimeter.  

 
8.5 Prediction of Bio-based Composite Performance 
in Single Burning Item Performance Using Cone 
Calorimeter Data 
 

8.5.1 Introduction 
 
The ConeTools program allows the user to predict the SBI test results by means of 

small scale cone calorimeters test results at one heat flux level. Therefore this model 

is an excellent tool for product development and quality control.  
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The ConeTools model by Wickström and Göransson (1992) has been the focus of 

this chapter, because it has been used for many years in the Nordic countries, and has 

proven to be both stable and efficient. To extend the applicability of this model 

would therefore be of great practical interest, both regarding product development 

and product control. The theory behind the model has later been used to develop a 

model for predicting heat release rate in the Single Burning Item test (Messerschmidt 

et al., 1999). Myllymäki and Baroudi (1999) have investigated if the same approach 

could be used to predict smoke production in large-scale tests, and their conclusions 

were promising. The materials that were put through the ConeTools software were 

the optimised polylactide composite that was developed in the previous chapter. 

Table 8.1 presents the list of materials that were studied.  

 
Table 8.1. Cone calorimeter data from the specimens below were put into the 

ConeTools software. 

 
Reference Material Thickness (mm) 

P1 PLA 5 

P2 PLA/Hemp 5 

P3 PLA ternary nanocomposite 5 

P4 PLA ternary nanocomposite/Hemp 5 

 

8.5.2 The FIGRA Classification 
 

The FIGRA (FIre Growth RAte) parameter, defined as the maximum of heat release 

rate divided by time, is shown to predict well the tendency to fire growth for a 

number of different products in different scenarios. The calculation of the FIGRA is 

described in detail by Van Hees, Sundstörm and Thureson (1999). FIGRA is defined 

as the growth rate of the burning intensity, HRR, during a test, in this case the SBI. 

FIGRA is calculated as the maximum value of the function (heat release rate over the 

elapsed test time with units of W/s as shown in equation 1. 
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In addition, certain threshold values of HRR and the total heat release rate must first 

be reached before FIGRA is calculated. Threshold values are needed to avoid that 

very small and early values of HRR are included as this leads to unrealistic FIGRA 

values. As an example, the green line represents the points at which the FIGRA value 

is always equal to 250 W/s. If we therefore position a real combustion curve on this 

graph, we have an immediate graphical display of the class to which the material 

belongs. 

 
Figure 8.3. Graphical representation of lines with a constant FIGRA value of 

120,250,750 W/s. Image from Federation of European Rigid Polyurethane Foam 

Associations report “Figra Report”. 

 
As can be seen for the example test in Figure 8.3, this material has a relatively high 

RHR(t)/t ratio at the start of combustion and the curve is taken to a position in the 

class E area, therefore determining in which sector the material belongs. The 

European system for testing and classification of reaction-to-fire properties, also 

called the system of Euroclasses, has been developed through thorough correlation 

analyses of data from the room corner test and the SBI test.  
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Results from the SBI test are used as a base for the classes A, B, C and D, with 

additional classes S1, S2 and S3 for smoke production (EN 13501-1:2002). The 

FIGRA is seen to be the primary classification parameter for the SBI test. Lateral 

flame spread and total heat release will be safety net parameters which mean they 

will only determine the classification for products showing either extreme flame 

spread or a high heat release rate after the first peak value. The classifications for the 

products studied in this chapter are shown in Table 8.4. 

 

Table 8.2. Classes of reaction to fire performance for construction products 

excluding floorings. Source Council Directive 89/106/EEC 2000. 

*   For classification A1, A2 and B, FIGRA = FIGRA 
** For classification C and D, FIGRA = FIGRA 

 

Table 8.3. Some typical classification for some construction products. Source 
Council Directive 89/106/EEC 2000. 
 

Classification Products Performance description 
A1 Stone, Concrete No contribution to fire 
A2 Gypsum boards (thin paper),  

mineral wool 
No contribution to fire 

B Gypsum boards (thick paper),  
flame retardant  wood 

Very limited contribution to fire 

C Coverings of gypsum boards Limited contribution to fire 
D Wood, wood based panels Acceptable contribution to fire 
E Some synthetic polymers Acceptable contribution to fire 
F No performance determined No performance requirements 

 
 

Classification FIGRA [W/s] THR600s [MJ] 

A1 ≤20* 4.0 

A2/B ≤120* 7.5 

C ≤250** 15 

D ≤750** - 

E/F No criterion No criterion 
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8.5.3 The Model 
 
In the ConeTools model, the ignition time as well as the complete heat release curve 

from the cone calorimeter are used. There are products for which it is not possible to 

predict their behaviour in large scale based on small scale tests. Examples are 

products with a protective surface, joints or products that melt. These need to be 

tested in large scale to get results that can be used for evaluating their potential fire 

hazards. The calculation model is described below. It solves two equations in order 

to predict the behaviour in the SBI. These are; the area of fire growth (flame spread) 

and heat release rate.  
 
Three major assumptions have been made in the prediction model for HRR in the 

SBI: 
 

1. The burning area growth rate and HRR are decoupled. 

2. The burning area growth rate is proportional to the ease of ignition, i.e. the 

inverse of the time to ignition in small scale. 

3. The history of the HRR per unit area at each location in the SBI test is the 

same as in small scale. 
 
 

 

 

 

 

 

 

 

 

 

Figure 8.4.  Suggestion of three different routes for development of the effective heat 

releasing area in the SBI test. Image from Hansen 2002. 
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The fire spread can follow two different routes. All products start to spread along 

route II. A product is assumed to spread along route III if the calculated sustained 

flame height is at least 1.5 m, which is equal to the height of the test sample. 

Otherwise the product is assumed to spread route II. Within the different flame 

spread regimes, the burning area growth rate of a product depends on ignitability, i.e. 

time to ignition in the cone calorimeter. This ignition time is assumed to be a time 

equal to half of the ignition time found in the cone calorimeter. The area growth rate 

is described by the following; 
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where Amax is the maximum area involved and tign is time to ignition in the cone 

calorimeter. One the flame spread rate is determined; the HRR is calculated 

assuming that products always give the same HRR per unit area as a function of time 

in small scale as in the SBI. All parts of the tested product are assumed to burn in the 

same way in the SBI as in the cone. However, this is an over simplification. The 

HRR depends more or less on the actual heat flux level received by the product as a 

function of time.  

 
The heat release from the SBI test is obtained by summing up the contributions from 

each of the total burning area and the burner 

 

                      burnerproducttotal QQQ
•••

+=                   (3) 

where burnerQ
•

is constant at 30 kW while productQ
•

 varies with time as the fire spreads, 

the involved area A(t) increases  as described  above and the burning intensity at each 

position is time dependant. productQ
•

 is obtained by adding the contributions from 

burning parts which have started to burn at various times.  
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The HRR of the specimen at each location is then assumed to go through the same 

history as was measured in the cone calorimeter. productQ
•

 is calculated using the 

Duhamel’s integral 

 

∫ −=
••• t

bsproduct dtqAQ
0

)('')( τττ       (4) 
 
where 

•

A is the time derivation of the burning area, t is the time, bsq ''
•

is the heat 

release per unit area as recorded in the cone calorimeter and τ is a dummy variable. 

The following very simple numerical solution to the Duhamel’s integral is the 

approach used in this model  

 

∑ −
••

Δ= iN
bsiproduct qAQ ''            (5) 

 

Where iAΔ is the incremental burning area growth at the time increment i, and bsq ''
•

is 

the HRR per unit area after (N-i) time increments as recorded in the cone calorimeter.  
The model has been developed to be used with the cone calorimeter at a heat flux 

level of 50 kW/m2. To be able to use the model with the cone calorimeter, a 

correction was introduced for both ignition time and the HRR level. The correction is 

based mainly on fine tuning the results 

 

tignCorr=tignCone(ConeFlux/SBIFlux) 

HRRCorr=HRRCone(SBIFlux/ConeFlux)0.5 

 
Where tignCorr is the corrected ignition time used in the model, tignCone the ignition time 

in the cone calorimeter test, HRRCorr the corrected HRR, HRRCone the HRR in the 

cone calorimeter test and SBIFlux the corresponding reference flux for the cone SBI 

model being 40 kW/m2. 
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8.6 Results from the ConeTools Software Package 
 

The main input parameters to the model are the ignition time and the complete heat 

release rate curve both from the cone calorimeter test. The HRR curve is 

automatically registered by the computer attached to the cone calorimeter but the 

ignition time is visually observed during the experiment. A screen capture is 

presented in Figure 8.5. The classification for the bio-based composite is presented in 

Table 8.6. All of the products gained a class D performance. Which states that the 

product did not exceed a FIGRA value of 750 W/s. This classification is indicative of 

wood base products with a thickness ≥ 5 mm tested in Euroclasses. This is 

reasonable due to the cellulose content being present in the form of hemp fibre.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8.5. Screen shot of ConeTools input and data generation screen. Image 

courtesy of Interscience Communications. 
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Table 8.4. Simulated FIGRA and SBI classification results from ConeTools software. 
 

Reference FIGRA [W/s] Euroclass 

P1 539 D 

P2 579 D 

P3 429 D 

P4 504 D 
 

(P1-PLA) (P2-PLA/Hemp) (P3-PLA ternary nano) (P4- PLA ternary nano/hemp). 
 

As mentioned before, the main parameter used for the SBI classification is the 

FIGRA parameter. This is the main classification parameter which is summarised as 

the maximum value of 30 second averaged heat release rate dived by time. The 

calculation for the FIGRA index is described in detail in the SBI standard EN 13823. 

In Table 8.6, results are given for the FIGRA value and Euroclass, which was 

generated from the ConeTools software. The advantage of this predictive software is 

the use of only one heat flux level (50 kW/m2). All of the PLA specimens achieved a 

Euroclass D classification. This is common for wood/cellulose based products. Table 

8.6 shows that P2 has the highest FIGRA value. These coinsides well with the cone 

calorimeter data. P3 has the lowest, which is thought to be due to the CNT and 

sepiolite nanoclays protecting the specimen thus reducing the HRR. It can be also 

seen that the addition of the hemp fibre mat plies results in detrimental fire behaviour 

which shows similar behaviour in the cone calorimeter. P1 has the third highest 

FIGRA value but was expected to have the largest due to being a pure polymer. 

However, the PLA (P1) melts and creates a pool before igniting and releasing its 

maximum heat release. This will affect the FIGRA as ignition times are used for 

calculation. However, there are two important differences between the cone 

calorimeter and the SBI test that affects all modelling attempts. Firstly, the heat 

exposure in the cone calorimeter is radiative and well defined whereas the SBI 

includes flame impingement producing a non-constant exposure on the specimen 

surface, leading to different behaviour.  
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Secondly, physical effects in the SBI test (edges, joints, bending, collapsing etc) are 

not observed in the cone calorimeter. Therefore, a model based on the cone 

calorimeter test results cannot simulate all the features of the SBI test.  The essential 

feature of both models is that only a single cone calorimeter test at a single heat 

exposure level is required as an input without any additional data or material 

parameters. Thus the model provides a practical and economical tool for product 

development and quality control.  

 
8.7 Conclusions  
 
The main objective of this chapter was to evaluate the optimised bio-based 

composite for real life applications. To achieve this, the product must pass strict fire 

testing procedures and guidelines in order to be granted permission to allow the 

manufacturer of the product to release it into the public domain. The main issue with 

this is the scale at which testing must be conducted. This is especially problematic 

for academic intuitions. A possible solution for this is to use fire modelling to predict 

the behaviour of the product in a real life scenario. This chapter also served as a brief 

introduction into fire modelling. A number of applications ranging from very 

complex models such as CFD to screening models are available for prediction of test 

methods such as the SBI method used for the Euroclasses. In the past many of these 

models for prediction of test methods were only useful for those who had developed 

the method but the recently developed ConeTools software can also be used by 

industry and researchers. Limitations such as the fact that cone calorimeter uses 

small samples need to be considered but the cost reduction factor and the wide 

availability of the cone calorimeter should be taken into account. No other screening 

tests need to be developed at the moment since they will have at least the same 

limitations if not more. The products here gained a Class D performance, however, 

the performance on these materials in the SBI are all speculative. For e.g. P1 which 

is the unfilled PLA had a FIGRA value of 539 W/s.  
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Therefore, one would imagine that if a specimen of 1.5 × 1 m was heated, then it 

would then rapidly melt and thus affect the FIGRA value. So to fully assess the 

behaviour of these materials in the SBI, the material of interest would have to be 

tested in the practical sense. 
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9 
Summary and Future Work 

 

 

 

9.1 Summary 
 

 

 

Because of their eco-friendly character natural fibre reinforced plastics have caught 

the attention of many. However, similar to the performance of their synthetic 

counterparts, natural fibre composites are susceptible to fire thus limiting their usage. 

Over the last few decades, carbon nanotubes and nanoclays have generated enormous 

interest by academia as well as industry. Owing to their unique intrinsic properties, 

these materials have potential applications in numerous fields. The work carried out 

in this thesis focuses on the use of nanofillers in combination with natural fibre 

composites. The objective of this thesis is to systematically develop and characterise 

flame retardant bio-based polymer composites, using nanofillers as flame retardants. 

The advantage of using these fillers over traditional micron sized ones is that much 

smaller filler loading levels are required for similar flame retardancy effects, 

resulting in reduced overall polymer density while simultaneously solving the issue 

of embrittlement. Recycling of the final composite will also be easier due to the filler 

not being a major constituent of the composite in addition to the polymer matrix and 

reinforcing fibre having the ability to decompose after their service life.  
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In this thesis, the aspects mentioned above have been undertaken. The work carried 

out in Chapter 3 describes a feasibility study to assess the potential application of 

natural fibre reinforced sheet moulding compound materials (NF-SMC) for the use in 

building applications, with particular emphases to their reaction to fire. The 

reinforcing fibres in this study were industrial hemp fibre mats. The cone calorimeter 

which asses the fire hazard of materials by heat release rate (HRR) was used, radiant 

heat fluxes of 25 and 50 kW/m2 were utilised to simulate an ignition source and 

developing room fire conditions, respectively. The results acquired here demonstrate 

that the NF-SMC can compete with current building materials in terms of their fire 

behaviour. The peak heat release rate for the fire retardant (FR) NF-SMC was 176 

kW/m2 compared to a non-FR NF-SMC of 361 kW/m2. This work was important 

with respect to setting a good foundation for the continuing development of natural 

fibre composite. 
 

The purpose of Chapter 4 was to observe any further possible flame retardant 

improvements to the unsaturated polyester (UP) resin from the previous Chapter 

using “greener” non-toxic flame retardants. The use of aluminum trihydroxide 

(ATH) in combination with ammonium polyphosphate (APP) was expected to impart 

an improved flame retardant effect in the UP system. Thermal gravimetric analysis 

showed an improved thermal stability between 200-600 °C with the addition of ATH 

and APP formulation. A combination of both FR’s showed an improved ignition 

delay time as well as a decrease in the peak heat release rate and carbon monoxide 

yield. However, synergistic behaviour was not witnessed but instead a mere fuel 

replacement effect on the role of the micron sized fillers is more plausible. In 

general, synergism can be defined as two or more components working together to 

produce a result not obtainable by any of the components independently. The 

polymer used plays an important part in the effectiveness of these two FR fillers and 

their combination does not work with all polymers as shown in the literature.  
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The additional reduction in the PHRR with the addition of APP does not justify its 

use due to the resultant difficulties with increased viscosity, which will result in 

major processing difficulties in adopting these materials in potential fibre reinforced 

composites.  

 

In Chapter 5, conventional flame retardant fillers were replaced with multiwalled 

carbon nanotubes (MWNTs) and sepiolite nanoclays (Sep). The synergistic effect on 

thermal decomposition and HRR in particular the PHRR of unsaturated polyester 

resin were investigated using; thermal gravimetric analysis (TGA), pyrolysis 

combustion flow calorimetery (PCFC) also known as microcalorimetry and also the 

cone calorimetery. Initial microcalorimeter findings confirmed a synergistic effect 

for a ternary system comprising of a 10:0.5 wt.% mixture of sepiolite:MWNT 

respectively, which resulted in a 40 % reduction in PHRR. This result was also 

confirmed within the better established cone calorimeter by a 50 % reduction in 

PHRR in contrast to unfilled UP. The most important benefit of the ternary system is 

that it reduces the PHRR, which is the most critical fire hazard, by a synergistic 

reaction involving the formation of a stable residual char. The mechanism behind this 

reduction is thought to be due to the bridging of the MWNTs between the sepiolite 

clay needles, creating a tight protective surface layer. This char formation reduces 

the amount of small volatile polymer pyrolysis fragments - or fuel - available for 

flame. This in turn reduces the amount of heat released and feed back into the 

polymer surface. The char also insulates the underlying polymer, due to its low 

thermal conductivity, and reradiates externally impinging energy away from the 

polymer. The char also functions as a mass transport barrier by physically delaying 

the volatilisation of decomposition products and or trapping decomposition products 

through chemical reaction. TGA also confirmed the advantage of such a ternary 

system through a 36 °C shift in the onset decomposition temperature and an 11 % 

increase in residual char.  
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However, even though achieving a flame retardancy is one of the objectives of this 

thesis, another is it to develop a system with better recyclability. For this a move 

away from a thermoset to a thermoplastic system is essential. Chapter 6 reports on 

the testing and development of a polypropylene (PP) nanocomposite. The work 

utilises the unique properties of sepiolite in combination with MWNTs to develop an 

optimised ternary nanocomposite system were the HRR was significantly reduced by  

82 % compared to the neat polymer in the cone calorimeter. Initial screening tests 

involved TGA and microcalorimetry but caution must be adopted when interpreting 

results gained from these tests. Specimen sizes of a few milligrams can cause issues 

due to unrealistic behaviour when compared to identical materials tested on a larger 

scale in a cone calorimeter. Testing in the microcalorimeter can limit the behaviour 

of the material due to its small size and arbitrary shape, whereas specimen 

dimensions are standardised when testing in the cone calorimeter. In the cone 

calorimeter a much larger surface area is available for the flame retarding 

mechanisms to take full effect compared to the microcalorimeter. Another possible 

concern is the testing environment in the microcalorimeter as these tests are 

conducted in an enclosed system with controlled gas flows. Anaerobic environments 

have shown to hinder the flame retarding effect of materials, especially the char 

formation as part of the flame retarding mechanism. The cone calorimeter on the 

other hand is an open apparatus which resembles more real life scenarios.  
 

Finally, with respects to materials development, the objective of Chapter 7 was to 

develop a fully bio-based polylactic acid (PLA) composite using the technology 

gained from the previous chapters. Achieving this target was accomplished by using 

a PLA polymer derived from crops together with two nanofillers to create synergy 

with respects to flame retardancy. The microcalorimeter was utilised to screen 

nanocomposite formulations for their suitability for further development. Carrying 

across the data from the microcalorimeter and TGA to full composite production 

indicated promising results. A feature which was not expected was the reduction of 

PHRR in the cone calorimeter after the introduction of hemp fibre mats into the PLA 

resin, which acted in its self as a flame retardant.  
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The ternary nanocomposite based on sepiolite and MWNTs showed the best 

performance with a 58 % drop in PHRR. However this was reduced by the 

introduction of the non-woven hemp fibre mats to only a 45 % drop. Due to the thick 

layered structure the composites delaminated during the cone calorimeter testing thus 

exposing the underlying material.  

 

The main objective of the final Chapter was to evaluate the optimised bio-based PLA 

composite for commercialisation and real life applications. To achieve this, the 

product must pass strict fire testing procedures and guidelines in order to be granted 

permission to allow the manufacturer of the product to release it into the public 

domain. The main issue with this is the scale at which testing must be conducted. 

This is especially problematic for academic intuitions. A possible solution for this is 

to use fire modelling to predict the behaviour of the product in a real life scenario. 

The ConeTools software package was used to predict the behaviour of the material in 

a single burning item test (SBI), which is a standardised test for assessing a products 

contribution to flame spread, which is to be used by the construction industry. The 

products here gained a Class D performance, which is common for cellulose based 

products, however, the performance on these materials in the SBI are all speculative. 

For e.g. P1 which is the unfilled PLA had a FIGRA value of 539 W/s. Therefore, one 

would imagine that if an unfilled thermoplastic specimen of 1.5 × 1 m was heated, 

then it would rapidly melt and thus affect the FIGRA value. So to fully assess the 

behaviour of these materials in the SBI, the material of interest would have to be 

tested in the practical sense. 

 

9.2 Future Work 
 
The development of a fully bio-based natural fibre composite was accomplished by 

using polylactic acid (PLA) as the matrix and hemp mats as the reinforcement. 

Nanofillers helped to achieve the required flame retardancy. However, as seen in 

Chapter 7, the hemp mats cause a lofting issue in which the specimen delaminates 

during cone calorimetry testing. This causes the heat release rate to rise due to more 
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unburnt material being presented as fuel. Therefore, to further develop this 

composite, chopped hemp fibre should be used in a compound which would alleviate 

this issue. Although, the developed composites have improved flame retardancy in 

comparison to its pure polymer, the mechanical properties are unknown. Therefore a 

range of mechanical tests would be required before possible commercialisation can 

take place. 
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